
- 1 -

Memory Management in JikesNode Operating

System

A thesis submitted to the University of Manchester for the degree of Master of

Science in the Faculty of Science and Engineering

2005

Yun Zhang

School of Computer Science

- 2 -

List of Contents

Abstract ..6

Declaration...7

Copyright ...8

Acknowledgement ...9

Chapter 1 Introduction..10

1.1. Background..10

1.2. Motivation..11

1.3. Garbage collection ...11

1.4. Outline..12

Chapter 2 JikesNode operating system...13

2.1. System Architecture ...13

2.2. Jikes Research Virtual Machine (Jikes RVM) ...14

Jikes RVM Structure ..14

Boot Image...15

2.3. JNode operating system ...16

Plug-in Architecture ...16

GRUB boot loader ...17

2.4. Current implementation ...17

Nanokernel...18

Native Runtime ..19

Others...20

Chapter 3 Memory Management in IA-32 Intel ...21

3.1. Overview..21

System architecture..21

Operation Modes..22

- 3 -

3.2. Memory management in protected mode ..23

Overview..23

Segmentation..24

Paging ..25

3.3. System Registers and data structure ..29

Chapter 4 Memory system in JikesNode..33

4.1. MMTk (Memory Management Toolkit) ..33

Plan ..36

4.2. Object model..36

4.3. Memory initialization...38

Paging initialization ...38

GDT initialization ..39

TSS Setting ..39

4.4. Garbage Collection ..41

Chapter 5 Design and Implementation ...43

5.1. Debug...43

Stack and code ...43

Klib function ..44

5.2. Import Garbage Collection ..45

GenMS ...46

5.3. Memory Mapping ..47

mmap..47

munmap..48

Implementation ..49

5.4. Paging ..50

Chapter 6 Summary..52

Future Work ...52

Bibliography ..54

Append A A sample run output ..57

Appendix B Some building output ...64

- 4 -

- 5 -

List of Figures

Figure 2-1. JikesNode architecture...14

Figure 3-1. System Structure in Intel IA-32...22

Figure 3-2. Address Translation ...24

Figure 3-3. Logical-address Translation...25

Figure 3-4. 4-KByte Page Translations ..26

Figure 3-5. 4-MByte Page Translation ...27

Figure 3-6. 4-KByte pages with extended 36 Bits address28

Figure 3-7. 2-MByte pages with extended 36 Bits address................................28

Figure 3-8. CR3..29

Figure 3-9. Segment Descriptor ...30

Figure 3-10. 4-KByte page-directory entry. ...31

Figure 3-11. 4-KByte page-table entry...31

Figure 3-12. 4-MByte page-directory entry ...32

Figure 4-1. Layout of Object ..37

Figure 4-2. TSS Structure...40

Figure 4-3. Memory layout ..41

Figure 4-4. Memory space in NoGC..42

Figure 5-1. Memory space in GenMS..47

Figure 5-2. Logic Diagram in mmap..50

Table 5-1. Modified functions...45

- 6 -

Abstract

Providing an interface between computer and user, the research on operating system

is almost as old as the computer itself. As an important subsystem, the memory

management system provides a mechanism for the applications and user to operate the

data or code stored in the storage media, such as RAM or hard disk. This mechanism

usually depends on the support of processors and other computer components.

JikesNode, a Java operating system which combines Jikes Research Virtual Machine

with the JNode operating system, aims to provide the Jamaica group with a tool for

the further study of chip multi-processors and parallelism. This project improves the

memory management subsystem in JikesNode by importing a garbage collection and

modifying the memory mapping mechanisms, which are based on the Intel IA-32

architecture processors.

- 7 -

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

- 8 -

Copyright

1) Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions

given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the Author.

2) The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and

conditions of any such agreement.

3) Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of the School of Computer Science.

- 9 -

Acknowledgement

I would like to thank the people who contributed most to this project and thesis:

My supervisor, Dr. Chris Kirkham for his sound supervision, theoretical and practical

guidance throughout my M.Sc. project, especially his suggestion and proofreading to

my M.Sc. thesis and seminar.

Ian Rogers, for his helping during my design and implement the system. Ian helped

me set up the system and tools at the beginning of the project, and gave the ideas and

guidance for my design. He would immediately give up what he was up to whenever I

asked for help.,

And finally to my friends for their encouragement and technical help. They are Mr

Yiming Wang, Mr. Peihong Ke, Mr Yi Zhu, Mr Jie Zhao and Mr Yu Cao.

- 10 -

Chapter 1

Introduction

1.1. Background

The Jamaica group at the University of Manchester is investigating the design of chip

multi-processors (CMPs) and their accompanying parallel software environments. To

efficiently utilise multi-processors by client applications, the Jamaica group needs an

operating system which can run massively multithreaded applications and support

advanced compiler technology to automate parallelisation and the distribution of jobs.

But the currently available operating systems can not run on the Jamaica chip and do

not support the development of advanced compiler technology. So the Jamaica group

decided to develop a new operating system to be able to test and further develop the

design and the implementation of the Jamaica chip.

We call this operating system JikesNode, which uses JikesRVM [5] as the java virtual

machine and JNode [3] for device drivers, file system etc. Although we design the

JikesNode to be used in Jamaica research, we also want this system will be able to run

on conventional hardware configurations, such as Intel-based PCs, and provide the

benefits of optimizing compilers on these systems too. So the implementation and

research on JikesNode is on the Intel i386 platform in this thesis.

- 11 -

1.2. Motivation

Much implementation of JikesNode has been done before this project, such as

creating a nanokernel, successfully building and booting JikesRVM. But now,

JikesNode runs in the no garbage collection environment. Without garbage collection,

the memory used by objects will not be freed when the objects are no longer used.

Therefore, the memory in the system will be used up soon if many objects are created.

Because JikesNode runs in a limited memory now, it’s important to import a garbage

collection into JikesNode to make the memory reusable. One of the simple methods is

to utilize the garbage collection mechanism implemented in JikesRVM. In addition,

after the Georgios’ M.Sc. project in 2004 [1], many modifications have been done,

which makes the system not work. So, at the beginning of this project, we have

following goals to be finished:

� Debug the current version of JikesNode.

� Import a proper garbage collection provided by JikesRVM into JikesNode.

� Modify the memory management system to support the selected garbage

collection.

1.3. Garbage collection

Garbage collection (also known as GC) is a form of automatic memory management.

It attempts to reclaim the memory used by the objects that will never be used again by

the application. The basic principle of how a garbage collector works is:

� Detect what data objects in a program will not be accessed in the future

� Reclaim the storage used by those objects

The object detection is usually accomplished by defining a set of roots and

determining reachability from the roots [19, Chapter 9]. If the system can access an

object by some path of references from the roots, this object is reachable and

considered as in use. On the contrary, if an object is not reachable, it’s a “garbage”

- 12 -

object, whose memory will be reclaimed.

By now, many garbage collection algorithms have been implemented, such as

Reference Counting, Mark and Sweep, Compacting, Copying, Generational and

Adaptive collectors [19, Chapter 9]. Some of them have been supported by the

JikesNode.

1.4. Outline

Chapter 2 is about the JikesNode, the Java operating system implemented by the

Jamaica Group. The system architecture and two systems used in JikesNode are

described first. Then previous work done by the Jamaica Group is represented.

Chapter 3 gives a description of the memory management mechanism in IA-32 Intel,

from its system architecture to the segment and paging supported by IA-32 Intel

processor.

Chapter 4 describes the memory management implemented in current JikesNode in

detail. First, an overview of MMTk (Memory Management Toolkit [4]) and object

model used in JikesRVM is represented. Following this is the memory management

subsystem in JikesNode.

