
SPATIAL PARALLELISM IN
THE ROUTERS OF
ASYNCHRONOUS

ON-CHIP NETWORKS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

By
Wei Song

School of Computer Science

Contents

Abstract 16

Declaration 17

Copyright 18

Acknowledgements 19

The Author 20

I Introduction and Background 21

1 Introduction 22
1.1 Motivation . 22

1.2 Research objectives . 24

1.3 Research contributions . 25

1.4 Thesis organization . 26

1.5 Publications . 27

2 Asynchronous Circuits 29
2.1 General description . 29

2.2 Delay assumptions . 30

2.2.1 Delay-insensitive . 30

2.2.2 Quasi-delay-insensitive . 30

2.2.3 Speed-independent . 31

2.2.4 Relaxed QDI . 31

2.2.5 Self-timed . 31

2.3 Handshake protocols . 32

3

2.3.1 4-phase . 32
2.3.2 2-phase . 33

2.4 Data encoding . 34
2.4.1 Bundled-data . 34
2.4.2 Multi-rail . 35

2.5 Performance comparison of pipelines 40
2.6 Arbiter . 42

2.6.1 Multi-way MUTEX arbiter 42
2.6.2 Tree arbiter . 43
2.6.3 Ring arbiter . 44
2.6.4 Static priority arbiter . 46

2.7 Allocator . 47
2.7.1 Virtual channel admission control 47
2.7.2 Multi-resource arbiter . 48

2.8 Summary . 50

3 Network-on-Chip 51
3.1 Concepts of on-chip networks . 51
3.2 Topology . 53
3.3 Flow control . 55

3.3.1 Circuit switched and packet switched 55
3.3.2 Virtual channel . 58
3.3.3 Other flow control methods 61
3.3.4 Quality of service . 61

3.4 Routing algorithm . 62
3.4.1 Deterministic and non-deterministic 62
3.4.2 Deadlock and livelock . 65

3.5 Globally asynchronous and locally synchronous 66
3.6 Previous GALS NoCs . 69

3.6.1 SpiNNaker . 69
3.6.2 ASPIN . 70
3.6.3 QoS NoC . 71
3.6.4 ANOC . 72
3.6.5 MANGO . 73
3.6.6 QNoC . 74

3.7 Summary . 75

4

II Levels of Parallelism 76

4 Parallelism in the Physical Layer 77

4.1 Synchronization overhead . 77

4.2 Channel slicing . 79

4.3 Lookahead pipeline style . 81

4.4 A channel sliced wormhole router 84

4.4.1 Router structure . 85

4.4.2 Performance . 89

4.5 Summary . 91

5 Parallelism in the Switching Layer 93

5.1 Problems of the virtual channel flow control 94

5.2 Spatial division multiplexing . 96

5.3 An SDM router . 99

5.3.1 Router structure . 99

5.3.2 Performance . 102

5.4 Behavioural level comparison . 102

5.4.1 Models for wormhole and SDM routers 103

5.4.2 Model for VC routers . 109

5.4.3 Performance analyses . 110

5.5 Summary . 116

6 Area Reduction using Clos Networks 118

6.1 Clos switching networks . 118

6.2 Dispatching algorithm . 122

6.2.1 Concurrent round-robin dispatching algorithm 122

6.2.2 Asynchronous dispatching algorithm 124

6.2.3 Performance of CRRD and AD 128

6.3 Asynchronous Clos scheduler . 131

6.3.1 Implementation . 132

6.3.2 Performance . 139

6.4 2-stage Clos swtich . 142

6.5 Summary . 144

5

III Performance Evaluation and Conclusion 145

7 An Asynchronous SDM Router 146
7.1 Router structure . 146

7.1.1 Input and output buffers . 147

7.1.2 2-stage Clos switch for SDM routers 149

7.2 Implementation . 151

7.2.1 Implementation detail . 151

7.2.2 Area consumption . 153

7.2.3 Router speed . 154

7.3 Summary . 156

8 Performance Evaluation 157
8.1 Single router evaluation . 157

8.1.1 Test environment . 157

8.1.2 Performance . 159

8.2 Network performance . 165

8.2.1 Mesh network with uniform traffic 165

8.2.2 An MPEG-4 system . 167

8.3 Summary . 171

9 Conclusions and Future Work 173
9.1 Summary of the thesis . 173

9.1.1 Channel slicing and lookahead pipelines 174

9.1.2 SDM . 174

9.1.3 Clos . 175

9.1.4 Overall remarks . 176

9.1.5 Discussion of the performance of sync/async NoCs 176

9.2 Future work . 177

Bibliography 180

Appendix 193

A Basic Elements of Asynchronous Circuits 193
A.1 C-elements . 193

6

A.1.1 2-input symmetric C-element 193
A.1.2 2-input asymmetric C-element with a plus input 194
A.1.3 2-input asymmetric C-element with a minus input 194
A.1.4 3-input asymmetric C-element with a plus input 195

A.2 Other cells . 195
A.2.1 MUTEX . 195
A.2.2 RS latch . 196

B Reproduction of the QoS NoC 197
B.1 Router structure . 197
B.2 Connection of input buffers and the crossbar 198
B.3 Scheduler in the output port . 199
B.4 Route management unit . 199

C Detailed implementation results 201
C.1 Single router evaluation . 201
C.2 Network evaluation . 202
C.3 MPEG-4 evaluation . 203

7

List of Tables

2.1 Transition table of a 2-input C-element 35
2.2 1-of-4 code . 38
2.3 2-of-7 code . 39
2.4 Average toggle rate . 42

4.1 Flit format . 86
4.2 Router area . 90
4.3 Speed performance . 90

5.1 Buffer area . 95
5.2 Area consumption . 105
5.3 Router latency . 108

6.1 Area consumption . 139

7.1 Area consumption . 153
7.2 Router latency . 155

8.1 Frame direction distribution . 158
8.2 Single router performance . 159
8.3 Network performance . 166

8

List of Figures

2.1 Two adjacent pipeline stages . 32

2.2 4-phase handshake protocol . 33
2.3 2-phase handshake protocol . 33

2.4 Bundled-data pipline . 34

2.5 2-input C-element . 35

2.6 4-phase dual-rail pipeline . 36

2.7 4-bit 4-phase dual-rail pipeline . 37
2.8 Completion detection circuit of a 2-of-7 pipeline stage 39

2.9 Multi-way MUTEX arbiter . 43

2.10 Tree arbiter . 44

2.11 Ring arbiter . 45

2.12 Static priority arbiter . 46

2.13 Virtual channel admission control 48
2.14 Multi-resource arbiter . 49

3.1 Architecture of NoC . 52

3.2 Examples of direct networks . 53

3.3 A butterfly network . 54

3.4 Packet switched flow control . 57

3.5 Head-of-line . 58
3.6 VC router . 60

3.7 Resolving head-of-line with VCs . 60

3.8 Deadlock and livelock . 65

3.9 GALS network . 67

3.10 Synchronous and asynchronous interface 67

3.11 SpiNNaker system . 69
3.12 ASPIN router . 71

3.13 ANOC router . 72

9

3.14 MANGO router . 73

3.15 QNoC router . 74

4.1 4-bit 4-phase dual-rail pipeline . 78

4.2 Pipelined completion process . 80

4.3 Channel slicing . 81

4.4 Data flow with channel slicing . 82

4.5 Critical cycles in asynchronous on-chip networks 82

4.6 Lookahead pipeline . 83

4.7 A channel sliced wormhole router 85

4.8 Data path of the ith sub-channel . 86

4.9 Sub-channel controller . 87

4.10 Router controller . 88

4.11 XY router and output arbiter . 89

4.12 Area and speed with various data widths 91

5.1 Data flow of VC . 94

5.2 Crossbar in asynchronous VC routers 96

5.3 SDM router . 97

5.4 Input buffer for a virtual circuit . 99

5.5 Router controller . 100

5.6 Switch allocator . 101

5.7 A 1-bit 4× 3 crossbar . 104

5.8 Area estimation error . 105

5.9 Latency estimation error . 108

5.10 Latency under various network loads (P = 5, W = 32, M = 4) . . . 111

5.11 Credit based backpressure method 111

5.12 Throughput with various payload lengths (P = 5, W = 32, L = 2,
M = 4) . 112

5.13 Throughput with various communication distances (P = 5, W = 32,
L = 2, M = 4) . 113

5.14 Performance with various buffer lengths (P = 5, W = 32, M = 4) . . 114

5.15 Performance with various port data width (P = 5, L = 2, M = 4) . . 114

5.16 Network scalability (P = 5, W = 32, L = 2, M = 4) 115

5.17 Throughput with various number of virtual circuits or VCs (P = 5,
W = 32, L = 2) . 116

10

6.1 Area of different switches . 119

6.2 General 3-stage Clos network . 120

6.3 Example of the matching within an IM 124

6.4 State feedback scheme of the asynchronous dispatching algorithm . . 127

6.5 Performance with non-blocking uniform traffic 130

6.6 Throughput with various number of central modules 130

6.7 Throughput with uniform traffic . 131

6.8 An asynchronous Clos scheduler for C(4, 8, 4) 132

6.9 Input request generator . 133

6.10 Input module dispatcher . 134

6.11 STG of a 2× 2 MNMA . 137

6.12 Central module dispatcher . 138

6.13 Detailed allocation latency . 140

6.14 Latency of Clos schedulers . 141

6.15 Power consumption of Clos schedulers 142

6.16 2-stage Clos switch . 143

6.17 Area of different switches (including the 2-stage Clos switches) . . . 144

7.1 Asynchronous SDM router using 2-stage Clos switch 147

7.2 Input buffer for a virtual circuit . 148

7.3 Output buffer for a virtual circuit . 149

7.4 The turn model of the XY routing algorithm 149

7.5 An optimized central module . 150

7.6 Scheduler for the 2-stage Clos switch 151

7.7 The input request generator in an SDM router 151

7.8 Floor plan of a router tile . 152

8.1 Energy efficiency of a single router 161

8.2 Router performance with various number of virtual circuits/VCs . . . 162

8.3 Router performance with various data widths 164

8.4 Performance of SDM routers with four virtual circuits 165

8.5 Network performance with various number of virtual circuits/VCs . . 167

8.6 Network performance with various data widths 168

8.7 Task mapping and bandwidth requirement of MPEG-4 169

8.8 Overall throughput of the MPEG-4 NoCs 169

8.9 Latency and power consumption of the MPEG-4 NoCs 170

11

B.1 Router structure . 198
B.2 Input buffer and crossbar interface 198
B.3 Scheduler in an output buffer . 199
B.4 The operation of the route management unit 200

12

List of Abbreviations

AD asynchronous dispatching, 125
ANOC asynchronous network-on-chip, 72
ASPIN asynchronous scalable programmable interconnection network, 70
ATM asynchronous transfer mode, 118
BE best-effort, 62
CD completion detection, 77
ChSlice channel slicing, 89
CM central module, 120
CMD central module dispatcher, 132
CMP chip multi-processor, 22
CMRICB CM request forwarding crossbar in IM, 132
CMSCH central module scheduler, 132
CRRD concurrent round-robin dispatching, 123
DI delay-insensitive, 30
DOR dimensional order routing, 63
DVFS dynamic voltage and frequency scaling, 68
EOF end of a frame, 85
FF filp-flop, 66
FIFO first-in-first-out, 66
GALS globally asynchronous and locally synchronous, 30
GS guaranteed service, 61
HOL head-of-line, 58
IM input module, 120
IMD input module dispatcher, 132
IMSCH input module scheduler, 132
IP input port, 120
IP intellectual property, 51

13

IP internet protocol, 118
IRG input request generator, 132
LH lookahead pipeline style, 89
LI link from IM to CM, 120
LO link from CM to OM, 120
MANGO message-passing asynchronous network-on-chip providing guaranteed

service through OCP interfaces, 73
MPEG moving picture experts group — the name of a family of audio/video

coding standards, 157
MPSoC multi-processor system-on-chip, 22
MTBF mean time between failures, 68
MUTEX mutual exclusive, 43
NoC network-on-chip, 22
OCP open core protocol, 73
OM output module, 120
OMRCCB OM request forwarding crossbar in CM, 132
OMRICB OM request forwarding crossbar in IM, 132
OMSCH output module scheduler, 132
OP output port, 120
PE processing element, 51
PIM parallel iterative matching, 123
QDI quasi-delay-insensitive, 30
QNoC quality-of-service NoC, 74
QoS quality of service, 61
RNB rearrangeable non-blocking, 121
RS latch set and reset latch, 45
SDF standard delay format, 89
SDM spatial division multiplexing, 25
SI speed-independent, 31
SNB strict-non-blocking, 121
SoC system-on-chip, 22
SPA static priority arbiter, 46
SpiNNaker universal spiking neural network architecture, 69
STG signal transition graph, 31
TDM time division multiplexing, 24

14

VC virtual channel, 25
VLSI very large scale integration, 23
XY A DOR algorithm used in mesh or torus networks, first X then Y, 63

15

Abstract

A thesis submitted for the degree of Doctor of Philosophy
Title: Spatial Parallelism in the Routers of Asynchronous On-Chip Networks
By Wei Song, The University of Manchester, 6th July 2011

State-of-the-art multi-processor systems-on-chip use on-chip networks as their
communication fabric. Although most on-chip networks are implemented synchro-
nously, asynchronous on-chip networks have several advantages over their synchronous
counterparts. Timing division multiplexing (TDM) flow control methods have been
utilized in asynchronous on-chip networks extensively. The synchronization required
by TDM leads to significant speed penalties. Compared with using TDM methods,
spatial parallelism methods, such as the spatial division multiplexing (SDM) flow con-
trol method, achieve better network throughput with less area overhead.

This thesis proposes several techniques to increase spatial parallelism in the routers
of asynchronous on-chip networks.

Channel slicing is a new pipeline structure that alleviates the speed penalty by
removing the synchronization among bit-level data pipelines. It is also found out that
the lookahead pipeline using early evaluated acknowledgement can be used in routers
to further improve speed.

SDM is a new flow control method proposed for asynchronous on-chip networks.
It improves network throughput without introducing synchronization among buffers of
different frames, which is required by TDM methods. It is also found that the area
overhead of SDM is smaller than the virtual channel (VC) flow control method – the
most used TDM method. The major design problem of SDM is the area consuming
crossbars. A novel 2-stage Clos switch structure is proposed to replace the crossbar
in SDM routers, which significantly reduces the area overhead. This Clos switch is
dynamically reconfigured by a new asynchronous Clos scheduler.

Several asynchronous SDM routers are implemented using these new techniques.
An asynchronous VC router is also reproduced for comparison. Performance analyses
show that the SDM routers outperform the VC router in throughput, area overhead and
energy efficiency.

16

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

17

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and may
be owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Uni-
versity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction decla-

rations deposited in the University Library, The University Library’s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The Uni-

versity’s policy on presentation of Theses.

18

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

The four years spent in Manchester is one of my most joyful, peaceful and successful
periods in life. I must express my appreciation to all the people who have helped me.
I shall and will remember all the kindness and do the same in the future.

I feel deeply fortunate to be supervised by Dr. Doug Edwards. He continuously
encourages me to explore all my naive ideas and always expresses concerns in the most
delicate way. The whole research starts from those ideas and it is his careful guidance
that leads the research to the right direction.

I have to express my gratitude to Dr. José Nuñez-Yañez whose simulation model
has ignited my research in on-chip networks. I also thank all the members in the
joined project, especially to Dr. Sohini Dasgupta for her help on Peri Net and STG,
and Atukem Nabina and Dr. Mohammad Hosseinabady for their kind treatment in
Bristol.

It is impossible to finish this PhD without the help from the members in the APT
group. Thanks to Dr. Luis Tarazona, Dr. Andrew Bardsley and Dr. Will Toms for
their help on Balsa. Special gratitude to Dr. Charles Brej for his support on computer
issues. Thanks to Jeffrey Pepper, Eustace Painkras, Dr. Luis Plana, Dr. Steve Temple
and Dr. Simon Davidson for their maintenance of EDA tools and their kindness of
allowing me to use the tools even during the tape out of SpiNNaker chips. Thanks to
Dr. Lilian Janin for his continuous maintenance of Stella. Thanks Dr. Zhenyu Liu
for his contribution to the synchronous Clos scheduler. Thanks to Hongguang Ren for
proofreading parts of the thesis.

Many friends have helped me pass the time joyfully. Many thanks to Dr. Yebin Shi,
Dr. Jian Wu, Dr. Shufan Yang, Zheng Xie, and Dr. Xin Jin who directly or indirectly
contribute to the progress of this research.

Finally, I will never forget Prof. Suiming Fang who had opened my interest into
hardware design. I am lucky to be the son of Prof. Caifa Song and Guixia Xia who are
my mentors for life and academia.

19

The Author

Wei Song received his B.S.EE. from the College of Electronic Information and Control
Engineering at the Beijing University of Technology, Beijing, P.R.China in 2005. In
the same year, he was admitted through recommendation by the same college to pursue
his M.S.EE. and obtained it in 2008.

From 2004 to 2006, Wei Song was also a research assistant in the Beijing Em-
bedded System Key Lab (BESKL). He participated in the design of demodulators
for several wireless communication systems including WLAN 802.11a/g, DVB-T and
ATSC. He also implemented the FPGA verification platforms for most digital designs
in BESKL. After leaving BESKL, he went back to his studying college and designed
a real-time non-preemptive thread scheduler for a central communication controller in
the hybrid electric vehicle control system. The communication controller was later
patented in 2008.

Wei Song was offered a full scholarship by the EPSRC doctorate training program
and began his Ph.D. study in the School of Computer Science at the University of
Manchester in 2007 when he was also writing up his master dissertation. His work in
Manchester is designing the asynchronous routers in an energy efficient network-on-
chip for dynamically reconfigurable computing platforms, supported by EPSRC.

20

Part I

Introduction and Background

21

Chapter 1

Introduction

1.1 Motivation

The continuously shrinking transistor geometry makes network-on-chip (NoC) [9]
the practical communication fabric for state-of-the-art multi-processor system-on-chip
(MPSoC) designs. Following Moore’s Law, the capacity and complexity of a chip has
been boosted significantly in recent decades. The function of a board level system
in the last decade can be integrated into one chip in modern system-on-chip (SoC) de-
signs. On the other hand, SoCs are no longer built from scratch because the complexity
is beyond control. The fast and reliable integration of numerous reusable intellectual
property (IP) blocks becomes crucial to meet the time to market requirement. As a
replacement for traditional hierarchical bus systems and point to point connections,
the on-chip network infrastructure provides a unified interface for new IP blocks to be
easily plugged into a system. A modern MPSoC is a communication-centric system
[57] lying on an on-chip network communication fabric.

Most NoCs are synchronous networks where network components are driven by the
same or several global clocks. Thanks to the timing assumptions allowed by the global
clock and mature electronic design automation (EDA) tools, these synchronous NoCs
are fast and area efficient. However, there are several design challenges in synchronous
NoCs that are difficult to resolve:

• Support for heterogeneous networks. Unlike chip multi-processor (CMP) sys-
tems where every network node is a homogeneous processor element, an MP-
SoC is a heterogeneous system where network nodes are IP blocks with different

22

1.1. MOTIVATION 23

functions and hardware structures. These IP blocks are provided and tested with
different clock frequencies, area sizes and even working voltages. These differ-
ences complicate the network topology, compromise the latency performance of
synchronous networks and make chip timing closure difficult.

• Low power consumption. It is crucial to reduce the power consumption of an
SoC as it determines the maximum standby time of a handset device. The clock
tree of synchronous on-chip networks consumes a significant amount of energy
[79] and it is getting worse along with the shrinking transistor geometry.

• Tolerance to variation. Process, temperature and voltage variations affect future
sub-micron VLSI designs significantly [72, 74]. According to the international
technology roadmap for semiconductors, the delay uncertainty caused by varia-
tions in the sign-off timing closure will reach 32% in 2024 [60]. Traditional static
timing analysis is going to be replaced by statistical timing analysis methods
[14] to cope with dropping yield rate and over-conservative timing estimation.
Synchronous on-chip networks alleviate this effect by considering variations in
their task mapping procedure [74]. However, this works only in homogeneous
networks and the routers are still working at the worst speed estimated.

Instead of using synchronous on-chip networks, asynchronous on-chip networks
are a promising solution to the above challenges. The communication components
in an asynchronous on-chip network are built with clockless asynchronous circuits.
Data are transmitted according to certain handshake protocols which can be insensi-
tive to delay [117]. Because of this delay insensitivity, the interface between all IP
blocks to the global asynchronous on-chip network is unified by the same synchronous
to/from asynchronous interface. The fact that all synchronous blocks are isolated by
the asynchronous network simplifies chip-level timing closure. Also, thanks to the
delay insensitivity, an asynchronous on-chip network is naturally tolerant to all varia-
tions as the delay uncertainty caused by these variations cannot affect the function of
those handshake protocols. Finally, since no clock is needed in asynchronous circuits,
an asynchronous on-chip network consumes zero dynamic power when no data is in
transmission.

However, most asynchronous networks [3, 45, 12, 7, 38] are slower than the syn-
chronous on-chip networks with similar structures and resources [79]. Although the
global clock in synchronous circuits is power consuming, it is a speed and area effi-
cient approach to synchronize combinational operations. Asynchronous circuits rely

24 CHAPTER 1. INTRODUCTION

on handshake protocols to control data transmission. Combinational operations are ex-
plicitly detected and guarded to ensure the insensitivity to delay. The circuits used in
detecting combinational operations introduce area and speed overhead. Delay insensi-
tive asynchronous circuits are intrinsically slow.

Another issue is that, the state-of-the-art way of designing asynchronous on-chip
networks is to asynchronously reproduce the structures of synchronous on-chip net-
works. As synchronous on-chip networks synchronize data with no speed penalty,
timing division multiplexing (TDM) techniques [30] are extensively utilized. Simply
reproducing such TDM structures in asynchronous on-chip networks introduces extra
completion detection circuits and causes speed penalties.

Although the speed penalty of completion detection is unavoidable, as the promis-
ing advantages of asynchronous circuits are derived from those delay insensitive hand-
shake protocols, the scale of the synchronization in asynchronous circuits can be lim-
ited to small transmission units, such as a single pipeline. The speed penalty is there-
fore alleviated. The following question is how to build asynchronous networks with
such limited synchronization.

The solution presented in this thesis is spatial parallelism. TDM is not a good
approach in asynchronous circuits because it brings extra synchronization and com-
promises speed. If the synchronization is constricted to a small scale such as a sin-
gle pipeline, these pipelines are controlled distributedly. In other words, communica-
tion resources are spatially divided into unsynchronized low-level components and the
speed penalty of synchronization is minimized.

1.2 Research objectives

The overall objective of this research is to explore the spatial parallelism in asynchro-
nous on-chip routers. It is expected that 49% of the global signals will be driven by
handshake protocols by 2024 and the latency of asynchronous signalling will be im-
proved through 2014 [60]. Routers are the key components of an on-chip network. Im-
proving the speed of asynchronous routers using spatial division techniques provides
a feasible way of meeting the speed requirement for future chip designs and hopefully
the techniques can be utilized in general asynchronous circuits beyond asynchronous
on-chip networks.

1.3. RESEARCH CONTRIBUTIONS 25

Spatial parallelism will be explored in different layers. Although there is no con-
sensus on the definition of layers in on-chip networks, the lower communication struc-
ture can be generally separated into three layers: routing layer, switching layer and
physical layer [41]. The data transmitted in a network are divided accordingly as
frames, flits and phits. The physical layer refers to the basic communication resources
such as buffers and channels which deliver phits from one buffer to another. A flit com-
prises one or several phits. The switching layer dynamically allocates communication
resources of the physical layer to different flits. The hardware structure and algorithm
used in this allocation process is normally named as the control flow method. A frame
is the smallest data unit which is self-explainable to a network node. It contains one or
several flits. The routing layer determines the route through which a frame travels in a
network. This research concentrates on exploring the spatial parallelism in the lowest
two layers: the physical layer and the switching layer.

In the physical layer, the state-of-the-art routers use synchronized multi-bit pipe-
lines as buffer stages, which are similar to the latches on buses in synchronous circuits.
This pipeline style simplifies the control logic but introduces significant speed over-
head. The effect of the speed degradation caused by synchronization will be analysed.
Some techniques will be proposed to alleviate this degradation and will be compared
with the synchronized pipeline style for speed, area and power performance.

In the switching layer, most asynchronous on-chip networks use timing division
flow control methods such as the virtual channel (VC) flow control method. The new
spatial division multiplexing (SDM) flow control method proposed in this research
will be compared with the virtual channel flow control method in various router imple-
mentations. Their speed performance, area consumption and power dissipation will be
analysed within different working environments.

1.3 Research contributions

The following contributions have been made upon this research:

• In the physical layer

– Analysis of the speed and area overhead of synchronizing multiple low-
level pipelines

– Channel slicing, a technique that removes the synchronization among pi-
pelines

26 CHAPTER 1. INTRODUCTION

– A method of utilizing the lookahead pipeline style in normal asynchronous
pipelines

• In the switching layer

– Overhead analysis of the virtual channel (VC) flow control method

– Overhead analysis of the spatial division multiplexing (SDM) flow control
method

– Utilization of SDM in asynchronous routers

– Reducing the area overhead of SDM using Clos switches

– A new 2-stage Clos switch for on-chip routers

– An asynchronous dispatching algorithm and its implementation to dynam-
ically reconfigure Clos switches

• Overall

– A novel asynchronous SDM router

– Performance comparison among various wormhole, SDM and VC routers

1.4 Thesis organization

The thesis is divided into three parts: Part I provides a brief background introduction
of this thesis. Part II proposes several new techniques to increase spatial parallelism
in asynchronous routers. Finally a router is implemented in Part III utilizing all the
techniques introduced in Part II.

In the rest of Part I, Chapter 2 presents an overview of asynchronous circuits includ-
ing their different delay assumptions, handshake protocols, data encoding methods and
arbitration components. Chapter 3 introduces the concepts related to on-chip networks
and reviews previously published asynchronous router designs.

Part II proposes several new techniques in different layers. Chapter 4 concentrates
on the physical layer. Channel slicing is utilized to remove the synchronization among
low-level pipelines and the lookahead pipeline style is used to further reduce the period.
Instead of using timing division flow control methods, Chapter 5 proposes the spatial
division multiplexing (SDM) flow control method and examines its advantage over
the virtual channel (VC) flow control method by behavioural level simulations. The

1.5. PUBLICATIONS 27

major implementation overhead of SDM is the enlarged crossbar. Chapter 6 provides
a solution to the large area overhead — replacing the crossbar with a Clos switch.
However, dynamically reconfiguring a multi-stage Clos switch is complicated and has
not yet been implemented asynchronously. The first asynchronous Clos scheduler is
designed and implemented also in Chapter 6.

Part III combines all the techniques in Part II into one router design. Chapter 7
briefly describes the final asynchronous SDM router. The performance analyses of
several router implementations are provided in Chapter 8. The thesis is finally con-
cluded in Chapter 9.

1.5 Publications

The following papers have been produced during the research of this work. The chap-
ters that are closely related to these papers are identified respectively.

1. Wei Song, Doug Edwards, Zhenyu Liu and Sohini Dasgupta. Routing of asyn-
chronous Clos networks. In submission to IET Computers & Digital Techniques,
2011.
The hardware implementation and the performance evaluation of an asynchro-
nous Clos scheduler in Chapter 6 come from this paper.

2. Wei Song and Doug Edwards. Asynchronous spatial division multiplexing rou-
ter. Microprocessors and Microsystems, Vol. 35. No. 2, pp. 85–97, 2011 [115].
The SDM router implementation in Chapter 5 originated from this paper.

3. Wei Song and Doug Edwards. Improving the throughput of asynchronous on-
chip networks with SDM. In Proc. of UK Electronics Forum, pages 47 – 56,
June 2010.

4. Wei Song and Doug Edwards. An asynchronous routing algorithm for Clos net-
works. In Proc. of International Conference on Application of Concurrency to

System Design, pages 67-76, June 2010 [113].
The asynchronous dispatching algorithm in Chapter 6 was first published in this
paper.

5. Wei Song and Doug Edwards. A low latency wormhole router for asynchronous
on-chip networks. In Proc. of Asia and South Pacific Design Automation Con-

ference, pages 437443, January 2010 [114].

28 CHAPTER 1. INTRODUCTION

The area and speed performance of using channel slicing and lookahead pipe-
lines in Chapter 4 was published in this paper.

6. Wei Song and Doug Edwards. Channel Slicing: a way to build fast routers for
asynchronous NoCs. In Proc. of UK Asynchronous Forum, September 2009.

7. Wei Song and Doug Edwards. Building asynchronous routers with independent
sub-channels. In Proc. of International Symposium on System-on-Chip, pages
48-51, October 2009 [112].
The channel slicing technique introduced in Chapter 4 was first proposed in this
paper.

8. Wei Song, Doug Edwards, Jose Nunez-Yanez, and Sohini Dasgupta. Adaptive
stochastic routing in fault-tolerant on-chip networks. In Proc. of ACM/IEEE

International Symposium on Networks-on-Chip, pages 32-37, May 2009 [116].

9. Wei Song and Doug Edwards. A dynamic link allocation router. In Proc. of UK

Asynchronous Forum, September 2008.

Chapter 2

Asynchronous Circuits

The asynchronous circuits in this thesis refer to the circuits where sequential compo-
nents (registers and latches) are driven by handshakes rather than global clocks. The
circuits using global clocks are, on the other hand, synchronous circuits. The necessary
background knowledge for asynchronous circuits in asynchronous on-chip networks is
introduced.

2.1 General description

Although asynchronous circuits have a long history of over 50 years [81], most VLSI
circuits are synchronous due to the mature EDA support. Since registers and latches in
synchronous circuits are synchronized by the global clock, they are the natural timing
boundaries by which a circuit can be divided into paths. All these paths are driven
by the same clock and operate concurrently and independently. EDA tools, especially
synthesis tools, are therefore able to improve speed by optimizing these paths individ-
ually. On the other hand, the latches in asynchronous circuits are driven by handshake
protocols (circuits). The operation of one latch is normally triggered by events gener-
ated from other latches. It is difficult to optimize the speed of asynchronous circuits
due to the lack of clear timing boundaries to break large circuits into small analysable
pieces as in synchronous circuits. Some asynchronous synthesis tools have been pro-
posed recently, such as Petrify [29] and Balsa [43], to translate behavioural hardware
descriptions into low level netlists. However, high speed asynchronous circuits are
manually designed [110, 93, 105].

Shrinking transistor geometry brings opportunities for asynchronous circuits. As
the number of transistors in a single die increases corresponding to the prediction of

29

30 CHAPTER 2. ASYNCHRONOUS CIRCUITS

Moore’s Law, the area and power overhead of synchronizing the whole chip with one
global clock is unacceptable and beyond the control of current EDA tools. Future
MPSoCs should be globally asynchronous and locally synchronous (GALS) designs
where synchronous IP blocks talk with each other using an asynchronous communica-
tion infrastructure. 49% of the global signals will be driven by asynchronous circuits
by the year 2024 [60]. Variation is another problem. The decreasing transistor size
increases power density which leads to temperature and power variation [59]. Pro-
cess variation worsens the situation with non-deterministic cell latencies. The worst
case timing analysis in synchronous circuits generates over-pessimistic speed estima-
tion [14]. Asynchronous circuits are tolerant to variations and provide average speed
performance.

2.2 Delay assumptions

Delay assumptions are the assumptions made for estimating the latency of circuit com-
ponents. They are used by designers to analyse, simplify and implement asynchronous
circuits. Different delay assumptions lead to circuits with different speed, area and
robustness.

2.2.1 Delay-insensitive

Delay-insensitive (DI) assumes all the gates and wires in an asynchronous circuit have
positive, undetermined and unbounded delays. With this assumption, every operation
is forced to indicate its completion to allow the following operation to be processed. DI
circuits are the most robust because logic function is independent to delay. However,
the assumption itself constricts its usage in practical implementations. Nearly all basic
gates in synchronous circuits, such as AND, OR, XOR, etc., are not delay-insensitive.
Only C-elements (see Section 2.4.1 and Appendix A) and inverters can be used in
delay-insensitive circuits [76].

2.2.2 Quasi-delay-insensitive

Quasi-delay-insensitive (QDI) circuits relax the delay assumption of DI by allowing
isochronic forks [117], the sinks of which have the same delay from their common
driver. This timing assumption allows a signal to be safely sent to multiple sub-circuits

2.2. DELAY ASSUMPTIONS 31

and indicated by a common acknowledge signal. QDI can be used to implement prac-
tical designs.

2.2.3 Speed-independent

Speed-independent (SI) assumes all wires in a circuit have zero delay while all gates
have positive, undetermined and unbounded delays. This may look unrealistic as wires
have positive delays, but the delay of a wire can be counted in the delay of the gate
driving it. In other words, SI assumes all forks in a circuit are isochronic. Since QDI
assumes some, but not all, forks are isochronic, SI is a relaxed assumption from QDI to
circuit designers. As presented in [25], it is possible to synthesize behavioural circuit
models described in signal transition graphs (STGs) into SI circuits.

It is not necessary in most situations for a circuit designer to differentiate the non-
isochronic forks from all wires. QDI is more robust than SI but they are usually dis-
cussed without clear differentiation. In this thesis, “QDI” is used for both QDI and SI
circuits.

2.2.4 Relaxed QDI

DI, QDI and SI circuits assume gate delays are unbounded. As operations explic-
itly indicate their completion, some completion detection circuits are introduced when
multiple operations are synchronized. These completion detection circuits lead to
extra speed and area overhead. In addition, the delays of gates in practical circuits
are bounded. Some delay relations between certain paths can be utilized to reduce
the area and speed overhead introduced by synchronization. In these relations, the
gate delay is still unbounded but some paths are assumed longer than other paths
[131, 121, 110, 111]. When multiple paths are synchronized, only the operations
through the longer paths are indicated leaving the shorter paths undetected. As long
as the assumed delay relations are not violated, these circuits are still tolerant to vari-
ations as DI, QDI and SI. Currently there is no common name for these circuit styles
and it is called “relaxed QDI” in this thesis.

2.2.5 Self-timed

Although self-timed circuits are the superset of all asynchronous circuits, they are usu-
ally referred by their narrow meaning of circuits that assume gates and wires have

32 CHAPTER 2. ASYNCHRONOUS CIRCUITS

p
i
p
e
l
i
n
e

s
t
a
g
e

p
i
p
e
l
i
n
e

s
t
a
g
e

request

ack

data

request

ack

data

request

ack

data

Figure 2.1: Two adjacent pipeline stages

bounded delays. Worst delay analysis and matched delay lines are used in self-timed
circuits to avoid completion detection. This circuit style is area and speed efficient.
However, the bounded delay assumption compromises the tolerance to delay varia-
tions; therefore, self-timed circuits require careful timing analysis and implementation
to ensure that the estimated bounded delay assumption is not violated.

2.3 Handshake protocols

Figure 2.1 shows the abstract view of asynchronous pipeline stages. Every pipeline
stage is a storage component. The data from the previous pipeline stage are ready when
a valid request is received. When incoming data are safely captured, the previous pipe-
line stage is notified through the ack line and the old data stored in the previous stage
can be released. A handshake protocol controls the transitions between two adjacent
pipeline stages. Specifically, it determines the waveform and timing on request and
ack lines. Two protocols are available in asynchronous circuits: 4-phase and 2-phase.

2.3.1 4-phase

The 4-phase protocol (also called return-to-zero signalling or level signalling) is the
most utilized handshake protocol in asynchronous circuits as all gates are level trig-
gered. Standard cells in synchronous circuits are also level triggered. Asynchronous
circuits complying with the 4-phase protocol can be implemented using synchronous
standard cell libraries.

Figure 2.2 illustrates the waveform of a pipeline stage using the 4-phase protocol.
Positive request denotes the readiness of data and positive ack denotes the incoming
data are captured. Data are subjected to change when request is low. The pipeline
stage is ready for new data when ack is low. As shown in Figure 2.2, data must remain

2.3. HANDSHAKE PROTOCOLS 33

D

request

ack

data D

Figure 2.2: 4-phase handshake protocol

D

request

ack

data DD

Figure 2.3: 2-phase handshake protocol

stable during the period between the positive edge of request and the positive edge of
ack. In some implementations, data are required to remain stable until the negative
edge of request according to different types of storage circuits.

2.3.2 2-phase

As described by the name, the 2-phase protocol (also called non-return-to-zero sig-
nalling or transition signalling) contains only two phases: a transition on request and a
transition on ack. Figure 2.3 depicts the waveform of a 2-phase pipeline. When there
is a transition on request, no matter positive or negative, new data are ready. In the
same way, the capture of data is indicated by a transition on ack. Data must remain
stable after the transition of request until the transition of ack. As request can transit
immediately after ack, pipeline stages are always ready for new data.

Theoretically 2-phase is better than 4-phase because a set of data is delivered in
two phases instead of four phases. The 2-phase protocol is fast and energy efficient.
However, it has some implementation problems: The storage components in 2-phase
pipeline stages are normally transistor level designs [122] which cannot be replaced
with synchronous standard cells. If the combinational circuits in a 2-phase pipeline
comply with the QDI delay assumption, they need to be re-designed in the same way
as the storage components, which is complex and area consuming. Fault tolerance is
another problem. In 4-phase pipelines, storage components are active and vulnera-
ble to transient faults 50% of time in the worst case. On the other hand, the storage
components of 2-phase pipelines are always ready for new data leading to 100% time

34 CHAPTER 2. ASYNCHRONOUS CIRCUITS

L
a
t
c
h

L
a
t
c
h

E E

C
o
m
b
i
.

c
i
r
c
u
i
t

delay
request

ack

data

request

ack

data

Figure 2.4: Bundled-data pipline

vulnerability. 4-phase pipelines are safer than 2-phase pipeline in the aspect of toler-
ance to transient faults [103].

2.4 Data encoding

Data are encoded in different formats, such as binary code and one-hot code, in syn-
chronous circuits. Similarly, asynchronous circuits have various data encoding meth-
ods. Data encoding is related to different timing assumptions. It is also an important
determinant to the area, speed and energy efficiency of asynchronous pipelines.

2.4.1 Bundled-data

Bundled-data pipelines encode data in binary code. Figure 2.4 shows a possible im-
plementation of bundled-data pipelines.

For an N -bit bundled-data pipeline, the wire count of data is N . The number of
available symbols is 2N and every symbol is valid. Thus the data bus cannot differen-
tiate stable data from changing data. A separate control pipeline is added to identify
the availability of data. In Figure 2.4, data latches are triggered by a Muller pipline.
Because the control pipeline is always one bit wide, a bundled-data pipeline is also
named a single-rail pipeline in some articles.

The Muller C-element is one of the most utilized primitives in asynchronous cir-
cuits. The symbol and the truth table of a 2-input C-element is shown in Figure 2.5 and
Table 2.1 respectively. Its function is a combination of logical AND and latch. The
output q updates when both input pins have the same value, otherwise the output value
remains.

2.4. DATA ENCODING 35

q
a0

a1

Figure 2.5: 2-input C-element

Table 2.1: Transition table of a 2-input C-element

a0 a1 q pre q next

0 0 – 0
1 1 – 1
0 1 q q
1 0 q q

The storage components in Figure 2.4 are level triggered latches complying with
the 4-phase handshake protocol. The C-elements in the control pipeline trigger data
latches only when the data from the previous pipeline stage is valid (request+) and the
next pipeline stage is ready for new data (ack−). The waveform of this bundled-data
pipeline is already shown in Figure 2.2.

Since the control pipeline triggers latches without detecting the data bus, some de-
lay gates are added on the request path to ensure that latch triggers always reach latches
after data are stable. These delay gates are one of the major problems of implementing
a bundled-data pipeline. To match the delay of data, the actual delay of the combina-
tional circuit between latches is estimated and delay gates with equal delay are inserted.
In other words, bundled-data pipelines assume delays are bounded, which violates the
QDI delay assumption. In addition, the delay gates cannot be inserted automatically
by EDA tools but are prone to be removed by them. Delay insertion introduces a heavy
design burden.

It is possible to implement 2-phase bundled-data pipelines, namely a micropipeline
which Ivan Sutherland first introduced [122]. A micropipeline can utilize the Muller
pipeline as the trigger control logic but the data latches are double-edge triggered.
As described in Section 2.3.2, these double-edge triggered latches are transistor level
designs which are not available in pure standard cell design flows.

2.4.2 Multi-rail

Multi-rail pipelines represent a pipeline family including several data formats. They
usually comply with the QDI delay assumption.

36 CHAPTER 2. ASYNCHRONOUS CIRCUITS

C
o
m
b
i
.

c
i
r
c
u
i
t

dout0

dout1

ackout

din0

din1

ackin

(a) Schematic

ackin

din

dout

00 01 00 10

00 01 00 10

ackout

(b) Waveform

Figure 2.6: 4-phase dual-rail pipeline

A bundled-data pipeline is not QDI for two reasons: One is that data buses cannot
indicate the data availability as all symbols are valid. The other one is that the control
pipeline triggers latches without detecting data. To meet with the QDI delay assump-
tion, multi-rail pipelines use expanded symbol spaces where only a portion of symbols
are valid. As long as the transform of any two valid symbols is connected by invalid
symbols, data can indicate its availability and no control pipeline is needed.

Dual-rail

A dual-rail pipeline is the simplest multi-rail pipeline. Every dual-rail pipeline has two
data wires: d0 and d1. Although two digits {d1d0} provide four available symbols,
only {01} and {10} are used to represent data “0” and “1” respectively. The symbol
{00} represents idle or bubble denoting invalid data and the symbol {11} is illegal. In
this way, the data wires denote valid data and request at the same time.

Figure 2.6 depicts a 4-phase dual-rail pipeline and its waveform. In every pipeline
stage, two C-elements are used as latches triggered by ackout. Initially all data wires
are low indicating data are not valid and ackin is low indicating pipeline stages are
ready for new data. When a valid symbol arrives at din, C-elements capture this symbol
and deliver it to the next pipeline stage immediately through dout. An OR gate is
always monitoring dout. When the data symbol is captured, it is detected by the OR
gate which sets ackin to high.

4-phase is also called return-to-zero because the request line is reset before another
valid request. In a 4-phase dual-rail pipeline, this means every two adjacent valid
symbols are intersected by an idle symbol. As shown in the waveform, when the next
pipeline stage has captured the data, ackout (the ackin driving by the next stage) is
driven high indicating that data can be released. When the previous pipeline stage
receives an acknowledge through ackin, din is soon driven to the idle symbol {00}.

