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Abstract

Digital Images require large storage space as highé higher resolution becomes
possible, at the same time as the storage becohseper it becomes feasible to
store rather than discard useful detail. Compresdigital images not only saves

storage space but reduces transmission time ifrtage has to be transmitted.

Depending on requirement images are either comguleasing lossy or lossless
compression methods. Lossy methods allow very largepression ratios as
compared with lossless compression methods atxpense of losing information.

In cases where smallest image detail matters ssich medical image processing,
preservation of art work and historical documesédellite images and images from
deep space probes images are compressed usingstosshage compression
methods. Despite the importance of lossless imaggression of continuous-tone

images there is a paucity of standard algorithms.

This thesis analyses different methods of lossiessye compression which use
prediction based on context. These methods expifitmation from context and
the performance of these methods is proportionah&o precision of prediction.
There may be more room for compression because mmboemation can be
exploited from the context. It is demonstrated tbabining existing methods or
including more information from the context can noye prediction results thereby
improving compression ratios. Results are compaigdd JPEG-LS which is state of

the art method in Lossless Image Compression.
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1. Introduction

As the data grows in volume, the need for its casgion becomes increasingly
important. In comparison to textual data, imagedatmuch more voluminous and
requires specialized methods for compression. Thethods are custom tailored to
compressing image type information. Compressingggsanot only saves the data
storage space, but more importantly, it makes tnésson of images faster. The
transmission of data still remains to be a muchlieogesource in comparison to

computational or memory resources. [Furh95] [Pifs95

Many tasks in various fields of life require protion, acquisition, storage and
transmission of different kinds of images. Many dsnof images, especially
photographic images, being highly voluminous regjlarge storage space. The time
to transmit these images is also proportional ®© $ive of the image. Image
compression addresses both of these problems. Aressed image not only takes
less space for storage but the smaller size of cesspd data also takes less time to
transmit. Compressing and decompressing of imagesvever requires
computational resources. As computational logic obezs cheaper

compression/decompression of images becomes macéqgable.

Image Compression belongs to two fields of sciemamely Data Compression and

Image Processing.

1.1 Data Compression

If the size of data is reduced by removieglundancyin the data it is said to have
been compressed. Information is considered reduritigns can be inferred from
some other information already available. It isstredundancy which if removed
yields data of a smaller size.

Data can be represented in different forms for gtarthe number 7 is represented
as ‘vii’ in roman and ‘111’ in binary. All three peesentations convey the same
information.

At times using a different representation can aksguces the size of data. Data
compression techniques change the representatidatafhaving two goals in mind

(1) no information is lost (2) size of data is redd. For example if a book consists
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of a hundred pages, but contain only the word ‘Cat@p repeated 50,000 times,
then the whole content of the book can be desciibetie sentence. The reason for
this is that the information content of the bookésy low, although the data in the
book is very large. The word ‘Computer’ in the boiskredundant. Removal of
redundancy yields reduction in the size of datais Timodified form of data

representing exactly the same information is threpressed data.

1.1.1 Redundancy

Redundancy is synonymous to repetition, but it algans the information which
need not be put explicitly because of being knowaaaly, or can be deduced from
the already available information. For examplesdmeone says that ‘my only
daughter is married to a doctor’. Now if the speadays that my son in law is a
doctor this information will be redundant, becausean be deduced from the

previous sentence.

Some of the commonly used compression methodssemlaws:

1.1.2 Methods of Compression

Run-Length EncodingSuppose the string to be compressed (source stiing)
‘AAAABBB’. Using the well known run length encodin@RLE) method, it can be
written as ‘4A3B’ meaning ‘repeat A four times amdpeat B three times'.
Assuming that each alphanumeric character requirdsyte for representation,
source string which contains 7 bytes can be repteddoy compressed string which

contains only 4 bytes.

For this method to work, it is important for theiter (compressor) and the reader
(de-compressor) that they agree on the method. mk&ns that if the compressor
compresses ‘AAAABBB’ to ‘4A3B’; the de-compressandiws how to decompress

‘4A3B’ back to ‘AAAABBB’. Therefore the compressand the de-compressor
have to agree on an algorithm. The book contaitigword computer repeated
50,000 times (section 1.1), will not compress njice$ing this method. However

some other suitable representation will work bettehis scenario.

Sometimes the source data has redundancy whictotherexploited properly e.g.

if source string ‘ABBAABBA'’ is compressed using tladove algorithm one ends

up with compressed string ‘A2B2A2BA’, which requsrhe same number of bytes

12



as the source string, thereby rendering no comipres&lthough the representation
of data got changed but the size of the data reeddine same. Alternatively if the
source string ‘ABBAABBA’ is written 4ABBA2 meaninthat the next 4 characters
are to be repeated twice then a reduction in tke sf data is achieved. This
reduction in size was achieved by finding pattamshe text. The redundancy of
pattern ‘ABBA’ was exploited by the compressor amals used to advantage. The
book containing the word computer repeated 50,06Ges (section 1.1), will
compress very nicely using this method, yielding ¢ompressed string ‘9Computer
50000'.

1.1.3 Equal length and Unequal length codes

Equal length codes are those which use the saméearuaf bits for representing
each symbol. Above given examples assumed the fusgual length codes. Equal
length codes are optimal only when all symbols egeally likely. When some
symbols occur more often than others, greaterieffay can be achieved by using
unequal length codes and assigning the shortest wamds to the most likely

symbols and longer code words to the least likgiglsols.

