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Abstract 

Providing an interface between computer and user, the research on operating system 

is almost as old as the computer itself. As an important subsystem, the memory 

management system provides a mechanism for the applications and user to operate the 

data or code stored in the storage media, such as RAM or hard disk. This mechanism 

usually depends on the support of processors and other computer components. 

JikesNode, a Java operating system which combines Jikes Research Virtual Machine 

with the JNode operating system, aims to provide the Jamaica group with a tool for 

the further study of chip multi-processors and parallelism. This project improves the 

memory management subsystem in JikesNode by importing a garbage collection and 

modifying the memory mapping mechanisms, which are based on the Intel IA-32 

architecture processors. 
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Chapter 1  

Introduction 

1.1. Background 

The Jamaica group at the University of Manchester is investigating the design of chip 

multi-processors (CMPs) and their accompanying parallel software environments. To 

efficiently utilise multi-processors by client applications, the Jamaica group needs an 

operating system which can run massively multithreaded applications and support 

advanced compiler technology to automate parallelisation and the distribution of jobs. 

But the currently available operating systems can not run on the Jamaica chip and do 

not support the development of advanced compiler technology. So the Jamaica group 

decided to develop a new operating system to be able to test and further develop the 

design and the implementation of the Jamaica chip. 

 

We call this operating system JikesNode, which uses JikesRVM [5] as the java virtual 

machine and JNode [3] for device drivers, file system etc. Although we design the 

JikesNode to be used in Jamaica research, we also want this system will be able to run 

on conventional hardware configurations, such as Intel-based PCs, and provide the 

benefits of optimizing compilers on these systems too. So the implementation and 

research on JikesNode is on the Intel i386 platform in this thesis. 
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1.2. Motivation 

Much implementation of JikesNode has been done before this project, such as 

creating a nanokernel, successfully building and booting JikesRVM. But now, 

JikesNode runs in the no garbage collection environment. Without garbage collection, 

the memory used by objects will not be freed when the objects are no longer used. 

Therefore, the memory in the system will be used up soon if many objects are created. 

Because JikesNode runs in a limited memory now, it’s important to import a garbage 

collection into JikesNode to make the memory reusable. One of the simple methods is 

to utilize the garbage collection mechanism implemented in JikesRVM. In addition, 

after the Georgios’ M.Sc. project in 2004 [1], many modifications have been done, 

which makes the system not work. So, at the beginning of this project, we have 

following goals to be finished: 

� Debug the current version of JikesNode. 

� Import a proper garbage collection provided by JikesRVM into JikesNode. 

� Modify the memory management system to support the selected garbage 

collection. 

1.3. Garbage collection 

Garbage collection (also known as GC) is a form of automatic memory management. 

It attempts to reclaim the memory used by the objects that will never be used again by 

the application. The basic principle of how a garbage collector works is: 

� Detect what data objects in a program will not be accessed in the future  

� Reclaim the storage used by those objects 

 

The object detection is usually accomplished by defining a set of roots and 

determining reachability from the roots [19, Chapter 9]. If the system can access an 

object by some path of references from the roots, this object is reachable and 

considered as in use. On the contrary, if an object is not reachable, it’s a “garbage” 
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object, whose memory will be reclaimed. 

 

By now, many garbage collection algorithms have been implemented, such as 

Reference Counting, Mark and Sweep, Compacting, Copying, Generational and 

Adaptive collectors [19, Chapter 9]. Some of them have been supported by the 

JikesNode. 

1.4. Outline 

Chapter 2 is about the JikesNode, the Java operating system implemented by the 

Jamaica Group. The system architecture and two systems used in JikesNode are 

described first. Then previous work done by the Jamaica Group is represented. 

Chapter 3 gives a description of the memory management mechanism in IA-32 Intel, 

from its system architecture to the segment and paging supported by IA-32 Intel 

processor. 

Chapter 4 describes the memory management implemented in current JikesNode in 

detail. First, an overview of MMTk (Memory Management Toolkit [4]) and object 

model used in JikesRVM is represented. Following this is the memory management 

subsystem in JikesNode. 

Chapter 5 lists the work done in this project and some of the author’s personal 

opinions on what should be done in the future. 
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Chapter 2  

JikesNode operating system 

JikesNode operating system is a Java operating system implemented by the Jamaica 

Group at the University of Manchester. It uses the Jikes Research Virtual Machine 

(Jikes RVM) as the virtual machine and Java New Operating System Design Effort 

(JNODE) as the Java operating system.  

 

This chapter is a detailed description of the implementation of the JikesNode 

operating system. Firstly, two systems (JikesRVM and JNODE) integrated in 

JikesNode are described. Then I represent the current work Jamaica Group has done 

on this system. 

2.1. System Architecture 

As mentioned above, JikesNode integrates JikesRVM and JNode to implement a new 

Java operation system. Jikes RVM is used as the basic Java Virtual Machine (JVM) to 

run Java programs. The JNODE is imported to support the functions of operations 

system such as device drivers, file system and shell. The following figure displays the 

architecture of the whole system. 



- 14 - 

 

Figure 2-1. JikesNode architecture [6] 

 

In this figure, JikesNode kernel provides an abstract layer between the hardware and 

other parts in the system; it provides the hardware interrupts, and thread control 

mechanism. Jikes RVM is the platform responsible for running all the system 

generated executing code. And JNode gives a system interface for users and 

applications. All three parts of the system need some core libraries, for which we use 

GNU Classpath. 

 

2.2. Jikes Research Virtual Machine (Jikes RVM) 

The Jikes RVM is a Java Virtual Machine mostly written in Java language [8]. It is 

built from an IBM internal project called Jalapeño [7] and was made open source in 

2001. As a JVM, it has many advanced features such as optimizing compiler, several 

GC strategies and a sophisticated thread execution mechanism [1]. 

Jikes RVM Structure 

There are four major components in the JikesRVM [4 Chapter 6]. 
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Core runtime is a service platform to execute applications and interface with libraries. 

It consists of thread scheduler, class loader, library support etc. Most classes of this 

component are contained in com.ibm.JikesRVM and com.ibm.JikesRVM.classloader 

packages. 

 

Compiler in Jikes RVM is a Just-In-Time compiler response for building native code 

from the bytecode. Now, the Jikes RVM has two different compilers, baseline 

compiler and optimizing compiler.  

 

Memory managers are responsible for managing the objects created during 

executing applications. In the latest version, the Jikes RVM uses a new memory 

management framework called MMTk. This part of classes have been modified and 

imported into the packages org.mmtk.vm and  

com.ibm.JikesRVM.memoryManagers.mmInterface. 

 

Adaptive optimization system provides a mechanism to an optimizing compiler for 

applications to improve their performance. 

 

In addition to these four parts, JikesRVM also has a part called native runtime [1, 

Chapter4] which is not written in Java. The main work of its part includes loading the 

JikesRVM image into memory, exception pre-processing and providing interfaces 

between hardware and JVM. 

