
Quality-of-Service (QoS) for

Asynchronous On-Chip Networks
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy in the

Faculty of Science and Engineering
2004
Tomaz Felicijan
1

Department of Computer Science

Contents

Contents ...2
List of Figures ...6
List of Tables ...8
Abstract ...9
Declaration ..10
Copyright ...10
The Author ..11
Acknowledgements ...12

Chapter 1: Introduction ..13
1.1 Thesis overview ..17
1.2 Research contributions ...18

Chapter 2: Asynchronous Logic ...20
2.1 Introduction ..20

2.1.1 Advantages of asynchronous logic ..22
2.1.2 Disadvantages of asynchronous logic ..24

2.2 Asynchronous design methodologies ...25
2.2.1 Delay-insensitive circuits ...26
2.2.2 Quasi delay-insensitive circuits ...26
2.2.3 Speed-independent circuits ..27

2.3 Handshaking protocols ...27
2.3.1 Non return-to-zero handshaking protocol28
2.3.2 Return-to-zero handshaking protocol ...29

2.4 Data encoding ...29
2.4.1 Single-rail encoding ...29
2.4.2 Delay-insensitive encoding ..30

2.5 The Muller C-element ..31
2.6 Metastability ...33
2.7 Large-scale asynchronous design ...34
2.8 Summary ...36

Chapter 3: Quality-of-Service (QoS) ..37
3.1 Introduction ..37

3.1.1 QoS: a user’s view ...38
3.2 Basic QoS architecture ...38
3.3 End-to-end QoS levels ..38
3.4 QoS control methods ..39

3.4.1 Overprovisioning ...40
3.4.2 Buffering ..40
3.4.3 Traffic shaping ...41
3.4.4 Resource reservation ..42
3.4.5 Admission control ..46

3.5 Summary ...47

Chapter 4: Networks-on-Chip (NoCs) ...48
 2

4.1 Introduction ..48
4.2 NoC design issues ...50

4.2.1 Wiring resources ..50
4.2.2 Power consumption ..51
4.2.3 Modularity ..51
4.2.4 Hardware costs ...51

4.3 OSI reference model applied to NoCs ..52
4.4 NoC services ...54

4.4.1 Data integrity ..55
4.4.2 Lossless data delivery ..55
4.4.3 In-order data delivery ...55
4.4.4 Time-related guaranteed services ...56

4.5 QoS for on-chip networks ...56
4.5.1 Guaranteed services ...56
4.5.2 Best-effort services ..56

4.6 QoS for asynchronous networks ...58
4.6.1 Reserving network bandwidth ...58
4.6.2 Buffer management ..62
4.6.3 Admission control ..63

4.7 Summary ...63

Chapter 5: The Network Layer ..65
5.1 Introduction ..65

5.1.1 Direct networks ..65
5.2 Network topology ...67
5.3 Switching ..69

5.3.1 Circuit switching ..69
5.3.2 Store-and-forward and virtual cut-through switching70
5.3.3 Wormhole switching ..70

5.4 Routing ...70
5.4.1 Algorithmic routing ..71
5.4.2 Source routing ..73
5.4.3 Dimension-ordered routing algorithm ...73

5.5 Packet size and organization ...73
5.6 QoS architecture ...74

5.6.1 Principle of operation ...75
5.6.2 Bandwidth allocation ...76

5.7 Summary ...77

Chapter 6: The Data Link Layer ..78
6.1 Data integrity ..78
6.2 Flow-control ...79
6.3 Medium access control ...80

6.3.1 Asynchronous arbitration ...81
6.3.2 Proposed solution ...82
6.3.3 Principle of operation ...83
6.3.4 Implementation ..84

6.4 Summary ...87

Chapter 7: The Physical Layer ...88
 3

7.1 Introduction ..88
7.1.1 Power dissipation ...89
7.1.2 Synchronization ...89

7.2 An asynchronous ternary logic signalling system92
7.2.1 ATLS system transmitter ...93
7.2.2 ATLS system receiver ..94
7.2.3 Enhanced ATLS system transmitter ..96
7.2.4 Test architecture and quality metrics ...98
7.2.5 Robustness and reliability ..99
7.2.6 Results ..101

7.3 Summary ...105

Chapter 8: Router Design ..106
8.1 Summary of the NoC design issues ..106

8.1.1 Network services ..106
8.1.2 Topology and routing ...107
8.1.3 Switching ...107
8.1.4 Packet size and organization ..107
8.1.5 QoS architecture ...108
8.1.6 Implementation technology ..109

8.2 Top level diagram ...109
8.3 Input port controller ..110

8.3.1 Virtual channel demultiplexer (VCDMUX)111
8.3.2 Input buffers ...112
8.3.3 Request unit ..113

8.4 Switching fabric ..114
8.4.1 Crossbar ...114
8.4.2 Input multiplexer and arbiter ..118

8.5 Output port controller ...119
8.5.1 Flow-control unit ..119
8.5.2 Scheduler ..120

8.6 Route management unit ..122
8.7 QoS guarantees and constraints of the router125
8.8 Summary ...130

Chapter 9: Evaluation ..131
9.1 Network performance ...131

9.1.1 Test harness ..133
9.1.2 Test network traffic analysis and admission control136
9.1.3 QoS traffic specifications ...137
9.1.4 Delay and jitter analysis ...139
9.1.5 Simulation results ...142
9.1.6 Minimum buffer constraint ..145

9.2 Hardware requirements ...147
9.3 Comparison with similar solutions ...148

Chapter 10: Conclusions ..153
10.1 Advantages ...155

10.1.1 Clock-skew ...155
10.1.2 Modularity ..155
 4

10.1.3 Complexity ...155
10.2 Disadvantages ...155

10.2.1 Number of virtual channels ..155
10.2.2 Admission control ..156
10.2.3 Passive bit-rate control ...156

10.3 Future research directions ...157
10.3.1 Bundled-data implementation ..157
10.3.2 Alternative scheduling algorithms ...157
10.3.3 Admission control ..158

 References ..159
 5

List of Figures

2.1 A synchronous pipeline. 20
2.2 An asynchronous pipeline. 21
2.3 Circuit fragment with gate and wire delays. 26
2.4 An asynchronous communication channel. 27
2.5 Non return-to-zero handshaking protocol. 28
2.6 Return-to-zero handshaking protocol. 29
2.7 A C-element and its truth table. 32
2.8 Asymmetric C-elements and corresponding truth tables. 33
2.9 CMOS implementation of a mutex. 34
3.1 High jitter (a) and low jitter (b). 40
3.2 Resolving jitter by buffering packets. 41
3.3 Leaky bucket mechanism. 42
3.4 Time-division multiplexing. 43
3.5 HOL blocking. 46
4.1 Typical bus-based SoC. 49
4.2 SoC design based on a two-dimensional mesh NoC. 49
4.3 Layered approach to managing communication complexity. 52
4.4 NoC protocol stack. 54
4.5 The effect of GS traffic on resource usage. 57
4.6 Three input arbiter. 59
4.7 Uniformly distributed traffic. 60
4.8 Bursty traffic. 60
5.1 A two-dimensional network with bi-directional links between nodes. 66
5.2 Message, packets, flits and phits in direct networks. 67
5.3 NoC topologies: 2D mesh (a), folded torus (b), octagon (c), and fat-tree (d). 68
5.4 An example of livelock (a) and deadlock (b) in a network. 71
5.5 Deterministic and adaptive routing in a 2-dimensional mesh network. 72
5.6 QoS architecture using virtual channels. 74
5.7 Multiple QoS connections sharing the same physical channel. 75
5.8 Blocked packet holds idle only a single virtual channel. 76
6.1 Unidirectional network link. 79
6.2 A single bit lock register. 82
6.3 Principle of the operation. 83
6.4 Partial STG of the arbitration system. 84
6.5 Circuit of the arbiter. 85
6.6 STG of the arbiter. 86
7.1 Dual-rail four-phase protocol. 91
7.2 Principle of the ATLS system. 92
7.3 ATLS system transmitter. 93
7.4 Output waveforms of basic (upper graph) and enhanced (lower graph) ATLS system.
94
7.5 ATLS system receiver. 95
7.6 Enhanced ATLS system transmitter. 97
7.7 The simulation circuit. 99
7.8 Period versus wire length. 101
 6

7.9 Energy versus wire length. 102
7.10 Energy-delay versus wire length. 103
7.11 Period, energy and energy-delay product vs. voltage supply at 10 mm wire. 104
8.1 Organization of a packet. 108
8.2 Time-related guaranteed services using virtual channels. 109
8.3 Top level diagram of the router. 110
8.4 Input port controller. 111
8.5 A gate-level schematic of the VCDMUX. 111
8.6 An asynchronous one-of-four latch (a) and an input buffer (b). 112
8.7 Request unit. 113
8.8 Non-multiplexed switch. 114
8.9 Multiplexed switch. 115
8.10 Contention in a multiplexed switch. 115
8.11 Partly-connected 5-by-5 crossbar switch with multiplexed inputs. 116
8.12 Crossbar implementation. 117
8.13 Crossbar arbitration. 118
8.14 Output port controller. 119
8.15 Flow-control unit. 120
8.16 Scheduler: principle of operation. 121
8.17 STG of an output port controller. 122
8.18 A RMU symbol with input and output ports. 123
8.19 The operation of the RMU. 124
8.20 QoS constraint due to the multiplexed switch. 125
8.21 Minimum buffer size QoS constraint. 128
8.22 Minimum buffer size requirement examples. 129
9.1 A typical BNF plot illustrating throughput as the maximum accepted traffic. 132
9.2 Test network. 133
9.3 Linear traffic bounding function. 139
9.4 Throughput versus best-effort traffic demand. 143
9.5 Maximum latency versus best-effort traffic demand. 144
9.6 Jitter versus best-effort traffic demand. 145
9.7 Throughput of QoS1 versus the burst length of Q1a. 147
 7

 8

List of Tables

5.1 Summary of switching techniques. 69
7.1 Typical noise sources. 100
7.2 Noise analysis of the proposed systems. 104
9.1 Summary of delay analysis. 142
9.2 Hardware costs of the router. 148
9.3 Communication architecture comparison. 150

Abstract

Networks-on-Chip (NoCs) are emerging as a new design paradigm to tackle the challenge

of managing the complexity of designing chips containing billions of transistors. One of

the key features of a modern NoC is the ability of the interconnect to provide Quality-of-

Service (QoS) capabilities in order to accommodate different components with strict

traffic characteristics and constraints. However, the adoption of NoCs as the solution for

global interconnect still raises the question of which clocking strategy to use. While local

wires scale in length with a technology, global wires spanning an entire chip do not -

exactly the situation that leads to clock skew problems.

One way to eliminate this problem is to use asynchronous logic for an on-chip network

implementation. This leaves only the issue of connecting synchronous components to an

asynchronous network. Furthermore, properties such as low power, improved electro-

magnetic compatibility (EMC) and robustness, offer additional benefits from the use of

self-timed logic for on-chip interconnect.

The research presented in this thesis describes an asynchronous on-chip network router

with QoS support. The router employs a virtual channel architecture together with a

priority-based scheduler to provide time-related guarantees. The resulting QoS

architecture is suitable for on-chip implementation because of its low complexity and low

area overhead.

Simulation results show that the proposed architecture utilizing self-timed logic is capable

of providing time-related guarantees such as minimum bandwidth and bounded

communication latency.
 9

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

Copyright

(1). Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by

the Author and lodged in the John Rylands University Library of Manchester.

Details may be obtained from the Librarian. This page must form part of any such

copies made. Further copies (by any process) of copies made in accordance with

such instructions may not be made without the permission (in writing) of the

Author.

(2). The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without

permission of the University, which will prescribe the terms and conditions of any

such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Head of the Department of Computer Science.
 10

The Author

Tomaz Felicijan obtained a University Degree in Electrical Engineering from the

University of Maribor, Slovenia in 1997. He joined the Advanced Processor Technology

(APT) Group at the Department of Computer Science at the University of Manchester in

2002. Since then he has been working in the area of asynchronous on-chip networks

towards the Ph.D. degree and this thesis is the result of three years of research.
 11

Acknowledgements

First of all I would like to thank my supervisor, Prof. Steve Furber without whose

guidance and support this thesis would not have been possible. Thank you Steve for

giving me a chance to do this Ph.D. and all the encouragement, support and

understanding.

Special thanks go to Dr. Steve Temple, Dr. Aris Efthymiou and Dr. John Bainbridge for

proofreading this thesis. John also fixed my first asynchronous circuits and was a great

influence at the beginning of my studies. He is greatly responsible for the success of this

thesis.

I would also like to thank Dr. Kees Goossens and John Dielissen from Philips Research

Laboratories in Eindhoven for many useful discussions during my internship in The

Netherlands.

General thanks go to all members of the APT group at the University of Manchester and

the rest of the people I bumped into and became friends with while I was trying to find

my place under the sun in Manchester. The list is long, so thank you guys.

Finally, I would like to express my gratitude to my parents and my family for their eternal

support and love, and to my girlfriend Sabina for being there when I needed her most.

To my grandma Veronika Felicijan (1911-2002) and

my uncle Martin Jurak (1941-2003).

V spomin na staro mamo Veroniko Felicijan (1911-2002) in

strica Martina Juraka (1941-2003).
 12

Chapter 1: Introduction

The 2001 International Technology Roadmap for Semiconductors (ITRS) [41] projects

that multi-billion transistor chips will come to production by the end of this decade. As

we proceed into deep sub-micron (DSM) technologies feature sizes will shrink well below

100 nm, supply voltages will drop under 1 V and clock frequencies will increase up to 10

GHz. This will not only introduce a whole new set of application possibilities but will also

aggravate current problems in Very-Large-Scale-Integration (VLSI) design and,

moreover, introduce several new ones.

Wire delays will predominate over gate delays and global interconnects spanning a chip

will carry signals whose propagation time exceeds a clock period [39]. Synchronization

over an entire chip with a single clock source will therefore become extremely hard or

even impossible. One synchronization paradigm that is likely to prevail in the future is

Globally-Asynchronous-Locally-Synchronous (GALS). The main idea of the GALS

systems is to partition a chip into several sections each driven by an independent clock

source. To form a functionally correct system the sections are glued together by an

asynchronous interconnect fabric.

With several billion transistors on a single piece of silicon it is highly unlikely that the

majority of chips in the future will be designed from scratch. On the contrary, designers

will strive to reuse existing components and intellectual property (IP) blocks as much as

possible to reduce design costs and shorten time-to-market. This will reinforce the market

for IP vendors such as ARM Limited, who license designs of the same processor core to

many competing semiconductor manufacturers. The success of Systems-on-Chips (SoCs)

will rely on using appropriate design and process technologies, as well as on the ability to

interconnect existing components in a plug-and-play fashion.
Chapter 1: Introduction 13

With many components communicating with each other on a single chip conventional

point-to-point connections will become very cumbersome because the numbers of wires

will increase drastically to occupy a substantial part of an ever more expansive silicon

area. Moreover, point-to-point connections are often under-utilised (as little as 10% [26])

since they are used to transmit data only for a small percentage of the execution time.

Most of the time they are idle. Replacing those connections with a more structural wiring

approach where independent communication flows share the same physical resource

could increase the overall efficiency of the system.

Although a large part of interconnect logic still consists of wires their electrical properties

can be optimized and well controlled. This enables the use of more aggressive signalling

techniques to reduce the power consumption by a factor of ten and increase propagation

velocity by three times [23]. Wiring resources are shared between many different

communication flows making utilization of the wires more efficient. For example, when

one client is idle, other clients continue to make use of the network resource. Information

sent from one component is encapsulated in packets which are then routed towards their

destination in a well-controlled manner.

The first step in implementing a structural interconnect system was to adopt a bus

architecture similar to standard backplane busses such as VME [81] and PCI [73]. AMBA

[4], CoreConnect [19] and Open-Core-Protocol [62] are some of the commercially

available solutions from different VLSI vendors. Although on-chip busses provide good

connectivity for a small number of components it is clear that as we progress to DSM

technologies with billions of transistors and tens or even hundreds of components on a

single chip a bus architecture will run out of capacity. The reason for this is the lack of

scalability and available bandwidth inherited by a centralised arbitration and a single

shared data path, respectively. To overcome these drawbacks there is increasing interest

in more sophisticated communication architectures on chips.

Network-on-a-chip (NoC) is a new design approach proposed as a solution to future on-

chip interconnect [7]. The concept is the same as in local-area-networks (LANs) and

structures communication complexity from the physical implementation up to the

application in a number of layers. Each layer provides a different set of services to clients

on a common network similar to a protocol stack [76]. However, on-chip networks have
Chapter 1: Introduction 14

some characteristics that make their design and implementation unique:

• Off-chip networks emphasize general-purpose communication and modularity and

are strongly influenced by standardization and compatibility constraints in legacy

network infrastructures. On the other hand, for on-chip networks these constraints

are less restrictive because developers design the interconnect on silicon from

scratch and are thus able to tailor the network architecture to a specific application.

• On-chip networks have enormous wiring resources at their disposal and it is quite

easy to achieve several thousand ‘pins’ connecting a single IP block [26]. In

contrast, off-chip networks are pin limited to far fewer than 1,000 total pins. This

large difference allows the designer to trade wiring resources for network

performance, making a qualitative difference in network architecture.

• On the other hand silicon area is much more restrictive for NoCs. In particular,

storage space is very expensive because general-purpose on-chip memory, such as

Random-Access-Memory (RAM), occupies a large area. Furthermore, an off-chip

network node usually contains dedicated processors to implement a part of the

protocol stack in order to relieve a client from communication processing. This may

not be feasible for NoCs since it would result in a large proportion of the chip area

being occupied by the network logic.

• Energy consumption constraints are specific to on-chip networks since a large

proportion of the power in modern VLSI systems is consumed by interconnect [47],

while for off-chip networks power dissipation is usually not an issue.

• On-chip networks exhibit much less non-determinism because the traffic

characteristics of connected components are well known at design time. This means

that almost all management of the network resources can be done at design time,

eliminating complex and expensive hardware that provides dynamic resource

management during operation.

The adoption of on-chip networks as the solution for future SoCs still raises the question

of which clocking strategy to use for the network itself. While local wires scale in length
Chapter 1: Introduction 15

with a technology, global wires spanning an entire chip do not, which is exactly the

situation that leads to clock-skew problems. Managing clock distribution in such a

network is problematic at best.

One way to eliminate the clock-skew problem is to use asynchronous logic for the on-chip

network implementation. This leaves only the issue of connecting synchronous IP blocks

to an asynchronous network. Interfacing clocked and self-timed circuits is a well

understood discipline for which standard solutions exist [57]. Furthermore, properties

such as low power, improved electro-magnetic compatibility (EMC) and robustness

deliver additional benefits from the use of self-timed logic for on-chip interconnect.

In an IP block re-use model it is often difficult to adapt individual components to the

specific SoC they are used in. They will interact in many different ways (event-driven,

data streaming, message passing, shared memory, etc.) [71]. Moreover, some components

require guaranteed latency and throughput. For example, a data stream from a camera to

an MPEG decoder requires about 1.5 Mbits/s throughput with a continuous transfer rate

[58]. A network has to guarantee this throughput for the particular connection even when

the traffic reaches saturation point. It is therefore imperative for an on-chip network to be

flexible in terms of the services that it offers. The ability of a network to provide

guaranteed throughput and latency to specific connections is often referred to as Quality-

of-Service (QoS).

Providing QoS requires careful design at both the circuit and the system level. There are

several timing constraints that have to be met in order for a system to operate inside the

boundaries of the specifications. In synchronous networks a time-division-multiplexing

(TDM) [76] technique is usually used to provide the highest level of QoS. TDM partitions

the time axis into time-slots where each time-slot presents a unit of time in which a single

flow can transmit data over a physical channel. QoS is provided by reserving a proportion

of time-slots for a particular connection. For example, if a connection requires 50% of the

available bandwidth, a network has to ensure that alternate slots are available for that

particular connection.

Asynchronous networks cannot employ a conventional TDM technique because it

requires global synchronization between network elements. Thus different solutions have
Chapter 1: Introduction 16

1.1 Thesis overview
to be implemented. This thesis presents a detailed summary of research conducted into the

feasibility of asynchronous logic providing QoS for on-chip networks.

1.1 Thesis overview

Chapter 2 provides an introduction to asynchronous design. The most common self-timed

techniques are described and their advantages and disadvantages are discussed. The

chapter does not cover all aspects of asynchronous design, but focuses mainly on the

asynchronous techniques used later in this thesis. The interested reader is referred to other

sources for more detailed descriptions of asynchronous logic design.

The concept of Quality-of-Service (QoS) is described in chapter 3. This chapter gives a

review of the basic mechanisms used in packet-switched networks to support QoS. It

outlines the various approaches that have been proposed, and discusses some of the trade-

offs they involve.

The concept of a Network-on-a-Chip (NoC) is borrowed from general computer networks

[76] where the communication is broken into several layers in order to reduce the

complexity of the design. Although the same principles apply to networks at all scales,

NoCs have some characteristics that make their design unique. Chapter 4 describes how

NoCs differ from their off-chip counterparts.

The following two chapters investigate the issues involved in designing an asynchronous

on-chip network with the emphasis on the ability of the interconnect to provide a

preferential service for a particular connection (QoS). The chapters follow a top-down

approach using the OSI (Open System Interconnection) Reference Model [88] as a

framework to abstract the complexity of the interconnect. The chapters deal only with the

network-dependent issues of designing an NoC, therefore only the lower two layers of the

OSI reference model are described, namely the network layer and the data-link layer.

These two layers are described in chapters 5 and 6, respectively.

Chapter 7 deals with the physical layer of an on-chip network. Two problems are

addressed, namely power dissipation and synchronization. The chapter also presents a

new approach to an on-chip asynchronous transmission system suitable for next-
Chapter 1: Introduction 17

1.2 Research contributions
generation asynchronous on-chip networks. It implements multivalued logic to reduce the

number of wires and a low-voltage swing for lower dynamic power dissipation. The

proposed signalling scheme is compared to a classical dual-rail signalling system with

regard to speed, power consumption and reliability.

As a concrete example of the viability of using an asynchronous on-chip network to

support QoS, chapter 8 presents a prototype of an asynchronous NoC router with the

ability to provide guaranteed throughput and bounded communication latency. The

architecture of the router is given together with a detailed description of the main

components.

Chapter 9 presents an evaluation of the router. Performance metrics include throughput,

end-to-end latency and variation in end-to-end delay (jitter). The performance of the

router is evaluated in different traffic scenarios. The router is also compared to several

different proposals published in the literature.

Finally, chapter 10 completes this thesis with some conclusions about the feasibility of

using asynchronous logic to provide a suitable level of QoS in a modern on-chip network.

The chapter also discusses some potential areas for improvement.

1.2 Research contributions

The work presented in this thesis investigates the ability of asynchronous logic to support

Quality-of-Service (QoS) for an on-chip network. The result is a prototype of a self-timed

on-chip network router with the capability of providing time-related guarantees, such as

minimum throughput and bounded communication latency. The QoS architecture

presented here is suitable for on-chip implementation because of its low complexity and

low area overhead.

The following papers, based on the work presented in this thesis, have been published:

• T. Felicijan and S. Furber, “An Asynchronous Ternary Logic Signalling System,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6,

pages 1114-1119, December 2003.
Chapter 1: Introduction 18

1.2 Research contributions
• T. Felicijan and S. Furber, “Quality of Service (QoS) for Asynchronous On-Chip

Networks,” In Formal methods on Globally Asynchronous Locally Synchronous

Systems (FMGALS’03), September 2003.

• T. Felicijan, J. Bainbridge and S. Furber, “An Asynchronous Low Latency Arbiter

for Quality-of-Service (QoS) Applications,” In Proceedings of the 15th IEEE

International Conference on Microelectronics (ICM'03), pages 123-126, December

2003.

• T. Felicijan and S. Furber, “An Asynchronous On-Chip Network Router with

Quality-of-Service Support (QoS),” In Proceedings of the IEEE System-on-Chip

Conference (SOCC’04), pages 274-277, September 2004.

• M. Amde, T. Felicijan, A. Efthymiou, D. Edwards and L. Lavagno, “Asynchronous

On-Chip Networks”, to appear in the IEE Journal of Computers and Digital

Techniques.
Chapter 1: Introduction 19

Chapter 2: Asynchronous Logic

Asynchronous design has been an active area of research for several decades, however it

has yet to achieve widespread use. This chapter examines the benefits and problems of

self-timed logic design and introduces some of the more notable design methodologies

which are used in this thesis. The interested reader is referred to other sources where

extensive information on all aspects of asynchronous design can be found [66][74].

2.1 Introduction

Nowadays the majority of digital chips are based on two fundamental assumptions,

namely that all electrical signals are represented as binary variables and that all

components share a common and discrete notion of time. Both of these assumption are

made in order to simplify the design of logic systems. The binary representation of signals

allows the use of Boolean logic to describe and manipulate logic constructs, and the global

and discrete notion of time eliminates many of the problems with race conditions and

hazards. The systems built under these assumptions are usually referred to as

“synchronous”. As an example of a synchronous system consider the pipeline shown in

figure 2.1.

Figure 2.1: A synchronous pipeline.

R1 R2 R3

clock

CL1Data in Data out

Computation logicRegister
Chapter 2: Asynchronous Logic 20

2.1 Introduction
The propagation of data tokens between the pipeline stages is controlled by the global

signal called clock. Typically, a rising edge of the clock designates valid data at the input

of a pipeline stage while for the rest of the time the data is considered to be invalid.

Consequently, the designer must ensure that the worst-case latency of each pipeline stage

does not exceed the clock period.

Asynchronous circuits are fundamentally different. Although electrical signals are still

considered to be binary, the assumption of a global and discrete notion of time is no longer

upheld. In order to perform synchronization and communication between components an

asynchronous logic system uses a mechanism called handshaking. Instead of distributing

a global synchronization signal throughout the chip, handshaking is performed locally

between the components which are directly involved in the process of exchanging data,

while the rest of the chip remains unaffected by the operation. Figure 2.2 shows an

asynchronous implementation of the pipeline presented in the previous example.

The clock signal is replaced by a handshaking mechanism implemented in the control

logic (CTL) which accompanies each register in the pipeline. In order to perform

synchronization between neighbouring stages additional handshaking signals are

employed (Req and Ack).

Correct operation of the pipeline is ensured by the following rule: a register may store a

new data value (often referred to as a token) from the previous stage only when the

Figure 2.2: An asynchronous pipeline.

R1 R2 R3

CL2

Data in Data out

Computation logicRegister

CTL CTL CTL
Ack
Req

Control logic
Chapter 2: Asynchronous Logic 21

2.1 Introduction
following stage has stored the data value the register is currently holding. The states of the

previous and the following stages are signalled by the incoming request and acknowledge

signals respectively. Note that some of the handshaking protocols use only an

acknowledge signal while the request is incorporated into the data value, as explained

later in this chapter.

2.1.1 Advantages of asynchronous logic

Although it is very unlikely that asynchronous logic will ever replace the traditional

synchronous approach to designing chips, there are some specific design niches where the

absence of a global clock has several possible benefits that could make clockless design

the optimum choice. This subsection elaborates some of the possible advantages of

asynchronous logic design.

Clock skew

Clock skew is the difference in arrival times of the clock signal at different parts of the

chip. This could violate the assumption that all components share the same notion of time,

as noted above. With the advent of deep-submicron technologies clock skew has become

one of the main problems in VLSI design. It is expected that by the end of this decade the

latency to transmit a signal across a chip will vary between 12 and 35 clock cycles [3].

With careful design of the clock distribution network it is possible to mitigate the clock

skew problem. However, solutions such as balanced clock trees [83] require a lot of

additional design effort and are expensive in terms of silicon area and power

consumption.

Due to the absence of a global clock an asynchronous system does not suffer from the

clock skew problem and the increasing complexity of the clock distribution network.

Power dissipation

Synchronous circuits have to toggle clock lines, and possibly precharge and discharge

signals, in parts of a circuit which may not be involved in the current operation. For
Chapter 2: Asynchronous Logic 22

2.1 Introduction
example, even though a floating-point unit in a processor may not be used in a given

instruction, the unit must still be driven by the clock. Note that there are techniques being

used in synchronous designs to address this problem, however the implementation of such

techniques is not straightforward and requires additional control logic.

On the other hand, asynchronous systems dissipate power only when they perform a

certain function while they exhibit zero power consumption when they are idle.

Furthermore, the power dissipation is localized to the parts of a system which are actively

involved in the current computation. Consequently, asynchronous systems have zero

stand-by power consumption. Note that this is true only if the leakage currents of an

asynchronous system are small enough to be negligible.

Average-case performance

The highest possible clock frequency of a synchronous system is limited by the worst-case

combination of the following parameters:

• power supply variation,

• temperature,

• transistor speed determined by the silicon process,

• data-dependent operation time. For example, a ripple-carry adder can perform an

addition with a short carry propagation distance faster than one with a long carry

propagation distance.

Asynchronous circuits automatically adjust their speed of operation according to the

current conditions because they are not restricted by the fixed clock frequency. As long

as the worst-case combination of the parameters listed above occurs infrequently

asynchronous circuits provide better than worst-case performance.
Chapter 2: Asynchronous Logic 23

2.1 Introduction
Modularity

The most common way to improve the performance of a synchronous system is to

increase the frequency of the global clock. Unfortunately this usually requires most of the

system to be redesigned. In contrast, increasing the performance of an asynchronous

system can be achieved by modifying only the most active part of the circuit. The only

constraint a designer has to observe is that the communication protocol between the

module being replaced and the rest of the system remains the same.

Electro-magnetic compatibility (EMC)

The global synchronization mechanism implemented in synchronous systems causes

most of the switching activity to occur at the same time. This concentrates the radiated

energy at the harmonics of the clock frequency.

Asynchronous circuits produce distributed interference spread across the entire frequency

spectrum because the local clock signals tend to tick at random points in time. In systems

which use radio communication this can be a significant advantage.

2.1.2 Disadvantages of asynchronous logic

However, asynchronous logic also has several disadvantages, compared to synchronous

logic, which have prevented its widespread use in industry.

Complexity and lack of CAD tools

In essence, asynchronous circuits are more difficult to design than synchronous circuits.