114 Statistical Compression

Statistical compression methods make use of statist the source data in order to
take some advantage. For example it is a commoenraition that in English
language the frequency of occurrence of the alpgkab€ and ‘Z' is small as
compared to other alphabets. Similarly the frequerioccurrence of ‘A’ and ‘E’ is
very large. Taking advantage of this fact, variad#ed codes are designed. Smaller
sized codes are assigned to more frequently ooguaiphabets like ‘A’ and ‘E’,
and larger sized codes are assigned to less frdgumcurring alphabets like ‘X’
and ‘Z'. By doing so large portion of the sourcéadaccupied by the high frequency
alphabet is encoded using a small number of bitistla@ remaining small portion of
the source data occupied by the low frequency éigthss encoded using a large

number of bits. In most cases there is a consitkeraduction in the size of data.

Entropy: If the probabilities of occurrence of data elemseare known, then variable

sized codes can be generated to minimize the nuwibbits for representing the

13



data. There is however a limit to this minimizatiavhich is known in terms of

information theory as Entropy [Shan48].

Given M random variablew,,a,,...,a,, . If these variables have probabilities of

occurrencg=p(a 1), p=p(a 2), ..., m=p(a v). Then the entropf is given by the

following relation.
M
E=-> plog, p,
k=1
Equation 1-1
Entropy is a measure of amount of information ie tjiven data according to

probability distribution of the alphabet. It defsnéhe minimum number of bits

required to encode the data [Shan48].

Suppose there are M=8 random variables r1, r2,8, having the same probability

of occurrence; i.g1=p,= ... = pg = 1/8. Then using Equation 1-1
8.1 1
E=-)> —log,=
; 8 0, 8
=3
On the other hand, fi=1, p,= p3=... = pg =0, then the entropy is
E=0

The entropy of M random variable can range frora D&M

Entropy is a measure of the degree of randomnes#iseo$et of random variables.
The least random case is when one of the randomables has probability 1 so that
the outcome is known in advance and H=0. The navgtam case is when all events
are equally likely. In this cagg=p,= ... = pu = 1M andH=log,M.

Entropy gives a lower bound on the average numbéit® required to code each
input symbol; in case of images it gives the avenagmber of bits required to code
each pixel. If the probabilities of occurrence atle input symbol is known to I,

P2, ..., fu, then we are guaranteed that it is not possibl@te ¢hem using less than
M
E= _Z P, 109, p,
k=1

bits on the average.
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1.1.4.1 Huffman Coding

This is a well known statistical compression methdtiuff52] and generates
variable length codes. This method makes use efuheven probabilities of
occurrence of symbols. The codes generated usiagnbthod are optimal if the
probabilities of alphabets are negative powersnvaf €ven otherwise the codes are
near optimal.

Step wise construction of codes

1) Write the list of alphabet in descending order&it probabilities.

2) Construct a tree whose leaf nodes are all the bitha the following way
Find the two nodes with the lowest probability asréate a node having
probability equal to the sum of the probabilitiddwo leaf nodes. Arbitrate
if necessary

3) Repeat the procedure in step two, to combine twadesdo make another
node. Note the node created in step 2 may as watbimbined if it has the

least probability.

When all the leaf nodes are combined with otheespthere is only one node left in
the tree. The above procedure renders a tree whizhary in nature i.e. every node
has two child nodes (except the leaf nodes). Qileectwo branches coming out of
every node is assigned label (0) and the othessigiaed label (1).

Codes are assigned to each alphabet by travetsngete from root to the leaf.

Example:
The probability distribution of 4 alphabets is simowv (Table 1)

Table 1 Probabilities of symbols

Alphabet Probabilities
& 0.4
& 0.35
& 0.2
ay 0.05

15



al: 0.4

a2:0.35

a3:0.2 0 0.6

1 0.25

ad: 0.05

Assignment of codes with Huffman Method

Figure 1-1 Huffman coding

Since g and a have the minimum probabilities of occurrence, ¢hgo nodes are
combined to make a nodesfpas shown in (Figure 1-1). This new node is a®sign
probability equal to the sum of two probabilities05+0.2=0.25). Repeating the
same procedure, the nodes with least probabiktiesd a, are combined to make
node (azg) which is assigned probability equal to (0.35+6@%). Finally the last
two symbol are combined to make a nodgsahaving probability 1.

One branch coming out of each node is labelleda(@ the other is labelled (1).
Codes are assigned by traversing the tree fromrtiné to each leaf node,
concatenating each label on the way. The codegrassito alphabet are shown in
(Table 2)

Table 2 Assignment of codes by Huffman Coder

Alphabet Codes Assigned
a; 0
a, 10
a 11C
as 111

The entropy of the data is equal to 1.74 bits/symibaHuffman code is used then
the average length of data will be 1.85 bits/symibsiead of 2 bits per symbol, used
by equal length codes. When all the input symbolthe data have probabilities of
occurrence which are negative powers of 2, thespdeduced by Huffman coding

are optimal i.e. the average length of compressaga equals the entropy.

1.1.4.2 Arithmetic Coding

The code assigned to each symbol by the Huffmarercedntains an integral

number of bits i.e. if the entropy of a symbol i bits then either it is assigned 1 bit

16



code or a 2 bit code, but not a 1.2 bit code. Thithe reason that using Huffman

code average length of data cannot equal the gntrop

Arithmetic coders [Riss76, Riss79, Witt87] howevieave been able to overcome
this problem. Arithmetic coders do not assign cottesndividual symbol. These
coders assign a very long code to the entire da¢am, yielding one long code

word whose average code length is equal to thegntf data stream.