 

Boot Image 

In order to run itself without a second virtual machine, JikesRVM introduces the 

concept of a boot image, which contains and saves the location of a frozen instance of 

the initial VM. A program called BootImageWriter performs all the building process. 

Firstly, it uses an external JVM (currently, the Donor VM) to compile all core classes 
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of the JikesRVM. Then the compiled native code is imported into the image file and 

some important system components are appended. 

 

2.3. JNode operating system 

JNode is a relatively new open source project to create a Java operating system for 

personal use [3, Goals]. We choose it as our operating system platform for the 

following reasons. 

� A new project and with small size and therefore not too tough to modify 

� A loose integration between the operating system and the Java virtual Machine 

makes it easy to factor the operating system from its own JVM into JikesRVM. 

� JNode has an appropriate bootloader, nanoKernel and plug-in architecture. 

 

All JNode systems can be divided into 4 important parts [3, Developer guide]. 

Common part contains the fundamental functions to boot and run the system. VM part 

has a JVM for the system to compile and run the Java bytecode. JNode Operating 

System provides the functions of an operating system, such as file system, shell and 

device drivers. And the last part contains the core library JNode depends on. 

Plug-in Architecture 

In JNode, every module is a Plug-in, except the virtual machine, operating system and 

plug-in manager framework itself. These plug-ins can be divided into two types, 

normal plug-in which can be loaded, unloaded and reloaded [3], and system plug-in 

which must exist during the whole system lifetime. Every Plug-in has a descriptor file 

written in XML and is contained in a JAR file. The descriptor file defines all the 

information to load the plug-in, such as the required classes, the location of the 

associated JAR files. All plug-ins can define their extension points which can be 

accessed by system or other related applications. Every plug-in has a specific class 

loader and access permissions 
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In order to manage all plug-ins, JNode implements a new conception named 

PluginManager shared by the Virtual machine and operating system. In JNode, 

PluginManger is a central component and started after initializing the Java virtual 

machine during system booting. Its main work includes holding information on 

plug-ins (implemented by PluginRegistry) and plug-in lifecycle management 

(implemented by PluginLoaderManager) 

 

GRUB boot loader 

During booting, most operating systems need a boot loader to load themselves into 

memory and provide the information about the hardware platform. In JNode, GRUB 

boot loader [22] is used, which is also used in JikesNode now because we want to be 

able to boot JikesNode on machines with many operating systems. 

 

The GRUB boot loader aims to be a boot loader that supports all existing operating 

systems. It has two stages during booting an operating system. The first stage is 

contained in the Master Boot Record (MBR), which is 512 bytes on i386. Because of 

its limited size, stage 1 does little work and then loads the second stage of GRUB. In 

this stage, GRUB provides the user with a boot menu, loads the selected kernel of the 

OS and passes control to the kernel. GRUB uses a configuration file named menu.lst 

to save information about the possible kernel and some command lines, if needed. 

During booting, the configuration file is read, then GRUB loads the selected kernel 

into a consecutive memory starting from 0x100000 (1MB) and passes control to the 

kernel entry point. 

2.4. Current implementation 

To integrate JikesRVM and JNode together, we need some modifications to both 

systems to let them interact with each other seamlessly. For example, unifying the 
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classpath of Java library, modifying the build system and changing the VM of JNode. 

The following describes the work that has been done by the Jamaica Group. 

Nanokernel 

Nanokernel is a term describing an operating system core which is strictly limited in it 

size and/or functionality [1, Chapter 3]. It usually provides an abstraction layer to link 

the hardware and operating system. But in JikesNode, it also has an extra target: 

providing a runtime environment for the JikesRVM [1, Chapter 3.3]. The current work 

on the nanokernel is to extend the nanokernel in JNode to meet our requirements. The 

JNode nanokernel is entirely implemented in assembly language. But in JikesNode, 

we try to avoid using assembler and write the kernel in C language instead of 

assembly language as much as possible. 

 

Mutliboot information header 

 

Using the GRUB boot loader, the Multiboot information header must be written in the 

first byte of the kernel. Because we use NASM i386 as our assembler, which compiles 

the code sequentially, the first compiled file start.s, should contain the Multiboot 

information header at the begin. Considering the memory management in JikesNode, 

we set the header’s flag to align all boot modules on 4KB page boundary. 

 

Memory management initialization 

All memory management initialization is implemented in mm.s file. The Global 

Descriptor Table (GDT) [Section 3.3] is initialized by filling with five segments: 

Kernel Data Segment, Kernel Code Segment, User Date Segment, User Code 

Segment and a Task-State Segment [Chapter 3]. The memory space is paged. We 

create a page directory and one page table. The first 4 MBytes of memory uses 

4-KByte Pages and the rest uses 4-MByte pages. The pages located in the kernel area 
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are set as read only. At last, the stack pointer is set. 

 

Interrupt handler initialization 

In JikesNode, the initialization is included in ints.s and interrupts.c file. It uses 

various macros to prepare and set the interrupt handler. For example, int_noerror 

maps the error interrupt to specific handler address. intport sets the interrupt entry in 

IDT table. int_irq maps the interrupt requests (IRQs) with their handler functions, 

which are written in C. 

Hardware component initialization 

Before transferring into the user mode, the nanokernel initializes some fundamental 

hardware, including serial port, PIT and FPU. 

System console and debugging support 

During the system initialization, console output is supported in kernel mode. It is 

implemented by writing the characters directly to video memory address 0xB80000. 

Some basic functions such as scrolling are implemented in console.c, and some 

complex outputting functions are written in separate files and saved in klib. 

 

Native Runtime 

We use the native runtime from JikesRVm as the basis of JikesNode native runtime. 

The main files include sys.C, libVM.C and cmdline.h. But because JikesRVM runs 

on a Linux platform, it calls many low-level functions that have been implemented in 

the operating system. For a new operating system, we must write these call back 

functions (C Stub [6]) independently based on our requirements. All necessary 

functions are saved in klib directory, the implemented ones are written in separate 

files, while all others are saved in fake.c file. The choice of the functions and their 

targets are from The Open Group Base Specifications [9] 
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Others 

Besides the above implementation in the JikesNode, the Jamaica Group has done 

much work on the integration between JikesNode and JNode systems. Different 

versions of GNU classpath used in both systems have been unified. The VM used in 

JNode has been mostly removed. Various build systems have also been added to 

support the different requirements. 
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Chapter 3  

Memory Management in IA-32 Intel 

Currently, JikesNode is running on an IA-32 Intel platform. So, to implement the 

memory management system in JikesNode, it’s important to understand the 

underlying mechanism supported by Intel IA-32 processors. 

The following will concentrate on the memory management implemented in 

IA-32 Intel. First, it describes the memory management facilities in protected-mode, 

including the segment and page mechanism. The second part is the definition of 

system registers and memory entries used in such facilities. 

