

Fault-Tolerant Delay-Insensitive

Communication

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy in the

Faculty of Engineering and Physical Sciences

2010

Yebin Shi

School of Computer Science

2

Contents

Chapter 1 Introduction .. 14

1.1 Unreliability in modern VLSI ... 14

1.2 Transient faults ... 17

1.3 Fault tolerance techniques in asynchronous circuits ... 18

1.4 Research aims and contributions .. 19

1.5 Thesis overview .. 21

1.6 Publications .. 22

Chapter 2 Asynchronous circuit and pipeline design .. 23

2.1 Introduction .. 23

2.2 Fundamentals of asynchronous circuits .. 24

2.2.1 Handshake protocols .. 24

2.2.2 Classification of asynchronous circuits ... 25

2.2.3 Data encoding .. 26

2.3 Asynchronous circuit implementations .. 27

2.3.1 Static data-flow structure ... 27

2.3.2 fundamental elements .. 29

2.3.3 Combinational logic design ... 31

2.4 Asynchronous pipelines .. 32

2.4.1 Muller pipeline .. 32

2.4.2 2-phase bundled data pipeline – Micropipeline ... 33

2.4.3 A simplified 2-phase bundled data pipeline – Mousetrap 35

2.4.4 4-phase bundled data pipeline ... 36

2.4.5 4-phase dual-rail pipeline .. 37

2.5 Asynchronous on-chip systems .. 38

2.5.1 Global asynchronous Local synchronous (GALS) .. 38

2.5.2 Network on-chip (NoC) and asynchronous NoC ... 40

2.6 Global DI communication .. 42

2.6.1 1-of-4 pipeline ... 42

2.6.2 m-of-n pipeline .. 43

2.7 Summary ... 45

Chapter 3 Asynchronous Network-on-Chip – SpiNNaker .. 46

3.1 SpiNNaker - hardware simulation platform for Spiking Neuron Network 46

3.2 Micro-processor sub-system ... 48

3.3.1 DMA controller.. 49

3.3.2 Communication controller ... 49

3.3 Communication in many core systems of SpiNNaker .. 50

3.3.1 On-chip shared bus architecture .. 50

3.3.2 System NoC - CHAIN ... 54

3.3.3 Communications NoC ... 55

3.3.4 Router .. 56

3.3.5 Input and output sections ... 58

3.3.6 Off-chip networking .. 58

3

3.4 Neural traffic load at on- and off-chip Network ... 59

3.5 Fault tolerance requirements in SpiNNaker .. 63

3.6 Summary ... 66

Chapter 4 Asynchronous interconnect implementation in SpiNNaker................................ 67

4.1 Overview .. 67

4.2 DI codes in SpiNNaker interconnects ... 69

4.2.1 On-chip DI codes ... 69

4.2.2 Membership test .. 71

4.2.3 Code selection ... 72

4.2.4 Code conversion .. 74

4.3 Phase conversions in interface circuits ... 75

4.4 Transmitter implementation .. 76

4.4.1 Data channel .. 77

4.4.2 Control channel.. 79

4.5 Receiver implementation .. 81

4.5.1 Data channel .. 83

4.5.2 Control channel.. 83

4.6 Analysis of timing assumptions .. 86

4.7 Summary ... 88

Chapter 5 Fault tolerance analysis of global DI pipelines ... 89

5.1 Fault sensitivity of C-gates ... 89

5.2 Fault sensitivity of 4-phase DI pipelines .. 90

5.2.1 Dual-rail pipelines based on C-gates ... 90

5.2.2 1-of-4 pipelines .. 95

5.2.3 m-of-n pipelines ... 96

5.3 Fault sensitivity of 2-phase pipelines.. 98

5.3.1 Micriopipelines .. 98

5.3.2 Mousetrap pipelines ... 99

5.4 Fault sensitivity of the off-chip interface .. 100

5.4.1 Completion detector and data converter .. 100

5.4.2 4-phase to 2-phase converter ... 101

5.4.3 2-phase to 4-phase converters .. 102

5.5 Summary ... 106

Chapter 6 Level-Encoded Transition Signalling (LETS) system 107

6.1 Level-Encoded Dual-rail (LEDR) .. 107

6.2 1-of-4 LETS .. 110

6.3 2-of-7 LETS .. 113

6.4 Transmitter implementation of 2-of-7 LETS .. 118

6.4.1 3-of-6 decoder.. 118

6.4.2 2-of-7 LETS encoder ... 119

6.4.3 Transmitter ... 120

6.5 Implementation of 2-of-7 LETS receiver ... 122

6.5.1 2-of-7 LETS decoder ... 122

6.5.2 3-of-6 encoder.. 123

4

6.5.3 Receiver ... 123

6.6 Implementation supporting EoP symbols ... 124

6.6.1 EoP problem .. 124

6.6.2 Revised interface circuits ... 126

6.7 Summary ... 128

Chapter 7 Implementation based on transition insensitive phase converters 129

7.1 Transition insensitive phase converter .. 129

7.2 Data phase converter in receiver ... 133

7.3 Acknowledge phase converter in the transmitter .. 135

7.4 Fault tolerant symbol conversion .. 137

7.5 Fault tolerant symbol detection .. 139

7.6 Fault tolerant packet transfer - flit counter ... 140

7.7 Back-pressure issue .. 142

7.8 Fault tolerant receiver architecture ... 144

7.9 Independent reset scheme ... 148

7.10 Summary ... 150

Chapter 8 Fault simulation results ... 151

8.1 Fault simulation platform ... 151

8.1.1 Monitor block .. 152

8.1.2 Data transmitting module .. 154

8.1.3 Data receiving block .. 155

8.2 Methodology ... 156

8.3 Simulation results with realistic timing .. 157

8.4 Area and performance comparisons ... 158

8.5 Simulation results with generalized glitches and links 159

8.5.1 Packet loss rate .. 160

8.5.2 Deadlock rate ... 161

8.6 Summary ... 163

Chapter 9 Conclusions .. 164

9.1 Future Work .. 168

References .. 170

5

List of Tables

Table 1 Variability in nanometre Technology .. 15

Table 2 Dual-rail code ... 27

Table 3 1-of-4 code .. 27

Table 4 Power consumption in ANOC and DSPIN ... 41

Table 5 1-of-n codes .. 43

Table 6 Properties of DI-codes and DIMS implementations 44

Table 7 2-of-7 code and 3-of-6 code .. 70

Table 8 Code implementation comparisons ... 73

Table 9 LEDR code ... 107

Table 10 Quasi-1-hot 1-of-4 LETS .. 111

Table 11 2-of-7 LETS encoding .. 115

Table 12 Data bits decoding of 2-of-7 code ... 116

Table 13 Comparisons of LEDR and LETS .. 116

Table 14 Transmitter Interface ... 117

Table 15 Receiver Interface ... 117

Table 16 2-of-7 LETS of supporting EoP .. 126

Table 17 2-of-7 decoding including EoP ... 126

Table 18 Simulation results for the interface designs .. 157

Table 19 Comparisons of area and performance ... 159

6

List of Figures

Fig 1 increasing integration on a single chip ... 14

Fig 2 VLSI technology evolution .. 14

Fig 3 Increasing process variations ... 15

Fig 4 Comparison of SRAM bit SER with Flops/Latches SER 16

Fig 5 Glitch injection on an off-chip channel .. 18

Fig 6 Asynchronous handshake circuit .. 24

Fig 7 2-phase handshake circuit .. 25

Fig 8 4-phase handshake circuit .. 25

Fig 9 Delay-insensitive handshake circuit ... 26

Fig 10 A simple data flow of asynchronous circuits .. 28

Fig 11 Join in 4-phase bundled data .. 29

Fig 12 Muller C-gate symbol and implementations .. 29

Fig 13 Symbol and circuit of an asymmetric C-gate ... 30

Fig 14 Symbol and circuit of another asymmetric C-gate ... 30

Fig 15 Mutex symbol and implementation .. 30

Fig 16 Toggle and its implementations .. 31

Fig 17 Dual-rail DIMS AND gate ... 32

Fig 18 Muller pipeline ... 32

Fig 19 2-phase bundled data pipeline – Micropipeline .. 33

Fig 20 Mousetrap pipeline ... 35

Fig 21 Mousetrap pipeline with data processing blocks .. 35

Fig 22 4-phase bundled data pipeline .. 36

Fig 23 4-phase bundled pipeline with processing blocks .. 37

Fig 24 4-phase dual-rail pipeline ... 38

Fig 25 4-bit wide 4-phase dual-rail pipeline .. 38

Fig 26 Delay time trend in shrinking technology .. 41

Fig 27 4-phase 1-of-4 pipeline... 42

Fig 28 12 bit 1-of-4 pipeline .. 43

Fig 29 SpiNNaker system topology ... 46

Fig 30 Organization of a SpiNNaker chip ... 47

Fig 31 Processor sub-system ... 48

Fig 32 Multi-layer AHB bus architecture .. 51

Fig 33 Mixed implementation of AHB and AHB Lite bus .. 52

Fig 34 System NoC architecture .. 54

Fig 35 Multicast packet ... 55

Fig 36 Point-to-point packet .. 56

Fig 37 Nearest-neighbour packet ... 56

Fig 38 Router data flow ... 57

Fig 39 Modelling neuron propagation delay ... 61

Fig 40 An off-chip link .. 67

Fig 41 Unidirectional off-chip interface .. 69

Fig 42 Completion detection of 2-of-4 code .. 71

7

Fig 43 Completion detection of 2-of-7 code .. 72

Fig 44 Completion detection of 3-of-6 code .. 72

Fig 45 2-phase to 4-phase converter .. 75

Fig 46 Transmitter block diagram ... 77

Fig 47 Interface timing of transmitter .. 77

Fig 48 Converter of 3-of-6 code to 2-of-7 code .. 78

Fig 49 STG of the control module ... 80

Fig 50 Circuit of the control module ... 80

Fig 51 Simplified STG of the control module ... 81

Fig 52 Final circuit of the control module ... 81

Fig 53 Receiver block diagram .. 82

Fig 54 Interface timing of receiver .. 82

Fig 55 Timing for control symbol generation .. 85

Fig 56 2-input C-gate in different situations .. 89

Fig 57 M-input C-gate in different situations .. 90

Fig 58 Glitches at a C-gate and a latch .. 90

Fig 59 Case 1 of dual-rail pipeline .. 91

Fig 60 Case 2 of dual-rail pipeline .. 92

Fig 61 Multiple-bit dual-rail pipeline .. 93

Fig 62 Case 1 of multiple-bit dual-rail pipeline ... 94

Fig 63 1-of-4 pipeline .. 96

Fig 64 A multiple-bit 1-of-4 pipeline ... 96

Fig 65 Deadlock at 2-of-4 pipeline .. 97

Fig 66 Glitches on Micropipeline .. 98

Fig 67 Short glitches on a Mousetrap pipeline .. 99

Fig 68 Long glitches on a Mousetrap pipeline .. 99

Fig 69 CD circuits in a 4-phase pipeline ... 101

Fig 70 Code convertor in a 4-phase pipeline ... 101

Fig 71 Transmitter phase converter ... 102

Fig 72 Receiver phase converter ... 102

Fig 73 Deadlock timing in the phase converter of a receiver 103

Fig 74 An alternative 2-phase to 4-phase converter .. 104

Fig 75 Timing of an alternative 2-phase to 4-phase converter 105

Fig 76 Deadlock of an alternative phase converter.. 105

Fig 77 Example of LEDR code ... 107

Fig 78 Global communication based on LEDR ... 108

Fig 79 LEDR completion detector ... 108

Fig 80 LEDR decoder and encoder ... 108

Fig 81 Control module ... 109

Fig 82 4-phase and 2-phase dual-rail channels interface ... 110

Fig 83 Completion of 1-of-4 LETS ... 112

Fig 84 1-of-4 LETS decoding .. 112

Fig 85 1-of-4 LETS encoding .. 113

Fig 86 Symbol format .. 114

8

Fig 87 Off-chip interface using 2-of-7 LETS .. 117

Fig 88 3-of-6 decoder .. 118

Fig 89 Dual-rail encoder .. 118

Fig 90 2-of-7 LETS Encoder ... 119

Fig 91 Dual-rail full adder ... 120

Fig 92 2-of-7 LETS transmitter ... 121

Fig 93 2-of-7 LETS decoder .. 122

Fig 94 3-of-6 encoder .. 123

Fig 95 block diagram of 2-of-7 LETS receiver ... 124

Fig 96 Revised 2-of-7 LETS transmitter ... 127

Fig 97 Revised 2-of-7 LETS decoder .. 127

Fig 98 Revised 2-of-7 LETS receiver .. 128

Fig 99 Novel phase converter .. 129

Fig 100 New phase converter circuit based on NAND gates 130

Fig 101 Phase converter with an active low reset port .. 131

Fig 102 State transition graph of the novel phase converter .. 131

Fig 103 Interface timing of new phase converter .. 132

Fig 104 New phase converter in the receiver .. 133

Fig 105 Module clr_gen .. 134

Fig 106 Implementation of module clr_gen .. 134

Fig 107 Tx phase converter for ack2 ... 136

Fig 108 A priority arbiter ... 138

Fig 109 Completion detection of complete 2-of-7 code .. 140

Fig 110 Flit counter ... 140

Fig 1112 Mod 18 flit counter ... 141

Fig 112 Waveform of the mod 18 flit counter ... 141

Fig 113 Handshaking between 2-phase and 4-phase domains 142

Fig 114 Back-pressure tolerant pipelines ... 143

Fig 115 Module rx_ctrl in receiver .. 145

Fig 116 Implementation of the module rx_ctrl .. 146

Fig 117 Receiver without a new architecture .. 147

Fig 118 2-phase ack2 generation circuit in receiver .. 149

Fig 119 Simulation platform diagram .. 152

Fig 120 Monitor block ... 153

Fig 121 Data transmitting Block ... 155

Fig 122 Data receiving block... 155

Fig 123 Design and fault simulation flow ... 156

Fig 124 Timing diagram showing long-glitch fault ... 158

Fig 125 Packet loss rate of LETS design (link speed: 5ns) ... 160

Fig 126 Packet loss rate per glitch of LETS design (link speed: 5ns) 160

Fig 127 Packet loss rate per glitch of baseline design ... 161

Fig 128 Deadlock rate of baseline design .. 162

Fig 129 Deadlock rate of new design .. 162

Fig 130 SpiNNaker chip layout ... 166

file:///C:/Documents%20and%20Settings/wangdz/Desktop/yebin_thesis_final_9ch.docx%23_Toc256637162

9

Abstract

The SpiNNaker machine is a massively-parallel computer aimed at modelling large-scale

systems of spiking neurons. It employs a large number of multicore processor integrated

circuits in a two-dimensional mesh using asynchronous inter-chip interconnect. Its scale

demands that it be robust to the failure of individual components, and in the course of its

development fault-tolerance techniques have been employed at many levels in its design.

Fault tolerance has also become a major concern for modern VLSI design because

deep-submicron technology is more vulnerable to faults than earlier technologies with

larger feature sizes due to the increased parameter variability that results from

near-atomic scales. Asynchronous interconnect is an alternative to synchronous

interconnect that offers advantages such as low power and low electro-magnetic

interference, and is therefore a promising interconnect solution for SpiNNaker and for

deep-submicron technologies in general. However, asynchronous interconnect suffers

from the problem that any malfunction is likely to result in circuit-level deadlock,

recovery from which can be difficult as both ends of the deadlocked link must coordinate

recovery action.

The work described in this thesis investigates the influence of transient off-chip glitches

on the robustness of the delay-insensitive asynchronous interconnect which is used in the

SpiNNaker project. In addition to packet corruption, deadlock may occur in the presence

of glitches. Techniques are proposed in the off-chip interface circuits to filter glitches,

correct illegal symbols, minimise the occurrence of deadlock and allow independent reset

of the link from either end.

Simulation results demonstrate the effectiveness of these techniques primarily to

minimise the occurrence of deadlock caused by single transient glitches.

10

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institution of learning.

11

Copyright

i The author of this thesis (including any appendices and/or schedules to this thesis) owns

any copyright in it (the “Copyright”) and s/he has given The University of Manchester the

right to use such Copyright for any administrative, promotional, educational and/or

teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only in accordance with

the regulations of the John Rylands University Library of Manchester. Details of these

regulations may be obtained from the Librarian. This page must form part of any such

copies made.

iii The ownership of any patents, designs, trade marks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be owned

by third parties. Such Intellectual Property Rights and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and

exploitation of this thesis, the Copyright and any Intellectual Property Rights and/or

Reproductions described in it may take place is available from the Head of School of

School of Computer Science (or the Vice-President).

12

Acknowledgements

First I would like to thank my supervisor, Prof. Steve Furber. Without his valuable

guidance and support my research and the thesis would not have been possible.

My advisor Dr. Jim Garside has provided me much advice on the circuit

implementation and improvement and also made a great contribution to my Async‟09

paper. Special thanks to Dr Luis Plana for many useful discussions on my research and

thesis. Thanks to Dr. Viv Woods for proofreading the thesis with Jim and Luis.

Thanks also to Dr. Steve Temple and Dr. Charles Brej for their warm help when I met

any problem on EDA tools and my computer. I also would like to thank every team

member in SpiNNaker, who makes the research work more enjoyable.

Finally, I would like to acknowledge the ORS Grant and the School of Computer

Science for sponsoring my PhD study in the first three years.

13

Glossary

Delay Insensitive (DI): a class of asynchronous circuit that makes no assumptions about

wire or gate delays and is the most robust asynchronous circuit.

Delay Insensitive Minterm Synthesis (DIMS): a commonly used methodology to design

dual-rail circuits.

Deadlock: this arises when an asynchronous circuit stops running due to handshake failures.

DI Pipeline: a pipeline whose handshake circuits between pipeline registers are

implemented in a delay-insensitive style.

Globally Asynchronous Locally Synchronous (GALS): locally clocked modules are

connected together using an asynchronous communication mechanism in an on-chip system.

Membership test: detecting the validity of symbols in a DI code. Also called completion

detection.

Network-on-Chip (NoC): a type of on-chip packet switching infrastructure.

Non-Return-to-Zero (NRZ): a transition-based encoding; also called a 2-phase handshake

protocol.

Phase conversion: conversion between asynchronous 2-phase and 4-phase signals.

Quasi Delay Insensitive (QDI): no timing assumptions are made in this type of circuit

except the assumption relating to isochronic forks.

Receiver (RX): receives off-chip packets comprising 2-phase symbols and converts them to

4-phase before passing them on to the on-chip interconnect.

Return-to-Zero (RTZ): level-based encoding scheme; also called a 4-phase handshake

protocol.

Spacer: used in 4-phase circuits to separate two consecutive data symbols, also called a

„Null‟ and normally represented with zeros.

Transient faults: faults caused by particle strikes, power bounce or crosstalk on off- or

on-chip traces.

Transmitter (TX): converts on-chip 4-phase symbols to 2-phase and sends them to an

off-chip channel.

14

Chapter 1 INTRODUCTION

1.1 UNRELIABILITY IN MODERN VLSI

Modern VLSI design is characterized by the increasing integration capacity of a single

chip, which enables ever more complex and more power-efficient systems to be designed.

In Moore‟s law, the number of transistors on a chip doubles every 18 months or 2 years.

Fig 1 illustrates that transistor counts continue to increase considerably in both memory

and logic chips; there is no sign to show that the trend will stop the increasing integration

scale of on-chip systems in the near future. The billion transistor era has come as the

increasing integration capability has been enabled by shrinking process technology, from

10 μm in the early 1970s to 130nm in 2001 and is continuing to scale down to sub 100nm

technology Fig 2.

Fig 1 increasing integration on a single chip [1]

Fig 2 VLSI technology evolution

3um

.35um

.13
65nm

32nm
16nm

0.01

0.1

1

10

1970 1977 1984 1991 1998 2005 2012 2019

V
L

S
I

te
ch

n
o

lo
g
y
 (

μ
m

)

15

As the feature size continues to shrink into the nano-scale era, physical features in a

transistor, such as thickness of gate oxide, length of gate and channel, are reduced

significantly. Consequently the scaling-down leads to a few significant issues regarding

leakage power and unreliability, despite achieving higher system integration and lower

average power per transistor. With smaller feature sizes transistors are more vulnerable to

soft errors resulting from cosmic radiation particles [2-4] or internal on-chip noise

sources. Apart from the reduced physical size, the resilience of transistors is further

degraded due to lower noise margins incurred by the scaling down of supply voltage

which helps to reduce power dissipation raised as a result of higher density.

L(nm) 250 180 130 90 65 45

Vt(mv) 450 400 330 300 280 200

σ- Vt(mv) 21 23 27 28 30 32

σ-vt/vt (%) 4.7 5.8 8.2 9.3 10.7 16

Table 1 Variability in nanometre Technology [5]

Fig 3 Increasing process variations [6]

Furthermore, there is a growing concern regarding the parameter variation for the

nanometre technology as shown in Table 1 and Fig 3. The variations are usually

manifested at threshold voltage Vt, supply voltage Vdd, thickness of gate oxide Tox,

effective channel length Leff, and so on. The variations which are mostly caused by

imperfect lithography and diverse dopants have an important impact on fabricated

circuits. Firstly the yield may be decreased due to defects such as stuck-at-0 or stuck-at-1

16

faults. Secondly the circuit performance may be degraded significantly due to varied wire

and gate delays and thus worst case designs become expensive. Finally the variability of

physical parameters, such as Vt, Leff, Tox, further compress the noise margin which is

already scaled down with the new technology so that the resistance to transient faults is

weakened.

Fig 4 Comparison of SRAM bit SER with Flops/Latches SER [3]

High density memory cells are increasingly victims of soft errors caused by high energy

particles [7] and extensive research has been conducted to protect memory circuits from

transient faults. As the technology shrinks into the nanometre scale, logic cells

implemented at high density are also becoming victims of transient faults, in which logic

values can be flipped like memory cells. Fig 4 (all SERs are normalized by the first value

of the SRAM bit SER) illustrates the trends of SRAM bit Soft Error Rate (SER) at which

an SRAM bit encounters soft errors and flip-flops/latches SER; the SER for logic circuits

is increasing considerably as technology shrinks. For synchronous circuits, transient

faults can lead to computation failures in logic circuits. A few well-known techniques,

such as Triple Modulo Redundancy (TMR), Error Checking and Correction (ECC) codes

and current detection, can be used to mitigate the influence of the transient faults.

However, asynchronous circuits employ more complex asynchronous handshake

mechanisms for both communication and computation and the impact of transient faults

is a challenging issue.

17

1.2 TRANSIENT FAULTS

Modern VLSI circuits may malfunction due to hardware faults, such as manufacturing

faults, intermittent faults, crosstalk, even some faults caused by radiation rays.

Generally, they can be grouped into permanent and transient faults. Permanent faults,

such as stuck-at faults, do not disappear with time; while transient faults, such as

crosstalk or faults caused by radiation rays, only last for a limited time.

Transient faults are of interest for several reasons. First, permanent faults such as stuck-at

faults are often manufacturing defects, and lead to functional failures in synchronous

circuits; these faults can be detected using built-in test circuits, for instance scan chains.

In asynchronous DI circuits, they are also likely to cause functional failures when they

arise in computational circuits; but in handshake circuits, these permanent faults probably

lead to deadlock due to unrecoverable handshake failures. The permanent faults can be

detected effectively during manufacturing tests.

Secondly, another common manufacturing type of faults is a delay fault which leads to a

large delay in a particular circuit path. A timing violation may occur when synchronous

circuits suffer from a delay fault. DI circuits are naturally resistant to these faults due to

their delay insensitivity.

Finally, as far as transient glitches are concerned, they are unpredictable and thus difficult

to detect with conventional testing methods. In synchronous circuits, transient glitches

may cause bit corruptions such as flipped bits in registers or sampling of the wrong data

by registers due to glitches occurring in the combinational circuits that generate their

inputs, or they may even cause metastability. Asynchronous circuits are also potentially

vulnerable to hazards or transient glitches. In the presence of transient faults, handshake

failures may occur and cause deadlock, requiring much effort to identify the deadlock and

recover the application. Thus it is essential to investigate the effects of transient faults on

the global on-chip communication infrastructures.

18

The simulated transient glitches studied in this thesis are single event upsets (SEUs). We

assume that only a single transient glitch occurs at any one time on a set of off-chip

interconnects. Fig 5 shows a transient glitch injected onto an off-chip channel comprising

a few data wires and one acknowledge wire in our research project – SpiNNaker – which

is detailed in chapter 3. The glitches may be positive or negative; their duration is variable

on a sub-nanosecond or tens of nanoseconds scale, depending on the fault sources.

TX RX

off-chip
channel

on-chip
channel

on-chip
channel

glitch

Fig 5 Glitch injection on an off-chip channel

1.3 FAULT TOLERANCE TECHNIQUES IN ASYNCHRONOUS CIRCUITS

Quasi delay insensitive (QDI), a class of asynchronous circuit, is the most common

asynchronous circuit style that has been studied with a view to improving fault tolerance.

For instance, a fail-stop scheme has been described which stops errors propagating by

forcing circuits to deadlock [8, 9]; duplication can also be used to increase tolerance to

transient faults in QDI circuits [10]; fault-tolerant techniques for null conventional logic

circuits, which are another example of QDI circuit, have also been presented [11, 12].

However, these QDI circuits were built using a domino logic style, which requires

custom design and cannot be designed with standard CMOS gates.

Recently Delay Insensitive (DI) pipelines were also studied to develop fault tolerant

techniques such as rail synchronization. Rail synchronization techniques were proposed

to reduce the sensitivity period of C-gates in pipeline stages to transient faults [13].

More inputs are added to the C-gates to synchronize the parallel rails. The

multiple-input C-gates improve the robustness of the circuits against transient faults.

The performance of the circuits was degraded due to the slower pipeline registers and

19

rail synchronization. In addition, the revised circuits were still prone to producing

illegal symbols which then propagate through the downstream circuits.

Developing rail synchronization further, another pipeline latch was introduced to

eliminate illegal symbols [14]. A controller is employed to control two consecutive

pipeline latches by producing two enable signals and to reset the first latch to kill most

of the detected illegal symbols. Thus illegal symbols are unlikely to spread through the

pipeline latches. The enhanced latch further degrades the performance.

A number of fault-tolerance techniques for DI pipelines, all of which are applicable to

asynchronous communication channels exploiting 1-of-n or m-of-n codes, have been

compared in terms of area and performance [15]. These techniques, mainly aiming to

build pipeline latches that are more robust against transient glitches, include input

symbol detection latches, normally closed latches and modified latches that offer

protection against upstream and downstream glitches. Some of these techniques can be

mixed to further improve fault resistance at the cost of high performance penalties.

1.4 RESEARCH AIMS AND CONTRIBUTIONS

As discussed in the previous section, existing techniques make use of duplication or

harden pipeline latches to achieve higher resistance to transient glitches. However, their

penalties in terms of area or performance are high and may be unacceptable in modern

highly-integrated and performance-critical on-chip systems. Another consideration is that

transient faults may impact on system functions differently, such as leading to illegal

symbols, extra and missing normal symbols or even deadlock. Most existing techniques

focus on seeking solutions to detect or eliminate illegal symbols, which are not the only

fault effect but normal symbols can also be induced by transient faults. Deadlock is

more severe than illegal symbols as identifying and removing the deadlock to enable

system recovery is expensive in terms of time, while corrupt data caused by illegal

symbols or extra or missing normal symbols do not stop the circuits from running and

can be detected and possibly even corrected by the system. Thus it is worth expending

20

greater effort to improve the circuit‟s resistance to deadlock. Additionally, most research

has been conducted on single 4-phase circuits, whereas this thesis studies asynchronous

interconnect which involves phase conversion between 2-phase and 4-phase. These

relatively complex circuits motivate the research on their potential deadlock issues.

In this thesis, we focus on approaches to the avoidance of deadlock on global interconnect

which have low performance loss, and then attempt to minimize other fault effects such

as illegal symbols. The high performance penalty found in existing fault-tolerance

techniques prompts us to develop other potential solutions with less performance loss to

increase resistance of our circuits to transient faults.

The primary focus of this research is to investigate the impact of transient glitches on

asynchronous interconnect which provides the global on-chip and off-chip

communication for a large scale system. By injecting a range of glitches with different

durations, the reliability of asynchronous interconnects with a range link speeds are

studied. We target the error effects observed in the current implementation of the off-chip

interconnect and propose techniques to improve the error resilience. The contributions of

this research are as follows:

 The development of an implementation of on-chip asynchronous interconnect and

the interface circuit connecting to off-chip channels with conventional asynchronous

circuit design methodology.

 The implementation of a simulation model for randomly and extensively injecting

transient glitches to form a fault simulation framework; alternative circuit

implementations can be investigated by exposing them to massively high-density

transient glitches with this framework.

 Based on extensive simulation results, a novel fault-tolerant implementation of the

off-chip interface circuits is proposed to avoid the deadlock problem inherent in

conventional asynchronous circuits. This uses a new 2-phase delay-insensitive code,

2-of-7 Level Encoded Transition System (LETS), which exhibits better resistance to

deadlock as it is an inherently fault-tolerant coding.

21

 A second implementation makes use of new proposed phase converters to construct

novel interface circuits which overcome the disadvantages of conventional phase

converters. Combined with improved membership test circuits for DI codes and an

arbitration circuit, the novel phase converter shows fault tolerance to transient

glitches with low performance penalty.

1.5 THESIS OVERVIEW

The rest of the thesis is organized as follows. Chapter 2 introduces the fundamental

concepts of asynchronous circuit design and globally asynchronous locally synchronous

(GALS) systems. As they form the infrastructure of global asynchronous communication

some common delay-insensitive pipelines are described, including the Muller pipeline,

Sunderland‟s Micropipeline and other 2-phase and 4-phase pipelines. Finally

delay-insensitive data encoding, including 1-of-n and m-of-n codes, are introduced. The

background of the SpiNNaker project is given in chapter 3, including the motivation for

the project, the processor sub-systems, and the system and communication on-chip

networks. Additionally, a few issues regarding many-core system simulation and neural

network mapping onto the SpiNNaker system are briefly explained.

In chapter 4, an implementation of the interface between the on-chip communication

network and the off-chip channels is implemented as a baseline design using a

conventional design methodology. Chapter 5 discusses fault sensitivity of C-gates and

asynchronous pipelines and the causes of deadlock.

Chapter 6 gives the first fault-tolerant implementation of the interface, which is based on

a novel 2-of-7 data encoding for off-chip channels. Chapter 7 describes a proposed phase

converter which has better fault tolerance given reasonable timing assumptions. A few

techniques, such as modified member test circuits and a symbol arbiter, are also used in

the design to improve the fault tolerance to transient glitches.

Chapter 8 shows the simulation results of the baseline design and the two fault-tolerant

implementations, following fault tolerance requirements in SpiNNaker and fault

22

simulation platform and methodologies.. The simulation results demonstrate the

effectiveness of the resistance to glitches with the realistic timing of the two alternative

designs. Furthermore, the performance and the area costs are also compared for all the

off-chip interface designs. The thesis is concluded in Chapter 9.

1.6 PUBLICATIONS

 Y. Shi, S.B. Furber, J. Garside, L. Plana, “Fault Tolerant Delay Insensitive inter-chip

Communication”, Proceedings of the 2009 15th IEEE Symposium on Asynchronous

Circuits and Systems (Async 2009). (Runner-up for the best paper award.)

 Y. Shi and S.B. Furber, “Resolving deadlock failures in 2-phase interconnect”, Proc.

19th UK Asynchronous Forum, University of Imperial College, August, 2007.

 Y. Shi and S. B. Furber, “Error Checking and Resetting Mechanisms for

Asynchronous Interconnect”, Proc. 18th UK Asynchronous Forum, University of

Newcastle upon Tyne, 2006, pp:24-27, http://async.org.uk/ukasyncforum18/.

 S. Yang, S.B. Furber, Y. Shi, L.A. Plana, “An Admission Control System for QoS

Provision on a Best-effort GALS Interconnect”, Proceedings 8th International

Conference on Application of Concurrency to System Design, June 2008, Xi'an,

China.