Chapter 5 lists the work done in this project and some of the author’s personal

opinions on what should be done in the future.

- 13 -

Chapter 2

JikesNode operating system

JikesNode operating system is a Java operating system implemented by the Jamaica

Group at the University of Manchester. It uses the Jikes Research Virtual Machine

(Jikes RVM) as the virtual machine and Java New Operating System Design Effort

(JNODE) as the Java operating system.

This chapter is a detailed description of the implementation of the JikesNode

operating system. Firstly, two systems (JikesRVM and JNODE) integrated in

JikesNode are described. Then I represent the current work Jamaica Group has done

on this system.

2.1. System Architecture

As mentioned above, JikesNode integrates JikesRVM and JNode to implement a new

Java operation system. Jikes RVM is used as the basic Java Virtual Machine (JVM) to

run Java programs. The JNODE is imported to support the functions of operations

system such as device drivers, file system and shell. The following figure displays the

architecture of the whole system.

- 14 -

Figure 2-1. JikesNode architecture [6]

In this figure, JikesNode kernel provides an abstract layer between the hardware and

other parts in the system; it provides the hardware interrupts, and thread control

mechanism. Jikes RVM is the platform responsible for running all the system

generated executing code. And JNode gives a system interface for users and

applications. All three parts of the system need some core libraries, for which we use

GNU Classpath.

2.2. Jikes Research Virtual Machine (Jikes RVM)

The Jikes RVM is a Java Virtual Machine mostly written in Java language [8]. It is

built from an IBM internal project called Jalapeño [7] and was made open source in

2001. As a JVM, it has many advanced features such as optimizing compiler, several

GC strategies and a sophisticated thread execution mechanism [1].

Jikes RVM Structure

There are four major components in the JikesRVM [4 Chapter 6].

- 15 -

Core runtime is a service platform to execute applications and interface with libraries.

It consists of thread scheduler, class loader, library support etc. Most classes of this

component are contained in com.ibm.JikesRVM and com.ibm.JikesRVM.classloader

packages.

Compiler in Jikes RVM is a Just-In-Time compiler response for building native code

from the bytecode. Now, the Jikes RVM has two different compilers, baseline

compiler and optimizing compiler.

Memory managers are responsible for managing the objects created during

executing applications. In the latest version, the Jikes RVM uses a new memory

management framework called MMTk. This part of classes have been modified and

imported into the packages org.mmtk.vm and

com.ibm.JikesRVM.memoryManagers.mmInterface.

Adaptive optimization system provides a mechanism to an optimizing compiler for

applications to improve their performance.

In addition to these four parts, JikesRVM also has a part called native runtime [1,

Chapter4] which is not written in Java. The main work of its part includes loading the

JikesRVM image into memory, exception pre-processing and providing interfaces

between hardware and JVM.

Boot Image

In order to run itself without a second virtual machine, JikesRVM introduces the

concept of a boot image, which contains and saves the location of a frozen instance of

the initial VM. A program called BootImageWriter performs all the building process.

Firstly, it uses an external JVM (currently, the Donor VM) to compile all core classes

- 16 -

of the JikesRVM. Then the compiled native code is imported into the image file and

some important system components are appended.

2.3. JNode operating system

JNode is a relatively new open source project to create a Java operating system for

personal use [3, Goals]. We choose it as our operating system platform for the

following reasons.

� A new project and with small size and therefore not too tough to modify

� A loose integration between the operating system and the Java virtual Machine

makes it easy to factor the operating system from its own JVM into JikesRVM.

� JNode has an appropriate bootloader, nanoKernel and plug-in architecture.

All JNode systems can be divided into 4 important parts [3, Developer guide].

Common part contains the fundamental functions to boot and run the system. VM part

has a JVM for the system to compile and run the Java bytecode. JNode Operating

System provides the functions of an operating system, such as file system, shell and

device drivers. And the last part contains the core library JNode depends on.

Plug-in Architecture

In JNode, every module is a Plug-in, except the virtual machine, operating system and

plug-in manager framework itself. These plug-ins can be divided into two types,

normal plug-in which can be loaded, unloaded and reloaded [3], and system plug-in

which must exist during the whole system lifetime. Every Plug-in has a descriptor file

written in XML and is contained in a JAR file. The descriptor file defines all the

information to load the plug-in, such as the required classes, the location of the

associated JAR files. All plug-ins can define their extension points which can be

accessed by system or other related applications. Every plug-in has a specific class

loader and access permissions

- 17 -

In order to manage all plug-ins, JNode implements a new conception named

PluginManager shared by the Virtual machine and operating system. In JNode,

PluginManger is a central component and started after initializing the Java virtual

machine during system booting. Its main work includes holding information on

plug-ins (implemented by PluginRegistry) and plug-in lifecycle management

(implemented by PluginLoaderManager)

GRUB boot loader

During booting, most operating systems need a boot loader to load themselves into

memory and provide the information about the hardware platform. In JNode, GRUB

boot loader [22] is used, which is also used in JikesNode now because we want to be

able to boot JikesNode on machines with many operating systems.

The GRUB boot loader aims to be a boot loader that supports all existing operating

systems. It has two stages during booting an operating system. The first stage is

contained in the Master Boot Record (MBR), which is 512 bytes on i386. Because of

its limited size, stage 1 does little work and then loads the second stage of GRUB. In

this stage, GRUB provides the user with a boot menu, loads the selected kernel of the

OS and passes control to the kernel. GRUB uses a configuration file named menu.lst

to save information about the possible kernel and some command lines, if needed.

During booting, the configuration file is read, then GRUB loads the selected kernel

into a consecutive memory starting from 0x100000 (1MB) and passes control to the

kernel entry point.

2.4. Current implementation

To integrate JikesRVM and JNode together, we need some modifications to both

systems to let them interact with each other seamlessly. For example, unifying the

- 18 -

classpath of Java library, modifying the build system and changing the VM of JNode.

The following describes the work that has been done by the Jamaica Group.

Nanokernel

Nanokernel is a term describing an operating system core which is strictly limited in it

size and/or functionality [1, Chapter 3]. It usually provides an abstraction layer to link

the hardware and operating system. But in JikesNode, it also has an extra target:

providing a runtime environment for the JikesRVM [1, Chapter 3.3]. The current work

on the nanokernel is to extend the nanokernel in JNode to meet our requirements. The

JNode nanokernel is entirely implemented in assembly language. But in JikesNode,

we try to avoid using assembler and write the kernel in C language instead of

assembly language as much as possible.

Mutliboot information header

Using the GRUB boot loader, the Multiboot information header must be written in the

first byte of the kernel. Because we use NASM i386 as our assembler, which compiles

the code sequentially, the first compiled file start.s, should contain the Multiboot

information header at the begin. Considering the memory management in JikesNode,

we set the header’s flag to align all boot modules on 4KB page boundary.

Memory management initialization

All memory management initialization is implemented in mm.s file. The Global

Descriptor Table (GDT) [Section 3.3] is initialized by filling with five segments:

Kernel Data Segment, Kernel Code Segment, User Date Segment, User Code

Segment and a Task-State Segment [Chapter 3]. The memory space is paged. We

create a page directory and one page table. The first 4 MBytes of memory uses

4-KByte Pages and the rest uses 4-MByte pages. The pages located in the kernel area

- 19 -

are set as read only. At last, the stack pointer is set.

