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Abstract

Chip Multi-Processor (CMP) systems are now very popular. This trend to have

multi-core and multi-threading makes the system increasingly difficult to target.

Also, the lack of runtime information stretches the compiler’s abilities to make

accurate performance predictions. So how can sequential applications benefit

from the ubiquitous CMP? A good choice is a dynamic execution environment

that automatically parallelizes programs and adaptively optimizes the code at

runtime.

This work investigates how adaptive parallelization and optimization, directed by

hardware feedback, improves runtime performance of sequential applications. A

Java Virtual Machine based, fully-runtime, parallelization and optimization sys-

tem is built and evaluated on top of a particular CMP architecture, the JAMAICA

CMP, which provides fine-grain parallelism support. This runtime system per-

forms loop-level parallelization for both the normal CMP system and the CMP

system with thread level speculation (TLS) support. The developed adaptive

optimizations are performed by an online tuning system which tunes parallelized

loops adaptively, driven by runtime feedback. These adaptive optimizations con-

centrate on improving the load balance and data locality for the normal CMP

system, and finding the best decomposition to reduce the runtime overhead for

the CMP with TLS support.

The evaluation is based on a cycle-level simulation system, which can be eas-

ily configured as different hardware configurations. Experiments show that this

purely runtime adaptive system is capable of parallelizing and tuning standard

11



benchmarks and achieving performance improvements as much as 12.5% com-

pared with the scheme used by static compilation with parallelization. By evalu-

ating this system with various hardware configurations, good scalability is demon-

strated which means that the applications can be well adapted to different hard-

ware configurations and achieve good performance.
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Chapter 1

Introduction

Chip Multi-Processor (CMP) [36, 53, 59, 48, 65, 83] architectures provide extra

resources that can be exploited by threaded applications. As the number of pro-

cessing cores and threads increases, there is a trend toward fine-grain parallelism

[3, 55]. Managed languages based on high level language virtual machines (e.g.

Java [61] and C# [27]) which employ dynamic compilation and optimization have

been widely used in the software industry. Is it feasible to build a new runtime

system which can perform runtime parallelization and optimization on a CMP

architecture? Does this approach make sense and compare to the programming

models used in scientific computation?

The research work presented in this thesis will answer these questions by devel-

oping and evaluating a Java virtual machine based on runtime parallelization and

optimization system. This work then goes on to look at adaptively configuring

and improving this runtime environment achieving performance beyond what is

possible with parallelization alone.

1.1 Motivation

1.1.1 New Benefits and Challenges in CMP Architecture

Traditional large-scale and small-scale multiprocessor systems have been able

to obtain speedups with large scientific programs that contain a large amount

16



CHAPTER 1. INTRODUCTION 17

of parallelism. This parallelism can be found and exploited by parallel compilers

[91, 13, 64, 2, 5, 75]. The development of new CMP architectures with lightweight

threading provides the ability to extract small parallel tasks (i.e. parallel tasks

which have about 30 to 100 instructions). By integrating multiple processor cores

into one die, CMP architectures make the interprocessor communication process

quicker and more efficient, so running even 30-100 instructions in parallel will

obtain a speedup.

But the ability to extract fine-grain parallelism using much smaller threads can

also trigger new problems for the efficiency of parallelism. Compared with parallel

tasks on a multiprocessor system that contain more than 1,000 instruction cycles,

the performance of the CMP’s small task is more easily affected by load imbalance

and memory delay. For example, given a fine-grain task whose execution cycle

count is 100 ideally, if there is one more cache miss in execution and the memory

delay between L1 cache and L2 cache is 16 cycles, then the performance will

decrease by 13.7%. So the change of hardware infrastructure needs more precise

compiler analysis to improve hardware utilization.

Thread Level Speculation (TLS) [38, 80, 78, 6, 25, 34, 54] is another trend in

CMP development. It splits the sequential program into parallel threads and

executes them speculatively. When a true dependence violation is detected, the

hardware must ensure that the “later” thread in the sequence executes with the

proper data by dynamically discarding threads that have speculatively executed

with the wrong data. The major challenge of TLS is how to decompose the

program efficiently, thus reducing the number of collapsed threads and improving

the parallelism.

1.1.2 Lack of Runtime Information

Optimizing compilers are limited by the information that is available to them at

compile-time. Optimizations implemented in a compiler are applied using models

of program and machine behaviour that include many simplifying assumptions

due to the complexity of modern computing systems and the lack of accurate

runtime information. There are two types of the runtime information: the appli-

cations’ input data sets, and information about the target machine configuration.

Most applications are written so that they can be applied to different sizes of
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input data set, and so, at compile-time, the exact input data set information is

not available. The target machine’s configuration can also be varied, e.g. different

sizes of cache and memory, different speeds of processor.

Optimizing compilers are forced to evaluate the effectiveness of optimizations

statically, most often without any knowledge of the input data set and hardware

configuration. The lack of runtime information stresses the compiler’s abilities

to make accurate performance predictions. For example, it is difficult to give at

compile-time a suitable tile size for a parallelized loop which works on a CMP,

since the compiler needs to consider : the size of input data, the size of the loop

(or the number of iterations), the size of L1 cache for the processors, and the

number of processors that are available for the parallel loop.

1.1.3 Iterative Compilation and Runtime Optimization

Using runtime information to exploit more optimizations is a good choice for im-

proving applications’ performance. By employing an efficient runtime profiling

mechanism, the optimizer can get enough information to decide how to optimize

the program (e.g. code specialization, tile size selection). Some runtime opti-

mization frameworks have been built for optimizing Dynamic Binary Translation

(DBT) [77] and a linear algebra library [90].

The basic issues for runtime optimization are:

• How to construct a search space, i.e. the multi-version code, configuration

parameters, and the optimizations used for recompilation.

• How to search for an optimum? This depends on the selection of the search

algorithm and the size of the search space.

Iterative compilation uses runtime feedback to improve the optimization itera-

tively. Recent progress in iterative compilation [50, 51] has shown that this ap-

proach can achieve high speedups, outperforming static techniques. Given a large

search space, an acceptable performance (i.e. 90% of the optimal) can be found

in limited iterations by employing a simple search algorithm (i.e. hill-climbing

[66]). The shortcoming of this methodology is the overhead for recompilation
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(i.e. building multiple target programs with different optimizing parameters). So

while using a runtime search mechanism can get potential benefit, the major

problem is how to handle the overhead.

There are three major types of runtime program optimization: multi-version code

selection, runtime parameterization, and runtime code generation.

• Multi-version code selection: multiple versions of a code section are gener-

ated at compile-time, and at runtime one of these versions is selected based

on the monitored performance.

• Runtime parameterization: the code is generated at compile-time, but it is

configurable, so the runtime tuning system can reset the configuration (e.g.

reset the tile size for blocking).

• Runtime code generation: generating code on-the-fly at runtime can be the

most powerful runtime optimization, since it can use various methods to

optimize the code. But it also has the highest overhead, because it needs

to invoke the compiler at runtime.

The first two methods have small runtime overhead, because they are easy to

implement by runtime reconfiguration. The third method needs the assistance

of the compiler. To make the runtime system work efficiently, the compilation

thread should be dispatched to a separate processor core in the CMP system.

The optimizer can also allocate multiple compilation threads to build multiple

versions of code, when the runtime system is not busy and there are enough idle

processor cores.

1.1.4 High Level Language Virtual Machine

High level language virtual machines provide an efficient facility to perform

runtime optimization and code generation. Using runtime feedback informa-

tion to drive runtime optimization has been widely used in Java virtual ma-

chine implementations [44, 1, 81] to improve runtime performance. For example,

Sun HotSpot JVM uses runtime profiling to drive the runtime recompilations;
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JikesRVM uses the dynamic compiler to plant instrumenting code into the com-

piled Java method; this code performs runtime profiling and the runtime opti-

mizers can use this statistical data to drive the optimizations adaptively (e.g.

adaptive inlining, and adaptive recompilation with more optimization phases).

1.2 Adaptive Runtime Optimization

Adaptive runtime optimization means using runtime feedback to drive optimiza-

tion adaptively. Figure 1.1 shows a basic model of an adaptive controller. It uses

feedback to drive the control process.

 adaptive
controller

input
output

feedback

Figure 1.1: A Simple Model of An Adaptive Control System.

To allow optimization to occur in the context of more accurate knowledge of the

size of input data set and hardware configuration, exploring runtime optimization

(or parallelization) is necessary. This thesis will address whether it is feasible to

build a fully-runtime optimization system which can perform parallelism creation

and optimization driven adaptively by runtime feedback information.

The runtime system presented in this work is an adaptive runtime optimization

system which combines a loop level parallel compiler and an automatic online

tuning framework within a Java virtual machine that works on the JAMAICA

CMP architecture [93]. By employing the JAMAICA CMP’s capability of dis-

tributing fine-grain parallelism, the adaptive optimization system can perform

online tuning to improve the performance of parallelized code with acceptable

overheads.

In this runtime system the input is the program code (i.e. Java bytecode); the
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adaptive controller is the runtime executing environment (including the paral-

lelization and optimization); the output and the feedback are the runtime infor-

mation generated by executing the input program code (e.g. the execution cycle

count). The runtime feedback information is used to drive the optimizing process.

To construct this runtime system, several issues need to be considered (details

will be discussed in Chapters 4, 5 and 7):

• How to construct an efficient dynamic executing environment on a CMP

architecture? This depends on both hardware and software support.

• How to perform runtime parallelization to improve the sequential applica-

tion’s performance on CMP architecture?

• How to utilize runtime information and perform runtime optimization? This

will need to consider: how to construct a search space? And how to search

for an optimum?

1.3 Related Work

To open the discussion of this research, this section briefly reviews the evolution

of and current issues surrounding both runtime optimization and iterative com-

pilation, including the typical frameworks and research work that have applied

different methods for runtime evaluation to improve an application’s runtime

performance 1.

1.3.1 Runtime Optimization Frameworks

ATLAS

ATLAS is a widely used linear algebra library which was built by the Automat-

ically Tuned Linear Algebra Software (ATLAS) project [90, 89]. This project

applied an automatic tuning mechanism to software packages (e.g. basic linear

algebra software library(BLAS)). The software package provides many ways of

1The specific points of comparison will occur later in Chapters 5 and 7.
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doing the required computational work, and uses empirical timings to choose the

best method for a given architecture. ATLAS typically uses code generators to

generate multiple code versions, and has sophisticated search scripts to find the

best choice.

ATLAS uses a profiling run to perform optimization and find the optimal choices

for the basic BLAS routines, then these optimized routines will be used to con-

struct the application. So, ATLAS is not a fully-runtime optimization system,

but it is still typical of one type of optimization system.

ADAPT

Voss and Eigenmann [86, 85] established an adaptive optimization framework

named Automatic Decoupled Adaptive Program Transformation (ADAPT) which

performs dynamic optimization on hot spots through empirical search. ADAPT

is built in a multiprocessor environment and is fully-runtime. It uses dynamic

recompilation to evaluate different optimizations and a domain-specific language

to drive the search in the optimization space for a specific optimization (e.g. for

loop unrolling, each level of unrolling will be compiled, run and timed, and the

fastest version will be kept and used for the hot spot). ADAPT evaluated a

series of optimizations which have various parameters (e.g. loop tiling, loop un-

rolling). The optimizer (i.e. profiler and compiler) used for collecting statistics

and recompiling was run on an isolated processor; this mechanism could reduce

the recompilation overhead at runtime and the uniprocessor related optimiza-

tion (e.g. loop tiling/unrolling, useless copying, flag selection) can benefit from

this improvement without interference, however optimization for automatic par-

allelization could be affected by losing one processor which may be required in a

multi-threaded or multi-programmed environment.

Jrpm

Jrpm [21] is a Java virtual machine running on the Hydra CMP [37] system

which has TLS support. This runtime system performs runtime speculative loop-

level parallelism. Its runtime optimization concentrates on how to decompose

sequential Java programs efficiently, so they can benefit more from speculative
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parallelism. Jrpm uses the compiler to generate code for the profiling run, and

employs a hardware based profiling mechanism [22] to help the compiler identify

which loops are most suitable for speculative parallelism. Jrpm needs to generate

code at least twice to perform the profiling run and the optimized run.

Dynamic Feedback

Diniz and Rinard [28] use a simple version selection mechanism which reacts to

runtime inputs and loop parameters. Their dynamic optimization system also

generates code to provide dynamic feedback, allowing automated selection of the

best synchronization policy for parallel execution. In their scheme, a program

has alternating sampling and production phases. In the sampling phase, code

variants (multi-version code) generated at compile-time are executed and timed.

The phase continues for a user-defined interval. After the interval expires, the

version which has the shortest average execution time is selected to be used in

the production phase.

DyC

DyC [35] selectively dynamically compiles programs during their execution, uti-

lizing the runtime computed values of variables and data structures to apply op-

timizations that are based on partial evaluation. The dynamic optimizations are

mainly specialization related optimizations. These optimizations are preplanned

at compile time in order to reduce their runtime cost. Because of the large suite of

optimizations and its low dynamic compilation overhead, DyC achieves good per-

formance improvements on practical programs that are larger and more complex

than just kernels.

Dynamo

The HP Dynamo project [11] is a runtime binary translation system. Its goal is to

optimize a native executable as it runs. Dynamo begins by interpreting the native

executable and then collects and optimizes frequently executed code traces. These

traces can extend beyond basic block and subroutine boundaries, creating larger
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blocks with simplified control flow. Dynamo operates on the runtime stream

of binary instructions and its overhead is directly in the critical path of the

application. As it works at binary level, the adaptive optimizations are also

performed at the binary level.

1.3.2 Iterative Compilation

Kisuki, O’Boyle and Knijnebury et al. [50, 51, 15] investigated iterative com-

pilation for loop tiling and loop unrolling. Their proposed compilation system

achieved high speedups, outperforming static techniques. The system shows that

high levels of optimization can be achieved in a limited number of iterations

by applying a hill-climb-like search algorithm. In recent progress, Fursin et al.

[33, 32] explored online empirical searches using scientific benchmarks. To re-

duce runtime code generation overheads, a set of optimized versions of code were

created prior to the execution of a program. These versions were then evaluated

at runtime with the best performing version chosen for subsequent execution.

They employed predictive phase detection to identify the periods of stable repet-

itive behaviour of a program and used these phases to improve the evaluation of

alternative optimized versions.

Similarly Lau, Arnold et al. [57] investigated an online framework for evaluating

the effectiveness of optimizations. They present a virtual machine based online

system that automatically identifies the optimal parameters for optimizations,

and give an example for selecting a method inlining policy by utilizing the frame-

work. By deploying optimizations at the method-level, more runtime noise is

present in the system, and they use a large number of iterations to assess the

effectiveness of optimizations.

1.4 Contributions

The major contributions of this thesis are building and evaluating an adaptive

optimization framework for runtime parallelization and thread level speculation:

Online Tuning Framework (OTF). This system is built with a high level language
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virtual machine (i.e. a Java Virtual Machine) which works on a novel CMP ar-

chitecture (JAMAICA CMP architecture with lightweight task creation). Table

1.1 shows the features of this research compared with related work.

The detailed list of contributions is:

• A loop-level parallel compiler which can perform automatic parallelization 2

and is embedded in JAMAICA Virtual Machine’s optimizing compiler [29].

This compiler implementation demonstrated how to handle runtime paral-

lelization problems in a Java Virtual Machine (e.g. data dependence anal-

ysis, long running loop promotion, alias analysis et al.) and utilize the

lightweight mechanism to achieve speedup and scalability on different hard-

ware configurations with acceptable runtime overhead.

• An adaptive optimization framework which can evaluate the parallelized

code segment (parallelized loops) and perform automatic tuning to improve

runtime performance adaptively with low overhead. The performance goes

beyond näıve static analysis and gains up to 12.5% in certain input data

size and hardware configurations.

• Several runtime optimizations based on the adaptive mechanisms, which

can improve the load balance and data locality. These optimizations can

be dynamically tuned within the adaptive optimization framework.

• An extended multi-version cache module and instruction set which can sup-

port thread level speculation on the JAMAICA architecture. This brings

about a novel combination of lightweight threading and speculative execu-

tion.

• Analysis of adaptive decomposition for speculative loop-level parallelization.

By searching for the best decomposition at runtime, the performance gains

up to 12% improvement compared to näıve TLS.

Parts of this research work have already been published [94, 95, 97, 74, 96].

2The current implementation can perform DoAll parallelization and part of DoAcross par-
allelization for scatter operations.
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Table 1.1: The Primary Features of JAMAICA OTF Compared with Other Op-
timization Frameworks.
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1.5 Thesis Organization

Chapter 2 introduces the hardware platform: the JAMAICA CMP architecture

which is a scalable chip multiprocessor system with a novel token ring mechanism

for task distribution. Chapter 3 introduces the software infrastructure: JaVM

which is a Java virtual machine running on the JAMAICA CMP. JaVM provides

the runtime support for lightweight threads.

Chapter 4 introduces the design and implementation issues of the dynamic loop-

level parallel compiler. Chapter 5 gives the detail of the online tuning framework

(OTF) which performs adaptive runtime optimizations on the parallelized loops.

Several of OTF’s adaptive optimizations that improve load balance and data

locality are evaluated here.

Chapter 6 introduces the extended hardware and software support for enabling

thread level speculation on the JAMAICA CMP architecture. Chapter 7 eval-

uates the adaptive optimizations which concentrate on how to decompose the

program to make the speculative parallelization work efficiently.

Finally, Chapter 8 concludes this work and indicates future work.



Chapter 2

JAMAICA CMP

Java Machine And Integrated Circuit Architecture (JAMAICA) [93] is a CMP ar-

chitecture with multi-threading [70] processor cores, hardware support for lightweight

task distribution, and Chip Multi-Cluster (CMC) [43] support.

The major aim of the JAMAICA CMP is to provide a platform upon which dy-

namic compilation for parallelism can be evaluated. Section 2.1 discuss the basic

issues in this architecture. Section 2.2 gives a brief introduction to JAMAICA

CMP’s simulation environment. The last Section 2.3 summarizes this chapter.

2.1 JAMAICA Architecture

2.1.1 Processor Core

The JAMAICA CMP employs a simple 5-stage single-issue pipeline processor

core (shown in figure 2.1)1, similar to the MIPS R2000 [49], and complicated by

the addition of register windows and a token interface unit to support thread

distribution.

JAMAICA supports multi-threading processor cores which help to reduce the

effect of memory latency and improve overall throughput. Each processor core

1F1, F2, M1, M2 cooperate with TLB and caches to handle virtual addresses. F1 and F2
could be treated as one stage F for instruction fetch. M1 and M2 could be treated as one stage
M for memory operation.

28
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Figure 2.1: JAMAICA CMP Processor Core.

can maintain 1, 2 or 4 hardware thread contexts. Each context maintains its own

context specific registers, containing register, interrupt and other thread specific

state. Each context shares the core pipeline and level 1 instruction and data

caches.

The contexts within a processor core can reside in one of the five states: runnable,

stalled, waiting, empty and idle. The state transformation diagram is shown in

Figure 2.2. JAMAICA employs a blocked, switch-on-cache-miss multi-threading

policy [84], extended by an additional switch-on-timer policy which triggers a

context switch event when a context has been running for 1,000 cycles unhindered

by cache misses. A round robin policy is used to rotate the active context from

the list of runnable contexts for scheduling into the pipeline. If no contexts are

runnable at a context switch event, the core itself becomes idle.

Context switching can help to hide memory latency, by keeping the core busy

executing instructions from a runnable context during the memory stall incurred

by another context, reducing memory latency and improving overall throughput.

2.1.2 Register Windows

As object oriented languages encourage creating modular code, an application

may be composed of lots of small functions that will be executed frequently. In a
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Figure 2.2: Context States Transformation.

processor with a flat register file, calling and returning from functions requires the

current active registers (the registers used by caller) to be saved to memory and

restored from memory at the callee’s return. Such load/store operations are very

costly when function calls happen frequently. The JAMAICA CMP architecture

employs a register window mechanism to reduce the effects of frequent method

calls. A large windowed register file is shared between all of the contexts in a

JAMAICA processor core. The hardware supporting the register file implements

a register window scheme [87], based on the Multi-Windows proposal [76]. 32

registers are visible to the compiler; these registers are divided into four windows

each containing eight 32-bit registers.

• Global Window : shared by all contexts on a processor core. (register %g0

- %g7 )

• Extra Window : private per context, statically allocated, non-volatile across

methods calls. (register %x0 - %x7 )

• Input Window : private per context, dynamically allocated at each method

call, non-volatile across method calls. (register %i0 - %i7 )

• Output Window : private per context, dynamically allocated at each method

call, volatile across method calls. (register %o0 - %o7 )
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All the contexts on a processor core share the Global Window, which is mapped

directly to the bottom eight physical registers. Each context has a private Ex-

tra Window, mapped into the physical register windows located directly above

the Global Window. The Input Window and Output Window are allocated and

released dynamically during method calls (shown in Figure 2.3). In JAMIACA

the caller’s Output Window overlaps with callee’s Input Window and passes six

variables 2. Passing more variables requires spilling into the stack frame.

int foo() {
    int x, y;
    ... ...
    y = bar(x);
    ... ...
}

int bar(int x) {
    ... ...
    int z = x * x;
    ... ...
    return z;
}
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Figure 2.4: Spilling and Filling using Register Windows.

In this register window scheme, a large register file is divided into windows each

containing a number of registers, the register fields in instructions are interpreted

as offsets from a Current Window Pointer (CWP). When the application’s call

2Two registers are explicitly used to pass the return PC and stack pointer.
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depth exceeds the number of windows available in the physical register file, the

system still needs to spill and fill the registers from memory. When the increment-

ing of CWP overflows the top of physical registers and the CWP circles around

to the bottom of the physical registers (shown in Figure 2.4 (a)), the bottom

window is spilled to memory (shown in Figure 2.4 (b)). When the CWP unwinds

again, the spilled window will be missing and this window must be filled from

memory in order to complete a return (shown in Figure 2.4 (c)).

2.1.3 Token Ring and Task Distribution

A novel feature of the JAMAICA CMP is explicit hardware support for lightweight

task distribution. This hardware support consists of a ring bus connecting all of

the processing cores (shown in Figure 2.5). The ring allows active processor

contexts to locate idle processor contexts.

The major advantages of this token ring mechanism is that it provides a sim-

ple mechanism to: distribute information about idle processing resources; resolve

competition to allocate an idle processor context; and schedule a task for execu-

tion on the allocated processor context. Any runtime thread can simply grab a

token as it passes, granting it exclusive ability to distribute a parallel task to the

processor context which released the token (the next chapter discusses how the

runtime system supports token-based task distribution). This avoids many of the

complexities and costs involved in employing a software scheduler, particularly

those associated with memory-based synchronization. The following subsections

discusses the implementation details of this mechanism.

Token Release

When an active context exits from the bottom of its executing stack, detected

in hardware by a return from an Input Window that has no predecessor, the

context’s state changes from runnable to idle (see Section 2.1.1) and a token is

released onto the ring bus where the tokens circulate. The token placed onto the

ring simply contains the identity, a unique number referred to as the Context ID

stored in a hardware context register, of the context now in the idle state.
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Token Selection

The JAMAICA instruction set provides an additional instruction: Token Request

(TRQ) instruction which requests a token from the ring bus. To help the active

thread grab tokens from different processors or clusters selectively, a token dis-

tance mechanism is employed here. The token distance is a special flag used to

annotate whether the token is from a local processor context or remote processor

context in a single CMP. For CMC architecture, the token distance is used to

annotate whether the token should come from a local cluster or remote cluster.

When the active thread sends a token request on the ring bus by using TRQ

instruction, it can set the token distance in the operator register to inform the

ring which token it prefers.

Task Distribution

To distribute tasks, the JAMAICA instruction set provides two special instruct-

ions: Thread Jump (THJ) and Thread Branch (THB) which distribute a task to

the context identified by the Context ID stored in the token.

The active thread gets a token from the ring bus by using a TRQ instruction

and uses THB/THJ 3 to distribute a task to the idle context identified by the

token got by TRQ. Ten 32-bits values are transferred by THB/THJ instructions:

start PC value, the active context’s Context ID and the active context’s current

Output Window registers 4. The start PC value will be set in the idle context’s PC

register, the active context’s Context ID will be set in the corresponding context

register and the Output Window register will be assigned to the idle context’s

Input Window registers. The data transmission is performed on the L1 cache bus

directly 5. After the transformation, the idle context is runnable and starts to

execute at the new PC.

In contrast to some of the traditional task-spawn mechanisms which replicate

3The difference between the THB and THJ is the transformed PC value. THJ need to be
assigned an address which is PC value. THB need to be assigned a branch offset (integer value),
and the transformed PC value is the active context’s current PC value plus branch offset.

4The Output Window registers’ values are carried by data lines, PC and Context ID are
carried by address lines.

5For a CMC extension, the data transmission needs to pass the level 2 cache bus, and details
will be discussed in Section 2.1.4
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all registers and the PC to remote processors, the JAMAICA architecture just

replicates the output window registers, the PC and context IDs when it ships tasks

to another processor context. So the shipped task must have an initialization

process to initialize some values so it can start to execute the working code.
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Figure 2.6: Memory Hierarchy on Single CMP.

2.1.4 Memory Hierarchy and Scalability

The JAMAICA architecture supports single CMP and CMC [43]. The single

CMP (or “normal” JAMAICA) has private level 1 (L1) instruction and data
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caches, connected via a shared memory bus to a single shared level 2 (L2) cache

(shown in Figure 2.6). The CMC, combines multiple single CMPs together and

connects them via a shared memory bus to a single shared level 3 (L3) cache

(shown in Figure 2.7).

