Memory Management in JikesNode Operating

System

A thesis submitted to the University of Manchester for the degree of Master of

Science in the Faculty of Science and Engineering

2005

Yun Zhang

School of Computer Science

List of Contents

ADSITACT ...ttt e e 6
[D7=Tol FoT = 110 o HR PP U PP PPPPP PP PPN 7
[@0] o)/ 1o | o | SRS RUPURRRN 8
ACKNOWIEAGEMENT ...t e e e e e e e e e e e e e e e e bennnneeeeeenennnns 9
(@ aF=T o] (=3 b A 101 o To [1 [1] o 10
1.1, Background ...t 10
1.2, MOUIVALIONcoiiiiiiiiiiiiie et e e eree e 11
1.3. Garbage COECHIONuuueiiiiie et aenes 11
L4, OULINE.....coiiiiieii et 12
Chapter 2 JikesNode operating SYSIEM.......cceeeuuiuerirmiiiiiaaeee e e eeeeeeeeeeeeinnaees 13
2.1. System ArChite€CIUIeoovviieiieieeeeer e e e 13
2.2. Jikes Research Virtual Machine (JikeS RVM) ccee..coooiviiiiiiiiiiiiinnn, 14
JIKES RVM SHIUCTUIE ...t 14
BOOU IMAGE ... i e eenes 15
2.3. JINode operating SYStEIMccevuvriemmmmmmieeeeeeeeeeeereereeeeennnnnna 16.
PIUG-IN AFCNITECTUIE ... 16
GRUB DOOt [0AEToeeiiiiiiiiiiiiic e eemeee e 17
2.4. Current implementationuuuuuiiiiiiiiin e 17.
NANOKEIMEL ... e 18
Native RUNTIMEcooiiiiiiiii e e 19
OtNEIS ...t 20
Chapter 3 Memory Management in IA-32 INtel......cccoooviiiiiiiiiiiiiiiie 21
3.1, OVEIVIEW ...ttt mmmmme et e e e e e e 21
SYStEM ArChitECIUIEvvveiiiiiie e s 21
(@ 01T = 1110 TN 1Y/ o T =TS 22

3.2. Memory management in protected modeccoevverviiiiiiiiiiinnnnnn. 23

OVEIVIBW ...ttt e e e e et e e s e e e e e s smnnee s 23
ST=T0] 0 41T 01 ¢= U1 To o 1O PP PP 24
=T 1] o S 25
3.3. System Registers and data StrUCtUIe ..o eeveiiiiiiiiiiiiiieee e 29
Chapter 4 Memory system in JikesNode.......... 33
4.1. MMTk (Memory Management TOOIKIt)ccceeereeeiiiiiiiiiiiiiiiiin, 33
PLAN <. e 36
4.2, ObJeCt MOluueeeiiiiie e 36
4.3. Memory initialization...............oeevvieemmreieiee e 38
Paging iNitializationoooiiiiiiii e e 38
GDT INItIAlIZALION ... e 39
TSS SOUING ettt a e 39
4.4. Garbage CollECHONiii i 41
Chapter 5 Design and Implementationccccccceooiiiiieeeiiiiiiiiiiii e 43
5.1, DEBUG ... ——— 43
Stack and COAE ...ttt e 43
KID FUNCHION ..ot 44
5.2. Import Garbage Collection ... 45
GENMS .. 46
NG TR \V (=10 o To T o V|V F= T o] o 11 o [P SURRPPP ar
(0] 4T o J PP UPPTRRUPPIN 47
L0018 a1 1= T o PSPPI 48
] 0] L= L= o1 r= 11 0] o PO 49
oI S - o [T O 50
(O =T o) (=T o T U 4 4= T 52
FULUIE WOTK ...ttt 52
2] [ToTe =T o] o /20 PR 54
Append A A sample run OUEPUL.......ooeeiiiiiiiiie e e 57
Appendix B Some building OULPULoi e e e eeeeeeaeeees 64

List of Figures

Figure 2-1. JikesNode arChiteCture............ccoouviiii e 14
Figure 3-1. System Structure in INtel [A-32.........ccooi e e e e eeeeeeeeeeeeiiieaens 22
Figure 3-2. Address Translationcoeuuveeieiiiiceeeeee e 24
Figure 3-3. Logical-address Translation.............cooiccceemeevveviiiiiineee e 25
Figure 3-4. 4-KByte Page Translationsooviiemmceeevveviiiiinnnee e 26
Figure 3-5. 4-MByte Page Translation..............oovvvviemmeeeeeeveiiiiiiiennee e e 27
Figure 3-6. 4-KByte pages with extended 36 Bits addressccceuuueee 28

Figure 3-7. 2-MByte pages with extended 36 Bits address.............ccc........ 28

FIQUIE 3-8. CR G ...ttt e e e e e e e e eees 9.2

Figure 3-9. Segment DESCHPIONuuiiiii e et e e e e e e e e e eaes 30
Figure 3-10. 4-KByte page-direCtory €Ntry. o eeeeeeeeermnnnnnnnnnneenns 31

Figure 3-11. 4-KByte page-table entry.........cccccceeiiiiiiiieeieeecee e 31
Figure 3-12. 4-MByte page-direCtory eNntryevmmeeeeeeeeenemennnnnnnnnnns 32

Figure 4-1. Layout Of ODJECT........ciiiiiiiie et 37
FIQUre 4-2. TSS SHUCKUIE......coo et e e eeeeeaenees 40
Figure 4-3. MemMOTY laYOULcoeviiiiiiiiiiisee e ceeeee s e 41
Figure 4-4. Memory space iN NOGCccooooiiiiiiiiiiiccieeee e 42
Figure 5-1. Memory space iN GENMSccoiiieeeee e e e e e e e e e eeaeeeeaanennns 47
Figure 5-2. Logic Diagram in MMaPccoveeieriurrnsmmmmmmeeeeeeeennnnnnnneeaeaeeaeeas 50
Table 5-1. Modified fUNCLIONS...........coooiiiiiiiiiiii e 45

Abstract

Providing an interface between computer and uberyésearch on operating system
is almost as old as the computer itself. As an mgpd subsystem, the memory
management system provides a mechanism for thecapphs and user to operate the
data or code stored in the storage media, suchAds &t hard disk. This mechanism
usually depends on the support of processors ahdr atomputer components.
JikesNode, a Java operating system which combikes Research Virtual Machine
with the JNode operating system, aims to provigeJamaica group with a tool for
the further study of chip multi-processors and laism. This project improves the
memory management subsystem in JikesNode by imgoatigarbage collection and
modifying the memory mapping mechanisms, which lzased on the Intel 1A-32

architecture processors.

Declar ation

No portion of the work referred to in the thesis leeen submitted in support of an

application for another degree or qualificationttué or any other university or other

institute of learning.

Copyright

1)

2)

3)

Copyright in text of this thesis rests with the Aoit. Copies (by any process)
either in full, or of extracts, may be made onlyaiccordance with instructions
given by the Author and lodged in the John Rylahtfsversity Library of

Manchester. Details may be obtained from the LibrarThis page must form
part of any such copies made. Further copies (lyypapcess) of copies made in
accordance with such instructions may not be maitteout the permission (in

writing) of the Author.

The ownership of any intellectual property rightsielh may be described in this
thesis is vested in the University of Manchestebject to any prior agreement to
the contrary, and may not be made available forbysthird parties without the

written permission of the University, which will gscribe the terms and

conditions of any such agreement.

Further information on the conditions under whidbctbsures and exploitation

may take place is available from the Head of theoStof Computer Science.

Acknowledgement

| would like to thank the people who contributedstio this project and thesis:

My supervisor, Dr. Chris Kirkham for his sound sup&on, theoretical and practical
guidance throughout my M.Sc. project, especially duggestion and proofreading to

my M.Sc. thesis and seminar.

lan Rogers, for his helping during my design anglement the system. lan helped
me set up the system and tools at the beginnirigeoproject, and gave the ideas and
guidance for my design. He would immediately gipewhat he was up to whenever |

asked for help.,

And finally to my friends for their encouragememidatechnical help. They are Mr

Yiming Wang, Mr. Peihong Ke, Mr Yi Zhu, Mr Jie Zhaod Mr Yu Cao.

Chapter 1

| ntroduction

1.1.Background

The Jamaica group at the University of Manchestémvestigating the design of chip
multi-processors (CMPs) and their accompanyingllgrsoftware environments. To
efficiently utilise multi-processors by client apations, the Jamaica group needs an
operating system which can run massively multittieglaapplications and support
advanced compiler technology to automate paradietis and the distribution of jobs.
But the currently available operating systems catnran on the Jamaica chip and do
not support the development of advanced compitghrelogy. So the Jamaica group
decided to develop a new operating system to ke tablest and further develop the

design and the implementation of the Jamaica chip.

We call this operating system JikesNode, which dgessRVM [5] as the java virtual

machine and JNode [3] for device drivers, file systetc. Although we design the
JikesNode to be used in Jamaica research, we alsbtins system will be able to run
on conventional hardware configurations, such a&sl-lmsed PCs, and provide the
benefits of optimizing compilers on these systeows So the implementation and

research on JikesNode is on the Intel i386 platfiorthis thesis.