 L. Plana.; J. Bainbridge; S.B. Furber; S. Salisbury; Y. Shi; J. Wu, “An On-Chip and

Inter-Chip Communications Network for the SpiNNaker Massively-Parallel Neural

Net Simulator”, Presented at the Second ACM/IEEE International Symposium on

Networks-on-Chip, 2008. NoCS 2008

 L.A Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, S. Yang, “A GALS

Infrastructure for a Massively Parallel Multiprocessor” IEEE Design & Test of

Computers, Volume: 24, Issue: 5, pp. 454 - 463, Sept.-Oct. 2007.

23

Chapter 2 ASYNCHRONOUS CIRCUIT AND PIPELINE

DESIGN

This chapter reviews some fundamental concepts in asynchronous circuit design. Some

commonly used asynchronous pipelines will be described in detail, including the Muller

pipeline, Micropipelines [16], mousetrap [17] and 1-of-4 CHAIN [18]. Finally global

delay-insensitive (DI) communication is introduced as one promising implementation

option in Globally Asynchronous Locally Synchronous (GALS) systems. In particular,

DI communications based on 1-of-4 and m-of-n DI codes are highlighted.

2.1 INTRODUCTION

Recently, as VLSI technology shrinks and the scale of integration increases, the issues

synchronous designed circuits suffer from are growing significantly. For instance, the

proportion of the power dissipation consumed by the clock signals is increasing

considerably; clock skew effects take more and more design effort to balance the clock

trees; different clock targets originally used in the IP cores lead to difficulties in the

integration of those IP modules in complex SoCs. Therefore asynchronous design

methodology has drawn attention in recent decades by promising to achieve lower power,

higher modularity and even better performance.

Previous work has covered a wide range of topics from design methodologies, automatic

synthesis and testing approaches to silicon demonstration of asynchronous

microprocessors [19-22]. However, it is revealed that asynchronous circuits manifest the

potential of low power and low electromagnetic interference rather than high

performance due to higher area overhead [23]. Furthermore, in the modern large-scale

system-on-chip era asynchronous pipelines can be applied to on-chip global

communication to facilitate highly integrated and low power SoC solutions to resolve the

timing closure issues incurred by global clocks.

24

2.2 FUNDAMENTALS OF ASYNCHRONOUS CIRCUITS

2.2.1 HANDSHAKE PROTOCOLS

Handshake protocols define how a sender and a receiver communicate in asynchronous

circuits; Fig 6 illustrates a typical asynchronous handshake circuit. The request signal

„req‟ indicates the arrival of valid data, which are required to be valid before „req‟ arrives

at the receiver; the receiver samples the data once it has detected an asserted „req‟; finally

an acknowledge signal „ack‟ is sent back to the sender to confirm a successful data

transfer.

Fig 6 Asynchronous handshake circuit

2-phase and 4-phase are two types of handshake protocol implemented in asynchronous

circuits. In the 2-phase protocol shown in Fig 7, the request signal makes a transition to

indicate the data arrival, the second transition takes place on the ack wire to acknowledge

the data; when the transmitter TX sees the ack transition it can issue the next data

immediately. 2-phase handshaking is called Non Return to Zero (NRZ) or transition

signalling as both falling and rising edges represent valid events. By contrast, in Fig 8 the

4-phase protocol needs 4 steps to complete the handshake for one cycle of data transfer.

Normally, high level signals carry valid data while low level signals represent spacers

which separate any two successive valid data. 4-phase is level signalling and is also called

Return to Zero (RTZ).

logic

RX TX

req

ack

data

25

cycle cycle cycle

d0 d1 d2

req

ack

data

Fig 7 2-phase handshake circuit

data reset data

0 d0 0 d1

req

ack

data

Fig 8 4-phase handshake circuit

2.2.2 CLASSIFICATION OF ASYNCHRONOUS CIRCUITS

In terms of delay models assumed for gates and wires, asynchronous circuits can be

classified as delay insensitive (DI), quasi delay insensitive (QDI) and matched delay

circuits.

For matched delay circuits the timing assumptions are relatively similar to their

synchronous counterparts. It is assumed that the request signal in Fig 6 becomes valid

after the data stabilises at the receiver; the delay units need to be integrated in the request

path to guarantee that the required timing assumption is always satisfied. The matched

delay implies that the circuits have to sacrifice their speed to produce safe enough

margins for all operations. In a synchronous circuit a clock matched to the data in the

system fulfils the same function. However, the key difference with synchronous circuits

is that the delays of all the paths are unnecessarily equivalent and the delay matched

circuits are not worst case design used in synchronous circuits.

DI circuits do not require any particular timing assumptions about the gate or wire delays

and the delays are assumed to be unbounded. DI is therefore the most robust of the

asynchronous design styles. Their adaptability allows them to work correctly even with

extremely varying delays. These circuits run as fast as each part can; they are also able to

slow down without functional failure when some circuits experience performance

degradation due to environmental conditions such as higher temperature or lower

26

operating voltage. In DI circuits the request signals are removed as the timing assumption

between the request and data are no longer required as shown in Fig 9. To detect the

arrival of valid data some DI codes need to be incorporated for all transferred data, which

usually becomes the design overhead of DI circuits. Additionally, the unbounded timing

assumption is the most conservative to design asynchronous circuits, leading to the most

robust circuits. However it is impossible to build complete DI circuits only with simple

gates. A few complex gates, such as the Muller C gate and Toggle gate, have to be used

for designing practical circuits.

Fig 9 Delay-insensitive handshake circuit

QDI uses the concept of isochronic forks to ease the timing assumption in DI circuits.

Isochronic forks assume that the delays on a wire fork are equivalent; if the signal on one

wire arrives at the receiver it will at the same instant also arrive at the end of the other

wire. Note that the QDI circuits need to be designed carefully to meet the timing

assumption of isochronic forks [24].

We have described the delay models, handshake protocols and the corresponding circuit

types. At the basis of these techniques, a variety of asynchronous circuits can be made

with different characteristics in terms of area, performance and power.

2.2.3 DATA ENCODING

Dual-rail code is the simplest but most widely used in DI circuits. It uses two rails to

encode a bit data. The two rails are respectively called the true part and the false part in

dual-rail code; the true part is exactly the same as the binary bit while the false rail is

reverse of the true part in Table 2; both ones are prohibited while both zeros represent a

spacer used in a reset phase. As a generation of dual-rail code, 1-of-4 code [18, 25] shown

in Table 3 is used to encode 2bit binary data. 1-of-4 data encoding is a one-hot code, in

logic

receiver sender

ack

data

27

which only one wire is fired and the others remain low to represent a data symbol, while

all four wires with zeros represents a spacer (null) to separate two adjacent symbols in

4-phase circuits.

Binary bit True rail False rail

0 0 1

1 1 0

Spacer 0 0

N/A 1 1

Table 2 Dual-rail code

Binary bit 1-of-4 code

00 0001

01 0010

10 0100

11 1000

spacer 0000

Table 3 1-of-4 code

2.3 ASYNCHRONOUS CIRCUIT IMPLEMENTATIONS

2.3.1 STATIC DATA-FLOW STRUCTURE

Except for the details of a particular implementation, we can use static data-flow

structures to produce a high and abstract level view of asynchronous circuits, similar to

the RTL for synchronous circuits.

The building blocks employed in a typical asynchronous circuit include storage elements,

combinational blocks and flow control blocks. Storage elements are latches or flip-flops

similar to those in their synchronous counterparts. Combinational blocks using simple

gates offer specific logic or computation function implementations. The flow control

blocks, such as join, merge, fork, multiplex and de-multiplex, are essential to implement a

circuit with a relatively complex architecture. Fig 10 shows a simple example of an

asynchronous circuit which contains the join, fork and latch units on which pipelines and

28

rings are built. Obviously combinational blocks can be inserted between any two latches

to support more complex computation applications.

Fig 10 A simple data flow of asynchronous circuits [26]

As far as the implementation details are concerned, these circuit blocks can be

implemented with different design styles. First simple gates to build combination logic

may not be those used in combinational logic blocks of synchronous circuits; instead a set

of special elementary gates needs to be built with the conventional simple gates for

different asynchronous protocols. For instance, in delay matched circuits simple gates

such as AND, OR, NOT gates in the standard libraries can be directly used to implement

combinational blocks while in the dual-rail circuits all the specific elements for

performing logic operations such as AND and OR are required to be implemented and

combinational blocks can then be built with these elements.

Secondly, in flow control units multiplexers and de-multiplexers are the conventional

blocks to conditionally steer data flows. However unconditional flow control elements

for joining or merging two or more data flows may have different implementations based

on different asynchronous design styles. By contrast, the unconditional flow control

concepts of join and merge do not exist in the synchronous domain. Synchronous circuits

assume that each part of the circuit is activated at each clock tick. The asynchronous

system is based on tokens, which means that each part is activated only once the required

tokens arrive at its inputs. For instance, in Fig 11, a join operation in the 4-phase bundled

data circuit, as shown in the upper figure, requires that the output z be activated only

when the two inputs x and y are asserted. In the bottom figure, the join output request

Fork Join

Join Fork

29

signal Z-req can only be activated either by two „valid‟ tokens or by two „empty‟ tokens

indicating two both „valid‟ or both „empty‟ input values at x-req and y-req respectively;

thereby a C-gate needs to be applied to synchronize the token behaviour.

Fig 11 Join in 4-phase bundled data [26]

2.3.2 FUNDAMENTAL ELEMENTS

A few most commonly used elements in asynchronous circuit implementations, such as

the C-gate, Mutex and Toggle, are introduced. The Muller C-gate is an essential element

in asynchronous design; as a state holding gate it does not change its output unless both

inputs are equivalent, which means that it goes high only when both inputs become high

and goes low only when both inputs become low. Fig 12 shows an implementation of

Muller C-gate based on standard gates and the symbol.

C
A

B
Z

B

A
Z

Fig 12 Muller C-gate symbol and implementations

Asymmetric C-gates are derived from the Muller C-gate. Fig 13 illustrates a asymmetric

C-gate which flips its output to high only when both inputs become high while a single

low input „A‟ can turn the output „Z‟ to low directly without a low input „B‟. Other

asymmetric C-gates are also available, another example is shown in Fig 14.

30

+

CA

B

Z

A

B Z

Fig 13 Symbol and circuit of an asymmetric C-gate

-

CA

B

Z

A

B
Z

Fig 14 Symbol and circuit of another asymmetric C-gate

When two signals are required to be mutually exclusive, for instance, for access to a

shared resource, an element called a Mutex is introduced. Fig 15 illustrates the symbol

and a possible implementation with NAND gates and transmission gates. The first signal

to arrive at either R1 or R2 leads to the assertion of the corresponding output G1 or G2,

while the other signal is blocked until the first input signal is removed. In the

implementation, there are two NMOS and PMOS transistors connected at the nodes X1

and X2 which are placed to solve the metastability problem. Instead of the transistors,

standard cells like 3-input OR gates are an alternative solution.

Fig 15 Mutex symbol and implementation [26]

A Toggle element alternates its output in response to an input transition and can be used

for converting signals from 4-phase to 2-phase. The first event at the input „i‟ results in an

event at its output „q0‟, while the second input event results in an event at its output „q1‟

and so forth. Fig 16 shows the symbol, a possible D-type flip-flop implementation and a

simplification which can be used to convert signals from 4-phase to 2-phase.

31

Ti q0

q1

Q

Q
SET

CLR

D
q0

i

Q

Q
SET

CLR

D
q1

Q

Q
SET

CLR

D
q0

i

Fig 16 Toggle and its implementations

2.3.3 COMBINATIONAL LOGIC DESIGN

In bundled data circuits, the combinational logic between latches is constructed in the

same manner as in a synchronous circuit where the binary code or single rail is used for

data representation; the only difference between them is the approach used to meet timing

closure. In synchronous circuits, the delay incurred by critical paths determines the clock

frequency. By contrast, in bundled data circuits matched delay units have to be selected

carefully and placed at the request paths according to the actual delays of data paths. As a

result, the delays on the request paths match or exceed the delays taken by the

combinational blocks.

In DI circuits, as all data are encoded with a DI code, the combinational logic circuits

cannot be designed in a similar way to the bundled data circuits based on single-rail.

Delay Insensitive Minterm Synthesis (DIMS) [27] was invented by David Muller to

implement DI logic circuits and in Fig 16, a dual-rail AND gate is illustrated. The

combinational logic is transparent to the handshake circuits, which means that the logic

circuit does not need to generate an acknowledge signal. The combinational circuits must

wait for all inputs valid however to avoid a premature value at its output, similarly it

cannot de-assert its output until all inputs become low. In principle, each required

minterm of input variables is output by a C-gate and the final logic output is formed by

ORing all the required minterms from their corresponding C-gates, as shown in Fig 17.

This synchronization in the combinational blocks makes it much easier to implement the

join and merge structure for dual-rail circuits. Note that DIMS is also applicable for

designing 4-phase DI circuits with 1-of-4 or any other one-hot code.

32

Fig 17 Dual-rail DIMS AND gate [26]

The DIMS approach generates an inefficient solution to DI logic circuits though the

implementation based on DIMS of a complex logic block can be optimized to save logic

gates. Other approaches, such as Spacer Conventional Logic (NCL) [28], are available to

reduce the implementation complexity.

2.4 ASYNCHRONOUS PIPELINES

2.4.1 MULLER PIPELINE

The Muller pipeline, invented by David Muller in 1959, implements a handshaking

pipeline with Muller C-gates. Fig 18 illustrates a Muller pipeline structure, which forms

the foundation of other asynchronous pipelines based on both 2-phase and 4-phase

protocols.

C

C[i+2
]

C

C[i+1
]

C

C[i]

C

C[i-
1]

ACK ACK ACK ACK

REQ REQ REQ REQ

ACK

REQ

ACK

REQ

LEFT

ACK

REQ

RIGHT

Fig 18 Muller pipeline [26]

In the pipeline chain all the C-gate outputs are initially low when a valid request signal

arrives at the left first C-gate; the first C-gate produces a valid value, since the other input

is already high, as a valid request to the successive C-gate. The valid value, also called

token, propagates through the pipeline chain to the right environment. Meanwhile, the

asserted output of each C-gate has two implications; firstly it indicates a successful

33

reception of the request token to the left environment; secondly it can be used to turn on,

or off, the data paths.

The elegance existing in the Muller pipeline is not only the symmetrical and regular

layout but also the delay-insensitive property. The throughput of the pipeline is

determined by the actual delay of its gates and wires; if the right environment is unable to

respond to the arriving token the pipeline will eventually stall the left environment.

Finally, the Muller pipeline works perfectly regardless of the protocols used in the control

and data path. The difference in implementations for 4-phase and 2-phase is the

interpretations of the request and acknowledge signals applied for handshaking and

controlling data paths. In 4-phase pipelines those control signals are interpreted as level

signals while they are transition signals in 2-phase pipelines. The following sections

introduce some pipelines which are variants of the Muller pipeline.

2.4.2 2-PHASE BUNDLED DATA PIPELINE – MICROPIPELINE

Fig 19 2-phase bundled data pipeline – Micropipeline [26]

The Micropipeline, proposed by Ivan Sutherland in 1980s [16], is an implementation of

2-phase bundled data pipelines, derived from the Muller pipeline. Its handshake circuits,

shown in Fig 19, adopt 2-phase protocol transitions to interpret all control signals. A

specific latch is designed as a data storage element in the data channel; the two input

control signals always alternate between Capture and Pass. It is assumed that the latches

are transparent initially, permitting new input data pass through them and to appear at the

outputs; when the capture signal is flipped by a valid request signal, the latches stop the

CC

ACK ACK

REQ REQ

ACK

REQ

LATCH LATCH

C P C P

C

LATCH

C P

ACK

REQ

34

outputs from updating with any change at the inputs; when the pass signal changes its

level due to a valid acknowledge signal, the latches change back to be transparent for new

incoming data. In other words, the latches are transparent when C=P while they hold

without updating output data when C≠P.

Before the pipeline starts to transfer data, all the C-gate outputs are low. The control input

ports C and P of all latches are equivalent which forces them to be transparent, indicating

that the latches are free to sample new data. In the bundled data pipeline, it is assumed

that the delay of every request signal matches (is larger than) the delay on its

corresponding data path. Once the data and the request signal are issued from the left

environment to the first C-gate and latch, the C-gate is ready to assert its output and flip

the C port of the latch to high. The latches are then not able to update their outputs but

hold their values. The matched request delay at the control channel guarantees that data

are captured correctly. In the meantime, a valid ACK signal is issued back to the left

environment by the first pipeline stage, indicating that the first pipeline stage has

succeeded in capturing the data.

Next, the request signal output from the first C-gate propagates to the middle pipeline

stage and stops it sampling from the data channel; meanwhile the output of the middle

C-gate also issues a valid ack signal to the C-gate in the first pipeline stage and then flips

the control signal P to force those latches back to be transparent again.

The 2-phase Micropipeline described above does not involve any data processing.

Similar to the Muller pipeline, in Micropipelines, combinational blocks can be inserted

between two adjacent pipelines stages to implement complex applications. Note that

matched request delays need to be increased to balance the wire delays in the data channel

as well as the delay incurred by the combinational blocks. The 2-phase Micropipeline has

been implemented in Amulet1 [19], demonstrating the feasibility to design complex

asynchronous systems.

35

2.4.3 A SIMPLIFIED 2-PHASE BUNDLED DATA PIPELINE – MOUSETRAP

Mousetrap was proposed by Montek Singh and Steven M. Nowick in 2001 [17], as a

simplified 2-phase pipeline. The simplifications are twofold: firstly the control circuits

are significantly simplified by using XNOR gates to generate enable signals for the data

channel; secondly conventional transparent latches are used as the storage units instead of

complex latches supporting capture and pass modes in Sutherland‟s Micropipelines.

Fig 20 Mousetrap pipeline [17]

Fig 21 Mousetrap pipeline with data processing blocks [17]

In general there are three operations taking place in the pipeline. The request and data

signals propagate through the latches, for instance in stage N, to the subsequent stage; the

output signal doneN sends back the acknowledge signal to the previous stage N-1 and

also inactivates the XNOR output to disable the latches; a valid acknowledge from the

subsequent stage (N+1) re-activates the XNOR output and triggers the latches to process

the next data. The control circuits work with a 2-phase protocol, which means that all

control signals are based on transitions including the „req‟ and „ack‟ signals. However the

36

transparent latches are not designed for transition signalling and XNOR gates in the

control circuits act as 2-phase to 4-phase converters and produce 4-phase enable signals

to determine when to capture input data by comparing the two 2-phase completion

signals, for instance doneN and ackN.

Fig 20 and Fig 21 depict the architectures without and with processing blocks. The

simplified circuits considerably improve the performance of the pipelines. These

pipelines work correctly only under some timing assumptions; for example, at each stage

the output request signal must arrive at the XNOR gate quickly enough to disable the

latch before new data arrive at its input; this is not difficult to meet with a reasonable

layout.

2.4.4 4-PHASE BUNDLED DATA PIPELINE

Fig 22 shows a 4-phase bundled data pipeline where the control circuits use a 4-phase

asynchronous protocol; matched delays are required on the request signal path to

guarantee correct operations between the control path and the corresponding data path,

see Fig 23.

Fig 22 4-phase bundled data pipeline [26]

As illustrated in Fig 22, compared with the Muller pipeline, the 4-phase bundled data

pipeline employs transparent latches as data storage units, where the EN ports connect

directly to the sampled request signals. Valid request signals arriving at the C-gate inputs

drive those EN ports high and thus allow data to propagate through the latches; the

sampled request signal issues Ack signals back to their previous stages to indicate

successful reception of requests; valid Ack signals from their subsequent stages disable

37

the latches, along with the deactivated request signals. It is distinct from 2-phase bundled

pipeline in that after each data transfer a reset phase follows to clear requests on the

control path.

Fig 23 4-phase bundled pipeline with processing blocks [26]

The 4-phase pipeline provides a relatively simple and feasible solution for bundled data

transfers. Compared to the Sutherland‟s Micropipeline, it avoids the complex latches and

instead uses conventional transparent latches, reducing design difficulties; it mitigates the

performance loss due to the 4-phase handshake protocol where only half of the pipeline

stages are full and significantly minimizes the total area overhead [20, 29].

2.4.5 4-PHASE DUAL-RAIL PIPELINE

All the pipelines introduced in the above sections carry bundled data, also called

single-rail data, which do not use any specific encoding methods; each data bit represents

one bit of information. In asynchronous circuit designs, data encoding is essential to

implement DI or QDI circuits. The most common one used is dual-rail or 1-of-2 data, in

which 2 bit wires are encoded to carry one bit information.

At the cost of lower wire utilization compared to single-rail bundled data, we gain a

simpler control circuit as a dedicated request signal is unnecessary and the data

themselves are able to indicate their data arrival. Fig 24 illustrates a 3-stage dual-rail

pipeline in which, unlike the bundled data pipelines, the control circuits are mixed with

the data storage circuits. Each Ack signal emerges directly from the completion signal of

dual-rail data at each stage, while the enable ports of each storage element is the inversion

of the Ack signal from the subsequent stage. It can be seen that the completion function

for dual-rail data is fulfilled by a simple OR gate and the storage elements are Muller

38

C-gates rather than latches as used for bundled data pipeline. The biggest advantage of

the dual-rail pipeline is the property of delay insensitivity, free of delay matching issues.

Fig 24 4-phase dual-rail pipeline [26]

A 4-phase dual-rail pipeline stage, 4-bits wide, is depicted in Fig 25. It can be seen that

the completion circuits become more complicated as the data width increases. It should

be noted that dual-rail code is just the simplest delay-insensitive code and completion

detection circuits become even more complex and slower when other more complex DI

encoding methods are applied on the DI pipelines. The Dual-rail pipeline is therefore the

simplest DI pipeline.

C

C

C

C

+

+

C

C

C

C

C

+

+

C

C

C

C

C

+

+

C

d0.t

d0.f

d3.t

d3.f

Ack

d0.t

d0.f

d3.t

d3.f

Ack

CD
CD

CD

Fig 25 4-bit wide 4-phase dual-rail pipeline

2.5 ASYNCHRONOUS ON-CHIP SYSTEMS

2.5.1 GLOBAL ASYNCHRONOUS LOCAL SYNCHRONOUS (GALS)

Currently SoC designs are dominated by intellectual property (IP) based solutions.

Circuit implementations integrate more and more modules to offer more features on

39

single chips, resulting in lower cost, better power efficiency and higher performance.

Apart from meeting the market demand, the increased integration capability of advanced

VLSI technology leads to the rapidly growing complexity of SoCs. To minimize

development cycles, it is critical to reuse commercially available modules in designs. A

variety of IP modules are available in the market, such as microprocessors, memory

controllers, DSP blocks and communication processing engines. Reusing and

incorporating these silicon proven modules into a new complex SoC design can

significantly reduce the design cycle of the product. The design emphasis starts to move

from individual module designs with simple system architectures into global interconnect

designs bridging the regional computational modules, storage blocks and specific

purpose processors.

Despite the benefits of low power and low EMI, asynchronous circuits have not competed

well with their synchronous equivalents. This is because, typically, they have a lower

performance and, due to lack of CAD tool support, often take longer to design. There is

often, also, an area premium. However, partial rather than full asynchrony in circuit

design may bring benefits from asynchronous solutions to final designs. Global

asynchronous communication along with locally synchronous modules [30] was

proposed as a novel design methodology to address challenges in modern large scale SoC

designs. By contrast to fully asynchronous solutions, asynchronous network interconnect

reduces the design difficulties and, using locally synchronous modules, significantly

reduce dependency of entire designs on the required commercial tools for designing

asynchronous circuits.

An asynchronous global communication architecture, provided as intellectual property,

supplies a flexible and reliable solution to accommodate all kinds of regional blocks,

regardless of the target technology and frequency differences of the integrated modules.

Global asynchronous interconnect is a promising approach. Unlike the globally

synchronous interconnect, the timing of an asynchronous interconnect is naturally elastic.

Low power is an important design goal in modern SoCs, which demands some modules

operate at lower clock rates to save the overall power. The elastic property supports the

40

integration of these multiple clock systems without extra design effort. This approach

also eases the back-end layout as the timing closure issues for synchronous global

interconnect usually require many design iterations.

2.5.2 NETWORK ON-CHIP (NOC) AND ASYNCHRONOUS NOC

The concept of Network-on-chip is proposed [31-33] to mainly address two issues faced

in modern bus-based SoC designs: long delay and limited throughput in global

communication as the system integration increases. The trend of global wire delays as the

technology continues to shrink is shown in Fig 26. The delays incurred at local wires and

gates are scaling down, benefiting from the shrunk technology; the global wire delays

conversely become longer. Consequently the increased global wire delays necessitate

wire buffering and pipelining to improve throughput over global communication

infrastructures; the growing variance between local and global wire delays requires novel

communication architectures with better throughput than conventional on-chip buses.

Finally, highly integrated SoCs dominated by global communications lead to a growing

demand for higher communication performance. Compared to the conventional on-chip

shared bus protocols, a packet switching on-chip network is characterized by better

resistance to varied delay, more efficient wire utilization and higher parallelism [31-33].

A number of prototypes have been demonstrated, such as SPIN [31, 34], Aethereal [35],

Xpipes [36]and Nostrum [37].

41

Fig 26 Delay time trend in shrinking technology [38]

Asynchronous NoC, as a special example of a GALS system supportive of a

communication architecture based on packet switching, resolves challenges in

synchronous on-chip network design. A few prototype asynchronous NoCs have been

developed to demonstrate potential, such as Mango [39], Faust [39], Chain[18] and

DSPIN [40]. A synchronous NoC and its asynchronous alternative design in the same

FAUST architecture are compared in terms of area cost, throughput, latency and power

consumption. The results show that an asynchronous NoC performs better in power

efficiency in Table 4, but at higher area.

Table 4 Power consumption in ANOC and DSPIN [40]

Commercial asynchronous NoC solutions, such as CHAINworks, have been available in

the market, facilitating industrial development NoC design based on asynchronous

interconnect.

42

2.6 GLOBAL DI COMMUNICATION

Although DI styles, such as dual-rail, can lead to complex processing circuit, they have

some characteristics which are attractive in communication. Because they are self-timed,

they can be laid out without worrying about wire delays; if required buffers or repeaters

can be added locally to improve throughput. However they do use more wires than a

pure binary encoding, although careful code selection can minimize the wire utilization;

the high area overhead normal in DI circuits may not be prominent in pipeline dominant

designs of communication infrastructure.

Designing the asynchronous interconnect emphasize how to efficiently improve the

communication throughput as DI encoding schemes decrease the wire usage compared to

single-rail encoding. In the following sections, a DI communication fabric based on

several DI codes will be introduced, in addition to the dual-rail pipelines already

described.

2.6.1 1-OF-4 PIPELINE

The pipeline using 4-phase 1-of-4 protocol resembles the dual-rail pipeline, and the

completion detection circuits are also similar. In Fig 27, 4-input OR gates are employed

to detect completion of 1-of-4 symbols.

CCCC C

d0[3:0]

d2[3:0]
d1[3:0]

ack1

ack2 ack3

Fig 27 4-phase 1-of-4 pipeline

The code rate, for evaluating the code efficiency, is defined as
N

M
R 2l og
 , where N is

the number of rails and M is the number of represented data values. 1-of-4 and dual-rail

43

have an equivalent code rate 0.5 in Table 5. 1-of-n codes (n>4) have lower code rates,

which means that the set of wires carries proportionately less information. Table 5 gives

an example for 8 wires, where 1-of-8 code has a code rate 3/8 and is only able to carry 3

bits of information less than 4 bits for dual-rail and 1-of-4 codes. Therefore these codes

with high rail number are rarely used in practice.

1-of-n codes Dual-rail 1-of-4 1-of-8

Information (bits) 4 4 3

Code rate 1/2 1/2 3/8

Table 5 1-of-n codes

Widening a pipeline is straightforward. Fig 28 shows a 12-bit wide pipeline is built with

multiple groups. The completion signals for each group is wired into a C-gate to generate

an acknowledge signal for each stage of the pipeline. The completion detection scheme

ensures that all data channels at a stage receive symbols before an acknowledge signal is

sent back the prior stage so that all transferred data on all channels are well ordered.

CCCC C

d0[3:0]

d2[3:0]

ack1
ack2 ack3

CCCC C

d0[7:4]

d2[7:4]

CCCC C

C C

d0[11:8]

d2[11:8]

Fig 28 12 bit 1-of-4 pipeline

2.6.2 M-OF-N PIPELINE

M-of-n codes with higher code rate can be used to increase the throughput of on-chip

communication channels. In an m-of-n code, there are m „1‟s out of n wires to represent a

symbol.

44

Table 6 Properties of DI-codes and DIMS implementations [41]

There are a few factors which affect the selection of a DI code in communication fabrics.

First the code rate directly determines the communication efficiency in terms of wire

usage. In Table 6, the code rate for the codes 2-of-4, 2-of-7 and 3-of-6 are all greater than

0.5, which means that they all have better wire usage than dual-rail and 1-of-4 code. To

carry 8-bit data, for instance, dual-rail and 1-of-4 codes both need 16 wires, while 3-of-6

code requires only 12 and 2-of-7 code requires 14. Power consumption is the second

concern for selecting a DI code and the number of transition per bit reflects the dynamic

power consumption incurred by DI codes. In the previous example, dual-rail needs 8

transitions to carry 8-bit data while 4 transitions for 1-of-4 code and 2-of-7 code and 6 for

3-of-6 code.

The third factor is the complexity of completion detection implementation and also the

encoding and decoding between different DI codes. The completion detection circuits are

generally part of the acknowledge signal path, critical in the cycle time for completing a

data transfer; the encoder and decoder circuits are embedded in the forward path of a data

channel if conversion logic is needed between dual-rail and the other intended DI code.

The delays caused by these circuits may not be negligible to the performance of the final

system. For example, Berger code in Table 6 with an ideally maximum code rate is

actually impractical due to the extremely high cost for completion detector, encoder and

decoder circuits.

45

It can be seen that the codes 2-of-7 and 3-of-6 are a reasonable compromise of all the

factors, including code efficiency and the complexity of the completion detector, encoder

and decoder, thus sensible for DI interconnect implementations. These two codes will be

described in greater detail in the chapter 4.

2.7 SUMMARY

This chapter introduced fundamental concepts in asynchronous circuit design, such as

handshake protocols and data encoding, and also some commonly used asynchronous

elements. Several 2-phase and 4-phase pipelines were discussed, along with their

respective handshake protocols. Pipelines help to shorten the response time of an

asynchronous channel and improve the throughput; thus pipelines play a important role

in on-chip global interconnect. Delay-insensitive pipelines are the most attractive

implementation due to their tolerance to unbounded delays. These concepts form the

basis of designing global DI communication.

Chapter 4 will introduce the implementation of off-chip interfaces, which are based on

on-chip DI pipelines of 4-phase 3-of-6 code while the off-chip channels use 2-phase

2-of-7 code.

46

Chapter 3 ASYNCHRONOUS NETWORK-ON-CHIP –

SPINNAKER

In this chapter, the motivations of the SpiNNaker project are introduced, followed by the

organization of the SpiNNaker chip, including processor sub-systems, on-chip system

and communication fabrics. Finally, we describe the application of a Network-on-chip

based on asynchronous interconnect to a Spinnaker chip.

3.1 SPINNAKER - HARDWARE SIMULATION PLATFORM FOR SPIKING

NEURON NETWORK

Fig 29 SpiNNaker system topology

A spiking neural network is the third generation of artificial neural networks which has

incorporated timing in addition to neuron and synaptic states to simulate biological neural

networks more precisely. SpiNNaker is an architecture intended for real-time simulation

of Spiking Neuron Network (SNN) [42, 43]; its objective is to provide a vehicle which

can simulate many neurons with massive interconnectivity. To do this the high-speed of

electronics is used to map many neurons onto a smaller number of microprocessors and

47

multiplex all communications across a fast, packet switched network. Because they

simulate neuron firings the packets can be short – the only information conveyed is the

firing time at a millisecond resolution.

The mesh topology provides a solution to large-scale flexible and scalable networks. Fig

29 illustrates 9 nodes in the SpiNNaker network system, each of which is connected by

six-directional off-chip links. The entire SpiNNaker network comprises an on-chip

sub-network and an on-PCB-board or off-chip network. Each on-chip network, as a

network node in the on-board network, is a custom chip (with SDRAM support)

containing twenty micro-processors to map up to a thousand neurons each and perform

neural computation.