Interrupt handler initialization

In JikesNode, the initialization is included in ints.s and interrupts.c file. It uses

various macros to prepare and set the interrupt handler. For example, int_noerror

maps the error interrupt to specific handler address. intport sets the interrupt entry in

IDT table. int_irq maps the interrupt requests (IRQs) with their handler functions,

which are written in C.

Hardware component initialization

Before transferring into the user mode, the nanokernel initializes some fundamental

hardware, including serial port, PIT and FPU.

System console and debugging support

During the system initialization, console output is supported in kernel mode. It is

implemented by writing the characters directly to video memory address 0xB80000.

Some basic functions such as scrolling are implemented in console.c, and some

complex outputting functions are written in separate files and saved in klib.

Native Runtime

We use the native runtime from JikesRVm as the basis of JikesNode native runtime.

The main files include sys.C, libVM.C and cmdline.h. But because JikesRVM runs

on a Linux platform, it calls many low-level functions that have been implemented in

the operating system. For a new operating system, we must write these call back

functions (C Stub [6]) independently based on our requirements. All necessary

functions are saved in klib directory, the implemented ones are written in separate

files, while all others are saved in fake.c file. The choice of the functions and their

targets are from The Open Group Base Specifications [9]

- 20 -

Others

Besides the above implementation in the JikesNode, the Jamaica Group has done

much work on the integration between JikesNode and JNode systems. Different

versions of GNU classpath used in both systems have been unified. The VM used in

JNode has been mostly removed. Various build systems have also been added to

support the different requirements.

- 21 -

Chapter 3

Memory Management in IA-32 Intel

Currently, JikesNode is running on an IA-32 Intel platform. So, to implement the

memory management system in JikesNode, it’s important to understand the

underlying mechanism supported by Intel IA-32 processors.

The following will concentrate on the memory management implemented in

IA-32 Intel. First, it describes the memory management facilities in protected-mode,

including the segment and page mechanism. The second part is the definition of

system registers and memory entries used in such facilities.

3.1. Overview

System architecture

Intel IA-32 architecture processors include the Intel Pentium processors, the P6 family

processors, the Pentium 4 processors, the Intel Xeon™ processors, and the Pentium M

processors [2]. It provides a set of registers, data structure and a series of instructions

for the developer to perform the system-level operations such as memory

management and task management. Figure 3-1 gives a summary of its registers and

data structures.

- 22 -

Figure 3-1. System Structure in Intel IA-32 [2, Figure 2.1]

Operation Modes

In IA-32 architecture, we have four operation modes, protected mode, real-address

mode, system management mode (SMM) and virtual-8086 mode

� Protected mode is the native mode of IA-32 processors. It provides all

instructions and features available in IA-32. The JikesNode operating system is

also developed in this mode.

� Real-address mode is the initial mode that a processor is placed in when being

powered up or reset. It provides an Intel 8086 programming environment for the

user. Running in real-address mode, the processor only supports 1 MBytes (20

bits) physical address space [2, Chapter 16]. It shifts the segment selector left by

4 bits and adds the 16 bits effective address to form a physical address.

� System management mode (SMM) is a special operation mode used to monitor

and manage the system resources. In this mode, processors use a separate address

- 23 -

space call SMRAM to save the codes and data, whose default size is 64 KBytes

and can be up to 4 GBytes.

� Virtual-8086 mode is a quasi-operating mode supported by processor. Actually

it’s a special task that runs in protected mode. It allows executing 8086 software

in a protected and multitasking environment. The execution environment of

virtual-8086 mode is the same as real-address mode, except the virtual-8086 can

use some features in protected mode.

3.2. Memory management in protected mode

Overview

The memory management facilities of the IA-32 architecture consist of segmentation

and paging two parts [2, Chapter 4]. Segmentation provides mechanism of isolating

individual code, data and stack modules for multi tasks to run on a processor. Paging

provides a mechanism to implement a virtual-memory system and map it into physical

memory address. In protected mode, segmentation must be used, while paging can be

disabled by setting particular bits of the registers.

As shown in the figure 3-1 and 3-2, segmentation divides the processor’s memory

space into small pieces of protected address space called segments. These segments

can be used to save the code, data, stack, task states and some system data structure [2

Chapter 3]. In the segment phase, processor translates logical address to a linear

address by using the segment selector and address offset

The paging mechanism can map a large linear address into a small real memory size.

If paging is not used, processor maps the linear address directly to the physical

address. When using paging, each segment is divided into pages, and a page directory

and page table are used to translate the linear address to the physical address.

- 24 -

Figure 3-2. Address Translation

Segmentation

Segmentation Model

Segmentation supported by IA-32 architecture can by implemented by different ways,

from basic flat model, protected flat model to multi-segment model.

� Basic flat model is the simplest memory model. In it, all data, codes and

stack are located in a continuous and unsegmented address, which means the

segment mechanism is hidden from the operating-system and application. To

implement it, a code segment descriptor and a data segment descriptor should

be created, and both must have the same base address of 0 and limit of 4

GBytes. All segment registers must be set to point to these two descriptors.

� Protected flat model is similar to the basic flat model, except it sets the

segment limit to the real physical memory size. If necessary, this model can

also be implemented more complex. For example, we can define different

- 25 -

segment with different access level.

� Multi-segment model uses the full capabilities of the segmentation

mechanism to provide hardware enforced protection of code, data structures

and programs and tasks [2, Chapter 3]. In this mode, every program or task

has its own segments and these segments can be set as various private level.

In protected mode, to access a physical memory address, the processor must uses two

stages: logical-address translation and linear address space paging [2, Chapter 3]. The

segmentation is used in first stage.

When given a logical address (consisting of a segment selector and an offset), the

processor first uses segment selector to locate the segment descriptor in the Global

Descriptor Table (GDT) or Local Descriptor Table (LDT) and check the access rights.

Then processor adds the base address in the selected segment descriptor to the offset

to form a linear address. Figure 3-3 displays the translation

Figure 3-3. Logical-address Translation

Paging

After getting the linear address, the processor uses paging to map a linear address to a

physical address. If paging is disabled, the linear address is the physical address.

When paging is used, the processor translates the linear address into the physical

address by using different mapping mechanisms according to various paging options.

- 26 -

By setting the flags in the control registers and system data structure, we can use

different paging translation mechanism: 4-KByte with 32-Bit address, 4-MByte with

32-Bit address, 4-KByte with 36-Bit address, 4-MByte with 36-Bit address and

2-MByte with 36-Bit address. Following describe detailed implementation of these

translations.

� 4-KByte page with 32-Bit physical address

This uses page directory and page table hierarchy to map linear address to 4KB

pages. A linear address is divided into three parts: the lowest 12 bits define the

offset in a page, next 10 bits are the page-table offset, and the bits 22 to 31

provide the page-directory offset.

First, the processor reads the control register CR3 [Section 3.3] to get the base

address of the page directory and adds the page-directory offset to get the base

address of page table. Then the page-table offset is added to the base address of

page table to get the base address of 4-KByte page. Finally physical address is

created by adding the base address of the page to the page offset.

Figure 3-4. 4-KByte Page Translations

� 4-MByte page with 32-bit physical address

- 27 -

This only uses the page directory to map linear addresses to 4-MByte pages.

When using 4-MByte mapping, the linear addresses have two sections. The lower

22 bits are the page offset and the bits 22 to 31 define the offset in the page

directory to get a page entry.

First, the processor adds the base address saved in CR3 to the page-directory

offset to get the entry point of the page. Then the physical address is created by

adding the base address of the page to the 22 bits offset.

Figure 3-5. 4-MByte Page Translation

� 4-KByte page with 36-bit physical address

This uses page-directory-pointer, page-directory and page-table hierarchy and

divides the linear address into four parts. The lowest 12 bits defines a page offset.

