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Abstract

Spiking neural network modelling is naturally suited to massively-parallel com-

putation because of its characteristics such as simple processing components,

highly-parallel communications, and small local memory requirement. However,

because the real-time modelling of large-scale spiking neural networks demands

very high communications efficiency, it is hard to implement on a general-purpose

computer. As the feature size of transistors shrinks, a Multi-processor Systems-

on-Chips (MPSoCs) with a Network-on-Chip (NoC) architecture has emerged as

a promising platform for large-scale spiking neural network simulations.

This dissertation presents design methodologies for a communication router

in an application-specific NoC. The router realizes neural connectivity with flex-

ibility, power-efficiency, high throughput and fault-tolerance. Three major con-

tributions are:

• A programable multicast routing infrastructure to realize neural network

communications is first presented.

• Then a look-ahead pipeline control mechanism is implemented. It minimizes

power consumption, and manages pipeline usage in a smart way, thereby

maximizing the throughput.

• An adaptive routing mechanism for multicasting is investigated to achieve

system-level fault-tolerance and avoid deadlocks.

The router is a sub-system of SpiNNaker – a massively-parallel multiproces-

sor platform for real-time simulations of large-scale neural networks. Based on

this platform, experimental results show that the proposed router contributes

significantly to both performance and energy/resource efficiency.
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Chapter 1

Introduction

Biological brains are capable of performing many intelligent tasks, such as face

recognition, speech processing and language learning, that conventional compu-

tational systems still find difficult [Vig94][MB90][MC93]. The brain is a comput-

ing system which exploits massive parallelism, with limited elemental processing

speed. Here, a huge number of slow, simple elements execute in parallel and

exhibit remarkable characteristics. It is natural for scientists seeking engineered

solutions to the above tasks to consider mimicking the neural networks of bio-

logical brains. However, despite much research into how neural networks work,

knowledge in this area remains limited.

Simulation scale is one of the key factors of neural network modelling. The

simulation of a human brain requires about 100 billion neurons and even more

interconnects. Such a large-scale neural network simulation remains well beyond

the reach of current computation systems, particularly in real-time. The ‘real-

time’ concept means that the simulation finishes no later than do an equal number

of biological neurons performing an equivalent task (which typically means around

1 ms per step) [JSR+97].

The emergence of massively-parallel computational systems offers an oppor-

tunity to bridge the gap between the computational requirements of large-scale

neural networks and the capabilities of relevant platforms. Cluster supercomput-

ers, commonly used by neuroscientists for neural network simulations, are the

current model of conventional parallel systems. These systems are capable of

distributed processing and information storage, thereby delivering high comput-

ing power, but must still overcome the huge demand for data exchange between

processing nodes if a truly real-time simulation is to be achieved.

15
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As transistor feature sizes continue to shrink, Multi-Processor System-on-Chip

(MPSoC) technology using Network-on-Chip (NoC) communication schemes has

emerged as a promising solution for massively-parallel computing. The appli-

cation of MPSoC technology to conduct research on large-scale spiking neural

network simulations has attracted the attention of both computer engineers and

neuroscientists. An MPSoC has many characteristics similar to those of a spiking

neural network [Con97]:

• They are both parallel systems.

• They both comprise networks of processing components. The basic pro-

cessing element of a neural network is the neuron, which can be described

by relatively simple models, such as the Izhikevich model and the leaky

integrate-and-fire model [Izh03][Tuc88]; the basic processing element of an

MPSoC system is a microprocessor core, usually with a simple architecture

because of energy-efficiency considerations.

• They both have highly parallel connectivity between the processing ele-

ments. A neural network uses many synapses to connect neurons; an MP-

SoC uses an NoC to connect processing cores although it may multiplex

several channels over each physical link.

• They are both event-driven: A spiking neural network communicates using

spike events; an MPSoC communicates using discrete data packets.

The similarity between their characteristics makes the modelling of spiking

neural networks naturally suited to the parallel computations on an MPSoC sys-

tem, making it worthwhile to develop a dedicated MPSoC platform with special

features to support neural network modelling. The platform should enable neu-

roscientists to achieve new insights into the operational principles of neural net-

works by running real-time simulations, with biologically-realistic levels of neural

connectivity. The improved understanding of these natural systems will, per-

haps, inspire computer engineers in their quest for ever-better high-performance

computational architectures.

A neural computation system must achieve balance between its processing,

storage and communication requirements [FTB06]. This dissertation focuses prin-

cipally on the communication issues, and presents the design of a multicast router.

The router is the core communication unit of the SpiNNaker system – a universal
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spiking neural network simulation platform. The design of the router has to con-

sider both the requirements of supporting neural network communications and

the feasibility of its implementation in an electronic system.

1.1 Neural simulation

Neural simulation addresses the task of understanding the structure of the brain

and applying it to bio-inspired information processing systems [BJ90]. It is one

of the most rapidly developing research fields which attracts psychologists, neu-

roscientists and computer scientists seeking effective solutions to real-world prob-

lems [CW06].

Neural simulation is performed by modelling neural network topologies, which

reflect information transmission between many simple functional elements – the

neurons. The only information issued by a neuron is an electro-chemical im-

pulse, indicating its firing. Information is conveyed by the firing frequency and

the timing of impulses relative to other neurons. The information processing

algorithms of the brain are highly related to the connectivity between neurons.

A major challenge in achieving high performance neural simulation is to emu-

late the connectivity of a biological neural network. It is necessary to provide a

communication infrastructure which models the impulses between neurons.

Wilson compared the neural simulation performance of well-connected versus

loosely coupled processing elements [WGJ01]. The result indicates that commu-

nication latency is the major factor in obtaining good performance, especially in

achieving real-time simulation. An infrastructure specifically supporting the mas-

sive communication of neural networks is therefore desirable for this application-

specific platform. As the central part of this infrastructure, a router that supports

efficient communication of neural impulses is one of the key issues.

1.2 Literature review

Investigations into neural network modelling have been undertaken for several

decades by means of theoretical studies together with experimental simulations.

The research leads to two sub-questions: firstly, how can the brain’s behaviour

be abstracted into computable models which neuroscientists achieve by neural
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network modelling; secondly, how can this computation be performed on an ar-

tificial platform. Although research into neural modelling has seen remarkable

progress, the second question remains unanswered. Many research projects have

been proposed in the area of developing neural simulation platforms.

1.2.1 Software neural simulators

Many software simulators, such as GENESIS and NEURON, can be used to

model neurons with high biophysical realism and are flexible as a result of their

programmability [BB98][HC97]. They provide interfaces to conventional com-

puters: general-purpose workstations initially and, later, commercially-available

computer clusters to achieve larger simulation scales. However, software simula-

tors are inefficient for neural modelling, especially for large-scale networks. One

major reason is that spike propagation in neural networks is inherently event-

driven whereas software simulators typically employ time-driven models [Moi06].

1.2.2 Neural simulations on general-purpose computers

General-purpose stand-alone workstations are the most commonly used platforms

for neural simulations because they are economical, easily available and con-

venient to program. State-of-the-art processors have adequate computational

power to support a certain scale of neural simulation in real time. For example,

Boucheny presented a complete physiologically-relevant spiking cerebellum model

that runs in real-time on a dual-processor computer. The model consists of 2,000

neurons and more than 50,000 synapses [BCRC05]. However, neural networks

modelled on sequential computers are constrained to be very small-scale due to

the limitations of the computational resource. This narrows the application range.

The pursuit of performing larger-scale neural simulations has led to investiga-

tions into hardware integration. As neural networks are inherently parallel sys-

tems, larger-scale simulations are suitable to be performed on parallel computers.

Several spiking neural networks have been implemented on commercially-available

parallel computers, such as the Transputer array used at Edinburgh [FRS+87], the

CM-2 Connection Machine developed by Thinking Machines Corporation [Moi06].

With the advances in computational power, concurrent hardware implementa-

tions are adequate for simulating very large neural networks. A current, on-going

example is the Blue Brain project conceived at IBM [Mar06]. It can simulate up
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to 100,000 highly complex neurons or 100 million simple neurons, which corre-

sponds to the number of neurons in a mouse brain.

Computation power is available because the neural simulation problem is lin-

early scalable. A parallel computer architecture distributes computational tasks

onto different processing elements to decrease the workload on an individual pro-

cessor so that it fulfills the neural simulation’s requirements in terms of scale

and computational power. However, communication overheads in existing par-

allel architectures limit the overall execution speed of large-scale spiking neu-

ral simulations, which is a crucial requirement for the accomplishment of many

bio-realistic tasks, such as real-time vision detection. Parallel computer archi-

tectures struggle to reach the requirements of real-time simulation (1 ms resolu-

tion) [PEM+07]. This is because existing architectures are not designed to cope

with communication scalability as ‘conventional’ software doesn’t require it. Of

the above cases, only the CM-2 achieved real-time simulation of a spiking neural

network, with a scale up to 512K neurons [JSR+97]. Unfortunately, a network

of even several thousand neurons is still too small to satisfy the needs of many

application-specific simulations and large-scale parallel computers usually have

high maintenance costs.

1.2.3 Neurocomputers

Because of the limitation of running a fast simulations of a large-scale spiking

neural network on general-purpose high-performance computers, there is a mo-

tivation for developing dedicated digital hardware – so-called neurocomputers –

which aim to achieve more cost-effective performance and faster simulation speed.

They are usually custom built to distribute processing and storage, and are im-

plemented with neurochips or a conventional computer plus neural accelerator

boards that optimize the simulation algorithm.

A generic neurocomputer architecture usually comprises three parts: a com-

puting unit, a spike event list and a connection unit, a block diagram is shown

is Figure 1.1. The elementary operations of neural computation are usually ex-

ecuted on the computing unit, usually a specific VLSI neural signal processor.

It can be a single, specific processor or an array of processors located on the

neurochips or the accelerator boards. When performing a simulation, the com-

puting unit generates the addresses of spiking neurons which are stored in the

spike event list. The connection unit contains connectivity information. It reads
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Figure 1.1: A generic neurocomputer

the address of a neural spike from the spike event list and derives the address of

target neurons [Ram92]. Well-known examples include NESPINN, CNAPS and

SYNAPSE.

NESPINN (Neurocomputer for Spiking Neural Networks) was designed at the

Institute of Microelectronics of the Technical University of Berlin [SMJK98]. Its

block diagram is shown in Figure 1.2. The system was designed specifically for

spiking neural networks. A NESPINN board is capable of simulating up to 512K

spiking neurons with up to 104 connections. It consists of one connection chip

and one processing chip. The connection chip holds the network topology. The

processing chip has several processing elements, each of which executes a partition

of the whole neural network. The NESPINN board achieves a good performance

by using an efficient neuron parallel mapping scheme and a mixed dataflow/SIMD

(Single Instruction Multiple Data) mode in the architecture. However, its has

limited scalability.

The CNAPS (Connected Network of Adaptive Processors) system, proposed

at Adaptive Solutions, has shown a certain level of scalability [Ham91]. Its block

diagram is shown in Figure 1.3. The elementary functional block of the CNAPS

system is a neurochip, N6400, which contains 64 processing elements. A system

can be expanded via a broadcast interconnection scheme, where a maximum
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of eight chips with a total of 512 processing elements are connected by two 8-

bit broadcast buses in a SIMD mode. Any information exchange between the

neurochips is transferred via the buses, which makes them system bottlenecks.

The neurocomputer SYNAPSE (Synthesis of Neural Algorithms on a Parallel

Systolic Engine), developed at Siemens, also consists of eight neurochips (MA-16),

connected by a systolic ring architecture [RRH+95]. Its block diagram is shown

in Figure 1.4. The throughput of the communication channels is optimized by

pipelining. However, the systolic ring architecture is also considered non-scalable.

1.2.4 Limitations of previous neural simulators

Due to the high diversity of applications, there are many algorithms for neural

networks. For example, some applications focus on real-time interactions, such

as robot control, others focus on the exploration of neural modelling or brain

function. It is, therefore, hard to develop a general benchmark for all neural

simulations. However, one straightforward, and perhaps the simplest, way of ex-

amining the effectiveness of neural simulations is to evaluate their performance on
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real-world applications. A 1 million (or more) neuron network, with about 1,000

inputs on each neuron and 100–1,000 impulses per second, would offer a good

perspective on experimental research on large-scale neural simulations [Hee95].

Although the above mentioned solutions have achieved significant improve-

ments in performance over general-purpose workstations and clusters, their ca-

pability of applying large-scale neural network topologies to complex real-world

problems is still limited, and revealing the internal mechanisms of the brain is

still far beyond their capability.

Software simulators have been developed to explore models close to biol-

ogy. Stand-alone workstations have proved useful for small-scale experiments.

General-purpose parallel computers can support a relatively large scale of sim-

ulation and are flexible for programming, but they are usually not able to run

the simulations in real time. Neurocomputers have managed to achieve real-time

simulations by taking advantage of the higher operating speed of VLSI circuits

(nanoseconds) relative to that of neurons (milliseconds). This allows a single pro-

cessor to simulate about 105 to 106 neurons in real time. However, further scaling

up of the simulations while maintaining the real-time feature is difficult due to

the communication overhead. One example of extending the scale is shown in the

case of the CNAPS where the bus interconnect is still the system bottleneck.

New architectures and technology are thus desirable in the construction of the

next generation of neural hardware, where the features of adaptivity, flexibility,

scalability, higher speed and low power have to be considered. Eventually, these

features will converge into one major research focus – efficient communication

between neurons on massively-parallel systems. The communication issue is also
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becoming one of the central topics of the trend of research on new computer

paradigms, which aim to make multi-core processing on one or several chips

feasible.

1.3 Design considerations

Biological neurons are massively interconnected but ‘compute’ slowly (less than ∼
1,000 Hz) and communication speed is low (∼ 1 ms). Electronic components are

much faster (several GHz) but interconnection is expensive. However several dig-

ital neural impulses can be multiplexed over a communication channel to provide

similar connectivity to biological neurons.

An ARM968 processor is capable of simulating ∼ 1,000 neurons and the as-

sociated synapses connections in real time with ∼ 50 MB memory [JFW08]. In

a system which scales to one million neurons around 1,000 microprocessors are

needed, producing around one billion impulses per second. This requires an inter-

connection network able to handle a large number of neural impulses in real-time.

This dissertation focuses on a router as the central communication unit of

the interconnection network. A set of issues were considered in designing the

architecture of the router to fulfill the communication requirements of neural

modelling as well as those of massively-parallel system configurations.

Three routing algorithms are defined as the basic functionalities: multicast

routing for neural impulses transmission; point-to-point routing for system man-

agement and control information transmission; and nearest-neighbour routing

for boot-time, flood-fill and chip debug information transmission. The multicast

routing is the principal function of the router. It is more efficient for neural

communication than typical unicast and broadcast routing because neurons have

high fan-outs.

Some fault-tolerance features are considered for inclusion in the router. This

is an emulation of biological systems which have certain abilities to identify and

isolate faults.

The design is optimized to significantly reduce power and area consumption so

that the router can handle a large number of neural impulses with low overhead.
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1.4 Contributions

This dissertation focuses on the investigation of a novel router architecture for

the real-time modelling of spiking neural networks on a massively-parallel system

via an on/inter-chip communication infrastructure. The router supports multiple

routing algorithms which are designed specifically for efficient communication in

large-scale neural networks. The major contributions include:

• Communication efficiency: Neural networks may be modelled in real time

by taking advantage of the massive parallelization of the platform. This is

achieved by properly balancing the system resources between computation,

storage and communication. The design effort described in this dissertation

focuses on deriving higher communication efficiency, principally through the

multicast routing of neural packets.

• System scalability: Biological neural networks range from small-scale sys-

tems with several neurons to very large-scale systems with tremendous num-

bers of neurons. A platform for neural network modelling must be scalable,

so that the same algorithm can be applied to various neural networks. To

achieve a better scalability and speed than conventional buses, a router in

a Network-on-Chip architecture is used for on-chip neural message routing

and processing elements organization. In this way, the platform is formed

from an array of neural chips, wrapped into a torus.

• Fault-tolerance: Fault-tolerance has become increasingly crucial in VLSI

design as device variability becomes an inevitable issue in deep sub-micron

technology. It is, however, present in most biological systems. The scale

of the system requires an adaptive routing mechanism to enhance system-

level fault-tolerance. An error handling mechanism is applied to enhance

the reliability of data flows.

• Power/area efficiency: On-chip network design needs more consideration

of energy and area efficiency than macro networks. These issues become

even more important as a power/area-intensive associative memory circuit

is required for the neural platform to store spiking neuron addresses.

• Universality: The system is intended to support multiple neural models,

and can be configured ‘on the fly’. This is realized by taking advantage of
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the higher flexibility of programmable digital hardware. Configuration of a

distributed system requires message passing between the processing nodes,

which is accomplished by multiplexing the neural communication channel

of the router and requires proper design of the transaction protocols.

1.5 Dissertation organization

The organization of this dissertation is as follows: After discussing the basic

concepts of neuron modelling in chapter 2, the thesis starts with discussing the

feasibility of applying the Network-on-Chip approach to the implementation of

a neurocomputing platform (chapter 3), and then particularly focuses towards

the communication issues of the platform in chapter 4. Chapter 5 presents the

architectural considerations of the router, which is the heart of the system’s com-

munication network. Detailed implementations of the router’s routing algorithms

follow in chapter 6. Chapter 7 presents router pipelining for flow control and

power saving. Following that in chapter 8 the router’s performance is evalu-

ated from several perspectives, including its basic functions, its behaviours in a

network environment, packet drop rate, power consumption and circuit area. Fi-

nally, in chapter 9, conclusions are drawn about how the design demonstrates the

advantages and disadvantages of the proposed routing strategy for a large-scale

neural platform in addition to suggesting future explorations and optimizations.

1.6 Publications

The following papers have been published or submitted for publication, based on

the work presented in this dissertation.

• Wu, J. and Furber, S.B.,

Delay insensitive chip-to-chip interconnect using incomplete 2-of-7 NRZ

data encoding [WF06]

(18th UK Asynchronous Forum)

The paper introduces the concepts and implementations of delay-insensitive

signalling protocols for a chip interface which extends the router’s on-chip

links into inter-chip links, followed with evaluations of the performance;

• Wu, J., Furber, S.B. and Garside, J.D.
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A programmable adaptive router for a GALS parallel system [WFG09]

(15th IEEE International Symposium on Asynchronous Circuits and Sys-

tems)

The paper demonstrates the design implementation of the router in the

SpiNNaker system. It proves the design feasibility and addresses the im-

portant issues desired by a neural simulation platform, such as programma-

bility, adaptivity and scalability (see chapters 6, 7 and 8);

• Wu, J. and Furber, S.B.

A multicast routing scheme for a universal spiking neural network architec-

ture [WF09]

(The Computer Journal)

The paper discusses the design considerations of the router from a neural

simulation point of view. It addresses the importance of communication

efficiency to neural network modelling, followed by evaluation results of

power saving and adaptive routing showing the significance of the design

(see chapter 5, 6 and 8);

• Plana, L.A., Furber, S.B., Temple, S., Khan, M., Shi, Y., Wu, J. and Yang,

S.

A GALS infrastructure for a massively parallel multiprocessor [PFT+07]

(IEEE Design and Test of Computers)

The paper focuses on the GALS infrastructure of the SpiNNaker system

and describes the router as a crucial part of the infrastructure (see chapter

4);

• Plana, L.A., Furber, S.B. Bainbridge, J., Salisbury, S., Shi, Y. and Wu, J.

An on-chip and inter-chip communications network for the SpiNNaker massively-

parallel neural net simulator [PFB+08]

(The 2nd IEEE International Symposium on Network-on-Chip)

The poster provides a perspective of the SpiNNaker system (see chapter 4);

• Lujan, M., Furber, S.B., Jin, X., Khan, M., Lester, D., Miguel-Alonsoy, J.,

Navaridasy, J., Painkras, E., Plana, L.A., Rast, A., Richards, D., Shi, Y.,

Temple, S., Wu, J. and Yang, S.

Fault-tolerance in the SpiNNaker architecture (submitted)

(IEEE Transactions on Computers)
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The paper addresses the fault-tolerance feature considered in the design of

the SpiNNaker platform, where the router is one of the key components

supporting this feature. A case study has been carried out using a 256 ×
256 2-dimensional triangular mesh. It shows the router’s adaptive rout-

ing mechanism can significantly enhance system-level fault-tolerance and

stability by decreasing the packet drop rate (see chapter 8).



Chapter 2

Neurcomputing

This chapter introduces the biological and mathematical background of neur-

computing. The knowledge presented here includes neurocomputing’s principles,

characteristics, and possible implementation methods, to explain the theoretical

foundations for implementing neurocomputing through a VLSI approach. Follow-

ing that spiking neural networks and one of the spiking neural models, Izhikevich

model, are introduced. The feature of spiking neural networks shows that it is

possible to model the networks in real-time. This brings challenges to the develop-

ment of an efficient communication mechanism which will be further investigated

in the following chapters.

2.1 Introduction

The biological brain, which features high complexity, nonlinearity, and massive

parallelism, is the central unit of the nervous system. It makes appropriate de-

cisions in many intelligent tasks, such as speech recognition, image analysis, and

adaptive control.

Research to understand the brain started from 1911 when Ramón y Cajal first

introduced the concept of neurons as basic operational elements of the neural

network. A brain contains a huge number of neurons. It is estimated that there

are 100 million neurons in the mouse brain and 100 billion neurons in the human

brain. They are massively interconnected by junctions called synapses and form

a neural network. The operations of the brain are represented by the activities of

the neural network, which is further represented by those of the individual neurons

and their interactions. Neurons operate at a slower process speed than silicon logic

28
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gates [Hay98], however, a huge number of these slow, simple elements exhibit

some remarkable characteristics by evaluating in parallel. The brain also has

significantly lower power consumption (10−16 Joules per operation), an energy

budget that the human body can afford.

In computer science, the modelling of artificial neural networks is called neu-

rocomputing and intends to reflect complex relationships between the network’s

inputs and outputs. Haykin’s book provides a comprehensive survey of neural

network characteristics distinguishing neurocomputing from conventional compu-

tation [Hay98].

• Nonlinearity – An artificial neural network can be a nonlinear system which

is inherently suitable for processing certain signals with nonlinearity (e.g.

speech signals).

• Input-output mapping – A set of samples with unique inputs and the cor-

responding desired outputs can be applied to a neural network for training

purposes. The network is modified in response to the examples so that it

is finally trained to generate output with acceptable difference from the de-

sired results. Thus mapping relationships between input and output signals

of selected examples can be constructed within the network.

• Adaptivity – A neural network is naturally adaptive to its operating envi-

ronment which it achieves by the real-time modification of synaptic weights.

• Fault tolerance – Brains are fault tolerant: neurons die continuously yet the

brain (largely) continues to function. A hardware implementation of a neu-

ral network is potentially capable of maintaining functionality by degrading

its performance to an acceptable extent rather than displaying catastrophic

failure when facing damage.

• Evidential response – A neural network displays a high level of confidence in

pattern recognition. This means it is not only able to recognise particular

patterns, but also may be used to reject ambiguous patterns.

• Contextual information – A neural network is inherently capable of pro-

cessing contextual information. The knowledge representation of a neural

network is based on its structure and activation state.
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• VLSI implementability – A neural network is well suited for implementation

using VLSI because of its massively-parallel nature.