Fig 30 Organization of a SpiNNaker chip

Fig 30 shows the organization of a SpiNNaker chip primarily containing processor

subsystems, a communication on-chip network, and a system on-chip network. The

communication NoC is at the top, receiving packets from input links, routing them with

48

an on-chip router and sending them out to output links or internal processors. Twenty

processors accommodating neuron models, called fascicle processors, process neuron

events, update neuron states and synaptic data and fire new packets out. Each processor

can access, not only the on-chip communication network via a communication controller,

but also an off-chip SDRAM through the on-chip system network. The system network

allows all twenty processor cores to share on-chip peripherals, such as system RAM,

system ROM and the system controller. In addition to fascicle processors, an on-chip

processor is nominated to perform system management tasks during the system

configuration.

3.2 MICRO-PROCESSOR SUB-SYSTEM

Fig 31 Processor sub-system

Each processor subsystem employs an ARM processor core ARM968E-S, coupled with a

32KB Instruction Tightly Coupled Memory (ITCM) and 64KB Data Tightly Coupled

Memory (DTCM). In addition to the timer and interrupt controller, there are two other

critical modules: a communication controller and a DMA controller, which provide

49

accesses to the external environment as shown in Fig 31. All traffic data from or to the

Comms NoC are transferred over the bus AHB1, while the data from or to the system

NoC are carried over a dedicated bus AHB2 which provides a direct access for DTCM to

the external SDRAM.

3.3.1 DMA CONTROLLER

For each processor subsystem, there exists a demanding requirement for the

communication between the monitor or fascicle processors and the peripheral

components such as system RAM, system ROM and an off-chip SDRAM.

Communications between fascicle processors and the off-chip SDRAM occur frequently

and involve movements of large blocks of data while running an application. To improve

communication efficiency, a DMA engine alleviates the communication burden of each

processor.

Additional to the DMA operations, a bridge channel is included to provide

communication access between local processors and the peripheral components. For

instance, the monitor processor needs to access the system RAM to perform monitoring

programs; each processor reads the boot-up code from the system ROM after reset; via

the Ethernet the monitor processor downloads application program from the remote host

computer. A configurable Cyclic Redundant Check (CRC) scheme is supported to check

and even correct any corrupted data.

3.3.2 COMMUNICATION CONTROLLER

A communication controller, as an AHB device, is included in each processor node and is

responsible for transmitting and receiving packets to or from the local router.

To transmit packets, the associated processor first issues a payload into the write data

register and then configures the transmission control register via the AHB slave interface

to initiate a write DMA operation. Once the operation is finished or any exceptional state

happens, an interrupt request will be triggered to inform the processor.

50

A receiver is also incorporated in the communication controller to handle incoming

packets from the router and to pass them into a processor. The receiver unit checks parity

and framing errors for each input packet. The processor will be informed by means of

three distinct interrupts, packet received successfully, packet received with a parity errors

and packet received with a framing error.

3.3 COMMUNICATION IN MANY CORE SYSTEMS OF SPINNAKER

3.3.1 ON-CHIP SHARED BUS ARCHITECTURE

On-chip communication infrastructures have evolved rapidly to meet growing demand

due to the increase in on-chip integrated modules and system function. In this section, the

on-chip bus evolution is reviewed by taking the example of the ARM Advanced

Microcontroller Bus Architecture (AMBA) [44].

Given a simple scenario, the AHB Lite protocol is suitable for communication between a

single master and multiple slaves. The benefit is that no arbitration is required and

therefore no consequential delay penalty. When the scale of an integrated systems grows,

for instance one containing multiple masters, to handle multiple bus requests an arbiter is

needed to grant a particular master a request access to the bus. An AHB master obtaining

an “access grant” occupies the bus however and can not release the bus to other masters

until the outstanding transaction is completed some later time. In particular, for long

length bursts, the bus will not be available to any other bus masters which are queuing for

bus grants. Therefore in a system which has only a few bus masters, conventional bus

architectures offer a simple solution to meet the on-chip communication requirement. As

the number of bus masters increases, the average response time for a bus request becomes

worse.

51

Fig 32 Multi-layer AHB bus architecture

A multiple layer bus architecture is proposed to support parallel transactions occurring on

different master-slave pairs and to provide a higher on-chip communication bandwidth.

The architecture outlined in Fig 32 shows an interconnect matrix and the topology for the

communication of multiple masters and slaves, where the interconnect is built with

multiplexers. Compared to a single layer AHB bus, the multi-layer AHB bus architecture

allows parallelism of transactions which simultaneously occur at the different pairs of

master and slave. Thus the increased parallelism in this architecture is capable of

achieving higher throughput in multiple masters systems. However an arbitration scheme

still needs to be implemented for a slave device shared by multiple masters, with a fixed

or dynamic priority. Furthermore, as the number of the masters and slaves continues to

increase, the interconnect implementing the access paths between masters and slaves

becomes significantly complicated. Using a mixed architecture of AHB Lite and multiple

layer architecture, as shown in Fig 33, is a technique to remove unnecessary shared paths

and increase parallelism of the overall system so as to minimize the interconnect

complexity and to improve the bandwidth performance.

mux

mux

mux

mux

Slave

0

Slave

3

Slave

1

Slave

2

dec

dec

dec

layer 0

layer 1

layer 2
Master

2

Master

0

Master

1

Interconnect Matrix

52

Fig 33 Mixed implementation of AHB and AHB Lite bus

Shared bus architectures have common limitations, such as limited transaction

parallelism and pipelines. The parallelism of transactions is increased in shared buses by

implementing multiple layers in which each layer allows a transaction if there is no access

contention in the connected slaves. Additionally, the number of pipeline registers within a

transaction is limiting as slaves are normally required to respond to the masters within a

clock cycle. Even though a retry or split feature is supported, slaves are still unavailable

for other requested masters. As the number of masters and slaves grows significantly,

traditional bus architectures struggle to meet the communication throughput

requirements.

To overcome the limits existing in conventional on-chip buses, ARM eXtendable

Interface (AXI) [44]was initiated in 2003. AXI defines an interface between masters and

slaves, the interface between masters and the interconnect and the interface between the

interconnect and the slaves. It significantly improves the bandwidth by splitting

transactions into independent channels and by supporting multiple-outstanding and

out-of-order transactions.

A concept of channels is adopted in AXI to divide the interconnect between a master and

slave pair into five independent handshake channels, each of which employs a pair of

Master 0

Master2

Master 3

Slave 4

Master 1

Slave 3

Interconnect

Matrix

Slave 0

Slave 1

Slave 2

53

handshaking signals VALID and READY. The five are write address, write data, write

response, read address and read data channels. The five independent channels split one

write transaction into three sub-transactions, write address, write data and write response,

and split one read transaction into two sub-transactions, read address and read data. Four

bit IDs have to be used to identify write and read transactions.

Decoupling the dependencies of address, data and response phases within a transaction

enable an arbitrary number of pipelines between these phases. Furthermore, these phases

as atomic sub-transactions are independent, where there is no fixed number of pipelines

required between them. For example, after receiving the read address the receiver can

send back the requested data at any time when ready. In the AHB protocol, an address

phase must be followed by a read data phase even though a few wait states can be inserted

to request more waiting cycles. Finally from an interconnect perspective, the fine grained

operations can significantly increase the interconnect utilization as the occupying time for

each transaction is effectively reduced.

The throughput of communication infrastructures can be further improved by reinforcing

access capabilities of both master and slave devices. Supporting multiple-outstanding

transactions allows a single master to initiate multiple write or read transactions,

regardless of whether earlier transactions have completed or not. If the link to a slave is

busy, a master is still able to issue transactions to access other slaves. Moreover,

out-of-order transactions allow a slave to respond to the transactions initiated by different

masters in any order regardless of their arrival order. If a slave cannot provide read data to

a master for some reason, it will not be blocked to respond to other masters with available

data.

AXI allows significantly more parallelism and pipeline stages than traditional shared

buses and significantly increases the utilization of interconnect so as to improve the

throughput in a complex on-chip communication system. Additionally it also reduces the

integration difficulty of a large number of devices by providing a flexible interconnect.

Therefore, in a SpiNNaker system AXI is employed to maximally provide access for

54

twenty on-chip cores to off-chip SDRAM, where the interconnect requires a high overall

throughput.

3.3.2 SYSTEM NOC - CHAIN

CHAIN [18] is an on-chip interconnection technology developed by Silistix. On a

SpiNNaker chip there are two independent CHAIN networks. The first is used to connect

processor nodes to shared resources, primarily the SDRAM but also to other system

components as shown in Fig 34. The other CHAIN network is the communication NoC

which is used for packet traffic between processors. These packets are switched to their

destination by the router, some „spare‟ links on the router lead off-chip to allow the

SpiNNaker nodes to be networked into the final system. These GALS architectures based

on CHAIN rather than a shared bus allow easy system integration due to no timing

closure issues.

Fig 34 System NoC architecture [45]

Based on a delay-insensitive design methodology CHAIN does not rely on any timing

assumption. It makes use of 4-phase 3-of-6 DI code to carry 4-bit data per symbol. The

CHAIN infrastructure adopts a DI design methodology to implement adapters, routers,

arbiters and so forth. Thus the system NoC characterizes insensitivity to delay variances

due to the nature of DI circuits.

55

The system NoC comprises two channels, a command link and a response link [45]. The

command link carries the write or read command packets issued by processors to slaves

such as the off-chip SDRAM and other system components, while the response link is

responsible for carrying read data or write responses from the targets back to those

initiators. Between the NoC fabric and the initiators or the NoC fabric and the targets,

adapters need to be fitted to convert the protocols between the AHB/AXI bus

specification and the CHAIN protocol.

Additionally, the SDRAM controller, as an AXI slave, supports multiple outstanding

transactions, which helps to implement quality of service (QoS) over the system NoC. In

fact the controller regards the access requests differently. The access requests to SDRAM

of the monitor processor are permitted to have priority over other requests. It means that

the test and debug requests from the monitor processor can be responded to very quickly

with QoS support.

3.3.3 COMMUNICATIONS NOC

The communications NoC (Comms NoC) [46] is the fabric used to transfer packets

representing spiking neuron events throughout the whole system. The Comms NoC fabric

on each SpiNNaker chip uses six pairs of transmitters and receivers to communicate with

its neighbouring chips.

There are three types of packets specified in Comms NoC. The first is the multicast

packet as shown in Fig 35, which carries neural events at the application level; it

comprises three fields: routing key, control bits and an optional payload. The control bits

include packet type, emergency routing and time stamp information, a data payload

indication and error detection (parity) information. The routing key is used by each router

throughout the path to look up the destination.

32 bits 8 bits 32 bits (optional)

routing key control Payload

Fig 35 Multicast packet

56

The second type is the point-to-point packet as shown in Fig 36 which includes the 16-bit

source and destination chip IDs, plus a control byte and an optional 32-bit payload. The

definition of the control part is similar to that in the multicast packets.

16 bits 16 bits 8 bits 32 bits (optional)

Source ID destination ID control Payload

Fig 36 Point-to-point packet

The last one is the nearest-neighbour packet as shown in Fig 37. The format contains

32-bit address/operation, 8-bit control information and an optional 32-bit payload.

32 bits 8 bits 32 bits (optional)

Address/operation control Payload

Fig 37 Nearest-neighbour packet

There are a few features implemented in the Comms NoC. The parity bit is employed to

protect all the packets; a sequence code is used to synchronize the data during the transfer

of point-to-point packets; for nearest-neighbour packets, more detailed route information

is specified in the control part for access to one, or multiple, local or neighbouring,

monitor processors or system NoC resources.

3.3.4 ROUTER

A router is built into each SpiNNaker multi-processor chip to store the incoming packets

and forward them to on-chip or off-chip destinations. There are four routing algorithms

supported in the router, multi-cast, nearest-neighbour, point-to-point and emergency

routing. Multi-cast routing is specifically designed for spiking neuron event propagation

[47]; if any multi-cast packet does not match an entry in the multi-cast routing table, a

default routing entry will be applied instead. The nearest-neighbour routing allows each

SpiNNaker chip to be accessible to its neighbours and therefore supports a flood-fill

algorithm for debugging purpose and loading boot code into each processor of the system.

The point-to-point routing enables co-ordinated system management within a local

SpiNNaker chip and across the entire system. The emergency routing is to add fault

tolerance to the Comms NoC; when an inter-chip link is dead for some reason or suffers

57

from traffic congestion, an emergency route will be selected by the router to forward the

intended packets.

Fig 38 shows the data flow inside the router, where three pipeline stages are used in the

data flow. In the first stage, an incoming packet is first error checked and then steered into

an appropriate routing engine. In the second stage, the packet key is used to interrogate a

routing table and gets the returned port number. The algorithmic router deals with

nearest-neighbouring routing which does not have a SRAM based looking-up table. The

third primary stage dispatches the packet to the output port defined in a routing table.

Meanwhile, if the buffer in the output port is full for some reason, such as a dead link or

traffic congestion, the packet must use an alternative route from the emergency router.

Fig 38 Router data flow

Several fault tolerance features are supported in the router. First it supports framing error

detection. If a packet is longer than the maximal packet length specified in SpiNNaker, a

framing error will be detected and the packet will be discarded as well. Additionally, the

router also supports a parity check and a failure of parity check may cause a packet drop.

58

Finally, to avoid backlog in on-chip communication, the router has adequate space to

buffer a whole packet and then process.

3.3.5 INPUT AND OUTPUT SECTIONS

The input and output sections, connected to the router inside a multi-processor node,

bridge asynchronous and synchronous domains and complete code conversion and

serialization/de-serialization across the entire SpiNNaker system [46]. The input section

receives packets from either off-chip links or on-chip fascicle processors and passes them

on to the router, while the output section simply includes serializers to pass data to

off-chip links or to on-chip fascicle processor via communication controllers.

The challenge in the input sections is the increasing bandwidth requirement which results

from multiple input data flows for each chip node including six off-chip links and roughly

twenty on-chip links to all the fascicle processors. To prevent the input section from

introducing extra delay through the link, 2-way mergers and bandwidth aggregator (BA)

units are used in the input section. Each buffer-based BA guarantees that the output

bandwidth is twice its input bandwidth. The buffer-based BA is implemented by making

the CHAIN link number of its output twice than that of its input. Additionally, each router

works at 200 MHz and normally within one clock cycle latency can process an incoming

packet 40 or 72 bits wide. Routers operate quickly enough to catch up with the transfer

bandwidth of each link. A tree of three levels of BAs and mergers can provide an input

data flow into the router with a bandwidth eight times greater than that of an off-chip link

and thus each link between two chip nodes can carry data at their maximum rate without

the congestion caused by low on-chip receiving rate.

3.3.6 OFF-CHIP NETWORKING

In principle it is possible to extend CHAIN links between chips; they are DI and therefore

can simply be connected and will function. However there are other constraints:

59

 Off-chip buffering introduces significant extra delay. In a handshake link this results

in lower bandwidth; in particular due to large delays incurred by I/O pads, how to

improve the throughput of off-chip links is a big concern.

 Inter-chip interfacing requires pins which may be in short supply as six

bi-directional off-chip links are required for each chip;

 The power dissipation of off-chip links is orders of magnitude higher; a power

efficient off-chip interconnect may be desired.

 Off-chip noise may affect the off-chip network functionality.

On-chip CHAIN uses 3-of-6 4 phase signalling. This offers a good compromise between

wiring and logic complexity; 4 phase signalling is relatively easy to interface to. However

it may be beneficial to change strategy when taking the links between devices.

3.4 NEURAL TRAFFIC LOAD AT ON- AND OFF-CHIP NETWORK

Understanding how a SNN system is mapped onto a SpiNNaker system is crucial to

estimate the traffic load of the entire communication system. For example, the number of

neurons accommodated in a fascicle processor, the connectivity which defines how much

of the neuron population is connected, and even data structures of a neuron model and

spike event, these parameters all affect the traffic load in the network.

Mapping a SNN into a SpiNNaker system can be considered from three hardware aspects:

computation, storage and communication. The SpiNNaker system is optimized for

implementing large scale spiking neural networks. Each ARM based processor node

computes the value of each neuron‟s membrane action potential at a low frequency and

then determines whether to fire or not; a localised data TCM memory block associated

with every ARM processor stores the data structure of each mapped neuron while an

off-chip SDRAM provides more space to meet the large requirement for the synaptic

weights involved with a SpiNNaker chip; the asynchronous packet switched NoC along

with optimised routers models spike propagation in an event-driven way.

60

As a case study [48], the Izhikevich model [49] was implemented on the SpiNNaker

system for the well balanced compromise of computational efficiency and functional

richness. From the computational point of view, the hardware simulating a neuron has to

handle three primary tasks: extracting synaptic weights, accumulating current for each

stimulus and updating the neuron state to fire spikes if the membrane potential reaches

the firing threshold. Though the SpiNNaker hardware is transparent to the application

level, accomplishing the three tasks through the SpiNNaker architecture, it is optimized

to support the spiking neural network application. In detail, the input packets representing

neural spikes are routed off chip or to local fascicle processors through the multi-cast

routers and communication controllers; these packets, representing the neuron stimulus,

are passed and stored in the DTCM. The application running in a processor retrieves a

few parameters from the DTCM, including the synaptic delay, the ID of the source

fascicle processor and the ID of the pre-synaptic neuron.

Each fascicle processor can accommodate around one thousand neurons, representing the

neuron‟s state using a fixed point format instead of floating point format as the ARM

processors do not include floating point units. 16-bit precision fixed point is employed

with a reasonable hardware cost to maximally approximate to the original Izhikevich

Model implemented with the support of floating point. A data structure defining all the

variables in a neuron model is specified to store its state in the local DTCM.

In addition to the data structure, there is a storage requirement associated with the large

number of connected other neurons in which synaptic weights are used to define the

connection strength. Assuming one processor accommodates one thousand neurons, the

memory demand for storing synaptic weights would be tens of Mega bytes which is far

beyond the size of a local DTCM. Thus an off-chip SDRAM of relatively large volume is

necessary to provide space for synaptic weights. However it should be noted that the

access requirement for the SDRAM is not a significant issue due to the low firing

frequency of each neuron.

The case study shows that the SpiNNaker hardware is capable of supporting the

application of a spiking neural network based on the Izhikevich model. Once a spike has

61

travelled from a pre-synaptic neuron to a given fascicle processor, the communication

controller passes the IDs of the processor and the pre-synaptic neuron where the spike

starts from to the destination fascicle processor in an interrupt mode. A look-up table is

built into the fascicle processor to provide the address in the off-chip SDRAM, at which

all the synaptic weights of the connections with the pre-synaptic neuron are located. As

far as a post-synaptic neuron is concerned, a synaptic weight corresponding to every input

spike is then obtained from the SDRAM through a DMA operation and accumulated to

the neuron stimulus current by the processor. The neuron simulation then decides whether

to fire a spike by calculating its state in the Izhikevich model.

Fig 39 Modelling neuron propagation delay [50]

Another issue is how to model the biological delays taken to propagate spikes over axons

and synapses in hardware. Compared to the millisecond scale of the biological axonal

delays, the propagation time of an on-chip communication channel is actually trivial,

generally less than 1us. To model the real axonal delay, a special 4bit field is specified in

the spike packets [48], ranging from 1ms to 16ms. However the destination fascicle

processor must be capable of distinguishing these simulated axonal delays and treat the

spikes differently. A 16 entry circular array is built for 16 delays; spikes with different

delays add their synaptic weights to the appropriate delay bins in Fig 39. The last task

updating neurons‟ states is not initiated immediately once packets arrive; instead each

neuron‟s state is updated at a frequency of the real neurons firing. The accumulated

current for all input stimuli, really arriving at the current simulation time, are passed

along with the previous state parameters to the two Izhikevich equations. The

62

computation result will determine if the neuron fires a spike to its output port. The Global

communication infrastructure in SpiNNaker can provide an approximate simulation to a

spiking neural network based on the Izhikevich model. However, it is quite difficult for a

hardware system to produce exactly the same model as the biological neural system.

More discussions would be beyond the scope of this thesis.

The required throughput for the DMA channel via the system NoC depends on the

number of pre-synaptic neurons which are connected to all the neurons in a given

SpiNNaker chip. For example, each neuron in a fascicle processor may have on average

1000 connections with pre-synaptic neurons, all the neurons fire at 10Hz and 16 fascicle

processors work in a chip; hence the throughput for its off-chip SDRAM is 1000 Neurons

x 1000 connections x 10Hz x 16 processors x 2Bytes = 320 MB/s. In the SpiNNaker

system, the associated off-chip SDRAMs have more than 1GB/s bandwidth each, which

has a potential to support more than 100 dendrite connections per neuron.

A pre-synaptic neuron may be connected to a number of other neurons within a fascicle

processor. This does not help to decrease the required throughput of access to SDRAMs,

but it indicates that the throughput requirement for the on-chip Comms NoC is reduced

significantly. Based on the previous calculation, similarly we have a rough estimation of

traffic load at on-chip Comms NoC, 1000Neurons x 100connections x 100Hz = 10M/s,

around 10M spikes for each fascicle processor, namely 40M Bytes per second assuming 4

Bytes for each spike packet payload. If a pre-synaptic neuron is connected to 10

post-synaptic neurons, the total traffic load for a fascicle processor is reduced to 4M

Bytes per second. We can estimate the outgoing spike packets, 1000Neurons x

10connections x 100Hz x 8Bytes = 8MB/s. Thus each fascicle processor has to process all

incoming and outgoing packets: 4+8=12MB/s, which also is the work load for each

associated communication controller.

Finally, we need to look at the traffic load for each SpiNNaker chip, particularly for the

embedded router. Assuming N chip nodes are implemented in the entire system network,

the total generated packets of the system is N nodes x 16 processors x 1000 neurons x

100Hz x 8Bytes = N x 12.8 MB/s. We need to make an assumption on the average

63

number of hops for spike packets. Given a 100x100 network which can accommodate up

to 160 million neurons, we take 50 as the average number of hops. So the total spike

packets in the entire network would be N x 12.8 x 50 =N x 640 MB/s. The traffic load for

each node is 640 MB/s; each bidirectional inter-chip link would have 640/6=107MB/s.

Given the network example of a 100x100 scale with 100 dendrite connections and 10

axonal connections, the analysis of traffic loads shows that SpiNNaker system can meet

the throughput requirement for SDRAM, on-chip communication.

This case study, however, has not incorporated any learning rule to update synaptic

weights, which means that the synaptic weights stored in the off-chip SDRAM are

constant without any modification for learning. If applying a learning rule, write-back

operations are required to modify the synaptic weights in the SDRAMs and the

throughput requirement for SDRAM will be increased accordingly. The SpiNNaker

system is still able to implement a complex application implementing a learning

algorithm.

3.5 FAULT TOLERANCE REQUIREMENTS IN SPINNAKER

As a large scale real-time spiking neuron simulation system, a SpiNNaker system not

only supports the integration of many cores in a chip but also can be easily extended to

integrate hundreds of SpiNNaker chips, where a large amount of SRAMs and

communication infrastructure are incorporated. In such a large scale system, a

malfunction in any module is rather difficult to identify and may lead to a serious issue in

the application if the system does not support appropriate fault tolerance.

Thus it is essential to examine the impacts of transient or permanent faults in every part of

the system and then come up with effective fault tolerant techniques to enhance the

robustness of the entire system at the different levels. From the hardware point of view,

on-chip processors, SRAM blocks, communication fabrics and routers are the key

hardware modules which require fault tolerant techniques to ensure correct operations in

the application.

64

Some processor nodes, for instance, may fail in the self-test programs during set-up or

while performing application program at run time due to manufacturing defects or

intermittent faults or even transient glitches. The system monitors need a scheme to

identify the faulty processors or nodes and allocate spare ones to take over their

application functions. One benefit of this scheme is to minimize the interference of faulty

hardware to other functional hardware. The traffic generated by faulty processors, for

instance, unnecessarily increases the workload of the communication infrastructure and

may considerably cause negative influence on the spiking neural network application.

The fault isolation and resource re-allocation scheme make the faulty hardware invisible

to the application and significantly reduce the fault tolerance requirement for the

application system.

Besides micro-processors, on-chip SRAMs are another example of critical hardware

which needs fault tolerant techniques. The ARM968 Processors used in SpiNNaker have

already incorporated an Error Checking and Correcting (ECC) supportive interface to the

Tightly Coupled Memory (TCM). An ECC code, such as Cyclic Redundancy Check

(CRC) or Reed-Solomon Code, can be easily implemented to greatly reduce the influence

of transient errors on the program and data memory of the on-chip processors. Moreover,

off-chip SDRAMs also need fault tolerance schemes to protect their data content, as these

store the synaptic weights and neuron states. Finally, in a large scale network the

topology and routing protocol are also objectives of investigating their fault tolerance to

faults.

Global on-chip communication fabric plays a key role in the SpiNNaker system. Faults

occurring in routers or on- or off-chip links may have a significant impact on the

application. It is critical to provide sufficient fault resistance to identity and isolate faulty

data or hardware modules. A router contains a large volume of SRAM to build their

routing tables. Tolerance for both permanent and transient faults is desired. If failing to

pass the memory tests, for example, a router probably needs to be isolated from the

hardware system. Default routing is supported if a packet does not match any routing

entry. Additionally, to protect the contents of the packets carrying neuron spikes, parity

65

checksum is supported in packets as CRC or other complex ECC may not suit these short

packets. Finally, when an inter-chip link is dead due to defects or transient faults or even

inter-lock at the software level, this typical link issue needs to be addressed at the lowest

cost. In the SpiNNaker system, emergency routing is implemented to address this issue.

The packets are forwarded to the neighbouring nodes, where their routers will route them

to the destination with their routing knowledge.

Spiking neural network systems are naturally fault tolerant systems, where a small

number of corrupted or lost spikes do not considerably affect the behaviour of the

massive neural system at one time. From the application point of view, this fault tolerant

property is helpful to reduce the requirements of the entire system for fault tolerance.

Conventionally a check and retransmission scheme is employed to minimize the impact

of corrupted data or packets on the hardware system. However, it is unnecessary to apply

a check and retransmission scheme in SpiNNaker as the neural application has a natural

fault tolerance.

However, in this thesis we concentrate on the asynchronous Communication network,

particularly on the off-chip interface circuits. There are several reasons to investigate the

fault tolerance at these particular circuits. First of all, the interface circuit is the weak part

of the entire Comms NoC as it involves relatively complex logic circuits for conversion

of the asynchronous handshake protocols and the adopted on-chip and off-chip DI code

schemes. The circuits rely on some realistic timing assumptions, which degrade the DI

property of asynchronous Comms NoC thus reducing the tolerance to delay variance.

Secondly the interface circuits bridge two neighbouring SpiNNaker chips. Once a fault

causes the circuits to stop working, the detection and correction of the faulty link requires

collaborative work between the two chips, which may be difficult to achieve. A fault

tolerant off-chip interface circuit can avoid the requirement for such collaboration.

Additionally the off-chip interface circuits may be more likely to suffer from faults than

other components as they reside in a noisy environment. Finally, the off-chip interface,

as a relatively independent module, provides an ideal objective, in which we only

66

consider the transient glitches occurring on off-chip wires for fault tolerance

investigation.

3.6 SUMMARY

In this chapter, we introduced the SpiNNaker project from the hardware system‟s view,

including microprocessor sub-ystems and two types of on-chip network, the

communication NoC and the system NoC. In the communication NoC, delay-insensitive

interconnects are employed in SpiNNaker systems to convey neuron spikes within a

single chip or across chips. To improve the on-chip communication performance,

asynchronous communication systems are used to connect all locally-synchronous

modules, such as routers and microprocessors. Additionally, the traffic load was

analyzed to demonstrate that the target hardware system can meet the application

requirements. Finally, the demands for resistance against transient faults in SpiNNaker

were discussed.

The implementation of off-chip interfaces in the communication NoC is given in the

next chapter.

67

Chapter 4 ASYNCHRONOUS INTERCONNECT

IMPLEMENTATION IN SPINNAKER

This chapter describes the off-chip interconnect for SpiNNaker, omitting the fault

tolerance features, which are included in the subsequent chapter. Initial designs for the

transmitter and receiver are given; these form the baseline for the later designs which will

tolerate glitches on the off-chip wires.

4.1 OVERVIEW

The communication infrastructure comprises two parts: on-chip 4-phase or

Return-To-Zero (RTZ) asynchronous interconnects and off-chip 2-phase or

Non-Return-to-Zero (NRZ) interconnects as shown in Fig 40.

TX RX
2-of-7 NRZ

3-of-6 RTZ3-of-6 RTZ

Fig 40 An off-chip link

The first part to address is the pin restriction; there are six off-chip links on each

SpiNNaker chip, each comprising two uni-directional channels. Thus saving a single wire

in a channel reduces the pin count by 12.

The on-chip communication link transmits symbols via a 3-of-6 code with an

accompanying 1-of-3 control channel, where a symbol carried on on- and off-chip links

is a packet flit. Each of those has an independent acknowledgement, thus there are

6+1+3+1=11 wires per channel. These carry 4 bit of information per cycle. In principle a

3-of-6 link can indicate 20 different symbols but some are not used which simplifies the

encode/decode logic. The added parallel information adds one more flit – one of the

1-of-3 codes is unused in SpiNNaker - indicating whether a flit is the last in a particular

packet. In practice, most flits are not EoP but NORMAL symbols which indicate all flits

68

other than the last. The third one is „Padding‟ which is not used in the communication

NoC but is used in the system NoC to indicate non-data flits between normal packets.

Off-chip information is recoded into a single 2-of-7 code which is capable of carrying up

to 21 different symbols. Because this is fewer than the on-chip code capacity which

supports up to 20x2 (20 CHAIN data symbols and 2 CHAIN control symbols) a

compromise is made where an explicit EoP marker is sent as an extra flit. EoPs are „rare‟;

a packet is 40 or 72 bits (10 or 18 flits) so the overhead in terms of cycles is ~10%. Thus

17 of the 21 2-of-7 symbols are employed. Table 7 shows the chosen encodings. Each

off-chip channel therefore uses 8 pins (including its acknowledgement) a saving of two

per channel (neglecting one unused control wire) or saving 24 pins per chip.

The second concern on the interface circuit is the power efficiency and off-chip

communication performance. To increase the power efficiency and throughput of the

communication links, the off-chip interconnect employs the 2-phase asynchronous

protocol as this reduces the number of transitions, saving half of the power consumed by

the RTZ protocol and incurring only half the round-trip cycle delays per symbol.

However, due to the higher complexity of pipelines based on the NRZ protocol, the

on-chip interconnect uses the 4-phase protocol. Moreover, a 3-of-6 encoding is used for

on-chip interconnects and a 2-of-7 code for off-chip interconnects. The two codes are

both capable of transferring 4-bits of data per symbol, with the 3-of-6 code needing one

fewer wire and the 2-of-7 code one fewer transition per symbol.

Admittedly, if the off-chip channels use the same 3-of-6 code a further saving of 12 pins

can be achieved for each chip. However, a 2-of-7 code applied to the off-chip channel

reduces the power consumed by inter-chip communication by 1/3. From the system point

of view, this is a sensible trade-off to achieve higher power-efficiency while 24 pins are

saved by removing on-chip control channels, at the cost of more design complexity. No

research has so far been found on the fault tolerance of similar circuits for converting

between 2-phase and 4-phase protocols. Thus the work described in this thesis may

arouse interest in this type of asynchronous circuit.

69

The off-chip interface connects the on-chip Comms NoC infrastructure with off-chip

wires. Each interface consists of a transmitter and a receiver that implement a

unidirectional off-chip connection. A bidirectional off-chip link is implemented using 2

unidirectional links sending data in opposite directions. This interface performs

conversion between two different DI codes: 3-of-6 code for on-chip communication and

2-of-7 code for off-chip communication, and also conversion of two different

asynchronous protocols: 2-phase and 4-phase handshaking.