-10 -

1.2.Motivation

Much implementation of JikesNode has been donerbefbis project, such as
creating a nanokernel, successfully building anating JikesRVM. But now,
JikesNode runs in the no garbage collection enunemnt. Without garbage collection,
the memory used by objects will not be freed wHhen dbjects are no longer used.
Therefore, the memory in the system will be usedagn if many objects are created.
Because JikesNode runs in a limited memory nowiintportant to import a garbage
collection into JikesNode to make the memory relesa@ne of the simple methods is
to utilize the garbage collection mechanism impleteé in JikesRVM. In addition,
after the Georgios’ M.Sc. project in 2004 [1], mamgpdifications have been done,
which makes the system not work. So, at the beggqmf this project, we have
following goals to be finished:

® Debug the current version of JikesNode.

® Import a proper garbage collection provided by siRéM into JikesNode.

® Modify the memory management system to supportselected garbage

collection.

1.3.Garbage collection

Garbage collection (also known as GC) is a formuwbmatic memory management.
It attempts to reclaim the memory used by the dbjdtat will never be used again by
the application. The basic principle of how a ggeéaollector works is:

® Detect what data objects in a program will not beeased in the future

® Reclaim the storage used by those objects

The object detection is usually accomplished byinief§ a set of roots and
determining reachability from the roots [19, Cha@g If the system can access an
object by some path of references from the rodis bbject is reachable and

considered as in use. On the contrary, if an obgedot reachable, it's a “garbage”

-11 -

object, whose memory will be reclaimed.

By now, many garbage collection algorithms havenb@&aplemented, such as
Reference Counting, Mark and Sweep, Compacting,yi@gp Generational and
Adaptive collectors [19, Chapter 9]. Some of theaven been supported by the
JikesNode.

1.4.0utline

Chapter 2 is about the JikesNode, the Java operating systgrtemented by the
Jamaica Group. The system architecture and twaeemgstused in JikesNode are
described first. Then previous work done by thealasnGroup is represented.
Chapter 3 gives a description of the memory management meéstmain [A-32 Intel,
from its system architecture to the segment andngagupported by IA-32 Intel
processor.

Chapter 4 describes the memory management implemented nerdudikesNode in
detail. First, an overview of MMTk (Memory Manageme€Toolkit [4]) and object
model used in JikesRVM is represented. Following th the memory management
subsystem in JikesNode.

Chapter 5 lists the work done in this project and some & #Huthor’s personal

opinions on what should be done in the future.

-12 -

Chapter 2
JikesNode operating system

JikesNode operating system is a Java operatingmystplemented by the Jamaica
Group at the University of Manchester. It uses ks Research Virtual Machine
(Jikes RVM) as the virtual machine and Java Newr@pey System Design Effort

(JNODE) as the Java operating system.

This chapter is a detailed description of the immatation of the JikesNode
operating system. Firstly, two systems (JikesRVMd aiNODE) integrated in
JikesNode are described. Then | represent therdwwrerk Jamaica Group has done

on this system.

2.1.System Architecture

As mentioned above, JikesNode integrates JikesRNélJ&lode to implement a new
Java operation system. Jikes RVM is used as the baga Virtual Machine (JVM) to
run Java programs. The JNODE is imported to supjp@tfunctions of operations
system such as device drivers, file system and. she following figure displays the

architecture of the whole system.

-13-

I_'ogi.n Shell

Filesystems Networking oul
GNLU Classpath @ 5
Core Libraries () Classloader

Memory Management Toolkit
&) © I

ware In‘erupts
1

Hardware Device Access |

Inst
Figure 2-1. JikesNode architecture [6]

In this figure, JikesNode kernel provides an alosti@yer between the hardware and
other parts in the system; it provides the hardwaterrupts, and thread control
mechanism. Jikes RVM is the platform responsible fenning all the system
generated executing code. And JNode gives a systeenface for users and
applications. All three parts of the system neadesacore libraries, for which we use

GNU Classpath.

2.2.Jikes Research Virtual Machine (Jikes RVM)

The Jikes RVM is a Java Virtual Machine mostly teritin Java language [8]. It is
built from an IBM internal project called Jalapdiip and was made open source in
2001. As a JVM, it has many advanced features as@ptimizing compiler, several

GC strategies and a sophisticated thread execon@mmanism [1].

JikesRVM Sructure

There are four major components in the JikesRVIZippter 6].

- 14 -

Coreruntimeis a service platform to execute applications iatetface with libraries.
It consists of thread scheduler, class loaderatibsupport etc. Most classes of this
component are contained in com.ibm.JikesRVM and.itomJikesRVM.classloader

packages.

Compiler in Jikes RVM is a Just-In-Time compiler responselfuilding native code
from the bytecode. Now, the Jikes RVM has two déf¢é compilers, baseline

compiler and optimizing compiler.

Memory managers are responsible for managing the objects createdngl
executing applications. In the latest version, filees RVM uses a new memory
management framework called MMTk. This part of séashave been modified and
imported into the packages org.mmtk.vm and

com.ibm.JikesRVM.memoryManagers.mminterface.

Adaptive optimization system provides a mechanism to an optimizing compiler for

applications to improve their performance.

In addition to these four parts, JikesRVM also hagart called native runtime [1,
Chapter4] which is not written in Java. The mairrkvof its part includes loading the
JikesRVM image into memory, exception pre-processamd providing interfaces

between hardware and JVM.

Boot | mage

In order to run itself without a second virtual mee, JikesRVM introduces the
concept of a boot image, which contains and sawe$otation of a frozen instance of
the initial VM. A program called BootimageWriterppgms all the building process.

Firstly, it uses an external JVM (currently, therido VM) to compile all core classes

-15-

of the JikesRVM. Then the compiled native codemgported into the image file and

some important system components are appended.

2.3.JNode operating system

JNode is a relatively new open source project &ater a Java operating system for

personal use [3, Goals]. We choose it as our dpgratystem platform for the

following reasons.

® A new project and with small size and thereforetnottough to modify

® A loose integration between the operating systethtae Java virtual Machine
makes it easy to factor the operating system ftsrown JVM into JikesRVM.

® JNode has an appropriate bootloader, nanoKernegplaigein architecture.

All JNode systems can be divided into 4 importaattp [3, Developer guide].
Common part contains the fundamental functionsotat Bnd run the systerdM part
has a JVM for the system to compile and run thex JagecodeJNode Operating
System provides the functions of an operating systemhsagfile system, shell and

device drivers. And the last part contains the ¢ibrary JNode depends on.

Plug-in Architecture

In INode, every module is a Plug-in, except theualrmachine, operating system and
plug-in manager framework itself. These plug-ins d¢ee divided into two types,
normal plug-in which can be loaded, unloaded amghded [3], and system plug-in
which must exist during the whole system lifetireeery Plug-in has a descriptor file
written in XML and is contained in a JAR file. Thiescriptor file defines all the
information to load the plug-in, such as the reegiiclasses, the location of the
associated JAR files. All plug-ins can define thextension points which can be
accessed by system or other related applicatiomstyEplug-in has a specific class

loader and access permissions

-16 -

In order to manage all plug-ins, JNode implementsieav conception named
PluginManager shared by the Virtual machine andraipg system. In JNode,
PluginManger is a central component and starteer afitializing the Java virtual
machine during system booting. Its main work inelsicholding information on
plug-ins (implemented by PluginRegistry) and plog-lifecycle management

(implemented by PluginLoaderManager)

GRUB boot loader

During booting, most operating systems need a lmamter to load themselves into
memory and provide the information about the hardwadatform. In JNode, GRUB
boot loader [22] is used, which is also used irsNode now because we want to be

able to boot JikesNode on machines with many opgrat/stems.

The GRUB boot loader aims to be a boot loader shaports all existing operating
systems. It has two stages during booting an dpegratystem. The first stage is
contained in the Master Boot Record (MBR), whickh12 bytes on i386. Because of
its limited size, stage 1 does little work and thaeds the second stage of GRUB. In
this stage, GRUB provides the user with a boot mads the selected kernel of the
OS and passes control to the kernel. GRUB usesifigacation file named menu.lst
to save information about the possible kernel amdescommand lines, if needed.
During booting, the configuration file is read, th&RUB loads the selected kernel
into a consecutive memory starting from 0x10000@E) and passes control to the

kernel entry point.

2.4.Current implementation

To integrate JikesRVM and JNode together, we nemdesmodifications to both

systems to let them interact with each other sesstyleFor example, unifying the

-17 -

classpath of Java library, modifying the build systand changing the VM of JNode.

The following describes the work that has been dpnie Jamaica Group.

Nanoker nel

Nanokernel is a term describing an operating sysi@m@ which is strictly limited in it
size and/or functionality [1, Chapter 3]. It usygdrovides an abstraction layer to link
the hardware and operating system. But in JikesNddalso has an extra target:
providing a runtime environment for the JikesRVM Chapter 3.3]. The current work
on the nanokernel is to extend the nanokernel md&No meet our requirements. The
JNode nanokernel is entirely implemented in assgrariguage. But in JikesNode,
we try to avoid using assembler and write the KemeC language instead of

assembly language as much as possible.