Cache Coherence

Between each level of caches, a shared split-transaction bus is used for connec-

tion. All caches in the architecture maintain sequential consistency to allow for

standard shared memory programming.

The CMP architecture must maintain memory consistency because each processor

core has its own L1 cache. On the JAMAICA CMP, memory consistency is

maintained through cache coherence protocols implemented across the shared bus

that connects the L1 and L2 caches. The cache coherence protocol implemented in

the JAMAICA architecture is based on the MOESI protocol [39]. Each processor

core can communicate with its L1 data cache privately. If an address is requested

that is not currently cached, a request must be made across the shared bus. This

request, and the continual snooping by all L1 caches on the bus, updates the

state of cache lines loaded from the L2 shared cache.

The bus used to connect L1 and L2 caches is a split transaction arbitrated bus.

Only one processor will be given access to the bus that it shares during the

arbitration phase. Once bus ownership is granted and the core has been given a

transaction id, a processor core’s L1 cache can request a cache line from the L2

cache or place a cache line on the data wires to write it back to the L2 cache.

As mentioned in the previous section, the bus is also used for thread distribution

between the processor cores, it transfers the register data (the input window

registers, PC and SP).

Multi-Cluster Cache Coherence

To increase the ability of the JAMAICA architecture to scale with the addition of

more processing cores the single shared bus architecture is replaced by a scalable

multi-level cache hierarchy (shown in 2.7). The multi-level hierarchy, by dividing
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Figure 2.7: Memory Hierarchy on the CMC.

the total number of cores into clusters each connected through a hierarchy of

memory bus and caches, can allow many more cores to be integrated onto a

single chip, whilst maintaining shared memory and limiting the span of each

interconnect to reduce the effects of cross-chip wire-delay.

Each intra-cluster network is independently arbitrated and accessed concurrently

allowing the cores within each cluster to access the larger cluster-shared cache

with less contention. The additional scalability, however, comes at the expense

of a more complex coherence protocol that needs to maintain coherence across

multiple clusters, and the need to maintain cache inclusion.

2.1.5 Interrupts

The JAMAICA architecture supports a limited number of hardware and software

generated interrupts. Interrupts vector a context’s execution path to interrupt

handler code located at the bottom of the memory image, addressed by the type

of interrupt. A software interrupt, SIRQ, can be delivered to any context in the

runnable, waiting, stalled or empty states. The SIRQ is delivered to a processor

context by the shared memory bus in a similar manner to the THB/THJ. Contexts

in the idle state can only be woken up by using THB/THJ instructions, therefore

a SIRQ to an idle context is ignored.

Currently, a single software interrupt is used to wakeup all contexts during the

system booting process, and a hardware interrupt is used to trap on access to an

invalid memory address.
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2.1.6 Devices

There is no defined device interface in the JAMAICA architecture, and hence no

associated device hardware interrupts. The JAMAICA simulator enables calls

to the underlying operating system for I/O operations through a set of defined

built-in operations (discussed in the next section).

2.2 JAMAICA Simulation

JAMAICA is a simulated architecture which is currently implemented in a soft-

ware simulator. The JAMAICA simulation platform, jamsim, is a Java simulation

platform that has been developed to execute binaries created for the JAMAICA

ISA. jamsim supports several models of simulation: fast, functional simulations

required for system software development as well as cycle-level simulations, which

are essential for quantitative evaluation of the architecture.

Java VM on Host Machine

jamsim (JAMAICA Simulator)

Java VM on Host Machine

jamsim (JAMAICA Simulator)

JaVM (JAMAICA Virtual Machine)

Java Application
I/O System Calls

Simulation Output
Statistics Data

Operating System on Host Machine

Figure 2.8: JAMAICA Simulator.

jamsim is capable of simulating the processor, the interconnection and the mem-

ory hierarchy. Parameterizable components of the simulated architecture include

the number of processor cores, the number of contexts per core, the different cache

sizes and the memory hierarchy. Where it makes sense the simulation platform

can be composed of components at different levels of modelling.
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As JAMIACA does not support a device interface (mentioned in Section 2.1.6),

complete system simulation is enabled using a special range of built-in subrou-

tines. These subroutines, which attempt a call to small negative memory ad-

dresses are trapped during simulation, and the simulator calls out to the under-

lying operating system through the Java virtual machine in which the simulator

is running (shown in Figure 2.8).

2.3 Summary

This chapter introduced the hardware infrastructure on which this thesis is based.

Compared to general CMP architectures, the JAMAICA CMP employs a novel

token ring mechanism and thread branch instructions which can help software

to distribute tasks without a traditional centralized scheduling mechanism. The

JAMAICA CMP also supports multiple CMP clusters which can reduce bus trans-

actions by separating tasks.



Chapter 3

JAMAICA Virtual Machine

The JAMAICA virtual machine (JaVM) [29] is an environment allowing the exe-

cution of Java programs directly on the JAMAICA architecture without operating

system support. This chapter introduces the working mechanism of JaVM, and

its interaction with the JAMAICA hardware, especially for the lightweight thread

mechanism.

Section 3.1 gives an overview of JaVM, including the basic components and how

these components co-operate with each other. Section 3.2 introduces the detail

of the JaVM runtime system. Section 3.3 and Section 3.4 give a brief introduc-

tion to the dynamic compilation and adaptive optimization systems (discussed in

Chapter 4 and 5). Section 3.6 introduces how the JaVM can cooperate with the

simulation environment. Section 3.7 summarizes this chapter.

3.1 Overview

The JaVM is the Jikes Research Virtual Machine (RVM) [44, 9] ported to the

JAMAICA architecture and running without an underlying operating system.

The major modifications are in the following three areas:

• The runtime service system which provides support for thread scheduling,

loading and linking code, and garbage collected memory management.

39
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• The dynamic compilation system which comprises two compilers: the base-

line compiler, that performs a simple mapping of bytecode to machine code,

and a more advanced optimizing compiler.

• The adaptive recompilation system uses runtime profiling information to

determine whether to recompile and thereby improve the performance of

executing code.

The interaction between the components of the system can be seen in Figure 3.1.

Profiling Data

Resolved
Reference

Resolution

Lazy 
Compilation
Stub Invoked

Install code
to System

Compile Class Unit

(Re)Compilation Plan

Adaptive Optimization
System

Dynamic Linker

Executing Code

Class Loader

    Compilers
[Base, Opt0, Opt1]

Figure 3.1: The Interaction between JaVM’s Adaptive Optimization System and
Dynamic Compilation System.

3.2 Runtime System

The JaVM runtime system supports multi-threading from Java threads and fine-

grain threads created by the parallelization system. There are two basic elements

in the runtime system: Virtual Processor and Java Thread. The Java threads

should be scheduled among the virtual processors, and each virtual processor has

its own corresponding physical thread context1.

1In JAMAICA CMP, the basic physical execution unit is a thread context (discussed in
Chapter 2), each processor core can contain one or multiple thread contexts.
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3.2.1 Virtual Processor and Thread Scheduling

To manage the physical processor contexts, JaVM employs a virtual processor

object, VM Processor, which encapsulates the information related to the proces-

sor context. Each processor context has one corresponding VM Processor object.

The basic data structures in VM Processor are the thread queues which are used

to support the thread scheduling (shown in Figure 3.2). Each VM Processor has

one Active Thread which is a Java thread executing on the physical context. The

active thread should yield after an execution interval, then other Java threads can

get the physical context and execute. To perform the thread scheduling mecha-

nism, JaVM employs five types of thread queues, three in each VM Processor, a

single global queue for suspended GC threads, plus a wait queue used to imple-

ment heavy-weight locks, object wait and notify calls.

• Ready Queue (rq): an un-synchronized queue, which contains the threads

that can be activited.

• Transfer Queue (tq): a synchronized queue, which contains the threads

that are transfered from other VM Processors to rq.

• Idle Queue (iq): contains a idle thread, and the idle thread will be transfered

to tq when there are no threads in rq and tq.

• Collector Queue (cq): contains the GC threads. Each GC thread has its

own corresponding virtual processor. The GC threads are activated directly,

without needing to pass though rq or tq.

• Wait Queue (wq): wait queues are allocated from a global pool and tran-

siently associated with: a VM Lock which a competing thread currently

owns; a synchronized method or a synchronized object guarding a block

which is being executed concurrently by a competing thread; an object

which is the target of a call to Object.wait(). In the first two cases threads

will only insert themselves into a wait queue after busy waiting for a short

period. In the third case the waiting thread owns a lock on the target

object which it releases as it inserts itself into the associated wait queue.

Threads are removed from wait queues and rescheduled when, respectively:

the VM Lock is unlocked; the synchronized method/block is exited or the

object being waited on it notified.
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Figure 3.2: The Software/Hardware View of Virtual Processors.

The Java threads are the basic execution units in JaVM at the software level 2.

Each Java thread should get a fair opportunity to execute on the physical con-

text. The general thread scheduling scheme is shown in Figure 3.3 (a). Given a

Java thread which is being scheduled or a newly created Java thread, it should

be placed in the tq at first. Before putting the scheduled thread into the tq, the

thread scheduler process should check if there is an idle processor context, if so,

use the branching mechanism to insert this Java thread into the remote context’s

tq to improve the load balance (details of how the context is restarted and control

switched into the queued Java thread are described in the next section). If a Java

thread calls to continue running by scheduling the queued thread on an idle pro-

cessor context using THB/THJ. It will only place itself in rq and context switch

into another Java thread if it fails to detect an idle processor context. If a Java

thread yields into a wait queue to wait on a lock or synchronized method/block

then it context switches into another Java thread from tq/rq or, failing that, into

an idle thread obtained from iq.

A second scheme is the GC thread scheduling (shown in Figure 3.3 (b)). JaVM

implements a Stop-The-World GC policy, so each virtual processor should have

its own GC thread and all of the GC threads should be activated/deactivated at

the same time. JaVM uses a global thread queue cq to store all these GC threads.

When GC is triggered, the thread which starts GC will dequeue each of the GC

2The interrupt handler is just used for system booting (discussed in Section 3.6)
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Figure 3.3: The Thread Scheduling Schemes.
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public stat ic boolean avai lableWork ( ) {
VM Processor myProcessor = VM Processor . ge tCurrentProces sor ( ) ;

// i f the ready queue or t r an s f e r queue has something in i t
i f ( ! myProcessor . readyQueue . isEmpty ( )

| | ! myProcessor . t rans ferQueue . isEmpty ( ) ) {
return true ;

}

// noth ing to run
return fa l se ;

}

Figure 3.4: The Code for Checking Available Work.

threads from the cq and insert it into the tq of its associated VM Processor.

The time-slice of the VM Processor the then decremented to zero to force a

thread switch when each VM Processor’s active thread reaches its next yield

check point. Idle processor contexts are restarted by polling for tokens and using

calls to THB/THJ to branch a call to Thread.yield() to the remote context in

order to context switch into the GC thread (details of the branching operation

are discussed in next section).

The last scheme is the idle/branch thread scheduling (shown in Figure 3.3 (c)).

There are two threads in iq : Idle Thread (VM IdleThread) and Branch Thread

(VM BranchThread). When there is no Java thread in tq or rq, no triggered GC

event and no Java thread woken up from wq, the threads in iq can be scheduled.

The first scheduled thread is VM IdleThread; it just checks again the rq, tq and

wq to make sure there is no work in the current physical context (see the code

listed below).

If there is no work, the VM IdleThread itself yields and sets the VM BranchThread

as the active thread. The VM BranchThread will trigger the hardware to freeze

and release the token (discussed in the next section). When the VM BranchThread

is shipped a task from remote processor context, it will act as a normal Java thread

and be transferred through tq, rq or wq.
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3.2.2 Runtime Support for Light Weight Threads

A special type of thread, VM BranchThread (referred to as a branch thread),

is used to enable distribution of light weight tasks to idle processor contexts

using the THB/THJ instructions. The same thread also enables scheduling of

Java threads and GC threads on idle contexts, once again using the THB/THJ

instructions.

When a THB/THJ is used to restart execution in an idle processor context it

executes code at PC supplied as argument to the THB/THJ call using arguments

transferred from the caller’s output window to the idle processor context’s input

window. A prologue associated with the target code ensures that execution uses

the branch thread stack and that attempts by the shipped code to reference the

active thread or current processor context resolve to the branch thread and the

processor context’s associated VM Processor. So, a branch thread provides a

‘ready’ Java thread context which is capable of executing a code segment with

almost no setup overhead other than the costs of locating a token and shipping

a target PC/register window across the bus.

Branch threads operate in a similar way to an idle thread but they use the

token hardware to suspend an idle processor context and release a token. Branch

threads are created at startup, one for each processor context. A branch thread is

scheduled in the run queue of each processor context and an interrupt is delivered

causing the processor context to enter the branch thread start method. This

method evicts all resident register windows and removes all frames in its stack

so that it is running with a single stack frame/window. If it finds that there

are threads in tq/rq, it yields into the iq (at startup, this only happens on the

processor context which is bootstrapping the runtime). If tq/rq are empty then

the processor context has no work to do, so the branch thread exits from the

processor context’s bottom frame and releases an idle token which can be used

to re-enter it via a THB/THJ call (see Figure 3.5).

After a branch thread has executed code shipped by a THB/THJ, an epilogue

associated with the target code checks the tq/rq for active threads (see Figure

3.4). This may happen because the shipped code scheduled a thread (e.g. as a

side effect of unlocking a VM Lock or, by explicitly as part of Java thread dis-

tribution). While there are threads in these queues, the branch thread schedules
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Figure 3.5: The Token Release Process.

them, yielding into iq. When it resumes and finds the tq/rq empty, it exits,

releasing another token.

Java’s thread scheduling is achieved simply by branching a call to the sched-

uler method: VM Scheduler.addToTransferQueue() (see Figure 3.6) with a Java

thread as argument. The branch thread calls this code which inserts the shipped

Java thread into the restarted processor context’s VM Processor queue. On re-

turn, the branch thread yields and runs the Java thread. If the Java thread exits

or suspends into, say, a lock queue and no other Java threads are found, the

branch thread is rescheduled from the iq and releases another token.

public stat ic void addToTransferQueue (VM Thread t ) {
getCurrentProces sor ( ) . t rans ferQueue . enqueue ( t ) ;

}

Figure 3.6: The Code for Branching Thread.

GC thread scheduling is equally as simple. The GC initiator branches a call to

VM Synchronization.yieldToGC(), an empty method with no arguments. After

this call returns, the branch thread finds the GC thread in its tq and context

switches into it, yielding into iq.

Note that a branch thread may sometimes suspend in a wait queue when executing

branched code, because, say, it needs to wait on a lock. When the thread is

rescheduled, it must be returned to the processor context it is tied to rather than
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shipping it to an arbitrary idle processor context or scheduling it locally. Branch

threads, like GC threads, are tagged with a processor affinity. Any attempt to

schedule a thread with an affinity is resolved by inserting the thread into the

relevant VM Processor’s tq. Note that the processor context cannot be idle when

scheduling a branch thread in this way because only the branch thread can freeze

it. So, the branch thread will at some point be rescheduled on its own processor

context.

3.2.3 Explicit Parallelization and Implicit Parallelization

JaVM provides two types of parallelization support: Explicit Parallelization and

Implicit Parallelization.

To support explicit parallelization, JaVM provides a series of magic APIs which

can be explicitly called from Java programs to create, distribute and synchronize

parallel threads, including the fork/join and barrier synchronization operations.

The task will be shipped to a free thread context, if there is a free context

identified by a token. If there is no free context (the thread creator failed to

grab a token), the task will be executed as a normal method call on the current

processor context. Also, the number of input parameters is limited to 6, because

of the limitation on the number of output window registers.

Implicit parallelization is performed by automatic parallelization compilation.

JaVM’s dynamic compilation system exploits loop level automatic parallelization

(to be discussed in Chapter 4). The optimizing compiler analyzes a hot method

to identify suitable loops and reconstructs the method to split the parallelizable

code segment and insert the thread creation code.

3.3 Dynamic Compilation System

Although a prototype interpreter exists, the JaVM is currently built around two

compilers: the baseline compiler and the optimizing compiler.

The baseline compiler does simple translation from Java bytecode to JAMAICA
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machine code by simulating Java’s operand stack. No register allocation is per-

formed. The performance of compiled code is only slightly better than bytecode

interpretation. But the speed of compilation is fast.

The optimizing compiler maintains an intermediate form which starts with instr-

uctions resembling Java bytecode but ends in the eventual machine code. All

the intermediate form instructions operate on operands, typically constant val-

ues or register values. In the high-level phases, where instructions are close to

Java bytecode, the number of registers is unlimited. Register allocation at the

transition from low-level to machine specific intermediate representation removes

this property and later optimisation phases are responsible to uphold the allo-

cation. The main phases operate on high, low and machine level intermediate

representation - HIR, LIR and MIR respectively (shown in Figure 3.7).

Each level IR code has its corresponding optimization phases.

• The front-end related optimizations and some machine independent opti-

mizations (on-the-fly optimizations) are performed at HIR level. e.g. copy

propagation, constant propagation, dead-code elimination.

• The machine independent and data structure dependent optimizations are

performed at LIR level. The optimizations may be the same as are done

on the HIR, but introduce the issues related to the JikesRVM runtime and

object layout.

• The machine dependent optimizations are performed at MIR level. eg.

register allocation, instruction scheduling.

The whole architecture of the optimizing compiler is shown in Figure 3.7.

The baseline compiler is responsible for the Just-In-Time (JIT) compilation of

methods. That is, when a method is executed for the first time, the baseline

compiler generates the code to be executed, and the dynamic linking system then

executes the generated code. By performing runtime profiling, the adaptive opti-

mization system (AOS), described in the next section, is responsible for improving

the performance of frequently executed sections of code. The AOS will run the

optimizing compiler, which can be tuned for what optimizations to run.



CHAPTER 3. JAMAICA VIRTUAL MACHINE 49

Translation from Bytecode to HIR

HIR
Optimization of HIR

Optimized HIR

Translation from HIR to LIR

Optimization of LIR

Translation from LIR to MIR

Optimization of MIR

Machine Code

LIR

Optimized LIR

MIR

Optimized MIR

Figure 3.7: Structure of Optimizing Compiler.

To enable thread switching and capture information about the running code,

the dynamic compiler (both the baseline and the optimizing compiler) inserts

instrumentation code at points such as loop back edges, method entry and method

exit. These small code stubs are in charge of checking thread status, and doing

runtime profiling.

3.4 Adaptive Optimization System

When the code is executed more than a threshold number of times, a hot method

event is generated and queued in the AOS system [9]. The AOS system uses the

runtime profiling information to make a decision as to whether the compilation

thread should recompile the code with the optimizing compiler (or increase the

optimizations used by the optimizing compiler) or whether the associated over-

head means the compilation would slow the overall performance of the system.

This decision is based on assumptions of how long the method will take to com-

pile (a summary of bytecodes contained in methods is made on class loading),

the past execution time for this method and the expected speedup. The adap-

tive optimizations include: adaptive recompilation with higher optimization level,

adaptive inlining and adaptive parallelization, which will be discussed in the next

chapter.

The AOS employs a group of associated threads, known as Listeners/Organizers,
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that are stored in adaptive system thread queues and can be awoken by the

profiling code. These threads perform runtime analysis of the profiling data to

make the decision to select adaptive optimizations. The adaptive recompilation is

performed in a separate compilation thread. When AOS identifies a hot method

and figures out how to optimize it, it will send a recompilation message to the

compilation thread. The recompilation message includes the hot method object

and the compilation plan which identifies how to optimize the hot method.

3.5 Phase Detection

JaVM is capable of executing multi-threaded Java program and multiple Java

programs. As these Java threads work together and the thread scheduler sched-

ules Java threads to idle processor contexts to maximise the hardware utilization,

the number of free processor contexts will vary at runtime. To help the AOS, par-

allel programs need to be aware how many free processor contexts are available

in the current system and decide how to distribute the work load. JaVM employs

a simple phase detector which can count the number of free processor contexts

in a short interval3. This module is embedded in JaVM’s thread scheduler.

Figure 3.8 (a) shows the basic mechanism for the phase detection. The JAMAICA

CMP employs tokens to identify idle processor contexts (see Section 2.1.3). Each

processor has its own token ID which is an integer starting from 1 to the number

of processor contexts. The phase detector allocates a global array whose elements

correspond to each of the processor contexts’ token IDs, and plants interceptor

code to the procedures for thread branch and token release (see Section 3.2). In

the thread branch procedure, the interceptor sets token flag to 1 which marks the

token’s corresponding processor context as busy. In the token release procedure,

the interceptor resets the token flag to 0.

Shown in Figure 3.8 (b), the two interceptors also count the non-zero token flags to

get the number of free processor contexts, and record this number and the current

execution cycle count into two sampling arrays. The phase detector calculates

statistics based on these values in a configurable interval based on the number

3The “Phase” defined here is a runtime stage within which the number of free processor
contexts is stable.
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of recorded operations (15 recording operations are used for an interval in this

work). Such statistical data will be used to help the runtime profiler recognize

noise and an unstable runtime environment (to be discussed in Chapter 5).

3.6 JAMAICA Boot Procedure

As JAMAICA is a simulated architecture, the JaVM is booted via the jamsim

simulator (see Section 2.2). The JaVM implements a cold start protocol whereby

only a single context, the primordial context, begins the execution of code, all

other contexts start in an idle state. Prior to execution, the simulation environ-

ment loads an ELF binary, containing a boot procedure, into physical memory,

placing code and data segments at addresses specified by the ELF file. The start

address is extracted from the ELF file and is used as the initial PC value for

the primordial context. The code contained in the boot procedure4 is responsi-

ble for initializing registers and memory, including the initialisation of interrupt

vectors and loading any other required code into physical memory. After this ini-

tial phase all auxiliary contexts can be woken using a software interrupt, SIRQ.

The software interrupt vectors execution to an initial wake-up routine that sets

up a minimal stack for each context capable of handling code shipped via the

THJ/THB instructions. Upon completion of this phase each context releases

a token onto the work distribution ring and switches to the idle state awaiting

incoming work.

3.7 Summary

This chapter introduced the software operating platform JaVM. JaVM utilizes the

JAMAICA CMP infrastructure to enable a lightweight thread mechanism which

makes thread level parallelization more efficient. It also briefly introduced the

dynamic compilation system and adaptive optimization system which perform the

normal Java JIT compilation and optimization. Finally, this chapter introduced

4The booting code is composed of several subroutines which are written in C and JAMAICA
assembler.
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the booting procedure of JaVM and explained how it can boot on the JAMAICA

CMP.



Chapter 4

Parallel Compiler

As introduced in the previous two chapters, the JAMAICA architecture provides

an efficient infrastructure for lightweight thread execution. The next step is

to exploit this advantage to parallelize Java programs. This chapter discusses

the design and implementation of the parallel compiler in JaVM. This dynamic

compilation system performs automatic loop-level parallelization (LLP), so it is

called the Loop-Level Parallel Compiler (LPC) here.

The input program is a normal sequential application (Java bytecode); the LPC

analyzes the program, identifies suitable loops that can be parallelized and re-

constructs the original program to enable the parallel execution.

In this chapter, Section 4.1 introduces the design issues about the LPC, including

the loop analysis, parallel code generation, synchronization, memory allocation,

loop distribution and exception handling and parallel code generation. Section

4.2 discusses the cost model for dynamic compilation. Section 4.3 discusses some

experimental results. Section 4.4 summarizes this chapter.

4.1 Design Issues

At first, all Java applications running in JaVM are built by the baseline compiler,

the AOS captures runtime information by instrumenting the running code at the

54
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Figure 4.1: Parallel Compiler.

method-level1. Once the instrumentation indicates that a given method is hot

(i.e. the number of times the method is executed is above a threshold), the AOS

decides whether to compile it using the optimizing compiler[17] (shown in Figure

3.1). The LPC hijacks this decision, so that any hot method is also considered

for parallelization.

To implement the LLP, several issues need to be considered. The following sec-

tions will discuss how to perform loop analysis, how to generate thread Fork and

Join operations, how to synchronize the thread and reconstruct the compiled

method.

4.1.1 Loop Analysis

Shown in Figure 4.1, the LPC works within two phases of the JaVM optimizing

compiler’s workflow. Loop analysis and annotation occurs in the high-level opti-

mization phase. In this phase the LPC detects loop structures, analyses the data

dependencies within them, creates parallel loops where these dependencies can

be maintained, and annotates the loops with high-level pseudo-code. The loop

annotation process does pre-order depth-first traversal of the loop tree2. If the

outer loop is parallelizable, then it is annotated and the inner loop will not be

1The code stubs for runtime sampling are inserted at a method’s prologue and epilogue and
at a loop’s backedge (as mentioned in Chapter 3).

2The nested loops can be expressed as a tree structure.
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checked (see Algorithm 1).

To optimize the loops and make them easier for analysis, several JikesRVM’s

high-level optimizations are employed by LPC for loop preprocessing, including

constant propagation, loop constant code motion, global common sub expression

elimination and extended array single static assignment form (array SSA) [14,

52] 3.

LPC can only analyze a method only if this method has been identified by AOS

at runtime as being hot. There is a risk that the LPC can not parallelize a loop

in a method where a call exists that may cause a dependence violation. A lazy

inter-procedural analysis scheme [95] was implemented to enable the early and

conditional parallelization of loops, before the full program state is known.