By implementing the global clock, a designer only needs to ensure that the processing of

every stage finishes before the next rising edge of the clock signal. The global clock

eliminates hazards (undesired signal transitions) and a designer does not have to worry

about the dynamic state of the circuit.

In asynchronous systems a great deal of attention has to be given to the dynamic state of

the circuit. Hazards have to be removed, or not introduced in the first place, in order to
Chapter 2: Asynchronous Logic 24

2.2 Asynchronous design methodologies
avoid an incorrect result and the ordering of operations has to be carefully ensured by the

asynchronous control logic.

For complex systems, these issues become too difficult to be handled manually, therefore

CAD tools have to be used in order to ensure correct designs. Unfortunately,

asynchronous circuits in general cannot employ existing CAD tools that have been

developed for synchronous systems. The lack of suitable CAD tools is probably the main

reason that asynchronous logic design still remains mostly in the domain of academic

research.

Testability

The requirement for very high reliability of electronics systems is no longer limited to

critical applications in military, aerospace or nuclear industries, where failures can have

catastrophic consequences. Today, electronic systems are rigorously tested to ensure that

the design implemented in silicon is free of manufacturing defects.

Testing for fabrication faults in asynchronous systems is harder because of the non

deterministic elements, such as arbiters, used in the design. Furthermore, asynchronous

systems tend to contain much more information than synchronous systems. As well as

pipeline latches, every handshake circuit contains memory elements which have to be

accounted for during the test process.

2.2 Asynchronous design methodologies

Asynchronous design methodologies can be broadly classified into two main categories

according to the timing models they assume: bounded-delay and unbounded-delay. The

bounded-delay model assumes that the delay in all circuit elements and wires is known,

or at least bounded. In this model, circuits are designed in a similar way to synchronous

circuits, and this approach was widely used in the early days of asynchronous design.

However, modern asynchronous designs use the unbounded-delay model where the delay

of logic gates and wires is generally unknown and control circuits and state machines are

designed to operate correctly regardless of the distribution of delays. The bounded-delay
Chapter 2: Asynchronous Logic 25

2.2 Asynchronous design methodologies
model may still be used for data-path components because it generally leads to smaller

implementations. Throughout this thesis only the unbounded-delay model is used,

therefore the rest of this chapter focuses on this particular model of asynchronous

systems.

Within the unbounded-delay model asynchronous circuits can be classified into several

sub-groups according to the number of assumptions they make on gate and wire delays.

The following subsections briefly explain the main sub-groups.

2.2.1 Delay-insensitive circuits

Delay-insensitive (DI) circuits represent the most robust model for designing

asynchronous circuits where arbitrary delays are assumed for both logic elements and

wires. Figure 2.3 shows an example of a circuit fragment with gate and wire delays.

Three logic gates A, B and C with gate delays dA, dB and dC, respectively are shown. The

output of gate A is forked to inputs of gates B and C and wires comprising the fork have

delays designated as d1, d2, and d3. If the circuit operates correctly for arbitrary values of

dA, dB, dC, d1, d2, and d3 then it is said to be delay-insensitive. Unfortunately, the range

of true DI circuits that can be implemented in CMOS is very limited, as proved by Martin

[56].

2.2.2 Quasi delay-insensitive circuits

Quasi delay-insensitive (QDI) circuits were introduced to alleviate some of the constraints

set by DI circuits in order to broaden the range of the circuits that can be implemented in

Figure 2.3: Circuit fragment with gate and wire delays.

A
dA

d1

B
dB

C
dC

d2

d3
Chapter 2: Asynchronous Logic 26

2.3 Handshaking protocols
a CMOS technology. The delay of gates and wires is still considered to be arbitrary,

however QDI circuits assume that the delays of all ends of a forking wire are identical.

Referring to figure 2.3 this means that d2 equals d3 while all the rest of the values (dA, dB,

dC and d1) are still arbitrary. If the delays of a forking wire are the same, the wire-fork is

said to be isochronic [54].

Clearly, the identical delays of all ends of a forking wire are virtually impossible to

achieve in a real-life design. However, if the difference in delays of forking branches is

shorter than the delays in the gates to which the fork is an input (|d2 - d3| << dB, dC) the

wire-fork may be considered as isochronic.

2.2.3 Speed-independent circuits

In speed-independent (SI) circuits wire delay is considered to be negligible compared to

gate delay while gate delays exhibit arbitrary values. The circuit in figure 2.3 is speed-

independent if it performs correct operation for arbitrary values of dA, dB and dC, while

d1, d2 and d3 are assumed to be insignificant (d1, d2, d3 << dA, dB, dC). The SI assumption

is valid for small circuits where all the wires are very short.

2.3 Handshaking protocols

Handshaking is the mechanism that controls the flow of data tokens between the

components of an asynchronous system. The mechanism has to ensure that data tokens

progress from one component to the next in a well controlled manner without clashing

with each other. Figure 2.4 shows an example of an interface between two asynchronous

components which communicate using a handshaking protocol.

Figure 2.4: An asynchronous communication channel.

S
en

d
er

R
ec

ei
ve

r

Request

Data

Acknowledge
Chapter 2: Asynchronous Logic 27

2.3 Handshaking protocols
In addition to data wires two signals, namely request and acknowledge, are used to

negotiate the transfer of data from a sender to a receiver. A set of wires comprising the

interface is usually referred to as a channel. Figure 2.4 illustrates a typical push channel

where the sender issues a request signal when it has data to transmit. The receiver

acknowledges the reception of the data by sending an acknowledge signal back to the

sender. Sometimes a pull channel is used in asynchronous systems (not shown in the

figure) where, instead of the sender, the receiver initiates the transaction cycle by issuing

a request signal when it is ready to accept new data.

The request and acknowledge between components may be passed using one of two

handshaking protocols: a two-phase transition signalling protocol, sometimes referred to

as a non return-to-zero protocol, or a four-phase level signalling protocol, also called a

return-to-zero protocol.

2.3.1 Non return-to-zero handshaking protocol

A non return-to-zero (NRZ) handshaking protocol [65] exchanges information using

transitions of signals with rising edges equivalent to falling edges. If Req and Ack wires

are assumed both to be low initially, then the sequence of events shown in figure 2.5

illustrates a waveform of an NRZ handshaking protocol using a push channel. Note that

other initializations are also possible, and in particular it is not essential for the wires to

start in the same state.

Figure 2.5: Non return-to-zero handshaking protocol.

1st handshake 2nd handshake

Data

Req

Ack
Chapter 2: Asynchronous Logic 28

2.4 Data encoding
2.3.2 Return-to-zero handshaking protocol

A return-to-zero (RTZ) handshaking protocol (four-phase signalling) [65] uses the level

of signals to indicate when data is valid and when it has been acknowledged by the

receiver. This scheme requires every signal used in the protocol to return to its origin

(zero) state before the next transaction cycle may commence. Compared to NRZ

signalling, an RTZ protocol uses twice as many transitions which leads to higher power

consumption, however it often results in smaller control logic. Figure 2.6 shows a

waveform of an RTZ protocol with a push channel.

2.4 Data encoding

In synchronous systems data is typically represented using a binary encoding scheme

where each wire represents a single bit of information. In a positive logic system a VDD

voltage level on a signal represents logic 1 and VSS represents logic 0. In addition to the

single-rail encoding scheme, several others are very popular in asynchronous design.

2.4.1 Single-rail encoding

In a single-rail encoding scheme (also known as the bundled-data approach) data is

represented in the same way as in a conventional synchronous system where each wire

carries a single bit of information. Typically, a VDD voltage level represents logic 1 and

VSS represents logic 0. Timing information is passed using additional request and

acknowledge signals to allow for the synchronization between the sender and the receiver.

Figure 2.6: Return-to-zero handshaking protocol.

1st handshake 2nd handshake

Data

Req

Ack
Chapter 2: Asynchronous Logic 29

2.4 Data encoding
The single-rail encoding scheme relies on one timing assumption, namely that the delay

in the request signal must be no less than the delay in the corresponding data path.

Single-rail encoding is very popular among asynchronous designers because it results in

similar area requirements to those of synchronous counterparts. Furthermore, the

construction of a data-path can be done using conventional synchronous tools. However,

the main drawback with single-rail encoding is that extra design effort is required in order

to verify that the delays of request signals match the delays of data signals under all

possible manufacturing conditions.

2.4.2 Delay-insensitive encoding

A code is delay-insensitive (DI) if it enables the receiver to unambiguously detect the

complete code symbol sent by the transmitter [80]. An informal requirement for a code to

be delay-insensitive is that no code symbol is contained in any other code symbol. A

delay-insensitive code adds redundancy to the data so that validity information is carried

along the data in the data-path. This means that the request signal is no longer required

because it is implicit in the data. However, additional hardware is required at the

receiver’s end to detect incoming symbols.

An example of a delay-insensitive code is one-hot encoding where only a single wire is

active at any given time. In order to transmit n bits of information 2n wires are required

and a valid code symbol is represented by an active signal on one of those wires. The most

common DI codes in asynchronous design are dual-rail and one-of-four.

Dual-rail encoding

Dual-rail encoding uses two wires to represent a single bit of information. Typically, (0,0)

indicates an empty code symbol, (0,1) and (1,0) represent logic 0 and logic 1, respectively.

Note that the (1,1) combination of inputs is not used and represents an illegal code

symbol.

The main problem with dual-rail encoding (and delay-insensitive design in general) is that

it results in a larger area overhead than conventional single-rail circuits. Furthermore,
Chapter 2: Asynchronous Logic 30

2.5 The Muller C-element
dual-rail circuits tend to dissipate more power than their single-rail counterparts because

of the increased switching activity as a result of the duplication of logic function for the

true and complement cases.

One-of-four encoding

A one-of-four encoding scheme represents a possible solution to reduce the switching

activity of a delay-insensitive system. In this case four wires are used to transmit two bits

of information in parallel using one active signal to designate a valid code symbol.

Combination (0,0,0,0) represents the empty code symbol, while combinations (0,0,0,1),

(0,0,1,0), (0,1,0,0) and (1,0,0,0) represent numbers 0, 1, 2 and 3, respectively.

It can be observed that one-of-four encoding generates roughly 50% fewer signal

transitions than dual-rail encoding when transmitting two bits of information, while the

area requirement remains almost the same. Note that two dual-rail channels have to be

used in order to transmit two bits of information in parallel.

N-of-M encoding

Dual-rail encoding and one-of-four encoding are simply two examples of an N-of-M

encoding scheme where N = 1. Other schemes where N > 1 are also delay insensitive and

offer better wire utilization than one-hot encoding schemes. For example, a two-of-seven

code employs seven wires to transmit four bits of information using only two active

signals per symbol. Compared to dual-rail encoding, where eight wires are required to

transmit the same number of bits using four active signals per symbol, the two-of-seven

code clearly has the utilization advantage. However, the problem with N-of-M encoding

schemes is that they result in larger arithmetic and completion detection circuits that make

them unattractive for implementation on silicon.

2.5 The Muller C-element

As opposed to a synchronous circuit where the signal levels are interpreted only at discrete

points in time dictated by the global clock, an asynchronous circuit is an event driven
Chapter 2: Asynchronous Logic 31

2.5 The Muller C-element
system where a signal transition represents an event which may trigger subsequent

transitions at any point in time. Typically, an asynchronous system waits for a particular

transition (or sequence of transitions) to occur before changing its state and producing a

new set of outputs. Consequently, the signal is not allowed to exhibit unwanted transitions

(glitches) as they may be interpreted as valid events by the system. Similarly, the system

itself has to ensure that every output signal transition has a meaning, and hazards and races

must be avoided.

In the design of DI circuits the concept of indication and acknowledgment has been

introduced where every signal transition should be acknowledged by other signal

transitions to avoid hazards. As an example consider a two-input OR gate. When the

output of the gate changes from 1 to 0 an observer may conclude that both inputs are now

at 0. However, when the output changes from 0 to 1 the observer cannot make conclusions

about both inputs as they may be in any of the following states: (0, 1), (1, 0) or (1, 1).

Consequently, the OR gate only indicates when both inputs are 0. Similarly, it can be seen

that an AND gate only indicates when both inputs are 1.

An important asynchronous primitive that is much better in this respect is the Muller C-

element. Figure 2.7 shows a symbol of a symmetric two-input C-element and its truth

table. When both inputs are 0 the output is set to 0, and when both inputs are 1 the output

is set to one. For other input combinations the output does not change. Consequently,

when the output changes its state from 0 to 1 or from 1 to 0, an observer may conclude

that both inputs are now at 1 or 0, respectively.

In addition to the symmetric C-element where the output changes state only when all

inputs have the same value, several asymmetric variants of a C-element are possible. In

Figure 2.7: A C-element and its truth table.

C
A

B
Z

A B Z

0

0

1

1

0

1

0

1

0

Z

Z

1

(no change)

(no change)
Chapter 2: Asynchronous Logic 32

2.6 Metastability
an asymmetric C-element some input signals may affect only the rising or the falling edge

of the output signal, but not both. Figure 2.8 shows some examples of asymmetric C-

elements with corresponding truth tables.

2.6 Metastability

Often, asynchronous systems require that several inputs are mutually exclusive. If the

environment does not ensure this property the system has to perform asynchronous

arbitration upon the particular inputs. As the inputs may change at any point in time the

system may become metastable.

Metastability is a situation that arises when a bistable system has to determine the

ordering of two asynchronous inputs that occur in a very close time proximity [14]. When

this happens it may take an indefinite amount of time for the system to resolve the

situation, during which the state of the output may be neither a 0 nor a 1, but somewhere

in between.

The same situation may also occur in a synchronous system when an asynchronous input

does not satisfy the set-up and hold time requirements of the clocked flip-flop used to

sample the input. The problem is usually accommodated by waiting for a predefined

number of clock cycles before using the output of the flip-flop. However, there is always

a chance that the system will fail because the output of the bistable element may still be

metastable when its outputs are used. With careful engineering the probability of failure

Figure 2.8: Asymmetric C-elements and corresponding truth tables.

C
A

B
Z C

A

B
Z

A B Z

0

0

1

1

0

1

0

1

0

0

Z

1

(no change)

A B Z

0

0

1

1

0

1

0

1

0

Z

1

1

(no change)

+ -
Chapter 2: Asynchronous Logic 33

2.7 Large-scale asynchronous design
can be reduced to a very low level, although it is not possible to eliminate the possibility

of failure entirely.

In asynchronous systems the problem of metastability is solved using an alternative

approach of waiting until the metastability has resolved and the outputs have settled to a

defined logic value, 0 or 1, before allowing the values to pass into the rest of the system.

The operation of determining which event occurred first is called arbitration and is

typically performed using a mutex structure proposed by Seitz [70]. Figure 2.9 shows a

CMOS implementation of a mutex.

The cross-coupled NAND gates enable one input to block the other. If both inputs arrive

at approximately the same time the circuit becomes metastable with both outputs x1 and

x2 somewhere between VDD and ground. The metastability filter prevents these undefined

values from propagating to the outputs until the metastability has resolved. G1 and G2 are

kept low until signals x1 and x2 differ by more than a transistor-treshold voltage.

Although the arbitration may take an unbounded time, in practice the probability of a

bistable element remaining in a metastable state for a long period of time is insignificant.

2.7 Large-scale asynchronous design

As mentioned before it is unlikely that asynchronous logic will ever completely replace

clock driven designs. However, there are several industrial groups that have established

Figure 2.9: CMOS implementation of a mutex.

R1

R2

x1

x2

G2

G1
Chapter 2: Asynchronous Logic 34

2.7 Large-scale asynchronous design
themselves in the VLSI market as vendors of self-timed logic in recent years. The

following sections introduce the main industrial players in the field of asynchronous

design.

Handshake Solutions

Handshake Solutions started life as a Philips Research project in 1986. Over the last ten

years the company has worked within Philips to develop a design methodology based on

self-timed logic suitable for a commercial IC design environment.

The company recently introduced smart card controllers for use in electronic passport

(ePassport) applications (SmartMX ICs) [37]. The ICs embedded in ePassports must have

a contactless interface and incorporate large amounts of on-board memory to store

biometric data. Because of its ultra-low-power clockless design, SmartMX can support

these large memories without exceeding the limited power budget of contactless

applications.

Fulcrum Microsystems

Founded in January 2000, Fulcrum Microsystems is building on research conducted at

Caltech (California Institute of Technology) by the company's founding team. The

company has developed a clockless design methodology that deliveres high-performance

while maintaining power efficiency, and reliable operation over a wide range of operating

conditions.

One of Fulcrum's most recent chips, a Terabit crossbar circuit fabricated in TSMC's 130

nm process [52], delivers performance, comparable to aggressive full-custom

synchronous designs, over a wide voltage range (well beyond the operating range of

synchronous designs).
Chapter 2: Asynchronous Logic 35

2.8 Summary
Theseus Logic

Theseus Logic began its operations in 1996, as a Semiconductor Intellectual Property

company, dedicated to the design of clockless ICs using NULL Convention Logic™

(NCL) [29]. NCL offers several advantages over conventional design approaches

including: power management, reduced noise and high security, improved reliability and

testability. Theseus Logic delivers solutions to many of the critical design issues facing

the semiconductor industry as it marches towards smaller geometries and higher levels of

integration.

Sun Microsystems

Sun Microsystems was one of the first companies that has acknowledged asynchronous

circuits as an important element for future VLSI systems. The Asynchronous Design

Group at Sun Microsystems develops high-speed circuit technologies and design methods

that enable novel architectures. Their circuit technologies include asynchronous circuits,

low-power circuits, and communication links. Their design methods incorporate

intellectual tools and computer-aided design tools to help with circuit design,

implementation, and test.

2.8 Summary

There are many possible reasons for considering asynchronous design. However, no

single application has been identified which would make its use mandatory. This chapter

has presented several advantages of asynchronous techniques, namely low power, low

electromagnetic interference, modularity, etc. which are all applicable in their own niches,

but modularity is the main argument for the use of self-timed design in this thesis. The

reason for this is an increasing interest in GALS (Globally Asynchronous Locally

Synchronous) system design that supports a heterogeneous timing environment. An

asynchronous on-chip interconnect is used to connect synchronous modules which can be

kept small in order to contain the clock-skew problem.
Chapter 2: Asynchronous Logic 36

Chapter 3: Quality-of-Service (QoS)

A modern System on a Chip (SoC) design consists of many different components and IP

blocks interconnected by an on-chip network. These components can exhibit disparate

traffic characteristics and constraints, such as requirements for guaranteed throughput and

bounded communication latency. It is therefore essential for an on-chip network to

support guaranteed services in order to accommodate such components sharing the same

communication medium.

This chapter gives a review of the basic mechanisms used in packet switched networks to

support Quality-of-Service (QoS). It outlines the various approaches that have been

proposed, and discusses some of the trade-offs they involve.

3.1 Introduction

Quality-of-Service (QoS) is a term used in communication networks that refers to a

capability of a network to provide better service for selected traffic or a selected

connection over the network. The primary goal of QoS is to make dedicated bandwidth,

bounded latency, and improved loss characteristics applicable to selected traffic.

Furthermore, a QoS mechanism has to be able to allocate the residue of the physical

bandwidth which is not used by high-priority connections to the rest of the traffic.

For example, a video data stream from a camera to an MPEG encoder is entirely static and

requires high-bandwidth with predictable delay. This entirely static traffic has to share the

network resources with dynamic traffic, such as processor memory references, that cannot

be predicted before run-time. QoS has to guarantee this throughput for the particular

connection even when the network traffic reaches saturation point.
Chapter 3: Quality-of-Service (QoS) 37

3.2 Basic QoS architecture
3.1.1 QoS: a user’s view

A user expects applications to display a certain behaviour; in other words they must be

predictable. While those expectations may be low, a certain level of fitness is always

assumed. For example, a television set requires a robust user interface and is not allowed

to crash or be unresponsive. Expectations are even stricter for real-time applications (e.g.

involving audio and video, or control systems); a television set must be able to display 50

constant quality pictures per second, for example. The essence of QoS is therefore the

offering of a predictable system behaviour to the user.

3.2 Basic QoS architecture

There are three fundamental aspects of QoS architecture:

• QoS identification. In order to provide preferential service for a specific connection

or a type of traffic, it must first be identified. To identify QoS packets, the header

packet has to contain information about the class of QoS that it belongs to.

• QoS within a single network element. Routing, scheduling, buffering and flow-

control provide QoS within a network element. When a packet arrives at a network

node all those mechanisms have to meet the QoS demand to provide the required

service for the connection.

• QoS policy and management is a set of methods to determine whether the current

traffic characteristics of the network allow for a new QoS connection to be

established. When a QoS technique has been deployed to target the particular

traffic, QoS management has to test whether QoS goals have been reached. In local

area networks (LANs) and wide area networks (WANs) this is an ongoing process

while for on-chip networks QoS policy and management is usually conducted only

once during the design process.

3.3 End-to-end QoS levels

A level of QoS is typically specified on an end-to-end basis. This means that both the

hosts at each end of a connection have to satisfy QoS requirements as well as the network
Chapter 3: Quality-of-Service (QoS) 38

3.4 QoS control methods
connecting them. This thesis only focuses on the QoS requirements for the network

(although many of the ideas could be applied to the hosts). The requirements are specified

as a set of QoS parameters which include peak-to-peak cell delay variation (jitter),

maximum cell transfer delay and cell loss ratio. According to these parameters network

services can be classified as follows:

• Best-effort (BE) services make no commitments about QoS. They refer to the basic

connectivity with no guarantees. An example of such a service is first-in, first-out

(FIFO), or first-come, first-served (FCFS) scheduling.

• Differentiated services, also known as soft QoS, partition network traffic into

several classes each with different requirements regarding data delivery. Packets are

treated according to the class they belong to. Still no hard guarantees are made for

individual flows.

• Guaranteed Throughput (GT) services ensure each flow has a negotiated bandwidth

regardless of the behaviour of all other traffic. Multiple GT connections can share

the same physical link if the probability that the aggregate traffic will reach the sum

of the peak rates is small enough to satisfy loss characteristic requirements. An

example of such a scheme is weighted fair queuing (WFQ).

• Bounded Delay Jitter services guarantee upper and lower bounds on observed

packet delays. An example of such a scheme is circuit switching with time division

multiplexing (TDM).

3.4 QoS control methods

Now that we know what QoS is, how do we achieve it? Unfortunately, no single technique

provides efficient, dependable QoS in an optimum way. Instead, a variety of techniques

have been developed, with practical solutions often combining several of them. This

section examines some of the techniques system designers use to achieve QoS.
Chapter 3: Quality-of-Service (QoS) 39

3.4 QoS control methods
3.4.1 Overprovisioning

A simple solution is to provide so much network capacity in terms of bandwidth and

buffer space that the traffic never reaches the saturation point. Unfortunately this is a very

expensive solution and often not practical. To some extent, the telephone system is

overprovisioned. It is very rare to pick up a phone and not get a dial tone instantly. There

is simply so much capacity available that demand can always be met.

3.4.2 Buffering

For audio and video streaming applications the variation (i.e., standard deviation) of the

packet arrival time (often called jitter) is the main problem. High jitter, for example,

where some packets arrive in 20 ms and others in 30 ms, will give an uneven quality to

the sound or movie. Figure 3.1 illustrates jitter.

To smooth out the jitter designers often use buffers at the receiving end of a connection.

Figure 3.2 shows an example of a stream of packets being delivered with substantial

variation of packet delivery time. Packet 1 is sent from the server at t = 0 s and arrives at

the client at t = 1 s. Packet 2 undergoes more delay and takes 2 s to arrive. As the packets

arrive they are buffered on the client machine.

At t = 10 s, playback begins. At that time, packets 1 through 6 have been buffered and can

be removed from the buffer at uniform intervals for smooth playback. The example shows

Figure 3.1: High jitter (a) and low jitter (b).

(a)

Low jitter

Delay

(b)

Delay

High jitter

Fraction of packets Fraction of packets
Chapter 3: Quality-of-Service (QoS) 40

3.4 QoS control methods
that packet 8 has been delayed so much that it is not available for playback when its play

slot comes up. This interrupts the playback until the packet arrives, creating an unwanted

gap in the music or movie. This problem can be alleviated by further delaying the start of

the playback at the expense of a larger buffer.

3.4.3 Traffic shaping

In the above example the source generates uniformly distributed traffic, but very often

traffic is of a bursty nature which may cause congestion to occur in the network. Traffic

shaping techniques smooth out the traffic at the source side, rather than at the client side,

by regulating the average rate and burstiness of data transmission. There are several

different traffic shaping techniques, however they are mostly variations of the leaky

bucket rate control mechanism originally proposed by Turner [78].

Figure 3.3 shows the principle of the leaky bucket mechanism. It consists of a finite data

buffer and a peak rate enforcer. Packets enter the leaky bucket from the source and are

queued in the data buffer until they are forwarded to the network. If the buffer is full at

the time when a new packet arrives, the packet is discarded. The peak rate enforcer

releases packets to the network at a constant rate (usually one packet per clock tick) thus

generating a smooth flow of data at the input of the network. This prevents congestion in

the network and consequently improves QoS.

Figure 3.2: Resolving jitter by buffering packets.

1

0

2 3 4 5 6 7 8

1 2 3 4 5 6

1 2 3 4 5 6 7

7

8

8

Time in buffer

Gap in playback

Time (sec)

Source

Buffer

Output

5 10 15 20
Chapter 3: Quality-of-Service (QoS) 41

3.4 QoS control methods
3.4.4 Resource reservation

Although buffering and traffic shaping can improve end-to-end service they cannot

guarantee minimum throughput and/or bounded communication latency for a particular

connection. One approach to offer completion bounds (e.g. for a bounded communication

latency) is to make absolute reservation of network resources, such as bandwidth and

buffer space.

Circuit switching and time division multiplexing

Traditional circuit switching is characterized by absolute reservation of network resources

for a particular connection. Circuit switching requires a physical path to be established

between a sender and a receiver prior to the transmission of the data packets. Once the

path is set the sender has all the bandwidth of the connection available to send packets to

the receiver. Absolute reservation of the bandwidth eliminates the necessity to buffer the

packets as they propagate through the network. The main advantage of this scheme is that

it simplifies the problem of making deterministic guarantees. However, circuit switching

may provide very inefficient use of the bandwidth if the average throughput of the

connection is much lower than the physical bandwidth.

To improve the link utilization a time division multiplexing (TDM) technique is often used

with circuit switching. TDM partitions the time axis into time-slots where each time-slot

presents a unit of time in which a single flow can transmit data over a physical channel.

The highest level of QoS is provided by reserving a proportion of time-slots for a

Figure 3.3: Leaky bucket mechanism.

Unregulated flow Regulated flow

Peak Rate EnforcerBuffer

Packet

Input Output
Chapter 3: Quality-of-Service (QoS) 42

3.4 QoS control methods
particular flow. For example, if a connection requires 50% of the available bandwidth, a

network has to ensure that every other time-slot is available for that particular connection.

Reserved slots traverse the network in a well synchronised manner without having to

arbitrate for the output link with the rest of the traffic. Figure 3.4 shows the principle of

the TDM technique.

There are two inputs A and B sharing the same channel. The bandwidth of the channel is

divided into time-slots and each input is allowed to acquire at most 50% of the bandwidth.

This means that every other time-slot is available for a single input. As shown in the

figure, both inputs are precisely synchronised in such a way that no arbitration logic is

required. If there is a gap in the incoming traffic of any input (as shown in the figure for

input B) the other input is not allowed to acquire the empty slot and the bandwidth is

wasted.

Although TDM improves the utilization of the physical link this may still be a problem if

the traffic is of bursty nature [77].

Packet scheduling

Another way to dedicate network bandwidth is to employ a packet scheduling algorithm

that prioritizes input traffic according to the level of QoS required. The nature of the

scheduling mechanism greatly impacts the QoS guarantees that can be provided by the

Figure 3.4: Time-division multiplexing.

A3

A1 Bx A2 B1

A1 A2

Bx B1

A2 A1

B1 Bx

A3

A3

t0t1t2t3t4 t1 t2 t3 t4 t5

Channel

Missing data

Empty slot

Time-slot
Chapter 3: Quality-of-Service (QoS) 43

3.4 QoS control methods
network. The basic function of the scheduler is to arbitrate between the packets that are

ready for transmission. Based on the algorithm used for scheduling packets, as well as the

traffic characteristics of the flows multiplexed on the link, certain performance measures

can be computed. These can then be used by the network to provide end-to-end QoS

guarantees.

The following are some of the scheduling policies often used:

• First-Come-First-Served (FCFS) is one of the simplest scheduling policies where

packets are served in the order in which they are received. Given that the FCFS

policy is one of the least sophisticated in its operation, it does not explicitly provide

any mechanisms for fair sharing of link resources. However, with some help from

the buffer management mechanisms it is possible to control the sharing of

bandwidth.

• A Round-Robin (RR) scheduler polls each input queue in a cyclic order and serves

a packet from any non-empty queue encountered. A misbehaving user overflows its

own queue and the others are unaffected. The round-robin scheduler is an attempt

to treat all users equally and provide each of them an equal share of the link

capacity. It performs reasonably well when all users have equal weights and all

packets have the same size.

• A Static Priority scheduler [51] serves packets according to their fixed priority.

Each priority level is assigned to a separate queue and a lower priority queue is

served only when all the higher priority queues are empty. Each queue is served in

a first-come-first-served manner. The problem with this scheme is that a lower

priority packet will be served only after all the packets from the higher priority

queues are transmitted. This is bound to affect the variability in the delay that is

observed by the lower priority packets.

• The Weighted Fair Queuing (WFQ) service discipline was designed to overcome

some of the limitations of the FCFS and priority schedulers by allowing for a fine

grain control over the service received by individual flows. WFQ serves excess

traffic in a fair manner, where fairness is measured relative to the amount of
Chapter 3: Quality-of-Service (QoS) 44

3.4 QoS control methods
resource that is reserved for each flow. Most variants of the WFQ discipline are

compared to the generalized processor sharing (GPS) scheduler which is a

theoretical construct based on a form of processor sharing [63].