A very small introduction to data compression waig in this section. Out of the
numerous methods available, only a few methods ath ccompression were
mentioned briefly, according to relevancy. The readtion gives brief definitions of
the relevant digital image processing terminologgfobe contrasting image

compression with data compression.

1.2 Image Basics
1.2.1 Digital Image

A monochrome digital image is a 2 dimensional awaylots arranged im rows
andn columns (Figure 1-2). These dots are called picalements (pels) or pixels.
Each individual pixelp at location X,y) can assume a value between 0 ahd

representing the intensity of light at that locatio

o

A monochrome digital image consisting 256 rows an|
256 columns (65536 pixels). Image depth equals 25

U7

Figure 1-2 Monochrome digital image

17



1.2.2 Image Resolution

Digital images are represented as pixels alongxttend the y axes. A picture
consisting ofm pixels on the x-axis and pixels on the y-axis has a resolution
m x n. Higher the value om andn, higher the resolution of the image. Higher
resolution images depict better quality images,abhee more image detail is
included. More image detail means more informatiand therefore a greater

volume of data.

1.2.3 Image Sampling

Image acquisition devices such as scanners or eamggve sensors which can take
samples from the scene (light reflected from olg)ecthe samples are usually taken
in the form of a 2-Dimensional array havimgrows andn columns resulting imn x

n samples.

1.24 Grey-Levels

In a monochrome image, if the intensity of lightiaty O the pixel is black and if the
intensity of light equals N-1 (whend is usually2™) the pixel is white while in all

intermediate cases the intensity of light is betwikack and white or grey. Because
both black and white are also shades of grey thexddll different intensities that a

pixel can assume are called grey-levels.

1.25 Quantization

Depending on requirement or on the sensitivityh®f scanning sensors there is a
limited number of grey-levels which each pixel assume. The number of grey-
levels which the scanning device distinguishesmduanalogue to digital conversion

is called the quantization levels.
Quantization levels in scanners can be set to al as2 in which case the image is

a black and white or binary image, and it can hesas large as 1024 or more in

case the data is to be analyzed by specializedcatiphs.
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1.2.6 Neighboursof a Pixel

A pixel p at co-ordinategx,y) in an image has 8 neighbours surrounding it (FEgur
1-3). Four of these neighbouring pixels informatiglled TOP, BOTTOM, LEFT
and RIGHT are adjacent to it. These pixels haverdinategx,y-1), (x,y+1), (x-1,y)
and (x+1,y)respectively. These pixels are called the 4-naghdof the pixel oNj,.
These four pixels are at distance 1 from pgxeéle. the distance from the centre of
pixel p at (x,y) to the centre of either of these pixels equal3He rest of the 4
neighbours ofp have diagonal corners touchipg These pixels informally called
TOP-LEFT, TOP-RIGHT, BOTTOM-LEFT and BOTTOM-RIGHT abe co-
ordinates(x-1,y-1), (x+1,y-1), (x-1,y+1pnd (x+1,y+1) respectively. These pixels

are called Diagonal neighbours pfor Np. The Diagonal neighbours are at a

distance ofy/2 from p. Ns andNp together are callels neighbours op [Gon2002].

Top-Laf] Top Top-Risht
Pix-1.%-1) Pix -1} Pi{x+] -1}
D 4 D
Laft PIX Fight
4 4
Pix-1.%) P(x.¥) Pix+1.%)

D 4 D
Bottom-Laft Bottom Bottom-Eight

Pix-1.v+1) Pxy+1) Pix+1.x+1)

N4 Neighbours and pNNeighbours of a pixel (Pix)

Figure 1-3 Neighbour s of a pixel

1.2.7 Raster Scan

An image consisting of rows andm columns, if scanned one row at a time from
top to bottom, and each row scanned from leftdgbtris referred to as raster scan as
depicted in (Figure 1-4). This is the order ofrstag which is used in CRT
(Cathode Ray Tube) monitors, where the electronfganses the beam at one spot
at a time, starting from the top left corner. Th ggoes from left to right pixel by
pixel and at the end of the first line moves to lgigmost pixel of the second line

and again goes from left to right. Moving in thigler when all the rows are drawn
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the scan is complete. This order of scanning is alsed by most of the image
processing programs which filter the image pixel giyel starting from top-left

corner pixel and finishing at bottom-right cornéexgp.

Rows

OIIIIIIIIIIIIIIIIIIIIII‘

1IIIIIIIIIIIIIIIIIIIIII|

N-1

Raster order of scanning. After scanning the last kel
the first row, the first pixel of the second row is scanned.

Figure 1-4 Raster scan order

1.2.8 Typesof Images

An image conveys information visually. Historicalsketches, heliographs and
paintings were used and in the modern ages phategrand video are common.
Moreover images can be graphs, charts, sketcheson& characters, vector
graphics, Computer aided tomographs, X-ray imagggllite images etc. All of the
above kinds of images have their specific purposes. the purpose of image

compression it is useful to distinguish the follogiitypes of images.

1. Bi-Level Image: This kind of image can have onlyteolours usually black
and white. This kind of image is transmitted angroeluced by facsimiles
and laser printers. When the resolution of suchnaage is very high as
produced by laser printers it can closely mimic yngrey-levels arranging
different densities of black dots in regions (Halfing).