Mutliboot infor mation header

Using the GRUB boot loader, the Multiboot inforneatiheader must be written in the
first byte of the kernel. Because we use NASM i88®ur assembler, which compiles
the code sequentially, the first compiled file s&rshould contain the Multiboot
information header at the begin. Considering thenorg management in JikesNode,

we set the header’s flag to align all boot modoleglKB page boundary.

Memory management initialization

All memory management initialization is implementad mm.s file. The Global
Descriptor Table (GDT) [Section 3.3] is initializday filling with five segments:
Kernel Data Segment, Kernel Code Segment, User [Bagment, User Code
Segment and a Task-State Segment [Chapter 3]. Tdmony space is paged. We
create a page directory and one page table. The 4irMBytes of memory uses

4-KByte Pages and the rest uses 4-MByte pagespages located in the kernel area

-18 -

are set as read only. At last, the stack pointeets

Interrupt handler initialization

In JikesNode, the initialization is included ints.s and interrupts.c file. It uses
various macros to prepare and set the interruptlleanFor exampleint_noerror
maps the error interrupt to specific handler adgi@sport sets the interrupt entry in
IDT table.int_irqg maps the interrupt requests (IRQs) with their handiinctions,

which are written in C.

Har dware component initialization

Before transferring into the user mode, the nanudenitializes some fundamental

hardware, including serial port, PIT and FPU.

System console and debugging support

During the system initialization, console outputsigpported in kernel mode. It is
implemented by writing the characters directly tde@ memory address 0xB8000O0.
Some basic functions such as scrolling are impléetern console.c, and some

complex outputting functions are written in separfdes and saved iklib.

Native Runtime

We use the native runtime from JikesRVm as thesbasUikesNode native runtime.
The main files includeys.C, libVM.C andcmdline.h. But because JikesRVM runs
on a Linux platform, it calls many low-level funatis that have been implemented in
the operating system. For a new operating systeenmust write these call back
functions (C Stub [6]) independently based on oemuirements. All necessary
functions are saved iklib directory, the implemented ones are written inasaie

files, while all others are saved in fake.c fillheTchoice of the functions and their

targets are from The Open Group Base Specificaf@ins

-19 -

Others

Besides the above implementation in the JikesNduke,Jamaica Group has done
much work on the integration between JikesNode dNdde systems. Different
versions of GNU classpath used in both systems haea unified. The VM used in
JNode has been mostly removed. Various build systhave also been added to

support the different requirements.

-20-

Chapter 3
Memory Management in |A-32 Intel

Currently, JikesNode is running on an IA-32 Intéhtform. So, to implement the
memory management system in JikesNode, it's import® understand the
underlying mechanism supported by Intel 1A-32 pesces.

The following will concentrate on the memory manageat implemented in
IA-32 Intel. First, it describes the memory managanfacilities in protected-mode,
including the segment and page mechanism. The dqgramis the definition of

system registers and memory entries used in swdkiés.

3.1.0verview

System architecture

Intel IA-32 architecture processors include thellRentiumprocessors, the P6 family
processors, the Pentium 4 processors, theXetmh™ processors, and the Pentium M
processors [2]. It provides a set of registersa @aucture and a series of instructions
for the developer to perform the system-level opema such as memory
management and task management. Figure 3-1 gigemeary of its registers and

data structures.

-21 -

EFLAGS Register Physical Addrsss _"'I:l Code, Data or
o [=4
Linear Address Stack Segment
= —_— =
Control Register Task-State
CR4 Segment Selector Segment (TSS) Task
CR3 -~ — - -—== Tod
- — ode
cR2 —a ko
CR1 L Data
- cRo Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel. | — = Seg. Desc. |— Interrupt Handlsr
I Code |
Current- —
nterruot TS5S Seg. Sel [—-w TSS Desc. TSS I_ Stack
Wector
: r— —— - Seg. Desc.
nterrupt Descriptor | Task-State
< oo
Taile (IDT) | r— - 755 Desc SeSment (TS5 Task
nterrupt Gate | — — 4 1 LDT Desc. }— - -:. T T Oaa
| - = -~
Taszk Gate | —— —— - Stack
GOTR
Trap Gate F——= .
! Local Descriptor Exception Handlesr
. Takle (LDT) T Code
i H Current=- — - "‘tacl-t
IDTR Call-zate | Seg Desc. TS3]_ =
Segment Selecior
I F— > calcGate | —|—— N Protected Procedur
Code
g Current- — -
LDTR TS5 I_ Stack

IH:igure3-1. System Structu'r.ein Intel [A-32[2, Figure 2.1]

Operation M odes

In 1A-32 architecture, we have four operation moda®tected mode, real-address

mode, system management mode (SMM) and virtual-80&de

® Protected mode is the native mode of IA-32 proasssét provides all

instructions and features available in IA-32. TileesNode operating system is

also developed in this mode.

® Real-address mode is the initial mode that a psmreis placed in when being
powered up or reset. It provides an Intel 8086 mwgning environment for the
user. Running in real-address mode, the procesdgrsoipports 1 MBytes (20
bits) physical address space [2, Chapter 16].iftsstihe segment selector left by

4 bits and adds the 16 bits effective addressrta Bophysical address.

® System management mode (SMM) is a special operatiothe used to monitor

and manage the system resources. In this modegegzois use a separate address

-22-

space call SMRAM to save the codes and data, wHefsilt size is 64 KBytes
and can be up to 4 GBytes.

® Virtual-8086 mode is a quasi-operating mode suggblly processor. Actually
it's a special task that runs in protected modeallttws executing 8086 software
in a protected and multitasking environment. Thecexion environment of
virtual-8086 mode is the same as real-address neodept the virtual-8086 can

use some features in protected mode.

3.2.Memory management in protected mode

Overview

The memory management facilities of the 1A-32 amgdture consist of segmentation
and paging two parts [2, Chapter 4]. Segmentatioviges mechanism of isolating
individual code, data and stack modules for makks to run on a processor. Paging
provides a mechanism to implement a virtual-mensgstem and map it into physical
memory address. In protected mode, segmentatioh meussed, while paging can be

disabled by setting particular bits of the register

As shown in the figure 3-1 and 3-2, segmentationdds the processor’s memory
space into small pieces of protected address sl segments. These segments
can be used to save the code, data, stack, tdsk atad some system data structure [2
Chapter 3]. In the segment phase, processor ttesslagical address to a linear

address by using the segment selector and addfsss 0

The paging mechanism can map a large linear addresa small real memory size.
If paging is not used, processor maps the lineairemd directly to the physical
address. When using paging, each segment is divimdeghages, and a page directory

and page table are used to translate the lineaessltb the physical address.

-23-

Logical Address
{or Far Pointer)

Segment L

Selector Offset Linear Address
[| | | Space
. Linsar Address
Glokal Descriptor - -
Table (GDT) Dir | Table | Offset | Zg’dffi!
Space
Segment - Tabl
Segment age lable Page
Lige pescripter M | | | ({11 || [==-==-7
_______ Fage Directory = Phy. Addr.
Lin_ Addr.
_______ Entry bo— = =
| - ‘i‘ Entry -
Segment _ 4
Base Address ",\‘
] Pags

}7 Segmentation I Paging I

Figure 3-2. Address Trandlation

Segmentation

Segmentation Model

Segmentation supported by 1A-32 architecture camipfemented by different ways,
from basic flat model, protected flat model to maigment model.
® Basic flat model is the simplest memory model. tinall data, codes and
stack are located in a continuous and unsegmedth@ss, which means the
segment mechanism is hidden from the operatingsysind application. To
implement it, a code segment descriptor and askgeent descriptor should
be created, and both must have the same base siddr8sand limit of 4
GBytes. All segment registers must be set to goitihese two descriptors.
® Protected flat model is similar to the basic flabdel, except it sets the
segment limit to the real physical memory sizendtessary, this model can

also be implemented more complex. For example, ave define different

-24-

segment with different access level.

® Multi-segment model uses the full capabilities dfe t segmentation
mechanism to provide hardware enforced protectiocode, data structures
and programs and tasks [2, Chapter 3]. In this medery program or task

has its own segments and these segments can &e\s@ious private level.

In protected mode, to access a physical memoryeaddthe processor must uses two
stages: logical-address translation and lineares$dspace paging [2, Chapter 3]. The

segmentation is used in first stage.

When given a logical address (consisting of a segmeelector and an offset), the
processor first uses segment selector to locatesehenent descriptor in the Global
Descriptor Table (GDT) or Local Descriptor TabldXL) and check the access rights.
Then processor adds the base address in the setsgment descriptor to the offset

to form a linear address. Figure 3-3 displays thediation

0 31(63) 0
|

15
*Ia?:jgnl;asl Seg. Selector | Offzet (Effective Address)
[l o

Descriptor Table

| SEQmMENt

Base Address
. ————————————— | +
Descriptor .

31{63} J 1]
Lingar Address |

Figure 3-3. Logical-address Trandlation
Paging

After getting the linear address, the processos psging to map a linear address to a
physical address. If paging is disabled, the lineddress is the physical address.
When paging is used, the processor translatesirtbarladdress into the physical

address by using different mapping mechanisms dowgpto various paging options.