2.4. DATA ENCODING 37

C
o
m
b
i
.

c
i
r
c
u
i
t

din0,0

ackin

slice1

slice2

slice3

slice1

slice2

slice3

din0,1

din1

din2

din3

dout0,0

ackout

dout0,1

dout1

dout2

dout3

slice0 slice0

stage stage

Figure 2.7: 4-bit 4-phase dual-rail pipeline

Consequently the data output dout of the current stage is released. The OR gate detects
the idle symbol and resets ackin allowing the previous pipeline stage to capture new
data. The idle symbol further releases the next pipeline stage which in turn resets
ackout. A new data cycle thus starts.

The basic dual-rail pipeline shown in Figure 2.6a delivers only one bit of data in one
cycle. To form a practical pipeline that can deliver multiple data bits simultaneously,
multiple dual-rail pipelines are combined and synchronized into a wide one.

Figure 2.7 demonstrates a 4-bit dual-rail pipeline built by four 1-bit dual-rail pi-
pelines. Data on this pipeline are divided into four slices and allocated to the four
bit-level pipelines in bitwise order. The four bit-level pipelines (or slices) are syn-
chronized by the C-element tree generating a common acknowledge signal (ackin and
ackout). Therefore, an acknowledge is sent only when all the four bit-level pipelines
have captured valid symbols and is, vice versa, reset only when all bit-level pipelines
have released their data. The C-element tree along with the OR gates in every pipeline
is the completion detection circuit in wide pipelines.

1-of-n

1-of-n pipelines encode data in one-hot code. A 1-of-n (n > 1) pipeline has n data
wires providing 2n available symbols but only n symbols are valid. In every valid
symbol, one and only one data wire is high. Table 2.2 illustrates the translation between

38 CHAPTER 2. ASYNCHRONOUS CIRCUITS

Table 2.2: 1-of-4 code

binary 1-of-4

0 00 0001

1 01 0010

2 10 0100

3 11 1000

1-of-4 symbols and binary symbols [3]. Because a 1-of-4 pipeline has four data wires,
it provides four different data symbols and delivers two data bits in one cycle. In
general, a 1-of-n pipeline delivers log2n binary bits per cycle. The dual-rail pipeline
is the smallest 1-of-n pipeline where n = 2. Similar to the 4-bit dual-rail pipeline in
Figure 2.7, multiple 1-of-n pipelines can be combined into a wide pipeline.

Since the data on a 1-of-n pipeline are one-hot coded, only one data wire transits
during one data cycle and the power consumption is nearly the same for different con-
figurations of n. Increasing the number of data wires in a 1-of-n pipeline improves
energy efficiency. However, a 1-of-n code is not an area efficient encoding method.
Only n of 2n symbols are utilized. The total area increases proportional to n, which
can be unaffordable when n is large. The number of data wires, n, in practical asyn-
chronous on-chip networks is usually fewer than five [3, 99].

m-of-n

An m-of-n pipeline represents a valid data symbol by driving m of the total n wires to
high. The number of valid data symbol is

(
n
m

)
. A 1-of-n pipeline can be classified as

a special m-of-n pipeline where m = 1 but normally m-of-n pipelines indicate m > 1.
For a pipeline with n data wires,

(
n
m

)
is larger than

(
n
1

)
when n ≥ 4 and n−1 > m > 1.

Therefore, m-of-n pipelines can deliver more data than 1-of-n pipelines with the same
wire count and they are more area efficient than 1-of-n pipelines with the same data
width.

Table 2.3 shows an example of a 2-of-7 code [4]. The pipeline using this 2-of-7
code delivers four bits of data per cycle, which is equivalent to a wide pipeline built
from four dual-rail pipelines or two 1-of-4 pipelines. The number of data wires used by
dual-rail pipelines or 1-of-4 pipelines is eight while only seven wires are needed by the
2-of-7 pipeline. The 2-of-7 code is also promising in the aspect of power consumption.
Four data wires transit per cycle in a wide dual-rail pipeline while only two data wires
transit in a 2-of-7 pipeline. The total power is reduced by half.

2.4. DATA ENCODING 39

Table 2.3: 2-of-7 code

binary 2-of-7 binary 2-of-7

0 0000 000-0101 8 1000 010-0001

1 0001 000-0110 9 1001 010-0010

2 0010 000-1001 10 1010 010-0100

3 0011 000-1010 11 1011 010-1000

4 0100 001-0001 12 1100 100-0001

5 0101 001-0010 13 1101 100-0010

6 0110 001-0100 14 1110 100-0100

7 0111 001-1000 15 1111 100-1000

d0

d1

d2

d3

d4

d5

d6

ack

Figure 2.8: Completion detection circuit of a 2-of-7 pipeline stage

Although m-of-n pipelines are area and energy efficient, they are usually utilized
to connect modules built by 1-of-n pipelines instead of to build combinational circuits
directly [108]. One of the problems is the large area overhead of the completion detec-
tion circuits for m-of-n pipelines. Figure 2.8 depicts the completion detection circuit
for the pipeline using the 2-of-7 code in Table 2.3. The area of this circuit is larger than
that in a wide 1-of-4 pipeline with the same data width. Actually, all m-of-n codes need
larger completion detection circuits than 1-of-n codes. The other problem is the area
overhead of the code translation circuit. Conventional combinational circuits, espe-
cially those synchronous ones, use binary code. They can be directly transformed into
circuits complying with dual-rail pipelines. Using the 1-of-4 code introduces moder-
ate area overhead compared with dual-rail. However, it is difficult to do calculation in
2-of-7 or general m-of-n codes. Translating m-of-n to dual-rail leads to extra encod-
ing and decoding circuits. Since the area reduction of using m-of-n codes in complex
combinational circuits is normally smaller than the area overhead introduced by com-
pletion detection and code translation, m-of-n pipelines are used only in long distance
communications in most circumstances.

40 CHAPTER 2. ASYNCHRONOUS CIRCUITS

2.5 Performance comparison of pipelines

In the previous sections, pipelines using different delay assumptions, handshake pro-
tocols and data encoding methods have been described. This section tries to provide a
general performance comparison of all pipeline styles.

Pipeline delay

Pipeline delay is the forward latency of delivering a valid data symbol from one end
of an empty pipeline to the other end. It represents the delay performance of the pi-
pelines stages. Empty multi-rail pipeline stages capture data whenever they are ready.
Bundled-data pipelines insert matched delay lines in the control pipeline to ensure
that latch triggers are slower than data. As a result, bundled-data pipelines normally
demonstrate longer pipeline delay than multi-rail pipelines. However, it is not true
when complicated combinational circuits are implemented. The multi-rail pipelines,
especially the m-of-n pipelines, introduce slow combinational circuits. When the extra
delay caused by these slow combinational circuits is longer than the matched delay
line, bundled-data pipelines show better speed performance.

Period / throughput

Sometimes the pipelines are over-fed. Incoming data cannot be delivered as pipeline
stages are busy processing old data. In this situation, the speed performance of a
pipeline is determined by the period instead of the pipeline delay. The reverse of the
period is the maximum throughput. It is obvious that pipeline stages may have different
periods. The stage with the maximum period determines the maximum throughput
because other pipeline stages are always waiting for the slowest one when the pipeline
is heavily loaded. The slowest loop path is the critical cycle of the pipeline.

For long distance serial pipelines, 2-phase pipelines are normally faster than 4-
phase pipelines because no reset on request lines is needed. Bundled-data pipelines
may suffer from the large data skew in long distance transmission.

For wide pipelines without complicated combinational circuits, bundled-data pipe-
lines outperform QDI multi-rail pipelines. Although the matched delay line introduces
extra latency, this overhead can be reduced if data wires are carefully routed. On the
other hand, the completion detection circuits used to synchronize multiple bit-level
QDI pipelines leads to significant delay.

2.5. PERFORMANCE COMPARISON OF PIPELINES 41

If complicated combinational circuits are implemented between pipeline stages, the
delay overhead of using a multi-rail pipeline can be large. Similar to pipeline delay,
bundled-data pipelines normally show better throughput thanks to their fast combina-
tional circuits.

Area consumption

Multi-rail pipelines introduce significant area overhead in building data pipelines and
combinational circuits due to their inefficient data encoding method. Bundled-data
pipelines utilize binary coding and the combinational circuits are the same as those in
synchronous circuits. Multi-rail pipelines, on the other hand, need extra data latches
in pipeline stages due to the expanded symbol space, require encoders and decoders
when m-of-n codes are used, and lead to large combinational circuits.

For long distance serial pipelines, m-of-n pipelines consume less area than dual-
rail or 1-of-n pipelines. To achieve a reasonable latency, buffers and inverters are
inserted on the long wires to increase driving strength and reduce transition time. These
buffers are the major area overhead. m-of-n codes reduce the wire count as well as the
area. However, when complex functions are needed, the use m-of-n codes should
be generally avoided because of their unaffordable area overhead in combinational
circuits.

Power consumption

No clock is needed in asynchronous circuit styles therefore no dynamic power is con-
sumed when the circuit is idle. The leakage power is proportional to the area. The key
issue is the dynamic power consumed in active circuits.

Dynamic power is related to toggle rate — the number of transitions during in
a certain period of time. Table 2.4 shows a simple estimation of the toggle rate of
different asynchronous pipelines. In the table, D denotes the equivalent data width.
The toggle rates of 4-phase QDI pipelines are two times that of 2-phase pipelines
because all wires return to zero every cycle. Bundled-data pipelines represent data in
binary code. On average 50% of data wires transit very cycle. Multi-rail pipelines
represent data in 1-of-n or m-of-n codes. In each 4-phase multi-rail pipeline, one
wire (dual-rail or 1-of-n) or m wires (m-of-n) must transit twice every cycle. All
pipelines have some extra toggles introduced by the ack line and the request line (only
in bundled-data pipelines).

42 CHAPTER 2. ASYNCHRONOUS CIRCUITS

Table 2.4: Average toggle rate

4-phase 2-phase

bundled-data D
2
+ 4 D

2
+ 2

dual-rail 2D + 2 D + 1

1-of-n 2D
⌊log2n⌋

+ 2 D
⌊log2n⌋

+ 1

m-of-n 2mD⌊
log2

(
n
m

)⌋ + 2 mD⌊
log2

(
n
m

)⌋ + 1

Based on the toggle rates in Table 2.4, we can draw some simple conclusions for
asynchronous pipelines without complex combinational circuits:

• 2-phase pipelines consume less dynamic power than 4-phase pipelines.

• Bundled-data pipelines consume less power than dual-rail pipelines.

• 1-of-n pipelines consume less power than dual-rail pipelines.

The power consumption comparison between m-of-n pipelines and 1-of-n pipelines
is hard to evaluate. In theory, the toggle rate of m-of-n codes is smaller than 1-of-n
codes. On the other hand, m-of-n pipelines require complicated completion detection
circuits which cause extra power consumption.

2.6 Arbiter

Arbiters are an important class of combinational components in asynchronous on-
chip networks where arbitration occurs frequently. This section introduces the arbiters
which have been used in state-of-the-art asynchronous on-chip networks.

2.6.1 Multi-way MUTEX arbiter

The multi-way MUTEX arbiter is fast and area efficient with a small number of re-
quests. It is utilized extensively in asynchronous on-chip networks [38, 114]. it is also
a basic component of complicated asynchronous allocators (Section 2.7).

Figure 2.9a depicts a 3-way MUTEX arbiter which grants one resource to one of the
three requests. The 2-input MUTEX gate (Appendix A) is the basic arbitration logic
arbitrating two requests. When one request is granted, the other one is blocked until

2.6. ARBITER 43

M
U
T
E
X

M
U
T
E
X

M
U
T
E
X

r0

r1

r2

g0

g2

g1

(a) 3-way MUTEX arbiter

r0

r1

r2

rn-1

r0:r1

r0:r2

r0:rn-1

r1:r2

r1:rn-1 rn-2:rn-1

gn-1gn-2g1g0

(b) N-way expansion

Figure 2.9: Multi-way MUTEX arbiter

the granted request is withdrawn. A MUTEX gate is also a 2-way MUTEX arbiter.
In the 3-way MUTEX arbiter, every pair of requests is checked by a MUTEX gate.
As a result, when one request is granted, the arbiter ensures that all other requests are
blocked.

The 3-way MUTEX arbiter can be expanded into an arbitrary N-way MUTEX
arbiter shown in Figure 2.9b [66]. The total number of MUTEX gates in an N-way
MUTEX arbiter is

(
N
2

)
where N is the number of requests.

Multi-way MUTEX arbiters have several advantages over other arbiter structures.
Since the number of MUTEXes on every request is equal, requests have the same
minimum arbitration delay. Multi-way MUTEX arbiters are strictly fair. They are fast
and area efficient when the number of requests is small. However, multi-way MUTEX
arbiters are no longer area efficient when the number of requests increases to a certain
amount, and other arbitration structures should be selected.

2.6.2 Tree arbiter

The tree arbiter is an expandable arbiter structure and it is area efficient, able to handle
a large number of requests. Figure 2.10a shows the diagram of a tree arbiter with six
requests. It is expanded from the basic MUTEX gate. The six requests are first divided
into two groups and their combined requests are guarded by the MUTEX. Then the
tree arbiter grows into a binary tree. Each arbiter block, as shown in Figure 2.10b
[61], divides its requests into two sub-groups until there is only one request in each
sub-group.

In Figure 2.10b, the negative grant signals ḡ0 and ḡ1 are driven by two asymmetric
C-elements (Appendix A). These two asymmetric C-elements guarantee that the output
grant signal ḡ0 or ḡ1 is low (active) only when this arbiter block is granted (low on ḡ)

44 CHAPTER 2. ASYNCHRONOUS CIRCUITS

M
U
T
E
X

T
r
e
e

A
r
b

T
r
e
e

A
r
b

T
r
e
e

A
r
b

T
r
e
e

A
r
b

r0
g0
r1
g1

r2
g2
r3
g3

r4
g4
r5
g5

(a) Diagram
M
U
T
E
X

r0

r1

g0

g1

_

_

r

g
_

ng1

ng0

(b) Arbiter block

Figure 2.10: Tree arbiter

and the internal MUTEX has chosen the corresponding request through signals ng0 or
ng1. When the granted request is released, the combined request r drops and later the
positive voltage on ḡ (inactive) drives both ḡ0 and ḡ1 to high.1

Tree arbiters are strictly fair arbiters when the binary tree is balanced; otherwise,
the leaf requests near to the root MUTEX gate are more likely to be granted than
others. The area of a tree arbiter is linear with the number of requests as every new
request leads to a new arbiter block. A request is granted when all the arbiter blocks
on its route to the root MUTEX gate select it. Thus the minimum arbitration delay is
proportional to the depth of each request. If the tree arbiter is balanced, the depth of
the tree is ⌈log2N⌉ where N is the number of requests. Therefore, the delay of tree
arbiters increases logarithmically.

2.6.3 Ring arbiter

First introduced in [75], the ring arbiter is the asynchronous “round-robin” arbiter.
Figure 2.11 [105] shows an implementation of ring arbiter developed from [75].

In the ring arbiter, each request from a user is connected to an individual arbiter
block shown in Figure 2.11b. The whole ring arbiter has only one token. A request
must secure the token in order to be granted. If the token is not stored inside the arbiter

1In the original design [61], symmetric C-elements are used instead of asymmetric C-elements.
Because ng0 and ng1 are directly connected to C-elements and they are released before ḡ returns to
high, it is not necessary to check the values on ng0 and ng1 in practical circuits. Using asymmetric
C-element reduces delay and area.

2.6. ARBITER 45

lr

lg

rr

rg

ur ug
lr

lg

rr

rg

ur ug
lr

lg

rr

rg

ur ug

User 0 User 1 User n-1

(a) Diagram

M
U
T
E
X

S

R

Q

Q
_

lr

lg rr

rg

ur ug

r

g

(b) Arbiter block

Figure 2.11: Ring arbiter

block connected to the active request, the arbiter block forwards this request to its
neighbour. In this implementation, the forward process goes clockwise.

The arbiter block has a similar internal structure to the tree arbiter block. Both of
them have two request inputs and one combined request output, which is the forward
request to its neighbour in a ring arbiter. These two input requests, one from the local
user and the other one from its anti-clockwise neighbour, are selected by a MUTEX
gate. The winner first checks the local token storage, which is the set-reset (RS) latch
in Figure 2.11b. A grant is immediately returned if there is a token stored locally,
otherwise the combined request is forwarded to the neighbour.

Ring arbiters have a special advantage over all other asynchronous arbiters: it re-
members the last granted request and select users in a round-robin fashion. The mini-
mum arbitration delay for a request depends on the location of the token. On average,
the distance between the active request and the token is N/2 where N is the number
of requests. Thus delay is proportional to the number of requests. Obviously, the area
of a ring arbiter is also proportional to the number of requests.

Another way to build a ring arbiter is to let the token circle the ring. A request
is granted when the token arrives at its arbiter block [73]. It is shown that using the
circling token scheme reduces arbitration latency by half but increases the power con-
sumption significantly when requests are infrequent.

46 CHAPTER 2. ASYNCHRONOUS CIRCUITS

M
U
T
E
X

M
U
T
E
X

M
U
T
E
X

P
r
i
o
r
i
t
y

M
o
d
u
l
e

r0

r1

r2

g0

g1

g2

Lock registers

l
o
c
k

l
o
c
k

I0

I1

I2

I0

I1

I2

_

_

_

(a) Diagram

Static priority logic

Completion detection

I0

I1

I2

I0

I1

I2

_

_

_

g0

g1

g2

(b) Priority module

Figure 2.12: Static priority arbiter

2.6.4 Static priority arbiter

Figure 2.12 shows a 3-way static priority arbiter (SPA) [17]. It has two parts: request
capture logic and a priority module.

The capture of requests is controlled by lock which is generated by the asymmet-
ric C-element at the bottom. Initially lock is low and the column of asymmetric C-
elements output low. Incoming requests go through the column of C-elements and
MUTEXes. At the same time, lock is driven high, blocking other MUTEXes without
an incoming request. Since multiple requests can arrive simultaneously and be cap-
tured by multiple MUTEXes, the priority module grants the request with the highest
priority. After the request is served, the withdrawal of the corresponding r triggers the

2.7. ALLOCATOR 47

release of lock, which consequently resets the corresponding asymmetric C-elements
in the left column. Later the corresponding g is released. If new requests have been
locked by those MUTEXes, lock returns to high immediately.

The priority module shown in Figure 2.12b is configured to grant all requests
with approximately the same probability. Other priority configurations can be eas-
ily achieved by modifying the AND and OR matrix. It is also possible to reconfigure
the priority dynamically [17].

Static priority arbiters are fast and area efficient. The arbitration delay depends on
the request capture delay and the delay of the priority module. As the positive transition
on lock and the locking requests in MUTEXes occur concurrently, the request capture
time is short and independent on the number of requests. The delay of the priority
module can be long if the number of requests is large.

2.7 Allocator

Although arbiters are capable of allocating one resource to multiple requests, they
cannot allocate multiple resources concurrently, which is commonly required in asyn-
chronous on-chip networks. In this case, asynchronous allocators are utilized instead
of arbiters. In this section, several state-of-the-art asynchronous allocators are intro-
duced. In the description, a resource is named a “client” to avoid the same initial letter
with requests.

2.7.1 Virtual channel admission control

The virtual channel admission control (VCAC) module used in the QNoC project [38]
allocates multiple virtual channels (clients) to several requests; it is an allocator design.
Figure 2.13 shows the schematic of a VCAC allocator that can match m clients to n

concurrent requests in a sequential way. It contains an n-way MUTEX arbiter and an
m-way SPA configured with linear priority.

The allocation runs in three steps: Firstly, one incoming request is selected by the
n-way MUTEX arbiter. Secondly, if there are available clients, the m-way SPA is
enabled and an available client is chosen for the selected request. Finally, the request
and the client are matched inside the match matrix which then generates a configuration
(or grant).

48 CHAPTER 2. ASYNCHRONOUS CIRCUITS

N-Way

MUTEX

Arbiter

Match

Matrix
M
U
T
E
X

M
U
T
E
X

P
r
i
o
r
i
t
y

M
o
d
u
l
e

M-Way SPA

Request

0

Request

n-1

Client

0

Client

m-1

C
o
n
f
i
g

[
m
]
[
n
]

Reset

Figure 2.13: Virtual channel admission control

Because the VCAC allocator is capable of matching only one pair of request and
client at one time, the generated configuration must be latched outside the allocator.
The corresponding request and client inputs are also withdrawn once the configuration
is captured. A pulse on reset is also generated to allow the SPA to choose another
client.

The VCAC allocator is area efficient and fast but has some timing issues. The re-
lease of requests and clients is not guarded; therefore, VCAC is not strictly QDI. Only
one pair of request and client can be matched at one time, which can be a bottleneck in
a busy system. The VCAC allocator is not prioritized. It is believed that SPA is used
in VCAC due to its reset capability which makes its peripheral circuit easy to design.
However, the area overhead of a SPA is larger than a fair (non-prioritized) arbiter such
as a multi-way MUTEX arbiter or a tree arbiter.

2.7.2 Multi-resource arbiter

A multi-resource arbiter is QDI [52, 53, 104]. As shown in Figure 2.14, multi-resource
arbiters and VCAC have similar structures. Both have two arbiters and a match ma-
trix, but the match matrix of a multi-resource arbiter is more complicated than that
of VCAC. Every tile in the match matrix of a multi-resource arbiter is a speed inde-
pendent circuit which ensures the corresponding request and client can rise and drop
independently.

Like VCAC, a multi-resource arbiter matches clients to requests in a sequential
way. At first, the arbiters on requests and clients select a winner pair of request (ri) and

2.7. ALLOCATOR 49

r
i

c
b
o

r
b
i

rbo

cbi

ci

hA
r
b
i
t
e
r

Arbiter

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

C
o
n
f
i
g
0
,
0

c
o
n
f
i
g
m
-
1
,
0

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

c
o
n
f
i
g
0
,
n
-
1

config
m-1,n-1

c_block0 c_blockn-1

r
_
b
l
o
c
k
0

r
_
b
l
o
c
k
m
-
1

r0

ra0

rm-1

ram-1

c0

ca0
cn-1

can-1

(a) Diagram

rbo

cbo

h

ri ci

cbi

rbi

(b) Tile

Figure 2.14: Multi-resource arbiter

client (ci) independently. Then the asymmetric C-element in the corresponding tile
(Figure 2.14b) drives rbo and cbo to high. These two signals trigger the corresponding
blockage signals r block and c block in Figure 2.14a, which block all the tiles in the
same row and column of the chosen request and client. Once the tile receives the
blockage signals meaning that other tiles are safely blocked, the configuration h is
generated.

The allocated pair of request and client must be withdrawn as soon as possible
to allow other requests to be served. The configuration is stored outside the multi-
resource arbiter. The peripheral circuit has to raise the corresponding acknowledge
signals ra and ca to withdraw the allocated request and client. In the match matrix,
the blockage signals rbi and cbi guarantees that the lower asymmetric C-element in
Figure 2.14b is disabled until the previous allocation is safely withdrawn.

The major advantage of the multi-resource arbiter over VCAC is its robustness.
Multi-resource arbiters are QDI and the timing relation between requests and clients
are fully decoupled. As a result, the arbiters on requests and clients run independently.
However, the tile based match matrix is area consuming. When the number of requests
or clients is large, the blockage signals in the match matrix may fail to release all
tiles soon enough when false configurations are produced. The reason is related to
the QDI delay assumption. The blockage signals r block and c block no longer fit the

50 CHAPTER 2. ASYNCHRONOUS CIRCUITS

isochronic fork assumption in a large design. A blockage ring can resolve this problem
but it introduces extra area overhead [104].

2.8 Summary

This chapter has introduced some fundamental concepts of asynchronous circuits.
Asynchronous circuits are clockless circuits driven by handshake protocols. Data in
asynchronous circuits can be delivered by bundled-data pipelines using the self-timed
delay assumption or by multi-rail pipelines using the QDI delay assumption. The ar-
bitration circuits, including arbiters and allocators, have also been described. Unless
stated otherwise, the circuit designs in this thesis are relaxed-QDI circuits using the
4-phase multi-rail pipelines.

Chapter 3

Network-on-Chip

The number of transistors on a single die has doubled periodically as predicted by
Moore’s law for several decades but the design complexity coupled with abundant
resources is becoming unmanageable. Traditional SoC systems were hierarchically
built from processors, functional units, intellectual property (IP) blocks and bus-based
communication infrastructures. When tens to hundreds of SoC systems are packed
into one die, the hierarchical bus is not scalable and becomes the major throughput
bottleneck. To overcome this problem, researchers have proposed the idea of network-
on-a-chip (NoC) over the last decade [34, 9, 57, 89]. In such a NoC system, SoC
sub-systems use buses as their local communication method but the data travelling
across the boundary of a sub-system are encapsulated into packages and delivered to
the target sub-system by a scalable network-based communication infrastructure [34].
In this chapter, the background of NoCs and the recent developments of asynchronous
on-chip networks are introduced.

3.1 Concepts of on-chip networks

Network-on-a-chip or on-chip network is the chip level communication infrastructure
that connects tens to hundreds of sub-systems. As shown in Figure 3.1, a sub-system
has its own bus, processor, memory/cache and other function blocks. Such a sub-
system, namely a processing element (PE), communicates with other PEs through the
on-chip network consisting of routers. The network interface in each PE, acting as
a bridge, converts and delivers data between the on-chip network and the local sub-
system.

51

52 CHAPTER 3. NETWORK-ON-CHIP

Processor
Cache/

Memory

IPs/

Function

Blocks

Network

Interface

Router

Processing Element

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

Figure 3.1: Architecture of NoC

Depending on the structure of PEs, a NoC can be classified into two categories:
homogeneous NoCs and heterogeneous NoCs. All PEs in a homogeneous NoC use the
same internal structure; therefore, they have the same size and the chip is symmetric,
whereas the PEs in a heterogeneous NoC may use different structures. The size of a PE
is therefore variable and the chip floorplan is hardly symmetric. Chip multi-processors
are normally homogeneous NoCs as every PE is a processor [127]. On the other hand,
MPSoCs are generally heterogeneous NoCs because PEs have different functions [26].

It is possible to describe the network using layer models such as the open system
interconnection model used in macro networks. However, there is currently no consen-
sus on the division of layers in NoCs. According to one well-accepted layer division
[41], the lower network structure can be divided as physical layer, switching layer

and routing layer. The physical layer determines the way that PEs are connected to
each other. The switching layer describes how data packages are delivered and how
resources, such as buffers and links, are allocated to data packages. Finally the routing
layer controls the path over which a data package traverses.

The following sections will describe the major design issues in different layers:
network topologies (physical layer), flow control methods (switching layer) and rout-
ing algorithms (routing layer).

3.2. TOPOLOGY 53

PE

(0)

Router

PE

(1)

Router

PE

(2)

Router

PE

(3)

Router

PE

(4)

Router

PE

(5)

Router

(a) Ring

PE

(0,0)

Router

PE

(0,1)

Router

PE

(0,2)

Router

PE

(1,2)

Router

PE

(1,1)

Router

PE

(1,0)

Router

PE

(2,2)

Router

PE

(2,1)

Router

PE

(2,0)

Router

(b) Mesh

Figure 3.2: Examples of direct networks

3.2 Topology

“Network topology refers to the static arrangement of channels and nodes in an in-
terconnection network — the roads over which packets travel.”[35] The topology of a
NoC determines the global layout and fundamentally affects the strategies and perfor-
mance of higher layers. Selecting a topology is the first step of building a NoC.

A node in a NoC is either a switch node which is basically a router delivering pack-
ets from input ports to output ports, or a terminal node which contains a PE generating
and receiving packets. A network is a direct network when every router is connected to
one or more PEs, otherwise, it is an indirect network where some routers are connected
only with other routers.

The ring network shown in Figure 3.2a is a direct network. PEs in this network
can be addressed by a vector. Routing algorithms are simple as every pair of PEs
has only two possible paths: clockwise and anti-clockwise. The maximum distance
between two PEs is ⌊N/2⌋ where N is the number of PEs. It is beneficial to use the
ring topology with a small N thanks to its simple structure and low hardware overhead
but the distance between two PEs can be intolerably long when N is large.

Mesh is one of the most utilized topologies in direct on-chip networks. Figure 3.2b
shows a 3× 3 mesh network where every PE is addressed by a two-dimensional index
(x, y). Compared with ring networks, mesh networks have two major advantages: One
is the reduced communication distance. For two PEs located at (x1, y1) and (x2, y2),

54 CHAPTER 3. NETWORK-ON-CHIP

PE

(0)
Router

(0,0)
PE

(1)

PE

(2)

PE

(3)

PE

(4)

PE

(5)

PE

(6)

PE

(7)

PE

(0)

PE

(1)

PE

(2)

PE

(3)

PE

(4)

PE

(5)

PE

(6)

PE

(7)

Router

(0,1)

Router

(0,2)

Router

(0,3)

Router

(1,0)

Router

(1,1)

Router

(1,2)

Router

(1,3)

Router

(2,0)

Router

(2,1)

Router

(2,2)

Router

(2,3)

Switching Network

Figure 3.3: A butterfly network

the minimal distance is the taxicab distance (|x1 − x2| + |y1 − y2|). Thus the maxi-
mum distance is 2(

√
N − 1) where N is the number of PEs. When N is larger than

12 (a 4 × 3 mesh), mesh networks have shorter distances than ring networks. The
other is the scalable throughput performance. The paths between a pair of PEs are not
deterministic in mesh networks. The number of channels per PE in a mesh network
is lim

N→+∞
2
√
N(

√
N−1)

N
= 2 while it is only one in a ring network. Mesh networks dou-

bles the amount of communication resource. The network throughput should increase
consequently if data packets are directed to all channels in a balanced way.

Most MPSoC designs use direct networks [26]. The design of a direct network
is modularized. Every router is connected to a PE. As long as the interface between
PEs and routers is unified, all routers are functionally equivalent and PEs can be de-
signed independently. This is essential to meet the short time-to-market requirement
for current MPSoC designs.

Unlike MPSoC systems, many CMP systems prefer indirect networks. Figure 3.3
depicts a butterfly network [35]. In the figure, the PEs in the left column are in fact
the same PEs in the right column. Duplicating them in the figure is a simplified way
of showing the butterfly network between PEs. In a practical implementation, the
butterfly network is folded [102].

Butterfly networks are one class of indirect networks. All pairs of PEs are con-
nected by deterministic paths with equal communication delays. The butterfly network
between PEs can be replaced with other switching networks, such as crossbars [94],

3.3. FLOW CONTROL 55

Clos networks [102], Beneš networks, etc. (Chapter 6). All of these switching net-
works provide fixed communication delay between all pairs of PEs. In some switching
networks, such as the butterfly networks and crossbars, only one path exists between
any pair of PEs. In other switching networks, such as Clos networks and Beneš net-
works, multiple paths are available. Compared with direct networks, these indirect net-
works provide equal minimal communication delay between all PEs but the network
implementation is not modularized. The routers and channels in an indirect network
must be carefully calibrated to provide equal delays and fair resource allocation.

As most MPSoC systems use direct networks, all router designs in this thesis as-
sume that the mesh topology is selected.

3.3 Flow control

Network topology provides communications with different paths. Communications
are launched concurrently and paths are selected individually. Contention occurs when
more than one communication chooses the same resource at the same time. To resolve
such contention, the resource is allocated to one communication forcing the others
to wait until the allocated one is served. The algorithms utilized in this process are
called flow control methods. They dynamically allocate resources inside routers and
extensively influence the router structure.

Before describing the numerous flow control methods utilized in on-chip networks,
the data packets delivered in on-chip networks need to be clarified. Normally a self-
explainable data packet generated by a PE is a frame. Each frame has a header denoting
the target PE and a payload containing the data to be delivered. A frame is usually large
and cannot be delivered in a single piece. It is divided into flits, each of which is able
to be transmitted through a channel or a switch at one time.

3.3.1 Circuit switched and packet switched

Flow control methods can be classified into two categories: circuit switched and packet
switched. The flow control methods used in circuit switched networks allocate a path
between the transmitting PE and the receiving PE for each frame before delivering the
frame payload. On the contrary, the flow control methods used in packet switched net-
works deliver frames immediately after they are generated. The path for each frame

56 CHAPTER 3. NETWORK-ON-CHIP

is dynamically allocated on the fly. The flow control methods in packet switched net-
works do not guarantee that enough resources are available before delivering payload.

The path allocation in a circuit switched network can be static: the path configura-
tion is prefabricated or statically configured during the setup stage [129, 71, 119]. It
is also possible to allocate path dynamically. One way is using handshake protocols
[128, 12, 88]. The initiating PE sends a request to the target PE. This request frame
reserves all channels which it has traversed. When it reaches the target PE, an ac-
knowledge returns through the same path denoting that a path is reserved. The other
way is by reconfiguring the switches by instructions from the connected PEs [125].

Circuit switched networks are area and energy efficient compared with packet
switched networks. Paths are statically configured for a long time or even the whole
life time. As a result, routers do not analyse data most of the time and switch con-
figuration is simple. Little or no energy is consumed by reconfiguring switches. No
buffer is needed because two communications cannot share any resource at the same
time. However, a significant portion of the available throughput is wasted when a
communication pauses temporarily or some resources are reserved by an ongoing path
request. When the network is heavily loaded, circuit switched networks suffer from
long communication latency and significant power overhead in the path reservation
process [128].

Rather than allocating a path to a communication before any data transmission,
packet switched networks dynamically allocate resources to frames. Since resources
are not pre-allocated, it is unavoidable that multiple frames may compete for the same
resource, particularly when a network is heavily loaded. The flow control method tem-
porarily allocates the resources to one frame and reserves some buffers for the blocked
frame. Depending on the buffer space reserved in each allocation procedure, a packet
switched network can be classified into three types: a store-and-forward network where
buffers are reserved in units of frames, a wormhole network where buffers are reserved
in units of flits, and a virtual cut-through [63] network where buffers are reserved in
units of flits but enough buffer space is ensured to store a whole frame.

Figure 3.4 illustrates an example of different packet switched networks. The rou-
ter in Figure 3.4b has only three ports: A, B and C. Input ports and output ports are
dynamically connected through the crossbar, which is reconfigured by the switch al-
locator. A buffer is inserted between each input port and the crossbar. If the router is
used in store-and-forward or virtual cut-through networks, the buffer is enough for a
whole frame, otherwise it is only able to store one flit (in wormhole networks). The

3.3. FLOW CONTROL 57

HA DA DA TA

HB DB DB TB

HA DA DA TA HB DB DB TB
time

1 2 3 4 5 6 7 8 9 10 11 12

Ain

Bin

Cout

(a) Store-and-forward

Buffer

Buffer

Buffer

Switch

Allocator

Ain

Bin

Cin

Aout

Bout

Cout

(b) Router

HA DA DA TA

HB DB DB TB

HA DA DA TA HB DB DB TB
time

1 2 3 4 5 6 7 8 9

Ain

Bin

Cout

(c) Virtual cut-through

HA DA DA TA

HB DB DB TB

HA DA DA TA HB DB DB TB
time

1 2 3 4 5 6 7 8 9

Ain

Bin

Cout

(d) Wormhole

Figure 3.4: Packet switched flow control

frames in this example have fixed length of four flits: one header flit denoting the target
PE, two data flits carrying the data payload and a tail flit indicating the end of a frame.
Assuming that networks are implemented in synchronous circuits, each channel can
transmit one flit in every cycle. Two frames A and B arrive at the router from input
ports Ain and Bin at the first and the third clock cycle respectively. Both of them ask
for the output port Cout. Contention is thus generated.

As shown in Figure 3.4a, the router in a store-and-forward network starts to trans-
mit a frame only when all its flits are received. Since frame A arrives before frame B,
the output port Cout is first allocated to A but it is only utilized until the fifth clock cycle
when all parts of frame A are received. Consequently, frame B is temporarily stored
in buffers and is transmitted when frame A is served. The idea of store-and-forward
is straightforward but using it leads to long frame transmission latency and waste of
resources. In this example, the output port Cout is allocated but not utilized for three
clock cycles.

Virtual cut-through reduces the long latency by allowing routers to transmit a frame
whenever a flit is received. As shown in Figure 3.4c, the output port Cout starts to
transmit frame A immediately after the header flit is received. Although virtual cut-
through reduces frame transmission delay, the buffer size is not reduced. Virtual cut-
through requires enough buffer space for every frame. Thus a frame is stored in only
one router when it is blocked. In some networks, a frame can be extremely long and

58 CHAPTER 3. NETWORK-ON-CHIP

N N

WW E

SS

E

R1 R2

A

B

Frame A

Frame B

Frame C

C

(a) Router connection

HA DA DA TA

time

1 2 3 4 5 6 7 8 9

R2.N

HB DB DB TBR1.W HC DC DC TC

R2.W

R2.E

R1.S

HA DA DA TA HB DB DB TB

HC DC DC TC

HB DB DB TB

10 11 12

(b) Data flow

Figure 3.5: Head-of-line

the area overhead of this requirement will be intolerable.

The wormhole flow control method relaxes the size requirement to one flit in the
minimal case. Figure 3.4d demonstrates the outcome of limiting the size of buffers to
one flit. Frame A is served before frame B but now only the header flit of frame B is
stored in the router. Other parts of frame B are blocked in previous routers. In this
example, both virtual cut-through and wormhole can deliver two frames in nine clock
cycles.

3.3.2 Virtual channel

The wormhole flow control flow control method reduces buffers significantly. How-
ever, it has head-of-line (HOL) issues introducing long frame transmission delay when
networks are heavily loaded.

Figure 3.5a shows an example of how HOL prolongs the frames transmission la-
tency. Three communications (A, B and C) are initiated concurrently. Frames A and B
compete for the east output port of router R2. The other frame, frame C, has contention
with frame B and will be transmitted through the west input port of router R1 immedi-
ately after frame B. All frames have the same length of four flits. Initially both frames
A and B arrives at ports R2.N and R1.W respectively at the first clock cycle.

3.3. FLOW CONTROL 59

The result data flow is depicted in Figure 3.5b. In router R2, frame A is one clock
cycle earlier than frame B and is thus served first. As a result, frame B is blocked
waiting for the output port R2.E to be available again. In the meanwhile, the first
two flits of frame B, HB and DB, are stored in the buffers connected to ports R2.W

and R1.W respectively. As described, frame C is waiting for frame B. As frame B is
blocked, frame C is also blocked by the contention in router R2, although frame C does
not go through R2 at all. This is the HOL problem introduced by the wormhole flow
control method.

If the buffer space is large enough for a whole frame, the virtual cut-through flow
control method can be used and frame C would be delivered three clock cycles ahead
(indicated by the red arrows in Figure 3.5b). In this case, the whole frame B is tem-
porarily stored in the buffers in router R2 while frame C is in transmission.

The nature of HOL is: When a frame is blocked in one router, the router does
not have enough buffer space to store the blocked frame. As a result, parts of the
blocked frame are stored in other routers and corresponding switches and channels are
occupied. These occupied resources then block other frames who are active and asking
for these resources at the same time

Virtual channel (VC) is an extensively utilized flow control method which signif-
icantly alleviates the HOL problem [30]. The basic idea of VC is to share channels
among multiple frames. When one frame is blocked, the frame must not occupy the
channels which are otherwise reserved in wormhole networks; therefore, other frames
can utilize these channels at the same time. However, the flits belonging to the blocked
frame cannot be thrown away. Extra buffers are inserted and the buffers connecting to
each input port are divided into groups, each of which is called a virtual channel and
stores flits of an individual frame.

A VC router is shown in Figure 3.6. It has four bidirectional ports: south, west,
north and east. Two VCs are inserted between each input port and the crossbar. Chan-
nels and the crossbar is shared by both VCs. The allocation of VCs is controlled by a
VC allocator.

When two frames compete for the same channel, they are allocated different VCs.
Both frames are transmitted through the same channel using different VCs. Obviously
only one flit is delivered in every cycle. Thus the shared channel is occupied by both
VCs in a time divided manner. When one frame is blocked wherever in the network,
the other frame can fully utilize the channel.

60 CHAPTER 3. NETWORK-ON-CHIP

Switch

Allocator

VC

VC

VC

Allocator

VC

VC

Sin

Win

Nin

Ein

Sout

Wout

Nout

Eout

Figure 3.6: VC router

N N

WW E

SS

E

R1 R2

A

B

Frame A

Frame B

Frame C

C

(a) Router connection

HA DA DA TA

time

1 2 3 4 5 6 7 8 9

R2.N

HB DB DB TBR1.W.VC1

R2.W

R2.E

R1.S

HA

HC DC DC TC

HB DB DB TB

10

R1.W.VC2 HC DC DC TC

HB DA DB DA DB TA TB

(b) Data flow

Figure 3.7: Resolving head-of-line with VCs

To further illustrate the impact of VCs, the same example in Figure 3.5 is imple-
mented again using VC routers as demonstrated in Figure 3.7. All VCs and crossbars
are allocated by fair round-robin arbiters. Frames A and B share the channel connected
to the east output port of router R2, which is therefore alternately used by both frames.
The same sharing procedure occurs on the channel connected to R1.W. Frames B and C

occupy different VCs and are delivered alternately. Finally, all frames are transmitted
in nine cycles, which is three cycles shorter than using wormhole routers.

3.3. FLOW CONTROL 61

3.3.3 Other flow control methods

VC is the most popular flow control method in NoCs [45, 12, 84, 69, 38, 26] but it is
not the only flow control method.

Time division multiplexing (TDM) is another extensively utilized flow control
method1 [56]. It divides time into time slots and multiple frames share the same chan-
nel by occupying some slots. The number of slots allocated to a frame defines the
maximum throughput available to the frame. The transmission delay of every frame is
predictable. However, the network throughput may be wasted when some slots are not
allocated or the allocated slots are not used.

Rather than sharing a channel among multiple frames in a time divided manner,
spatial division multiplexing (SDM) divides every channel into several virtual circuits
and allocates virtual circuits to frames [71, 54] (Chapter 5). In this way, multiple
frames traverse the same channel concurrently using different virtual circuits. How-
ever, frames are effectively serialized as every virtual circuit provides only a portion
of the total bandwidth of a channel. Although using SDM prolongs the transmission
delay of a single frame, the overall throughput increases because no contention occurs
until all virtual circuits in a channel are allocated.

3.3.4 Quality of service

Quality of service (QoS) is an important concept in NoCs. The communications in
a network have different requirements, such as delay or throughput. For the whole
system to work properly, a network needs to provide certain guaranteed services (GS)
to meet the requirements of these communications.