Trans-
mitter

d27[6:0]

d36[5:0]

dat_ack

ack2

Receiver

ctrl[2:0]

ctrl_ack

Off-chip d36[5:0]

dat_ack

ctrl[2:0]

ctrl_ack

rout[2:0]

racki

Fig 41 Unidirectional off-chip interface

In Fig 41 the transmitter captures 4-phase data from two inputs, the data channel and the

control (ctrl) channel, and transforms them into 2-phase data over the off-chip tracks. At

the other side, the receiver samples the 2-phase data over the off-chip tracks, changes

them back into 4-phase data and then drives them onto three on-chip outputs: the data

channel, the ctrl channel and the route information channel. The third channel is used to

indicate which port the packet is received from, needed for the subsequent router.

4.2 DI CODES IN SPINNAKER INTERCONNECTS

4.2.1 ON-CHIP DI CODES

The communication NoC adopts an incomplete 3-of-6 code scheme to encode the data

travelling over on-chip asynchronous interconnect. The 3-of-6 code is a particular

example of an m-of-n code, with an encoding capacity:

20
!3!36

!6

symbols, which

offers the capability of encoding 4-bit binary data with 6 wires. Table 7 shows the sixteen

70

3-of-6 symbols used to encode 4-bit data. The remaining 4 symbols are reserved for

future use. A 2-of-7 code has the capacity to represent

21
!2!27

!7

 symbols.

SpiNNaker employs an incomplete 2-of-7 code. Sixteen of 2-of-7 symbols are used to

represent 4-bit data, while one more symbol is needed for End of Packet (EoP) as shown

in Table 7.

Value 2-of-7 code 3-of-6 code

0 001_0001 11_0001

1 001_0010 10_0011

2 001_0100 10_0101

3 001_1000 10_1001

4 010_0001 01_0011

5 010_0010 11_0010

6 010_0100 10_0110

7 010_1000 10_1010

8 100_0001 01_0101

9 100_0010 01_0110

10 100_0100 11_0100

11 100_1000 10_1100

12 000_0011 01_1001

13 000_0110 01_1010

14 000_1100 01_1100

15 000_1001 11_1000

EoP 110_0000 N/A

Table 7 2-of-7 code and 3-of-6 code

Complex DI codes such as 2-of-7 and 3-of-6 codes can be decomposed into combinations

of simpler codes. For instance, the majority of 2-of-7 symbols can be regarded as

combinations of 1-of-3 and 1-of-4 symbols. 4 symbols are a combination of a three-bit

spacer and 2-of-4 symbols; an exception to this is the EoP symbol. Most of the 3-of-6

symbols are combinations of a dual-rail code and a 2-of-4 code while others are a

constant 11 plus a 1-of-4 code. The primary motivation of these decomposition methods

is to generate more efficient completion detection circuits for these incomplete code

71

schemes. In section 4.2.2, the completion detection circuits are reviewed. Furthermore,

decomposing complex codes is useful to map them into other common DI codes such as

dual-rail or one-hot codes.

4.2.2 MEMBERSHIP TEST

Membership test also called completion detection is essential to determine arrival of valid

data symbols. The Delay-Insensitive Minterm Synthesis (DIMS) can be used to

straightforwardly build up the membership test circuits, by ORing the full set of valid

products for any DI code. Fig 42 illustrates a circuit for detecting 2-of-4 symbols.

Accordingly the membership test circuits for 2-of-7 and 3-of-6 codes can be implemented

with this method. It is obvious that 16 C-gates are needed to detect all data symbols for

both codes, which leads to not only the big fanout for input data signals, more expensive

area due to the larger number of C-gates, but also long delays introduced by big gate trees.

C

C

C

C

C

C

b0

b1

b2

b3
completion

Fig 42 Completion detection of 2-of-4 code

To implement efficient membership detection circuits for incomplete 2-of-7 and 3-of-6

codes, a semi-systematic coding method was proposed in [41]. The semi-systematic code

construction methods explicitly result in the more efficient membership circuits for the

two DI codes in Fig 43 and Fig 44. In the new completion detection circuit for incomplete

2-of-7 code, the three NOR gates at the left column detect 1-of-3 code symbols in bits 6, 5

and 4, dual-rail symbols in bits 3 and 1, and bits 2 and 0. In the subsequent three C-gates,

any two detection results of the 1-of-3 symbols and dual-rail symbols are sufficient to

72

produce the valid final completion. This solution only requires three C-gates and four

elementary NOR and NAND gates, offering faster symbol detection with a lower gate

count. Similarly the completion of 3-of-6 code also benefits from the new membership

test circuit based on its semi-systematic method of the incomplete code in Fig 43.

Dual-rail symbols in bits 5 and 4, and 2-of-4 symbols at the lower four bits trigger the

three OR gates to high so that the three C-gates are flipped and the final completion

output becomes true. The other scenario is „11‟ at bits 5 and 4 but 1-of-4 symbols at the

other input data bits. Then the outputs of the AND and OR gates driven by bits 5 and 4

become true, and one of the two OR gates connected to the lower four input bits also

becomes high. Except for the left and top C-gate, all the other subsequent gates are

triggered so that the final completion becomes valid.

C

C

C
b0

b2

b1
b3

b4
b5
b6

completion

Fig 43 Completion detection of 2-of-7 code

b0

b2

b1

b3

b4

b5

C

C

C

completion

Fig 44 Completion detection of 3-of-6 code

4.2.3 CODE SELECTION

Table 8 shows some characteristics of several commonly used DI codes for conveying 4

bits of information over 4-phase pipelines, including the number of wires, transitions and

the implementation costs of membership testing.

73

Codes Wires Transitions
(Data+Ack)

Complexity
(Standard + C gates)

Capacity(bit/wire)

Dual-rail 12 4x4=16 4 + 3 C 4/12 = 1/3=0.3

1-of-4 10 4x2=8 6 + 1 C 4/10 = 2/5=0.4

2-of-7 8 6x1=6 6 + 3 C 4/8=1/2=0.5

3-of-6 7 8x1=8 10 + 3 C 4/7=0.6

Table 8 Code implementation comparisons

On-chip wire resources are limited as on-chip systems are integrated more densely and

the connections increase significantly. In particular, global wires are more expensive

since the increasing RC delays are dominant. Hence, a DI code using relatively fewer

wires is likely to result in a power reduction and performance gain. In Table 8, it is

obvious that 3-of-6 has the highest capacity around 0.6 and the complexity and the

number of transitions are reasonable, while the dual-rail code has the lowest capacity

being half that of the 3-of-6 code. The differences in complexity of these codes are trivial,

compared to the relatively cheap transistors on chip. The number of transitions is another

important factor, which determines the dynamic power dissipation of relevant circuits.

The 2-of-7 codes consumes less power than both 3-of-6 code and 1-of-4 code to transfer

the same amount of data, while dual-rail code is the worst among them in terms of power

or capacity.

In the SpiNNaker chip, we adopt the 3-of-6 code for on-chip communication since it

needs fewer wires so as to reduce the requirement for the area of metal layers. As

pipelines based on the RTZ protocol are easy to implement, the 3-of-6 code combined

with RTZ is the basis of on-chip communication infrastructure. On the other hand, the

NRZ protocol is ideal for off-chip connections as there is no need to implement any

pipelines and other logic designs on off-chip wires. Thus off-chip communication can

achieve better power efficiency by using NRZ protocol, which are mainly consumed by

I/O pads connected with off-chip wires. From the performance perspective, NRZ is more

attractive as there is no need for reset phases and may perform better than RTZ. Hence the

adoption of NRZ rather than RTZ for off-chip channels facilitates to improve off-chip

communication speed.

74

4.2.4 CODE CONVERSION

Considering their simplicity, dual-rail or 1-of-4 codes are usually adopted to implement

logic circuits, while more complex n-of-m codes are usually used to increase

communication efficiency. Due to the use of different codes, conversion circuits are a

common concern. A semi-systematic method has been proposed to map DI symbols to

binary values [41]. Different mappings give different ordering to the DI codes, which

may affect the encoding and decoding complexity. By using the semi-systematic method

to determine the ordering, the complexity of the encoding and decoding circuits can be

significantly reduced. Encoding and decoding of various m-of-n codes from/to dual-rail

or 1-of-4 code can be implemented much more efficiently [41].

In the SpiNNaker chips, two different types of DI code are used for on-chip and off-chip

communication and conversion between the two codes is essential in the interface circuits.

In the transmitter, input data have to be converted from 3-of-6 into 2-of-7 symbols; in the

receiver, 2-of-7 symbols need be converted into 3-of-6 symbols before forwarding onto

the on-chip Communications NoC.

The code conversion between on-chip 3-of-6 and off-chip 2-of-7 codes is unique to

SpiNNaker. There is no need to use dual-rail code as the intermediate code in the

conversion as no dual-rail logic is required between pipeline registers in the off-chip

interfaces. The two codes can be translated directly in some way. All input 2-of-7 or

3-of-6 symbols need to be detected individually, as part of the completion detection

mechanism, and then mapped to the corresponding symbols of output code scheme.

These completion detection signals can be viewed as a 1-of-16 code in the transmitter and

a 1-of-17 code in the receiver, which involves additionally the detection of EoP. The

circuit implementation is detailed in the rest of this chapter.

75

4.3 PHASE CONVERSIONS IN INTERFACE CIRCUITS

The phase conversion circuitry has to be employed to connect together circuits that

operate using 2-phase and 4-phase asynchronous protocols, which exist in different

sections of the communication interconnect. At the transmitter side, the 4-phase 2-of-7

encoded symbols need to be converted into 2-phase symbols before they are pushed onto

the off-chip links. Likewise, at the receiver side, the off-chip 2-phase 2-of-7 symbols

must be transformed into 4-phase ones, which the on-chip interconnect works with,

before any further operations, such as the code conversion from 2-of-7 to 3-of-6 code, are

executed.

A commonly used circuit for changing 4-phase data into 2-phase data is the Toggle

element, shown in Fig 16. The output of a Toggle flips at every rising edge of the 4-phase

data input whereby all the falling edges of the 4-phase data will be ignored. With Toggle

elements 4-phase 2-of-7 symbols carried over seven rails can be transformed into 2-phase

signals. It must be pointed out that the signal levels emerging at the 2-phase channel are

not necessarily equivalent to those on-chip 4-phase 2-of-7 symbols. The values at the

off-chip channel are produced by functionally XORing a current 4-phase 2-of-7 symbol

with the prior value at the off-chip channel. The high bits in on-chip 4-phase symbols

only determine which rails in the off-chip 2-phase channel need to be flipped. The level

based on-chip 4-phase symbols are converted to transition based off-chip 2-phase signals

using Toggle elements. There exists state dependency between any two adjacent values at

the off-chip channel, with which the receiver can extract the 4-phase symbols from the

2-phase signals.

D

EN

Q

D

EN

Q

acki

din[6:0]
dout[6:0]

lat_q0[6:0]

lat_q1[6:0]

Fig 45 2-phase to 4-phase converter

76

In principle, transitions can be detected by comparing the levels before and after the

transitions occur. Two latches and one XOR gate for 1 bit of data are needed to perform

transition detection in Fig 45, where the output is a level signal. The data input din[6:0] is

2-phase, the data output dout[6:0] is 4phase, and acki is the acknowledge input from the

subsequent circuit. The circuit operates as follows: firstly the valid input data passes into

the upper latch and then the XOR gate to assert the output dout[6:0] since acki is initially

low. The top latch is then turned off and the bottom latch is turned on after dout[6:0] is

acknowledged by the subsequent circuit driving acki high, which means that the previous

data on the off-chip wires are stored in the both latches. The equivalent values of the two

latches drive the XOR gate to return to zero. After the zero values on dout[6:0] are

acknowledged by a low acki, the top latch is switched back on but the bottom one is

turned off. Hence the top latch is able to fetch new data while the previous data carried on

off-chip wires are still kept in the bottom latch. Once new data arrive, the XOR gate

compares the output from the latches which represent the current 2-of-7 and the prior

2-of-7 symbols and outputs a 2-of-7 symbol derived from the value on the off-chip wires.

The circuit comprising two latches and a XOR gate in Fig 45 can recognize whether a

transition occurs at the input wire. An off-chip channel in SpiNNaker requires 7 copies of

this circuit to detect all the 7 input data wires in the receiver; while another circuit is

needed at the transmitter side.

4.4 TRANSMITTER IMPLEMENTATION

The transmitter, shown in Fig 46 receiving data and control information, including EoPs,

from the neighbouring units of the on-chip Communications NoC, processes them

through separate data and control paths. The main functions of the transmitter are to

convert the data from 4-phase to 2-phase, to transform the data from 3-of-6 code into

2-of-7 code and to merge the two parallel data and control channels into one data channel

encoded with 2-of-7 code.

77

cd

Ctrl

di[5:0]

ctrl[0]

dat_ack

ctrl_ack

eop_cd

dat_cd

cen
den

dout[6:0]

eop

code 36

to

code 27
Pipeline

1

Pipeline

0

ack2

cd cd

d36[5:0] d27[6:0]

RTZ

To

NRZ

T

d27_o[6:0]

nml
ctrl[1]

ctrl[2]

C

C

ctrl[2:0]

rstn

Fig 46 Transmitter block diagram

packet 0 packet 1

D0 0 D1 0 Dn-2 0 Dn-1 0 D0 0

NORM 0 NORM 0 NORM 0 EOP 0 NORM 0

S0 S1 Sn-2 Sn-1 EoP S0

d36[5:0]

dat_ack

ctrl[2:0]

ctrl_ack

d27[6:0]

ack2

Fig 47 Interface timing of transmitter

Fig 47 illustrates the timing of a packet transfer. 4-phase data (d36[5:0]) and control

information (ctrl[2:0]) arrive concurrently at the input ports of the transmitter, which then

issues two separate acknowledge signals (dat_ack and ctrl_ack). Generally there are two

types of symbols employed by the input control channel, „NORM‟ and „EoP‟. „NORM‟

symbols are issued to indicate that current data are valid and not the last flit in the packet,

while an „EoP‟ symbol is issued to inform the transmitter that the current flit is the last

symbol.

4.4.1 DATA CHANNEL

The circuit of the data channel in Fig 46 primarily contains two C-gate pipeline registers a

code conversion module called „code 36 to code 27‟ and a phase conversion module

called „RTZ to NRZ‟. The two pipeline registers provide handshaking with the on-chip

78

Comms NoC and off-chip channels, connected with the input and output of the

transmitter. The first register buffers the input data di[5:0], allowing a completion

detection module of 3-of-6 code on its output data bus d36[5:0] to produce dat_ack back

to the preceding circuit. The second pipeline register outputs the 4-phase 2-of-7 data into

the phase conversion module „RTZ to NRZ‟; its enable port is driven by an XOR gate,

which processes the 2-phase input signal ack2 and the Toggle output indicating the

2-phase version of the completion detection signal of the 4-phase data d27_o[6:0] and

then produces a 4-phase signal indicating whether or not the receiver at the other side of

off-chip channel has received data successfully. Before being driven onto the off-chip

wires, the 4-phase 2-of-7 data d27_o[6:0] needs to be transformed into 2-phase by the

„RTZ to NRZ‟ module based on an array of Toggle elements which has been described in

Fig 45.

C

C

Comb

logic

one-hot
din[5:0]

din[6:0]

eop

Fig 48 Converter of 3-of-6 code to 2-of-7 code

In the transmitter, on-chip 3-of-6 symbols must be converted to 2-of-7 symbols which are

carried on the off-chip channels.

Fig 48 shows a straightforward method to implement the code conversion: firstly

completion detection is used to convert each 3-of-6 symbol from the data bus (din[5:0])

and the EoP symbol from the control channel into a one-hot code. The second stage is a

combinational logic block, which encodes the one-hot data into 2-of-7 symbols. This

block takes in 17 one-hot wires, each of which fires 2 transitions to create a 2-of-7

symbol at its outputs. In total, there are 17x2=34 transitions so that on average each

wire of din[6:0] requires 34/7=5 out of the 17 input wires. Thus the combinational block

mainly use 5-input OR trees containing roughly 2 levels of 2 or 3 input OR gates.

79

4.4.2 CONTROL CHANNEL

The transmitter needs to process the control information from the 1-of-3 input control

channel along with processing the 4-phase 3-of-6 symbols from the input data channel.

There is only one 2-phase 2-of-7 channel used for off-chip communication but the two

on-chip input channels generate data and control information in parallel, which means

that the off-chip channel must carry the data and also the control information coming

from the on-chip communication infrastructure.

The general principle of performing the merging operation is to append an EoP symbol

from the input control channel to the end of each packet while all Normal symbols are

only used to synchronize corresponding data symbols. Even though there is no

requirement for synchronization in each pair of control and data symbols in the preceding

on-chip Comms NoC, the transmitter must synchronize the two channels for each pair of

symbols to produce an EoP symbol into each packet over an off-chip channel. Therefore

in Fig 46 the sampled EoP signal is connected to the encoder „code 36 to code 27‟ module

for being appended to the end of a packet; the other control symbol Normal is fed into the

control module to synchronize symbols at the data input channel only.

The control module used to coordinate the merging operations in the transmitter was

synthesized using Petrify [51, 52], a tool which produces DI circuits from a Signal

Transition Graph (STG) [53] describing an asynchronous controller. The controller‟s

STG is shown in Fig 49, in which signals „dat_cd‟, „nml‟ and „eop_cd‟ are inputs and

signals „cen‟ and „den‟ are outputs. The initial values of all signals are zeros, except for

„cen‟ with a high value, which turns off the input control pipeline to allow the data enter

to the data path first. A „+‟ symbol following a signal represents a rising edge, while „-‟

represents a negative edge. The starting point of the module is depicted by a circle with a

black centre point. Once dat_cd goes high indicating valid completion detection for the

sampled input data, output „den‟ is driven high to allow the input data pipeline to return to

zero. „dat_cd-„ shows that data has been passed over the data channel, so the control

information starts to be processed next by driving „cen‟ low. Since there are two symbols

used for the control information, „nml‟ (namely Normal) and „eop‟ (namely EoP), two

80

token flows are introduced to describe their behaviours in the STG. After either „nml‟ or

„eop_cd‟ goes high, „cen‟ becomes active so that the control pipeline is able to return to

zero, followed by the circuit returning back to the initial state.

The synthesized circuit in Fig 50 contains two C-gates and three standard gates. However,

the resulting circuit can be optimized by simplifying the STG for the controller. Basically

the two token flows for the control path can be merged into one token flow illustrated in

the new STG (Fig 51), where ctrl= (nml | eop_cd). The simplified circuit in Fig 52 only

contains one C-gate and three standard gates. We can see that the control module is

equivalent to a select element.

cen-

dat_cd-

den+

dat_cd+

den-

nml-

cen+

nml+ eop_cd+

cen+

eop_cd-

Fig 49 STG of the control module

C

C

cen

den

dat_cd

nml

eop_cd

Fig 50 Circuit of the control module

81

cen-

dat_cd-

den+

dat_cd+

den- ctrl-

cen+

ctrl+

Fig 51 Simplified STG of the control module

C

cen

den

dat_cd

nml

eop_cd

Fig 52 Final circuit of the control module

4.5 RECEIVER IMPLEMENTATION

The receiver of an off-chip interface, shown in Fig 53, fetches the 2-of-7 symbols from

the off-chip 2-phase channel, transforms them from NRZ to RTZ and passes them to a

code converter, where they are changed from 2-of-7 symbols into 3-of-6 symbols.

Additionally the receiver is responsible for extracting control information, particularly

EoP, from the 2-of-7 data flow and generating NORMAL symbols. Consequently the

control symbols are sent out in parallel with the 3-of-6 symbols to the receiver outputs. In

general, the receiver implements a fork structure and also acts as a deserialiser to produce

two parallel flows from one input off-chip stream.

82

Pipeline3

dat_ack

ctrl_ack

dout[5:0]

ctrl[2:0]

d36[5:0]

cd

C

cd

C

cd C

Pipeline4

C

din[6:0]

ack2
T

cd

cd

pipeline1 pipeline2

Code27

To

code36

NRZ

to

RTZ

+

pipeline0

cd

cd

eop_cd2

dat_cd2 dat_cd3dat_cd0

eop_cd0
cd1

Fig 53 Receiver block diagram

Packet 0 Packet 1

S0 S1 Sn-1 EoP S0

D0 0 D1 0 Dn-1 0 Dn-1 0 D0 0

NORM 0 NORM 0 NORM 0 EOP 0 NORM

0 VAD 0

d27[6:0]

ack2

d36[5:0]

dat_ack

ctrl[2:0]

ctrl_ack

rout[7:0]

racki

Fig 54 Interface timing of receiver

In the timing diagram Fig 54, the receiver samples 2-of-7 symbols from the off-chip data

bus (d27[6:0]), issuing back „ack2‟ to the transmitter by changing its level after detecting

a valid 2-of-7 symbol. Meanwhile, the receiver outputs 3-of-6 data (d36[5:0]) and 1-of-3

control information (ctrl[2:0]) in parallel onto the data and ctrl output channels

respectively. In addition to the two channels, a route channel not shown in Fig 53 is

employed to carry the route information, which records the input port index and passes it

to the connected on-chip router for the routing decisions. The route information is sent

out once per packet, similarly to issuing an „EoP‟ symbol.

83

4.5.1 DATA CHANNEL

The 2-of-7 data have to travel through four pipeline registers over the data channel in the

receiver in Fig 53. The first register pipeline0 holds the output of phase converter which is

4-phase (RTZ) symbols of 2-of-7 code. The second register pipeline1 buffers the first

register output and sends back its completion detection signal as an acknowledgement to

the off-chip channel. The third register pipeline2 stores and forwards 2-of-7 symbols to

the code conversion module. The receiver treats data symbols and an EoP symbol

differently: the register pipeline2 is enabled by a valid EoP for a reset phase while it

cannot be reset until data symbols are forwarded to the receiver‟s output channels. The

final register pipeline3 captures the output 3-of-6 symbols of the combinational block

„Code27 to code36‟ and forwards them onto the output data channel.

Note that there are two C-gates in the receiver to synchronize the data and control

channels. The first C-gate collects the acknowledge signals dat_ack and ctrl_ack from the

output data and control channels for correct operations performed at the register pipeline2;

the other synchronizes the output data and control channels. This enforced

synchronization on the output data and control channels helps to recover the control

symbols and greatly simplifies the receiver circuit implementation.

4.5.2 CONTROL CHANNEL

The information propagating over the output control channel is extracted from the 2-of-7

data flow on the off-chip channel. There are two symbols used in the control information,

Normal and EoP. The interface between the receiver and the on-chip communication

infrastructure requires that the control information corresponding to the last symbol

within a packet at the data channel must be an EoP, all other data symbols in a packet

must be Normal symbols.

To design a circuit meeting this requirement, two extra pipeline registers are needed after

the input register pipeline0 so as to buffer two 2-of-7 symbols. Thus these three pipeline

registers can store, at most, two data symbols or a data and an EoP symbols. A Normal

symbol is issued if the two stored 2-of-7 symbols are both data symbols; an EoP symbol is

84

issued only if the last symbol is a 2-of-7 EoP symbol. Fig 53 shows that the first register

pipeline0 with the subsequent two pipelines is applied to detect two consecutive 2-of-7

symbols.

If the outputs of the first three pipeline registers form a value sequence, a number of

sequences will emerge during processing data in the receiver, such as

„data‟-„spacer‟-„spacer‟, „spacer‟-„data‟-„spacer‟, „data‟-„spacer‟-„data‟ or

„EoP‟-„spacer‟-„data‟ or many others. However one of the two output sequences,

„data‟-„spacer‟-„data‟ and „EoP‟-„spacer‟-„data‟, must appear for the receiver to hold two

input 2-of-7 symbols. It is guaranteed by two C-gates which implement the

synchronization at the two data and control outputs, dout[5:0] and ctrl[2:0], and also the

synchronization of acknowledge signals, dat_ack and ctrl_ack, from two downstream

on-chip channels. Although some other sequences indicating one data held in the three

registers may appear, such as „spacer‟-„data‟-„spacer‟, the receiver will hold the first data

till the next data are stored in the first register pipeline0. Thus this circuit with three

2-of-7 4-phase pipeline stages is able to hold any two valid 2-of-7 symbols at one time to

generate a control signal which will be either „NORMAL‟ or „EoP‟ at the control channel,

synchronized with the data propagated over the data channel.

85

1 2 3

0 D0 0 D1 0

0 D0 0 D1 0

0 D0 0 D1

0 D0 0 D1

0 C0 0

pipe0_out

dat_cd0

pipe1_out

cd1

pipe2_out

dat_cd2

pipe3_out

dat_cd3

dat_ack

ctrl

ctrl_cd

ctrl_ack

Fig 55 Timing for control symbol generation

The timing diagram in Fig 55 shows how the receiver extracts the control information

from the input 2-of-7 data flow. The data firstly pass through all the data pipelines, then

triggering high all the related completion detection outputs, dat_cd0, cd1, dat_cd2. Signal

cd1 enables the pipeline0 output to return to zeros. Pipeline1 is then allowed to return to

zero with the input high value of the pipeline2 completion detection signal dat_cd2. But

returning to zeros at the outputs of pipeline2 depends on the completion of both the data

and control information in pipeline3 and the control pipeline. Thus pipeline2 does not

reset its output until the control input goes low, for instance dat_cd3 and ctrl_cd asserted.

On the other hand, completion detection cd1 of pipeline1 acknowledges to the transmitter

and the arrival of a new 2-of-7 symbol at the pipeline0 pulls high its completion detection

signal dat_cd0, while pipeline1 is unable to accept this new symbol while the control

input port is still low. The circuits of the data channel are frozen till the pipeline2 outputs

are updated. Under this circumstance, the control pipeline issues a correct NORMAL

symbol since the input signals to pipeline4, dat_cd0, cd1 and dat_cd2, equals to „101‟.

After ctrl_cd becomes high along with dat_cd3, pipeline2 is allowed to return to zeros.

Then any new symbol moves to pipeline1, causing pipeline0 to output zeros due to cd1

86

becoming low. The data in the data channel do not move forward until dat_cd3 and

ctrl_cd go low. In the meantime the inputs signals to the control pipeline equal „010‟,

which returns the ctrl pipeline to zeros, assuming that dat_ack and ctrl_ack are both active.

The inactive dat_cd3 and ctrl_cd enable the pipelines to be reset.

As far as the last data are concerned, the input signals of the ctrl pipeline eop_cd0, cd1,

dat_cd2, become „101‟. Thus the control channel outputs an EoP symbol instead of a

NORMAL symbol. When the EoP symbol arrives at the output of pipeline2, the asserted

completion signal eop_cd2 enables itself as well as pipeline1 to accept zeros, while the

symbol is ignored by the conversion module without generating any 3-of-6 symbol.

Consequently the EoP symbols from the off-chip channels are absorbed by the receiver

and instead lead to the generation of EoP symbols over the control channel.

4.6 ANALYSIS OF TIMING ASSUMPTIONS

The principal methodology for designing the off-chip interface is a delay-insensitive style

so that the circuit would work perfectly under any delay assumptions. However the

design does not entirely follow the delay insensitive style.

One of the exceptions is at the phase converter of ack2 in the transmitter. In Fig 46 the

transmitter sends the 2-of-7 symbols out to the receiver via an off-chip link, and then due

to the valid completion detection of the output data, the enable port of the output pipeline

returns to zero to wait for a spacer. In the meantime the transmitter is also waiting for an

acknowledgment of the sent data. There are two requirements for correct operation in the

transmitter in Fig 46:

 The acknowledge signal ack2 through the off-chip wire must arrive late enough to

allow the output pipeline register pipline1 to be reset properly.

 The spacers must arrive within the timing window set by the acknowledge signal

ack2 arrival and the completion detection dat_cd of the 4-phse output data

d27_o[6:0].

87

The first requirement can be easily met, considering the fact that the off-chip loop time of

the link is greater than the internal operation of pulling down the enable port of the output

pipeline. This means that the time window opened by the completion detection of the

output data and closed by the acknowledge signal from the receiver is usually long

enough for the transmitter to clear itself and to anticipate the next symbols.

When it comes to the second requirement, if for some reason the preceding circuit cannot

issue a spacer following the data sent out previously, there may be a reset failure. Thus in

this scenario the transmitter does not meet the second requirement. Consequently the

output pipeline will stop accepting any more symbols as a result of the reset failure.

The solution to this issue is for the preceding circuit to ensure that spacers must follow the

data without any extra delay, which means in the delay insensitive design style that the

issuing of spacers is solely determined by the successful reception of the required

acknowledge signal. As we described in chapter 3, each link connecting the two routers

located in two different chips is point-to-point communication, no extra delay being

added due to any reason such as traffic congestion during a transfer. Each buffer inside

the router is equal to the packet size and the transfer of a packet is an atomic operation and

never stalls once a transfer starts. It seems that there is no extra delay existing outside of

the transmitter.

The other exception is at the receiver side. In this chapter, we mentioned that the receiver

relies on completion detection of two particular sequences which must appear for each

two consecutive symbols. Generally if the timing of a forward pressure issue exists the

receiver may malfunction. The forward pressure issue is defined as that the following

circuits run faster than the preceding circuits. In the case that the receiver is able to

process received data rapidly while the transmitter is slightly sluggish, the sequences that

are assumed to occur for any two consecutive symbols may not be able to appear. Instead,

the sequences that occur may be „data‟-„spacer‟-„spacer‟, „spacer‟-„data‟-„spacer‟,

„spacer‟-„spacer‟-„data‟ and then returning to „spacer‟-„spacer‟-„spacer‟. As a result,

since the receiver fails to detect the sequence „data‟-„spacer‟-„data‟ the ctrl channel in the

88

receiver collapses and fails to recover control symbols. The receiver forces the two output

data and control channels to be synchronous and so to avoid sequence detection failures.

4.7 SUMMARY

This chapter described the original design of the off-chip interface without considering

tolerance to transient faults. The transmitter and receiver were designed mainly in a

delay-insensitive style, though timing assumptions are required in the phase converters.

This original design is functional with realistic timing assumptions as was confirmed by

circuit simulation with approximated circuit delays. In current design methodologies,

the tolerance of logic circuits to transient faults is not particularly considered.

The impact of transient faults on the SpiNNaker inter-chip communication links will be

investigated in the next chapter. The original design presented here as a baseline will be

revised to deliverimproved fault tolerance.

89

Chapter 5 FAULT TOLERANCE ANALYSIS OF GLOBAL DI

PIPELINES

This chapter first introduces the sensitivity of C-gates to transient faults, followed by

discussion on the sensitivity of 4-phase DI pipelines and two 2-phase pipelines

Micropipeline and Mousetrap. The behaviour of several key hardware modules in the

off-chip interface circuits is finally analysed in the presence of transient glitches.

5.1 FAULT SENSITIVITY OF C-GATES

As elementary components, C-gates are used widely in most kinds of DI pipelines; the

sensitivity to transient faults in the DI communication pipelines is analyzed.

C-gates sensitivity to faults was analyzed [54]. For a 2-input C-gate, there are four

possible states at its output due to any change at its inputs. In Fig 56, the first two states

will not be affected by any glitch at either of its inputs. In (c), the 2-input C-gate is

sensitive to a glitch occurring at the upper input, which may flip the output value from 0

to 1, though the lower input is immune to any glitch in this situation as the output is

already low. Similarly in Fig 56 (d), the C-gate is sensitive to a glitch at the lower input.

During the stable states, the probability of vulnerability to an input glitch is 1/2.

C
0

0
0

C
1

1
1

C
0

1
0

C
0

1
1

 (a) (b) (c) (d)

Fig 56 2-input C-gate in different situations

For a multiple input C-gate (assuming 4 inputs), there are eight stable states. In Fig 57, in

the first six states (only two as examples shown here at (a) and (b)) a single glitch cannot

change the output, whereas only the last two states at (c) and (d) are vulnerable to a glitch

at a specific input. The vulnerability probability is only 1/4, half that of a 2-input C-gate.

90

Thus a 2-input C-gate is more vulnerable to a single transient fault than a multiple input

C-gate.

C
0

1
0

1

0

C
0

1
1

1

0

C
1

1
0

1

0

C
0

0
1

0

1

(a) (b) (c) (d)

Fig 57 M-input C-gate in different situations

C-gates and latches behave differently when subjected to transient faults, shown in Fig

58. C-gates as a state holding unit are able to propagate only one edge of a short glitch in

their sensitive state. The C-gate in Fig 58 (a) propagates a rising edge, while the C-gate in

Fig 58 (b) propagates a falling edge. By contrast, a transparent latch is able to pass both

two edges of a short glitch, shown in Fig 58 (c). However, this might not always be true.