-25-

By setting the flags in the control registers agdteam data structure, we can use
different paging translation mechanism: 4-KByteha®2-Bit address, 4-MByte with
32-Bit address, 4-KByte with 36-Bit address, 4-M&ywith 36-Bit address and
2-MByte with 36-Bit address. Following describe aletd implementation of these

translations.

® 4-KBytepagewith 32-Bit physical address
This uses page directory and page table hierahyap linear address to 4KB
pages. A linear address is divided into three panis lowest 12 bits define the
offset in a page, next 10 bits are the page-taliketp and the bits 22 to 31

provide the page-directory offset.

First, the processor reads the control register (3&8tion 3.3] to get the base
address of the page directory and adds the pagetaliy offset to get the base
address of page table. Then the page-table offsatlded to the base address of
page table to get the base address of 4-KByte gagelly physical address is
created by adding the base address of the pabpe fage offset.

Linear &ddress
iy 22 21 12 11
| Directory | Takble | Offset

(=)

12 4-KByie Page

10 Page Table Physical Address

Page Directory

Page-Table Entry

Y

20

)

= Directory Entry
:
/1/32'
CR3I (PDER)

Figure 3-4. 4-KByte Page Trandlations

1024 PDE * 1024 PTE = 270 Pages

® 4-MByte page with 32-bit physical address

-26 -

This only uses the page directory to map linearresies to 4-MByte pages.
When using 4-MByte mapping, the linear addressgs hao sections. The lower
22 bits are the page offset and the bits 22 to éfinel the offset in the page

directory to get a page entry.

First, the processor adds the base address sav€®3nto the page-directory
offset to get the entry point of the page. Thenghgsical address is created by

adding the base address of the page to the 2@ftsed.

Linear Address
£y 22 M 0
| Directory | Offaet |

22

4-MByte Page

1o _Fage Directory Physical Address

Directory Entry |-<—=

10

{ B |

1

A 32
CR3(PDER)

*32 bits aligned onto a 4-KByie boundary.
Figure 3-5. 4-MByte Page Translation

1024 PDE = 1024 Pages

=]
i

4-K Byte page with 36-bit physical address

This uses page-directory-pointer, page-directorg page-table hierarchy and
divides the linear address into four parts. Thedsiwl 2 bits defines a page offset.
Bits 12 to 20 are page-table offset. Bits 21 toa?® page-directory offset. And
the highest 2 bits provide a offset in the pagedalory-pointer table. Figure 3-6

shows how the translation works

-27-

Linear Address
3130 2% 21 20 12 11 1]

Directory Pointer —r-=| | Directory Table Offzet

12 4 K3yte Page

Page Table Physical Address

18]

Fage Diractory
o »| Fage-Table Entry

=y

2

| [Directory Eniry Ll

[B%]

Fage-Directory-
Pointer Table

—* | Dir. Pointer Entry

—— -
/"'!‘

32
CR3 (PDPTR)

*32 bkits aligned onto a 32-byte boundary
Figure 3-6. 4-KByte pages with extended 36 Bits address

4 POPTE * 512 PDE + 512 PTE = 220 Pages

® 2-MByte page with 36-bit physical address
2MByte paging can only be used with 36bits physadidress. To implement this
paging mechanism, the processor uses the pagédediygmointer and
page-directory. The linear address consists oftksextions. The lowest 21 bits
are the offset in 2-MByte page. Bits 21 to 29 pdevian offset in the page
directory. And bits 30 and 31 define the offsethia page-directory-pointer table.

Figure 3-7 shows the mapping mechanism.

Lingar Addreas
31 30 29 21 20 0
-—I-| | E:irect:::r",r| Offaet |

Directory
Pointer

2q 2-MByte Page

Page Directory Physical Address

Page-Directory-
Pointer Table

=]

Y

| Directory Entry

15

.

*=| Dir. Pointer Entry >

— -
o 4 PODPTE * 512 PDE = 2045 Pages

~— 1 cR3 (PODPTR)

*32 bits aligned onto a 32-byte boundary
Figure 3-7. 2-MByte pages with extended 36 Bits address

-28 -

® 4-MByte page with 36-bit physical address
Its mapping mechanism is the same as the 4-MByde péth 32-bit address. The

only difference between them is the data struafiefened in the page directory.

3.3.System Registers and data structure

In 1A-32 architecture, processor uses some systyisters and data structures to
perform the memory management facilities effectivelere is a list of these registers

and structures and a description of some impoftags in them.

Control Register 0 (CRO)
Bit 31 of CRO indicates whether paging is used. Whes set, paging is enabled

while it is cleared to disable paging.

Control Register 3 (CR3)
When enabling paging, CR3 is used to save the dddess of the page directory.

31(83) 12 11 54 22 0

=

o CR3
T (PDBR)

oom

Page-Directory Base

Figure 3-8. CR3

Control Register 4 (CR4)
Bit 4 of CR4 (PSG flag) indicates whether the 4M&e can be used. If set, the
processor can use both 4MB and 4KB page, while 4K page can be used when it

is cleared.

Bit 5 of CR4 is the flag of page address extenslbrenables the 36-bit physical

address when set.

Segment selector

-29 -

Segment Selector is a 16-bit identifier used tal fihe segment descriptor in a
descriptor table. Bits 3 to 15 provide the offseta descriptor. Bit 2 directs the
processor to search in Global Descriptor Table (DT Local Descriptor Table

(LDT). And the first 2 bits are used to specify firevilege level.

Segment Registers

To reduce address translation time and coding oexitg) the 1A-32 processor also
provides 6 registers to hold the segment sele&efore accessing a segment, its
segment selector must be loaded into one of thasgiéter. So at any time, only 6
segments are available immediately. Each segmgistee consists of a “visible” part
and a “hidden” part [2, Chapter 3]. The “visiblearp saves the segment selector,
while the “hidden” part looks like a cache, whi@vss the corresponding information

such as base address and limit.

Segment Descriptor
A segment descriptor is a 64-bit data structureedan GDT or LDT. It saves all the

necessary information of the segment it point&igure 3-9 lists its data format.

21 242322212018 161514 1312 11 8 T 0

o| & Zeg D
Sase 31:24 Gy|L|v] Limit Pl = [Type Base 23:16 4
3 Ll 1918 L
31 1615 4]
Base Address 15:00 Segment Limit 15:00 a

Figure 3-9. Segment Descriptor

It has a 32-bit address which points to the baskesd of the segment it describes, a

20-bit data defining the segment size and somea flag

Segment Descriptor Table
A segment descriptor table is used to save segdesdriptors contiguously. It has
two types: the global descriptor (GDT) and the lodascriptor table (LDT).

-30-

Processor uses the GDTR register and the LDTRtezdis save the base address of

the descriptor table. In GDT, the first descridttve first 8 bytes) must remain empty.

GDTR and IDTR
These two registers specify the locations of dpsaritable. The GDTR refers to the
GDT while IDTR refers to the IDT. Both registerg &8 bits, of which the highest 32

bits save the linear address of the descriptoetahd the lower 16 bits indicate the

limit size of the table.

Page directories and tables
When paging is enabled, page directories and tadnlesused to translate a linear
address to a physical address and both save & sdrientries. Depending on the

paging mechanism, the page directory and tabléesriiave different data formats.

When using 4Kbyte page, both page directory ant tate used. Their data format
are shown in Figure 3-10 and 3-11

Page-Directory Entry (4-KByte Page Table)

ch 121 9876543210
FIPIUIR

Page-Table Baze Address Avail [a|Blolalc|w]||i|F
= D|T|S|W

Figure3-10. 4-KByte page-directory entry.

Page-Table Entry (4-KByte Page)
M 12 1 587685343210

_ P =P |U|R
Page Gase Address Avail |GlA|lD|alciwli P

T OfT[S|W

Figure3-11. 4-KByte page-tableentry
In the page-directory entry, the highest 20 bisvfates the base address of the page

table. The 7 bits indicates the page size, whicktrba set 0 in 4KB page.

In the page-table entry, the highest 20 bits deesrthe base address of the page. The
other bits define the attribute of this page.

-31-

When using 4MByte page, only page directory willused. Figure 3-12 describes the

data format of an entry.

Page-Directory Entry (4-MByte Page]

K3 222 131211 987686543210
P rle|u|R

Page Baze Address Resarved al avail. [c|Flolalclw] | [P
T s o|t|s|w

Figure3-12. 4-MByte page-directory entry
The bits 22 to 31 indicate the base address ofja.dawill be shifted left 22 bits to

create the real 32-bit page base address duringlatang an address. The 7 bits (page

size flag) should always be set 1.

-32-

Chapter 4
Memory system in JikesNode

Unlike other programming languages, Java has sosteative features such as
automatic memory management, support for multithreg the existence of
architecture-neutral intermediate codes (bytecoaxs) [10]. With the increasing gap
between the speeds of CPU and memory, the mematgmyhas become a major
performance bottleneck in modern computer systelis As a new Java operating

system, JikesNode needs an effective memory systémerease its performance.