Bits 12 to 20 are page-table offset. Bits 21 to 29 are page-directory offset. And

the highest 2 bits provide a offset in the page-directory-pointer table. Figure 3-6

shows how the translation works

- 28 -

Figure 3-6. 4-KByte pages with extended 36 Bits address

� 2-MByte page with 36-bit physical address

2MByte paging can only be used with 36bits physical address. To implement this

paging mechanism, the processor uses the page-directory-pointer and

page-directory. The linear address consists of three sections. The lowest 21 bits

are the offset in 2-MByte page. Bits 21 to 29 provide an offset in the page

directory. And bits 30 and 31 define the offset in the page-directory-pointer table.

Figure 3-7 shows the mapping mechanism.

Figure 3-7. 2-MByte pages with extended 36 Bits address

- 29 -

� 4-MByte page with 36-bit physical address

Its mapping mechanism is the same as the 4-MByte page with 32-bit address. The

only difference between them is the data structure defined in the page directory.

3.3. System Registers and data structure

In IA-32 architecture, processor uses some system registers and data structures to

perform the memory management facilities effectively. Here is a list of these registers

and structures and a description of some important flags in them.

Control Register 0 (CR0)

Bit 31 of CR0 indicates whether paging is used. When it is set, paging is enabled

while it is cleared to disable paging.

Control Register 3 (CR3)

When enabling paging, CR3 is used to save the base address of the page directory.

Figure 3-8. CR3

Control Register 4 (CR4)

Bit 4 of CR4 (PSG flag) indicates whether the 4MB page can be used. If set, the

processor can use both 4MB and 4KB page, while only 4KB page can be used when it

is cleared.

Bit 5 of CR4 is the flag of page address extension. It enables the 36-bit physical

address when set.

Segment selector

- 30 -

Segment Selector is a 16-bit identifier used to find the segment descriptor in a

descriptor table. Bits 3 to 15 provide the offset in a descriptor. Bit 2 directs the

processor to search in Global Descriptor Table (GDT) or Local Descriptor Table

(LDT). And the first 2 bits are used to specify the privilege level.

Segment Registers

To reduce address translation time and coding complexity, the IA-32 processor also

provides 6 registers to hold the segment selector. Before accessing a segment, its

segment selector must be loaded into one of these 6 register. So at any time, only 6

segments are available immediately. Each segment register consists of a “visible” part

and a “hidden” part [2, Chapter 3]. The “visible” part saves the segment selector,

while the “hidden” part looks like a cache, which saves the corresponding information

such as base address and limit.

Segment Descriptor

A segment descriptor is a 64-bit data structure saved in GDT or LDT. It saves all the

necessary information of the segment it points to. Figure 3-9 lists its data format.

Figure 3-9. Segment Descriptor

It has a 32-bit address which points to the base address of the segment it describes, a

20-bit data defining the segment size and some flags.

Segment Descriptor Table

A segment descriptor table is used to save segment descriptors contiguously. It has

two types: the global descriptor (GDT) and the local descriptor table (LDT).

- 31 -

Processor uses the GDTR register and the LDTR register to save the base address of

the descriptor table. In GDT, the first descriptor (the first 8 bytes) must remain empty.

GDTR and IDTR

These two registers specify the locations of descriptor table. The GDTR refers to the

GDT while IDTR refers to the IDT. Both registers are 48 bits, of which the highest 32

bits save the linear address of the descriptor table and the lower 16 bits indicate the

limit size of the table.

Page directories and tables

When paging is enabled, page directories and tables are used to translate a linear

address to a physical address and both save a series of entries. Depending on the

paging mechanism, the page directory and table entries have different data formats.

When using 4Kbyte page, both page directory and table are used. Their data format

are shown in Figure 3-10 and 3-11

Figure 3-10. 4-KByte page-directory entry.

Figure 3-11. 4-KByte page-table entry

In the page-directory entry, the highest 20 bits provides the base address of the page

table. The 7 bits indicates the page size, which must be set 0 in 4KB page.

In the page-table entry, the highest 20 bits describes the base address of the page. The

other bits define the attribute of this page.

- 32 -

When using 4MByte page, only page directory will be used. Figure 3-12 describes the

data format of an entry.

Figure 3-12. 4-MByte page-directory entry

The bits 22 to 31 indicate the base address of a page. It will be shifted left 22 bits to

create the real 32-bit page base address during translating an address. The 7 bits (page

size flag) should always be set 1.

- 33 -

Chapter 4

Memory system in JikesNode

Unlike other programming languages, Java has some distinctive features such as

automatic memory management, support for multithreading, the existence of

architecture-neutral intermediate codes (bytecodes), etc. [10]. With the increasing gap

between the speeds of CPU and memory, the memory system has become a major

performance bottleneck in modern computer systems [10]. As a new Java operating

system, JikesNode needs an effective memory system to increase its performance.

In this Chapter, we describe the memory system implemented in JikesNode. First, we

have a look at MMTk, the memory management component used in JikesRVM.

Following MMTk, there is a detailed description of the memory initialization in the

JikesNode nanokernel. Finally, we present the memory model in JikesNode without a

Garbage Collector (GC).

4.1. MMTk (Memory Management Toolkit)

MMtk is a memory management toolkit written in and for Java. It is developed from

the JMTk (Java Memory Management Toolkit), which is also written in Java and

especially for JikesRVM. It provides a series of reusable, efficient, extensible

components for garbage collectors. Now the JNode project has begun to integrate

- 34 -

MMTk into JNode system. So using MMTk as our memory management toolkit is

quite a natural choice.

Policy

Policy contains the garbage collection algorithms that couple memory, which is

grouped into spaces in MMTk, with an allocation and collection mechanism. A whole

heap collector uses one policy for most objects, while a generational collector always

uses one or more policies. For generational collector, a write barrier [11] is used to

remember all references to the objects into an independently collected space. Before

the program accesses the object, the barrier will be triggered and perform some

necessary work before operating on the object.

Following is the basic allocation and collections mechanisms support by MMTk

� Bump Pointer Allocator: All memory is grouped in a contiguous space. A

cursor called the bump pointer is used to record the start address of free

memory. When creating a new object, the allocator appends the object from

the cursor, and increment the cursor by the size of the created object.

� Free-List Allocator: The memory is organized into some size-segregated

free-list so that all memory is divided into blocks. The block that has just size

to accommodate the new object is used to save it.

� Tracing Collector: Uses a transitive closure from the roots to identify the live

objects. When reclaiming space, MMTk moves the data out of the space, or

frees untraced objects.

� Reference Counting Collector: A reference count is maintained for each

object. When creating a new object, a reference to this object is also created

and the object’s reference count is set to one. When the object is referenced

by other values, its reference count is incremented. When a reference to the

object is deleted or assigned a new value, its reference count is decremented.

Whenever an object’s reference count is zero, it will be reclaimed.

- 35 -

In addition to these mechanisms, JikesRVM has supported some advanced real-time

garbage collection called treadmill.

With the above mechanism, MMTk creates five policies.

� Copy space has a bump-pointer allocation and a tracing collection by moving

live objects out of the space.

� MarkSweep space has a free-list allocation and a tracing collection that frees

untraced object

� RefCount space has a free-list allocation and a reference counting collection.

� Immortal space: bump-pointer allocation and no collection.

� Large object space: coarse-grained free-list allocation and treadmill

collection [20].

From these five policies, MMTk forms the following collectors.

� SemiSpace uses two copy spaces. Every time, one space is used to save

objects. Once full, the live objects in the used space are copied to the other.