• Uniformity of analysis and design – Neural networks share common theories

and learning algorithms. It is credible to use the same notation in all

domains.

• Neurobiological analogy – Research into neural networks provides an op-

portunity for interpreting neurobiological phenomena. The improved un-

derstanding of the natural phenomena will, in turn, inspire engineers in

their quest for ever-better high-performance computational architectures.

The above-mentioned characteristics of neurocomputing suggest great engi-

neering perspectives, but a implementation of the computation requires a pro-

found understanding of how a neural network works. The remainder of this

chapter presents the basic knowledge of neurocomputing, which starts with the

biological characteristics of neural networks, followed by the mathematical mod-

elling of neurons and neural networks, and ending up with the introduction of

spiking neural networks which may be suitable for large-scale, real-time modelling

on VLSI.

2.2 Biological neurons and neural networks

The first step towards understanding the principles of neurocomputing is to un-

derstand the behaviour of the individual biological neuron. Biological neurons are

the elementary functional devices of neural networks, they perform their functions

by processing and transmitting/receiving impulses between each other.

A sketch of a typical biological neuron is illustrated in Figure 2.1, it consists

of three main parts, respectively called the dendrites, the axon, and the soma.

Dendrites are trees of nerve fibres that emanate from the soma, they absorb input

signals from other neurons and transmit them to the soma. The axon is also a

nerve fibre, which is often insulated by a myelin sheath to accelerate the spike’s

propagation. The soma is the central body of the neuron, it joins the first segment

of the axon, called the axon hillock, which processes input signals by adding them

together and produces an impulse when the sum of the inputs reaches above a

threshold value. The neuron outputs a series of impulses, referred to as action
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Figure 2.1: Biological neuron

potentials or spikes which are conveyed to their many target terminals to other

neurons via the neuron’s axon.

There are junctions, known as synapses, between the neuron terminals and

the dendrites of other neurons. A synapse couples the presynaptic axon terminal

membrane and the postsynaptic dendrite membrane together and maintains the

strength of their interactions by the state of electrical polarization. It performs

complex signal processing by dynamically converting a presynaptic signal, which

it receives from one neuron, into a postsynaptic signal (PSP) [MHM96]. This

is done by weighting the incoming spikes by their respective synaptic efficacies

which it passes to the axon hillock via the dendrites. This signal processing

procedure is crucial in learning and adaptation.

Each neuron usually has 1,000 to 10,000 synapses. The many synaptic links

assemble the neurons into a massively interconnected neural network. This mas-

sive interconnection produces many presynaptic signal to a neuron. However, a

presynaptic signal can be regarded as a digital signal which either presents or

not, so it is possible to model the interconnection on a digital VLSI system. The

modelling of the interconnection is the major topic of this thesis.

Many PSPs are summed together in the axon hillock with the result expressed

as the membrane potential. If the potential exceeds a threshold (v), the cell

body will initiate an action potential to its target synapses via the neuron’s
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axon [Gur97]. These procedures are the typical activities of an individual biolog-

ical neuron. Research into biological neurons makes it possible to represent and

compute their activities using mathematical neurobiology.

2.3 Mathematical neurobiology

Mathematical neurobiology is the methodology of abstracting neural activities

into computable models which capture the essential information-processing fea-

tures of real neurons. This methodology, also called neural modelling, forms the

basis for designing the artificial neural network [Hay98].

2.3.1 Artificial neuron

An artificial neuron is a mathematical model based on a biological neuron. The

graphical form of a typical artificial neuron is shown in Figure 2.2. The model

is an activation function that operates on a linear combination of the weighted

inputs. It contains three basic elements [Hay98]:
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Figure 2.2: Graphical representation of an artificial neuron

• A set of synaptic weights, each of which represents the strength of coupling

of a synapse from its input to its output neuron. Mathematically, this

strength is reflected by an input signal xj multiplied by the weight wj.

• An adder that performs the function of the axon hillock by summing the

incoming weighted values.
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• An activation function that induces an output action potential when the

summed weights reach a predetermined threshold. The activation function

is different in different models.

The development of neural modelling has been classified into three generations

with different levels of biological realism, relating to different types of neural

network [Vre02].

The first generation of neuron model was proposed by McCulloch and Pitts

in 1943. In the McCulloch-Pitts model, the activation function is a squashing

function producing a Boolean value.

Mathematically, the McCulloch-Pitts model can be described by the pair of

equations below:

v(x) =
m∑

j=0

wjxj (2.1)

f(v) =

 1 if v ≥ 0

0 if v < 0

This model provides the possibility of building a machine with the ability to

learn from experience [VSVJ89].

The second generation of neuron uses a continuous activation function to com-

pute the output. Unlike the first generation, whose activation function generates

a digital output, the second generation is suitable for analog in- and output.

The third generation of neuron is the spiking neuron, which will be introduced

latter in a separate section.

Artificial neurons are the elementary operational units of an artificial neural

network. Each of the neurons computes weighted inputs from the outputs of the

other neurons according to the activation function. The operation of an artificial

neural network is not merely represented by individual neuron models. It is also

related to the interconnections between neurons.

2.3.2 Artificial neural networks

An artificial neural network is a collection of interconnected mathematical neuron

models, performing computational modelling of biological networks. With the
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massively-connected simple neuron models, the neural network exhibits complex

global behaviours.

In mathematical terms, the neural network’s logic structure is represented

by the composition of a set of functions. A function f(v) which represents the

output of a neuron model is composed of other functions v(x), which can further

be composed of other weighted inputs (x0 to xm). The weights can be adjusted

so that they adapt the network’s logic structure dynamically to a certain learning

algorithm during the training phase. The design of the artificial neural network

has to be determined by these algorithms.

A signal-flow graph [Mas56], which principally focuses on the depiction of the

relationships (represented by a set of arrows) between neurons (represented by a

set of nodes), can also represent an artificial neural network.

Input Layer Middle Layer 1 Middle Layer 2 Output Layer

N2

N3

Nm

N1 N1

N3

N2

Nx

N1

N2
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N1

N2

N3

Ny Nz

Figure 2.3: Layer structured neural network

The neurons are normally arranged in a layered structure, in which layers

are defined as the input layer, the hidden layer(s), and the output layer. The

input layer supplies the source of the input signals which are applied to the

computation nodes in the hidden layer. The outputs of the hidden layer(s) are

finally computed by the output layer to issue the output of the network. There are

three categories of neural network architecture: single-layer feedforward networks,
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multilayer feedforward networks, and recurrent networks [Hay98]. Figure 2.3

shows an example of a typical multilayer neural network described in the form

of a signal-flow graph. Regardless of their topologies, neural networks have some

characteristics in common:

• Relatively simple processing elements (artificial neurons)

• High density of interconnect

• Simple scalar messages

• Adaptive interaction between elements

• Asynchronously generated events

Both the mathematical model and the signal-flow graph represent a network

of calculations and interconnects that can be mapped onto a VLSI system, by

which neurocomputing can be achieved. In the realization of the VLSI system,

the above characteristics should be considered. The requirements for simulating

an individual neuron can easily be fulfilled by today’s computational paradigm.

However, an artificial neural network is a massively-interconnected group of in-

dividual neurons which has a more complex logical structure and is therefore

more difficult to model on a VLSI structure. One of the key issues in modelling

neural networks is how to effectively satisfy the communication demands of the

highly connected network. To this end, parallel computing is a more promising

paradigm to solve this problem than conventional computing, especially for imple-

menting large-scale neural networks. This is because parallel computing explicitly

focuses on the massive communications between processing elements. Moreover,

the choice of neuron model is another key issue to reduce the computation and

communication complexity.

2.4 Spiking neural network

Spiking neural networks are often referred to as the third generation of neural

network, which yield higher biological realism and lower requirements of commu-

nication capability than traditional neural networks.

The computational model takes into account the times of synaptic interactions

between neurons, in addition to the modelling of synaptic weighting, postsynaptic
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summation and activation. Hence, spiking neural networks are not only suitable

for information processing, like conventional neural networks, they can also be

used for the exploration of biological inspired architecture [Moi06].

Communication is based on a dynamic event-driven scheme. Neurons do not

produce spikes at every propagation cycle; only a few neurons are active when

their membrane potentials reach a threshold. It is possible to convey these spikes

using small packets. In addition, the packets can be clustered when transmitting

because many spikes usually share a same destination. These reduce the commu-

nication costs and makes the simulation of spiking neural networks well suited to

VLSI implementations.

2.4.1 Generations of spiking neural models

The spiking neuron model was first proposed by Hodgkin and Huxley in 1952.

This is an accurate biological model which describes the detailed process of gen-

erating and propagating action potentials. Similar types of model include the

integrate-and-fire, FitzHugh-Nagumo and Hindmarsh-Rose models, etc.

Accurate neuron models are computationally very complex. They are not

practical for large-scale real-time simulations because of constrained hardware

resources. In recent years, various spiking neuron models have been proposed

which are computationally simpler as they capture only the principal information

processing aspects of the neuron’s function and omit other complex biological

features.

2.4.2 Izhikevich model

The Izhikevich model is one of the simplified spiking neuron models, but providing

a certain accuracy for biological neuron modelling. It exhibits firing patterns of all

known types of cortical neuron by appropriate setting of the parameters [Izh04].

The model can be used to simulate spiking cortical neurons in real time [Izh03].

The Izhikevich model’s voltage potential is shown in Figure 2.41. It is com-

puted by integrating the following two differential equations:

dv

dt
= 0.04v2 + 5v + 140− u + W (2.2)

1Electronic versions of the figure and reproduction permissions are freely available at
www.izhikevich.com
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Figure 2.4: Izhikevich model’s voltage potential

du

dt
= a(bv − u) (2.3)

In the above equations, v represents the activation potential; u represents

the recovery variable; W is the sum of the weighted inputs, delivering synaptic

currents or injected DC currents; a and b are abstract parameters of the model.

When the voltage exceeds a threshold value (preset at 30), both v and u are

reset:

if v ≥ 30, then

 v ← c

u← u + d

where c and d are dimensionless parameters.

In the simulation of the model, neurons are updated every millisecond. At

that point when a pre-synaptic neuron issues an input spike, and the spike arrives

at the post-synaptic neuron, the synaptic weight of the connection between the

two neurons will be added to the input current W [JFW08].

2.5 Summary

Neurocomputing provides high computational power and a wide range of ap-

plication as well as an opportunity of better understanding the principles of the

brain. This chapter has illustrated how simple models have been developed which

(apparently) represent the actions of neurons and synapses. There is also some

indication of how interconnectivity can be represented, simply by ‘wiring’ outputs
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to input synapses. The next chapter will discuss a feasible way of emulating the

massive communication of neurons on silicon.



Chapter 3

Networks-on-Chip

The continuing shrinkage of feature size has increased the computing power avail-

able on a single chip to almost embarrassing levels. Indeed integration levels

appear to have surpassed those exploitable by single, conventional processors,

and multicore CPUs are becoming the norm. Although these introduce their

own problems – at least to conventional programming models – this abundance

of computing power has opened up numerous new opportunities, e.g. efficient

modelling of large-scale neural networks. The ‘cleverness’ of a brain is believed

to be a feature of its connectivity; it is therefore necessary to provide some form

of communications infrastructure so that neurons modelled on a processing net-

work can transmit impulses to each other. This chapter discusses the perspective

of applying the NoC approach to the construction of a digital large-scale neural

network simulator. A NoC platform has a router-based packet-switching commu-

nication network which is believed to be a more promising solution for complex

on-chip interconnect than conventional synchronous bus architectures.

3.1 Introduction

The number of transistors per chip has already hit the billion mark and will keep

growing, whilst many high-performance processor cores still utilise a small num-

ber of transistors for the sake of power-efficiency; for example, an ARM9TDMI

processor only has about 112K transistors [Mac97]. The simplicity of such pro-

cessor cores allows a single die to accommodate tens to hundreds or even thou-

sands of cores to gain higher computational power. This forms a multi-processor

System-on-Chip (MPSoC) which has been recognized as a promising candidate

39
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technology to drive the advance of the semiconductor industry.

An MPSoC typically comprises processing units such as processing cores, Digi-

tal Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAs), storage

units such as RAMs, ROMs and Content-Addressable Memories (CAMs) and in-

terconnect units such as buses, routers and switches. As the delay and the power

consumption of global interconnects is becoming more significant than that of

transistors as technology scales, on-chip interconnect has become the bottleneck

of MPSoC architectures. One challenge facing future research into MPSoCs is

posed by the demands for novel architectures which can better support the trend

towards high parallelism. In recent years, research into cost-effective on-chip in-

terconnect has been given increasing attention as it is regarded as the key issue

in achieving MPSoC parallelism.

Processor

Processor

RAM

DSP

FPGA

Router/Switch

Router/Switch

Router/Switch

Router/Switch

Router/Switch

Router/Switch

Router/Switch

Figure 3.1: An MPSoC based on NoC

Commercially-available on-chip interconnect solutions are mostly bus-based

architectures, e.g. ARM AMBA [Mac97]. Although a bus is efficient in broad-

casting, it does not have good scalability to maintain high bandwidth and high

clock frequency [LYJ06]. As the complexity of interconnect keeps growing, re-

search focus has shifted towards the development of micro-networks, collectively

called Networks-on-Chip (NoCs), which are potentially more suitable for parallel

systems and better fit the tight resource chip area and power budget.

The principle of micro-networks is borrowed from conventional computer net-

works [DBG+03], where the distributed processing and storage units are coupled
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by a set of routers and switches, joined together via link channels. Each router

or switch has a set of ports which connect it to its neighbours and to the local

processing and storage units. An example of a NoC-based MPSoC is shown in

Figure 3.1. The NoC approach brings potential benefits as well as challenges to

MPSoC designers. These will be explained in the following sections.

3.2 Benefits of adopting NoCs

For large-scale on-chip interconnect, the NoC approach offers at least three useful

advantages for MPSoCs:

• Scalability – In a multi-core system, a conflict happens when a shared re-

source is requested by multiple on-chip elements. A conventional bus han-

dles the conflict by delaying requests with lower priorities. Although latency

can be decreased in split transaction buses, it is still behind the rate at which

processor speeds are increasing. Therefore, it is hard for a bus architecture

to maintain adequate bandwidth for the shared resource when the medium

is a bottleneck. On the other hand, a NoC’s bandwidth scales by taking

advantage of a fairer utilization of network resource since multiple requests

are independently handled by multiple interconnects [DBG+03].

Wait

request 1

request 2

    

Figure 3.2: A bus handling conflicts

• Modularity – Component reuse brings benefits to the semiconductor indus-

try including faster time-to-market, lower development/maintenance cost

and higher reliability. In a NoC-based architecture, design reuse can be

applied to both the interconnect unit itself and its peripherals [VG01]. The
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reuse of the interconnect unit is realised by generalizing its design and syn-

thesis process and providing customizable switching/routing engines. Net-

work interfaces and transaction protocols have to be standarized to facilitate

the reuse of the peripherals, e.g. the processor cores and the memory blocks.

• Fault-tolerance – The construction of a large, complex system requires that

many reliability challenges be faced, especially when the chip fabrication

steps into deep sub-micron technologies. A ‘fault-tolerance’ characteristic

is therefore desirable, which enables a system to keep functioning when

encountering transient or permanent hardware failure. A NoC structure

offers the potential of reconfiguring the hardware resource allocation to

achieve system-level fault-tolerance, which it does by making use of the

redundancy in communication. Achieving and using the redundancy are

related to the network topology which will be discussed in the next section.

Applying the NoC approach to the construction of a bio-inpired MPSoC is

a case study to demonstrate the above-claimed benefits. Further investigations

and a concrete design with extensive test results are presented later in this dis-

sertation.

3.3 NoC topologies

A NoC topology describes the arrangement of interconnect among the nodes of

an NoC-based system. Basic network topologies used in NoC design include

2D-mesh, hypercube, tree, star, hierarchical, etc [SHG08]. Different topologies

have their respective advantages and disadvantages. The selection of a particular

network topology has a great impact on the implementation and performance

of a system. Appropriate design decisions on channels, switching methods and

network interfaces are made based on the chosen topology. Below are the features

of the five commonly used topologies.

• A 2D mesh topology is the most common mesh topology used in NoC.

It is shown in Figure 3.3, (a). It becomes a torus when additional wrap

around links are applied to the edge nodes (Figure 3.3, (b)). This makes

the network truly regular. Both the mesh and the torus topology are fully

connected networks, in which all nodes are connected to each other via
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one or multiple hops. The mesh/torus topology has a regular structure

that makes the network easily scalable. Each router in the network has

an identical function with a fixed number of links – there is no need to

change the router design as the size of the network scales up. Because of

the diversity in the choice of communication paths, a mesh/torus network

allows reconfiguration of these paths to avoid blockages, increasing system

reliability.

(a)
(b)

Figure 3.3: A 3 × 3 mesh (a) and a 3 × 3 torus (b)

• A hypercube network topology is shown in Figure 3.4. It maps the nodes

onto a hypercube’s vertices and their links to the edges. An N -dimensional

hypercube network has N links for each node so a node in a 3-dimensional

hypercube network has fewer links to its neighbours than does a node in a

mesh/torus. This is a useful feature in circumstances where link resources

are expensive. Another advantage of the hypercube network is that the

longest communication distance in an N -dimensional hypercube network is

also N , which is shorter than the longest path in a mesh network with the

same total number of nodes. A drawback of the hypercube topology lies in

the difficulties of constructing a layout on silicon. Hence this topology is

preferably used for the construction of chip-level networks.

• A tree topology is shown in Figure 3.5, (a), in which a central ‘root’ node

is connected to a set of lower level nodes, and the lower-level nodes can be

further connected to their own ‘leaf’ nodes, which are at the bottom of the
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Figure 3.4: Hypercube topology

‘tree’. Point-to-point interconnects are allocated on the branches between

the nodes [GG00]. The delay between two nodes is related to the depth

of the tree. A ‘fat’ tree is a special tree topology with redundant links on

its branches. In a fat tree, the closer a node is to the root, the more links

it owns so that it gets a higher bandwidth. An advantage of the fat tree

topology is that it provides flexibility to modify the bandwidth to satisfy

differing requirements in communication.

(b) Star
(a) Tree

Figure 3.5: A tree (a) and a star (b)

• A star topology is shown in Figure 3.5, (b). It is the simplest tree topology

since all nodes are connected to only one central ‘hub’ node. All data

transmissions between the nodes in the network are managed by the ‘hub’

node. Since there is no alternative route between nodes, the star topology

doesn’t have link redundancy to maintain reliability. The service of the
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‘hub’ node is shared by all nodes, which requires arbitration in choosing

which node to send next. However, the star topology minimizes the number

of switches. This is important to reduce chip design cost. Moreover, it is

optimal for one-to-many communication since message transmissions from

any source to all destinations do not share any links. The star topology is a

special case of the tree topology where there is only one level of ‘leaf’ nodes.

Therefore, the star topology does not require redundant links to maintain

bandwidth for different levels of the nodes.

• The hierarchical topology is a hybrid structure formed with several layers.

An upper layer is a physical layer organizing groups of nodes in a lower layer.

A hierarchical topology network with different topologies combines their

benefits so that a better cost-performance trade-off is achieved. It is usually

applied to the construction of large-scale networks. The combination of

topologies may be chosen in accordance with specific routing requirements.

This thesis addresses the application of an NoC infrastructure to large-scale

neural simulation. The selection of the NoC topology should be made to enhance

the performance of this specific application. The benefits and the drawbacks of

different NoC topologies are summarized above. More discussion about the choice

of the NoC topology for a neural simulation platform will be addressed in chapter

4.

3.4 Router architecture and switching schemes

The communication of the interconnection network can be viewed as layered op-

erations, including the switching layer and the routing layer. The switching layer

uses switching schemes to select paths for messages passing through the network.

The routing layer uses routing algorithms to make routing decisions which deter-

mine the output channels at intermediate routers [DYN03]. This section and the

next section introduce these two layers and their respective categories. Ahead

of this, a generic router architecture will be introduced as the implementation of

the architecture is largely determined by these two layers.
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Figure 3.6: A generic router architecture

3.4.1 Router architecture

A generic router model is shown in Figure 3.6. It normally comprises three ba-

sic components: buffers, switches, and an arbitration and routing unit [DYN03].

These components all have a large impact on the implementation and the perfor-

mance of the router.

• Buffers are first-in, first-out (FIFO) storage units associated with input

channels and output channels.

• The switch is the interconnect between the router input and output buffers.

• The arbitration and routing unit is the component that performs routing

algorithms and controls the switch.

The implementation of the switching layer is highly related to the management

of these resources. Different choices of switching scheme may result in different

router performance in terms of area, throughput and latency.

3.4.2 Switching schemes

The major switching techniques employed in a NoC router’s switching layer are

circuit switching and packet switching.
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• Circuit-switching: In this mode, a physical path is constructed for a mes-

sage before transfer. During transmission, routers and links are reserved

exclusively for the message until it reaches its destination; hence, the mes-

sage does not require to be arbitration and buffering at the intermediate

nodes. On the other hand, the reservation blocks other messages. The

hardware path is released after the complete message has been transmit-

ted. Because circuit switching minimizes propagation delay by eliminating

the intervening arbitration and buffering logic, it operates most efficiently

when messages are sparse and long.

• Packet-switching: In this mode, the message can be partitioned and sent

as fixed-length packets without prior path reservation. Because packet-

switching allows messages to share a link, the communication bandwidth

is utilized more efficiently than in circuit-switching. However, each packet

is individually arbitrated at each hop, and thus it needs to be buffered at

each intermediate node during the arbitration phase, introducing additional

delays. Therefore, the delay for packet-switching is unpredictable.

The majority of on-chip networks utilize packet-switching. They are typi-

cally categorized into three major kinds: store-and-forward switching, virtual

cut-through switching and wormhole switching. They differ in several respects.

• Store-and-forward switching: In this approach, an intermediate router must

store the complete packet in a buffer upon receiving it. The packet can only

be forwarded to the subsequent node if the output channel is available and

the receiving router has enough buffer space. Therefore, buffers require a

large capacity.

• Virtual cut-through switching: In this approach, a packet is forwarded with-

out waiting for the arrival of the entire packet. The path is determined based

on the reception of a portion of the packet, the packet header. If the buffer

at the next hop is available, the complete packet is forwarded by following

the header. Because only the header experiences routing delay, this tech-

nique reduces latency and requires smaller buffers than store-and-forward

routing. However, as virtual cut-through routing also allocates buffers at

packet-level, it occupies considerable buffer space especially if the packet

size is large [YLK08].
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• Wormhole switching: In this approach, large message packets are handled

at flit-level. This is a special form of cut-through routing where a packet is

transmitted flit by flit. Because buffers in a wormhole router do not require

enough space to store the entire packet, smaller buffer sizes can be used

than in a virtual cut-through router. The packet is pipelined through the

network. When a network blockage occurs, rather than buffer a complete

packet as does virtual cut-through routing, wormhole routing may occupy

several segments of buffers along the network channels.

Clearly, if a NoC uses small packets, store-and-forward switching and virtual

cut-through switching are efficient, while if packets are big, wormhole switching

should be employed to optimize buffer and link utilization. Discussion of the

choice of switching technique for neural spike transmission will be addressed in

chapter 4.

3.5 Routing algorithms

Routing is the process of selecting paths for network traffic. It is performed by

routers, switches, or other similar devices. A routing algorithm is the protocol

that a router follows to make decisions on the path between a message’s source and

its destination. Proper selection of routing algorithms according to the specific

applications could significantly increase communication efficiency.