At the two edges of a long glitch, for example, if the input changes at the enable port of a

latch or the lower port of a C-gate, the C-gate may be able to pass both two edges while

the latch may only allow one edge to propagate through.

C
1

(a)

C
0

(b)

latch

en

i o

1

(c)

Fig 58 Glitches at a C-gate and a latch

5.2 FAULT SENSITIVITY OF 4-PHASE DI PIPELINES

5.2.1 DUAL-RAIL PIPELINES BASED ON C-GATES

Based on the introduction to C-gate sensitivity, DI pipelines implemented with C-gates

are discussed in this section. The dual-rail pipeline carrying one bit is the simplest DI

data pipeline. There is only one C-gate used in every pipeline stage. As we introduced in

Fig 24, the second port of each C-gate acts as an enable port, inverting the acknowledge

signal back from the subsequent pipeline stage. The acknowledge signal is obtained by

ORing two outputs of each stage. The sensitivity of a dual-rail is the same as a C-gate we

discussed previously, with the probability of 1/2.

91

As a result of a transient glitch propagating a stage a superfluous bit value or even a

prohibited symbol may be created in a single-bit wide dual-rail pipeline. Outputs of each

stage throughout a 4-phase pipeline forms a set of sequences, in which a spacer or null

must be used to separate between any two consecutive valid symbols. In a sequence two

symbols never happen at two successive pipeline stages. However, a glitch may break

this sequence, resulting in two different types of errors: superfluous symbols and

prohibited symbols.

CC C

d0[1:0]

d2[1:0]
d1[1:0]

ack1 ack2

ack3

0
0

0
1

0

1
4

1 2
3

0

0

6

0 1

5

Fig 59 Case 1 of dual-rail pipeline

For simplicity, we assume the pipeline is in an idle state, in Fig 59. If a transient glitch

happens in the input wire of a pipeline stage, the glitch will be sampled by the stage and

passed to the next stage continuing until the end of the pipeline. The value created by a

glitch may be recognized as the first, but superfluous, symbol of a data burst or be ignored

by the receiving end. If a glitch happens during a burst of transfers, giving a complicated

example, it may create a superfluous symbol or a prohibited symbol. The scenario for

generating a superfluous symbol is similar to the previous case, where the traffic over the

pipeline is far from saturation and the state of the stage, where the glitch happens, can be

regarded as an idle state. A prohibited symbol „11‟ may occur however as a result of a

transient glitch. In Fig 60, a symbol arrives at time 1 and gets through the left C-gates; a

glitch then occurs at time 2 and cause the right C-gates to output an illegal symbol „11‟ at

time 3; After time 3‟, 4‟ and 4, the left channel finishes resetting at time 5‟; finally the

right channel is also cleared after time 5 and time 6.

92

CC C

d0[1:0]

d2[1:0]
d1[1:0]

ack1 ack2

ack3

1
0

1
1

1

1

0 1

0

0

1 2
3

5

4

6

0
0

4'

1
3'

0

5'

0

Fig 60 Case 2 of dual-rail pipeline

A superfluous symbol or a prohibited symbol merged from a glitch and a valid symbol

may also depend on the traffic over the pipeline. If the transmitting end is relatively slow

to send out data, a transient glitch is likely to introduce a superfluous symbol. Otherwise

if a glitch occurs on a pipeline with heavy traffic, possibly because the left environment

responds very quickly, it is more likely to form a prohibited symbol.

Multiple-bit wide pipelines are commonly used to improve the efficiency of data transfers.

A multiple-bit wide pipeline can be built by grouping one-bit wide pipelines together, as

introduced in section 2.4.5. In Fig 61, the completion detection signal at each stage is

implemented with a C-gate to detect data validation at all dual-rail bits. The use of a

C-gate here is to guarantee the operation‟s safety during a reset phase in the presence of

skew between spacers on parallel channels. For instance, if AND gates are used instead of

C-gates and a spacer of both zeros comes to a stage much earlier than spacers on other

channels, the spacer will go through the stage and drive low the completion detection

signal, blocking the previous stage from taking spacers on other channels. The C-gates

used in the completion detector works as a synchronizer to minimize the signal skew,

existing among the parallel channels, for both symbols and spacers.

93

CC C

d0[1:0]

d2[1:0]

ack1
ack2 ack3

CC C

d0[3:2]

d2[3:2]

CC C

C C

d0[5:4]

d2[5:4]

Fig 61 Multiple-bit dual-rail pipeline

In the presence of glitches, the scenarios are more complicated than in the single-bit

pipeline. Firstly, the multiple-bit pipelines seem to have greater probability of getting

wrong symbols since the parallel dual-rail channels are exposed to glitches; considering

the impact of a glitch on an idle multiple-bit pipeline. A single glitch may create a

superfluous symbol on one channel in a stage when the pipeline is actually in an idle state.

It is also possible to pass through the pipeline to the receiving end if it is a pure pipeline

without logic between pipeline stages, like a FIFO. However, the wrong symbol caused

by the glitch remains at the affected stages, as the wrong symbol at one of these channels

is inadequate to trigger all the completion detection signals. These negative completion

detection signals still allow their previous stage to accept new symbols. It means that the

pipeline is also capable of transferring data though the data may be corrupt due to

irremovable wrong symbols caused by the glitch.

Furthermore, glitches occur when the pipeline is transferring valid data. Before we

analyze the impact of glitches on the pipeline, data skew should be considered. The

application of C-gates in generating the completion detection signals is helpful to reduce

the data skew among the parallel channels. For a trivial data skew, a glitch may cause a

prohibited or wrong dual-rail symbol on an active pipeline, similar to the case for

single-bit dual-rail pipelines.

94

CC C

d0[1:0]

d2[1:0]

ack1
ack2 ack3

CC C

d0[3:2]

d2[3:2]

CC C

C C

d0[5:4]

d2[5:4]

1
0

1
0

0
0

0

0

0

1

1

1
0

1
0

1
0

1 2 3

1

4

1

0

5

Fig 62 Case 1 of multiple-bit dual-rail pipeline

Data skew among parallel channels in a multiple-bit pipeline is relatively hard to control

in current design flow where the timing-driven method is used for developing

synchronous circuits. If the skew varies significantly, it may lead to deadlock on a

multiple-bit pipeline. In Fig 62, due to a large data skew we can see the state at time 1; in

the meantime the left first stage is enabled to sample its inputs; at time 2 the values on the

bottom two channels are updated and the top channel is hit by a glitch, resulting in the

right stage updating as well; the completion detection of the right stage is active and

propagates backwards to the left stage at time 4; finally the valid data for the first channel

arrives but the left stage has been disabled to accept data and thus the whole pipeline is

dead. Note that the right stage cannot be reset with spacers even though the right

environment takes the symbols at the interface. This explains why a single-bit dual-rail

pipeline is free of deadlock but a multiple-bit one does not. To avoid deadlock the timing

requirement (1) needs to be met, here Tskew represents the skew between the latest two

dual-rail symbols; Tcycle is the time including the propagation delays of forward data Tdata

and the backward acknowledge signal Tack.

ackdatacycleskew TTTT (1)

The delays include not only the delays occurring in the combinational logic, but also the

wire delays; pipelines used as a global interconnect which employ long wires will

95

introduce relatively significant wire delays in a complex SoC, raising an actual challenge

to meet the timing requirement.

We discuss the scenarios of pure single or multiple-bit pipelines. For a dual-rail pipeline

integrated with dual-rail combinational logic, glitches will lead to different impacts on the

circuits. As discussed in section 2.3.3, a dual-rail logic circuit implemented with DIMS or

an equivalent QDI technique waits for all dual-rail symbols arriving at its inputs and

therefore a superfluous symbol on one of the channels cannot propagate alone from the

next stage‟s inputs to the end of the pipeline. Therefore a wrong symbol is restricted

within one stage of the pipeline but it is still possible to corrupt the next valid data. In the

deadlock scenario on a multiple-bit pipeline, the delay of the combinational logic

increases Tcycle and thus enhances the resistance to deadlock.

5.2.2 1-OF-4 PIPELINES

A single-bit pipeline using 1-of-4 code can be viewed as the extension of a single-bit

dual-rail pipeline. In Fig 63 one stage comprises four C-gates; the completion detection

unit is simply a 4 input OR gate. The fault effects are also similar to the single-bit

dual-rail pipeline; it does not stall but introduces wrong or prohibited symbols in the

presence of transient glitches.

A multiple-bit 1-of-4 pipeline is built in a similar way as a multiple-bit dual-rail pipeline

in Fig 64. The example in the figure integrates twelve wires of three single 1-of-4

channels to carry 6 bit data. We can have 1-of-4 pipelines with a data width of 8 bits or 16

bits by grouping more channels together. In response to glitches, a multiple-bit 1-of-4

pipeline suffers from similar fault effects, introducing wrong or prohibited symbols. The

most significant impact among them is deadlock which eventually stalls the pipelines.

96

CCCC C

d0[3:0]

d2[3:0]
d1[3:0]

ack1

ack2 ack3

Fig 63 1-of-4 pipeline

CCCC C

d0[3:0]

d2[3:0]

ack1
ack2 ack3

CCCC C

d0[7:4]

d2[7:4]

CCCC C

C C

d0[11:8]

d2[11:8]

Fig 64 A multiple-bit 1-of-4 pipeline

As we know, complex logic circuits are rarely implemented with 1-of-4 code due to its

relatively high area cost. If there are combinational logic circuits between pipelines,

however, they may be helpful in stopping superfluous symbols caused by glitches from

spreading over the pipeline and even to avoid deadlock.

5.2.3 M-OF-N PIPELINES

An m-of-n pipeline is another kind of DI pipeline based on m-of-n data encoding, such as

2-of-4, 3-of-6 or 2-of-7. For simplicity, we take a 2-of-4 pipeline as an example to

evaluate fault effects in the presence of transient glitches. In fact, the pipeline circuits of

single-bit and multiple-bits are similar to the dual-rail and 1-of-4 pipelines as they both

use four wires to carry one symbol, except for the completion detection circuits. To detect

a symbol, in the dual-rail or 1-of-4 pipeline an OR gate is sufficient but 2-of-4 or other

m-of-n pipelines require much more complicated circuits.

97

CCCC C

d0[3:0]

d2[3:0]
d1[3:0]

ack1

ack2 ack3

CD CD

0
0

1

1
0 0

2

1
0

0
1

3

1
0

1
0

5

1
0

1
4

3'
1

Fig 65 Deadlock at 2-of-4 pipeline

In a single-bit 2-of-4 pipeline, two of the four wires flip to represent a valid symbol.

Unlike a single-bit 1-of-4 pipeline, not only may wrong or prohibited symbols be produce

but deadlock may also occur due to the skew between the two transitions. Fig 65 shows

the scenario of deadlock due to a glitch occurring between two transitions. The first

transition passes the left stage at time 1 and appears on d1[3:0] at time 2; meanwhile a

glitch takes place at the top wire between the two stages in the figure, leading to a

premature symbol on d2[3:0] at time 3; the premature symbol creates a valid ack2

backwards to the first stage so as to disable it for a reset phase; at time 5 the second

transition is blocked to get in the first stage. Even though the glitch is transient and

disappears soon, the completion detection signal cannot go back to low and to enable the

first stage.

Considering a multiple-bit 2-of-4 pipeline, we find that glitches may cause it to deadlock

as the single-bit pipeline. The deadlock scenarios for 2-of-4 pipeline are really similar to

those in a multiple-bit dual-rail and 1-of-4 pipelines. Only single-bit 1-of-n pipelines are

immune to deadlock caused by glitches, while other multiple-bit one-hot pipelines and

m-of-n pipelines are susceptible to glitches and deadlock if there is a large data skew.

98

5.3 FAULT SENSITIVITY OF 2-PHASE PIPELINES

5.3.1 MICRIOPIPELINES

Micropipeline is a 2-phase bundled data pipeline, as described in section 2.4.2. If any

transient glitches happen at the data wires, the latches may capture the corrupted data

containing glitches. The bundled data propagate over the data channel independently

without any influence on the control channel; those C and P signals generated by the

control channel tell each latch the time to capture data. Thus the data channel in

Micropipeline is not seriously sensitive to transient glitches.

Fig 66 Glitches on Micropipeline

However, Micropipeline employs 2-phase signalling to build the handshake circuits, in

which request signals are registered by C-gates. As discussed in section 6.1, C-gates are

sensitive to transient glitches and in some cases its output may be flipped by a transient

glitch. Fig 66 shows an example. In an idle state, the last C-gate in the end of the pipeline

has a low output; its upper input is high and the lower input low. This is one of the states

in which C-gate is vulnerable to a positive transient glitch. Thus a glitch shown in Fig 66

occurs at the request wire which is the lower input of the final C-gate, causing the C-gate

output to go high. This asserted output travels back to flip the middle C-gate upper input

to low. It can be seen that the middle C-gate is disabled to accept a high value at its lower

input. The latch controller then deadlocks.

CC

ACK ACK

REQ REQ

ACK

REQ

LATCH LATCH

C P C P

C

LATCH

C P

ACK

REQ

1
0

99

5.3.2 MOUSETRAP PIPELINES

Fig 67 Short glitches on a Mousetrap pipeline

Fig 68 Long glitches on a Mousetrap pipeline

Glitches occurring at the data channel of a Mousetrap pipeline, similarly to

Micropipeline, may only introduce corrupted data. Although the latch controllers employ

2-phase signalling to build handshake circuits, Mousetrap pipelines employ XNOR gates

and transparent latches rather than C-gates. A transparent latch is likely to pass a short

transient glitch which unfortunately occurs at the request wire, as shown in Fig 67. This

short glitch may propagate to the latch controller, and eventually arrive at the En port of

the latch. In an idle state, this short glitch at the En port may introduce wrong data to the

receiver but does not cause deadlock at the latch controller.

However, if a glitch is long enough (>TEn the propagation delay of a latch and an XNOR

gate) in Fig 68, the data latch cannot capture its low value after the falling edge before the

TEn

100

En port is disabled. The data latch will be locked from accepting data and a request signal

though the latch controller, an XOR gate, cannot deadlock like a latch controller in

Micropipeline. Compared to the Micropipeline, this deadlock scenario can be avoided by

adding an extra delay at the data latch output doneN at the cost of the circuit speed.

Generally, compared to 4-phase pipelines, 2-phase bundled data pipelines are more likely

to deadlock as the handshake circuits using 2-phase signalling are relatively easier to be

stopped than those in 4-phase DI pipelines.

5.4 FAULT SENSITIVITY OF THE OFF-CHIP INTERFACE

5.4.1 COMPLETION DETECTOR AND DATA CONVERTER

Besides 4-phase pipelines, other circuits implemented in an off-chip interface, such as

code converters, phase converters and completion detector, are analyzed in terms of

their fault sensitivity. In the presence of glitches, data encoded with a DI code may

contain illegal DI symbols. These illegal symbols may have fatal influences on the

on-chip DI communication fabrics as introduced in chapter 4. Fig 69 illustrates a simple

4-phase multiple-bit pipeline with CD modules, which produce completion detection

signals which it sends back to the preceding pipeline registers. These CD circuits are

optimized for an incomplete 2-of-7 code in section 4.2.2.

The deadlock scenario in a 4-phase m-of-n code pipeline may happen in this pipeline. The

only difference from the pipeline we discussed in section 5.2.3 is the incomplete code

applied here. Assuming a large data skew exists between valid data bits, if a glitch causes

an illegal symbol with the first valid data bit, a completion detector supporting a complete

m-of-n code may deadlock as discussed. However, CD0, a completion detector

supporting an incomplete code, is unable to detect this illegal symbol and to acknowledge

it. Then CD0 and perhaps CD1 cannot be fired until the arrival of the second valid data bit.

Therefore an incomplete completion detector helps to reduce deadlock risk. However, if a

glitch and the first valid bit produce a normal symbol, this detector will be fired and may

further cause deadlock as a complete code completion detector. The probability for the

101

incomplete code detector is the number of illegal symbols/ the total number of all possible

symbols, assuming that a glitch with a valid data bit has the same chance to generate

every symbol including an illegal symbol. For example of the 2-of-7 code, the probability

is 4/21=19%.

CD0 CD1

pipeline
0

din

pipeline
1

doutdat

acki

ack

acko

Fig 69 CD circuits in a 4-phase pipeline

Fig 70 shows a 4-phase pipeline integrated with a code convertor, which translate one DI

code to another DI code, such as from a 2-of-7 code to a 3-of-6 code. If an illegal symbol

arrives, CONV as an incomplete code convertor does not translate it. Thus CD0 and

CONV can stop this illegal symbol from propagating to the forward data and backward

acknowledge paths. An incomplete code detector and convertor may be more tolerant to

glitches than those supporting a complete DI code.

CD0 CD1

pipeline
0

din

pipeline
1

doutdat

acki

ack

acko

CONV

Fig 70 Code convertor in a 4-phase pipeline

5.4.2 4-PHASE TO 2-PHASE CONVERTER

Phase conversion is performed in both interfaces because both have input and output

wires. The phase converters are kept as close as possible to the chip boundary because

handling 2-phase signals in CMOS logic is typically quite onerous. The major concerns

are with the 2-to-4 phase conversion as this is the incoming interface and the one assumed

to be prone to errors.

102

Fig 71 shows a simple phase converter for the transmitter. When a valid symbol is input

the latch is closed via the Toggle element and it remains so until an external acknowledge

is received. The data phase conversion can be provided by a set of seven Toggle

flip-flops, which change as data bits arrive. This unit expects only valid input symbols so

this suffices. The biggest potential problem with this circuit is that it relies on alternating

input and acknowledge (ack2) stimuli, which cannot be guaranteed if the input

acknowledge glitches, nor if the receiver is reset at some random time.

pipe_en

dout[6:0]
Pipeline

1

ack2

cd cd

d27[6:0] RTZ
To
NRZ

T

d27_o[6:0]

eop_cddat_cd

Fig 71 Transmitter phase converter

The comparison based on transition signals may however cause deadlock. Glitches

occurring at ack2 do not directly introduce deadlock into the interface circuit, instead they

may accelerate the frequency of symbol propagated by superfluous tokens at ack2.

Consequently the timing relation the circuit relies on becomes easier to break. Further

glitches could stop the interface due to the 2-phase completion signal and the external

2-phase acknowledge signal ack2 being out of phase.

5.4.3 2-PHASE TO 4-PHASE CONVERTERS

D

EN

Q

D

EN

Q

din[6:0]

(2ph)

lat_q0[6:0]

lat_q1[6:0]

cd
c

T

acki

(4ph)

dout[6:0]

(4ph)

acko

(2ph)

dout_cd

Fig 72 Receiver phase converter

103

Fig 72 shows an initial design for the receiver's phase converter. This comprises a

master-slave latch in which the master is initially transparent to incoming transitions. In

this design, when sufficient transitions have arrived, the completion detector (cd)

acknowledges the flit, closing the master latch and opening the slave latch, thus

'cancelling' the input via the exclusive-OR gate.

In a 'clean' environment this works satisfactorily; it will also tolerate the majority of

glitches which will briefly alter the level of an input wire. However there can be a

problem if an input glitch occurs coincidentally with the completion detector's firing.

Fig 73 illustrates a deadlock scenario; only three of the input wires are shown - the others

are assumed to remain '0' and the buses are annotated with binary patterns (similar to

single-rail), not the symbols' values. The input starts as '0' and two symbols, '6' and '5' are

transmitted as transitions. The first symbol is successfully recognized by the subsequent

C-gate pipeline stage. Unfortunately a glitch occurs on data wire din[0] at about the same

time as the acknowledge signal dout_cd arrives. The phase converter now holds the false

pattern value '7' where three transitions have been captured. When the second symbol ('5')

enters the converter it is interpreted as '4' by the XOR gate because the previous data held

in the converter is '7' rather than '6'. The converter deadlocks because '4' has only a single

transition so no Acknowledge token is issued.

glitch

0 6 7 3

0 7

6 'H02 0 4

6 0 4

din[0]

din[1]

din[2]

lat0_out[6:0]

lat1_out[6:0]

xor_out[6:0]

c_out

dout_cd

Fig 73 Deadlock timing in the phase converter of a receiver

104

The previous converter holds a previous state and samples the current state in two latches

and compares them with an XOR gate to finally change the 2-phase off-chip signals into

4-phase signals. In Fig 74, we give a different circuit for converting 2-phase to 4-phase

signals. The two state-holding latches L0 and L1 are hidden in the backwards loop; the

forward path of the circuit simply employs an array of XOR gates and asymmetric

C-gates to generate and pipeline 4-phase signals. The second array of XOR gates is to

change the 4-phase signals back to the previous 2-phase off-chip values.

L1 L0

ac

din[6:0]

lat_din[6:0]lat_dout[6:0]

T
acko

c

acki

dout[6:0]

cd

cd

ac_out[6:0]

Fig 74 An alternative 2-phase to 4-phase converter

Fig 75 shows the normal operations in this phase converter. The value Di is output at

ac_out[6:0] after the new symbol Si arrives at din[6:0] and cd remains low to indicate the

idle state of the right C-gate array. Then Di continues to propagate to the register output

dout[6:0] as long as acki returns to zero. Meanwhile a valid cd is passed onto the feedback

path comprising two latches, L1 and L0, and then carry Si from the XOR array output

through the two latches to lat_dout[6:0]. Thus the two inputs of the left XOR gate array

have equivalent values so as to create a space in the input of ac. Despite an unexpected

symbol Si+1 happening at lat_din[6:0], the timing relation, between the two paths from

ac_out[6:0] to lat_din[6:0] via the XOR array and from ac_out[6:0] to cd via the C-gate

array and cd module, is able to guarantee that the unexpected signal disappears before the

latch L0 turns on as a result of a low cd.

105

Si-1 Si Si+1

0 Di 0 Di+1

Si-1 Si Si-1 Si Si+1

Si-1 Si Si+1

0 Di 0 Di+1

din[6:0]

ac_out[6:0]

lat_din[6:0]

lat_dout[6:0]

dout[6:0]

cd

acko

acki

Fig 75 Timing of an alternative 2-phase to 4-phase converter

Obviously this phase converter is also not a purely delay insensitive circuit, like the

previously introduced circuit. Successful operation relies on some timing assumptions

that can be met easily without much design effort in practice.

0 6 7 6 5

0 6 7 0 2

0 6 7 0 7

0 7 4

0 6 7 0 2

din[6:0]

ac_out[6:0]

lat_din[6:0]

lat_dout[6:0]

dout[6:0]

cd

acko

acki

Fig 76 Deadlock of an alternative phase converter

The application of an array of asymmetric C-gates increases the fault tolerance to

transient glitches. For instance, if a glitch with a symbol consisting of two transitions is

fetched by the circuit, the stored state in the feedback path will probably not be equivalent

to the current state on the off-chip wires. In this case, a standard C-gate is not able to

generate a space to the 2-phase input data. Therefore asymmetric C-gates, with zeros at

their data input ports which directly reset themselves without waiting for zeros on enable

ports, are introduced to solve this problem. However, this raises another potential

problem in some extreme cases. In Fig 76, a symbol „6‟ arrives at din[6:0] and propagates

106

through ac_out[6:0] till dout[6:]. However, later a glitch changes din[6:0] from „6‟ into

„7‟ and also changes the stored state lat_dout[6:0] from „6‟ to „7‟. When the next 2-phase

2-of-7 symbol „5‟ arrives at din[6:0], XORing with lat_dout[6:0] which is a „7‟ rather

than „6‟ results „2‟ at ac_out[6:0] and later at dout[6:0]. „2‟ only contains one transition,

leading to deadlock in the receiver.

5.5 SUMMARY

C-gates investigated under the attack of a single transient fault. Their outputs may be

flipped as a result of a transient glitch in some sensitive states. 2-phase and 4-phase

pipeline circuits were also investigated. Deadlock may occur in the pipeline circuits due

to handshake failures. One exception is the 2-phase bundled-data Mouse-trap pipeline,

which is unlikely to deadlock due to the lack of C-gates in its control channels.

In the original design of the off-chip interface in SpiNNaker, transient glitches on the

off-chip wires may result in deadlock in the circuits. In the following chapters, two

approaches are proposed to address this deadlock issue.

107

Chapter 6 LEVEL-ENCODED TRANSITION SIGNALLING

(LETS) SYSTEM

Two level-encoded code schemes, LEDR and 1-of-4 LETS, are first introduced in this

chapter. A distinguishing feature of their decoding schemes is the independence of

previous 2-phase channel states, which may be helpful to overcome problems facing the

conventionally implemented 2-phase channel in the initial design. A novel 2-of-7 LETS

code scheme is then proposed and a circuit implementation is also presented.

6.1 LEVEL-ENCODED DUAL-RAIL (LEDR)

Level encoded dual-rail (LEDR) code was proposed to represent 1 bit of data using 2

wires [55], in which one wire is used as the data rail holding the data value, and the other

wire is the parity wire alternating between even and odd phases for each symbol as shown

in Table 9. Obviously, for each symbol there is only one transition on either of the two

rails, as shown in Fig 77, but no requirement for return-to-zero or a reset phase in contrast

to the original dual-rail code. LEDR inherit the features of 2-phase asynchronous protocol

based on transition signalling, achieving better throughput and power efficiency. LEDR

has been applied in the design of communication dominant systems [56].

Parity\Data 0 1

Even 00 11

Odd 01 10

Table 9 LEDR code

0 1 0 0 1 1

Even odd even odd even odd

data

pari ty

Fig 77 Example of LEDR code

Protocol converters are needed in hybrid systems which adopt different DI codes with

different asynchronous protocol, for instance, 4-phase dual-rail or 1-of-4 code for core

logic modules and LEDR for communication among those modules or chips. Interface

108

designs are proposed to meet these requirements [56]. Additionally, pipelines based on

LEDR can be built to improve the communication throughput. Therefore a hybrid

asynchronous system can be designed by using LEDR for global communication and

using 4-phase dual-rail for local computation.

Fig 78 Global communication based on LEDR [56]

Fig 79 LEDR completion detector [56]

Fig 80 LEDR decoder and encoder [56]

109

Fig 81 Control module [56]

Fig 78 shows a multi-chip system constructed with global LEDR and local 4-phase

dual-rail data. Each node contains an LEDR decoder, an encoder and a 4-phase logic

block. An LEDR completion detector can be implemented for multiple-bit data by using

XOR gates and C-gates (Fig 79), with a 2-phase output signal. Fig 80 and Fig 81 show the

circuits of the decoder, encoder and control module. More details of these circuits are

available elsewhere [56].

These circuits exhibit some limitations of the LEDR based systems. To minimize the

converters between local 4-phase blocks and global LEDR channels requires that there is

only one pair of LEDR decoder and encoder for each local 4-phase block. Therefore the

potential cycle time for each local 4-phase block is determined by the latency consumed

by that computational block. The simulation results in [56] for an empty FIFO and an 8x8

multiplier have confirmed that the cycle time increases significantly as the 4-phase logic

block scales up. Admittedly, the throughput can be improved by inserting 4-phase

pipeline registers inside the local 4-phase blocks. The other limitation may be the low

code efficiency, which is 1/2 for LEDR, i.e. the same as the dual-rail code. When

implementing global communication architecture, other DI codes with higher code

efficiency may be desirable to increase the communication throughput.

LEDR is not the only implementation of 2-phase dual-rail code. In fact another 2-phase

dual-rail circuit can be implemented in a simple manner using Toggle elements. Toggle

elements act as a 4-phase to 2-phase converter in Fig 82, while at the other side of a

2-phase channel a conventional 2-phase to 4-phase converter referred to in section 4.3

110

needs to be applied. Each value at the 2-phase channel is actually the accumulation of the

current 4-phase dual-rail data and all the data previously carried. Thus successful

recovery of 4-phase data using a conventional 2-4 phase converter depends on not only

on the current value but also the previous value at the 2-phase channel. From a fault

tolerance perspective, a potential problem of this encoding scheme is on the connection

between the current value and the previous state. For instance, if the state, stored in the

phase converter of the receiving side, goes wrong due to a transient glitch, all the

following data decoding may be affected. However, decoding LEDR symbols is directly

from the current received symbol, independently of the previous state, thus it is unlikely

for a glitch to distort all the following data in this way.

Fig 82 4-phase and 2-phase dual-rail channels interface

6.2 1-OF-4 LETS

Two 1-of-4 Level-Encoding Transition Signalling (LETS) codes, quasi-1-hot and

quasi-binary 1-of-4 LETS codes, are introduced as a generation of LEDR to explore its

code capacity [57]. There are sixteen codewords in 1-of-4 LETS to map four symbols

representing two data bits; these sixteen codewords are grouped into four subsets, in

Table 10. The first subset called 1-Hot ODD code is one bit high out of four rails. At the

basis of the code, the other three subsets can be derived by flipping the rail r3 or the lower

three rails r2, r1 and r0. For instance, inverting r3 or the lower three rails leads to a change

on its parity to EVEN, yields the third subset 1-Cold EVEN codes and the fourth subset

1-Hot EVEN codes respectively. Reversing all the bits does not change the parity but

changes the number of bits with high values from 1 to 3 for the first subset code, yielding

T

T

2-4 phase

converter dt.f

dt.t dr.t

dr.f
4-phase 4-phase 2-phase

111

the second subset 1-Cold ODD codes without any change on its parity. The four subsets

form a closed code space, which means that each input symbol can be assigned with a

unique codeword without ambiguity.

Like LEDR, 1-of-4 LETS as a transition signalling code scheme involves only one

transition change for each symbol. This requires that the hamming distance of any two

successive codeword is always one, which accounts for the strict alternation between

ODD and EVEN. To meet this requirement 1-of-4 LETS uses all sixteen codeword for

carrying four symbols; given an input symbol there are four codeword potentially

assigned to it. The Symbol S0, for instance, has a codeword being from the set S0

containing S0[0], S0[1], S0[2] and S0[3] in the four type codes; which one is assigned to

the current input symbol S0 depends on the previously selected codeword. If the prior

codeword is 0100, S0[3] is the desired codeword.

1-Hot ODD codes 1-Cold ODD codes

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0

S0[0] 1 000 S0[1] 0 111

S1[0] 0 100 S1[1] 1 011

S2[0] 0 010 S2[1] 1 101

S3[0] 0 001 S3[1] 1 110

1-Cold EVEN codes 1-Hot EVEN codes

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0

S0[2] 1 111 S0[3] 0 000

S1[2] 0 011 S1[3] 1 100

S2[2] 0 101 S2[3] 1 010

S3[2] 0 110 S3[3] 1 001

Table 10 Quasi-1-hot 1-of-4 LETS

This encoding scheme is relatively more complex than LEDR. A brief explanation is

given here. If the incoming symbol is the same as the current symbol, then the new

codeword must be in the subset, in which the phase bit r3 must differ with the bit r3 in the

previous codeword. If the incoming symbol is one of other three symbols, we need to

look at the previous codeword and a codeword which is in the same subset as the current

codeword and is the candidate of the new symbol with other three codewords. If the bit r3

112

in two codewords is the same, the codeword for the incoming symbol will be in the subset

which has a different code style (1-Hot or 1-Cold) to that of the previous codeword;

otherwise if they are different the new codeword will be obtained by flipping the phase bit

r3. It can be seen that to alternate the codeword parity of neighbouring symbols requires

flipping the phase bit r3 or the lower code style bits r2r1r0.

The completion detection and converter circuits are presented for the quasi-1-hot 1-of-4

LETS [57], which constructs the infrastructure of the global communication with local

dual-rail logic circuits. Fig 83 shows the completion detection circuit, where XOR gates

are used to detect the level changes at each bunch of four rails as there is only one

transition change for a cycle at a four rail channel. To synchronize the detection results, a

C-gate tree needs to be employed to support multiple channels. The completion signal

„phase‟ is also two-phase as an output of all 2-phase input LEDR signals. In Fig 84, four

rails of a 1-of-4 LETS channel are decoded into two dual-rail channels, where the input

signal „enable‟ from the control block in Fig 78 indicates the arrival of a new symbol.

The decoding is independent of the previous states, similar to LEDR.