� MarkSweep uses one mark-sweep space. During allocating a new object, it

traces and marks the live objects and reclaims dead objects.

� RefCount uses Refcount space, but the collection is deferred. During

mutation, it buffers the counts of object references. The collector periodically

processes the buffer, saves the changing for deferred objects, and then clears

objects with a zero count.

� GenCopy: The classic copying generational collector [21] allocates into a

(nursery) Copy space, and promotes survivors into an old SemiSpace [11].

When the nursery is full, it collects and sets the size of copy space to the size

of all live objects. When the SemiSpace is full, it collects the entire space.

� GenMS is like GenCopy, excepting replacing the SemiSpace by MarkSweep.

� GenRC: uses Ulterior Reference Counting to combine a copying nursery with

a RefCount mature space.[11]

- 36 -

Plan

MMTk defines collectors through the composition of policies and mechanism. Plans

just perform the highest level of this composition, defining the rules by which policies

are composed. The key functions are [4]:

� Identifying a virtual memory layout (using VMResources).

� Providing allocation by binding suitable allocators to different

VMResources.

� Invoking collection when necessary through the use of a polling mechanism.

� Applying the appropriate collection policies to objects encountered during

the collection process (objects may be subject to different collection

regimens depending on where they reside in memory).

� Implementing read and write barriers if necessary.

In the latest version, MMTk implements eight different plans. In addition to the plans

that simply compose the mentioned policies, another three are also implemented.

CopyMS composes a full-heap collector with a copying nursery and mark-sweep

mature space. The collector has no write barrier and no remembered set

GenCopy implements a standard two-generation copying collector.

NoGC only has a simple allocator but no collectors

4.2. Object model

The term object model refers to the way objects (both in the specific sense of object

oriented languages and the more general sense of heap objects in other languages) are

laid out in memory, how their type is determined and how they are manipulated by the

runtime and memory management systems.[13, 4.2.3]. From the memory manager, an

object consists of a size and some metadata fields which are used for managing.

In java language, values are either primitive (e.g., int, double, etc.) or references to

- 37 -

objects. JikesRVM divides all objects into two types, arrays which consist of a set of

components and scalars which only have fields. These two types have different

memory layout shown in figure 4-1 [14, Figure 1]. An array object grows up from its

reference, while a scalar object grows down from its reference. Each object has a

two-word object header to support various operations such as dynamic type checking,

memory management, synchronization, hashing, etc.

One word of the header describes the status of objects. It is divided into three parts.

The first part is used for locking. The second one holds the default hash value. The

last one is for the memory management.

The other word is a reference to the Type Information Block (TIB) for the object's

class [14]. A TIB is an array of object references. The first component describes the

object's class such as its superclass and interface. The remainder is compiled code of

the virtual methods of the class.

Figure 4-1. Layout of Object

- 38 -

4.3. Memory initialization

As mentioned in Chapter 2, during booting, the nanokernel does much work in

initializing the memory management, for example the segment and paging, GDT and

LDT tables and etc. Now, we will represent the initialization in detail.

In JikesNode, all initialization is done in protected mode, which means the bit 17 in

EFLAGE [2, Section 2.3] must be cleared first. The whole process of memory

initialization is implemented in three steps: paging initialization, GDT initialization

and setting TSS (the LDT is not used now).

Paging initialization

Because a combination of 4-KByte and 4-MByte pages [Section 2.4] is used in the

system, we must initialize both page directory and page tables during initialization. To

enable the mixed paging mechanism, the PG flag (bit 31 of CR0) [Section 3.3] and

PSE flag (bit 4 of CR4) [Section 3.3] should be set.

Currently, JikesNode supports maximum 4 GBytes memory space, which is paged by

4 MBytes. The first 4 MBytes memory uses the 4-KByte paging mechanism. The only

exception is that the first 4-KBytes page (from address 0 to address 0x0FFF) is not

present, in order to detect the nullpoint exception.

The remaining memory from the address 0x400000 to maximum 0xFFFFFFFF is set

using 4MB pages. But the last 4MB page is not initialized, again to detect the

nullpoint exception. In addition, those pages which hold the kernel (between the

kernel_begin and kernel_end label) are marked as read-only. But all paging sets the

virtual address equal to the real address.

During booting, a page directory and a page table are created. At first, a page

- 39 -

directory is located at address 0x1000 and has 1024 entries, in which the first one is

set 4KB paging (the PS flag in the entry is cleared) and the others are set 4MB paging

(the PS flag is set). Then a page table is located at 0x2000 and set in the page

directory. In this step, the page privilege level is set. After finishing initialization, we

set the CR0 and CR4 to enable paging and load the address of page directory into

CR3.

GDT initialization

There are six entries created in the GDT. The first entry is an empty entry which is

never used. The other five include two data segments (Kernel Data Segment and User

Data segment), two code segments (Kernel Code segment and User Code segment)

and a TSS.

Both code segments and code segments are set 4GB limited and start from address

0x0. But the kernel segments are set to the highest privilege level while the user

segments are set to the lowest.

TSS Setting

In protected mode, all programs execute within the context of a task [2 Chapter 2], of

which the execution environment is defined in TSS. The structure of TSS is shown in

Figure 4-2 [2, Figure6-2].

In the TSS, CS field is set in the user code segment and other segment fields are to the

user data segment.

- 40 -

Figure 4-2. TSS Structure

An overview of the memory layout after initialization is shown in Figure 4-3 [2,

Figure 6.2].

- 41 -

Figure 4-3. Memory layout

From the operation to the TSS and GDT, we find that JikesNode separates the

memory to code segment and data segment. But because all segments are set the same

start address and size, the operating system and programs are actually located in a

continuous and unsegmented memory space.

4.4. Garbage Collection

In order to simplify the system, JikesNode doesn’t use any Garbage Collection

mechanism. So during the building phase, MMTk chooses the NoGC Plan.

In the NoGC plan, there are three policies used by the virtual machine and a policy for

user data. Three policies for VM include an immortal space, a RawPage Space for the

metadata of the VM, and a LargeObject (LOS) Space for some large objects. The user

policy is immortal space, which only has a bump-point allocation and no Garbage

Collection.

This allocation mechanism is simple but fast, only requiring a load, comparison and

store. In addition, bump-point allocation supports a linear scan through both the

- 42 -

allocated objects and a single contiguous space.

In JikesNode, the regions memory used by the policy is pre-set during the building

phase. The size and address of user immortal space dynamically depends on the total

size of the virtual memory defined in JikesRVM.

Figure 4-4. Memory space in NoGC

- 43 -

Chapter 5

Design and Implementation

5.1. Debug

After Georgios’s work [1], the Jamaica group has done much work, such as forcing

the RVM image to be saved from the address 0x1000000, initializing the necessary

classes and libraries for the VM to load JNode and implementation of the klib

functions. So at the beginning of the project, we must make the system work. During

debugging the system, we find there are two main problems: overlap between the

stack and the code, and the unfinished implementation of system functions.

Stack and code

When the system is running, sometimes the memory that holds the kernel code is

re-written, which makes the system crash. After tracing the memory, we find that it is

because the size of the user stack is too small and makes the stack value be saved into

the code memory.

During initializing the system memory, the JikesNode creates two 16 KBytes memory

spaces for kernel stack and user stack, after the kernel code. But some functions such

as vfprintf will require more memory than 16 KBytes. Therefore stack region grows

down and overwrites the code memory.

- 44 -

There are two methods to resolve the problem. The easy way is just extend the size of

the stack. The other one is using a stack segment to separate the stack memory from

the data memory and the code memory. Because current system only has code

segments and data segments, the stack and other data share the same memory regions.