Data Dependence Analysis

In order to determine whether array accesses within the loops are amenable to

parallelization, the Banerjee Test [12] is performed (see Algorithm 1). This allows

DoAll and DoAcross [92, 7] loops to be created when presented with loop carried

dependencies on arrays with affine indices. The algorithms 1 2 and 3 show the

basic mechanism that the LPC uses to check the loop hierarchy and identify the

suitable loops that can be parallelized.

The loop checking progress works from the outer-most level to the inner-most

level (shown in Algorithm 1). For each loop, the LPC will check if there is loop

carried register dependency, or normal memory dependency (shown in Algorithm

2). If the loop carried register operands are simply referred by scalar operations,

then the loop still can be parallelized. To check the array dependency, the classic

GCD algorithm [26] is employed (shown in Algorithm 3).

Loop Annotation

The LPC employs a series of pseudo instructions to annotate the target loops

which are suitable for parallelization. These instructions should annotate the

3The SSA form is helpful for building the use-def chain and performing data dependence
analysis.
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Input: the tree structure of nested loops Loop Tree
Output: annotated loops that are suitable for parallelization
Implementation:
Step 1: get the root node t← GetRoot(Loop Tree);
step 2:
loopType← Loop Check(t);
if loopType = DoAll then

Annotate(t);
else if loopType = DoAcross then

Annotate(t);
else

Leaf Set← GetLeafNodes(t);
foreach element l ∈ Leaf Set do

Loop Search(l);
end

end if
Algorithm 1: Loop Search (Search Parallelizable Loops).

fork/join points of a parallelized loop and its loop constants. Table 4.1.1 lists the

instructions and their functions.

Instruction Function

JAM FORK Annotate the fork point of the parallelized loop

JAM JOIN Annotate the join point of the parallelized loop

JAM LOOPCONSTANT Annotate the short/integer/float type of loop constant

JAM LOOPCONSTANTLD Annotate the double/long type of loop constant

JAM COLLECT Annotate the loop initial/terminal values

The LPC checks the code in a loop body and identifies the loop constants. All of

the loop constants and iteration space values (initial iterator value and terminal

iterator value) will be annotated by pseudo functions and replaced by these func-

tion result operands. Figure 4.2 shows the annotation process for a simple DoAll

loop. x and y are loop constants, they are replaced with x and y which are

the result operands for pseudo functions. The iteration space values 0 and n are

also replaced by init and term. The benefit of this annotation approach is that

the annotated code still can be optimized by the following compiler optimization

passes, until it reaches the thread creation phase at MIR level.
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Input: the loop node t
Output: loop type (this is an enumerated value: DoAll, DoAcross,
Dependence)
Implementation:
Step 1:
collect the loop carried register operands into LC Set;
collect class field store operations into CF Set;
collect the array load/store operations into Load Set/Store Set;
ADep Set← {};
Step 2:
foreach element s ∈ Store Set do
foreach element l ∈ Load Set do

if ArrayRef(s) = ArrayRef(l) then
GCD Check(s, l, t, ADep Set);

end if
end

end
Step 3:
foreach element lc ∈ LC Set do
if lc is not simply referred by a scalar operation then

isLCDependency ← true;
end if

end
Step 4:
if CF Set 6= {} then

isCFDependency ← true;
end if
if ADep Set 6= {} then

return Dependence;
end if
if isLCDependency then

return Dependence;
end if
if isCFDependency then

return Dependence;
end if
if LC Set 6= {} then

return DoAcross;
else

return DoAll;
end if
Algorithm 2: Loop Check (DOALL/DOACROSS Loop Check).
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Input: a load operation l, a store operation s, loop node t, and Dep Set a set
which is used to store the dependence pair
Output: boolean result
Implementation:
Step 1: Analyze the array index for both l and s;
Step 2: Build the dependence equations (coefficient matrix);
Step 3: Apply general GCD test to equations and get a set of general GCD
solutions: GS Set;
if GS Set = {} then

return false;
end if
Step 4:
apply GS Set to t’s loop iteration space to get a set of integer solutions:
IS Set;
if IS Set = {} then

return false;
end if
Use the integer solutions to calculate the dependence distance vector set:
DV Set;
foreach element d ∈ DV Set do
Dep Set← Dep Set ∪ (l, s, d);

end
return true;

Algorithm 3: GCD Check (Check Array Dependency).
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// Orignal loop code
double x = . . . ;
int y = . . . ;
for ( int i = 0 ; i < n ; i ++) {

A[ i ] = x ∗ (B[ i − 1 ] + B[ i ] ) ;
C[ i + 1 ] = y + 1 ;

}

// Annotated loop code
double x = . . . ;
int y = . . . ;

int i n i t = jam fork (0 , n ) ;
int y = jam loopconstant ( y ) ;
double x = jam loopconstant ld ( x ) ;
double [ ] A = jam loopconstant (A) ;
double [ ] B = jam loopconstant (B) ;
int [ ] C = jam loopconstant (C) ;
int term = j a m c o l l e c t (n ) ;
for ( int i = i n i t ; i < term ; i ++) {

A [ i ] = x ∗ ( B [ i − 1 ] + B [ i ] ) ;
C [ i + 1 ] = y + 1 ;

}
j am jo in ( ) ;

Figure 4.2: Example of Loop Annotation.
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// Orignal code
public void f oo ( int [ ] A, int [ ] B, int c ) {

for ( int i = 0 ; i < n ; i ++) {
A[ i ] = B[ i − 2 ] + c ;

}
}

// Transferred code by adding a l i a s check
public void par f oo ( int [ ] A, int [ ] B, int c ) {

i f (A == B) {
for ( int i = 0 ; i < n ; i ++) {

A[ i ] = B[ i − 2 ] + c ;
}

} else {
int i n i t = jam fork (0 , n ) ;
. . . . . .
for ( int i = i n i t ; i < term ; i ++) {

A [ i ] = B [ i − 2 ] + c ;
}
j am jo in ( ) ;

}
}

Figure 4.3: Alias Analysis for Single-Dimensional Array.

Alias Analysis

For data dependence analysis, the compiler needs to know if two array references

are the same or different. For example, Figure 4.3 (a) shows a simple loop which

contains two array references A and B. If A and B are same, then this loop has

dependence distance 2 and is not parallelizable. As both of these two array refer-

ences are input parameters of the method, it needs complex inter-procedural alias

analysis to identify if these two reference are the same or not. Currently, LPC

does not support inter-procedural alias analysis, it employs another straightfor-

ward way to solve this alias problem: adding a comparison statement which can

decide if the execution path should go through the parallelized or non-parallelized

version of the loop (shown in Figure 4.3 (b)).

This approach is feasible for single dimensional array references, but not for multi-

dimensional arrays, because the multi-dimensional array in Java is defined as mul-

tiple sub-arrays. Given a two dimensional array A, its sub-arrays may be allocated
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in different regions, and have various lengths (shown in Figure 4.4 (a)). Some

research on Java numerical libraries [67] proposed a uniform multi-dimensional

array class which has the same memory layout as either C/C++ or Fortran.

Similarly the X10 language [20] extends Java with true multi-dimensional array

support. To enable real multi-dimensional arrays and to simplify the alias anal-

ysis, JaVM uses an annotation policy. If a class or method is annotated with

RealMultiDim, the LPC will check the code inside the annotated scope. There

are two constraints inside the annotated scope.

• The memory for the creation of multi-dimensional array objects is allocated

in a linear memory space (shown in Figure 4.4 (b)), so the memory layout

is the same as C/C++.

• The assignment operation for assigning an array object to another object

array is prohibited 4

To ensure the GC operation will not destroy the memory layout, JaVM uses the

MarkSweep [47] GC policy which maintains the original memory address for

each object.

Figure 4.5 shows the loop parallelization within an annotated method scope. If

the LPC can not guarantee that the array A is a real multi-dimensional array (i.e.

there is not any interference between array A and B), it needs to generate the

code for comparing each of A’s level 1 array elements A[i] with B to make sure

there is no interference, and this will result in unacceptable overhead at runtime.

The benefit of using the annotation policy is a simple programming model, the

application programmers does not need to be aware about which array should be

real multi-dimensional and which not. The disadvantage is the definition of the

annotation scope needs to be handled carefully. The annotation is a mechanism

for protecting the real multi-dimensional array, so the annotation scope should

cover all of the methods or classes that may assign array objects to the multi-

dimensional array.

4Currently, if LPC identifies an assignment operation which assigns an array reference to an
element in an object array, it will throw a runtime exception.
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Figure 4.4: The Java Multi-Dimensional Array and Real Multi-Dimensional Ar-
ray.

// Orignal code
public void f oo ( int [ ] [ ] A, int [ ] B, int c ) throws RealMultiDim {

for ( int i = 0 ; i < n ; i ++) {
A[ i ] [ i ] = B[ i − 2 ] + c ;

}
}

// Transferred code by adding a l i a s check
public void par f oo ( int [ ] [ ] A, int [ ] B, int c ) throws RealMultiDim {

i f (A[ 0 ] > B | | A[A. l ength − 1 ] < B) {
for ( int i = 0 ; i < n ; i ++) {

A[ i ] [ i ] = B[ i − 2 ] + c ;
}

} else {
int i n i t = jam fork (0 , n ) ;
. . . . . .
for ( int i = i n i t ; i < term ; i ++) {

A [ i ] [ i ] = B [ i − 2 ] + c ;
}
j am jo in ( ) ;

}
}

Figure 4.5: Alias Analysis for Multi-Dimensional Array.
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4.1.2 Parallel Code Generation

Parallel code generation occurs in the machine-level optimization phase. It works

before the register allocation phase, so it can still use logical registers. In this

phase the previously inserted pseudo-code is replaced by machine specific code,

enabling the code to fork new threads on idle processor contexts, as well as

applying different adaptively optimizing distribution policies. The parallelized

loop will be reorganized, and the loop body acts as the main body of a parallel

thread.

Three pieces of code are generated in this phase: parallel thread creation (fork

point), the parallel thread and a barrier synchronization (join point).

Parallel Thread Creation

The creation of parallel thread has three steps:

1. Load runtime parameters from AOS database (to be discussed in Chapter

5), for example the chunk size 5 and tile size.

2. Allocate a memory region on stack, and store the loop constants into this

region.

3. Enter loop distributor to create parallel threads.

The loop distributor encapsulates the distribution policy for parallel threads; the

distribution policies will be discussed in Section 4.1.4. Here is a basic work flow

for a simple fixed-number based distribution:

• Step 1: Use TRQ instruction to request token on the ring. If a token is

received, goto step 2; if not, goto step 6.

• Step 2: Set the synchronize state (the detail will be discussed in Section

4.1.3).

5The term chunk is used to mean a contiguous sequence of loop iterations.
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• Step 3: Set output window registers: including chunk or tile size parameters,

and synchronization address6.

• Step 4: Use THJ or THB to ship the task to the processor context indicated

by the token ID.

• Step 5: Recalculate the initial iterator value and terminal iterator value.

Check if the loop should terminate, if so, goto join point; if not, goto step

1.

• Step 6: Execute the loop chunk in the local processor context. Recalculate

the initial iterator value. Check if the loop should terminate, if so, goto

join point; if not, goto step 1.

Parallel Thread

The parallel thread is a simple lightweight thread which encapsulates the par-

allelized loop body. The parallel thread is composed of three parts: prologue,

thread body, and epilogue.

The thread prologue does such tasks as:

1. Reset and recalculate the frame pointer register %x4.

2. Reset the Stack Pointer register %o6 and save the previous Frame Pointer

and current method ID on the stack.

3. Load input parameters from input window registers and loop constants from

memory.

4. Initialize the constant iteration value that will be used in the thread body.

The thread body is a copy of the parallelized loop. The replicated loop’s initial

iterator value, terminal iterator value and stride value can be reconfigured by the

values set in the thread prologue.

The thread epilogue does such tasks as:

6For different distribution policies, the output window registers will be assigned different
values. For example, for chunk based distribution, the registers %o1, %o2 are used to store the
initial and terminal values for a chunk; for tile based distribution, the registers %o1, %o2, %o3,
%o4 are used to store two initial iterator values and two terminal iterator values.
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1. Store the scalar values into the thread local storage, if the parallelized loop

has scalar operations.

2. Reset the barrier synchronization field.

3. Restore the frame pointer and stack pointer registers.

4.1.3 Barrier Synchronization

In JaVM, a simple barrier synchronization mechanism is employed to perform

the parallel thread joining operation (shown in Figure 4.6). Each VM Thread

object has an integer array which is used to annotate the synchronization state

for shipped tasks (parallel threads). Each array element is a synchronization flag

which corresponds to a processor context and indexed by the token ID 7, so if

there are 8 processor contexts in the system, the length of synchronization array

is 8. The main thread and the branch threads that are created by the main

thread for parallel computing use these synchronization flags to perform barrier

synchronization.

main thread

branch 
thread 0

... ...

branch 
thread 1

branch 
thread 2

branch 
thread nset

barrier

spin on
barrier

reach
barrier

reach
barrier

reach
barrier

reach
barrier

Figure 4.6: Branch Thread Synchronization.

7When the JaVM is booted, each processor context is assigned a context ID. This ID will
be the token ID, when the processor context produces a token on the ring.
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To help the branch threads and main thread that creates branch threads share

the synchronization flags, a thread ID mechanism is employed by JaVM. JaVM

uses a Global Thread Array (GTA) to store all of the VM Thread objects that

are available in the system. When a Java thread is created, it will allocate a

free slot in the GTA and register itself on it. Every Java thread object has a

corresponding VM Thread object in JaVM. A global thread ID which is actually

the index in the GTA is issued to the Java thread at the same time. When a Java

thread will exit, it needs to deregister itself and free the slot in the GTA. The

ID got from thread registration should be set into a hardware context register

named ThreadID Context Register in the processor context on which the Java

thread is activated every time. The value of the ThreadID context register can be

transferred to another processor context by THB/THJ instructions (mentioned

in Chapter 2). The transferred value is stored in another context register: SrcID

Context Register. So the branch threads can use this SrcID to get its creator

thread object in the GTA, and use the current processor context’s token ID to

index the synchronization flag in the creator thread’s synchronization array.

When a Java thread creates a branch thread on an idle processor context, it sets

the branch thread’s corresponding synchronization flag field to 1. The synchro-

nization flag is one of the elements in the synchronization array and indexed by

the token ID which is produced by the idle processor context and grabbed by the

TRQ instruction. The branch thread should set the synchronization flag back to

0 when it finishes the shipped job. It uses the SrcID to get its creator thread

object’s synchronization array and uses its processor ID (token ID) to identify

the synchronization flag.

To perform the joining operation, the main thread should block on its synchro-

nization state array and check each array element, until all of the elements in

the synchronization state array are 0 (i.e. all of the created branch threads have

finished).

4.1.4 Loop Distribution Policies

To distribute the loop iterations to parallel processor contexts, five different dis-

tribution policies are implemented within the LPC.
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Fixed Number Based Distribution (FBD)

In FBD, if an idle context is available, a fixed number of loop iterations are

executed by it. The number of iterations is configured by the adaptive system.

Chunk Based Distribution (CHBD)

In chunk distribution [60], N loop iterations are divided into N
P

rounds (P is

the number of processors). Each round consists of consecutive iterations and is

assigned to one processor context.

Tile Based Distribution (TBD)

This is an improvement on CHBD. For a 2 level perfectly nested loop, N loop

iterations are divided into P tiles and the tiles will be assigned to P different

processors. Currently, the LPC only supports 2-dimensional tiles.

Cyclic Based Distribution (CYBD)

Instead of assigning to a processor a consecutive chunk of loop iterations, the

iteration are assigned to different processors in a cyclic fashion [60] which means

that iteration i is assigned to processor i mod P .

Cyclic Recursive Distribution (CRD)

In CRD, if an idle context is available the total iterations are divided between

the parent thread and a created child thread. The parent and child thread then

recursively try to divide the work in half again. A disadvantage of this scheme is

that it works best when the number of free processor contexts is a power of two.
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Dynamic Assignment Distribution (DAD)

DAD policy employs a dynamic work assignment mechanism to distribute loop

iteration chunks to parallel threads working on different processor contexts. Al-

gorithms 4 and 5 show the work mechanism for this distribution policy.

Input: loop iteration chunk size c, number of loop iterations N
Implementation:
Step 1: ParallelThread Set← {};
Step 2:
while N > 0 do
t← Token Request();
if t is a token ID then

create a new parallel thread p;
ParallelThread Set← ParallelThread Set ∪ p;
assign c loop iterations to p;
N ← N − c;

end if
foreach parallelthreadp ∈ ParallelThread Set do

if N = 0 then
goto Step 3;

end if
if p is waiting then

assign c loop iterations to p;
N ← N − c;

end if
end
if N > 0 then

execute c loop iteration;
N ← N − c;

end if
end
Step 3: set the stop flag for all of the threads in ParallelThread Set and
synchronize them

Algorithm 4: Dynamic Assignment Distribution.

This loop distribution policy is a greedy policy which tries to get as many pro-

cessor contexts as possible. It is suitable for improving the parallelized loop’s

performance in an unstable runtime environment where several concurrent Java

threads are activated/deactivated frequently and the parallelized code can not get

enough computing resource for parallel execution. The drawback of this policy

is the communication overhead generated by the producer/consumer execution
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Input: loop iteration chunk: (init, term)
Implementation:
Step 1: initialize the input parameters;
Step 2:
check the operation flag;
if flag = working then

execute the loop iteration chunk defined by (init, term);
change the main thread’s state to waiting;
goto step 2

end if
if flag = waiting then

goto step 2
end if
Step 3: set synchronization flag and thread terminates

Algorithm 5: Parallel Thread’s Work Mechanism in DAD.

mode.

4.1.5 Memory Allocation

To perform loop-level parallelization, the loop constants should be passed from

the main thread to the parallel threads so the split loop body can be initialized

correctly. As introduced in chapter 2, the task shipping mechanism (THB and

THJ) can only carry the output window registers, PC and one context register

to the target context. The limited number of input window registers may not

satisfy the requirement of transferring more loop constants, so a shared memory

mechanism needs to be applied here to carry more data.

JaVM allocates a spill region on the main thread’s stack frame by reshaping the

stack frame layout. The size of the region is calculated by the LPC, when it

analyzes the parallel loops. The pointer to the allocated memory is transferred

to the parallel thread by one of the output window registers (%o0). Then the

parallel thread can load the data from the memory indicated by its input window

register (%i0) (shown in Figure 4.7). The data that will be different in different

parallel threads and the frequently used data (e.g. loop iterator values, chunk size,

tile size) still needs to be carried by the input window registers, as it is processor

context specific and more efficient. The advantage of this solution is that the

memory allocation is performed at compile time by calculating the memory size
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Figure 4.7: Memory Allocation.

and reshaping stack frame layout. There is no need for any additional memory

management, so it has zero cost at runtime.

4.1.6 Code Layout

As mentioned in chapter 2, the two task shipping instructions (THB and THJ)

have different definitions for the PC values that the branch thread will start to

execute. THJ uses the PC value assigned in its input register. THB uses the

current PC value plus the offset assigned in its input register. To support these

two task shipping mechanisms, LPC provides two code layouts for parallelized

programs: method based parallel thread (MBPT) for THJ based parallelization

and branch offset based parallel thread (BBPT) for THB based parallelization.

Figure 4.8 shows the reconstructed method by BBPT. Figure 4.9 shows the re-

constructed method by MBPT. Here we use the simple FBD loop distribution

policy for both of these two examples.

For BBPT, the loop distribution code and the parallel thread code are placed in

the same method as their creator. Shown in Figure 4.8, the code which belongs

to the parallel thread (replicated loop body, prologue block and epilogue block)

are located at the end of the method (actually their position is located between

the method’s return block and the exit block in the control flow graph) and do
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not have any edges connected to the original method’s blocks. So these pieces of

code will not take part in the register allocation in the original method. Or we

can say that all the physical registers are free when the register allocator begins

to allocate registers for the branch thread’s code, because the original method

has reached its RET instruction.

For MBPT, the loop distributor process and the parallel thread code are placed in

an implicit method object which means that only the LPC and adaptive system

can generate and manipulate it. These methods do not have any return value.

The methods for the loop distributor process can be reused by any parallelized

loop (shown in Figure 4.9.). These methods can also work as a parallel thread,

so one parallelized loop may have multiple loop distributors (thread creators)

working in parallel.

The advantage of BBPT is that all the generated code is still located in the

same method code space. This saves compilation resource, because the compiler

need not create a new compilation process (e.g. register allocation) to handle the

newly created sub-method in MBPT. The disadvantage of BBPT is the difficulty

in generating multi-version code. For example, to switch between different loop

schedulers, MBPT can generate multiple loop scheduler methods. BBPT has

to generate the multi-version codes in the same method space, and the control

flow graph will be complex. The drawback is that a complex control flow graph

will make the operands’ liveness analysis more complex and the register allocator

has to allocate more spill area for those operands which can not be assigned to

physical registers; and this thereby decreases the performance of the generated

code.

4.1.7 Handling Exceptions in Parallelized Loop

The Java language uses an exception mechanism to maintain type safe memory

accesses, and this will generate some performance problems with parallel loops.

At first, there is some checking code in the loop body that will be parallelized,

eg. BOUND CHECK (array bound check), NULL CHECK (null reference check),

CHECKCAST (check the class type cast). If there are any checking violations,

the execution sequence will be branch to the exception handler code that does
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not belong to the loop body. This will increase the complexity of thread synchro-

nization. As shown in Figure 4.6, the main thread uses a barrier to synchronize

with all its branch threads. Currently, the branch threads perform thread syn-

chronization at the end of their execution. If one of the branch threads is diverted

to the exception handler code, it can not set the synchronization status, and the

main thread must be blocked on its barrier.

In Java semantics, if one loop iteration throws an exception at runtime, the follow-

ing iterations should not be executed anyway. But in a parallelization scenario,

several loop iteration are executed simultaneously, so one thread needs to cancel

other threads that are running on other processor contexts. The cancellation

process is like rolling back a database transaction, the executing thread must be

stopped and the memory that had been modified must be restored. It is difficult

or quite expensive to implement in software.

The current solution to this problem is array bound check and null check elimi-

nation. All of the array references that are used in a loop body are checked, and

if the array bound check and null check are redundant (the array length is longer

than the loop requirement, and the array reference is not null), then such check

operations can be eliminated from the loop body and we can get an execution

segment guaranteed not to have these runtime exceptions. This is known as loop

versioning, which we contributed back into the JikesRVM in release 2.4.3. This

approach still has shortcomings:

1. It can only handle the bound check and null check, there are still some

check operations that could generate runtime exceptions.

2. This additional optimization phase will be added to the optimizing compiler

and increases the cost of compilation.

4.1.8 Long-Running Loop Promotion

The runtime parallelization activations may contain long-running loops. When

the JaVM is executing a baseline compiled long-running loop, the LPC may have

finished the loop parallelization. To improve the runtime performance, the LPC

needs to perform On Stack Replacement (OSR) [19, 42] to install the parallelized
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Figure 4.10: The Long Running Loop Promotion.

loop. JikesRVM has implemented OSR support [31], but it works at method level

and needs a complex process to handle dynamic class loading. LPC employs a

simple policy which can redirect the execution path from baseline compiled loop

code to parallelized loop code. This method is based on the MBPT code layout,

and the only overhead is generating a Parallel Loop Execution Procedure (PLEP)

which executes the parallelized loop.

Figure 4.10 demonstrates the workflow of the loop promotion. JaVM inserts yield

points into the loop back-edge to perform the thread yield, which collects statisti-

cal data for AOS, and triggers garbage collection. Here the loop promotion code

is added in the yieldpoint operation. Every time the yield operation is executed,

the loop promotion code will check if the current method has a parallelized loop

and if the current yield point corresponds to a parallelized loop. If so, the execu-

tion path will be redirected to the PLEP. The PLEP goes through the baseline

compiled code’s stack, picks up the loop constants and writes these values into

a shared memory region; then it calls the loop scheduler to create the parallel

threads. When the execution of the parallelized loop finishes, the PLEP resets

the iteration value on the baseline code’s stack, so the baseline loop can finish.
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4.1.9 Parallel Compilation

Some of the adaptive runtime optimizations (discussed in the next Chapter) need

to consider multiple versions of code, but generating multiple versions of code

increases the compilation overhead significantly. As these multiple versions of

code are based on the same method, the LPC should be able to build these

code versions in parallel by applying different code generation policies to the

same IR code. The CMP architecture provides the capacity of parallelization,

the LPC’s main compilation thread can spawn several sub-compilation threads

(depending on how many free processor contexts are available) which use different

code generation policies. Shown in Figure 4.11, the creation of sub compilation

threads is invoked just before register allocation (in the same place as parallel

thread generation). The main compilation thread replicates several copies of MIR

code, and the sub compilation thread will use this code to generate machine code

with different optimization policies (e.g. unrolling the loop with different unrolling

factors).

The replicated MIR code is preserved in a temporary storage (AOS database).

When the AOS needs to try more optimizations, it can spawn a compilation

thread and reuse the preserved MIR code. The shortcoming for this is more

runtime storage is needed for storing this additional information.

4.2 The Cost Model for Dynamic Paralleliza-

tion

The previous sections have introduced the design issues for LPC. Before eval-

uating the LPC, this section discusses the cost model for a parallelizable code

segment. The cost model is expressed by the equations listed below:

(1.)