Some communications require reaching their targets before certain deadlines, such
as the interrupt signals in some real-time systems. The networks supporting this service
are called delay-guaranteed networks. Circuit switched or TDM flow control methods
can be used to build hard delay-guaranteed networks where communications always
reach their target before deadlines. Other flow control methods, such as VC and SDM,
provide only soft delay-guaranteed services where the probability that communications
reach their target before deadlines is guaranteed.

Many communications, such as multimedia data streams, can tolerate some delay
variance but are sensitive to throughput. The networks that satisfy this requirement are

1Strictly speaking, VC is also a TDM method because channels are shared by multiple VCs in a time
divided manner. In literatures, TDM usually refers to its narrow meaning of sharing channels according
to explicitly defined time slots.

62 CHAPTER 3. NETWORK-ON-CHIP

called throughput-guaranteed networks. Nearly all flow control methods can provide
through-guaranteed services by assigning high priorities to the data with the throughput
requirement over others.

Some communications, or even all communications when a network is fast enough,
do not have requirements. It is beneficial to deliver them as soon as possible but failing
to do so will not break down the whole system. These communications are called
best-effort (BE) traffic. Wormhole, VC and SDM flow control methods are good at
providing such service.

3.4 Routing algorithm

The routing algorithm determines the path via which a frame traverses a network using
certain topology. It is an important research topic in NoCs as a poor routing algorithm
can congest the network by overloading some communication resources while leaving
others unused. However, the problem is so complicated that no routing algorithm can
perfectly balance all communications in all circumstances. A routing algorithm that
fits one traffic pattern may congest the same network if the pattern changes. However,
the traffic pattern is not always pre-known at design time and can vary dramatically
at run-time. Furthermore, if on-chip faults are considered, the network topology is
altered temporarily or permanently when a fault occurs. This change of topology can
convert a deadlock-free routing algorithm into a deadlocking one. Obviously the net-
work throughput is significantly affected.

The major research goal of this thesis is to explore better trade-offs among speed,
area and power in asynchronous on-chip networks. The research concentrates on the
hardware structure of channels and flow control methods. As a result, this thesis will
not discuss the impact of using different routing algorithms on certain router imple-
mentation in detail. This section will go over the classification of routing algorithms,
introduce those routing algorithms extensively utilized in NoCs and analyse their per-
formance.

3.4.1 Deterministic and non-deterministic

Routing algorithms can be classified into two categories: deterministic routing algo-
rithms and non-deterministic routing algorithms. The frames of any pair of PEs in
a network using a deterministic routing algorithm always go through the same path

3.4. ROUTING ALGORITHM 63

while they may go through different paths if a non-deterministic routing algorithm is
used. The advantage of deterministic routing algorithms is their simplicity. They do
not require complicated routing calculation circuits in routers. They are also capa-
ble of routing communications in non-regular networks where some non-deterministic
routing algorithms may not work. However, they lack flexibility in their paths. A net-
work can easily be congested when multiple communications simultaneously request
the same resource. They can also generate deadlocks when the network topology is
altered by faults [31]. In these situations, using non-deterministic routing algorithm is
a better choice.

Most deterministic routing algorithms use source routing. The frame sender knows
where the target is and specifies a route there. The usual way to implement source
routing is to record the chosen path in the header flit. Every router on the path analyses
the header flit, finds out the recorded output port, removes the turn in the record, and
forwards the modified header flit to the next router. Source routing has been utilized in
many NoC designs [10, 12, 7, 127] due to its advantages: It can be used in any topology
and it introduces extremely low hardware overhead. However, the path recorded in the
header flit increases frame size. If the path is extremely long, multiple header flits are
required to record the path introducing extra delay and energy.

If the topology is regular (ring, mesh or torus [32]), a class of source routing algo-
rithms, namely dimensional order routing (DOR) [33], can be used without recording
the whole path within the header flit. Instead, only the address of the target is recorded.
Frames are delivered to targets through the edge of the minimal line (ring) or rectangle
(mesh or torus) that can be drawn between the source and the target. As an example,
if a frame is sent from (x1,y1) to (x2,y2) in a mesh, the selected path will be (x1,y1) →
(x2,y1) → (x2,y2). To obtain the correct output port, routers simply compare the target
address in the header flit with their own addresses. When DOR algorithms are used in
a mesh or torus network, they are also called XY routing algorithms.

DOR algorithms have many advantages over other routing algorithms: Since DOR
algorithms are source routing algorithms, they introduce extremely low area overhead.
Meanwhile, DOR algorithms are also distributed routing algorithms as the routing
decisions are made by routers. It is not necessary to pre-define the whole path and
store it within the header flit as other source routing algorithms. The selected paths by
DOR algorithms are minimal paths leading to the shortest frame delay when networks
are not busy. Due to these advantages, DOR algorithms have been extensively utilized
in many NoC designs [80, 47, 83, 79, 105, 38].

64 CHAPTER 3. NETWORK-ON-CHIP

A major problem of deterministic routing algorithms is their lack of path flexibil-
ity, which leads to congestion and prolonged frame delay when network traffic is not
uniform. Non-deterministic routing algorithms, on the other hand, can divert frames
away from their original paths and thus distribute traffic to all resources. Depending
on the methods of generating diversions, non-deterministic routing algorithms can be
classified into two categories: oblivious routing algorithms and adaptive routing algo-
rithms.

Oblivious routing algorithms route frames without regarding the states of the net-
work [34].2 Valiant’s randomized routing algorithm [126] can balance the load of any
traffic pattern in nearly all topologies. For each frame, an intermediate node is ran-
domly selected, and the frame is first delivered to the intermediate node and then to
the target node. As the randomly selected node can be anywhere inside the network,
the diversion is hardly a minimal path. ROMM algorithm [86] restricts the intermedi-
ate node to be one inside the minimal rectangle between the sender and the receiver,
thus the diversion is also minimal. ROMM can outperform DOR algorithms in some
unbalanced traffic patterns [109].

The stochastic routing algorithm is another well-known oblivious routing algorithm
[42, 15]. A frame is duplicated and forwarded to multiple output ports in every router
at which it has arrived. The result is that the frame is flooded from the sender to the
whole network. This algorithm has strong tolerance to on-chip faults and it guarantees
that a frame is delivered to the target as long as the target is still reachable. However,
the flood wastes resources and throughput is extremely low. It is possible to constrain
the flood to improve throughput while reserving the tolerance to faults [97, 88, 116].

Adaptive routing algorithms route frames according to the states of the network.
Different algorithms divert frames for different reasons. Some algorithms try to bal-
ance the load and improve throughput [23, 58]. Some others provide tolerance to on-
chip faults by diverting or retransmitting frames when a channel or a router is broken
[55, 132, 100]. After all, the price of using them is normally expensive. The states of
the network, such as congested buffers and channels, or broken channels and switches,
need to be collected before they can be used to generate diversions. Extra area, energy
and delay overhead is introduced consequently.

2Some literatures believe deterministic routing algorithms are also oblivious routing algorithms.
Literally it is right but in this thesis oblivious routing algorithms refer to non-deterministic routing
algorithms only.

3.4. ROUTING ALGORITHM 65

PE(0) PE(1)

PE(2)PE(3)

32

1 0

(a) Deadlock

PE(0) PE(1)

PE(2)PE(3)

4

(b) Livelock

Figure 3.8: Deadlock and livelock

3.4.2 Deadlock and livelock

Deadlock and livelock are harmful by-products of some routing algorithms. Their
occurrences paralyse a part or even the whole network. A practical NoC design must
either prove that its routing algorithm is safe from deadlock or livelock, or demonstrate
that it can recover when deadlock or livelock occurs. Several issues must be consid-
ered: the routing algorithm should be deadlock-free. If it is not deadlock-free, the
network must be able to recover from deadlock. The traffic pattern itself is assumed to
be free of message-dependent deadlock3 [28, 5]. If on-chip faults produce permanent
damage, routing algorithms must be able to adapt to the altered topology otherwise the
whole system must allow a temporary halt.

An example of deadlock and livelock is shown in Figure 3.8, which is a simple
unidirectional ring network containing four PEs. Deadlock occurs when the channel
dependency graph of a network is cyclic [33] — a group of concurrent frames are indi-
vidually holding some resources which are mutually waited for by others in the same
group. Since no frame releases its resources before obtaining the necessary resources
occupied by others, all frames in the group stop. In Figure 3.8a, four frames targeting
different PEs have consumed all buffers in all routers. Since every frame is waiting for
the buffer in its clockwise neighbour to become free, no frame can be transmitted.

Livelock denotes the situation when one or more frames are continuously travers-
ing the network without reaching its or their target(s). Figure 3.8b demonstrates an
example of how livelock can occur in a ring network. A frame continuously circles
the ring clockwise targeting the nonexistent PE(4). This may look ridiculous but it is

3Due to the limited buffer size in practical network interfaces, a deadlock occurs when a network
interface fails to receive enough data in order to produce a response. This deadlock is introduced by the
dependence between frames, which cannot be eliminated by deadlock-free routing algorithms alone.

66 CHAPTER 3. NETWORK-ON-CHIP

possible when a transient fault attacks the header flit or a permanent fault disconnects
PE(4) from the ring network.

Adaptive routing algorithms are prone to generate deadlock because they usually
have cycles in the extended channel dependency graph [40]. These cycles can be re-
moved by restricting the turn model [51, 23, 58] or by adding extra VCs [33]. However,
a deadlock-free adaptive or deterministic routing algorithm may still produce dead-
locks when permanent faults alter the network topology. Adaptive routing algorithms
can cope with faults by changing their routing strategies [55, 16, 132] but expensive
fault detection circuits are required. Oblivious routing algorithms are naturally tolerant
to faults but they also need complicated strategies to avoid deadlocks [42, 97, 88, 116].

Instead of deadlock-avoidance, a network can recover from deadlock. However,
deadlock-recovery mechanisms degrade throughput significantly [70].

3.5 Globally asynchronous and locally synchronous

An MPSoC system using an asynchronous on-chip network is a globally asynchronous
and locally synchronous (GALS) network [68]. The structure of a GALS network is
shown in Figure 3.9 where asynchronous circuits are depicted in grey. The on-chip
network is built from asynchronous routers and asynchronous channels. A PE is a
synchronous SoC sub-system connected to the asynchronous network by the network
interface. Thus the network interface is the bridge between a local synchronous sub-
system and the global asynchronous network. There are three different ways to imple-
ment an interface between synchronous and asynchronous circuits: pausible clocks,
synchronizers and asynchronous first-in-first-out (FIFO) buffers [68].

The pausible clock scheme is simple to understand. The major issue of data trans-
mission between synchronous and asynchronous circuits is the metastability problem
[18]. Suppose a group of synchronous flip-flops (FFs) capture data from asynchronous
circuits. The data may arrive at any time as asynchronous circuits are not synchro-
nized. If the data arrive exactly during the positive transition of the global clock, FFs
may go into metastability state during which the output values are not stable and wrong
data may be generated. The pausible clock scheme resolves this problem by deferring
the clock when metastability may occur. As shown in Figure 3.10a, the synchronous
circuit is driven by a local clock generator. When asynchronous data are ready, they
make a request to the local clock generator. If the data are going to clash with the

3.5. GLOBALLY ASYNCHRONOUS AND LOCALLY SYNCHRONOUS 67

Processor
Cache/

Memory

IPs/

Function

Blocks

Router

Processing Element

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

Network

Interface

Figure 3.9: GALS network

Sync

circuit

Async

circuit

Clock

generator

clock r
e
q
u
e
s
t

(a) Pausible clock

Sync

circuit

Async

circuit

clock

data

request

ack

data

request

ack

(b) Synchronizer

Sync

circuit

Async

circuit

clock

S/A

FIFO

A/S

FIFO

async

data

sync

data

ackfull

sync

data

empty ack

async

data

(c) Asynchronous FIFO

Figure 3.10: Synchronous and asynchronous interface

clock, the clock will be postponed until the asynchronous data can be safely captured.
Hence the metastability problem is avoided [82, 124].

The pausible clock scheme has some advantages over other interfacing methods.
It is the only scheme that can fully eliminate metastability. The data latency between
asynchronous and synchronous circuits is extremely small as asynchronous data are

68 CHAPTER 3. NETWORK-ON-CHIP

usually captured in the same cycle. The local clock generator also provides the pos-
sibility to implement dynamic voltage and frequency scaling (DVFS) [6], which can
significantly reduce the power consumption of the synchronous sub-system. However,
the pausible clock scheme restricts the highest clock frequency because the clock pe-
riod is required to be longer than the clock tree delay [36]. It is also not practically
viable for fabless designs to carefully calibrate the local clock generator [68].

Synchronizers are extensively utilized in synchronous circuits [50]. The basic two-
flop synchronizers shown in Figure 3.10b are usually inserted on the control signals
crossing clock boundaries to increase the mean time between failures (MTBF), al-
though they cannot eliminate the metastability problem. The same method can be
used on the asynchronous signals heading to synchronous circuits. For signals from
synchronous circuits to asynchronous circuits, no synchronizers are needed as asyn-
chronous circuits are event-triggered.

The sync/async interface built from synchronizers introduces the minimum area
overhead of all interface schemes but the throughput is the lowest. Using the two
flop synchronizer shown in Figure 3.10b, the sync/async interface introduces two extra
clock cycles in every data transmission. Several attempts have been made to reduce
the synchronization delay by new synchronizer structures [36, 37] or by duplicating
the interface to compensate the throughput loss [98]. Some asynchronous on-chip
networks use synchronizer based interfaces [11, 98].

If long latency can be tolerated and high throughput is the major design concern, the
sync/async FIFO scheme is the best choice. As shown in Figure 3.10c, a synchronous
to asynchronous FIFO (S/A FIFO) and an asynchronous to synchronous FIFO (A/S
FIFO) are inserted on forward and backward paths respectively. Unlike synchronizers,
sync/async FIFOs have no throughput degradation, and the buffers inside the FIFOs
balance the speed difference between synchronous and asynchronous sides. However,
FIFOs introduce area overhead and prolong the synchronization latency. This scheme
has been utilized in several asynchronous on-chip networks [106, 124].

No matter which interface scheme is selected, the channels between routers and
network interfaces are pure asynchronous circuits. As a result, the routers in a mesh
network are modular designs independent from their local PEs. Hence this thesis con-
centrates on the asynchronous architecture of routers without discussing further the
interface problem.

3.6. PREVIOUS GALS NOCS 69

SpiNNaker

Chip

SpiNNaker

Chip

SpiNNaker

Chip

SpiNNaker

Chip

SpiNNaker

Chip

SpiNNaker

Chip

(a) Interconnect network

Packet

Router

x
x
x
x
x
x
x
x

xxxx
xx
xx
xx
xx
xx

xxx
xxxxxx
xxx
xxxxxx

PE PE PEPE

System NoC

SDRAM

Interface
Timer PLL

Off-chip

DDR SDRAM

S

SW

W

N

NE

E

S

SW

W

N

NE

E

xxxAsync 2-pahse 2-of-7

Async 4-pahse 3-of-6

Sync data buses

(b) SpiNNaker chip

Figure 3.11: SpiNNaker system

3.6 Previous GALS NoCs

Several GALS on-chip networks have been proposed and implemented in recent years.
This section will review some of them. Descriptions of the router structures in these
GALS NoCs are provided along with some analyses of their advantages and limita-
tions.

3.6.1 SpiNNaker

The SpiNNaker system is a universal spiking neural network architecture aiming to
simulate the human brain activities in real time [99, 85, 118]. As shown in Fig-
ure 3.11a, ten to thousands of SpiNNaker chips interconnect with each other in a mesh
network. Every SpiNNaker chip is linked with its south (S), southwest (SE), west (W),
north (N), northeast (NE) and east (E) neighbours. The channels between chips are
2-phase asynchronous pipelines using the 2-of-7 data encoding method [108].

The internal structure of a SpiNNaker chip is demonstrated in Figure 3.11b. 18 syn-
chronous processors are connected by two on-chip networks: a communication NoC
and a system NoC. As shown in the upper half of Figure 3.11b, the communication
NoC is a part of the system-level interconnection network. The synchronous packet
router in each chip receives spike signals from its six neighbours and the local 18 PEs

70 CHAPTER 3. NETWORK-ON-CHIP

[130]. These signals are delivered by 4-phase 3-of-6 pipelines and are merged by a
tree of bandwidth aggregators [98]. Running at 200 MHz, the packet router is capable
of processing all spike signals and forwarding them to their destinations. The system
NoC is shared by the 18 local PEs inside a chip. Implemented using an asynchronous
CHAIN network [3, 48], it allows PEs to access the off-chip memory concurrently.

The SpiNNaker system demonstrates an example of how asynchronous communi-
cation systems can be smoothly integrated with traditional synchronous bus systems.
The inter-chip 2-phase 2-of-7 asynchronous channels reduce power consumption and
communication delay between chips. On-chip communications are delivered by 4-
phase 3-of-6 asynchronous channels leading to simple control circuits. Complicated
computations are handled by synchronous circuits. Neurons and spike signals are sim-
ulated and generated by synchronous processors. The routing and broadcasting of
spikes is calculated in the synchronous packet router.

However, in the aspect of networks, only the inter-chip interconnection network
is fully scalable. Both on-chip networks use central communication structures whose
throughput is limited by the central communication devices, such as the packet router
in the communication NoC and the SDRAM interface in the system NoC. The on-chip
networks would be saturated when the accumulative throughput requirement of all PEs
exceeds the throughput capability of the central communication devices. Such central
communication fabric is less scalable to support a large number of PEs than the on-chip
networks using mesh topology.

3.6.2 ASPIN

The asynchronous scalable programmable interconnection network (ASPIN) is an
asynchronous packet-switched on-chip network supporting clustered and shared me-
mory MPSoCs [1, 107]. It is a direct mesh network. An ASPIN router is depicted in
Figure 3.12 [105]. It uses the basic wormhole flow control method. Its switches have
been simplified by removing disabled turns defined in the XY routing. The router com-
prises ten hard macros: an input module and an output module in each direction. Data
between hard macros are delivered by 4-phase dual-rail pipelines. An input module
includes a FIFO and an intermediate pipeline stage (IPS). The FIFO contains several
bundled-data pipeline stages controlled by the fully decoupled control circuit [49]. Ex-
tra dual-rail to bundled-data and bundled-data to dual-rail converters are added before
and after the FIFO respectively. IPS is a simple dual-rail pipeline stage inserted to cope
with the long wire delay between input and output modules. An output module is a

3.6. PREVIOUS GALS NOCS 71

IPS

IPS

I
P
S

I
P
S

IPS

West
East

South

North

local

Input

Module

Output

Module

Figure 3.12: ASPIN router

multiplexer connecting input modules to the output port. The multiplexer is controlled
by a ring arbiter [75].

ASPIN is a fast and area efficient NoC system. Long wire delays between input
and output modules have been compensated by inserting intermediate pipeline stages.
Area consuming buffers are replaced by area efficient bundled-data pipelines. The fully
decoupled control circuit further doubles the storage efficiency. Complicated dual-rail
control circuits have been manually designed in the fully customized hard macros. The
ten macros can be carefully placed to balance long wires and improve throughput. The
estimated period of such NoC using a 90 nm technology was reported 0.88 ns, which
is equivalent to 1.131 GHz [105]. It is, so far, the fastest asynchronous NoC reported.

However, the fully customized hard macros and special designed asynchronous
cells are not usually affordable in standard cell based design flows. Ten hard macros
per router also implies a heavy burden in chip floorplanning. The reported 0.88 ns

period was extracted from a claimed latency accurate simulation, which uses trans-
port delay models where gate delays are scaled down to 90 nm and are fixed without
considering the output load and input transition time of individual gates. The actual
period could be much longer due to the scaling process and the inaccurate gate delay
estimation.

3.6.3 QoS NoC

The QoS NoC [47, 45] is the only published asynchronous VC router that strictly
follows the structure of synchronous VC routers shown in Figure 3.6. All data channels

72 CHAPTER 3. NETWORK-ON-CHIP

Switch

Allocator

VC

VC

VC

Allocator

VC

VC

I
n
p
u
t

p
o
r
t
s

O
u
t
p
u
t

p
o
r
t
s

Figure 3.13: ANOC router

are QDI 4-phase 1-of-4 pipelines. Every input buffer has four VC buffers assigned
with different priorities. The SPA arbiters inside output ports [46] always allocate the
output port to the VC with the highest priority in all concurrent requests. This router
is reproduced to support best-effort traffic in Appendix B.

QoS NoC is an early effort to provide QoS in asynchronous on-chip networks.
The full QDI implementation consumes low power and provides tolerance to varia-
tions. However, the period of a 8-bit QoS NoC router in 0.18 µm is around 4 ns [45],
which is much slower than ASPIN. It will be shown in Chapter 5 that VC compromises
throughput significantly.

3.6.4 ANOC

The asynchronous network-on-chip (ANOC) [7] is also a QDI VC router providing
QoS support. The ANOC router shown in Figure 3.13 and the router in the QoS NoC
have similar structures except for the central switch. In the QoS NoC router, VCs
in one input buffer are arbitrated and multiplexed; therefore, the central switch is a
5×5 crossbar. On the other hand, the ANOC router connects all VCs to the central
switch. As every direction is equipped with two VCs, the central switch is a 10×5
crossbar. VCs in one direction are also assigned with different priorities and output
ports arbitrate these VCs using static priorities, which is similar to the QoS NoC.

The extended switch in ANOC improves throughput. The ANOC router has been
implemented using a 0.13 µm standard cell library with an augmented asynchronous
cell library [78]. The router has been packaged into a hard IP core and utilized in the
MAGALI and the FAUST chips [26]. The period reported in [7] is around 4 ns.

3.6. PREVIOUS GALS NOCS 73

GS

router

BE

router

Programing
interface

I
n
p
u
t

p
o
r
t
s

O
u
t
p
u
t

p
o
r
t
s

Local port

Figure 3.14: MANGO router

It has the same throughput problem as the QoS NoC. The augmented asynchronous
cell library is another design problem. Building asynchronous circuits using only syn-
chronous standard cell libraries is more adaptable although using special asynchronous
cells significantly improves power, area and speed [78].

3.6.5 MANGO

The message-passing asynchronous NoC providing guaranteed service through OCP
interfaces (MANGO) [11, 12, 13] is the first asynchronous NoC providing circuit-
switched guaranteed services while also supporting packet-switched best-effort traffic.
The router structure is shown in Figure 3.14. Every router has a local port and four
other ports. The local port supports five services levels: four different GS service lev-
els and one BE service. Other ports use VC buffers for different services and eight
VCs are implemented (seven GS VCs and one BE VC). Unlike other input-buffered
asynchronous routers, MANGO routers are output-buffered. VC buffers are thus im-
plemented inside output ports. The central switch is expanded like the one in ANOC
but is divided into two separated switches: a GS router for circuit-switched GS ser-
vices and a BE router for packet-switched BE traffic. The GS router is dynamically
configured by packets from the BE router. The eight VCs in each output ports are dy-
namically scheduled by an asynchronous latency guarantee algorithm, which provides
latency and throughput guarantees for all GS VCs. All circuits use self-timed bundled-
data protocols. Implemented using a 0.12 µm standard cell library, the MANGO router
runs at equivalent 795 MHz (around 1.26 ns period).

Compared with other asynchronous NoCs that provide QoS using VCs, MANGO
guarantees a maximum frame delay for each service level. The asynchronous latency
guarantee algorithm running in each output port ensures that VCs with higher priorities

74 CHAPTER 3. NETWORK-ON-CHIP

VC SL-1VC SL-1VC SL-1VCIP SL-1

VC SL-1VC SL-1VC SL-1VCIP SL-2

VC SL-1VC SL-1VC SL-1VCIP SL-3

VC SL-1VC SL-1VC SL-1VCIP SL-4

VC SL-1VC SL-1VC SL-1VCOP SL-1

VC SL-1VC SL-1VC SL-1VCOP SL-2

VC SL-1VC SL-1VC SL-1VCOP SL-3

VC SL-1VC SL-1VC SL-1VCOP SL-4

VCA

SL-4

VCA

SL-4

VCA

SL-4

VCA

SL-4

SL

Arb
SW SL-1

SW SL-2

SW SL-3

SW SL-4Input Port Output Port

I
n
p
u
t

p
o
r
t
s

O
u
t
p
u
t

p
o
r
t
s

Figure 3.15: QNoC router

cannot starve other VCs with lower priorities [13]. On the contrary, the static priority
arbiters utilized in QoS NoC and ANOC allow the highest QoS level to occupy a shared
channel as long as it is busy.

However, the output-buffered switch introduces significant area overhead and is the
most area consuming part in the router. The self-timed bundled-data implementation
is less tolerant to variations than QDI implementations.

3.6.6 QNoC

The quality-of-service NoC (QNoC) [38] provides multiple VCs in each service level.
The router structure is depicted in Figure 3.15. Its structure is similar to the ANOC
router shown in Figure 3.13 but every service level (SL) has several equal-priority
VCs. The central switch is expanded to allow the input VCs (VC-IP) in one service
level to communicate directly with the output VCs (VC-OP) in the same service level.
The VC arbiter (VCA in Figure 3.15) in each service level selects one VC-OP from all
active VC-OPs every cycle. The SL arbiter in each output port selects one VC using
a static priority arbiter. All buffers and channels use self-timed 4-phase bundled-data
pipelines. The period of a QNoC router implemented using a 0.18 µm standard cell
library is around 4.8 ns.

QNoC demonstrates an example of providing multiple equal-priority VCs for ev-
ery service level. In this way, multiple equal-priority communications can share the
same router and traverse concurrently. However, it is not clear that such capability is
worthwhile in MPSoC systems because VCs introduce large area overhead.

3.7. SUMMARY 75

3.7 Summary

Network-on-chip is the state-of-the-art communication fabric in current MPSoC sys-
tems. Data delivered in a NoC are encapsulated into packets. According to the network
topology, a packet travels from its sender to the receiver over a path selected by a rout-
ing algorithm. Multiple packets may compete for network resources during transmis-
sion. Various flow control methods are therefore implemented to resolve contention.
The structure of a router is determined by the topology and the flow control method
selected by the NoC. Asynchronous NoCs are GALS networks where synchronous
PEs are connected by a global asynchronous on-chip network. The sync/async inter-
face issues are handled by the network interface inside every PE. Several asynchronous
on-chip networks have been proposed and implemented in recent years.

This thesis concentrates on improving throughput by exploring spatial parallelism
in the router structure. Channels and flow control methods are the major research
objectives. Because most MPSoC systems utilize mesh networks, all the router designs
in this thesis assume that the mesh topology is used.

Part II

Levels of Parallelism

76

Chapter 4

Parallelism in the Physical Layer

Asynchronous channels and pipelines are the basic elements of asynchronous on-chip
networks. The throughput of an asynchronous circuit is determined by the slowest
pipeline stage. This chapter tries to introduce spatial and timing concurrency into the
circuits of the physical layer. Two new techniques, channel slicing and lookahead
pipeline style, are proposed to reduce the period of basic asynchronous pipelines.

4.1 Synchronization overhead

Many asynchronous pipeline styles have been utilized in asynchronous on-chip net-
works. Self-timed 4-phase bundled-data pipelines have been used in MANGO [12],
ASPIN [105] and QNoC [38]. QDI 4-phase dual-rail pipelines have been used in AS-
PIN. QDI 4-phase 1-of-4 pipelines have been used in ANOC [7] and QoS NoC [47].
QDI 4-phase and 2-phase m-of-n pipelines have been used in SpiNNaker [99]. As de-
scribed in Section 2.4, bundled-data pipelines need detailed timing analysis and careful
delay insertion. Compared with 4-phase pipelines, 2-phase pipelines reduce period but
introduce complicated combinational circuits (see Section 2.3). QDI 4-phase pipelines
are promising candidates for asynchronous on-chip network due to their moderate area
overhead and tolerance to variations.

In all asynchronous routers using QDI 4-phase pipelines, wide pipelines are built
by synchronizing multiple bit-level pipelines as the 4-bit dual-rail pipeline shown in
Figure 4.1. The synchronized pipelines are easy to control because data on all bit-level
pipelines (slices) are synchronized. However, the completion detection (CD) circuit,
normally a C-element tree, introduces extra delay and prolongs the period.

77

78 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

stage

C
o
m
b
i
.

c
i
r
c
u
i
t

din0,0

ackin

slice1

slice2

slice3

slice1

slice2

slice3

din0,1

din1

din2

din3

dout0,0

ackout

dout0,1

dout1

dout2

dout3

slice0 slice0

Combi.

Circuit

tack tsyn

tpcd

tbuftbuf
tdata

stage

Figure 4.1: 4-bit 4-phase dual-rail pipeline

Assuming rising time and falling time are equal, the period T of the 4-phase dual-
rail pipeline depicted in Figure 4.1 can be calculated as:

T = 4tbuf + 2(tpcd + tsyn) + 2tdata + 2tack (4.1)

In this equation, tbuf , tdata and tack are the delays of a buffer cell, the combinational
circuit on data wires and the combinational circuit on ack wires respectively. tpcd and
tsyn are the delays of the completion detection circuits inside one slice and among slices
(the C-element tree). The buffer cells in multi-rail pipelines are normally 2-input C-
elements. Thus the buffer latency tbuf is equal with the latency of a 2-input C-element
tC. For a wide dual-rail pipeline of N bits, the latency of the C-element tree is:

tsyn = (log2

⌈
N

2

⌉
) · tC (4.2)

4-phase pipelines use return-to-zero signalling. The period T includes a positive cycle
for data transmission and a negative cycle for data withdrawal. Assuming gate rising
time and falling time are equal, T is obtained by doubling the loop path latency.

To evaluate the delay overhead of synchronizing bit-level pipelines (or slices), the
period is divided into two parts: the period of a single dual-rail pipeline (Tdual−rail),
and the extra delay caused by the synchronization (∆). In Figure 4.1, ∆ is the extra
delay caused by the C-element tree (2tsyn). In this way, synchronization overhead can

4.2. CHANNEL SLICING 79

be represented as:
∆

Tdual−rail

=
log2

⌈
N
2

⌉
· tC

2tC + tOR + tdata + tack
(4.3)

where tOR is the completion detection delay in a single dual-rail pipeline — the delay
of a 2-input OR gate.

In Equation 4.3, the denominator Tdual−rail is the minimum period without syn-
chronization, which is independent of N . The numerator ∆ is the synchronization
overhead, which increases logarithmically with N . Increasing the data width of a wide
pipeline leads to slow pipelines. From another aspect, routers are not computation
centric circuits. The combinational circuit between two pipeline stages are simple
multiplexers and de-multiplexers. Their delays tdata and tack are small, as well as the
minimum period Tdual−rail. Synchronization overhead is significant in simple circuits
like asynchronous routers.

Increasing the wire count of a single 1-of-n pipeline or m-of-n pipeline seems to
increase the total data width without introducing synchronization overhead. However,
a 1-of-n pipeline using more than five data wires is not area efficient. The completion
detection circuit of a single m-of-n pipeline introduces a similar delay overhead.

4.2 Channel slicing

The pipelined completion process [77] is a QDI pipeline style which moves the com-
pletion detection circuit outside the loop path of pipeline stages. A simplified imple-
mentation of the pipelined completion process in a 2-bit dual-rail pipeline is presented
in Figure 4.2. Compared with normal synchronized dual-rail pipelines (Figure 2.7),
extra C-elements (coloured in yellow) are inserted between slices and the synchro-
nization circuits. Each slice has its own ack line generated by these extra C-elements.
Hence individual slices generate acknowledge signals in parallel with pipeline syn-
chronization. To ensure the data transmitted on all slices are still synchronized, the
extra C-elements are guarded by the result of the synchronization C-element tree. An
extra synchronization C-element tree (coloured in grey) is also inserted in the sending
pipeline stage to guarantee that data are not released before they are captured.

The pipelined completion process can be applied to all QDI pipelines even with
complicated combinational circuits. Individual slices have their own ack lines and are
semi-decoupled from each other. The data sent by different slices in the same stage are

80 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

stagestage

slice1slice1

din0,0

din0,1

ackin0

din1,0

ackin1

dout0,0

dout0,1

ackout0

dout1,0

ackout1

slice0 slice0

Figure 4.2: Pipelined completion process

still synchronized. Extra C-elements and an extra C-element tree are used to guarantee
synchronization while decoupling pipelines.

Similar to the pipelined completion process, channel slicing is an aggressive tech-
nique that fully decouples slices whenever possible. An abstract implementation of
channel slicing is shown in Figure 4.3. The vertically divided pipelines where data
can be delivered independently, namely sub-channels, are fully decoupled. Every sub-
channel has its own ack line. The synchronization C-element tree is removed in all
stages and no extra C-elements are inserted. For the pipeline stages where complicated
combinational circuit is implemented or control is data dependent, extra sub-channel
control circuits are added on each slice in this stage to temporarily stop individual
sub-channels if synchronization is required on certain occasions. The pipeline control
circuit receives the data from all sub-channels along with the ack lines. Synchroniza-
tion can be regenerated when necessary.

Compared with the pipelined completion process, channel slicing is expected to in-
troduce much lower area overhead. Extra control circuits and synchronization circuits
are inserted only in the stages requiring synchronization. These circuits re-establish
the synchronization only when it is necessary. Thus the period of channel slicing is
shorter than that of the pipelined completion process most of the time because the ack
signals are directly generated by sub-channels. However, the circuit implementation
of the pipeline control circuit tightly depends on the local logic function while the
pipelined completion process generally fits all pipeline situations.

Channel slicing is suitable for asynchronous routers for two reasons: (1) Most

4.3. LOOKAHEAD PIPELINE STYLE 81

stagestagestage

slice1slice1

din0,0

din0,1

ackin0

din1
ackin1

dout0,0

dout0,1

ackout0

dout1
ackout1

Sub-ch.

Ctl.

slice1

Sub-ch.

Ctl.

Pipeline

Ctl.

slice0 slice0 slice0

Sub-channel0

Sub-channel1

Figure 4.3: Channel slicing

pipeline stages in an asynchronous router are simple pipelines without complex com-
binational calculation or data related control logic. (2) For a frame, only the header flit
and the tail flit need to be detected and analysed; data flits, which are the main body of
a frame, are normally delivered without reading them.

The major design issue of using channel slicing in asynchronous routers is re-
synchronization. Unlike the pipelined completion process, sub-channels in channel
sliced pipelines are fully decoupled. Without re-synchronization, parts of a new flit
can be transmitted by fast sub-channels while the old flit is under transmission by
slow sub-channels as shown in Figure 4.4, where two frames are transmitted by a 4-bit
channel sliced pipelines. Routers need to analyse the header flit for routing decisions.
Thus sub-channels should be re-synchronized when the header flit arrives. After a
path is reserved in the central switch, sub-channels deliver data independently at their
fastest speeds. The detailed implementation of channel slicing in a wormhole router
will be revealed in Section 4.4

4.3 Lookahead pipeline style

The data paths of asynchronous on-chip networks can be simplified into pipeline stages
and switches as shown in Figure 4.5. Several pipeline stages are placed in every input
buffer and output buffer. Input buffers and output buffers are connected by switches
inside routers and long wires outside routers.

82 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

H3 D3 D3 T3
time

H2 D2 D2 T2

H1 D1 D1 T1

H0 D0 D0 T0

D3

D2

D1

D0

D3

D2

D1

D0 H0

H1

H2

H3 D3 D3 T3

D2 D2 T2

D1 D1 T1

D0 D0 T0

D3

D2

D1

D0

D3

D1

D0

D2

Sub-ch. 0

Sub-ch. 1

Sub-ch. 2

Sub-ch. 3

Re-sync Re-sync

Figure 4.4: Data flow with channel slicing

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

Router Router

Figure 4.5: Critical cycles in asynchronous on-chip networks

The throughput of synchronous circuits is determined by the slowest data path —
the critical path. Likewise, the throughput of asynchronous circuits is determined by
the slowest loop path between two adjacent pipeline stages — the critical cycle. Data
paths of asynchronous on-chip networks normally have two types of critical cycles as
shown in Figure 4.5: the loop path through the central switch inside a router (coloured
in red) and the loop path between two adjacent routers (coloured in blue). The loop
paths between routers are comparatively easy to handle if they are the throughput bot-
tleneck. More pipeline stages can be inserted on long wires to reduce the period. It is
also preferable to use other asynchronous pipeline styles if allowable, such as 2-phase
pipelines [108], high-speed QDI pipelines [93] and wave-pipelined data links [39]. On
the other hand, the loop path through the central switch is difficult to cope with. No
intermediate pipeline stages can be inserted and using other pipeline styles complicates
the switch control logic. This is the critical cycle that needs special treatment.

The lookahead pipeline [111] is a relaxed QDI pipeline style providing fast data
rates by allowing the data wires and the ack line to be reset simultaneously. Since a
router is normally shipped in the form of a hard IP core in large GALS projects, using
relaxed QDI pipelines inside a router introduces no extra design burdens outside the
router IP but improves throughput.

A dual-rail lookahead pipeline and its STG are shown in Figure 4.6. It has the basic
structure of a QDI dual-rail pipeline but extra AND gates and C-elements are added
on ack lines. The AND gate in pipeline stage i allows the ack signal ai to be reset
when pipeline stage i+ 2 has safely captured the data transmitted in the current cycle;

4.3. LOOKAHEAD PIPELINE STYLE 83

din0

din1

ackin

dout0

dout1

ackout

di-1

ai-1

di

ai

di+1

ai+1

di+2

ai+2

pai-1 pai pai+1

nai-1 nai nai+1

(a) Dual-rail lookahead pipeline

di-1

ai-1

di

pai-1

+ +

+

+

di-1

ai-1

di

pai-1

_ _

_

_

di+1

pai

di+1

pai

ai +

ai
_

+

_

di+2

pai+1

di+2

pai+1

+

_

+

_

+

_

+

_ai+1

ai+1

ai+2

ai+2

_

nai-1 + nai + +nai+1

nai-1
_ nai

_ _nai+1

+

(b) Signal transition graph

Figure 4.6: Lookahead pipeline

therefore, stage i can receive a new data while stage i + 1 is releasing its data buffers.
The C-element ensures that the ack signal is not reset too fast, otherwise stage i + 1

fails to receive new data.

The critical cycle of this dual-rail lookahead pipeline is coloured in blue in the
STG (Figure 4.6b) while part of the original critical cycle of a QDI dual-rail pipeline
is coloured in red. Since the dependence between ai− and pai− does not exist in
lookahead pipelines, it is drawn as a dotted line. In the original QDI pipelines, ack line
ai is reset after the release of data di+1 indicated by pai−. The lookahead pipelines
allow di+1 to be withdrawn concurrently with ai−, which reduces period by 25% in the
best case. However, this STG is not speed-independent. Transition ai+ and transition
ai− are located in two parallel paths coloured in red and green. The STG itself cannot
ensure that ai− occurs after ai+. Two timing assumptions must be satisfied for the
correct operation [114, 111].

Ack setup time: Expressed in Equation 4.4, the first timing assumption ensures that

84 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

the positive pulse on ai is long enough for the asymmetric C-element to capture it.

tdi+1+→ai− − tdi+1+→ai+ > tsetup (4.4)

where tsetup is the setup time for a C-element (an asymmetric C-element in this case).
Assuming all C-elements incur the same cell delay, Equation 4.4 can be expressed in
gate delays and simplified into:

2 · tC + tAND > tsetup (4.5)

where tC and tAND are the delays of a C-element (or an asymmetric C-element) and
an AND gates respectively. Obviously Equation 4.5 is easy to satisfy in gate-level
implementations.

Data override: Since the reset of ai occurs concurrently with the release of di+1,
the new data on di must not arrive before the old data on di+1 are released. Assuming
tdi+→di+1+ is equal with tdi−→di+1−, this timing requirement can be expressed as:

tdi−→nai− + tnai−→di+ > tsetup (4.6)

which can be further described in gate delays:

tCD + 2 · tC + tINV > tsetup (4.7)

where tCD is the delay of the completion detection circuit in each pipeline stage (an
OR gate in dual-rail pipelines). Since the left side of Equation 4.7 is half the period of
the fastest dual-rail pipeline, it is longer than the setup time of a C-element. The data
override assumption is already met by hardware.

4.4 A channel sliced wormhole router

In this section, a wormhole router using channel sliced pipelines and the lookahead
pipeline style in its internal critical cycle is designed and implemented to demonstrate
the throughput improvement along with design overhead [114].

4.4. A CHANNEL SLICED WORMHOLE ROUTER 85

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

ctl arb

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

s
t
a
g
e

ctl arb

80 80

8080

16

16 16

16

din0

din4

ackin0

ackin4

dout0

dout4

ackout0

ackout4

Figure 4.7: A channel sliced wormhole router

4.4.1 Router structure

The internal structure of a channel sliced wormhole router is shown in Figure 4.7. It
has five bidirectional ports for four adjacent neighbours and the local PE. A 2-stage
pipelined buffer is connected to each input and output port. Input buffers and output
buffers are connected by a central switch controlled by the arbiters in the output ports.
Besides buffers, every input port has a router analysing the target address of incoming
frames using the XY routing algorithm and a controller sending routing requests to
the target output arbiters. In this implementation, each port delivers 32 bits per cycle
using 16 4-phase 1-of-4 pipelines. 1-of-4 pipelines are preferred as they consume less
energy than dual-rail pipelines and less area than m-of-n pipelines (Section 2.5) [114].
Using the channel slicing technique, every 1-of-4 pipeline is a sub-channel with its
own sub-channel controller.

According the wormhole flow control method, a frame is divided into flits. The
flit format is explained in Table 4.1. The address of the target node is represented in
eight binary digits which are enough to identify a 16 × 16 mesh network. The X and
Y addresses are further translated into 1-of-4 codes and stored in the least significant
bits of the header flit. The rest of the header flit is used for data. A variable number of
data flits may follow the header. Following the data payload, the frame is ended by a
tail flit indicating the end of a frame (EOF), in which the eof bit of every sub-channel
is set high.

As described in Section 4.2, all pipeline stages are spatially divided into unsynchro-
nized sub-channels. In the wormhole router implementation, only the second pipeline
stages of each input buffer are synchronized when the tail flit of the preceding frame
is transmitted and the header flit of the new frame is going to be analysed. A sub-
channel controller is inserted in the second pipeline stage of each sub-channel and a

86 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

Table 4.1: Flit format

sub-channels

flit type 0 1 2 3 4 ∼15

header tar X[1:0] tar X[3:2] tar Y[1:0] tar Y[3:2] byte[2:0]

data i byte[4i+ 7:4i+ 3]

tail EOF EOF EOF EOF EOF

d
i
n
i

ackini

d
o
u
t
i

ackouti

rt_err

ackeni

0

1

2

3

eof

0

1

2

3

eof
e
o
f
i

0

1

2

3

eof

hd0

hd1

hd2

hd3

gnt

Input buffer Output bufferSwitch

ackii

ackdpi

Lookahead pipeline

Figure 4.8: Data path of the ith sub-channel

router controller is inserted in each input buffer to control the XY router and establish
synchronization.