• The Earliest Deadline First (EDF) scheduler [53] is a form of dynamic priority

scheduler where the priority for each packet is assigned as it arrives. Specifically, a

deadline is assigned to each packet given by the sum of its arrival time and the delay

guarantees associated with the flow that the packet belongs to. The EDF scheduler

selects the packet with the smallest deadline for transmission. The priority of the

packet increases with the amount of time it spends in the network. This ensures that

packets with loose delay requirements obtain better service than in a static priority

scheduler, without compromising the tight delay guarantees that may be provided

to other flows.

Buffer management

The necessity of packet buffering arises when the throughput of input traffic exceeds the

physical bandwidth of an output channel. Incoming packets are temporarily stored in

input buffers until the output channel becomes available. If this situation persists for a

long time the input buffers will eventually fill-up. There are two options a network can

choose between when this happens: new packets are discarded or a flow-control signal is

sent to the sender to stop transmitting new data. The first option results in non-blocking

networks, while the latter results in blocking networks.

In the case of a non-blocking network a QoS mechanism has to ensure that the percentage

of discarded packets stays within the QoS parameters agreed for a connection. There have

been several buffer management schemes proposed to achieve this goal [18][32][79]. In

reality only certain types of traffic, such as video and audio streams, permit a small

proportion of packets to be discarded and very often QoS traffic does not tolerate any loss

of data. In this case a blocking network is a better solution.

The organization of the buffer memory has to enable independent packet allocation for

different classes of traffic. Figure 3.5 shows an example of an input queued switch with a
Chapter 3: Quality-of-Service (QoS) 45

3.4 QoS control methods
head-of-line (HOL) blocking situation. Packet X from input C is blocked and cannot

traverse the switch because its output is occupied by another input. This prevents all

packets further down the queue from traversing the switch although their output channels

are available. If those packets require guaranteed throughput or low latency QoS is

compromised. Thus, a buffer management mechanism has to prevent a HOL blocking

situation occurring for QoS packets.

3.4.5 Admission control

Admission control limits the load on the network by determining whether an incoming

request for a new connection can be provided without disrupting the guarantees for the

connections that have already been established.

When a client wants to establish a new QoS connection over a network it needs to produce

a precise specification of the traffic that it wants to send through the connection. The

specification includes [76]: a token bucket rate, a peak data rate and a maximum packet

size. The token bucket rate represents the maximum sustained data rate the client may

transmit, averaged over a long time interval. The peak data rate is the maximum tolerated

transmission rate, even for brief time intervals. The maximum packet size is important due

to internal network limitations. For example, if part of the connection’s path goes over

Ethernet, the maximum packet size will be restricted to 1,500 bytes no matter what the

rest of the network can handle.

Figure 3.5: HOL blocking.

B

XZ

X

Y X

Switch

Y

Z

A

C

Blocked packet due to HOL blocking
Chapter 3: Quality-of-Service (QoS) 46

3.5 Summary
The network then examines this specification and determines whether there are enough

resources available to accommodate the new connection. If the connection is accepted the

client is given a green light to start transmitting data, otherwise the client can either wait

until the resource becomes available or revise the traffic requirements and try again.

3.5 Summary

This chapter has presented some of the basic principles of supporting Quality-of-Service

(QoS) in computer networks. Many of these principles have already been successfully

implemented in off-chip computer networks. However, in the area of on-chip networks

not many solutions have been published so far.

The reminder of this thesis investigates the design of an asynchronous on-chip network

and its ability to provide a high level of QoS support. As an example of the viability of

self-timed logic to provide time-related guarantees, a prototype of an asynchronous

network router is presented in chapter 8.
Chapter 3: Quality-of-Service (QoS) 47

Chapter 4: Networks-on-Chip (NoCs)

Network-on-Chip (NoC) is emerging as a new design methodology to tackle the challenge

of managing the complexity of designing chips containing billions of transistors. NoCs

overcome the limitations of today’s bus-based communication infrastructures by

providing a scalable architecture with high bandwidth. This chapter explains how on-chip

networks differ from their off-chip counterparts.

4.1 Introduction

Current System-on-a-Chip (SoC) designs employ shared-bus architectures [4][19][68] to

interconnect at most 60 IP (intellectual property) blocks. However, with the advent of

deep sub-micron technologies this number will increase to possibly several hundred

components on a single piece of silicon. With so many IP blocks talking to each other it

has become clear that bus-based communication infrastructures, even those using

hierarchies of busses (e.g. high-speed processor bus, system bus and low-speed

peripherial bus separated by bridges, as shown in figure 4.1), will not be sufficient for the

following reasons:

• a single bus does not support concurrent transactions: when the bus is granted to an

IP block all other possible requests have to be postponed to a later point in time. This

leads to low overall bandwidth which simply cannot suffice in a modern SoC.

• large bus lengths are prohibitive in future designs since the combination of

(geometrically) large SoCs and high clock frequencies would lead to unmanageable

clock-skew problems [39].

This has led researchers to implement a more complex communication architecture based

on ideas first developed for packet-switched off-chip networks in order to improve
Chapter 4: Networks-on-Chip (NoCs) 48

4.1 Introduction
performance and scalability. Figure 4.2 shows an example of an SoC design using a two-

dimensional mesh NoC. Instead of broadcasting the information to all recipients (as in the

case of a bus-based SoC) a message is encapsulated in one or more packets which are then

injected into the network. The network performs all the necessary operations, such as

routing, switching and flow-control, in order to deliver the packets to their destinations.

The packets are then re-assembled into the original message which is delivered to the

target IP block.

Figure 4.1: Typical bus-based SoC.

Figure 4.2: SoC design based on a two-dimensional mesh NoC.

DSP

D$

I$

MMU

MPEG

Graph.
Contr

Encr.

IntC

UART Timer

B

B

uP

High-speed processor bus

Peripherial bus

System bus

Bridge

IP
IP block

IP IP IP

IP IP IP IP

IP IP IP IP

IP IP IP IP

Network link

Switch
Chapter 4: Networks-on-Chip (NoCs) 49

4.2 NoC design issues
The benefits of using an NoC instead of a shared-bus communication architecture are the

following:

• higher overall bandwidth and support of multiple concurrent communications: the

topology of a network typically provides the means to establish concurrent

connections between multiple pairs of IP blocks. Therefore, several components

can communicate concurrently without affecting each others’ data flow and

performance,

• lower power consumption: instead of broadcasting data to all recipients sharing the

same bus, the information is delivered only to a particular client (in the case of

unicast messages) thus improving the energy efficiency of the system [7],

• improved scalability: with distributed arbitration and control, NoCs represent a

fully scalable communication infrastructure.

4.2 NoC design issues

The difference between NoCs and wide-area networks (WANs) is that the former exhibit

much less non-determinism and have more predictable traffic characteristics. Local, high

performance networks, such as those developed for large-scale multiprocessors, have

similar latency and throughput requirements and constraints. There are some distinctive

characteristics that are unique to on-chip networks, however.

4.2.1 Wiring resources

NoCs have enormous wiring resources at their disposal and it is quite easy to achieve

several thousand ‘pins’ connecting a single IP block [26]. In contrast, off-chip networks

are pin limited to far fewer than 1,000 total pins. This large difference allows a designer

to trade wiring resources for network performance, making a qualitative difference in

network architecture.
Chapter 4: Networks-on-Chip (NoCs) 50

4.2 NoC design issues
4.2.2 Power consumption

With the expanding market of portable battery-powered electronic devices it is imperative

for NoCs to provide low power consumption in order to meet the extremely low power

constraints of such devices. Although on-chip networks are more power efficient than

bus-based systems, the sheer number of added wires (a consequence of the large number

of IP blocks in future SoCs) and the increased communication will contribute

significantly to the power budget of future SoCs.

4.2.3 Modularity

Off-chip networks emphasize general-purpose communication and modularity and are

strongly influenced by standardization and compatibility constraints in legacy network

infrastructures. On the other hand, for NoCs these constraints are less restrictive because

developers design the interconnect on silicon from scratch and are thus able to tailor the

network architecture to a specific application. Furthermore, NoCs exhibit much less non-

determinism because the traffic characteristics of connected components are well known

at design time. A designer can use this knowledge to reduce the hardware complexity and,

at the same time, reduce the latency.

4.2.4 Hardware costs

Silicon area is much more restrictive for NoCs because, unlike the case of off-chip

networks, the interconnect is only allowed to occupy a small proportion of a chip while

the main part has to be available for the logic performing computation functions.

In particular, storage space is very expensive because general-purpose on-chip memory,

such as Random-Access-Memory (RAM), occupies a large area. Furthermore, an off-chip

network node usually contains a dedicated processor to implement a part of the protocol

stack in order to relieve a client from communication processing. This may not be feasible

for NoCs since it would result in a large proportion of a chip area being occupied by the

network logic.
Chapter 4: Networks-on-Chip (NoCs) 51

4.3 OSI reference model applied to NoCs
4.3 OSI reference model applied to NoCs

The concept of an NoC is borrowed from general computer networks [76] where the

communication is broken into several layers in order to reduce the complexity of the

design. The purpose of each layer is to offer certain services to the upper layers, shielding

them from the details of how the services are implemented. When two parties initiate a

communication process only the layers at the same level are able to exchange data, as

shown in figure 4.3.

The OSI (Open System Interconnection) Reference Model [88] was proposed in order to

give some guidelines on how to structure the communication complexity of a network into

seven layers. The following is a brief description of the OSI layers with examples of on-

chip implementation starting at the lowest layer:

• The physical layer is concerned with the lowest-level details of transmitting data on

a medium. The NoC physical layer protocol defines signal voltages, timing, bus

widths, pulse shape, etc. The most important parameters at this level are delay and

power consumption, however the layout of a chip can have dramatic effects on both

of these metrics, as well as the actual routes chosen for the wires.

• The data link layer abstracts the physical layer as an unreliable digital link, where

the probability of data corruption due to interference such as crosstalk is not zero.

The data link layer is responsible for increasing the link reliability by implementing

error detection and error correction functions. Furthermore, in the case of a shared

Figure 4.3: Layered approach to managing communication complexity.

Layer n Layer n

Layer n+1

Layer n-1

Protocol

Layer n+1

Layer n-1

Service provoded by layer n
Chapter 4: Networks-on-Chip (NoCs) 52

4.3 OSI reference model applied to NoCs
medium the data link layer must also include a medium access control (MAC)

protocol, such as time division multiplex access (TDMA), to arbitrate the access to

the shared medium.

• The network layer provides a topology-independent view of the end-to-end

communication to the upper layers of the reference model. The main function of the

network layer is to determine how packets are routed from a source to a destination.

This can be customized by the choice of routing, switching and flow-control which

all have a great impact on the performance, power consumption and silicon area

overhead of the network.

• The transport layer deals with the decomposition of messages into packets at the

source and their assembly at the destination. The size of a packet represents a

critical design decision, because the behaviour of most network control algorithms

is very sensitive to the packet size. The transport layer also ensures message

ordering and end-to-end flow-control.

• The session layer protocols add state to the end-to-end connections provided by the

transport layer. A common session protocol is synchronous messaging, which

requires that the sending and receiving components rendezvous as the message is

passed. The state maintained by the protocol is a semaphore that indicates when

both the sender and the receiver have entered the rendezvous. Many embedded

systems use this functionality to synchronize system components that are running

in parallel.

• The presentation layer is concerned with the presentation of data within messages.

Protocols at this level convert data into compatible formats. For example, two

components may exchange messages with different byte orderings, so this layer

converts them to a common format.

• The application layer exports the highest level of abstraction of the underlying

communication architecture. It provides application specific functions to the

components utilizing the functions defined at the lower layers of the OSI reference
Chapter 4: Networks-on-Chip (NoCs) 53

4.4 NoC services
model. The system can use these abstract communication functions without any

concern for the details, thus simplifying the design of the component.

Although the OSI reference model proposes seven layers to abstract the complexity of a

design, in most cases it is not necessary to implement all of them to provide this high-level

functionality. If the IP blocks do not require the functions implemented in a specific layer,

the corresponding layer can be omitted or combined with the adjacent layers [7].

4.4 NoC services

A modern SoC represents a heterogeneous environment with various components

interacting in different ways (event-driven, data streaming, message passing, shared

memory, etc.) [71]. Thus the interconnecting network has to be very flexible in terms of

the services that it offers to its clients. However, the number of services has to be small

enough to keep the size of the network structure within practical limits.

Goossens et. al. [35] propose that an NoC should only provide a basic set of services

comprised in the bottom three layers of the OSI Reference Model [88], on top of which

different kinds of communication can be implemented (e.g. shared memory, message

passing, etc.), as shown in figure 4.4. The network independent upper layers (the transport

layer, the session layer, the presentation layer and the application layer) are then included

as needed to form the interface between a network and an application.

Figure 4.4: NoC protocol stack.

NoC services

Si technology

Applications

transport

session

presentation

application

network

data link

physical

Network independent

Network dependent
Chapter 4: Networks-on-Chip (NoCs) 54

4.4 NoC services
An even more radical approach is proposed by Benini et. al. [7] where they envisage a

vertical design flow in which every layer of the NoC protocol stack is specialized and

optimized for the target application domain, and only the abstract network interface for

the end nodes requires standardization.

The focus of the research presented in this thesis is mainly on the network dependent

issues of designing a NoC. Therefore, the services elaborated in this section are all part of

the bottom three layers of the OSI reference model.

4.4.1 Data integrity

Data integrity means that data is delivered un-corrupted. The network layer may include

error-detection and error-correction functions depending on whether the network offers

reliable or unreliable services to the clients. The topic of unreliable physical links has

become very important for NoCs because wires in modern VLSI technologies suffer

increasingly from effects, such as voltage drops and crosstalk.

4.4.2 Lossless data delivery

When the throughput of incoming traffic exceeds the bandwidth of the output channel, the

network has to store excess packets temporarily until the output channel becomes

available. Given that input buffers are finite, if the output channel stays blocked for a long

time the buffers will eventually fill-up. In this case, several solutions are possible: either

new packets are discarded (non-blocking networks), or the sender is throttled by the

receiver until the contention is resolved (blocking networks). The first solution is widely

adopted in general computer networks and typically requires discarded packets to be

resent leading to the problems explained in the previous section. On the other hand,

blocking networks provide lossless connections but are more prone to deadlock and

livelock situations.

4.4.3 In-order data delivery

In-order data delivery specifies that the order in which data is received is the same order

in which it was sent. Order-preserving services avoid the necessity to reorder packets at

the receiving end, thus eliminating additional hardware to perform this task.
Chapter 4: Networks-on-Chip (NoCs) 55

4.5 QoS for on-chip networks
4.4.4 Time-related guaranteed services

Time-related guaranteed services, such as minimum throughput and bounded

communication latency are required to accommodate connections with Quality-of-Service

(QoS) requirements and constraints. For example, a video data stream from a camera to

an MPEG encoder is entirely static and requires high bandwidth with predictable delay.

The network has to ensure that the connection’s requirements are met even during high

traffic loads.

4.5 QoS for on-chip networks

To offer a certain level of QoS a network has to be able to reserve resources for a

particular flow of data, as explained in the previous chapter. If the reservation has been

made the service is guaranteed (GS), otherwise it is a best-effort (BE) service.

4.5.1 Guaranteed services

A guaranteed service practically constrains all packets of a connection to follow the same

route. Sending the packets over different routes makes it hard to guarantee anything. As

a consequence, a virtual path between a source and a destination has to be established, and

all of the packets that belong to the connection must follow it. This makes it possible to

reserve network resources along that path to ensure that the needed capacity is always

available. Therefore, a connection-oriented sub-service is required to support guaranteed

services.

Furthermore, a reliable and lossless sub-service is also mandatory for guaranteed services

because it eliminates the necessity to resend lost or corrupted packets which is a time

variable operation and thus cannot offer time-related guarantees, such as bounded

communication latency.

4.5.2 Best-effort services

The downside of using guaranteed services is that they require resource reservation for

worst-case traffic scenarios. This leads to inefficient utilization of the network resources
Chapter 4: Networks-on-Chip (NoCs) 56

4.5 QoS for on-chip networks
because on average the amount of traffic is lower than in the worst-case. Figure 4.5 shows

the effect GS traffic has on actual resource usage.

Imagine that the resource plotted vertically represents bandwidth and rmax is the physical

bandwidth of a network link. A dark shaded area represents the amount of GS traffic that

is being injected into the network. For real-time performance, the requested bandwidth

must be offered in the same interval but, in practice, a reservation of network resources is

made according to the peak demand. As shown in the figure, the maximum demand of the

GS traffic is denoted by rres thus a proportion of the reserved bandwidth corresponds to

the same rate. Consequently, the utilization of the network resources results in a very low

average rate, depicted as ravg in the figure.

Best-effort services do not reserve resources and hence can have a better average resource

utilization at the expense of unpredictable worst-case behaviour. To improve the link

efficiency the residue of the physical bandwidth which is not used by the GS traffic is

assigned to the BE traffic.

To be able to fill the gaps in the physical bandwidth the BE traffic has to be managed in

a fairly flexible manner. A connection-oriented service is not suitable because of the high

observed latency due to the connection set-up phase. Instead, a connectionless sub-service

is required for the BE traffic.

Figure 4.5: The effect of GS traffic on resource usage.

BE traffic

GS traffic

Time

Resources

rmax

rres

ravg
Chapter 4: Networks-on-Chip (NoCs) 57

4.6 QoS for asynchronous networks
However, a reliable sub-service with in-order delivery is also desirable for BE traffic. A

reliable service further improves link efficiency because there is no need to resend lost or

corrupted packets, and in-order delivery avoids the necessity to reorder packets at the

network boundaries.

Time division multiplexing

Circuit switching with time division multiplexing (TDM) has traditionally been used in

telecommunication networks because it inherently provides a high level of QoS. Its main

advantage, the simplicity of making deterministic guarantees, has influenced several

proposals for on-chip interconnect [26][69].

The Æthereal network on-chip [69] developed at Philips Research Laboratories uses

contention-free routing, which is based on a TDM circuit-switching approach.

Guaranteed throughput (GT) packets never use the same link at the same time, i.e. all

contention is avoided. This is achieved by controlling both the time GT packets enter the

network and their speed in the network. All routers logically have a common notion of

time, embodied in a slot counter. GT packets propagate at the rate of one router per slot.

The NoC provides the rest of the bandwidth (slots) that has not been reserved or is not

used by GT packets for best-effort (BE) traffic. Resources are therefore never left unused

when there is data available.

4.6 QoS for asynchronous networks

Global synchronization between network elements makes TDM unsuitable for a self-

timed implementation. Although circuit switching alone provides the same level of QoS

without the need for a global clock, its poor utilization of network resources makes it

unacceptable for modern SoCs where cost constraints are typically very tight. Thus other

solutions, such as prioritized scheduling, have to be employed.

4.6.1 Reserving network bandwidth

Figure 4.6 shows an example of three asynchronous inputs competing for a physical

output. The capacity of the output channel is 1 and inputs A and B require a guaranteed
Chapter 4: Networks-on-Chip (NoCs) 58

4.6 QoS for asynchronous networks
service (GS) with at least 1/2 and 1/3 of the available bandwidth, respectively. Input C

requires only BE service. It is assumed that GS inputs A and B are not oversubscribed

whereas input C tries to acquire as much bandwidth as possible and is constantly

competing for the output. Each packet has a fixed length and takes one unit of time to

transmit. All inputs have some buffering capacity to store incoming data if it cannot be

forwarded immediately.

Three different scheduling algorithms have been applied: random arbitration, priority

arbitration and a combination of priority and round-robin arbitration, against two types of

traffic: uniformly distributed and bursty traffic. The arbiters follow asynchronous

behaviour meaning that inputs are served on a first-come, first-served basis, and only

pending requests are served according to the scheduling algorithm implemented in the

arbiter. When multiple inputs arrive at approximately the same time the outcome of the

arbitration is random and non-deterministic. Note that in case of the priority arbiter input

A has the highest priority while input C has the lowest priority.

Figure 4.7 shows the sequences of the arbiters with uniformly distributed input traffic.

The arrival events at the arbiters are depicted on the left side, and the departure events are

on the right. Note that all sequences assume the worst-case scenario when the arbiters

cannot guarantee deterministic behaviour. As expected, a random arbiter does not

guarantee the QoS level for the GS inputs because it does not differentiate between the

GS and the BE inputs and distributes the bandwidth equally between all inputs.

A priority arbiter provides QoS for the GS inputs in terms of throughput but it cannot

guarantee low latency for the medium priority inputs. This is especially evident when the

Figure 4.6: Three input arbiter.

Arbiter

A

B

C

1/2

1/3 1
GS

BE

Z

Chapter 4: Networks-on-Chip (NoCs) 59

4.6 QoS for asynchronous networks
input traffic is of a bursty nature, as shown in figure 4.8, where all the packets from the

highest priority input (A) are served before the packets from input B.

As a third option a combination of a round robin arbiter and priority arbiter is proposed.

The arbiter prioritizes GS inputs over BE inputs but employs round robin arbitration

among the inputs of the same priority level. Figure 4.8 shows that the arbiter provides GS

with low latency even for bursty traffic.

Scheduling granularity

Another very important issue for providing good QoS regarding communication latency

is the granularity at which input traffic is multiplexed into an output channel. As an

Figure 4.7: Uniformly distributed traffic.

Figure 4.8: Bursty traffic.

A3 A2 A1

B2 B1

C5 C4 C3 C2 C1

C1 B1 C2 A1 C3 A2

C1 A1 B1 A2 A3 B2

C1 A1 B1 A2 B2 A3

Arb.

Random

Priority

Priority Round Robin

t0t1t2t3t4t5 t6t5t4t3t2t1

B2 B1

C5 C4 C3 C2 C1

C1 B1 C2 A1 C3 B2

C1 A1 A2 A3 B1 B2

C1 A1 B1 A2 B2 A3

Arb.

Random

Priority

Priority Round Robin

t0t1t2t3t4t5 t6t5t4t3t2t1

A3 A2 A1
Chapter 4: Networks-on-Chip (NoCs) 60

4.6 QoS for asynchronous networks
example consider two packets AAA (3 flits) and BBBBBBB (7 flits) with different QoS

requirements. Packet A requires bounded communication latency service while packet B

does not have any time-related constraints. In the worst-case situation both packets arrive

at approximately the same time, however packet B wins the arbitration and acquires the

output channel ahead of packet A. If the scheduler supports per-packet multiplexing, the

output sequence is BBBBBBBAAA and packet A has to wait for seven cycles until packet

B is completely forwarded to the output channel. This may violate latency constraints for

packet A and QoS may be compromised.

On the other hand, if the scheduler assigns the output’s bandwidth on a per-flit basis the

output sequence is as follows: BAAABBBBBB. In this case the scheduler has pre-empted

low-priority packet B and assigned the output channel to high-priority packet A. The

transfer of the pre-empted packet is resumed after the high priority packet has been

forwarded to the output channel. The latency of packet A is now reduced to four cycles as

opposed to ten cycles in the previous example.

Therefore, the granularity at which a scheduler allocates the output bandwidth has a great

impact on the level of QoS the network is able to provide. It is a good practice for an on-

chip network to enable fragmentation and interleaving of packets to improve link

efficiency especially when variable length packet organization is employed. However,

interleaving comes at a price. In order for the receiver to be able to restore interleaved

packets each flit has to be explicitly designated according to which packet it belongs to.

Metastability

One very important difference between synchronous and self-timed networks is the time

of expected arrival of incoming packets. While in synchronous networks the arrival of

data is synchronised by a global clock, in asynchronous networks the moment when a

valid packet arrives at a network router may be completely random and non-deterministic.

Consequently, arbitration and scheduling techniques for synchronous networks are

significantly different from those used in self-timed networks.
Chapter 4: Networks-on-Chip (NoCs) 61

4.6 QoS for asynchronous networks
The main difference is that a synchronous scheduler has knowledge of the state of all

inputs at every rising edge of the clock signal. In a simple example the scheduler only

consists of combinatorial logic to generate a grant vector. The advantage is that the

behaviour of a synchronous scheduler is fully deterministic and time bounded.

On the other hand, an asynchronous scheduler has no knowledge of when to expect the

inputs to change state and has to assume that this may happen in a completely non-

deterministic fashion. The problem arises when several packets from different inputs

arrive in a close time proximity and the scheduler has to determine the order in which

these packets will be served. This situation may lead to metastability [14] which can take

an infinite time to resolve thus making asynchronous arbitration a time-unbounded

operation. In practice, the probability of an asynchronous arbiter staying in a metastable

state for a long period of time is sufficiently small for it to be insignificant. However, in

the case of a high performance system with time-related guarantees the metastability has

to be taken into account. Unfortunately, it is very hard to assess the impact of metastability

on the performance of a system.

4.6.2 Buffer management

While the scheduling policy plays a major role in the QoS provided by the network, it is

only effective if there is sufficient memory space available to store incoming packets.

When the amount of incoming traffic exceeds the physical bandwidth of an output

channel it is inevitable that some inputs will be served before the others. In this case the

pending packets have to be stored temporarily in input buffers until they are forwarded to

the next node.

As noted in chapter 3 (Quality-of-Service), buffer management has to solve two problems

in order to support QoS effectively:

• it has to provide enough storage space to accommodate any excess of input traffic

with guaranteed services,

• it needs to ensure that high-priority packets do not get stuck behind the blocked low-

priority ones (head-of-line blocking).
Chapter 4: Networks-on-Chip (NoCs) 62

4.7 Summary
4.6.3 Admission control

The danger of using a fixed priority arbiter is that a misbehaving input could acquire the

entire physical bandwidth consequently preventing the inputs with lower priority from

accessing the physical channel. In order to prevent starvation of low-priority inputs a

network has to employ an admission control mechanism which will accept a new

connection with QoS requirements only when there are enough network resources

available to accommodate the connection without compromising the level of QoS of the

existing connections. Furthermore, when the connection has been accepted, the network

has to make sure that the traffic generated by the connection stays within the boundaries

of the agreement.

In general computer networks this is an ongoing process and involves complex algorithms

and mechanisms. This is because the traffic in wide-area networks (WANs) is highly

unpredictable and non-deterministic. In contrast, the traffic characteristics of a SoC are

usually known and well-defined at design time. A designer can use this knowledge to

tailor the communication infrastructure to suit the specific SoC in order to reduce the

hardware complexity of the design. For example, by carefully managing the traffic of an

SoC at design time an admission control mechanism may not be required.

4.7 Summary

Networks-on-chip (NoCs) differ from general computer networks mainly because of the

limited resources they have. As a consequence, building an on-chip network forces a

designer to make different architectural and implementation trade-offs in order to achieve

the best possible results. This chapter has presented the most important issues of

designing NoCs with the emphasis on the ability of asynchronous technology to provide

time-related guarantees.

The theory presented here shows that self-timed logic is capable of providing time-related

guarantees, such as minimum throughput, although the nature of asynchronous behaviour

means that a self-timed NoC cannot provide precise accuracy of data delivery in terms of

bandwidth and especially in terms of communication latency.
Chapter 4: Networks-on-Chip (NoCs) 63

4.7 Summary
The following chapters provide a more detailed analysis of NoC design issues leading to

a prototype architecture of an on-chip network router presented in chapter 8. The focus of

the research presented in this thesis is mainly on the network dependent problems of

designing an NoC. Therefore, only the three bottom layers of the OSI reference model are

discussed, beginning with the network layer presented in the next chapter.
Chapter 4: Networks-on-Chip (NoCs) 64

Chapter 5: The Network Layer

The previous chapter has shown that designing an on-chip communication network

involves several unique design issues that have to be resolved in order to get the best

possible solution. Typically those would require trade-offs between performance,

hardware costs and power consumption. This chapter provides a more detailed

explanation of some of those design issues which are related to the network layer of the

OSI reference model [88].

5.1 Introduction

The main function of the network layer is to determine how packets are routed from a

source to a destination. To achieve this goal, the network layer must know about the

topology of the communication subnet and be able to chose appropriate paths through it.

Furthermore, the network layer has to provide a set of basic services to the upper layers

of the OSI reference model.

Networks-on-Chip (NoCs) differ from wide area networks (WANs) in their local

proximity and because they exhibit less non-determinism. Local, high-performance

networks, such as those developed for large-scale multiprocessor systems [2][48][72],

have similar traffic characteristics and constraints. Consequently, many NoC proposals

[26][84] were inspired by direct networks which are typically used to interconnect

multiprocessor systems.

5.1.1 Direct networks

Direct networks represent a subclass of networks where each node directly connects to a

limited number of neighboring nodes with point-to-point links. As an example, consider

the system shown in figure 5.1. This two-dimensional network consists of nine nodes
Chapter 5: The Network Layer 65

5.1 Introduction
connected by links or channels. Each link represents a bi-directional connection between

a pair of nodes and consists of a group of wires. In some networks those links may be uni-

directional, where information flow is always in one direction. The number of wires in a

link is defined as the link width or channel width. Each node also consists of an interface

port to enable a client to connect to the network.

Clients communicate by sending messages over the network. A message is encapsulated

in one or several packets. A packet represents the smallest unit of data which contains the

routing information required to deliver the packet to its destination. Routing information

is stored in a header which is located at the beginning of a packet. Sometimes, (depending

on the switching technique used in the network) packets are broken into a number of flits.

Data buffering, forwarding and flow-control are performed at the flit level. Flits

themselves are transmitted as phits. A phit is typically the size of the link width and can

be transmitted in a single transaction cycle. Figure 5.2 illustrates how a message is

partitioned into packets, flits and phits. Note that flits and phits represent the same unit if

flow-control is performed at the phit level.

Network routers (designated with R in figure 5.1) connect the clients to the network and

manage the links to the neighboring nodes. A router contains communication processing

Figure 5.1: A two-dimensional network with bi-directional links between nodes.

R RR

Client Client Client

R RR

Client Client Client

R RR

Client Client Client
Chapter 5: The Network Layer 66

5.2 Network topology
logic and memory to temporarily store packets. It handles all communication-related tasks

to allow computation by the client and communication by the router to take place

concurrently. In addition, some routers also assemble packets into messages and vice

versa.