In this Chapter, we describe the memory systememphted in JikesNode. First, we
have a look at MMTK, the memory management compounsed in JikesRVM.
Following MMTK, there is a detailed descriptiontbk memory initialization in the
JikesNode nanokernel. Finally, we present the mgmmdel in JikesNode without a

Garbage Collector (GC).

4.1. MMTk (Memory Management Toolkit)

MMtk is a memory management toolkit written in dod Java. It is developed from
the JMTk (Java Memory Management Toolkit), whichalso written in Java and
especially for JikesRVM. It provides a series oligable, efficient, extensible

components for garbage collectors. Now the JNodgegrr has begun to integrate

-33-

MMTK into JNode system. So using MMTk as our memorgnagement toolkit is

quite a natural choice.

Policy

Policy contains the garbage collection algorithrhat tcouple memory, which is

grouped into spaces in MMTk, with an allocation @aotlection mechanism. A whole

heap collector uses one policy for most objects|endn generational collector always
uses one or more policies. For generational calieet write barrier [11] is used to

remember all references to the objects into anpeddently collected space. Before
the program accesses the object, the barrier wilitripgered and perform some

necessary work before operating on the object.

Following is the basic allocation and collectioneaianisms support by MMTk

® Bump Pointer Allocator: All memory is grouped incantiguous space. A
cursor called the bump pointer is used to recoel dtart address of free
memory. When creating a new object, the allocappreads the object from
the cursor, and increment the cursor by the sizhetreated object.

® Free-List Allocator: The memory is organized intome size-segregated
free-list so that all memory is divided into blocR$ie block that has just size
to accommodate the new object is used to save it.

® Tracing Collector: Uses a transitive closure frdra toots to identify the live
objects. When reclaiming space, MMTk moves the dataof the space, or
frees untraced objects.

® Reference Counting Collector: A reference counimigintained for each
object. When creating a new object, a referendtisoobject is also created
and the object’s reference count is set to one.n\the object is referenced
by other values, its reference count is incremenféden a reference to the
object is deleted or assigned a new value, itseat® count is decremented.

Whenever an object’s reference count is zero,litbei reclaimed.

-34-

In addition to these mechanisms, JikesRVM has stggpsome advanced real-time

garbage collection called treadmill.

With the above mechanism, MMTK creates five posicie

Copy space has a bump-pointer allocation and amgawollection by moving

live objects out of the space.

MarkSweep space has a free-list allocation andang collection that frees
untraced object

RefCount space has a free-list allocation andexeate counting collection.

Immortal space: bump-pointer allocation and noemtion.

Large object space: coarse-grained free-list diloca and treadmill

collection [20].

From these five policies, MMTk forms the followikgllectors.

SemiSpace uses two copy spaces. Every time, oree spaused to save
objects. Once full, the live objects in the usedcgpare copied to the other.
MarkSweep uses one mark-sweep space. During algcatnew object, it
traces and marks the live objects and reclaims dbpatts.

RefCount uses Refcount space, but the collectiordaterred. During
mutation, it buffers the counts of object referencehe collector periodically
processes the buffer, saves the changing for @eferjects, and then clears
objects with a zero count.

GenCopy: The classic copying generational colle¢2dq allocates into a
(nursery) Copy space, and promotes survivors intold SemiSpace [11].
When the nursery is full, it collects and setsdtze of copy space to the size
of all live objects. When the SemiSpace is fultatlects the entire space.
GenMS is like GenCopy, excepting replacing the Sgrace by MarkSweep.
GenRC: uses Ulterior Reference Counting to comainepying nursery with
a RefCount mature space.[11]

-35-

Plan

MMTk defines collectors through the compositionpaficies and mechanism. Plans
just perform the highest level of this compositidafining the rules by which policies

are composed. The key functions are [4]:

® Identifying a virtual memory layout (using VMResoas).

® Providing allocation by binding suitable allocattwsdifferent
VMResources.

® Invoking collection when necessary through theafsepolling mechanism.

® Applying the appropriate collection policies to etfjs encountered during
the collection process (objects may be subjectfterdnt collection
regimens depending on where they reside in memory).

® Implementing read and write barriers if necessary.

In the latest version, MMTk implements eight diéfat plans. In addition to the plans
that simply compose the mentioned policies, andtirere are also implemented.
CopyMS composes a full-heap collector with a copying agrsand mark-sweep
mature space. The collector has no write barridrremremembered set

GenCopy implements a standard two-generation copying caltec

NoGC only has a simple allocator but no collectors

4.2.0bject model

The termobject model refers to the way objects (both in the specificseenf object

oriented languages and the more general sensapfdigects in other languages) are
laid out in memory, how their type is determined &aow they are manipulated by the
runtime and memory management systems.[13, 4.8 the memory manager, an

object consists of a size and some metadata fidhitsh are used for managing.

In java language, values are either primitive (erd, double, etc.) or references to

-36 -

objects. JikesRVM divides all objects into two tgpar rays which consist of a set of
components anstalars which only have fields. These two types have déifer
memory layout shown in figure 4-1 [14, Figure 1h Array object grows up from its
reference, while a scalar object grows down framweference. Each object has a
two-word object header to support various operatgrch as dynamic type checking,

memory management, synchronization, hashing, etc.

One word of the header describes the status o€tshji is divided into three parts.
The first part is used for locking. The second bakls the default hash value. The

last one is for the memory management.

The other word is a reference to the Type InforaraBlock (TIB) for the object's
class [14]. A TIB is an array of object referencHse first component describes the
object's class such as its superclass and inteffheeremainder is compiled code of

the virtual methods of the class.

AN ARRAY DBJECT

4

' A SCALAR OBIECT stalus |
|, OBJECT \ OBJECT

& = f
s HEADER = [HEADER

Figure4-1. Layout of Object

-37-

4.3.Memory initialization

As mentioned in Chapter 2, during booting, the kanoel does much work in
initializing the memory management, for example sekgment and paging, GDT and

LDT tables and etc. Now, we will represent theiahzation in detail.

In JikesNode, all initialization is done in protedgtmode, which means the bit 17 in
EFLAGE [2, Section 2.3] must be cleared first. Tlwhole process of memory
initialization is implemented in three steps: paginitialization, GDT initialization

and setting TSS (the LDT is not used now).
Paging initialization

Because a combination of 4-KByte and 4-MByte pgd&estion 2.4] is used in the
system, we must initialize both page directory pade tables during initialization. To
enable the mixed paging mechanism, the PG flag3(ibf CRO) [Section 3.3] and
PSE flag (bit 4 of CR4) [Section 3.3] should be set

Currently, JikesNode supports maximum 4 GBytes migrapace, which is paged by
4 MBytes. The first 4 MBytes memory uses the 4-KByaging mechanism. The only
exception is that the first 4-KBytes page (from r@dd O to address OXOFFF) is not

present, in order to detect the nullpoint exception

The remaining memory from the address 0x400000agimum OxXFFFFFFFF is set
using 4MB pages. But the last 4MB page is not ah#ed, again to detect the
nullpoint exception. In addition, those pages whiahld the kernel (between the
kernel_begin and kernel_end label) are marked ad-oaly. But all paging sets the

virtual address equal to the real address.

During booting, a page directory and a page talée cieated. At first, a page

-38 -

directory is located at address 0x1000 and has #884es, in which the first one is
set 4KB paging (the PS flag in the entry is clepeged the others are set 4MB paging
(the PS flag is set). Then a page table is locate@x2000 and set in the page
directory. In this step, the page privilege lexgeket. After finishing initialization, we
set the CRO and CR4 to enable paging and loaddteess of page directory into
CRS3.

GDT initialization

There are six entries created in the GDT. The érdty is an empty entry which is
never used. The other five include two data segs@drnel Data Segment and User
Data segment), two code segments (Kernel Code segne User Code segment)

and a TSS.

Both code segments and code segments are set #@Bdliand start from address
0x0. But the kernel segments are set to the highegilege level while the user

segments are set to the lowest.

TSS Setting

In protected mode, all programs execute withindbietext of a task [2 Chapter 2], of
which the execution environment is defined in TS8e structure of TSS is shown in

Figure 4-2 [2, Figure6-2].

In the TSS, CS field is set in the user code segauath other segment fields are to the

user data segment.

-39 -

31 15 0
0 Map Base Address Reserved T

Ressrved LOT Segment Selector
Reserved el
Reserved Fs
Ressrved o5
Ressrved 55
Ressrved C5
Reserved ES

ED

ESI

EBP

ESP

EBX

EDx

ECX

E&X

EFLAGS
EIFP
CR3 (PDER)

Reserved | 552

ESP2
Ressrved | 551

ESP1
Reserved | S50

ESPO
Resemved | Previous Tazk Link

An overview of the memory layout after initializati is shown in

Figure 6.2].

[| Reserved bits. Setto 0.

Figure4-2. TSS Structure

-40 -

100

Figure 4-3 [2,

Kernel Code Kernel Data RVM Image
A A A A A A

0x100000 0x400000 0x1000000 0x11000000 0x27C00000

Kernel Code Kernel Data User Code
‘ Segment Segment Segment User Data Segment

l = 4-KByte Page = 4-Mbyte Page
K 4M

Figure 4-3. Memory layout

From the operation to the TSS and GDT, we find thiaesNode separates the
memory to code segment and data segment. But eallisegments are set the same
start address and size, the operating system agigms are actually located in a

continuous and unsegmented memory space.