Fig 83 Completion of 1-of-4 LETS [57]

Fig 84 1-of-4 LETS decoding [57]

Fig 85 is the 1-of-4 LETS encoding circuit which converts the data from two dual-rail

symbols into 1-of-4 LETS symbols. Before encoding the input dual-rail symbols into a

113

1-of-4 LETS symbol, the previous 1-of-4 LETS symbol has to be stored and is used to

re-generate two previous dual-rail symbols in the storage unit, r1^r0 and r2^r0

representing two binary bits b1‟ and b0‟ respectively. The comparator incorporates the

current input data b1 and b0 and compares with the previous two data b1‟ and b0‟ for

performing XNOR operations. Then at the comparator outputs four products are

produced, (b1‟=b1), (b1‟≠b1), (b0‟=b0) and (b0‟≠b0). Finally in the select circuit, the

four products will determine which rail needs to be flipped to generate a new 1-of-4

LETS codeword. The select circuit shows that z3 is selected to flip when both bits differ;

z2 selected when only bit 0 differs; z1 selected when only bit 1 differs; z0 selected when

they are exactly the same.

Fig 85 1-of-4 LETS encoding [57]

LEDR and 1-of-4 LETS circuits are only discussed briefly for introducing a new code

scheme – 2-of-7 LETS, but not implemented in this thesis. However, fault effects on

these circuits are interesting for further investigation in the future research.

6.3 2-OF-7 LETS

LEDR and 1-of-4 LETS have exhibited a novel way to encode 2-phase data, in which

decoding does not require knowledge of any previous state of a communication channel.

From the fault tolerance perspective, the benefit is that a glitch is not likely to affect

114

subsequent symbols carried over channels. Thus we continue to explore the generations

of LEDR for seeking an alternative code scheme to the 2-phase 2-of-7 circuits described

in Chapter 4. A 2-of-7 LETS is thus proposed to apply on the interface circuits so as to

increase the fault tolerance to transient glitches.

A 2-of-7 LETS symbol consists of two state bits, one parity bit and four data bits in Fig

86. For each forthcoming data the symbol will be produced accordingly by making two

transitions on the previous symbol. Unlike 1-of-4 LETS, all symbols use even parity;

depending on how many bits of the forthcoming data differ from the data part of the

previous symbol, the four data bits, the parity bit or the two state bits are selected to be

inverted or not.

6 5 4 3 2 1 0

State Parity Data

Fig 86 Symbol format

Table 11 shows the encoding scheme of the 2-of-7 LETS code. Generally there are two

values which need to be calculated for encoding each symbol, a Hamming distance and

an XOR operation. The Hamming distance here represents the distance between a 4-bit

binary value to be encoded and the data part of the previous symbol, rather than the

previous 4-bit binary input data. For a distance of 2 in Table 11, only the current binary

bits need a decision to be inverted or not, depending on the XOR result of the previous

two state bits, for generating a new 2-of-7 LETS symbol. If the XOR operation of the

previous state bits is true, the current 4 binary bits are flipped to be the data part of the

new symbol; otherwise the two needed transitions are obtained naturally from the 4

binary data bits without changes to other parts of the new symbol. For example, binary

data „1100‟ needs to be encoded, while its previous symbols is „1101010‟ in which the

data field is „1010‟. The Hamming distance is 2 and the XOR result is 0, so the new

symbol will be „1101100‟ where the state and parity bits remain the same.

In the rightmost column Si+1[1:0] of Table 11, '00/11' implies that there are two qualified

symbols. For the Hamming distances of 0 and 1, we do not flip the input data to produce

the binary value bits; while for the Hamming distance 3 or 4, we must flip the input 4

115

binary data bits to reduce the distance value to 1 or 0. Additionally, the one or two

transitions required for distance 0 and 1 have to be created in the new symbol by flipping

the parity bit or either or both of the two state bits in the previous codeword. The

decoding process is relatively more complicated than LEDR and 1-of-4 LETS. The

correctness of the 2-of-7 LETS code scheme has been proved by exhaustive simulation.

Input Output

Dist(di+1, d
'
i) ^Si[1:0] d'i+1 Pi+1 Si+1[1:0]

0
1

di+1

~ Pi 00/11

0 Pi ~Si

1
1 Pi 00/11

0 ~ Pi

Si 2
1 ~di+1 Pi

0 di+1 Pi

3
1

~di+1

~ Pi

0 Pi 01/10

4
1 Pi ~Si

0 ~ Pi 01/10

Table 11 2-of-7 LETS encoding

The notations in Table 11 are explained as follows:

di+1 : an incoming 4-bit binary data;

d'i : the 4-bit data part in the previous symbol, d'i could be equal to di or the reverse;

Dist(di+1, d'i) : the distance between two consecutive binary values;

^Si[1:0] : bit XOR operation for the 2 state bits in the previous symbol;

d'i+1: the binary value in the symbol to be generated for an incoming 4bit binary data,

equivalent to di+1 or ~ di+1;

Pi+1: the parity bit in the symbol to be encoded.

Si+1[1:0]: the 2bit state in the symbol to be encoded.

2-of-7 LETS is also a DI code scheme like LEDR and 1-of-4 LETS, in which encoding

is more complex than decoding. By contrast to encoding, the decoding scheme is much

simpler; it is nearly a stateless decoding process, implying that decoding is a fully

116

independent process without an input from previous 2-of-7 codeword. Table 12 shows the

decoding process. The 4-bit binary value represented by a 2-of-7 LETS symbol is

equivalent to the 4-bit data part of the symbol or its inversion, depending on the result of

the XOR operation of the two state bits. It is specified in this scheme that non-equivalence

of two state bits indicates an inversion of the original binary bits to produce the data part

in the encoded symbol.

Input Output

^di[6:5] di‟[3:0]

0 di[3:0]

1 ~di[3:0]

Table 12 Data bits decoding of 2-of-7 code

LEDR, one-hot LETS and 2-of-7 LETS code schemes are compared in terms of code and

power efficiency in Table 13. Obviously our proposed 2-of-7 LETS code has the best

code efficiency and power efficiency compared to LEDR and 1-hot LETS codes.

However the hardware cost becomes quite expensive for two transitions applied in 2-of-7

LETS, as described in the following sections.

Code Data bits Code efficiency/wire Power efficiency/bit

LEDR 1 1/2 1/1

1-of-4 LETS 2 2/4 1/2

1-of-n LETS log2(n) log2(n)/n 1/log2(n)

2-of-7 LETS 4 4/7 2/4

Table 13 Comparisons of LEDR and LETS

To implement 2-phase 2-of-7 code for off-chip channels, the interface needs to perform

conversion between off-chip 2-of-7 LETS code and on-chip 4-phase 3-of-6 code at both

the receiver and the transmitter end. Dual-rail encoding is needed to implement the logic

computation based on DI style, such as Hamming distance computation and 2-of-7 LETS

codec in the transmitter and the receiver in Fig 87. On the transmitter side, the input data

encoded with a RTZ 3-of-6 code are turned into dual-rail data in the module of 3of6_dec;

the module 2-of-7 Enc is to convert the dual-rail data into 2-of-7 LETS. In the receiver

117

side, the modules 2-of-7 Dec and 3-of-6 Enc convert the data from 2-of-7 LETS to

4-phase 3-of-6 via dual-rail data encoding in a reverse way.

d_1of2[7:0] d_27[6:0]d_36[5:0]
d_36[5:0]

ack4

d_1of2[7:0]

4 phase 2 phase 4 phase

ack4

ack2

Transmitter Receiver

3-of-6

Enc

2-of-7

Dec

2-of-7

Enc

3-of-6

Dec

Fig 87 Off-chip interface using 2-of-7 LETS

Name Direction Description

d36[5:0] I Input data encoded with RTZ 3-of-6.

ctrl[2:0] I Control information bits.

ctrl[2]=1: EoP, ctrl[1] =1, gap; ctrl[0]=1, Normal.
dat_ack O Acknowledge signal for the input data

ctrl_ack O Acknowledge signal for the 3 ctrl bits.

d27[6:0] O Output data encoded with NRZ 2of7.

ack2 I Acknowledge signal for the output data

Table 14 Transmitter Interface

Name Direction Description

d27[6:0] I Input data encoded with NRZ 2-of-7

ack2 O Acknowledge signal for the input data

d36[5:0] O Output data encoded with RTZ 3-of-6

ctrl[2:0] O Output ctrl bits encoded with RTZ one-hot.

dat_ack I Acknowledge signal for the output data

ctrl_ack I Acknowledge signal for the ctrl bits.

Table 15 Receiver Interface

In the rest of this chapter, we only consider the data channel for implementing 2-of-7

LETS in Fig 87, Table 14 and Table 15. Even when the control information such as EoP is

concerned, for simplicity it is assumed that an EoP arrives serially as the last symbol

within a packet. In order to implement the same interface as specified in chapter 4 a

serializer and a deserializer are needed in the transmitter and receiver respectively.

118

6.4 TRANSMITTER IMPLEMENTATION OF 2-OF-7 LETS

6.4.1 3-OF-6 DECODER

C

C

C

C

Dual
Rail

Encoder

3of6_dec

d3of6[5:0]
d_12[7:0]

acki

Fig 88 3-of-6 decoder

In this module, the received 3-of-6 data are firstly converted into 16-bit one-hot code by

using 3-input C-gates each of which indicates completion detection of every 3-of-6

symbol. Then the one-hot data are fed into a dual-rail decoder and encoded into 4 bit

dual-rail data. Finally the dual-rail data are registered to output through a C-gate pipeline.

The dual-rail encoder shown in Fig 89 generates 4 true bits, d_1of2[7], d_1of2[5],

d_1of2[3], d_1of2[1] with an OR gate network from the 16 bit one-hot inputs; the other 4

false bits are generated from inversion of the above 4 true bits and a reset bit which

indicates the reset phase at the input 16 bit one-hot data. However, this circuit operation

relies on a timing assumption that the propagation of detection of one_hot[15:0] is

slower enough than that of the four bit output d_1-of-2[7], d_1-of-2[5], d_1-of-2[3] and

d_1-of-2[1] and their inverse. DI or speed-independent (SI) alternatives to this decoder

are available. SI assumes unbounded gate delays and zero or negligible wire delays.

d_1of2[7]

d_1of2[5]

d_1of2[3]

d_1of2[1]

Or-gate
tree

d_1of2[6]

d_1of2[4]

d_1of2[2]

d_1of2[0]

one_hot[15:0]

Dual Rail Encoder

Fig 89 Dual-rail encoder

119

6.4.2 2-OF-7 LETS ENCODER

The second major module in the transmitter is the 2-of-7 LETS encoder, which is

implemented with dual-rail logic. The input data is the 8 bit output of the dual-rail

encoder; after encoding of 2-of-7 LETS, the output is 14 bit dual-rail 2-of-7 data, shown

in Fig 90.

d27_pre[13:10]: two bits of state signals.

d27_pre[9:8]: one bit of parity signal.

d27_pre[7:0]: four bits of data value.

dist_2[1:0]: hamming distance is 2, similarly for dist_3[1:0] and dist_4[1:0].

sel_000[1:0]: hamming distance is 2 and the XOR of 2 state signals is 0. Similarly for

sel_010[1:0] and sel_011[1:0] and sel_111.

sel_1xx1[1:0]: hamming distance is 4 and the XOR of 2 state signals is 1.

dist[0]

dist[1]

dist[2]

AD
DE
R

Si[1]

Si[0]

MUXd27_lat[13:12]
d27_pre[13:12]

s_sel_00[1:0]

0

1

MUX

d27_lat[11:10] d27_pre[11:10]

s_sel_01[1:0]

0

1

sel_010[1:0]

sel_111[1:0]

dist_2[1:0]

sel_000[1:0]

sel_1xx1[1:0]

MUX
d27_lat[7:0]

d27_pre[7:0]

d_sel[1:0]

0

1

sel_101[1:0]

dist_3[1:0]

dist_4[1:0]

COMB
Logic

MUXd27_lat[9:8]

d27_pre[9:8]

p_sel[1:0]

0

1

dist_2[1:0]

sel_000[1:0]

sel_011[1:0]

sel_110[1:0]

sel_1xx1[1:0]

d27_lat[13:0]

d_1of2[7:0]

d27_pre[13:0]

Fig 90 2-of-7 LETS Encoder

From the input dual-rail data and the previous 2-of-7 symbol with a dual-rail format, the

left part including XOR gates and an adder in the encoder computes the hamming

distance between two neighbouring 8 bit dual-rail data and also XORs the two state bits in

the previous symbol; the COMB logic circuit produces a set of select signals which are

120

connected to multiplexers in the right of the figure. In these multiplexers, the select

signals determine which two bits in the previous symbol need to be flipped. The

implementation of select signals is derived from Table 11.

All the logic gates in this dual-rail module are specifically designed for implementing

dual-rail logic, rather than standard gates, for example XOR gates, OR gates and

multiplexers. Particularly, the inverters do not exist in the real circuits, which simply

switch the true and false bits to realise inversion operation. Furthermore the adder, which

takes the difference of its inputs and adds them up to get the hamming distance, is also

designed for dual-rail logic addition.

HA HA

FA HA

abcd

s0s1c

Fig 91 Dual-rail full adder

6.4.3 TRANSMITTER

The transmitter of the off-chip interface incorporates a 3-of-6 decoder, a 2-of-7 encoder

and other related circuits, as shown in Fig 92. The 3-of-6 decoder and 2-of-7 encoder

have been discussed in the above sections. This section is focused on the integration of

these modules at the top level of transmitter.

In the transmitter, the modules 3-of-6 decoder and 2-of-7 encoder can be connected

together. As described above, the 2-of-7 encoder requires the previous symbol as one of

its inputs. Hence a dual-rail pipeline ring is applied to propagate the output symbol back

to the encoder. The ring contains three stages of C-gate pipelines designed for dual-rail

logic. The first stage registers 4-phase dual-rail data from the output of the 2-of-7 encoder,

121

passing to a 4-phase to 2-phase converter based on C-gates at the right top and also

feeding backward to the second and third pipelines.

C

C

d_12[7:0]
dout[6:0]

Transmitter

C
b0.t

b0.f

C

C

C

d27[13:0]

acko

cd

D

EN

Q D

EN

Q

ack2

C

C

d27_lat[13:0]

d27_pre[13:0]

ack2_4ph

d27_lat_pre[6:0]

C

cd

Reset to dual-rail zero

3of6

Dec

d_36[5:0]

2of7

Enc

cd

Fig 92 2-of-7 LETS transmitter

Note that after the global initial reset, the output of the pipeline ring needs to be reset to

dual-rail zero as the initial state to prime encoding of 2-of-7 codes. Since the first 2-of-7

symbol is produced, the ring output will return to zero, followed by feedback of the first

2-of-7 symbol.

A 2-phase to 4-phase conversion circuit of the acknowledge signal ack2 depicted in the

bottom right of the block diagram consists of two latches and one XOR gate. The output

of the conversion module as an input of a C-gate along with a completion detection signal

from a dual-rail pipeline ring is connected to enable the first C-gate pipeline of that ring.

In the pipelines, 2-of-7 symbols propagate along the ring except that the data entry and

exit respectively is at the input and the output of the first pipeline. The 2-of-7 encoder

takes both the initial value of the bottom-left pipeline and the first value from the 3-of-6

decoder and generates the first 2-of-7 symbol, which goes through the top pipeline and is

driven to the off-chip channel after being converted into 2-phase by the top right dual-rail

to single rail and phase converter. Meanwhile, backwards the two bottom pipelines work

122

as storage units for previous symbols, with enable ports connected to the completion

detection signals of the final pipeline in the bottom and the top pipeline.

6.5 IMPLEMENTATION OF 2-OF-7 LETS RECEIVER

6.5.1 2-OF-7 LETS DECODER

D

EN

Q

D

EN

Q

MUX

d27[6]

d27[5]

d27[3:0]
d27[6:0]

en

dat[3:0]

2-of-7 Dec

C

C

C

C

cd

acko

dout[7:0]

acki

T2-of-7 CD

d_1of2[7:0]

Fig 93 2-of-7 LETS decoder

Decoding of 2-of-7 LETS code is much simpler compared to decoding of the

conventional 2-of-7 code. Corresponding to each symbol there are only two possibilities

of the decoded data value, the original 4 bit binary bits or its reverse. As described in the

section 6.3, the decoded data are actually equivalent to the four data bits in the symbol if

the two state bits are the same; otherwise the decoded binary data are inversion of the data

bits in the symbol. A Mux and a XOR gates in Fig 93 are applied for selecting original

data bits or the inversion to generate the binary data value.

A 2-of-7 completion detection (CD) module, which supports the full set of the 2-of-7

code, is shown in the bottom left dashed block in Fig 93. It issues an enable signal to the

connected dual-rail logic generation module based on C-gates. The CD module enables

the dual-rail logic generation circuit to receive the MUX output data which represent a

correct 4 bit binary value; then the dual-rail generation circuit converts the input binary

data into an 8 bit dual-rail value. It needs to be pointed out that this decoder circuit relies

123

on a timing assumption, in which the path delay through this completion detection

module from the input to the final output must be longer than the sum of a MUX gate and

an XOR gate. The timing assumption is very realistic as the CD module involves a

number of gate levels which are greatly more than the MUX.

Finally the 8 bit dual-rail value is passed to a pipeline sitting at the end of 2-of-7 LETS

decoder before being propagated to the subsequent module – a 3-of-6 encoder in the

receiver. This pipeline improves the performance of the 2-of-7 decoder due to the long

delay in the critical path introduced by the CD module. Moreover a completion detection

module is connected to the final outputs to produce an acknowledge signal on to the

off-chip channel via a TOGGLE element.

6.5.2 3-OF-6 ENCODER

The input 8bit dual-rail data representing 16 binary values need to be converted into

3-of-6 code data before they are sent out to on-chip interconnect. The input data first goes

through a large tree of AND gates and produces 16 one-hot encoding data of 16 binary

values, for example, one_hot[0] = d_1of2[6] & d_1of2[4] & d_1of2[2] & d_1of2[0],

indicating the 4bit binary value 4‟b0000. Then a combinational block is straightforwardly

used to produce 3-of-6 code using the inputs of the 16 one hot encoded wires.

C

C

Comb
logic

d_1of2[7:0]

d_3of6[7:0]

acki

one_hot[0]

one_hot[15]

cd
acko

Fig 94 3-of-6 encoder

6.5.3 RECEIVER

A 2-of-7 decoder and a 3-of-6 encoder discussed above build up a receiver of an

asynchronous off-chip interface based on 2-of-7 LETS code in Fig 95.

124

Fig 95 block diagram of 2-of-7 LETS receiver

6.6 IMPLEMENTATION SUPPORTING EOP SYMBOLS

6.6.1 EOP PROBLEM

In a complete 2-of-7 code, the total number of symbols are 7x6/2!=21; while the 2-of-7

LETS code proposed above supports 16 symbols, which are only able to encode and

decode 4 bit binary data. However, in the Comms NoC of SpiNNaker an extra EoP has to

be employed at the end of each packet. Thus this section explains how to extend the

2-of-7 LETS to address the EoP problem.

In order to provide more than 16 symbols for supporting EoP symbol, we need to increase

the code capacity of 2-of-7 LETS. In Table 11, we can find that there are two options for

encoding some symbols, where the state signals can be changed in two ways, such as

changed to 00/11 or 01/10. The redundancy can be exploited for more code capacity. For

instance, in the first case of that table, the XOR result of the preceding symbol is true,

which means the preceding state signals must be 01 or 10; the Hamming distance between

the current input binary data and the previous symbol is zero, so there is no need to invert

the data bits. As a result, either 00 or 11 are assigned to the current symbol to generate one

transition while the other transition is made by flipping the parity bit. Similarly in the

third case where the XOR result is true and the Hamming distance is 1, either 00 or 11 are

assigned to the new symbol. In those cases, since only one bit needs to be changed in the

state bits of the new symbol we can obtain its state field by flipping the higher bit from 01

to 11 or from 10 to 00, or by flipping the lower bit from 01 to 00 or from 10 to 11.

2-of-7

Dec

3-of-6

Enc

din[6:0] dout[5:0]

acko
acki

d[7:0]

125

Moreover either 01 or 10 are assigned to symbols when the Hamming distance is 3 or 4

and the XOR result of the preceding two state signals is false. There is only one bit

required to change since the parity bit may be changed accordingly. We have two ways to

generate the state part of the next symbol, which are to flip the first bit from 00 to 10 or

from 11 to 01, and to flip the second bit from 00 to 01 or from 11 to 10. It also indicates

that there is some redundancy in the code space.

Generally we can expand the code capability by restricting the code generation method

described above. For example, we always choose the higher bit to flip for producing data

symbols. When an EoP symbol is concerned, we can regard it as special input data with

the same value as any preceding symbol but with flipping the parity bit and the lower state

bit. The EoP encoding can be differentiated from any other data symbols as encoding all

data symbols only flip the higher state bit if needed. Table 16 shows the encoding scheme

for supporting EoPs. It can be seen that only the higher bit is flipped for any case where

the choice of which state bit to flip is arbitrary. Not only are the encoding circuits

simplified, but also more robustness of circuits can be achieved.

Table 17 shows the decoding method for an EoP symbol. If bit 5 and 4, the lower state bit

and the parity bit respectively, are exclusive then an EoP symbol is represented. By

contrast, an exclusive OR of the two state bits indicate whether to invert the four-bit data

field in the symbol or not to produce the binary output data.

126

Input Output

Dist(di+1, d
'
i) ^Si[1:0] d'i+1 Pi+1 Si+1[1:0]

0
1

di+1

~Pi
~ Si+1[1]

0 Pi
~Si

1
1 Pi

~ Si+1[1]

0 ~Pi

Si 2
1 ~di+1 Pi

0 di+1 Pi

3
1

~di+1

~Pi

0 Pi
~ Si+1[1]

4
1 Pi

~Si

0 ~Pi
~ Si+1[1]

EoP di+1 ~Pi
~ Si+1[0]

Table 16 2-of-7 LETS of supporting EoP

Input Output

^di[6:5] ^di[5:4] di+1[3:0] EoP

0
0

di[3:0]
0

1 ~di[3:0]

 1 1

Table 17 2-of-7 decoding including EoP

6.6.2 REVISED INTERFACE CIRCUITS

To support encoding and decoding EoP symbol in the 3-of-6 code, a separate EoP path is

added to the data channels of both the transmitter and the receiver in Fig 96 and Fig 97.

Encoding an EoP into a 2-of-7 LETS symbol is implemented with a multiplexer switched

by an EoP signal. An EoP arriving only after all data in a packet transferred over the

pipeline ring, switches the multiplexer to allow the ring output to feed the 2-of-7 encoder.

The 4th and 5th pairs of bits are reversed to inject an EoP symbol into the first pipeline

register of the pipeline ring.

127

C

C

d_12[7:0]

dout[6:0]

Transmitter

C
b0.t

b0.f

C

C

C

d27[13:0]

acko

cd

D

EN

Q D

EN

Q

ack2

C

C

d27_lat[13:0]

d27_pre[13:0]

ack2_4ph

d27_lat_pre[6:0]

2of7

Enc

C

cd

Reset to dual-rail zero

MUX

eop

0

13of6

Dec

d_36[5:0]

cd

Fig 96 Revised 2-of-7 LETS transmitter

In Fig 97, a valid EoP detection from outputs of an array of XOR gates selects all zeroes

as the input of AND gates of dual-rail logic generation so that the output data path

remains spacer, while the other inputs of those AND gates are from the CD output. The

EoP output is pipelined with the same enable port acki as the data outputs. A revised

receiver is shown in Fig 98.

MUX

din[6]

din[5]

d_27[3:0]
din[6:0]

rd_2[3:0]

2-of-7 Dec

C

C

C

C

cd

acki

T

-

-

acko

0

1

MUX

xor_out[5]

xor_out[4]

eop_cd

C
eop

dout[5:0]

D

EN

Q

D

EN

Q

2-of-7 CD

xor_out[6:0]

Fig 97 Revised 2-of-7 LETS decoder

128

2-of-7 Dec 3-of-6 Enc

C

eop_acki

acki

eop

dout[5:0]dout[6:0]

eop_pre

acko

Fig 98 Revised 2-of-7 LETS receiver

6.7 SUMMARY

Level-encoded transition codes have the potential of lower power and higher data

throughput than 4-phase codes. 2-of-7 LETS, a novel LETS code, can represent 16

data symbols and one EoP symbol to meet the SpiNNaker requirement. The transmitter

and receiver circuits were given in this chapter.

Furthermore, 2-of-7 LETS has another important property: the minimized dependence

between neighbouring states. The represented information is either the original or the

inversion of the data field in a LETS symbol. A new off-chip interface based on 2-of-7

LETS benefits from this property and thus decreases the risk of deadlock relative to the

baseline design. However, the major downside of this scheme is the lower throughput

due to the complicated encoding procedure. Currently SpiNNaker chips do not adopt

this scheme for their off-chip circuits. Instead a set of techniques, discussed in the next

chapter, are employed to increase the circuit tolerance to transient glitches with a lower

area overhead and less performance penalty than are incurred by the LETS scheme

described in this chapter.

129

Chapter 7 IMPLEMENTATION BASED ON TRANSITION

INSENSITIVE PHASE CONVERTERS

This chapter presents the second fault-tolerant off-chip interface circuits by using

several fault-tolerant techniques to extend the basic design presented in chapter 4.

Extensions include a novel phase converter, an arbitration based code conversion and a

flit counter. Additionally, a more robust architecture is proposed to increase the

receiver‟s resistance to transient glitches. Finally, a reset scheme is presented to support

independently resetting either the transmitter or the receiver without a need to reset both

of them if deadlock occurs at an off-chip link.

7.1 TRANSITION INSENSITIVE PHASE CONVERTER

Data phase conversion between 2-phase and 4-phase is discussed in chapter 4 (Fig 45),

which is implemented with an XOR gate and a pair of transparent latches for each input

data bit. However, this level based converter has weak tolerance to transitions at the input

signals as the conversion is conducted on the basis of the stored value of the previous state.

During the transparent mode of the latches, any transition including transient glitches can

easily get through them. In other words, extra transitions introduced by transient glitches

may change the stored values in the phase converter, the wrong previous state values may

further lead to unpredictable results.

clrn

din

(2-ph)

dout

(4-ph)

q0

q1

Sn

Rn

Q

rst

Sn

Rn

Q

rst

Fig 99 Novel phase converter

130

Instead of the conventional converter, a novel phase converter is proposed which

employs a different scheme to fetch transitions and is capable of avoiding the potential

problems faced by a conventional phase converter. It contains two RS flip-flops and a

NOR gate in Fig 99 to convert a 2-phase input signal to 4-phase. The two active low ports

Sn of the flip-flops are connected with the active low signal clrn, while their ports R

connected with the input data signal din and its inversion. Generally, after initially

resetting the circuit output dout remains „0‟ even after clrn is released. Once clrn becomes

low, the values of the internal signals „a‟ and „b‟ are either „01‟ or „10‟, determined by the

current level of din. Then any transition at din will alter both „a‟ and „b‟ to low, setting the

output dout to high. Finally an active signal clrn, indicating success of the data at dout

received by the subsequent logic circuit, clears dout to low.

The new phase converter circuits as shown in Fig 100 are implemented with one inverter,

four NAND gates and one NOR gate. The clrn dominant circuit helps to increase the fault

tolerance. An active clrn clamps the output down to „0‟, resetting the circuit. After clrn is

released, the output of the two flip-flops turns to „01‟ or „10‟ depending on the current

value of din, but dout remains low if no transition arrives at the inputs. During the period

of an active clrn, any transition occurring at the data input din has no effect on internal

state signals and the final data output dout. This is a very important property of the novel

phase converter.

dout

(4-ph)

a

b

clrn

din

(2-ph)

c

d

Fig 100 New phase converter circuit based on NAND gates

The phase converter in Fig 101 can be applied in the transmitter. Three input NAND gates

are employed, instead of 2 input NAND gates in the above circuit, to incorporate a reset

input. An active (low) global reset forces the outputs of the left two NAND gates to go

high. This causes the right two NAND gate outputs to become low as the clrn must be

131

inactive (high) during reset and so dout is high. However the dominant port, clrn, resets

dout to low.

a

b
rstn

clrn

dout

(4-ph)

ack2

(2-ph)

Fig 101 Phase converter with an active low reset port

Fig 102 explicitly shows the state transitions for operations of the novel phase converter,

in which the state is given with a format of „ab/dout‟. For every rising edge at din the

circuit goes through the loop 1 otherwise for every falling edge it goes through the loop 2

as depicted in Fig 102. Unlike the conventional phase converter, the new phase converter

does not store any previous value for generating the next value. For each transition at the

input data wire this converter must have the state transition sequence either

„10/0‟->‟00/1‟->„11/0‟->„01/0‟ or „01/0‟->‟00/1‟->„11/0‟->„10/0‟. The circuit operates

in a similar bi-stable way, mainly alternating between two states of „10/0‟ and „01/0‟.

Consequently, for any input transition the circuit alternates its states to output a high

value, followed by a low value due to a clear pulse input.

11/0

01/0

10/0

00/1

clrn-

clrn+ & !din

c
l
r
n
+

&

d
i
n

din-

d
i
n
+

clrn-

1

2

Fig 102 State transition graph of the novel phase converter

The clear pulses might be harmful to normal operations if the input transitions arrive

simultaneously with the reset operations performed by an active clrn. Once the data,

carried on transitions, are ignored by the phase converter, there is no acknowledge

response produced to the prior circuit, such as the transmitter. As a result, the entire

132

circuits may deadlock as the transmitter cannot send out next data without receiving a

valid response from the receiver. However, this would not happen since the reset

operations run much faster than the new data propagation. Normally there is no conflict

between the two signals of the data input din and the reset clrn. When it comes to the

glitches happening at the off-chip wires, the new property of the phase converter is

capable of ruling out any unexpected transient transitions caused by glitches.

T0 T1 T2

din

dout

clrn

Fig 103 Interface timing of new phase converter

The margin for safe operation needs to be analyzed further with the timing relations

involving all relevant signals. Simply for the current phase converter, there are only three

signals din, dout and clrn to be considered. In Fig 103, T0 represents the time from a valid

transition arriving at this converter input din to finishing self-reset with clrn, T1 the gap of

the arrival times between the completion of clrn and the following valid transition at din,

T2 the time between any two adjacent transitions at din. Basically T0 is determined by the

circuit in the receiver end, while T1 and T2 generally reflect the response time of the

transmitter, the signal propagation over the off-chip wires as well as I/O pads. It is

reasonable to assume that T1 and T2 are much greater than T0.

This phase converter has a property which differentiates it from the conventional one

based on transparent latches. In a latch based converter in Fig 45, during a transparent

mode of the top latch, any transient glitches can get through the top latch but the latest

level will be stored in both two latches when the bottom latch is also switched to a

transparent mode, further leading to potential problems such as illegal symbols. However,

it is clear that the new phase converter does not allow multiple transitions to get through

over one rail within a cycle, which means that once the circuit fetches the first transition,

any more transitions are prevented from propagating before it is fully reset and recovered

to accept the next transition.

133

Finally the phase insensitive nature of this novel circuit helps to avoid some of the

potential deadlocks in Fig 73. The latch based phase converter makes use of signal levels

to detect transitions. Once the previous signal level is wrongly changed, this conventional

converter may fail to detect the next transition and then deadlock. This scenario does not

happen to the new converter since it is still able to keep running due to the phase

insensitive nature, no matter what level the signal becomes.

7.2 DATA PHASE CONVERTER IN RECEIVER

The 2-phase 2-of-7 symbols from the off-chip channels, arriving at the front of the

receiver, need to be changed into 4-phase format before code conversion is performed.

The principle of the phase conversion is that the 4-phase outputs, resulting from incoming

2-phase data, trigger clear pulses to reset the phase converter as well as propagate to the

subsequent circuits. It is assumed that the phase converter completes its reset operation

before the next valid data arrive. This assumption is reasonable as the off-chip delay at the

scale of 10 ns is far slower than the on-chip delays incurred at clrn and ackl in Fig 104.

ph_conv

clr_gen

or

din<6:0> dout<6:0>

clrn

ackr

ackl

Fig 104 New phase converter in the receiver

To create reset phases from 2-phase input data, the receiver needs to incorporate a module

for generating clear pulses; these clear the converted data presented at dout[6:0] and thus

form the reset phase of the 4-phase output data. The module clr_gen outputs an active clrn

once the local completion detection signal ackl from the output of OR gates connected to

dout[6:0] and the remote completion detection signal ackr are both valid, indicating the

success of the data in propagating to the next stage. When the reset phase of data is

134

acknowledged by a low ackl, the clear signal clrn turns to high, regardless of the remote

acknowledge signal ackr.