In addition, the data segments and code segments are set to uses the same memory

region. So actually, the boundary and privilege check in segments is not useful. If

using a separated segment, the system will report an exception and prevent from

writing to the memory in another segment.

Considering that the JikesNode is in an early stage, using many segments will make

the further work more complex, and we choose the first method and extend both the

user stack and the kernel stack to 64 KBytes

Klib function

Without system support, some functions in the system have not been implemented and

force the system to stop. During debugging, the author modifies these functions just to

check the status of the system. The following tables list the modified functions and

codes.

- 45 -

Functions Modifications Reasons

gettimeofday

(fake.c)

Return the value of fake_time instead of

zero

The system uses this function to

check the time gap in different

boot stages. Return 0 will make the

system halt.

setTimeSlicer

(sys.C)

Modify “assert(false)” to “assert(true)” “assert(false)” makes the system

halt

finishbooting

(VM.java)

Comment the code

runClassInitializer("java.lang.Math"),

System.loadLibrary("javaio"),

runClassInitializer("gnu.java.nio.channels

.FileChannelImpl"),

runClassInitializer("java.lang.Double"),

runClassInitializer("java.lang.VMDouble

"),

runClassInitializer("com.ibm.JikesRVM.

VM_Process")

JikesRVMSocketImpl.boot();

Need the support from JNI, which

has not been implemented in the

system.

Table 5-1. Modified functions

5.2. Import Garbage Collection

After debugging the system in NoGC, we start to import a garbage collection into

JikesNode to make the memory in the system reusable. As listed in Section 4.1,

MMTk used in JikesRVM supports eight plans for garbage collection. So we must

choose a suitable plan before importing it.

Some papers [15, 16, 17] show that the generational collectors provide better

- 46 -

performance than the whole heap collectors, such as semispace and marksweep, in

virtually all circumstances [15, Chapter 1]. In the three generational collectors,

GenMS has lower garbage collection costs than GenCopy because of its space

efficiency and the implementation of GenRC is still immature [15 Section 5.4]. So

finally, we use GenMS as the garbage collection in JikesNode.

GenMS

GenMS is a hybrid generational collector which uses a MarkSweep policy for the

mature generation and a copying space for nursery. In its copying space, a bump

pointer is used to trigger a nursery collection when the nursery is full. Normally, the

nursery collection only works when either the nursery or the heap is full.

As in NoGC, in addition to its own space, there are three policies used by the virtual

machine. The address and size of the MarkSweep policy and the copy space are

pre-set during the building phase and depend on the size of virtual memory which is

defined in configuration files. The space used for nursery copy space is located from

the bottom of system memory and on the LOS space [Section 4.4]. The memory for

the MarkSweep is located in the top area of the all memory and its start address is the

maximum memory address minus its size. Figure 5-1 displays the overview of the

space after building the system, whose memory is 0xC0000000

- 47 -

Figure 5-1. Memory space in GenMS

5.3. Memory Mapping

Using GenMS as our garbage collection leads to a new problem. Because the

Marksweep space is allocated from the top of the memory and the size of virtual

memory is usually much large than real memory, objects located in MarkSweep can

not be saved to the real memory in current paging setting. So, when creating a new

object, the page table or page directory must be modified to map the virtual address to

available real address.

From the code, we find that when declaring or initializing a new object, the system

calls malloc function to find a block of memory space for the object. And in malloc

function, a function named mmap is called, which request the memory space from the

kernel. So modifying the code in mmap to implement paging setting is sensible.

mmap

The mmap function establishes a mapping between a memory space and an operating

resource. The resource can be a file, a shared memory object, or a typed memory

object. This is the declaration of this function:

 void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset);

� start indicates the start address of the memory to be mapped

� length specifies the size of the mapped memory, which is in bytes

� prot specifies the permission of the memory

� flags specifies attributes of the mapped region

� fd contains the file descriptor of the mapped object

� offset specifies the file byte offset at which the mapping starts

In these six parameters, the prot and flags are the most important, which will affect

- 48 -

the property of the page and the mapping mechanism. Because the JikesNode is very

simple now and many functions haven’t been implemented, we only can implement

some basic functions defined in mmap function (the full description described in

[18]).

prot defines four access options:

� PROT_READ: Region can be read.

� PROT_WRITE: Region can be written.

� PROT_EXEC: Region can be executed.

� PROT_NONE: Region cannot be accessed

When prot is PROT_EXEC，it means the memory should be located in the memory in

a code segment. But now all segments in JikesNode are defined in the same memory

area. So the PROT_EXEC option is meaningless in current mmap function. So, only

PROT_WRITE and PROT_READ options are implemented.

In flags parameter, we only implement the MAP_VARIABLE and MAP_FIXED

options because the others need some operation on file system, which have not

implemented in JikesNode. The definition of these two options is listed below.

� MAP_VARIABLE: When this option is set, system can select an address for

the new memory, if the memory space indicated by the addr parameter can be

mapped, or the addr parameter is null.

� MAP_FIXED: If this option is set, system must place the mapped space at

the address specified by the addr parameter and replace all previous

mappings for the pages located in the mapped memory.

munmap

With mmap, there is another function called munmap, which performs an opposite

operation. It unmaps a mapped file region or anonymous memory region.

- 49 -

Implementation

To monitor system memory, we need some structures to save the status and layout of

memory. A dynamic linked list and a static array are two choices. Basing on the

following reasons, we use arrays.

� To create and initialize a linked structure, mmap function calls malloc

function to allocate some memory, which will call mmap. So special care is

needed to stop them being an endless loop.

� Currently, many operation systems or applications run with a large memory.

So, compared to the size of system memory, the memory used for static

arrays is not costly. In addition, for processor, operations on an array are

simpler and more efficient than operations on a linked list.

We created two static arrays to log the free memory in the system, one named

free_regions used for virtual memory and the other name free_map_regions used for

physical memory. Another array is created to save the mapping between virtual

memory and physical memory.

When called, mmap checks the flags parameter. If MAP_FIXED is set, all mapping

for the virtual address located in the region [start, start+ length] is cleared. Then find

a free physical memory from free_map_regions, which can match specified size to

map to the specified size. The mapping virtual memory and physical memory are also

removed from free_regions and free_map_regions. If MAP_VARIABLE is set,

mmap first checks whether the specified memory region has been used. If it has not

been used, the specified virtual address is used and mapped to the available physical

memory. If the memory has been used or no memory is specified, mmap finds

another available memory region from free_regions and free_map_regions and maps

them. For the other conditions, any available virtual memory and physical memory

can be used. Figure 5-2 shows the operation sequence of mmap.

- 50 -

Figure 5-2. Logic Diagram in mmap

5.4. Paging

In Section 2.3 and Section 4.3, we have described the memory management in

- 51 -

JikesNode. The mixing of 4-KByte and 4-MByte pages is used in the system and the

first 4 MB memory uses 4-KByte pages. Currently, JikesNode sets the kernel start

from 0x100000 and the JikesRVM image start from 0x1000000. Between kernel and

JikesRVM image, there are the C stub functions and Stack. Therefore, the kernel and

system components are placed in both 4-KByte page and 4-MByte page.

To reduce the TLB [2, Section 10.9] misses and improve overall system performance,

the system operating system and kernel should be placed in a large page [2 Section

3.7.3]. But now all kernel and system is in a small page, so we change the first 4 MB

memory to use 4-MByte page.