The circuit structure of the ith single sub-channel in both input and output buffers
is demonstrated in Figure 4.8. The second pipeline stage is controlled by two signals in
the bottom left corner of Figure 4.8: ackeni and rt err. The active low signal ackeni is
driven by the sub-channel controller of each sub-channel. A negative ackeni allows the
second pipeline stage to capture new data. It is driven high to block the sub-channel
when a header flit is expected or is being analysed. If a decoded routing request is not
valid due to wrong addresses or on-chip faults, rt err is driven high denoting the frame
should be dropped. In this case, ackeni is still driven low to activate the sub-channel
but the ack line generated by the second pipeline stage (ackdpi) is connected back
to the second pipeline stage. The ack line from the output buffers (ackii) is inactive
during the process as no valid routing request is produced. The second pipeline stage
is converted into a flit sink consuming all flits until the tail flit.

The tail flit of each frame is detected concurrently in all sub-channels, regardless
of the validity of the routing request. Once a sub-channel has delivered its share of the

4.4. A CHANNEL SLICED WORMHOLE ROUTER 87

rt_err

rt_dec

ackii

eofi
ch_fini

ackeni

(a) Implementation

rt_dec+

eof+/1

acken+/1

eof /1

ch_fin /1

acki+

acki

acken /1
ch_fin+/1

rt_dec
rt_err+

acken /2

eof+/2

acken+/2

eof /2

ch_fin+/2

rt_err

ch_fin /2

normal frame

faulty frame

_

__

_

_

__

_

_

(b) STG

Figure 4.9: Sub-channel controller

tail flit, indicated by the eofi bit, its ackeni is driven high. Consequently, the next flit is
captured and blocked in the first pipeline stage forcing re-synchronization.

The lookahead pipeline style is utilized in the pipeline stages connected to the
central switch — the critical cycle (see Figure 4.5). An AND gate is added in the
first stage of the output buffer generating the early evaluated ack signal (ackii). An
asymmetric C-element is added on this ack line on the receiver side ensuring new
data do not override the old data. This implementation exactly follows the dual-rail
lookahead pipeline shown in Figure 4.6.

The ackeni signal of an individual sub-channel is generated by the sub-channel
controller shown in Figure 4.9. This control circuit reads four inputs: the correct
routing decoding flag rt dec and the faulty routing decoding flag rt err from the XY
router in each input port, the ack line ackii from the central switch, and the eofi bit
of the second pipeline stage. Two signals are generated: the active low ack enable
signal ackeni and the frame termination flag ch fini which is high when the sub-channel
has delivered its share of the tail flit. The implementation depicted in Figure 4.9a is
synthesized from the STG shown in Figure 4.9b using Petrify [29].

As shown in the STG, a sub-channel is enabled after a decoded routing request,
either right or wrong, and remains active until the tail flit is transmitted. The second
pipeline stage releases the tail flit after it is blocked, making sure no further flits are
transmitted. The frame termination flag ch fini is set after the release of the tail flit and
unset when the previous routing request is withdrawn.

Every input port has an XY router analysing the header flit of incoming frames. It
is controlled by the router controller demonstrated in Figure 4.10. It generates an active

88 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

ch_fin0

ch_fin15

rt_err

rt_dec

rt_en

rt_rst

(a) Implementation

rt_dec+

rt_en /1

rt_rst+/1
rt_rst

rt_en+

rt_err+

rt_en /2

rt_rst+/2

rt_dec rt_err

normal frame

faulty frame

_

_

_

_

_

(b) STG

Figure 4.10: Router controller

high router enable signal rt en by reading the routing requests rt dec and rt err, and
the frame termination flags ch fini from all sub-channels. The circuit implementation
is also synthesized from the STG illustrated in Figure 4.10b. The router is enabled
when all sub-channels have delivered and released their shares of the tail flit, and is
disabled once a routing request is decoded, either right or wrong. The decoded request
is captured by some C-elements inside the router.

Figure 4.11 depicts the XY router in the south input port and its connection with
the arbiter inside the east output port. The target addresses tar X and tar Y are read
from hd0 ∼ hd3 (Figure 4.8), which are the output of the first pipeline stage in the
input buffer. Note that rt en is only high when the second pipeline stage has released
the tail flit and been disabled. Therefore, the data on hd0 ∼ hd3 must be the header flit
blocked in the first stage. The addresses are compared with the local addresses loc X

and loc Y using two 1-of-4 comparators. They are implemented in one-hot circuits
using a structure similar to the dual-rail comparators in ASPIN (Figure 18 in [105]).
The comparison results are translated into routing requests and captured by the C-
elements controlled by rt rst, which resets the routing requests after releasing the tail
flit. Valid routing requests are forwarded to corresponding arbiters in output ports
while invalid requests trigger the rt err signal and withdraw the frame. Signal rt dec

is set immediately after valid requests and remains high until corresponding arbiters in
output ports are released.

4.4. A CHANNEL SLICED WORMHOLE ROUTER 89

Compare

Compare

>
<

=

>
<

=

MUTEX MUTEX

MUTEX MUTEX

MUTEX MUTEX

rt_en

loc_X

loc_Y

tar_Y

tar_X

rt_rst

South XY router E
a
s
t

o
u
t
p
u
t

a
r
b
i
t
e
r

request

to west

request

to local

request

to north

grants from

other ports

rt_err rt_dec

requests from

input ports

grants to

input ports

f
r
o
m

h
d
0
~

h
d
3

Figure 4.11: XY router and output arbiter

4.4.2 Performance

The channel sliced wormhole router has been implemented using the Faraday 0.13 µm

standard cell library [44] based on the UMC 0.13 µm technology. All parts of the rou-
ter are described in synthesizable Verilog HDL. The router controller and sub-channel
controllers are synthesized from their STGs using Petrify [29] while other parts are
manually written in gate-level netlists. The router has been mapped into the Faraday
library cells using Synopsys Design Compiler. The netlist is further placed and routed
using Synopsys IC Compiler. Synopsys Star-RCXT has been used to extract parasitic
resistors and capacitors, which are used in Synopsys PrimeTime to generate a back-
annotation standard delay format (SDF) file for post-layout simulation. All simulation
results are collected under the typical corner (25 ◦C, 1.2 V) with back-annotated de-
lays.

The area after synthesis is around 14.3 k gates (0.057 mm2). The period of data
flits is 1.7 ns providing the maximum throughput of 18.8 Gbit/Port/s. The average
latency for a data flit traversing the router is 1.7 ns. For the header flit, a minimum
of 0.8 ns is required to analyse the target address and request to the arbiter in the
corresponding output port.

Besides the channel sliced (ChSlice) wormhole router using lookahead (LH) pipe-
lines, a traditional wormhole router using synchronized pipelines and a wormhole rou-
ter using channel slicing only have been implemented. The area of these routers is
presented in Table 4.2.

Channel slicing introduces 23% area overhead compared with the traditional rou-
ter using synchronized pipelines. The area of the central switch increases due to the
enlarged wire count. The synchronized 1-of-4 pipeline needs 66 wires (64 data bits,
one EOF bit and one ack line). Channel slicing uses independent sub-channels with

90 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

Table 4.2: Router area

input buffer output buffer switch overall

No ChSlice or LH 4.3 k 4.4 k 2.4 k 11.3 k
ChSlice only 5.8 k 4.5 k 3.2 k 13.9 k
ChSlice and LH 6.2 k 4.5 k 3.3 k 14.5 k

(unit: equivalent gate)

Table 4.3: Speed performance

period equ. frequency router latency routing

No ChSlice or LH 2.9 ns 345 MHz 2.8 ns 0.8 ns
ChSlice 2.2 ns 455 MHz 2.1 ns 0.8 ns
ChSlice and LH 1.7 ns 588 MHz 1.7 ns 0.8 ns

individual EOF and ack lines. The total wire count is increased to 96 (64 data bits, 16
EOF bits and 16 ack lines). Consequently the switch is enlarged. The total number of
C-elements in channel sliced pipelines and synchronized pipelines are equal. Although
an extra C-element is added in each individual sub-channel for the EOF bit, this area
overhead is compensated by the removal of the synchronization circuit. The area of
output buffers does not vary in all routers. The area overhead of input buffers is mainly
due to the sub-channel controllers. Since sub-channel controllers are added only in the
last pipeline stage in the input buffers, increasing the length of buffers introduces no
further area overhead.

The lookahead pipeline style brings no significant area overhead. Only the area of
input buffers is slightly increased. It is believed that the asymmetric C-element added
on acki in Figure 4.8 is the major cause. This C-element is located on the critical cycle
and its driving strength has been optimized for speed performance.

As shown in Table 4.3, channel slicing and lookahead pipelines improve throughput
significantly. These speed results are produced by averaging the period and router
delays of sending a frame from the south input to the east output, which has the worst
router delay. Channel slicing and lookahead pipelines reduce the period by 24.1%
and 17.2% respectively. The router using both channel slicing and lookahead pipelines
delivers data flits at equivalent 588 MHz, which is 1.7 times of the equivalent frequency
of the traditional router using synchronized pipelines.

4.5. SUMMARY 91

� �� �� �� �� ��� ���

�

��

��

��

��

��

�
�
�

�
	�
�
	�
�
��
�
��
�

�
�

����� �
�
� �����

� ��	������

� ��� ��	������

(a) Router area

� �� �� �� 	� ��� ���

���

���

���

���

���

���

	
�

�
�
�
��

�
�
�

����� �
�
� �����

� ��	������

� ��� ��	������

(b) Period

Figure 4.12: Area and speed with various data widths

A major disadvantage of using synchronized pipelines is the deteriorated through-
put with increasing data width. The sub-channels in channel sliced pipelines are unsyn-
chronized most of the time. Unlike synchronized pipelines, increasing data width leads
to no significant throughput degradation. Figure 4.12 shows the router area and speed
with various data widths. The router area is linear with data width as expected. The
period of the channel sliced router remains around 1.7 ns while it increases to more
than 3.5 ns in the router using synchronized pipelines. Channel slicing is a desirable
technique in wide QDI pipelines.

4.5 Summary

In this chapter, two novel techniques have been proposed to improve the pipeline
throughput of asynchronous routers: channel slicing and the lookahead pipeline style.
Channel slicing removes the synchronization among the sub-channels in one wide pi-
peline. Hence every individual sub-channel delivers data at its fastest speed without
waiting on other sub-channels. When synchronization is required in some particu-
lar pipeline stages, sub-channel controllers are added in these stages to re-establish the
synchronization whenever necessary. The lookahead pipeline style is a relaxed QDI pi-
peline implementation using early evaluated acknowledge signals. It allows a pipeline
stage to capture new data concurrently with the release of old data in the succeeding
pipeline stage. The timing assumptions required for correct operation are shown to be
satisfied in gate-level implementations. The introduced concurrency reduces the period
by a maximum of 25%.

92 CHAPTER 4. PARALLELISM IN THE PHYSICAL LAYER

A wormhole router has been implemented in layout using the channel slicing tech-
nique and the lookahead pipelines. Compared with the router using synchronized pipe-
lines, the new router achieves 70% throughput improvement with 28% area overhead.
The implementation results with various data widths demonstrate that increasing the
data width in channel sliced routers leads to no throughput degradation but the degra-
dation is significant in routers using synchronized pipelines.

Chapter 5

Parallelism in the Switching Layer

The preceding chapter introduced two techniques which are ready for use in the phys-
ical layer to improve the throughput of asynchronous pipelines. This chapter pro-
poses a new flow control method in the switching layer — spatial division multiplexing
(SDM). The performance advantages and design overhead of SDM will be compared
against the virtual channel (VC) flow control method, which is extensively adopted in
most asynchronous on-chip networks. Behavioural level SystemC models have been
built for routers using wormhole, SDM and VC. The simulation results show that SDM
outperforms VC in throughput.

To avoid ambiguity, the terminologies used in this and following chapters are de-
fined as follows:

Port of a router All the I/O pins of a router pointing to a specific direction
Port of a switch All the I/O pins of a switch connected to a specific component
Link The wires and buffers between the ports of two routers
Frame A packet generated by PEs
Flit A part of a frame which can be transmitted in one period
Stage All the buffers storing a single flit
Channel The data path of a frame, including all the buffer stages in the

links and routers on the way
Virtual circuit A channel using only a portion of the full data width
Virtual channel A virtual data path of a frame using the full data width in a

time divided manner
Or, the buffers in a router belonging to a virtual channel

93

94 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

time

VA SA DT

SA DT

SA DT

header

data

data

(a) Synchronous VC
time

VA SA DT

SA DT

SA DT

header

data

data

(b) Asynchronous VC

Figure 5.1: Data flow of VC

5.1 Problems of the virtual channel flow control

Virtual channel (VC) is the most utilized flow control method in synchronous on-chip
networks thanks to its capability of alleviating the HOL problem. However, utilizing
VC in asynchronous on-chip networks introduces significant design overhead and the
throughput improvement is far from satisfactory. Although VC has already been em-
ployed in numerous asynchronous on-chip networks [46, 12, 7, 38], all of them use
VCs to provide QoS support rather than improve throughput. VC is not a desirable
method for high throughput asynchronous on-chip networks.

An asynchronous VC router suffers from three different disadvantages: slow switch
allocation, large area overhead, and long pipeline synchronization latency.

Switch allocation

The switch allocation in asynchronous VC routers significantly compromises through-
put.

As shown in Figure 5.1a, the transmission of a flit in synchronous VC routers pro-
ceeds in three steps: VC allocation (VA), switch allocation (SA) and data transmission
(DT) [35]. Only header flits require the VC allocation step during which the VC allo-
cator reserves a VC in the target output port. Since all VCs share the central switch in a
time divided manner, all flits need to compete for a path in the switch before transmit-
ting data. In a synchronous VC router, all VCs are synchronized by the global clock.
VA, SA and DT are pipelined and accomplished in three clock cycles. As shown in
Figure 5.1a, a flit can pre-order a path while another flit is under transmission.

An asynchronous VC router cannot pipeline the switch allocation with data trans-
mission as a path cannot be pre-allocated to a VC before it is released. As a result, the
absolute time consumed by each flit is the accumulated delay of SA and DT rather than
a single clock cycle in synchronous VC router. Figure 5.1b depicts the asynchronous

5.1. PROBLEMS OF THE VIRTUAL CHANNEL FLOW CONTROL 95

Table 5.1: Buffer area

Number of Latches Latch Type Area

synchronous buffer D ·W flip-flop 2820 µm2

async dual-rail 4D ·W C-element 10140 µm2

async 1-of-4 4D ·W C-element 8040 µm2

async 2-of-7 3.5D ·W C-element 9760 µm2

data flow. The latency of switch allocation has been directly added into the critical
cycle. Network throughput is compromised significantly.

Area overhead

It is well known that buffers are the major area overhead in synchronous VC routers
[87]. Asynchronous buffers consume more area than their synchronous counterparts,
leading to an even larger area overhead.

Table 5.1 illustrates the area overhead of synchronous and asynchronous buffers
using different data encoding methods. The second and third columns reveal the type
and number of latches needed for a buffer to store D data flits with data width of W
bits. All asynchronous buffers are 4-phase QDI pipelines using C-elements as storage
components. Wide pipelines are built by synchronizing multiple bit-level pipelines. A
single asynchronous pipeline stage is a half buffer stage. Two asynchronous pipeline
stages are equivalent to one synchronous pipeline stage using flip-flops. A minimum of
2D pipeline stages are required for D flits. The C-element tree in the synchronization
circuit introduces extra area overhead. The last column in Table 5.1 demonstrates the
minimum area1 of implementing buffers for four 32-bit flits (D = 4,W = 32) using
the Faraday 0.13 µm cell library [44]. Obviously, asynchronous buffers are signifi-
cantly larger than synchronous buffers.

Synchronization overhead

As described in Section 4.1, synchronization overhead is the extra latency incurred by
synchronizing multiple bit-level pipelines into a wide pipeline. In asynchronous VC
routers, the central switch is re-allocated in every data cycle. Thus pipeline stages must
be synchronized in every data cycle and channel slicing cannot be used.

1All gates are implemented using the smallest driving strength.

96 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

DiN

AiN
e[3]

w[2]

s[1]

l[0] N2L

N2S

N2E

N2W

E2W

S2W

L2W

DoW

AoW

AoE

AoS

AoL

e[3]

w[2]

s[1]

l[0]

Figure 5.2: Crossbar in asynchronous VC routers

In addition to the synchronization overhead in pipelines, the frequent re-allocation
of the central switch also introduces extra area and extra latency in the critical cycle.
Figure 5.2 depicts the crossbar implementation in QoS NoC (reproduced from Fig-
ure 8.12 in [45]). Since the crossbar configuration signals (e[3], w[2],s[1] and l[0])
are withdrawn with data, extra C-elements must be inserted on the ack lines to ensure
AiN drops after AoW (or other ack signals). If the path is allocated to a frame rather
than a flit, such as the wormhole routers in Section 4.4, the configuration signals can
be withdrawn after AiN− and no extra C-elements are needed.

5.2 Spatial division multiplexing

The latency overhead of VC routers is related to synchronization — the synchroniza-
tion among bit-level pipelines, and the synchronization between switch allocation and
data transmission. Instead of introducing timing concurrency which leads to synchro-
nization, the spatial division multiplexing flow control method brings spatial paral-
lelism which alleviates the HOL problem without introducing extra synchronization.
It has been utilized in synchronous on-chip networks to improve throughput [54] or to
provide QoS support [71]. It will be shown that using SDM in asynchronous on-chip
networks provides better best-effort throughput than using VC.

The structure of an SDM router is shown in Figure 5.3. Every port or buffer is
spatially divided into multiple virtual circuits2 [71]. Assuming the data width of each
port is W bits and every port is divided into M virtual circuits, the data width of a
single virtual circuit is W/M bits. Every virtual circuit delivers a frame independently
in a serialized manner without sharing any resources with other virtual circuits. When

2To avoid the ambiguity between virtual channel and virtual circuit, the abbreviation VC represents
virtual channel in the whole thesis.

5.2. SPATIAL DIVISION MULTIPLEXING 97

Switch

Allocator

I
n
p
u
t

p
o
r
t
s

O
u
t
p
u
t

p
o
r
t
s

Figure 5.3: SDM router

one frame is blocked in one router, only the virtual circuit allocated to this frame is
wasted. Other frames can go through the same port using other unblocked virtual
circuits. Hence the HOL problem is alleviated.

SDM routers introduce no synchronization overhead. Since virtual circuits are
exclusively allocated to frames, no resource is shared. The path reserved in the central
switch holds for the whole transmission duration of a frame. Thus switch allocation
is made once per frame introducing no extra latency. Furthermore, the data width
of each virtual circuit is a portion of the port data width. SDM, in fact, reduces the
synchronization overhead among bit-level pipelines.

Long frame latency and large switch area are the major design overhead of SDM
routers. Since frames are serialized to fit the data width of a single virtual circuit, the
frame latency is prolonged. The frame latency tF can be expressed as:

tF = tR ·h+ T · l ·M + tA (5.1)

where tR is the router latency; h is the number of hops between frame sender and
receiver; T is the period of data paths; l is the number of flits in a frame; M is the
number of virtual circuits in one port; tA is the extra latency introduced by HOL prob-
lems. When the number of virtual circuits in one port increases, frame latency rises
with the increasing M . However, tA, T and tR are reduced as the HOL problem is alle-
viated and the synchronization overhead is decreased with small data width. The frame
latency overhead is not significant when the network size is large (large h), frames are
short (small l) or the network is heavily loaded (large tA).

98 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

SDM routers use large central switches. In an SDM router with P ports, M × P

input virtual circuits are connected to M×P output virtual circuits leading to a MP ×
MP crossbar. The area of a crossbar is proportional to the number of cross-points3

inside it. Accordingly, the area of the crossbars inside wormhole routers and SDM
routers can be calculated as:

AWormhole = P 2W ·ACP (5.2)

ASDM = M2P 2(W/M) ·ACP = MP 2W ·ACP (5.3)

where ACP is the equivalent area of a single cross-point. The area of the crossbar in
an SDM router is proportional to the number of virtual circuits.

Although SDM introduces large switches, this area overhead is expected smaller
than that of VC routers for three reasons:

• The size of the buffers in SDM routers is not increased; therefore, the large
central switch is the major area overhead. As shown in the area breakdown
of the wormhole router in Table 4.2, switches are smaller than buffers. Hence
increasing the size of switches leads to smaller routers than increasing the size
of buffers, assuming the same number of VCs/virtual circuits are implemented.

• VC routers also increase the size of switches. If extended switches (Sec-
tion 3.6.4) are used, such as ANOC [7], MANGO [12] and QNoC [38], the size
of the switch is exactly the same as that of the SDM switch when the number
of VCs is M . Even when the normal P × P switch is used as in the QoS NoC
router [47], extra multiplexers are added on the outputs of input buffers leading
to an area overhead of MPW ·ACP .

• As it will be presented in Section 6.4, utilizing a 2-stage Clos switch reduces the
size of the switch to

ASDM+Clos = (P 2 +MP)W ·ACP (5.4)

which introduces the same area overhead as the extra multiplexer in QoS NoC
routers.

3A cross-point is a single switching element in an array of elements that comprises a switch.

5.3. AN SDM ROUTER 99

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

XY router
rt_en

rt_rst

Router

controller

rt_en

rt_rst

Di

Ai

D2CB

A2CB

rt_ra

rt_r

stg L-1 stg 1 stg 0

acken

a
c
k
i

e
o
f

Figure 5.4: Input buffer for a virtual circuit

5.3 An SDM router

This section describes the hardware details of a relaxed-QDI SDM router. An SDM
router is synthesized into gate-level netlists using the Faraday 0.13 µm cell library
[44]. The area and speed performance are revealed accordingly.

5.3.1 Router structure

The overall structure of an SDM router has already been presented in Figure 5.3. The
buffer in each input port is divided into M independent input buffers for individual
virtual circuits, each of which is W/M bits wide. Every one of them has its own
XY router and router controller. The structure of an input buffer for a virtual circuit
is shown in Figure 5.4 [115]. It has L stages of buffers. The 0th pipeline stage is
connected to the central switch and controlled by the local router controller. Incoming
header flits are blocked in the 1st pipeline stage and analysed by the local XY router,
whose internal structure has been illustrated previously in Figure 4.11. The decoded
route requests rt r are sent to the switch allocator. A path inside the central switch
is successfully reserved when a notification is received from rt ra. The local router
controller can temporarily pause the pipeline by setting the active low signal acken to
high when a new header flit is expected.

Figure 5.5 shows the router controller circuit synthesized from its STG using Pet-
rify [29]. Initially the buffer is blocked waiting for a new header flit. Once a path is
reserved in the central switch, indicated by rt ra+, the XY router is disabled (rt en−)
and the buffer is activated (acken−). After the frame is delivered, the tail flit drives
both eof and acki to high. Triggered by the tail flit, the router controller sequentially
blocks the buffer and withdraws the tail flit (acken+), resets the decoded routing request
(rt rst+), and finally restarts the XY router (rt en+) for the succeeding frame.

100 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

acki

eof

rt_ra

rt_en

acken

rt_rst

(a) Implementation

rt_ra+

rt_en

acken

eof+ acki+

acken+

eof acki

rt_rst+

rt_ra

rt_rst rt_en+

_

_

_ _

_

_

(b) STG

Figure 5.5: Router controller

The output buffer of each virtual circuit contains only one pipeline stage, which
decouples the critical cycle from the inter-router channels. The central switch is an
MP × MP crossbar dynamically configured by P switch allocators, one for each
output port. Since the router controllers in input buffers guarantee that the decoded
routing requests remain stable until the whole frame is delivered, no extra C-elements
are needed in the crossbar.

The switch allocator is the most complicated component in an SDM router. Unlike
a wormhole router where every output buffer heads to a different direction, an SDM
router has up to M virtual circuits implemented in every output port heading to the
same direction. The central switch allocator can be separated into P distributed allo-
cators but every distributed allocator is required to allocate M output virtual circuits to
MP input virtual circuits, which cannot be done by asynchronous arbiters. So far the
only QDI allocator available for this task is the multi-resource arbiter4 (Section 2.7).

Figure 5.6 demonstrates a switch allocator for one output direction. It has two parts:
a multi-resource arbiter in the lower layer (Figure 5.6a) and a configuration capture
matrix in the upper layer (Figure 5.6b). The multi-resource arbiter reads requests from
rt r and matches them to available virtual circuits indicated by vc rdy. As described
in Section 2.7.2, the match process proceeds in a sequential way: only one pair of
rt ri and vc rdyj is matched at one time. The match result is denoted by hj,i. In order
to match another pair, the corresponding rt ri and vc rdyj are withdrawn immediately
after the result hj,i is captured in the configuration capture matrix.

4The multi-resource arbiter is named an arbiter but actually it is an allocator due to its ability to
match multiple resources to multiple clients. For the definitions of arbiter and allocator, please refer to
Chapter 19 of [35].

5.3. AN SDM ROUTER 101

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

A
r
b
i
t
e
r

Arbiter

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

h
0,0

h
0,MP-1

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

r
i

c
b
o

r
b
i

rbo

cbi

ci

h

h
M-1,0

h
M-1,MP-1

c_block0 c_blockm-1

r
_
b
l
o
c
k
0

r
_
b
l
o
c
k
n
-
1

rt_r0

rt_ra0

rt_rMP-1

rt_raMP-1

vc_rdy0 vc_rdyM-1

(a) Multi-resource arbiter

h0,0 hM-1,0

cfg0,0 cfgM-1,0

rt_ra0

rt_r0

h0,MP-1

h
M-1,MP-1

cfg
0,MP-1

cfgM-1,MP-1

rt_raMP-1

rt_rMP-1

vc_rdyM-1vc_rdy0

(b) Configuration capture matrix

Figure 5.6: Switch allocator

The configuration capture matrix is depicted in Figure 5.6b. The switch configu-
ration signals cfg are generated by the matrix of C-elements, which are triggered by
h. When a configuration cfgj,i is produced, the corresponding virtual circuit ready flag
vc rdyj is withdrawn and the acknowledgement to the input virtual circuit rt rai is
set. The acknowledgement is also connected to the multi-resource arbiter in order to
release hj,i.

102 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

5.3.2 Performance

An QDI SDM router [115] has been implemented using the Faraday standard cell
library [44] based on the UMC 0.13 µm technology. The router has five bi-directional
ports compatible with normal mesh topology. The data width of each port is set to 32
bits. Four virtual circuits are implemented in each port. Every input buffer has two
pipeline stages.

In the flit definition for wormhole routers as described in Table 4.1, a header flit
contains an 8-bit address field and three bytes of data. In the SDM router, every port
and buffer are divided into four virtual circuits, each of which is eight bits wide. Thus
every original 32-bit flit in the network using wormhole routers are serialized into four
8-bit flits in the network using SDM routers. For the header flit, the first serialized
flit contains the 8-bit address to avoid extra routing latency. The router can provide
more than four virtual circuits although extra area and latency overhead is introduced.
Assuming N bits are required to decode a route request, using a virtual circuit which
is less than N bits wide divides the N bits into multiple flits. In this case, the XY
router has to wait for multiple flits before producing a routing request. Undesirable
serialization latency is introduced.

The router area derived from the post-synthesis netlist is 71, 956 µm2 (equivalent
to 17.99 k gates). Accurate gate delays are obtained from the coarse placer provided by
the Synopsys Designer Compiler Topographical Technology [123] in synthesis. The
evaluated period of the SDM router is 4.1 ns. The router latency for data flits is 2.49 ns.
The XY router and the switch allocator require 0.51 ns and 3.21 ns respectively to
decode a route request and reserve a path.

5.4 Behavioural level comparison

This section provides behavioural level SystemC [92] models for wormhole, SDM and
VC routers; therefore, they can be simulated in large networks with various configura-
tions. Area and latency estimation models are derived from different router architec-
tures. The latency estimation is used in SystemC simulations for accurate throughput
performance [115].

5.4. BEHAVIOURAL LEVEL COMPARISON 103

5.4.1 Models for wormhole and SDM routers

Area consumption

The area of a router with P ports can be expressed as:

A = P · (AIB + AOB) + ACB + AA (5.5)

where AIB, AOB, ACB and AA are the area of an input buffer, an output buffer, the
crossbar and all allocators.

As shown in Figure 5.4, an input buffer contains L buffer stages, an XY router
and a router controller. A buffer stage is built from multiple 4-phase 1-of-4 pipelines.
Supposing the data width is W , every buffer stage needs 2W + 1 C-elements to store
data and the eof bit. The completion detection circuit requires extra 0.5W − 1 C-
elements to generate the common ack signal. Accordingly, the area of an input buffer
in a wormhole router can be expressed as:

AIB,WH = L · (2.5WAC + AEOF) + AR + ARC (5.6)

where AC, AEOF, AR and ARC represent the area of a 2-input C-element, the extra
logic introduced by the eof bit, the XY router and the router controller respectively.

An output buffer is a single buffer stage.

AOB,WH = 2.5WAC + AEOF (5.7)

M virtual circuits are implemented in an SDM router, each of which is W/M bits
wide. As a virtual circuit delivers frames independently, it is a fully functional input
buffer but with a narrow data width. The area of the input and output buffers of SDM
routers can be calculated as follows:

AIB,SDM = M · [L · (2.5W
M

·AC + AEOF) + AR + ARC] (5.8)

AOB,SDM = 2.5WAC +MAEOF (5.9)

As shown in Figure 5.7, a crossbar consists of an AND gate matrix and several
OR gate trees. The size of the AND gate matrix and the number of the OR gate trees
are determined by the number of ports and the wire count of each port. The crossbar
inside a wormhole router has P ports while the one in an SDM router has MP ports.

104 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

cf
g0,

2

cf
g1,

2

cf
g2,

2

cf
g0,

3

cf
g1,

3

cf
g2,

3

cf
g0,

1

cf
g1,

1

cf
g2,

1

cf
g0,

0

cf
g1,

0

cf
g2,

0

di0

di1

di2

di3

do0 do1 do2

Figure 5.7: A 1-bit 4× 3 crossbar

Assuming all 2-input gates have the same area, the area of crossbars is as follows:

ACB,WH = (2W + 2)(2P 2 − P)Ag (5.10)

ACB,SDM = (
2W

M
+ 2)(2M2P 2 −MP)Ag (5.11)

where Ag is the equivalent area of a 2-input gate.
It is difficult to provide accurate area estimation for allocators. The area depends on

the structure of the allocator and the number of clients/resources. Assuming all routers
use the multi-resource arbiter, whose area is roughly proportional to the arbitration
scheme, the area can be estimated as:

AA,WH = P 2Aarb (5.12)

AA,SDM = M2P 2Aarb (5.13)

where Aarb is the equivalent area overhead of a single arbitration point for one client
and one resource.

Several wormhole and SDM routers have been implemented. Using the area re-
ported from the post-synthesis netlists, the parameters in Equation 5.6 to 5.13 are ex-
tracted as follows (in unit of µm2):

AC = 14.7 AEOF = 11 AR = 440 ARC = 45 Ag = 2.45 Aarb = 86

The detailed area and the estimation error of the area model are illustrated in Ta-
ble 5.2. A wormhole router and an SDM router has been designed and synthesized.
The crossbar and the switch allocator are simplified by removing unnecessary turn

5.4. BEHAVIOURAL LEVEL COMPARISON 105

Table 5.2: Area consumption

Wormhole SDM

Actual Estimated err(%) Actual Estimated err(%)

Input buffers 14,303 14,295 0.0 21,995 21,900 -0.4
Output buffers 5,935 5,935 0.0 6,000 6,100 1.7
Crossbar 4,356 4,366 0.0 21,744 21,697 -0.2
Switch allocator 772 1,376 78.2 22,208 22,016 -0.9

Total 25,366 25,972 2.4 71,956 71,713 -0.3
(unit: µm2)

�
�
�
�
�
��

�
�
�
�
�
	�

�
�
�
�
�
��
� �

��
�
�
�
�
�� �

�
��

��
�
�
�
�
�� �

�
	�

��
�
�
�
�
�� �

�
��
�

��
�
�
�
	
�� �

�
��

��
�
�
�
	
�� �

�
	�

��
�
�
�
	
�� �

�
��
�

��
�
�
�
�
�� �

�
	�

��
�
�
�
�
�� �

�
��
�

�

�

�

�

	

�
�
�

	�
�
��
��

��
�
�
�

Figure 5.8: Area estimation error

models in the XY routing algorithm (see Section 7.1.2 and Figure 7.5 for a detailed
explanation of the turn models); the actual area models have been adjusted accord-
ingly. It is shown that the area models successfully estimate the area of all router
components within a maximum error of 1.7% except for the switch allocator in the
wormhole router. This significant error is due to the different allocator structure. The
multi-way MUTEX arbiters used in wormhole routers consume much less area than
multi-resource arbiters. Since allocators take only a small portion of the total area and
the overall area of a router is more important than the area breakdown, this estimation
error can be tolerated.

Figure 5.8 reveals the area estimation error of routers with various configurations.
In all configurations, the estimation error is lower than 4.9% (SDM router M = 4 and
W = 64). It is shown that the area models are adequate to estimate the area of routers
in various configurations.

106 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

Latency analysis

The throughput of an asynchronous pipeline is constrained by the period of its critical
cycle. Hence a latency model for the critical cycle is essential to achieve accurate
throughput estimation. As described in Section 4.3, the critical cycle in asynchronous
routers is the path around the pipeline stages connected to the central switch. Assuming
rising time and falling time are the same in all gates, the latency T of the critical cycle
can be expressed as:

T = 4tC + 4tCB + 2tCD + 2tAD + tCTL (5.14)

where tC is the propagation latency of a C-element used to store data, tCB is the prop-
agation latency of the crossbar, tCD is the propagation latency of the completion de-
tection circuit, tAD is the latency of the isochronic fork on the receiver end of the ack
line, namely the ack driver latency, and tCTL is the extra latency caused by the router
controller.

Linear delay models are used to approximate these latencies. The C-elements are
connected to the crossbar. Thus tC is linear with the number of ports of the crossbar.

tC,WH = lC + kC(P + 1) (5.15)

tC,SDM = lC + kC(MP + 1) (5.16)

where lc is the latency of a C-element with zero load and kc is the fanout latency (the
extra latency introduced by every extra fanout). Similarly, the ack driver latency tAD is
linear with the wire count of one buffer stage.

tAD,WH = lAD + kAD(2W + 1) (5.17)

tAD,SDM = lAD + kAD(2W/M + 1) (5.18)

where lAD and kAD are the latency of the ack driving gate and the fanout latency.

The crossbar contains an AND gate matrix and several OR gate trees. The depth of
the OR gate tree is determined by the number of input ports. Assuming all OR gates
have the same propagation latency,

tCB,WH = lCB + kCB · log2(P) (5.19)

tCB,SDM = lCB + kCB · log2(MP) (5.20)

5.4. BEHAVIOURAL LEVEL COMPARISON 107

where lCB and kCB are the propagation latencies of an AND gate and an OR gate
respectively.

The completion detection circuit contains a C-element tree. The latency of this
tree is proportional to its depth. The final common ack signal drives the gates to all
input ports; therefore, its fanout is proportional to the number of ports. The latency
estimation must consider the impact by both effects.

tCD,WH = lCD + lC · log2(W/2) + kCD ·P (5.21)

tCD,SDM = lCD + lC · log2(
W

2M
) + kCD ·MP (5.22)

where lCD and kCD are the zero load latency of a completion detection circuit without
any C-elements (the latency of two OR gates) and the fanout latency.

The router controller in wormhole or SDM routers halts the input buffer only once
per frame to analyse incoming header flits. Once a path allocation is made for a frame,
pipelines run at full speed and no extra control latency is introduced (tCTL = 0). How-
ever, the controller in a VC router halts the data path in every cycle to reconfigure the
crossbar, which leads to non-zero tCTL.

All parameters are extracted from back-annotated post-synthesis simulations. Rou-
ter implementations have removed all unnecessary turns in the crossbar according to
the XY routing algorithm (see Section 7.1.2 and Figure 7.5 for a detailed explanation
of the turn models). Wire latency is counted as part of gate latency automatically using
the Synopsys Designer Compiler Topographical Technology [123] in synthesis. The
extracted parameters are listed as follows (in unit of ns):

lC = 0.15 kC = 0.01 lCB = 0.074 kCB = 0.044

lCD = 0.23 kCD = 0.004 lAD = 0.17 kAD = 0.005

The practical speed performance and the estimation errors of the latency models
are shown in Table 5.3. Compared with the errors of the area models, the latency
estimation causes larger errors for several reasons: the practical latency of a gate is not
linear; the load is not exactly proportional to fanout; the propagation time of a gate is
related to the input transition time which is difficult to estimate statically.

Figure 5.9 shows the latency estimation errors of routers with various configura-
tions. Most errors are smaller than 6.5%. The significant errors occurs when large
data width (W/M > 32) is used. These wide pipelines cause design rule violations
(max capacitance and max transition time) on ack lines. Buffer trees are inserted to

108 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

Table 5.3: Router latency

Wormhole SDM

Actual Estimated err(%) Actual Estimated err(%)

Period 4.22 4.130 -2.1 4.10 3.978 -3.0
Router latency 2.29 2.49
XY router decoding 0.44 0.51
Switch allocation 0.78 3.21
tC 0.22 0.200 -9.1 0.34 0.320 -5.9
tCB 0.16 0.162 1.3 0.26 0.250 -3.8
tCD 0.79 0.846 7.6 0.57 0.594 4.2
tAD 0.53 0.495 -6.6 0.27 0.255 -5.5
tCTL 0.00 0.00

(unit: ns)

�
�
�
�
�
��

�
�
�
�
�
	�

�
�
�
�
�
��
� �

��
�
�
�
�
�� �

�
��

��
�
�
�
�
�� �

�
	�

��
�
�
�
�
�� �

�
��
�

��
�
�
�
	
�� �

�
��

��
�
�
�
	
�� �

�
	�

��
�
�
�
	
�� �

�
��
�

��
�
�
�
�
�� �

�
	�

��
�
�
�
�
�� �

�
��
�

�

��

�

��

�
�
�

	�
�
��
��

��
�
�
�

Figure 5.9: Latency estimation error

eliminate these violations in synthesis. Significant errors are introduced as these buffer
trees do not fit in the linear latency model. To cope with this problem, all simulations
using data width larger than 32 bits in Section 5.4.3 are carefully compensated5. It is
important to notice that technology and cell libraries have strong impacts on the value
of latency parameters. They must be extracted again if a different cell library is used.

5When wide pipelines are used (W/M > 32), the compensated ack driver latency t′AD is used in
simulations. t′AD = tAD + eAD, where eAD is the correction factor of tAD. Using the estimation errors
in wormhole routers, eAD is extracted as −0.2 ns, −0.74 ns and −1.82 ns for the data widths of 64-bit,
128-bit and 256-bit respectively.

5.4. BEHAVIOURAL LEVEL COMPARISON 109

5.4.2 Model for VC routers

A conceptual area and latency estimation model will be provided for VC routers. As-
suming the asynchronous VC router uses the internal structure of an ANOC router [7]
(Figure 3.13), it comprises P input buffers, an extended MP × P crossbar, P output
buffers, a VC allocator and a switch allocator. It uses the input buffering scheme and
each input buffer contains M VCs.

Using the same assumptions in Section 5.4.1, the area model of a VC router is
expressed as follows:

AIB,VC = M ·AIB,WH (5.23)

AOB,VC = AOB,WH (5.24)

ACB,VC = (2MP 2 − P) · (2W + 2) ·Ag (5.25)

AA,VC = (M2P 2 +MP) ·Aarb (5.26)

The area in Equation 5.26 includes two parts: the VC allocator and the switch allo-
cator. As described in [96], the arbitration scheme of a fair VC allocator is MP ×MP

because MP output VCs are dynamically allocated to MP input VCs. The arbitra-
tion scheme of the switch allocator is M × P because an output port is requested by a
maximum of M input VCs simultaneously.

A VC router using the input buffer scheme has the same critical cycle traversing
the crossbar as wormhole and SDM routers. The latency of the critical cycle can be
approximated as follows:

tC,VC = tC,WH (5.27)

tCD,VC = lCD + lC · log2(W/2) + kCD ·MP (5.28)

tAD,VC = tAD,WH (5.29)

tCB,VC = tCB,WH (5.30)

Using the parameters provided in Section 5.4.1, the estimated delays for a 32-bit
5-port asynchronous VC router with four VCs are listed as follows (in unit of ns):

tC = 0.20 tCB = 0.16 tCD = 0.89 tAD = 0.50 tCTL = 0.78

period = 5.01 XY router decoding = 0.44
VC allocator = 3.21 switch allocator = 0.78

110 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

Asynchronous VC routers have the longest period in all router architectures. Both
VC and wormhole router suffer from the longest ack driver latency and the deepest C-
element tree in the completion detection circuit. The crossbar in a VC router introduces
extra latency as an SDM router does. The fact that the crossbar is reconfigured in
every cycle introduces extra control latency. The value of this extra control latency
tCTL comes from the switch allocation latency of the wormhole router assuming multi-
way MUTEX arbiters are used in switch allocators. As a VC allocator has the same
arbitration scheme as the switch allocator in an SDM router, their latencies are assumed
the same.

5.4.3 Performance analyses

An 8 × 8 mesh network has been built with latency accurate SystemC models. Since
the best-effort performance is the major research target of this thesis, all simulations
use the random uniform traffic pattern. Every network node sends frames uniformly to
other nodes in a Poisson sequence.

Figure 5.10 [115] shows the average frame transmission latency with various in-
jection rates. All routers are equipped with two stages of input buffers except for the
VC router which is also simulated with four stages. The payload size of a frame is
set to 64 bytes. Four virtual circuits/VCs are implemented. It is shown that both VC
and SDM improve throughput but SDM outperforms VC. The SDM router provides
the best saturation throughput of 346 MByte/Node/s, which is around 1.7 times that
of the wormhole router. However, the minimum frame latency in an idle network is
prolonged because the data width of a virtual circuit is only a portion of the total data
width. Frames are delivered in a serialized way. The minimum frame latency of SDM
routers is 275 ns, which is 3.2 times that of using wormhole routers and 1.8 times that
of using VC routers.