The behaviour of a direct network is mainly characterized by the topology and how it

performs switching, routing and flow-control. Switching is the mechanism by which a

router removes a packet from an input port and places it to an output port, thereby

allocating channels and buffers to the packet as it traverses the network. Routing is a

selection of the path for a packet from its source to its destination. Regular topologies of

the direct networks allow for simple algorithmic routing as opposed to table-driven

routing usually employed in local and wide area networks (LANs and WANs). Flow-

control is a mechanism that regulates the transmission of packets in a network. It prevents

the buffers in a network node overflowing by telling the neighboring nodes to stop

sending new data.

5.2 Network topology

The most common topology for networks-on-chip (NoCs) is a two-dimensional mesh [71]

[84] because it offers an acceptable wire cost, reasonbly high bandwidth, and it allows

easy grouping of IPs that exchange large amounts of data so that they do not consume

unnecessary network resources [85]. However, several researchers have proposed

Figure 5.2: Message, packets, flits and phits in direct networks.

Message

D2 H

H

F2 HF1

D1 HD3 H

P2 P2 P1P1

Message

Packets

Flits

Phits
Chapter 5: The Network Layer 67

5.2 Network topology
different solutions, such as fat-tree [36], octagon [44] and folded torus [26] topology.

Figure 5.3 illustrates various different topologies proposed for on-chip networks.

There are many alternative solutions and the choice of topology depends on many factors.

Dally et al. argue that a mesh topology is more power efficient than a similar folded torus

topology [26], however the latter provides twice the bisection bandwidth [1] of a mesh

network at the expense of a doubled wire demand. Guerrier et al. proposed the SPIN

(Scalable, Programmable Integrated Network) on-chip micronetwork [36] employing a

fat-tree network architecture which represents the most cost-effective solution for a VLSI

implementation, as formally proven by Leiserson [50]. The Octagon is another novel on-

chip architecture proposed by Karim et al. which offers two scaling strategies: one for low

wiring complexity and the second for high performance [44].

Consequently, the choice of a network topology comes down to four aspects which are,

unfortunately, often mutually exclusive: performance, power efficiency, hardware

complexity and scalability. Typically a designer would have to make calculated trade-offs

Figure 5.3: NoC topologies: 2D mesh (a), folded torus (b), octagon (c), and fat-tree (d).

R

R

N N N N

R

R

N N N N

R

R

N N N N

R

R

N N N N

(a) (b) (c)

(d)
Chapter 5: The Network Layer 68

5.3 Switching
between these aspects in order to find the optimum solution for each individual SoC

design.

5.3 Switching

Switching is closely related to the internal flow-control of a network and has a great

impact on the amount of buffering required in individual network nodes. There are four

different switching techniques used in direct networks: circuit switching, store-and-

forward switching, virtual cut-through switching and wormhole switching. Table 5.1

summarizes some of the properties of these techniques which are most relevant for on-

chip networks.

5.3.1 Circuit switching

In circuit switching [42] a physical path between a sender and a receiver has to be

established prior the transmission of actual data. The path persist until the last chunk of

data is received by the receiving end. During that time the physical links used to form the

path are unavailable for the rest of the traffic. Consequently, there is no need for any

buffering or internal flow-control because the data is always accepted by these

connections. From this point of view, circuit switching is very suitable for an on-chip

implementation but has other drawbacks, such as low link utilization and high latency due

to a connection set-up phase.

Table 5.1: Summary of switching techniques.

Switching
technique

Buffer
requirements

Latency Link utilization

Circuit none high low

Store-and-forward packet medium high

Virtual cut-through packet low high

Wormhole flit low medium
Chapter 5: The Network Layer 69

5.4 Routing
5.3.2 Store-and-forward and virtual cut-through switching

Store-and-forward switching [45] and especially virtual cut-through switching [46]

provide lower communication latency because a connection does not have to go through

a set-up phase. In store-and-forward switching, an incoming packet is accepted only when

there is enough memory available at the network node to store it entirely in the input

buffers. Furthermore, the packet is not forwarded to the next node until the whole contents

have been received and the receiver has enough memory space to accept it. This implies

a per router delay of at least the time required for the router to receive the packet. In virtual

cut-through switching, a packet is forwarded as soon as the next node has enough space

to accept the whole packet and does not require the whole packet to be received by the

node.

The disadvantage of these two techniques is that they both require relatively large buffers

to store an entire packet when it cannot be forwarded to the next node. This also implies

a fixed-length packet organization which is not very suitable for on-chip networks, as

explained later in this chapter.

5.3.3 Wormhole switching

In wormhole switching [25] packets are split into flits. A flit is forwarded to the next router

when there is enough space at the receiving end to accept it. As soon as the first flit of a

packet is transmitted over a link, that link is reserved for flits of that packet only. A

blocked packet may span multiple links across the network making wormhole switching

more prone to deadlocks generally resulting in lower link utilisation than virtual cut-

through switching. However, it requires the least buffering (flits instead of whole packets)

with a variable length packet organization and provides low observed latency which

makes wormhole switching the most suitable for on-chip networks.

5.4 Routing

Routing determines the path of a packet between a source and a destination node. There

are two major issues that a routing algorithm must address: livelock and deadlock.

Livelock is a situation where a packet traverses a network without being able to reach its

destination. A routing algorithm is said to be livelock free if it guarantees forward
Chapter 5: The Network Layer 70

5.4 Routing
progress of each packet, where after passing through a node the packet is one step closer

to its destination node. Figure 5.4(a) shows an example of a livelock situation. A packet

is expected to follow the path designated by bold links but instead it is routed through

node 5 and back to node 2. This causes the packet to traverse the network cyclically

between nodes 2, 3, 6 and 5, thus never reaching its destination.

Deadlock is a condition in a network that arises when some packets are permanently

blocked because of full network buffers. Figure 5.4(b) shows an example of a deadlock

situation. The buffers of nodes 2, 3, 6 and 5 are filled with packets destined for the

diametrically opposite node. For example, node 5 wants to send a message to node 3 and

node 2 has a message destined for node 6. No packet can advance towards its destination,

thus creating deadlock.

5.4.1 Algorithmic routing

The regular topologies of NoCs allow algorithmic routing, as opposed to routing based on

tables. In distributed algorithmic routing, the network node decides along which link to

forward the packet. Distributed routing can be either deterministic or adaptive. In

deterministic routing, the entire route is determined by the source and destination node

while adaptive algorithms try to adapt the route of the packets according to the current

Figure 5.4: An example of livelock (a) and deadlock (b) in a network.

1 2 3

4 5 6

7 8 9

Destination

Source

1 2 3

4 5 6

7 8 9

(a) (b)
Chapter 5: The Network Layer 71

5.4 Routing
traffic conditions. Furthermore, minimal adaptive routing considers only the shortest

paths between a sender and a receiver, as opposed to fully-adaptive routing where all

possible routes are considered. Figure 5.5 illustrates deterministic and adaptive routing.

The links designated by bold lines represent unavailable channels due to blocking. Path 1

is chosen by a deterministic routing algorithm and path 2 presents a choice made by an

adaptive routing algorithm. As shown in the figure path 1 is currently unavailable thus the

packets from the source are blocked until the path becomes free. On the other hand, an

adaptive routing algorithm can route packets around blocked nodes whenever possible

thus significantly improving the throughput of a network.

The downside of adaptive routing is that packets may arrive at the destination node out of

order. This property is not very desirable for on-chip networks because it requires

reordering hardware at the network boundaries. Deterministic routing ensures that packets

arrive at the destination in the same order as they were sent because they follow the same

path through the network. However, deterministic routing algorithms do not provide any

flexibility in terms of how the routes for connections are set.

Figure 5.5: Deterministic and adaptive routing in a 2-dimensional mesh network.

Source

Destination

B

B

BB

Path 1

Path 2
Chapter 5: The Network Layer 72

5.5 Packet size and organization
5.4.2 Source routing

In source routing the entire path of a packet is determined by the source node. A source

node has to be aware of the network’s topology and has to encapsulate the exact itinerary

of a packet in its header in a “node-by-node” format. As the packet traverses the network

this information is used by each node on its path to navigate the packet towards its

destination.

Source routing represents a flexible and cheap solution for on-chip networks and has been

implemented in several NoCs [6]. It allows a designer to program the routes of

connections giving him/her the ability to manage the traffic over the network precisely.

However, there is the problem of the routing information overhead. For example, in a 16-

node mesh network a packet travelling diagonally from the upper right corner to the

bottom left corner would require 14 bits of routing information as opposed to only 4 bits

needed for algorithmic routing. As the number of network nodes grows the routing

information overhead may become too high to justify the flexibility of the source routing

approach.

5.4.3 Dimension-ordered routing algorithm

A dimension-ordered routing algorithm [61] represents a deadlock-free solution for n-

dimensional mesh networks and is both minimal and deterministic. It routes a packet

along the lowest dimension first for as far as the packet can go, before routing it on the

next higher dimension. This algorithm is very simple to implement and is the most widely

used. In a 2-dimensional mesh, for example, a packet is first routed along the x-axis until

it reaches a node where the x-part of the address of the destination node, saved in the

header of the packet, matches the x-part of the address of the current node. The packet is

then routed along the y-axis until it reaches its destination node.

5.5 Packet size and organization

Determining the right packet size is crucial to make optimum use of the network

resources. The optimum size depends strongly on the characteristics of the application

[38]. If a message has to be split into too many packets the overhead of dis-assembling
Chapter 5: The Network Layer 73

5.6 QoS architecture
and re-assembling them might be too high. On the other hand, if the packet is too large it

may block other traffic with side effects on the performance of the system.

A variable packet length organization for on-chip networks is proposed in this work in

order to improve the flexibility of the network. This way, the upper layers of the OSI

reference model can dynamically decide how to split a message into packets in order to

achieve the best possible performance. The organization also removes the need for

“stuffing bits” in fixed packet length networks when a message is shorter than the packet

length.

5.6 QoS architecture

As pointed out in the previous chapter, the ability to provide quality-of-service (QoS) is

a very important issue when designing a modern on-chip network. The network layer is

responsible for providing an adequate infrastructure that will efficiently support

guaranteed services, such as minimum throughput and bounded communication latency.

Figure 5.6 shows a QoS architecture suitable for on-chip implementation utilizing an

asynchronous technology.

The concept is adopted from virtual channel flow-control originally proposed by Dally

[22]. Instead of implementing a conventional input buffer organization where each input

is associated with a single FIFO (first-input-first-output) queue, an input channel is

associated with several lanes of small FIFO buffers in parallel. The buffers in each lane

Figure 5.6: QoS architecture using virtual channels.

Physical
channel

S
ch

ed
u

le
r

QoS 3

QoS 2

QoS 1

BE

Network node A

BE

D
em

u
lt

ip
le

xe
r

QoS 3

QoS 2

QoS 1

Network node BFlow-control
channel
Chapter 5: The Network Layer 74

5.6 QoS architecture
can be allocated independently of the buffers in any other lane. A blocked packet holds

only a single lane idle and can be passed using any of the remaining lanes. Each

connection which requires a guaranteed service is assigned to an individual virtual

channel and best-effort (BE) traffic shares a single virtual channel. A network is therefore

able to provide N-1 connections with QoS requirements over a physical channel, where N

is the number of virtual channels associated with a single input. Figure 5.7 shows an

example of several connections sharing the same physical channel.

5.6.1 Principle of operation

In a network using virtual channels, flow-control is performed at two levels. Virtual

channel assignment is made at the packet level while physical channel bandwidth is

allocated at the flit level. When a packet arrives at a network node, it is first assigned to

an output virtual channel. The output port is determined according to the information in

the header of the packet and a routing mechanism implemented in the network node.

Furthermore, the header also designates which virtual channel the packet is assigned to.

This assignment remains fixed until the last flit of the packet leaves the network node. If

the particular virtual channel is already engaged the packet is blocked until the virtual

channel is released. The packet traverses the network following the same procedure at

every node on its path until it reaches its destination node. Note that a blocked packet may

Figure 5.7: Multiple QoS connections sharing the same physical channel.

VC2

VC3

VC1

Shared link

Network node

Connection using
virtual channel 1
Chapter 5: The Network Layer 75

5.6 QoS architecture
span multiple nodes, however it would only hold idle a single virtual channel while the

rest of the lanes remain unaffected. Figure 5.8 illustrates an example.

Packet A is blocked holding buffers 3S.1 (node 3, south, virtual channel 1) and 2E.1 idle.

Although packet B shares the same physical channel it is not affected by the situation and

is able to proceed towards its destination without any additional delay.

This buffer organization provides the means to establish a virtual path from a source node

to a destination node and, consequently, to allocate buffer space for a particular

connection using the path. As long as the network prevents the rest of the traffic from

maliciously using a particular virtual channel, the connection will have the buffer

resources available at any given time. Note that a packet cannot change virtual channels

while traversing the network, as in the case when virtual channels are used to increase the

throughput of the network.

5.6.2 Bandwidth allocation

The scheduler allocates the bandwidth of a physical channel on a flit-by-flit basis. This

increases the scheduling granularity and consequently improves the level of QoS, as

explained in the previous chapter. The flow-control channel ensures that the bandwidth is

allocated among the virtual channels that have a flit ready to transmit and have enough

space to store this flit at the receiving end. Consequently, a flit cannot block the physical

channel and every transaction between a pair of network nodes takes the least possible

time to execute.

Figure 5.8: Blocked packet holds idle only a single virtual channel.

Destination A
(blocked)

Destination B

Node 1 Node 2 Node 3 Node 4

A B
Chapter 5: The Network Layer 76

5.7 Summary
However, allocating the bandwidth at the flit level comes at a price. Because flits have no

routing or sequencing information, each flit has to be designated explicitly according to

which virtual channel it belongs to. This enables the receiver to restore interleaved

packets to their original state.

5.7 Summary

The network layer represents the top-most layer of the OSI reference model that is still

network dependent. Therefore, it is very important that the design choices made at this

level reflect the needs and requirements of the clients accommodated by the interconnect.

The network layer has to provide a basic set of services upon which different

communication mechanisms can be implemented. These services have to be diverse

enough to enable the upper layers to employ various communication protocols. However

the number of services has to be small enough to keep the design within reasonable

complexity.

The major design issues of a NoC presented in this chapter include: topology, switching,

routing, packet size and organization, and QoS architecture. The design choices made

here represent a foundation for an asynchronous on-chip network router with QoS

support. The following chapter shows how these choices affect the lower layers of the OSI

reference model, namely the data link layer.
Chapter 5: The Network Layer 77

Chapter 6: The Data Link Layer

The data link layer is responsible for reliable point-to-point communication between a

pair of network nodes. If the physical layer provides an unreliable communication channel

the data layer has to employ error detection and/or error correction hardware in order to

improve the reliability of the channel. Furthermore, the data link layer has to include a

flow-control mechanism to throttle a fast transmitter and a medium access control (MAC)

protocol where several clients are sharing the same medium.

6.1 Data integrity

With current VLSI technologies, most developers assume that electrical waveforms

always carry correct information. Guaranteeing error-free information transfer at the

physical level of on-chip interconnect will, however, become more difficult because wires

in deep-submicron technologies suffer increasingly from interference such as crosstalk

and voltage drops.

To ensure data arrives unchanged at the destination, it can be resent when corrupted, or

error correction can be used [8]. Both approaches require redundant information to be

transmitted over the data link, but error-correction is generally more demanding in terms

of data redundancy and hardware complexity. The energy efficiency of both approaches

was investigated by Bertozzi et. al. [9] for unreliable busses.

Retransmission of corrupted packets decreases network bandwidth and reduces link

efficiency. Furthermore, using retransmissions may take a variable amount of time,

whereas error correction is performed in a constant time. Therefore, time-related

guarantees, such as minimum throughput and bounded latency can only be given by the

latter.
Chapter 6: The Data Link Layer 78

6.2 Flow-control
Although the problem of increasingly unreliable global communication channels in

modern VLSI technologies is acknowledged, in this thesis it is assumed that the

information carried by the physical layer (the on-chip wires) is always correct and does

not suffer from upsets such as crosstalk and voltage drops.

6.2 Flow-control

Another issue that arises in the data link layer (and most of the higher layers as well) is

how to prevent a fast transmitter from drowning a slow receiver in data. Some traffic

regulation mechanism must be employed in order to let the transmitter know how much

buffer space the receiver has at the moment.

There are two approaches commonly used, namely feedback-based and rate-based flow-

control. In feed-back based flow-control the receiver sends back information to the sender

on how much space is left in the input buffers. In rate-based flow-control the sender

employs a mechanism that limits the rate at which data is transmitted over the physical

channel, without using feedback from the receiver. Typically, the data link layer uses the

former approach.

Figure 6.1 shows a unidirectional communication link connecting two adjacent network

nodes. It comprises two delay-insensitive (DI) asynchronous communication channels: a

data channel to transmit flits from a sender to a receiver, and a flow-control channel to

provide flow-control feedback from the receiver.

Figure 6.1: Unidirectional network link.

Data acknowledge

Flow-control acknowledge

S
en

d
er

R
ec

ei
ve

r

Data channel (12 bits)

Flow-control channel (2 bits)
Chapter 6: The Data Link Layer 79

6.3 Medium access control
Self-timed logic inherently provides flow-control because a transmitter is not allowed to

send new data until the receiver is ready to accept it. This ensures lossless communication

between transmitter and receiver which is a very desirable characteristic for on-chip

networks because it eliminates the necessity to retransmit discarded data and

consequently, improves the efficiency of the network and reduces the hardware

complexity.

However, the QoS architecture proposed in the previous chapter requires an explicit flow-

control channel. As an example consider the situation where two virtual channels try to

access the output link. A priority-based scheduler would normally give precedence to the

virtual channel with higher priority, however if the particular virtual channel has no buffer

space at the receiving end to store data, the physical link is blocked until the receiver has

released enough memory space to accept the data. Meanwhile, if the receiver is ready to

accept data from the low-priority virtual channel, the scheduler could serve the low-

priority channel without blocking the physical link.

The flow-control channel ensures that the physical bandwidth is allocated only to the

virtual channels with enough buffer space at the receiving end. Consequently, each

transaction is bound to occupy the link for the shortest possible interval determined by the

speed of the circuit. Note that the flow-control channel has to carry additional information

to designate which virtual channel is being acknowledged. For example, if four virtual

channels are implemented in a design, the flow-control channel has to be two bits wide.

6.3 Medium access control

A medium access control (MAC) sublayer is employed when a network uses a shared

communication channel to transmit data between clients. The function of the MAC

sublayer is to arbitrate the access to a shared resource (the physical channel) among

multiple contenders.

The QoS mechanism presented in this thesis relies on an arbitration policy to distribute

physical bandwidth according to the QoS requirements of individual connections sharing

the same channel. In synchronous systems arbitration (often referred to as scheduling)

represents a relatively straight-forward task because input signals are only allowed to
Chapter 6: The Data Link Layer 80

6.3 Medium access control
change values when the clock is inactive. In asynchronous networks, however, inputs can

arrive at any given time thus making the problem of arbitration substantially harder to

solve, especially when the number of contenders increases above three.

The rest of this chapter introduces the problems of designing an asynchronous multi-way

arbiter with deterministic behaviour and presents a viable solution. The presented solution

was originally proposed by the author in [30].

6.3.1 Asynchronous arbitration

In the past the main concern when designing multi-way arbiters was to provide the

property of fairness, meaning that when a request is issued it will be granted after a finite

number of other requests have been granted. Token ring [55] and tree arbiters [43] both

fall into this category. The sequence of the grants generated by such arbiters is non-

deterministic [70], making them unsuitable for system-level design.

Priority arbiters based on the topology of the circuit, such as daisy chain [40] and priority

ring arbiters [86], provide the means of controlling the sequence of grants. However, the

worst-case latency of such systems grows linearly with the number of inputs, as does the

implementing cost. Furthermore, a topologically fixed priority discipline makes these

arbiters very inflexible and thus not sufficient to cover the wide range of modern

applications.

Bystrov et al. presented a priority arbiter which operates in two stages [11]. In the first

stage the arbiter locks the current state of the request vector in a special lock register

comprising a two-way mutual exclusion element (MUTEX) [70]. At the second stage it

computes a grant vector using combinatorial logic. Although this arbiter uses a very

clever design, it suffers from two drawbacks. Firstly, the circuit is relatively slow with a

period of approximately 40 gate-delays and secondly, it cannot guarantee that a single

input can acquire more than 50% of the available output bandwidth if multiple inputs are

constantly arbitrating for the output.

The latter problem is common to most asynchronous arbiters and results from the property

that once a grant is released the arbiter starts arbitrating for the next output cycle
Chapter 6: The Data Link Layer 81

6.3 Medium access control
immediately, leaving no time for the last granted input to recover and set the request signal

high, thus giving the pending inputs a critical advantage to win the arbitration for the

subsequent output cycle. A single input can therefore compete only for every other output

cycle in the case when multiple inputs are constantly arbitrating for the output.

6.3.2 Proposed solution

As noted above, Bystrov’s arbiter [11] implements a special register shown in figure 6.2

that locks the current state of the request vector until the grant is calculated. The register

is controlled by a single input (lock) and generates a dual-rail output (outputs w and l).

When lock goes high the circuit sets one of the output signals to logic one, w if request

signal r is active and l if it is inactive. The state of the output persists while lock remains

high. When lock is set low and the request is removed the output goes low producing an

empty dual-rail code-word.

Furthermore, the register controls the start of arbitration by enabling signal lock. If request

r arrives before lock is set high the register will not change the state of the output until

lock is set low. Only when lock is enabled will the register produce a valid dual-rail output.

This will activate combinatorial logic and the arbiter will generate the grant.

Most arbiters will start the next arbitration as soon as the grant is released and at least one

request signal is active. The priority arbiter in [11] follows the same behaviour because

the positive edge of signal lock is generated by the ‘ORed’ input request vector. Therefore,

as soon as the grant is released the pending inputs will reactivate lock and restart the

Figure 6.2: A single bit lock register.

Mutex

lock

lG1R1

R2 G2
w

r
C

Chapter 6: The Data Link Layer 82

6.3 Medium access control
arbiter. This prevents the last granted input from competing for the subsequent output

cycle as we mentioned before.

6.3.3 Principle of operation

The solution presented here is based on the assumption that an arbiter is not the slowest

part of a system and a critical section (CS) has a longer period than the arbiter. If this is

correct we can decouple the arbiter from the CS and delay the start of the arbitration to the

last possible moment without sacrificing the performance of the system.

Figure 6.3 shows the principle of this approach. The system in the figure represents a

mutually exclusive merge of two inputs into a single output. The arbiter is decoupled from

the CS by a latch and signal lock is generated by the output (rather than by the input as in

[11]).

After reset, lock is active and the system is awaiting data from the inputs. When at least

one of the inputs arrives the arbiter generates the grant without any delay (apart from the

delay inherent in the arbiter itself). This is normal behaviour because there is no way to

know when the other input will arrive. After the output has been latched, lock is set low

and the granted input is released. From this moment on, the arbiter and the critical section

start to execute the current cycle independently with a speed that is limited only by the

design of these two components. Note that if the other input has a request pending at the

moment when the grant is released the arbiter will ignore that signal until the critical

section has finished executing its current cycle and signal lock is set high. The behaviour

of the system is represented by the signal transition graph (STG) [17] in figure 6.4.

Figure 6.3: Principle of the operation.

A

B

Arbiter CS

lock

Latch
Ra

Rb

Ga

Gb
E

Chapter 6: The Data Link Layer 83

6.3 Medium access control
The STG shows that if the input cycle, comprising the arbiter and the input FIFO, is fast

enough to generate the new request before the positive edge of signal lock arrives, the

input will be able to compete for every single output cycle providing there is enough

throughput available at the input. If lock is activated before the new request is generated

the pending request (input B in our example) will win the arbitration as indicated in figure

6.4 by the positive edge of signal Gb.

The lock signal is providing similar functionality in this four-phase design to the “done”

signal in the classical two-phase request-grant-done (RGD) arbiter used by Sutherland in

his Micropipelines work [75].

6.3.4 Implementation

Figure 6.5 shows a gate-level circuit of a three-input version of the arbiter with a linear

priority module to calculate the grant vector. The priority module incorporates the C-

element of a lock register (shown in figure 6.2) to reduce the latency of the circuit. The

circuit does not include the output latch shown in figure 6.3. Signal lock is generated by

a request vector (OR gate I4) and an enable signal (E) is basically an inverted

acknowledge signal from the output latch. Asymmetric C-elements I1...I3 prevent a

MUTEX from being released before signal lock is deactivated during the return to zero

stage of the arbiter. Inverted C-element I12 does not participate in the normal behaviour

of the arbiter. Its function is to restart the arbitration when an empty request vector is

locked.

Figure 6.4: Partial STG of the arbitration system.

Ra+

lock+

Ga+

Ra- lock-

Ga-

Input cycle Output cycle

Gb+
Chapter 6: The Data Link Layer 84

6.3 Medium access control
The circuit is quasi delay-insensitive (QDI) [56] which means that it will operate correctly

for arbitrary delays associated with the outputs of gates and mutual exclusion elements.

However, the correct operation of the arbiter depends on the isochronic behaviour of the

forks present in the circuit.

The STG in figure 6.6 illustrates the behaviour of the arbiter. Since all the inputs follow

the same behaviour the STG shows the traces of only one input in order to simplify the

graph and make it easier to follow.

Normal operation

When at least one input is set high (R1...R3), OR gate I4 asserts signal lock through

asymmetric C-element I8. Note that input E is set to logic one after reset. At the same time

the request propagates through an asymmetric C-element (I1...I3) and sets signal r to logic

one. Both signals compete for a MUTEX, but with reasonable wire layout, r should arrive

first since it has to propagate through fewer, lighter loaded gates than the lock signal (I1

versus I4 and heavily loaded I8). On acquiring the MUTEX, r causes w to rise. Similar

Figure 6.5: Circuit of the arbiter.

Mutex

E

G3

G2

G1
R1

R2

R3

r1

r2

r3

lock

w1

w2

w3

l3

l2

l1

C

C

C

C

C

C

C

C

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12
I13

Mutex

Mutex

Linear priority module
Chapter 6: The Data Link Layer 85

6.3 Medium access control
competitions occur for each MUTEX, to generate the inputs to the priority module which

calculates a grant vector using one of the w signals and the l signals from the higher

priority contenders.

After a grant vector is produced the arbiter has to wait for the environment to remove the

granted request and set input E to zero. The asymmetric C-element at the input (I1..I3)

only releases the MUTEX when r and lock are both low ensuring that the priority module

does not generate an invalid grant vector. When the MUTEX is released the priority

module clears the grant and the arbiter is ready for the next cycle. Note that the next cycle

will start only after input E has been set to a high level and not immediately after the grant

is released. This behaviour is shown by bold arrows in the STG in figure 6.6.

When a request (R2 or R3) is locked but not granted because the priority module made a

decision to satisfy a higher priority input, the w signal remains high until the request is

eventually granted. Note that signal r holds the state of the MUTEX while input E is low

and lock is deactivated. This situation is marked with dashed arrows in the STG.

The third situation that can occur during the normal operation of the arbiter is when a

request arrives after lock has been generated. When this happens the MUTEX sets output

l to a high level which means that the particular request is not active and forwards this

information to the priority module. The request has to wait until the next arbitration cycle

Figure 6.6: STG of the arbiter.

R+ r+ w+ G+

E-

R-
lock+

l+ lock- l-

lock-

r- G-w-

E-

E+

E-lock-E+

Mutex

PM
Chapter 6: The Data Link Layer 86

6.4 Summary
when it will be sampled by the MUTEX as described by the following sequence: lock+,

l+, R+, r+, E-, lock-, l-, E+, lock+, w+, (priority resolution), ...

Avoiding hazardous situations

The correct operation of the arbiter assumes that the electrical path from R to r is faster

than the path from R to lock. This is a fairly reasonable assumption for the reasons given

above in section 3.2.1, and becomes even safer if the arbiter is extended to allow for

additional contenders. However, to accommodate possible failures if this assumption does

not hold (as a result of inadequate placement and/or routing), gate I12 is included to detect

the presence of an empty request vector locked into the MUTEX elements (signals l1...l3

are all set to one). In this situation, the priority module cannot produce a valid grant, and

so gate I12 is used to cause a retry of the locking of the MUTEX elements which will

resolve the situation and avoid a deadlock. This is undesirable since it increases the

arbitration latency, but with an adequate circuit layout it should occur very infrequently

or not at all.

The following sequence (not shown in the STG) illustrates this situation: R+, lock+, r+,

l+, (deadlock detected), lock-, w+, (deadlock resolved), lock+, G+, ...

The other hazardous situation that could theoretically occur with this circuit due to poor

layout and routing involves lock being deasserted as part of the clear-down phase after a

successful arbitration won by R3. Lock falling causes l1 and l2 to fall, but if R2 is waiting,

and l2 falls much quicker than l1, then C-element I10 could see w2 rise before l1 has

fallen. To avoid this situation or others like it falsely triggering G2, the lock signal is used

as an input to the gates in the priority module.

6.4 Summary

Providing QoS in asynchronous systems is not a trivial task and requires careful design

both at the circuit and the system level. There are several timing constraints that have to

be met in order for the system to operate inside the boundaries of the specifications. The

arbiter presented in this chapter was designed to loosen those constraints and to provide

designers with a fairly deterministic asynchronous building block.
Chapter 6: The Data Link Layer 87

Chapter 7: The Physical Layer

This chapter addresses the lowermost level of the communication hierarchy of an on-chip

network, the physical layer. The physical layer is concerned with transmitting raw bits

over a communication channel. The design issues here largely deal with the mechanical,

electrical, and timing issues of the physical transmission medium.

7.1 Introduction

Wires are the physical realization of communication channels in on-chip networks. In a

conventional SoC dedicated wires are used to provide a top-level communication

infrastructure between the components implemented in the design. These wires are

typically laid by an auto-router late in the design stage and span large distances across the

chip. The viability of this methodology is challenged by several electrical problems.

The electrical properties of such wires are poorly characterized and may differ

significantly from one run of the auto-router to the next. Consequently, very conservative

circuits must be used to drive and receive these wires. Typically, full-swing static CMOS

gates are employed to achieve good noise immunity at the expense of increased delay and

high power dissipation. Long wires also require repeaters at periodic intervals to keep the

delay linear (rather than quadratic) with length. Properly placing these repeaters is

difficult and places additional constraints on the auto-router.