3.5.1 Source routing and distributed routing

Routing algorithms are classified into two basic categories: source routing and

distributed routing [CN99]. The performance of a NoC-based system is highly

dependent on the careful selection of routing algorithms.

In source routing, a routing decision is made on the basis of the information

carried by a packet throughout the routing process. The information contains an

entire path pre-defined at the source node. Because of this, intermediate nodes do

not need to make routing decisions [BMJ+98], and the source routing algorithm

cannot be performed in the absence of knowing a complete network topology.

In distributed routing, routing decisions are made by each node throughout a

packet’s journey. The routing algorithm is distributed across local nodes, each of

which performs packet switching only to either a local processor or a neighbouring
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node. This is usually done through the management of a routing table which

specifies the outgoing route(s) according to the information forwarded from the

previous node [CSM94]. Because distributed routing does not require a node to

have complete routing information nor knowledge of the global network topology,

it allows the network topology be reconfigured through the modification of the

lookup tables. However, because the routing process is distributed across every

node, it is likely to introduce extra network latency for the routing decision and

extra storage for the routing table at each hop. These overheads have to be

considered for optimization in the design of an on-chip router.

3.5.2 Deterministic routing and adaptive routing

Routing algorithms are also classified as deterministic or adaptive. In determinis-

tic routing, the path between source and destination is predetermined and fixed.

Routing is adaptive if routing decisions are made depending on the dynamic

network status, thus allowing packets to select an escape path with freedom.

Deadlock is a situation that needs to be avoided in routing, it will be in-

troduced in the next section. A deterministic routing scheme can offer simple

guarantees of deadlock freedom and packet ordering, but may be bad at reduc-

ing network latency and increasing throughput because the network status is

dynamic. An adaptive routing scheme, on the other hand, can obtain a higher

throughput and a lower network latency, and tolerate component failures, al-

though they may have difficulty in maintaining packet ordering and may risk

causing deadlock if the algorithms are improperly designed [GGG+07][SK93].

As the traffic in neural simulations may be non-uniform and packet bursts may

happen occasionally, network congestion is likely to appear in a NoC implemen-

tation of neural networks. Because the ordering of the spike arrivals is not usually

of interest in neural network simulations, adaptive routing can be employed to

solve these problem. Some later chapters will show that a good adaptive routing

algorithm can significantly enhance the performance of NoC-based neural simu-

lations. They also show that a deadlock-free adaptive routing can be maintained

by selectively dropping deadlocked packets. This is because a certain data-loss

rate is usually tolerable in neurocomputing.
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3.6 Deadlock and livelock avoidance

Deadlock and livelock are two situations that postpone packet delivery forever in

the network.

Deadlock refers to the situation in which two or more packet transmissions

are infinitely postponed due to cycles in resource dependency. Deadlock can

be caused because each packet is awaiting the other’s releasing some network

resource (e.g. buffers or channels). An example of deadlock in a circuit switched

network is shown in Figure 3.7 where route X holds channels from node (0,1) to

node (1,0) and at the same time, route Y holds channels from node (1,0) to node

(0,1). Because neither route can release its occupied channels until the other does

so, none of the channels can proceed, leading to a deadlock.

X

Y

(0,1)

(0,0)

(1,1)

(1,0)

Figure 3.7: Deadlock

To avoid deadlock, circular dependencies of resource have to be eliminated

through the use of additional resources in the network. Commonly, deadlock

can be avoided in a deterministic routing algorithm which eliminates circular

wait by ordering network resources and packet requests in a strictly monotonic

sequence. An alternative to deterministic deadlock avoidance is through deadlock

detection and recovery. A general approach to this is to identify a ‘resource-wait’

situation through timeout counters, and then to remove deadlocked packets from

the network (regressive recovery), or to perform deadlock-free adaptive routing

(progressive recovery). The regressive recovery policy usually requires that the
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packets be recovered at the source and retransmitted.

Livelock is a situation where packets continue to move through network, but

never progress to the destination. Livelock can occur if non-minimal routing

is allowed, and it may cause too many mis-routes preventing the packet from

reaching its destination. A minimal routing algorithm always delivers a packet

through the shortest path where every channel the packet visits brings it closer to

the destination. A routing algorithm is non-minimal if the path is not guaranteed

to be minimal. Progressive deadlock recovery gives rise to non-minimal routing

and thus the risk of introducing livelock.

Livelock can be avoided by monitoring the states of packets, so called de-

terministic avoidance. The state can be a mis-route count that indicates how

many times a packet has been routed further from its destination (mis-routed),

or an age count that indicates for how many cycles a packet has travelled in the

network. If the state exceeds a threshold, the packet will be regarded as live-

locked and will be either discarded or re-issued. Livelock can also be avoided

by probabilistic avoidance that guarantees the probability of a packet’s routing

to its destination is always greater than 0. This is done by tracking the routing

history where the number of forward hops must be greater than the number of

backward hops. Probabilistic avoidance works in some real cases, but it is not

formally proved to prevent livelock.

3.7 Summary

This chapter discussed the benefits of NoCs, followed by their characteristics and

design methodologies for creating them. One of the key issues in designing an

NoC-based system, the communication scheme, was explicitly addressed. Sev-

eral sub-problems, including routing algorithms, network topologies, deadlock

and livelock, were considered. More details related to the implementation of a

NoC-based distributed system, SpiNNaker (a universal spiking neural network

simulator), will be presented in the next chapter. The system is a special and

practical application of multi-chip parallel computing. Based on the soundness of

applying neural simulations on to the system, the remainder of this dissertation

will further investigate the communication issues introduced in this chapter. As

a concrete example, the design of a sub-system of SpiNNaker, a communications

router, will be introduced.



Chapter 4

A NoC-based neurocomputing

platform

This chapter focuses on the system architecture and the communication schemes

for a multi-chip MPSoC system – SpiNNaker. The system is designed with the

primary application of emulating large neural systems using more ‘conventional’

computing elements. The system includes a large number of processors, each

independently modelling a number of neurons in real-time. There are particular

desired properties of communication and these have influenced the overall archi-

tecture. An asynchronous NoC is implemented on each chip and these extend

to external interfaces so that the network can be extended across the system.

A hardware router handles packet routing between processors and external in-

terfaces, including routing ‘through traffic’. As an MPSoC, the chip also needs

communication support for conventional system administration. This is done

by another asynchronous NoC. The router on each chip is programmable as a

peripheral device.

4.1 Introduction

The simulation of billions of neurons in real-time requires extremely high com-

munication efficiency. In biological neural networks, neurons interact with each

other via high density interconnections formed by synapses, dendrites, axons, etc.,

which communicate by carrying the neural spikes throughout the network. The

networks form very complex patterns of connectivity, and different patterns re-

sult in different network behaviours. A neural network processes incoming signals

52
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largely in accordance with its synaptic connectivity pattern [Get89]. Some neu-

ral computation models are highly related to the connection properties, e.g. ax-

onal delays [TDR01] and Spike-Timing Dependent Plasticity (STDP) [LKPD05],

which cannot be over simplified [FB09].

However, as was addressed in chapter 1, conventional communication schemes

on general-propose parallel computers and neurocomputers are inadequate to sup-

port the massive connectivity with efficiency. In VLSI systems, it is essential to

implement a connection structure, where many different patterns of connectiv-

ity can be accommodated. Therefore, a dedicated, programmable communica-

tion scheme is proposed for the SpiNNaker system. The proposed scheme has

to overcome three fundamental differences between biological systems and VLSI

hardware [Boa00]:

• The fan-ins and fan-outs of VLSI circuits are small – typically well below

ten, whereas those of neural network are in the thousands. For example, a

single presynaptic neuron in the vertebrate cortex is connected to up to 104

postsynaptic neurons [GK02].

• Most digital VLSI systems have central clocks to synchronize their signals.

However, there is no synchronizing clock in biological spiking neural net-

works. A presynaptic neuron imparts new information as a spike that occurs

asynchronously.

• Conventional buses in VLSI systems only support point-to-point or broad-

cast communication, whereas neural networks require one-to-many commu-

nication – a presynaptic neuron connects to many other neurons, but not

to every neuron in the system.

The complexity and density of interconnections in biological network make it

impractical to implement an equivalent level of physical interconnection in silicon

so instead virtual mapping of the connectivity using the homogeneous packet-

switching Communication NoC fabric is employed [FTB06]. Packet-switching on

the NoC is realised by a novel routing strategy using logical encoding of spikes

in an Address Event Representation (AER) packet format. This approach fully

decouples the hardware topology from the topology of the simulated network,

so the network is flexible enough to map different simulated network topologies

simply by re-programming the connectivity.
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4.2 Design issues

Chapters 1 to 3 presented literature reviews respectively on neural platforms,

neural models and NoC architectures. These form the basis of the design deci-

sions that were made during the development of the SpiNNaker system. More

specifically, the design decisions are listed below.

• Interconnect architecture selection: The literature review of neural plat-

forms in chapter 1 showed that conventional interconnect solutions are the

bottleneck to neural spike propagation. Therefore, a router-based NoC ar-

chitecture is chosen as the interconnect solution for SpiNNaker. This pro-

vides a much higher throughput for neural spike transmission and is flexible

for system scaling so that the system can support large-scale, real-time sim-

ulation.

• Neural model selection: The system has to exhibit flexibility to cope with

multiple neural models, the choice of model depending on its computa-

tional efficiency and simulation purposes. Chapter 2 discussed the three

generations of neural model where the third generation neural model, the

spiking neural model, is the more promising for large-scale, real-time sim-

ulation. Computationally-simple neural models are preferred because a

complex model, such as the Hodgkins-Huxley model, will not use the em-

bedded system’s resources efficiently. The models currently proposed for

support by the platform include the Izhikevich model [Izh03], which pro-

duces the rich spiking and bursting behaviour of cortical neurons, and the

PDP model [RM86], which is planned to be used to simulate the standard

features of normal reading. These different applications are expected to

have different interconnect patterns and produce neural messages which are

conveyed by small packets over the interconnect. The transmission of these

packets is handled by the router which is designed to be programmable so

that the interconnects can be configured.

• Network topology selection: Section 3.4 reviewed the basic topologies which

can be used in on-chip networks. The mesh topology is predominant in

state-of-the-art NoC designs because of its highly scalable and regular ar-

chitecture [YLK08]. However it is principally used for unicast services. It

provides a regular, reliable and easily scalable network. For neural spike
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transmission, multicast communication accounts for the majority of the

network traffic, and a mesh topology does not have sufficient connection

efficiency for this application. A star topology, on the other hand, is suit-

able for multicast communication where a packet is duplicated in the router

and sent to all destinations simultaneously. Hence, a hierarchical mesh-star

topology is efficient to support large-scale multicast services locally and is

good for scalability. The lower-layer star topology is suited to the situa-

tion where the construction cost for routers is high but that for channels

is low [MT99]. Therefore, the star topology is applied to the local on-chip

NoCs, where it is more important to minimize the on-chip switch count

to reduce the chip resource cost. In the mesh-star network, the multicast

service is localized to the lower-layer as much as possible, although the top-

layer mesh network should also support multicast routing. The top layer

mesh topology supports the construction of a chip array (Figure 4.2). Thus

the features of good reliability and scalability from the mesh topology are

maintained in the top-level network.

• Switching scheme selection: Based on the review of spiking neural networks

in chapter 2, a spike can be represented by the address of the neuron that

generated it, which is encoded as a small and independent packet when

transmitted by a router. The detailed representation of the spike will be

introduced in section 4.3.1. As a result of the characteristics of the packet

format, store-and-forward switching has been chosen as the switching tech-

nique for SpiNNaker. As discussed in section 3.4, there are three basic

packet switching schemes: store-and-forward, wormhole and virtual cut-

through switching. Although wormhole switching and virtual cut-through

switching decrease routing latency by handling flow-control at the flit-level,

they are not suitable for neural spike transmission because a routing deci-

sion has to be made on the basis of the entire neural packet. The store-

and-forward scheme is more suitable for SpiNNaker as it uses simpler logic

deriving faster routing decisions and higher throughput, as well as avoiding

flit-dependent deadlock. On the other hand, the buffer size is acceptable

since the neural packet is small.

Based on the above design decisions, the SpiNNaker interconnect system has

been determined. Its specifications will be introduced in the next section.
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4.3 Overview of SpiNNaker

The SpiNNaker project is under development at the University of Manchester.

The whole system is biologically inspired and is designed to model the operation

of parts of the brain. The initial system will have the capacity to model only

a small brain subsystem in real-time, but it is hoped that larger systems will

be developed later. A full-scale computing system, comprising around 100,000

integrated circuits, is expected to simulate over one billion neurons in real-time,

the architecture must therefore be scalable.

The system is intended to run neural models on conventional embedded pro-

cessors; neurons need considerable (and flexible) interconnection with the ability

to multicast events to numerous other neurons which may be modelled on the

same processor core, on another core on the same chip, distributed across the

machine, or any combination of these [FT07].

Time is modelled using real-time. Neuron firing frequencies are low compared

to electronic communication speeds, so the communication latency can be quite

long in machine terms. More importantly some variation in latency is acceptable

providing that it is small compared with the neural time constants (which are of

the order of milliseconds); this means that some elasticity in the interconnection

can be accommodated.

Finally, because the biological brain is robust to component failure, some

fault-tolerance features should be explorable for this bio-inspired system. This

dissertation focuses on the fault-tolerance provided by the communication scheme.

A logical view of the SpiNNaker architecture is shown in Figure 4.1. It is

an array of computation nodes arranged in a 2D triangular mesh (Figure 4.2),

wrapped into a torus, where each node is connected by six bidirectional links to its

neighbouring nodes. This toroidal triangular mesh offers more redundancy than a

rectangular mesh, it enhances the system’s fault-tolerance because it allows sim-

ple rerouting of a blocked packet through two adjacent links to its destination.

The number of nodes ranges from several to tens of thousands, depending on the

requirement of the simulations. Each computation node comprises a SpiNNaker

MPSoC (Figure 4.5) with 20 ARM968 processor cores performing distributed neu-

ral modelling, and a large (off-chip) memory holding synaptic information. To

support the high level of neural connectivity, the interconnect fabric is based on a

highly-efficient packet-switching routing NoC, using the CHAIN delay-insensitive

protocol [BF02] for data transfer. The neural application is highly parallel and
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SpiNNaker chip

Ethernet links

Asynchronous links

Host system

Figure 4.1: System network topology

demands extensive traffic load over the network. To realise neural event trans-

mission, the packet-switching is based on multicast source address routing, which

is explained later in this chapter. The system functions can be divided into two

independent data flows carried by two separate asynchronous NoCs: One is the

inter-neuron communication data delivered through a bespoke ‘Communication

NoC’. The other is the local ‘housekeeping’ information delivered through a be-

spoke ‘System NoC’. A conventional workstation is connected to one or several

nodes of the system via Ethernet links to act as a control interface.

4.3.1 Multicasting

Communication in SpiNNaker is predominantly through the propagation of the

spike from a pre-synaptic neuron to a post-synaptic neuron [FT07]. Each neuron

that emits a spike causes its host processor to generate a message which con-

tains the spike information. The message propagates through the interconnects
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Figure 4.2: A small array of nodes

established by the routers, and ultimately reaches one or several destinations, the

post-synaptic neurons.

As the central communication unit of SpiNNaker, the router handles neural

spikes as well as control, diagnostic and administration traffic. The neural spikes,

encoded as multicast packets, can be transmitted by the router to neighbouring

chips or local on-chip processors. A block diagram of the router is shown in

Figure 4.3.

There are three categories of routing scheme, in terms of the message trans-

mission modes. They are unicasting, broadcasting, and multicasting.

Unicasting is the most common routing scheme where a message is sent to

a single destination, it is also called point-to-point transmission. The majority

of current on-chip routers are designed to support one-to-one communication in

a tile-based mesh network. These designs achieve good performance in certain

applications [KKS+07][HM04]; however, a neural spike usually targets more than

one destination neuron.

Broadcasting is the sending of a message to all connected receivers. The

broadcast can cover all necessary destinations, but it is rare for a neuron to send

a spike to all other neurons in the network.

Neural networks have a high interconnectivity whereas electronic systems typ-

ically have point to point routing. One possibility for supporting data to many

destinations is system-wide broadcasting, however this invokes sending outputs

to every destination where, in most cases, it is discarded. This produces a lot

of network traffic which will, increasingly, clog the system as it increases in size.

Another solution is to send data for multiple times with different targets, this is



CHAPTER 4. A NOC-BASED NEUROCOMPUTING PLATFORM 59

Processor

Processor

Processor

Processor

Fascicle

Fascicle

Fascicle

Monitor

Off−chip links

On−chip links          

Router

Figure 4.3: A router for on-/inter-chip packet switching

obviously inefficient and bandwidth consuming.

Multicasting, where data is targeted and duplicated simultaneously as re-

quired during transmission, offers a solution. In the SpiNNaker system a single

packet can be sent in the required direction and, as its target processors are ap-

proached, be duplicated by the router(s). This requires fewer packets than multi-

ple unicast transmissions and therefore minimises network traffic whilst providing

all the required functionality. It is preferred in the implementation of large-scale

neural networks especially when a real-time behaviour is required.

The demands on a multicast system will depend on the placement of tar-

get neurons; clustering these in the simulator will reduce net traffic. However

the system can, in principle, support arbitrary placement. A demonstration of

multicasting in the SpiNNaker is shown in Figure 4.4.
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Figure 4.4: Multicasting

4.3.2 Processing node

The block diagram of the processing node is illustrated in Figure 4.5. The node

comprises five main components:

• Each chip includes 20 ARM968 processing cores, which are mainly used

to generate and process neuron spikes. Apart from the neural modelling

application, it is intended that one core on each chip will be designated as

‘Monitor Processor’ to handle all the ‘housekeeping’ functions. This pro-

cessor performs several functions related to system initializing, run-time

flood-fill and debug functions. The other ‘fascicle processors’ will run neu-

ral simulations, applying the same code to independent data sets. The

implementation of the Izhikevich model has been modified and optimized

so that it can run on the system in real-time without floating-point hard-

ware. Simulation shows that each ‘fascicle’ processor can model up to 1,000

neurons [JFW08]. Because the hardware doesn’t implement any particu-

lar characteristic of neuron models, it has flexibility to accommodate new

spiking neuron models.

• Each chip also contains a hardware router which connects the chip to its

neighbours and all of the processing cores on the chip, handling neural

events and system programming and diagnostic information.

• The Communication NoC is an interconnect network for inter-processor
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Figure 4.5: SpiNNaker processing node

communication and it is this which links the system together. It is imple-

mented as an asynchronous network fabric that provides both intra- and

inter-chip communication channels. It forms a GALS infrastructure for in-

terconnection of the processor cores and the routers. Delay-insensitive pro-

tocols are used for data transfer, including a CHAIN protocol [BF02] for the

on-chip interconnect fabric and a 2-of-7 protocol for a more power-efficient

inter-chip fabric [WF06]. The asynchronous network can link elements run-

ning at arbitrary speeds. This makes it easy to scale a system from small

arrays of nodes to many thousands of nodes.

• The System NoC has a primary function of allowing the processor cores

to share the resources of the off-chip SDRAM [RYKF08]. It is also used

to connect the Monitor Processor to various local system components for

programming, diagnostic or other purposes.
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• The synaptic weights that couple the spike to its postsynaptic neurons are

stored in an off-chip SDRAM with 1Gb storage, and are processed by the

receiving processor. The weights can be updated to perform a learning

algorithm. Unlike some previous neural chips that implement neural com-

munication delays in hardware, the SpiNNaker chip models these delays

in local processing nodes in software to achieve flexibility. These neuron

propagation delays are stored in the SDRAM.

The router, the Communication NoC and the System NoC are the three main

components of the communication infrastructure in the SpiNNaker.

4.3.3 Fault-tolerance

The cost of verification of SoCs is increasing rapidly, and the probability of deep

submicron (DSM) failures is getting higher due to cross-talk noise, electromag-

netic interference, etc [DM03]. Conventional computing systems require absolute

reliability of on-chip interconnects and processing elements. Biological neural net-

works, on the other hand, exhibit considerable robustness in the presence of small

lesions: neurons die continuously yet brains (largely) continue to function. This

system level fault-tolerance can potentially overcome hardware failure in DSM

systems and consequently reduce the design costs. To achieve fault-tolerance, an

NoC must have enough redundancy to be able to support run-time reconfiguration

when part of the network is congested because of either a transient or permanent

failure. In certain applications, such as neural network simulations and multime-

dia processing, it is considered inessential that every event is communicated to all

its targets. A best-effort approach may involve discarding a proportion of signals

to allow the majority to arrive relatively unimpeded. There is also a possibility

– a near certainty as the system scale expands – that some processing elements

may fail either temporarily due to overloading or permanently due to hardware

faults. It is intended that the system should try to tolerate faults at this level

too.

4.4 Event-driven communication

Message transmissions of neural simulation on a VLSI system can be realized

using event-driven communication [RCO+06]. Spiking neurons interact with each
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other by emitting spikes asynchronously. It is the arrival of a spike that carries

the information not the magnitude or the shape. These spikes can be treated as

a sequence of events driving information processing in a neural network.

4.4.1 Address event representation

In a spiking neural network, a neuron firing is a purely asynchronous event which

carries no information other than that it has occurred. The occurrence, timing

and frequency of firing appears to convey the desired information. This makes the

communication scheme an event-driven one, where the communication packets

can be short, typically carrying nothing but the identity of their source. Prac-

tically, this means that some ‘address’ information may be needed and the data

payload is minimal.

Address event representation (AER) is a protocol, specifically supporting

event-driven communications [Sil02][Siv91][Mah92]. It is used in spiking neu-

ral modelling where a set of processing elements compute events simultaneously

and receive/send events asynchronously. Each element in the system has a unique

address that represents events issued by that element. If the event consists of a

target element address, it is called a target address event. If the event consists

of a source element address, it is called a source address event.

Each neuron in a spiking neural network is identified as a processing element

with its own address, hence, the information carried by an event packet can be

encoded as the neuron’s address and its time of issue. As, in electronic terms,

neural events are widely separated in time they can be conveyed ‘instantaneously’

and time then models itself, removing the need for time-stamping packets. Spike

transmission is based on the routing of the packets according to their addresses.

The packet size can be very small, but represents a very large group of neu-

rons. Consider a neural network with N neurons in total, each neuron requires

log2 N bits for address encoding. A 32-bit wide address, for example, is able to

represent up to about 4 billion (232) neurons. Because of the smaller packet size,

communication efficiency is significantly improved.

In a parallel neural simulator with multiple processing nodes, a neural event

packet’s address space can be defined by the combination of a node address and a

relative address of a subset of neurons bundled in the node (fascicle) [Sil02]. The

node address is the common address of the subset of neurons. Each neuron in a

node has a relative address which is only visible locally. The complete address
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of a neuron is defined as a combination of the common address and the relative

address so that the address is globally distinguishable. The packet defined in this

way is shown in Figure 4.6. One benefit of address expansion is that it can reduce

the communication cost. This is realized by sending a group of events in a single

packet that contains their common address. Implementation of the event-driven

communication scheme will be discussed in the following chapters.