3.1. Overview 

System architecture  

Intel IA-32 architecture processors include the Intel Pentium processors, the P6 family 

processors, the Pentium 4 processors, the Intel Xeon™ processors, and the Pentium M 

processors [2]. It provides a set of registers, data structure and a series of instructions 

for the developer to perform the system-level operations such as memory 

management and task management. Figure 3-1 gives a summary of its registers and 

data structures. 
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Figure 3-1. System Structure in Intel IA-32 [2, Figure 2.1] 

Operation Modes 

In IA-32 architecture, we have four operation modes, protected mode, real-address 

mode, system management mode (SMM) and virtual-8086 mode 

 

� Protected mode is the native mode of IA-32 processors. It provides all 

instructions and features available in IA-32. The JikesNode operating system is 

also developed in this mode. 

 

� Real-address mode is the initial mode that a processor is placed in when being 

powered up or reset. It provides an Intel 8086 programming environment for the 

user. Running in real-address mode, the processor only supports 1 MBytes (20 

bits) physical address space [2, Chapter 16]. It shifts the segment selector left by 

4 bits and adds the 16 bits effective address to form a physical address. 

 

� System management mode (SMM) is a special operation mode used to monitor 

and manage the system resources. In this mode, processors use a separate address 
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space call SMRAM to save the codes and data, whose default size is 64 KBytes 

and can be up to 4 GBytes. 

 

� Virtual-8086 mode is a quasi-operating mode supported by processor. Actually 

it’s a special task that runs in protected mode. It allows executing 8086 software 

in a protected and multitasking environment. The execution environment of 

virtual-8086 mode is the same as real-address mode, except the virtual-8086 can 

use some features in protected mode. 

3.2. Memory management in protected mode 

Overview 

The memory management facilities of the IA-32 architecture consist of segmentation 

and paging two parts [2, Chapter 4]. Segmentation provides mechanism of isolating 

individual code, data and stack modules for multi tasks to run on a processor. Paging 

provides a mechanism to implement a virtual-memory system and map it into physical 

memory address. In protected mode, segmentation must be used, while paging can be 

disabled by setting particular bits of the registers.  

 

As shown in the figure 3-1 and 3-2, segmentation divides the processor’s memory 

space into small pieces of protected address space called segments. These segments 

can be used to save the code, data, stack, task states and some system data structure [2 

Chapter 3]. In the segment phase, processor translates logical address to a linear 

address by using the segment selector and address offset 

 

The paging mechanism can map a large linear address into a small real memory size. 

If paging is not used, processor maps the linear address directly to the physical 

address. When using paging, each segment is divided into pages, and a page directory 

and page table are used to translate the linear address to the physical address.  
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Figure 3-2. Address Translation 

 

Segmentation 

Segmentation Model 

Segmentation supported by IA-32 architecture can by implemented by different ways, 

from basic flat model, protected flat model to multi-segment model. 

� Basic flat model is the simplest memory model. In it, all data, codes and 

stack are located in a continuous and unsegmented address, which means the 

segment mechanism is hidden from the operating-system and application. To 

implement it, a code segment descriptor and a data segment descriptor should 

be created, and both must have the same base address of 0 and limit of 4 

GBytes. All segment registers must be set to point to these two descriptors. 

� Protected flat model is similar to the basic flat model, except it sets the 

segment limit to the real physical memory size. If necessary, this model can 

also be implemented more complex. For example, we can define different 
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segment with different access level.  

� Multi-segment model uses the full capabilities of the segmentation 

mechanism to provide hardware enforced protection of code, data structures 

and programs and tasks [2, Chapter 3]. In this mode, every program or task 

has its own segments and these segments can be set as various private level.  

 

In protected mode, to access a physical memory address, the processor must uses two 

stages: logical-address translation and linear address space paging [2, Chapter 3]. The 

segmentation is used in first stage. 

 

When given a logical address (consisting of a segment selector and an offset), the 

processor first uses segment selector to locate the segment descriptor in the Global 

Descriptor Table (GDT) or Local Descriptor Table (LDT) and check the access rights. 

Then processor adds the base address in the selected segment descriptor to the offset 

to form a linear address. Figure 3-3 displays the translation 

 

Figure 3-3. Logical-address Translation 

Paging 

After getting the linear address, the processor uses paging to map a linear address to a 

physical address. If paging is disabled, the linear address is the physical address. 

When paging is used, the processor translates the linear address into the physical 

address by using different mapping mechanisms according to various paging options. 
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By setting the flags in the control registers and system data structure, we can use 

different paging translation mechanism: 4-KByte with 32-Bit address, 4-MByte with 

32-Bit address, 4-KByte with 36-Bit address, 4-MByte with 36-Bit address and 

2-MByte with 36-Bit address. Following describe detailed implementation of these 

translations. 

 

� 4-KByte page with 32-Bit physical address 

This uses page directory and page table hierarchy to map linear address to 4KB 

pages. A linear address is divided into three parts: the lowest 12 bits define the 

offset in a page, next 10 bits are the page-table offset, and the bits 22 to 31 

provide the page-directory offset.  

 

First, the processor reads the control register CR3 [Section 3.3] to get the base 

address of the page directory and adds the page-directory offset to get the base 

address of page table. Then the page-table offset is added to the base address of 

page table to get the base address of 4-KByte page. Finally physical address is 

created by adding the base address of the page to the page offset.  

 

Figure 3-4. 4-KByte Page Translations 

 

� 4-MByte page with 32-bit physical address 
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This only uses the page directory to map linear addresses to 4-MByte pages. 

When using 4-MByte mapping, the linear addresses have two sections. The lower 

22 bits are the page offset and the bits 22 to 31 define the offset in the page 

directory to get a page entry. 

 

First, the processor adds the base address saved in CR3 to the page-directory 

offset to get the entry point of the page. Then the physical address is created by 

adding the base address of the page to the 22 bits offset. 

 
Figure 3-5. 4-MByte Page Translation 

 

� 4-KByte page with 36-bit physical address 

This uses page-directory-pointer, page-directory and page-table hierarchy and 

divides the linear address into four parts. The lowest 12 bits defines a page offset. 

Bits 12 to 20 are page-table offset. Bits 21 to 29 are page-directory offset. And 

the highest 2 bits provide a offset in the page-directory-pointer table. Figure 3-6 

shows how the translation works 
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Figure 3-6. 4-KByte pages with extended 36 Bits address 

 

� 2-MByte page with 36-bit physical address 

2MByte paging can only be used with 36bits physical address. To implement this 

paging mechanism, the processor uses the page-directory-pointer and 

page-directory. The linear address consists of three sections. The lowest 21 bits 

are the offset in 2-MByte page. Bits 21 to 29 provide an offset in the page 

directory. And bits 30 and 31 define the offset in the page-directory-pointer table. 

Figure 3-7 shows the mapping mechanism. 

 
Figure 3-7. 2-MByte pages with extended 36 Bits address 

 



- 29 - 

� 4-MByte page with 36-bit physical address 

Its mapping mechanism is the same as the 4-MByte page with 32-bit address. The 

only difference between them is the data structure defined in the page directory. 