Tp = Tpar ∗Npar + Tunpar

(2.)

Tunpar = Nunpar ∗ Tbaseline + Tbc
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(3.)

Nunpar = (Tdc + Tsample)/Tbaseline

Tpar : the execution time used for parallelized code segment.

Tp : the total execution time used for executing a parallelizable code segment.

Npar : the number of times the parallelized code segment is invoked.

Tunpar : the execution time used for unparallelized code segment.

Nunpar : the number of times the unparallelized code segment is invoked.

Tdc : the execution time used for dynamic compilation (parallelization).

Tbc : the execution time used for baseline compilation.

Tsample : the execution time for identifying the hot method.

Tbaseline : the execution time for executing the code segment compiled by baseline

compiler.

Equation 1 expresses that the whole runtime of a parallelizable code segment is

composed of two parts: parallel execution and non-parallel execution. Equation

2 shows that a major part of the non-parallel execution is the baseline code

execution. In the current LPC design, the parallelization related compilation

components are set at opt level 0 which is higher than baseline compilation.

When the baseline compiled code is identified as hot by AOS and recompiled,

LPC will parallelize it.

JaVM’s recompilation is performed in a separate compilation thread, so the

runtime recompilation works in parallel with the program execution in multi-

processor environments 8. So equation 3 defines that Nunpar depends on Tdc and

Tsample. When the LPC has parallelized the recompiled code and installed it, the

new invocation of the code can work in parallel.

To improve the runtime performance, the LPC needs to reduce Tunpar, Tpar or

increase Npar. The baseline compiler has been simple enough, because it just map

Java bytecode to machine code directly. So the Tbaseline can not be optimized.

AOS needs enough sampling to identify the hot code segment, so Tsample can not

8This was a contribution back to the JikesRVM release 2.4.6.
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be reduced. Thus Tdc, Npar and Tpar are the three major determinants of the

runtime performance.

LPC has employed the smallest set of compiler phases to perform runtime par-

allelization efficiently. To perform more optimization on Tdc, the dynamic com-

pilation need to be well tuned, but this is not in scope of this work. Increasing

Npar can get more benefit from parallelization and tradeoff the cost of Tdc. Those

applications which have a long runtime, they will get more benefit from this run-

time parallelization mechanism. Optimizing the parallelized code to reduce Tpar

is the major optimization for improving runtime performance; this issue will be

discussed in the next chapter.

4.3 Evaluation and Discussion

4.3.1 Experimental Setup

The experiments are performed on the JAMAICA simulator (described in Chap-

ter 2). Different numbers of processor contexts are evaluated in this chapter. To

demonstrate the speedup of parallelization, we did not evaluate the multi-context

configuration which can benefit from reducing memory delay but is not good for

parallel tasks.

To evaluate the efficiency of the LPC, 11 benchmark programs are selected from

SpecJVM, jByteMark[4] and JavaGrande suite [16]. These benchmarks include

integer and floating point applications (shown Table 4.1). JSwim and JLB

are two independent benchmarks; JSwim is the Java version of 171.swim test

in SpecCPU2000 [40] and JLB is a Java implementation of Lattice Boltzmann

simulation [23].

4.3.2 Performance Evaluation

Figure 4.12 (a) presents the performance of the JaVM running with a varying

number of processors (p) (1 thread context per processor) on the JAMAICA sim-

ulator. The distribution policy used here is CHBD. The benchmarks were chosen

as they have a mixture of both parallelizable and non-parallelizable code regions.
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Benchmark Description Type Loop No. of Parallelized
Count Loops *

IDEATest IDEA encryption and decryption Integer 3 2
EMFloat Emulated floating point set Integer 3 2
Compress Compression Integer 26 2
Linpack Java Linpack Float 5 2
Fourier Fourier coefficients Float 3 1
NeuralNet Multi-level Neural Network training Float 12 9
Euler Fluid dynamics Float 12 8
JSwim Java Swim simulation Float 6 6
JLB Java Lattice Boltzmann simulation Float 2 1
Moldyn Molecular dynamics Float 6 3
MPEGAudio Audio decoder Float 35 4

* the inner loops are not counted if the outer loops get parallelized

Table 4.1: The Benchmarks Selected for Evaluating LPC.

As LPC has parallelized small sections of code within the larger benchmarks, code

that remains serial will mean that performance does not scale with the number

of processors. The results show the benefit of the system is a 2% to 300% speed

up, depending on the benchmark and the number of processors available. For

Compress, the speedup is near to zero, because only 2 small loops are paral-

lelized and there is no big effect on the whole runtime performance. For JSwim

and JLB, the parallelized hot loops are the major part of the computation, so

the benefit is significant.

Figure 4.12 (b) shows the speedup got from the same run, but includes the cost

of dynamic compilation. By counting the cost of compilation, the adaptive paral-

lelization introduces more runtime overhead, which is why Compress’s speedup

becomes negative.

As introduced in earlier sections, a hot method captured by AOS will be recom-

piled with a higher optimization phase by JaVM’s dynamic compilation system.

The optimizations have three levels: opt0, opt1, opt2. Usually, a hot method

could be recompiled by opt0, and some of them can be recompiled by opt19 The

opt0 and opt1 levels contain simple compiler optimizations which do not need

SSA support. To find the parallelizable loops as early as possible, the LPC works

9Current experience is that a hot method will not be recompiled by opt2, unless there are a
lot of iterations.
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Figure 4.12: Performance of Parallelization on 11 Benchmarks.
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Figure 4.13: The Comparison of The Cost of Parallelization.

at opt0. As discussed in Section 4.1.1, the LPC needs additional compilation

phase support (e.g. extended array SSA, code motion and constant propagation)

to annotate suitable loops for parallelization, so these compilation phases need

complex compiler phases (SSA support) and generate additional runtime over-

head. So the value of Tdc is increased. Another risk is that the LPC may not find

a parallelizable loop in the hot method, and then it just applies some expensive

compiler phases on the low optimization level. That is why the speedup in Figure

4.12 (b) is much lower than int Figure 4.12 (a).

Figure 4.13 shows the comparison of the cost of dynamic compilation between

parallelization and normal non-parallelization. Normally the overhead of par-

allelization is about 150% to 180% of non-parallelization. Different benchmark

programs have different costs of recompilation depending on the sizes of hot meth-

ods. For Euler and Moldyn, the size of hot methods are big and the compilation

time is longer (e.g. 164, 830, 835 cycles for one hot method). And JLB has a

smaller parallelizable loop which costs about 23, 289, 429 cycles for compilation,

so it is easy to tradeoff this overhead by parallelization.

By studying the experimental results from the simulated multi-processor environ-

ment, the runtime parallelization works well on those floating point applications

which are easier to parallelize. But the benefit gained for general purpose pro-

grams is still limited (the worst example is Compress). There are two major

problems:

• It is difficult for a compiler to identify a region for parallelization even in
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a static compiler. By examining a lot of loops but failing to parallelize

them, the LPC generates more overhead and gets less benefit. If the LPC

can identify more parallelized loops, the program’s performance can be

improved, even with more compilation overhead.

• Usually the problem size of general purpose programs is limited. To trade-

off the compilation overhead, the program needs to run for long enough.

With the current evaluation, if Compress could run for more iterations,

the speedup shown in Figure 4.12 (b) would be positive.

4.4 Summary

This chapter introduced a parallel compiler (LPC) which can perform LLP dy-

namically at runtime. By evaluating both general purpose applications and sci-

entific computing applications, the LPC shows different speedups for different

programs. Most scientific computing applications get good improvement for their

runtime performance. For general purpose applications, some of them could get

speedup and therefore the benefits are application specific.



Chapter 5

Adaptive Runtime Optimization

The previous chapter introduced how the JaVM’s dynamic compilation system

can be extended to perform parallelization at runtime. This chapter addresses

whether a runtime optimization system can improve the parallel programs’ perfor-

mance. An Online Tuning Framework (OTF) is implemented to perform the run-

time optimizations. The OTF is built on top of the JaVM and targets Java pro-

grams. It uses LPC to parallelize loop-based programs and empirically searches

for suitable optimizations (e.g. optimal loop tile size, optimal code version). The

search relies on collecting runtime performance data and is evaluated for the

JAMAICA CMP.

Section 5.1 will introduce the basic motivation of the adaptive runtime optimiza-

tion, the scope of the optimizations and the basic mechanism for performing these

optimizations. Section 5.2 introduces JaVM’s OTF which is the infrastructure

for performing runtime optimization. Section 5.3 gives a list of the adaptive opti-

mizations which are evaluated within the OTF. Section 5.4 discusses the issues of

runtime searching. Section 5.5 shows and discusses the evaluation results. Section

5.6 summarizes this chapter.

85
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5.1 Adaptive Runtime Optimization

5.1.1 Motivation for Runtime Optimization

As mentioned in Chapter 1, the power and reach of static analysis is diminishing

for modern software. Static compiler optimizations are limited by the accuracy of

their predictions of runtime program behaviour. Using profiling information im-

proves the predictions but still falls short for programs whose behaviour changes

dynamically (e.g. a different input data set can result in different program be-

haviour) and different hardware environments (e.g. different cache size, different

number of processor contexts). Due to the limited amount of information that is

available to a static compiler, shifting optimizations to runtime can solve these

problems by getting more efficient runtime information to drive the optimizations.

Adaptive runtime optimization systems have the advantage of being able to ob-

serve the real behaviour of an executing application and enable programs to

respond to runtime feedback information and change their behaviour to adapt to

the runtime environment, whereas static compilers rely on predictions for that

behaviour. By performing runtime empirical searching within a dynamic opti-

mization system with adaptive runtime optimization, ongoing runtime profiling

can help the searching to progress and identify the effect of different optimizations

(or configuration parameters), and select the most efficient one as the runtime

optimum. So an efficient runtime optimization mechanism is necessary for im-

proving the parallel execution of a program on many different configurations of a

CMP architecture.

5.1.2 Optimizing Approaches

To optimize the parallel program’s runtime performance, there are three major

issues that need to be considered here:
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Load Balance

Load balancing is important to parallel programs for performance reasons. To

maximise the utilization of processor resource, the runtime system needs to dis-

tribute the tasks to the processor contexts evenly. There are two methods to

achieve this aim:

• Equally partition the work each task receives: for loop iterations where the

work done in each iteration is similar (e.g. array or matrix operations where

each task performs similar work), evenly distribute the iterations across the

tasks.

• Use dynamic work assignment: when the amount of work each task will

perform is intentionally variable, or is difficult to predict (e.g. the loop iter-

ation has a conditional branch, or an inner loop whose number of iterations

is variable), it is helpful to use a simple runtime scheduler to assign work

to parallel threads.

Data Locality

Caches take advantage of data locality in programs. Data locality is the property

that references to the same memory location or adjacent locations are reused

within a short period of time. Each processor context has its own data cache

or shares a data cache with other contexts (in a chip multi-threading mode),

so improving data locality is an efficient way to improve the parallel thread’s

performance.

Code Optimization

Improving the efficiency of the generated code can also improve the parallel pro-

gram’s performance. As some of the code optimizations can not achieve an opti-

mum easily by static analysis, researchers have built a runtime tuning mechanisms

into their runtime adaptive optimization frameworks [86, 85, 28] to optimize the

sequential program at runtime, including runtime specialization, compilation flag
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selection and loop unrolling. In this thesis, loop unrolling combined with in-

struction scheduling is investigated for utilizing the RISC processor core more

efficiently (to be discussed in Section 5.3.3).

5.1.3 Online Tuning

The basic mechanism of adaptive runtime optimization uses runtime feedback

to drive the search for the best optimizations. This is similar to the Automated

Empirical Optimization of Software (AEOS) [90] which uses empirical timings

to choose the best solution for a given architecture among several ways of doing

the same operation. To perform the runtime optimizations, the runtime system

needs to be able to do online tuning, evaluate different optimizations at runtime

and reset the program to use the selected optimization. There are four issues

that need to be considered here:

• Isolating the performance critical regions. The performance critical regions

are the target of online tuning. As loop-level parallelization is exploited in

this work, the parallelized loops are the performance critical regions that

will be tuned.

• The method of adapting code to different environments. To adapt code ef-

ficiently, the runtime reconfiguration scheme and version selection are em-

ployed. The detail will be introduced in Section 5.2.2.

• An efficient and precise method for profiling code at runtime. The execution

cycle count is employed for evaluating different configurations and versions

of code. A low cost profiler is implemented to profile data at runtime. The

detail will be discussed in Section 5.2.1.

• An appropriate policy for searching for the most optimal available imple-

mentation. As the search is performed at runtime, the overhead for runtime

evaluation should be as low as possible. Two issues are important for re-

ducing runtime overhead: the search space and the search algorithm. The

search spaces evaluated in this work are all 1-dimensional or 2-dimensional

linear spaces. The search algorithm is based on hill-climbing. By simplify-

ing the search space and search algorithm, the search process can achieve

an optimum in a limited number of steps.
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5.2 Online Tuning Framework

To perform adaptive runtime optimization and improve the runtime performance

of Java applications (especially for parallelized loops), an Online Tuning Frame-

work (OTF) is implemented in JaVM.
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Figure 5.1: Logical View of the OTF.

5.2.1 Logical Structure

The OTF is embedded within the adaptive optimization system (AOS) of JaVM.

Its implementation is tightly coupled with the loop parallelizing compiler (LPC)

(introduced in Chapter 4) and the AOS, so it is difficult to isolate the OTF

components clearly. Logically, the OTF can be divided into three parts: Compiler

Support, Runtime Profiler, and Adaptive Optimizations (shown in Figure 5.1).
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Compiler Support

OTF is a compiler-enabled framework which needs compiler support to perform

runtime profiling and select optimizations that can be applied to parallelized

loops. The Compiler Support Component (CSC) is the LPC, it invokes other

OTF components by inserting a code stub which can interact with the AOS, e.g.

the code for runtime profiling. When the LPC generates the parallel versions of

code for a hot method’s loop, it also generates the special profiler code (discussed

in Section 5.2.2). As mentioned in Chapter 4, the LPC can generate multiple

versions of parallel code which correspond to different loop distribution policies,

and unrolling factors; these versions will be evaluated by OTF at runtime and

one of the best versions will be selected.

Runtime Profiler

The OTF uses runtime profiling to evaluate the performance of selected adaptive

optimizations and drive the search process. The runtime profiler is not an isolated

component, it uses embedded code stubs that are inserted into the compiled code

by the LPC.

Adaptive Optimizations

The adaptive optimizations work in JaVM’s adaptive optimization system (AOS)

and perform online tuning for different types of optimization. The search process

is driven by the profiling data from the runtime profiler. To evaluate different

optimizations (i.e. different compiler optimization parameters), the adaptive op-

timization system uses runtime reconfiguration or code generation to reset the

target code or to install new versions of the code.

5.2.2 Basic Infrastructure

To support adaptive runtime optimization, OTF employs the following basic in-

frastructure:
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Adaptive Optimization System Database

To perform runtime searching and tuning, some data structures are needed for

storing runtime information. An Adaptive Optimization System Database (AOSD)

performs this role, it stores runtime information for parallelized loops and the

OTF, and helps them interact with each other. As the loop is the basic unit that

is optimized by the OTF, each loop has its own entry in the AOSD and the entry

is indexed by a global ID.

A data entry has the fields:

• Loop ID : this is a global ID in the scope of JaVM; the compiler and OTF

will use this ID to identify the information for a particular loop.

• Configuration Parameters : this data will be used to reconfigure the parallel

loop’s runtime behaviour (e.g. the chunk/tile size of parallel threads).

• Switcher Collection: this field is an array which stores instruction offsets in

a compiled method (the switcher mechanism will be introduced in the next

section).

• Multiple Version Code Collection: this field is an array which stores a series

of pointers, each pointer pointing to one version of the code (e.g. the unrolled

loops with different unrolling factors or the different loop schedulers).

• Current Version Pointer : this field is used to maintain the pointer to the

current version of code, e.g. the code corresponding to a special unrolling

factor or loop distribution policy.

• Temporary Storage for Runtime Profiling : this data structure provides tem-

porary storage for evaluating different runtime configurations and code ver-

sions, and the search process can use this data to find a runtime optimum.

Version Selection Mechanism

To perform runtime version selection, a runtime mechanism (shown in Figure 5.2

(a)) is needed to redirect the execution path from one code segment to another
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code segment. OTF provides two approaches for that: branch code switching and

method level switching.

Branch code switching uses a branch instruction to jump between different code

segments by applying different branch offsets. Figure 5.2 (b) gives an example.

The AOS needs to plant an instruction to choose between two execution paths:

to runtime profiling code, or to the parallelized loop directly. To change the

execution path, the AOS just needs to change the offset in the branch instruction,

so in this example the AOS changes the offset from 0x8 to 0x4. The AOSD records

the position (the offset in the code array object) of the branch instruction in the

switcher collection field, so AOS can rewrite the instruction for the compiled

method.

Method level switching reinstalls a method pointer (the address of the method’s

entry instruction) for optimized method in the Java Table of Contents (JTOC).

The JTOC is a shared data table which is used to store compiled method pointers,

each time the program wants to call a method, it needs to load the method’s

pointer from JTOC first. To change the execution path from one compiled method

to another, AOS can just simply change the method pointer in the corresponding

JTOC slot (shown in Figure 5.2 (c)). One point which must be emphasised here

is that all of these candidate methods must have the same interface (i.e. the

different methods have same number and order of the input/output parameters),

otherwise runtime switching will be harmful by assigning the wrong registers or

destroying stack layout.

Runtime Reconfiguration

Runtime reconfiguration is simpler than switching, because it does not need to

change the execution path, it just changes the configuration parameters. In run-

time reconfiguration, the application and AOS use the AOSD to interact with

each other. The AOS sets new parameters into the AOSD, and the application

loads these parameters at runtime. For example, the parallelized loop needs to

know how many loop iterations should be executed in each parallel thread, so it

loads the loop chunk size (number of loop iterations) every time before it creates

parallel threads.
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Adaptive Recompilation

Adaptive recompilation has been employed in JaVM’s basic AOS. The profiler

helps the runtime system to identify a hot method and recompile it. The LPC

will be invoked to try to parallelize the loops in the hot method.

To improve the performance of parallelized loops, adaptive recompilation is still

needed to optimize the parallel threads’ code which corresponds to the parallelized

loops’ bodies. As mentioned in Chapter 4, an MIR-level recompilation mechanism

is employed here to perform backend optimizations on machine code level.

Runtime Profiling

To evaluate the performance of the selected adaptive optimizations by empirical

timing, the OTF needs to be able to calculate each optimization’s execution

cycles. This is achieved by inserting two additional code stubs, one at the start

and one at the end of the parallelized loop being profiled. The first stub extracts

from the architecture the cycle count1 prior to the loop’s execution, and the

second stub extracts the cycle count after the loop has executed. The second

stub is also responsible for reporting the total execution cycle, and the number of

loop iterations, back to the AOS, and creating a parallel thread: the AOS thread

(shown in Figure 5.3).

The OTF is then able to the do following work in the AOS thread (more detail

will be given in Section 5.2.3):

• Calculate the execution time per iteration of each invocation of the loop.

• Make a decision about the comparative performance with other invocations

of the loop under different versions of code and configuration parameters

by applying the search algorithm.

• If an optimum is found for a given optimization, the AOS stops profiling

and, having assessed all optimizations, the AOS switches off the runtime

profiler and any subsequent executions of the loop are run using the best

optimization found.

1Although this mechanism is machine specific, suitable instructions exist in the main archi-
tectures: RDTSC (x86), mftb (PPC), TICK register (SPARC)
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Figure 5.3: Runtime profiling.

All of the evaluation and search processing work is done in the AOS thread.

Normally, the application will not use all the processor contexts available for in

its execution, so the AOS thread is created on demand and does its job on another

free processor context and does not affect the main application thread’s work.

The precision of the execution time metric is a major factor in getting good

results from the optimizations presented, and there are two issues that effect the

precision. The first is that not all loops are of static length or duration, it is

possible that both the number of iterations and the loop’s content will vary per

invocation. The second issue is that the execution timings are affected by system

noise, for example cold caches and other unrelated thread activity which changes

the number of free processors.

To overcome these issues, the execution time for a given optimization on a par-

allelized loop is calculated as an arithmetic mean of the cycles per iteration for

three or four invocations of that loop. Loops that exhibit large profile deviations,
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defined as having a coefficient of variation2 (CV) greater than a configurable

threshold3, are deemed unstable, the AOS thread should check the execution

phase (discussed below) and decide if it should keep searching, restart the search

or switch to a dynamic assignment model (see Section 4.1.4).

Phase Detection Mechanism

As introduced in Chapter 3, the runtime phase detector will calculate statistical

data based on these profiling values in a configurable interval, which is a fixed

number of recording operations (15 is used for this work). In one interval, the

statistical data includes:

• The execution cycles for each runtime phase: E0, E1, ... En (0, 1, ... n are

the indexes in the sample array).

• The total execution cycles for all runtime phases: E.

• The execution cycles for the longest runtime phase: EL (L is an integer

which is used to index the sample array).

• The arithmetic mean of all the runtime phases: m.

The aim of getting such statistical data is to help the runtime profiler handle

two problems: noise from other runtime threads and changes in the runtime

environment.

By observing various applications’ runtime behaviour, three typical phase scenar-

ios are derived (shown in Figure 5.4). Figure 5.4 (a) is stablephase: the number of

free processors did not change during execution of parallelized loop. The scenario

is stable for runtime searching, because the parallelized loops’ execution cycles

can be measured precisely. The second scenario is stable/noise phase (shown in

Figure 5.4 (b)) which means that a stable phase is interrupted by several noise

threads4. The noise threads have a low probability of affecting the parallelized

loops’ runtime performance, so this type of scenario is also suitable for runtime

2Coefficient of variation (CV) is the ratio of the standard deviation to the arithmetic mean.
3The threshold for CV is configurable; it is set at 0.1 for this work
4A noise thread is any thread whose execution is less than 3000 cycles during activation.
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searching. The last scenario is unstable phase (shown in Figure 5.4 (c)): the num-

ber of free processors changes during the period of parallelized loops’ execution,

and each change also has a long period.

The runtime profiler should eliminate the effect of runtime noise threads whose

execution time is less than 3000 instruction cycles. Shown in Figure 5.4 (b), there

are five runtime phases (a, b, c, d, and e) in one run of parallelized loop. Phases b

and d are very short and these phases have a low probability of affecting parallel

thread creation.

The runtime profiler should also detect whether the runtime environment is un-

stable for the current parallelized loop which means the runtime phases change

too frequently to perform runtime searching. Shown in Figure 5.4 (c), there are

three runtime phases (a, b and c) in one run of the parallelized loop. These three

phases are not generated by noise threads, they can affect parallel thread creation

and so affect the profiling results for the current loop.

By applying Algorithm 6, the runtime profiler can figure out which scenario

(shown in Figure 5.4 (a), (b) and (c)) corresponds to the current execution. This

algorithm checks if the longest runtime phase is less than 20 or 30 percentage of

the whole execution time (30 is selected in the current implementation) in one

statistical interval. If so, this means that the execution time for these runtime

phases are distributed evenly, and the scenario is (c). If not, the scenario could

be (a) or (b). The algorithm checks the longest phase’s two neighbours. If one of

them has very short execution time and its neighbour has execution time which

is equal or larger than the mean value m and it also has the same number of free

processors as the longest phase, this scenario should be (b) which means a long

phase is being interrupted by several short phases. Otherwise the scenario should

be (a) which is a normal phase distribution.

Algorithm 7 helps the runtime profiler decide if it should keep searching or switch

to DAD mode (discussed in Section 4.1.4). When the runtime is in an unstable

scenario, the thread creator may not allocate enough processor contexts for par-

allel threads, the DAD mode keeps trying to grab more idle processor contexts

and this greedy task allocation policy could help the parallelized program get

more computing resource and improve performance.
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Input: the statistical data from phase detector (E0, E1, ... En, E, EL, m)
Output: current scenario
Implementation:
r ← EL

E
;

if r ≤ 0.3 then
return ScenarioC;

end if
if EL−1 ≤ m

10
and m ≤ EL−2 then

return ScenarioB;
else if EL+1 ≤ m

10
and m ≤ EL+2 then

return ScenarioB;
else

return ScenarioA;
end if
Algorithm 6: scenario detection (Scenario Detection Mechanism).

Input: the statistic data from phase detector (E0, E1, ... En, E, EL, m), the
average execution time for parallelized loop Ep

Output: boolean result
Implementation:
s← scenario detection(E0, E1, ...En, E, EL, m);
if s = ScenarioA then

return Ep ≤ EL

end if
if s = ScenarioB then

return TRUE;
end if
if s = ScenarioC then

return Ep ≤ m
end if

Algorithm 7: phase checking (Phase Checking Mechanism).
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5.2.3 Working Mechanism

The basic work flow for runtime empirical searching is composed of five steps:

1. Search Code Generation: AOS identifies a hot method by the normal JaVM

profiling mechanism, and recompiles it applying more optimization phases.

LPC intercepts this procedure and tries to find suitable loops (DoAll loops

or DoAcross loops with simple scalar operations) and parallelizes them. To

enable the runtime empirical search on a loop that can be parallelized, LPC

will insert the code stubs (introduced in Section 5.2.2) which do empirical

timing and invoke the AOS thread, and will initialize a data entry in the

AOSD. The adaptive optimization that will be assigned for the loop can be

configured by hand, or selected automatically by LPC. LPC should assign

different types of adaptive optimization to different types of loop. For

example, a 2-Dimensional nested loop can be assigned tile based adaptive

optimization.