VC routers suffer from the credit loop latency when their input VC buffers are
short. Every asynchronous buffer stage is a half buffer stage. Thus a full buffer
stage needs two half buffer stages. Most VC routers use the credit based backpres-
sure method [45, 12, 7, 38] as shown in Figure 5.11. The switch allocator in one
output port allocates the output buffer to input VCs only when the corresponding input
VC buffer in the next router has available buffer space. The credit buffers in one output
port record the available buffer space of all input VC buffers in the next router using
tokens. A token is consumed when a flit is transmitted to the next router and a token
is return when the input VC buffer in the next router transmits a flit. When input VC

5.4. BEHAVIOURAL LEVEL COMPARISON 111

� �� ��� ��� ��� ��� ��� ���

�

���

���

���

���

����

����
�
�
�
�
	
�
��
�
�
�
�

�
��
�
�
�
��

�
�
��

��������� ����� �������������� �

� ��� ���� �

� �
�� ���� �

� �	� ���� �

� �	� ���� �

(a) Average frame latency

� �� ��� ��� ��� ��� ��� ���

�

��

���

���

���

���

���

�
�
��
��
�
�
�

��
�
��
�
�	
�
��
�
�
�
��

�
�
��

��������� ����� �������������� �

� ��� ���� �

� �
�� ���� �

� �	� ���� �

� �	� ���� �

(b) Data transmission latency

Figure 5.10: Latency under various network loads (P = 5, W = 32, M = 4)

Switch

Allocator

Output

buffer

Input VC

buffers

Credit buffers

Inter-router

long wires

Figure 5.11: Credit based backpressure method

buffers are short, such as only one full buffer stage, the credit buffer of every VC has
only one token.

Under low network load, it is likely that only one VC buffer in all VC buffers is
utilized. In this case, a new flit has to wait until the token consumed by the previous
flit is returned to the corresponding credit buffer. The latency of the loop path is called
the credit loop latency. Inferred from the synchronous credit loop calculation (Equa-
tion 16.1 in [35]), the credit loop latency tcrt in an asynchronous VC router can be
expressed as6:

tcrt = LtC + 2tw + tCTL + T (5.31)

where tw is the latency of the inter-router long wires. Adopting the long wire latency
in [105], the credit loop latency of the VC router is around 1.3 periods. As a result,

6Equation 5.31 is provided as an explanation to the credit loop latency. It is not intended for accu-
rate latency estimation because different switch allocator and input buffer implementations significantly
affect the latency calculation.

112 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

� �� �� �� �� ��� ��� ���

�

��

���

���

���

���

���

���

�
�
�
�
�
�
�
�
��
�
�
�
�
�

��

	

��
��

	����� ������������ �

� ���

�
���

� ���

Figure 5.12: Throughput with various payload lengths
(P = 5, W = 32, L = 2, M = 4)

at least two full buffer stages are required to avoid the credit stall under low network
load. Figure 5.10a shows that adding two more half buffers (two stages of full buffers
in total) reduces the frame latency to 122 ns; however, it does not raise throughput
significantly and introduces extra area overhead by doubling the buffer size. When the
network is heavily loaded, multiple VCs are utilized simultaneously.

When a flit of one VC is waiting for a new token, the flits of other VCs can utilize
the output buffer as long as they have tokens available in the credit buffers. Thus the
credit stall is unlikely to compromise the saturation throughput.

Frame latency comprises two parts: the time consumed to reserve a path to the tar-
get PE and the time consumed to transmit data. Figure 5.10b shows the data transmis-
sion latency. In wormhole and SDM routers, links and buffers are exclusively allocated
to frames. Resources are not shared during data transmission and the data transmission
latency is not affected by network load. On the contrary, the switches in VC routers are
shared by all VCs in a time divided manner. The data transmission latency increases
when the network is heavily loaded. This result reveals the potential of using SDM to
reduce the latency jitter when hard latency guaranteed services are required.

Figure 5.12 demonstrates how the payload size affects the saturation throughput.
Every frame has a fixed amount of control overhead, such as the target address in the
header flit. Short frames are not efficient as the payload transmitted in each frame is
small. The saturation throughput rises with payload length. This increase is not linear.
The saturation throughput approaches its maximum when payload is larger than 64
bytes. Therefore, the payload size is fixed to 64 bytes in all following simulations.
SDM outperforms VC and provides the highest throughput of 350 MByte/Node/s in
the 128 Byte case.

5.4. BEHAVIOURAL LEVEL COMPARISON 113

� � � � � � � 	

�

���

���

���

���

���

���

���

	��

��

�
�
�
�
�
�
�
�
��
�
�
�
�
�

��

	

��
��

���� 	��

� ���

� ����

� ���

Figure 5.13: Throughput with various communication distances
(P = 5, W = 32, L = 2, M = 4)

Both VC and SDM alleviate the head-of-line (HOL) problem. It is known that
long distance communications are more vulnerable to contention than local communi-
cations. Figure 5.13 [115] demonstrates the throughput variation with different com-
munication distances. In this simulation, network nodes send frames uniformly to
all nodes certain hops away. The saturation throughput drops significantly with the
increasing communication distance. Both VC and SDM achieve better performance
increment in local traffic patterns than in long distance communication patterns. When
the communication distance is eight hops, using VC shows little throughput boost but
SDM still raises the throughput by 33.9%.

Buffer size is an important design parameter. Increasing buffer length boosts
throughput as more frames can be stored in the network when contention occurs. How-
ever, buffers consume significant area. Figure 5.14 [115] reveals the throughput im-
provement by increasing the buffer length. Both the saturation throughput and the area
overhead rise linearly. Figure 5.14c shows the gain of throughput per area unit. Gain
is defined as:

Gain =
throughput
router area

(5.32)

Higher gain indicates better area-to-throughput efficiency. The gain of all router
architectures drops along with buffer length. It is not efficient to improve throughput
by adding buffers. The basic wormhole router shows the best area efficiency with short
buffers. When long buffers are implemented (L ≥ 12), SDM routers achieve the best
area efficiency. In all cases, VC routers suffer from the worst area efficiency.

In addition to adding buffers, increasing data width also raises throughput, but the

114 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

� � � � � �� �� �� ��

���

���

���

���

���

�
�
�
�
�
�
�
�
��
�
�
�
�
�

��

	

��
��

������ ������ ������ ������ �

� ���

� 	���

�
��

(a) Throughput

� � � � � �� �� �� ��

�

���

���

���

���

���

�

��
��
�
��
�
��

�
µ	

�
�

������ ������ ������ ������ �

� ���

� 	���

�
��

(b) Area

� � � � 	 �� �� �� ��

�

�

�

�

�

�

�

�

	

�

�
��

�
�
�
��
�	
�
�
�
��
��

µ�
�
�

������ ������ ������ ������ �

� ���

� 	���

�
��

(c) Gain

Figure 5.14: Performance with various buffer lengths
(P = 5, W = 32, M = 4)

� �� ��� ��� ��� ���

�

���

���

���

���

����

����

����

����

�
�
�
�
�
�
�
�
��
�
�
�
�
�

��

	

��
��

����� ����� ����� �

�
��

� ����

� 	��

(a) Throughput

� �� ��� ��� ��� ���

�

���

���

���

���

���

���

�

�
�
��

�
µ	

�
��

����� ����� ����� �

�
��

� ����

� 	��

(b) Area

� �� ��� ��� ��� ���

�

�

�

�

�

�

	

�

�
��

�
�
�
��
�	
�
�
�
��
��

µ�
�
��

����� ����� ����� �

�
��

� ����

� 	��

(c) Gain

Figure 5.15: Performance with various port data width
(P = 5, L = 2, M = 4)

increase is not linear. Transmitting frames in wide pipelines suffers from the increased
control overhead because the number of flits per frame is decreased. The delay incurred
by reconfiguring the central switch in a router is independent of data width. In an
overloaded network, decreasing the number of flits per frame leads to frequent switch
reconfiguration, which in turn compromises throughput. Furthermore, wide pipelines
introduce extra synchronization overhead. Figure 5.15 [115] reveals the impact of
increasing data width. Router area increases linearly with data width. Compared with
wormhole and VC routers, SDM routers show a steadier throughput increment because
their C-element trees in the completion detection circuits are shorter. Figure 5.15c
shows the gain of throughput per area unit. Although wormhole routers still show the
best gain with narrow pipelines, the gain of SDM routers increases with data width
until 128 bits. When the data width is over 200 bits, SDM demonstrates the best area
efficiency.

Since both VCs and virtual circuits use the wormhole flow control method, VC

5.4. BEHAVIOURAL LEVEL COMPARISON 115

� � 	 �� �� �� ��

�

���

���

���

���

���

���

���

	��
�
�
�
�
�
�
�
�
��
�
�
�
�
�

��

	

��
��

	������� ����� 	������� ��� � ����������� �

� ��

�
��

� ��

(a) Node throughput

� � � �� �� �� ��

�

��

��

��

��

�
�
�
�	
���
�
��
�
�

�
�
��
�
�
�
�
��
��

�

�
��
��

	������� ����� 	������� ��� � ����������� �

� ��

�
��

� ��

(b) Overall throughput

Figure 5.16: Network scalability (P = 5, W = 32, L = 2, M = 4)

routers and SDM routers have similar scalability to network size with wormhole
routers. As provided in Section 3.3.1 in [35], Equation 5.33 gives the upper bound
on throughput Θ in random uniform traffic.

Θ ≤ Θideal ≤
2WBC

TN2
(5.33)

where BC is the minimal channel count over all bisections of the network and N2 is
the total number of nodes in a mesh network. Since BC is linear with N in a mesh
network, the upper bound on throughput Θ and the overall throughput of all nodes in
the network ΘN2 can be simplified into:

Θ ≤ k

TN
+ C (5.34)

ΘN2 ≤ kN

T
+ C ′ (5.35)

where k, C and C ′ are constants. Figure 5.16 [115] reveals the practical throughput and
overall throughput of networks with different sizes. Figure 5.16a verifies the inverse
relation between Θ and N , and the overall throughput in Figure 5.16b is approximately
linear with N . Note that Equation 5.35 provides only the upper bound on overall
throughput. Although VC routers have larger period than wormhole routers, they show
better overall throughput thanks to their capability of resolving HOL problems. All
flow control methods present similar scalability to network size.

Increasing the number of virtual circuits or VCs allows more frames to be delivered
concurrently and raises throughput. Figure 5.17 [115] demonstrates the frame latency

116 CHAPTER 5. PARALLELISM IN THE SWITCHING LAYER

� �� ��� ��� ��� ��� ���

�

���

���

���

���

����

����

�
�
�
�
	
�
��
�
�
�
�

�
��
�
�
�
��

�
�
��

��������� ����� ��	����������� �

� �����

� �����

� �
������ �

� �
������ �

Figure 5.17: Throughput with various number of virtual circuits or VCs
(P = 5, W = 32, L = 2)

versus network load for SDM and VC routers with various numbers of virtual circuits
and VCs. The estimated router area is listed as follows (in unit of µm2):

SDM(M=2) 38,153 SDM(M=4) 71,713
VC(M=2) 49,896 VC(M=4) 103,250

Both VC routers and SDM routers benefit significantly from the increased number of
VCs/virtual circuits. Their throughput increase by 26.6% and 26.8% respectively. It
is also shown that the minimum frame latencies of SDM routers increases with the
number of virtual circuits. Since the total data width of a port is fixed, increasing the
number of virtual circuits reduces the data width of a single virtual circuit. Data are
serialized to fit the small data width leading to increased frame latency.

5.5 Summary

‘Virtual channel’ is the most utilized flow control method in asynchronous on-chip
networks. It can be used to improve network throughput or provide QoS support.
However, VC buffers introduce significant area overhead and the frequent switch al-
location compromises throughput. Instead of sharing resources using timing division
methods such as VC, spatial division multiplexing (SDM) alleviates the HOL problem
without compromising throughput. The area overhead of SDM is smaller than VC.

Area and latency models have been provided to analyse wormhole, SDM and VC
routers with various configurations. The parameters in these models are extracted
from several post-synthesis netlists of wormhole and SDM routers using the Faraday
0.13 µm standard cell library. Latency accurate SystemC models are built to simulate

5.5. SUMMARY 117

all router architectures in large networks at high speed. In all test cases, SDM routers
outperform VC routers in throughput. Both increasing buffer depth and increasing port
data width raise throughput but increasing port data width demonstrates better area to
throughput efficiency than increasing buffer depth. When the port data width is larger
than 200 bits, SDM routers show the best area efficiency in all router architectures. A
design problem of SDM is the frame latency in low network load, which is prolonged
due to the serialized data transmission in virtual circuits.

Chapter 6

Area Reduction using Clos
Networks

The preceding chapter has proposed using spatial division multiplexing (SDM) rather
than virtual channel (VC) in asynchronous on-chip networks for high throughput. It
is shown that SDM achieves better throughput and consumes less area than VC. The
major area overhead of an SDM router is the central switch, the size of which is pro-
portional to the number of virtual circuits. This chapter provides a solution to this
overhead using Clos switching networks instead of crossbars. The chapter will end
with an introduction of a novel 2-stage Clos switch which consumes the smallest area
— a perfect switch structure for asynchronous SDM routers.

6.1 Clos switching networks

A switching network is a switch architecture which dynamically connects input ports
to output ports. Clos networks are a class of multi-stage switching networks [27]
providing the theoretically optimal solution for high-radix switches.

Clos networks were first used in telephone networks where high-radix switches
are statically configured. The later asynchronous transfer mode (ATM) networks and
internet protocol (IP) networks achieve high throughput using packet switching tech-
nologies [21]. A Clos network designed for current optical backbone networks has
already reached peta-bit throughput [19].

Clos networks have already been utilized in intra- and inter-chip interconnection
networks. Transistor scaling increases the available bandwidth on-chip. It is found
that a router with many narrow ports is more efficient than a router with a few wide

118

6.1. CLOS SWITCHING NETWORKS 119

� � � � � �� �� �� �� �� ��

�

����

����

����

����

�����

�
��
�
��

�
�
�
�
�
��

	�
�
�
�
�
��

�
��
��

��
���� ��� ������	� �������

 Crossbar
 Clos
 Benes

Figure 6.1: Area of different switches

ports [64, 55]. A folded-Clos network is used in the Cray BlackWidow multiprocessor
to support high bandwidth communications [102] and Beneš networks (multi-stage
Clos networks) [8] are used in a synchronous SDM on-chip network to provide delay-
guaranteed services [71].

This chapter tries to reduce the area overhead of the crossbar in an SDM router
using Clos networks. Similar work has been done in [71] where a synchronous SDM
router uses a Beneš network as the central switch. Although a significant area reduc-
tion is reported, the multi-stage Beneš network cannot be reconfigured in run time.
This chapter will demonstrate an asynchronous Clos scheduler which can dynamically
reconfigure unbuffered 3-stage Clos networks.

Figure 6.1 illustrates the potential area reduction of using Clos networks. As the
area of a switch is proportional to the number of cross-points inside the switch, the
area overhead of using different switch structures in a 5-port 32-bit SDM router is
evaluated in the number of cross-points. It is shown that the single stage crossbar
structure is more area efficient than multi-stage switching networks when the switch
radix is small. When more than three virtual circuits are implemented, the general
3-stage Clos networks and the multi-stage Beneš networks require smaller area than
crossbars. In other words, crossbars are the optimal switch structure for wormhole and
VC routers but not SDM routers due to the increasing switch radix. Multi-stage Clos
networks have the potential for area reduction in SDM routers.

The internal structure of general 3-stage Clos networks is depicted in Figure 6.2.
The terminologies describing the internal components of a Clos network are listed as
follows:

120 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

n×m k×k m×n

n×m

n×m

IM(1)

IM(i)

IM(k)

CM(1)

k×k

CM(r)

k×k

CM(m)

OM(1)

m×n

OM(j)

m×n

OM(k)

IP(1,1)

IP(1,n)

IP(k,1)

IP(k,n)

IP(i,1)

IP(i,n)

IP(i,h)

OP(1,1)

OP(1,n)

OP(k,1)

OP(k,n)

OP(j,1)

OP(j,n)

OP(j,h)

LI(1,1)

LI(k,m)

LO(1,1)

LO(m,k)

Figure 6.2: General 3-stage Clos network

IM Input module at the first stage.
CM Central module at the second stage.
OM Output module at the third stage.
n Number of input ports (IPs)/OPs in each IM/OM.
k Number of IMs/OMs.
m Number of CMs.
i Index of IMs (0 < i ≤ k).
j Index of OMs (0 < j ≤ k).
r Index of CMs (0 < r ≤ m).
h Index of IPs/OPs in an IM/OM (0 < h ≤ n).
IM(i) The (i)th IM.
OM(j) The (j)th OM.
CM(r) The (r)th CM.
IP(i, h) The (h)th IP in IM(i).
OP(j, h) The (h)th OP in OM(j).
LI(i, r) The link from IM(i) to CM(r).
LO(r, j) The link from CM(r) to OM(j).
C(n, k,m) A Clos network has m CMs and k IMs/OMs with n IPs/OPs.
N The total number of IPs/OPs (N = nk).

The first stage contains k IMs, each of which is an n ×m crossbar. In the second
stage, m CMs are statically connected to IMs and each CM is a k × k crossbar. The
third stage contains k OMs, each of which is an m×n crossbar statically connected to
CMs. When the size of a switching module is large, it can be replaced by an embedded

6.1. CLOS SWITCHING NETWORKS 121

Clos network and, therefore, the overall Clos network has more than three stages (a
well-known class of such Clos networks are Beneš networks [8]).

According to the connection capability, switching networks can be classified into
three categories [21]: Blocking: the switches have possible connection states such that
an available I/O pair cannot be connected because of internal blocking. Strict non-

blocking (SNB): the switches ensure the connection of any available I/O pairs without
altering any established connections. Rearrangeable non-blocking (RNB): the switches
ensure the connection of any available I/O pairs with possible modification of estab-
lished connections. A three-stage Clos network with n CMs (m = n) is a RNB network
while it is an SNB network when the number of CMs is larger than 2n− 1 [21].

Similar to crossbars, the area of a switching network is proportional to the number
of cross-points. Both SNB and RNB Clos networks consume the minimum area when
k =

√
2N .

AClos,SNB ≥ [2(2N)1.5 − 4N] ·WACP (6.1)

AClos,RNB ≥ [(2N)1.5] ·WACP (6.2)

where W is the wire count of each port and ACP is the equivalent area of a single
cross-point. RNB Clos networks consume the minimum area overhead but introduce
throughput degradation if established connections are not allowed to be reconfigured.

There are two classes of routing algorithms for Clos networks [20]: optimal algo-

rithms, which provide guaranteed results for all matches but with a high complexity in
time or implementation, and heuristic algorithms, which provide all or partial matches
in low time complexity. Although optimal algorithms guarantee the connection of any
I/O pairs, they require a global view of all modules and take a long time to reconfigure.
They are normally used in statically configured Clos networks [71]. On the other hand,
heuristic algorithms are fast and spatially distributed. Most dynamically reconfigurable
Clos networks utilize heuristic algorithms [24, 90, 20, 19, 22, 101, 91].

Buffer insertion is a usual way of improving throughput in Clos networks. Accord-
ing to the stage where buffers are inserted, a Clos network can be a space-space-space
network without buffers, a memory-space-memory network with buffer insertion in
IMs and OMs, or a space-memory-space network with buffer insertion in CMs. Space-
space-space networks introduce no buffer overhead but provide the worst throughput.
Space-memory-space networks normally show better throughput than memory-space-
memory networks because the buffers in CMs resolve the contention in CMs; however,

122 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

this scheme requires a re-sequencing function in OMs because data issued to OMs are
out-of-order. Memory-space-memory is the most utilized scheme in ATM networks.
Buffers in IMs and OMs improve throughput without the out-of-order problem but
the OMs are required to speed-up m times to avoid throughput degradation (the de-
tailed comparison of buffer insertion schemes and memory speed-up can be found in
[21, 91]).

Only three-stage space-space-space Clos networks are researched in this thesis.
The tight area budget of on-chip networks disallows any extra buffers except for the
input/output buffers. Nevertheless, the routing algorithms for space-space-space Clos
networks can be easily adopted in memory-space-memory or space-memory-space
Clos networks.

6.2 Dispatching algorithm

Every CM in a Clos network is shared by all I/O pairs, since every I/O pair has m

possible path configurations and each of them goes through a different CM. In the
worst case, all the nk IPs would try to utilize the same CM ignoring that one CM is
capable of setting up only k paths. Hence an efficient routing algorithm must dispatch
requests evenly to all CMs otherwise throughput is compromised. Heuristic algorithms
process a request from IP(i1, h1) to OP(j2, h2) in two stages [101]: Module matching

first reserves a path from IP(i1, h1) to an LO(r, j2) which is connected to OM(j2). Then
port matching connects LO(r, j2) and OP(j2, h2) in OM(j2). Since it is the module
matching stage that chooses the target CM, it determines the request distribution which
directly affects throughput. The sub-algorithm used in module matching, namely the
dispatching algorithm, is the key research issue of this section.

6.2.1 Concurrent round-robin dispatching algorithm

The data transmitted in the synchronous Clos networks used in ATM and IP networks
are routed in units of a cell — a small fraction of a packet with fixed size. Multiple cells
are transmitted synchronously from IMs to OMs in one cell time. The reconfiguration
of switches proceeds concurrently with data transmission in a pipelined manner. The
new configuration generated in the current cell time takes effect in the next cell time.
The latency of generating a new configuration for the Clos network is therefore hidden.

6.2. DISPATCHING ALGORITHM 123

A cell time lasts one or multiple cycles depending on the complexity of the routing
algorithm.

The concurrent round-robin dispatching (CRRD) algorithm [90] is one of the clas-
sic algorithms extensively utilized in synchronous Clos networks. As indicated by its
name, the CRRD algorithm places independent round-robin arbiters on each LI (out-
put link arbiter), IP (input port arbiter) and LO. A simplified description of CRRD is
illustrated as follows [90]:

• Phase 1: Matching within IMs.

– The first iteration

* Step 1: Non-idle IPs send requests to all output link arbiters.

* Step 2: Each output link arbiter independently selects an IP.

* Step 3: Each non-idle IP independently accepts one LI from the received
grants.

– The ith iteration (i > 1)

* Step 1: Unmatched IPs send requests to all output link arbiters.

* Step 2 and 3: The same as the first iteration.

• Phase 2: Matching within CMs.

– Step 1: Matched LIs send requests to CMs. Each LO in CMs selects one
request and returns a grant.

– Step 2: In the next cell time, the granted IPs send their cells and other IPs
try again.

CRRD ensures that the requests in all IMs are dispatched to all CMs with the same
probability using the parallel iterative matching (PIM) algorithm [2] in the matching
within IMs.

Figure 6.3 demonstrates an example of the matching within an IM using CRRD.
Initially all IPs receive new packets and all LIs are available. As shown in Figure 6.3a,
IPs send requests to all available LIs. The output link arbiter in each LI grants one IP
according to the received requests. Since these output link arbiters run independently,
uneven request distribution where multiple LI arbiters select the same IP can be easily
generated as depicted in Figure 6.3b. For those IPs receiving more than one grant, such
as IP(i, 1) in Figure 6.3c, their input port arbiters choose an LI and release others. In

124 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

IP(i,1)

IP(i,2)

IP(i,3)

IP(i,4)

LI(i,1)

LI(i,2)

LI(i,3)

LI(i,4)

IM(i)

(a) Step 1, request

IP(i,1)

IP(i,2)

IP(i,3)

IP(i,4)

LI(i,1)

LI(i,2)

LI(i,3)

LI(i,4)

IM(i)

(b) Step 2, grant

IP(i,1)

IP(i,2)

IP(i,3)

IP(i,4)

LI(i,1)

LI(i,2)

LI(i,3)

LI(i,4)

IM(i)

(c) Step 3, accept

IP(i,1)

IP(i,2)

IP(i,3)

IP(i,4)

LI(i,1)

LI(i,2)

LI(i,3)

LI(i,4)

IM(i)

(d) Step 1, next iteration

Figure 6.3: Example of the matching within an IM

this way, the unmatched IPs are able to request again in the next iteration as shown in
Figure 6.3d.

The even distribution of CRRD relies on the number of iterations. In the worst
scenario when only one match is made in each iteration, an IM needs n iterations to
match of all IPs. In practice, the number of iterations is also limited by the cell time.
It is common that each iteration takes one clock cycle. A cell time must be longer than
n cycles to guarantee the even distribution.

Although the requests from one IM are evenly distributed to all CMs, two requests
from different IMs asking for the same OM can be distributed to the same CM com-
peting for the same LO. CRRD produces even request distribution but this distribution
is oblivious to the possible contention inside CMs.

6.2.2 Asynchronous dispatching algorithm

Up to now no asynchronous Clos networks have yet been proposed. Reconfiguring an
asynchronous Clos network has some fundamental difficulties. The incoming packets
arrive asynchronously and should be processed asynchronously. A path is allocated
for a packet rather than a cell. Moreover, the scheduler must handle multiple packets
concurrently and independently as packets can arrive at any time.

6.2. DISPATCHING ALGORITHM 125

As a solution to these difficulties, a new asynchronous dispatching (AD) algorithm
is proposed. In this algorithm, the matching within IMs and the matching within CMs
are separated into two independent sub-algorithms running concurrently. All modules
are event-driven. Independent arbiters are placed on each LI (output link arbiter), IP
(input port arbiter) and LO as the CRRD algorithm does, but these arbiters are multi-
way MUTEX arbiters and tree-arbiters.

In the CRRD algorithm, if a request fails to reserve a path due to the contention in
CMs, it automatically tries again in the next cell time. However, an asynchronous re-
quest cannot withdraw itself until it is served. Directly adopting the CRRD algorithm
in asynchronous Clos networks introduces severe arbitration latency because the con-
tention in one CM causes at least one request to wait a whole packet time rather than a
cell time even when other CMs are available. To reduce such latency overhead, the AD
algorithm introduces a state feedback scheme. Once an LO is occupied or released, the
information is broadcast to all IMs. Since IMs are informed of the availabilities of LOs
in all CMs, they dispatch requests only to the CMs currently with available LOs. The
contention in CMs is accordingly avoided. A simplified description of the asynchro-
nous dispatching algorithm is described as follows [113]:

• Sub-algorithm 1: Matching within IMs.

– Step 1: A new packet arrives at IP(i, h).

– Step 2: IP(i, h) waits until at least one target LO is available.

– Step 3: IP(i, h) sends requests to all output link arbiters leading to the
available LOs.

– Step 4: output link arbiters return grants to IP(i, h).

– Step 5: IP(i, h) selects a path and withdraws requests to other output link
arbiters.

• Sub-algorithm 2: Matching within CMs.

– Step 1: A request is forwarded from an IM.

– Step 2: The target LO returns a grant to the IM and reconfigures the CM
once it is available.

– Step 3: The updated states are broadcast to all IMs.

126 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

The sub-algorithm running in the IMs uses the same PIM algorithm in CRRD
(an asynchronous and event-triggered version) to ensure that requests are evenly dis-
tributed to all CMs. The sub-algorithm running in the CMs is also an asynchronous
version of the phase 2 in the CRRD algorithm but the state changes of CMs are broad-
cast to IMs.

An example of the state feedback scheme of the AD algorithm is presented in Fig-
ure 6.4. The Clos network in the example is a C(3, 3, 3) network. Some links in this
network have already been occupied, such as the links on the path from IP(2, 3) to
LO(3, 3) and the path from IP(3, 2) to LO(2, 1). A new packet is received by IP(2, 1)
in IM(2) requesting an OP in OM(1). By receiving the state feedback from all CMs,
IM(2) knows that CM(2) is not available for the new packet because LO(2, 1) is occu-
pied. Thus the request from IP(2, 1) heading to OM(1) is not sent to LI(2, 2) (which is
linked to CM(2)). This is the major difference between CRRD and AD. As other CMs
are available, IP(2, 1) requests to LI(2, 1) and LI(2, 3) as illustrated in Figure 6.4a. Ob-
viously the arbiter on LI(2, 3) does not respond to this request as LI(2, 3) is occupied.
As shown in Figure 6.4b, only the arbiter on LI(2, 1) returns a grant to IP(2, 1). Finally
in Figure 6.4c, a request from IP(2, 1) is sent to CM(1) through LI(2, 1). The LO(1, 1)
in CM(1) is correspondingly reserved. This new path reconfiguration is then broadcast
to all IMs.

The state feedback scheme, which is the major difference between CRRD and AD,
can improve throughput by avoiding the contention in CMs. However, it cannot re-
solve the contention among the requests processed simultaneously because they use
the same state feedback. In other words, the state feedback avoids contention between
established paths and future requests but cannot resolve the existing contention. If
contention occurs, multiple requests from different IMs are sent to the same CM com-
peting for the same LO. In this case, the arbiter on the LO grants only one request and
forces others to wait until the granted request is withdrawn. The arbitration latency for
the blocked requests is prolonged but they will be served eventually.

It should be noticed that the number of simultaneous requests in asynchronous
Clos networks is significantly smaller than synchronous Clos networks due to their
asynchronous nature. In synchronous Clos networks, all requests are synchronized;
therefore, the number of simultaneous requests is the total number of active requests.
On the other hand, asynchronous Clos networks are not synchronized. When the net-
work load is low, the time to establish a path is much shorter than the time to transmit a
packet. The process of establishing a path can be recognized as an event. It is rare for

6.2. DISPATCHING ALGORITHM 127

IP(2,1)

IP(2,2)

IP(2,3)

LO(2,1)

LO(3,3)

IM(2) CM(2)

CM(3)

CM(1)

IM(3)

IP(3,2)

(a) IP requests

IP(2,1)

IP(2,2)

IP(2,3)

LO(2,1)

LO(3,3)

IM(2) CM(2)

CM(3)

CM(1)

IM(3)

IP(3,2)

(b) Grant return

IP(2,1)

IP(2,2)

IP(2,3)

LO(2,1)

LO(3,3)

IM(2) CM(2)

CM(3)

CM(1)

IM(3)

IP(3,2)

LO(1,1)

(c) State feedback

Figure 6.4: State feedback scheme of the asynchronous dispatching algorithm

two events to occur at exactly the same time. When the network is saturated, the num-
ber of simultaneous requests increases as many requests are blocked. Nevertheless, the
number of simultaneous requests is still much smaller than the number in synchronous
Clos networks as nearly half IPs are busy transmitting data (49% throughput in uniform
traffic as will be shown in Figure 6.7). Using the placed and routed implementations
of the synchronous and asynchronous Clos schedulers in Section 6.3.1, the CM con-
tention rate (the ratio of the number of conflicted requests sent to CMs to the number
of all CM requests) of the saturated Clos networks is extracted from post-layout simu-
lations. The rates are 56.7% and 24.9% for the synchronous and asynchronous sched-
ulers respectively. It is shown that the state feedback scheme successfully reduces the
contention significantly.

128 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

6.2.3 Performance of CRRD and AD

The asynchronous dispatching (AD) algorithm is the first algorithm that reconfigures
an asynchronous 3-stage Clos network. It is therefore essential to demonstrate the
throughput performance of AD by comparing it against a classic synchronous algo-
rithm, such as CRRD.

Both AD and CRRD are implemented to reconfigure a C(4, 8, 4) space-space-space
Clos network in behavioural level SystemC models [92]. The Clos networks will be
injected with various traffic patterns. Some assumptions are employed to produce a
fair comparison between synchronous and asynchronous Clos networks [113]:

• Pseudo-random arbiters are utilized in both models.

Synchronous and asynchronous circuits have fundamental differences. The im-
plementation of synchronous dispatching algorithms uses round-robin arbiters
while that of asynchronous algorithms uses multi-way MUTEX and tree arbiters.
All these arbiters are hardware designs approximating random arbiters. Pseudo-
random arbiters are directly utilized in SystemC models.

• A request is withdrawn immediately after a path is allocated for it.

The data transmission in synchronous Clos networks and in asynchronous Clos
networks has fundamental differences. In synchronous Clos networks, switch
reconfiguration and data transmission are pipelined. Thus network through-
put is independent of path allocation latency as long as it is shorter than a cell
time. On the contrary, switch reconfiguration and data transmission cannot be
pipelined in asynchronous Clos networks because a path reservation cannot be
prearranged before it is available. Long path allocation latency leads to low net-
work throughput. As a result, even when the same routing algorithm is imple-
mented in both synchronous and asynchronous Clos networks with the same path
allocation latency, asynchronous Clos networks show worse network throughput
than synchronous Clos networks. Since routing algorithms (including dispatch
algorithms) rather than the whole Clos network are the major research objective
in this section, the throughput difference due to the pipelined switch allocation
is eliminated by assuming no data transmission (a path is released immediately
after allocation).

• A frame comprises only one cell.

A path in a synchronous Clos network is allocated for transmitting a cell while it

6.2. DISPATCHING ALGORITHM 129

is allocated for a frame in an asynchronous Clos network. The frame size is set
to one cell to eliminate this difference.

Non-blocking uniform traffic is a synthetic traffic pattern to reveal the sources of
throughput loss in different dispatching algorithms. The traffic pattern ensures that no
OP is concurrently requested by more than one IP; therefore, no contention is produced
by the traffic pattern. The expected saturation throughput should be 100% (all packets
injected are transmitted with the minimum delay) in a non-blocking Clos network con-
trolled by an optimal algorithm. Any throughput loss observed in evaluation is caused
by the imperfection of heuristic algorithms.

The non-blocking uniform traffic can be described as:

E[ρ(t, s, d)] =
E[ρ(t, s)]

N
(6.3)

N∑
s=1

ρ(t, s, d) ≤ 1 (6.4)

where N is number of IPs/OPs, ρ(t, s) is the normalized load injected in IP(s) at time
t, and ρ(s, d) is the normalized load from IP(s) to OP(d) at time t. All IPs are injected
complying with a Poisson process with a fixed injection rate ρ,

ρ =

∞∫
t=0

ρ(t, s)dt = E[ρ(t, s)] = ρ(s) (6.5)

ρ is the normalized injection rate of the Clos network value from 0 to 1. A packet
is injected to an IP in every cell time1 when ρ = 1 and no packet is injected when
ρ = 0. As described by Equation 6.3, the load of an IP is uniformly distributed to all
OPs. Equation 6.4 is a non-blocking constraint ensuring that no OP is overloaded at
any time.

Figure 6.5 shows the packet transmission latency and throughput with non-blocking
uniform traffic. The number of iterations in the CRRD dispatching algorithm is set to
four to ensure the maximum throughput [90]. The saturation throughput of CRRD
and AD is 70% and 76% respectively. AD demonstrates better throughput than CRRD
thanks to the state feedback scheme. Nevertheless, both algorithms show throughput

1Since a packet comprises one cell, a cell time is the minimum transmission latency of a packet. It
is a virtual time unit in behavioural simulations but practical delays are back-annotated in Section 6.3.2.

130 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

�

��

���

���

���

���

���

�
�
�
�

��
�
��
�
�	
�
��
�
�
�
��

�
�
		�
��

�
��

�	������� �
��

 CRRD
 AD

(a) Transmission latency

��� ��� ��� ��� ��� ��� ��	 ��
 ���

���

���

���

���

���

���

��	

��

�
�
��
�
�
�
�
�
�

�	������� �
��

 CRRD
 AD

(b) Throughput

Figure 6.5: Performance with non-blocking uniform traffic

� � � � � 	 ��

���

���

���

��	

���

�
�
��
�
�
�
�
�
�

��
��� ��� �����	�
���	��

 CRRD
 AD

Figure 6.6: Throughput with various number of central modules

loss even when the traffic is non-blocking. There are two reasons for this through-
put loss: firstly, established paths cannot be modified; therefore, the RNB C(4, 8, 4)

network is blocking. Secondly, heuristic algorithms, such as the CRRD algorithm,
produce contention.

Increasing the number of central modules converts a RNB network into an SNB
one. Since no alterations to the established paths are needed to build a new path in
an SNB network, the contention caused by dispatching algorithms is the only source
of throughput loss. Figure 6.6 depicts the throughput increase gained by adding extra
central modules. C(4, 8,m ≥ 7) Clos networks are SNB. It is shown that the AD
algorithm introduces no throughput loss in an SNB network but the CRRD algorithm
cannot provide 100% throughput even with ten central modules.

The traffic patterns in practical applications are blocking. Uniform traffic is one of
the most analysed patterns. It can be defined by Equation 6.3 and Equation 6.5. All

6.3. ASYNCHRONOUS CLOS SCHEDULER 131

���� ���� ���� ���� ����

����

����

����

����

����

����

����

����

����

����

�
�
��
�
�
�
�
�
�

�	������� �
��

 CRRD (m=4)
 AD (m=4)
 AD (m=7)

Figure 6.7: Throughput with uniform traffic

IPs are injected with a packet sequence complying with the same Poisson process as
the non-blocking uniform traffic. The load on one IP is also uniformly distributed to
all OPs but OPs are not protected by the non-blocking constraint described in Equa-
tion 6.4. Consequently, OPs are overloaded occasionally.

Figure 6.7 reveals the throughput with uniform traffic. The saturation throughput
of using CRRD and AD in a C(4, 8, 4) Clos network is 48.9% and 49.7% respectively.
AD shows 0.8% higher throughput than CRRD. It is known that the optimum saturation
throughput of an input-queued switch2 is 58.6% [62]. As shown in Figure 6.7, using
AD in an SNB Clos network achieves 55.4% throughput, which is only 3.2% lower
than the optimum throughput. Reducing the number of central modules introduces
5.7% throughput loss.

In summary, the behavioural level simulations shows that the asynchronous dis-
patching algorithm demonstrates better throughput than the concurrent round-robin
dispatching algorithm.

6.3 Asynchronous Clos scheduler

This section will provide the hardware detail of the first asynchronous scheduler which
is used to dynamically reconfigure a 32-port C(4, 8, 4) space-space-space Clos network
using the asynchronous dispatching algorithm [113].

2The original analyses were done on crossbars using input queues (FIFOs). A space-space-space
Clos network is equivalent to an input queued crossbar.

132 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

IRG

IRG

IRG

IRG

OMRICB

CMRICB

IMD

OMRCCB

CMD
imcfg

cmcfg

IMSCHi CMSCHr

CMSCH4IMSCH8

IMSCH1 CMSCH1

OMSCH8

OMSCHj

OMSCH1
req1,1

req1,2

req1,3

req1,4

reqi,1
reqi,2
reqi,3
reqi,4

req8,1
req8,2
req8,3
req8,4

IMSCHi
CMSCHr
OMSCHj
IRG

IMD

CMD

CMRICB

OMRICB

OMRCCB

reqi,h
imr

cmr

omr

imcfg

cmcfg

the ith IM scheduler

the rth CM scheduler

the jth OM scheduler

input request generator

IM Dispatcher

CM Dispatcher

crossbar for cmr in an IM

crossbar for omr in an IM

crossbar for omr in a CM

request from IP(i,h)

the request used in IMD

the request used in CMD

the request used in OMSCH

IM configuration

CM configuration

wires of imr

wires of cmr

wires of omr

wires of the state

feedback from CMs (cms)

Description

Figure 6.8: An asynchronous Clos scheduler for C(4, 8, 4)

6.3.1 Implementation

The overall structure of the Clos scheduler is shown in Figure 6.8. It adopts a dis-
tributed hardware structure where every switch module has its own scheduler, such as
the input module scheduler (IMSCH), the central module scheduler (CMSCH) and the
output module scheduler (OMSCH).

An IMSCH comprises n input request generators (IRGs), an input module dis-
patcher (IMD) and two n × m bidirectional crossbars. An IRG converts the request
from an IP (req) into three independent requests — IM request (imr), CM request (cmr)
and OM request (omr) — for IMSCH, CMSCH and OMSCH respectively. It also con-
trols the timing of these requests in order to enforce safe reconfiguration operations.
An IMD dynamically reconfigures an input module adhering to the asynchronous dis-
patching algorithm. It receives the imr signals generated by IRGs and produces the
reconfiguration signal imcfg. Meanwhile, the cmr forwarding crossbar (CMRICB) and
the omr forwarding crossbar (OMRICB) deliver cmr and omr to the second stage, the
central modules, according to imcfg. Note that all request signals have their ack lines,
namely ack for req, imra for imr, cmra for cmr and omra for omr.

An CMSCH includes a central module dispatcher (CMD) and a k×k bidirectional
crossbar — the omr forwarding crossbar in CM (OMRCCB). A CMD dynamically re-
configures a central module and OMRCCB adhering to the asynchronous dispatching
algorithm. It receives the cmr forwarded from IMs, generates the local CM reconfigu-
ration cmcfg and broadcasts its state back to IMs through the CM state feedback signal
cms.

6.3. ASYNCHRONOUS CLOS SCHEDULER 133

One-hot

encoder
k

n

imr

cmr

omr

omra
cmra
imra

req

ack

(a) Schematic

req+

imr+cmr+omr+

imra+

cmra+

omra+

ack+req

omromra

cmrcmra

imrimra

ack

_ _

__

_ _

_

_

(b) STG

Figure 6.9: Input request generator

The structure of an OMSCH is similar to that of a CMD. It receives the omr for-
warded from CMs and dynamically reconfigures an output module.

Input request generator

Any IP in a Clos network can request any one of the nk OPs. As shown in the basic
structure of a Clos network depicted in Figure 6.2, the nk OPs are grouped into k OMs.
The asynchronous dispatching algorithm allocates a path from the requesting IP to the
target OM. Then the OMSCH allocates a path towards the target OP. Accordingly,
the request from an IP should be converted into two requests: one for the dispatching
algorithm to identify the OM and the other one for the OMSCH to identify the OP.
This work is handled by the input request generator (IRG) connected to each IP.

The structure of an IRG is illustrated in Figure 6.9. A one-hot encoder translates
an incoming request into two requests encoded in one-hot: a 1-of-k request for imr

and cmr and a 1-of-n request for omr. C-elements are added to request and ack lines
to ensure the timing order as shown in Figure 6.9b. The requests to all switch modules
are sent simultaneously but the order of releasing switch modules has to be guaranteed.
Specifically, the OM must be released before the CM and the CM must be released
before the IM. Otherwise, the next request can be mis-routed.