3.3. System Registers and data structure 

In IA-32 architecture, processor uses some system registers and data structures to 

perform the memory management facilities effectively. Here is a list of these registers 

and structures and a description of some important flags in them. 

 

Control Register 0 (CR0) 

Bit 31 of CR0 indicates whether paging is used. When it is set, paging is enabled 

while it is cleared to disable paging. 

 

Control Register 3 (CR3) 

When enabling paging, CR3 is used to save the base address of the page directory.  

 

Figure 3-8. CR3 

 

Control Register 4 (CR4) 

Bit 4 of CR4 (PSG flag) indicates whether the 4MB page can be used. If set, the 

processor can use both 4MB and 4KB page, while only 4KB page can be used when it 

is cleared. 

 

Bit 5 of CR4 is the flag of page address extension. It enables the 36-bit physical 

address when set. 

 

Segment selector 
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Segment Selector is a 16-bit identifier used to find the segment descriptor in a 

descriptor table. Bits 3 to 15 provide the offset in a descriptor. Bit 2 directs the 

processor to search in Global Descriptor Table (GDT) or Local Descriptor Table 

(LDT). And the first 2 bits are used to specify the privilege level. 

 

Segment Registers 

To reduce address translation time and coding complexity, the IA-32 processor also 

provides 6 registers to hold the segment selector. Before accessing a segment, its 

segment selector must be loaded into one of these 6 register. So at any time, only 6 

segments are available immediately. Each segment register consists of a “visible” part 

and a “hidden” part [2, Chapter 3]. The “visible” part saves the segment selector, 

while the “hidden” part looks like a cache, which saves the corresponding information 

such as base address and limit. 

 

Segment Descriptor 

A segment descriptor is a 64-bit data structure saved in GDT or LDT. It saves all the 

necessary information of the segment it points to. Figure 3-9 lists its data format. 

 
Figure 3-9. Segment Descriptor 

 

It has a 32-bit address which points to the base address of the segment it describes, a 

20-bit data defining the segment size and some flags. 

 

Segment Descriptor Table 

A segment descriptor table is used to save segment descriptors contiguously. It has 

two types: the global descriptor (GDT) and the local descriptor table (LDT). 
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Processor uses the GDTR register and the LDTR register to save the base address of 

the descriptor table. In GDT, the first descriptor (the first 8 bytes) must remain empty. 

 

GDTR and IDTR 

These two registers specify the locations of descriptor table. The GDTR refers to the 

GDT while IDTR refers to the IDT. Both registers are 48 bits, of which the highest 32 

bits save the linear address of the descriptor table and the lower 16 bits indicate the 

limit size of the table. 

 

Page directories and tables 

When paging is enabled, page directories and tables are used to translate a linear 

address to a physical address and both save a series of entries. Depending on the 

paging mechanism, the page directory and table entries have different data formats. 

 

When using 4Kbyte page, both page directory and table are used. Their data format 

are shown in Figure 3-10 and 3-11 

 

Figure 3-10. 4-KByte page-directory entry. 

 

Figure 3-11. 4-KByte page-table entry 

In the page-directory entry, the highest 20 bits provides the base address of the page 

table. The 7 bits indicates the page size, which must be set 0 in 4KB page. 

 

In the page-table entry, the highest 20 bits describes the base address of the page. The 

other bits define the attribute of this page.  
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When using 4MByte page, only page directory will be used. Figure 3-12 describes the 

data format of an entry. 

 

Figure 3-12. 4-MByte page-directory entry 

The bits 22 to 31 indicate the base address of a page. It will be shifted left 22 bits to 

create the real 32-bit page base address during translating an address. The 7 bits (page 

size flag) should always be set 1.  



- 33 - 

 

 

 

 

 

 

Chapter 4  

Memory system in JikesNode 

Unlike other programming languages, Java has some distinctive features such as 

automatic memory management, support for multithreading, the existence of 

architecture-neutral intermediate codes (bytecodes), etc. [10]. With the increasing gap 

between the speeds of CPU and memory, the memory system has become a major 

performance bottleneck in modern computer systems [10]. As a new Java operating 

system, JikesNode needs an effective memory system to increase its performance. 

 

In this Chapter, we describe the memory system implemented in JikesNode. First, we 

have a look at MMTk, the memory management component used in JikesRVM. 

Following MMTk, there is a detailed description of the memory initialization in the 

JikesNode nanokernel. Finally, we present the memory model in JikesNode without a 

Garbage Collector (GC). 

4.1. MMTk (Memory Management Toolkit) 

MMtk is a memory management toolkit written in and for Java. It is developed from 

the JMTk (Java Memory Management Toolkit), which is also written in Java and 

especially for JikesRVM. It provides a series of reusable, efficient, extensible 

components for garbage collectors. Now the JNode project has begun to integrate 
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MMTk into JNode system. So using MMTk as our memory management toolkit is 

quite a natural choice. 

 

Policy 

Policy contains the garbage collection algorithms that couple memory, which is 

grouped into spaces in MMTk, with an allocation and collection mechanism. A whole 

heap collector uses one policy for most objects, while a generational collector always 

uses one or more policies. For generational collector, a write barrier [11] is used to 

remember all references to the objects into an independently collected space. Before 

the program accesses the object, the barrier will be triggered and perform some 

necessary work before operating on the object. 

 

Following is the basic allocation and collections mechanisms support by MMTk 

� Bump Pointer Allocator: All memory is grouped in a contiguous space. A 

cursor called the bump pointer is used to record the start address of free 

memory. When creating a new object, the allocator appends the object from 

the cursor, and increment the cursor by the size of the created object.  

� Free-List Allocator: The memory is organized into some size-segregated 

free-list so that all memory is divided into blocks. The block that has just size 

to accommodate the new object is used to save it. 

� Tracing Collector: Uses a transitive closure from the roots to identify the live 

objects. When reclaiming space, MMTk moves the data out of the space, or 

frees untraced objects. 

� Reference Counting Collector: A reference count is maintained for each 

object. When creating a new object, a reference to this object is also created 

and the object’s reference count is set to one. When the object is referenced 

by other values, its reference count is incremented. When a reference to the 

object is deleted or assigned a new value, its reference count is decremented. 

Whenever an object’s reference count is zero, it will be reclaimed. 
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In addition to these mechanisms, JikesRVM has supported some advanced real-time 

garbage collection called treadmill. 

 

With the above mechanism, MMTk creates five policies. 

� Copy space has a bump-pointer allocation and a tracing collection by moving 

live objects out of the space. 

� MarkSweep space has a free-list allocation and a tracing collection that frees 

untraced object 

� RefCount space has a free-list allocation and a reference counting collection. 

� Immortal space: bump-pointer allocation and no collection. 

� Large object space: coarse-grained free-list allocation and treadmill 

collection [20]. 

 

From these five policies, MMTk forms the following collectors. 

� SemiSpace uses two copy spaces. Every time, one space is used to save 

objects. Once full, the live objects in the used space are copied to the other.  

� MarkSweep uses one mark-sweep space. During allocating a new object, it 

traces and marks the live objects and reclaims dead objects. 