On the other hand, in an on-chip network the global communication wires and the paths

between network nodes are defined at the beginning of the design process. This enables a

designer to control L, R and C parameters of all top-level wires to improve their signal

propagation properties. Furthermore, structured wiring also enables the use of more
Chapter 7: The Physical Layer 88

7.1 Introduction
aggressive signalling techniques to reduce the power and improve the performance of the

global interconnect [23].

7.1.1 Power dissipation

The reduction of dynamic power dissipation in VLSI applications is a major challenge for

today's engineers. In modern VLSI systems, a large proportion of power is consumed by

interconnect [47]. The most common way to reduce the power consumption related to the

transmission system is to reduce the voltage swing of communication signals.

An overview of low-swing on-chip signalling techniques was given by Zhang et. al. [87]

where they compared seven different low-swing signalling systems against a static full-

swing CMOS inverter driver. The results show that significant energy savings by up to a

factor of six can be achieved. Even better results, employing pulsed low-swing drivers and

receivers, were reported by Dally and Poulton [23]. By using 100 mV or less of signal

swing, the power was reduced by an order of magnitude when compared to 1.0 V full

swing signalling in a 0.1 micron VLSI technology.

7.1.2 Synchronization

Another issue that is closely related to the physical layer of a network-on-a-chip (NoC) is

synchronization between network nodes (routers). Already, with current VLSI

technologies (0.18 um), the distance a signal can reach within a single clock cycle is less

than an average chip size but as the feature sizes decrease well below 100 nm and the

frequency increases up to 10 GHz, the latency to transmit a signal across the chip will vary

between 6 and 10 clock cycles using highly optimized global wires [39].

Although the communication links of an on-chip network typically do not span an entire

chip, the latency of a signal propagating across a single network link may still take several

clock cycles. Furthermore, the link latency can vary across different SoC designs and

implementation technologies, which implies that synchronizing two adjacent network

routers will not be an easy task.

In order to reduce the latency, designers often insert repeaters (buffers) on a given wire.

This keeps the delay in a linear proportion to the distance, however there is a limit to the
Chapter 7: The Physical Layer 89

7.1 Introduction
number of repeaters a designer can insert and still reduce latency. As a last resort, long

wires can be broken into shorter segments by inserting latches (statefull repeaters) which

is similar to the insertion of new stages in a pipeline. This operation fixes the timing

closure problem of a wire by increasing its latency by one or more clock cycles and will

become pervasive in deep sub-micron designs, where most global wires will be heavily

pipelined.

Inserting latches has a different impact on the surrounding control logic from inserting

normal stateless repeaters. For example, if the interface logic between two

communication components assumes a certain delay represented by the number of clock

cycles, then redesign of the interface is required in order to account for additional pipeline

stages. Such redesign may require a great amount of additional work and has serious

consequences on design productivity. Therefore, new design methodologies are needed

that provide better modularity and robustness of system functionality and performance

with respect to arbitrary latency variations.

Latency-insensitive design

Latency-insensitive design has been proposed as one of the solutions [12], based on the

theory of latency-insensitive protocols [13]. A latency-insensitive protocol controls

communication between components in a synchronous system whose functionality

depends only on the order of signal events and not on their exact timing. The protocol

guarantees correct operation of the system independent of delays of the channels

connecting the components. This allows a designer to insert an arbitrary number of latches

in the channels without compromising the functionality of the system.

The problem with this methodology is that it typically requires the components to be able

to stall, which means that they can freeze their operation for an arbitrary period of time

without losing their internal state. Although stalling a component that executes a single

function does not represent a great difficulty, the problem becomes more subtle when a

component performs several concurrent operations, possibly communicating with

multiple clients at the same time. Halting such a component in order to synchronize one

input is bound to affect the other inputs and the right balance is typically very difficult to
Chapter 7: The Physical Layer 90

7.1 Introduction
find. Furthermore, latency-insensitive design still depends on a global synchronization

signal distributed to all the components implemented in a system.

Asynchronous design

Asynchronous logic, in particular a quasi delay-insensitive (QDI) design style, guarantees

the functionally correct operation of a system for arbitrary delays of the logic gates and

the interconnection wires. Figure 7.1 shows a dual-rail signalling system with a four-

phase handshaking protocol [74]. It uses two data wires per bit of information, one for

logic 1, and the other for logic 0. The request signal in any handshake cycle can be either

of those two wires.

At the start of the handshake cycle the sender issues a valid codeword by setting one of

the two data wires to logic 1. The receiver absorbs the codeword and sets the acknowledge

signal high, the sender responds by resetting the data wire and the receiver acknowledges

this by taking acknowledge low. At this point the sender can initiate a new communication

cycle.

While fairly simple, dual-rail circuits have one major drawback: the large number of

wires. To transmit n data bits in parallel, 2n+1 wires have to be routed. One way to reduce

the number of wires is by implementing a more efficient delay-insensitive encoding

scheme such as an N-of-M code. While this could introduce higher bandwidth per wire,

it would considerably increase the complexity of completion detection circuitry and

consequently reduce bandwidth.

Figure 7.1: Dual-rail four-phase protocol.

Empty Valid Empty ValidData {d.t, d.f}

Ack

d.t

Ackse
nd

er

re
ce

iv
er

d.f Empty ("E")
Valid "0"
Valid "1"
Not used

0 0
0 1
1 0
1 1

d.t d.f
Chapter 7: The Physical Layer 91

7.2 An asynchronous ternary logic signalling system
This chapter presents a novel signalling system suitable for asynchronous on-chip

networks. It implements multivalued logic to reduce the number of wires when using a

QDI [56] design style, and a low-voltage swing for reduced dynamic power dissipation.

7.2 An asynchronous ternary logic signalling system

The idea of an asynchronous ternary logic signalling (ATLS) system is to enable the

delay-insensitive transmission of one bit of information using a single wire (plus an

acknowledge wire). This is achieved by introducing the third supply rail (Vdd/2) which

denotes the idle state of the communication system. Figure 7.2 shows the principle of

operation.

When the communication channel is in the idle state, the voltage level on the wire is held

at Vdd/2. To transmit a symbol the voltage level is pulled to one of the rails (Vdd for logic

1 or Vss for logic 0). If the communication protocol uses four-phase handshaking, the

voltage level on the wire is always switching with a reduced swing of Vdd/2.

If the half-swing interconnect lines are high-capacitance, high-activity lines, then the

power saving can be significant. For example, the power dissipation to drive the line with

a full swing each cycle is given by

(1)

where C is the load capacitance and f is the switching frequency. This is actually the

power consumed by a dual-rail signalling system transmitting one bit of information

(ignoring the acknowledge signal). Note that power is consumed only on one wire, since

Figure 7.2: Principle of the ATLS system.

d

Ackse
nd

er

re
ce

iv
er

Empty ("E")
Valid "0"
Valid "1"

Vdd/2
Vss
Vdd

d

Pdyn C Vdd
2

f⋅ ⋅=
Chapter 7: The Physical Layer 92

7.2 An asynchronous ternary logic signalling system
only one wire is active during one transmission cycle. If the voltage swing is reduced to

Vdd/2, as with the ATLS system, then the power dissipation equals

(2)

Thus, ignoring the power dissipation of the transmitter and the receiver, the potential

power saving of the ATLS system over the dual-rail signalling system is 75% and, since

the ATLS system transmits one bit of information on a single wire, it potentially has 100%

higher bandwidth per wire (ignoring the delay of the receiver). Note that this is true only

when the switching frequency of both systems is the same and the acknowledge signal is

ignored.

7.2.1 ATLS system transmitter

Two variants of the ATLS system transmitter are proposed. The first is a simple driver

with an additional transistor (M3) for switching the output voltage to the middle rail (Vdd/

2), as shown in figure 7.3. The input of the driver is fed with dual-rail signals and we

assume that a Vdd/2 supply voltage is provided.

When switching from Vss to Vdd/2 transistor M3 has a full drive voltage applied at the

gate so it can operate at full speed, while when switching from Vdd to Vdd/2 only half the

drive voltage is driving the transistor. Thus, to ensure reasonably fast transitions from Vdd

to Vdd/2 transistor M3 has to be relatively large.

Figure 7.3: ATLS system transmitter.

Pdyn C
Vdd

2

2

f⋅ ⋅=

Vdd Vdd/2

Out

InH

InL

M1

M2

M3
Chapter 7: The Physical Layer 93

7.2 An asynchronous ternary logic signalling system
The upper graph in figure 7.4 shows the output waveforms of the ATLS system.

Waveforms WDI and WDO present the voltage swing at the output of the transmitter and

at the input of the receiver respectively. It is clear that the falling edge of the high-swing

transition (from Vdd to Vdd/2) is the slowest transition in the system. This slows down the

propagation of the empty codeword following the transmission of a logic 1 symbol. Note

that waveforms INHC and INLC correspond to the inputs and waveforms OUTH and

OUTL to the outputs of the system.

Furthermore, the transmitter circuit exhibits shoot-through currents. When InL rises M2

and M3 will fight until the NOR gate switches and turns transistor M3 off. This behaviour

introduces some additional power dissipation which depends upon the speed of the NOR

gate and the sizes of transistors M2 and M3.

7.2.2 ATLS system receiver

The receiver consists of two level shifters, one that converts low half-swing transitions

(from Vss to Vdd/2 and back) to full-swing transitions, and a second which converts high

half-swing transitions (from Vdd/2 to Vdd and back) to full-swing transitions. Figure 7.5

shows the receiver circuit. The input is driven with ternary logic signals and the circuit

Figure 7.4: Output waveforms of basic (upper graph) and enhanced (lower graph) ATLS
system.

Chapter 7: The Physical Layer 94

7.2 An asynchronous ternary logic signalling system
produces full-swing dual-rail signals at the outputs. Note that both inverters are powered

with a half Vdd supply but with different ground references.

When the input voltage is at Vdd/2, transistors M4 and M5 are on, although driven only

with half of the supply voltage, while transistors M3 and M6 are completely off. This pulls

OutL to Vss and node B to Vdd. The PMOS cross-coupled pair (M1 and M2) pulls node A

to Vdd to establish a stable state without dissipating static power, while the NMOS cross-

coupled pair (M7 and M8) pulls node OutH to Vss. Thus, when the input is in the idle state,

the receiver generates logic 0 at both outputs without consuming static power.

If the input swings to Vss transistor M4 turns off while M3 turns on. If M3 is large enough

to pull the voltage at node A below the threshold value of transistor M2, the transistor

turns on. Therefore, the voltage at the output node OutL rises and transistor M1 turns off.

A similar sequence of events occurs when the input swings back to Vdd/2. Now M4 turns

on and M3 turns off, again M4 has to be large enough to pull the voltage of the output

node below the threshold of transistor M1. M1 pulls up the voltage at node A and turns

off transistor M2. Note that high half-swing transitions don't have any influence on this

Figure 7.5: ATLS system receiver.

OutH

Vdd Vdd

In

OutL

Vdd Vdd

M1 M2

M3 M4

M5 M6

M7 M8

Vdd/2

Vdd

Vdd/2

A

B

Chapter 7: The Physical Layer 95

7.2 An asynchronous ternary logic signalling system
part of the receiver circuit. When the input swings to Vdd transistor M3 is still off, driven

by the inverter, and transistor M4 is now fully on, but output node OutL stays unchanged.

The lower part of the receiver (figure 7.5) follows exactly the same behaviour. The

difference is that here we have an NMOS cross-coupled pair with a PMOS pull-up

network. Transistors M5 and M6 have to be large enough to push the voltage of nodes B

and OutH above the threshold level of transistors M7 and M8 respectively. Because an

NMOS cross-coupled load is used the PMOS pull-up transistors have to be considerably

larger. Thus, this part of the receiver takes more time to resolve the input transitions and

consumes more dynamic power.

7.2.3 Enhanced ATLS system transmitter

To improve the speed of the transition from Vdd to the middle-rail voltage an enhanced

ATLS (EATLS) system transmitter is proposed in figure 7.6. This version uses the

additional N-channel transistor (M4) to pull the output voltage to Vdd/2. This transistor is

driven with a full drive voltage and has a full Vdd voltage difference across source and

drain. Thus, it is capable of inducing a higher electrical current into the wire, speeding up

the transition. To turn off the transistor half way to the opposite supply-rail a simple

inverter is used as a comparator (I3, transistors M5 and M6).

When the transmitter is in the idle state (inputs InH and InL are low) transistors M1, M2

and M4 are off and M3 is on, driving the output to the Vdd/2 supply. Node B is at the high

voltage level and the pull-down network of inverter I3 is disabled because transistor M7

is off. There is no static power dissipation despite inverter I3 being driven with Vdd/2.

Transistor M8 is off and M5, although half on, pulls node B high.

When input InH goes high M3 switches off and M1 pulls the output voltage to Vdd.

Furthermore, transistor M8 turns on and pulls node B low. This enables the pull-down

network of inverter I3 since M7 turns on through feedback inverter I2. Note that at this

point transistor M4 remains off since input InH prevents NOR gate NOR2 from switching

its output high. Inverter I3 is now driven with Vdd and therefore does not fight transistor

M8 pulling node B low.
Chapter 7: The Physical Layer 96

7.2 An asynchronous ternary logic signalling system
After input InH switches back to logic 0 transistor M1 turns off and NOR gate NOR2 fires

turning transistor M4 on. M4 is now pulling the output voltage towards Vss at full speed.

When the output voltage crosses the threshold level of inverter I3, I3 switches, pulling

node B to Vdd. This turns off transistor M4 and disables the pull-down network of inverter

I3. However, due to the fact that the transistor cannot turn off instantly, the output voltage

overshoots the Vdd/2 level by a certain amount. Fortunately this is highly desirable when

driving long on-chip wires because it increases the speed of transition. The lower graph

in figure 7.4 shows the output waveforms of the EATLS system. Again waveforms WDI

and WDO present the voltage swing at the output of the transmitter and at the input of the

receiver respectively. We can see that the speed of the transition from Vdd to Vdd/2 is

greatly increased, and overshoots at the input of the wire are filtered out by the RC

characteristic of the on-chip wire. Despite that, we can still reduce (or increase) the

overshooting amplitude by adjusting the threshold value of inverter I3.

Note that transistor M3 also helps pull down the output voltage to the middle-rail supply,

but its more important function is to reduce the amplitude of the overshoots and to restore

the output voltage level back to Vdd/2 if it overshoots.

Figure 7.6: Enhanced ATLS system transmitter.

Vdd Vdd/2

Out

InH

InL

M1

M2

M3

Vdd

M5

M6
M7

M8 I2

M4

I1

NOR1

NOR2
B

I3

A

Chapter 7: The Physical Layer 97

7.2 An asynchronous ternary logic signalling system
Because the EATLS transmitter uses a full-swing transistor (M4) to pull the output from

Vdd to Vdd/2, the energy stored in the output capacitor (the wire) is dissipated in the

transistor during the transition. In the ATLS system half of the stored energy is transferred

back to the power supply. Thus the power dissipation of the enhanced ATLS system

equals

(3)

where fL is the frequency of low half-swing transitions and fH is the frequency of high

half-swing transitions. If fH equals fL then an enhanced ATLS system has potentially

62.5% lower power consumption than a dual-rail signalling system (providing that

switching frequency is the same, the acknowledge signal is ignored, and the transmitter

and the receiver power dissipation is ignored).

Note that the enhanced ATLS system transmitter operates correctly only when the

communication system follows the four-phase (return to zero) handshaking protocol.

Furthermore, the transmitter has to be properly initialized before being used. After reset

node B has to be set to logic 1. One way to initialize the transmitter is to implement

additional circuitry that will pull node B to logic 1 when a reset signal is applied; for

example, a PMOS transistor connected between B and Vdd with the active low reset signal

applied to its gate. During the reset input InL has to be kept low for the circuit to initialize

properly.

7.2.4 Test architecture and quality metrics

The ATLS system was compared against a dual-rail signalling system with respect to

speed, power consumption and reliability. The simulation circuit shown in figure 7.7

comprises two asynchronous pipeline stages connected with a model of a transmission

system. "Dummy" gates are added to model the environment behaviour. The stimuli

generated at the input cause the transmission system to transmit one logic 0 and one logic

1 symbol with a maximum speed limited by the physical characteristics of the CMOS

technology used in the simulation.

Pdyn C
Vdd

2

2

fL C
Vdd

2

2
-------- fH⋅ ⋅+⋅ ⋅=
Chapter 7: The Physical Layer 98

7.2 An asynchronous ternary logic signalling system
To provide a fair comparison the same environment and driving transistors were used for

different transmission systems. Furthermore, full swing acknowledge signalling was used

for both systems with the same wire length as for the data connection to simulate a real-

life communication system.

To define the speed of the communication systems the period was measured. For a four-

phase protocol the period, P, involves the forward propagation of a valid data value, the

reverse propagation of acknowledge, the forward propagation of empty data value and the

reverse propagation of acknowledge [74]. Since ATLS and EATLS systems have

different periods when transmitting logic 1 and logic 0, both periods were measured and

average results are presented.

To compare the three systems with respect to power dissipation we measured the energy

consumed by the transmission system. The measured values exclude the energy

consumed by the acknowledge signals but include the energy consumption of the receiver

to generate full-swing transition at the output (in the case of the ATLS system).

7.2.5 Robustness and reliability

There are three main sources of noise that influence the reliability degradation of the

signalling system: process variation, voltage supply noise, and crosstalk. To measure the

Figure 7.7: The simulation circuit.

C C

C C

nack

inlc

inhc

outl

outh

acknowledge wire

Transmission
system
Chapter 7: The Physical Layer 99

7.2 An asynchronous ternary logic signalling system
reliability of our circuits the worst case analysis method presented in [23] and [87] was

used. The noise sources are classified into two categories: the proportional noise sources

and the independent noise sources

(4)

KN·VS presents those noise sources that are proportional to the amplitude of the signal

swing (VS), such as crosstalk and power supply noise induced by the signal. VIN consists

of the noise sources that are independent of VS such as receiver input offset, receiver

sensitivity and signal unrelated power supply noise. Table 7.1 presents the summary of

the noise sources.

The parameters designated with an asterisk (*) were obtained from [23] or [87] and the

rest were assessed by the simulation. The worst case signal-to-noise ratio (SNR) was used

to measure the reliability of the circuits defined as

. (5)

Table 7.1: Typical noise sources.

Parameter Definition

KC crosstalk coupling coefficient

AttnC * crosstalk noise attenuation: (0.2 for static driver)

KPS * power supply noise due to signal switching:
(5% of Vdd for single-ended switching)

worst case: KN = KC×AttnC + KPS

RxO receiver input offset

RxS receiver sensitivity

PS * power supply noise: (5% of Vdd)

AttnPS power supply noise attenuation

TxO transmitter offset

worst case: VIN = RxO + RxS + AttnPS×PS + TxO

VN KN VS VIN+⋅=

SNR
1
2

VS

VN
------⋅=
Chapter 7: The Physical Layer 100

7.2 An asynchronous ternary logic signalling system
7.2.6 Results

All results and plots in this chapter were generated using SPICE simulations for the 0.35

micron VCMN4 process technology. The on-chip wire is a 0.7 mm wide (minimum

width) single conductor in the same silicon process. The models of the wires used in our

simulations were constructed from 0.5 mm segments. Values for resistance in ohms and

capacitance in farads per millimetre length were obtained by post-layout extraction [5].

Figure 7.8 shows the period of the communication systems versus the length of the wire.

The results confirm that the dual-rail signalling system is the fastest over the entire

spectrum of wire lengths. This is expected since it consists of simple inverters.

Furthermore, the graph also confirms that an enhanced version of the ATLS system is

faster than the basic ATLS system. Although the dual-rail signalling system wins on

speed, ATLS (and especially the enhanced version of ATLS) delivers over 70% higher

bandwidth per wire on a long on-chip interconnection.

The graph in figure 7.9 shows the energy consumption of the system versus wire length.

The reduced voltage swing enables the ATLS system to consume 50% less energy than

the dual-rail signalling system to transmit data over a 10 mm long on-chip wire.

Furthermore, the ATLS system has better energy efficiency over the entire wire length

Figure 7.8: Period versus wire length.

0

1

2

3

4

5

6

7

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

P
er

io
d

 [
n

s]

Dual-Rail

ATLS

EATLS
Chapter 7: The Physical Layer 101

7.2 An asynchronous ternary logic signalling system
spectrum while the EATLS system loses the advantage when the length of wire is reduced

down to 2 mm because the receiver consumes more energy than the transmitter can save.

It should be noted that adjusting the overshooting amplitude of the transmitter can reduce

the energy consumption of the EATLS system for shorter wires with a very little loss of

speed. In our simulations we used transmitters adapted for 10 mm on-chip wires.

Figure 7.10 shows the overall performance of the systems. It is clear that the ATLS system

is the system of choice with respect to energy-delay product since it has more than 100%

better performance than the dual-rail signalling system.

Although the EATLS system performs better than the ATLS system with respect to speed,

its improvement has a negative effect on energy consumption. As shown in the graph the

amount of dissipated energy prevails over the improvement in speed. However, it should

be stressed that the EATLS system improves performance only when transmitting a logic

1 (when the voltage on the wire swings from Vdd/2 to Vdd and back) and that the results

shown in the graphs present the average performance of the system.

To further compare the three systems, another set of simulations was conducted in order

to determine how well they operate with a reduced supply voltage. The results show

(figure 7.11) that the dual-rail system is still the fastest and that the ATLS system

Figure 7.9: Energy versus wire length.

0

2

4

6

8

10

12

14

16

18

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

E
n

er
g

y
[p

J]

Dual-Rail

ATLS

EATLS
Chapter 7: The Physical Layer 102

7.2 An asynchronous ternary logic signalling system
consumes less energy and is more energy-delay efficient while Vdd is above 2.1 V. But as

the supply voltage further decreases the period of the ATLS system increases rapidly.

This is due to the fact that transistors M5 and M6 (M3 and M4) in the receiver (figure 7.5)

do not have enough drive voltage applied to their gates to overcome transistors M7 and

M8 (M1 and M2) to switch the output voltage of OutH (OutL). For 0.35 micron VCMN4

technology the voltage swing has to be above 1 V for the ATLS system to operate

efficiently. This is approximately 60% above the threshold of the PMOS transistor (Vtp

0.65 V). If a more modern process technology (0.18 micron with 1.8 V typical Vdd and

Vtp 0.45 V) is considered, then the required voltage swing is around 0.75 V, which is 0.15

V less than typical Vdd/2.

Furthermore, the graphs show that the EATLS system performs better than the ATLS

system as the voltage supply decreases. This is due to the fact that the EATLS transmitter

provides much faster transitions from Vdd to Vdd/2, which speeds up the voltage

conversion in the receiver.

Noise analysis was performed for both systems. The crosstalk coupling coefficient KC

was obtained from a transient simulation of 10 mm parallel wires at minimal spacing

where one wire was driven with a voltage step and the induced voltage was measured on

the second wire. Since both systems use static single-ended signalling, the total noise

Figure 7.10: Energy-delay versus wire length.

0

10

20

30

40

50

60

70

80

90

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

E
n

er
g

y-
d

el
ay

 [
p

Jn
s]

Dual-Rail

ATLS

EATLS
Chapter 7: The Physical Layer 103

7.2 An asynchronous ternary logic signalling system
coefficient KN is the same. The receiver input offset was assessed by conducting DC

voltage transform curve (VTC) simulations on all process corners [87]. The receiver

sensitivity RxS and power supply attenuation coefficients AttnPS were also derived from

the VTC curves [87]. The transmitter offset TxO results from the reference supply noise

(5% of the reference magnitude). Table 7.2 summarizes the results of the noise analysis.

Figure 7.11: Period, energy and energy-delay product vs. voltage supply at 10 mm wire.

Table 7.2: Noise analysis of the proposed systems.

System VS [V] KC AttnC KPS KN KNVS [V] RxO [V]

Dual-rail 3.3 0.29 0.2 0.05 0.11 0.35 0.14

ATLS 1.65 0.29 0.2 0.05 0.11 0.18 0.11

EATLS 1.65 0.29 0.2 0.05 0.11 0.18 0.11

System RxS [V] PS [V] AttnPS TxO [V] VN [V] SNR

Dual-rail 0.15 0.16 0.52 0.00 0.73 2.25

ATLS 0.01 0.16 0.45 0.08 0.45 1.82

EATLS 0.01 0.16 0.45 0.08 0.45 1.82

0

10

20

30

40

50

60

70

80

90

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

E
n

er
g

y-
d

el
ay

 [
p

Jn
s]

Dual-Rail

ATLS

EATLS

0

1

2

3

4

5

6

7

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

P
er

io
d

 [
ns

]

Dual-Rail

ATLS

EATLS

0

2

4

6

8

10

12

14

16

18

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Wire length [mm]

E
n

er
g

y
[p

J]

Dual-Rail

ATLS

EATLS
Chapter 7: The Physical Layer 104

7.3 Summary
Both ternary logic signalling systems exhibit the same SNR with an 82% noise margin.

This is expected since they differ only in the transmitter part. Compared to a full-swing

dual-rail signalling the noise margin of the ATLS system is noticeably lower but

considering 50% reduced voltage swing, the worst case SNR is still well above 1.

As the voltage swing decreases the swing independent noise sources get more significant.

This will get very important in deep sub-micron technologies where the voltage supply is

greatly reduced. To implement the ATLS system successfully in modern CMOS

technologies great care has to be taken when designing the power supply network and

device matching has to be implemented. Furthermore, full-swing wires should be well

isolated from ternary logic signals to reduce crosstalk noise.

7.3 Summary

This chapter has presented a novel asynchronous signalling system combining a low

voltage swing to reduce the power dissipation and multivalued logic to lower the number

of wires. The simulations show that the system has a clear advantage over classical full-

swing transmission systems in terms of energy consumption and bandwidth per wire. It

enjoys fully static design and has zero static power dissipation to further improve its

power-efficiency. However, it does need a third supply rail and more complex transmitter

and receiver circuits than the classical dual-rail system.
Chapter 7: The Physical Layer 105

Chapter 8: Router Design

So far the reader has been introduced to the problems of designing a state of the art,

asynchronous, network-on-a-chip (NoC) with the emphasis on the ability of the

interconnect to provide Quality-of-Service (QoS) connections. This chapter presents a

concrete example of an asynchronous on-chip network router with QoS support.

The router comprises only the lowest three layers of the OSI reference model [88]. All the

functionality of the upper layers, such as packetization and end-to-end connection

management, has to be provided by an IP block connected to the router, or simulated by

a test environment. This decision was made in order to reduce the complexity of the

design and focus on the network-dependent issues of designing an NoC.

8.1 Summary of the NoC design issues

The prototype of the router presented in this thesis reflects a particular set of design

choices that were made in order to provide a required level of functionality. These choices

were elaborated in the preceding chapters and generally represent trade-offs between

performance, functionality and hardware costs. The following is a short summary.

8.1.1 Network services

The router offers the following services to its clients:

• reliable and lossless connections with in-order data delivery,

• four independent virtual channels with different priority levels and the ability to

dedicate each of them to a specific connection thus providing a suitable architecture

for QoS support.
Chapter 8: Router Design 106

8.1 Summary of the NoC design issues
8.1.2 Topology and routing

The choice of a network topology does not represent a key issue for the research presented

in this thesis. Therefore, a two-dimensional square mesh network has been chosen for the

following reasons:

• Network connectivity. A two-dimensional mesh network provides good

connectivity and supports parallel connections at any given time.

• Scalability. The network is fully scalable provided that it supports distributed traffic

arbitration. The only factor that limits the size of the network is the length of the

address space in the packet header.

• Livelock and deadlock free operation when dimension ordered routing is employed

(see chapter 5, section 4).

The diameter of a network is determined by the length of the address space in the packet

header and, consequently, by the routing algorithm employed in the design. The router is

limited to supporting up to 16 nodes organized in a two-dimensional square mesh

network.

8.1.3 Switching

In order to reduce the size of the router to its minimum, wormhole switching has been

employed in the design. Furthermore, wormhole switching also allows a variable-length

packet organization as opposed to virtual-cut-through switching which has similar latency

characteristics but provides better link utilization.

8.1.4 Packet size and organization

The router requires input data to be encapsulated in packets which are then injected into

the network. Figure 8.1 illustrates the variable-length organization of a packet composed

of flits. A flit consists of a payload and a control tag which denotes the type of the flit,

namely start-of-packet (SOP) or header, body-of-packet (BOP) and end-of-packet (EOP)

or trailer. A flit also represents a physical transfer unit called a phit.
Chapter 8: Router Design 107

8.1 Summary of the NoC design issues
A control tag provides the means of discriminating between two consecutive packets. A

header contains routing information and the number of the virtual channel of the packet.

The rest of the flits are used to transmit a payload from a sender to a receiver. The last flit

of the packet (trailer) resets the route set-up by the header of the packet.

A VC identification tag is generated by the router and is not a part of the input data format.

Its function is to designate the virtual channel a particular flit is assigned to. This

information enables the router to separate interleaved packets back to their original

format.

8.1.5 QoS architecture

The router employs a virtual channel architecture [22] to support guaranteed services with

various levels of QoS. There are four virtual channels multiplexed into a physical channel

using a priority-based scheduler. The lowest priority channel (VC0) is reserved for best-

effort (BE) traffic, while the others can be used for connections with time-related

guarantees. For example, a connection that requires tightly-bound latency guarantees

could be accommodated by the highest-priority virtual channel (VC3), while a minimum

throughput service could be provided using virtual channels VC1 and VC2, as shown in

figure 8.2.

The router handles bandwidth allocation on a per-hop basis using a priority-based

scheduler, while relegating admission control and traffic shaping to the upper layers of

the reference model. Consequently, the router has no means of preventing a misbehaving

Figure 8.1: Organization of a packet.

TrailerHeader

Payload

Control Tag

Flit

H

VC Identification Tag
(provided by the network)

T

Chapter 8: Router Design 108

8.2 Top level diagram
priority channel from blocking the channels with a lower priority by acquiring all of the

physical bandwidth.

8.1.6 Implementation technology

The router is implemented using a quasi-delay-insensitive (QDI) [56] technology

generally employing one-of-four data encoding combined with a return-to-zero signalling

protocol [74]. The data path is ten bits wide (eight bits for the payload and two bits for the

control tag), composed of five one-of-four QDI channels with a common acknowledge

signal.