2. Gray Scale Image: Images taken by black and whiteecas are grey scale
images, where each pixel can assume different siitegs. Black has the
lowest intensity and white has highest intensitybétween black and white
are shades of grey. Because black and white acecalssidered strongest
and weakest shades of grey, all the light inteesiticluding black and white

are called shades of grey or grey-levels. In imageessing the model used
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is that of grey-scale images, because it can bergkred to colour images
as well.

3. Continuous-tone Image: All natural images suchhasd taken by a digital
camera are continuous-tone images. A property efSehimages is that
adjacent pixels usually have same or very simitaygevels. Even if there
are sharp edges the transition from one grey-levehe other is not very
abrupt. For example (Figure 1-5 a) shows an im&ggte 1-5 b) shows an
enlarged portion of the same image showing a shaygmdary (marked in
original). Close observation reveals that the ftaorsfrom one grey-level to

the other is not very abrupt.

(@) (b)
(a) A continuous-tone image
(b) Enlarged portion of the image.

Figure 1-5 Continuous-tone image

Discrete Tone ImageThis is normally an artificial image. It may hafev colours

or many colours, but it does not have the noise l@oding of a natural image.
Examples of this type of image are a photographrtficial object or machine, a
page of text, a chart, a cartoon, and the conteings computer screen (Not every
artificial image is discrete-tone. A computer-gexted image that is meant to look
natural is a continuous-tone image in spite of demrtificially generated.)
[Sal2004].
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1.3 Summary

In this chapter the need for compression of images discussed. With the advent
of Graphical User Interface and Multi-media, thesdhdor efficient storage and
transmission of images becomes more pressing atdtel the need for image
compression. Compressing images not only reducesstibrage requirement, but
also helps to reduce the transmission time. Theodmes more practicable as the
processing capacity of computers grow.

i. The basic concepts of data compression were intemjuand some
related data compression methods were discussed. cbhcept of
entropy in conjunction with variable sized codesswhscussed. Two
well known statistical compression methods (Huffmeoding and
Arithmetic coding) were introduced.

il. The basic concepts of data compression and imageegsing were
introduced in order to be able to have a betteretstdnding of the

concepts of image compression related to this reea

In the next chapter basic concepts of image corsmeill be introduced, and
the method of compression (DPCM) related to thsgaech will be described.

1.4 Research Aims

The research presented in this thesis aims at iérglothe correlation among
neighbouring pixels of continuous-tone image, ideorto design good predictors.
Besides the design of predictors, the aim was t@rche methods which use
maximum information from neighbouring pixels, whikainimizing the time to

process that information.

1.5 Contributions

Following are the contributions made during thisei@ch
» Design of a new predictor for use with DPCM metHody of lossless
image compression
» Use of multiple predictors suited to different @gs in an image and the
proper segmentation of the image

* Enhancement in the basic design to make a compusitiéctor
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2. Background

All data compression methods aim at removing tlieimdancy in the data. In order
to remove the redundancy, the data is transformeldttze representation of data is
changed. Image Compression can be of two tyjess|esscompression antbssy

compression.

2.1 Image Compression

In data compression any transformations applietthéooriginal data are reversible,
such that the original data is recovered usingrseré¢ransforms; the compression in
this case isosslessIn image compression however, it is acceptabledse original
image data to a certain extent due to the inseitgitof the human eye to certain
features. For example the human eye is sensitigentdl changes in luminance but
not in chrominance therefore if luminance inforroatis saved in full detail while
some part of chrominance information is truncatads does not affect the overall
image quality for human perception. This is on¢hef main ideas behind the type of
image compression callelbssy image compression. Lossy image compression
methods aim not only at removing the redundancyha image, but also try to
remove irrelevancy. An image can be lossy-compredse removing irrelevant
information even if the original image does notéawny redundancy [Sal2004].

At certain situations it is not acceptable to loasg information in the image, even
if the human eye is insensitive to those details, &xample medial images, like
computer aided tomographs (CAT), X-Rays, ultrassuett. are considered so
important that loosing any information at all frothe image is considered
unaffordable. Likewise those images, acquisitiowbich is in itself difficult and
expensive, for example images from deep space prase also considered very
precious and loss of any information contained hese images is considered
unaffordable. In such cases where rare and preaidoisnation needs to be kept in
the original form, image compression techniquessatgght which do not truncate or
transform any information of the original image.cBumethods are reversible such
that after decompression the original image canréeovered. These image

compression methods are called lossless.
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2.1.1 Compression Process

The process of compressing images consists of gteges viz. (1) Transformation
(2) Quantization (3) Coding.

Transformation During this step the image data is transformeaamnfrthe pixel
domain to some other domain. This transformatiarsigally one-to-one i.e. for each
element in the pixel domain there will be an elemerthe transformed domain. For
example JPEG compression uses Discrete Cosinefdraraion, which is a one to
one transformation. Using such, one-to-one transftirere is no reduction in the
size of data during transformation, and sometirhesetis an increase in the size of
data.

At times the transformation is not one to one. &mmple in run-length encoding,
the sequence of pixels scanned in a raster scan srtransformed into paifga,l1),
(92,12), ..., (guln), whereg; denotes the grey-level ahddenotes the run length of the
i run. In run-length encoding the transformationlitsgay reduces the size of data.
This step of transformation is reversible, such thging a reverse transform; the

original data can be restored.