� RefCount uses Refcount space, but the collection is deferred. During 

mutation, it buffers the counts of object references. The collector periodically 

processes the buffer, saves the changing for deferred objects, and then clears 

objects with a zero count. 

� GenCopy: The classic copying generational collector [21] allocates into a 

(nursery) Copy space, and promotes survivors into an old SemiSpace [11]. 

When the nursery is full, it collects and sets the size of copy space to the size 

of all live objects. When the SemiSpace is full, it collects the entire space. 

� GenMS is like GenCopy, excepting replacing the SemiSpace by MarkSweep. 

� GenRC: uses Ulterior Reference Counting to combine a copying nursery with 

a RefCount mature space.[11] 
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Plan 

MMTk defines collectors through the composition of policies and mechanism. Plans 

just perform the highest level of this composition, defining the rules by which policies 

are composed. The key functions are [4]: 

� Identifying a virtual memory layout (using VMResources).  

� Providing allocation by binding suitable allocators to different 

VMResources.  

� Invoking collection when necessary through the use of a polling mechanism.  

� Applying the appropriate collection policies to objects encountered during 

the collection process (objects may be subject to different collection 

regimens depending on where they reside in memory).  

� Implementing read and write barriers if necessary.  

In the latest version, MMTk implements eight different plans. In addition to the plans 

that simply compose the mentioned policies, another three are also implemented. 

CopyMS composes a full-heap collector with a copying nursery and mark-sweep 

mature space. The collector has no write barrier and no remembered set 

GenCopy implements a standard two-generation copying collector. 

NoGC only has a simple allocator but no collectors 

4.2. Object model 

The term object model refers to the way objects (both in the specific sense of object 

oriented languages and the more general sense of heap objects in other languages) are 

laid out in memory, how their type is determined and how they are manipulated by the 

runtime and memory management systems.[13, 4.2.3]. From the memory manager, an 

object consists of a size and some metadata fields which are used for managing. 

 

In java language, values are either primitive (e.g., int, double, etc.) or references to 
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objects. JikesRVM divides all objects into two types, arrays which consist of a set of 

components and scalars which only have fields. These two types have different 

memory layout shown in figure 4-1 [14, Figure 1]. An array object grows up from its 

reference, while a scalar object grows down from its reference. Each object has a 

two-word object header to support various operations such as dynamic type checking, 

memory management, synchronization, hashing, etc. 

 

One word of the header describes the status of objects. It is divided into three parts. 

The first part is used for locking. The second one holds the default hash value. The 

last one is for the memory management. 

 

The other word is a reference to the Type Information Block (TIB) for the object's 

class [14]. A TIB is an array of object references. The first component describes the 

object's class such as its superclass and interface. The remainder is compiled code of 

the virtual methods of the class. 

 

 

Figure 4-1. Layout of Object 
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4.3. Memory initialization 

As mentioned in Chapter 2, during booting, the nanokernel does much work in 

initializing the memory management, for example the segment and paging, GDT and 

LDT tables and etc. Now, we will represent the initialization in detail. 

 

In JikesNode, all initialization is done in protected mode, which means the bit 17 in 

EFLAGE [2, Section 2.3] must be cleared first. The whole process of memory 

initialization is implemented in three steps: paging initialization, GDT initialization 

and setting TSS (the LDT is not used now). 

Paging initialization 

Because a combination of 4-KByte and 4-MByte pages [Section 2.4] is used in the 

system, we must initialize both page directory and page tables during initialization. To 

enable the mixed paging mechanism, the PG flag (bit 31 of CR0) [Section 3.3] and 

PSE flag (bit 4 of CR4) [Section 3.3] should be set. 

 

Currently, JikesNode supports maximum 4 GBytes memory space, which is paged by 

4 MBytes. The first 4 MBytes memory uses the 4-KByte paging mechanism. The only 

exception is that the first 4-KBytes page (from address 0 to address 0x0FFF) is not 

present, in order to detect the nullpoint exception. 

 

The remaining memory from the address 0x400000 to maximum 0xFFFFFFFF is set 

using 4MB pages. But the last 4MB page is not initialized, again to detect the 

nullpoint exception. In addition, those pages which hold the kernel (between the 

kernel_begin and kernel_end label) are marked as read-only. But all paging sets the 

virtual address equal to the real address.  

 

During booting, a page directory and a page table are created. At first, a page 
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directory is located at address 0x1000 and has 1024 entries, in which the first one is 

set 4KB paging (the PS flag in the entry is cleared) and the others are set 4MB paging 

(the PS flag is set). Then a page table is located at 0x2000 and set in the page 

directory. In this step, the page privilege level is set. After finishing initialization, we 

set the CR0 and CR4 to enable paging and load the address of page directory into 

CR3. 

GDT initialization 

There are six entries created in the GDT. The first entry is an empty entry which is 

never used. The other five include two data segments (Kernel Data Segment and User 

Data segment), two code segments (Kernel Code segment and User Code segment) 

and a TSS.  

 

Both code segments and code segments are set 4GB limited and start from address 

0x0. But the kernel segments are set to the highest privilege level while the user 

segments are set to the lowest. 

TSS Setting 

In protected mode, all programs execute within the context of a task [2 Chapter 2], of 

which the execution environment is defined in TSS. The structure of TSS is shown in 

Figure 4-2 [2, Figure6-2]. 

 

In the TSS, CS field is set in the user code segment and other segment fields are to the 

user data segment. 
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Figure 4-2. TSS Structure 

 

An overview of the memory layout after initialization is shown in Figure 4-3 [2, 

Figure 6.2]. 
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Figure 4-3. Memory layout 

 

From the operation to the TSS and GDT, we find that JikesNode separates the 

memory to code segment and data segment. But because all segments are set the same 

start address and size, the operating system and programs are actually located in a 

continuous and unsegmented memory space. 

4.4. Garbage Collection 

In order to simplify the system, JikesNode doesn’t use any Garbage Collection 

mechanism. So during the building phase, MMTk chooses the NoGC Plan.  

 

In the NoGC plan, there are three policies used by the virtual machine and a policy for 

user data. Three policies for VM include an immortal space, a RawPage Space for the 

metadata of the VM, and a LargeObject (LOS) Space for some large objects. The user 

policy is immortal space, which only has a bump-point allocation and no Garbage 

Collection.  

 

This allocation mechanism is simple but fast, only requiring a load, comparison and 

store. In addition, bump-point allocation supports a linear scan through both the 
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allocated objects and a single contiguous space. 

 

In JikesNode, the regions memory used by the policy is pre-set during the building 

phase. The size and address of user immortal space dynamically depends on the total 

size of the virtual memory defined in JikesRVM. 

 

 

Figure 4-4. Memory space in NoGC 
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Chapter 5  

Design and Implementation 

5.1. Debug 

After Georgios’s work [1], the Jamaica group has done much work, such as forcing 

the RVM image to be saved from the address 0x1000000, initializing the necessary 

classes and libraries for the VM to load JNode and implementation of the klib 

functions. So at the beginning of the project, we must make the system work. During 

debugging the system, we find there are two main problems: overlap between the 

stack and the code, and the unfinished implementation of system functions. 