Input module dispatcher

An input module dispatcher (IMD) dynamically reconfigures an IM using the asyn-
chronous dispatching algorithm. It receives imr from IRGs, allocates LIs to IPs ac-
cording to the state feedback cms from CMs, and generates the configuration imcfg

along with the ack line imra. As shown in Figure 6.10a, it consists of four compo-
nents: a request-generate matrix, an M-N match allocator, a request enable tree and an

134 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

Request

Generate

Matrix

M-N

Match

Allocator

Ack

Generate

Tree

imr1

imrn

k m ipr1

iprn

n imcfg1

imcfgm

imra1

imran

c
m
s
1

c
m
s
m

k

Request

Enable

Tree

i
p
r
e
n
n

i
p
r
e
n
1

m

(a) Block diagram

imrh,1
cmsr,1

imrh,j
cmsr,j

cmsr,k

imrh,k

iprh,r

iprh,1

iprh,m iprh

m

(b) Request-generate ma-
trix

O
u
t
p
u
t

l
i
n
k

A
r
b
i
t
e
r
(
1
)

I
n
p
u
t

p
o
r
t

A
r
b
i
t
e
r
(
1
)

O
u
t
p
u
t

l
i
n
k

A
r
b
i
t
e
r
(
m
)

I
n
p
u
t

p
o
r
t

A
r
b
i
t
e
r
(
n
)

olg1,1

olgn,m

ipr1,1
ipren1,1

ipr1,m
ipren1,m

iprn,1
iprenn,1

iprn,m
iprenn,m

imcfg1,1

imcfg1,n

imcfgm,n

imcfgm,1

(c) M-N match matrix

Figure 6.10: Input module dispatcher

ack generate tree. The request-generate matrix filters out the requests to unavailable
CMs. The M-N match allocator randomly allocates LIs to incoming requests. Conse-
quently the requests are acknowledged by the ack generate tree. The algorithm running
in the M-N match allocator has a feedback loop inside which the feedback signal ipren

is generated by the request enable tree.

Figure 6.10b demonstrates the internal structure of the request-generate matrix.
An incoming request from IP(h) is denoted by k bits, {imrh,k, · · · , imrh,1}, each of
which denotes a request to a target OM. The state feedback from CMs is identified by
a m × k matrix cms where a positive cmsr,j represents that the LO(r, j) in CM(r) is
already occupied. Since any I/O pair has m different paths through the m CMs, every
imrh,j is verified with m LOs denoted by {cmsm,j , · · · , cms1,j} using the asymmetric
C-elements depicted in Figure 6.10b. The output of the request-generate matrix is a
matrix of request bits ipr where a positive iprh,r denotes an active request from IP(h) to
CM(r). Every iprh,r is or-reduced from the results of the C-elements. Since incoming
requests are encoded one-hot, only one bit in the k bits imrh can be high. The or-
reduced ipr is able to represent all active requests.

Figure 6.10c shows the M-N match allocator which is able to match m resources

6.3. ASYNCHRONOUS CLOS SCHEDULER 135

to n clients concurrently. It is an asynchronous implementation of the parallel itera-
tive matching algorithm [2] using a structure similar to the speed-independent forward
acting n ×m arbiter [95]. It consists of two columns of multi-way MUTEX arbiters:
one column of m output link arbiters and another column of n input port arbiters. In-
put requests ipr are shuffled and sent to output link arbiters. The output link arbiter
of every LI chooses an IP independently. Since an IP can initiate multiple requests
in the ipr matrix if multiple CMs are available, the arbitration results of the output
link arbiters, represented by the olg in Figure 6.10c, have to be arbitrated again using
the input arbiters in the second column. They ensure that one IP is matched with one
and only one LI. In case when multiple output link arbiters choose the same IP, the
configuration imcfg would withdraw the corresponding request enable signals ipren,
which consequently withdraws the requests to the output link arbiters not selected by
the input arbiter. These LIs can therefore be used by other IPs.

The generation of ipren from imcfg is processed in the request enable tree. An OR
gate tree is built for each ipren using Equation 6.6:

iprenh,r = ¬(
m∪

l=1,l ̸=r

imcfgl,h) (6.6)

Therefore, iprenh,r is immediately withdrawn when any LI but LI(r) is allocated to
IP(h).

The ack line imra is also generated from imcfg in the ack generate tree. Similar to
the request enable tree, an OR gate tree is built for each imra using Equation 6.7:

imrah =
m∪
l=1

imcfgl,h (6.7)

It should be pointed out that the M-N match allocator is relaxed-QDI rather than
QDI. The multi-resource arbiter [53, 52, 104] (Section 2.7.2) is the only QDI allocator
available so far that can allocate multiple resources to multiple clients. A modified
version of the multi-resource arbiter was used in the previous Clos scheduler published
in [113]. However, it has several design problems: The area of the multi-resource
arbiter is so large that the area of IMDs consumes 67.2% of the total area of the Clos
scheduler presented in [113]. The handshake protocol of the multi-resource arbiter
is not fully satisfied in the Clos scheduler and the ring based multi-resource arbiter

136 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

proposed in [104] generates livelock3. The allocation speed of a multi-resource arbiter
is slow because only one IP is served at one time. Contrarily, the M-N match allocator
serves multiple IPs concurrently. It uses a similar structure as the forward acting n×m

arbiter [95] but is simplified using timing assumptions.

The timing assumption required for the M-N match allocator is due to the un-
guarded withdrawal of requests and olg. Figure 6.11 shows the STG of a 2 × 2 M-N
match allocator with two requests (ipr1 and ipr1) and two resources. The state feed-
back is not considered in this STG for simplicity reasons; therefore a request is always
forwarded to all output link arbiters. The withdrawal of requests and olg is shown
in slim blue lines. When both output link arbiters have chosen the same request, the
generated imcfg will release one of them. As an example, assuming both output link
arbiters have chosen ipr1, olg1,1 and olg1,2 are driven high. Only one of them can pass
the input arbiter (1). Assuming the second resource is selected, imcfg2,1 is set and a
token is produced to release olg1,1. In a more complicated situation, olg1,1 may not
be high as output link arbiter (1) is currently reserved by ipr2. However, a token is
still produced to withdraw the duplicated ipr1 as ipr2 can drop at any time making the
output link arbiter (1) select ipr1.

To prohibit any false configuration from being produced, the withdrawal procedure
must finish before ipr−, which is denoted in Figure 6.11 by dash lines coloured in red.
However, implementing such completion detection leads to a significant number of
C-elements and OR gates inserted into the allocator. Considering that the withdrawal
procedure should be finished as soon as possible in order to allocate the resources to
other requests, the latency of the withdrawal procedure is actually the equivalent cycle
time of an iteration in the asynchronous PIM algorithm. This latency is far shorter than
the serving time of a request. It is safe to let the withdrawal procedure be unguarded.
The timing assumption of the safe but unguarded request withdrawal can be expressed
as follow:

timcfg+→olg− < timcfg+→ipr− (6.8)

Considering the timing sequence shown in Figure 6.9b, the right side of Equation 6.8
is the accumulative latency of reserving the rest of a path in CMs and OMs, along with
the whole data transmission. The left side of Equation 6.8 is merely the accumulative

3If the multi-resource arbiter is utilized in IMD, the state feedback signals cms are used as client
request signals. A client request cannot be released before receiving an ack generated from imcfg. Since
the state of CMs can be altered because of other IMs, the non-withdrawal requirement is not satified. A
false client request can occur and trigger livelock especially when the ring based multi-resource arbiter
is used.

6.3. ASYNCHRONOUS CLOS SCHEDULER 137

olg1,1+olg2,1+

imcfg1,1+imcfg2,1+

ipr1 /1ipr1 /2

olg1,1 /1olg2,1 /1

imcfg1,1imcfg2,1

ipr1 +

olg1,2+olg2,2+

imcfg1,2+imcfg2,2+

ipr2 /2ipr2 /1

olg1,2 /1olg2,2 /1

imcfg1,2imcfg2,2

ipr2 +

olg2,2 /2 olg1,2 /2 olg2,1 /2

Output-link

arbiter (1)

Output-link

arbiter (2)

Input-port

arbiter (2)

Input-port

arbiter (1)

olg1,1 /2

Figure 6.11: STG of a 2× 2 MNMA

latency of the request enable tree and an output link arbiter. The speed evaluation in
Section 6.3.2 will demonstrate that the latency of the right side is far longer than the
left side even without data transmission. Enough timing margin has been provided by
the design to ensure the timing assumption without inserting matched delay lines.

138 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

A
r
b
i
t
e
r
(
1
)

A
r
b
i
t
e
r
(
k
)

cmcfg1,1

cmcfg1,k

cmcfgk,k

cmcfgk,1

cmr1,1

cmr1,k

cmrk,k

cmrk,1

Figure 6.12: Central module dispatcher

Central module dispatcher and output module scheduler

A central module dispatcher dynamically reconfigures a central module according to
the cmr forwarded from input modules. It also broadcasts its state alteration to all input
modules. The bidirectional crossbar OMRCCB in a central module scheduler delivers
omr to output modules. An output module scheduler dynamically reconfigures an
output module corresponding to the forwarded omr.

A central module dispatcher and an output module scheduler have similar internal
structures. They all contain a group of arbiters to generate the dynamic configuration
and groups of OR gate trees. Figure 6.12 demonstrates the arbiters in a central module
dispatcher. They receive cmr and produce cmcfg. In an output module scheduler, the
same structure is used to produce omcfg according to omr.

A central module dispatcher also generates the ack lines cmra and the state feed-
back cms. Each bit of these signals is produced by an OR gate tree using the following
equations:

cmrai =
k∪

l=1

cmcfgl,i (6.9)

cmsj =
k∪

l=1

cmcfgj,l (6.10)

6.3. ASYNCHRONOUS CLOS SCHEDULER 139

Table 6.1: Area consumption

Asynchronous Asynchronous Synchronous
Scheduler Scheduler in [113] Scheduler [90]

One IMD 3,862 21,882 3,186
One CMD 4,879 8,437 6,498
One OMSCH 985 1,258 1,375
One IRG 160 196

Total 88,057 260,740 115,262
(unit: µm2)

Similarly, the ack lines for omr are produced by OR gate trees in output module sched-
ulers using the following equation:

omrar =
n∪

l=1

omcfgl,r (6.11)

6.3.2 Performance

The asynchronous Clos scheduler for a C(4, 8, 4) space-space-space Clos network
has been implemented and compared against a reproduction of the synchronous Clos
scheduler using the CRRD algorithm [90]. Both designs are written in Verilog HDL,
synthesized, placed and routed with commercial EDA tools using the Faraday 0.13 µm

standard cell library. Accurate latency, throughput and power consumption are ob-
tained from back-annotated post-layout simulations.

The synchronous Clos scheduler runs at a maximum of 300 MHz after optimiza-
tion. The clock period in post-layout simulations is set to 3.5 ns (285 MHz) to leave
a timing margin and avoid significant area overhead on optimizing critical paths. The
number of iterations in the CRRD algorithm is dynamically reconfigurable but fixed
to four in simulations for the maximum throughput performance. The cell time in the
synchronous Clos network is 17.5 ns according to the following equation:

tcell = tclock · (I + 1) (6.12)

where I is the number of iterations.

The post-layout area of both Clos implementations are illustrated in Table 6.1. The
area of the asynchronous Clos scheduler using the multi-resource arbiter is also listed
in Table 6.1.

140 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

1.37

1.72

1.17

0.18
1.87

1.79

1.33

0.17

req+

imra+

cmra+

omra+

ack+req

omra

cmra

imra

ack

_

_

_

_

_

Unit: ns

Figure 6.13: Detailed allocation latency

It is shown that the asynchronous Clos scheduler is smaller than its synchronous
counterpart. This small area is caused by several reasons:

• The CRRD algorithm runs in multiple iterations. The intermediate states be-
tween iterations are stored in flip-flops.

• Since the path allocation and the data transmission are pipelined, the Clos con-
figuration generated for the next cell time is stored in flip-flops.

• A clock tree is need to drive all flip-flops.

• The storage elements in asynchronous circuits are C-elements which are smaller
than the flip-flops used in synchronous circuits.

Due to these reasons, all asynchronous scheduler components consume less area than
synchronous ones, except for the input module dispatcher. The request-generate matrix
in every IMD filters out the requests to unavailable LOs using the state feedback from
CMs. Each the request-generate matrix contains n × k ×m asymmetric C-elements,
which cause the extra area. It is also shown that the new asynchronous Clos scheduler
using the M-N match allocator achieves a significant area reduction of 66% from the
previous implementation which uses the multi-resource arbiter [113].

The detailed latency of allocating a path using the asynchronous Clos scheduler
is labelled in the simplified STG shown in Figure 6.13. The transitions from req+ to
ack+ denote that a path is reconfigured for an incoming packet while the transitions
from req− to ack− denote that the path is safely released. The delay of the data
transmission of a packet, occurring between ack+ and req−, is variable depending
on the payload size of the packet. The delays labelled in the STG are averaged from
allocating paths from different IPs to various OPs in an idle Clos network. Extra delays
can be introduced when the Clos network is loaded with heavy traffic.

6.3. ASYNCHRONOUS CLOS SCHEDULER 141

� �� �� �� �� �� �� �� 	�

�

���

���

���

	��

����

����

����

����

�	��

����

����

�
�

�
�
�
�
��

�
	
��

	�������� ���� �
������������� �

� ������� ��������

� ������� ���������

� ������ ��������

Figure 6.14: Latency of Clos schedulers

As shown in Figure 6.13, the asynchronous Clos scheduler can reserve a path in
4.44 ns and release it in 5.16 ns. The minimum allocation period is 9.6 ns, which is
shorter than the 10.1 ns period of the previous design [113]. Apropos of the timing
assumption of the safe but unguarded request withdrawal in the M-N match allocator,
the latency timcfg+→olg− in Equation 6.8 is around 0.69 ns, which is far shorter than the
6.73 ns latency of the right side without data transmission.

Assuming requests are withdrawn immediately after paths are reconfigured (the
same assumption used in behavioural simulations), Figure 6.14 reveals the allocation
latency with different injected loads. The detailed delays in Figure 6.13 are back-
annotated into the behavioural level SystemC model used in Section 6.2.3. The latency
of the back-annotated model is also shown in Figure 6.14. All schedulers are injected
with uniform traffic pattern.

As shown in Figure 6.14, the back-annotated SystemC model of the asynchronous
Clos network accurately matches the post-layout simulation. It is also shown that the
asynchronous Clos scheduler provides larger saturation throughput with shorter allo-
cation latency than the synchronous Clos scheduler. The asynchronous Clos scheduler
can allocate a maximum of 77.3 MPacket/port/s while it is 27.3 MPacket/port/s

for the synchronous Clos scheduler with four iterations.

Figure 6.15 reveals the power consumption of both schedulers with different in-
jected load. The asynchronous Clos scheduler consumes significantly lower power
than the synchronous Clos scheduler. The clock tree in the synchronous Clos scheduler
consumes 8.34 mW, which is 63.6% of the total power consumption when the sched-
uler is injected with 20 MPacket/port/s load. In average, allocating 1 M packets in
the asynchronous Clos scheduler consumes 64.4 µJ, which is 35.8% of the energy
consumed by the synchronous Clos scheduler allocating the same number of packets.

142 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

� � � � � �� �� �� �� �� �� ��

�

�

�

�

�

��

��

��

��

�
�
�
�
�
�
�

�
�
	
�
��
�

��

	
�
��

������� ��
�� ���
����������� �

� ������������

� 	����������

Figure 6.15: Power consumption of Clos schedulers

The average energy for 1 M packets in the synchronous Clos scheduler is 180 µJ.

6.4 2-stage Clos swtich

It has been shown at the beginning of this chapter that using Clos networks reduces the
area overhead of SDM routers. However, simply substituting the crossbar in an SDM
router with a space-space-space Clos network is not the best solution. A 3-stage Clos
network consumes the minimum area when k =

√
2N . The optimum k for a practical

switch in an SDM router is usually not an integer, which leads to non-minimum Clos
networks. On the other hand, the crossbar of a router using DOR routing algorithms
can be simplified by removing disabled turns (see Section 7.1.2 and Figure 7.5 for
a detailed explanation of the turn models). Such area reduction cannot be directly
applied to a 3-stage Clos network.

A novel 2-stage Clos switch structure for a 5-port SDM router is depicted in Fig-
ure 6.16. Rather than building an optimum Clos network by setting the number of input
modules to

√
2N , it is fixed to the number of directions. In a mesh network using 5-

port routers, this number is fixed to five (south, west, north, east and local). Every
direction has an input module sized M ×M , where M is the number of virtual circuits
implemented in each direction. The central stage comprises M 5× 5 central modules.
An output module can be implemented for each direction. However, the virtual circuits
in each output module are equivalent as they have the same output direction. LOs can
be directly connected to OPs; therefore, output modules are not necessary and can be
removed. The 2-stage Clos network is RNB because the number of central modules
is equal to the number of virtual circuits in an input module. The area of a switch is

6.4. 2-STAGE CLOS SWTICH 143

M×M
5×5

IM(s) CM(1)

5×5

CM(r)

5×5

CM(M)

IP(s,1)

IP(s,M)

OP(s,1)

OP(s,M)

M×M

IM(w)
IP(w,1)

IP(w,M)

M×M

IM(n)
IP(n,1)

IP(n,M)

M×M

IM(e)
IP(e,1)

IP(e,M)

M×M

IM(l)
IP(l,1)

IP(l,M)

OP(w,1)

OP(w,M)

OP(n,1)

OP(n,M)

OP(e,1)

OP(e,M)

OP(l,1)

OP(l,M)

Figure 6.16: 2-stage Clos switch

proportional to the number of cross-points. The area of the 2-stages Clos switch is:

AClos,2−stg ≤ (PM2 +MP 2) · (W/M) ·ACP (6.13)

where P is the number of directions, W is the wire count of each virtual circuit, and
ACP is the equivalent area of a single cross-point.

Compared with the space-space-space Clos network, the 2-stage Clos switch has
several advantages:

• As shown in Figure 6.17, the 2-stage Clos switch consumes the smallest area in
5-port SDM routers as long as M ≤ 18.

• The 2-stage structure simplifies the Clos scheduler and reduces the allocation
latency.

• Every central module is equivalent to the crossbar in a wormhole router. The
disabled turns can be removed in central modules for further area reduction.

• The latency of transmitting data through the switch is also reduced due to the
removal of output modules.

Similar 2-stage Clos networks have been utilized in optical packet switching net-
works [22] and ATM switches [101]. An SDM router using this 2-stage Clos switch
will be presented in Chapter 7.

144 CHAPTER 6. AREA REDUCTION USING CLOS NETWORKS

� � � � � �� �� �� �� �� �� �� ��

�

����

����

����

����

�����

�
��
�
��

�
�
�
�
�
��

	�
�
�
�
�
��

�
��
��

���	��� ��� ��������
��
����

� �����	��

� ���� ����

� �����

� ������� ����

Figure 6.17: Area of different switches (including the 2-stage Clos switches)

6.5 Summary

Spatial division multiplexing significantly improves the throughput of asynchronous
on-chip networks but the area of the central crossbar in an SDM router increases
proportionally with the number of virtual circuits. Substituting the crossbar with a
Clos switch reduces the area overhead. The first asynchronous dispatching algorithm
has been proposed and implemented to reconfigure general 3-stage space-space-space
Clos networks. Thanks to the state feedback scheme, the asynchronous dispatching
algorithm avoids the contention between input modules and central modules. Both
behavioural and practical implementations show that the asynchronous dispatching al-
gorithm outperforms the synchronous concurrent round-robin dispatching algorithm in
throughput, allocation latency and power consumption. A novel 2-stage Clos switch
has been proposed for SDM routers. This rearrangeable non-blocking Clos switch
has the smallest area among all the switch structures as long as the number of virtual
circuits in each direction is fewer than 18.

Part III

Performance Evaluation and
Conclusion

145

Chapter 7

An Asynchronous SDM Router

The previous chapters have proposed several new techniques to improve the throughput
of asynchronous routers. In the physical layer, channel slicing removes the unneces-
sary synchronization among sub-channels. The lookahead pipeline reduces the period
of a pipeline using the early evaluated acknowledgement. In the switching layer, it is
found that using SDM achieves better throughput than using VCs. Using Clos switches
inside SDM routers reduces the area overhead significantly. In this chapter, a new SDM
router will be presented using all the techniques introduced in previous chapters.

7.1 Router structure

Chapter 5 has demonstrated an SDM router using a crossbar as the central switch. As
described in Chapter 6, 2-stage Clos switches can be used to reduce the total area. A
new SDM router using the 2-stage Clos switch is shown in Figure 7.1.

Compatible with the mesh topology, the router has five bidirectional ports (direc-
tions): south, west, north, east and local. Every input port is connected to an input
buffer and every output port is connected to an output buffer. The input buffer con-
tains several pipeline stages to buffer incoming flits. A pipeline stage is implemented
in each output buffer to decouple the timing between the internal switch and external
links. Input and output buffers are spatially divided into M virtual circuits operating
independently. The channel slicing technique has been utilized in each virtual circuit
and the lookahead pipeline is used to implement the pipeline stages connected to the
central switch in the same way as described in Section 4.4.1. Input and output buffers
are dynamically connected through the 2-stage Clos switch, which is controlled by a
Clos scheduler using the asynchronous dispatching algorithm.

146

7.1. ROUTER STRUCTURE 147

M×M
5×5

M×M

M×M

M×M

M×M

5×5

5×5

Clos Scheduler

South In

West In

North In

East In

Local In

South Out

West Out

North Out

East Out

Local Out

Input buffers Output buffers2-stage Clos

Figure 7.1: Asynchronous SDM router using 2-stage Clos switch

7.1.1 Input and output buffers

The internal structure of the input buffer for a virtual circuit is illustrated in Figure 7.2.
It is developed from the input buffer of an SDM router as shown in Figure 5.4.

Every pipeline stage is spatially divided into C sub-channels. As described in
Section 4.2 and Section 4.4, every sub-channel is a single multi-rail pipeline. In this
implementation, it is a 4-phase 1-of-4 pipeline with its own eof bit and ack line. The
data width of each sub-channel is two bits; therefore, the total data width of a virtual
channel is 2C.

Sub-channels run independently most of the time except for when a tail flit is de-
tected and, therefore, a new header flit is going to be analysed by the XY router (the
same one used in Section 4.4 and Section 5.3). The control sequence has been de-
picted by the STG depicted in Figure 5.5b. Individual sub-channels have to detect the
tail flit independently using their own eof bits and pause themselves afterwards. Corre-
sponding control logic in the original router controller (Figure 5.5a) is duplicated and
developed into sub-channel controllers located in sub-channels.

The connection between sub-channel controllers and the router controller is shown
in Figure 7.2b. The last pipeline stage of each sub-channel is controlled by a sub-
channel controller. It reads the ack from the central switch (AI2CB), the eof output,
the ack line driven by the last pipeline stage (ack0) and the ack from the Clos scheduler
(rt ra). In response, it generates the ack line driving the last pipeline stage (nack0) and
its own router reset flag rt rst. In the sub-channel controllers shown in Figure 7.2b, the
gates coloured in grey are duplicated from the original router controller in Figure 5.5a.
They ensure that the operation of each sub-channel complies with the STG of the

148 CHAPTER 7. AN ASYNCHRONOUS SDM ROUTER

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

XY router

rt_en

rt_rst

Sub-Ch. Ctl. DI2CB

AI2CB

rt_r

Sub-channel 0

e
o
f
0

Router

controller rt_ra

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

EOF
i

D
i

A
i

EOF
o

D
o

A
o

Sub-channel C-1

Sub-Ch. Ctl.

e
o
f
C
-
1

Data_in

Ack_in

n
a
c
k
0
,
0

a
c
k
0
,
0

a
c
k
C
-
1
,
0

n
a
c
k
C
-
1
,
0

(a) Buffer structure

eof0

rt_rst

ack0,0

AI2CB0

nack0,0

eofC-1

ackC-1,0

AI2CBC-1

nackC-1,0

rt_enrt_ra

Sub-channel controller (C-1)

Sub-channel controller (0)

Router

controller

r
t
_
r
s
t
0

rt_rstC-1

(b) Control logic

Figure 7.2: Input buffer for a virtual circuit

original router controller. The asymmetric C-elements on AI2CB and ack0 wires are
the asymmetric C-elements added in the lookahead pipeline as shown in Figure 4.6a.
It prohibits the pipeline stage from capturing new data before releasing the old one.
The ack line driving the last pipeline stage, nack0, is generated using the same logic as
shown in Figure 7.2. It allows the sub-channel to run freely until a tail flit is detected.

All sub-channels are re-synchronized through the router controller, which is also
shown in Figure 7.2b. Signal rt rsti turns high when sub-channel i has detected the tail
flit. The AND gate in the router controller guarantees that the XY router is reset only
when every sub-channel has received its share of the tail flit. This AND gate should be
replaced with a C-element tree in a strictly QDI design. Considering the long latency

7.1. ROUTER STRUCTURE 149

EOF
i

D
i

A
i

EOF
o

D
o

A
o

Data_out

Ack_out

EOF
i

D
i

A
i

EOF
o

D
o

A
o

DCB2O

ACB2O

Figure 7.3: Output buffer for a virtual circuit

North

South

EastWest

Figure 7.4: The turn model of the XY routing algorithm

of analysing the header flit and reserving a path in the 2-stage Clos switch, it is safe to
use the AND gate to reduce area and latency. The router controller generates the rt en

signal from rt ra.

The structure of the output buffer of a virtual circuit is shown in Figure 7.3. It
contains one pipeline stage which decouples the timing between the central switch and
the long inter-router links. Like the input buffers, the buffer stage in output buffers is
spatially divided into sub-channels. The AND gate in each sub-channel generates the
early evaluated ack line required by the lookahead pipeline. The same circuit has been
used in Figure 4.8.

7.1.2 2-stage Clos switch for SDM routers

The 2-stage Clos switch and its scheduler are optimized assuming the XY routing
algorithm is used. As described in Section 6.4, each central module in the 2-stage
Clos switch is equivalent to a crossbar in a wormhole router. It can be optimized by
removing the turns forbidden by the routing algorithm. The turn model of the XY
routing algorithm is depicted in Figure 7.4. Only the packets from south and north are
allowed to change directions (dimensions) while the packets from west and east travel
straight only. The corresponding turns are disabled and depicted in dashed lines.

150 CHAPTER 7. AN ASYNCHRONOUS SDM ROUTER

Si

Wi

Ni

Ei

Li

So Wo No Eo Lo

cf
g E

L

cf
g N

L

cf
g W

L

cf
g S

L

cf
g L

E

cf
g W

E

cf
g W

N

cf
g S

N

cf
g E

N

cf
g L

N

cf
g L

W

cf
g E

W

cf
g E

S

cf
g L

S

cf
g N

S

cf
g W

S

Figure 7.5: An optimized central module

An example of the optimized central module is shown in Figure 7.5. The structure
remains the same as a normal crossbar as Figure 5.7 but the AND gates for those
disabled turns are removed. Self-turns are also removed as it is normally disallowed
to return a packet to its incoming direction. In total, nine out of 25 turns are removed
in each central module. The area reduction in the whole 2-stage Clos switch is around
13.8% ∼ 25.7% when 2 ∼ 8 virtual circuits are implemented in each direction.

Thanks to the 2-stage structure, the 2-stage Clos scheduler shown in Figure 7.6
is much simpler than a 3-stage Clos scheduler (Figure 6.8). All the components for
the OM requests omr, including the crossbars delivering omr (OMRICBs and OMR-
CCBs) and the OM schedulers, are removed. Incoming requests are the rt r signals
from the XY routers in input buffers. The path allocation and release sequence is still
controlled by the input request generator (IRG) connected to each input request. As
shown in Figure 7.7, two rather than three requests are generated in each IRG: imr for
the IM dispatcher (IMD) and cmr for the CM dispatcher (CMD). IMDs and CMDs
dynamically reconfigure IMs and CMs using the asynchronous dispatching algorithm
proposed in Chapter 6.

The modified input request generator in an SDM router is demonstrated in Fig-
ure 7.7. The incoming request rt r is already coded in one-hot. It is directly forwarded
to IMDs and CMDs. The C-elements ensure the STG shown in Figure 7.7b is followed
during the path allocation and release process.

The internal structures of IMDs and CMDs are basically the same as those de-
scribed in Section 6.3.1. Thanks to the removal of disabled turns in CMs, the number
of asymmetric C-elements in the request generate matrix in an IMD (Figure 6.10a) is
significantly reduced in the IMDs for west and east inputs.

7.2. IMPLEMENTATION 151

IRG0

IRGi

IRGM-1

CMRICB

IMD

CMD

imcfg

IMSCHN

CMSCHr

CMSCHM-1IMSCHL

IMSCHS CMSCH0

rt_rS,0

rt_rS,i

rt_rS,M-1

rt_rN,M-1

rt_rN,0

rt_rL,M-1

rt_rL,0

Figure 7.6: Scheduler for the 2-stage Clos switch

imr

cmr

cmra
imra

rt_r

rt_ra

(a) Schematic

rt_r+

imr+cmr+

imra+

cmra+

rt_ra+

cmrcmra

imrimra

rt_ra

_ _

__

_

_

rt_r

(b) STG

Figure 7.7: The input request generator in an SDM router

7.2 Implementation

7.2.1 Implementation detail

The new SDM router has been implemented into layout using the Faraday 0.13 µm

standard cell library. The data width of each direction is 32 bits. Each direction has
four virtual circuits, each of which is eight bits wide. The buffer depths of input and
output buffers are set to one stage which is the minimum size.

Figure 7.8 demonstrates the floor plan of a router tile. The router is placed in the
centre of a 2.5×2.5mm2 tile which provides enough space for an embedded processing
element [127] in 0.13 µm technologies. The long-range links between routers incur
long latency. Two pipeline stages are inserted symmetrically on all long-range links to
ensure they are not the throughput bottleneck. The pin order and positions of all top-
level I/O ports are manually specified in a way that tiles can be aligned seamlessly into
a mesh network. The size of the router placement guide in the centre of Figure 7.8 is
proportional to the post-synthesis area of the router. The area ratio of the post-synthesis

152 CHAPTER 7. AN ASYNCHRONOUS SDM ROUTER

Placement

Blockage

Placement

Blockage

Placement

Blockage

Placement

Blockage

2.5mm

2
.
5
m
m

Router

North

South

L
o
c
a
l

W
e
s
t

E
a
s
t

Figure 7.8: Floor plan of a router tile

router area to the router placement guide size is set to 40% leaving 60% extra space to
avoid wire congestion and performance degradation. This 40% area ratio is relatively
large compared to the ratio of synchronous circuits. It is believed that asynchronous
circuits are likely to generate wire congestion due to the feedback wires in C-elements
and handshake circuits. The area ratio of the ANOC router implementation is 32% [7],
which is even smaller than the 40% used in this research. Several placement blockages
are placed inside the tile to direct the cell placement.

To demonstrate the area overhead and speed improvement of using the techniques
developed in this research (channel slicing technique, the lookahead pipeline, the SDM
flow control method and the 2-stage Clos switch), the new SDM router (SDM-Clos
ChSlice+LH) has been compared against several router implementations, including a
wormhole router using synchronized pipelines (WH), a wormhole router using chan-
nel slicing and lookahead pipelines (WH ChSlice+LH), an SDM router using synchro-
nized pipelines (SDM), an SDM router using channel slicing and lookahead pipelines
(SDM ChSlice+LH) and a VC router (VC). All routers are configured with the same
data width, depth of buffers and number of virtual circuits/VCs. The VC router is a
reproduction of the VC router in the QoS NoC [45]. It has been modified to support
best-effort traffic. The detailed modifications are presented in Appendix B. The floor
plans of these routers comply with the plan shown in Figure 7.8. The size of the router

7.2. IMPLEMENTATION 153

Table 7.1: Area consumption

Input Output Central Switch Router Placement
Buffer Buffer Switch Allocators Overall Guide

VC 72,778 11,376 30,815 55,393 222,227 525,625
WH 8,870 8,403 9,881 909 28,451 62,500
WH ChSlice+LH 17,147 11,034 17,754 909 48,170 93,025
SDM 18,400 9,462 50,941 83,382 163,620 366,025
SDM ChSlice+LH 23,356 9,016 69,701 83,485 187,872 403,225
SDM-Clos ChSlice+LH 19,995 8,893 33,417 19,884 84,054 189,225

(unit: µm2)

placement guide and the pin positions are always regenerated for different configura-
tions.

7.2.2 Area consumption

The area breakdown of different router implementations is revealed in Table 7.1. All
values are obtained from the post-layout area report which does not include the area
of the pipelines inserted between routers (whose area is revealed in Section 8.1.2 and
Appendix C). Route congestion has affected the area. The size of the router placement
guide is also shown in the last column of Table 7.1 to demonstrate the overall die size
required to avoid route congestion.

The wormhole router using synchronized pipelines consumes the smallest area.
Using channel slicing and lookahead pipelines enlarges the size of input buffers and
the switch. As explained in Section 4.4.2, extra area is consumed by the sub-channel
controllers in input buffers and the increased wire count in the switch. However, the
area increase in output buffers is not expected as it is inconsistent with the claims in
Section 4.4.2. Channel slicing and lookahead pipelines significantly reduce the period.
It is found that the pipeline stages inserted on the long-range links between routers
have been greatly optimized in the place and route process because they have longer
periods than the critical cycles inside routers. This optimization leads to large driving
cells in output and input buffers which cause the extra area. Inserting more pipeline
stages on the long-range links can alleviate this effect.

The SDM router using synchronized pipelines introduces extra area overhead in
input buffers, the central switch and the switch allocator. As analysed in Section 5.4.1,
every virtual circuit is a fully functional input buffer with its own XY router along with
the router controller. The size of the crossbar increases proportionally to the number

154 CHAPTER 7. AN ASYNCHRONOUS SDM ROUTER

of virtual circuits. The switch allocator consumes more area than the wormhole router
due to the larger arbitration scheme. Using channel slicing and lookahead pipelines
in an SDM router introduces extra area overhead in the same way as they do in a
wormhole router.

As shown in Table 7.1, using the 2-stage Clos switch in the SDM router signifi-
cantly reduces the area of the switch and the switch allocator. The total area reduction
is around 100, 000 µm2, which is 53.2% of the overall area.

It is shown clearly that the VC router consumes the largest area overhead in all
router structures. The conceptual area estimation model for VC routers in Section 5.4.2
actually under-estimates the area. Through a detailed analysis of the internal structure
of the VC router in the QoS NoC [47, 45], the large area overhead of this VC router is
because of following reasons:

• As shown in the area model in Section 5.4.2, VC duplicates input buffers, en-
larges the central switch as SDM routers do, and introduces a VC allocator be-
sides the switch allocator.

• Extra latches are used to store the VC number and the flit type for each flit.

• Separated pipelines and control logic are required to handle credits (Section 8.5.1
in [45]).

• C-elements are used in the crossbar because the configuration bit is released
before the withdrawal of the ack line (Figure 5.2 in Section 5.1).

• Several pipeline stages have been inserted in input buffers (Figure 8.7 in [45])
and output buffers (Figure 8.16 in [45]) to reduce switch request cycle time and
decouple it from data transmission.

7.2.3 Router speed

Table 7.2 demonstrates the speed performance of different router implementations.
The delays are obtained from post-layout simulations. Wire resistance and capacitance
have been properly extracted and back-annotated into simulations.

The period of the wormhole router using synchronized pipelines is 3.68 ns, which
is equivalent to 272 MHz. The XY router needs 0.61 ns to analyse a header flit and the
switch allocator reconfigures a path in 1.06 ns if no contention occurs. The latency for
a data flit traversing the router is around 0.96 ns in average.

7.2. IMPLEMENTATION 155

Table 7.2: Router latency

Cycle Equivalent Router XY Switch
Period Frequency Latency Router Allocators
ns MHz ns ns ns

VC 5.29 189 5.14 1.96 1.64
WH 3.68 272 0.96 0.61 1.06
WH ChSlice+LH 2.24 446 0.92 0.64 1.24
SDM 3.27 306 1.29 0.68 2.09
SDM ChSlice+LH 2.86 350 1.18 0.68 2.01
SDM-Clos ChSlice+LH 2.67 375 1.29 0.63 2.13

Using channel slicing and lookahead pipelines in wormhole routers reduces the
period to 2.24 ns, which is equivalent to 446 MHz. Channel slicing and lookahead
pipelines increase the equivalent frequency by 63.9%. It should be noticed that in this
router configuration, throughput is constrained by the long-range links rather than the
critical cycle inside the router. Inserting more pipeline stages on the long-range links
can further reduce the period.

It is shown that the SDM router using synchronized pipelines achieves shorter pe-
riod than the wormhole router using synchronized pipelines. The latency reduction
obtained from the reduced C-element trees inside completion detection circuits over-
comes the extra latency introduced by the large central switch. The period is 3.27 ns,
which is equivalent to 306 MHz. Other than the reduced period, SDM also improves
throughput by alleviating the HOL problem. The throughput performance of SDM
routers will be presented in the next chapter. Consistent with the latency models in
Section 5.4.1, the enlarged central switch leads to longer router latency and allocation
latency compared with wormhole routers.

Using channel slicing and lookahead pipelines in SDM routers has the same effect
as in wormhole routers. Period and router latency are reduced accordingly. The equiv-
alent frequency of the SDM router using channel slicing and lookahead pipelines is
350 MHz, which is 14.4% higher than the SDM router using synchronized pipelines.

It is already known that using the 2-stage Clos switch reduces the area of an SDM
router. It is believed that period and router latency should be prolonged as another
stage of switches is inserted in the critical cycle. As shown in Table 7.2, the router
latency is prolonged as expected but the period is actually reduced. This reduction
can be caused by two reasons: first, the size of the central switch is reduced by 50%
(as revealed in Table 7.1); correspondingly the average distance between two pipeline

156 CHAPTER 7. AN ASYNCHRONOUS SDM ROUTER

stages is reduced. Second, using the 2-stage Clos switch reduces the fan-out of data
wires as well as the load of driving cells. To sum up, the period reduction is marginal
and the speed degradation introduced by Clos switches is moderate.

The VC router presents the worst speed performance. Its period is the longest
due to its extra switch reconfiguration overhead. The long router latency is caused by
its deep pipelines in the router. Every VC buffer is implemented with the minimum
depth of two pipeline stages. One extra pipeline stage is required in each input buffer
to decouple the switch allocation from data transmission [45]. The total number of
pipeline stages is four, two times of the depth of the minimal wormhole routers or
SDM routers. The XY router in VC routers runs in parallel with VC buffers. The
long XY router latency is due to the extra pipeline delay but this does not compromise
throughput. Detailed performance comparisons will be presented in the next chapter.

7.3 Summary

This chapter has presented a novel asynchronous spatial division multiplexing router
utilizing all the techniques proposed in Part II. Several asynchronous routers using
different flow control methods and various pipeline styles have been implemented into
layout. All routers are placed in the centre of a 2.5 × 2.5 mm tile with carefully
specified I/O mapping for network integration. The area breakdown and latencies of
various router implementations are revealed with explanations of the area and latency
overhead of different router structures.

The evaluation in this chapter reveals the physical performance of different router
implementations without injecting them with any traffic. In the next chapter, routers
are evaluated with synthetic traffic models to demonstrate their capability of delivering
frames. They will be evaluated in the environments of a single router and networks.

Chapter 8

Performance Evaluation

This chapter will evaluate the performance of different router structures with synthetic
traffic models. The evaluation will be processed in two steps: single router evaluation
and network evaluation. In the single router evaluation, routers are examined individ-
ually with random uniform frame streams loaded to all input ports. This evaluation
will demonstrate the theoretical saturation throughput of all router structures and the
energy consumed for a frame going through a single router. The network evaluation
will examine the network throughput and the power consumption of different routers
in an 8 × 8 mesh network with random uniform traffic. A ‘real world’ example of a
4 × 3 mesh network simulating an MPEG-4 MPSoC system is also adopted using the
traffic data from [10, 65] as this is available.

8.1 Single router evaluation

8.1.1 Test environment

The design under test in the single router evaluation is one of the asynchronous routers
implemented in Section 7.2. A total of five frame generators are connected to the
five input ports. Every output port is linked with a frame sink. Frames are generated
randomly by frame generators and consumed by frame sinks. The frame flow in all
frame generators and sinks is recorded in a global bookkeeping database.

A frame generator produces a sequence of frames complying with a predefined
Poisson process. In the single router evaluation, frames head to all output directions
according to the frame direction distribution defined in Table 8.1. As routers use the
XY routing algorithm, some directions are correspondingly prohibited in the table. The

157

158 CHAPTER 8. PERFORMANCE EVALUATION

Table 8.1: Frame direction distribution

load to south to west to north to east to local

from south 1.25ρ 0 0.25ρ 0.5ρ 0.25ρ 0.25ρ
from west 0.5ρ 0 0 0 0.25ρ 0.25ρ

from north 1.25ρ 0.5ρ 0.25ρ 0 0.25ρ 0.25ρ
from east 0.5ρ 0 0.25ρ 0 0 0.25ρ

from local 1.5ρ 0.5ρ 0.25ρ 0.5ρ 0.25ρ 0

distribution is defined in a way that all output ports are loaded with an equal amount
of traffic coming evenly from all possible input directions. The payload size is fixed
to 64 bytes for high throughput [115]. Every newly generated frame is updated to the
central bookkeeping database with information including the current time stamp, the
target direction, payload size and a 64-bit unique key for trace tracking. A FIFO is
inserted between every pair of frame generator and input port. The size of this FIFO is
set to 500 frames, approximating an infinite input buffer.

A frame sink receives frames coming from a certain output direction. The integrity
of every incoming frame is verified by comparing the unique key regenerated from the
frame against the records in the global bookkeeping database. The frame transmission
latency and the overall throughput are updated if a match is found in the database,
otherwise an error message is produced for debug purpose and the simulation stops.

The global bookkeeping database records all active frames in a hash table using
the 64-bit unique key as the record identifier. Information about the delivered frames,
such as frame transmission latency, path reservation latency, payload transmission la-
tency, overall throughput and delay histogram, are accumulated and reported to a log
file according to different test configurations. In the single router evaluation, frame
transmission latency and overall throughput are traced and reported.

Frame generators, frame sinks and the global bookkeeping database are written
in parameterized SystemC models which are used to test all router structures in this
thesis. The SystemC test bench is co-simulated with the back-annotated post-layout
netlists (Verilog-HDL) generated in Chapter 7 using Cadence NC-Simulator. Detailed
signal switch activities are collected during the simulation and the power consumption
of all routers are obtained by the post-simulation analysis in Synopsys PrimeTime PX.

8.1. SINGLE ROUTER EVALUATION 159

Table 8.2: Single router performance

Tile Router Min Frame Saturation Tile Router
Area Area Latency Throughput Power Power
µm2 µm2 ns MByte/s mW mW

VC 243,940 222,277 93.7 579.8 21.5 12.4
WH 47,167 28,451 64.0 636.6 14.9 6.29
WH ChSlice+LH 71,873 48,170 40.3 995.8 37.3 17.6
SDM 182,644 163,620 223.5 877.2 25.0 13.3
SDM ChSlice+LH 208,300 187,872 179.8 1,032.5 39.8 22.6
SDM-Clos ChSlice+LH 104,987 84,054 187.4 964.3 32.5 15.8

8.1.2 Performance

The preliminary results of all router structures are provided in Table 8.2. The data
width of all routers is 32 bits and four virtual circuits or virtual channels are imple-
mented in SDM or VC routers. The meanings of the columns in Table 8.2 are as
follows:

• Tile area: the post-layout area of a tile, including the router and the pipeline
stages inserted between routers.