2. Code Installation and Starting the Search: LPC installs the recompiled

method which contains the parallelized loop. And the AOS will start run-

time empirical searching on the parallelized loop, when this newly installed

method is called.

3. Runtime Empirical Searching: For each loop running, the installed profiling

code stubs report execution cycles and number of iterations to the AOS

thread. The AOS thread calculates the execution cycles per iteration (ECI)

and stores it into a Sample Window which is composed of 3 or 4 ECI

values 5. When a sample window is completely full, the AOS thread should

calculate the CV, to check whether the samples are stable.

If the CV does not exceed the threshold, then the mean of the samples is

set to the evaluation result for the current configuration and recorded in

the AOSD. The AOS can then evaluate the next configuration generated

by the search algorithm.

If the CV exceeds the threshold, the AOS should check whether this is af-

fected by runtime noise or an unstable runtime environment by applying

5The number of elements in a sample window is configurable. Normally, 3 or 4 are selected
for this work.
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Algorithm 7 (described in Section 5.2.2). If it is affected by an unstable

runtime environment, the AOS thread should switch off the search process

and switch the loop to the dynamic assignment parallelization model (dis-

cussed in Chapter 4). If it is just affected by runtime noise, the AOS thread

can shift the sample window to the next run and evaluate the CV again.

4. Stopping the Search and Applying the Optimal Solution: When an optimal

configuration or code version is selected, the AOS thread switches off the

profiler. In switching off the profiler, the code stub that previously invoked

runtime profiling is modified, so that future execution of the code no longer

needs to execute any code inside the profiling phase.

5. Restarting the Search: AOS needs to search for different optimal configura-

tions or code versions for different problem sizes 6 and different numbers of

free processors. As these two aspects can be changed at runtime, so AOS

needs to restart the search process when it detects the change and there

is no optimal search result for the changed environment. Details will be

discussed in Section 5.4.

5.3 Adaptive Optimizations

The AOS inserts one or more optimizations deemed to be appropriate for optimiz-

ing a given loop, identified by the LPC, into the code. The adaptive optimizations

are located by the LPC to place the optimizations around the identified parallel

loops. Presently the AOS supports three major types of adaptive optimization

for parallelizable code (see below). These optimizations vary either the number

of loop iterations inside a chunk or tile, the loop unrolling factors, or the manner

in which the chunks or tiles are distributed. By varying these factors the OTF is

able to find strategies that best balance the costs associated with threading, the

cache performance, and the system load.

6In this thesis, the application’s problem size means the size of the input data set.
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5.3.1 Adaptive Chunk Division (ACD)

For a given loop the total number of iterations is divided into chunks. Each chunk

is then distributed through the creation of a parallel thread. The parallel threads

can be run on any available processor context. Ideally, given an n iteration loop

on a CMP with Pn processor contexts, the best chunk size for division is n
Pn

. But

there are several issues that affect the division, including the overhead of thread

creation, data locality and if the loop body which contains an irregular workload.

In all the optimizations if a thread cannot be invoked on a remote processor con-

text, the main thread (i.e. the generator thread) must perform its work before

continuing to distribute subsequent threads. This optimization uses a hill-climb-

like algorithm (see Algorithm 9) to adaptively divide the total number of itera-

tions in a loop into chunks and search for an optimal divisor. The search starts

to test if the chunk size which is smaller than the ideal size is suitable (i.e. larger

divisor), because the small granularity makes the workload to be distributed more

evenly on parallel processor contexts and also can improve the data locality for

some memory intensive programs (e.g. DGEMM). If the search process can not

benefit from the small chunk size, it will come back to evaluate a larger chunk

size (i.e. smaller divisor) by the small steps (i.e. the divisor incremented by 1
Pn×2

,

see Algorithm 8) to tradeoff the overhead for thread creation. The search space

employed here is a 1-dimensional linear space in the range: 1 ≤ optimal ≤ Pn×k

(k is a positive integer).

5.3.2 Adaptive Tile Division (ATD)

As loops can be tiled to take advantage of data reuse [92, 45, 18], selecting a

suitable tile size is a common technique for improving performance. This opti-

mization is applied when a perfectly nested loop is identified by the LPC. The

2-dimensional loop traversal of the iteration space is divided into tiles which are

then distributed by the creation of parallel threads. Each tile has a corresponding

divisor pair. Given a divisor pair (Di, Dj), Di is the divisor corresponding to the

outer loop iterator and Dj corresponds to the inner loop iterator.

Adaptive tiling, again using a hill-climbing algorithm, starts from an initial divi-

sor pair (Di0, Dj0). The initial divisor pair is calculated such that Di0×Dj0 = Pn,
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Input: Pn, number of processor contexts; G, a threshold, which is used to
decide when to stop the search
Output: optimal divisor
Implementation:
Step 1:
Dm ← Pn; n← 1

2
; Dl ← Dm;

Em ← execution cycles per iteration for loop using Dm; El ← Em;
Step 2:
while n > G do
Er ← execution cycles per iteration for loop using Dr;
if Er ≥ Em then

El ← Em; Dl ← Dm; Em ← Er; Dm ← Dr; Dr ← Dm + n;
else if Er > Em and Er < El then

Dl ← Dm; El ← Em; Dr ← Dm + n
2
; n← n

2
;

else if Er > Em and Er > El and Dm 6= Dl then
Dr ← Dm; Er ← Em; Dl ← Dm − n

2
;

goto Step 3;
else if Er > Em and Dm = Dl then

Dr ← Dm + n
2
; n← n

2
;

end if
end
Step 3:
while n > G do
El ← execution cycles per iteration for loop using Dl;
if El ≤ Em then

Em ← El; Dm ← Dl; Dr ← Dm + n
2
; n← n

2
;

goto Step 2;
else if El > Em then

Dl ← Dm − n
2
; n← n

2
;

end if
end
Step 4: return Dm;

Algorithm 8: acd (Adaptive Chunk Division).
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Input: Pn, number of processor contexts; G, a threshold, which is used to
decide if stop the search
Output: optimal divisor
Implementation:
Step 1:
Dm ← Pn; m← 2; Dm ← Dm ×m;
Em ← execution cycles per iteration for loop using Dm;
Step 2:
Er ← execution cycles per iteration for loop using Dr;
if Er ≤ Em then

Em ← Er; Dm ← Dr; Dr ← Dm × (m + 1); m← m + 1;
goto Step 2;

else if Er > Em then
return acd(Dm, G);

end if
Algorithm 9: multi acd (Multiple Adaptive Chunk Division).

where Pn is the total number of processor contexts. This partition, thereafter re-

ferred to as a näıve scheme, simply distributes the tiles evenly among the processor

contexts. Algorithm 10 describes how to calculate Di0 and Dj0.

The searching process increases Di and Dj iteratively to determine whether

smaller tile sizes provide smaller execution times. When no performance im-

provement is observed, the OTF stops the search. Any divisor pair (Di, Dj)

calculated during iteration is composed such that Di ×Dj = k × Pn where k is

a positive integer value (k > 0) and Pn is the total number of processors. Algo-

rithm 11 presents the search algorithm used to determine the divisor pairs. The

search space is a rectangular space which corresponds to the iteration space of

a two-level nested loop. Each search step shrinks the area of the tile by half or

changes the shape of the tile.

For the specific CMC architecture (introduced in Chapter 2), two tile sizes (for

the L1 and L2 cache) are considered. The adaptive search begins by finding an

optimal tile size for the L1 cache, which is a subset of the data within the L2

cache. When an optimal L1 tile size is determined, the OTF searches for a L2

cache tile size using the same search algorithm but using different initial divisor

pairs. Algorithm 12 describes the combined search mechanism to optimize loop

division for a CMC architecture. Consider the example loop shown in Figure 5.5,

the search process for the L1 cache tile considers any rectangle which is contained
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Input: Pn, number of processor contexts
Output: a initial divisor pair
Implementation:
Step 1: t← bsqrt(Pn)c;
Step 2:
while (Pn%t) 6= 0 do

t← t− 1
end while
Step 3: return (Pn

t
, t);

Algorithm 10: init tile rect (Initialize Tile Size for Rectangle Iteration Space).

for (i = 0; i < N; i ++) {
    for (j = 0; j < M; j ++) {
        loop body ...
    }
}

for (ic = 0; ic < N; ic += cluster_x) {
    for (jc = 0; jc < M; jc += cluster_y) {
        for (iL2 = ic; iL2 < MIN(ic + cluster_x, N); iL2 += L2Tile_x) {
            for (jL2 = jc; jL2 < MIN(jc + cluster_y, M); jL2 += L2Tile_y) {
                for (iL1 = iL2; iL1 < MIN(iL2 + L2Tile_x, N); iL1 += L1Tile_x) {
                    for (jL1 = jL2; jL1 < MIN(jL2 + L2Tile_y, M); jL1 += L1Tile_y) {
                        for (i = iL1; i < MIN(iL1 + L1Tile_x, N); i ++) {
                            for (j = jL1; j < MIN(jL1 + L1Tile_y, M); j ++) {
                                loop body ...
                            }
                         }
                    }
                }
            }
        }
    }
}

distributed on different processors in same cluster

distributed on different clusters

Figure 5.5: Tiling Transformation for Runtime Tuning.

within a rectangle with sides clusterx and clustery. The search space for the L2

cache tile is based on the L1 tile size. Given the optimal divisor pair for the L1

tile, (Dx, Dy), the search process for the L2 tile is for any rectangle with sides

multiples of clusterx

Dx
and clustery

Dy
, respectively, and contained within the rectangle

with sides clusterx and clustery.

Another advantage of tile based loop distribution is improving load balance for

non-rectangular iteration spaces. Given a triangular iteration space which a two-

level nested loop is working on, if a chunk based distribution is applied which

is a 1-Dimensional distribution, each parallel task will be assigned a different

number of iterations and the load imbalance is obvious. By using a tile based

distribution policy, the iteration space is divided into small tiles. This can make

the distribution of loop iterations more average, thus improving load balance and
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Input: Pn, number of processor contexts
Output: optimal divisor pair
Implementation:
Step 1: (Di, Dj)← init tile rect(Pn);
Evaluate the runtime performance by initial tile size (Di, Dj), get execution
cycles per iteration Em

Step 2:
(Dil, Djl)← (Di × 2, Dj);
(Dir, Djr)← (Di, Dj × 2);
El ← execution cycles per iteration for loop using tile size (Dil, Djl);
Er ← execution cycles per iteration for loop using tile size (Dir, Djr);
if Em ≤ El and Em ≤ Er then

goto Step 3;
end if
if Er ≤ El then

(Di, Dj)← (Dir, Djr); Em ← Er;
else

(Di, Dj)← (Dil, Djl); Em ← El;
end if
goto Step 2;
Step 3:
i← 2
Step 4:
(Dil, Djl)← (bDi

i
c, Dj × i);

(Dir, Djr)← (Di × i, bDj

i
c);

El ← execution cycles per iteration for loop using tile size (Dil, Djl);
Er ← execution cycles per iteration for loop using tile size (Dir, Djr);
if Em ≤ El and Em ≤ Er then

return (Di, Dj)
end if
if Er ≤ El then

(Di, Dj)← (Dir, Djr); Em ← Er;
else

(Di, Dj)← (Dil, Djl); Em ← El;
end if
i← i + 1;
goto Step 4;

Algorithm 11: tile search rect (Adaptive Tile Division for Rectangle Iteration
Space).
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Input: Pn, number of processor contexts; Cn number of clusters.
Output: optimal divisor pairs for L1 and L2 tile
Implementation:
Step1: Search for L1 cache tile size
L1Tile← tile search rect(Pn); // L1Tile is the optimal divisor pair for L1
tile
Step2: Search for L2 cache tile size
L2Tile← tile search rect(Cn); // L2Tile is the optimal divisor pair for L2
tile

Algorithm 12: multi level search (Multiple Levels Search).

data locality. Algorithm 14 presents how to search for the optimal tile size for

triangular iteration space, the tile size (Di, Dj) should satisfy: Di × (Dj + 1) =

2× Pn × k (k is a positive integer).

Input: Pn, number of processor contexts
Output: a initial divisor pair
Implementation:
Step 1: t← (Pn × 2); tile x← Pn; tile y ← 1;
Step 2:
while tile x > tile y do

tile x← b t
tile y
c; tile y ← tile y + 1;

end while
Step 3: return (tile x, tile y)

Algorithm 13: init tile tria (Initialize Tile Size for Triangular Iteration Space).

5.3.3 Adaptive Version Selection (AVS)

This type of optimization performs runtime selection between different loop schedul-

ing policies or different versions of code. There is no special search algorithm for

AVS, because the search space should be small (the number of code versions

or loop schedulers is limited). The OTF simply evaluates all code versions and

selects the best one.

Loop Distribution Policy Selection

By defining a common interface between the main method which contains the

parallel loop, loop scheduler methods and parallel thread body methods, the
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Input: Pn, number of processor contexts
Output: optimal divisor pair
Implementation:
Step 1: t← 1; (Di0, Dj0)← init tile tria(Pn × t); E0 ← execution cycles per
iteration for loop using tile size (Di0, Dj0);
Step 2: t← t + 1; (Di, Dj)← init tile tria(Pn × t); Et ← execution cycles
per iteration for loop using the smaller tile size (Di, Dj);
if E0 ≤ Et then

return (Di0, Dj0)
else

(Di0, Dj0)← (Di, Dj); E0 ← Et; goto Step 2;
end if

Algorithm 14: tile search tria (Adaptive Tile Division for Triangular Iteration
Space).

... ...

... ...

JTOC slots

JTOC slots

multiple parallel 
threads’ schedulers

multiple parallel 
threads’ bodies

AOS

runtime version selection

Figure 5.6: Multiple Version of Loop Distributor and Parallel Thread Body.
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AOS can select different loop scheduling policies flexibly (shown in Figure 5.6.)

AOS can select between a chunk based scheduler and a tile base scheduler. If

the problem size is large, to achieve both load balance and data locality, the tile

based loop scheduler should be the better choice. For a small problem size, the

chunk based scheduler which has lower overhead for parallel thread creation and

is the better solution.

AOS can also select between the chunk/tile based scheduler, and a scheduler

using a cyclic recursive distribution (CRD) (introduced in Chapter 4). CRD

uses a tree-like distribution policy which reduces thread creation overhead by

creating parallel threads recursively. The CRD can also improve load balance for

triangular iteration spaces with low overhead. The drawback of CRD, however,

is that it increases the number of cache misses when used in a multi-processor

environment. This is because a contiguous memory segment will be mapped

across different processor cores caches.

Code Version Selection for Code Optimization

Loop unrolling [68] is a widely used compiler optimization, it reduces the overhead

of executing an indexed loop and improves the effectiveness of other optimiza-

tions. Employing loop unrolling here can improve the effectiveness of instruction

scheduling which improves runtime performance when running on a RISC proces-

sor core with pipeline support (in the JAMACIA architecture, each processor core

has a 5-stage pipeline) [69, 79, 7]. By reducing the data dependency between the

instructions, instruction scheduling can generate more overlap between replicated

loop bodies and improve the parallel execution on the pipeline. To reduce the

data dependency, register renaming is used to rename the local operands in repli-

cated loop bodies. Increasing overlap can improve the efficiency of the pipeline,

but also increase the register pressure which will generate more spill operations

and decrease the performance. That is why runtime searching is employed here

to find a suitable loop unrolling factor.

JaVMs dynamic compiler supports a simple pre-pass local-scheduling mechanism

[58], which is a single basic-block based instruction scheduling and uses a list-

scheduling algorithm [82]. By the limitation of instruction scheduling support,

Adaptive Loop Unrolling (ALU) works on the loops which contain just one basic
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block. Usually, this type of loop is the innermost loop in loop nests and part

of the most heavy computing workload. To find the best loop unrolling factor,

the LPC generates different versions of a parallelized loop which are unrolled by

different factors that evenly divide the number of innermost iterations, up to a

maximum unrolling factor of N (this value is configurable, it is set to 8 in this

work). OTF evaluates these versions at runtime to select the best one.

To tradeoff the effect of the runtime code generation for multiple version of code

(i.e. for different unrolling factors), LPC performs parallel compilation which can

utilize more idle processors to build multiple versions of the code.

5.4 Runtime Searching Issues

As discussed in the previous sections, there are two important issues that af-

fect the result of runtime empirical searching: the problem size and computing

resource.

5.4.1 Problem Size

For runtime reconfiguration related adaptive optimizations, namely adaptive chunk/tile

size selection, the problem size is an important issue for runtime searching, be-

cause the performance of the cache is highly dependent on the problem size and

the tile size. The same tile size can give rise to widely varying cache miss rates for

similar problem sizes [56]. Although the current solution is based on divisors (the

runtime search result is the optimal divisors), the divisors can generate different

tile sizes for different problem sizes. One divisor (or one pair of divisors) is still

not suitable for all problem sizes.

So we need to restart the search process at runtime when the problem size changes.

As discussed in previous sections, the OTF can easily switch on/off the runtime

profiler and trigger the search. The key problem is when to restart the search.

The current solution is to divide the iteration space into several regions, the size

of a region being configurable. Each region has its own optimal configuration, and

a flag to notify whether this region has an optimum. Every time the parallelized

loop tries to load the divisors and calculate the chunk or tile size, it should check
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AOS

load divisors

load flag

parallelized
      loop

switcher

profiler stub

profiler stub

switcher

successor

check
  flag

has optimum

no optimum

  restart 
searching notify AOS, 

reinitialize AOSD

switch on

switch on

Figure 5.7: The Runtime Restart Mechanism.

the region flag first, to makes sure that this region has an optimal configuration.

If there is no optimum in the current region, the program should switch on the

runtime profiler (shown in Figure 5.7).

Usually, most test applications have the same problem size for their whole run-

time, so the code stub to check for a restart is optional. By evaluating the different

schemes, it has been seen that the tile based loop distribution is more easily af-

fected by problem size, because different tile sizes result in different behaviour in

data locality.

5.4.2 Computing Resource

The number of available processor contexts (Pn) is most important effect which

can affect the parallel program’s performance. For different values of Pn, the
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optimal chunk/tile size will be different. So the search process should be restarted

when the Pn changes.

In JaVM, multiple Java threads work concurrently. These concurrent threads

affect the value of Pn. Section 5.2.2 has discussed the runtime phases in a multi-

threading environment. The system threads and the application threads are the

two major types of thread in the JaVM runtime.

The system threads can be classified into three types:

• AOS Threads : performing runtime empirical searching and collecting run-

time profiling information. By observing JaVM’s behaviour, this type of

thread is typically short running. So these threads’ execution can be treated

as runtime noise for parallelized loops.

• Compilation Thread: performing runtime recompilation (recompiling the

hot methods). This is a long running thread, because runtime recompila-

tion with the optimizing compiler is an expensive operation which will go

through at least 15 compilation phases.

• GC Thread: performing garbage collection. JaVM employs a Stop the

World GC policy; there is no other Java thread active when the GC threads

are working. As the LPC has excluded the GC triggers when it generates

the parallel code and runtime profiler stubs, the GC threads will not affect

the parallelization and runtime searching.

These threads can not make the JaVM enter into an unstable phase for measure-

ment, so the system threads will not affect the runtime searching.

The behaviour of the application threads is varies. Current observations of the

scientific applications and some of the general purpose applications is that they

employ long running threads. So they are stable. Some of the network based

applications (e.g. web application, middleware) utilized short term threads which

are created frequently for handling user connections, so they are unstable and the

phase detector will help AOS decide if it need to switch to DAD mode.
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5.5 Evaluation and Discussion

This section shows the experimental results got from the JAMAICA simulator

(mentioned in Chapter 2) and discusses the efficiency of the adaptive optimiza-

tions. 5 benchmarks selected from Table 4.1, JavaLinpack, LU decomposition,

Zchol 7 and three well known BLAS 3 kernels (DGEMM, DSY RK, DTRMM ,

shown in Figure 5.8) are used for performance evaluation. All of these bench-

marks have computation intensive loops that can be parallelized, so they are ideal

for demonstrating the optimizations.

5.5.1 Adaptive Chunking

Figure 5.9 shows the OTF searching for an optimal divisor in the Linpack bench-

mark using ACD. The hardware configuration is 8 processors, 1 context per pro-

cessor, with 16KB L1 cache. By the 9th invocation of the parallelized loop the

initial overhead of the runtime profiling code is amortized by the optimized per-

formance, and by 12 invocations a local optimal divisor for this loop has been

found (the ACD’s threshold used here is 1
16

).

Figure 5.10 presents the results of optimizing the benchmarks using the ACD

optimization. The results show the speedup achieved using the adaptively found

local-optimal divisor, listed in the table, compared to the näıve divisor which

divides the loop iterations evenly between a fixed number of threads, in this case

equal to the total number of processor contexts.

For the majority of cases shown in figure 5.10, the optimal divisor is a value less

than the näıve divisor 8. This is due to the nature of the distribution scheme. The

processor context responsible for distributing the parallel threads, the generator,

is always the last available for processing any of the loop iterations. In the case

of a smaller divisor, e.g. 3.75 as opposed to 4, a loop with 100 iterations will be

distributed such that the first three distributed threads each contain a chunk of 26

iterations, and the fourth contains only 22. This scheme is therefore able to trade-

off the overhead on the generator thread. In the cases where the optimal divisor is

larger than the näıve divisor, the optimization overcomes the context contention

7Zchol implements the Cholesky decomposition of a positive definite matrix.
8The näıve divisor employed here equals the number of processor contexts Pn.
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for ( int i = 0 ; i < mLength ; i ++) {
for ( int j = 0 ; j < nLength ; j ++) {

double temp = 0 . 0 ;
for ( int k = 0 ; k < nLength ; k ++) {

temp += alpha ∗ matA [ i ] [ k ] ∗ matB [ k ] [ j ] + beta ∗ matC [ i ] [ j ] ;
}
matC [ i ] [ j ] = temp ;

}
}

( a ) DGEMM

for ( int i = 0 ; i < mLength ; i ++) {
for ( int j = i ; j < nLength ; j ++) {

double temp = 0 . 0 ;
for ( int k = 0 ; k < nLength ; k ++) {

temp += alpha ∗ matA [ i ] [ k ] ∗ matB [ k ] [ j ] + beta ∗ matC [ i ] [ j ] ;
}
matC [ i ] [ j ] = matC [ j ] [ i ] = temp ;

}
}

(b) DSYRK

for ( int i = 0 ; i < l ength ; i ++) {
for ( int j = 0 ; j < l ength ; j ++) {

double temp = 0 . 0 ;
for ( int k = i ; k < nLength ; k ++) {

temp += matA [ i ] [ k ] ∗ matB [ k ] [ j ] ;
}
matC [ i ] [ j ] = temp ;

}
}

( c ) DTRMM

Figure 5.8: Level 3 BLAS Kernels.
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Figure 5.9: Searching Profile Using ACD for The Linpack (100×100) Benchmark.

overhead. As mentioned previously, in Section 5.3.1, if the generator thread is not

able to distribute a parallel thread to a remote context the work must be done by

the generator which prevents subsequent threads being distributed. As the size of

the chunk decreases with larger divisors, each parallel thread contains less work,

which reduces the amount of serialization caused by context contention. For this

reason in some cases a divisor greater than the number of processor contexts

performs better.

Figure 5.10 shows the search result obtained from ACD. The DGEMM (96 ×
96 matrix) and JSwim benefit from improving data locality by decreasing the

chunk size. In Figure 5.10, JSwim has two rows, because there are two types of

loops: one is a 2-dimensional nested loop which can benefit from data locality and

another is a 1-dimensional loop which benefits from reducing the thread creation

overhead.

5.5.2 Adaptive Tiling

Figure 5.11 demonstrates the OTF searching for an optimal divisor during exe-

cution of the DGEMM benchmark by applying Algorithm 12. The problem size

is 256× 256 matrix with a hardware configuration of 2 clusters and 4 processors

per cluster — notation: 2c/4p 9. The L1 cache is 8KB and L2 cache is 128KB

— notation: 8KB/128KB. Compared with the search process shown in Figure

9For a single CMP, we employ a similar notation: 2p/4c means 2 processors and 4 contexts
per processor.
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Figure 5.10: Speedup of ACD Compared to näıve Chunk Distribution.
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Figure 5.11: The Search Process for DGEMM 256*256.

5.9, this search process is a two-stage search which needs to find tile sizes for

level 1 and level 2 caches. The search algorithm starts from the näıve scheme

with tile divisors: L1 tile (4, 2), and L2 tile (2, 1). By the 21st invocation of the

parallelized loop a locally optimal L1 tile size has been found, and the optimal

L2 tile size is found at the 36th invocation. As mentioned in Section 5.2.2, three

invocations of the loop are used to assess timing stability. In this experiment the

deviation did not exceed the threshold (0.1). The optimal L1 and L2 tile sizes

are applied at the 39th invocation finishing the search phase. Note that by the

very nature of the hill-climbing algorithms used, the adaptive search finishes after

finding local-optimal solutions.

Figure 5.12 shows the result for applying ATD on a single CMP. The hardware

configurations are: 2p/4c, 4p/2c, and 8p/1c, and L1 cache sizes: 16KB and 32KB.

The L2 caches are all 512KB. For Zchol and DSY RK which have triangular

iteration spaces, the speedup mainly benefit from improving the load balance.