Quantization During this step the transformed data is quadtipea limited number

of allowed values. This step of quantization igversible; such that once the data
element is quantized it cannot be recovered. Tihis is used where the loss of data
is tolerable. For example in JPEG the transformatd ¢6 quantized, but even after
considerable loss of data the fidelity of the rejmced image is high although not

absolute. Quantization is therefore not done $liess compression is required.

Coding The quantized data consists of a limited numbkrallowed values
(alphabets). The task of the coder is to assigmigue code to each of these
alphabets. Depending on the requirement these cealgs For example if the
alphabet have very uneven probabilities of occueerthen variable length codes

like Huffman codes may be assigned. This stepsis @versible.
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2.1.2 Lossy Compression Methods

Lossy compression methods as described above nsakefuhe fact that the eye is
insensitive to certain features in an image. Thres#éhods store full information of
those components of an image to which the eye ist mensitive. Only partial

information is saved about those features of thagento which the eye is less
sensitive.

There are numerous lossy compression methods, dret dnly one well known

method of lossy compression is presented, the JPEG.

JPEG JPEG is a well known lossy compression methode Tblour version of
JPEG makes use of the insensitivity of the eyentallschanges in chrominance.
JPEG uses the luminance/chrominance colour modélsaves the luminance of the

image in greater detail and the chrominance pdh sser detail.

2.1.2.1 JPEG Compression

The JPEG method divides the image into blocks &84 pixels called data units.
Discrete Cosine Transform (DCT) is applied to eaicthe data units. After applying
the DCT, each block is quantized to a limited numieallowed values. This is
where much of the image data is irretrievably |&ch data unit is saved using

RLE or Huffman coding.

2.1.2.2 JPEG Decompression

During decompression all the steps during compoesare applied in the reverse
order. First each data unit is decompressed usRigeaor Huffman de-compressor,
then Inverse DCT is applied to each data unit tmver the original data of each
unit. Note that in spite of being quantized, apgglien of the Inverse DCT returns
very similar values as the original.

This method of compression gives a compression tatito 10:1 with high fidelity.

With higher compression rates the image qualityeigraded appreciably.

2.1.3 Lossless Compression Methods

There are numerous methods of lossless Image Csgipneof continuous-tone
images. Most of these methods make use of the laboe among neighbouring

pixels to predict the value of the next pixel thmBregain some advantage, these
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methods are called predictive methods. Some ofethesthods make use of
transforms like Wavelets. The CALIC method [WU9G]lléws the predictive
approach becoming one of the most efficient lossiesage coders in terms of
compression performance. JPEG-LS standard [Mard2008ich replaced the
lossless mode of the original JPEG standard usétgpiaipredictors and has a very
efficient implementation. SPIHT [Said96] and EZWh§p93] are tree-based lossy
wavelet image encoders that also can store an inmatmssless mode with SNR
scalability.

Amongst these methods the Differential Pulse CodedWation (DPCM) or
predictive coding methods are considered most @&ffegMem97]. This research
has contributed towards improvements in DPCM, wingctiscussed in detail in the

following sections.

2.1.3.1 Differential Pulse Code Modulation

Differential Pulse Code Modulation (DPCM) is a nuhof compression used for
compressing continuous-tone images. This methatsasreferred to in the literature
as lossless DPCM or lossless predictive codinghisimethod the value of the each
pixel is predicted; the prediction is compared witie actual pixel value. The
difference between the two values is computed aoded. It is possible to
reconstruct the original data, using only the défees; therefore the actual pixel
value is discarded. The difference values are roonepressible than the actual data,
as will be shown in the following sections. Theigaale behind this method of
compression is that, in continuous-tone imagesontgjof adjacent pixels have
same or very similar values. Because the adjacemispare highly correlated,

therefore their values can be predicted with gaomigacy.

For example if the value of a pixel is predictedegsal to its left neighbour, then in
a large majority of cases this prediction is foamdbe accurate. Amongst most cases
when the prediction is not accurate, it is foundbéovery similar to the actual pixel
value. This method of compression works by scanttisgmage typically in a raster
scan order. Each pixel is predicted using a predié& simple predictor can be the
LEFT predictor, which predicts the value of the currpixel as being equal to the

value of the neighbour on its immediate left. Thexdhowever a relatively small
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number of pixels which do not have a left neighbolinese pixels either go

unpredicted or can assume the value of some otlagdable neighbour.

(Figure 2-1 a) shows a 256x256 image having 256¢-lgneels. (Figure 2-1 b) shows

the histogram of the occurrence of grey-levelhpicture.
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Grey-Levels

Frequency

@) (b)
(a) Image of the girl
(b) Histogram showing the frequency of all the grey-levelthé image

Figure 2-1 Image and histogram of grey-levels

Every row of pixelsq, X,..., %, can be mapped to a new set of difference vatues
Xo- X1,..., %- X1. Having the difference values original pixel valuean be

reconstructed as follows.

Since first valuex; is stored unmapped, it is not reconstructed. Theorsd
difference value-x; is added with the value of the previous reconstadizaluex;
to get %-x1+X1 = Xo. For the reconstruction of each successive valueat@nstructed

value of the previous pixel is used.