Stack and code 

When the system is running, sometimes the memory that holds the kernel code is 

re-written, which makes the system crash. After tracing the memory, we find that it is 

because the size of the user stack is too small and makes the stack value be saved into 

the code memory.  

 

During initializing the system memory, the JikesNode creates two 16 KBytes memory 

spaces for kernel stack and user stack, after the kernel code. But some functions such 

as vfprintf will  require more memory than 16 KBytes. Therefore stack region grows 

down and overwrites the code memory.  
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There are two methods to resolve the problem. The easy way is just extend the size of 

the stack. The other one is using a stack segment to separate the stack memory from 

the data memory and the code memory. Because current system only has code 

segments and data segments, the stack and other data share the same memory regions. 

In addition, the data segments and code segments are set to uses the same memory 

region. So actually, the boundary and privilege check in segments is not useful. If 

using a separated segment, the system will report an exception and prevent from 

writing to the memory in another segment. 

 

Considering that the JikesNode is in an early stage, using many segments will make 

the further work more complex, and we choose the first method and extend both the 

user stack and the kernel stack to 64 KBytes 

Klib function 

Without system support, some functions in the system have not been implemented and 

force the system to stop. During debugging, the author modifies these functions just to 

check the status of the system. The following tables list the modified functions and 

codes. 
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Functions Modifications Reasons 

gettimeofday  

(fake.c) 

Return the value of  fake_time instead of 

zero 

The system uses this function to 

check the time gap in different 

boot stages. Return 0 will make the 

system halt. 

setTimeSlicer 

(sys.C) 

Modify “assert(false)” to “assert(true)” “assert(false)” makes the system 

halt 

finishbooting 

(VM.java) 

Comment the code  

runClassInitializer("java.lang.Math"), 

System.loadLibrary("javaio"),  

runClassInitializer("gnu.java.nio.channels

.FileChannelImpl"),  

runClassInitializer("java.lang.Double"), 

runClassInitializer("java.lang.VMDouble

"), 

runClassInitializer("com.ibm.JikesRVM.

VM_Process") 

JikesRVMSocketImpl.boot(); 

Need the support from JNI, which 

has not been implemented in the 

system. 

Table 5-1. Modified functions 

5.2. Import Garbage Collection 

After debugging the system in NoGC, we start to import a garbage collection into 

JikesNode to make the memory in the system reusable. As listed in Section 4.1, 

MMTk used in JikesRVM supports eight plans for garbage collection. So we must 

choose a suitable plan before importing it. 

 

Some papers [15, 16, 17] show that the generational collectors provide better 
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performance than the whole heap collectors, such as semispace and marksweep, in 

virtually all circumstances [15, Chapter 1]. In the three generational collectors, 

GenMS has lower garbage collection costs than GenCopy because of its space 

efficiency and the implementation of GenRC is still immature [15 Section 5.4]. So 

finally, we use GenMS as the garbage collection in JikesNode. 

 

GenMS 

GenMS is a hybrid generational collector which uses a MarkSweep policy for the 

mature generation and a copying space for nursery. In its copying space, a bump 

pointer is used to trigger a nursery collection when the nursery is full. Normally, the 

nursery collection only works when either the nursery or the heap is full.  

 

As in NoGC, in addition to its own space, there are three policies used by the virtual 

machine. The address and size of the MarkSweep policy and the copy space are 

pre-set during the building phase and depend on the size of virtual memory which is 

defined in configuration files. The space used for nursery copy space is located from 

the bottom of system memory and on the LOS space [Section 4.4]. The memory for 

the MarkSweep is located in the top area of the all memory and its start address is the 

maximum memory address minus its size. Figure 5-1 displays the overview of the 

space after building the system, whose memory is 0xC0000000 
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Figure 5-1. Memory space in GenMS 

 

5.3. Memory Mapping 

Using GenMS as our garbage collection leads to a new problem. Because the 

Marksweep space is allocated from the top of the memory and the size of virtual 

memory is usually much large than real memory, objects located in MarkSweep can 

not be saved to the real memory in current paging setting. So, when creating a new 

object, the page table or page directory must be modified to map the virtual address to 

available real address. 

 

From the code, we find that when declaring or initializing a new object, the system 

calls malloc function to find a block of memory space for the object. And in malloc 

function, a function named mmap is called, which request the memory space from the 

kernel. So modifying the code in mmap to implement paging setting is sensible. 

mmap 

The mmap function establishes a mapping between a memory space and an operating 

resource. The resource can be a file, a shared memory object, or a typed memory 

object. This is the declaration of this function: 

 void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset); 

� start indicates the start address of the memory to be mapped 

� length specifies the size of the mapped memory, which is in bytes 

� prot specifies the permission of the memory 

� flags specifies attributes of the mapped region  

� fd contains the file descriptor of the mapped object 

� offset specifies the file byte offset at which the mapping starts 

 

In these six parameters, the prot and flags are the most important, which will affect 
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the property of the page and the mapping mechanism. Because the JikesNode is very 

simple now and many functions haven’t been implemented, we only can implement 

some basic functions defined in mmap function (the full description described in 

[18]). 

 

prot defines four access options: 

� PROT_READ: Region can be read.  

� PROT_WRITE: Region can be written.  

� PROT_EXEC: Region can be executed.  

� PROT_NONE: Region cannot be accessed 

When prot is PROT_EXEC，it means the memory should be located in the memory in 

a code segment. But now all segments in JikesNode are defined in the same memory 

area. So the PROT_EXEC option is meaningless in current mmap function. So, only 

PROT_WRITE and PROT_READ options are implemented. 

 

In flags parameter, we only implement the MAP_VARIABLE and MAP_FIXED 

options because the others need some operation on file system, which have not 

implemented in JikesNode. The definition of these two options is listed below.  

� MAP_VARIABLE: When this option is set, system can select an address for 

the new memory, if the memory space indicated by the addr parameter can be 

mapped, or the addr parameter is null.  

� MAP_FIXED: If this option is set, system must place the mapped space at 

the address specified by the addr parameter and replace all previous 

mappings for the pages located in the mapped memory.  

munmap 

With mmap, there is another function called munmap, which performs an opposite 

operation. It unmaps a mapped file region or anonymous memory region.  
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Implementation 

To monitor system memory, we need some structures to save the status and layout of 

memory. A dynamic linked list and a static array are two choices. Basing on the 

following reasons, we use arrays.  

� To create and initialize a linked structure, mmap function calls malloc 

function to allocate some memory, which will call mmap. So special care is 

needed to stop them being an endless loop. 

� Currently, many operation systems or applications run with a large memory. 

So, compared to the size of system memory, the memory used for static 

arrays is not costly. In addition, for processor, operations on an array are 

simpler and more efficient than operations on a linked list. 