For the LU kernel, there are two rows of divisors corresponding to two groups of

problem size. Because this LU kernel uses DGETRF implementation [8] which

contains DGEMM operation, for each LU execution, the sizes of the internal

DGEMM ’s input matrix are variable. Here we simply group them into two sets,

thus getting two groups of optimal divisors.

As introduced in Chapter 2, chip multi-threading employs a context switching

mechanism which can help to hide memory latency. So the single context con-

figurations (i.e. 8p/1c) usually have better speedup than the multiple context
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Figure 5.12: Adaptive Tiling with Different Hardware Configuration on a Single
CMP.
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configurations, because the hardware can eliminate some effect of a cache miss,

so some of the benefits of tiling are hidden.

To evaluate the ACD on CMC, different problem sizes (64× 64, 128× 128, 256×
256 and 352 × 352 matrix) and different hardware configurations (clusters/pro-

cessors: 2c/4p and 4c/2p, and L1/L2 cache sizes: 8KB/128KB, 8KB/256KB,

16KB/128KB and 16KB/256KB) are used.

The graph in Figure 5.13 presents the speedup attained using the optimal tile

sizes compared with that attained using näıve tile sizes. The näıve tile size is

defined as the square root of the number of processor contexts. For example, a

system with 16 processors has näıve L1 cache tile divisors (4, 4). The divisors are

restricted to integer values, thus in a system with 8 processors, the L1 cache tile

could either be (4, 2) or (2, 4) (see Algorithm 10). The näıve scheme is used by

static optimizers as it achieves reasonable load balance and data locality.

Figure 5.14 shows the resulting optimal divisors for all of the evaluated bench-

marks. The näıve divisors for DGEMM are: 2c/4p and 4c/2p with L1 tile divisor

(4, 2) and L2 tile divisor (2, 1); 4c/4p with L1 tile divisor (4, 4) and L2 divisor

(2, 2). The speedup for DGEMM is shown in Figure 5.13(a). For small problem

sizes (e.g. 64 × 64 matrix), there is no obvious benefit for those configurations

with larger L1 cache sizes when compared to the näıve scheme. For larger prob-

lem sizes, however, larger divisors produce performance increases. The optimal

L2 tile sizes are related to the number of clusters. For example, the best L2 tile

divisors for 64×64 matrix are (2, 1) for the 2c/4p configuration and (2, 2) for the

4c/2p and 4c/4p configurations. By increasing the L2 cache size, the L2 cache

tile has less effect and its value is near the näıve configuration. This is why the

256KB L2 cache configurations have less of a speedup than the 128KB L2 cache

configurations for the same problem size and L1 cache size.

The DTRMM nested loop is intrinsically load imbalanced, because the number

of iterations in the inner most loop (k-loop) depends on the iteration of the i-loop,

refer to Figure 5.8 (c). The optimal divisors are shown in Figure 5.14(b). For

configurations 2c/4p and 4c/2p, most of the best divisors for the j-loop L1 tile

sizes are 8, which is an even distribution of 8 parallel tasks to the 8 processing

cores. Similarly, most of the best divisors for the j-loop L1 tile sizes are 16 for

4c/4p. By increasing the problem size, both the L1 and L2 divisors are increased
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Figure 5.14: Optimal Divisor Pairs for Different Problem Sizes and Hardware
Configurations.
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Figure 5.15: Speed-up from CRD on Top of Initial ACD/ATD Gains.

to gain additional benefits from data locality. The speedups, shown in Figure

5.13(b), are more pronounced than for DGEMM ; however, most of the benefit

is attained through better load balancing.

Finally the optimal divisors for JLB, which uses a stencil computation model,

are compared to the näıve tile sizes, which are the same as for DGEMM . The

speedups are shown in Figure 5.13(c). Compared with DGEMM , JLB has less

cache cross-interference and as a consequence the optimization produces smaller

speedups.

5.5.3 Adaptive Version Selection

Figure 5.15 shows the additional performance speedups gained by using CRD

with the ACD/ATD optimizations. For each benchmark both a large and small

data set were evaluated. Clearly for larger data sets the CRD scheme degrades

the performance of the best ACD/ATD using traditional distribution which can

improve the data locality; however, for smaller datasets additional performance

increases are achieved for most of the benchmarks. CRD gains performance

for smaller data sets as it uses a tree-like distribution policy to create parallel

threads. This reduces the overhead of thread creation in the initial generator

thread. Furthermore, when CRD is used on triangular loops (e.g. DSY RK and

ZcholKernel), this cyclic distribution leads to less variation in the total amount
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Figure 5.16: Speed-up from ALU on Top of ACD Gains.

of work received by each processor context.

Figure 5.16 (a) shows the result of the ALU optimization tested on a 4 processor

single threaded configuration. The benchmarks selected here have a simple inner-

most loop, 10 which is suitable for loop unrolling in our compilation environment.

The speedup gained from ALU is on top of normal ACD gains. Figure 5.16 (b)

lists the unrolled loops and the loop unrolling factors for each benchmark. Only

the parallelized loops can be unrolled in our current ALU implementation.

In DGEMM , the innermost loop which computes dot products on vectors is the

major computation process, so it gains obvious speedup. In Euler and JSwim,

some loop unrolling factors are 1; this means these loops were not unrolled, be-

cause they contain a lot of instructions, and thus generate more register pressure

when they are unrolled.

5.6 Summary

This chapter introduced the motivation for runtime adaptive optimization (run-

time empirical searching) and the Online Tuning Framework which provide the

support for runtime adaptive optimization in JaVM. By applying several adaptive

optimizations, loop-based parallel programs could achieve better load balance or

10As the limitation is described in Section 5.3.3, the simple loop here is the loop which
contains no conditional branch operations and the loop body is just one basic block.
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data locality, and thus improve their runtime performance.



Chapter 6

Support for Thread Level

Speculation

As discussed in previous chapters, dynamic compilation with runtime lightweight

thread support is feasible to exploit parallelization especially for fine-grain paral-

lelization. The experimental results show that the performance improvement for

general purpose applications is still limited. The major obstacle is that potential

data dependence is not statically analysable.

Recent proposals for CMPs advocate Thread Level Speculation (TLS), which

means splitting sequential execution programs into implicit threads and executing

them in parallel on multiple processor cores speculatively. TLS has the advantage

that it can simplify the compiler analysis and exploit more potential parallelism

[71]. To evaluate adaptive optimization for speculative parallelization, new TLS

support is added into the JAMAICA CMP. This chapter will introduce the TLS

solution for both hardware and software.

Section 6.1 gives an overview of the basic background of the TLS solution. Sec-

tion 6.2 introduces the basic architecture of TLS support in JAMAICA and its

execution model. Sections 6.3 and 6.4 discuss how to support TLS in JAMAICA

by adding components to the hardware and the compiler. Section 6.5 shows some

experimental results based on standard Java benchmarks and discusses the issues

which affect the performance. Section 6.6 summarizes this chapter.

125
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6.1 TLS Overview

Parallelization within a single application can come from explicitly parallel sec-

tions, but it is difficult for programmers to parallelize applications manually. Al-

though compilers are relatively successful at parallelizing numerical applications,

dependences that are not statically analysable hinder compilers. To alleviate this

problem TLS which supports speculative parallelization exploits the parallelism

implicit in an application’s sequential instruction stream.

6.1.1 Basic Concepts

The data dependency between the parallel threads would violate the order of

memory access in sequential programs, so a data dependency related memory

read/write should be Speculative Read (SR) and Speculative Write (SW). For

SR, the TLS mechanism needs to read the latest value which follows the original

program order. For SW, it should provide temporary storage to store the written

data and commit it to real memory later. The SW also needs to check if there

are any load operations from the same address by a succeeding thread.

Only true memory dependences Read After Write (RAW) cause violations. The

anti dependences Write After Write (WAW) and output dependences Write Af-

ter Read (WAR) are properly handled by buffering in speculative storage and

committing in sequential order. All of the speculative memory write operations

have temporary storage and the stored values will be committed when a specu-

lative session finishes. The commit will work sequentially in the order defined by

the original program.

The speculative CMP employs data dependence tracking mechanisms which use

hardware to detect data dependence violations, keeps uncertain data in specu-

lative storage, rolls back incorrect executions, and commits data (the specula-

tive status stored in speculative storage) to main memory only when speculative

threads succeed. Thus, the speculative CMP provides the same programming

interface as a normal CMP while supporting the safe, simultaneous execution of

potentially dependent threads.

By using hardware to enforce dependence, the speculative CMP allows a compiler
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to focus on improving performance without needing to fully prove data indepen-

dence between the parallelized regions. A sequential program is decomposed into

threads for a speculative CMP to execute in parallel; dependent threads cause

performance degradation (because a thread whose memory operations violate the

data dependency should rollback the memory write operation and restart execu-

tion) but do not affect correctness. The CMP executes a number of threads in

parallel while enforcing correctness, the program’s output is consistent with its

sequential execution.

6.1.2 Where to Speculate?

There are two basic targets for speculative parallelization: method-level (or block-

level) speculation and loop-level speculation. Method-level speculation will run

a called method non-speculatively and then speculatively run the code following

the method call. This approach can be used for other control-flow blocks, such as

speculatively executing the code following an if-then-else statement. Loop-level

speculation speculates that loop iterations are independent. Loop-level specula-

tion has the following advantages:

• Implementation: method-level speculation may need all operation running

speculatively in hardware or complex context analysis to decompose the

sequential programs and determine where speculative operations are neces-

sary. For loop-level speculation, the compiler needs to simply analyze the

loop body. So, loop-level speculation is more easier to implement in the

compiler if hardware support is limited.

• Load Balance: distributing loop iterations among processor evenly can

achieve better load balance than performing method-level parallelization

which depends on the granularity of each parallelized method.

• Parallelism: loops are the major target of parallelization for most current

applications [72].

By considering the issues listed above and the LPC which has been already, we

choose the loop-level speculation in this work. More method-level speculation
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related adaptive optimizations will be implemented and evaluated in future work

see Section 8.2.2.

6.1.3 Basic Terminolgies

Here are defined several basic terms that are used in TLS operations:

• Epoch ID : an epoch ID is used to maintain the sequential order of specu-

lative parallelization. The speculative thread creator will assign each spec-

ulative thread an epoch ID in sequential order to maintain the correctness

of a sequential execution. The epoch ID is an integer value incremented

automatically every time a speculative thread is created (0, 1, 2 ...).

• Speculative Session: the execution of a speculatively parallelized code seg-

ment. The speculative session is composed of speculative threads which are

executed in parallel.

• Speculative Thread : a lightweight thread (same as JaVM lightweight thread)

that is used to exploit speculative parallelization within JaVM. Each paral-

lel thread executes a parallelized code segment speculatively (i.e. the read-

s/writes on memory are speculative reads/writes) and has a globally unique

epoch ID.

• Speculative and Non-Speculative: In speculative parallelization, all of the

parallel threads should submit their modified data sequentially in order to

maintain the sequential program’s semantics. To achieve this aim, all of the

parallel threads are defined as in one of the two states: non-speculative and

speculative. There is only one non-speculative thread at any time, and only

this non-speculative thread could commit its modified data from temporary

storage to memory. As epoch ID is used to maintain sequential order, each

parallel thread (speculative or non-speculative) has its own epoch ID in one

speculative session. A parallel thread is the non-speculative thread only if

it has the smallest epoch ID in the current speculative session.

• Home Free Token (HFT): A token which annotates which thread is the

non-speculative thread. The token will be passed in the order of epoch ID,
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so a committed non-speculative thread can pass the non-speculative state

to its successor.

• Speculative Session ID (SID): is equal to an ID of the Java thread1 which

creates the speculative threads. As there may be more than one Java thread

which can create parallel threads speculatively, this SID could be used to

identify these different Java threads. A speculative thread will be identified

by the combination of a SID (to identify which creator thread it belongs

to) and an epoch ID (to maintain the sequential execution order).

6.2 JaTLS Architecture

JAMAICA TLS (JaTLS) is designed and implemented to support TLS on the

JAMAICA CMP architecture. The aim of this design is to use a simple extension

to support TLS efficiently at both hardware and software level.

6.2.1 Basic Structure

Basically, two issues need to be considered for TLS support:

1. Speculative Storage and State Management: including the speculative read-

/write, the data dependence violation detection, and the speculative state

transformation (i.e. state transformation from speculative to non−speculative).

2. Speculative Parallel Threads Management: including speculative thread

creation, commit and restart (rollback).

Speculative Storage and State Management

JaTLS employs a centralized Speculative Memory Table (SMT) which contains

several components used for managing speculative storage and tracing dependence

violation (discussed in Section 6.3). The SMT is an extended module for the

1In the main thread which creates the branch threads, the SID equals the srcID in the
context register. In the branch thread which is created by the main thread, the SID equals the
value obtained by JAM RCR -1 (see Chapter 4).
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normal JAMAICA CMP (shown in Figure 6.1), it interacts with the L1 cache

to load/store data. As the speculative states are maintained in SMT in the

JaTLS solution, there is no modification to the normal JAMAICA CMP’s cache

coherence and consistency mechanism. JaTLS also extends a new context register

for each processor context to maintain the speculative state information.

L2 $

L1 Cache Bus

SMT

core

L1 $
data

core

L1 $
data

core

L1 $
data

core

L1 $
data

Figure 6.1: Speculative Memory Table in JAMAICA CMP.

Speculative Parallel Thread Management

The speculative thread management is performed by software. JAMAICA ISA is

extended by adding 6 more speculation related instructions, thus the compiler can

generate the code for controlling speculative thread creation, commit and restart

(discussed in Section 6.4). This TLS related code generation is a functional

extension of LPC (see Chapter 4), and the target of parallelization is still the

loop in this solution.

By employing this simple and clear interface between hardware (i.e. centralized

SMT) and software implementation (i.e. the extended ISA), JaTLS provides a

flexible model for parallelization; the compiler can mix both speculative paral-

lelization and normal parallelization together.
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6.2.2 Execution Model

The execution model of JaTLS is composed of 6 basic speculative operations:

• Speculative Thread Registration (STR): enter speculative execution, the

hardware will allocate corresponding resources to maintain the speculative

state for this thread.

• Speculative Execution (SE): execute the code segment which has SR/SW

operations, the hardware will check data dependence violation automati-

cally and store the violation state into a thread local context.

• Violation Check (VC): get the current thread’s violation state.

• Rollback (Restart) Speculative Execution (RSE): if there is a data depen-

dence violation (detected by the Check Violation operation), the current

thread needs to be collapsed and restarted.

• Commit Speculative States (CSS): if there is no data dependence violation,

commit the speculative states (i.e. all of the speculative write data). If

the HFT is not ready (i.e. the current thread is not non-speculative), the

current speculative thread will be blocked and wait for the HFT.

• Speculative Thread Deregistration (STD): exit the speculative session, the

hardware will release the resource allocated for the current session and pass

HFT to the next speculative session.

These speculative operations are implemented in hardware (discussed in Section

6.3). The related instructions are provided, so a compiler can generate the code

that controls the speculative threads (discussed in Section 6.4).

This execution model employs a Lazy Collapse model, which means that the

thread collapse and restart can not happen until the collapsing thread has run to

completion.

Figure 6.2 gives an example of JaTLS’s execution model. A sequential program is

decomposed into 4 speculative threads: T0, T1, T2, and T3. T0 and T1 finished

at the same time but T0 holds HFT. T1 has to wait until T0 committed all of

its speculative data. T2 also finished at the same time as T0, but T0 triggered a
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Figure 6.2: The Execution Model of JaTLS.

true dependence violation during T2’s execution, T2’s violation checking phase

detected this violation and restarted execution. T3 keeps waiting until it gets the

HFT from T2.

6.3 Hardware Components

To enable the hardware mechanism to detect data dependence violations and

speculative non-speculative state transformations, JaTLS employs several hard-

ware components. The following subsections will explain how these hardware

components could cooperate together to implement the speculative operations.



CHAPTER 6. SUPPORT FOR THREAD LEVEL SPECULATION 133

6.3.1 Speculation Memory Table

The Speculation Memory Table (SMT) is the main functional module which is

used to provide the speculative storage and maintain the speculative state trans-

formation. It is composed of several Memory Control Units (MCU) (each pro-

cessor context has one corresponding MCU), a Multi-Version Cache (MC), an

epoch Index Table (EIT) and a series of read/write log buffers (LB) (one LB per

processor context). Figure 6.3 (a) shows a SMT cooperating with a 4 processor

CMP (one context per processor).

MCU MCU MCU MCU

R/W
buffer

R/W
buffer

R/W
buffer

R/W
buffer

EIT

MC

MCU
core

L1 $
data

(a)

(b)

R/W Buffer

EIT

MC

Figure 6.3: Speculative Memory Table and Memory Control Unit.

The MCU acts as an interactive interface between the processor contexts and

SMT (shown in Figure 6.3 (b)). All of the speculative thread related instructions

will be handled by the MCU. The number of MCUs depends on the number of

processors. Figure 6.4(a) shows the input data to MCU, including SID, epoch,

memory address and data (if the executing instruction is SW).

The MC provides temporary storage for all of the speculative threads, and also

maintains a global SR/SW state word for each cache line. As the maximum

number of speculative threads equals the number of processors in CMP, so each

MC cache line has n data fields which correspond to the n processors. Figure 6.4

(b) shows a cache line structure in MC with a 4 processor CMP configuration:
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one Speculative Read State(SRS) field, one Speculative Write State (SWS) field

and 4 data fields.

The EIT is used to manage the HFT which performs speculative and non-speculative

state transformations among the speculatively parallel threads (discussed in Sec-

tion 6.3.2).

The SRS and SWS are used to maintain the SR/SW information of the MC cache

line. In each SRS and SWS state, the number of data bits equals the number

of processor contexts. There are n bits corresponding to n processors. The SR

and SW can use this information maintained by SRS and SWS to find the latest

data modification and check true dependence violations (as will be discussed in

Section 6.3.4).

The MC cache line is identified by the memory address field. The index of data

field is identified by SID and epoch ID. Figure 6.4(c) shows how to fetch a cache

line in MC. The epoch ID is used to figure out which state bit needs to be set

and which data field needs to be filled (epoch ID mod number of data fields).

The log buffer is used to store the memory address and data for each SR/SW

operation, and the stored SW data will be written back to L1 cache when the

speculative thread finishes its job and changes to a non-speculative thread. Each

processor context has its corresponding log buffer.

6.3.2 EIT Structure

The EIT maintains the speculative threads information which helps the SR op-

erations and SW operations figure out the latest modification and check true

dependence violation. Figure 6.5(a) shows a row in EIT. There are 4 fields:

• epoch ID : stores the epoch value which the current data slot corresponds

to.

• State and Data Field Index : indicates state bit which needs to be set in the

state word (SRS and SWS), also indicates which data field needs to be read

or written.
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Figure 6.4: SMT Related Data Structure for 4-processors CMP.
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(a)

SID epoc :

epoch value

state and data field index

violation bit(1 bits)

mask word (R/W)

epoch index table

0

... ...

... ...

1
2
3

10110100
11110000
00101101
00111100

0
0
0
0

0x06

0x08
0x05
0x06
0x07

subtable (SID == 0x01)

(b)

non-speculative
thread pointer

Figure 6.5: Epoch Index Table.

• Violation State Bit : indicates whether the current speculative thread has

true dependence violation.

• Mask Word : performs data mask on SRS and SWS words; the result will

be used to check data dependence violation. The mask word has two parts:

one read mask and one write mask which correspond to SRS and SWS. The

write mask is the inverted version of the read mask.

For a CMP system which has n processor contexts, the corresponding EIT should

have n sub-tables and n data slots per sub-table. An example which has a 4

processor CMP configuration is shown in Figure 6.5 (b). The EIT’s sub-table

corresponds to speculative threads, so there is a map mechanism between the

SID and the sub-table.

To implement the function of HFT, an additional data structure in the EIT sub-

table is employed: Non-Speculative Thread Pointer (NSTP) which is used to

point to the epoch ID which corresponds to the non-speculative thread (shown

in Figure 6.5 (b)) in current SID. The NSTP performs the management of the

speculative/non-speculative state transformation. Every time the NSTP is changed

to point to a new epoch ID, it is equivalent to passing the HFT to the next spec-

ulative session.
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6.3.3 State Transformation

As introduced in Section 6.1, JaTLS uses epoch ID to maintain the state trans-

formation between non-speculative thread and speculative thread. EIT uses the

NSTP that points to the data slot which corresponds to the non-speculative

thread’s epoch in the current speculative session. If a speculative thread wants

to check if its state has been transferred to non-speculative, it just needs to query

EIT and check if the NSTP is pointing to its epoch. The NSTP will be set in

two scenarios:

• The speculative session’s first speculatively parallel thread registers in EIT:

as the first thread’s epoch ID in a speculative session must be assigned 0

and epoch 0 must be a non-speculative thread, the NSTP should point to

epoch 0’s slot (shown in Figure 6.6 (a)).

• The current non-speculative thread deregisters from EIT: this means that

the current non-speculative thread has finished its task and committed

data, then its first succeeding speculative thread should be the new non-

speculative thread. So the NSTP just moves itself to next slot in the EIT

sub-table, and increments the epoch value (stored in NSTP) by 1 (shown

in figure 6.6 (d)).

6.3.4 Mask Word and State Word

The state word (SRS and SWS) is used to annotate the current speculative read

and speculative write states for its corresponding address in MC. The SR opera-

tion sets a state bit in SRS and SW operation sets a state bit in SWS every time

they access a memory address. To check the state bits efficiently, we employ the

mask word.

An SR operation needs to know if its preceding threads or current thread itself

did store data in the same address, then it can read the latest value from MC.

So the write mask word (WM) needs to get all of the SWS’s state bits whose

corresponding epochs are not larger than the current thread’s.
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epoch index table (4 slots correspond to the 4 processor and 1 context per processor)

... ...

... ...
0x00

0

1

0

0

10000111

11000011

00000000

00000000

0

0

0

0

0x00

0x01

0x00

0x00

subtable (SID == 0x01)

NTSP

(a) the 1st thread (epoch 0x00, in session 0x01) registers in EIT, NSTP points to 
this thread’s corresponding slot. calculate the R/W mask word

(b) the 2nd thread (epoch 0x01, in session 0x01) registers in EIT, calculate the 
R/W mask word

... ...

... ...
0x00

0

1

2

3

10000111

11000011

11100001

11110000

0

0

0

0

0x00

0x01

0x02

0x03

subtable (SID == 0x01)

NTSP

(c) the EIT is fully filled with all of four speculative threads, because there are only
4 processor contexts

... ...
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2

3
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01111000

0

0

0

0

0x00

0x01

0x02

0x03

subtable (SID == 0x01)

NTSP

(d) the non-speculative thread 0x00 deregistered, so the NTSP increments by 1, 
epoch 0x01 is the non-speculative thread now, all of the mask words need to be 
reset on epoch 0x00’s corresponding bit.

... ...

... ...
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(e) the 5th thread registers
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subtable (SID == 0x01)
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Figure 6.6: State Transformation in EIT.
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For SW operation, it is necessary to know whether any succeeding thread did

load data from this address. So the read mask word (RM) needs to get all of

the SRS’s state bits whose corresponding epochs are larger than current thread’s.

And the RM is an inverted value of WM.

Here is an example for mask word generation (see Figure 6.6 (c)). Given a 4 bit

mask word (for a 4-processors CMP), the non-speculative thread epoch’s offset is

0, and current speculative thread epoch’s offset is 2. So the WM word should be

1110, because the current speculative thread epoch’s preceding epochs’ offset is 0

and 1. The RM word should be 0001, because the succeeding epoch’s offset is 3.

Doing an AND operation between write mask and SWS (WM & SWS) can check

whether any preceding thread or current thread did write data into the current

address, and doing an AND operation between read mask and SRS (RM & SRS)

can check whether any succeeding threads did read data from the current address

(to check true dependence violations).

If the non-speculative thread has finished and deregistered from EIT, other threads’

mask words need to be recalculated, because the non-speculative pointer would

be set to the next speculative thread (discussed in Section 6.3.3).

Here is an example for mask word recalculation (see Figure 6.6 (d)): for the

speculative thread whose epoch’s offset is 2, its WM is 1110, the new WM should

be 0110 (just clear the bit which corresponds to the deregistered thread’s epoch),

because the non-speculative thread’s offset moves one step. To obtain the new

SR, simply invert WM and get 0001. So the new RM is 1101.

6.3.5 Violation Counter

A violation counter register is employed to count the number of data dependence

violations for each speculative session. Every time the violation bit is set in EIT’s

data slot, the violation counter register’s value will be incremented automatically.

And the value will also be incremented when speculative storage overflows happen

(discussed in the next section). This value can be picked up by an extension of

a speculative instruction, and will be used to drive adaptive optimization for

speculative parallelization (discussed in the next chapter).
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6.3.6 Speculative Storage Overflow

As the size of MC and LB are fixed, they may be overflowed when the specula-

tively parallel threads perform memory intensive operations. Here the hardware

mechanism needs to handle speculative buffer overflow to allow the speculatively

parallelized program to go on.

If the overflow happens on the log buffer, the SMT should obey the following

constraints:

• If the overflow is in the non-speculative thread’s log buffer, then that thread

performs a commit operation automatically to free the space, and continues

its execution. The violation counter register should be incremented by 1,

because the overflow event can be treated as performance degradation and

this information will be utilized by adaptive optimizations.

• If the overflow is in a speculative thread’s log buffer, that speculative thread

should be blocked on the SR/SW operation (because only the SR/SW need

to insert a new element into the buffer), until it is transferred to non-

speculative.