• Router area: the post-layout area of a router (the same values were shown in
Table 7.1 as router overall).

• Minimum frame latency: the minimum latency required by a router to deliver a
frame when no contention occurs.

• Saturation throughput: the maximum data rate provided by a router when all its
input ports are overladen with uniform traffic.

• Tile power: the total power consumption of a tile, including the router and the
pipeline stages inserted between routers, when the router is overloaded.

• Router power: the power consumption of a router when it is overloaded.

As explained in Section 7.2, channel slicing, the lookahead pipeline style and the
spatial division multiplexing flow control method increase area. Using the 2-stage Clos
switch in SDM routers reduces area overhead significantly. All routers are smaller than
the VC router with four virtual channels.

The minimum frame latencies of wormhole routers (WH and WH ChSlice+LH)
and VC routers (VC) are approximately proportional to the period shown in Table 7.2.

160 CHAPTER 8. PERFORMANCE EVALUATION

It can be explained by Equation 5.1. The frame latency consists of two parts: the time
consumed to reserve a path and the time consumed to transmit data. When the network
is free of contention, the path reservation latency is proportional to tR ·h, where tR

is the router latency and h is the number of hops between frame sender and receiver.
Since the hop count is only one in the single router evaluation, the data transmission
latency, which is proportional to router period, dominates the frame latency. The data
width of a virtual circuit is a quarter of the total data width in the SDM routers (SDM
and SDM ChSlice+LH) with four virtual circuits. The minimum frame latency is ac-
cordingly prolonged to approximately four times the minimum frame latency of the
wormhole router (WH and WH ChSlice+LH).

It is shown in the throughput performance that channel slicing, the lookahead pi-
peline style and SDM enlarge the saturation throughput of a single router. The SDM
router using channel slicing and lookahead pipelines (SDM ChSlice+LH) provides the
best saturation throughput of 1032.5 MByte/s. The 2-stage Clos switch compromises
the saturation throughput by 6.6% because the rearrangeable non-blocking Clos switch
is blocking when established paths cannot be reallocated.

When routers are connected into a network, router throughput decreases due to the
contention caused by the communication pattern and the head-of-line problem. The
practical throughput of a router in a network can never reach the saturation throughput
shown in Table 8.2. The capability of different flow control methods in handling the
head-of-line problem will be demonstrated in the network evaluation (the next section).
The VC router (VC) shows the worst router throughput due to its longest period. It
is only 56% of the saturation throughput provided by the SDM router using channel
slicing and lookahead pipelines (SDM ChSlice+LH).

The power consumption of an asynchronous router is proportional to its throughput
and it is also related to its internal structure. It is known that using channel slicing,
lookahead pipelines and SDM leads to extra power consumption. These techniques
increase the saturation throughput which, in turn, consumes extra power. On the other
hand, they may consume more power due to their router structures. Figure 8.1 reveals
the energy efficiency of different routers. The efficiency is calculated as the saturation
throughput divided by the tile power consumption. It can be understood as the average
amount of data delivered by a unit of energy (MByte/mJ). As shown in Figure 8.1,
the wormhole router using synchronized pipelines (WH) provides the highest energy
efficiency thanks to its simple router structure. All techniques that improve throughput
compromise energy efficiency. Compared with SDM (SDM), using channel slicing

8.1. SINGLE ROUTER EVALUATION 161

WH

WH ChSlice+LH

SDM

SDM ChSlice+LH

SDM-Clos ChSlice+LH

VC

0 10 20 30 40 50

��
����
��	
�	�� �����
����

Figure 8.1: Energy efficiency of a single router

and lookahead pipelines (WH ChSlice+LH) consumes more power. The 2-stage Clos
switch is the only technique that improves energy efficiency instead of compromising
it. It is also shown in Figure 8.1, the virtual channel flow control method compromises
the energy efficiency. VC routers have deeper pipelines than other router structures
(two more pipeline stages in this thesis), which leads to more transitions for a router to
deliver a flit. The energy efficiency of the VC router is similar to the efficiency of the
wormhole router using channel slicing and lookahead pipelines.

The remainder of this section will reveal the performance change of using different
numbers of virtual circuits or VCs and different data widths. To identify the data width
and the number of virtual circuits or VCs in each test case, an extra label is added at the
end of the name of each case. For a wormhole router using W -bit ports, “:W ” is added
to denote the data width W . When virtual circuits or VCs are utilized, “:WxM” is
used to denote that M virtual circuits or VCs are implemented and each virtual circuit
or VC is W bits wide. Notice that the total data width of an SDM router is W ·M
while it is W for a VC router because the ports in SDM routers are spatially divided to
virtual circuits.

Figure 8.2 reveals the single router performance using various numbers of virtual
circuits or VCs in SDM routers or VC routers. Figure 8.2a demonstrates the area
overhead of adding virtual circuits or VCs. The area overhead of the long-range links
has no significant difference in all router implementations except the wormhole router
using channel slicing and lookahead pipelines (WH ChSlice+LH:32). This router has
the shortest period which makes the long-range links the critical cycle. The pipeline
stages on long-range links are therefore optimized in the place and routing procedure
leading to the extra area overhead. In nearly all router implementations, the router area
is doubled when the number of virtual circuits or VCs is doubled. The only exception
is the SDM router using the 2-stage Clos switch (SDM-Clos ChSlice+LH). The area

162 CHAPTER 8. PERFORMANCE EVALUATION

WH:32

WH ChSlice+LH:32

SDM:16x2
SDM:8x4

SDM ChSlice+LH:16x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:8x4

VC:32x2
VC:32x4

0 50000 100000 150000 200000 250000

����� (µ�)

� ������

� ���	����	�� �
���

(a) Area consumption

WH:32

WH ChSlice+LH:32

SDM:16x2
SDM:8x4

SDM ChSlice+LH:16x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:8x4

VC:32x2
VC:32x4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Normalized throughput and energy efficiency

� ������ ���	�	����

� ���
� ���������

(b) Throughput and power

Figure 8.2: Router performance with various number of virtual circuits/VCs

reduction compared with the SDM router using crossbars is 55.3% in the four virtual
circuits case (SDM-Clos ChSlice+LH:8x4) while it is only 12.4% in the two virtual
circuits case (SDM-Clos ChSlice+LH:16x2). It is more beneficial to use 2-stage Clos
switches in SDM routers when the number of virtual circuits is larger than four.

Taking the performance of the wormhole router using synchronized pipelines
(WH:32) as the baseline case, the normalized throughput1 and energy efficiency per-
formance is depicted in Figure 8.2b. It should be noticed that the throughput increase
of adding extra virtual circuits or VCs in the single router evaluation is marginal be-
cause no head-of-line problem is generated. The small throughput increase is because
the contention rate of the central switch is slightly reduced with extra virtual circuits or

1The calculation of throughput efficiency is defined in Equation 5.32 where it is called gain. Instead
of using router area as the denominator in Equation 5.32, tile area is used here.

8.1. SINGLE ROUTER EVALUATION 163

VCs2. Adding extra virtual circuits or VCs compromises energy efficiency. However,
using the 2-stage Clos switch can alleviate this effect to some extent.

Increasing data width is an effective way of providing extra throughput. As anal-
ysed in Section 5.4.3, increasing data width is more area efficient than increasing the
depth of buffers. Figure 8.3 demonstrates the single router performance with vari-
ous data widths. Two virtual circuits or VCs are implemented in SDM routers or VC
routers. The overall data width increases from 16 bits to 64 bits.

In the area consumption shown in Figure 8.3a, the area of long-range links is pro-
portional to data width. Tile area increases linearly. Since the number of virtual circuits
is only two, the area reduction of using 2-stage Clos switches is not significant. VC
routers always consume the largest area until the data width increases to 64 bits. In this
case, the VC router still consumes the largest area but the SDM router using the 2-stage
Clos switch has the largest long-range links, which make it the most area consuming
structure.

The throughput increase is significant in all router structures but the increase is not
linear with data width. The routers using synchronized pipelines show worse through-
put increase than the routers using channel slicing and lookahead pipelines. Specifi-
cally, increasing the data width of the wormhole (WH) router from 48 bits to 64 bits
brings 73.8 MByte/s extra throughput. It is only 25.5% of the extra throughput in-
curred by increasing the data width from 32 bits to 48 bits. The same ratios are 65.8%,
62.4%, 63.6%, 73.1% and 49.2% for WH ChSlice+LH, SDM, SDM ChSlice+LH,
SDM-Clos ChSlice+LH and VC respectively. This degraded increase is because of
two reasons: (1) The routers using synchronized pipelines have deep C-element trees
in their completion detection circuits which prolong the period. (2) The payload size
is fixed to 64 bytes. Increasing data width leads to frequent switch reallocation which
causes throughput loss.

The energy efficiency of nearly all router structures drops with data width. The
SDM routers using synchronized pipelines (SDM) and VC routers are the only ex-
ceptions. They show a small efficiency increase from the 16-bit cases to the 32-bit
cases.

2It can be proved that in a packet drop SDM router, the contention rate is reduced by 6.7% by
increasing the number of virtual circuits from two to four. In routers using input queued switches
as presented in this thesis, the blocked requests request again on the next available occasion. The
contention reduction is less than the rate in packet drop routers. The effective contention reduction
can be calculated using the G/M/m queueing theory [67] depending on the traffic flow and the switch
arbitration algorithm.

164 CHAPTER 8. PERFORMANCE EVALUATION

WH:16
WH:32
WH:48
WH:64

WH ChSlice+LH:16
WH ChSlice+LH:32
WH ChSlice+LH:48
WH ChSlice+LH:64

SDM:8x2

SDM:16x2
SDM:24x2
SDM:32x2

SDM ChSlice+LH:8x2

SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2
SDM ChSlice+LH:32x2

SDM-Clos ChSlice+LH:8x2

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2
SDM-Clos ChSlice+LH:32x2

VC:16x2
VC:32x2
VC:48x2
VC:64x2

0 50000 100000 150000 200000 250000

��
	� �µ��
�

� ����
�

� ������	��
� ����

(a) Area consumption

WH:16
WH:32
WH:48
WH:64

WH ChSlice+LH:16
WH ChSlice+LH:32
WH ChSlice+LH:48
WH ChSlice+LH:64

SDM:8x2

SDM:16x2
SDM:24x2
SDM:32x2

SDM ChSlice+LH:8x2

SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2
SDM ChSlice+LH:32x2

SDM-Clos ChSlice+LH:8x2

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2
SDM-Clos ChSlice+LH:32x2

VC:16x2
VC:32x2
VC:48x2
VC:64x2

0.0 0.5 1.0 1.5 2.0 2.5

Normalized throughput and energy efficiency

�

� ������� ���
�
����

� ����� �	���	���

(b) Throughput and power

Figure 8.3: Router performance with various data widths

In these test cases, using the 2-stage Clos switch in the SDM routers with only two
virtual circuits (SDM-Clos ChSlice+LH:Wx2) shows no area reduction or improve-
ment in energy efficiency. Using a rearrangeable Clos switch when the switch radix
is small leads to throughput degradation with no significant area reduction. Figure 8.4

8.2. NETWORK PERFORMANCE 165

SDM ChSlice+LH:8x4

SDM ChSlice+LH:16x4

SDM-Clos ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Normalized performance

� ����	�� ����������

� ����� �
���	
���

� ���� ����

Figure 8.4: Performance of SDM routers with four virtual circuits

reveals the performance of using the 2-stage Clos switch in the SDM routers with four
virtual circuits, where the radix of the central switch is enlarged to 20× 20. All results
are normalized using the performance of the SDM ChSlice+LH:8x4 router as the base-
line. It is shown that using the 2-stage Clos switch in these cases significantly reduces
tile area and improves energy efficiency but causes a small throughput degradation.

8.2 Network performance

In the network evaluation, tiles are connected into mesh networks and their perfor-
mance in these networks is examined. Two mesh networks will be tested: an 8 × 8

mesh network is produced to test the performance with random uniform traffic patterns
and a 4 × 3 network is built to reveal the performance of implementing an MPEG-4
system using asynchronous on-chip networks.

8.2.1 Mesh network with uniform traffic

One of the objectives in network evaluation is to examine the performance in large
scale networks. Since all the simulations in this chapter use post-layout netlists, the
simulation speed is slow and the simulations are memory consuming. For the largest
router implementation, the 32-bit VC router with four VCs (VC:32x4), the 8 × 8 net-
work simulation needs more than 2 GB memory for compilation and nearly 1.5 GB

memory for simulation. The network scale is constrained by the available memory
space. On the other hand, networks up to 16 × 16 can be easily simulated using the
behavioural models presented in Chapter 5.

The frame generator and the frame sink used in Section 8.1.2 are combined into a
processing element (PE). The local port of every router is connected to a PE and other

166 CHAPTER 8. PERFORMANCE EVALUATION

Table 8.3: Network performance

Tile Min Frame Saturation Tile Energy
Area Latency Throughput Power Efficiency
µm2 ns MByte/Node/s mW MByte/mJ

VC 243,940 155.3 262.8 17.0 15.46
WH 47,167 81.0 207.8 9.1 22.74
WH ChSlice+LH 71,873 58.4 320.1 22.2 14.42
SDM 182,644 252.0 366.9 19.7 18.63
SDM ChSlice+LH 208,300 205.4 446.8 31.5 14.18
SDM-Clos ChSlice+LH 104,987 211.3 408.9 24.5 16.69

ports are connected to adjacent routers. All the frames generated and consumed by PEs
are recorded by a global bookkeeping database in the same way as in Section 8.1.2.
The switching activities of router(3,3) is recorded to represent the power of the whole
network.

Table 8.3 reveals the network performance of different router implementations.
Note that the tile power and the energy efficiency are obtained using the power con-
sumption of router(3,3) instead of the whole network.

The minimum frame latency in the network evaluation is longer than that in the
single router evaluation due to the extra time consumed for reserving a path between
the sender and the receiver. The latency values of all routers show extra delay around
15 to 30 ns except for the VC router case which needs extra 61.6 ns. The VC router
is configured with only one full buffer stage in every VC buffer. It thus suffers from
the credit loop latency which is 6.44 ns, 1.22 times of the period (see the description
of Equation 5.31).

SDM and VC routers show better throughput increase compared with the increase
in the single router evaluation. The head-of-line (HOL) problem in the network evalu-
ation compromises throughput. Virtual circuits and VCs in SDM and VC routers alle-
viate the HOL problem. In detail, the SDM router using channel slicing and lookahead
pipelines (SDM ChSlice+LH) provides the best throughput of 446.8 MByte/Node/s,
which is 2.15 times of the throughput of the wormhole router using synchronized pi-
pelines (WH).

Energy efficiency has no significant change from the single router evaluation. The
energy efficiency of all routers drops because a frame needs to traverse multiple routers
before reaching the target node. The wormhole router using synchronized pipelines
(WH) still shows the best energy efficiency and the SDM router using channel slicing

8.2. NETWORK PERFORMANCE 167

WH:32

WH ChSlice+LH:32

SDM:16x2
SDM:8x4

SDM ChSlice+LH:16x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:8x4

VC:32x2
VC:32x4

0.0 0.5 1.0 1.5 2.0

Normalized throughput and energy efficiency

�

� ������� ���
�
����

� ����� �	���	���

Figure 8.5: Network performance with various number of virtual circuits/VCs

is the worst. Using 2-stage Clos switches in SDM routers improves energy efficiency
in the same way as in the single router evaluation.

Figure 8.5 shows the network performance with various numbers of virtual circuits
or VCs. Router area is not presented as it can be found in Figure 8.2a. Energy effi-
ciency shows no significant difference compared with the efficiency in the single router
evaluation as shown in Figure 8.2b but the throughput results of SDM and VC routers
are much improved due to their capability of alleviating the HOL problem. It is shown
that increasing the number of virtual circuits or VCs achieves significant throughput
increase in the network evaluation although the throughput increase in the single router
evaluation is marginal.

Similar throughput improvement is found in the network performance of using
various data widths as shown in Figure 8.6. The network throughput of the SDM
ChSlice+LH:32x2 router is 620.37 MByte/Node/s, which is 2.99 times of the net-
work throughput of the WH:32 router. In the single router performance shown in
Figure 8.3b, this figure is only 2.63. The extra 0.36 improvement is due to the HOL
alleviation. Similarly, the energy efficiency does not change much. The 2-stage Clos
switch cannot save power or significantly reduce area in the SDM routers with fewer
than four virtual circuits.

8.2.2 An MPEG-4 system

A 4×3 mesh network has been built to test the network performance with a traffic pat-
tern extracted from an MPEG-4 system [10, 65]. The task mapping and the bandwidth
requirement between nodes are illustrated in Figure 8.7a [65]. The values between
nodes are the bidirectional bandwidth requirements in unit of MByte/s. SDRAM

168 CHAPTER 8. PERFORMANCE EVALUATION

WH:16
WH:32
WH:48
WH:64

WH ChSlice+LH:16
WH ChSlice+LH:32
WH ChSlice+LH:48
WH ChSlice+LH:64

SDM:8x2

SDM:16x2
SDM:24x2
SDM:32x2

SDM ChSlice+LH:8x2

SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2
SDM ChSlice+LH:32x2

SDM-Clos ChSlice+LH:8x2

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2
SDM-Clos ChSlice+LH:32x2

VC:16x2
VC:32x2
VC:48x2
VC:64x2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalized throughput and energy efficiency

�

� ������� ���
�
����

� ����� �	���	���

Figure 8.6: Network performance with various data widths

0 and SDRAM 2 are the two hot spots of the NoC. The bandwidth requirements of
these two nodes are 1.793 GByte/s and 1.593 GByte/s respectively. Assuming the
bandwidth requirements are equally divided in forward and backward directions [65],
the detailed bandwidth requirements of all links and routers using the XY routing al-
gorithm is depicted in Figure 8.7b. The total bandwidth requirement of a router is
labelled beside it in green. The router connected to PE(2,1) is the busiest one. 57.1%
of the network traffic (3.446 GByte/s) goes through it.

In the simulation, the expected data generated by each processing element com-
plies with the task mapping shown in Figure 8.7a. The target node addresses of frames
are randomly chosen from the possible addresses in Figure 8.7a and the address distri-
bution complies with the bandwidth ratio. The payload size of each frame varies from
eight to 64 bytes. The communication with a small bandwidth requirement uses short
frames and the communications with requirements more than 64 MByte/s are served
using with the largest payload size of 64 bytes.

Figure 8.8 reveals the overall throughput of different router structures. As identified
by a dash line in the figure, the overall throughput requirement of the MPEG-4 system
is 3, 466 GByte/s. It is shown that the wormhole router using synchronized pipelines
(WH) can satisfy the requirement when the data width is equal to 48 bits or larger.
The data width can be reduced to 32 bits if an SDM router (SDM:16x2) or channel
slicing (Wh ChSlice+LH:32) is utilized. The VC router can satisfy the throughput

8.2. NETWORK PERFORMANCE 169

Video

Output

SDRAM

0

Audio

DSP

Audio

Ouput

SDRAM

1

Unsampling

MCE

Padding

Media

CPU

SDRAM

2

BAB

Scaling

context

calc.

3D GFX

rasteri-

zation

iScan

AC/DC

iQuant

iDCT

RISC

CPU

190

0.
5

6
0

6
0
040

4
0

5
0
0 250

173

67
0

3
2

910

0.5

(a) Task mapping

R

PE

(0,1)

R R

PE

(0,2)

PE

(0,0)

R

PE

(1,1)

R R

PE

(1,2)

PE

(1,0)

R

PE

(2,1)

R R

PE

(2,2)

PE

(2,0)

R

PE

(3,1)

R R

PE

(3,2)

PE

(3,0)

9595

425.25

95

896.5
896.5

0.250.25

3
3
0
.
2
5

0

3
3
5

3
8
6

40

0.25

5050

3
7
0

0

0

50

0

8
0
1
.
2
5

796.5
796.5

320320

3
2
0

0 2
5
0

6
9
5

0

320

0.250.25

0.25

471.25

790790

4
7
1

0

790

0

102.5
102.5

1
6

3
3
5

102.5

546.5

125125

125

0

1
2
5

0

250250

18901280 500

3958

4040

840 1330

31922432.5741

94335861040.5

(b) Detailed bandwidth requirement

Figure 8.7: Task mapping and bandwidth requirement of MPEG-4

WH:16
WH:32
WH:48
WH:64

WH ChSlice+LH:16
WH ChSlice+LH:32
WH ChSlice+LH:48

SDM:8x2

SDM:16x2
SDM:24x2

SDM:8x4

SDM ChSlice+LH:8x2
SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:8x2
SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2

SDM-Clos ChSlice+LH:8x4

VC:8x2
VC:16x2
VC:32x2
VC:48x2
VC:64x2
VC:32x4

0 500 1000 1500 2000 2500 3000 3500

Overall throughput (MByte/s)

%
(?

X
)

Figure 8.8: Overall throughput of the MPEG-4 NoCs

requirement only with the 48-bit data width (VC:48x2).

Considering only those routers satisfying the throughput requirements, Figure 8.9
demonstrates the average frame latency and the energy efficiency. SDM routers suffer

170 CHAPTER 8. PERFORMANCE EVALUATION

WH:48
WH:64

WH ChSlice+LH:32
WH ChSlice+LH:48

SDM:16x2
SDM:24x2

SDM:8x4

SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2

SDM-Clos ChSlice+LH:8x4

VC:48x2
VC:64x2

0 100 200 300 400 500 600 700

Average frame latency (ns)

%
(?

X
)

(a) Latency

WH:48
WH:64

WH ChSlice+LH:32
WH ChSlice+LH:48

SDM:16x2
SDM:24x2

SDM:8x4

SDM ChSlice+LH:16x2
SDM ChSlice+LH:24x2

SDM ChSlice+LH:8x4

SDM-Clos ChSlice+LH:16x2
SDM-Clos ChSlice+LH:24x2

SDM-Clos ChSlice+LH:8x4

VC:48x2
VC:64x2

0 50 100 150 200 250 300 350 400

Energy efficiency (MByte/mJ)

%
(?

X
)

(b) Power

Figure 8.9: Latency and power consumption of the MPEG-4 NoCs

from long frame latency as frames are transmitted in a serialized manner. Neverthe-
less, SDM routers still demonstrate shorter frame latency than the 48-bit wormhole
router (WH:48) when channel slicing and lookahead pipelines are used (SDM ChSl-
ice+LH:24x2), or when its data width is equal to 48 bits or larger (SDM:24x2). The
wormhole routers using channel slicing and lookahead pipelines (WH ChSlice+LH)
always outperform the wormhole routers using synchronized pipelines (WH) in frame
latency.

It is known that most techniques proposed in this thesis compromise energy ef-
ficiency. The energy efficiency of all router structures is revealed in Figure 8.9b. It
is shown that the 48-bit wormhole router using synchronized pipelines (WH:48) pro-
vides the best energy efficiency of 355 MByte/mJ. It is also shown that the 32-bit and
48-bit SDM routers using synchronized pipelines (SDM:16x2 and SDM:24x2) out-
perform the 64-bit wormhole router (WH:64) in this particular traffic pattern because
increasing data width compromises energy efficiency.

8.3. SUMMARY 171

The throughput requirement of the MPEG-4 system is comparatively small. The
basic wormhole router using synchronized pipelines satisfies the requirement when the
data width is more than 48 bits. It is also shown that SDM and channel slicing can be
used to reduce the data width, and the average frame latency. When extra bandwidth
is required, SDM routers can be used for both shorter frame latency and higher energy
efficiency than wormhole routers.

8.3 Summary

The performance of different router structures has been compared in the single rou-
ter evaluation and in the network evaluation. The single router evaluation reveals:
SDM, channel slicing and the lookahead pipeline style introduce area overhead but it
is smaller than the overhead of using virtual channels. The 2-stage Clos switch signifi-
cantly reduces the area overhead of SDM routers when the number of virtual circuits is
four or larger. Wormhole routers have the shortest frame latency thanks to their simple
router structure. SDM routers introduce latency overhead as frames are serialized in
transmission. The throughput in the single router evaluation provides the maximum
throughput of a router without considering the HOL problem. It is shown that chan-
nel slicing and lookahead pipelines improve throughput significantly. However, these
techniques compromise the energy efficiency. Compared with them, SDM is more
energy efficient and the 2-stage Clos switch further improves energy efficiency. VC
routers consumes the largest area and provide the worst throughput.

The network evaluation examines routers in the presence of the HOL problem.
All routers are simulated in an 8 × 8 mesh network using random uniform traffic.
SDM and VC demonstrate their capability of alleviating the HOL problem. The SDM
routers using channel slicing and lookahead pipelines provide the best throughput.
The minimum frame latency and the energy efficiency of all router structures have no
apparent differences compared with the results presented in the single router evaluation
because these performances are not affected by the HOL problem.

In the MPEG-4 system, different routers are utilized to support a practical traffic
pattern with two hot spots. The wormhole router using synchronized pipelines satisfies
the throughput requirements only when the data width is 48 bits or larger. Using chan-
nel slicing or SDM reduces the data width to 32 bits. If the data width is 48 bits, the
wormhole router using channel slicing and lookahead pipelines, and all SDM routers

172 CHAPTER 8. PERFORMANCE EVALUATION

provide shorter average frame latency than the wormhole router using synchronized pi-
pelines. In addition, the SDM router using synchronized pipelines demonstrates better
energy efficiency than the wormhole router when larger data widths are used.

The raw data derived from the simulations in this Chapter are listed in Appendix C
for further reference.

Chapter 9

Conclusions and Future Work

9.1 Summary of the thesis

Network-on-chips are the state-of-the-art communication fabric for current and future
multiprocessor systems-on-chip. Most on-chip networks are built with synchronous
circuits which are fast, area efficient and fully supported by EDA tools. However,
synchronous on-chip networks are facing several design challenges: firstly, large area
and power overhead is introduced by global clock trees in high-speed circuits. Sec-
ondly, technology scaling introduces worse delay variation due to the process variation,
the run-time fluctuations of the die temperature and the difference of power density
among in-die regions. Finally, IP cores requiring different clock frequencies lead to
cross-clock domain issues. Asynchronous on-chip networks built with asynchronous
routers, on the other hand, have no clock tree, show natural tolerance to delay variation
and provide unified interfaces to all clock domains.

The majority of current asynchronous on-chip networks resemble the router struc-
tures and the flow control methods explored thoroughly in synchronous on-chip net-
works. Specifically speaking, low-level asynchronous pipelines are synchronized to
implement wide pipelines and virtual channels using time division multiplexing are
widely adopted. The synchronization issues introduced by these techniques have been
shown to significantly compromise the throughput of asynchronous on-chip networks.
This thesis explores the possibilities of using spatial parallelism rather than timing
division methods to improve throughput. The work concentrates on the lowest two
network layers: the physical layer and the switching layer.

173

174 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1.1 Channel slicing and lookahead pipelines

Channel slicing and lookahead pipelines are introduced in Chapter 4. They are two
physical layer techniques that can be used to reduce the period of asynchronous pipe-
lines.

Channel slicing allows low-level asynchronous pipelines to transmit data indepen-
dently whenever the data do not need to be analysed. The wide data links in current
asynchronous on-chip routers synchronize the data transmission in all low-level pipe-
lines. In wormhole routers, only a small portion (the header flit) of a frame is analysed
while other parts are delivered directly. The synchronization of low-level pipelines
prolongs the period and it is not necessary when data analysis is not required. Chan-
nel slicing removes the synchronization circuits and allows low-level pipelines to run
independently. Extra control logic is inserted in the stages where data analysis is oc-
casionally required. As a result, most data transmission proceeds at the highest speed
while re-synchronization is still provided to occasionally pause the pipeline for data
analyses.

The lookahead pipeline style is a self-timed pipeline technique using early evalu-
ated acknowledgement. A lookahead pipeline stage is simply implemented by adding
an AND gate on the ack line. It can be seamlessly connected to normal QDI pipelines.
The pipeline stages in a router have different periods. The throughput of a router is de-
termined by the slowest pipeline stage — the critical cycle. Because this critical cycle
locates inside the router, utilizing the lookahead pipeline on this critical cycle reduces
period without introducing any timing issues outside the router.

Channel slicing and lookahead pipelines can be used in any routers complying with
the basic wormhole flow control method. A router implementation in Section 4.4.2 has
demonstrated that using these two techniques in a 32-bit wormhole router achieves a
70% throughput boost with 28% area overhead.

9.1.2 SDM

Spatial division multiplexing (SDM) is a flow control method proposed in the switch-
ing layer for high network throughput.

Virtual channel (VC) is the most utilized flow control method in asynchronous
routers for QoS support. It is well-known that VC improves network throughput by
alleviating the head-of-line (HOL) problem. The blocked frames are temporarily stored
in VC buffers allowing other frames to use the otherwise occupied switches and links.

9.1. SUMMARY OF THE THESIS 175

The area overhead of utilizing VCs includes duplicated buffers, extra VC allocators
and enlarged switches. VCs prolong the period as the switch is reallocated once per
flit and the allocation latency cannot be hidden in asynchronous circuits.

Instead of duplicating buffers and letting multiple frames share the same resources
in a time divided manner, SDM divides links and switches into multiple virtual circuits.
Multiple frames can share the same links and switches concurrently by exclusively
occupying a virtual circuit — a portion of the total bandwidth. Since both SDM and VC
share links among multiple frames, they both alleviate the HOL problem and support
QoS. The area overhead of SDM is shown to be smaller than VC. More importantly,
since a virtual circuit is exclusively occupied by a frame, switches are reallocated once
per frame instead of once per flit as in VC routers. No extra switch allocation latency
is introduced by SDM and channel slicing can be used for further throughput increase.

Behavioural level simulation models have been built in Section 5.4 to compare the
performance of different flow control methods. It is shown that SDM routers always
outperform VC routers in area and throughput performance. Compared with worm-
hole routers, SDM routers show prominent throughput increase with moderate area
overhead. Nevertheless, when the port data width is large enough, SDM routers out-
perform wormhole routers in area to throughput efficiency. In other words, when the
port data width is large, SDM is the best flow control method for high throughput and
low area consumption.

9.1.3 Clos

The major area overhead introduced by SDM is the enlarged central switch. The Clos
network is theoretically the most area efficient structure for high-radix switches but
it has not yet been implemented or scheduled by asynchronous circuits. Chapter 6
presents the first asynchronous Clos scheduler for asynchronous 3-stage Clos networks
using a novel asynchronous dispatching algorithm. The asynchronous Clos scheduler
has been implemented and compared with a synchronous Clos scheduler. It is shown
that the asynchronous scheduler configures a 3-stage Clos network in a faster and more
energy efficient way than the synchronous Clos scheduler.

A 2-stage Clos switch, which can be used in SDM routers, has been introduced in
Chapter 6. When the number of switching modules in the first and third stages of a
3-stage Clos switch is equal with the number of directions in an SDM router, the third
stage can be removed because all virtual circuits for the same direction are equivalent.

176 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

The 2-stage Clos switch incurs the smallest area overhead when the number of virtual
circuits per direction is less than 18.

9.1.4 Overall remarks

An SDM router has been presented in Chapter 7 to demonstrate the way of combining
all techniques together into a router design. Several routers using different technique
combinations are implemented and compared in Chapter 7 and Chapter 8.

As a summary for the benefits and overheads of different techniques, the wormhole
router using synchronized pipelines consumes the smallest area and provides the best
energy efficiency when the overall bandwidth requirement is small. Channel slicing
and lookahead pipelines significantly increase throughput by reducing the period but
they compromise energy efficiency. Thanks to the capability of alleviating the HOL
problem, SDM achieves a prominent throughput increase with moderate reduction in
energy efficiency. Utilizing the 2-stage Clos switch in SDM routers reduces area over-
head and saves power; however, the throughput is slightly compromised due to the
blocking problem inside the Clos switch. The SDM routers using channel slicing and
lookahead pipelines always provide the best throughput performance.

The VC router has demonstrated its ability of alleviating the HOL problem in the
network evaluation. However, its large area overhead and long period make it the worst
router structure for area efficiency and high throughput.

9.1.5 Discussion of the performance of sync/async NoCs

The performance comparison between synchronous and asynchronous NoCs is an in-
teresting research issue. However, this thesis has not compared the asynchronous SDM
routers against synchronous routers for the following reasons:

• It is not one of the research objectives of this thesis.

Based on the findings that the synchronization utilized in state-of-the-art asyn-
chronous on-chip routers introduces long period and compromises throughput,
this thesis introduces several techniques which improve throughput without in-
troducing extra synchronization if it is not reduced. Synchronization is a design
overhead only in asynchronous circuits as synchronous circuits are naturally syn-
chronized by the clock. Since the new techniques are proposed to cope with the

9.2. FUTURE WORK 177

issues occurring only in asynchronous circuits, the performance comparison be-
tween asynchronous and synchronous implementations is irrelevant to revealing
any advantages or limitations of the new techniques.

• General conclusions have been provided.

Several asynchronous NoCs have been compared against synchronous NoCs.
The MANGO router [12] was compared with the routers of the synchronous
ÆTHEREAL NoC [56]. Both routers achieved around 500 MHz port speed with
similar area overhead. The asynchronous SPIN (ASPIN) router [107] was com-
pared with the synchronous SPIN (DSPIN) router. It was reported that ASPIN
consumed 10% less area than DSPIN and the throughput of both routers was
similar. The ANOC router was compared with DSPIN in [79] where ANOC
consumed less power but DSPIN provided better throughput.

General conclusions of the performance comparison between asynchronous and
synchronous NoCs have already been provided in [79]: asynchronous routers are
good candidates for low latency and low power applications while synchronous
routers are more suited to low area and high throughput applications.

Strong evidence supporting these conclusions has been provided in the pipe-
line analyses presented in [120]. For the data paths in routers, which can be
recognized as simple pipelines, asynchronous multi-rail pipelines consume sig-
nificantly larger area than synchronous pipelines. The latency of multi-rail pi-
pelines is shorter than synchronous pipelines, since the forward latency of a
4-phase multi-rail pipeline stage is around 25% of the period while synchronous
pipelines require a whole clock cycle. It is also shown that asynchronous multi-
rail pipelines are less energy efficient than synchronous pipelines for data trans-
mission. This provides a precondition of the low-power consumption claim of
asynchronous NoCs: they are low power only when the throughput is low, in
which case they rather benefit from the zero clock tree energy than suffer from
the inefficient data transmission.

9.2 Future work

The research of asynchronous SDM routers is in its early stage. Many design areas
have not been thoroughly investigated. In addition, the techniques proposed for asyn-
chronous SDM routers can be utilized in other research directions. Some research

178 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

issues, which can be done in the near future, are listed as follows:

• The network interface for SDM routers is still an open question. It can be an
advantage to expose all virtual circuits to the local processing element if it han-
dles multiple communications concurrently. In this case, frames are naturally
serialized in network interfaces. However, if the processing element does not
need to handle concurrent communications, moving the frame serialization into
the local port of the SDM router reduces area overhead and provides a unified
interface compatible with wormhole routers.

• Channel slicing imposes a design challenge for the network interface design. The
period of the critical cycle in wormhole routers has been reduced significantly.
The critical cycle of network interfaces must be shorter than that of routers for
the full speed benefit, otherwise network interfaces become the new throughput
bottleneck. Lookahead pipelines or bundled-data pipelines may be utilized in
network interfaces for this purpose.

• This thesis concentrates on best-effort throughput performance leaving the QoS
support in SDM routers an open issue. It is known that SDM can support QoS
by assigning virtual circuits with different priorities. In fact, the switch allocator
is smaller rather than larger to support priorities because input virtual circuits
with low priorities cannot compete for the output virtual circuits with high prior-
ities. SDM routers provide guaranteed data transmission latency for all priority
levels rather than only the highest one in asynchronous VC routers. It would be
interesting to compare the performance of SDM and VC for supporting QoS.

• Similar with VC routers, SDM routers can be used to support adaptive routing
algorithms. One virtual circuit can be reserved as the escaping channel in the
same way as in a VC router.

• The current Clos scheduler is not QDI yet. Although it shows strong tolerance to
delay variation, a QDI scheduler is proved tolerant to delay variation in theory,
which is more reliable. However, a QDI scheduler is expected to be slower than
the current one as all actions are explicitly indicated or detected.

• The current Clos scheduler supports only space-space-space Clos networks.
The Clos networks utilized in IP networks are memory-space-memory networks
where buffers are inserted in input modules and output modules. It is shown

9.2. FUTURE WORK 179

that an asynchronous Clos scheduler is faster than a synchronous Clos sched-
uler. Expanding the scheduler to support memory-space-memory Clos networks
may open a new research direction for asynchronous IP routers.

• It is also possible to replace the synchronous Clos scheduler in current IP routers
with an asynchronous one for better power consumption. However, it is still
required to expand the current asynchronous Clos scheduler to support memory-
space-memory Clos networks.

• The iteration based switch allocation can be utilized in synchronous VC routers
for better switch throughput and energy efficiency. As described by the paral-
lel iterative matching algorithm, more requests are served by introducing extra
iterations. The state-of-the-art VC router reallocates the central switch in ev-
ery cycle. Utilizing an iterative switch allocation may achieve higher switch
throughput. Because the switch is reallocated once per several iterations, the
reallocation frequency is dropped and power consumption is therefore reduced.

The implementations of the routers in Chapter 7, including the wormhole, the SDM
and the VC routers, have been made available at http://opencores.org/project,
async_sdm_noc.

http://opencores.org/project,async_sdm_noc
http://opencores.org/project,async_sdm_noc

Bibliography

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino.
SPIN: A scalable, packet switched, on-chip micro-network. In Proc. of Design,
Automation and Test in Europe Conference and Exhibition, pages 70–73 suppl.,
2003.

[2] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. High-speed switch
scheduling for local-area networks. ACM Transactions on Computer Systems,
11(4):319–352, 1993.

[3] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect.
IEEE Micro, 22:16–23, 2002.

[4] J. Bainbridge, W. Toms, D. Edwards, and S. Furber. Delay-insensitive, point-
to-point interconnect using m-of-n codes. In Proc. of International Symposium
on Asynchronous Circuits and Systems, pages 132–140, May 2003.

[5] A. Banerjee and S. W. Moore. Flow-aware allocation for on-chip networks.
In Proc. of ACM/IEEE International Symposium on Networks-on-Chip, pages
183–192, May 2009.

[6] E. Beigné, F. Clermidy, S. Miermont, and P. Vivet. Dynamic voltage and fre-
quency scaling architecture for units integration within a GALS NoC. In Proc.
of ACM/IEEE International Symposium on Networks-on-Chip, pages 129–138,
april 2008.

[7] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asynchro-
nous NOC architecture providing low latency service and its multi-level design
framework. In Proc. of International Symposium on Asynchronous Circuits and
Systems, pages 54–63, March 2005.

[8] V. E. Beneš. On rearrangeable three-stage connecting networks. Bell System
Technical Journal, 41(5):1481–1492, September 1962.

[9] L. Benini and G. D. Micheli. Networks on chips: a new SoC paradigm. IEEE
Computer, 35(1):70–78, 2002.

[10] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for gigascale
systems-on-chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

180

BIBLIOGRAPHY 181

[11] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø. An OCP compliant
network adapter for GALS-based SoC design using the MANGO network-on-
chip. In Proc. of International Symposium on System-on-Chip, pages 171–174,
2005.

[12] T. Bjerregaard and J. Sparsø. A router architecture for connection-oriented ser-
vice guarantees in the MANGO clockless network-on-chip. In Proc. of Design,
Automation and Test in Europe Conference and Exhibition, pages 1226–1231,
2005.

[13] T. Bjerregaard and J. Sparsø. A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip. In Proc. of IEEE International
Symposium on Asynchronous Circuits and Systems, pages 34–43, 2005.

[14] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing analy-
sis: from basic principles to state of the art. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(4):589 –607, April 2008.

[15] P. Bogdan and R. Marculescu. A theoretical framework for on-chip stochas-
tic communication analysis. In Proc. of International Conference on Nano-
Networks and Workshops, 2006.

[16] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Routing table minimization
for irregular mesh NoCs. In Proc. of Design, Automation and Test in Europe
Conference and Exhibition, pages 942–947, April 2007.

[17] A. Bystrov, D. Kinniment, and A. Yakovlev. Priority arbiters. In Proc. of In-
ternational Symposium on Asynchronous Circuits and Systems, pages 128–137,
2000.

[18] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, 22(4):421–422, April 1973.

[19] H. J. Chao, K.-L. Deng, and Z. Jing. Petastar: a petabit photonic packet
switch. IEEE Journal on Selected Areas in Communications, 21(7):1096–1112,
September 2003.

[20] H. J. Chao, Z. Jing, and S. Y. Liew. Matching algorithms for three-stage buffer-
less Clos network switches. IEEE Communications Magazine, 41(10):46–54,
October 2003.

[21] H. J. Chao, C. H. Lam, and E. Oki. Broadband Packet Switching Technologies:
A Practical Guide to ATM Switches and IP Routers. John Wiley & Sons, Inc.,
2001.

[22] J. Cheyns, C. Develder, E. V. Breusegem, D. Colle, F. D. Turck, P. Lagasse,
M. Pickavet, and P. Demeester. Clos lives on in optical packet switching. IEEE
Communications Magazine, 42(2):114–121, 2004.

182 BIBLIOGRAPHY

[23] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Transactions
on Parallel and Distributed Systems, 11(7):729–738, July 2000.

[24] F. M. Chiussi, J. G. Kneuer, and V. P. Kumar. Low-cost scalable switching
solutions for broadband networking: the ATLANTA architecture and chipset.
IEEE Communications Magazine, 35(12):44–53, December 1997.

[25] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifica-
tions. PhD thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1987. http://dspace.mit.edu/handle/
1721.1/14794 [Online; accessed 2/12/2010].

[26] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,
P. Vivet, and N. Wehn. A 477mW NoC-based digital baseband for MIMO 4G
SDR. In Proc. of IEEE International Solid-State Circuits Conference, pages
278–279, 2010.

[27] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32(5):406–424, March 1953.

[28] N. Concer, L. Bononi, M. Soulié, and R. Locatelli. CTC: an end-to-end flow
control protocol for multi-core systems-on-chip. In Proc. of ACM/IEEE Inter-
national Symposium on Networks-on-Chip, pages 193–202, May 2009.

[29] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Transactions on Information and Systems, E80-
D(3):315–325, 1997.