The decision to use QDI technology was made because it gives the most robust circuits

that will operate correctly in extreme conditions. Furthermore, this particular design style

provides greater modularity and requires less design effort than bundled data where the

delays in control paths have to be matched with the delays in the data path. The downside

of this approach is that it produces a larger area overhead and typically results in lower

performance circuits than its bundled-data counterparts.

8.2 Top level diagram

To put the theory into practice a gate-level prototype of the router was built. Figure 8.3

shows a top-level diagram of the implementation. The router consists of four main

components, namely an input port controller (IPC), an output port controller (OPC), a

switch and a route management unit (RMU). For clarity, the figure shows only one IPC

Figure 8.2: Time-related guaranteed services using virtual channels.

VC3

VC2

VC1

VC0

Physical channel

Priority-based scheduler

Minimum throughput

Bounded latency

Best-effort

Highest-priority channel

Lowest-priority channel
Chapter 8: Router Design 109

8.3 Input port controller
and one OPC, while there are five instances of each controller implemented in the router.

These components interact by means of well-defined asynchronous communication

protocols and perform the following functions: demultiplexing, buffering, routing,

switching, scheduling and flow-control.

8.3 Input port controller

When a flit arrives at a router it proceeds to an input port controller (IPC). The IPC, shown

in figure 8.4, performs two operations on incoming flits, namely demultiplexing and

buffering. First, a virtual channel demultiplexer (VCDMUX) identifies the flit using a VC

identification tag (figure 8.1) and forwards the flit into the corresponding input buffer.

The IPC incorporates four lanes of input buffers. Therefore the router is capable of

supporting four virtual connections in parallel.

Figure 8.3: Top level diagram of the router.

G

RMU

FCU

Scheduler

Input

Output Flow-control

Flow-control

M
u

lt
ip

le
xe

r

Input Port Controller

V
C

D
M

U
X

Crossbar

R

Output Port Controller

Header flits

GrantRequest

Switch
Chapter 8: Router Design 110

8.3 Input port controller
8.3.1 Virtual channel demultiplexer (VCDMUX)

Figure 8.5 shows a gate-level schematic of the VCDMUX. Note that AND-gates were

used instead of C-elements in order to reduce the size of the circuit. This does not

compromise the QDI properties of the system because the control and data signals are

associated with the same input channel. The input latch (not shown in the figure) ensures

that all input signals are low before issuing a new code-word and the output buffers (also

not shown in the figure) ensure that all output signals are low before allowing for the input

to generate new data.

Figure 8.4: Input port controller.

Figure 8.5: A gate-level schematic of the VCDMUX.

V
C

D
M

U
X

RU

1-of-4

dual-rail

Switch
(Data & Control)

Input link

Grant (route)

Request

Buffers
Request Unit

c3
In [23:0]

Ai
Out3 [19:0]
Ao3

Out2 [19:0]
Ao2

Out1 [19:0]
Ao1

Out0 [19:0]
Ao0

Latch
Buffers VC3

Buffers VC2

Buffers VC1

Buffers VC0

Data

c2

c1

c0

[19:0]
Chapter 8: Router Design 111

8.3 Input port controller
8.3.2 Input buffers

Buffer space directly impacts the silicon area overhead of an NoC router and must,

therefore, be kept to a minimum [26]. Wormhole switching [25] reduces the minimum

theoretical size of buffer to one flit per virtual channel. However, in this case the input

buffers are able to store up to three flits for two reasons:

• To decouple the input link from the switch, thus introducing more concurrency into

the design. In this way the router is able to perform two operations at the same time:

receiving a new flit from the input, and forwarding the previous one through the

switch.

• To close down the flow-control loop between two neighbouring network nodes in

order for a single connection to be able to use 100% of the available link bandwidth.

Note that in some cases the size of the input buffers has to be increased in order to provide

hard time-related guarantees, as explained later in this chapter.

The input buffers are implemented as an array of asynchronous latches built of C-

elements. Figure 8.6a shows a two-bit asynchronous latch composed of C-elements using

one-of-four data encoding, and figure 8.6b illustrates how the input buffers are composed

of such latches. Note that six columns of latches are required to store three flits as only

every other column is able to hold data while the rest are empty to prevent consecutive

flits from clashing.

Figure 8.6: An asynchronous one-of-four latch (a) and an input buffer (b).

D3 Q3

Q2

Q1

Q0

D2

D1

D0

Ai

Ao

C

C

C

C

L

L

L

L

L

L

L

L

L

C

D [19:0]

Ai

Q [19:0]

Ao

(a) (b)
Chapter 8: Router Design 112

8.3 Input port controller
8.3.3 Request unit

To advance through the switch towards an output port, a flit has to be allocated a slot in

the output channel’s bandwidth. This operation is called scheduling and is initiated when

the flit enters a request unit (RU). The RU then issues a request which is directed towards

a designated output port controller (OPC) through a route management unit (RMU).

The request consists of two signals: one is asserted when the flit represents the end of a

packet (EOP) and the other signal is set for all other flits. This enables the RMU to

forward the request signal to the OPC and concurrently initiate the procedure of changing

the routes of two consecutive packets, as explained later in this chapter. When the OPC

grants the request, the flit is allowed to proceed to the switch. Note that the grant signal

delivers route control information which is attached to the flit before it is forwarded to the

switch. The flit uses this information to set up a path through the switch.

Figure 8.7 shows a more detailed diagram of the RU. The request signal is extracted from

the input buffers and converted to a dual-rail code-word in order to reduce the request-

grant cycle time. Furthermore, the RU represents a pipeline stage. Namely, the one-of-

four latch shown in the figure decouples the scheduling from the subsequent operation

(crossbar arbitration) to improve the throughput of the router.

Figure 8.7: Request unit.

L L L

Input buffer

One-of-four latch

In

Ai

Out (switch)

Ao

Reqest Grant (route)

c

D1 Q1

Q0D0

Ai

Ao

C

C

Dual-rail latch

OPC

D1: EoP
D0: SoP, BoP

Pipeline
stage
Chapter 8: Router Design 113

8.4 Switching fabric
8.4 Switching fabric

The switching fabric (switch in figure 8.3) represents the central component of a network

router. Its task is to enable path setting from any input port to any output port in order to

direct incoming packets towards the designated outputs. The conceptual design, as well

as the physical implementation of the switch determines the maximum throughput of the

router. For example, a shared-bus implementation of a switch has the throughput of only

one flit per cycle-time while a fully-connected crossbar delivers up to N flits per cycle-

time, where N represents the number of inputs and outputs of the switch.

8.4.1 Crossbar

Typically, a high-performance network router employs a fully-connected crossbar switch

which provides the highest possible throughput. Unfortunately, the throughput comes at

the expense of silicon area overhead. The problem becomes even larger if a network

supports virtual channels.

Figure 8.8 shows a non-multiplexed crossbar switch where every virtual channel has a

direct connection between input and output buffers. Incoming packets do not have to

compete for the input of the crossbar and are immediately forwarded to the output buffers

where they wait to be scheduled for departure. Although this is a very suitable

organization for QoS because virtual channels do not have to compete for the fabric, it has

one drawback: size. A four input switch with four virtual channels per input would require

Figure 8.8: Non-multiplexed switch.

Crossbar

Control

Inputs Outputs
Chapter 8: Router Design 114

8.4 Switching fabric
a fully-connected crossbar with 16 inputs and 16 outputs. If an 8-bit wide data path is

considered, the crossbar would comprise around 5,000 two-input gates. In the case of a

delay-insensitive implementation the size would approximately double.

To reduce the silicon area overhead designers often multiplex inputs, as shown in figure

8.9. This significantly reduces the size of the crossbar, however it requires additional

hardware to multiplex virtual channels and to schedule packets over the fabric.

In synchronous network routers there is usually a single control unit which schedules

packets through the crossbar. The scheduler has a global knowledge of all inputs and is

thus able to optimize the sequence in which packets traverse the crossbar to achieve

optimal throughput and prevent contention between the virtual channels sharing the same

input port.

Figure 8.9: Multiplexed switch.

Figure 8.10: Contention in a multiplexed switch.

Inputs Crossbar

Control

Outputs

VC2

VC1

VC0

N E

Contention

Crossbar
Chapter 8: Router Design 115

8.4 Switching fabric
In asynchronous networks this is rather impractical because it would require

synchronisation between all the inputs. Therefore, distributed control logic, where each

output has a separate controller, presents a better solution for a self-timed implementation.

The problem arises when two or more output controllers simultaneously grant access to

two or more virtual channels from the same input link (figure 8.10). To prevent data

corruption additional arbitration logic has to be implemented to ensure mutually exclusive

access to the inputs.

Considering all these factors, the router uses a 5-by-5 crossbar switch with multiplexed

inputs and separate control logic for each output, as shown in figure 8.11. Based on the

restriction that the router does not allow packets to be sent back to the source node, the

crossbar is only partially connected to minimize the silicon area.

Figure 8.11: Partly-connected 5-by-5 crossbar switch with multiplexed inputs.

M
u

x

Arb.

M
u

x

Arb.

M
u

x

Arb.

M
u

x

Arb.Flow-control

North

East

West

South

Data & Control signals

North East West South Egress

Ingress

Flit (data)

Control

Input data format
Chapter 8: Router Design 116

8.4 Switching fabric
The switch does not have a separate control input to initialize the crossbar but instead uses

information attached to a flit to set-up a path through the fabric towards the flit’s

destination port, as shown in figure 8.11. It is the responsibility of an individual output

port controller (not shown in figure 8.11) to ensure that only one input is allowed to access

the particular output at any given time.

The crossbar is implemented using standard logic gates and C-elements. Figure 8.12

illustrates how a single input demultiplexer and output multiplexer pair is constructed.

Note that an asynchronous crossbar practically consists of two crossbars namely, a data-

path crossbar that directs flits towards the designated output and an acknowledge crossbar

which steers an acknowledge signal back to the input. Similarly to the VCDMUX, NAND

gates are used to build the data-path to minimize the area overhead. However, the

acknowledge crossbar is constructed of C-elements, as shown in the figure, in order to

satisfy the QDI requirements. The C-elements hold AiN signal high during the return-to-

zero phase (when control signals e, w, s or h go low) until AoW is actually reset by the

output.

Figure 8.12: Crossbar implementation.

W [19:0]
[19:0]

e [3]
N [23:0]

AiN
N2E [19:0]

N2W [19:0]

N2S [19:0]

N2H [19:0]

Data [23:4]

w [2]

s [1]

h [0]

[19:0]
E2W [19:0]

N2W [19:0]

S2W [19:0]

H2W [19:0]

C

C

C

C

AoW

e [3]

w [2]

s [1]

h [0]

AoE

AoW

AoS

AoH

Input demultiplexer
Output multiplexer
Chapter 8: Router Design 117

8.4 Switching fabric
8.4.2 Input multiplexer and arbiter

The problem of input contention is resolved by a four-way asynchronous arbiter which is

realized using cascaded mutexes [5] to decrease the latency and improve throughput.

Figure 8.13 shows a schematic of the crossbar arbitration circuit of a single input.

The arbiter represents the second pipeline stage of the router subsequent to the request unit

(RU) described in the previous section. Furthermore, the arbitration for the next output

access is performed in parallel with the current output cycle. This way the latency of the

arbiter is hidden when multiple contenders compete for the output channel, as explained

by Bainbridge [5].

When a flit wins the arbitration and acquires access to the crossbar a flow-control token

is generated and sent back to the transmitter closing the flow-control loop. The token

carries a virtual channel (VC) identification tag in order for the transmitter to increment a

designated “credit-counter”, as explained later.

Figure 8.13: Crossbar arbitration.

In3
Ai3

R3 G3

In2
Ai2

R2 G2

In1
Ai1

R1 G1

In0
Ai0

R0 G0

L

L

C

Out (crossbar)

Ao

Flow-control

Afc

C

C

One-of-four latch

R0 G0

In0

Ai0

MutexMutex

Mutex

R3R2R1R0

G1G2G3G0

MutexMutex

Mutex

Arbiter
VC identification tag
Chapter 8: Router Design 118

8.5 Output port controller
8.5 Output port controller

An output port controller (OPC) distributes physical bandwidth between connections

sharing the same output channel. It consists of a flow-control unit (FCU) and a scheduler,

as illustrated in figure 8.14.

8.5.1 Flow-control unit

A flow-control unit (FCU) implements a credit-based flow-control mechanism [76]. Each

virtual channel has a separate credit counter with three stages corresponding to the size of

the input buffers. When a request is forwarded to the scheduler the value of the counter is

decremented, and when a token is received from a flow-control channel the counter is

incremented. If the counter is zero when a new request arrives, the virtual channel is

blocked until a new token arrives from the receiver.

Figure 8.15 shows an implementation of the flow-control unit. The credit counters are

realized as three stage FIFO buffers where a token is inserted into a single buffer by the

flow-control channel and a token is removed when a new request arrives from Rin. The

flow-control forms a closed loop with three tokens travelling between a sender and a

receiver. If there are no tokens available in the buffer signal the FCU does not produce the

output signal Rout. Consequently, the request signal cannot propagate towards the

Figure 8.14: Output port controller.

FCU

Output Flow-control

Request Grant Crossbar

Scheduler

VC Identification Tag

4 4

4

Latch

Gt Vci

Ft

Ot

Cb
Chapter 8: Router Design 119

8.5 Output port controller
scheduler. In order for the router to operate correctly the credit counters have to be

initialized to hold three tokens each after reset.

8.5.2 Scheduler

The nature of the scheduling mechanism greatly impacts the QoS guarantees that can be

provided by a network. In chapter 6 an asynchronous arbiter especially suited for QoS

applications was presented [30]. The arbiter has very low latency and employs a priority

based algorithm (though other algorithms can be used) to calculate a grant vector.

Furthermore, the design overcomes the problem of allowing a contender to obtain more

than 50% of the bandwidth allocation in a self-timed system by using downstream

knowledge to trigger the arbitration.

Figure 8.16 shows a simplified schematic of how the arbiter is implemented in an OPC.

Note that C-elements represent asynchronous latches (L1, L2 and L3) and the arbiter only

has one input and one output for clarity. Note also that the arbiter is referred to as a

scheduler in this context.

Figure 8.15: Flow-control unit.

Rin3 Rin2 Rin1 Rin0

Rout3 Rout2 Rout1 Rout0

Flow-Control

C C C C

C C

Reset

In

Ai

Out

Ao

[1][0]

Afc
Chapter 8: Router Design 120

8.5 Output port controller
After initialization all inputs and outputs are low and the scheduler is enabled (signal Vci

is low). When a request arrives (Rq goes high) the scheduler immediately generates grant

vector Gt. After the vector has been latched in L2 signal Vci is set to logic 1. The scheduler

is now locked while Vci remains high. The grant vector also propagates back to the IPC

which has triggered the request (not shown in the figure) and enables a flit to advance

towards a switch. When the IPC removes the request (Rq goes low) the scheduler pulls Gt

low and is now ready to start the next arbitration cycle. Note that at this point the scheduler

may already have new requests pending for arbitration.

When the flit arrives at the OPC (Cb goes high) the data is latched in L1 initiating signal

Ft which is then combined with Vci forming output signal Ot. Meanwhile, Ft also

generates acknowledge signal Acb which propagates back through the switch to the IPC

that sent the flit. After Ot has been latched by L3 an acknowledge signal resets latches L1

and L2 and, consequently enables the scheduler to start the next arbitration cycle (Vci goes

low). Note that in order for latches L1 and L2 to reset, signals Cb and Gt have to be low,

respectively.

Now the output link has to finish the current transaction cycle before the scheduler is

allowed to start the third arbitration cycle (Ot is high again). For the reader’s convenience

the signal transition graph (STG) [17] in figure 8.17 also describes the operation of the

circuit. Note that Ft and Acb practically represent the same signal.

Figure 8.16: Scheduler: principle of operation.

Sch.
C

C

C

Rq

Cb

Acb

Ot

Aot

Gt
Vci

Ft

4

20

24

Crossbar

Output link

L1

L2

L3

E

Chapter 8: Router Design 121

8.6 Route management unit
The main function of the latches in figure 8.16 is to decouple an arbitration cycle from an

output transaction cycle. In this way the system is capable of pipelined operation,

performing arbitration for the next flit while transmitting the current flit over a network

link. Furthermore, if the arbitration is faster than the output transaction cycle the system

can allocate more than 50% of the output bandwidth to a single contender, as explained

in chapter 6.

8.6 Route management unit

A packet competes for the network resources at two levels. Firstly, it has to acquire a

virtual channel at the output port according to the information in a header flit. Secondly,

it has to compete for the physical bandwidth with other virtual channels sharing the link.

While the bandwidth allocation is performed by the scheduler in an output port controller,

the virtual channel assignment is done by a route management unit (RMU).

The RMU has five asynchronous input channels which are connected directly to the input

ports shown on the left side in figure 8.18. The unit accepts only the headers of incoming

packets and discards the rest of the flits. When a new header arrives the RMU determines

the output port for the packet the header belongs to and steers request signals towards the

Figure 8.17: STG of an output port controller.

Ot+

Aot+

Ot-

Aot-

Vci+ Ft+ (Acb+)

Cb+

Ft- (Acb-)

Cb-

Gt+

Rq-

Gt-

Vci-

Rq+

Output transaction
cycle

Arbitration cycle
Chapter 8: Router Design 122

8.6 Route management unit
corresponding OPC. Figure 8.18 shows a diagram of the RMU with input and output

ports.

The RMU accepts a dual-rail request signal from each virtual channel of each input port.

One rail represents the EOP (end-of-packet) flit and the other represents every other flit.

Note that an ingress port (home) only has a single request input and a single grant output.

This is because the ingress port is not allowed to interleave packets. Consequently, an

egress port does not have a scheduler but it is assumed that the receiver is able to accept

incoming flits at any time. Once an input has acquired the egress port it is allowed to send

flits as fast as possible until an entire packet has been forwarded to the next node.

Let us explain the operation of the RMU by an example illustrated in figure 8.19. The

example shows two packets arriving at inputs North and West, respectively trying to

acquire the same virtual channel (Vc3) at output East.

First, a routing algorithm (RA) is applied to the header of the packet to determine an

output port to which the packet is forwarded. Each input has an individual instance of the

RA block to prevent contention when multiple packets arrive simultaneously. The

implementation of the routing algorithm is relatively small and as such does not represent

Figure 8.18: A RMU symbol with input and output ports.

North

North

East

South

Home

West

4
4 SouthR

G

4
4 NorthR

G

4
4 WestR

G

4
4 EastR

G

4 4 4 4 4 4 4 4 44 4 4 4 44 4 4

East West South Home

2 2 2 2 2 2 2 2 22 2 2 2 22 2 2

North East West South Home

Requests (IPCs)

Route Management Unit

Grants (IPCs)

R
eq

u
es

ts
-G

ra
n

ts
 (

O
P

C
s)

Vc3 Vc2 Vc1 Vc0

Vc3 Vc2 Vc1 Vc0

In
p

u
t

p
o

rt
s

(h
ea

d
er

s
o

n
ly

)

Chapter 8: Router Design 123

8.6 Route management unit
a large area overhead. Furthermore, if all the inputs had to share a single instance of the

algorithm, additional arbitration logic would be required to serialize incoming packets,

diminishing the area overhead of the multiple instance implementation.

The header is then sent through a de-multiplexer towards a steering fabric. The function

of the steering fabric is to connect a virtual channel request unit (RU) to a proper OPC

(according to the routing algorithm) thus enabling arbitration signalling between these

two components. But before the header is allowed to set up the connection, it has to go

through an arbitration process to acquire a particular virtual channel. In this way exclusive

access to the virtual channel is ensured in the case of multiple contenders, as shown by the

example in the figure. If the header is not able to acquire the virtual channel, it is blocked

until the virtual channel is released. A small buffer is provided to prevent waiting headers

from blocking the demultiplexer.

Once the header has acquired the virtual channel this assignment remains fixed for the

duration of the packet. As mentioned before, a request unit issues a dual-rail request signal

Figure 8.19: The operation of the RMU.

A
rb

it
er

VC3 Rq

VC3 Rq

VC3 Gt

N RA

East

vc2
vc1
vc0

vc3

VC3 Gt

VC3 Rq
VC3 Gt

2 2

C

C

East VC3 Rq

East VC3 Gt

Rq EOP

Rq HOP/BOP

Gt

Ctrl Ack

West

South

Home

W

North

vc2
vc1
vc0

vc3
East

South

Home
RA

OPC E

IPC W

IPC N
Chapter 8: Router Design 124

8.7 QoS guarantees and constraints of the router
when a new flit is available. The purpose of this is to signal the RMU when the last flit of

the packet (EOP flit) is about to leave the IPC by setting an EOP request high. When the

request arrives, the RMU initiates a new arbitration cycle in order to change the

assignment of the virtual channel to some other pending packet. Figure 8.19 also

illustrates how a dual-rail request signal is employed in the steering fabric (bottom right

corner of the figure).

8.7 QoS guarantees and constraints of the router

The architecture of the router presented in this chapter has two constraints on the

provision of QoS guarantees. A designer has to be aware of these constraints when

managing the network traffic that requires guaranteed services in order to make sure that

these guarantees are always met.

The first constraint is inherited by a multiplexed crossbar switch and is illustrated in the

following example (figure 8.20). For simplicity reasons the figure shows a router with two

inputs and two outputs, and four QoS connections (A, B, C, D) each acquiring 50% of the

physical bandwidth of its input channel. Connections A and C have priority 2, while B

and D have priority 1. Furthermore, the connections are routed through the crossbar in

such a way that may lead to a situation where two flits from the same input get selected

to traverse the crossbar at the same time. For example, if connections A and B are chosen

simultaneously the arbiter at the input of the crossbar has to serializes the flits in order to

prevent data corruption. If the crossbar operates at the same speed as the output channel

it will take two transaction cycles for the router to transfer the flits to their designated

output channels. This may consequently result in wasted output bandwidth.

Figure 8.20: QoS constraint due to the multiplexed switch.

B A

D C D D C D

A B B A D A - - D A

Crossbar

- B C -

t0t1t2t3t4t5 t1 t2 t3 t4 t5 t6

- B

t7

Output 1

Output 2

Input 1

Input 2
Chapter 8: Router Design 125

8.7 QoS guarantees and constraints of the router
Figure 8.20 illustrates an input sequence of flits that may lead to such a situation.

Incoming events are depicted on the left side and the outgoing events are shown on the

right. At t0 flits A and D arrive at the router. Since they are both designated to the same

output, the sheduler in the output port controller (OPC) decides which one will access the

output port first. Note that when multiple inputs arrive at approximately the same time

asynchronous arbitration is practically non-deterministic, therefore the worst-case

scenario must be assumed in order to calculate the hard time-related guarantees and

constraints of the router. Consequently, flit D may win the arbitration even though it is

assigned a lower priority than flit A, as shown in the figure.

At the beginning of the next cycle (t1 at the inputs) flits B and C arrive at the router

arbitrating for Output 2, while pending flit A is automatically scheduled for Output 1. In

the worst-case B is chosen to traverse the crossbar first while C has to wait for the next

transaction cycle. Since A and B cannot traverse the crossbar concurrently one of them

has to wait for an additional cycle before it is forwarded to its output port. This additional

waiting cycle creates a slot of wasted bandwidth denoted by ‘-’ in the output sequences.

Note that a similar situation may occur in a transaction cycle at t3 when flits A (which has

just arrived at the router) and D compete for the Output 1 while flit C is scheduled for

Output 2.

As a result it can be concluded that the architecture presented in this thesis cannot provide

guaranteed throughput for more than 1/NVC of the bandwidth of a single output channel

when NVC virtual channels of a single input compete for different outputs and the

switching fabric operates at the same speed as the output links. In other words, a designer

is not allowed to dedicate more than 25% of the bandwidth to the traffic that requires a

guaranteed throughput service if four virtual channels from the same input compete for

four different outputs.

Although this constraint represents a huge drawback it has to be stressed that the situation

shown in figure 8.20 is unlikely to occur very often during the operation time and most of

the time best-effort (BE) traffic will be able to acquire much more than 25% of the

physical output bandwidth. However, in order to make hard throughput guarantees a

designer has to manage the QoS traffic following the constraint explained in this section.
Chapter 8: Router Design 126

8.7 QoS guarantees and constraints of the router
In order to increase the amount of bandwidth available for the traffic with QoS

requirements several solutions are possible:

• The most obvious solution has already been discussed in section 8.4 and involves a

fully-connected crossbar switch with a dedicated input for each and every virtual

channel. This eliminates the contention at the inputs of the crossbar and allows

multiple flits from the same input to traverse the crossbar at the same time. As

mentioned before the downside of this solution is the size of the crossbar.

• The next solution is based on a speed-up of the crossbar. If the crossbar operates

NVC times faster than the output channel it is possible to forward NVC flits from a

single input in a single output cycle. For asynchronous networks speed-up is

relatively easy to achieve because self-timed logic automatically adapts its speed of

operation without any additional control logic. At the first glance, a speed-up of a

crossbar seems unrealistic because of the large capacitance loads in the transmission

path, but as we move into deep-submicron technologies where the wire delays

prevail over the gate delays [39], the speed-up of the crossbar is achievable at least

to some extent. The router presented in this thesis has a speed-up of two thus

increasing the amount of the available QoS bandwidth to at least 50% of the

physical bandwidth.

The second QoS constraint of the router presented in this thesis is related to the

implemented scheduling algorithm (a static priority scheduler) and the size of the input

buffers. Figure 8.21 illustrates a situation where the router is unable to provide guaranteed

throughput for a connection although the physical links used by the connection (channel

1 and 2) are not oversubscribed.

The figure shows a part of a network with three QoS connections (A, B and C).

Connection A is assigned the lowest priority virtual channel (priority 1) and is restricted

to acquire at most 50% of the physical bandwidth. Furthermore, the connection exhibits

a traffic pattern with uniformly distributed flits along the time axis. Connections B and C

are also restricted to acquire no more than 50% of the bandwidth, however they exhibit a

bursty traffic pattern with a burst length of three flits. Note that these two connections are

completely independent and are assigned a higher priority than connection A. For
Chapter 8: Router Design 127

8.7 QoS guarantees and constraints of the router
simplicity reasons it is assumed that the input buffers at the network boundaries are

infinite, while the size of the input buffers inside the network is limited to store at most

two flits.

At time t0 flits A and B arrive at inputs West and North of router N1, respectively. As they

are both destined for the same output (East) the scheduler gives precedence to the

connection with higher priority (B). Consequently, the entire burst of B flits is transferred

ahead of the flits of connection A. Note that the router is not allowed to discard any flits

while traversing the network.

At t1 the burst of flits B arrives at router N2 and is immediately forwarded towards output

South. It is assumed that the output is able to receive the whole sequence of B flits. At

time t4 the first A flit arrives at the router, however it is blocked because of C flits arriving

from the North at the same time. Incoming A flits have to be stored in the input buffers

until the burst of C flits has been transferred through the router.

The problem arises if the input buffers of N2 are not big enough to store all the excess flits

of the blocked connection (A). In the example shown in figure 8.21 the router is capable

of storing only two flits while the excess data is three flits long. As explained previously

in this chapter, the router presented in this thesis employs a credit-based flow-control

mechanism which prevents flits being sent to a full-buffer. Consequently, at t5 router N1

will stop sending flits A, because it will have run out of credits. The router will resume

transmitting the flits only when it receives new credits from the subsequent router (N2).

This will not happen until t7, when the first A flit is scheduled for departure at N2, which

Figure 8.21: Minimum buffer size QoS constraint.

A A A A A

B B B

B B B C C C

A A B B B A A C C C
t0t1t2t3t4t5

t0t1t2t3t4t5

t1t2t3t4t5t6

t2t3t4t5t6t7

t1t2t3t4t5t6

t5t6t7t8t9t10

t11 t6t7t8t9t10

t11 t6t7t8t9t10

CCC

Unused slot

r = 1/2, p = 1

r = 1/2, p = 2 r = 1/2, p = 3

A A A
Channel 1 Channel 2

Buffer size = 2

N1 N2 N3
Chapter 8: Router Design 128

8.7 QoS guarantees and constraints of the router
is too late for N1 to schedule the third A flit for departure at t5. Since there are no B flits

available at this moment a slot in the output bandwidth is wasted, as shown in the figure.

If the traffic patterns of all three connections are constantly repeating the backlog of A

flits keeps growing, meaning that the network does not provide the required throughput

of 50% of the physical bandwidth for connection A.

If the size of the input buffers is increased to three flits, N1 is able to send the whole

backlog of A flits at once, thus acquiring 50% of the bandwidth for connection A. The

same can also achieved by restricting the length of the bursts generated by connection B

to a maximum of two flits.

The minimum buffer size requirement does not apply to the virtual channel with the

highest priority because the static priority scheduler automatically assigns physical

bandwidth to this particular channel whenever there are flits available for transmission.

Furthermore, the minimum buffer size requirement has to be checked only when the route

of a virtual channel connection shares the physical path with multiple independent virtual

connections with higher priority.

Figure 8.22a shows an example of a virtual connection (VC1) designated by a bold line

for which the minimum buffer size constraint does not apply, and figure 8.22b illustrates

an example where the minimum buffer size has to be determined for the middle router

(shaded in light grey colour).

Figure 8.22: Minimum buffer size requirement examples.

(a)

VC1

VC2

VC3

VC1

VC2

VC2

(b)
Chapter 8: Router Design 129

8.8 Summary
A more detailed analytical approach to determine the minimum buffer size will be given

in the following chapter.

8.8 Summary

This chapter has introduced an asynchronous network router for on-chip networks with

Quality-of-Service (QoS) support. The router implements virtual channels to assign

buffer space to particular packets, and a priority-based scheduling algorithm to allocate

network bandwidth to the connections sharing the same channel.

A detailed description of the main parts comprising the router, namely an input port

controller, an output port controller, switching fabric and a route management unit, has

been given. The functionality and performance of the prototype implementation is

evaluated in the following chapter.
Chapter 8: Router Design 130

Chapter 9: Evaluation

The previous chapter proposed an asynchronous on-chip network router with QoS

support. A gate-level prototype of the router was implemented using a standard-cell VLSI

library. This chapter presents some simulations conducted to validate the functionality of

the implementation and to evaluate its performance.