Node ID Relative AddressProcessing Core ID

Common Address

Figure 4.6: AER packet with a relative address

4.4.2 AER communication based on a router

AER has been used for spike transmission between neurons in some previous

neural platforms, but used principally in bus-based communication which sends

an address event to a single receiver or broadcasts it. In this dissertation, a

novel packet-switched multicast routing mechanism is considered for AER mes-

sage transmission, where neural events are issued in a packet format that contains

the address of the source element. This communication scheme can reduce total

communication loading by taking advantage of the feature of spiking neural net-

works – a neural event is normally targeted at one or several neurons, but not at

every neuron in the neural network.
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The communication scheme that operates by referring to a local alias table

is handled by a router that selects the output directions for the incoming neural

event message by looking up the address table [Sil02]. The table is usually stored

in the router’s local memory.

Packet  Look−up
table

Packet

AER
Outputalias

Local

table

Figure 4.7: AER-based router

Routing may be managed by the distributed algorithm by looking up all pos-

sible destination(s) associated with a spike’s address. Because a neural network

has a very high connectivity – a spike is typically sent to 1,000 or more other

neurons, and the latency of routing decision is crucial to distributed routing –

spikes should preferably be routed in parallel to maintain a reasonable network

latency. The area cost of the routing tables also has to be taken into account in

the on-chip router design. To address these problems, specific implementations

will be introduced in the following chapters.

4.5 Communication NoC

The Communication NoC operates in a GALS fashion, with the synchronous

router and local processing cores interconnected through the asynchronous net-

work. The asynchronous on-/off-chip links make the communication network

delay insensitive. A block diagram of the Communication NoC is shown in Fig-

ure 4.8 where the network interconnects are divided into input links and output

links, in accordance with their relationship to the router.

On-chip processor cores contain communications controllers (CCs), through

which they access the NoC. The CCs serve to serialise (P→S) and deserialise

(S→P) packets.

Packets are passed around the NoC asynchronously and serially as 4-bit ‘flits’,



CHAPTER 4. A NOC-BASED NEUROCOMPUTING PLATFORM 66

2Gb/s 4Gb/s1Gb/s

(Input)

8Gb/s

Comms NoC Comms NoC
(Output)

Decode
Packet

Engine Select
Routing Output

  

BUF

BUF

BUF

BUF

BUF

P−>S

P−>S

Links

Router clock

Output

Links

Processor clock

Processors Processors    

Packet Router

P−>S

P−>S

P−>S

Input

BUF P−>S

P
−

>
S

P
−

>
S

S−>P

Rx i/f

Rx i/f

Rx i/f

Rx i/f

Rx i/f

Rx i/f

CC

CC

CC

CC

Tx i/f

Tx i/f

Tx i/f

Tx i/f

Tx i/f

Tx i/f

S−>PP−>S

P−>S S−>P

Figure 4.8: Communication NoC

but these are funnelled through an arbitration tree and are assembled into parallel

words when passing through the router to improve throughput and make handling

easier.

The router determines each packet’s destination(s) and sends it via the output

links of the Communications NoC to the link transmitters (Txs) and/or the on-

chip processors. The router can replicate packets when necessary to implement

the multicast function associated with sending the same neural-event packet to

several destination neurons.

4.6 System NoC

The System NoC is another GALS NoC, which connects the ARM processing

cores, the router, the SDRAM controller, and the rest of the system components.

It provides a bandwidth of above 1 Gbytes/s. The asynchronous network is imple-

mented by CHAINWORKS integrated with AMBA bus interfaces [Mac97]. This

tool generates Verilog netlists that can be integrated with the rest of the system

and processed with CAD tools. The AMBA standard provides seamless interfaces

with the ARM IPs. The block diagram in Figure 4.9 shows how the network orga-

nizes the system components. In order to access the system resources, the ARM

processing cores can operate as the system masters, which initiate transactions
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to several slave devices, including the router and the off-chip SDRAM.
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Figure 4.9: System NoC

Although the router is mainly used for packet switching in the Communica-

tions NoC, it is also connected to the System NoC as both system master and

slave. For normal neural simulation operations, the router acts as a slave device of

the System NoC allowing the processing cores to configure its settings, e.g. rout-

ing tables. Moreover, being a multi-chip network, the SpiNNaker system has a

mechanism allowing one chip to send messages probing its neighbours; this mech-

anism is used for some special tasks, such as system verification, debugging and

fault recovery. When these tasks are being carried out, the router operates as the

system master, through which a neighbouring chip can access the system. The

processor in the neighbouring chip sends specially formatted messages through

the Communications NoC, and the router interprets those messages as requests to

start transactions on its System NoC. The router automatically returns network

responses to the requesting processor, also through the Communications NoC.

4.7 Traffic load estimation

In a neural network, the firing rate of a neuron indicates its level of excitation,

and it varies from a few Hz to a peak rate that depends on the neuron’s type and

function. Neurons from different regions of the brain have different peak firing
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rates, for example, the typical peak firing rates of cortical neurons is around

100 Hz. Some other types of neuron can fire at rates up to 1000 Hz; this is the

maximum firing rate of any biological neuron. The traffic in a neural network

is therefore non-uniform, and high-frequency bursts of spikes may happen from

time-to-time. The router needs to ensure that the system is capable of running

simulations in real-time, it is thus designed to maintain the bandwidth required to

handle high-frequency packet bursts. The design trade-off between performance

and power also has to be considered because a high bandwidth is usually achieved

by means of a wide bus and/or a high clock frequency, which can imply high

power consumption. Therefore, the maximum traffic load of the router must be

estimated.

As the operating speed of the neurons is low, a CC gives a low throughput

– e.g. for an average of a 1000 Hz spike rate on each neuron and each fascicle

processor can model up to 1000 neurons, the total throughput from the processor’s

links is:

1000 neurons/processor × 1000 packet/(neurons · s) = 1M spikes/s (4.1)

As mentioned before, a 32-bit neuron identifier is capable of simulating up to

∼4 billion (232) neurons. Hence, the packet has a size of 40 bits (32-bit neuron

address and 8-bit header) and its detailed definition will be introduced in the

next chapter. The throughput of the processor’s link then equals to 40Mbps

(1M spikes × 40 bits/spike).

For a SpiNNaker chip with 20 fascicle processors, 19 are used for neuron

modelling. The on-chip traffic load gives:

19× 1M spikes/s = 19M spikes/s (4.2)

The on-chip link is implemented by CHAINWORKS, a commercial tool that

generates the self-timed on-chip interconnect [BF02]. A single CHAIN link pro-

vides a bandwidth of about 2 Gbps. Thus the processor links merge through a

single-link arbiter tree.

This represents the maximum data rate generated by the chip. In addition

each of the 6 inter-chip links can carry up to around 1 Gb/s bandwidth [WF06],

so the overall peak traffic load on chip is:
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19M + 1Gb/s/40 bits× 6 = ∼ 170M spikes/s (4.3)

The router is designed to be able to handle high-frequency packet bursts which

may happen from time-to-time. It has a 72-bit data bus (40 bits used for the

packet body) and a target clock frequency of 200 MHz, which gives it a maximum

bandwidth of 14.4 Gbit/s. This bandwidth is large enough to handle the extreme

situation that every neuron on the chip is firing at its peak rate and each input

link is saturated.

As the neural event packets are logically independent, the throughput of the

router can readily be boosted by pipelining. The maximum throughput of the

router is thus 200M spikes/s, sufficient for the traffic load of 170M spikes/s, which

represents the peak load on the router.

The spike rate of a biological neuron varies from a few Hz to a peak rate below

1 KHz. The variability of the spike rate leads to a non-uniform traffic pattern

in the network as shown in Figure 4.10. For the great majority of the time the

load is expected to be much lower – well below 10% of the peak load. This peak

capacity is necessary to minimize the probability that transient congestion will

cause delays sufficient to perturb the real-time assumptions. It is important that

the router is designed to have a power consumption that reflects its mean load,

and not its peak load. This requirement is met by minimizing the switching ac-

tivity in each router pipeline stage whenever that stage is not actively routing a

packet. The method of minimizing the power will be introduced in later chapters.

Router
Input channel 2

Input channel 1

Input channel N

Output channel 2

Output channel N

Output channel 1

Figure 4.10: Non-uniform traffic neural traffic
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4.8 Summary

This chapter focused on the communication issues of a neural application-specific

system – SpiNNaker. Firstly, the system architecture was introduced. A router

that supports multicast routing was then proposed to offer an effective solution

of minimising traffic in neural networks. An AER protocol is employed for neural

event routing, thus provides a large address space capable of handling billions

of neurons. Unlike conventional implementations of the AER protocol, which

uses a bus, SpiNNaker uses packet-switched routing to enhance communication

efficiency. The system contains two GALS style networks, the Communication

NoC and the System NoC. The two NoCs are both connected to the router which

conveys neural event packets as well as system information. The router’s traffic

load was estimated to ensure that the router is able to fulfill the communication

requirement. The next chapter focuses on the design of the SpiNNaker router.



Chapter 5

A router in a neural platform

The previous chapter introduced the SpiNNaker neural platform’s system archi-

tecture and its communication infrastructure. This chapter focuses principally

on the SpiNNaker router, which is a key component of this application-specific

multi-core system. In order to support the many features of the platform, the

router performs multiple routing algorithms concurrently. The router is designed

specifically to fulfill the requirement of real-time neural communications and,

unlike most on-chip one-to-one interconnect, it supports multicast routing of

neural event packets. As well as running its neural applications the system is,

in one sense, a ‘conventional’ computer and will need some ‘housekeeping’ fea-

tures. These include the ability to load and alter the neural models, which means

programming the processor cores and the interconnect. There is also a require-

ment for debugging which may be used both to commission the system and as a

run-time feature to enhance fault tolerance. These last features have also been

designed into the router although, perhaps fortunately, they are absent in the

brain!

5.1 Introduction

Modern VLSI systems are able to operate at approximately 10 GHz maximum,

while biological neurons’ maximum firing rate is ∼1000 Hz. The parallel mod-

elling of many neurons in real-time can be achieved by taking advantage of the

computational power of a single processor where the number of neurons in the

simulation will be largely determined by the clock rate of the processor. For ex-

ample, if a neural network is modelled on a processor which operates at 10 GHz

71
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and finishes processing a neural spike in one clock cycle, its maximum processing

ability is 10 M (10 GHz / 1000 Hz) neurons. A more realistic number is 1M neu-

rons per processor, which is achieved in MASPINN [SMJK98]. Unfortunately,

1 M (or 10 M) is still a small number compared to those in biological neural

systems. To overcome the neuron population boundary, computation has to be

distributed to multiple processors.

Many different platforms for parallel neural simulation were reviewed in chap-

ter 1. Some of those are capable of simulating more than 10 M neurons but

much slower than real-time [SMJK98]. It was recognized that the communica-

tion overhead was the bottleneck to the speed, and there are two conventional

solutions for inter-processor spike propagation. General-purpose cluster comput-

ers use computer networks with stand-alone routers, which are not designed for

optimal neural message transmission. Neuroaccelerators use dedicated architec-

tures which commonly comprise a neuron computation unit, a connection unit

and spike event list. Prototype can be found in SPIKE128K, NESPINN and

MASPINN. The neuron computation unit first generates neural spikes, whose

addresses are stored in the spike list; communication between neurons is then

established by the connection unit, which supplies target neuron address accord-

ing to the source neuron address obtained from the spike event list. Operations

of these three elements all require memory access, whose bandwidth maybe the

bottleneck of the system; such a system is non-scalable.

In this thesis, a novel NoC concept is proposed to accelerate communication.

Its communication ability can fulfill the requirement of massive spike transmission

rate in parallel neural simulations. As the central element of the NoC, the router

should be carefully designed to ensure the real-time performance of the system.

5.2 Routing requirements

The router is designed to operate in a GALS environment – it connects to two

asynchronous NoCs, whilst the router itself is implemented in a synchronous style

to take advantage of standard VLSI design flows, and to ease the integration of

third-party clocked blocks, such as memories. The router has a target clock fre-

quency of 200 MHz. Thanks to the GALS implementation of the chip, the clock

frequency is decoupled from other system clocks by the asynchronous intercon-

nect, therefore the router’s clock can be adjusted to be lower or higher than
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200 MHz according to the needs of a particular application.

The router handles three packet types, supporting different system functions.

These are multicast packets, for neural spike transmissions, point-to-point pack-

ets, for system management and nearest-neighbour packets, for debugging and

diagnosis.

5.2.1 Multicast packets

As mentioned earlier, the fan-out of neural signals is significant and therefore

sending individual messages to every target would multiply network traffic unac-

ceptably. On the other hand, broadcast messages would result in traffic propa-

gating through the whole system when this unnecessary. Multicast offers a com-

promise, routing packets only as necessary and duplicating them in the network

only as needed to reach every destination.

Multicast packets are used to carry neural event messages signalling that

a neuron has generated a spike, the packet contains only the identifier of the

spike’s source – the spiking neuron’s address. For a neural network application

the identifier can be simply a number that uniquely identifies the source of the

packet: the neuron that generated the packet by firing. In this case the packet

need contain only this identifier, as a neural spike is an ‘event’ where the only

information is that the neuron has fired. A neuron’s address is typically formed

by the firing neuron’s identifier, the fascicle processor identifier and the chip

identifier. Accordingly, multicast routing is based on ‘source-address’ routing in

which the packet is steered according to its own ‘wiring’ table in each router. The

neural pulse frequency is represented by the frequency of issuing the packets.

Multicast routing is done with distributed routing so tables in each router

forward each packet to one or more destinations as identified by its source ID.

Because an incoming packet may or may not be in the routing table, the routing

must attempt to recognise it. This requires a CAM structure which simulta-

neously compares the packet’s content with the values of all of the keys in the

memory to get a hit/miss output. If a match is found, the associative memory

generates a set of hit information. The output is then encoded into a binary ad-

dress for a conventional look-up SRAM that holds the per-entry output routing

word, determining the packet’s destination(s). The SRAM functions simply as

a look-up table where for each address it looks up a routing word, where each

routing word contains 1 bit for each destination (each link transmitter interface
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and each local processor) to indicate whether or not the message should be passed

to that destination.

The CAM can be very expensive in terms of area and power consumption.

A CAM with a 32-bit word-width and 1024 entries comprises 64K latches and

occupies approximately 1.6 mm2 of chip area on a 130nm CMOS process – this

is about 60% of the total area of the router, but can handle only 1024 neuron

identifiers. A large-scale multi-chip neural platform, however, needs to handle

millions (or more) of neurons, which makes it impossible to implement one entry

per neuron in a practical chip. To reduce the memory size, two optimizations

are employed that reduce the number of entries required in the design. They are

default routing and hierarchical routing.

Default routing

To avoid all routers needing to contain tables encompassing every possible

neuron in the system – which is infeasible – entries are only made when packet

steering is required. If a router does not recognise an incoming packet it simply

passes it on the ‘opposite’ output link; this process is referred as ‘default’ rout-

ing. The default route is predefined, and only changes of direction need to be

programmed. Thus an intermediate node does not need an entry to indicate the

direction.

Figure 5.1 illustrates how the default routing algorithm works. In the example,

a neural event packet is generated in an ‘Origin’ node (labelled O), and will

be routed to the ‘Target’ node (labelled T) traversing a predefined route. The

predefined route will always be taken from one of the shortest routes available,

which will comprise, at most, two straight segments that meet at the ‘Inflection’ or

turning node (labelled I). The segments may contain intermediate nodes (labelled

D), in which a neural event packet or a group of those packets can take the default

route to save router table entries. The implementation of this default routing

mechanism is very simple because, if the ports are numbered 0 to 5 clockwise

around the chip, the logic to get this result is just to add 3 (modulo 6) to the

incoming port number. The benefit of default routing is especially significant in a

large-scale system because long-distance communications are more common and

the more intermediate nodes a packet passes through, the more entries it saves.
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O

D

D TI

Figure 5.1: Default routing

Hierarchical routing

Another optimization to further reduce the routing table exploits the obser-

vation that each fascicle processor can be used to model groups of neurons (‘fas-

cicles’) that have associated inputs and outputs, so that neurons in each group

share the same destinations and can be hierarchically routed by a single routing

entry [DT03].

In a neural network, neighbouring biological neurons usually have associated

inputs and outputs. This feature can be used to cluster neurons on a processor so

that the router only needs to know the group’s destination, or to cluster processors

on the same chip so that only that chip’s router needs to know the routing

information. Packets are then routed in groups.

After neurons have been grouped, each group makes some of its identifier bits,

which have no relevance in determining a packet’s destination, ‘don’t care’ as far

as the look-up process is concerned. Hierarchical routing is accomplished by se-

lectively ignoring these ‘don’t care’ bits. Figure 5.2 shows the CAM’s comparison

mechanism which marks the bits as ‘don’t care’ when the identifier is under a

mask.

Thus a particular entry [i ] will match only if:

• wherever a bit in the mask[i ] word is ‘1’, the corresponding bit in the
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multicast (MC) packet routing word is the same as the corresponding bit

in the key[i ] word, AND

• wherever a bit in the mask[i ] word is ‘0’, the corresponding bit in the key[i ]

word is also ‘0’.

routing key

key data mask data
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line hit
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Figure 5.2: Masked associative memory logic

Hierarchical routing largely reduces the number of routing entries. For exam-

ple in Figure 5.3, for a chip with a fascicle size of 256 neurons, the number of

entries can be reduced from 20K (Equation 5.1) to 80 (Equation 5.2) by masking

8 bits of the neuron identifier, resulting in a big saving of chip area.

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 01

1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 x x x x x x xx

1 1 1 1 1 1 0000000011 1 1 1 1 1 1 1 1

AND

Chip ID

Routing key

Mask

Masked key

Processor ID

Lookup table

Neuron ID

Figure 5.3: Multicast routing with mask
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Each packet routed independently:

1024× 20 = 20K entries/chip (5.1)

256 packets routed in groups:

(1024/256)× 20 = 80 entries/chip (5.2)

5.2.2 Point-to-point packets

Besides the neural simulation function, SpiNNaker also needs communication

support for conventional system management. As an experimental platform, the

system may need to transfer some monitoring information back to the Host. These

are carried between the Host and the ‘Monitor’ Processor cores by point-to-point

(P2P) packets.

Steering point-to-point packets is unicast routing. This could be determined

algorithmically as the current and final positions are known; however, because the

P2P packets are transferred at chip level, a P2P routing table is small enough to be

accommodated on a chip. Therefore the point-to-point router is a straightforward

look-up, implemented using an SRAM. The packet has a 16-bit destination ID

which is used as the look-up address of the SRAM.

5.2.3 Nearest-neighbour packets

Nearest-neighbour (NN) packets communicate amongst only the nearest neigh-

bour chips. They are used for run-time ‘flood-fill’ system loading and also for

neighbouring nodes to access the local System NoC resources for debugging and

fault recovery. Nearest-neighbour packets are routed algorithmically. When a

nearest-neighbour packet is determined to have reached its destination it is routed

to the core currently designated as ‘Monitor’ Processor. There are two different

forms of these packets.

The ‘normal’ form of NN packets are used for ‘flood-fill’ – a procedure of

loading data from the Host PC into each node of the network prior to the system

starting-up. Data may include the neural modelling run-time program, neural

network connectivity information, and synaptic weights. The data, initially issued

by the Host System, is first sent to one or several chips which have a direct physical

connection to the Host System. These chips then broadcast the data to all their
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neighbours in the ‘normal’ packet format. Receiving chips store the information

and transfer the data onward using the same routing algorithm.

A subset of NN packets are marked as ‘direct’. Building a large-scale, com-

plex computing platform is likely to introduce various kinds of fault, temporary

or permanent and the fault rate will rise as the network scales up. A faulty node

may be diagnosed or recovered by its neighbouring node through ‘direct’ nearest-

neighbour packets. ‘Direct’ NN packets are transferred through the Communica-

tion NoC to the router, which is responsible for transferring packets to the local

system, again through the System NoC. These support debug functions whereby

the chip’s shared data space (i.e. the System NoC) can be accessed remotely: an

NN ‘poke’ write packet has a 32-bit payload and a 32-bit bus address. It is used

to write the payload to the System NoC according to the address. An NN ‘peek’

read packet has a 32-bit address without a payload. It is used to read from the

System NoC and returns the result (as a ‘normal’ NN packet) to the neighbour

that issued the original packet using the Rx link ID to identify that source. This

‘direct’ access to a neighbouring chip’s principal resources can be used to inves-

tigate a non-functional chip, to re-assign the ‘Monitor’ Processor from outside,

and generally to get good visibility into the chip for test and debug purposes.

5.3 Packet formats

The Communication NoC carries short packets, each comprising an 8-bit control

header followed by a 32-bit content field that is typically, but not exclusively, used

for address information. The packet header contains 8 bits of control information,

defining the packet type, a time stamp, etc. The definitions of the header slightly

differ from each other in accordance with the packet type. There is also an

optional 32-bit data payload although this is not present in the majority of the

traffic.

The precise definitions of the packets are shown in Figure 5.4. Three types of

packet are defined.

The 8-bit control information is summarized in Table 5.1.

The packet header field is explained as follows:

• parity:

The complete packet (including the data payload where used) will have odd

parity.
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Normal
RouteType = 10

/Direct
ParityData

Header Data payloadAddress / Operation

Type = 01 ParityDataTimestampcode
Sequence

Header Source ID Destination ID Data payload

Type = 00 routing
Emergency

ParityDataTimestamp

Header Routing key (Data payload)

Type = 11

(Reserved packet type)

Nearest−neighbour Packet

Point−to−point Packet

Multicast Packet

Figure 5.4: Packet formats

• data:

Indicates whether the packet has a 32-bit data payload (data = 1) or not

(data = 0).

• time stamp:

The system has a global time phase that cycles through 00 → 01 → 11 →
10→ 00. Global synchronisation must be accurate to within less than one

time phase (the duration of which is programmable and may be dynamically

variable). A packet is launched with a time stamp equal to the current time
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Field Name bits Function

parity 0 parity of complete packet (including payload when
used)

data 1 data payload (1) or no data payload (0)
time stamp 3:2 phase marker indicating time packet was launched
seq code 5:4 P2P packet only: start, middle odd/even, end of

payload
emergency routing 5:4 MC packet only: used to control routing around a

failed link
route 4:2 NN packet only: information for the router
T: nn packet type 5 NN packet only: packet type - normal (0) or

direct (1)
packet type 7:6 00 for MC packet; 01 for P2P; 10 for NN

Table 5.1: Packet header summary

phase; and if a router finds a packet that is two time phases old (current

time phase XOR packet time phase = 11) it will drop it to the local Monitor

Processor. The time stamp is inserted by the local router.

• seq code:

P2P packets use these bits to indicate the sequence of data payloads:

11 → start packet: the first packet in a sequence (of >1 packets).

10 → middle even: the second, fourth, sixth, ... packet in a sequence.

01 → middle odd: the third, fifth, seventh, ... packet in a sequence.

00 → end: the last (or only) packet in a sequence.

• emergency routing:

MC packets use these bits to control emergency routing around a failed or

congested link:

00 → normal MC packet;

01 → the packet has been redirected by the previous router through an

emergency route along with a normal copy of the packet. The receiving

router should treat this as a combined normal plus emergency packet.

10 → the packet has been redirected by the previous router through an

emergency route which would not be used for a normal packet.

11 → this emergency packet is reverting to its normal route.
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• route:

These bits enable an NN packet to be directed to a particular neighbour (0

- 5), to all neighbours (6), or to the local Monitor Processor (7).