[30] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems, 3(2):194–205, March 1992.

[31] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer net-
works using virtual channels. IEEE Transactions on Parallel and Distributed
Systems, 4(4):466–475, 1993.

[32] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing,
1(4):187–196, December 1986.

[33] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers, 36(5):547–553,
May 1987.

[34] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proc. of Design Automation Conference, pages 684–689, 2001.

[35] W. J. Dally and B. Towles. Principles and Practices of interconnection net-
works. Morgan Kaufmann Publishers, San Francisco, CA, 2004.

http://dspace.mit.edu/handle/1721.1/14794
http://dspace.mit.edu/handle/1721.1/14794

BIBLIOGRAPHY 183

[36] R. Dobkin, R. Ginosar, and C. P. Sotiriou. Data synchronization issues in GALS
SoCs. In Proc. of International Symposium on Asynchronous Circuits and Sys-
tems, pages 170–180, 2004.

[37] R. R. Dobkin and R. Ginosar. Two-phase synchronization with sub-cycle la-
tency. Integration, the VLSI Journal, 42(3):367–375, June 2009.

[38] R. R. Dobkin, R. Ginosar, and A. Kolodny. QNoC asynchronous router. Inte-
gration, the VLSI Journal, 42(2):103–115, March 2009.

[39] R. R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, and A. Kolodny. High rate
wave-pipelined asynchronous on-chip bit-serial data link. In Proc. of Interna-
tional Symposium on Asynchronous Circuits and Systems, pages 3–14, 2007.

[40] J. Duato. A new theory of deadlock-free adaptive routing in wormhole net-
works. IEEE Transactions on Parallel and Distributed Systems, 4:1320–1331,
December 1993.

[41] J. Duato, S. Yalamanchili, and L. Ni. Interconnection networks: an engineering
approach. Morgan Kaufmann Publishers, 2003.

[42] T. Dumitras and R. Marculescu. On-chip stochastic communication. In Proc. of
Design, Automation and Test in Europe Conference and Exhibition, 2003.

[43] D. Edwards and A. Bardsley. Balsa: an asynchronous hardware synthesis lan-
guage. The Computer Journal, 45(1):12–18, 2002.

[44] FSC0H D, UMC 0.13 µm Logic HS(FSG) process high density core cell library,
2006. http://www.faraday-tech.com/dowloadDoc/techDocument/

FSC0H_D_GENERIC_CORE%20Product%20Brief_v1.2.pdf [Online; accessed
19/01/2011].

[45] T. Felicijan. Quality-of-service (QoS) for asynchronous on-chip networks.
PhD thesis, the Faculty of Science and Engineering, the University of Manch-
ester, 2004. http://apt.cs.man.ac.uk/apt/publications/thesis/

felicijan04_phd.php [Online; accessed 13/12/2010].

[46] T. Felicijan, J. Bainbridge, and S. Furber. An asynchronous low latency arbiter
for quality of service (QoS) applications. In Proc. of International Conference
on Microelectronics, pages 123–126, December 2003.

[47] T. Felicijan and S. B. Furber. An asynchronous on-chip network router with
quality-of-service (QoS) support. In Proc. of IEEE International SOC Confer-
ence, pages 274–277, September 2004.

[48] S. Furber and J. Bainbridge. Future trends in SoC interconnect. In Proc. of
International Symposium on System-on-Chip, pages 183–186, November 2005.

http://www.faraday-tech.com/dowloadDoc/techDocument/FSC0H_D_GENERIC_CORE%20Product%20Brief_v1.2.pdf
http://www.faraday-tech.com/dowloadDoc/techDocument/FSC0H_D_GENERIC_CORE%20Product%20Brief_v1.2.pdf
http://apt.cs.man.ac.uk/apt/publications/thesis/felicijan04_phd.php
http://apt.cs.man.ac.uk/apt/publications/thesis/felicijan04_phd.php

184 BIBLIOGRAPHY

[49] S. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):247–253,
June 1996.

[50] R. Ginosar. Fourteen ways to fool your synchronizer. In Proc. of International
Symposium on Asynchronous Circuits and Systems, pages 89–96, 2003.

[51] C. J. Glass and L. M. Ni. The turn model for adaptive routing. Journal of the
ACM, 41(5):874–902, September 1994.

[52] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev. Modular ap-
proach to multi-resource arbiter design. In Proc. of International Symposium
Asynchronous Circuits and Systems, pages 107–116, May 2009.

[53] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev. Multi-resource
arbiter decomposition. Technical report, School of Electrical, Electronic
& Computer Engineering, Newcastle University, February 2009. http://

async.org.uk/tech-reports/NCL-EECE-MSD-TR-2009-143.pdf [Online;
accessed 17/12/2010].

[54] C. Gómez, M. E. Gómez, P. López, and J. Duato. Exploiting wiring resources
on interconnection network: increasing path diversity. In Proc. of Euromicro
Conference on Parallel, Distributed and Network-Based Processing, pages 20–
29, February 2008.

[55] M. E. Gomez, N. A. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato,
T. Skeie, and O. Lysne. A routing methodology for achieving fault tolerance
in direct networks. IEEE Transactions on Computers, 55(4):400–415, April
2006.

[56] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip: con-
cepts, architectures, and implementations. IEEE Design & Test of Computers,
22:414–421, September 2005.

[57] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: a scalable,
communication-centric embedded system design paradigm. In Proc. of Inter-
national Conference on VLSI Design, pages 845 – 851, 2004.

[58] J. Hu and R. Marculescu. DyAD: smart routing for networks-on-chip. In Proc.
of Design Automation Conference, 2004.

[59] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam. Compact thermal modeling for temperature-aware design. In Proc.
of Design Automation Conference, pages 878–883, 2004.

[60] International Technology Roadmap for Semiconductors, chapter Design, pages
12–13. 2009. http://www.itrs.net/Links/2009ITRS/2009Chapters_

2009Tables/2009_Design.pdf [Online; accessed 11/11/2010].

http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2009-143.pdf
http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2009-143.pdf
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf

BIBLIOGRAPHY 185

[61] M. B. Josephs and J. T. Yantchev. CMOS design of the tree arbiter element.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(4):472–
476, December 1996.

[62] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output queue-
ing on a space-division packet switch. IEEE Transactions on Communications,
35(12):1347–1356, December 1987.

[63] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communi-
cation switching technique. Computer Networks, 3(4):257–286, 1979.

[64] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture of a high
radix router. In Proc. of ACM/IEEE International Symposium on Computer
Architecture, pages 420–431, June 2005.

[65] M. Kim, D. Kim, and G. E. Sobelman. MPEG-4 performance analysis for a
CDMA network-on-chip. In Proc. of International Conference on Communica-
tions, Circuits and Systems, pages 493–496, May 2005.

[66] D. J. Kinniment. Synchronization and Arbitration in Digital Systems. John
Wiley & Sons Inc., 2007.

[67] L. Kleinrock. Queueing System - Volume I: Theory. John Wiley & Sons Inc.,
1975.

[68] M. Krstić, E. Grass, F. K. Gürkaynak, and P. Vivet. Globally asynchronous,
locally synchronous circuits: overview and outlook. IEEE Design and Test of
Computers, 24(5):430–441, 2007.

[69] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jha. A 4.6Tbits/s 3.6GHz
single-cycle NoC router with a novel switch allocator in 65nm CMOS. In Proc.
of International Conference on Computer Design, October 2007.

[70] A. Lankes, T. Wild, A. Herkersdorf, S. Sonntag, and H. Reinig. Comparison of
deadlock recovery and avoidance mechanisms to approach message dependent
deadlocks in on-chip networks. In Proc. of ACM/IEEE International Symposium
on Networks-on-Chip, pages 17–24, 2010.

[71] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor. Concepts
and implementation of spatial division multiplexing for guaranteed through-
put in networks-on-chip. IEEE Transactions on Computers, 57(9):1182–1195,
September 2008.

[72] B. Li, L.-S. Peh, and P. Patra. Impact of process and temperature variations
on network-on-chip design exploration. In Proc. of ACM/IEEE International
Symposium on Networks-on-Chip, pages 117–126, April 2008.

186 BIBLIOGRAPHY

[73] K. S. Low and A. Yakovlev. Token ring arbiters: an exercise in asyn-
chronous logic design with Petri nets. Technical Report 537, Depart-
ment of Computer Science, University of Newcastle upon Tyne, November
1995. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

18.9060 [Online; accessed 13/12/2010].

[74] S. Majzoub, R. Saleh, and R. Ward. PVT variation impact on voltage island
formation in MPSoC design. In Proc. International Symposium on Quality of
Electronic Design, pages 814–819, March 2009.

[75] A. J. Martin. The design of a self-timed circuit for distributed mutual ex-
clusion. Technical Report CaltechCSTR:1983.5097-tr-83, California Insti-
tute of Technology, 1983. http://resolver.caltech.edu/CaltechCSTR:

1983.5097-tr-83 [Online; accessed 13/12/2010].

[76] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
Proc. of MIT conference on Advanced research in VLSI, pages 263–278, Cam-
bridge, MA, USA, 1990. MIT Press.

[77] A. J. Martin, A. M. Lines, and U. V. Cummings. Asynchronous circuits with
pipelined completion process, 2002. US patent 6,502,180.

[78] P. Maurine, J. Rigaud, F. Bouesse, G. Sicard, and M. Renaudin. Static imple-
mentation of QDI asynchronous primitives. In Proc. of International Workshop
on Power and Timing Modeling, Optimization and Simulation, pages 181–191,
2003.

[79] I. Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner. Physical implemen-
tation of the DSPIN network-on-chip in the FAUST architecture. In Proc.
of ACM/IEEE International Symposium on Networks-on-Chip, pages 139–148,
April 2008.

[80] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. HERMES: an infras-
tructure for low area overhead packet-switching networks on chip. Integration,
the VLSI Journal, 38(1):69–93, 2004.

[81] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proc. of
Annals of Computing Laboratory of Harvard University, pages 204–243, 1959.

[82] R. Mullins and S. Moore. Demystifying data-driven and pausible clocking
schemes. In Proc. of International Symposium on Asynchronous Circuits and
Systems, pages 175–185, 2007.

[83] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for
on-chip networks. Proc. of International Symposium on Computer Architecture,
0:188–, 2004.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.9060
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.9060
http://resolver.caltech.edu/CaltechCSTR:1983.5097-tr-83
http://resolver.caltech.edu/CaltechCSTR:1983.5097-tr-83

BIBLIOGRAPHY 187

[84] R. Mullins, A. West, and S. Moore. The design and implementation of a low-
latency on-chip network. In Proc. of Asia and South Pacific Design Automation
Conference, pages 164–169, January 2006.

[85] J. Navaridas, M. Luján, J. Miguel-Alonso, L. A. Plana, and S. Furber. Under-
standing the interconnection network of SpiNNaker. In Proc. of international
conference on Supercomputing, pages 286–295, New York, NY, USA, 2009.
ACM.

[86] T. Nesson and S. L. Johnsson. ROMM routing on mesh and torus networks.
In Proc. of ACM symposium on Parallel algorithms and architectures, pages
275–287, 1995.

[87] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R.
Das. ViChaR: a dynamic virtual channel regulator for network-on-chip routers.
In Proc. of Annual IEEE/ACM International Symposium on Microarchitecture,
pages 333–346, December 2006.

[88] J. L. Nunez-Yanez, D. Edwards, and A. M. Coppola. Adaptive routing strategies
for fault-tolerant on-chip networks in dynamically reconfigurable systems. IET
Computers & Digital Techniques, 2(3):184–198, May 2008.

[89] U. Y. Ogras, J. Hu, and R. Marculescu. Key research problems in NoC design:
a holistic perspective. In Proc. of IEEE/ACM/IFIP international conference on
Hardware/Software Codesign and System Synthesis, 2005.

[90] E. Oki, Z. Jing, R. Rojas-Cessa, and H. J. Chao. Concurrent round-robin-based
dispatching schemes for Clos-network switches. IEEE/ACM Transactions on
Networking, 10(6):830–844, 2002.

[91] E. Oki, N. Kitsuwan, and R. Rojas-Cessa. Analysis of space-space-space Clos-
network packet switch. In Proc. of Internatonal Conference on Computer Com-
munications and Networks, pages 1–6, August 2009.

[92] Open SystemC Initiative. IEEE 1666: SystemC Language Reference
Manual, 2005. http://standards.ieee.org/getieee/1666/download/

1666-2005.pdf [Online; accessed 25/01/2011].

[93] R. O. Ozdag and P. A. Beerel. High-speed QDI asynchronous pipelines. In Proc.
of International Symposium on Asynchronous Circuits and Systems, pages 13–
22, April 2002.

[94] G. Passas, M. Katevenis, and D. Pnevmatikatos. A 128 x 128 x 24Gb/s crossbar
interconnecting 128 tiles in a single hop and occupying 6% of their area. In
Proc. of ACM/IEEE International Symposium on Networks-on-Chip, pages 87–
95, May 2010.

http://standards.ieee.org/getieee/1666/download/1666-2005.pdf
http://standards.ieee.org/getieee/1666/download/1666-2005.pdf

188 BIBLIOGRAPHY

[95] S. S. Patil. Forward acting n x m arbiter. Technical Report 67, Computation
Structures Group, Massachusetts Institute of Technology, June 1972. http://
csg.csail.mit.edu/CSGArchives/memos/Memo-67.pdf [Online; accessed
22/03/2011].

[96] L.-S. Peh and W. J. Dally. A delay model and speculative architecture for
pipelined routers. In Proc. of International Symposium on High-Performance
Computer Architecture, pages 255–266, January 2001.

[97] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin. Fault tolerant algorithms for network-on-chip interconnect. In Proc. of
IEEE Computer society Annual Symposium on VLSI, 2004.

[98] L. A. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y. Shi, and J. Wu. An
on-chip and inter-chip communications network for the SpiNNaker massively-
parallel neural net simulator. In Proc. of ACM/IEEE International Symposium
on Networks-on-Chip, pages 215–216, 2008.

[99] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang.
A globally asynchronous, locally synchronous infrastructure for a massively-
parallel multiprocessor. IEEE Design and Test of Computers, 24(5):454–463,
2007.

[100] S. Rodrigo, J. Flich, A. Roca, A. Medardoni, D. Bertozzi, J. Camacho, F. Silla,
and J. Duato. Addressing manufacturing challenges with cost-efficient fault
tolerant routing. In Proc. of ACM/IEEE International Symposium on Networks-
on-Chip, pages 25–32, 2010.

[101] R. Rojas-Cessa and C.-B. Lin. Scalable two-stage Clos-network switch and
module-first matching. In Proc. of Workshop on High Performance Switching
and Routing, pages 303–308, 2006.

[102] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow high-radix Clos
network. In Proc. of ACM/IEEE International Symposium on Computer Archi-
tecture, pages 16–28, 2006.

[103] N. Seifert and N. Tam. Timing vulnerability factors of sequentials. IEEE Trans-
actions on Device and Materials Reliability, 4(3):516–522, September 2004.

[104] D. Shang, F. Xia, S. Golubcovs, and A. Yakovlev. The magic rule of tiles:
virtual delay insensitivity. In Proc. of International Workshop on Power and
Timing Modeling, Optimization and Simulation, pages 286–296, 2009.

[105] A. Sheibanyrad. Asynchronous Implementation of a Distributed Network-
on-Chip. PhD thesis, University of Pierre et Marie Curie, 2008. ftp://

asim.lip6.fr/pub/reports/2008/th.lip6.2008.sheibanyrad.1.pdf

[Online; accessed 11/11/2010].

http://csg.csail.mit.edu/CSGArchives/memos/Memo-67.pdf
http://csg.csail.mit.edu/CSGArchives/memos/Memo-67.pdf
ftp://asim.lip6.fr/pub/reports/2008/th.lip6.2008.sheibanyrad.1.pdf
ftp://asim.lip6.fr/pub/reports/2008/th.lip6.2008.sheibanyrad.1.pdf

BIBLIOGRAPHY 189

[106] A. Sheibanyrad and A. Greiner. Two efficient synchronous – asynchronous con-
verters well-suited for networks-on-chip in GALS architectures. Integration, the
VLSI Journal, 4(1):17–26, January 2008.

[107] A. Sheibanyrad, A. Greiner, and I. Miro-Panades. Multisynchronous and fully
asynchronous NoCs for GALS architectures. IEEE Design Test of Computers,
25(6):572–580, 2008.

[108] Y. Shi, S. B. Furber, J. Garside, and L. A. Plana. Fault tolerant delay insensitive
inter-chip communication. In Proc. of International Symposium on Asynchro-
nous Circuits and Systems, pages 77–84, May 2009.

[109] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, M. Lis, G. E. Suh, and S. Devadas.
Static virtual channel allocation in oblivious routing. In Proc. of ACM/IEEE
International Symposium on Networks-on-Chip, pages 38–43, 2009.

[110] M. Singh and S. M. Nowick. MOUSETRAP: ultra-high-speed transition-
signaling asynchronouspipelines. In Proc. of International Conference on Com-
puter Design, pages 9–17, September 2001.

[111] M. Singh and S. M. Nowick. The design of high-performance dynamic asyn-
chronous pipelines: lookahead style. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 15(11):1256–1269, November 2007.

[112] W. Song and D. Edwards. Building asynchronous routers with independent
sub-channels. In Proc. of International Symposium on System-on-Chip, pages
48–51, October 2009.

[113] W. Song and D. Edwards. An asynchronous routing algorithm for Clos net-
works. In Proc. of International Conference on Application of Concurrency to
System Design, pages 67–76, 2010.

[114] W. Song and D. Edwards. A low latency wormhole router for asynchronous
on-chip networks. In Proc. of Asia and South Pacific Design Automation Con-
ference, pages 437–443, 2010.

[115] W. Song and D. Edwards. Asynchronous spatial division multiplexing router.
Microprocessors and Microsystems, 35(2):85–97, 2011.

[116] W. Song, D. Edwards, J. L. Nunez-Yanez, and S. Dasgupta. Adaptive stochastic
routing in fault-tolerant on-chip networks. In Proc. of ACM/IEEE International
Symposium on Networks-on-Chip, pages 32–37, 2009.

[117] J. Sparsø and S. Furber. Principles of Asynchronous Circuit Design — A Systems
Perspective. Kluwer Academic Publishers, Boston, U.S.A, 2001.

[118] SpiNNaker — A Universal Spiking Neural Network Architecture. http://apt.
cs.man.ac.uk/projects/SpiNNaker/ [Online; accessed 05/01/2011].

http://apt.cs.man.ac.uk/projects/SpiNNaker/
http://apt.cs.man.ac.uk/projects/SpiNNaker/

190 BIBLIOGRAPHY

[119] M. B. Stensgaard and J. Sparsø. ReNoC: A network-on-chip architecture with
reconfigurable topology. In Proc. of ACM/IEEE International Symposium on
Networks-on-Chip, pages 55–64, 2008.

[120] K. S. Stevens, P. Golani, and P. A. Beerel. Energy and performance models
for synchronous and asynchronous communication. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 19(3):369–382, march 2011.

[121] I. Sutherland and S. Fairbanks. GasP: a minimal FIFO control. In Proc. of
International Symposium on Asynchronous Circuits and Systems, pages 46 –53,
2001.

[122] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
1989.

[123] Synopsys, Inc. DC Ultra: Best-in-class Quality of Results that Correlate to
Layout, 2010. http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/Documents/dc_ultra_ds.pdf [Online; accessed
25/01/2011].

[124] Y. Thonnart, E. Beigné, and P. Vivet. Design and implementation of a GALS
adapter for ANoC based architectures. In Proc. of International Symposium on
Asynchronous Circuits and Systems, pages 13–22, May 2009.

[125] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge,
M. J. Meeuwsen, C. Watnik, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb,
P. V. Mejia, and B. M. Baas. A 167-processor computational platform in 65 nm
CMOS. IEEE Journal of Solid-State Circuits, 44(4):1130–1144, April 2009.

[126] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proc. of ACM symposium on Theory of computing, pages 263–277, 1981.

[127] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar. An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS.
IEEE Journal of Solid-State Circuits, 43(1):29–41, january 2008.

[128] D. Wiklund and D. Liu. SoCBUS: switched network on chip for hard real time
embedded systems. In Proc. of International Parallel and Distributed Process-
ing Symposium, April 2003.

[129] P. T. Wolkotte, G. J. Smit, G. K. Rauwerda, and L. T. Smit. An energy-efficient
reconfigurable circuit-switched network-on-chip. In Proc. of IEEE International
Parallel and Distributed Processing Symposium, April 2005.

[130] J. Wu and S. Furber. A multicast routing scheme for a universal spiking neural
network architecture. The Computer Journal, 53:280–288, 2010.

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Documents/dc_ultra_ds.pdf
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Documents/dc_ultra_ds.pdf

BIBLIOGRAPHY 191

[131] K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance asynchronous pipeline
circuits. In Proc. of International Symposium on Asynchronous Circuits and
Systems, pages 17–28, Los Alamitos, CA, USA, 1996.

[132] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm for
a fault-tolerant 2D-mesh network-on-chip. In Proc. of ACM/IEEE Design Au-
tomation Conference, pages 441–446, June 2008.

Appendix

192

Appendix A

Basic Elements of Asynchronous
Circuits

A.1 C-elements

A.1.1 2-input symmetric C-element

Symbol and schematic

q
a0

a1

q
a0

a1

Verilog implementation

module c2 (a0 , a1, q);

input a0, a1;

output q;

AO222EHD U1 (.A1(q), .A2(a0), .B1(q), .B2(a1), .C1(a0), .C2(a1), .O(q));

endmodule

The gate “AO222EHD” is a standard cell in the Faraday 0.13 µm standard cell li-
brary, as well as other gates in the Verilog implementations all over this appendix.

193

194 APPENDIX A. BASIC ELEMENTS OF ASYNCHRONOUS CIRCUITS

A.1.2 2-input asymmetric C-element with a plus input

Symbol and schematic

qa

b
q

a

b

Verilog implementation

module c2p (a, b, q);

input a, b;

output q;

OA12EHD U1 (.B1(b), .B2(q), .A1(a), .O(q));

endmodule

A.1.3 2-input asymmetric C-element with a minus input

Symbol and schematic

qa

b
q

a

b

Verilog implementation

module c2n (a, b, q);

input a, b;

output q;

AO12EHD U1 (.B1(b), .B2(q), .A1(a), .O(q));

endmodule

A.2. OTHER CELLS 195

A.1.4 3-input asymmetric C-element with a plus input

Symbol and schematic

q
a1
b

a0
q

a0

a1

b

Verilog implementation

module c3p (a0, a1, b, q);

input a0, a1 , b;

output q;

wire n1;

OA12EHD U2 (.B1(a1), .B2(a0), .A1(q), .O(n1));

AO13EHD U1 (.B1(a1), .B2(a0), .B3(b), .A1(n1), .O(q));

endmodule

A.2 Other cells

A.2.1 MUTEX

Symbol and schematic

M
U
T
E
X

r0

r1

g0

g1

r0

r1

g0

g1

Verilog implementation

module mutex (r0, r1, g0 , g1);

input r0, r1;

output g0 , g1;

wire g0n , g1n;

196 APPENDIX A. BASIC ELEMENTS OF ASYNCHRONOUS CIRCUITS

ND2HHD U1 (.I1(r0), .I2(g1n), .O(g0n));

NR3HHD U2 (.I1(g1n), .I2(g1n), .I3(g1n), .O(g1)); // don ’t touch

NR3HHD U3 (.I1(g0n), .I2(g0n), .I3(g0n), .O(g0)); // don ’t touch

ND2KHD U4 (.I1(r1), .I2(g0n), .O(g1n));

endmodule

A.2.2 RS latch

Symbol and schematic

S

R

Q

Q
_

S

R Q

Q
_

Verilog implementation

module rs_latch (r, s, q, qn);

input r, s;

output q, qn;

NR2HHD U1 (.I1(r), .I2(qn), .O(q));

NR2HHD U2 (.I1(s), .I2(q), .O(qn));

endmodule

Appendix B

Reproduction of the QoS NoC

The asynchronous VC router is a reproduction of the VC router in the QoS NoC
presented in [45, 47]. The original router supports four VCs with different priori-
ties. The reproduction has strictly followed all the design details presented in Chap-
ter 8 in the thesis of Dr. Tomaz Felicijan [45] but with necessary modifications
to support best-effort traffic instead of QoS traffic. Since the thesis is accessible
on-line from http://apt.cs.man.ac.uk/publications/thesis/felicijan04_

phd.php, only the modifications are explained in this appendix. Please refer to the
original thesis for other design details.

B.1 Router structure

The VC router in QoS NoC is an asynchronous VC router using exactly the same
router structure as synchronous VC routers. Most asynchronous VC routers, such as
MANGO [12], ANOC [7] and QNoC [38], use extended central switches allowing all
VCs in one direction to concurrently communicate with other VCs without arbitration.
With this arbitration, the VC router in QoS NoC has the smallest central switch. How-
ever, the asynchronous behaviour of VC buffers compromises the throughput of QoS
NoC, which makes it unfair to be compared with wormhole routers or SDM routers.
The central switch in the reproduced VC routers is extended in the same way as in
ANOC. The router structure, which was shown in Figure 8.9 in [45], has been mod-
ified and illustrated in Figure B.1. In this way, the contention problem as shown in
Figure 8.10 in [45] is eliminated automatically.

197

http://apt.cs.man.ac.uk/publications/thesis/felicijan04_phd.php
http://apt.cs.man.ac.uk/publications/thesis/felicijan04_phd.php

198 APPENDIX B. REPRODUCTION OF THE QOS NOC

Crossbar

Control

Inputs Outputs

Figure B.1: Router structure

In3

Ai3

In2

Ai2

In1

Ai1

In0

Ai0

Out3

Ao3

Out2

Ao2

Out1

Ao1

Out0

Ao0

Flow control

Afc

Figure B.2: Input buffer and crossbar interface

B.2 Connection of input buffers and the crossbar

The original QoS NoC router puts a multiplexer controlled by a multi-way MUTEX
arbiter at the end of each input buffer. The arbiter randomly chooses an active VC and
connects the VC to the central crossbar through the multiplexer. The new reproduction
uses the extended crossbar as shown in Figure B.1. No multiplexers or arbiters are
added at the end of input buffers. All VC buffers are connected independently to the
central crossbar. The modified interface is shown in Figure B.2.

Similar with the original structure as depicted in Figure 8.13 in [45], a credit is
sent back to the previous router when a flit is delivered by the last stage of a VC buffer.
The C-element generating the ack for each VC ensures that a flit is only released after
corresponding credit is received. The original design use a common ack line for the
credit output since the arbiter actually constrains the maximum throughput to one flit at
a time. The new structure lets all VCs run concurrently. As a result, multiple flits can

B.3. SCHEDULER IN THE OUTPUT PORT 199

A
r
b
i
t
e
r

scheduler

Rq

Gt

Acb

Cb

L1

L2

L3

E

Ot

Aot

Figure B.3: Scheduler in an output buffer

be transmitted at the same time, which breaks the prerequisite of utilizing a common
ack line for the credit output. Instead, every VC is connected to a separated credit
output port with a separated ack line.

B.3 Scheduler in the output port

Figure 8.16 in [45] presented a block diagram of the scheduler in output ports with-
out a detailed implementation of the scheduler. According to the STG illustrated in
Figure 8.17 in [45], Figure B.3 demonstrates the implementation in the reproduction.

Multi-way MUTEX arbiters are used for the arbiter shown in Figure B.3 but other
arbiter structures can be used, such as tree or ring arbiters. A column of C-elements
are inserted between the arbiter and the L2 buffer stage for VC numbers. These C-
elements are controlled by the ack line from L2; therefore, a new VC arbitration is
accepted only when the flit corresponding to the previous VC arbitration is received by
the next router. The captured VC arbitration (Gt) is sent back to the route manage unit
(Section 8.6 of [45] and Section B.4) as an acknowledge for switch allocation requests
(Rq).

B.4 Route management unit

The original QoS NoC router supports only QoS traffic. An input VC buffer requests
only to the output VC buffers with the same priority. This is clearly illustrated in
Figure 8.19 of [45] where the requests from the VC3 buffers (the VC with the highest
priority) in north and west input ports are connected only to the VC3 in the east output
port. The reproduction supports best-effort traffic. A VC in an input port can request
any output VCs. The new route management unit is demonstrated in Figure B.4.

200 APPENDIX B. REPRODUCTION OF THE QOS NOC

RA

RA

east

west

south

local

Allocator

PMxM

Request

Crossbar

PMxM

Ctrl

east

N

W

VC3 Rq
VC3 Gt

VC0 Rq
VC0 Gt

VC3 Rq
VC3 Gt

VC0 Rq
VC0 Gt

VC3 Rq
VC3 Gt

VC0 Rq
VC0 Gt

IPC N

IPC W

OPC E

Ack

(a) Route management unit
Ctrl Ack

Rq EOP

Rq HOP/BOP

Gt

Rq

Gt

(b) Steering logic

Figure B.4: The operation of the route management unit

Figure B.4a shows the overall structure of the route manage unit for the east output
port. The east requests of all input VCs are connected to an allocator to compete for
the four output VCs (VC0 to VC3) in the east output port. The M-N match allocator
described in Section 6.3.1 is used. The allocation result (Ctrl) drives a crossbar which
connects the switch requests from all input VCs to the scheduler in the east output port.
Every cross-point in the crossbar is a steering logic shown in Figure B.4b.

The steering logic has been modified from the original design (Figure 8.19 in [45]).
Instead of driving Ack by the detected end-of-packet request (Rq EOP) exclusively, the
new Ack also depends on the value of the grant Gt from the scheduler in the east
output port. The C-element on Ack defers the withdrawal of Ack until the end of data
transmission while the original design drops Ack when Rq EOP is delivered. Since the
structure of the arbiter in the original router design is unknown, it is uncertain whether
the same problem exists in the original design. As for the allocator in the new router
reproduction, dropping Ack before the release of Gt allows the allocator to assign the
same output VC to another input VC before the end of current data transmission cycle.
This leads to the rare but possible error of clashing between two flits.

Appendix C

Detailed implementation results

C.1 Single router evaluation

Tile Router Frame Saturation Tile Router
Area Area Latency Throughput Power Power
µm2 µm2 ns MByte/s mW mW

WH:16 25,283 15,728 116.2 366.1 8.3 3.4
WH:32 47,167 28,451 64.0 636.6 14.9 6.3
WH:48 71,883 41,640 44.2 925.4 22.9 9.0
WH:64 92,345 54,041 40.2 999.3 26.9 11.4

WH ChSlice+LH:16 38,721 25,552 70.2 597.3 21.6 9.1
WH ChSlice+LH:32 71,873 48,170 40.3 995.8 37.3 17.6
WH ChSlice+LH:48 108,659 73,643 28.1 1,361.1 53.8 26.9
WH ChSlice+LH:64 148,890 101,994 24.5 1,601.3 73.7 38.2

SDM:8x2 43,433 33,411 198.9 457.0 11.9 5.2
SDM:16x2 71,219 51,849 109.8 824.3 20.8 9.5
SDM:24x2 101,977 72,415 78.9 1,146.0 29.5 13.7
SDM:32x2 131,310 92,227 65.7 1,346.6 37.3 17.8
SDM:8x4 182,644 163,620 223.5 877.2 25.0 13.3
SDM:16x4 271,081 233,172 126.0 1,507.4 44.8 25.5

SDM ChSlice+LH:8x2 49,091 38,703 162.0 556.4 16.7 7.6
SDM ChSlice+LH:16x2 86,856 65,383 88.2 1,011.6 32.5 15.3
SDM ChSlice+LH:24x2 123,508 90,243 61.6 1,415.3 48.5 22.5
SDM ChSlice+LH:32x2 162,819 122,601 51.5 1,672.1 65.7 34.3
SDM ChSlice+LH:8x4 208,300 187,872 179.8 1,032.5 39.8 22.6
SDM ChSlice+LH:16x4 341,084 299,556 100.0 1,855.1 80.5 49.7

201

202 APPENDIX C. DETAILED IMPLEMENTATION RESULTS

Tile Router Frame Saturation Tile Router
Area Area Latency Throughput Power Power
µm2 µm2 ns MByte/s mW mW

SDM-Clos ChSlice+LH:8x2 42,695 32,011 170.8 517.6 15.8 7.3
SDM-Clos ChSlice+LH:16x2 79,060 57,254 90.5 924.2 31.8 15.2
SDM-Clos ChSlice+LH:24x2 122,129 89,246 65.1 1,274.9 47.5 24.5
SDM-Clos ChSlice+LH:32x2 172,300 128,490 53.6 1,531.3 65.9 36.1
SDM-Clos ChSlice+LH:8x4 104,987 84,054 187.4 964.3 32.5 15.8
SDM-Clos ChSlice+LH:16x4 193,407 151,151 102.0 1,680.6 65.1 35.4

VC:8x2 47,152 40,152 321.9 183.5 8.7 4.1
VC:16x2 64,229 52,091 171.0 309.8 11.4 5.5
VC:32x2 99,609 78,332 90.3 544.7 18.1 9.3
VC:48x2 139,965 108,336 60.6 819.2 26.2 13.8
VC:64x2 172,000 133,156 52.0 949.3 32.0 17.8
VC:8x4 158,694 150,034 324.6 174.9 8.9 4.8
VC:16x4 184,997 171,990 186.2 320.9 13.5 7.3
VC:32x4 243,940 222,277 93.7 579.8 21.5 12.4
VC:64x4 355,135 315,974 58.8 933.1 32.9 19.3

C.2 Network evaluation

Tile Router Min Frame Saturation Tile Router
Area Area Latency Throughput Power Power
µm2 µm2 ns MByte/Node/s mW mW

WH:16 25,283 15,728 133.8 121.2 5.1 2.1
WH:32 47,167 28,451 81.0 207.8 9.1 3.9
WH:48 71,883 41,640 62.0 298.0 13.8 5.4
WH:64 92,345 54,041 58.4 322.3 16.0 6.8

WH ChSlice+LH:16 38,721 25,552 87.5 196.3 13.3 5.6
WH ChSlice+LH:32 71,873 48,170 58.4 320.1 22.2 10.6
WH ChSlice+LH:48 108,659 73,643 47.1 426.3 31.6 15.9
WH ChSlice+LH:64 148,890 101,994 43.4 480.6 42.4 22.2

SDM:8x2 43,433 33,411 220.5 180.3 8.8 3.8
SDM:16x2 71,219 51,849 131.7 309.7 14.5 6.5
SDM:24x2 101,977 72,415 100.4 420.9 21.1 9.7
SDM:32x2 131,310 92,227 87.0 504.8 26.1 12.3
SDM:8x4 182,644 163,620 252.0 366.9 19.7 10.5
SDM:16x4 271,081 233,172 153.8 637.2 35.5 20.1

C.3. MPEG-4 EVALUATION 203

Tile Router Min Frame Saturation Tile Router
Area Area Latency Throughput Power Power
µm2 µm2 ns MByte/Node/s mW mW

SDM ChSlice+LH:8x2 49,091 38,703 184.5 209.7 12.0 5.5
SDM ChSlice+LH:16x2 86,856 65,383 109.5 383.7 23.8 11.2
SDM ChSlice+LH:24x2 123,508 90,243 83.1 529.3 33.7 15.6
SDM ChSlice+LH:32x2 162,819 122,601 73.5 620.4 47.6 25.0
SDM ChSlice+LH:8x4 208,300 187,872 205.4 446.8 31.5 17.9
SDM ChSlice+LH:16x4 341,084 299,556 132.2 753.8 59.9 37.1

SDM-Clos ChSlice+LH:8x2 42,695 32,011 196.4 192.4 11.2 5.1
SDM-Clos ChSlice+LH:16x2 79,060 57,254 113.8 348.4 21.7 10.4
SDM-Clos ChSlice+LH:24x2 122,129 89,246 90.9 471.7 32.8 17.0
SDM-Clos ChSlice+LH:32x2 172,300 128,490 77.3 566.6 44.7 24.6
SDM-Clos ChSlice+LH:8x4 104,987 84,054 211.3 408.9 24.5 12.0
SDM-Clos ChSlice+LH:16x4 193,407 151,151 127.3 689.6 49.8 27.2

VC:8x2 47,152 40,152 409.5 66.0 6.0 2.9
VC:16x2 64,229 52,091 227.6 117.6 8.4 4.1
VC:32x2 996,09 78,332 138.4 211.1 13.1 6.7
VC:48x2 139,965 108,336 102.4 316.5 19.3 10.1
VC:64x2 172,000 133,156 91.4 369.0 23.9 13.2
VC:32x4 243,940 222,277 155.3 262.8 17.0 9.7

C.3 MPEG-4 evaluation

Tile Router Avg. Frame Overall Tile
Area Area Latency Throughput Power
µm2 µm2 ns MByte/s mW

WH:16 25,283 15,728 10,258.0 1,974.4 5.4
WH:32 47,167 28,451 3,730.6 3,098.4 8.7
WH:48 71,883 41,640 150.9 3,415.0 9.6
WH:64 92,345 54,041 111.9 3,499.0 10.8

WH ChSlice+LH:16 38,721 25,552 5,335.4 2,805.9 12.1
WH ChSlice+LH:32 71,873 48,170 108.6 3,414.6 15.6
WH ChSlice+LH:48 108,659 73,643 54.4 3,413.6 15.1
WH ChSlice+LH:64 148,890 101,994 45.4 3,395.2 18.7

204 APPENDIX C. DETAILED IMPLEMENTATION RESULTS

Tile Router Avg. Frame Overall Tile
Area Area Latency Throughput Power
µm2 µm2 ns MByte/s mW

SDM:8x2 43,433 33,411 9,379.6 2,290.1 7.1
SDM:16x2 71,219 51,849 702.9 3,413.3 10.2
SDM:24x2 101,977 72,415 121.4 3,432.0 10.3
SDM:32x2 131,310 92,227 88.4 3,414.9 11.4
SDM:8x4 182,644 163,620 513.1 3,455.9 11.6

SDM ChSlice+LH:8x2 49,091 38,703 6,459.8 2,680.7 9.7
SDM ChSlice+LH:16x2 86,856 65,383 163.5 3,466.7 13.4
SDM ChSlice+LH:24x2 123,508 90,243 84.1 3,432.1 13.3
SDM ChSlice+LH:32x2 162,819 122,601 67.1 3,410.5 16.3
SDM ChSlice+LH:8x4 208,300 187,872 239.4 3,458.1 15.2
SDM ChSlice+LH:16x4 341,084 299,556 115.8 3,461.6 17.6

SDM-Clos ChSlice+LH:8x2 42,695 32,011 7,450.4 2,536.5 9.3
SDM-Clos ChSlice+LH:16x2 79,060 57,254 183.7 3,464.3 14.0
SDM-Clos ChSlice+LH:24x2 122,129 89,246 95.0 3,431.9 14.9
SDM-Clos ChSlice+LH:32x2 172,300 128,490 70.5 3,410.7 17.7
SDM-Clos ChSlice+LH:8x4 104,987 84,054 248.5 3,458.1 13.6
SDM-Clos ChSlice+LH:16x4 193,407 151,151 116.5 3,458.0 15.8

VC:8x2 47,152 40,152 17,291.0 918.2 5.5
VC:16x2 64,229 52,091 14,455.0 1,577.2 7.2
VC:32x2 996,09 78,332 6,940.8 2,672.4 10.8
VC:48x2 139,965 108,336 281.1 3,432.0 12.6
VC:64x2 172,000 133,156 172.9 3,511.7 14.3
VC:32x4 243,940 222,277 5,921.7 2,817.6 12.7

	Abstract
	Declaration
	Copyright
	Acknowledgements
	The Author
	I Introduction and Background
	Introduction
	Motivation
	Research objectives
	Research contributions
	Thesis organization
	Publications

	Asynchronous Circuits
	General description
	Delay assumptions
	Delay-insensitive
	Quasi-delay-insensitive
	Speed-independent
	Relaxed QDI
	Self-timed

	Handshake protocols
	4-phase
	2-phase

	Data encoding
	Bundled-data
	Multi-rail

	Performance comparison of pipelines
	Arbiter
	Multi-way MUTEX arbiter
	Tree arbiter
	Ring arbiter
	Static priority arbiter

	Allocator
	Virtual channel admission control
	Multi-resource arbiter

	Summary

	Network-on-Chip
	Concepts of on-chip networks
	Topology
	Flow control
	Circuit switched and packet switched
	Virtual channel
	Other flow control methods
	Quality of service

	Routing algorithm
	Deterministic and non-deterministic
	Deadlock and livelock

	Globally asynchronous and locally synchronous
	Previous GALS NoCs
	SpiNNaker
	ASPIN
	QoS NoC
	ANOC
	MANGO
	QNoC

	Summary

	II Levels of Parallelism
	Parallelism in the Physical Layer
	Synchronization overhead
	Channel slicing
	Lookahead pipeline style
	A channel sliced wormhole router
	Router structure
	Performance

	Summary

	Parallelism in the Switching Layer
	Problems of the virtual channel flow control
	Spatial division multiplexing
	An SDM router
	Router structure
	Performance

	Behavioural level comparison
	Models for wormhole and SDM routers
	Model for VC routers
	Performance analyses

	Summary

	Area Reduction using Clos Networks
	Clos switching networks
	Dispatching algorithm
	Concurrent round-robin dispatching algorithm
	Asynchronous dispatching algorithm
	Performance of CRRD and AD

	Asynchronous Clos scheduler
	Implementation
	Performance

	2-stage Clos swtich
	Summary

	III Performance Evaluation and Conclusion
	An Asynchronous SDM Router
	Router structure
	Input and output buffers
	2-stage Clos switch for SDM routers

	Implementation
	Implementation detail
	Area consumption
	Router speed

	Summary

	Performance Evaluation
	Single router evaluation
	Test environment
	Performance

	Network performance
	Mesh network with uniform traffic
	An MPEG-4 system

	Summary

	Conclusions and Future Work
	Summary of the thesis
	Channel slicing and lookahead pipelines
	SDM
	Clos
	Overall remarks
	Discussion of the performance of sync/async NoCs

	Future work

	Bibliography

	Appendix
	Basic Elements of Asynchronous Circuits
	C-elements
	2-input symmetric C-element
	2-input asymmetric C-element with a plus input
	2-input asymmetric C-element with a minus input
	3-input asymmetric C-element with a plus input

	Other cells
	MUTEX
	RS latch

	Reproduction of the QoS NoC
	Router structure
	Connection of input buffers and the crossbar
	Scheduler in the output port
	Route management unit

	Detailed implementation results
	Single router evaluation
	Network evaluation
	MPEG-4 evaluation