9.1 Network performance

The performance of a network is typically assessed by measuring its throughput and

latency. However, the main goal of the research presented in this thesis is to investigate

the ability of an asynchronous on-chip network to provide QoS for individual

connections. Therefore, four parameters were evaluated on a connection level. These

parameters are: throughput, latency, jitter and packet loss ratio.

Throughput

The throughput of a network is the maximum traffic the network can accept per unit of

time, usually measured as bytes or packets per node per cycle. The throughput is

commonly acquired from a Burton Normal Form (BNF) plot of latency versus accepted

traffic, both functions of offered traffic [27]. The throughput corresponds to the maximum

accepted traffic rate where latency approaches infinity, as shown in figure 9.1.

In this case throughput is measured on a connection level and corresponds to the number

of bytes transferred between a pair of nodes per unit of time. This parameter is used to

assess the proportion of bandwidth a network is capable of allocating to a single

connection.
Chapter 9: Evaluation 131

9.1 Network performance
Latency and jitter

The latency of a packet is the time between when a packet is sent and when the complete

packet arrives at the destination. In multi-hop networks the latency of a network

represents the time it takes for a packet to travel the average distance between two nodes

inside the network. It is assumed that a destination node is always ready to receive data

and does not introduce any additional delay.

Furthermore, the variation of the packet delay is defined as jitter and is measured as the

difference between the maximum and the minimum latency of the packets logically tied

to a particular connection.

Packet loss ratio

The packet-loss ratio represents the percentage of packets lost during the transmission

over a network due to insufficient network resources. The router presented in this thesis

provides lossless connections and does not discard packets in case of contention.

Therefore, the packet loss ratio parameter is not applicable for the asynchronous router

presented in this thesis.

Figure 9.1: A typical BNF plot illustrating throughput as the maximum accepted traffic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

40

45

50

55

60

Throughput

Normalized Accepted Traffic

A
vg

. L
at

en
cy

 (
cy

cl
es

)

Chapter 9: Evaluation 132

9.1 Network performance
9.1.1 Test harness

In order to evaluate the performance of the router a small network comprising eleven

nodes was created as shown in figure 9.2. The network is specified as a hierarchical

VHDL [64] gate-level netlist with the elementary gates represented as behavioural models

of the functions they perform. A standard ASIC library for a 0.18 micron technology

provided by ST Microelectronics [20] was used as a foundation for the elementary gates.

In addition, a few asynchronous building blocks, such as a mutual exclusion element

(MUTEX) [54] and various C-elements (symmetrical and asymmetrical) were added to

the library.

Four connections, namely QoS3, QoS2, QoS1 and BE (best-effort) were routed through

the network in such a way that at least one network link is shared among all of them. The

shared link represents a bottleneck as all the connections have to compete for the same

resource. Each connection has a dedicated virtual channel, therefore packets only have to

compete for the physical bandwidth. The priority levels of QoS3, QoS2, QoS1 and BE are

set in a decreasing order of precedence, respectively. By measuring the throughput of each

connection it can be determined to what extent the router is capable of allocating the

Figure 9.2: Test network.

1

2

3

6

7

10 14

G

G

G

G

A

A A A

A

BottleneckBE

QoS1

QoS2

QoS3

QoS1

BE QoS3 QoS2

Traffic analyser

Traffic generator

Router
0

GQ1a

A Q1a

5

G

BE1

11

A BE1
Chapter 9: Evaluation 133

9.1 Network performance
physical bandwidth to a single flow in case of contention. Note that additional

connections (Q1a and BE1) were also routed through the network; these will be explained

later in this chapter.

In a modern sub-micron VLSI technology wire delays become predominant over gate

delays [39]. Therefore network channels connecting the routers are modelled as

transmission lines with 525 ps of propagation delay corresponding to an approximately 3

mm long wire in a 0.18 micron technology [20]. Consequently, a transaction cycle

between two routers becomes the slowest path of the system, decreasing the cycle time to

4 ns (250 MHz). This is necessary in order to satisfy the QoS constraint that the output

cycle of the scheduler has to be slower than the input cycle, as explained in chapter 6. Note

that the router itself is capable of reaching frequencies of around 300 MHz.

The performance of the network is measured under different traffic scenarios. A traffic

scenario typically corresponds to the amount of data (or traffic) that is being carried by

the network. Furthermore, the traffic has to exhibit different communication patterns to

mimic the operation of a real-life system. For example, a network could perform very well

under the assumption that clients generate uniformly distributed traffic, while the

performance degrades drastically when the traffic becomes more bursty and non-

deterministic.

Traffic generation

Each node in the test network is connected to a traffic generator which can be configured

by setting several parameter values prior to a simulation run. Parameters to be chosen

include the following:

• The type of distribution of the inter-packet intervals and distribution parameters

relevant for each individual distribution (e.g. mean and variance in case of Gaussian

distribution).

• The length of a packet.
Chapter 9: Evaluation 134

9.1 Network performance
• The list of blocked nodes. Typically, the traffic generator would randomly choose

the destination node of each packet among all nodes in the network. This parameter

enables the user to force the traffic generator to send packets to a single node. For

example, a QoS point-to-point connection will always use the same destination.

• The number of a virtual channel assigned to packets generated by the node and

consequently the level of priority given to the packets. Virtual channel 3 has the

highest priority while virtual channel 0 carries packets with the lowest level of

priority.

The traffic generator is written in VHDL and as such does not represent a synthesizable

module. Its main part is a random number generator obtained from the Internet as a VHDL

package [10]. The package supports 14 distribution types with various distribution

parameters. The basic random number generator, from which all of the various

distributions are derived, is a mixed linear congruential generator [49] with a 48-bit seed.

The random number generator enables the user to choose independent initial seeds for

each individual instance of the generator.

The traffic generator assigns each packet a time stamp that designates the time when the

packet was created. The time stamp is 30 bits long and acts as the payload of the packet.

It is used to calculate the latency of the packet when it exits the network.

Traffic analysis

To extract the required information from the network a traffic analyser is attached to an

egress port of every receiving node in the network. The traffic analyser was designed to

perform in-time measurements of the following parameter values:

• number of flits received at a single network node, which is then used to calculate

the average throughput of the node,

• minimum, maximum and average latency of the packets received at a single

network node during a simulation run. The latency of each packet is calculated

using the time stamp of the packet, as explained above.
Chapter 9: Evaluation 135

9.1 Network performance
When a simulation starts, there is some time required before the network traffic reaches

its average load and the average queue lengths have stabilized. To filter out this warm-up

period the traffic analyser has programmable start and stop parameters which enable the

user to set the analysis time interval independently from the simulation time.

9.1.2 Test network traffic analysis and admission control

The first step in providing QoS is to manage the traffic with time-related requirements

(QoS traffic) according to the constraints imposed by the network to make sure that these

requirements are always met during operation. This process is usually referred to as

admission control.

In order to simplify the admission control procedure only a guaranteed throughput service

will be provided. However, in addition the maximum jitter will also be calculated for each

QoS connection.

The obvious constraint of a network to provide a guaranteed throughput service is its

maximum bandwidth limited by the physical properties of the implementation. The

admission control has to make sure that the physical channels of the network are not

oversubscribed by the traffic with QoS requirements. Furthermore, the router presented in

this thesis has two additional restrictions to provide guaranteed throughput, as explained

in the previous chapter.

A QoS constraint due to a multiplexed crossbar switch is applicable for router 6 in figure

9.2, because it has three connections from the same input routed to different outputs.

Specifically, connections QoS3, QoS2, QoS1 and BE from input West are routed to

outputs East, East, South and Home, respectively. As QoS3 and QoS2 are both routed to

the same output (East) they can be regarded as a single connection in this context.

As mentioned in the previous chapter, the crossbar implemented in the router has a speed-

up of two, thus it is capable of forwarding two flits from the same input across the fabric

in a single output transaction cycle. However, router 6 has three connections competing

for different outputs. Consequently, to provide a guaranteed throughput service for

connections QoS3, QoS2 and QoS1 the aggregate input throughput of the QoS traffic at
Chapter 9: Evaluation 136

9.1 Network performance
router 6 must not exceed 2/3 of the physical bandwidth. In order to increase the amount

of traffic through the routers 6 and 10 an additional connection (BE1) with best-effort

requirements was routed through the network between nodes 5 and 11. The connection is

assigned virtual channel 0 (lowest priority) and is limited to acquire no more than 50% of

the physical bandwidth of the link.

Note that router 10 has only two input connections competing for different outputs.

Therefore, a speed-up of two is enough to accommodate the QoS traffic with a throughput

of up to 100% of the physical bandwidth.

The second QoS constraint of the router is a minimum input buffer size requirement. If

only four connections, namely QoS3, QoS2, QoS1 and BE, are routed through the test

network, the minimum input buffer size requirement is not applicable because none of

these connections has more than one independent connection competing for the same

output channel. In other words, the independent incoming traffic is multiplexed at router

2 and is simply forwarded by the following routers (6, 10 and 14) to the appropriate

outputs.

In order to make the minimum buffer size requirement applicable for the test network an

additional connection (Q1a) with priority level 3 was routed from router 0 to router 2. The

purpose of this connection is to “attack” QoS1 at router 2. This way the input buffers of

virtual channel 1 (connection QoS1) at router 2 have to satisfy the minimum size

requirement in order for the network to provide a guaranteed throughput service.

9.1.3 QoS traffic specifications

A static priority scheduler implemented in the router represents a simple way to enforce

different levels of QoS. However, due to its simplicity it has some drawbacks the designer

must be aware of when managing QoS traffic.

The most important property of the scheduler is that it cannot enforce the output bit-rate

of an incoming traffic. This means that a misbehaving connection with a particular

priority level is bound to affect the QoS parameters (throughput, latency and jitter) of the

connections with a lower priority. In the worst case the highest priority connection may
Chapter 9: Evaluation 137

9.1 Network performance
acquire the whole physical bandwidth, consequently blocking the rest of the traffic. In

order to prevent this a traffic enforcing mechanism has to be employed at the boundaries

of the network.

Second, the scheduler serves a low priority connection only when there are no flits

pending from the connections with a higher priority. This is bound to affect the latency

and jitter of the low priority connections especially when the network traffic is of a bursty

nature. However, this also has its advantages because it enables a designer to reduce the

observed end-to-end latency of a particular connection by increasing its priority level. For

example, the highest priority packet would be subject to minimum delay at each and every

router on its path through the network.

With these characteristics in mind the following communication patterns and bit-rates of

connections QoS3, QoS2 and QoS1 were chosen to represent various types of network

traffic typically present in a modern SoC:

• The QoS3 connection represents a real-time control channel with low latency

requirements. The traffic source generates short packets (five flits) with a variable

time between packets in the range between 200 ns and 560 ns, acquiring 5% of the

physical bandwidth. Data is injected into the network with the maximum flit-rate

using the highest priority virtual channel (VC3) to achieve the lowest possible

latency of the individual packets.

• The QoS2 connection models a constant bit-rate (CBR) data stream similar to the

uncompressed output of an audio device. The source generates packets of five flits

with a constant flit-rate acquiring 20% of the physical bandwidth using virtual

channel 2 (VC2).

• The traffic model of the QoS1 connection is based on an MPEG-4 video trace

obtained from the Internet [59] and represents a variable bit-rate (VBR) data stream.

The maximum bit-rate generated by the source corresponds to 40% of the maximum

physical bandwidth; however the average bit-rate represents less than 15% of the

bandwidth. The length of the packets varies from 134 to 1741 flits. Consequently,

the data is injected into the network with a variable flit-rate.
Chapter 9: Evaluation 138

9.1 Network performance
According to the bit-rates given above the maximum aggregate throughput of the QoS

traffic requires all of the available resources (65% of the available physical bandwidth).

Remember that the test network can support a guaranteed throughput service only if the

aggregate throughput of the QoS traffic does not exceed 65% of the maximum physical

bandwidth, as explained above. The average utilization of the link represents merely 40%

of the physical bandwidth, while the rest is available for the traffic with best-effort

requirements.

9.1.4 Delay and jitter analysis

The method used here to determine the maximum delay and jitter of individual

connections is based on the work presented in [51] and [31]. In order to allow for an

analytical delay calculation, the traffic has to be characterized by a traffic bounding

function, which defines the maximum number of bits or flits that can arrive at a router as

a function of the time interval. In this thesis it is assumed that the traffic entering the

network is bounded by a linear traffic function [31] of the form:

(6)

where I is the time interval (transaction cycles), is the maximum burst size (flits) and r

is the average bit-rate of the connection (flits/transaction cycles). Figure 9.3 illustrates the

linear bounding function consisting of two linear segments, one with a rate of one, and

one with rate r. The intersection between the two segments denoted by a and Ca

represents the maximum duration of the connection’s burst at the rate of one and the

number of flits received during that time, respectively.

Figure 9.3: Linear traffic bounding function.

F I() min I β I r⋅+,()=

β

time

flits

ββββ

r

a

Ca
Chapter 9: Evaluation 139

9.1 Network performance
Knowing the traffic bounding functions of connections allows us to compute delay

bounds analytically. However, the shape of the traffic changes as it is routed through the

network. In order to determine delay bounds at routers inside the network, the effect

individual routers have on the traffic shape must be known. The following two formulas

[51] describe the traffic bounding function for a connection with priority i bound by a (,

r) at the output of any router:

(7)

(8)

where di is the maximum local delay observed by a flit of priority i. The rate of the

connection remains the same as the traffic passes through the router, but the burstiness

increases as a function of the worst-case local delay.

Note that, in order to simplify the design analysis, di does not include the constant delay

of the router, that is the time a flit requires to traverse the router when there is no

contention at the output link. Consequently, di represents the maximum local flit delay

variation or jitter. To calculate the absolute worst-case local-delay the constant delay of

the router has to be added to the value of di.

The worst-case local delay at any router of a flit with priority i depends upon the amount

of traffic with a priority higher than i that arrived before or while the flit is queued in the

router. Formulas (9) and (10) [51] describe the aggregate traffic bounding function for an

arbitrary set of connections with priority p or higher at the output of any router:

(9)

(10)

Finally, the worst-case local delay observed by a flit with priority i at any router equals

the maximum busy interval of the aggregate traffic with a priority higher than i given by:

(11)

β

β βi ri di⋅+=

r ri=

β

βp βi ri di⋅+()
i P i p≥,∈
∑=

rp ri

i P i p≥,∈
∑=

di
βi 1+

1 ri 1+–
------------------- 1+=
Chapter 9: Evaluation 140

9.1 Network performance
The formula states that a particular router never processes flits with priority higher than i

for more than di consecutive transaction cycles, which in other terms represents the

maximum local delay observed by a flit with priority i. One additional transaction cycle

is added to account for the nondeterministic behaviour of an asynchronous arbiter when

multiple flits arrive at the same time.

As mentioned above, di does not include the local delay of a router. Therefore, the worst-

case end-to-end delay of a flit with priority i (Di) can be formulated as the sum of the

worst-case local delays on its route plus the constant delay of the router (dr) multiplied by

the number of nodes (n) on the connection’s path:

(12)

As an example consider the maximum delay of connection QoS2 at router 2. The

connection is assigned a virtual channel with the second highest priority (i = 2) with only

one connection (QoS3) with a higher priority. Consequently, the aggregate bounding

function of the traffic with a higher priority than QoS2 equals the bounding function of

QoS3 with parameters = 19/4 and r3 = 1/20. If these values are used in formula (11)

the maximum local delay observed by connection QoS2 at router 2 equals six transaction

cycles plus the constant delay of the router.

Using an intuitive approach, a pending QoS2 flit can only be delayed by QoS3 flits. The

maximum busy interval of QoS3 equals five consecutive transaction cycles. However, the

QoS2 flit can be delayed one additional cycle before the QoS3 burst arrives at the router.

This may happen if the QoS2 flit arrives at the router at the same time as the flits from

connection QoS1 and/or BE. In this case the arbitration is nondeterministic and the QoS2

flit may be delayed for one additional cycle.

The following table presents a summary of the delay analysis of connections QoS3, QoS2

and QoS1 which are routed through the test network shown in figure 9.2. Note that for this

analysis connection Q1a is assumed to be inactive. The end-to-end (ETE) delay represents

the maximum time it takes the longest packet of a particular connection to traverse the

network. Consequently, the maximum ETE delay of connection QoS1 is significantly

longer than of QoS2 and QoS3, because of its variable bit rate source with long packets

i di∑ n dr⋅+=

β3
Chapter 9: Evaluation 141

9.1 Network performance
(1741 flits). The most significant amount of jitter is generated at router 2 where all three

connections are multiplexed onto a single output link. At the following router (router 6)

the multiplexed aggregate traffic only competes with low-priority connection BE1 which

can delay each flit for at most one transaction cycle. Note that the values in table 9.1 also

include the delay of 2 ns per flit due to the multiplexed crossbar at router 6.

9.1.5 Simulation results

In order to evaluate the analytical results presented in the previous section, and to

investigate whether the network is capable of accommodating multiple connections with

mixed traffic characteristics and various QoS constraints in parallel with the BE traffic,

the following set of simulations was conducted.

The traffic generators of QoS3, QoS2, QoS1 and BE1 were configured according to the

specifications given above and the BE source was set to generate fixed length packets (10

flits) exponentially distributed along the time axis. The total workload of the network was

varied by the mean bit-rate of the BE source.

Throughput

Figure 9.4 shows the throughput of each connection versus the BE traffic load with the

normalized values against the physical bandwidth. The graph demonstrates that the router

provides a guaranteed minimum throughput service for the QoS connections regardless of

the amount of BE traffic injected into the network. Furthermore, the router also allocates

the residue of the bandwidth (not used by the priority packets) to the BE packets without

affecting the throughput of the QoS traffic. Note that the router follows the input demand

of the BE traffic until the physical bandwidth of the network link is reached.

Table 9.1: Summary of delay analysis.

Connection r ETE delay jitter

QoS3 19/4 1/20 40 ns 10 ns

QoS2 0 1/5 135 ns 40 ns

QoS1 0 1/2 17550 ns 46 ns

β

Chapter 9: Evaluation 142

9.1 Network performance
From this it can be concluded that in practice router 6 does not slow down the incoming

flits due to the multiplexed crossbar and is capable of assigning the entire physical

bandwidth of the network link.

Intuitively, this is expected because the network clients (traffic analysers) are able to

remove any amount of traffic leaving the network without introducing any additional

delay. Consequently, the flow control does not propagate back to router 6 and does not

disturb the incoming traffic which is simply forwarded towards the appropriate outputs.

Latency

Figure 9.5 shows the measured maximum end-to-end latency of each connection. Note

that the Y axis represents a logarithmic scale in order to accommodate a large range of

values. The graph shows that the latency of QoS connections remains almost constant

regardless of the amount of the BE traffic injected into the network, while the latency of

the BE packets increases rapidly as the traffic load approaches the physical limits of the

network. Furthermore, the simulation result correspond closely to the analytical results

given in the previous section.

Figure 9.4: Throughput versus best-effort traffic demand.

Qos3 Qos2 Qos1 BE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Best-effort (BE) traffic demand

T
h

ro
u

g
h

p
u

t

Chapter 9: Evaluation 143

9.1 Network performance
Jitter

The last graph in this set of simulations illustrates the jitter of the QoS connections (figure

9.6). The results show that the jitter of QoS3 is practically unaffected by the BE traffic

load, while the jitter of QoS2 and QoS1 exhibits a small amount of variation

(approximately one transaction cycle). Note that the jitter does not increase with the

amount of the BE traffic but is rather a result of the transient conditions in the network,

for example, the random arrival of BE and QoS1 packets at router 2.

The graph in figure 9.6 also compares the simulation results with the analytical values

shown as the dashed lines. The difference between the two is quite significant, especially

for QoS2 and QoS1. The reason for this can be found in the process of how the analytical

results were derived. The numbers presented in table 9.1 comprise the delay due to the

multiplexed crossbar switch at router 2 when three connections from the same input are

selected to traverse the switch at the same time. As this particular situation does not occur

in practice during the operation the measured jitter is much lower than the analytically

derived values. If this delay is excluded the analytical jitter of QoS3, QoS2 and QoS1 is

8 ns, 28 ns and 32 ns, respectively which is much closer to the values obtained from the

simulation.

Figure 9.5: Maximum latency versus best-effort traffic demand.

Qos3 Qos2 Qos1 BE

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Best-effort (BE) traffic demand

M
ax

. L
at

en
cy

 [
n

s]
Chapter 9: Evaluation 144

9.1 Network performance
9.1.6 Minimum buffer constraint

The next set of simulations was conducted in order to illustrate the minimum buffer

constraint requirement for the router presented in this thesis to provide a guaranteed

throughput service.

The test network is the same as in the previous examples with connection Q1a now being

active. The purpose of Q1a is to disturb the flow of connection QoS1 between routers 1

and 2. As explained in the previous chapter, if a QoS connection is “attacked” by multiple

independent sources with a higher priority at different points in the network then the

minimum buffer constraint applies for that particular connection.

The QoS1 connection has been configured to generate a constant flit-stream acquiring at

most 40% of the bandwidth of the link connecting routers 1 and 2. Q1a has been set to

generate the same amount of traffic, however in this case the connection exhibits a bursty

traffic pattern. Furthermore, the QoS3 traffic source has been set to acquire no more than

40% of the available bandwidth generating a constant flit-rate data stream in order to

increase the probability of the worst-case traffic scenario in the network.

Figure 9.6: Jitter versus best-effort traffic demand.

Qos3 Qos2 Qos1

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Best-effort (BE) traffic demand

Ji
tt

er
 [

n
s]
Chapter 9: Evaluation 145

9.1 Network performance
Analytically derived minimum buffer size

If connections QoS1 and Q1a are determined by linear bounding traffic functions (, ri)

and (, rj), respectively, the minimum buffer size for connection QoS1 at router 2 is

determined by the following formula:

. (13)

Intuitively, router 2 has to be able to store the maximum burst of QoS1 flits if the entire

physical bandwidth of the input link is dedicated to QoS1 and Q1a (ri + rj = 1). If the

aggregate rate of ri and rj is less than the physical bandwidth the minimum buffer size is

reduced accordingly. Note that in the case where several connections are routed through

the link between routers 1 and 2 (, rj) represents the aggregate traffic bounding

function, determined by (9) and (10), of all the connections sharing the link between

routers 1 and 2 with a priority higher than i.

Formula (13) can also be used to calculate the maximum allowed burst length of Q1a for

a defined buffer size:

where the size of the input buffers of router 2 equals three flits and the aggregate

throughput of connections QoS1 and Q1a represents 80% of the physical bandwidth of

the link.

Simulation results

The following figure shows the effect the burst size of Q1a has on the throughput of QoS1.

The X axis represents the burst length of Q1a and the Y axis represents the amount of

bandwidth acquired by QoS1 normalized to the maximum physical bandwidth of the

particular link. As expected, the network provides a guaranteed throughput service for

QoS1 as long as the bursts generated by Q1a are relatively short (less than 10 flits),

however once the burst length increases above 10 flits the throughput of QoS1 starts to

βi

βj

Ni

βi ri

βj

1 rj–
------------⋅+

1 ri–

ri rj+()⋅=

βj

Cj
1
ri
--- Ni

1 r– i

ri rj+
-------------- βi–⋅

 ⋅ 1
0.4
------- 3

1 0.4–
0.4 0.4+
--------------------- 0–⋅

 ⋅ 5.6= = =
Chapter 9: Evaluation 146

9.2 Hardware requirements
drop. Note that increasing the burst length of Q1a does not increase the average flit-rate

of the connection because the time interval between consecutive bursts is also changed in

order to maintain the average flit-rate constant.

The difference between the analytically derived size of the maximum burst length,

denoted by a vertical dashed line in figure 9.7, and the simulation results is due to the fact

that the simulation results do not illustrate the worst-case traffic scenario, but only the

transient conditions in the network.

9.2 Hardware requirements

One of the most important issues in designing an on-chip network is the silicon area

overhead. Table 9.2 shows a summary of the transistor count of the individual

components comprising the router.

The largest proportion (more than 55%) of the router area is occupied by the input port

controllers (IPCs), most of it due to the input buffers. Approximately 31,500 transistors

or almost 52% were used to implement input FIFO buffers each capable of storing up to

three flits. If the size of the input buffers is reduced to two flits the total number of

transistors implemented in the router would decrease to roughly 50,000.

Figure 9.7: Throughput of QoS1 versus the burst length of Q1a.

0.30

0.35

0.40

0.45

0.50

0 2 4 6 8 10 12 14 16 18 20

Burst length (Q1a) [flits]

T
h

ro
u

g
h

p
u

t
(Q

o
S

1)
Chapter 9: Evaluation 147

9.3 Comparison with similar solutions
The second largest silicon area is occupied by the switch, specifically 17% of the whole

router. The crossbar of the switch has been implemented using standard two-input logic

gates in order to reduce the complexity of the design and as such does not represent the

optimum solution in terms of area overhead and speed. The number of transistors used in

the crossbar is 3,260 while the rest of the area is occupied by the input multiplexers and

input latches implemented in the design to improve the throughput of the router.

The route management unit (RMU) occupies 16% of the area. Most of it is devoted to the

steering logic which forwards request signals towards the designated output ports. Only

1.290 transistors were used to implement five instances of the routing algorithm. The rest

of the router’s total area of around 12% is occupied by the output port controllers (OPCs).

The total number of transistors in the router is therefore approximately 60,000

corresponding to an equivalent of 15,000 two-input gates, based on an average of four

transistors per gate. At the first glance the number seems very high, however if

implemented in a 0.18 micron technology the router would occupy less than 0.2 mm2 of

silicon area or approximately 0.2% of a 10-by-10 mm chip [20]. Note that wires are not

included in this estimate.

9.3 Comparison with similar solutions

Although several proposals for various NoCs have been published over the past few years

only a few of them provide complete information regarding throughput, latency and

hardware costs. Four different on-chip communication architectures have been chosen for

comparison against the router presented in this thesis, namely CHAIN - a delay-

insensitive chip-area interconnect [6], Philips’ Æthereal network-on-a-chip [69], SPIN -

Table 9.2: Hardware costs of the router.

Component Transistors Transistors [%]

Input port controllers (IPCs) 33525 55

Output port controllers (OPCs) 7270 12

Route management unit (RMU) 9683 16

Switch 10116 17

Router 60594 100
Chapter 9: Evaluation 148

9.3 Comparison with similar solutions
a scalable, packet switched, on-chip micro-network [36] and PI-Bus (Peripherial

Interconnect Bus) [68].

CHAIN: A delay-insensitive chip area interconnect

The CHAIN on-chip network is a second generation asynchronous on-chip interconnect

developed by Bainbridge and Furber at the University of Manchester, UK [6]. The

network employs narrow, high-speed, serial links to transmit data between an initiator and

a target. Two fundamental building blocks, namely a multiplexer with an arbiter and

demultiplexer with a router, enable a designer to adjust the topology of the interconnect

to specific needs. Additional components, such as a serial-to-parallel converter and a one-

hot encoder/decoder are needed at the boundaries of the network to dis-assemble and re-

assemble packets. CHAIN uses two separate networks for command and response and

supports only best-effort (BE) traffic.

Æthereal network-on-a-chip

The Æthereal network-on-a-chip was developed at Philips Research Laboratories. The

network supports QoS connections using circuit switching with time division

multiplexing (TDM) together with BE traffic which is accommodated by wormhole

switching. The Ætherea NoC does not support a fixed topology and employs source

routing.

SPIN: A Scalable, Programmable Interconnection Network

SPIN is a packet switching, on-chip micro-network which uses wormhole switching,

adaptive routing and credit-based flow control. It is based on a fat-tree topology [50]

which produces a scalable non-blocking network. The SPIN network employs two stages

of routers. In a network of 16 nodes the first stage router has eight bidirectional ports and

the second stage router has four bidirectional ports. The network supports only traffic with

best-effort requirements.
Chapter 9: Evaluation 149

9.3 Comparison with similar solutions
Peripherial Interconnect Bus (PI-Bus)

PI-Bus is a processor independent and demultiplexed architecture with data and address

buses scalable up to 32 bits. It is multimaster capable and requires a bus controller for

operation. The controller must implement a mechanism to arbitrate which master is

granted the requested bus ownership. The bus controller is also responsible for performing

the address decoding in order to determine the target of a bus operation, and other

functions such as time-out control and slave access control.

Table 9.3 summarizes the throughput and the area overhead of the interconnect

architectures listed above. Though it is very hard to make a direct comparison the router

presented in this thesis provides an amount of bandwidth comparable to the CHAIN and

SPIN networks, especially if the width of the data-path is taken into consideration.

Namely, SPIN has a four-times wider data-path consequently providing higher overall

bandwidth. For example, expanding the data-path to 16 bits would roughly double the

bandwidth of the router without significantly affecting its cycle-time. However, compared

to the Æthereal network the width of the data-path is not the only factor that is

disadvantageous to the router presented here. While the Æthereal network runs at 500

MHz, the asynchronous router optimistically executes only 300 million cycles per second.

Although implementation details of the Æthereal network are not publicly available, the

main reason for this difference is probably the quasi-delay-insensitive (QDI)

implementation of the asynchronous router together with the return-to-zero signalling

protocol.

Table 9.3: Communication architecture comparison.

Architecture Throughput
(ports × freq. × bits)

Size / technology QoS

CHAIN = 4 Gbps 0.004 mm2 / 0.18 µm No

Æthereal = 80 Gbps 0.26 mm2 / 0.13 µm Yes

SPIN = 51.2 Gbps 0.8 mm2 / 0.25 µm No

PI-Bus = 1.6 Gbps No

Async. router = 12 Gbps 0.2 mm2 / 0.18 µm Yes

2 1000 2××

5 500 32××

8 200 32××

1 50 32××

5 300 8××
Chapter 9: Evaluation 150

9.3 Comparison with similar solutions
In terms of a silicon area overhead table 9.3 shows that the size of the asynchronous router

is smaller than the routers of the Æthereal network and SPIN but is much larger than

CHAIN and PI-bus. This is expected because CHAIN and PI-Bus do not employ any

buffering which has a great impact on the overall size of the interconnect, as explained

before. Furthermore, the example of the CHAIN router presented in the table has only two

input and two output ports and a two-bit wide data path.