+

+

ackl

-

C

C

clrn

ackr

Fig 105 Module clr_gen

Fig 105 shows the circuit of the module clr_gen which contains two asymmetric C-gates

both with active low reset ports. The primary function of this circuit is to generate a short

clear pulse to reset the phase converter circuits, which means that a spacer is injected

between two consecutive 2-phase 2-of-7 symbols to re-build the 4-phase data stream.

After a 2-of-7 symbol is received successfully by the phase converters, ackl will be

asserted and will drive clrn to low as long as a token arrives at ackr, tying the output of the

right C-gate to low. On the other side, an active clrn externally drives ackl to low, no

matter what value ackr is, and thus drives the left C-gate to low, inactivating clrn and

completing the generation of a clear pulse. Obviously assertion of clrn relies on the

successful reception of the local and remote data transfer, but the removal of clrn token

depends solely on the completion of the reset action in the phase converters.

ackr

ackl rstn

clrn

Fig 106 Implementation of module clr_gen

The implementation of the clr_gen module with two asymmetric C-gates is shown in Fig

106. It comprises three NAND gates on the right side and three NOR gates on the left side

to respectively implement the 3-input asymmetric C-gate and the 2-input asymmetric

C-gate. The NOR gate at the rightmost is for integrating an active low reset port. When it

135

comes to the clr_gen module robustness, its two inputs, ackl and ackr, need to be

considered. ackl comes from an OR gate tree connected to dout[6:] in Fig 104 while ackr

comes from the CD output of the subsequent pipeline register, which will be discussed in

Fig 117. The propagation time of ackr, about one C-gate and CD delays, is greater than

the 3 levels of standard gate delays incurred on ackl. Moreover, the path delay from ackr

to clrn inside the clr_gen module is also 2 levels of standard gate delay greater than the

path delay from ackl to clrn. Thus this module designed and laid-out carefully will be safe

enough to operate.

Besides the resistance to glitches discussed in the previous section, this data phase

converter in the receiver is also able to filter out most glitches. In Fig 104 a glitch can get

through ph_conv and then trigger ackl, but clrn is fired only after ackr is asserted from the

next pipeline register, where a valid ackr indicates a success in receiving a symbol. If a

small skew exists between the two transitions of an input 2-of-7 symbol, it is more likely

for ph_conv to produce a more than 2-of-7 illegal symbol, but the circuit does not

deadlock. If a large skew occurs between the two transitions, the whole off-chip interface

may deadlock due to a potential handshake failure somewhere in the circuits. This is

similar to the conventional phase converter in these scenarios.

7.3 ACKNOWLEDGE PHASE CONVERTER IN THE TRANSMITTER

In a transmitter, the acknowledge signal from the off-chip 2-phase channel needs to be

converted into 4-phase with the phase converter before joining on-chip logic operations.

The circuit in Fig 107 illustrates the integration of the module ack_ph_conv, which is

already described in Fig 101, with other neighbouring modules in a transmitter.

136

pipeline

cd

ack_ph_conv

pipe_in<6:0> dout<6:0>

ack2
pipe_en

Tx

T

acko

clrn

Fig 107 Tx phase converter for ack2

In Fig 107, signals clrn and ack2 are respectively connected with the reset to low port clrn

and 2-phase data input din in ack_ph_conv; clrn is the inversion of acko, which is the

completion detection of dout<6:0>; the global reset initially forces pipe_en to high for the

pipeline receiving data. First of all, pipe_in<6:0> representing 4-phase 2-of-7 input

symbols enters the C-gate pipeline; active outputs of the cd module acko confirms the

successful arrival of data while the output clrn is fed to the ack_ph_conv module, driving

pipe_en low to reset the pipeline. The pipeline will be turned on to receive the next

symbol by a high pipe_en as long as a change at ack2 arrives to acknowledge the data

issued by the transmitter (TX).

The 4-phase to 2-phase conversion operations rely on a timing assumption that the inner

loop for resetting the pipeline is much faster than the outer loop for acknowledging the

issued data. If the pipeline reset fails before ack2 arrives, the phase converter may reject

the arriving transition at ack2. Thus the circuit misses the chance to enable the pipeline

and deadlock results. However, in practice this timing failure rarely happens, based on

the intended implementation. If comparing the time needed for the inner loop and the

outer loop, the following equations can be written:

nandgatec

cdpipelineconvackcdinner

TT

TTTTT

93

_2

Touter Ttoggle 2 (Toutpad Tlink_ delay Tinpad) Tack2

 Ttoggle 2 (Toutpad Tlink_ delay Tinpad) Trx _ conv 2Tcgate Tcd Ttoggle Tnand

 2Ttoggle 2 (Toutpad Tlink_ delay Tinpad) 7Tnand 3Tcgate

137

Therefore the time Tinner is roughly around 1 ns, while the delay time Touter is more than

10ns, given a propagation delay 80ps for a NAND gate, 150ps for a C-gate, 100ps for a

Toggle gate in the Artisan 130nm library. Ten times for Tinner is therefore ten times faster

than Touter providing sufficient margin to ensure the safety of the phase conversion for

ack2 at the transmitter.

This phase converter in the transmitter is tolerant to transient faults, substantially

reducing impacts on the transmitter circuits. In Fig 107, initially after global reset pipe_en

is high any glitch happening on ack2 has no influence on pipe_en. Once a symbol is sent

by the transmitter, ack_ph_conv may be sensitive to a glitch on ack2, depending on

whether it is reset by clrn successfully or not. If the reset process is not finished, any

glitch on ack2 will be ignored. Once the reset is completed, pipe_en is reset to low and

thus sensitive to a glitch on ack2. However, the pipeline register already completes its

reset and an early asserted pipe_en due to the glitch will not impede the next symbol

propagation on the pipeline.

7.4 FAULT TOLERANT SYMBOL CONVERSION

Transient glitches on the inter-chip wires may create illegal symbols in the receiver. Four

of the possible 2-of-7 codes are not used and codes with more than two set bits are clearly

illegal. In particular an invalid symbol must not be interpreted as both a data and EoP

symbol. The output stream from this stage should consist of data packets, each

accompanied by a type marker indicating they are 'normal' or 'EoP'. So, having obtained a

2-or-more-of-7 4-phase code this must be coerced into a legal symbol. This is done

during the translation to a 3-of-6 code.

Fig 108 derived from [58] shows the key circuit in this stage. Inputs are fed to C-elements

in pairs with the expectation that the first legal symbol to arrive will fire one element; this

is akin to a DIMS circuit [27, 58]. Assuming a correct input symbol this travels forwards

to its corresponding output and is used to assert exactly three of the data output wires or

the EoP indicator.

138

In the event of a corrupt input it is possible that two or more of the input C-elements may

fire at about the same time. The first one to do so will begin the assertion of the req signal

through the large OR gate - actually a tree structure owing to the considerable fan-in. The

delay through this gate and its subsequent fan-out is exploited in the circuit operation in

that the first DIMS term is assumed to reach its mutual exclusion element (Mutex) before

req has switched; it therefore wins that particular race. This input, by holding the Mutex,

blocks all the lower output paths in the daisy chain and waits to be output from the daisy

chain when req is valid.

C0

C1

Mutex

Mutex

C16
Mutex

C17

din[6:0] onehot[16:0]

3of6

Enc

dout[5:0]

req

C20

eop

C

C

C

C

Fig 108 A priority arbiter

Later switching elements may also win through their respective Mutex; however at some

time later req prevents further changes. When req appears it begins to ripple down a

chain, pausing when it finds an undecided Mutex and quitting when it finds its first legal

code signal. Although this is a serial search and is therefore quite slow, it is adequate to

keep up with the off-chip cycle time. If higher performance was required it would be

relatively simple to add a 'carry look ahead' style optimisation to this chain.

The output C-elements provide both an AND function on the forward cycle and prevent

output glitches during the return-to-zero phase, where races from the inputs can otherwise

139

- in principle - expose a 'lower priority' request briefly if the inputs are zeroed with

significant skew.

7.5 FAULT TOLERANT SYMBOL DETECTION

Considering the incomplete 2-of-7 and 3-of-6 DI code used in the interface circuit, all

data are conveyed with a subset of each code and therefore none of the unused symbols

appears through the whole link. However, in the presence of glitches the unused symbols

may be presented in the circuits, especially in the receiver since the transient glitches can

be combined with the normal transitions to introduce illegal symbols.

For an illegal symbol, a completion detection module fails to generate a valid output

indicating a successful reception of a symbol, which means that no acknowledge token is

issued back from the completion detection module to reset the previous C-gate pipeline.

If we assume that the two transitions always arrive sooner or later, even though a transient

glitch is inserted before or after the first correct transition and they are interpreted as an

illegal symbol the circuit will wait for the next transition. In this case, the two transitions

plus the transient glitch finally trigger the output of the completion detection module.

Fig 109 shows the completion detection circuit which supports the complete 2-of-7 code.

Compared to the circuit supporting the incomplete 2-of-7 code, there are four C-gates at

the bottom of the figure added to cover detection of all other unused symbols. Therefore it

can be seen that the area overhead is still acceptable. Additionally, the initial completion

detection circuit is retained for incomplete 3-of-6 code, as the 3-of-6 symbols are

relatively clean and there are no unused symbols presented at the input of the detection

modules. However, the complete code detection may not be helpful to increase the

circuits‟ fault tolerance. If a glitch combined with a valid transition forms an illegal

symbol, the completion detector produces a premature acknowledge signal, which may

jeopardize the circuits. In this scenario, an incomplete code detector helps to remove the

propagation of illegal symbols over the circuits. But if the glitch forms a correct symbol

140

with that valid transition, the incomplete code detector behaves the same as a complete

code detector.

Fig 109 Completion detection of complete 2-of-7 code

7.6 FAULT TOLERANT PACKET TRANSFER - FLIT COUNTER

In the presence of glitches, missed EoP symbols or additional false symbols in a packet

can lead to framing errors. The communications NoC fabric may run out of buffer space if

an over-length packet arrives and occupies all available buffer space, causing deadlock

over the input links of the on-chip router. Packets in the SpiNNaker system have two

valid lengths: 10 flits and 18 flits. The receiver needs to check the length of any received

packets ensure an EoP is signalled at least every 18 flits and generate a framing error

signal to tag the packet in cases where the EoP symbol is missed or superfluous data are

received.

flit_cnt

{EoP,normal}

acko

{EoP,normal}

acki

ctrl_in
ctrl_out

Frame_err (dual rail)

Fig 110 Flit counter

141

The flit counter (Fig 110 and Fig 111) counts 'normal' input flits and is reset when an

'EoP' is received. If an eighteenth successive 'normal' input is received, the output is

changed to an EoP and the counter is reset. This results in splitting an input packet but that

packet is already corrupt because extra flits must have been inserted. The 'truncated'

packet can be marked as such to a downstream unit which could log and discard it. The

counter does not have to be a high-performance unit it is counting at the flit rate. The

details of the chosen design in Fig 110 refers to van Berkel's handshake circuit modulo-N

counter [59]. Fig 112 illustrates the interface timing of the Mod 18 flit counter in Fig 111.

cnt_req

clr_req

cnt_ack

[1:0]

clr_ack

ctrl_req[0]

ctrl_req[1]

ctrl_pre[0]

ctrl_pre[2] ctrl_pre[1]

ctrl_pre[3]

ctrl_ack ctrl_cd

ctrl_pre[3:0]Flit_cnt_18

Fig 111 Mod 18 flit counter

1 2 3 ...18 1 2 3 ...18 19 20 1

ctrl_req[0]

ctrl_req[1]

ctrl_pre[0]

ctrl_pre[3]

ctrl_pre[2]

ctrl_pre[1]

ctrl_ack

ctrl_cd

Fig 112 Waveform of the mod 18 flit counter

To enhance the system‟s robustness, for example, if some data are lost or some errant data

are present in a packet a framing error occurs. The system has to support detecting a

framing error so as to inform the subsequent module to handle it. To implement the

detection of a framing error mainly relies on a counter of mod 18 which counts up at each

receiving cycle of 2-of-7 symbols from the beginning of every packet. When it reaches

142

either 10 or 18 but the currently received symbol is not an EoP, a framing error is

recognized.

7.7 BACK-PRESSURE ISSUE

Back-pressure is a common issue for asynchronous designs. A typical delay-insensitive

channel is made of a forward data path and a backward acknowledge path. For any

particular unit it stalls if the data are sent out but its receiving unit fails to issue a

backward acknowledge for some reason. Furthermore the current unit will stall the whole

backward channel, leading to back-pressure. A purely delay-insensitive circuit can live

with back-pressure without any problem, since delay insensitivity represents the

tolerance to any variable delay, including the delay introduced by the back-pressure.

However, as we described in the above sections, the phase conversion circuits has some

timing assumptions. In other words, the interface circuits are not purely delay-insensitive

circuits, and a timing violation may break the handshake circuits. Therefore we need to

examine the safety of the timing critical part of the circuits under back-pressure.

LHS
Phase

Converter
RHS

din dout

acko acki

2-phase 4-phase

Fig 113 Handshaking between 2-phase and 4-phase domains

Fig 113 illustrates a general scenario where a phase converter is embedded to convert the

2-phase data at the left hand side (LHS) circuit to 4-phase for the right hand side (RHS)

circuit. Given any backpressure happening at the RHS circuits, the RHS may stall holding

a symbol or a spacer. A symbol held by the RHS allows the phase converter to

accommodate a spacer and prevents it from storing the next symbol; while a spacer in the

RHS still permits one more symbol to get through the phase converter. If the phase

converter cannot successfully hold a spacer or a symbol then, a back-pressure issue arises.

143

A back-pressure tolerant circuit is expected to successfully accept the data after any large

time delay without data loss or deadlock. The conventional phase converter described

based on transparent latches is able to undergo the back-pressure in that the converter

detects signal level rather than transitions. However, the phase-insensitive converter we

proposed does not meet this requirement. As pointed out, it contains a self-reset circuit

which clears the received data through a self-timed pulse in Fig 104 and Fig 105. After

each symbol is received by the phase converter and forwarded to its output, an active acki

produces a clear pulse to reset the converter. The next symbol gets through the converter

and propagates to the RHS circuit as long as acki returns back to zero. In the presence of

back-pressure acki remains high till the back-pressure disappears; the next symbol

continues to arrive at the output port dout despite the fact that the RHS circuit cannot

accommodate any more symbols. In Fig 105, when the RHS holding a symbol in the

presence of back-pressure, the phase converter fails to reset itself and is therefore unable

to create spacers due to ackr remaining high. Consequently the RHS circuit will merge

this input symbol with its already stored symbol together. Furthermore, the missed

spacers cause deadlock in the receiver as it merges the new symbol with the previous one

without issuing back a valid acko signal. Note that if the RHS is holding a spacer when

back pressure takes place then it will not deadlock.

To eliminate the impact of back-pressure on the packet loss, the phase converter and the

RHS circuit need be enhanced to make them capable of separating and holding the input

symbols, rather than merging symbols if back-pressure is present.

pipeline1

cd

din dout

acki

ack2

Phase
conv

pipeline0

T

Fig 114 Back-pressure tolerant pipelines

An effective way is to enhance the pipeline circuit after the phase converter. The circuit is

enhanced by adding one more standard C-gate pipeline in Fig 114, where the left C-gate

144

pipeline is dedicated to accommodate spacers in the presence of back-pressure. The

adjacent circuit at the output of the enhanced pipeline is saturated due to back-pressure

and the input signal acki is tied low so that the pipeline1 is only allowed to keep the

symbol which remains at the port dout and fails to propagate to the next pipeline stage.

The output of the cd module for the signal dout produces the acknowledge signal acko

and also clamps pipeline0 to pass a spacer. Even though the phase converter completes

the reset phase, the spacer generated by the self-timed clear pulse proceeds to pipeline0.

From now on all the circuits following the phase converter are frozen until the

back-pressure disappears. Assuming the next symbol represented by transitions arrives at

the phase converter and a symbol then appears at the port din, the pipeline0 and the

subsequent circuits, however, remain still. Thus the enhanced C-gate pipeline integrated

into the receiver effectively resolves the back-pressure issue.

The cost of the enhanced pipeline is trivial in that the pipeline0, the phase converter and

the output acknowledge to the transmitter share a signal acko. If acko goes high, it

enables the pipeline0 to take spacers, it resets the phase converter and it permits the

transmitter to issue next symbol. The first two operations take place simultaneously. In

addition, acko going low means that the pipeline0 is able to take a valid symbol.

Considering that the critical path is from the off-chip links, the arrival of a valid symbol

lags behind the reset completion of the pipelines when there is no back-pressure.

Therefore the added pipeline0 does not degrade the throughput generally.

7.8 FAULT TOLERANT RECEIVER ARCHITECTURE

As described in chapter 4, the initial receiver must acquire and hold two consecutive

symbols and the sequence of the pipeline outputs then determines the control output

symbol, either NORMAL or EoP. However the initial receiver architecture has a

potential problem from the fault tolerance perspective. Fig 53 shows that the sequence

detection is implemented in the domain of 2-of-7 symbols which may contain errant

symbols due to transient glitches. For instance, if an EoP and a data symbol are both

detected this receiver architecture is incapable of dealing with this error scenario.

145

We propose an off-chip interface receiver with a novel architecture. Instead of storing any

two consecutive symbols (separated by a spacer) as discussed in section 4.5.2, for each

packet the control information is created from the second symbol of the input 2-of-7

symbol stream while the first symbol is translated into a 3-of-6 symbol without issuing

any control symbol. The control symbol NORMAL is output along with all the following

2-of-7 data symbols until the last one, namely EoP. At the end of each packet, the EoP

symbol from the input 2-of-7 code stream imposes a control symbol EoP without sending

out any 3-of-6 data symbol onto the data channel. Deliberately ignoring every first input

2-of-7 symbol within a packet makes each control symbol generation to be simply

determined by the next input 2-of-7 symbol. This architecture benefits from the fact that

on-chip data and control channels are not necessarily synchronized.

This receiver architecture can achieve better resistance to faults by placing the control

information generation circuit in the end part. Thus the front part is isolated so as to apply

fault tolerance techniques to deal with errors; the isolated control channel receives „clean‟

data and thus is less likely to be affected by transient glitches on the off-chip interface.

pipeline4

rx_ctrl

dat_cd eop_cd dat_cd

pipeline3

ctrl_cd

pipeline5

dat_cd

pipe3_dout[5:0] pipe4_dout[5:0]

pipe3_dat_cd

pipe3_eop_cd

pipe4_dat_cd

pipe3_en

rx_gen_ctrl[3:0]

pipe2_dout[6:0]

Fig 115 Module rx_ctrl in receiver

The rest of this section explains the function of the rx_ctrl module and also the interaction

with the neighbouring modules in Fig 115. First of all, the module rx_ctrl takes in two

146

signals coming from the pipeline3 output, pipe3_dat_cd and pipe3_eop_cd. If the data are

the first flit of any packet, indicated by a valid pipe3_dat_cd, the module simply ignores it

and waits for a valid pipe4_dat_cd which then causes pipe3_en to go low so as to clear the

first data flit on the main data path. The following data starting from the second flit

triggers pipe3_dat_cd to high, producing the control information with a format of 1-of-3

encoding. Once the data and control information appear at the data and control output

channel the two signals ctrl_cd and pipe4_dat_cd are immediately driven to high and

therefore drive the signal pipe3_en to low to clear the data path. After the pipelines are

cleared, all the inputs and the output rx_gen_ctrl of the module rx_ctrl return to zero so

that the control channel is reset and pipe3_en goes high to enable pipeline3. When an EoP

symbol arrives, instead of pipe3_dat_cd the signal pipe3_eop_cd becomes valid and then

produce EoP symbol onto the control channel. After ctrl_cd goes high to signal the

pipeline5 output, pipe3_en goes zero to reset the data path. Note that EoP symbols are

unable to go through the module rx_conv which only supports converting data symbols.

Fig 116 Implementation of the module rx_ctrl

Fig 116 illustrates the circuits of the module rx_ctrl. After reset or each EoP symbol, the

select inputs of two s-elements are set to high to acknowledge the preceding circuit by

setting pipe3_en high and also to avoid any control symbol for the first flit of each packet.

The RS-type flip-flop with an active-low reset is implemented with an Or-And-Inverter

147

gate and another inverter. In addition to creating control symbols for the control channel,

the generation of pipe3_en and pipe2_en are also included for the handshake circuits

which interact with the data path pipelines. In general there are four scenarios for

resetting pipe3_en low. The fourth case is incorporated to avoid deadlock in the case that

two consecutive flits are both interpreted as EoPs in the presence of errors.

1. pipe4_dat_cd=1 and dat_sel_1=1 for the first flit;

2. pipe4_dat_cd=1 and ctrl_cd=1 for the subsequent flits;

3. pipe3_eop_cd=1 and ctrl_cd=1 for the EoP flit;

4. pipe3_eop_cd=1 and eop_sel_1=1 for any repeated EoP flit.

pipeline3 pipeline4pipeline1

cd

pipeline5

ctrl_gen

cd

cd

cd

eop_cd dat_cd

NRZ-to-RTZ

T

rstn

din[6:0] dout[5:0]

ctrl_acki

dat_acki
pipe1_en

pipe2_en

pipe3_en

pipeline2
code 27

To
code 36

pipe1_cd
ack2

pipe1_din pipe2_din pipe3_din

eop

Fig 117 Receiver without a new architecture

Fig 117 shows the new architecture. Like the original design, the new receiver is

pipelined to increase potential throughput. The first stage receives a symbol and, when it

is complete, it returns an acknowledge transition to the sender. In this stage a symbol is

complete when transitions have occurred on at least two different wires. The second

pipeline latch provides some extra buffer space. In the implementation the latches are

simple C-element latches and thus hold either a data element or a spacer. The added

capacity allows the receiver to hold two input flits simultaneously without impeding the

operation of the time-critical external link. This is necessary for the protocol conversion

back to the CHAIN link; before a flit can be dispatched it must be determined if it is a

'normal' or an 'EoP' flit; a flit is 'normal' if the following 2-of-7 input does not indicate

EoP so the subsequent input is needed for the majority of outputs. The first flit of a packet

148

is sent after the second is received and so forth with the last data being freed by the input

EoP symbol.

The third pipeline stage converts the 2-of-7 input into a legal 3-of-6 output. For simplicity

the 2-of-7 code is first translated into a 'one hot' code by examining all possible legal pairs

of inputs. The single, chosen 1-of-17 code can then be ORed into its appropriate 3-of-6

data symbol or signal EoP. The last stage of the pipeline has already been described. This

retains a data symbol until pushed out by the subsequent symbol which is used to

determine its type. Because an EoP accompanies data on the output side the receiver does

not stall between packets.

7.9 INDEPENDENT RESET SCHEME

A resetting scheme is also implemented in circuits which essentially recover the interface

circuits when the asynchronous interconnect communication deadlocks due to either

transient glitches or other reasons above the circuit level, such as routing problems. In

particular, all the designs discussed above do not guarantee that the interface circuit is

able to eliminate all potential problems.

An efficient resetting scheme is desired to minimize the cost and the data loss.

Individually resetting the transmitter or the receiver on a dead inter-chip link is much

faster and easier to implement than a global reset. In fact, concurrently resetting both the

receiver and the transmitter on a link is difficult to coordinate from both sides and is also

costly in terms of response time and packet loss. The independent reset scheme allows

either the receiver or the transmitter to reset the dead inter-chip link and restart the

communication.

To support the individual reset, the circuits of the receiver and the transmitter both need to

be finalized. Once either end of an inter-chip link is reset, false symbols or false

acknowledge tokens may be created. The other live end has to tolerate these unexpected

input tokens.

149

First of all consider the receiver in Fig 117, if it fails to issue an ack2 token and is then

reset, is unable to see the previous data driven by the transmitter due to its blindness

during reset. If returning ack2 to its initial (reset) value leads to a transition, this generates

a token that enables the transmitter to send the next data symbol. However, the receiver is

then required to send an ack2 token after reset. Assuming that the transmitter is not

expecting an acknowledge token at this time, the extra token must not affect the

transmitter.

On the other side, if the transmitter fails to issue new data when holding an ack2 token, it

may need to be reset. It will then start up holding a token, and issue a data symbol as soon

as it has data to send. Thus both transmitter and receiver must generate a new token when

each is reset, and both must absorb any extra token that arrives when they are already

holding one.

T

rstn

ack2

Fig 118 2-phase ack2 generation circuit in receiver

Phase insensitive converters connected to both the data and acknowledge wires at the

2-phase inter-chip links ensure that most unexpected false data or acknowledge tokens

are ignored so that the locally-independent reset works properly. Moreover, in Fig 118 the

ack2 output circuit at the receiver automatically produces a spare token by using a NOR

gate and a Toggle flip-flop with an active-low reset input. In the transmitter of Fig 46, the

original phase converter for the off-chip 2-phase acknowledge signal ack2, consisting of

an inverter, an XOR gate, a Toggle and an OR gate, needs to be replaced with the phase

converter with an active-low rstn port in Fig 101. The phase insensitive converters and

the spare ack2 or data token circuit provide a simple and secure solution for the interface

circuit to rebuild the handshake protocol after any fault.

150

7.10 SUMMARY

In this chapter, a new receiver was designed using a „divide-and-conquer‟ strategy. First

of all, a novel phase converter was invented. This can detect transitions on the off-chip

2-phase channel in a different way from the phase converter based on two transparent

latches. During the self-timed recovery phase all transitions - mostly glitches – are

ignored. Any positive or negative transitions occurring at other times will not be missed.

This new phase converter can avoid the deadlock scenario discussed in section 5.4.3. Its

phase-insensitive property can avoid another kind of deadlock resulting from a phase

error in an off-chip wire caused by a glitch.

Secondly, superfluous symbols caused by glitches were cleaned up in the new receiver.

Illegal symbols cannot propagate through the code converter. A priority arbiter allows

only one 3-of-6 symbol to be generated even when multiple 2-of-7 symbols

simultaneously appear at the input of the code converter in the presence of glitches.

Thus the impact of transient glitches on the 3-of-6 channel in the receiver is further

minimized.

Additionally, a counter is used in the receiver to detect a framing error caused by extra

symbols in a packet, thereby avoiding buffer overflows. Finally, the receiver

architecture is re-considered so as to reduce the influence of glitches on the generation

of control information. All control symbols are extracted from a relatively clean 3-of-6

and EoP stream at the priority arbiter output. The next chapter will illustrate the

effectiveness of these fault tolerant approaches by extensive simulation.

151

Chapter 8 FAULT SIMULATION RESULTS

This chapter describe the establishment of the simulation platform used to investigate

error efforts in the presence of transient glitches and also verify the effectiveness of the

proposed fault tolerance circuits against glitches. In addition, the design and fault

simulation methodology is also presented. Finally the fault simulation results are given to

compare the area and performance overhead and resistance against transient glitches of

the baseline design and two fault tolerant designs. The extensive simulations are finally

extended for generalized glitches and links with different duration and speed

respectively.

8.1 FAULT SIMULATION PLATFORM

A universal simulation platform to investigate interface circuit fault tolerance is proposed.

There are several benefits to applying this universal simulation platform; it works as a

functional verification platform that provides random packet generation for testing the

normal functions of the interface circuits. On the other hand, one distinct feature of the

platform is random glitch injection. This feature enables fault simulation with

configurable duration and occurrence frequency and random selection of victim wires.

Finally the simulation platform incorporates an automatic verification of test results to

support an extensive simulation with a large number of test packets.

An issue in performing fault simulation is the sparse distribution of glitches in the

simulation as transient glitches are not frequent. For example, a single glitch may occur

every few hours. Thus we cannot simulate the transient faults at a realistic occurrence

frequency due to the extremely long simulation time. Instead we accelerate the fault

simulation process by increasing the fault occurrence frequency up to one glitch per two

packets. Additionally, a large number of test packets are taken to give extensive

simulation, which exposes the target interface circuits to more glitches. The extensive

simulation reduces the possibility of missing potential errors.

152

TX RX
Data

Transmitting
Data

Receiving

Monitor

I/F

Fig 119 Simulation platform diagram

The platform primarily consists of a data transmitting module, a data receiving module

and a monitor module, as shown in Fig 119. The data transmitting module is responsible

for producing 3-of-6 symbols and 1-of-3 symbols and injecting them into the data and

control channels of the transmitter unit under test; while the data receiving module

converts the received symbols on the data and control channels into binary data and

frames them into packets. The monitor unit is in charge of random test packet generation,

random glitch generation, test packet verification and link error detection and recovery.

All these modules were implemented only for fault simulation rather than integrated into

the real circuits for in-circuit testing and monitoring.

8.1.1 MONITOR BLOCK

The monitor module in Fig 120 primarily consists of three sub-modules, a packet

generator, a glitch generator and a test result analyzer. The packet generator module

supports specifying the packet format and configures parameters regarding the packets,

for example, the number of test packets and the interval between transmitting two packets.

The second module, the Glitch generator, specifies a few parameters for defining a glitch,

such as glitch duration and frequency; a random scheme picks a victim data or

acknowledge wire at any time on the off-chip channel. The final module called the

Analyzer checks test results through the CRC field in every received packet; it detects if

any error happened in the packets and calculates the required statistics for the result

analysis, such as the packet loss rate.

153

Analyzer
Glitch
Gen

Packet
Gen

Monitor

Fig 120 Monitor block

The packet generation sub-module produces random data to simulate SpiNNaker packets

as there is no need to generate real neural spike packets in order to investigate fault effects

at the hardware level in this research. Data randomization, constraints and complex data

structures such as classes, as enhanced features in System-Verilog, allow random packets

with a similar packet structure to that of SpiNNaker packets, such as source/destination

address, payload and checksum, to be easily produced. In the SpiNNaker project, there

are only two types of packet in terms of their length, 5 byte and 9 byte packets. A

constraint on packet length randomly produces these two types of packets. Moreover, the

total number of test packets is also a user-defined parameter; normally a large number, for

example 1 million, is set to perform extensive simulation.

The glitch generator is one of the key modules as it supports the fault simulation with

random glitch injection. A glitch is defined with a class in SystemVerilog, in which all the

properties of a glitch are explicitly specified, including the configurable glitch frequency

and the glitch duration. The glitch class also defines a random variable representing a

victim wire hit by a glitch; this variable randomly picks an off-chip wire out of seven data

wires and one acknowledge wire at an off-chip channel, into which a transient glitch is

injected. Moreover, the other parameter, the glitch duration, is also randomized within a

customized range to simulate a particular group of random transient glitches.

The final major function of the monitor, implemented in the module analyzer, is to check

the packets received from the on-chip receiver circuit. Without injecting glitches, this

verification function can test the normal functionality of the off-chip interface circuits.

154

Particularly due to lack of a fast and efficient timing test methodology like static timing

analysis in synchronous circuits, performing dynamic simulation with test patterns is

essential to detect any design faults. Data verification is usually realized by comparing

the received packets with a reference data library, containing an exact copy of generated

packets from the data transmitting block.

However, some difficulties will arise when we perform fault simulation for the target

interface circuits. The difficulties in the fault simulation result from the diversity of the

errors caused by glitches on asynchronous interconnect. For example, a superfluous EoP

symbol appearing in the received data sequence splits the sent packet into two packets,

while a missed EoP error merges two consecutive packets into one. Both cases cause

more difficulties in the monitor block to properly synchronize the reference data library

and the received packets. By contrast, checking the CRC field in a packet is a more

efficient and less costly verification method than comparison of received packets with

reference packets in the fault simulation. In the packet generator described above, a 16-bit

CRC value is calculated and filled in the CRC field of each packet; the monitor module

calculates CRC values to verify all received packets.

In a noisy environment, however, this function is intended to calculate the number of

erroneous packets, the packet loss rate and other statistics by checking the correctness of

packet data. In addition, this module monitors the off-chip channel and detects whether it

has been idle for an exceptionally long period much greater than the specified interval

time between two consecutive packets. This indicates that deadlock has been detected.

The interface circuits need to be reset to continue the fault simulation and so further

explore the possibility of suffering from another deadlock or other kinds of error effects.