4.4.Garbage Collection

In order to simplify the system, JikesNode doesrse any Garbage Collection

mechanism. So during the building phase, MMTk clesdbe NoGC Plan.

In the NoGC plan, there are three policies usethbyirtual machine and a policy for
user data. Three policies for VM include an immiosfzace, a RawPage Space for the
metadata of the VM, and a LargeObject (LOS) Spacedme large objects. The user
policy is immortal space, which only has a bumpapaillocation and no Garbage

Collection.

This allocation mechanism is simple but fast, a@guiring a load, comparison and

store. In addition, bump-point allocation suppaatdinear scan through both the

-41 -

allocated objects and a single contiguous space.

In JikesNode, the regions memory used by the posigyre-set during the building
phase. The size and address of user immortal sha@enically depends on the total

size of the virtual memory defined in JikesRVM.

Free memory

Unmapped

7

NN

%

RVM
Image
Ox1F39000 Immortal Immortal Space
oxd ‘kemeL ~ Boot Space | _Space _ E/Ieta Spaci - LOS Space P for No GC
X -
0x100000 0x1000000 0x11000000 0x13000000 0x 15000000 0x27C00000 0x98400000 0xC0000000

7 s RRXTERIXTA i
/ A Physical Memory beseielelelelelelel Virtual Memory

Figure 4-4. Memory spacein NoGC

-42 -

Chapter 5

Design and | mplementation

5.1.Debug

After Georgios’s work [1], the Jamaica group hasalouch work, such as forcing
the RVM image to be saved from the address Ox10@O@tializing the necessary
classes and libraries for the VM to load JNode anglementation of the klib

functions. So at the beginning of the project, westrmake the system work. During
debugging the system, we find there are two maoblpms: overlap between the

stack and the code, and the unfinished implememtati system functions.

Sack and code

When the system is running, sometimes the memai hiblds the kernel code is
re-written, which makes the system crash. Aftecitrgithe memory, we find that it is
because the size of the user stack is too smalireakes the stack value be saved into

the code memory.

During initializing the system memory, the Jikeshaneates two 16 KBytes memory
spaces for kernel stack and user stack, aftereéheekcode. But some functions such
asvfprintf will require more memory than 16 KBytes. Therefore stagikon grows
down and overwrites the code memory.

-43-

There are two methods to resolve the problem. Blsg way is just extend the size of
the stack. The other one is using a stack segmesggarate the stack memory from
the data memory and the code memory. Because tusgstem only has code
segments and data segments, the stack and othestdat the same memory regions.
In addition, the data segments and code segmeatsearto uses the same memory
region. So actually, the boundary and privilegeckhm segments is not useful. If
using a separated segment, the system will reporéx@eption and prevent from

writing to the memory in another segment.

Considering that the JikesNode is in an early stagmg many segments will make
the further work more complex, and we choose trs fnethod and extend both the

user stack and the kernel stack to 64 KBytes

Klib function

Without system support, some functions in the sgdtave not been implemented and
force the system to stop. During debugging, thb@umodifies these functions just to
check the status of the system. The following @llilet the modified functions and

codes.

-44 -

Functions M odifications Reasons
gettimeofday | Return the value of fake_time instead|dthe system uses this function
(fake.c) zero check the time gap in different

boot stages. Return 0 will make t

system halt.

setTimeSilicer

Modify “assert(false)” to “assert(true)”

“asserlf@)” makes the system

(sys.C) halt
finishbooting | Comment the code Need the support from JNI, whigh
(VM java) runClassl nitializer ("java.lang.Math"), has not been implemented in the

System.loadLibrary("javaio"),

runClasdl nitializer (" gnu.java.nio.channds
FileChannelImpl"),

runClasdl nitializer (" java.lang.Double"),
runClassl nitializer (" java.lang.VM Double
",

runClassl nitializer (" com.ibm.JikesRVM.
VM _Process")

JikesRVM SocketImpl.boot();

system.

Table5-1. Modified functions

5.2.Import Garbage Collection

After debugging the system in NoGC, we start toom@ garbage collection into

JikesNode to make the memory in the system reus&sdisted in Section 4.1,

MMTK used in JikesRVM supports eight plans for gad collection. So we must

choose a suitable plan before importing it.

Some papers [15, 16, 17] show that the generaticodéctors provide better

-45 -

0x0Q

performance than the whole heap collectors, sucbeasspace and marksweep, in
virtually all circumstances [15, Chapter 1]. In thieree generational collectors,
GenMS has lower garbage collection costs than GeypGmecause of its space
efficiency and the implementation of GenRC is stilimature [15 Section 5.4]. So

finally, we use GenMS as the garbage collectiodikesNode.

GenM S

GenMS is a hybrid generational collector which uaeBlarkSweep policy for the
mature generation and a copying space for nurderits copying space, a bump
pointer is used to trigger a nursery collection wiiee nursery is full. Normally, the

nursery collection only works when either the noyse the heap is full.

As in NoGC, in addition to its own space, there three policies used by the virtual
machine. The address and size of the MarkSweegypalid the copy space are
pre-set during the building phase and depend omsiteeof virtual memory which is
defined in configuration files. The space usedrforsery copy space is located from
the bottom of system memory and on the LOS spaeetif$h 4.4]. The memory for
the MarkSweep is located in the top area of thenalinory and its start address is the
maximum memory address minus its size. Figure splays the overview of the

space after building the system, whose memory @0000000

Unmapped Free memory
%
RVM
Image
0x1F39000 I rtal
kernel Boot Space rgr;;cea Meta Space| LOS Space MarkSweep Space Nursery Space
0x100000 0x1000000 0x11000000 0x13000000 0x 15000000 0x27C00000 0x85800000 0xA3C00000 0xC0000000

Virtual Memory

-46 -

Figure 5-1. Memory space in GenMS

5.3.Memory Mapping

Using GenMS as our garbage collection leads to & peoblem. Because the
Marksweep space is allocated from the top of thenarg and the size of virtual

memory is usually much large than real memory, abjécated in MarkSweep can
not be saved to the real memory in current pageting. So, when creating a new
object, the page table or page directory must beifired to map the virtual address to

available real address.

From the code, we find that when declaring or ahizing a new object, the system
calls malloc function to find a block of memory space for tHgext. And inmalloc
function, a function namehmap is called, which request the memory space from the

kernel. So modifying the code in mmap to implem@ading setting is sensible.

mmap

The mmap function establishes a mapping between a memagesand an operating
resource. The resource can be a file, a shared mnyeofgect, or a typed memory
object. This is the declaration of this function:
void * mmap(void *start, size t length, int prot , int flags, int fd, off_t offset);
start indicates the start address of the memory to hEpeth

length specifies the size of the mapped memory, which y/tes

flags specifies attributes of the mapped region

()

)

® prot specifies the permission of the memory

)

® fd contains the file descriptor of the mapped object
)

offset specifies the file byte offset at which the majystarts

In these six parameters, tpeot andflags are the most important, which will affect

-47 -

the property of the page and the mapping mecharBgrause the JikesNode is very
simple now and many functions haven't been impldaeanwe only can implement
some basic functions defined in mmap function (filé description described in

[18]).

prot defines four access options:

® PROT_READ: Region can be read.

® PROT_WRITE: Region can be written.

® PROT_EXEC: Region can be executed.

® PROT_NONE: Region cannot be accessed
When prot is PROT_EXELit means the memory should be located in the menmory
a code segment. But now all segments in JikesNogldefined in the same memory
area. So the PROT_EXEC option is meaningless irecummap function. So, only

PROT_WRITE and PROT_READ options are implemented.

In flags parameter, we only implement the MAP_VARIABLE aMRAP_FIXED
options because the others need some operationleosystem, which have not
implemented in JikesNode. The definition of thege bptions is listed below.
® MAP_VARIABLE: When this option is set, system calest an address for
the new memory, if the memory space indicated byatthdr parameter can be
mapped, or the addr parameter is null.
® MAP_FIXED: If this option is set, system must place the neabgpace at
the address specified by themldr parameter and replace all previous

mappings for the pages located in the mapped memory

munmap

With mmap, there is another function calledinmap, which performs an opposite

operation. It unmaps a mapped file region or anaysiMmemory region.

-48 -

| mplementation

To monitor system memory, we need some structaraave the status and layout of
memory. A dynamic linked list and a static arrag #&wvo choices. Basing on the
following reasons, we use arrays.
® To create and initialize a linked structuramap function callsmalloc
function to allocate some memory, which will calimap. So special care is
needed to stop them being an endless loop.
® Currently, many operation systems or applicatiamswith a large memory.
So, compared to the size of system memory, the menmed for static
arrays is not costly. In addition, for processgemtions on an array are
simpler and more efficient than operations on kddlist.
We created two static arrays to log the free memnoryhe system, one named
free regions used for virtual memory and the other ndimee_map_regions used for
physical memory. Another array is created to sadwe mapping between virtual

memory and physical memory.