• T (NN packet type):

This bit specifies whether an NN packet is ‘normal’, so that it is delivered

to the Monitor Processor on the neighbouring chip(s), or ‘direct’, so that

the Monitor Processor performs a read or write access to the neighbouring

chip’s System NoC resource.

• packet type:

These bits indicate whether the packet is a multicast (00), point-to-point

(01) or nearest-neighbour (10) packet.

5.4 Adaptive routing

Biological neural networks exhibit considerable fault-tolerance and are able to

maintain their functionality even in the presence of small lesions. This ‘fault-

tolerant’ characteristic is exploitable in large-scale neural network simulations to

overcome hardware failure, especially in a real-time application. This is necessary

to minimize the probability that transient congestion will cause delays sufficient to

perturb the real-time assumptions. The approach adopted is to buffer the packet

by making use of the empty pipeline stages of the router. Another measure is

adaptive routing which handles the situation of buffer overflow.

To achieve adaptive routing, the network must have enough redundancy to

maintain its real-time performance when part of the network is congested because

of a transient or a permanent failure. The SpiNNaker system has a 2-dimensional

toroidal triangular mesh topology which can offer some redundancy by automat-

ically redirecting a blocked packet through adjacent links (emergency route) to

its destination. This redirecting mechanism is called ‘adaptive routing’ and is

provided by an adaptive routing controller at the output routing stage. When

congestion occurs, the controller counts the number of clock cycles that the packet

has been blocked. When the number of cycles reaches a threshold, the controller

will then attempt to direct the packet to its emergency route.
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The algorithm of adaptive routing, described in pseudo-code, is given in ap-

pendix A.

An example of adaptive routing is shown in Figure 5.5, where a packet is issued

at node ‘O’, destined for the target node ‘T’ along the dotted arrow line. If the

link between node ‘I’ and node ‘D’ marked ‘a’ is congested or broken, the adaptive

routing controller at node ‘I’ will sense back pressure from link ‘a’ and redirect

the blocked packet via links ‘b’ and ‘c’ as the emergency route. The packet is

tagged in its header [5:4] (emergency route) so that node ‘E’, and subsequently

node ‘D’ are able to get it on track again despite not containing appropriate

routing tables. If the emergency route also fails, the packet will be dropped and

handled by the local system. If the packets to node ‘D’ are constantly dropped,

the system will treat this node as an permanent failed one and will re-program

the routing tables in the neighbouring nodes to avoid this node.

O

D

D TI

b c

a

E

Figure 5.5: An example of adaptive routing

5.5 Router configurations

As SpiNNaker is designed for experimental purposes, it is important that the

system can adapt to different neural simulations with low overheads for differ-

ent tasks. In these tasks, neural simulations vary in terms of network scale,

computation algorithm, interconnect topology, etc. Therefore, scalability, pro-

grammability and flexibility are the desired features for the neural simulation

platform.
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As a large, parallel computation platform with thousands of elements, SpiN-

Naker needs an efficient housekeeping mechanism for programming, administra-

tion, test and verification. This mechanism is distributed to each node, under

the control of the local Monitor Processors. The router is the central unit to

realise data distribution. This section discusses the router’s communication algo-

rithm that supports the housekeeping features of the large-scale neural platform.

The architecture to conduct the communication is built upon the Communica-

tion NoC, which provides router-to-router interconnects, and the System NoC,

which provides router-to-system interconnects. The router, therefore, bridges the

communication between the two networks.

For configuration purposes, the Host system sends programming data to the

local Monitor Processor at each node. The programming data can be configura-

tion information to a router or to other peripherals on the System NoC. Most of

the system configuration, such as neuron interconnects, rely on the programming

of the router. Here the router is a slave of the System NoC, through which the

local Monitor Processor configures its routing tables and control registers.

Neuron placement and routing is done by the Host system. This information

is distributed, as appropriate, to each chip’s Monitor Processor using nearest-

neighbour hops carrying data payloads.

For administrative purposes, the operating system needs to monitor the router

status to perform configuration operations and detect errors. The information can

be in the form of a dumped packet, an interrupt, or traffic statistic. This requires

the router to be readable by the local Monitor Processor through the System

NoC.

5.5.1 Routing table configuration

The router’s routing tables and registers are configurable and readable via the

System NoC. The contents of the routing tables and their addresses are defined

in Table 5.2.

The MC key table and the MC mask table are stored in the CAM. As shown in

Figure 5.6, an MC packet’s key is masked with all entries in the CAM. If a match

is found, the corresponding RAM entry is read indicating routing destination(s).
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Name bits Offset R/W Function Storage

MC route [1023:0] 0×4000 R/W 26-bit routing word values, RAM
each bit indicates an MC
packet’s possible destination,
which could either be one
of the 20 local processing
cores or one of the 6
external links

MC key [1023:0] 0×8000 W 32-bit MC routing key, CAM
compared with incoming
MC packet routing keys

MC mask [1023:0] 0×C000 W 32-bit MC mask values, CAM
performing the mask
function

P2P route [65535:0] 0×10000 R/W 5-bit binary-encoded P2P RAM
routing entries

Table 5.2: Routing tables

key

mask

mask gating

comparator

CAM

key

mask

mask gating

comparator

route

RAM

internal external

routing key

Figure 5.6: Key comparison and route lookup
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5.5.2 Register configuration

The router has a set of configuration registers, some are used to store setup

information for the router. This information defines the router’s properties, such

as the maximum waiting time for adaptive routing or the current time phase of

the network. Other registers are used to store the router’s status information,

such as a blocked routing port number. By reading this information the Monitor

Processor can observe the status of the network and identify errors. The registers’

detailed definitions are found in appendix B.

5.5.3 Programmable diagnostic counters

For monitoring purposes, the router also has eight programmable diagnostic coun-

ters to count packets passing through it. They count a certain type of packet

according to pre-loaded configurations so that the system can monitor the statis-

tical population of packets. A diagnostic counter may (optionally) generate an

interrupt on each count. There are three types of registers in the counters.

Counter enable/reset filter

Each of these counters can be used to count selected types of packets under

the control of the corresponding counter enable/reset filter (Figure 5.7). This

filter provides a single control point for the 8 diagnostic counters, enabling them

to count events over a precisely controlled time period.

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

reset[7:0] enable[7:0]

Figure 5.7: Counter filter register

The functions of bits in the filter are described in Table 5.3.

Name bits R/W Function

enable[7:0] 7:0 R/W enable diagnostic counter 7..0
reset[7:0] 23:16 W write a 1 to reset diagnostic counter 7..0

Table 5.3: Diagnostic counter enable/reset
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Diagnostic control registers

Each of the eight counters counts packets passing through the router filtered

on packet characteristics defined in the diagnostic control registers (Figure 5.8).

A packet is counted if it has characteristics that match with a ‘1’ in each of the

6 fields (Dest, Loc, PL, Def, ER, Type). Setting all bits in these fields to ‘1’ will

count all packets.

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

CI E Dest Loc PL Def ER Type

Figure 5.8: Diagnostic control register

The counter can have any value written to it, and will increment from that

value when respective events occur. The counters can count packets with different

characteristics, such as a certain type of packets (multicast, point-to-point, or

nearest-neighbour), or error packets, or a combination of packet types, etc.

Name bits R/W Function

Type 3:0 R/W packet type: MC, P2P, NN, undefined
ER 7:4 R/W emergency routing field = 0, 1, 2 or 3
Def 11:10 R/W default [x1]/non-default [1x] routed packets
PL 13:12 R/W packets with [x1]/without [1x] payload
Loc 15:14 R/W local [x1]/non-local[1x] packet source
Dest 24:16 R/W packet dest (Tx link[5:0], MP, local, dump)
C 29 R counter event has occurred (sticky)
E 30 R/W enable interrupt on counter event
I 31 R counter interrupt active: I = E AND C

Table 5.4: Diagnostic control register definition

The functions of bits in the diagnostic control registers are described in Ta-

ble 5.4.

The C bit[29] is a sticky bit set when a counter event occurs and is cleared

whenever this register is read.

Diagnostic counters

Each of these 32-bit counters can be used to count selected types of packets

under the control of the corresponding diagnostic control register. If an event
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Figure 5.9: Diagnostic counter

occurs as the counter is being written it will not be counted. To avoid missing an

event it is better to avoid writing the counter; instead, read it at the start of a

time period and subtract this value from the value read at the end of the period

to get a count of the number of events during the period.

5.6 Router function stage division

According to the above discussion, the router’s functions are briefly summarized

as below:

• Multicast neural event routing based on packet source addresses, with flex-

ible ‘don’t care’ masking for hierarchical routing.

• Point-to-point routing of system management information.

• Nearest-neighbour routing for network and system diagnosis.

• Default routing of unmatched multicast packets.

• Automatic ‘emergency’ re-routing around failed links, with programmable

re-routing threshold.

• A flow control mechanism to stall the router pipeline when performing adap-

tive routing.

• Failure detection and handling, including packet parity errors, livelock er-

rors, packet framing (wrong length) errors, and output link failures.

• Packet dropping and recovery where emergency routing failed and the packet

has an error.

• Pipelined implementation to handle one packet per cycle (peak).

• The testing of associative entries.



CHAPTER 5. A ROUTER IN A NEURAL PLATFORM 88

• Programmable routing tables, which can be configured and tested ‘on the

fly’.

The next two chapters will precisely introduce the implementation of these

functions.

The router is divided into several stages to realize the above functions, a top-

level block diagram is shown in Figure 5.10. Because the packets defined for

conducting neural spiking information are small and independent of each other,

the router is designed to be fully pipelined to boost throughput. In the first

pipeline stage, incoming packets are de-serialised, arbitrated into a single stream

and synchronized to the router’s clock at the front end of the router. They are

buffered and each pipeline stage accommodates a complete 72-bit packet so that

the router supports virtual cut-through packet-switching – the main, synchronous

part of the router can (typically) accept a packet on every clock cycle.
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Figure 5.10: Router architecture

The only other function performed at the first pipeline stage is an error packet

checking procedure to guarantee the correctness of the data flow. Occasional er-

rors may be expected due to, for example, corruption on inter-chip links, and it

is conceivable that errors, or corruption, could cause packets to propagate erro-

neously. Error handling is therefore required to detect and destroy any incoming
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packet with errors, ensuring the correctness of the data flow on the Communi-

cation NoC. An error notification along with the detected packet will be sent to

the local ARM processor that was elected to serve as Monitor Processor during

the system boot process.

The second stage is the packet arbitration stage, which chooses the appro-

priate destinations for several data flows that enter or leave the router. The

data flows are divided into two types: the ‘routing data’, running through the

Communication NoCs and the ‘configuration data’, running through the System

NoC. An AHB master interface and an AHB slave ‘write’ interface are located

here to communicate to the System NoC, the AHB slave interface is for pro-

gramming purposes, the AHB master interface is for system diagnostic proposes.

Programmability offers high configurability for flexible virtual inter-neuron con-

nectivity modifications. A flow-control mechanism is needed here to arbitrate/-

multiplex the data flows to their respective destinations. This has to be performed

at run-time, and must guarantee that none of the data flows is lost.

Arbitrated packets are passed to the routing stage to look up the packets’

possible destination(s). Different packet types are subject to different routing

algorithms handled by different routing engines, but all of these units operate in

lock-step as a single pipeline stage. The router determines one or more appropri-

ate output links which can be any mixture of on- and off-chip channels. A major

routing algorithm is the multicasting that specifically supports inter-neuron com-

munication.

Look-up tables are allocated at this stage. The content of the routing tables is

writable by the Monitor Processor by access via the AHB slave ‘write’ interface.

The routing tables, along with the router’s register bank, are also readable by

the Monitor Processor. This is done through the AHB slave ‘read’ interface,

which is allocated at the third stage, at the end of the routing stage. This stage

multiplexes the data flows that were handled separately at the routing stage, and

then demultiplexes the merged data into the router’s next stage or the AHB slave

‘read’ interface in accordance with its type.

The final stage is responsible for adapting the output route in response to

congestion or a fault in the subsequent asynchronous interconnect. There is some

buffering on the output links but, if these become full, a packet will be blocked

here, exerting backpressure and stalling the router pipeline. This stage may

decide to reroute or drop the packet after various programmable intervals.
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In addition to the function stages, the router has two sets of adapters to the

asynchronous interconnect. One set includes the input and output adapters to

the Communication NoC. There is one input adapter for receiving packets from

the arbiter and 26 or so output adapters to the outgoing links. The second set

includes the transmitting and receiving adapters for the AHB interfaces.

5.7 Summary

This chapter gave an overview of the function and performance requirements

of a pipelined router which is designed specifically for neural simulations on a

multi-chip MPSoC system – SpiNNaker. It has a principal target of support-

ing real-time multicast neural event routing. It also supports point-to-point and

nearest-neighbour routing which are used for different purpose, such as debugging

and programming, but use the same network. An adaptive routing mechanism,

specially for multicasting, was introduced. As an experimental platform, SpiN-

Naker can also be run-time programmed, configured and monitored. The router is

designed to support these functions. It is divided into several blocks by functions.

The next chapter focuses on the implementation of these blocks.



Chapter 6

Router implementation

The previous chapter mainly discussed the requirements and the design consid-

eration of the router for neural communications. The router’s principal aim is

to accept packets and identify their proper destinations, but it also has some

other functions, such as error handling and adaptive routing. These were divided

into function stages of the router, as shown in Figure 6.1, and they are pipelined

internally to increase throughput. This chapter describes the router’s internal

structure, approximately following the router’s packet flow through this pipeline.

Its implementation is presented stage by stage.
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Figure 6.1: Router’s internal structure
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6.1 Error handling

One prerequisite of routing is to maintain the correctness of data transporta-

tion over the interconnection network. The first functional stage of the router,

therefore, handles errors in the incoming packets. Three common errors can be

handled:

• A transient bit error may happen on interconnection networks, resulting in

one, or more, error bits in a certain packet. Although the failure rate on

individual components is normally low, the overall number of error packets

in a large-scale network with thousands of components can be unacceptable.

A certain level of transient bit error can easily be detected by parity check-

ing. A parity error can happen in either the asynchronous or synchronous

parts of the system, and it will be checked inside the router.

• Because the data on the asynchronous link channels is serialized into 4-bit

flits, any loss of a flit on those channels will cause an incomplete packet to

be received. This situation is identified as a framing error which is detected

when the flits are being assembled into a packet.

• It is undesirable to allow a livelocked packet to remain in the network

forever. To avoid this, a simple mechanism is employed where each packet

includes a time phase field. A rough elapsed time system therefore detects

and destroys any incoming packet which is too old to be useful any longer.

The time stamp comprises 2 bits, cycling 00 → 01 → 11 → 10. When the

packet is two time phases old it is dropped to the local Monitor Processor.

The length of a time phase can be adapted dynamically to the state of the

system; normally, timed-out packets should be very rare so the time phase

can be conservatively long to minimize the risk of packets being dropped

due to congestion. The time-phase information is maintained across the

system by software running on the Monitor Processors.

Any input error causes the packet to be taken out of circulation. The packet

contents, as recovered, are dropped to a diagnostic register (Figure 6.2) which can

assert an interrupt. Error recovery is a software task for the Monitor Processor.



CHAPTER 6. ROUTER IMPLEMENTATION 93

6.2 Packet arbitration

Data from the packet-checking stage goes into the arbitration stage. It is here

where application and ‘housekeeping’ functions are separated, as the routing al-

gorithm is determined by the packet type. Most packets are passed into the body

of the router – routing stage. However erroneous packets are dropped to the local

Monitor Processor at this stage, and one category of NN packets are not routed

but consumed in the packet arbitration stage. A block diagram of the arbitration

stage and the body of the router is shown in Figure 6.2.
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Figure 6.2: Packet arbitration and routing

Although a direct NN packet is consumed by being sent to the System NoC,

it causes a reply – in a form of a normal NN packet – to be generated. As

the interruption may take some time to cross the System NoC, ordering is not

preserved with other traffic, thus the reply is merged back into the flow when it

is available. The routing tables must also be loaded: this facility is provided by

a System NoC slave interface which, as writing and using the tables is mutually

exclusive, also arbitrates into the flow and causes any change as it moves through

the desired routing element.

The merge and split of data inside the router requires a mechanism to control

the flows. According to their sources, there are two basic types of data going to

the stage. They are ‘for routing’ packets derived from the previous stage, which is

initially from the Communication NoC, and the router configuration-data sourced

from the System NoC. Because the two data flows are merged into the router’s
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datapath at this stage, there can be more than one request issued by different

interfaces in the same clock cycle. When this happens, arbitration is needed,

letting the interface with the highest priority enter the datapath while any others

stall. An arbiter is located after packet multiplexing to decide the sequence of

the flows. The priorities for its decision are (from the highest to the lowest):

• AHB master requests (from ‘direct’ nearest-neighbour ‘peek’ and ‘poke’

packets)

• AHB slave requests (from write requests to the multicast key table, multi-

cast mask table, multicast routing table, point-to-point routing table, and

router register bank)

• Routing requests (from multicast routing, point-to-point routing, and ‘nor-

mal’ nearest-neighbour routing)

The arbitrated data is then sent to the appropriate routing engine of the

routing stage. The data can be either routing information that derives routing

destination(s) from a routing engine or a ‘write’ or ‘read’ request to a routing

table or register. In practice, traffic is expected to be sparse, so any stalls should

be short.

6.3 Routing stage

Arbitrated packets are passed through the routing stage, which incorporates the

routing engines, to identify the packet’s possible destination(s). The routing of

each type of packet is very different. Therefore, a packet is sent to an appropriate

router with control information, in parallel, ensuring that it is collected at the

appropriate time.

6.3.1 Multicast routing

An efficient multicast routing mechanism is implemented to emulate the one-to-

many communication in neural networks. Multicasting scenarios are well devel-

oped for macro-networks [RC96][THH01][SZX07], however it is not possible to

transfer these scenarios into micro-networks. Due to its limited power and area

budget, on-chip multicast router design requires new architectural considerations
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which aim to achieve good performance characteristics with very little area and

power overhead.

The multicast routing is realized by searching an associative look-up table to

find the destination(s) of a packet. As described earlier multicast packets are only

identified when steering is required: if a packet is not recognised it is ‘default’

routed according to its entry point; in the mesh topology that equates to ‘straight

on’. This vastly reduces the size of the tables required.

To identify a packet which requires steering utilises an associative look-up ta-

ble based on a CAM. Unlike a normal memory which can only perform sequential

lookup, a CAM allows parallel lookup of items among its contents. This feature

of CAMs is very useful for high-speed routing when the destination decision is

associated with the packet address and results can be obtained every clock cycle.

One design challenge of this unit is to minimize the high power requirement of the

CAM circuit, which was achieved by employing a pipeline shut down mechanism.

The implementation will be introduced in the next chapter.

The CAM architecture with the matching and the lookup feature is illustrated

in Figure 6.3. It contains a list of routing entries, each held in an associative

register. It is keyed by the 32-bit routing key (Figure 5.4) indicating the source

neuron. This is a comparison with every routing entry in the CAM, and if a

match is found the CAM generates a one-hot code (hit) indicating the matching

entry. A CAM hit indicates that the router contains a list of output directions

for the packet. The one-hot code is then converted by a priority encoder to

form the address into the look-up RAM, from which a multicast routing word

associated with the incoming packet’s routing key is accessed. Each routing word

contains 26 bits, a bit for each possible destination. This routing word indicates

whether or not the packet should be passed to each destination, where the possible

destinations comprise all of the local fascicle processors and each adjacent node.

The role of the priority encoder is to determine the hit with the highest priority.

This avoids the situation when duplicated routing entries produce multiple hits.

To reduce further both the traffic and the routing table size the destinations

are intended to be physically clustered. Thus many different keys will be sent in

a common direction. To facilitate this a ternary CAM has been employed where

the keys are masked to reduce the number of bits compared.
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Implementation of associative registers

Unlike RAMs, CAM, especially ternary CAM, is not readily available. There-

fore the CAM is implemented using standard cells. There are two bits for each

storage unit in the CAM: one for the routing key value, the other for the mask

value. The implementation of an associative register with a matching function

and a masking function is shown in Figure 6.4.

The storage unit also allows a routing entry to be configured as ‘unused’, where

the compared result is always ‘miss’. This is done by initializing unused mask

entries to 0× 0000000 and unused key entries to 0×FFFFFFFF. This invalidates

every bit in the word, ensuring that the word will miss even in the presence of

minor component failures.

A typical implementation of the storage units uses D-flip-flops as the data

storage elements. As area constraints for the on-chip router are tight, the stor-

age elements in the CAM are constructed using transparent latches which have

smaller cell areas than D-flip-flops.

The CAM is run-time configurable – its contents can be updated by the local
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Monitor Processor. This requires keeping the current state stable while config-

uring the device. Because latches are designed to be transparent, they change

their output signals immediately after the inputs change when enabled. This is

likely to cause timing violations when using a latch in a sequential machine if

the data signal (‘D’) changes between the setup and hold times. To avoid this

potential problem, the presentation of the data on the AHB slave interface has

to be held for two clock cycles in each ‘write’ operation. The previous pipeline

needs to be stalled to prevent absorbing any new packet until the write operation

has completed. The timing diagram is shown in Figure 6.5. Timing is controlled

by a state machine which holds the data signal for two clock cycles and holds the

enable signal (‘G’) for only one clock cycle; the rising and the falling of the enable

signal are triggered by the negative edges to guarantee that the data signal does

not violate the setup and hold times.

The layout area of the 1024-entry CAM using transparent latches can be

compared with that using D-flip-flops on a UMC 130-nm CMOS technology,

where the area of the 1×-drive strength latch is 15.68 µm2, and that of the 1×-

drive strength D-flip-flop is 29.12 µm2. The total area saved is thus approximately

46% (0.9 mm2). Because the CAM occupies about 60% of the router’s total area,

this is a significant reduction of the area.

A custom-built VLSI CAM would reduce this further. A custom-built CAM

typically replaces the latches by SRAM cells for bit storage and uses equivalent

logic for bit comparison and masking, which is the same as that in the CAM in the
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SpiNNaker router. The SRAM storage and access transistors, which are used to

read and write the SRAM storage, account for 6 transistors [PS06], while the latch

cell on the UMC 130-nm CMOS process uses 18 transistors. As a result, 768K

(32×2×(18-6)×1024) transistors are saved in a 1024×32-bit custom-built ternary

CAM. Because the total transistor count of the standard cell CAM reported by

Cadence Layout Editor is about 1,500 K, the custom-built CAM reduces the

transistor number by half.

In order to compare the area of the custom-built CAM to that of the standard

cell design, the difference in layout density should also be considered. A custom-

built circuit can employ minimum-sized transistors and a compact layout because

wire loads and lengths are optimum. Dally describes an example where a custom-

built circuit has an area of about 1/8 that of the standard cell design with the

same structure [DC00]. Since the custom-built CAM has halved the number

of transistor, its area can be estimated to be 16 times smaller than that of the

standard cell design. However, a custom-built CAM would be expensive to design

and reduce process portability. The fully-portable standard cell CAM yields a size

approximately equal to that of the ARM968 processor node used on SpiNNaker,

which is considered acceptable.