Because the LB is per-processor (i.e. each speculative thread has one LB), so

the middle term commitment will not violate the correctness of the sequential

program.

If the overflow happens on the MC, that means no more MC lines are available

for any SR/SW, the SMT should obey the following constraints:

• All of the speculative threads should be blocked when they try to allocate

a new cache line in MC.

• The non-speculative thread can continue its execution, but its behaviour

of SR/SW operations will change. For SW, the non-speculative thread can

write data to L1 cache directly if there is no corresponding cache line in the

MC. For SR, there is no need to allocate a new MC cache line if there is no

corresponding cache line in the MC. The violation counter register’s value

should be incremented.
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• When the non-speculative thread finally commits and its succeeding spec-

ulative thread becomes the non-speculative thread, all of the speculative

threads should be able to continue unless another overflow happens.

6.3.7 Speculative Operations

Speculative Session Registration and Deregistration

The speculative thread needs to register itself with EIT, so EIT can help any SR

find the latest modification, and help any SW operation check true dependence

violations. When a speculative thread finishes its job and its status is changed

to non-speculative, it should commit data and deregister from EIT. Otherwise, a

speculative thread has to wait until all of its preceding threads have finished and

deregistered.

To register a speculative thread with SMT, the processor must provide the SID

and epoch ID to EIT, then EIT can establish a map between the tuple (SID,

epoch ID) and the other tuple (state bit and data field offset, violation state bit

and mask word).

Both the registration and deregistration operations are atomic here. If two or

more processors compete to register speculative threads, or some processor wants

to register and another processor want to deregister, all of the requests should be

queued and executed one by one, otherwise the EIT can not maintain the correct

status.

For speculative thread registration (shown in Figure 6.6):

1. Use the SID to find the corresponding sub-table.

2. In the sub-table, find the epoch’s corresponding slot (the offset of the slot

is got by (epoch mod table size)). If this is the first slot being allocated

(epoch equals 0), goto step 3, else goto step 4.

3. The current thread which sends this request should be a non-speculative

thread (because the epoch starts from 0, so epoch 0 corresponds to a non-

speculative thread definitely) and set the non-speculative thread pointer to

this slot.
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4. Set the state offset, and data field index. Both of these two values equal

the current slot’s offset in the sub-table. Set the violation bit as 0.

5. Generate the mask words.

The non-speculative thread deregistration operation should be the last step which

is performed after a commit operation.

Speculative Write

1. Use the memory address to identify the cache line in MC (shown in Figure

6.3 (c)). If the corresponding cache line is not available, allocate one. Use

epoch2 to identify which state bit needs to be set and which data field needs

to be modified.

2. Write data to the corresponding data field and set the corresponding state

bit in SWS and load the state word (both of SRS and SWS) into MCU’s

temporary registers.

3. Use epoch to find the corresponding mask word in EIT, then check whether

there are any SR operations whose epoch is larger than the current thread’s

epoch (explained in Section 6.3.4). This means that one or more succeeding

threads have read data from the same memory address.

4. If there are such epochs, then annotate the epochs’ corresponding specula-

tive threads as violated by setting the violation bit in EIT.

5. Store the memory address and data value into the corresponding write

buffer.

Note that step 1’s cache line allocation operation and step 2 (setting state bit,

writing data field and loading state word) are atomic operations. Because the

n MCUs work simultaneously, two MCUs may try to allocate the same cache

line. To avoid a duplicated allocation, the cache line allocation operation must

be treated as an atomic operation.

2To find the corresponding state bit and data field,simply apply the module operation on
epoch with the number of processors, e.g. epoch = 0x06, the index = 0x06 mod 4 = 2 (4
processors CMP).
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Step 2 is an atomic operation between SR operations and SW operations on the

same cache line. This means the state words (SRS and SWS) are locked when

the SW operation is setting the state bit and write data on one cache line, any

SR operations can not set the state bit on SRS and load the SWS on the same

cache line.

Speculative Read

1. Use memory address to identify the cache line in MC (shown in Figure 6.3

(c)). If the corresponding cache line is not available, allocate one. Use

epoch to identify which state bit needs to be set.

2. Set the corresponding state bit in SRS and load state word (SWS) in a

temporary register.

3. Use epoch to find the corresponding mask word in EIT, then check whether

there are any SW operations whose epoch is smaller than current thread’s

epoch (explained in Section 6.3.4). This means that one or more preced-

ing threads have written data in same memory address in this speculative

session.

4. If there is such epoch, then choose the data of the latest SW operation,

otherwise load data from L1 cache3.

5. Store the address value into the read buffer.

As in the SW operation, steps 1 and 2 are atomic operations too. Step 2 is an

atomic operation between SR operations and SW operations on the same cache

line. The SRS and SWS are locked and any SW operations can not set the state

bit on SWS and load the SRS, when one SR operation is setting the state bit on

the same cache line.

3This step might be optimized, we can send the data request to both SMT and the L1 cache
at same time, if the SMT can provide data, then give up the L1 cache’s data, otherwise wait
for the L1 cache’s data
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Violation Check

The checking operation is simple. The following steps need to be done:

1. Use epoch to find the current speculative thread’s corresponding violation

bit in EIT and check whether it is 1. If so goto step 2, otherwise goto step

4.

2. Go through the read log buffer, clearing the read bit for each entry in MC

cache line’s SRS. Clear the read buffer finally.

3. Go through the write log buffer, clearing the write bit for each entry in MC

cache line’s SWS. Clear the write buffer finally.

4. Return the value of violation bit: 0 or 1.

Speculative Session Commit

To commit a thread, the following steps need to be done:

1. Check whether the thread has any true dependence violations (by checking

the violation bit in EIT). If there is violation, goto step 2, otherwise, goto

step 3.

2. Restore all of the initial states for the current thread and restart the current

thread.

3. Check whether the current thread is the non-speculative thread (by checking

the non-speculative pointer in EIT). If not, the process should be blocked

here until current thread is annotated as a non-speculative thread in EIT.

4. Check the violation bit again to make sure there is no true dependence

violation. If there is a violation, go back step 2.

5. Go through the read log buffer, clearing the read bit for each entry in MC

cache line’s SRS. Clear the read buffer finally.

6. Go through the write log buffer, and for each entry write back the data to

the corresponding address in the L1 cache and clear the write bit for each

entry in MC cache line’s SWS. Clear the write buffer finally.
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7. Deregister the non-speculative thread in EIT, do the same thing as JAM SEND

(mentioned in Section 6.3).

The operation for checking the violation bit is also implemented in the Violation

Check operation, so the software can control violation checking flexibly.

6.3.8 Extended ISA

To enable compiler controlled speculative execution, the hardware provides 6

speculative execution related instructions that correspond to the 6 speculative

operations introduced in the previous section:

• JAM SR: speculative read (i.e. load data speculatively). This has the same

format as JAM LDL 4, but this load operation will seek data in SMT.

• JAM SW: speculative write (i.e. write data speculatively). This has the

same format as JAM STL 5, but this store operation writes data to SMT.

• JAM SBEG: speculative session registration. This registers the current

thread as a speculative thread on SMT, then SMT can maintain the related

information for the current thread’s speculative execution.

• JAM SEND: speculative session deregistration. This deregisters the current

thread on SMT, so SMT can get rid of all related information for the current

thread.

• JAM SCHECK: violation check. This checks whether there is any data

dependence violation in the current speculative thread.

• JAM SCOMMIT: speculative session commit. This commits the current

speculative thread’s write data.

4JAM LDL is the data load instruction in JAMAICA ISA.
5JAM STL is the data store instruction in JAMAICA ISA.
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6.4 Software Support

By adding the speculative instructions, the LPC utilizes them to generate code

for speculative execution and supports TLS in a flexible way. The following

subsections introduce the TLS code generation in LPC.

6.4.1 Speculative Thread Creation

Speculative thread creation still uses the normal JAMAICA’s lightweight thread

mechanism: the token ring is used to indicate the free processors and the main

thread (thread creator) can create a parallel thread only if it can get a token

from the token ring. The instruction JAM THB and JAM THJ are used to

create parallel threads.

To enable speculative execution, the newly created thread needs to be assigned

an epoch ID which is passed by the input window register and to set this epoch

ID into the current processor context’s context register. The JaTLS hardware

system does not provide an epoch ID generation mechanism, so the speculative

thread creator should control the epoch ID generation. As the epoch IDs must be

generated in sequential order for maintaining the speculative states in sequential

order, JaTLS’s software uses a main thread creator to create all of the speculative

threads. Using one centralized thread creator to control the epoch ID generation

is easy to implement. Although the JAMAICA’s lightweight thread mechanism

allows any threads to create parallel threads and the thread creators can be

distributed on several threads, to control multiple thread creators is more complex

and this is considered in the future work in Section 8.2.2.

6.4.2 Speculative Thread Structure

Figure 6.7 shows the basic code layout of the speculative thread, (b), compared

with the normal parallel thread generated by LPC, (a). The speculative thread

has similar code layout to the normal LPC branch thread. In the speculative

thread structure, one more input window register is needed to pass the epoch

ID value. All of the loop constants are still stored in the main thread’s stack

memory segment. As the speculative thread might be restarted and reload all of
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the input parameters, the input window registers’ values are stored into thread

local storage6.

The speculative thread should write the epoch ID into the context register 7 first,

then it can use JAM SBEG to register the current speculative thread in SMT.

thread body

thread prologue

thread epilogue

load parameters

     thread body 
(speculative R/W)

thread prologue

thread epilogue

load parameters

store parameters into 
thread local storage

setting epoc ID into
context register

start speculative thread

check violation

commit speculative R/W

end speculative thread

detect RAW 
violation 
reload input
parameters
and restart 
speculative 
execution

(a)

(b)

Figure 6.7: The Code Layout for TLS Thread.

A speculative thread rollback operation is implemented by JAM SCHECK and

a condition branch instruction. When the main thread body finishes execution,

the JAM SCHECK instruction is used to check violation. If the return value is

a true (there is true dependence violation in this speculative thread), then the

execution path is branched to the reloading segment and reloads all of the input

parameters (input window registers’ values) and loop constants and restarts the

speculative execution. The speculative states in previous execution have been

restored by JAM SCHECK (see Section 6.3.7).

6A new spill area is allocated in the VM Processor object for storing input window registers’
values.

7Both of the SID and epoch ID are stored in context registers, so MCU can pick up these
values when it handles SR/SW operations.
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The final step is committing all of the speculative write data by JAM SCOMMIT

and using JAM SEND to deregister the speculative thread on SMT.

A speculative thread’s Registration, Executing, Rollback/Restart, Commit, and

Deregistration are all controlled by the compiler. So not only a branch thread

can work as a speculative thread, the main thread which creates the branch

threads can also register itself as a speculative thread and execute a loop iteration

speculatively. It is a flexible model, and the compiler can control the distribution

of speculative threads.

6.4.3 Rollback Operation

As mentioned in the previous section, JaTLS uses a software mechanism to per-

form speculative thread rollback and restart operations. The compiler needs to

handle the reinitialization process carefully to guarantee the speculative thread

could restore all initial status when it was rolled back. In the current speculative

structure, the speculative thread needs to load all of the live-ins from the memory

segment.

In a speculative thread, all of the loop constants parameters are stored in the main

thread’s stack memory and input parameters should be stored in the thread local

storage. If the branch thread needs to rollback, it should reload all of the loop

constants and input parameters, so the initial environment is restored.

6.4.4 Java Language Issues

Exceptions

As discussed in Chapter 4, LPC has employed several approaches to avoid runtime

exceptions. Implicit or explicit exceptions simply force speculation to stop. So

the TLS solution still uses the same policy as the normal LPC implementation.
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Garbage Collection

The SMT employs a simple mechanism to manage speculative storage, using

memory addresses as the index of MC. GC operation can violate this mechanism,

because the GC may move objects within the memory space and the object fields’

physical addresses will be changed. So the GC is prohibited when a Java thread

starts a speculative session. In the current implementation, all of the yield points

are removed in the parallel loop body, thus the parallelized loop is a non-GC

segment in the program (see Chapter 4).

Memory Allocation

Object allocation is permitted in speculative threads, but it is unnecessary to

buffer access to an object allocated speculatively. The allocation can force the

speculative thread to stop if an OutOfMemoryError would be triggered as a result.

The restarted threads which triggered the data dependence violation will re-

allocate the object and this would be potentially dangerous if the restart operation

is triggered frequently.

6.5 Evaluation and Discussion

6.5.1 Experimental Setup

The experiments are performed on the extended JAMAICA simulator which sup-

ports the JaTLS. Different numbers of processor contexts are evaluated here. To

demonstrate the speedup of parallelization, the one context per processor config-

uration is still used. The size of Multi-Version Cache is 8K and the size of Log

Buffer is 1K.

To evaluate the efficiency of JaTLS, 6 benchmark programs are selected (shown in

Table 6.1). RayTracer, Molydn and FFT are selected from JavaGrand bench-

mark suite; JEquake is the Java version of 168.equake test in SpecCPU2000;

JMgrid is selected from NPB benchmark suite [10]; JDSMC is a Java version

of DSMC3D in HPF-2 benchmark suite [41].
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Benchmark Description Type Loop No. of Parallelized
Count Loops *

FFT Fast Fourier transform Float 5 3
RayTracer Ray Tracer Float 14 1
JDSMC Direct Simulated Monte Carlo Float 15 12
JEquake Earth Quake simulation Float 36 12
Moldyn Molecular dynamics Float 6 4
JMgrid Multi-Grid simulation Float 52 10

* the inner loops are not counted if the outer loops get parallelized

Table 6.1: The Benchmarks Selected for Evaluating TLS.

6.5.2 Performance Evaluation

Figure 6.8 (a) presents the performance of the JaVM running with a varying

number of processors (p) (1 thread context per processor) on the JaTLS simulator.

The distribution policy used here is thread per iteration8. The benchmarks were

chosen as they contain complex loop code which is not statically analysable by

LPC. The results show the benefit of the system is a 42% to 208% speed up,

depending on the benchmark and the number of processors available. Figure 6.8

(b) shows the speedup got from the same run, but includes the cost of dynamic

compilation. By counting the cost of compilation, the adaptive parallelization

includes more runtime overhead.

FFT has a three level nested loop in its computation kernel. The outer-most

loop has true dependence between each pair of iterations, so there is no benefit

from parallelizing the outer loop speculatively. The inner-most loops are selected

for parallelization.

RayTracer is a general purpose program. It has a similar problem in loop se-

lection. There is a two level nested loop that is identified as in a hot method

and parallelized. The inner loop is selected for parallelization. In the parallelized

body, there is a method call which needs to create a new object as the return

value. As memory allocation is synchronized in JaVM, the concurrent memory

allocation decreases the runtime performance. This program also has a load im-

balance problem. The method in the loop body has a recursive call graph (see

Figure 6.9);

8This is a simple case of CHBD (introduced in Section 4.1.4) whose chunk size is 1.
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for ( int i = 0 ; i < width ; i ++) {
. . . . . .
. . . = t ra c e ( . . . ) ;
. . . . . .

}

Vec t ra c e ( int l e v e l , double weight , Ray r ) {
. . . . . .
boolean cond i t i on = . . .
. . . . . .
i f ( cond i t i on ) {

. . . . . .
return shade ( l e v e l , weight , P, N, r .D, i n t e r ) ;

}
. . . . . .

}

Vec shade ( int l e v e l , double weight , Vec P, Vec N, Vec I , I s e c t h i t ) {
. . . . . .
boolean cond i t i on = . . .
. . . . . .
i f ( cond i t i on ) {

. . . . . .

. . . = t ra c e ( . . . ) ;

. . . . . .
}
. . . . . .

}

Figure 6.9: The Loop Code in RayTracer.
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The nested level of this recursive call is irregular, so the loop iterations can not be

distributed evenly among the parallel threads. As just mentioned, in JaVM, all

of the concurrent memory allocation operations are synchronized. The method

call uses a newly created object as the return value, so the parallel threads may

be synchronized when they try to allocate memory at same time.

Molydn has one loop which has true dependence (the loops are only one level,

there’s no other choice). By increasing the number of parallel threads, the prob-

ability of dependence violation is also increased. That is why these programs

can not improve greatly in 8 and 16 processor configurations, although they have

some other DoAll parallelizable loops.

JEquake shares a similar loop selection problem with FFT , there are some two

level nested loops whose outer loops have true dependence. In this evaluation,

the inner loops are selected for parallelization. Most of the parallelized loops have

no more than 4 iterations, which is why JEquake can not get significant speedup

in 8 and 16 processors configurations.

The best speedup is obtained by JMgrid. This program is a typical scientific

computing applications whose computation kernels are DoAll parallelizable loops

and most of the loops are multiple level nested loops. The inner-most loops are

selected in JMgrid, because the outer-most loops in JMgrid triggered specula-

tive storage overflow frequently. Usually, the higher level nested loops are coarse

grain which the LPC prefers to parallelize. But the higher level nested loops

consume more speculative storage than the lower level nested loops. By applying

a large data set which needs more loop iterations, the higher level nested loops

more easily trigger speculative storage overflow which makes the parallel threads

work sequentially and decreases the runtime performance.

For the result shown in the Figure 6.8, we applied one loop iteration per thread

because of the various sizes of those loop bodies. There are a lot of small loops

in most of these tests, and the one loop iteration per thread generated more

runtime overhead for thread creation. By applying a larger chunk per thread

(e.g. 5 iterations per thread), the performance can be improved.

From evaluating these benchmark programs, there are several issues which affect

the performance in TLS:
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• Data dependence violation and speculative storage overflow.

• Load Imbalance.

• Thread Creation/Completion Overhead.

To alleviate these effects, a program should be decomposed carefully by selecting

suitable chunk sizes and loop levels. Although we can tune the compiler manually

to get better decomposition (e.g. select the inner-most or outer-most loops), and

this is what was done here, the runtime system itself should be enabled to search

for the best decomposition. A runtime mechanism is proposed to decompose the

program dynamically, driven by runtime feedback. This will be discussed in the

next chapter.

6.6 Summary

This chapter introduced the basic TLS implementation in the JAMAICA CMP,

including hardware and software support. An extended memory module was

added to the JAMAICA CMP to maintain the speculative states. Six TLS related

instructions were added to the JAMAICA ISA, so the compiler can generate

speculative parallelized code flexibly. Finally, the experimental results based on

standard Java benchmarks are given. The experimental results show that TLS

does provide more opportunity for exploiting parallelization than normal compiler

analysis, but the decomposition policy was an important factor to achieve good

runtime performance.



Chapter 7

Adaptive Optimization for TLS

The previous chapter raised the question: how to decompose the program ef-

ficiently so that the speculatively parallelized version can get the best runtime

performance? Again, the adaptive runtime optimization mechanism is employed

to decompose the program.

This chapter introduces adaptive optimizations for TLS based parallelization.

Section 7.1 introduces the basic motivation for dynamic decomposition. Section

7.2 introduces how the OTF adapts the optimization to decomposition policy

selection. Subsection 7.2.5 gives three adaptive optimizations which can reduce

the TLS’s overhead. Section 7.3 shows the experimental results and discusses

them. Section 7.4 summarizes this chapter.

7.1 Motivation

The motivations of adaptive optimization in TLS based parallelization are to find

where and how much to speculate; refine speculation and reduce overhead. To

achieve these aims, an efficient decomposition policy is needed. The following

subsections introduce the basic overhead in TLS and the potential optimizations

for finding suitable decomposition.

155
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7.1.1 Overhead in TLS

As discussed in Section 6.5, speculatively parallelized programs have runtime

overhead which will obviously effect the performance. All of these overhead can

be divided into three major categories:

General Thread Overhead

Although the current JAMAICA architecture provides a light-weight thread mech-

anism, there remains a significant thread creation/completion overhead (i.e. the

thread spawning and synchronization) for creating a large number of small threads,

where the overhead accounts for a large fraction of thread execution time. Given

a loop which has a small body (i.e. lower than 80 cycles), the overhead of thread

creation/completion could discount the benefit of speculative parallelization (sim-

ilar to the normal parallelization discussed in Chapter 4).

Data Dependence Violation and Speculative Storage Overflow

True dependences that cross speculative thread boundaries may lead to data

dependence violations and cause speculative thread restart (rollback) as shown

in Figure 7.1. The restarted speculative thread may cause more violations for

its succeeding speculative threads, because the restarted execution may be later

than the succeeding thread and incurs risk of true dependence violation. The

restart process also incurs the overhead of restoring initial execution states.

for (int i = 0; i < n; i ++) {
  ... ...
  ... = A[f(i)];
  A[g(i)] = ...;
  ... ...
}

ex
ec

u
ti

o
n

 t
im

e P0

  ... ...
  ... = A[3];
  A[6] = ...;
  ... ...

P1

  ... ...
  ... = A[5];
  A[5] = ...;
  ... ...

P2

  ... ...
  ... = A[8];
  A[12] = ...;
  ... ...

P3

  ... ...
  ... = A[5];
  A[6] = ...;
  ... ...

Figure 7.1: The Threads are Squashed by True Dependence Violation.

All the hardware-based TLS implementations provide speculative storage which

is known as the speculative buffer. Speculative buffer overflow will happen when
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it can not provide enough storage for the current speculative threads. The spec-

ulative threads will wait until the non-speculative thread finishes and passes the

HFT to its successor.

In JaTLS, a centralized multi-version cache is employed as the major speculative

storage. Multiple speculative threads compete for the storage at the same time. If

the multi-version cache or speculative state buffer is full, only the non-speculative

thread can resume its execution and all other speculative threads have to suspend.

So the program is executed sequentially in this scenario.

Load Imbalance Overhead

Load imbalance is highly dependent on the control flow regularity across the

parallel threads. For example, inner loops with many input-dependent conditional

statements may result in a significant load imbalance across the processors. If the

non-speculative thread is long, and its succeeding speculative threads are short,

then the succeeding threads may need to wait for the non-speculative thread.

7.1.2 Program Decomposition for Speculative Paralleliza-

tion

Program decomposition for speculative thread is finding the most efficient way to

split a program into speculative threads. Current work on searching for decom-

position can be categorized into three types:

• Static Analysis: the compiler performs compile-time analysis to estimate

the runtime behaviour of the program and selects the decomposition [24, 30].

This approach is limited by the inaccuracy of the estimate.

• Profiling Based Offline Empirical Search: use the compiler to plant instru-

mentation code into the application; run the application with a training

data set and collect runtime profiling data; perform offline search for suit-

able decomposition based on the profiling data [46, 62, 88]. Like most

profiling based optimization, this approach needs a profiling run to help the

compiler perform offline optimization.
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• Dynamic Decomposition: the runtime system uses runtime feedback to drive

the decomposition process. For example, the Jrpm system [21] employs a

hardware profiler to help the JIT compiler identify suitable loops that will

provide the most benefit due to speculative parallelization and recompile

those loops 1; [63] employs a fully hardware mechanism to decompose pro-

grams at runtime based on the runtime profiling.

As discussed in Chapters 4 and 5, runtime feedback can provide more precise

information to drive optimization and static analysis is limited (e.g. the difficulty

of analyzing object reference aliasing or control flow at compile-time). So JaTLS

employs runtime feedback to drive adaptive optimization to search for efficient

decomposition. As this thesis concentrates on loop-level parallelization, how to

decompose loops efficiently is the major concern.

The decomposition mechanism implemented here is dynamic decomposition. The

aim of the mechanism is using simple hardware support to achieve performance

improvement at runtime. Compared with most of the dynamic decomposition

mechanisms [21, 63] which need complex hardware support (e.g. a hardware profil-

ing buffer), JaTLS simply provides one additional hardware support for software:

the Violation Counter (introduced in Section 6.3.5). The JaTLS hardware intro-

duces a special register to count the number of speculative thread re-executions 2.

The major optimization work is performed at software level. The LPC generates

the runtime reconfigurable code which will be tuned at runtime to find the best

decomposition.

7.2 Online Tuning for TLS

To search for the best decomposition, the adaptive system needs to perform run-

time tuning with different decomposition policies. An extended OTF is employed

to perform adaptive optimizations at runtime.

1The first version of compiled program used for profiling has the instrumenting code for all
of the loops. When the runtime system finishes analysis, the code needs to be recompiled to get
rid of the redundant instrumenting code and switch loops that are not suitable for speculative
parallelization back to sequential execution.

2The register value is also incremented when speculative buffer overflow happens.
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7.2.1 Feedback Information

The normal JAMAICA OTF (see Chapter 5) performs runtime empirical search

to find the optimal configuration for a parallelized loop. The feedback information

is execution cycle count. For TLS based optimization, the adaptive system will

use a new type of feedback information: Collapse Rate (CR).

CR← rn

sn

rn is the number of re-executions (obtained from the Violation Counter). sn is

the total number of speculative threads created for a parallelized loop.

The adaptive optimizations concentrate on how to decompose a loop efficiently

and an efficient decomposition can reduce the number of speculative thread

restarts. As both of the two major overheads in speculative execution, thread

restart and speculative storage overflow, can be identified by the CR value (both

these events increment the value of violation counter register), the CR value is

employed here as the major runtime feedback.

To achieve load balance, the empirical execution cycle count is still needed (as

discussed in Section 7.2.5). So the OTF for TLS should utilize two types of

feedback information in some optimizations.

7.2.2 Basic Structure

Figure 7.2 shows the basic structure of TLS based OTF. It could be treated

as a simple extension of normal OTF. When the speculatively parallelized loop

finishes execution, the inserted profiling code stub picks up the violation counter

register’s value and execution cycle count 3 and calls an AOS routine to perform

runtime evaluation.