(Figure 2-2 a) shows the difference image using BT predictor and the
histogram of the difference image. Negative of theage is shown i.e. white
represents grey-level 0 and black represents gnesl-P55. Most parts of the image
appear white showing zero error between the piiedi@nd the actual value. Most
of the pixels in this histogram are within a vergnadl range. This kind of

distribution of probabilities of occurrence makks entropy of the difference image
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much smaller than the original image. The figureveh that a large number of

differences are very small. Most pixels are with thnge of -15 and +15.
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Difference values

@) (b)
(a) “Difference image” of the image shownknror! Reference source not found.
(b) Histogram of the “Difference Image”

Figure 2-2 Difference image and histogram of difference value

(Figure 2-2 b) shows that there are a large nurobemall differences, and a very
small number of large differences between the agixal values and the predicted
values of pixels. The entropy of the differenceueal is much lower than the entropy
of the original data, this is because large numbéudifference-values have a high
probability of occurrence and a small number offedénce-values have a low
probability of occurrence. Making use of these @meprobabilities of occurrence of
difference-values, some variable length codere Huffman coder (1.1.4.1) or

Arithmetic coder (1.1.4.2) may be used to comptiesslifference image.

TOP

TOP ToR
TOP
LerT | TP | gpigmT

LEFT
rerT| LEFT | Plxy]

=

Convention used for referring to neighbours of the
current pixel.

Figure 2-3 Neighbour conventions

If we extend the idea of prediction further therc@mposite predictors may be
designed. For example a predictor can predict Yeeage of the values of tlegOP
and theLEFT neighbour. Such a predictor will be called (TOP¥IE?2 in this text.
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(Figure 2-3) shows the convention of referringhte heighbours of the current pixel
(P[x,\))- The current pixel will also be referred as PIX.

Since the value of the current pixel is not justrelated with thd.EFT neighbour,
information from other neighbours may also be udgy.using information from
multiple neighbours more accurate predictions aeally made. As a result smaller
differences are obtained, thereby reducing theopwtof the difference image. Some

predictors use two or more neighbours, in ordejive more accurate predictions.

2.2 Importance of DPCM

Among the various methods which have been devisedolsless compression,

predictive techniques are perhaps the simplestransl efficient [Mem97].

The JBIG/JPEG committee of the International Staagl®rganization (ISO) gave a

call for proposals in 1994, titled “Next Generatidwssless Compression of

Continuous-tone Still Pictures”. Nine proposals eveabmitted of which seven used
lossless DPCM or lossless predictive coding [Mem97]

Given the success of predictive techniques folégssmage compression, it was no
surprise that seven out of the nine proposals dtexinio 1ISO, in response to the call
for proposals for a new lossless image compresstimdard, employed prediction.

The other two proposals were based on transfornmgod

Of the seven predictors the Median Edge Detect\dB¥) predictor gave the best

performance. Although the three best predictors MEEadient Adjusted Predictor

(GAP) and ALCM gave competitive performance, buewlaveraged over a number
of images MED gave the lowest average value. Thve JIREG-LS standard uses
MED for prediction.

221 TheMED predictor

Hewlett Packard’s proposal, LOCO-I (low complexitgsless decoder) [Marc2000]
, used the median edge detection (MED) predictdeDVbnly examines the TOP,
LEFT and the TOP-LEFT pixels, to make a predictiBallowing is the prediction
algorithm of MED predictor
if TOP-LEFT>max(TOP,LEFT) then

P[X,y]= min (TOP,LEFT) else
if TOP-LEFT<min(TOP,LEFT) then
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P[x,y]= max (TOP,LEFT) else
P[x,y] = TOP + LEFT -TOPLEFT

This predictor examines the TOP and the LEFT naighbto detect horizontal or
vertical edges. It predicts the TOP pixel if a ieatt edge is detected, and LEFT
pixels if a horizontal edge is detected. If no edgdetected then the value of the
pixel is interpolated using the equati®fx,y] = TOP + LEFT —TOPLEFT This
value lies on the same plane as TOP, LEFT and TGFLE
A similar predictor was given by Martucci [Mart9@jho named it MAP (median
adaptive predictor). The MAP predictor predicts tmedian of a set of three
predictions. Martucci reported that the predicttwags selected the best or the
second best prediction. Best results were repdotedising the following three
predictors.

1. TOP

2. LEFT

3. TOP-LEFT
Comparative studies show that MED predictor givapesior performance over
most linear predictors [Mem95] [Mem97].
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3. Design of Predictors

In the previous chapters the idea of image commeswas introduced with

emphasis on lossless compression. Context basditiive methods were discussed
and the state of the art method of prediction usedPEG-LS was summarized. In
this chapter some techniques are introduced tordgee the advantages from
previously known methods. It is demonstrated thegngenting the image into
regions and then using different predictors in edéht regions gives an added

advantage.

For all the experiments it was considered reasentbluse most commonly used
images as benchmarks. Publicly available clasbieathmarks were taken from the
database of Signal and Image Processing Instithitthieo University of Southern

California (ttp://sipi.usc.edu/database/index.Htmlhe database contains different

datasets like aerials and textures and miscellanebliscellaneous dataset was
chosen because it contains most of the commonld uUsenchmark images;
moreover most of these images are general imagesube they do not fall in a
particular category like aerials and textures. Thiscellaneous dataset contains
more than 40 images out of which some were binany some lacked detalil
therefore did not particularly fall in the contirusstone category. Of the remaining

23 were chosen at random.

In order to achieve this, perspectives on predictice presented, and required image
features are analyzed. A method from predictiodei¢eloped from scratch starting
from the association of neighbouring pixels andlymiag each observation in a
sequence to reach a conclusion. In the followiragiee, association of neighbouring

pixels will be discussed, with the help of an expent.