CAM test scenario

The degree of hard defects for process technologies is still high: it is estimated
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that the defect density of VLSI over the next five years will be constant at 1.4K

defects/m2 chip area but the number of transistors per unit doubles every 2∼3

years [Pat07]. As the CAM occupies the main part of the router, the majority of

the router’s die area will be taken by the CAM. A small version of a SpiNNaker

system, such as a 4 × 4 network, has a large number (16K × 32-bit) of CAM

entries to be manufactured and tested. As the CAM compares a key to all its

entries in parallel, a dead gate in a single entry can lead to wrong results for

many or all comparisons. A defect has to be testable and preferably quarantined

so that the router can function with a certain level of failure.

For the sake of area efficiency, the CAM is not designed to be directly readable

by the Monitor Processor, so the system has to adopt a test scenario where the

Monitor Processor inserts a test key to the CAM and checks if the correspond-

ing ‘match’ or ‘miss’ result is as expected. More precisely, the defect detection

compromises the steps of:

• A ‘match’ test first sets a value to the entry under test, and then presents a

test routing key with the same value to check if it scores a hit at this entry

as it should do.

• A ‘miss’ test checks if a key misses at a 32-bit entry whenever 1 bit is

different. This is the expensive part of the CAM test, which can be done

on all entries in parallel.

To explain the scenario, a small-scale of example with a 4-entry 4-bit CAM is

presented below:

For testing the CAM for ‘matches’, the CAM keys are first set to:

0001
0010
0100
1000

Then the Monitor Processor presents the test routing keys ‘0001, 0010, 0100,

1000’ to a test register, which is used to perform a key comparison to the CAM.

A comparison is triggered by an AHB read request to another test register, which

stores the corresponding ‘hits’. The hit bits are encoded as binary codes, which

are read from Register T1 to check if they hits at the expected places.
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The efficient way to test the CAM for ‘misses’ is to set all entries to the

same value, then to present a test routing key that differs in one bit only. The

procedure is first to set the CAM to:

0101
0101
0101
0101

Then apply input keys ‘0100, 0111, 0001, 1101’.

Then the CAM is set to the corresponding value:

1010
1010
1010
1010

Then apply input keys ‘1011, 1000, 1110, 0010’.

For all of these keys all entries should miss. If the CAM scores any hit, this

is an error. If any defect is detected in a entry, the entry should be quarantined.

The quarantine function is realized by setting the key value of that entry to

0×FFFFFFFF, and the mask value to 0× 0000000.

In summary, to perform the test and the quarantine scenario, it is necessary

to ensure that the Monitor processor can:

• Write every entry and mask bit.

• Present any routing key.

• Read the hit (and encoded output bits) that the routing key generates.

6.3.2 Point-to-point routing

P2P routing is for communication between chips, not neurons or even processors.

Only the Monitor Processor on each chip uses these packets which means that

the addressing problem is reduced. A 16-bit destination field means that a 64K

chip system can be built and a lookup of this size is feasible in RAM, especially

as only 3 bits/entry are required (Table 6.1).
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P2P table entry Output port Direction

000 Tx0 East
001 Tx1 North-East
010 Tx2 North-West
011 Tx3 West
100 Tx4 South-West
101 Tx5 South-East
11× Monitor Processor Local

Table 6.1: Point-to-point routing entry decoding

P2P routing allows the Host System to communicate with any node using P2P

packets (Figure 5.4). The P2P router uses the 16-bit destination ID in a P2P

packet to determine to which output the packet should be routed. A 64K-entry ×
3-bit SRAM lookup table directs the P2P packet to the local Monitor Processor

or an adjacent chip via the appropriate link. Each 3-bit entry is decoded to

determine whether the packet is delivered to the local Monitor Processor or one

of the six output links according to the 3-bit entry as detailed in Table 6.1.

6.3.3 Nearest-neighbour routing

Nearest-neighbour routing is used to initialise the system and to perform run-time

flood-fill and debug functions. For example, each node needs to know its position

in the network before it can compute the P2P routing table. This positional

information is propagated throughout the system using NN packets during system

initialization.

The initialization or flood-fill function is performed by the routing of ‘normal’

NN packets. The routing function here is to send external ‘normal’ NN packets

that arrive from outside the node (i.e. via an Rx link) to the Monitor Processor

and to send local ‘normal’ NN packets that are generated internally to the appro-

priate output (Tx) link(s). This is to support a flood-fill OS load process, which

is detailed in Mukaram’s Ph.D. dissertation.

The normal NN routing algorithm is simple to implement. Routing direction

is determined only by the 3-bit route information (p.route) and the 1-bit NN

packet type information (p.type == normal or direct) within the NN packet and

the packet source information (p.source == local or external). This does not

require a lookup table. The packet types are distinguished according to p.type
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and p.source as illustrated in Figure 6.6. Then the packet is routed by decoding

p.route according to Table 6.2.
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Figure 6.6: Nearest-neighbour routing algorithm

NN route Output port Direction

000 Tx0 East
001 Tx1 North-East
010 Tx2 North-West
011 Tx3 West
100 Tx4 South-West
101 Tx5 South-East
110 Tx1 - Tx5 All-Neighbours
111 Monitor Processor Local

Table 6.2: Nearest-neighbour route decoding

‘Direct’ Nearest-Neighbour routing performs the debug function. Unlike other

packets that only travel through the Communications NoC, the ‘direct’ NN pack-

ets travel across both the Communications NoC and the System NoC. Packet

steering is not performed at the routing stage but at the packet arbitration stage.

Its routing algorithm is related to ‘read’ and ‘write’ of the System NoC through

the AHB master interface which will be introduced later in this chapter.

6.4 Packet demultiplexing

The routing stage is followed a packet demultiplexing stage. According to their

destinations, there are two types of data flows derived from the routing stage.
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They are routed packets, which ultimately go the Communication NoC, and

router configuration information, such as routing table contents, router regis-

ters, etc. which is read by the Monitor Processor. The different types of routed

packets, along with the destination vectors, are merged into one data stream

again at this stage. They then go to the next router stage – the outgoing routing

stage (Figure 6.2). The router configuration-data, on the other hand, goes to the

System NoC through the AHB slave interface.

6.5 Outgoing routing

A multicast packet or a broadcast nearest-neighbour packet is duplicated to mul-

tiple destinations once it has gone through the routing stage. All the packets are

then ready to be sent out, unless there are blockages at the output ports.

6.5.1 Adaptive routing controller

Network congestion is a general problem. In SpiNNaker, the router’s output net-

work operates asynchronously. Therefore, some timing uncertainty is inevitable.

It is desirable (and sometimes essential) to maintain system functionality when

network congestion happens. In this system congestion may be persistent – due to

hardware failure – or temporary – due to transient traffic bursts. It is expedient

to avoid this when practicable.

Given this, a congestion-aware mechanism with three tactics is employed.

This only applies to MC and P2P packets. This process is controlled by a finite

state machine as depicted in Figure 6.7. Its behaviour is described below:

Firstly, the router can pause the traffic and prevent data from being lost. The

adaptive routing scheme requires a flow control mechanism which is achieved by

implementing a synchronous handshake protocol in the router’s pipeline. When

a link blockage occurs, output buffers are first allowed to fill. A back pressure

signal then propagates back along the pipeline where it causes the pipeline to

stop receiving new packets until the back pressure has been released.

After a programmable number of clock cycles the blocked packet is redirected

to the next clockwise link to bypass the congested route. It should be noted that

if a packet passing through an emergency route was originally a default-routed

packet, it should be tagged as emergency routed so that the receiving router

can still route it correctly – to the ‘normal’ route. Figure 6.8 shows the same
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Figure 6.7: States of the adaptive routing controller

emergency routing example as Figure 5.5, which is described in section 5.4. In this

example, the emergency routed packet would go to node ‘X’ and further instead

of node ‘T’ if the router in node ‘D’ didn’t recognise that it has been redirected.

This emergency routing tag is not required by the P2P packet because every P2P

routing table has full route information of all P2P packets.

Lastly, if congestion persists the emergency route could also become congested.

If so, the emergency controller retries for a period and, if still unsuccessful, drops

the packet into the care of the local ‘Monitor’ Processor. The packet contents

may be recovered and ‘retry’ or ‘rerouting’ attempted in software if necessary.

The packet dropping mechanism allows the system to maintain a certain level

of Quality of Service (QoS). QoS is achievable in this parallel computer because

many neural applications are inherently fault-tolerant.

The adaptive routing mechanism can also help the system to quarantine a

permanent hardware failure: if a link is constantly invoking emergency routing,
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Figure 6.8: Redirecting an emergency routed packet back to the ‘normal’ route

the system may treat this as a permanent failure and could re-route packets to

avoid this link by reprogramming the routing tables.

6.5.2 Deadlock avoidance

The communications system has potential deadlock scenarios because of the pos-

sibility of circular dependencies between links. Because the neural events packet

is small, a ‘store-and-forward’ switching technique is used to achieve simpler im-

plementation: packets are passed around the asynchronous NoC in 4-bit flits but

these are de-serialised into complete packets when passing through the router to

make adaptive routing handling easier. The policy used here to prevent deadlocks

occurring is that no router can ever be prevented from issuing its output. Three

mechanisms are used to ensure this.

• Firstly, outputs have capacity detection so that the router knows whether

or not an output has the capacity to accept a packet.

• Secondly, adaptive routing is used, where possible, to avoid overloading a

blocked output.

• Finally, where adaptive routing fails (because, for example, the alternative

output is also blocked) the packet is ‘dropped’ to a router register, and the

Monitor Processor is informed to re-issue the packet.

The expectation is that the communications fabric will be lightly-loaded so

that blocked links are very rare. Where the operating system detects that this is
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not the case it will take measures to correct the problem by modifying routing

tables or migrating functionality to a different part of the system.

6.5.3 Adaptive routing timer

The adaptive routing mechanism makes its decision according to the local net-

work state information. An inappropriate rate of invoking the adaptive routing

mechanism will likely cause either a high packet loss rate or too long a traffic

delay. It is therefore necessary to make the waiting times, before invoking adap-

tive routing and before dropping a packet, adjustable. Two 8-bit counters are

employed for controlling the waiting times that are programmable across a wide

range of values, including zero and infinite wait times. To achieve a monotonic

increment of the intervals, the router employs a µ-law floating-point counter using

a binary pre-scaler and a loadable counter. Each 8-bit field is divided into a 4-bit

mantissa M [3:0] and a 4-bit exponent E[3:0]. The waiting time in clock cycles is

then given by:

wait = (M + 16− 24−E)× 2E, for E ≤ 4; (6.1)

wait = (M + 16)× 2E, for E > 4; (6.2)

M = E = 0000 gives a waiting time of zero. The wait time increases mono-

tonically with [E,M ]. ‘M = E = 1111’ is a special case and represents an infinite

wait time. This is useful for some neural simulations which do not tolerate spike

loss. To turn off the emergency routing, we can simply set the wait time to ‘zero’.

Turning off the emergency routing function is useful for some potential research

purposes. For example, when further exploring other possible network topologies,

the system organization can be changed to some different forms which do not have

emergency routes. Under such situation, the emergency routing function has to

be turned off to ensure the correctness of the routing.

6.6 Interfacing with the System NoC

The architecture of the System NoC was introduced in chapter 4. To realize the

system housekeeping features, the router acts as both an initiator and a target of

the System NoC. The System NoC provides a GALS interconnect across shared
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resources on the chip. It uses AMBA protocols to standardize data transmission

for modularity, as shown in Figure 6.9. Two AHB interfaces are available for the

router to communicate with the System NoC.
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Figure 6.9: System NoC organization

6.6.1 AHB master interface

The AHB master interface allows the router to be an initiator on the System NoC.

This direct access to a chip’s principal resources can be used to investigate a non-

functional chip, to re-assign the ‘Monitor’ Processor from outside, and generally

to get good visibility into a chip for test and debug purposes. A data transaction

on the AHB master interface is initiated by direct NN routing. There are direct

‘peek’ and ‘poke’ packets, as shown in Figure 6.10.

’peek’ packet

’poke’ packet

32−bit payload

32−bit payload 8−bit control

8−bit control32−bit address

32−bit address

Figure 6.10: Direct nearest-neighbour packets
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• The NN peek ‘read’ packet (which is a direct type NN packet without a

32-bit payload) uses the 32-bit address defined in the address field to read

from the System NoC and returns the result (as a ‘normal’ NN packet)

to the neighbour that issued the original packet using the Rx link ID to

identify that source.

• The NN poke ‘write’ packet (which is a direct type NN packet with a 32-

bit payload) is used to write the 32-bit data defined in the payload to

the System NoC according to a 32-bit address. It also returns a packet

indicating the operation completed.

All direct NN packets return a response to the sender as a normal NN packet,

with bit 0 of the address set to 1. Bit 1 will also be set to 1 if there was a

bus error at the target. Peek packets return a 32-bit data payload; poke packets

return without a payload.

6.6.2 AHB slave interface

Routing is programmable so that the system can map different applications. Ac-

cordingly, the AHB slave interface allows the Monitor Processor or a neighbouring

chip to access to the router for setup and diagnostic purposes. There are several

routing tables in the router for initialising or reconfiguring neuron interconnects.

In addition, a list of registers is defined for the configuration of the router. It is

also initialised via the System NoC. The data types are listed below:

• Multicast routing key table (Write)

• Multicast mask key table (Write)

• Multicast routing table (Write/Read)

• Point-to-point routing table (Write/Read)

• Router register bank (Write and/or Read depending on the individual reg-

isters)

The data derived from the System NoC is merged into the router’s datapath.

An AHB slave ‘read’ transaction is used to observe the router’s status by reading

the routing tables and registers.
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6.7 Summary

This chapter introduced the design and implementation of the routing function,

which has a principal objective of performing multicast neural event routing, and

some other objectives including error handling, point-to-point routing, nearest-

neighbour routing, adaptive routing, etc. The router is divided into three main

functional stages. From the input to the output, they are the error handling

stage, the routing stage and the outgoing routing stage. Detailed design and op-

timization issues have been discussed to fulfill the special requirements of on-chip

multicast routing. The next chapter will present a elastic pipeline architecture,

which provides a feasible flow control mechanism to stall packets when adaptive

routing being performed. Because traffic flow in this router is sparse, elastic

pipelining achieves a better performance in terms of power and speed.



Chapter 7

Pipelining

This chapter discusses the transaction signalling inside the router’s pipeline, de-

signed to facilitate data transmission in the asynchronous Communication NoC.

The router is implemented synchronously enabling use of a typical VLSI design

flow. A synchronous handshake protocol is proposed in the router’s pipeline to

support a flow-control mechanism, which is required by the adaptive routing,

elastic buffering and power saving.

7.1 Introduction

Increasing clock frequency has worsened clock skew problems faced by large-scale

synchronous VLSI design. In addition, some large, complex designs may require

the integration of fully-designed and tested IP blocks on a single die for the benefit

of design reuse. However, these IP blocks are usually designed with different clock

frequencies, and this calls for special integration solutions. The GALS paradigm

is a system-level interconnection approach which offers a promising solution to

these problems [Cha84]. A GALS system uses asynchronous channels to connect

synchronous function-blocks. Clock domains are decoupled by the channels. This

brings many merits for large-scale integration:

• Shorter prototype procedure: The interfaces between the synchronous sub-

modules and the asynchronous interconnects are usually standardized for

design modularization.

• Simplification of timing closure: Sub-circuits are synchronized by local

clocks. Fixing clock skew problems becomes easier.

110
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• Power saving: The global clock tree, which required a large power driving,

no longer exists. Synchronous sub-modules have their own power supply

voltages which can be locally adjusted or even shut down [MHK+99].

7.2 The GALS approach for inter-neuron com-

munication

As mentioned above, the GALS approach has many advantages for the implemen-

tation of a large-scale parallel system. In addition, there are three special reasons

for the GALS infrastructure to be highly suitable for the SpiNNaker system:

• A neural spike is an asynchronous event. It can be simply be routed through

to the next chip and never needs to be synchronized to a local processor.

• The SpiNNaker system is a universal neural network simulation platform

that requires flexibility in the chip organization. Asynchronous interconnect

decouples the clock domains between and within the chips, and helps make

the system scalable. As a result, the system can effectively model different

scales of neural network for different purposes, ranging from a few thousand

to billions of neurons.

• A neuron has a typical fan-out of around 1,000. Conventional synchronous

buses, which usually support one-to-one communication, have great diffi-

culty in maintaining adequate bandwidth for such a high density of connec-

tions.

7.3 Synchronous latency-insensitive pipeline

The SpiNNaker router is implemented as a synchronous pipelined module with

asynchronous links [PFT+07]. Compared to an asynchronous router it is easier to

design using a standard VLSI design flow and it is easier to incorporate clocked

memory blocks such as CAMs and RAMs. Normal traffic is expected to be sparse,

but there may be arbitrary output delays, so rapid throughput but buffering ca-

pacity is desired by the application. The router’s synchronous pipeline is designed

to be elastic so that it provides flexibility in flow control and can make effective

use of the delay-insensitive feature of the GALS NoC.
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7.3.1 Synchronous handshake pipeline

Although much of the pipeline activity is conventionally synchronous there are

some reasons to deviate from a simple model:

• The spike rate for the great majority of neurons is expected to be low – just

a few Hz. As a result, there will be many pipeline ‘bubbles’ between valid

packets which will cause power wastage if they pass through a conventional

pipeline, especially when the pipeline contains power-hungry blocks such

as look-up RAMs and CAMs. It is desirable to deactivate pipeline stages

when data is not valid.

• There can be more than one request to the datapath issued in the same

clock cycle. When this happens, the interface with the highest priority will

occupy the datapath and the other(s) will be stalled. The data is arbitrated

at the router’s packet arbitration stage introduced in chapter 6.

• The adaptive routing mechanism may need to stall the pipeline so that the

router can find an alternative path for a congested packet.

Following the above analysis, a router with an elastic pipeline is implemented

so that the design is tolerant of the variations of asynchronous data transfer rates

in the GALS system.

An elastic pipeline is also called a latency-insensitive (LI) design. The stall

and propagation of data in a LI pipeline is usually controlled by transaction

signalling; this particular one uses two wires to implement a handshake protocol

that is similar to the asynchronous handshake protocol: ‘valid’ for the forward

flow control, and ‘stall’ for backpressure signalling.

There are valid and invalid data passing through the pipeline, which are called

tokens and bubbles. A pipeline stage is activated if a token arrives. The valid

bit is latched at that stage to indicate that the stage is full. When the pipeline is

full, the stall signal is propagated backwards up the pipeline until it reaches the

front of the pipeline where it is propagated to the data synchronizer connected to

the asynchronous Communication NoC. The data latches are stopped by the stall

signals and hold their current data. The cause of a stall signal could be either

backpressure from the output buffer or an AHB request claiming priority.
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Normally there will be several bubbles between tokens. If the pipeline stalls,

these disappear as the pipeline fills up. Eventually an input stall may be neces-

sary.

7.3.2 Elastic buffering

The application of the network influences the expected loading of the communi-

cations fabric. It is not expected that it will operate continuously at near to peak

loading, but the loading may be quite variable over short timescales. Tokens may

be inserted on every clock but, in practice, it is expected that the average loading

will be ∼10%. Therefore some elasticity – the ability to buffer a number of events

– over short periods is considered desirable.

Because the GALS fabric may be congested the output may stall for a period.

The router has a number of pipeline stages which will act as a buffer under these

circumstances. It is important, therefore, that empty pipeline stages can be filled

so that traffic keeps entering in the event of a blockage until all stages are full.

This is done by using a synchronous handshake control as illustrated in Figure 7.1.
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Figure 7.1: Global stall control

7.3.3 Flow-control

There is one further need for elasticity in the router pipeline and that is to

accommodate the various system functions which may be performed. These can

be seen with reference to Figure 7.2.
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• Some packets are diverted onto the System NoC. These ‘disappear’ from

the packet stream whilst they perform read or write operations. Responses

are, however, reintroduced by arbitrating into (and, possibly, stalling) the

normal packet flow.

• Programming data used to set up routing tables is sourced from the System

NoC. For reasons of size and speed the routing tables are in standard, single-

port RAMs; it is therefore necessary to arbitrate programming packets into

the pipeline. For test purposes it is also possible to request reads from these

RAMs where data is returned to the System NoC.

• Writing the multicast CAM also uses pipelined packets. In practice, CAM

writing causes a longer stall due to the CAM implementation, but this will

not normally occur during active simulations.

7.3.4 Clock gating

Power consumption is of great concern in the design of very large-scale com-

putation networks. Even a slight waste of power on an individual sub-module

can cause a large increase of power of the whole system and limit the system’s

scalability.

The power consumption of VLSI circuits is calculated by the function:

P = Ps + Pi + Pl (7.1)
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In this function, Pi (cell internal power) and Ps (net switching power) are

collaborately called dynamic power (Pd), which is related to circuit toggle rate.

Pl stands for leakage power, which is related to the fabrication process.

Because the router is designed specifically for neural simulation, it is in-

tended for the transmission of pulses, instead of streams. A non-traffic-aware

synchronous pipeline is not power-efficient on data pulse transmission since most

energy is wasted for transportation of ‘empty’ packets. It is, therefore, necessary

for the router to have the ability to adjust its activity according to traffic loads.

The low-power issue is particularly important in this case because the CAM used

for the multicast router is a power-hungry element. Under the circumstance of

lightly loaded traffic, Pd can be largely reduced by the synchronous handshake

protocol. An evaluation of the power saving performance will be presented in the

next chapter.

7.4 Input synchronizing buffer

Figure 7.1 shows a global control of the pipeline occupancy. This scheme suffers

from increasing propagation delay of the backpressure, thus reduced performance

– as the pipeline lengthens.

A different scheme is adopted to maintain flow at the head of the pipeline

in order to reduce the effects of combinatorial logic delays and maintain the

full data rate when needed. This uses an interchangeable buffer with two storage

cells (Figures 7.3), whose behaviour is controlled by a state machine (Figures 7.4):

normally only a single register is in operation; the extra parallel buffer is used

when a stall first occurs because the input has already committed to accept

another data element. The delay is re-introduced when the stall is removed, and

the operation returns to keeping just one buffer full. The interchangeable buffer

is larger than a global stall buffer for it uses two storage cells. Therefore, it is

only used at the head of the pipeline.

7.5 Summary

This chapter introduced the transaction signalling protocols used in the router’s

pipeline. The router is implemented using a synchronous LI pipeline, which is

controlled by a handshake protocol to achieve elastic buffering, clock gating and
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flow controlling. An input synchronizing buffer is implemented to maintain the

data flow at the head of the pipeline. These implementations help the router

achieve good performance in term of power and throughput, which will be eval-

uated in the next chapter.



Chapter 8

Evaluation

Chapter 4 proposed the communication scheme of a router in the context of the

SpiNNaker system. Chapter 5 discussed the router’s routing requirements and

design considerations. The issues of its implementations were then introduced

in chapter 6 and chapter 7. This chapter presents functional validations and

performance evaluations of the router through simulations.

The validation and evaluation actions include:

• post-synthesis and post-layout analysis of the router giving concrete evi-

dence to show that the design of the router fulfills the timing and power

requirements.

• the router test bench written in Verilog is used to verify the router’s basic

functions defined in chapter 5.

• system-level simulation of SpiNNaker validating the router’s functions in

‘real-world’ neural modelling.

• measurement of the router’s packet loss ratio under different network block-

age rates and waiting times showing the effectiveness of the adaptive routing

algorithm.

• system-level simulation of SpiNNaker to measure the router’s ability to

reduce the system’s packet loss ratio in a networked environment.