On the other hand SPIN, Æthereal and the asynchronous router provide 272, 480 and 51

bytes of memory, respectively. Although all three solutions employ wormhole switching

the difference is due to the various flit sizes. While the Æthereal network uses flits of four

32-bit words, SPIN and the router employ single word flits comprising 32 and 8 bits,

respectively.

The last comparison in this section is regarding the QoS capabilities of the networks.

Beside the router presented in this thesis only the Æthereal network implements a

mechanism to support guaranteed services. As explained above, Æthereal uses circuit

switching with TDM to dedicate bandwidth to a particular connection. The Æthereal

router implements a slot-table with 256 entries, therefore the minimum amount of 1/256

of the bandwidth can be allocated to a single connection. The advantage of this approach

is that the network can make hard throughput guarantees for an individual flow of data.

Furthermore, TDM ensures that a single connection cannot acquire more than the reserved

proportion of the bandwidth.

The downside of this approach is the end-to-end latency of packets in the case of an

unpredictable traffic source. As an example, consider a client that generates short packets

randomly distributed across the time axis with an average throughput of no more than 1/

256 of the physical bandwidth. Normally, a single time-slot would be reserved for the

connection to provide a guaranteed throughput service, however the latency of packets is

bounded to a relatively wide range of values. In the worst case scenario the client produces

a new packet just after the reserved slot has been sent through the network. The packet has

to wait for 255 cycles for the next reserved slot in order to enter the network, thus

exhibiting a substantial amount of queuing time. Finally, a TDM technique requires global

synchronization between network elements which is becoming very hard to achieve as

clock frequencies increase well above 1 GHz.
Chapter 9: Evaluation 151

9.3 Comparison with similar solutions
The asynchronous network router presented in this thesis takes a different approach to

provide guaranteed services. This eliminates some of the problems of the Æthereal

network, however it also introduces several new ones. The bandwidth is reserved by

employing a priority based scheduler which serves packets according to their priority.

Furthermore, the router reserves buffer space for a particular connection using virtual

channels. The advantage of this approach is that it provides low latency for the highest

priority channel because the transmission of a low priority packet is always pre-empted

by a packet with the higher priority. Furthermore, dynamic allocation of the bandwidth

enables the router to accommodate bursty traffic with lower end-to-end latency.

Unfortunately, this is bound to affect the latency of lower priority packets, therefore care

has to be taken when managing the traffic with QoS requirements through the network.

The disadvatage is that the complexity of the hardware grows rapidly with the number of

virtual channels. One solution to the problem is to share virtual channels among multiple

QoS connections. For example, the highest priority virtual channel could be used to

transmit short control packets which require low end-to-end latency but do not utilize a

large proportion of the network bandwidth. However, sharing a virtual channel among

several connections may increase the worst case latency and has to be considered

carefully.
Chapter 9: Evaluation 152

Chapter 10: Conclusions

Future Systems-on-Chip (SoCs) pose many challenges to designers because of the

problems of deep sub-micron technologies, such as clock-skew and global wire delays,

and rising complexity due to the large numbers of transistors implemented on a single

chip. A key ingredient to solve these problems is to decouple the computation and

communication in order to allow IPs (the computation part) and the interconnect (the

communication part) to be designed independently from each other.

A Network-on-a-Chip (NoC) is a new concept for global on-chip interconnect that has

been proposed as a solution to replace on-chip buses which simply cannot supply the

increasing demand for bandwidth and scalability. A modern SoC may comprise many

different IP blocks with different traffic characteristics and constraints, therefore it is

essential for the network to support Quality-of-Service (QoS) in order to accommodate

different IPs sharing the same medium.

Although dividing a chip into several sections with independent clock domains solves the

clock-skew problem of each section, the problem of global clock distribution still remains

for the interconnect itself. Namely, individual network elements (routers) forming an on-

chip communication infrastructure may be scattered all over a chip interconnected by long

wires which do not scale well with the technology, thus increasing the clock-skew. One

solution is to abandon the clock and employ asynchronous logic to implement the NoC.

The research presented in this thesis has investigated the problems and trade-offs of

designing an asynchronous on-chip network with QoS support. In order to establish the

feasibility of using self-timed logic to support time-related guaranteed services, a

prototype of an asynchronous on-chip network router has been implemented and

evaluated using VHDL simulations.
Chapter 10: Conclusions 153

The results presented in the previous chapter clearly demonstrate that the router

differentiates efficiently between connections with various QoS constraints and provides

guaranteed throughput and bounded communication latency for individual connections.

However, the results hide several assumptions that have been made during the

simulations:

First, the traffic pattern of the network load was carefully chosen to suit the static priority

scheduler implemented in the router by setting the average bit-rate of each QoS

connection in decreasing order of the priority levels. This way the scheduler was able to

provide high network utilization with a constant level of QoS. If, for example, the traffic

rates of QoS3, QoS2, and QoS1 were more equal with the aggregate bit-rate close to the

physical bandwidth, the delay and jitter exhibited by QoS2 and QoS1 would be much

higher.

Furthermore, each traffic source was bounded to inject only a certain amount of data into

the network. This is because the router itself cannot enforce the rate at which data is

injected into the network. Therefore, a misbehaving client with the highest priority

connection may disturb the QoS requirements of the lower priority connections sharing

the same physical path through the network. Although this represents a drawback in the

cases where clients produce bursty traffic it also reduces the complexity of the scheduler

which is essential for NoCs. The rate and traffic pattern of packets inserted into a network

can be enforced by a traffic shaping mechanism, as described in chapter 3.

Next, the results do not include the possibility of the arbitration logic exhibiting longer

delays due to metastability. Although the arbiters implemented in the router are highly

reliable and will always generate a valid output, the time at which this output is produced

is not bounded and it may take longer time for the arbitration to resolve. This may

compromise the time-related QoS requirements of the connections involved in the

arbitration. In the simulations presented in this thesis it is assumed that the arbitration

logic never enters a metastable state or the metastability is resolved fast enough so that it

does not affect the overall performance of the router.
Chapter 10: Conclusions 154

10.1 Advantages
10.1 Advantages

10.1.1 Clock-skew

The main advantage of the router presented in this work is inherited from its asynchronous

implementation which eliminates the need for a global clock, thus avoiding the problem

of clock-skew altogether.

10.1.2 Modularity

A quasi delay-insensitive (QDI) implementation ensures that the router operates

functionally correct for arbitrary delays of the gates and wires (note that isochronic forks

have to be verified). However, in order to provide time-related guarantees certain timing

constraints have to be met, as explained in chapter 6. Furthermore, the bandwidth of the

router depends highly upon the physical implementation and, especially, upon the length

of the wires connecting the routers.

10.1.3 Complexity

Although, compared to similar existing NoCs such as CHAIN or SPIN, the router

presented here has much greater complexity and size, note that neither of these two

networks supports guaranteed services. It is the ability of a network to reserve its

resources for individual connections in order to provide hard time-related guarantees that

increases the complexity and size of the network. The router uses a simple QoS

architecture based on virtual channels and a static priority scheduler that results in a

relatively low overall complexity.

10.2 Disadvantages

10.2.1 Number of virtual channels

One major drawback of the router presented here is that the number of virtual channels

and consequently the number of QoS connections the router can support over a single

physical channel is determined by the implementation. As the number of virtual channels

has a direct impact on the network overhead, the router presents a viable solution as long
Chapter 10: Conclusions 155

10.2 Disadvantages
as the number of QoS connections sharing the same physical channel is relatively low

(fewer than 10 connections). If a network has to accommodate tens or even hundreds of

independent QoS connections sharing the same physical channel, a different solution

must be employed.

10.2.2 Admission control

Admission control manages the QoS traffic through a network and is responsible for

accepting or rejecting new QoS connections. Throughout this thesis it has been assumed

that the admission control is a part of the design process of an NoC and that the entire QoS

traffic is well-known and does not change significantly during operation. If this is the

case, the QoS connections can be set-up during the initialization phase and no additional

admission control hardware and/or software is required.

However, when the QoS traffic of a network is not completely defined at design time and/

or varies significantly during execution time, admission control is required to accept new

QoS connections without compromising the guarantees of the existing ones. The problem

is that a simple priority-based scheduler changes the shape of the traffic as the latter is

routed through the network [51]. Therefore, with every new QoS connection introduced

into the network, the affected QoS traffic has to be re-analysed in order to confirm that it

still meets the QoS constraints. This may be a very demanding task, even for a small

network, and may require a lot of computational power and a global knowledge of the

network traffic.

10.2.3 Passive bit-rate control

As has been mentioned before, the router presented in this work has a relatively low

complexity in order to reduce the overall overhead of the network. However, this comes

at a price. Namely, the router cannot enforce the output bit-rate of an individual virtual

channel. Consequently, a misbehaving virtual channel is able to acquire more physical

bandwidth that was originally intended at the expense of the virtual channels with a lower

priority. In order to prevent such a situation a strict traffic shapping mechanism is required

for each QoS connection at the input boundaries of the network.
Chapter 10: Conclusions 156

10.3 Future research directions
10.3 Future research directions

The research presented in this thesis has shown that self-timed logic is capable of

providing time-related guarantees for an on-chip network with a concrete example of an

asynchronous on-chip router with QoS support. Nevertheless, more research is necessary

in order to develop the ideas presented here to the level where they can be used in a real

system. The following are some possible future research directions.

10.3.1 Bundled-data implementation

Although the QDI implementation of the router has several advantages, such as

modularity, it also results in the large overal size of the network. It is expected that by

using a bundled-data implementation the overall size of the router would decrease by

roughly 40%. The reason for this is the fact that more than 70% of the router is comprised

of FIFO buffers and switching fabric for which size is directly proportional to the number

of data lines implemented in the design. Note that a QDI implementation using a one-of-

four encoding requires four data lines for every two bits of information.

However, a bundled-data implementation relies on delay matching, such that the order of

signal events at the sender’s end is preserved at the receiver’s end. This may be a very

demanding task that requires post-layout timing analysis and possibly design iterations in

order to meet the delay-matching requirements.

Possibly the best trade-off would be a bundled-data internal implementation of the router

itself with a delay-insensitive (DI) interface between the routers forming a network. This

way the size of the router is kept as small as possible and DI connections are ensured

between individual network elements.

10.3.2 Alternative scheduling algorithms

In this thesis only a static-priority scheduling algorithm has been used to provide QoS,

because it is very simple to implement in self-timed logic. As noted in chapter 8, using

this particular algorithm introduces a minimum input buffer constraint upon the router. By

implementing a different scheduling algorithm, such as a combination of a round-robin

and a priority scheduling algorithm, this constraint may be eliminated.
Chapter 10: Conclusions 157

10.3 Future research directions
10.3.3 Admission control

Finally, last but not least, one very interesting direction for future research is an admission

control mechanism. As noted above, admission control represents a very complex part of

the QoS architecture presented in this thesis. Therefore, further research is required to

develop a feasible admisson control mechanism for an on-chip implementation that would

enable dynamic managment and control of the QoS network traffic during operation and

thus improve the functionallity of the network.
Chapter 10: Conclusions 158

References

[1] A. Agarwal, ”Limits on Interconnection Network Performance,” IEEE
Transactions on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398-412, April
1991.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz,
Beng-Hong Lim, K. Mackenzie and D. Yeung, “The MIT Alewife Machine:
Architecture and Performance,” In Proceedings of 22nd Interational Symposium
on Computer Architecture, pp. 2-13, June 1995.

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Burger, “Clock Rate Versus IPC:
The End of the Road for Conventional Microarchitectures,” In Proceedings of the
27th International Symposium on Computer Architecture (ISCA ‘00), pp. 248-259,
June 2000.

[4] AMBA, Advanced Microcontroller Bus Architecture Specification, ARM Ltd.,
May 1999.

[5] J. Bainbridge, Asynchronous System-on-Chip Interconnect, Ph.D. thesis,
Department of Computer Science, The University of Manchester, Manchester,
UK, March 2000.

[6] J. Bainbridge and S. Furber, “Chain: A Delay-Insensitive Chip Area Interconnect,”
IEEE Micro, vol. 22, no. 5, pp. 16-23, September-October 2002.

[7] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE
Computer, pp. 70-78, January 2002.

[8] L. Benini and G. De Micheli, “Powering Networks on Chips,” In Proceedings of
the 14th International Symposium on System Synthesis, pp. 33-38, September -
October 2001.

[9] D. Bertozzi, L. Bennini ang G. De Micheli, “Low Power Error Resilient Encoding
for On-Chip Data Buses,” In Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, pp. 102-109, March 2002.

[10] J. A. Breen, K. Christensen and W. A. Hanna, Random Number Generation
Package, URL: http://www.eda.org/vhdlsynth/rndm_gen/rng.

[11] A. Bystrov, D. Kinniment and A. Yakovlev, “Priority Arbiters,” In Proceedings of
the 6th IEEE International Symposium on Advanced Research in Asynchronous
Circuits (ASYNC), pp. 128-137, April 2000.

[12] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with Latency in SoC
Design,” IEEE Micro, vol. 22, no. 5, pp. 24-35, September-October 2002.

[13] L. P. Carloni, K. L. McMillan and A. L. Sangiovanni-Vincentelli, “Theory of
Latency - Insensitive Design,” IEEE Transactions on Computer Aided Design, vol.
20, no. 9, pp. 1059-1076, September 2001.
 References 159

[14] T. J. Chaney and C.E. Molnar, “Anomolous Behavior of Synchronizer and Arbiter
Circuits,” IEEE Transactions on Computers, vol. 22, no. 4, pp. 421-422, April
1973.

[15] H. J. Chao and N. Uzun, “A VLSI Sequencer Chip for ATM Traffic Shaper and
Queue Manager,” IEEE Journal on Solid State Circuits, vol. 27, no. 11, pp. 1634-
1643, November 1992.

[16] H. J. Chao and X. Guo, Quality of Service Control in High-Speed Networks, New
York: John Wiley & Sons, 2002.

[17] T. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Specifications,
Ph.D. thesis, Department of Electrical Engineering and Computer Science, MIT,
June 1987.

[18] I. Cidon, R. Guerin and A. Khamisy, “Protective Buffer Management Policies,”
IEEE/ACM Transactions on Networking, vol. 2, no. 3, pp. 240-246, June 1994.

[19] The CoreConnect Bus Architecture, IBM, 1999.

[20] CORELIB8DHS_HCMOS8D_1.8V_TEC 2.0 Reference Manual, 0.18 micron
VLSI technology, STMicroelectronics, February 2000.

[21] W. J. Dally, “Performance Analysis of k-ary n-cube Interconnection Networks,”
IEEE Transactions on Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[22] W. J. Dally, “Virtual-Channel Flow Control,” IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 2, pp. 194-204, March 1992.

[23] W. J. Dally and J. W. Poulton, Digital Systems Engineering, Cambridge University
Press, 1998.

[24] W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks,” IEEE Transactions on Computers, vol. C-36. no. 5.
pp. 547-553, May 1987.

[25] W. J. Dally and C. L. Seitz, “The Torus Routing Chip,” Distributed Computing,
vol. 1, pp. 187-196, 1986.

[26] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-chip Interconnection
Networks,” In Proceedings of DAC, pp. 684-689, June 2001.

[27] J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks, Los Alamitos,
California: IEEE Computer Society Press, 2002.

[28] Exponential distribution, URL: http://mathworld.wolfram.com/
ExponentialDistribution.html.

[29] K. M. Fant and S. A. Brandt, Null Convention LogicTM. Theseus Logic Inc., 1997,
URL: http://www.theseus.com/Downloads/NCLPaper.pdf.

[30] T. Felicijan, J. Bainbridge and S. Furber, “An Asynchronous Low Latency Arbiter
for Quality-of-Service (QoS) Applications,” In Proceedings of the 15th IEEE
International Conference on Microelectronics (ICM'03), pp 123-126, December
2003.
 References 160

[31] V. Firoiu, J. Kurose and D. Towsley, “Efficient Admission Control for EDF
Schedulers,” In Proceedings of Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, INFOCOM '97, vol. 1, pp. 7-11, April
1997.

[32] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion
Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413,
August 1993.

[33] S. B. Furber, J. D. Garside, P. A. Riocreux, S. Temple, P. Day, J. Liu and N. C.
Paver, “Amulet 2e: An Asynchronous Embedded Controller,” In Proceedings of
the IEEE, vol. 87, no. 2, pp. 243-256, February 1999.

[34] K. Goossens, E. Rijpkema, P. Wielage, A. Peeters and J. van Meerbergen,
“Network on Silicon: Combining Best Effort and Guaranteed Service,” In
Proceedings of Design, Automation and Test in Europe Conference and Exhibition,
pp. 423-425, March 2002.

[35] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. Radulescu, E.
Rijpkema, E. Waterlander, and P. Wielage, “Guaranteeing the Quality of Services
in Networks on Chip,” in H. Tenhunen and A. Jantsch (Editors), “Networks on
Chip,” Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003.

[36] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-Switched
Interconnections”, In Proceedings of Design Automation and Test in Europe
Conference and Exhibition, pp. 250-56, March 2000.

[37] Handshake Solutions, URL: http://www.handshakesolutions.com.

[38] J. Henkel, W. Wolf and S. Chakradhar, “On-Chip Networks: A Scalable,
Communication-Centric Embedded System Design Paradigm,” In Proceedings of
the 17th International Conference on VLSI Design (VLSID’04), pp. 845-851,
January 2004.

[39] R. Ho, K. W. Mai and M. A. Horowitz, “The Future of Wires,” In Proceedings of
the IEEE, vol. 89, no. 4, pp. 490-504, April 2001.

[40] Y. R. Hou, A. Ohnishi, Y. Sugiyama, T. Okamoto, “An Algebraic Specification of
a Daisy Chain Arbiter,” In Proceedings of Pacific Rim International Symposium
on Fault Tolerant Systems, pp. 24-29, September 1991.

[41] International Technology Roadmap for Semiconductors, http://public.itrs.net.

[42] A. E. Joel, “Circuit Switching: Unique Architecture and Applications,” IEEE
Computer, vol. 12, no. 6, pp. 10-22, June 1979.

[43] M. B. Josephs, J. T. Yantchev, “CMOS Design of the Tree Arbiter Element, “ IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 4, no.4, pp.
472-476, December 1996.

[44] F. Karim, A. Nguyen and S. Dey, “An Interconnect Architecture for Networking
Systems on Chips,” IEEE Micro, vol. 22, no. 5, pp. 36-45, September - October
2002.
 References 161

[45] P. Kermani and L. Kleinrock, “Dynamic Flow-Control in Store and Forward
Computer Networks,” IEEE Transactions on Communications, vol. COM-28, no.
2, pp. 263-271, February 1980.

[46] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Computer
Communication Switching Technique,” Computer Networks, vol. 3, no. 4, pp. 267-
286, September 1979.

[47] J. B. Kuo and J. H. Lou, Low-Voltage CMOS VLSI Circuits, New York: John Wiley
& Sons, 1999.

[48] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J.
Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum and J.
Hennessy, “The Stanford FLASH Multiprocessor,” In Proceedings of Interational
Symposium on Computer Architecture, pp. 302-313, April 1995.

[49] D. H. Lehmer, “Mathematical Methods in Large-Scale Computing Units,” In
Proceedings of 2nd Symposium on Large-Scale Digital Calculating Machinery,
pp. 141-146, 1949.

[50] C. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892-
901, October 1985.

[51] C. Li, R. Bettatti and W. Zhao, “Static Priority Scheduling for ATM Networks”, In
Proceedings of the Real-Time Systems Symposium (RTSS’97), December 1997.

[52] A. Lines, “Asynchronous Interconnect for Synchronous SoC Design,” IEEE
Micro, vol. 24, no. 1, pp. 32-41, January-February 2004.

[53] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment,” Journal ACM, vol. 20, pp. 46-61, January 1973.

[54] A. J. Martin, Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C.A.R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series, pp. 1-64, Addison Wesley,
1990.

[55] A. J. Martin, “The Design of a Self-timed Circuit for Distributed Mutual
Exclusion,” In 1985 Chapel Hill Conference on VLSI, pp. 245-260, (1985).

[56] A. J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits,”
In W. J. Dally, editor, Sixth MIT Conference on Advanced Research in VLSI, pp.
263-278, MIT Press, 1990.

[57] S. Moore, “Point to Point GALS Interconnects,” In Proceedings of the 8th IEEE
International Symposium on Advanced Research in Asynchronous Circuits
(ASYNC), pp. 69-75, April 2002.

[58] MPEG-1: Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s, URL: http://www.chiariglione.org/mpeg/
standards/mpeg-1/mpeg-1.htm

[59] MPEG-4 and H.263 Video Traces for Network Performance Evaluation, URL:
http://www-tkn.ee.tu-berlin.de/research/trace/trace.html
 References 162

[60] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink and D. Webb, “The Alpha 21364
Network Architecture,” IEEE Micro, vol. 22, no. 1, pp. 26-35, January - February
2002.

[61] L. M. Ni and P. K. McKinley, “A Survey of Wormhole Routing Techniques in
Direct Networks,” IEEE Computer, vol. 26, no. 2, pp. 62-76, February 1993.

[62] Open Core Protocol TM Data Sheet, Sonics, Inc.

[63] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow-
Control - The Single Node Case,” In Proceedings of INFOCOM’92, 1992.

[64] D. L. Perry, VHDL: Programing by Example, New York, McGraw-Hill Education,
2002.

[65] A. M. G. Peeters, Single-Rail Handshake Circuits, Ph.D. thesis, Technische
Universiteit Eindhoven, Eindhoven, The Netherlands, 1996.

[66] A. M. G. Peeters, The Asynchronous Biblioghraphy, URL: http://www.win.tue.nl/
~wsinap/async.html.

[67] G. F. Pfister and A. Norton, “Hot Spot Contention and Combining in Multistage
Interconnect Networks,” IEEE Transactions on Computers, vol. C-34, no. 10, pp.
943-948, October 1985.

[68] PI-Bus. Draft Standard, OMI324: PI-Bus Revision 0.3d, Open Microprocessor
Systems Initiative (OMI), Siemens AG (1994).

[69] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P.
Wielage and E. Waterlander, “Trade-offs in the design of a router with both
guaranteed and best-effort services for networks on chip,” IEE Proceedings of
Computer and Digital Techniques, vol. 150, no. 5, pp. 294-302, September 2003.

[70] C. Seitz, "System Timing", Chapter 7 of Introduction to VLSI Systems by C. Mead,
L. Conway, Addison Wesley Second Edition, 1980.

[71] M. Sgroi, M. Sheets, K. Keutzer, S. Malik, J. Rabaey and A. Sangiovanni
Vincentelli, “Addressing the System-on-a-Chip Interconnect Woes Through
Communication-Based Design,” In Proceedings of DAC’2001, pp. 667-672, June
2001.

[72] S. L. Scott and G. M. Thorson, “The Cray T3 Network: Adaptive Routing in a High
Performance 3D Torus,” In Proceedings of Hot Interconnects IV, August 1996.

[73] T. Shanley and D. Anderson., PCI System Architecture. New York: Addison-
Wesley, 1995.

[74] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A System
Perspective, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001.

[75] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, no.6, pp.
720-738, June 1989.

[76] A. S. Tanenbaum, Computer Networks, Upper Sadle River, New Yersey: Pearson
Education, Inc., 2003.
 References 163

[77] D. Towsley, “Providing Quality of Service in Packet Switched Networks”,
appeared in Performance Evaluation of Computer and Communication Systems
editors: L. Donatiello and R. Nelson, pp. 560-586, Springer Verlag, 1993.

[78] J. S. Turner, “New Directions in Communications (or Which Way to the
Information Age),” IEEE Communications Magazine, vol. 24, pp. 8-15, October
1968.

[79] J. S. Turner, “Maintaining High Throughput During Overload in ATM Switches,”
In Proceedings of INFOCOM, pp. 287-295, San Francisco, CA, April 1996.

[80] T. Verhoeff, “Delay-Insensitive Codes - An Overview,” Distributed computing,
vol. 3, pp. 1-8, Springer-Verlag, 1988.

[81] VMEbus Specification Manual, VMEbus Manufacturers Group, (1982).

[82] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it all to
Software: Raw Machines,” IEEE Computer, vol. 30, no. 9, pp. 86-93, September
1997.

[83] N. H. E. Weste and K. Estragan, Principles of CMOS VLSI design, A System
Perspective, Addison Wesley. Second Edition, (1993).

[84] D. Wiklund and D. Liu, “Switched Interconnect for System-on-a-Chip Designs,”
In Proceedings of the IP2000 Europe Conference, October 2000.

[85] D. Wiklund and D. Liu, “SoCBUS: Switched Network on Chip for Hard Real Time
Embedded Systems,” In Proceedings of International Parallel and Distributed
Processing Symposium, April 2003.

[86] A. Yakovlev, “Designing Arbiters Using Petri Nets,” Israel Workshop on
Asynchronous VLSI, pp. 179-201, 1995.

[87] H. Zhang, V. George and J.M. Rabaey, "Low-Swing On-Chip Signaling
Techniques: Effectiveness and Robustness," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 8. no. 3, June 2000, pp. 264-272.

[88] H. Zimmermann, “OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection,” IEEE Transactions on Communications, vol. 28,
no. 4, pp. 425-432, April 1980.
 References 164

	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration
	Copyright
	The Author
	Acknowledgements
	Chapter 1: Introduction
	1.1 Thesis overview
	1.2 Research contributions

	Chapter 2: Asynchronous Logic
	2.1 Introduction
	2.1.1 Advantages of asynchronous logic
	2.1.2 Disadvantages of asynchronous logic

	2.2 Asynchronous design methodologies
	2.2.1 Delay-insensitive circuits
	2.2.2 Quasi delay-insensitive circuits
	2.2.3 Speed-independent circuits

	2.3 Handshaking protocols
	2.3.1 Non return-to-zero handshaking protocol
	2.3.2 Return-to-zero handshaking protocol

	2.4 Data encoding
	2.4.1 Single-rail encoding
	2.4.2 Delay-insensitive encoding

	2.5 The Muller C-element
	2.6 Metastability
	2.7 Large-scale asynchronous design
	2.8 Summary

	Chapter 3: Quality-of-Service (QoS)
	3.1 Introduction
	3.1.1 QoS: a user’s view

	3.2 Basic QoS architecture
	3.3 End-to-end QoS levels
	3.4 QoS control methods
	3.4.1 Overprovisioning
	3.4.2 Buffering
	3.4.3 Traffic shaping
	3.4.4 Resource reservation
	3.4.5 Admission control

	3.5 Summary

	Chapter 4: Networks-on-Chip (NoCs)
	4.1 Introduction
	4.2 NoC design issues
	4.2.1 Wiring resources
	4.2.2 Power consumption
	4.2.3 Modularity
	4.2.4 Hardware costs

	4.3 OSI reference model applied to NoCs
	4.4 NoC services
	4.4.1 Data integrity
	4.4.2 Lossless data delivery
	4.4.3 In-order data delivery
	4.4.4 Time-related guaranteed services

	4.5 QoS for on-chip networks
	4.5.1 Guaranteed services
	4.5.2 Best-effort services

	4.6 QoS for asynchronous networks
	4.6.1 Reserving network bandwidth
	4.6.2 Buffer management
	4.6.3 Admission control

	4.7 Summary

	Chapter 5: The Network Layer
	5.1 Introduction
	5.1.1 Direct networks

	5.2 Network topology
	5.3 Switching
	5.3.1 Circuit switching
	5.3.2 Store-and-forward and virtual cut-through switching
	5.3.3 Wormhole switching

	5.4 Routing
	5.4.1 Algorithmic routing
	5.4.2 Source routing
	5.4.3 Dimension-ordered routing algorithm

	5.5 Packet size and organization
	5.6 QoS architecture
	5.6.1 Principle of operation
	5.6.2 Bandwidth allocation

	5.7 Summary

	Chapter 6: The Data Link Layer
	6.1 Data integrity
	6.2 Flow-control
	6.3 Medium access control
	6.3.1 Asynchronous arbitration
	6.3.2 Proposed solution
	6.3.3 Principle of operation
	6.3.4 Implementation

	6.4 Summary

	Chapter 7: The Physical Layer
	7.1 Introduction
	7.1.1 Power dissipation
	7.1.2 Synchronization

	7.2 An asynchronous ternary logic signalling system
	7.2.1 ATLS system transmitter
	7.2.2 ATLS system receiver
	7.2.3 Enhanced ATLS system transmitter
	7.2.4 Test architecture and quality metrics
	7.2.5 Robustness and reliability
	7.2.6 Results

	7.3 Summary

	Chapter 8: Router Design
	8.1 Summary of the NoC design issues
	8.1.1 Network services
	8.1.2 Topology and routing
	8.1.3 Switching
	8.1.4 Packet size and organization
	8.1.5 QoS architecture
	8.1.6 Implementation technology

	8.2 Top level diagram
	8.3 Input port controller
	8.3.1 Virtual channel demultiplexer (VCDMUX)
	8.3.2 Input buffers
	8.3.3 Request unit

	8.4 Switching fabric
	8.4.1 Crossbar
	8.4.2 Input multiplexer and arbiter

	8.5 Output port controller
	8.5.1 Flow-control unit
	8.5.2 Scheduler

	8.6 Route management unit
	8.7 QoS guarantees and constraints of the router
	8.8 Summary

	Chapter 9: Evaluation
	9.1 Network performance
	9.1.1 Test harness
	9.1.2 Test network traffic analysis and admission control
	9.1.3 QoS traffic specifications
	9.1.4 Delay and jitter analysis
	9.1.5 Simulation results
	9.1.6 Minimum buffer constraint

	9.2 Hardware requirements
	9.3 Comparison with similar solutions

	Chapter 10: Conclusions
	10.1 Advantages
	10.1.1 Clock-skew
	10.1.2 Modularity
	10.1.3 Complexity

	10.2 Disadvantages
	10.2.1 Number of virtual channels
	10.2.2 Admission control
	10.2.3 Passive bit-rate control

	10.3 Future research directions
	10.3.1 Bundled-data implementation
	10.3.2 Alternative scheduling algorithms
	10.3.3 Admission control

	References