This modification is not very complex. The first thing is to remove the code that

initializes 4-KByte pages and sets them in page directory. Then we should add some

code to check and set the read/write privileges for the pages, which is originally

implemented in page table setting. All pages holding the kernel should set read-only,

while others are read and write.

- 52 -

Chapter 6

Summary

Research on Operating system is as old as computing itself, but Java Operating

System is still a new researching area. The JikesNode aims to provide user a higher

performance, dynamically optimising, operating system architecture.

This project is to do some improvement on the memory management subsystem in

JikesNode. We import the GenMS garbage collection provided by JikesRVM into the

system and modify the memory mapping and initialization mechanism. Because

currently the size of physical memory is much smaller than the size of memory

required by GenMS, we can’t trigger a nursery collection now. But from the output in

building phase [Appendix A] and the location of object during running [Appendix B],

we can find that the GenMS garbage collection works.

Future Work

With only 4 months, it’s impossible to implement all JikesNode components. By now,

JikesRVM is successfully loaded and many classes can be initialized. From the

author’s point of view, in the future, the main work is to extend system stub functions

and integrate JNode into JikesRVM.

� JNI mechanism should be set up after booting the VM, so that the java

system can utilize the native function in the java library. JikesRVM has

- 53 -

implemented a JNI package to interact with native code. Modification of

JNode to use the JNI package is critical.

� Many C methods created in klib to replace the C stub in JikesRVM. In

addtition, these methods also define a set of callbacks which provide a bridge

between the java call and underlying system functions. The definition and

description of these methods can be found in [9]. In addition, JikesRVM uses

VM_Syscall to invocate the C functions, while JNode uses Unsafe class to

perform hardware access. How to unify these two ways is an important task.

� A C function has been created for interrupt handler and IRQ handler. Much

work should be done to implement this function and transfer the interrupt or

IRQ to the JNode IRQ management subsystem. This would probably require

changing the VM_Runtime class to provide an entry point for system call.

� How to build JNode boot image and make JikesRVM to load this boot image

after finish booting VM. One solution is to build two images together and

JikesRVM directly intiliaze JNode after finishing booting VM. But using this

way, the image file will be very large and take a long time to load before

booting. Another technique is to build JNode to a Jar file, specify the file as

JikesRVM command line and load it after booting VM.

- 54 -

Bibliography

[1] G. I. Gousios: JIKESNODE: A JAVA OPERATING SYSTEM, MSc thesis, Dept.

of Computer Science, University of Manchester, 2004.

[2] Intel Corporation: IA-32 Intel® Architecture Software Developer’s Manual

Volume 3: System Programming Guide, 2005

[3] The Jnode operating system, 2004. http://jnode.sourceforge.net.

[4] IBM. The Jikes Research Virtual Machine User’s guide, 2004. Manual

accompanying the Jikes RVM source distribution.

http://jikesrvm.sourceforge.net/

[5] The Jikes Research Virtual Machine (RVM),

http://oss.software.ibm.com/developerworks/oss/Jikes RVM/.

[6] I. Rogers and C. Kirkham: JikesNode and PearColator: A Jikes RVM Operation

System and Legacy Code Execution Environment, 2nd ECOOP Workshop on

Programming Languages and Operating Systems (ECOOP-PLOS'05), Glasgow,

July 26, 2005.

[7] B. Alpern, C. R. Attanasio and J. J. Burton: The Jalapeño virtual machine. IBM

System Journal, Vol 39, No 1, February 2000.

[8] B. Alpern, S. Augart, S.M. Blackburn, M. Butrico, A. Cocchi, P Cheng, J. Dolby,

S. Fink, D. Grove, M. Hind, K.S. McKinley, M. Mergen, J.E.B. Moss, T. Ngo, V.

- 55 -

Sarkar, and M. Trapp: The Jikes Research Virtual Machine project: Building an

open-source research community. IBM Systems Journal, Vol 44, No 2, 2005.

[9] The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition

http://www.opengroup.org/onlinepubs/009695399/frontmatter/preface.html

[10] J.-S. Kim and Y. Hsu: Memory System Behavior of Java Programs: Methodology

and Analysis, ACM SIGMETRICS 2002

[11] S. M. Blackburn, P. Cheng and K. S. McKinley: Oil and Water? High

Performance Garbage Collection in Java with MMTk, In Proceedings of ICSE

2004, 26th International Conference on Software Engineering

[12] R. E. Jones and R.D. Lins: Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. Wiley, July 1996.

[13] R. J, Garner: JMTk: A Portable Memory Management Toolkit. Honours

thesis,.Computer Science, ANU. 2003

[14] IBM Staff: The Jikes Research Virtual Machine (RVM) Independently developed

as part of the Jalapeno research project at Thomas J. Watson Research Center. 01

Feb 2000.

http://www-128.ibm.com/developerworks/java/library/j-jalapeno/index.html#h6

[15] S. M. Blackburn, P. Cheng and K. S. McKinley: Myths and Realities:The

Performance Impact of Garbage Collection, Technical Report TR-CS-04-04, Dept. of

Computer Science, Australian National University, 2004.

[16] M. Hertz, Y. Feng and E. D. Berger: PageLevel Cooperative Garbage Collection,

Technical Report 2004 UMass CS TR-04-16:

- 56 -

[17] M. Hertz, Y. Feng and E. D. Berger: Garbage Collection Without Paging, PLDI

2005

[18] Technical Reference: Base Operating System and Extensions, Volume 1

http://publib16.boulder.ibm.com/pseries/en_US/libs/basetrf1/basetrf102.htm#wq3521

[19] B. Venners: Inside the Java Virtual Machine published by McGraw-Hill

Companies, December 1997

[20] H. G.. Baker: The Treadmill: Real-Time Garbage Collection Without Motion

Sickness, SIGPLAN Notices 27(3):66-70, March 1992

[21] A. W. Appel. Simple generational garbage collection and fast allocation,

Software Practice and Experience, 19(2):171–183, 1989.

[22] GNU GRUB manual http://www.gnu.org/software/grub/manual/grub.html

- 57 -

Append A

A sample run output

RVMmodule: mod_start = 0x1000000, mod_end = 0x1f38534 mod_size=15585kb cmdline=

� P

Kernel end: 0x1f39000

Memory map provided by grub

 base_addr=0x0, length_low=0x9fc00, type = 0x1

 base_addr=0x100000, length_low=0xff00000, type = 0x1

mmap-length_low=0xff00000, mmap_base_addr_low=0x100000 FreeMem: start=0x1f39000

end=0x10400000 size=234268kb usable pages=6969

RunBootImage.main(): VM variable settings

initialHeapSize 20971520

maxHeapSize 104857600

rvm_singleVirtualProcessor 1

bootFileName |JikesNODE|

lib_verbose 1

IA32 jnode build for single virtual processor

Boot record contents:

 bootImageStart: 0x1000000

 bootImageEnd: 0x1f38480

 initialHeapSize: 0x0

 maximumHeapSize: 0x0

 tiRegister: 0x40000

 spRegister: 0x1c3ace0

 ipRegister: 0x14d60e0

 tocRegister: 0x10001d4

 sysWriteCharIP: 0x0

- 58 -

 ...etc...

post linkage

Boot record contents:

 bootImageStart: 0x1000000

 bootImageEnd: 0x1f39000

 initialHeapSize: 0x1400000

 maximumHeapSize: 0x6400000

 tiRegister: 0x40000

 spRegister: 0x40000

 spRegister: 0x1c3ace0

 ipRegister: 0x14d60e0

 tocRegister: 0x10001d4

 sysWriteCharIP: 0x102282

 ...etc...

JikesNODE: here goes...

JikesNODE: here goes2...