When calledmmap checks thélags parameter. IMAP_FIXED is set, all mapping
for the virtual address located in the regigiaft, start+ length] is cleared. Then find
a free physical memory froffree_map_regions, which can match specified size to
map to the specified size. The mapping virtual mgnamd physical memory are also
removed fromfree regions and free_map_regions. If MAP_VARIABLE is set,
mmap first checks whether the specified memory regios b@en used. If it has not
been used, the specified virtual address is usddrapped to the available physical
memory. If the memory has been used or no memorgpéexified, mmap finds
another available memory region frdnee regions andfree_map_regions and maps
them. For the other conditions, any available altonemory and physical memory

can be used. Figure 5-2 shows the operation sequémmap.

=49 -

MAP FIXED

’

Traverse used mapping

Travers¢ finish
Unmap memory -
Search free physical No

memory

requesteqradd

Check flags ?

Others

Search free virtual
memory

'

Vlemory size
equest size 2

Yes

Search free physical
memory

Mlemory size™>
equest size ?

Yes

MAP_VARIABLE

Traverse free virtual
memory

Traverse finish

y

Search free physical
memory

Vlemory size
equest size 2

Yes

Search free physical
memory

Map physical memory and
virtual memory

Vlemory size
equest size ?

Yes

Return

Map physical memory and

virtual memory

Memory size
equest size ?

memory to

requestegtaddress

virtual

5.4.Paging

address

-50 -

Figure 5-2. Logic Diagram in mmap

In Section 2.3 and Section 4.3, we have descrilbed nhemory management in

JikesNode. The mixing of 4-KByte and 4-MByte pagessed in the system and the
first 4 MB memory uses 4-KByte pages. CurrentlitedNode sets the kernel start
from 0x100000 and the JikesRVM image start from0@ID00. Between kernel and
JikesRVM image, there are the C stub functions Stagk. Therefore, the kernel and
system components are placed in both 4-KByte pageladViByte page.

To reduce the TLB [2, Section 10.9] misses and awproverall system performance,
the system operating system and kernel should deeglin a large page [2 Section
3.7.3]. But now all kernel and system is in a srpalje, so we change the first 4 MB

memory to use 4-MByte page.

This modification is not very complex. The firstintg is to remove the code that
initializes 4-KByte pages and sets them in pagectlry. Then we should add some
code to check and set the read/write privilegestlfi@r pages, which is originally

implemented in page table setting. All pages hgdhe kernel should set read-only,

while others are read and write.

-51 -

Chapter 6

Summary

Research on Operating system is as old as compiself, but Java Operating
System is still a new researching area. The JikdeNoms to provide user a higher

performance, dynamically optimising, operating sysiarchitecture.

This project is to do some improvement on the mgnmyanagement subsystem in
JikesNode. We import the GenMS garbage collectioniged by JikesRVM into the
system and modify the memory mapping and initisilima mechanism. Because
currently the size of physical memory is much serathan the size of memory
required by GenMS, we can'’t trigger a nursery @iten now. But from the output in
building phase [Appendix A] and the location of @tijduring running [Appendix B],

we can find that the GenMS garbage collection works

Future Work

With only 4 months, it’'s impossible to implement ikesNode components. By now,
JikesRVM is successfully loaded and many classes b initialized. From the
author’s point of view, in the future, the main Wwas to extend system stub functions
and integrate JNode into JikesRVM.

® JNI mechanism should be set up after booting the, ¥M that the java

system can utilize the native function in the jdilmary. JikesRVM has

-52-

implemented a JNI package to interact with natiedec Modification of
JNode to use the JNI package is critical.

Many C methods created in klib to replace the b stuJikesRVM. In
addtition, these methods also define a set of aeli® which provide a bridge
between the java call and underlying system funetiolhe definition and
description of these methods can be found in [Phddition, JikesRVM uses
VM_Syscall to invocate the C functions, while JNagsesUnsafe class to
perform hardware access. How to unify these twoswsiyan important task.
A C function has been created for interrupt handtet IRQ handler. Much
work should be done to implement this function &nadhsfer the interrupt or
IRQ to the JNode IRQ management subsystem. Thisdwwobably require
changing the VM_Runtime class to provide an entipifor system call.
How to build JNode boot image and make JikesRVNb&al this boot image
after finish booting VM. One solution is to build/d images together and
JikesRVM directly intiliaze JNode after finishingdting VM. But using this
way, the image file will be very large and takeoad time to load before
booting. Another technique is to build JNode taafie, specify the file as

JikesRVM command line and load it after booting VM.

-53-

Bibliography

[1] G. I. Gousios: JIKESNODE: A JAVA OPERATING SYE&M, MSc thesis, Dept.

of Computer Science, University of Manchester, 2004

[2] Intel Corporation: IA-32 Intel® Architecture 8ware Developer’s Manual

Volume 3: System Programming Guide, 2005
[3] The Jnode operating system, 2004. http://jremleceforge.net.
[4] IBM. The Jikes Research Virtual Machine Usergide, 2004. Manual

accompanying the Jikes RVM source distribution.

http://jikesrvm.sourceforge.net/

[5] The Jikes Research Virtual Machine (RVM),

http://oss.software.ibm.com/developerworks/osss5IRE M.

[6] I. Rogers and C. Kirkham: JikesNode and Peaatool A Jikes RVM Operation
System and Legacy Code Execution Environment, 28@0@P Workshop on
Programming Languages and Operating Systems (ECRIQFS'05), Glasgow,
July 26, 2005.

[7] B. Alpern, C. R. Attanasio and J. J. BurtomeTJalapefo virtual machine. IBM
System Journal, Vol 39, No 1, February 2000.

[8] B. Alpern, S. Augart, S.M. Blackburn, M. Butd, A. Cocchi, P Cheng, J. Dolby,
S. Fink, D. Grove, M. Hind, K.S. McKinley, M. MergeJ.E.B. Moss, T. Ngo, V.

-54-

Sarkar, and M. Trapp: The Jikes Research Virtuativfee project: Building an
open-source research community. IBM Systems Jowhbb#4, No 2, 2005.

[9] The Open Group Base Specifications Issue 6,EIE3d 1003.1, 2004 Edition
http://www.opengroup.org/onlinepubs/009695399/fmoatter/preface.html

[10]J.-S. Kim and Y. Hsu: Memory System Behavibdava Programs: Methodology
and Analysis, ACM SIGMETRICS 2002

[11]S. M. Blackburn, P. Cheng and K. S. McKinle@il and Water? High
Performance Garbage Collection in Java with MMTk,Proceedings of ICSE

2004, 26th International Conference on Softwareiigeying

[12]R. E. Jones and R.D. Lins: Garbage Collectigigorithms for Automatic
Dynamic Memory Management. Wiley, July 1996.

[13]R. J, Garner: JMTk: A Portable Memory Managemdoolkit. Honours
thesis,.Computer Science, ANU. 2003

[14] IBM Staff: The Jikes Research Virtual Machifi®/M) Independently developed
as part of the Jalapeno research project at Thdma&stson Research Center. 01
Feb 2000.

http://www-128.ibm.com/developerworks/java/librasglapeno/index.html#h6

[15] S. M. Blackburn, P. Cheng and K. S. McKinleytyths and Realities:The
Performance Impact of Garbage Collection, Techriegort TR-CS-04-04, Dept. of

Computer Science, Australian National Universi§02.

[16] M. Hertz, Y. Feng and E. D. Berger: PageLe&Webperative Garbage Collection,
Technical Report 2004 UMass CS TR-04-16:

-55 -

[17] M. Hertz, Y. Feng and E. D. Berger: Garbagedl€tion Without Paging, PLDI
2005

[18] Technical Reference: Base Operating System BEmtensions, Volume 1

http://publib16.boulder.ibm.com/pseries/en US/Wasktrfl/basetrf102.htm#wq3521

[19] B. Venners: Inside the Java Virtual Machinebished by McGraw-Hill

Companies, December 1997

[20] H. G.. Baker: The Treadmill: Real-Time Garba@ellection Without Motion
Sickness, SIGPLAN Notices 27(3):66-70, March 1992

[21] A. W. Appel. Simple generational garbage adilen and fast allocation,
Software Practice and Experience, 19(2):171-183919

[22] GNU GRUB manuahttp://www.gnu.org/software/grub/manual/grub.htmi

-56 -

Append A

A samplerun output

RVMmodule: mod_start = 0x1000000, mod_end = 0x1838%0d_size=15585kb cmdline=
P
Kernel end: 0x1f39000
Memory map provided by grub
base_addr=0x0, length_low=0x9fc00, type = 0x1
base_addr=0x100000, length_low=0xff00000, type* 0
mmap-length_low=0xff00000, mmap_base_addr_low=00000FreeMem: start=0x1f39000
end=0x10400000 size=234268kb usable pages=6969
RunBootimage.main(): VM variable settings
initialHeapSize 20971520
maxHeapSize 104857600
rvm_singleVirtualProcessor 1
bootFileName |JikesNODE|
lib_verbose 1
IA32 jnode build for single virtual processor

Boot record contents:

bootimageStart: 0x1000000
bootimageEnd: 0x1f38480
initialHeapSize: 0x0
maximumHeapSize: 0x0
tiRegister: 0x40000
spRegister: Ox1c3ace0
ipRegister: 0x14d60e0
tocRegister: 0x10001d4
sysWriteCharlP: 0x0

-57-

...etc...
post linkage

Boot record contents:

bootimageStart: 0x1000000
bootimageEnd: 0x1f39000
initialHeapSize: 0x1400000
maximumHeapSize: 0x6400000
tiRegister: 0x40000
spRegister: 0x40000
spRegister: Ox1c3ace0
ipRegister: 0x14d60e0
tocRegister: 0x10001d4
sysWriteCharlP: 0x102282
...etc...