3.1 Proximity map

By definition a continuous tone image is an imagevhich grey-level changes are
not abrupt as discussed in chapter 1. Even shagsedre generally slightly blurred
as a result of sampling. This means that pixelalhshave the same or very similar
values as their neighbours. How similar and in hdyigvhat percentage of cases it is
same and in what percentage it varies, and how nituchries are all questions

which need to be answered before attempting toogxpis information.

31


http://sipi.usc.edu/database/index.html

To have a rough idea about answers to the abovstigos, the following
experiment was performed. This experiment showssthelarity of pixels to its
neighbours according to distances, which is whyg italled the proximity map. In
this experiment all pixels of an image except tixels which lie on the perimeter of
the image are analyzed, the variation of each gnoeh its neighbours is recorded,
and then all the variations are averaged. Thetseaut shown in grey-scale from O
to 255, where O represents white and 255 repreds#atk. This experiment was
performed on all the 23 images taken from the eak®enchmarks (Appendix A),
the results of a few are presented

(Figure 3-1) shows the image of a girl and its proty map. The white square at
the centre of the proximity map represents the ttaat each pixel is equal to itself.
The squares gets progressively darker towardsdhimeter of the map representing
the fact that closer pixels are typically more &min value than distant pixels.

() (b)
(a) Picture of a girl with smooth background and broadacaritripes.
(b) Proximity map showing more vertical association thamzontal association.

Figure 3-1 Picture of Girl and Proximity map

3.1.1 Inferences

The following can be inferred by observing the pnaky map
1. There is some correlation between neighbouringlpixe

2. In general, closer neighbours are closer in value.

32



3. N4 neighbours of pixels are closer in value thgjeighbours
4. On both x-axis and y-axis, there is an increagéenbrightness towards the

centre, which shows that similarity increases \pitbximity.

The above are general observations which are comimoralmost all
photographic images. However, there are certaisrobions which are specific
to images. For example, in the proximity map of giveshown in figure (Figure
3-1) the squares on the vertical axis are brighhan the squares on the
horizontal axis which is apparent from the pictbezause a large portion of the
image has vertical stripes of almost constant ¢gegt. The proximity map of
House (Figure 3-2) shows variation from other tgpjgroximity maps, in which
distant neighbours are brighter than near neigtotinis is apparently due to
the pattern involved in the structure of bricks tbe walls of the house.
Similarly, the proximity map of the tree in (Figui®3) is also not very
symmetric on both axes. It is comparatively briglte the x-axis than on the y-
axis. However, the brightness of the squares dshés, as the distance from the
centre increases on each axis. Note that reduaticmightness on each axis is

not very regular, and rate of change of brightreseach axis is also different.

(@ (b)
(a) Photograph of a house, with an almost constant backgstyrahd prominent brick pattern
(b) Proximity map of house showing deviation from typicalximity maps due to pattern of bricks.

Figure 3-2 Picture of House and Proximity map
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(a) (b)
Picture of a tree with smooth background containing sky and masntai
Proximity map showing more association on the horizantal than on the vertical axis

Figure 3-3 Picture of Tree and Proximity map

The above observations from the proximity map aamfihe well known fact that
near neighbours can be used as predictors. An dgawhphis approach is given in
(2.1.3.1) where each pixel's value is predictecbéoequal to its immediately left

neighbour. In the next section, the use of morghimurs for prediction is analyzed.

3.2 Using more neighbours as predictors:

Section (2.1.3.1) explains the standard method BCE where the predictor
chooses the value of the left pixel as a predictibthe next pixel. It is shown that
reasonable accuracy is achieved by choosing thepigél. It may therefore be
possible to use information from more than one m@dgir to increase the accuracy
of the prediction. Hypothetically, a prediction bdson all 4-neighbours or 8-
neighbours of a pixel may be optimal. However, tisismpractical because the
neighbours themselves are also subject to predidti raster scan order is assumed
where pixels above and to the left of the candidageknown and those below and
to the right are not.

It is observed from the proximity map of girl (Figu3-1) that the top pixel may give
a more accurate prediction than the left pixel.ngsthe left pixel value as a
predictor for the next pixel, results were plotstbwing the accuracy of prediction
in grey-levels from 0 to 255 as shown in (Figurd &). White shows highest

accuracy and black shows lowest accuracy. Simijlgffygure 3-4 b) shows the
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results of using top pixel as a predictor. Thesatshwhich show the inaccuracy of

prediction of a predictor, are termeddi§erence images.

@ (b)
Pictorial representation of correctness of guessa&ebDaixels show greater deviation from the
original value white shows exact guesses (hits).
(a) Accuracy map of Left Predictor
(b) Accuracy map of Top Predictor

Figure 3-4 Difference Images

As can be seen, that the top guess turns out toliedter guess than the left guess.
This is true about this image, but not about alithages. This happened because in
the image of the girl (Figure 3-1 a), there ardival stripes; the same is also visible
in the proximity map of the girl in (Figure 3-1 hyhere the squares on the vertical
axis of the central pixel are brighter than theasga on the horizontal axis of the
central pixel. As can be seen there is a differdret@veen the two accuracy maps
shown in ( Figure 3-4 a and b). The differencedatis that different information is
provided by the two predictors. The white regionghe accuracy maps appear in
similar areas of the image. These are comparatsratyothregions of the image e.g.
background. The darker regions appear near thes avhare there are large grey-
level changes in the image. Here and forward thesas will be calleddges

If the information provided by both predictors Haekn exactly the same then using
the information of both may not have yielded anweaadage. However, the
information from both the predictors is differetiterefore it is attempted to use this
information to advantage. A simple experiment wasfggmed as described in
(section 3.2.1) to have a rough measurement of pibential of using two
predictors.
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3.21 Union of top and left predictor

In an attempt to use both predictors to gain adgmtit is considered important to
plot the individual hits given by each predictdfigure 3-5 a) and (Figure 3-5 b)
show the hits if left or top pixels were used asdjetors, while (Figure 3-5 c¢) shows
the union of hits of both the Left and the Top pcéat.