We created two static arrays to log the free memory in the system, one named 

free_regions used for virtual memory and the other name free_map_regions used for 

physical memory. Another array is created to save the mapping between virtual 

memory and physical memory. 

 

When called, mmap checks the flags parameter. If MAP_FIXED is set, all mapping 

for the virtual address located in the region [start, start+ length] is cleared. Then find 

a free physical memory from free_map_regions, which can match specified size to 

map to the specified size. The mapping virtual memory and physical memory are also 

removed from free_regions and free_map_regions. If MAP_VARIABLE is set, 

mmap first checks whether the specified memory region has been used. If it has not 

been used, the specified virtual address is used and mapped to the available physical 

memory. If the memory has been used or no memory is specified, mmap finds 

another available memory region from free_regions and free_map_regions and maps 

them. For the other conditions, any available virtual memory and physical memory 

can be used. Figure 5-2 shows the operation sequence of mmap. 
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Figure 5-2. Logic Diagram in mmap 

5.4. Paging  

In Section 2.3 and Section 4.3, we have described the memory management in 



- 51 - 

JikesNode. The mixing of 4-KByte and 4-MByte pages is used in the system and the 

first 4 MB memory uses 4-KByte pages. Currently, JikesNode sets the kernel start 

from 0x100000 and the JikesRVM image start from 0x1000000. Between kernel and 

JikesRVM image, there are the C stub functions and Stack. Therefore, the kernel and 

system components are placed in both 4-KByte page and 4-MByte page.  

 

To reduce the TLB [2, Section 10.9] misses and improve overall system performance, 

the system operating system and kernel should be placed in a large page [2 Section 

3.7.3]. But now all kernel and system is in a small page, so we change the first 4 MB 

memory to use 4-MByte page.  

 

This modification is not very complex. The first thing is to remove the code that 

initializes 4-KByte pages and sets them in page directory. Then we should add some 

code to check and set the read/write privileges for the pages, which is originally 

implemented in page table setting. All pages holding the kernel should set read-only, 

while others are read and write. 
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Chapter 6  

Summary 

Research on Operating system is as old as computing itself, but Java Operating 

System is still a new researching area. The JikesNode aims to provide user a higher 

performance, dynamically optimising, operating system architecture.  

 

This project is to do some improvement on the memory management subsystem in 

JikesNode. We import the GenMS garbage collection provided by JikesRVM into the 

system and modify the memory mapping and initialization mechanism. Because 

currently the size of physical memory is much smaller than the size of memory 

required by GenMS, we can’t trigger a nursery collection now. But from the output in 

building phase [Appendix A] and the location of object during running [Appendix B], 

we can find that the GenMS garbage collection works. 

Future Work 

With only 4 months, it’s impossible to implement all JikesNode components. By now, 

JikesRVM is successfully loaded and many classes can be initialized. From the 

author’s point of view, in the future, the main work is to extend system stub functions 

and integrate JNode into JikesRVM.  

� JNI mechanism should be set up after booting the VM, so that the java 

system can utilize the native function in the java library. JikesRVM has 
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implemented a JNI package to interact with native code. Modification of 

JNode to use the JNI package is critical. 

� Many C methods created in klib to replace the C stub in JikesRVM. In 

addtition, these methods also define a set of callbacks which provide a bridge 

between the java call and underlying system functions. The definition and 

description of these methods can be found in [9]. In addition, JikesRVM uses 

VM_Syscall to invocate the C functions, while JNode uses Unsafe class to 

perform hardware access. How to unify these two ways is an important task. 

� A C function has been created for interrupt handler and IRQ handler. Much 

work should be done to implement this function and transfer the interrupt or 

IRQ to the JNode IRQ management subsystem. This would probably require 

changing the VM_Runtime class to provide an entry point for system call. 

� How to build JNode boot image and make JikesRVM to load this boot image 

after finish booting VM. One solution is to build two images together and 

JikesRVM directly intiliaze JNode after finishing booting VM. But using this 

way, the image file will be very large and take a long time to load before 

booting. Another technique is to build JNode to a Jar file, specify the file as 

JikesRVM command line and load it after booting VM. 
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Append A 

A sample run output  

RVMmodule: mod_start = 0x1000000, mod_end = 0x1f38534 mod_size=15585kb cmdline= 

� P 

Kernel end: 0x1f39000 

Memory map provided by grub 

 base_addr=0x0, length_low=0x9fc00, type = 0x1 

 base_addr=0x100000, length_low=0xff00000, type = 0x1 

mmap-length_low=0xff00000, mmap_base_addr_low=0x100000 FreeMem: start=0x1f39000 

end=0x10400000 size=234268kb usable pages=6969 

RunBootImage.main(): VM variable settings 

initialHeapSize 20971520 

maxHeapSize 104857600 

rvm_singleVirtualProcessor 1 

bootFileName |JikesNODE| 

lib_verbose 1 

IA32 jnode build for single virtual processor 

Boot record contents: 

   bootImageStart:       0x1000000 

   bootImageEnd:         0x1f38480 

   initialHeapSize:      0x0 

   maximumHeapSize:      0x0 

   tiRegister:           0x40000 

   spRegister:           0x1c3ace0 

   ipRegister:           0x14d60e0 

   tocRegister:          0x10001d4 

   sysWriteCharIP:       0x0 
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   ...etc... 

post linkage 

Boot record contents: 

   bootImageStart:       0x1000000 

   bootImageEnd:         0x1f39000 

   initialHeapSize:      0x1400000 

   maximumHeapSize:      0x6400000 

   tiRegister:           0x40000 

   spRegister:           0x40000 

   spRegister:           0x1c3ace0 

   ipRegister:           0x14d60e0 

   tocRegister:          0x10001d4 

   sysWriteCharIP:       0x102282 

   ...etc... 

JikesNODE: here goes... 

JikesNODE: here goes2... 

Booting 

Setting up current VM_Processor 

Doing thread initializProcessor 

Doing thread initialization 

Setting up write barrier 

Setting up memory manager: bootrecord = 0x0100000c 

i386.c 

mmap(start=0x11000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0 

) 

free_map_region[0].start=3400000;free_map_region[0].end=10000000 

mapping[1].vp_start_address=0x11000000, 

vp_end_address=0x11400000;mapped_start=0 

x3000000 ,mapped_end=0x3400000 

mmap(start=0xa3c00000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0 
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)free_map_region[0].start=3800000;free_map_region[0].end=10000000        