JikesNODE: here goes...

JikesNODE: here goes?...

Booting

Setting up current VM_Processor

Doing thread initializProcessor

Doing thread initialization

Setting up write barrier

Setting up memory manager: bootrecord = 0x0100000c

i386.c

mmap(start=0x11000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0
)

free_map_region[0].star t=3400000;free_map_region[0].end=10000000
mapping[1].vp_start_address=0x11000000,

vp_end_address=0x11400000; mapped_start=0

x3000000 ,mapped_end=0x3400000

mmap(start=0xa3c00000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0

-58 -

)free_map_region[0].start=3800000;free_map_region[0].end=10000000
mapping[1].vp_start_address=0x11000000,
vp_end_address=0x11400000;mapped_start=0

x3000000 ,mapped_end=0x3400000
mapping[2].vp_start_address=0xa3c00000,
vp_end_address=0xa4000000; mapped_start=0

x3400000 ,mapped_end=0x3800000

Garbage Collection being used now

$ld: GenMsjava,v 1.4 2005/05/25 14:58:04 irogers Exp $

Createtwo objects, should belocated in Nursery Space

Sring one

0xa3c00028

Sring two

0xa3c00038

Stage one of booting VM_Time

Initializing baseline compiler options to defaults
java.lang.Throwable

mmap(start=0x13000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0
)free_map_region[0].start=3c00000;free_map_region[0].end=10000000
mapping[1].vp_start_address=0x11000000,
vp_end_address=0x11400000;mapped_start=0

x3000000 ,mapped_end=0x3400000
mapping[2].vp_start_address=0xa3c00000,
vp_end_address=0xa4000000; mapped_start=0

x3400000 ,mapped_end=0x3800000
mapping[3].vp_start_address=0x13000000,
vp_end_address=0x13400000; mapped_start=0

x3800000 ,mapped_end=0x3c00000

java.util.zip.ZipEntry
com.ibm.JikesRVM.classloader.VM_MemberReference

-59 -

java.net.URL

java.util.TimeZone
com.ibm.JikesRVM.jni.VM_JNIEnvironment
java.util.ResourceBundle
gnu.java.net.protocol.jar.Connection$JarFileCache
java.lang.Thread
com.ibm.JikesRVM.VM_EdgeCounts
com.ibm.JikesRVM.classloader.VM_Type
com.ibm.JikesRVM.classloader.VM_InterfaceMethod&igine
com.ibm.JikesRVM.jni.VM_JNICompiler
java.lang.System
com.ibm.JikesRVM.VM_DynamicLibrary
com.ibm.JikesRVM.VM_CompiledMethods
java.util.Locale

java.lang.Math

java.util.Calendar

com.ibm.JikesRVM.VM_ Statics
java.net.URLConnection
gnu.java.nio.charset.Provider
com.ibm.JikesRVM.classloader.VM_TypeReference
com.ibm.JikesRVM.classloader.VM_TableBasedDynanmiker
com.ibm.JikesRVM.classloader.VM_Atom
com.ibm.JikesRVM.VM_ StackTrace

Fetching command-line arguments

Early stage processing of command line

Collector processing rest of boot options

Initializing bootstrap class loader

Stage two of booting VM_Time

Running various class initializers

running class intializer for gnu.classpath.SystespErties

-60 -

mmap(start=0x15000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0
)free_map_region[0].star t=4000000;free_map_region[0].end=10000000
mapping[1].vp_start_address=0x11000000, vp_end_address=0
x11400000; mapped_star t=0x3000000 ,mapped_end=0x3400000
mapping[2].vp_start_address=0xa3c00000,
vp_end_address=0xa4000000; mapped_start=0

x3400000 ,mapped_end=0x3800000
mapping[3].vp_start_address=0x13000000,
vp_end_address=0x13400000; mapped_start=0

x3800000 ,mapped_end=0x3c00000
mapping[4].vp_start_address=0x15000000,
vp_end_address=0x15400000; mapped_start=0

x3c00000 ,mapped_end=0x4000000

running class intializer for java.lang.Runtime

running class intializer for java.lang.System

running class intializer for java.lang.\Void

running class intializer for java.lang.Boolean

running class intializer for java.lang.Byte

running class intializer for java.lang.Short

running class intializer for java.lang.Number

running class intializer for java.lang.Integer

running class intializer for java.lang.Long

running class intializer for java.lang.Float

running class intializer for java.lang.Character

running class intializer for java.util. WeakHashMap

running class intializer for java.lang.ThreadGroup

running class intializer for java.lang.ThreadLocal

running class intializer for java.security.VMAcc€smtroller
running class intializer for java.io.File

running class intializer for gnu.java.lang.SysteagSLoader

-61 -

running class intializer for java.lang.String

running class intializer for java.lang.VMString

running class intializer for gnu.java.security.gd®sr.DefaultPolicy
running class intializer for java.net.URL

running class intializer for java.net. URLClassLoade
running class intializer for gnu.java.net.protoolConnection$JarFileCache
running class intializer for java.lang.ClassLoa&edicData
running class intializer for gnu.java.io.Encodinghdger
running class intializer for java.nio.charset.CetEncoder
running class intializer for java.nio.charset.Cétesult
running class intializer for java.io.PrintWriter

running class intializer for java.io.PrintStream

running class intializer for java.util.Simple Timez®
running class intializer for java.util.Locale

running class intializer for java.util.Calendar

running class intializer for java.util. Gregorian€atdlar
running class intializer for java.util.ResourceBlend
running class intializer for java.util.zip.Inflater

running class intializer for java.util.zip. Deflaktuffman
running class intializer for java.util.zip.Inflai@ynHeader
running class intializer for java.util.zip.InflatéuffmanTree
running class intializer for gnu.java.locale.Caland
running class intializer for java.util.Date

Booting VM_Lock

Booting scheduler

Using a time-slice of 20 ms

Initializing JNI for boot thread

Running late class initializers

running class intializer for java.io.FileDescriptor

running class intializer for java.util.PropertyPésaion

-62 -

VM is now fully booted

Initializing runtime compiler

Late stage processing of command line

[VM booted]

Initializing socket factories

Extracting name of class to execute

vm: Please specify a class to execute.

vm: You can invoke the VM with the "-help" flagrfusage information.
JikesNODE: exit 100

Exit no=100

Halted.

-63-

Appendix B
Some building output

/usr/lib/java/bin/javac -encoding is0-8859-1 -noway

-classpath .:/home/MO04/acs/zhangya/rvmBuild-antigi&.classes:/home/M04/acs/zhangya

/rvmBuild-antigua/RVM.classes/rvmrt.jar:/home/M0dé&zhangya/rvmBuild-antigua/RVM.c

lasses/mmitk.jar

-bootclasspath .:/lhome/M04/acs/zhangya/rvmBuildgaalRVM.classes:/home/M04/acs/zha

ngya/rvmBuild-antigua/RVM.classes/rvmrt.jar:/hom&Macs/zhangya/rvmBuild-antigua/R

VM.classes/mmtk.jar GeneratelnterfaceDeclaratiana. |

lusr/lib/java/jre/bin/java -Xmx200M —classpath
../lhome/M04/acs/zhangya/rvmBuild-antigua/RVM.csgome/M04/acs/zhangya/rvmBuil

d-antigua/RVM.classes/rvmrt.jar:/home/MO04/acs/zlyaymBuild-antigua/RVM.classes/m

mtk.jar GeneratelnterfaceDeclarations -ia 0x1000@00

/home/M04/acs/zhangya/rvmBuild-antigua/RVM.scrdtdieffaceDeclarations.h

[x*xxxx%k%% Eol|owing output isimplemented in the source code* * * * # x*x*

Construct a memory space

Space name=baoot

Sart Address=16777216

Sze=268435456

Construct a memory space

Fpace hame=immortal

Sart Address=285212672

Sze=33554432

Construct a memory space

Space name=meta

Sart Address=318767104

-64-

Sze=33554432

Construct a memory space

Fpace name=los

Sart Address=352321536
Sze=314572800

Construct a memory space

Space name=nursery

Sart Address=2747269120
Sze=473956352

JikesNode uses GenM S garbage colleciton
Construct a memory space

Space name=ms

Start Address=666894336
Sze=1572864000

Construct GenMS

[k kAR ARk ARk * N[*AFAFEF AR AR F ARk
(wrote interface) 15 s

jbuild.linkimage: (bootimage cleaned)

- 65 -