Booting

Setting up current VM_Processor

Doing thread initializProcessor

Doing thread initialization

Setting up write barrier

Setting up memory manager: bootrecord = 0x0100000c

i386.c

mmap(start=0x11000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0

)

free_map_region[0].start=3400000;free_map_region[0].end=10000000

mapping[1].vp_start_address=0x11000000,

vp_end_address=0x11400000;mapped_start=0

x3000000 ,mapped_end=0x3400000

mmap(start=0xa3c00000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0

- 59 -

)free_map_region[0].start=3800000;free_map_region[0].end=10000000

mapping[1].vp_start_address=0x11000000,

vp_end_address=0x11400000;mapped_start=0

x3000000 ,mapped_end=0x3400000

mapping[2].vp_start_address=0xa3c00000,

vp_end_address=0xa4000000;mapped_start=0

x3400000 ,mapped_end=0x3800000

Garbage Collection being used now

$Id: GenMs.java,v 1.4 2005/05/25 14:58:04 irogers Exp $

Create two objects, should be located in Nursery Space

String one

0xa3c00028

String two

0xa3c00038

Stage one of booting VM_Time

Initializing baseline compiler options to defaults

java.lang.Throwable

mmap(start=0x13000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0

)free_map_region[0].start=3c00000;free_map_region[0].end=10000000

mapping[1].vp_start_address=0x11000000,

vp_end_address=0x11400000;mapped_start=0

x3000000 ,mapped_end=0x3400000

mapping[2].vp_start_address=0xa3c00000,

vp_end_address=0xa4000000;mapped_start=0

x3400000 ,mapped_end=0x3800000

mapping[3].vp_start_address=0x13000000,

vp_end_address=0x13400000;mapped_start=0

x3800000 ,mapped_end=0x3c00000

java.util.zip.ZipEntry

com.ibm.JikesRVM.classloader.VM_MemberReference

- 60 -

java.net.URL

java.util.TimeZone

com.ibm.JikesRVM.jni.VM_JNIEnvironment

java.util.ResourceBundle

gnu.java.net.protocol.jar.Connection$JarFileCache

java.lang.Thread

com.ibm.JikesRVM.VM_EdgeCounts

com.ibm.JikesRVM.classloader.VM_Type

com.ibm.JikesRVM.classloader.VM_InterfaceMethodSignature

com.ibm.JikesRVM.jni.VM_JNICompiler

java.lang.System

com.ibm.JikesRVM.VM_DynamicLibrary

com.ibm.JikesRVM.VM_CompiledMethods

java.util.Locale

java.lang.Math

java.util.Calendar

com.ibm.JikesRVM.VM_Statics

java.net.URLConnection

gnu.java.nio.charset.Provider

com.ibm.JikesRVM.classloader.VM_TypeReference

com.ibm.JikesRVM.classloader.VM_TableBasedDynamicLinker

com.ibm.JikesRVM.classloader.VM_Atom

com.ibm.JikesRVM.VM_StackTrace

Fetching command-line arguments

Early stage processing of command line

Collector processing rest of boot options

Initializing bootstrap class loader

Stage two of booting VM_Time

Running various class initializers

running class intializer for gnu.classpath.SystemProperties

- 61 -

mmap(start=0x15000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0

)free_map_region[0].start=4000000;free_map_region[0].end=10000000

mapping[1].vp_start_address=0x11000000, vp_end_address=0

x11400000;mapped_start=0x3000000 ,mapped_end=0x3400000

mapping[2].vp_start_address=0xa3c00000,

vp_end_address=0xa4000000;mapped_start=0

x3400000 ,mapped_end=0x3800000

mapping[3].vp_start_address=0x13000000,

vp_end_address=0x13400000;mapped_start=0

x3800000 ,mapped_end=0x3c00000

mapping[4].vp_start_address=0x15000000,

vp_end_address=0x15400000;mapped_start=0

x3c00000 ,mapped_end=0x4000000

running class intializer for java.lang.Runtime

running class intializer for java.lang.System

running class intializer for java.lang.Void

running class intializer for java.lang.Boolean

running class intializer for java.lang.Byte

running class intializer for java.lang.Short

running class intializer for java.lang.Number

running class intializer for java.lang.Integer

running class intializer for java.lang.Long

running class intializer for java.lang.Float

running class intializer for java.lang.Character

running class intializer for java.util.WeakHashMap

running class intializer for java.lang.ThreadGroup

running class intializer for java.lang.ThreadLocal

running class intializer for java.security.VMAccessController

running class intializer for java.io.File

running class intializer for gnu.java.lang.SystemClassLoader

- 62 -

running class intializer for java.lang.String

running class intializer for java.lang.VMString

running class intializer for gnu.java.security.provider.DefaultPolicy

running class intializer for java.net.URL

running class intializer for java.net.URLClassLoader

running class intializer for gnu.java.net.protocol.jar.Connection$JarFileCache

running class intializer for java.lang.ClassLoader$StaticData

running class intializer for gnu.java.io.EncodingManager

running class intializer for java.nio.charset.CharsetEncoder

running class intializer for java.nio.charset.CoderResult

running class intializer for java.io.PrintWriter

running class intializer for java.io.PrintStream

running class intializer for java.util.SimpleTimeZone

running class intializer for java.util.Locale

running class intializer for java.util.Calendar

running class intializer for java.util.GregorianCalendar

running class intializer for java.util.ResourceBundle

running class intializer for java.util.zip.Inflater

running class intializer for java.util.zip.DeflaterHuffman

running class intializer for java.util.zip.InflaterDynHeader

running class intializer for java.util.zip.InflaterHuffmanTree

running class intializer for gnu.java.locale.Calendar

running class intializer for java.util.Date

Booting VM_Lock

Booting scheduler

Using a time-slice of 20 ms

Initializing JNI for boot thread

Running late class initializers

running class intializer for java.io.FileDescriptor

running class intializer for java.util.PropertyPermission

- 63 -

VM is now fully booted

Initializing runtime compiler

Late stage processing of command line

[VM booted]

Initializing socket factories

Extracting name of class to execute

vm: Please specify a class to execute.

vm: You can invoke the VM with the "-help" flag for usage information.

JikesNODE: exit 100

Exit no=100

Halted.

- 64 -

Appendix B

Some building output

/usr/lib/java/bin/javac -encoding iso-8859-1 -nowarn –g

-classpath .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zhangya

/rvmBuild-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.c

lasses/mmtk.jar

-bootclasspath .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zha

ngya/rvmBuild-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/R

VM.classes/mmtk.jar GenerateInterfaceDeclarations.java

/usr/lib/java/jre/bin/java -Xmx200M –classpath

 .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zhangya/rvmBuil

d-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes/m

mtk.jar GenerateInterfaceDeclarations -ia 0x1000000 -out

/home/M04/acs/zhangya/rvmBuild-antigua/RVM.scratch/InterfaceDeclarations.h

/**********Following output is implemented in the source code***********

Construct a memory space

Space name=boot

Start Address=16777216

Size=268435456

Construct a memory space

Space name=immortal

Start Address=285212672

Size=33554432

Construct a memory space

Space name=meta

Start Address=318767104

- 65 -

Size=33554432

Construct a memory space

Space name=los

Start Address=352321536

Size=314572800

Construct a memory space

Space name=nursery

Start Address=2747269120

Size=473956352

JikesNode uses GenMS garbage colleciton

Construct a memory space

Space name=ms

Start Address=666894336

Size=1572864000

Construct GenMS

/****************** END ****************

(wrote interface) 15 s

jbuild.linkImage: (bootimage cleaned)