To enable the code version switch, the program (loops or nested loops) need

to be split into sub-methods. All of these sub-methods can be composed into

different combinations which will correspond to different decomposition policies.

By using runtime feedback, the speculatively parallelized program can get the

best decomposition.

3The execution cycle count is optional for some optimizations which need not consider the
load balance.
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(e.g. chunk size)

switch profiling
         on/off

change config

evaluate profile 

change config.

select version

if optimal found

switch off profiler

end timer
get CR

call AOS
routine

switch

start timer

switch

Figure 7.2: The Profiling Mechanism for TLS based OTF.

7.2.3 Tuning Mechanism

There are two basic tuning methodologies:

• Runtime Reconfiguration: reconfigure the loop parameters (e.g. the chunk

size, thread number); this mechanism is the same as normal OTF.

• Runtime Switch: switch the code version between speculative and non-

speculative. This mechanism is used to perform adaptive loop selection

which needs to evaluate different loop levels for speculative parallelization.

The program listed in Figure 7.3 is from the main computation workload of the

FFT benchmark. The transformed program is listed in Figure 7.4, four loops

are split into four isolated loop call methods (LCM). Each LCM has two versions:

a speculative version and a non-speculative version4. The LCMs’ references are

stored in the Loop Call Method Table (LCMT). In the original program, the loop

code has been replaced with the corresponding call sites which will call the LCM

in the LCMT’s slot.
4The difference between the speculative and non-speculative loop call method is the code

for the speculative thread prologue which registers and starts a speculative thread.
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for ( int b i t = 0 , dual = 1 ; b i t < logn ; b i t ++, dual ∗= 2) {
. . . . . .
for ( int b = 0 ; b < n ; b += 2 ∗ dual ) {

int i = f i 1 (b , dual ) ;
int j = f j 1 (b , dual ) ;
. . . . . .
data [ i ] += f ( data [ j ] ) ;
. . . . . .

}
. . . . . .
for ( int a = 1 ; a < dual ; a ++) {

for ( int b = 0 ; b < n ; b += 2 ∗ dual ) {
int i = f i 2 ( a , b , dual ) ;
int j = f j 2 ( a , b , dual ) ;
. . . . . .
data [ i ] += g ( data [ j ] ) ;
. . . . . .

}
}

}

Figure 7.3: The Original Loops in FFT.

Figure 7.5 (a) shows the original program’s call graph for these LCMs. The call

graph is composed of call site nodes which point to LCMs stored in the LCMT.

In Figure 7.5 (a), the outer-most loop (loopCall0 ) is executed speculatively. To

switch the speculative execution to the two inner loops (loopCall1 and loopCall2 ),

the loopCall0 ’s corresponding call site node simply needs to be redirected to the

non-speculative versions of code (shown in Figure 7.5 (b)).

7.2.4 Overhead

The overhead generated by the runtime optimization is very small, because the

OTF mainly works on the CR value which can be maintained by one mathemati-

cal operation. The average cost of each evaluation step is less than 20 instruction

cycles. For the optimizations which need to use the execution cycle count, the

runtime overhead is same as the normal OTF. As mentioned above, the runtime

reconfiguration and runtime switch are cheap (they simply need to set some table

slots), so the whole dynamic decomposition mechanism is very efficient.
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l oopCa l l 0 ( loopConstants , 0 , logn , 1 ) ;

void l oopCa l l 0 ( int [ ] loopConstants , int in i tVa lue , int termValue ,
int s t r i d eVa lue ) {

. . . . . .
// I n i t i a l i z e loop cons tan t s
. . . . . .
l oopCa l l 1 ( loop1Constants , 0 , n , 2 ∗ dual ) ;
. . . . . .
// I n i t i a l i z e loop cons tan t s
. . . . . .
l oopCa l l 2 ( loop2Constants , 0 , dual , 1 ) ;

}

void l oopCa l l 1 ( int [ ] loopConstants , int in i tVa lue , int termValue ,
int s t r i d eVa lue ) {

int i = f i 1 (b , dual ) ;
int j = f j 1 (b , dual ) ;
. . . . . .
data [ i ] += f ( data [ j ] ) ;
. . . . . .

}

void l oopCa l l 2 ( int [ ] loopConstants , int in i tVa lue , int termValue ,
int s t r i d eVa lue ) {

// I n i t i a l i z e loop cons tan t s
. . . . . .
l oopCa l l 3 ( loop3Constants , 0 , n , 2 ∗ dual ) ;

}

void l oopCa l l 3 ( ( int [ ] loopConstants , int in i tVa lue , int termValue ,
int s t r i d eVa lue ) {

int i = f i 2 ( a , b , dual ) ;
int j = f j 2 ( a , b , dual ) ;
. . . . . .
data [ i ] += g ( data [ j ] ) ;
. . . . . .

}

Figure 7.4: The Loop Methods Call for FFT Code.
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loopCall0
specLoopCall1
loopCall1
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loopCall3

call site call site

call site

call site

call site call site

call site

Figure 7.5: The Call Site Graph for FFT.
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7.2.5 Adaptive Optimizations

This section discusses the basic adaptive optimizations for dynamic decomposi-

tion. There are four basic adaptive optimizations:

Adaptive Chunk Size Selection (ACSS)

This is the basic optimization for reducing the overhead for speculative thread

execution (e.g. thread creation, initialization), especially for those loops whose

loop body size is small. Increasing the chunk size or assigning more loop itera-

tions to one speculative thread can reduce the overhead, but also increases the

probability of data dependence violation and speculative data buffer overflow. So

runtime feedback can help the search process find a suitable chunk size.

The search algorithm uses a simple hill-climbing based mechanism to search for

the best chunk size (see Algorithm 15). The search process is driven by the CR

value. It changes the chunk size incrementally and evaluates it on each loop

execution until the CR value reaches a threshold T which is a configurable value

(the current configuration is 1).

This optimization preserves the number of processors as the lower bound of the

result. It can work properly when the number of processors (or the number of

concurrent speculative threads) Pn is less than the data dependence distance d.

Give a system which contains 8 processors and a parallel loop whose data depen-

dence distance d = 5, it is able to execute 8 speculative threads concurrently:

t0, t1, t2, ...t7. There are three pairs of threads that can generate a true depen-

dence violation and collapse: (t0, t5), (t1, t6) and (t2, t7). In other words, there

are only 5 threads that can really work in parallel, and increasing the chunk size

just increases the probability of restart.

The chunk size obtained from ACSS is the best chunk size for the current problem

size. By considering the load balance, the loop should select a suitable chunk size

before executing in parallel. Algorithm 16 shows a pseudo-code of a prologue for

selecting suitable chunk size. This prologue will be inserted before parallelized

loops which will execute in TLS.
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Input: threshold T , number of processor Pn, and initial chunk size csinit

Output: optimal chunk size, whether overflow happened
Implementation:
Step 1: set initial chunk size: i← 0, csi ← csinit, step← 1,
isIncremental← true, i← 0;
Step 2: execute the ith run of the loop by applying TLS;
Step 3: get number of speculative threads: si, number of restarts ri and the
number of loop iterations iteri;
cri ← ri

si

if cri ≤ T then
csi ← csi + step;
if iteri

Pn
≤ csi then

csi ← iteri

Pn

end if
if isIncremental then

step← step× 4;
else

step← step
2

;
end if

else
if 1 < step then

step← step
2

;
csi ← csi − step;
isIncremental← false;

else
return csi, false;

end if
end if
Step 4:
if si ≤ Pn then

return csi, isIncremental;
end if
i← i + 1; goto step 2;

Algorithm 15: Adaptive Chunk Size Selection (ACSS).
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Input: number of processors Pn, number of loop iterations Niter and the
current best chunk size cs0

Output: optimal chunk size
Implementation:
cr ← dN iter

Pn
e;

if cr0 < cr then
cr ← d cr

d cr
cs0
ee;

else
return cr;

end if
Algorithm 16: The Parallelized Loop’s Prologue for Selecting Suitable Chunk
Size.

Adaptive Speculative Thread Number Selection (ASTS)

As mentioned above, if the dependence distance d is less than the number of

processors Pn but larger than 1, it still can be parallelized speculatively. To

optimize this scenario, Adaptive Speculative Thread Number Selection (ASTS) is

employed (see Algorithm 17).

Input: threshold T , the maximum number of concurrent speculative threads
ST (equal to the number of processors)
Output: best number of current speculative threads
Implementation:
Step 1: set initial number of current speculative threads: sti ← ST ;
Step 2:
if sti = 1 then

switch to sequential execution model
end if
execute the loop by applying TLS, get number of speculative threads: si and
number of restarts ri;
cri ← ri

si
;

if cri ≤ T then
return sti;

else
sti ← sti − 1;
goto step 2;

end if

Algorithm 17: Adaptive Speculative Thread Number Selection (ASTS).

This algorithm tries different numbers of concurrent speculative threads from
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the number of processors Pn to 1. Given a speculatively parallelized loop which

has a set of dependence distances d0, d1, ..., dn, the searching result st should

equal to MIN(d0, d1, ..., dn). If st equals 1, then parallelization is impossible and

the runtime system should switch this loop to the non-speculative version (i.e.

sequential execution).

Adaptive Loop Level Selection (ALLS)

When loops are nested, only one loop nest level can be parallelized by the cur-

rent compiler implementation and hardware support in JaTLS. Only parallelizing

outer most loops or inner-most loops can not always achieve the desired perfor-

mance. Therefore a judicious decision must be made to select the proper nest

level to parallelize.

The search algorithm is simple (see Algorithm 18), and starts the evaluation from

the outer-most loop to the inner-most loop. As any nested loops can be expressed

as a tree structure, the search algorithm will automatically evaluate from the root

node to the leaf nodes recursively.

When the algorithm gets a loop whose CR is less than the threshold, it will

evaluate its inner sub-loops. Referring to Figure 7.5, if both of the outer-most

and the two inner loops’ CR values are less than the threshold (they are all

suitable for speculative parallelization), the algorithm needs to select one loop

level for TLS, but this may raise a problem for load balance. The search process

can not guarantee which loop level could gain better performance. One solution

is to select another threshold, and thus get rid of some redundant selection. But

this may not be realistic. For example, given a two-level nested loop, if both

the outer one and inner one have very low CR values, it is difficult to set the

appropriate threshold. So a feasible solution chosen in current algorithm is to

employ both the CR value and empirical execution cycle as runtime feedback

information. When there are several candidate loop levels selected by CR, the

AOS can use empirical execution cycle to evaluate them again and select the

optimal one. If there are two loop levels that have the same empirical execution

cycles, the AOS has to select the inner one.



CHAPTER 7. ADAPTIVE OPTIMIZATION FOR TLS 168

Input: threshold T , the current root node of nested loop structure L
Output: boolean value
Implementation:
Step 1:
execute the loop by applying TLS, get the cycle count per loop iteration: E0,
the number of speculative threads: s and the number of restarts: r;
cri ← ri

si
;

Step 2:
if cri > T then

return false;
end if
hasInnerLoop← false;
foreach subnode of L: l do
if alls(T, l) then

hasInnerLoop← true;
end if

end
if hasInnserLoop then

execute the loop, get the cycle count per loop iteration: Ei;
if Ei ≤ E0 then

return true;
end if

end if
set the current loop L for TLS;
return true;

Algorithm 18: Adaptive Loop Level Selection (ALLS).
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Put All Together

To perform efficient runtime decomposition, an integrated optimization should

be built based on the previous three optimizations. As the three optimizations

all employ 1 dimensional linear search spaces:

• ACSS: searches from 1 to the maximum number of loop iterations that can

be executed on one speculative thread.

• ASTS: searches from the number of processor Pn to 1.

• ALLS: searches from the root node to the leaf nodes on the nested loop

tree.

The searching processes on these spaces can not interfere with each other, so they

can be easily combined together (shown in Algorithm 19).

Input: threshold T , the root of nested loop structure L, number of processor
Pn and the initial chunk size csinit

Output: best decomposition policy
Implementation:
Step 1: ALLS(T, L);
Step 2: (cs, isIncremental)← ACSS(T, Pn, csinit);
Step 3:
if cs = 1 and Not isIncremental then

ASTS(T, Pn)
end if

Algorithm 19: Integrated Adaptive Decomposition (IAD).

7.3 Evaluation and Discussion

7.3.1 Experimental Setup

The hardware and software systems used for evaluation are the same as in the

previous chapter. The JaTLS simulation infrastructure acts as the hardware

platform, and different numbers of processor cores are evaluated 5. The size of

5For the same reason as in the previous chapter, we didn’t evaluate the multi-context con-
figuration which can gain benefit from reducing memory delay but is not good for TLS tasks.
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the Multi-Version Cache used here is 8K and the size of Log Buffer is 1K. The

threshold used for adaptive search algorithms is 0.5.

The 6 benchmark programs selected are shown in Table 6.1. RayTracer, Molydn,

FFT are selected from JavaGrand benchmark suite; JEquake is the Java version

of 168.equake test in SpecCPU2000; JMgrid is selected from the NPB benchmark

suite; JDSMC is a Java implementation for Direct Simulation of Monte Carlo.
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Figure 7.6: Performance of ACSS on 6 Benchmarks.

Benchmark No. of No. of Threads No. of Threads
Optimized Loops Before Optimization After Optimization

2p 4p 8p 16p

FFT 3 5630 1536 2048 2560 3072
RayTracer 1 800 200 400 800 800
JDSMC 10 5200 360 840 1580 3060
JEquake 11 5895 2025 3630 5422 5595
Moldyn 3 4096 1080 1280 1463 1878
JMgrid 5 56210 15480 29700 44734 49540

Table 7.1: The Optimal Thread Numbers Selected by ASTS.

7.3.2 Chunk Size Selection

ACSS is the simplest adaptive optimization for eliminating the thread creation

overhead. Figure 7.6 shows the ACSS’s speedup compared with the thread per
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iteration policy6. Table 7.1 shows the number of created threads before and after

optimization.

For those loops whose size of loop body is small but the number of iterations is

large, ACSS can obviously benefit. The constraint for ACSS is speculative storage

overflow. Increasing the thread size will consume more speculative storage which

may result in overflow.

To avoid the speculative storage overflow, the inner-most loops are selected in this

evaluation. Most of the benchmarks’ inner loops have less than 8 or 16 iterations

(e.g. most of JEquake’s inner-most loops have no more than 4 iterations, and

has most of JMgrid’s inner-most loops have no more than 6 or 10 iterations),

which is why most of the additional speedups drop down for 8 and 16 processor

configurations. By increasing the number of processor contexts, more parallel

threads are created (see Table 7.1), this will also increase the overhead for thread

creation.

As mentioned in the previous chapter, RayTracer has a load imbalance in the

selected loop caused by irregular iteration size. By applying the thread per itera-

tion policy on 8 and 16 processor configurations, the workload can be distributed

to the processors evenly. So there’s no benefit for increasing the chunk size.

7.3.3 Thread Number Selection

The benefit of ASTS is mainly gained from reducing the overhead of thread

restart. For those speculatively parallelized loops which have inter-iteration true

dependency and can trigger violations frequently, shrinking the number of parallel

threads can obtain better runtime performance.

Figure 7.7 shows ASTS’s speedup compared with the thread per iteration pol-

icy. The three benchmarks selected here have implicit inter-iteration true depen-

dencies. Table 7.2 shows the optimal thread numbers7 selected by ASTS with

different hardware configurations.

6Thread per iteration means that a speculative thread is created for each loop iterations.
7The optimal thread numbers shown in this table are just for the loops which have implicit

inter-iteration true dependency. For example JDSMC has 12 parallelized loops, but only 2 of
them have inter-iteration true dependencies.
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Figure 7.7: Performance of ASTS on 3 Benchmarks.

Benchmark No. of Optimized Loops 2p 4p 8p 16p

JDSMC 2 2 3 3 3
JEquake 1 1 1 1 1
Moldyn 1 2 3 3 3

Table 7.2: The Optimal Thread Numbers Selected by ASTS.

For JDSMC, there are two loops whose dependence distances are irregular, both

of them have an average dependence distance value of 3.6. There is no benefit

in the 2-processor configuration, because the number of parallel threads is less

than the dependence distance. By increasing the number of processor contexts

(i.e. increasing the number of parallel threads), it can gain more speedup, when

the AOS shrinks the number of speculative threads to 3.

Both JEquake and Moldyn have one loop whose dependence distance is 1. But

JEquake’s loop iterations have a higher probability of triggering a true depen-

dence violation even if there are only two parallel threads, so the optimal thread

number is 1 and the loop was switched to sequential version.

The Moldyn benchmark shares a similar behaviour with JDSMC. By increasing

the number of processors, the number of speculative threads is increased, and the

probability of violation is increased. So the 4-processor, 8-processor, 16-processor

configurations can gain a benefit by shrinking the number of speculative threads

down to 3.
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Figure 7.8: Performance of ALLS on 6 Benchmarks.
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Figure 7.9: Additional Speedup By Integrating ACSS and ASTS.

7.3.4 Loop Selection

Loop selection has the biggest effect of all of these adaptive optimizations. Figure

7.8 shows the ALLS’s speedup compared with simply parallelizing the inner-most

loops or outer-most loops 8. Four hardware configurations are evaluated: 2, 4, 8

and 16 processors.

FFT has a 3 level nested loop and the best loop level is the second level, so

the ALLS beats the other two simple selections. The same is true of JMgrid, it

has several 4 level nested loops, and the best level is the third level. RayTracer

and JEquake just have simple 2 level nested loops, and most of the inner loops

provide the best results.

Most of the loops in Moldyn are single level loops, so there is no difference

among these three selections. JDSMC has a similar reason but the speedup is

not obvious.

Figure 7.9 shows the speedup for the integrated optimization IAD compared with

ALLS. Most of the benefit is obtained from the suitable chunk size by applying

ACSS. JEquake benefits from serializing the loop which collapses frequently.

JDSMC and Moldyn benefit from optimal chunk size and optimal number of

parallel threads. JMgrid can not benefit much from the ACSS, because most of

the loops’ best chunk size is 1.

8Here the thread per iteration policy.
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Figure 7.10: Performance of IAD on 6 Benchmarks.

7.3.5 Overall Performance

Figure 7.10 shows the speedup for the integrated optimization IAD compared

with the result of plain automatic parallelization from Section 6.5 (see Figure

6.8(a) which is TLS based automatic parallelization using a thread per iteration

distribution.).

By employing loop selection, FFT and JMgrid get better performance than just

applying ACCS on the inner most loops (see Figure 7.6). The other 4 benchmarks

have the same results as shown in Figure 7.9.

7.4 Summary

This chapter introduced how runtime feedback could be used to search for a

suitable decomposition policy for speculative parallelization. Section 7.2 intro-

duced the modification OTF to adapt it to the TLS based program and gave three

adaptive optimizations that can perform runtime searching for a suitable loop de-

composition policy. The experimental results show that the runtime mechanism

is flexible enough to make speculative parallelization more efficient.



Chapter 8

Conclusions and Future Work

Computer systems are becoming more and more complex, making the application

of compilation techniques increasingly difficult. Developing accurate analytical

models for program optimization to utilize the complex hardware system effi-

ciently is challenging. The lack of target machine information and input data

information is the major limitation for efficient compiler optimization. Porting

applications to new computer systems is often simple and transparent currently,

but optimizing applications at compile-time without target machine information

and without knowing the input data patterns of the user can only further strain

traditional static optimization paradigms.

Due to these trends, a range of research work and techniques have evaluated

dynamic and adaptive optimization techniques: tuning applications at runtime

when more complete target machine information and input data set information

are available.

In this research, a Java Virtual Machine based fully-runtime optimization sys-

tem was built and evaluated on a simulated CMP architecture. By employing

runtime optimizations and the CMP architecture’s fine-grain parallelism support,

sequential Java programs can be parallelized and optimized efficiently. The sim-

ulated hardware infrastructure was introduced in Chapter 2. Chapters 3, 4 and

6 discussed the techniques that support runtime parallelism. In Chapter 5, the

runtime adaptive optimizations for improving the automatically parallelized pro-

grams’ load balance and data locality were evaluated. Chapter 7 evaluated the

runtime optimization of searching for efficient decomposition for TLS execution.

176
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8.1 Conclusions

8.1.1 Dynamic Compilation for Parallelism

From evaluating the LPC on the JAMAICA CMP, dynamic parallelization can

benefit traditional numerical programs significantly. But for general purpose pro-

grams, the benefit is limited and depending on whether the program is paralleliz-

able and statically analyzable (i.e. these programs usually had complex control

flow graphs which contain implicit data dependency).

TLS simplifies the compiler’s analysis and provides more opportunities for the

runtime parallelization system to exploit more parallelism in sequential programs.

The LPC enhanced by TLS support can parallelize more sequential programs

which are difficult to analyze and parallelize by static analysis (e.g. JMgrid

and Moldyn benchmarks mentioned in Chapter 7), but with a requirement for

hardware TLS support.

8.1.2 Runtime Adaptive Optimization

The feedback directed runtime optimization can be helpful for improving the

programs’ runtime performance. By employing the online tuning mechanism, the

parallelized programs can improve their load balance and data locality iteratively

driven by execution cycle count.

For optimizing TLS, the OTF concentrates on how to find an efficient decomposi-

tion policy which can reduce the runtime overhead and wasted work 1. The OTF

uses collapse rate as the feedback information; the experimental results show that

this feedback could drive the search well with very small overhead.

The major overhead for runtime adaptive optimization is the runtime code gen-

eration for evaluating multiple versions of code. By utilizing the extra processors,

the dynamic compiler can leverage some of the overhead for runtime code gener-

ation.

1The wasted work includes data dependence violations which collapse and restart speculative
threads and speculative storage overflows which suspend the speculative threads.
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All of these runtime optimizations demonstrate good scalability and adaptation

to different hardware configurations (i.e. different number of processor contexts,

different sizes of L1/L2 caches) and different problem sizes. This demonstrates

that the runtime mechanism is a suitable choice for applications’ optimizations

which can exploit increasingly complex hardware systems.

8.1.3 High Level Language Virtual Machine

All of the runtime optimizations are implemented in a Java Virtual Machine.

The managed language system uses the virtual machine to perform compilation,

memory management and runtime services. The optimizations are transparent to

the application programmers and the virtual machine can employ more complex

optimizations at runtime using feedback. Another advantage is that the applica-

tion, compiler and optimizer work in the same process space, which reduces the

communication overhead between the different runtime components. So a virtual

machine based integrated runtime environment can act as an ideal adaptive layer

between the user application and CMP hardware.

8.2 Future Work

8.2.1 Move to Practical System

CMP processors are becoming the main stream for computing. Applying current

research work to the current commercial hardware systems (e.g. Sun Niagra [53])

can be the first step for future work.

The commercial systems provide various information via performance counter

(e.g. execution cycle counter, cache miss counter) which can serve to guide run-

time optimizations. This is analogous to how we use performance data from the

simulated hardware in OTF currently. Compared with the simulated system, a

practical system is more complex, which means there would be more challenges

for tuning the performance metrics and exploiting a more complex search space.

This will make the adaptive optimizations more applicable.
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8.2.2 Enhance Optimizations on TLS

To exploit more optimizations on TLS, the method-level speculation and complex

speculative thread creation mechanism (i.e. multiple speculative thread creators)

need to be implemented. As load imbalance is a major problem for method-

level speculation, tuning the decomposition for method-level speculation could

be helpful to exploit speculative parallelism more efficiently.

8.2.3 Exploit Complex Optimizations

The complex optimizations include:

• Tuning and integrating more compiler optimizations.

• Developing a more complex search mechanism.

Tuning more optimizations could gain more benefit. Integrating optimizations

will increase the complexity of the search space. So future research should prune

the search space to make the tuning for complex optimizations more efficient.

Based on current work, the hill-climbing based search mechanism can quickly

achieve the optimum, but the shortcoming is that it may only reach a local

optimum which may not benefit the program very much. A more complex search

space will introduce more local optima which increases the risk of not achieving

a good result. Improving the search mechanism is another important thing for

large scale runtime optimization.

8.2.4 Common Runtime Optimization

The code generator used in this research is based on the JikesRVM’s IR code,

which could be a common intermediate representation for any language. By

providing a pre-compilation tool which translates the language to the common IR

format (e.g. PearColator [73]), the OTF can be a common runtime optimization

infrastructure for CMP architectures.
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8.3 Concluding Remarks

This work investigated how to parallelize and tune applications adaptively at

runtime, where the compilation and optimization system can benefit from being

aware of the machine behaviour and the data set of a program, which are usu-

ally not available at compile-time. An adaptive parallelization and optimization

system, OTF, is built on the JAMAICA CMP architecture which provides fine-

grain parallelism support. By using the OTF, the sequential application can be

parallelized at runtime and a range of high-level runtime optimizations can be

effectively applied to these parallelized applications to improve the load balance

and data locality.

Due to the limitation of compiler analysis, TLS support has been added into

OTF to exploit more parallelism for those applications that are not easy to be

analyzed statically. OTF applies a range of TLS related runtime optimizations

to the parallelized applications and performs adaptive decomposition at runtime

to find where and how much to speculate, to refine speculation and to reduce

overhead.

With the current trends of multi-core system and compiler technologies, dynamic

and runtime adaptive systems will be helpful for adapting applications to complex

hardware and input data sets. The technologies developed and evaluated in this

work are a contribution toward the development of a future runtime environment

which can optimize programs transparently and efficiently.
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