• post-synthesis measurement of the router’s power performance under dif-

ferent traffic loads showing the effectiveness of the elastic pipeline design in

reducing power consumption.
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Test results are based on the router’s synthesis for layout circuits on a UMC

130-nm CMOS technology.

8.1 Functional verification
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Figure 8.1: Single router test wrapper

Functional verification plays a crucial role in the design process. A set of

tests has to be run to prove the design’s consistency with the specification. A
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test wrapper for the single-router test was written simply to modify the input

data and check the output data. This is an effective and efficient way to verify

and debug the design.

Figure 8.1 shows the the single-router test wrapper, which is used to verify the

design’s basic functionality at post-synthesis level. It has one packet initiator, one

error injector, one packet receiver, one dummy AHB master, one dummy AHB

slave, and one interrupt checker. The packet initiator feeds in different types of

test packets by reading the packet source files. Different kinds of errors, such

as parity errors, are injected to incoming packets by the error injector. Routing

results at the router’s 26 output ports (6 external links and 20 internal links)

are checked by the packet receiver. This procedure is mainly used for verify the

correctness of the routing algorithms. Functions related to router initializing and

debugging are tested by observing the data transactions between the router and

the dummy AHB master and dummy AHB slave. The precise test functions are

listed below.

• AHB slave interface test: Sending AHB ‘read’ or ‘write’ requests from the

AHB dummy slave, and reading the expected results at the AHB slave

interface.

• Registers/interface test: Reading the default values from the registers; writ-

ing the opposite values to the default values to the writable registers and

reading back.

• Routing tables access test: Initializing the multicast and point-to-point

routing tables with distinct values and reading the corresponding routes.

• Multicast routing test: Initializing the multicast routing table, key table

and mask table; writing to the test register T1 and then reading the route

from the test register T2; injecting multicast packets and reading the cor-

responding routes.

• Point-to-point routing test: Injecting point-to-point packets and checking

at the corresponding ports.

• Nearest-neighbour routing test: Injecting ‘normal’ nearest-neighbour pack-

ets to the Communication NoC interface and checking at the corresponding
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ports; injecting ‘direct’ poke nearest-neighbour packets to the Communica-

tion NoC interface and receiving the respective addresses and data at the

AHB master interface; injecting ‘direct’ peek nearest-neighbour packets to

the Communication NoC interface, seeing them resolve via the AHB master

interface and receiving the results at the corresponding external ports.

• Dump mechanism test: Blocking the normal route and the emergency route

of the router or blocking the internal ports to create a dump situation,

and reading the corresponding values at the ‘dump header’ register, ‘dump

routing word’ register, the ‘dump data payload’ register, the ‘dump outputs’

register and the ‘dump status’ register.

• Error mechanism test: Sending undefined type packets, parity error packets,

framing error packets and time-phase error packets to the router input port,

and reading the corresponding values at the ‘error header’ register, ‘error

routing word’ register, the ‘error data payload’ register, the ‘error outputs’

register and the ‘error status’ register.

• Diagnostic counting test: Configuring the diagnostic counter control regis-

ters to define the counting options, sending packets against the pre-defined

conditions and reading the counters’ values at register 3N and the inter-

rupts values on router status register to check if the registers have captured

the correct result.

• Default routing test: Initializing the multicast routing table, the multicast

key table and the multicast mask table, sending packets which do not match

the multicast keys in the table, and reading the packets at the default route.

• Adaptive routing test: Blocking an external port of the router, sending

packets to the blocked port, and receiving them at the emergency route.

• Backpressure test: Sending a stream of packets to a blocked external port,

setting the emergency wait time to infinite value, and reading the back-

pressure signal from the router.

Although the single-module test has covered all functions of the router, its

limitation is that all the test vectors are artificially selected. It is likely to ignore

unexpected corners. Therefore, the router is tested in the top-level SpiNNaker

system that generates packets from real neural modelling.
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8.2 Multi-chip SpiNNaker system simulation

A system-level simulation can generate more realistic and random test vectors for

the sub-modules. In the test of the router, several modules are put in a networked

environment running spiking neural modelling, where the routers can send packets

to each other. To perform a fast simulation, a four-chip network was created as

shown in Figure 8.2. The chips are linked into a triangular mesh, thus they

form the minimum scale of network which can reflect the network topology of the

SpiNNaker system. Each chip contains a router and two ARM 968 processing

cores, which is also the minimum requirement for a chip: one ARM processor

serves as the Monitor Processor for system management, the other serves as the

fascicle processor for neural computing. The chip modules are written in Verilog

RTL code.
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The simulation procedure is first to load ARM code into the ROMs and Sys-

tem RAMs, thus initializing the system. The Monitor Processor on each chip

then generates routing tables for each router. Neural networks are mapped on

the fascicle processors with varying numbers of neurons and random connections.

Neurons are modelled using the Izhikevich model [Izh03], which is to be used

as a major model in the actual platform. When the simulation starts, fascicle

processors randomly generate neural spikes to local processors or to other chips.

The simulation records the output packets sent from each processor. Post simu-

lation, all packets will eventually be routed to the fascicle processors, or dropped

to the Monitor Processors due to some error such as end-of-packet error or parity

error. The packets received at each fascicle processor and Monitor Processor are

recorded in fascicle processor output files and Monitor Processor output files.

A simulation of 120 ms platform running time was performed, lasting about

50 hours on a Linux workstation. Each fascicle processor maintained 60 spiking

neurons, so the total number of neurons simulated was 240. Each neuron was

connected to 3 other neurons on average and as the firing rate of a neuron is

between 1 Hz and 1000 Hz, the total number of spikes during the simulation was

between ∼30 and 28,800. The router’s waiting time before dropping a packet was

set to ‘infinite’ to ensure the router does not drop any packet when congestion

happens. Finally, the packet record files for the sent packets and received packets

were then compared. The result proved that the routers correctly route the

packets as anticipated.

8.3 Optimum buffer length

A buffer is placed at each output port of the router to maintain the throughput

under transient congestion. The buffer, which works as a FIFO (first in, first

out) memory, is implemented using registers. As implementation cost and power

dissipation are important factors to be considered when designing an on-chip

router, it is necessary to derive the optimum length of the buffer to choose a

good trade-off between performance and area/power.

In order to understand the buffer length’s impact on the on-chip resources,

the SpiNNaker router was synthesized with different buffer sizes using the UMC

130-nm technology. Figure 8.3 shows the area of the router as a function of buffer

size. The area of the router is represented by gate number, while the buffer size
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(the X axis) is represented by its capacity in packets (at 72 bits per packet). As

can be seen in the figure, the router area is closely proportional to the buffer size.

There is about a 20% (40 K gates) increase in total area going from a 1-packet

buffer to 10-packet buffers.
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Figure 8.3: Router size vs buffer capacity

A larger buffer capacity usually leads to a higher ability of the router to

handle network congestion. This is reflected in the average packet latency of

the router. Because a buffer allows the router to process more packets when

congestion occurs, the larger the buffer is, the lower the packet latency will be.

As the buffer size cannot be infinitely large, a trade-off of performance against

buffer size must be derived. To this end, a simulation was conducted to observe

the impact of the buffer capacity on the router latency.

In the simulation, the router’s output ports are blocked with varying prob-

abilities to represent the situation of network congestion. The router is then

injected with 100 K packets for random destinations. The average packet latency

in the router is calculated based on the record of total routing time and the total

number of routed packets.
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Figure 8.4 shows the simulation results with different buffer sizes. The X axis

represents the blockage probabilities from 0 to 0.99. When the blockage proba-

bility equals 1, the router’s ports are blocked forever. Under such a situation, the

packet latency will be infinite. The Y axis represents the average packet latency

measured in clock cycles. As the router has a five-stage internal pipeline, the

minimum latency is 5 cycles. As shown in the figure, all packet latencies show

increasing trends as the blockage rate increases. As the buffer size increases at

lower sizes (from 1 to 3 packets), the performance increases significantly, while

the performance increase is less as the buffer size increases from 3 to 10. There-

fore, a buffer size of 3 packets can be identified as a good overall balance for the

router.
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Figure 8.4: Router performance under different buffer lengths
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8.4 Power measurement

The biological brain is much more power efficient than a computer-based neural

simulation. The total energy consumption of the brain is about 25 watts [KS85],

whilst a small-scale simulation running on a PC will consume about 10 times

that power. Although an application-specific VLSI implementation can be more

efficient than software simulation, power optimization is still an important issue

to be considered in the design of the neural simulation platform, especially when

the system is scaled up.

The SpiNNaker system has a power budget of 460-720 mW per processing

node, for a system of 50,000 nodes simulating 1 billion neurons, the total power

is estimated at 23-36 kW . The router was anticipated to consume noticeable

power on each node. The proposed router power budget for the final chip at

full throughput at 200 MHz is 200 mW , so 1 nJ/route. Power optimization

of the individual router can result in significant reduction of the overall energy

consumption of the platform.

To evaluate the energy consumption, a test-bench in behavioural Verilog was

developed to generate packet streams and estimate the power by co-simulation

using NC-Verilog and Synopsis Power Compiler. The test scenario is shown in

Figure 8.5. A traffic generator sends 200,000 packets to random destinations

among the traffic receivers. The packet stream contains 80% MC packets and

20% P2P packets, which are the major packet types to appear during run-time,

and also the most power-consuming packets due to the use of lookup RAMs and

CAM. The packet generator can provide different packet injection rates deriving

the router’s power performance under different traffic loads. The packet receivers

are only used to check the arrival of the packets.

The router’s dynamic power was calculated based on post-synthesis simula-

tion which generated actual switching activity stored in SAIF (Switching Activity

Interchange Format) files. An SAIF file contains switching activity information

that can be read into Power Compiler. The power calculation procedure is shown

in Figure 8.6: Power Compiler first generates a forward SAIF file from the syn-

thesized netlist, this contains any information and instructions needed by HDL

simulation. The gate-level netlist is then simulated in NC-Verilog, deriving actual

cell switching activity information which is stored in a back-annotation SAIF file.

Power Compiler calculates the power value depending on the cell switching ac-

tivity annotated to the design. In this simulation, interconnect switching activity
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Figure 8.5: The Scenario of dynamic power estimation

is ignored.

The simulation is carried out under typical conditions on the UMC 130-nm

CMOS technology. The dynamic power consumption has been calculated on a

router with 1024 CAM entries, a number that will be used in the final chip.

The router was working under different traffic loads from a 100% traffic load

to 10% of its maximum throughput. As shown in Figure 8.7, the power usage

decreases when the traffic load drops: Under 100% packet load, the overall power

consumption is 64 mW . However, when the packet load drops to 10%, the overall

power is only 27 mW resulting in roughly 50% power saving.

The power measurement also varies significantly in each sub-unit of the router,

except the P2P router and its lookup RAM, whose power consumption is not

affected by the multicast traffic. Another simulation was conducted to illustrate

the major power reduction is from the CAM when traffic load is low. To emulate

a run-time situation, the injected packets in this test are only MC packets. As

shown in Figure 8.8, the 1024-entry multicast CAM occupies a great proportion

of the router’s overall power budget. The 1024-entry CAM consumes over 50%

(31 mW ) of the total power. This result is derived under the circumstance where
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a valid packet is inserted on every clock.

In practice, it is expected that the average loading of each router will be

below 10% although the traffic load is expected to be non-uniform and change

dynamically. It is important, therefore, that any unnecessary circuit switching

of the power-hungry CAM is eliminated so that its dynamic power consumption

is reduced to a minimum. This is done using pipeline control which enables a

pipeline register only when a token has arrived. This traffic-aware pipeline control

unit eliminates unnecessary gate transitions caused by the data ‘bubbles’, and

consequently reduces dynamic power consumption [PFT+07]. By this means,

the power cost is made proportional to the packet load. Since the router is

lightly loaded at most times, the overall energy consumption during run time

is significantly reduced. The power saving achieved on all of the token-based

pipelined units where the CAM’s power drops significantly from 31 mW to 3 mW ,

is shown in Figure 8.9.

This result also indicates that the reduction in the number of CAM entries

by employing hierarchical routing and default routing also has a great impact on

power saving.
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Figure 8.7: Dynamic power vs traffic load

8.5 Dropped packet ratio measurement

A biological neural network can tolerate spike loss while maintaining its function-

ality. Hence the router is designed to allow packets to be dropped, in order to

solve deadlock or livelock problems. However, the dropped packet ratio has to be

kept under control because even a biological neural network will fail if the num-

ber of lost spikes exceeds a tolerable level. The router’s dropped packet ratios

are tested below, again in both a single routing environment and a networked

environment.

8.5.1 Dropped packet ratio of a stand-alone router

When the router encounters a port blockage, it starts dropping packets after a

certain period of waiting time. The adaptive routing mechanism can redirect a

blocked packet to an emergency route, thus greatly reducing the packet drop ratio

(the number of dropped packets normalised to the number of injected packets).

A test bench was developed to evaluate an individual router’s ability to reduce

the packet drop ratio through adaptive routing. The test bench injects 100,000

packets whose destinations are all to the same port (port A). Port A and its
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neighbouring port (port B), which should accept a packet blocked at port A for

adaptive routing, are blocked with certain rates (the probability of a port being

blocked on each clock cycle). Each port is assumed to have the same probability

of being blocked in each clock cycle.

A packet drop only happens when both the normal route and the emergency

route are blocked and the blocking time exceeds the maximum waiting time. To

reduce the simulation time and only evaluate the adaptive routing function, the

waiting time is set to zero. The packet drop ratio was tested under different port

blockage rates. Figure 8.10 shows a comparison between the packet drop rates of

the situation with and without adaptive routing. The result shows that adaptive
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Figure 8.10: Packet drop ratio vs port blockage probability

routing significantly reduces the packet loss rate when blockages are infrequent.

8.5.2 Dropped packet ratio of the SpiNNaker network

To evaluate the performance of the SpiNNaker interconnection network, some

experimental work has been done based on a detailed model of the network. This

work was carried out by Javier Navaridas [NLMA+08][NLMA+09][LFJ+10]. The

model was implemented in INSEE [RMA05], an in-house simulator for high per-

formance computing networks. The SpiNNaker network was modelled as 256×256

(64K) nodes in a 2-dimensional mesh. It contains most of the router’s features,

including the adaptive routing and the waiting time feature. The experimental

results reveal that these router features result in a significant improvement to the

system’s performance.

Optimal time-out parameters

The system was evaluated under a uniform distribution of packet destinations,

although an actual application is expected to be optimized towards localized

communication, which should result in lighter traffic loads. The packet injection

rate ranges from 0.001 to 0.068 packets per cycle per node, which is equivalent

to 1.6% to 109% of the theoretical network maximum throughput. This covers a
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wide range of the communication requirements, including the actual utilization

of the network, which is expected to be under 10%.

Under these scenarios, the dropped packet ratios were tested under a non-

failure condition as well as under different levels of network failure, measured by

the number of random link failures. The experiment sets the number as one, two

and 64. When a router gets backpressure from the network, it waits for a certain

number of cycles before dropping a packet. The waiting times of normal routing

and emergency routing are set to different values from 0 to 8 network cycles in

the experiment to analyse the effect on the dropped packet ratio. The 0 waiting

time indicates that a router will only try the normal route and the emergency

route once and drop the packet right away if both fail.

Figure 8.11 depicts the dropped packet ratio in the network without failures.

The top of the figure is when all packets are dropped. Without any wait, the

majority of packets are dropped if the injection rate is high. With a waiting

time, there is a catastrophic fall-off in the correct packet transmission when the

network reaches saturation at an injection rate of 0.05 corresponding to 0.05

packets/node/cycle. It also shows that the higher the waiting time, the higher

the load the network is able to manage without dropped packets.
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Figure 8.11: 256×256 in absence of failures

In Figure 8.12, the dropped packet ratios are measured under one link failure.

Because the SpiNNaker system can be reconfigured to avoid most component

failures, the number of failures is expected to be small. Therefore, one and two

failures are tested. Under the one-failure scenario, the effect of the waiting times

shows a different characteristic: the catastrophic fall-off in the correct packet

transmission happens at a lower injection rate (under 0.02 packets/node/cycle)
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Figure 8.12: 256×256 with 1 link failure
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Figure 8.13: 256×256 with 2 link failures

than that of the failure-free network. This effect is because the router in this

experiment is set to wait a certain number of clock cycles before taking an emer-

gency route. Therefore, a packet in the router that has to travel in the direction

of the broken link blocks the routing engine, forcing other packets trying to use

the router to stall until it is emergency routed. This contention for the use of

the routing engine generates congestion around the node with the broken link

(typically known as backpressure). This congestion eventually spreads to the

whole network. Therefore, just a single failure can cause a different trend on the

dropped packet ratio across the entire network.

In Figure 8.13, the result shows the dropped packet ratios when two link

failures are injected. Because the number of link failures is small compared to

the total link number and the emergency routing mechanism keeps the system

stable when link failure happens, there is no obvious performance decrease when
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Figure 8.14: 256×256 with 64 link failures

the second link fails.

In Figure 8.14, the result shows the dropped packet ratios when 64 link failures

are injected. In order to estimate the performance in the long-term, a pessimistic

scenario of mean time between failures of 5 years with a sigma of 2 years is

considered. Given this interval, the possible failures are 30 to 60. Therefore, the

system with 64 random link failures is considered as a worst case. In this figure, a

network configured with low waiting times (waiting time = 0 and waiting time =

1) does not show a significant difference from Figure 8.12 to 8.13. The explanation

is that packet dropping is caused by even the slightest contention, and therefore

always stays high. When configured with high waiting times, the network also

displays a similar trend in packet dropping although the performance is slightly

worse than a low-link-failure network.

The experiments with different scenarios help to select an optimized value for

the waiting time. In these cases, the network delivers the best performance when

the waiting time is 5 network cycles.

Stability

Due to the real-time requirement of SpiNNaker, it is desirable that the system

does not face significant performance variability when links fail. Another exper-

iment is to test an enhancement of the system’s stability against failures, by

making use of the adaptive routing mechanism. The network is fed with uniform

traffic at 0.02 packets per cycle per node load, which represents approximately

32% of the network capacity. The waiting time is set to 5 cycles as suggested by

the previous experiment. In this experiment, the system starts running as fully
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functional (0 broken links), then an increasing number of permanent link failures

are injected into the network to emulate the degradation of the system. The

number of failures is incremented at every 5K network cycles. To evaluate how

well the adaptive routing keeps the system stable, two comparable experimental

results are shown in Figure 8.15.
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Figure 8.15: Evolution of accepted packet load, maximum latency and dropped
packets for different system confiurations

Figure 8.15 (a) shows the situation of the system operating without the adap-

tive routing mechanism. The experiment is run in a 256×256 2-dimensional

triangular mesh. Under this situation, the number of dropped packets (indicated

by the left axis) grows linearly with the number of faulty links, the maximum

delay fluctuates significantly, and the accepted traffic load drops by up to 25%.

Figure 8.15 (b) shows the experimental results when the adaptive routing

mechanism is activated, where the system shows good stability. The experimental

results indicate that with the adaptive routing feature the system only drops 0.2%

of the packets even in the worst case (1024 link failures). The broken links also

have little impact on the accepted load and the maximum delay.

As a conclusion, the SpiNNaker system shows good fault tolerance for real-

time performance, thanks to the adaptive routing mechanism.
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8.6 Layout

The back end design of the router includes floorplanning, initial placement, clock

tree insertion, and final placement and routing. These steps were carried out

using the Synopsis IC Compiler. Then the design was analyzed and verified using

Design Rule Checks (DRC), Layout Versus Schematic (LVS), parasitic extraction,

post-layout timing verification and post layout power analysis.

Figure 8.16 shows a plot of the router layout for the SpiNNaker test chip. The

layout area of the router depends principally on the size of the look-up tables.

The sub-blocks are not shown in the plot because all cells are un-grouped. With

256 multicast routing entries and 2048 point-to-point routing entries – the num-

bers used for the first chip – an area of roughly 1.18mm × 1.42mm = 1.66mm2

is occupied. As can be seen from Figure 8.16, the layout is integrated with the

‘asynchronous↔ synchronous’ interfaces generated by Silistix CHAIN Compiler,

which are pre-synthesized and built as hard macros. These include a ‘Commu-

nications NoC → router’ interface, six ‘router → external link’ interfaces, two

‘router → local processing node’ interfaces, a ‘router AHB slave ↔ System NoC’

interface, and a ‘router AHB master ↔ System NoC’ interface. Because the top

two metal layers (metal 7 and metal 8) are left for top-level routing, the router’s

layout uses only six metal layers (metal 1 – metal 6).

Post-layout timing analysis shows that the clock frequency of the core router

can reach 200 MHz. However, because the ‘asynchronous ↔ synchronous’ inter-

faces have a lower maximum clock frequency for the sake of area efficiency, the

router’s clock is adjusted to the same rate – 166 MHz.

Based on the layout and parasitics extraction, the router’s power performance

is analysed in PrimeTime PX and the power report generated as below:

Global operating voltage: 1.2V

Cell internal power: 14.1mW (80%)

Net switching power: 3.8mW (20%)

Dynamic power (Cell internal power + Net switching power): 17.9mW

(100%)

Cell leakage power: 7.5µW .
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Figure 8.16: Layout of the SpiNNaker router

This report is based on an average switch rate of 25% under 200MHz. Both

cell switching and wire switching are considered in this simulation.

Figure 8.17 shows a die plot of the complete SpiNNaker test chip with an

overlay showing the location of the router and other components. In this chip,

the router occupies approximately 10.5% of the occupied core area.

8.7 Summary

This chapter described the verification of the router’s functions and the evalua-

tion of its performance. Two test scenarios have been used: the router was tested

separately as well as a sub-model of the SpiNNaker chip in a networked envi-

ronment which performs real neural modelling. Test results show the design has

fulfilled the specification and the router is functionally correct. Then the router’s
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Figure 8.17: A die plot of the SpiNNaker test chip

performance has been measured. One of the most significant features is that the

router’s power consumption is greatly reduced when decreasing the traffic load.

Finally, the adaptive routing algorithm was evaluated to show the router’s ability

to reduced the packet drop ratio and maintain system stability under increasing

link failure conditions. The router has been laid out in a SpiNNaker test chip

which is in fabrication.



Chapter 9

Conclusion

Massive multiprocessor simulators are just becoming feasible with current levels of

technology. Neural simulation is an application which, it is clear, can be mapped

onto such a VLSI system – provided that the interconnection problem can be

solved. The work described in this dissertation demonstrates that a multicast

router can support the traffic expected in a (biological) real-time environment at

a reasonable cost in chip area and without excessive power consumption. The

‘imprecise’, fault-tolerant nature of a neural network can also be exploited by

employing cheap error handling mechanisms to keep the system operating in the

presence of faults, both transient and permanent. It is hoped that this router

makes another small contribution to the ultimate goal of understanding that

most intriguing creation of nature, the human brain.

This dissertation presents a novel communications router, around which, a

universal spiking neural network architecture, SpiNNaker, has been developed.

This yields a GALS-based, scalable multi-chip MPSoC system for the real-time

simulation of large-scale bio-inspired neural networks. The design of this plat-

form emphasizes modelling flexibility, power-efficiency, fault-tolerance and com-

munications throughput; to support these system requirements, various routing

algorithms are implemented in the router. A spiking neural event is defined by

a small packet which holds the address of the firing neuron, for this the router

uses a source address multicast routing mechanism for neural packet switching.