mapping[1].vp_start_address=0x11000000, 

vp_end_address=0x11400000;mapped_start=0 

x3000000 ,mapped_end=0x3400000 

mapping[2].vp_start_address=0xa3c00000, 

vp_end_address=0xa4000000;mapped_start=0 

x3400000 ,mapped_end=0x3800000 

Garbage Collection being used now 

$Id: GenMs.java,v 1.4 2005/05/25 14:58:04 irogers Exp $ 

Create two objects, should be located in Nursery Space 

String one 

0xa3c00028 

String two 

0xa3c00038 

Stage one of booting VM_Time 

Initializing baseline compiler options to defaults 

java.lang.Throwable 

mmap(start=0x13000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0 

)free_map_region[0].start=3c00000;free_map_region[0].end=10000000 

mapping[1].vp_start_address=0x11000000, 

vp_end_address=0x11400000;mapped_start=0 

x3000000 ,mapped_end=0x3400000 

mapping[2].vp_start_address=0xa3c00000, 

vp_end_address=0xa4000000;mapped_start=0 

x3400000 ,mapped_end=0x3800000 

mapping[3].vp_start_address=0x13000000, 

vp_end_address=0x13400000;mapped_start=0 

x3800000 ,mapped_end=0x3c00000 

java.util.zip.ZipEntry 

com.ibm.JikesRVM.classloader.VM_MemberReference 
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java.net.URL 

java.util.TimeZone 

com.ibm.JikesRVM.jni.VM_JNIEnvironment 

java.util.ResourceBundle 

gnu.java.net.protocol.jar.Connection$JarFileCache 

java.lang.Thread 

com.ibm.JikesRVM.VM_EdgeCounts 

com.ibm.JikesRVM.classloader.VM_Type 

com.ibm.JikesRVM.classloader.VM_InterfaceMethodSignature 

com.ibm.JikesRVM.jni.VM_JNICompiler 

java.lang.System 

com.ibm.JikesRVM.VM_DynamicLibrary 

com.ibm.JikesRVM.VM_CompiledMethods 

java.util.Locale                                                                

java.lang.Math 

java.util.Calendar 

com.ibm.JikesRVM.VM_Statics 

java.net.URLConnection 

gnu.java.nio.charset.Provider 

com.ibm.JikesRVM.classloader.VM_TypeReference 

com.ibm.JikesRVM.classloader.VM_TableBasedDynamicLinker 

com.ibm.JikesRVM.classloader.VM_Atom 

com.ibm.JikesRVM.VM_StackTrace 

Fetching command-line arguments 

Early stage processing of command line 

Collector processing rest of boot options 

Initializing bootstrap class loader 

Stage two of booting VM_Time 

Running various class initializers 

running class intializer for gnu.classpath.SystemProperties 
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mmap(start=0x15000000, lenght=1048576, prot=7, flags=50, fd=-1, offfset=0 

)free_map_region[0].start=4000000;free_map_region[0].end=10000000 

mapping[1].vp_start_address=0x11000000, vp_end_address=0 

x11400000;mapped_start=0x3000000 ,mapped_end=0x3400000 

mapping[2].vp_start_address=0xa3c00000, 

vp_end_address=0xa4000000;mapped_start=0 

x3400000 ,mapped_end=0x3800000 

mapping[3].vp_start_address=0x13000000, 

vp_end_address=0x13400000;mapped_start=0 

x3800000 ,mapped_end=0x3c00000 

mapping[4].vp_start_address=0x15000000, 

vp_end_address=0x15400000;mapped_start=0 

x3c00000 ,mapped_end=0x4000000 

running class intializer for java.lang.Runtime 

running class intializer for java.lang.System 

running class intializer for java.lang.Void 

running class intializer for java.lang.Boolean 

running class intializer for java.lang.Byte 

running class intializer for java.lang.Short 

running class intializer for java.lang.Number 

running class intializer for java.lang.Integer 

running class intializer for java.lang.Long 

running class intializer for java.lang.Float                                    

running class intializer for java.lang.Character 

running class intializer for java.util.WeakHashMap 

running class intializer for java.lang.ThreadGroup 

running class intializer for java.lang.ThreadLocal 

running class intializer for java.security.VMAccessController 

running class intializer for java.io.File 

running class intializer for gnu.java.lang.SystemClassLoader 
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running class intializer for java.lang.String 

running class intializer for java.lang.VMString 

running class intializer for gnu.java.security.provider.DefaultPolicy 

running class intializer for java.net.URL 

running class intializer for java.net.URLClassLoader 

running class intializer for gnu.java.net.protocol.jar.Connection$JarFileCache 

running class intializer for java.lang.ClassLoader$StaticData 

running class intializer for gnu.java.io.EncodingManager 

running class intializer for java.nio.charset.CharsetEncoder 

running class intializer for java.nio.charset.CoderResult 

running class intializer for java.io.PrintWriter 

running class intializer for java.io.PrintStream 

running class intializer for java.util.SimpleTimeZone 

running class intializer for java.util.Locale 

running class intializer for java.util.Calendar 

running class intializer for java.util.GregorianCalendar 

running class intializer for java.util.ResourceBundle 

running class intializer for java.util.zip.Inflater 

running class intializer for java.util.zip.DeflaterHuffman 

running class intializer for java.util.zip.InflaterDynHeader 

running class intializer for java.util.zip.InflaterHuffmanTree 

running class intializer for gnu.java.locale.Calendar 

running class intializer for java.util.Date 

Booting VM_Lock 

Booting scheduler 

Using a time-slice of 20 ms 

Initializing JNI for boot thread 

Running late class initializers 

running class intializer for java.io.FileDescriptor  

running class intializer for java.util.PropertyPermission 
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VM is now fully booted 

Initializing runtime compiler 

Late stage processing of command line 

[VM booted] 

Initializing socket factories 

Extracting name of class to execute 

vm: Please specify a class to execute.  

vm:   You can invoke the VM with the "-help" flag for usage information. 

JikesNODE: exit 100 

Exit no=100 

Halted. 
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Appendix B  

Some building output 

/usr/lib/java/bin/javac -encoding iso-8859-1 -nowarn –g 

-classpath .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zhangya

/rvmBuild-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.c

lasses/mmtk.jar 

-bootclasspath .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zha

ngya/rvmBuild-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/R

VM.classes/mmtk.jar GenerateInterfaceDeclarations.java 

/usr/lib/java/jre/bin/java -Xmx200M –classpath 

 .:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes:/home/M04/acs/zhangya/rvmBuil

d-antigua/RVM.classes/rvmrt.jar:/home/M04/acs/zhangya/rvmBuild-antigua/RVM.classes/m

mtk.jar GenerateInterfaceDeclarations -ia 0x1000000 -out  

/home/M04/acs/zhangya/rvmBuild-antigua/RVM.scratch/InterfaceDeclarations.h 

/**********Following output is implemented in the source code*********** 

Construct a memory space 

Space name=boot 

Start Address=16777216 

Size=268435456 

Construct a memory space 

Space name=immortal 

Start Address=285212672 

Size=33554432 

Construct a memory space 

Space name=meta 

Start Address=318767104 
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Size=33554432 

Construct a memory space 

Space name=los 

Start Address=352321536 

Size=314572800 

Construct a memory space 

Space name=nursery 

Start Address=2747269120 

Size=473956352 

JikesNode uses GenMS garbage colleciton 

Construct a memory space 

Space name=ms 

Start Address=666894336 

Size=1572864000 

Construct GenMS 

/****************** END **************** 

(wrote interface) 15 s 

jbuild.linkImage: (bootimage cleaned)  

 