8.1.2 DATA TRANSMITTING MODULE

In the data transmitting module in Fig 121, an output packet buffer, a 3-of-6 encoder and

a byte transmitting processor are implemented to issue test packets to an on-chip

transmitter under test.

155

Out Packet
buffer

3-of-6
Enc

Byte TX

Fig 121 Data transmitting Block

The output buffer stores the test packets generated by the packet generation module and

data bytes are sent to the 3-of-6 encoder. The 3-of-6 encoder sub-module receives the

random packet data from the data generation sub-module and converts them into a set of

3-of-6 symbols. For example, a 5-byte packet is turned into a sequence of 60-bit data,

which contains exactly ten 3-of-6 symbols since one 3-of-6 symbol carries 4-bit binary

data. The byte processor transmits 3-of-6 symbols of a randomly generated packet to the

data channel and also produces corresponding 1-of-3 symbols for the control channel,

particularly sending EoP symbols for last data symbols and Normal control symbols for

the other data symbols in each packet.

8.1.3 DATA RECEIVING BLOCK

A data receiving module is connected to a receiver under test, which sits at the other end

of an off-chip channel. It contains a byte receiving processor, a 3-of-6 decoder and a

packet storage module, see Fig 122.

In Packet
Buffer

3-of-6
Dec

Byte RX

Fig 122 Data receiving block

The data receiving block is the part interfacing to the receiver circuit. Similar to the data

transmitting block but in a reverse order, the 3-of-6 symbols issued by the receiver circuit

first go through the Byte RX block where the handshaking protocol is designed to fetch

data and feed back acknowledge signals at the data channel in parallel with the control

channel. The data sampled by the Byte Rx block then need to be converted into binary

values in the 3-of-6 decoder. Finally a set of the binary values is recorded as one packet in

the input packet buffer. All test packet data are available to be verified and analysed in the

monitor module described above.

156

8.2 METHODOLOGY

The design process starts by inputting gate level designs in Verilog code or schematics

using the Cadence tool Virtuoso. Two libraries are needed to synthesize designs: a

standard cell library of Artisan 130nm and a mini-macro library. The mini-macro library

defines the few asynchronous elements employed in designs, such as C-gates, Mutexes

and S-elements, whose timing is refined to ensure correct operations. All the

asynchronous elements are well designed in this library for building up the asynchronous

communication infrastructures. The schematic and gate level circuits are synthesized

using the Synopsys Design Compiler (DC) with the standard Artisan 130nm cell library.

In the meantime, a Standard Delay Format (SDF) file is generated by DC for executing

more accurate post-synthesis fault simulation. Finally the fault simulation results are

gathered and evaluated in terms of several statistics such as packet loss rate and deadlock

occurrence rate. The entire design and fault simulation flow is shown in Fig 123.

Fig 123 Design and fault simulation flow

Schematic

Mini-macros
library

Standard cell
library

Generating
SDF

Fault
simulation

Transient
glitches

Result
Analysis

Glitch injection

Generating
Netlist

Specifications

157

8.3 SIMULATION RESULTS WITH REALISTIC TIMING

The first simulation results showed that most deadlocks occurred at the 2-phase to

4-phase converter in the receiver. This prompted the development of the phase converters

described earlier in this thesis.

The post synthesis fault simulation results in Table 18 confirm the effectiveness of the

proposed interface circuits. With a similar density of injected glitches, the first generation

circuits – using the conventional phase converter, code conversion and completion

modules - have a moderate risk of deadlock. With all the proposed techniques the new

designed interface circuits exhibit a much better tolerance to transient glitches and, under

anything approximating to the expected operating conditions, are deadlock free.

Additionally, an off-chip interface circuit based on 2-of-7 LETS also demonstrate a

better tolerance to transient glitches.

Items \ Designs Baseline design New design LETS

Glitches 478,280 390,357 845,272

Successfully

Received Packets

916,684 863,182 894,556

Deadlock 7,632 7 0

Table 18 Simulation results for the interface designs

In some extreme circumstances simulation revealed an unpredicted deadlock model for

the new circuit. This corresponds to a glitch „removing‟ a genuine data (or acknowledge)

transition and not, subsequently providing another transition on that wire. The

mechanism for this is as follows in Fig 124: a glitch begins within a data symbol and

injects a spurious edge which is accommodated, possibly corrupting a flit but not causing

deadlock; the glitch persists for a considerable time, its second edge corresponding

closely with the following valid transition; the glitch‟s second edge and the data edge

occur close together - and in opposing directions – effectively cancelling each other out.

158

 glitch

><0din

><1din

><2din

clrn

><0nrt_rtz_dout

><1nrt_rtz_dout

><2nrt_rtz_dout

Fig 124 Timing diagram showing long-glitch fault

For this to occur a glitch must be at least as long as the round-trip time on the data link, so

that its leading edge can be filtered and its falling edge coincide with genuine activity.

This must be a single glitch: two glitches on the same wire will expose transitions

between them and, although these are erroneous, the link will continue to operate. As the

anticipated cycle time is >10ns is seems unlikely that this failure mode will occur in

reality; it was exposed only by simulations with artificially short delays and long glitch

times.

Successful packet reception, as judged by a correct CRC, was monitored for all the three

designs. The earlier design had a notably higher number of packets received successfully

than the one which avoids deadlock. This is probably due to its lower sensitivity to

random edges; a transition which might corrupt a flit is readily accepted in the later

designs but it is prevented from causing a deadlock. The earlier design is less sensitive to

corruption but will deadlock much more easily.

The reset mechanism was also verified by simulation by resetting both the transmitter and

receiver at independent, random times. This caused corruption but not deadlock in the

transmission link, as expected.

8.4 AREA AND PERFORMANCE COMPARISONS

Flit throughput is important in system operation. The critical cycle time is the external

link due to the on- and (especially) off-chip pad delays. These are minimised by using a

159

2-phase protocol but the circuit efficiency can also influence this noticeably. The new

circuit cycles about 20% faster than its predecessor (see Table 19), some of which,

however is attributable to 'conventional' circuit improvements. Additionally, the 2-of-7

LETS based off-chip interface exhibits a high area overhead; its area is double that of the

former two designs. As a result, the performance is much lower due to the bigger circuits

though it could be further optimized to improve the performance, especially the

complexity of the 2-of-7 LETS encoder in the transmitter. Considering the high area

overhead and poor performance, the 2-of-7 LETS based design, it is not implemented in

SpiNNaker; while the implementation using hybrid fault tolerant techniques is

eventually chosen for fabrication.

Designs AREA(um
2
)

Performance(ns)

Total TX RX

Baseline 7010.1 6.4 1.1 5.3

New design 8555.7 5.0 1.5 3.5

LETS 16094.4 21.6 17.5 4.1

Table 19 Comparisons of area and performance

Although the size of the interfaces is a small part of a SpiNNaker chip it is still desirable

to keep overheads down as much as possible. Sample layouts have been constructed in a

130nm UMC process which indicates that the highly glitch-resistant interface is about 4%

larger than its predecessor. This is not a high price to pay for the considerable increase in

reliability.

8.5 SIMULATION RESULTS WITH GENERALIZED GLITCHES AND LINKS

In addition to the extensive fault simulation performed with realistic timing, the analysis

was extended to explore the designs under generalized glitch conditions and

asynchronous link delays. Glitch durations are classified into three groups, short glitches,

medium glitches and long glitches, which have duration less than 1 ns, 1-2 ns and 2-10ns

respectively; the link speed is set as slow, typical and fast, defined as 10ns, 5ns and 1ns.

160

This enhanced fault simulation framework allows off-chip interface designs, particularly

the baseline design and the new design, to be exposed to more diverse scenarios.

8.5.1 PACKET LOSS RATE

Fig 125 illustrates the relationship between packet loss rate and the intervals between

glitches for the LETS design. As the interval between glitches increases, the packet loss

rate drops significantly. Fig 126 reflects the packet loss rate normalised by the number of

glitches. For each short glitch, 40% of them lead to corrupt packets; longer glitches have

a higher possibility of corrupting packets.

Fig 125 Packet loss rate of LETS design (typical link speed)

Fig 126 Packet loss rate per glitch of LETS design (typical link speed)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 4 16 64 256

P
ac

ke
t

lo
ss

 r
at

e

Interval between glitches (x600 ns)

medium glitches

short glitches

long glitches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 16 64 256

P
ac

ke
t

lo
ss

 p
er

 g
lit

ch

Interval between glitches (x600 ns)

medium glitches

short glitches

long glitches

161

The relationship between packet loss, link speed and glitch duration in the baseline design

is illustrated in Fig 127. The packet loss rate drops slightly as the off-chip link

propagation delay decreases. It also can be seen that the short glitches cause the lowest

packet loss, while the long glitches are the most dangerous.

Fig 127 Packet loss rate per glitch of baseline design

8.5.2 DEADLOCK RATE

Fig 128 and Fig 129 show the simulation results measuring the deadlock rate in the

baseline design and the novel design. The new design has better resistance to short and

medium transient glitches in terms of avoiding deadlock. Several critical circuits in the

initial design, which are more likely to introduce deadlock due to their poor resistance to

transient faults, are substituted with fault-tolerant phase converters, a code convertor and

a flit counter; a more robust receiver architecture is applied in the receiver to reduce the

deadlock rate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

slow link typ link fast link

p
ac

ke
t

lo
ss

 p
er

 g
lit

ch

short glitches

med glitches

long glitches

162

Fig 128 Deadlock rate of baseline design

Fig 129 Deadlock rate of new design

However, the simulation results in Fig 128 and Fig 129 also show that a fast link with

long glitches is more likely to deadlock than other combinations in both designs. There

are three factors which may account for the simulation results. The first factor is that long

glitches may cancel the correct data transitions (as illustrated in Fig 124), which short

glitches are normally incapable of doing due to their short duration.

The second factor is due to the trivial skew between two transitions of any 2-of-7 symbol.

Based on the two designs, the code convertor in the transmitters converts a one-hot code

to generate the two transitions of a 2-of-7 symbol onto an off-chip channel. The code

0.02 0.07

8.48

0.10 0.31

17.20

2.61 3.00

60.45

0

5

10

15

20

25

30

35

40

slow link typ link fast link

d
ea

d
lo

ck
 p

er
 g

lit
ch

(‰
)

short glitches

med glitches

long glitches

0.50

0.901.10 0.99

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

slow link typical link fast link

d
ea

d
lo

ck
 p

er
 g

lit
ch

(‰
)

short glitch

medium glitch

long glitch

163

converter thus sends out each pair of transitions with rather small skew. Consequently,

the off-chip channel is less sensitive to most glitches, especially short or even medium

glitches. Given a big data skew on the off-chip channel, however a transient glitch may

readily combine with one of the transitions and then be captured by the receiver.

Deadlock is more likely to occur even with short or medium glitches if the two transitions

in one symbol are skewed.

The third factor is that in each implementation of the off-chip interface, to guarantee

successful phase conversion between two-phase and four-phase a timing assumption is

made. This requires the off-chip delay to be much larger than the internal delays in both

the receiver and the transmitter. Fast links represent reduced off-chip loop delay and

increase the vulnerability of the interface to transient glitches, because glitches can now

relatively easily break the timing assumption.

8.6 SUMMARY

In this chapter, a fault simulation platform and a design methodology were described,

followed by an analysis of the simulation results. Random glitch injection and automatic

data verification enables extensive fault simulation on this simulation platform. The

costs of three designs, including the baseline design, the LETS design and the design

based on the novel phase converter and hybrid fault tolerant techniques, were compared

in terms of area and performance. The results show that the third design has lower area

and performance penalties than LETS. The fault simulation also confirms that the last

two designs have higher resistance to deadlock than the baseline design. Additionally,

the simulation was extended to include the injection of short, medium and long glitches

onto slow, typical and fast links. Of all of the combinations of link speed and glitch

duration, long glitches on fast links are the most likely to cause deadlock.

164

Chapter 9 CONCLUSIONS

This thesis described some fault tolerant circuits intended to reduce the consequences of

transient glitches on the asynchronous inter-chip interfaces in SpiNNaker. In particular

the intent is to reduce the potential for deadlock; providing the link continues to run other

error correction schemes may be used to verify data integrity.

By analyzing the reasons for deadlock and comparing different 2-phase to 4-phase

conversion circuits, fault tolerant implementations of the inter-chip interfaces were

devised. There are three major fault-trapping stages. The greatest benefit was conveyed

by the phase-insensitive data and acknowledge converters; the second, a code conversion

stage with priority arbitration ensured that only legal symbols can reach the on-chip

network; finally a counter ensures that packet size is limited to within the size of later

buffers.

The extensive simulation results show that the implementation has a very high resistance

to deadlock and is able not only to keep running but also to convey packets successfully

for a high proportion of the time despite artificially rather intense noise. Although the

current circuit corrupts somewhat more packets than its predecessor this is due to glitches

being translated into symbols rather than deadlocks. Deadlock avoidance is regarded as

the most important consideration.

Under any circumstances reasonably close to the expected operating conditions it is

believed that the links are now deadlock free. The only deadlocks that have been found

were achieved by mixing artificially long 'glitches' with artificially short inter-chip delays.

The probability of glitch durations approximating the link's cycle time (or greater) and

then coincidentally cancelling a real signal is regarded as exceedingly small. In such an

event the link is still recoverable by a higher-level reset process.

The practical realisations of the circuits described here contain some delay assumptions.

For example, the off-chip acknowledgement is sent before the receiver's phase converter

has completed clearing. This races the inter-chip cycle time with an on-chip pulse

165

generation and, with the long, off-chip delays is very safe and speeds up the critical path

of the slowest cycle in the network. It would be a simple matter to alter this so as to delay

the acknowledge to the falling edge of the clear pulse if, for example, the 2-phase link had

much lower latency due to it being entirely on-chip. The 2-of-7 to 3-of-6 code converter

also exploits a delay model; a delay insensitive circuit using the same principle could be

produced but owing to significant fan-in and -out would be larger and slower.

In addition to these 'in-line' processes a local reset scheme allows either end of the link to

be reset independently at any time. Although this could corrupt a packet 'in flight' it -

together with the inbuilt error tolerance - allows the link to recover normal operation.

Thus, if some unpredicted fault mode causes a link deadlock a higher level process can

detect the lack of activity and reset it. In practice it is thought more likely that this single

chip reset may result from a watchdog following a software crash; either way it allows

system recovery when a single, faulting chip is reset.

In addition to the above fault-tolerant off-chip interface implementation, another

solution was explored in this thesis. The alternative circuits were built using a novel

2-of-7 LETS code. This new code scheme offers a different way to implement off-chip

2-phase interconnect, as an alternative to the conventional 2-phase 2-of-7 code. The two

transitions for each new symbol depend on the Hamming distance of the input binary

data from the 4-bit data value of the previous symbol. The encoding procedure is

complex, but the decoding is very simple. The decoded data come directly from the

encoded symbol or its inverse.

From the fault tolerance point of view, the major advantage of this 2-of-7 LETS code is

the independence between two adjacent symbols; in the baseline design the decoding of

a symbol depends on the previous symbol value. Thus the new receiver does not need to

store the previous symbol to decode the current symbol and thus is able to avoid

deadlocks in the conventional phase converter. Moreover, 4-bit single rail data can be

directly decoded from the off-chip 2-phase 2-of-7 symbols without converting to

4-phase 2-of-7 symbols as the baseline receiver does. The benefit is that the 4-bit single

rail data output can effectively reduce the possibility of illegal and multiple symbols

166

occurring in the downstream 3-of-6 data channels due to a transient fault attack. Though

as a result of off-chip glitches the generated 3-of-6 symbol may be wrong, the on-chip

downstream 3-of-6 data channel will not see any illegal symbols or other symbols

containing more than 3 transitions. Therefore the requirement for fault tolerance

becomes quite low in the 2-of-7 LETS receiver. Extensive fault simulation confirmed

that a better resistance against transient glitches is achieved. However the high area

overhead and poor performance were impediments to its being implemented in the

SpiNNaker chips.

Finally, by contrast with a conventional deadlock detection and reset mechanism using

time-out, our approach to deadlock avoidance and independent reset needed more

design effort and also inevitably increased the area overhead and performance penalty,

even for normal operation. However, our approach is based on circuit-level techniques

to avoid deadlock without recourse to software, and independent reset of the transmitter

or the receiver with minimal software coordination between the two ends of the off-chip

link, giving fast recovery from deadlock which should now be extremely rare.

Initial realisation is in 130nm CMOS as part of the first SpiNNaker device and was

fabricated in November 2009. Fig 130 illustrates the layout of the SpiNNaker chip. The

circuit verification has confirmed the normal functionality of the off-chip links.

However testing of the resistance against transient faults on the off-chip traces has not

yet started.

Fig 130 SpiNNaker chip layout

167

To conclude this thesis, a few fault tolerant techniques were devised to conquer

deadlock and other fault effects and verified for their effectiveness against

deadlock caused by transient faults.

 Phase-insensitive data and acknowledge converters: they effectively avoid

deadlock in the conventional converters which transform signals between

2-phase and 4-phase protocols. Additionally, the insensitivity to signal level is

capable of preventing the circuits from stopping due to out-of-phase signals.

These novel converters are suitable for other applications requiring conversion

between 2-phase and 4-phase signals.

 Priority based arbiter for symbol conversion: the generation of multiple

symbols in the presence of transient glitches can be avoided effectively with

this circuit so as to minimise their negative impact on the downstream circuits.

In this thesis, the arbiter implements the fault tolerant symbol conversion from

2-of-7 code into 3-of-6 code in the 4-phase domain. However, a Mutex based

arbiter can similarly be constructed to filter out multiple symbols.

 Asynchronous framing error counter: this method is applicable to any

asynchronous NoC system to eliminate framing errors. In a case of extra data

in a packet, this module can prevent circuits from deadlocking due to buffer

congestion.

 Improved architecture design of the receiver: the architecture of a system or

sub-system needs to be carefully examined in terms of resistance to all

potential error effects of transient faults. In each individual module, error

effects are isolated and prevented from propagating to subsequent circuits.

This strategy can increase the robustness of the system in the presence of

glitches while retaining a simple architecture.

 LETS 2-of-7 code: this novel code scheme decouples the state dependency

between 2-phase symbols, implementing a new 2-phase interconnect different

from the conventional 2-phase interconnect. Along with LEDR and 1-of-4

168

LETS code, it provides another approach to the design of a fault tolerant

system based on a 2-phase and 4-phase hybrid interconnect.

 Additionally, the independent resetting scheme, which allows either a dead

transmitter or a dead receiver to be reset without the participation of the other

end, considerably reduces the implementation complexity of a link resetting

scheme which would otherwise require a reset to be forced concurrently onto

both ends of the link. This strategy can be implemented in other kinds of

asynchronous interconnect, where a redundant ACK or data token can be

produced deliberately for successful reset in a similar way.

9.1 FUTURE WORK

This thesis has shown the feasibility of a few techniques, which can be implemented in

the off-chip interface of a SpiNNaker chip, to significantly increase the tolerance to

deadlock caused by transient glitches. In the future, it can be extended in the following

respects.

Firstly, the 2-of-7 LETS based off-chip interface circuits need further effort to optimize

their performance and reduce their area overhead. In particular, the transmitter needs to

be optimized due to the slow dual-rail logic used to build the Hamming distance

calculator. At the receiver end, the completion detection module directly connected to

the 2-phase off-chip input also requires a faster implementation so as to sample valid

2-phase off-chip 2-of-7 symbols as quickly as possible. This circuit delay is part of the

critical path of the receiver‟s cycle time. The optimization techniques considered here

are not only limited to the module level, but also include some particular circuit

techniques, such as buffer insertion.

Secondly, transient fault sources in the current simulation platform can be extended to

on-chip circuits, for example long wires between two pipeline registers, in addition to

their use for off-chip interconnect. Investigating the effects of transient faults on on-chip

interconnects will still emphasize deadlock issues. In particular, DI pipelines should be

examined for any misbehavior including deadlock in the presence of on-chip transient

169

faults. In recent 65nm and 45nm process technologies, these fault tolerant techniques

can be applied and examined.

Moreover, fault tolerance testing is needed to measure the efficiency of the tolerance

techniques to transient faults in real circuits. A few methods to inject faults into circuits

have been discussed elsewhere [60], including power noise, white light and laser fault

injection. However, faults need to be injected onto off-chip traces which are laid on a

printed circuit board. Thus aggressor traces are required to affect the victim traces

which are the off-chip wires. Basically, these aggressor traces which are redundant

traces with external inputs and dummy outputs can be designed deliberately on the PCB

for fault-tolerance testing purpose only. External signal generator outputs can be

connected to these traces. These means may produce controllable coupling crosstalk for

measuring the efficiency of the circuits under test.

Finally, formal verification may be a fast and efficient method which can examine the

immunity of an asynchronous interconnect to transient faults, particularly at the chip

layout stage. As seen in this thesis, performing extensive dynamic simulation is time

consuming and costly, and it is also difficult to analyze the simulation results and causes

of fault effects. A formal method to check handshake failures caused by potential

glitches would be very useful to establish a faster and more efficient tool for designing

fault-tolerant asynchronous DI interconnects.

170

REFERENCES

1. Borkar, S., Thousand core chips: a technology perspective. Proceedings of the

44th annual Design Automation Conference. ACM: San Diego, California, 2007.

2. May, T.C. and M.H. Woods, Alpha-particle-induced soft errors in dynamic

memories. IEEE Transactions on Electron Devices, 1979. 26(1): p. 2-9.

3. Baumann, R., Soft errors in advanced computer systems. Design & Test of

Computers, IEEE, 2005. 22(3): p. 258-266.

4. Chandra, V. and R. Aitken. Impact of voltage scaling on nanoscale SRAM

reliability. Design, Automation & Test in Europe Conference & Exhibition,

2009.

5. ITRS. 2007(Online Available: www.itrs.net).

6. Nassif, S.R., Modeling and forecasting of manufacturing variations (embedded

tutorial), Proceedings of the 2001 Asia and South Pacific Design Automation

Conference. ACM: Yokohama, Japan, 2001.

7. Normand, E., Single event upset at ground level. IEEE Transactions on Nuclear

Science, 1996. 43(6): p. 2742-2750.

8. LaFrieda, C. and R. Manohar, Fault Detection and Isolation Techniques for

Quasi Delay-Insensitive Circuits. Proceedings of the 2004 International

Conference on Dependable Systems and Networks. IEEE Computer Society,

2004. p. 41.

9. Peng, S. and R. Manohar, Efficient Failure Detection in Pipelined Asynchronous

Circuits. Proceedings of the 20th IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems. IEEE Computer Society, 2005. p. 484-493.

10. Jang, W. and A. Martin, SEU-Tolerant QDI Circuits. Proceedings of the 11th

IEEE International Symposium on Asynchronous Circuits and Systems. IEEE

Computer Society, 2005.

11. Kuang, W., C.M. Ibarra, and P. Zhao, Soft Error Hardening for Asynchronous

Circuits. Proceedings of the 22nd IEEE International Symposium on Defect and

Fault-Tolerance in VLSI Systems. IEEE Computer Society, 2007. p. 273-281.

12. Weidong, K., et al. Design Asynchronous Circuits for Soft Error Tolerance.

IEEE International Conference on Integrated Circuit Design and Technology,

2007.

13. Monnet, Y., M. Renaudin, and R. Leveugle, Asynchronous circuits transient

faults sensitivity evaluation. Proceedings of the 42nd annual Design Automation

Conference. ACM: Anaheim, California, USA, 2005.

14. Gardiner, K.T., A. Yakovlev, and A. Bystrov. A C-element Latch Scheme with

Increased Transient Fault Tolerance for Asynchronous Circuits. 13th IEEE

International On-Line Testing Symposium, 2007.

15. Bainbridge, W.J. and S.J. Salisbury, Glitch Sensitivity and Defense of Quasi

Delay-Insensitive Network-on-Chip Links. Proceedings of the 2009 15th IEEE

http://www.itrs.net)/

171

Symposium on Asynchronous Circuits and Systems. IEEE Computer Society ,

2009. p. 35-44.

16. Sutherland, I.E., Micropipelines, Communications of the ACM. 1989. 32(6)

p.720-738.

17. Singh, M. and S.M. Nowick. MOUSETRAP: ultra-high-speed

transition-signaling asynchronous pipelines. Proceedings of 2001 International

Conference on Computer Design, 2001.

18. Bainbridge, W.J. and S.B. Furber, Chain: A Delay-Insensitive Chip Area

Interconnect. IEEE Micro, 2002. 22(5): p. 16-23.

19. Furber, S.B., et al., A micropipelined ARM, Proceedings of the IFIP TC10/WG

10.5 International Conference on Very Large Scale Integration. North-Holland

Publishing Co,1994.

20. Furber, S.B., et al. AMULET2e: an asynchronous embedded controller. in

Advanced Research in Asynchronous Circuits and Systems. Third International

Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC '97), 1997.

21. Martin, A.J., et al., The Design of an Asynchronous MIPS R3000

Microprocessor. Proceedings of the 17th Conference on Advanced Research in

VLSI (ARVLSI '97). IEEE Computer Society,1997.

22. Martin, A.J., et al., The design of an asynchronous microprocessor. Proceedings

of the decennial Caltech conference on VLSI on Advanced research in VLSI.

MIT Press: Cambridge, Massachusetts, United States,1989.

23. Furber, S.B., et al., Power management in the Amulet microprocessors. Design &

Test of Computers, IEEE, 2001. 18(2): p. 42-52.

24. Berkel, K.V., Beware the isochronic fork. Integration, the VLSI Journal, 1992.

13(2): p. 103-128.

25. Bainbridge, W.J. and S.B. Furber. Delay insensitive system-on-chip interconnect

using 1-of-4 data encoding. in Asynchronous Circuits and Systems. Seventh

International Symposium on ASYNC, 2001.

26. Sparsø, J. and S.B. Furber, Principles of Asynchronous Circuit Design. Kluwer

Academic Publisher, 2001: p.67-69.

27. MULLER, D.E., Asynchronous Logics and Application to Information

Processing. Proc. Symp. Application of Switching Theory in Space Technology,

1963: p. 289-297.

28. Smith, S.C., et al., Optimization of NULL convention self-timed circuits.

Integration, the VLSI Journal, 2004. 37(3): p. 135-165.

29. Woods, J.V., et al., AMULET1: An Asynchronous ARM Microprocessor. IEEE

Transactions on Computers. 1997. 46(4): p. 385-398.

30. Chapiro, D.M., Globally-Asynchronous Locally-Synchronous Systems. 1984.

31. Guerrier, P. and A. Greiner, A generic architecture for on-chip packet-switched

interconnections. Proceedings of the conference on Design, Automation and test

in Europe in. ACM: Paris, France, 2000.

32. Dally, W.J. and B. Towles, Route Packets, Not Wires. The 38th ACM Design

Automation Conference. 2001.p. 684-689.

172

33. Benini, L. and G. De Micheli, Networks on chips: a new SoC paradigm.

Computer, 2002. 35(1): p. 70-78.

34. Andriahantenaina, A. and A. Greiner. Micro-network for SoC: implementation of

a 32-port SPIN network. Design, Automation and Test in Europe Conference and

Exhibition, 2003.

35. Goossens, K., J. Dielissen, and A. Radulescu, AEthereal network on chip:

concepts, architectures, and implementations. Design & Test of Computers,

IEEE, 2005. 22(5): p. 414-421.

36. Dall'Osso, M., et al. Xpipes: a latency insensitive parameterized network-on-chip

architecture for multiprocessor SoCs. 21st International Conference on

Computer Design, 2003.

37. Millberg, M., et al. The Nostrum backbone-a communication protocol stack for

Networks on Chip. 17th International Conference on VLSI Design, 2004.

38. ITRS. 2001 (Online Available: www.itrs.net).

39. Bjerregaard, T. and J. Sparso, Implementation of guaranteed services in the

MANGO clockless network-on-chip. IEE Proceedings - Computers and Digital

Techniques, 2006. 153(4): p. 217-229.

40. Miro-Panades, I., et al. Physical Implementation of the DSPIN Network-on-Chip

in the FAUST Architecture. Second ACM/IEEE International Symposium on

Networks-on-Chip, NoCs 2008.

41. Bainbridge, W.J., et al., Delay-Insensitive, Point-to-Point Interconnect Using

M-of-N Codes. Proceedings of the 9th International Symposium on

Asynchronous Circuits and Systems. IEEE Computer Society, 2003.

42. Plana, L.A., et al., A GALS Infrastructure for a Massively Parallel

Multiprocessor. Design & Test of Computers, IEEE, 2007. 24(5): p. 454-463.

43. Furber, S.B. and A.D. Brown, Biologically-Inspired Massively-Parallel

Architectures - computing beyond a million processors. Proc. 9th International

Conference on the Application of Concurrency to System Design, Augsburg,

Germany, 2009: p. 3-12.

44. ARM, AMBA Specifications. Online available,

(http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specs).

45. Shufan, Y., et al. An admission control system for QoS provision on a best-effort

GALS interconnect. 8th International Conference on Application of Concurrency

to System Design, 2008.

46. Plana, L.A., et al. An On-Chip and Inter-Chip Communications Network for the

SpiNNaker Massively-Parallel Neural Net Simulator. Second ACM/IEEE

International Symposium on Networks-on-Chip, 2008.

47. Wu, J. and S. Furber, A Multicast Routing Scheme for a Universal Spiking Neural

Network Architecture. The Computer Journal, 2009. 53(3): p.280-288.

48. Xin, J., S.B. Furber, and J.V. Woods. Efficient modelling of spiking neural

networks on a scalable chip multiprocessor. IEEE World Congress on

Computational Intelligence, IEEE International Joint Conference on Neural

Networks. 2008.

http://www.itrs.net)/
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specs)

173

49. Izhikevich, E.M., Simple Model of Spiking Neurons. IEEE Transactions on

Neural Networks 2003. 14(6).

50. Rast, A., et al., The Deferred Event Model for Hardware-Oriented Spiking

Neural Networks. Advances in Neuro-Information Processing: 15th International

Conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008,

Revised Selected Papers, Part II. 2009, Springer-Verlag. p. 1057-1064.

51. Cortadella, J., et al., Petrify: a tool for manipulating concurrent specifications

and synthesis of asynchronous controllers. IEICE Transactions on Information

and Systems, 1997. E80-D(3): p. 315--325.

52. Group, U.D.V.C., Petrify: a tool for synthesis of Petri Nets and asynchronous

circuits, Online Available:http://www.lsi.upc.edu/~jordicf/petrify/.

53. Rosenblum, L. Y and A. Yakovlev, Signal Graphs: From Self-Timed to Timed

Ones, International Workshop on Timed Petri Nets. IEEE Computer Society,

1985.

54. Monnet, Y., M. Renaudin, and R. Leveugle, Asynchronous Circuits Sensitivity to

Fault Injection. Proceedings of the 10th IEEE International On-Line Testing

Symposium. IEEE Computer Society, 2004.

55. Dean, M.E., T.E. Williams, and D.L. Dill, Efficient self-timing with

level-encoded 2-phase dual-rail (LEDR). Proceedings of the 1991 University of

California/Santa Cruz conference on Advanced research in VLSI. MIT Press,

1991.

56. Mitra, A., W.F. McLaughlin, and S.M. Nowick, Efficient Asynchronous Protocol

Converters for Two-Phase Delay-Insensitive Global Communication.

Proceedings of the 13th IEEE International Symposium on Asynchronous

Circuits and Systems. IEEE Computer Society, 2007.

57. McGee, P.B., et al. A Level-Encoded Transition Signaling Protocol for

High-Throughput Asynchronous Global Communication. 14th IEEE

International Symposium on Asynchronous Circuits and Systems, 2008.

58. Felicijan, T., W.J. Bainbridge, and S.B. Furber. An asynchronous low latency

arbiter for Quality of Service (QoS) applications. ICM Proceedings of the 15th

International Conference on Microelectronics, 2003.

59. Berkel, K.V., Handshake circuits: an asynchronous architecture for VLSI

programming. Cambridge University Press,1993.

60. Monnet, Y., M. Renaudin, and R. Leveugle, Designing resistant circuits against

malicious faults injection using asynchronous logic. IEEE Transactions on

Computers, 2006. 55(9).

http://www.lsi.upc.edu/~jordicf/petrify/