A masked associative memory is implemented to reduce the routing look-up ta-

ble to a practical size. Asynchronous network interfacing and pipeline elasticity

are supported by the router to facilitate GALS-style communication, making the

system scalable.

138
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The router has been designed and implemented as Verilog code and has been

functionally verified by simulation and laid out in UMC 130-nm CMOS technol-

ogy. Post-layout analysis suggests that it is capable of at least its target clock

rate of 200 MHz – faster than the processor cores on this process. Under such a

clock rate, the router derives a throughput of 200M spikes/s. This is enough to

fulfill the system’s target throughput which is an average of 10% of the maximum

throughput. Here the GALS architecture of the chip is important because, in a

large system, the majority of the traffic will simply be routed through to the next

chip and never needs to be synchronized to a local processor. Power analysis

was performed at the gate level, showing that the router with a full traffic load

consumes about 60 mW when running at 200 MHz. The simulation results shows

that the router’s performance can fulfill the system requirements.

A cut-down version of the full router – one with reduced size routing table

but all other features included – has been included on a first, test device; at the

time of writing, this is in fabrication.

9.1 Contributions and limitations

MPSoC is an emerging interest in the field of massively-parallel computing, where

on-chip and/or off-chip routing is a central research focus. Typical high perfor-

mance parallel computing systems consist of high-end processors and low speed

off-chip routers. A significant difference of MPSoCs is that they require lower-

speed and power-efficient processors but high-speed networks. Applying this

cutting-edge technology to neurocomputing has both potential benefits and diffi-

culties. These have been addressed in this dissertation through the router design

for the SpiNNaker system.

9.1.1 Efficient multicast neural event routing

Large-scale neural computing requires intensive communication resources. A ma-

jor contribution of the SpiNNaker router is the design and implementation of the

novel source-address based multicast routing algorithm for neural event communi-

cation. The multicast routing algorithm significantly reduces the overall number

of packets in the network and lightens the traffic load on each individual router.

This is one of the key issues for the SpiNNaker system to achieve its main purpose

– to perform spiking neural simulation efficiently.
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9.1.2 Area

The multicast routing table is distributed across the SpiNNaker nodes, stored

in the associative memories. To achieve a suitable size for on-chip integration,

each routing table is compressed into 1024 words. Compression is achieved by

implementing a masked associative routing algorithm, which routes neural packets

in groups. Further compression is achieved by using default routing that sends an

unrecognized packet to the opposite port to the incoming port, thereby requiring

no routing entry.

The associative memory is implemented using transparent latches, which fur-

ther reduces the die size. Post-layout analysis shows that the area occupation of

the storage units has been reduced by 54% compared to a typical implementation

using D-flip-flops.

9.1.3 Programmability

Since neurocomputing is associated with the structure of neural networks, mod-

elling a neural network requires a procedure for programming the interconnects.

The simulator can be programmed allowing flexibility/experimentation in appli-

cation. The SpiNNaker router has dedicated routing tables to store the inter-

connect information, these are programmable, thus making the router flexible for

modelling different neural networks.

The routing tables can be modified during the computation. Hence a network

can be reconstructed for a follow-up computation, according to the feedback

from the history of the outputs. This allows for an important feature of neural

computing – learning from prior knowledge.

Furthermore, the router can be adjusted according to the current network

situation. For example, under a certain packet injection rate, the router’s waiting

time for adaptive routing has an impact on the average and the maximum packet

latency and the dropped packet ratio. The waiting time can be adjusted to achieve

a reasonable latency and dropped packet ratio. Another example that shows the

importance of knowing the network situation is found in the livelock avoidance

mechanism. When a packet lingers in the network for a period exceeding a

timing threshold, which is usually determined by the maximum packet latency,

the packet is dropped as a livelocked packet. The router is required to be run-time

configurable so that it knows the network’s current time phase.



CHAPTER 9. CONCLUSION 141

9.1.4 Fault-tolerance

The nervous system exhibits a strong ability to tolerate faults. A conventional

digital VLSI system is likely to crash when facing a single fault, whilst a neural

system usually displays graceful degradation. SpiNNaker is a digital VLSI system

emulating the behaviour of biological neural networks and understanding bio-fault

tolerance is one of the primary goals for exploration. Like a neural system that

allows for the loss of spikes, the SpiNNaker router allows for dropping packets

to maintain a certain level of QoS. The reason for introducing a packet dropping

mechanism is that the router performs adaptive routing when congestion persists

for a period of time and a packet will be dropped if adaptive routing causes a

deadlock when it fails. The adaptive routing and the packet dropping mechanism

have been proved to be able to maintain the system stable as well as maintain an

acceptable dropped packet ratio when facing link failures.

The router can also expel an erroneous packet before it tries to route it. This

is done by an error detection mechanism at the first functional stage of the router.

9.1.5 Debugging

Debugging is achieved at system-level. This is realized by the ‘direct’ nearest-

neighbour routing, through which the router can be driven from neighbouring

chips to act as a System NoC master. Through the router’s access to the System

NoC, a faulty chip can be probed, and the chip’s devices can be configured from

outside.

9.1.6 Power efficiency

The SpiNNaker router is designed with some energy-saving features, which help

minimize both the chip- and system-level power consumption. This is achievable

because the actual system is expected to be lightly loaded (approximately 10%

of the maximum supported traffic load) in most cases. The router’s pipeline is

implemented with a traffic-aware mechanism, where a pipeline stage is only acti-

vated when a valid packet has arrived. Because this eliminates any unnecessary

circuit switching caused by ‘empty’ packets, the router maintains its dynamic

power at a minimum while maintaining the capability to deal with packet bursts.

Experiments shows that through this mechanism the dynamic power consump-

tion depends on the packet load as expected. Under 10% of the maximum traffic
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load, the total power saved is by 50% of that under a full traffic load.

9.1.7 Latency insensitivity

Being a GALS system, SpiNNaker is based on a self-timed communication net-

work. Although the router is synchronously implemented, its pipeline is designed

to be latency insensitive under the control of a handshake protocol. There are

three reasons for designing a latency insensitive pipeline. Firstly, it can pause the

traffic inside the router when congestion happens in the router’s asynchronous

output channels. This helps realize the flow control mechanism in the SpiNNaker

system. Secondly, because the off-chip interconnects are slower than the router

pipeline, the router’s pipeline is usually lightly loaded, allowing the router elasti-

cally to buffer the following packets even when the traffic is paused. Finally, the

router allows data injection from different sources that could be either the Com-

munication NoC or the System NoC. When two data flows need to be arbitrated,

the latency insensitive pipeline can stop and stall one of the flows to allow the

other to proceed.

9.1.8 Scalability

The router is responsible for both on- and off-chip communication in the SpiN-

Naker system. Data transactions between routers are conducted via asynchronous

channels. The programmable routers and the asynchronous channels allow for a

flexible construction of a multi-chip network. Therefore, the SpiNNaker system

can be tailored to different scales and network topologies.

9.1.9 Switching techniques

The SpiNNaker router uses store-and-forward routing because a neural packet is

relatively small (typically 40 bits) and independent of others. Unlike a worm-

hole router or a virtual channel router which handles flow-control at the flit

level, thereby minimizing buffer requirements, a store-and-forward router requires

buffering of the complete packet before forwarding it; this usually results in a large

buffer space for one or more packets. However, flit-level switching is unsuitable

for neural packet routing because a routing decision has to be made on the ba-

sis of the complete neural packet. As the packets are small in SpiNNaker, the
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store-and-forward scheme is acceptable in terms of buffer area and furthermore,

it avoids flit-dependent deadlock.

9.1.10 Pipelining

The SpiNNaker router is deeply pipelined, reducing cycle time, which allows the

router to process a large number of spiking neurons in parallel. Pipelining doesn’t

reduce router latency, rather it increases it due to additional latencies through

pipeline registers. This may have an impact on the boot-up and management

time of the system, which relies on the point-to-point and nearest-neighbour

routing. However, electronic communication latency in is not an important issue

for neurocomputing. The 200 MHz router is capable of routing 200K spiking

neurons (all at a firing rate of 1000 Hz) within the biological time unit (1ms).

9.1.11 Monitoring

Counters have been included to allow the network traffic to be monitored. They

can be used to obtain valuable experiment results, such as the real traffic pattern

of a neural network. In addition, monitoring the traffic is useful for system

debugging and verification.

9.2 Future work

The router presented in this thesis has left many open issues to be investigated.

Indeed, since the proposed SpiNNaker system is designed for experimental pur-

poses in the field of biologically-inspired spiking neural modelling, it is expected

that much future work will be carried out based on this system. Therefore, one of

the major aims in designing the SpiNNaker router is to provide enough flexibility

to adapt various kinds of application to the system and to obtain the required

performance. Some of the experimental research is already ongoing or will be

carried out in the near future. The work discussed below may provide a better

performance and more concrete results.
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9.2.1 Alternative implementation of the CAM

Area optimization is an important issue for on-chip router design. The CAM

occupies a large proportion of the router’s area, this could be reduced using an

alternative implementation utilising custom design. A typical custom-built VLSI

ternary CAM cell uses SRAM cells for bit storage which is implemented using 16

transistors [PS06]. Although a custom-built CAM would be expensive to design

and reduces process portability, it might be worthwhile replacing the current

CAM given enough time for the development.

9.2.2 QoS enhancements

Neural communication is special in terms of its traffic pattern. This leads to the

challenge of supporting application demand QoS on the SpiNNaker system. One

principal approach to QoS is to parameterize the system. The SpiNNaker router

is highly configurable, providing many possibilities to enhance QoS after the

platform has been constructed. Some QoS issues on the SpiNNaker are discussed

below, including end-to-end delay and packet recovery.

Multicast routing is more likely to create traffic hot spots than unicast routing

because it duplicates packets. These hot spots may cause transient link conges-

tion, resulting occasionally in bad end-to-end delays. The traffic in a certain

neural application usually obeys a certain pattern, which can be observed by the

router’s 8 packet counters. By analysing statistical results, a QoS scheme can

be developed to minimize the end-to-end delays. This can be applied onto the

network by reprogramming the routing tables.

A link/node failure is another possible cause for long end-to-end delays and

there are at least two potential situations resulting in this in the SpiNNaker

system. A well-defined multicast routing strategy usually uses multicast trees for

packet delivery. A multicast packet traverses a tree and is duplicated when it

reaches a branch point of the tree. Under this circumstance, any blockage at the

intermediate link or node of the tree will disrupt the service because adaptive

routing will be invoked, increase routing latency. A similar situation happens in

the default routing which is expected to be used extensively in the SpiNNaker

system. In chapter 8, the experiment of tuning a 256×256 SpiNNaker network

model showed that the router’s waiting time has a great impact on the network

latency. By adjusting the waiting time and the adaptive routing mechanism,
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the system can achieve a better QoS where the dropped packet ratio, network

latency and system stability are well balanced. These factors are considered when

adjusting the router: failure rate, network scale (failure numbers) and the time

the failure exists for.

Multicast routing QoS is influenced by the construction of the multicast tree.

There are two main approaches for multicast tree construction: the Steiner min-

imal tree protocol and the centre-based protocol. The two protocols provide

different aspects of QoS. For example, in the Steiner minimal tree protocol, each

branch of the tree is usually the shortest path from the sender to the receiver,

hence it guarantees the shortest end-to-end delay [SM02]. To achieve certain

QoS, multicast trees are rearranged through reprogramming the routing tables.

The router is implemented with two fault recovery mechanisms controlled

by software. The first is dropped packet recovery. Although neural simulation

usually allows packet loss, it is also the case that some packets must not be lost.

A dropped packet is dumped into a register in the router, and is readable by the

system through the Monitor Processor, thus the system has an opportunity to

decide whether to disregard the packet or reissue it. The second mechanism is

the ability to probe and recover a dead chip. One possible case is the resetting

of a Monitor Processor from a neighbouring chip, this is done using the nearest

neighbour routing.

In addition to dropped packet recovery, another way to guarantee packet

arrival is setting the waiting time value of the router. For example, in the PDP

model, spike loss is not tolerated, while delay can be tolerated. Therefore, the

waiting time before dropping a packet can be an infinite value.

9.2.3 Intermediate circuit test chip

The intermediate circuit test chip is in fabrication while this dissertation is being

written. This will be used for preliminary system-level verification, based upon

which the final SpiNNaker chip will be implemented. In order to fulfill the min-

imum requirements, it contains a basic subset of the communication framework,

including the router, the Communications NoC, the System NoC and the net-

work interfaces. It also contains the essential on-chip devices, such as the ARM

processing cores, the off-chip memory controller, the on-chip memories, etc.

The verification process of the test chip will be similar as the RTL level veri-

fication mentioned in chapter 8. The hardware platform can run more extensive
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real applications in a reasonable time. A test can be performed on a single chip

with its external ports wrapped around, or on multiple chips, interconnected with

each other on a PCB test board. For the verification of the router, firstly routing

tables are initialized during chip start-up. This is a process of testing the router’s

initialization behaviour controlled by the Monitor Processor through the System

NoC. After initialization, a neural network is mapped onto the system. The fas-

cicle processor(s) then start generating neural spikes which are transmitted by

the router to appropriate destinations. This is a process for testing the routing

functions. Other functions, such as debugging, packet counting, error handling,

can also be tested.

Because of the chip’s experimental purpose, its router is highly configurable.

A slight reduction in the router’s area could also be achieved by removing or

simplifying some of the router’s components in a future chip. For example, the

router has a programmable timer to set the waiting time before invoking the

adaptive routing. The time can be adjusted to achieve a reasonable packet drop

rate and system stability. However, it is possible that an optimal value of the

waiting time is obtained based on extensive chip simulations. The timer then no

longer needs to be programmed and can be simplified.

9.3 Perspective of neurocomputing on NoCs

Neurocomputing is regarded as an important scientific objective in future com-

putational architectures. The exploration of neural modelling has been carried

out on the basis of conventional technologies, which although progress has been

made, still have difficulties addressing two significant features of real biological

systems – real-time interactions and large-scale computation. NoCs have also

been regarded as an important technology for future parallel computers, while

most research in this area has been aimed at more conventional applications such

as multimedia processing. This thesis aimed to combine the benefit of both the

research areas and explore a novel router architecture.

It is hoped that, based upon the work described in this thesis, a NoC-based

MPSoC will show clear advantage for modelling large-scale spiking neural net-

works for the exploration of learning and other purposes. It is also hoped that in

the near future, research in the area of parallel computing can also benefit from

the exploration of neurocomputing.
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Adaptive routing algorithm

% vect.bit == destination for normal routed packet

% erVect.bit == destination for emergency routed packet

% check for output contention & wait fixed max time to resolve

clockCycles = 0;

do {

blocked = FALSE;

for (i = 0; i++; i<6) {

if (bFull[i] AND (vect.bit[i] OR erVect.bit[i])) blocked = TRUE;

}

for (i = 6; i++; i<26) {

if (bFull[i] AND vect.bit[i]) blocked = TRUE;

}

clockCycles++;

} while (blocked AND (clockCycles < MaxWaitBeforeER));

% now look into Emergency Routing options & wait fixed max time

clockCycles = 0;

do {

blocked = FALSE;

for (i = 0; i++; i<6) {

if (bFull[i] AND ((vect.bit[i] % normal route blocked

AND (bFull[(i-1)mod6] % emergency route also blocked

OR (p.type == NN))) % NN are not emergency routed
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OR erVect.bit[i])) % nor are emergency routed

blocked = TRUE;

}

for (i = 6; i++; i<26) {

if (bFull[i] AND vect.bit[i])

% local targets cannot be emergency routed

blocked = TRUE;

}

clockCycles++;

} while (blocked AND (clockCycles < MaxWaitBeforeER));

% if Emergency Routing has failed...

if (blocked) discardPacket(p); % drop packet (to error regs)

% can now proceed

for (i = 0; i++; i<6) {

if (NOT bFull[i]) { % send only if link open

p2 = p; % copy packet

case (p.type) {

MC: if (vect.bit[i] OR erVect.bit[i]

OR (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6])) {

if (vect.bit[i]) {

if (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6])

p2.emergencyRouting = 0b01;

% normal + emergency routing 1st stage

else

p2.emergencyRouting = 0b00;

% normal

} elseif (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6]) {

p2.emergencyRouting = 0b10;

% emergency routing 1st stage

} elseif (erVect.bit[i]) {

p2.emergencyRouting = 0b11;

% emergency routing 2nd stage

}
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ParityFix(p2.parity);

sendPacketTo(p2, buff[i]);

}

P2P: if (vect.bit[i] OR (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6]))

sendPacketTo(p2, buff[i]);

NN: if (vect.bit[i])

sendPacketTo(p2, buff[i]);

} % end case

} % end if

} % end for

for (i = 6; i++; i<26) {

if (vect.bit[i]) {

p2 = p;

if (p2.type == NN) p2.route = src;

sendPacketTo(p2, buff[i]);

}

}
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Registers definitions

B.1 Register summary

A summary of the configuration registers is given in Table B.1.

Name Offset R/W Function

r0: control 0×0 R/W router control register
r1: status 0×4 R router status
r2: error header 0×8 R error packet control byte and flags
r3: error routing 0×C R error packet routing word
r4: error payload 0×10 R error packet data payload
r5: error status 0×14 R error packet status
r6: dump header 0×18 R dumped packet control byte and flags
r7: dump routing 0×1C R dumped packet routing word
r8: dump payload 0×20 R dumped packet data payload
r9: dump outputs 0×24 R dumped packet intended destinations
r10: dump status 0×28 R dumped packet status
rT1: test register 0×F00 R/W hardware test register 1
rT2: test key 0×F04 R/W hardware test register 2

- CAM input test key

Table B.1: Register summary

The detailed register definitions are listed at the following:

B.2 Register 0 (r0): control

The functions of r0 are described in Table B.2.
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31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

RDMP[4:0]

18 17

wait2[3:0] wait1[3:0] ETPW

Figure B.1: Register 0 definition

Name bits R/W Function

R 0 R/W enable packet routing
E 1 R/W enable error packet interrupt
D 2 R/W enable dump packet interrupt
TP 7:6 R/W time phase (c.f. packet time stamps)
MP[4:0] 12:8 R/W Monitor Processor ID number
W 15 W re-initialise wait counters
wait1[7:0] 23:16 R/W wait time before emergency routing
wait2[7:0] 31:24 R/W wait time before dropping packet

Table B.2: Register 0 – router control register

B.3 Register 1 (r1): status

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

E ctr[7:0]D ER BI

Figure B.2: Register 1 definition

All router interrupt request sources are visible r1, as is the current status of

the emergency routing system.

The functions of r1 are described in Table B.3.

The router generates three interrupt request outputs that are handled by the

vectored interrupt controller (VIC) on each processor: diagnostic counter event

interrupt, dump interrupt and error interrupt. These correspond to the OR of

ctr[7:0], D and E respectively.

The interrupt requests are cleared by reading their respective individual status

registers: Register 5, Register 10 and Register 2N.
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Name bits R/W Function

ctr[7:0] 7:0 R diagnostic counter interrupt active
B 16 R busy - active packet(s) in router pipeline
ER[1:0] 25:24 R emergency routing status (clear, wait1, wait2)
D: dump int 29 R dump packet interrupt active
E: error int 30 R error packet interrupt active
I: interrupt active 31 R combined router interrupt request

Table B.3: Register 1 – router status

B.4 Register 2 (r2): error header

A packet which contains an error is copied to Registers 2 to 5. Once a packet

has been copied (indicated by bit[31] of Register 5 being set) any further error

packet is ignored, except that it can update the sticky bits in Register 5 (and can

be counted by a suitably-configured diagnostic counter).

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

P F T Route TPcontrol byte

Figure B.3: Register 2 definition

The functions of r2 are described in Table B.4.

Name bits R/W Function

TP: time phase 7:6 R time phase when packet received
Control byte 23:16 R control byte of error packet
Route 26:24 R Rx route field of error packet
T: TP error 27 R packet time stamp error
F: framing error 28 R packet framing error
P: parity 29 R packet parity error

Table B.4: Register 2 – error header

B.5 Register 3 (r3): error routing
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29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

32−bit routing word

Figure B.4: Register 3 definition

B.6 Register 4 (r4): error payload

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

32−bit data payload

Figure B.5: Register 4 definition

B.7 Register 5 (r5): error status

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

V F TP TS error countUE

Figure B.6: Register 5 definition

Name bits R/W Function

TS error count 15:0 R time stamp error count
U: undefined 26 R undefined packet type [=11] (sticky)
T: TP error 27 R packet time stamp error (sticky)
F: framing error 28 R packet framing error (sticky)
P: parity 29 R packet parity error (sticky)
V: overflow 30 R more than one error packet detected
E: error 31 R error packet detected

Table B.5: Register 5 – error status

The Monitor Processor resets Register 5 by reading its contents. The functions

of r5 are described in Table B.5.
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B.8 Register 6 (r6): dump header

A packet which is dumped because it cannot be routed to its destinations is copied

to Registers 6 to 10. Once a packet has been dumped (indicated by bit[31] of

Register 10 being set) any further packet that is dumped is ignored, except that

it can update the sticky bits in Register 10 (and can be counted by a suitably-

configured diagnostic counter).

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

Route TPcontrol byte

Figure B.7: Register 6 definition

Name bits R/W Function

TP: time phase 7:6 R time phase when packet dumped
Control byte 23:16 R control byte of dumped packet
Route 26:24 R Rx route field of dumped packet

Table B.6: Register 6 – dump header

The functions of r6 are described in Table B.6.

B.9 Register 7 (r7): dump routing

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

32−bit routing word

Figure B.8: Register 7 definition

B.10 Register 8 (r8): dump payload
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29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

32−bit data payload

Figure B.9: Register 8 definition

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

FPE[19:0] LE[5:0]

Figure B.10: Register 9 definition

Name bits R/W Function

LE[5:0] 5:0 R Tx link transmit error caused packet dump
FPE[19:0] 25:6 R Fascicle Processor link error caused dump

Table B.7: Register 9 – dump outputs

B.11 Register 9 (r9): dump outputs

The functions of r9 are described in Table B.7.

B.12 Register 10 (r10): dump status

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

FPE[19:0] LE[5:0]VD

Figure B.11: Register 10 definition

The Monitor Processor resets Register 10 by reading its contents. The func-

tions of r10 are described in Table B.8.

Name bits R/W Function

LE[5:0] 5:0 R Tx link error caused dump (sticky)
FPE[19:0] 25:6 R Fascicle Proc link error caused dump (sticky)
V: overflow 30 R more than one packet dumped
D: dumped 31 R packet dumped

Table B.8: Register 10 – dump status
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B.13 Register T1 (rT1): hardware test register

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

V entry M

Figure B.12: Register T1 definition

This register is used for hardware test purposes. The functions of rT1 are

described in Table B.9.

Name bits R/W Function

M 0 R MC router associative look-up ‘miss’ output
entry 10:1 R MC router associative look-up entry address
V 31 R register T1 contents are valid

Table B.9: Register T1 – hardware test register 1

The input key used for the associative look-up whenever this register is read

is in Register T2. When a new value is written into Register T2 bit[31] ‘V’ will

be low until the new value has propagated through the pipeline, whereupon ‘V’

will go high to signify that the test results are available in Register T1.

B.14 Register T2 (rT2): hardware test key

29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  018 1731 30

32−bit key

Figure B.13: Register T2 definition

This register holds the key presented to the association input to the multicast

router when Register T1 is read.
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