When the left predictor was used the number of dittserved was 7830, while the
number of hits when the top predictor was used ¥@G27. The number of hits
contained in the TopU Left) turns out to be 16258. The union of hits of both

predictors is less than the sum of hits of eaclipter; this is because many of the
hits are common to both predictors. This relatidalge number represents the hits
given by an ideal predictor which can choose betwedetter prediction out of a
choice of left or top. This large number also deiees that search for a hybrid

predictor is worth pursuing.

@) (b)
(a) Black dots showing hits of left predictor.
(b) Black dots showing hits of top predictor
(c) Black dots showing Union of images (a) and (b)

Figure 3-5 Hitsusing TOP and LEFT predictors

The above observations are only indicative of theemptial of using multiple near
neighbour predictors. The key problem here is timathaving two predictors
available a third entity term manipulatoris required which can select between the
right choice i.e. to indicate the prediction whishmore close in value to the actual
value. The manipulator may as well combine infororatcontained in both
predictions. Another observation about the naturecamntinuous tone images is
presented in the next section. This observatiohbelused to design manipulators

for the proposed method of prediction.
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3.3 Nature of pixelsalong different axes

By definition continuous-tone images are those Imc grey-level changes are not
very abrupt. Spatial locality is apparent in suchages. In the light of such
observations and in order to use two predictorstap and left, which lie on the
vertical and the horizontal axis to the pixel togredicted, images were analyzed
from another perspective. Grey-levels of pixeleach row and column of an image
were plotted. Visual observation of individual rowslicated that adjacent pixels
had similar gradients on the horizontal axis. Obetgon of individual columns of

the image indicated the same nature. These obg®rsaire presented in detail.

3.3.1 Observation

“In individual rows and columns of images adjacepixels have similar
differences”

In continuous-tone images if data is scanned rosewthen in each individual row it
is observed that adjacent pixels have similar éffiees. Similarly if the data is
scanned column-wise, then we observe that in ealcimo the pixels have the same
nature.

This tendency of individual rows and individual @wins of having similar
differences among adjacent pixels is found stromgesmooth areas and weaker in
rough areas (around the edges). As a typical examphrgely smooth area of the

image of the girl shown in (Figure 3-6) is presente

Note that this is a carefully chosen example josshiow the general tendency of
pixels in smoother areas of an image. Based onotbservation a method will be

developed which will be further analysed for a ctetgdata set.

Example (Figure 3-6) shows the image of a girl. A smalbion of the image

containing the nose of the girl is highlighted hetfigure. The grey-levels of the
small region are shown in (Table 3). As it is diffit to visualize the raw data in
numerical format, three rows and three columnshef $ub-image are plotted in
(Figure 3-7). (Figure 3-7 a) shows all pixels oé t', 2" and & row of the sub-

image plotted as graph showing grey-level of eaxélp(Figure 3-7 b) shows all the
pixels of the &, 7" and & column of the sub-image plotted as a graph. Pig&ls

each column are also plotted from left to righttéasl of top to bottom for better
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visualization. The depicted rows in (Figure 3-7shpw a very slightly downward
slope which changes direction after a few pixels #@r@n change the direction again.
The overall variation in all three rows is very $in@he depicted columns show a
downward slope which more or less remains the sarhe. slope of rows is
relatively smaller than that of columns. It is asual observation that pixels in
individual rows and individual columns have the dency to have similar
differences among adjacent pixel values. Basecisnobservations enanipulator

was designed which is discussed in detail in the: section.

Portion of the nose of the girl shown in Table 3

Figure 3-6 Smooth portion of the picture of Girl

Table3 Threerowsand Three columns data of picture of the girl

I:Il Rl R2 R3 R4 Rﬂ R6 R7 R8" R9 R10 R11 R12 R13 R14 R15 R16 R17|

C1]{191 192 192 190 19411197 197 199|]198 202 204 204 207 210210 211 209§

C2][191 190 190 190 19411193 194 195|]197 198 203 204 204 208209 211 209§
C3]j189 189 188 189 188|189 189 192]|195 196 199 203 203 209207 207 204

C4 185 185 186 185 187||187 186 189|191 191 196 197 199 202202 198 196

C5 174 17¢ 181 182 182]|18 185]|18€ 19C 194 197 19€ 19€ 19z 19C 19C

C6 12C 15t 17z 17€ 17€||17¢ 18Z 184|187 18¢ 19C 191 191 18¢ 18¢ 186 18¢
C7 86 112 152 169 171|175 180 182|]185 184 187 189 190 187183 182 180

C8 86 82 120158 164)|172 178 1811183 184 185 188 186 182181 181 178
C9 95 91 115146 159|168 175 176]]180 183 184 184 183 180179 174 172
C10 95 103 115 136 150f|162 170 175|178 182 185 186 180 179172 168 159
C11 92 97 111 125 137|150 160 172|177 182 184 182 178 172166 158 146
Cl12 89 95 102 118 132|145 157 171}]180 181 183 183 177 169161 151 136
C13 91 94 101 113 129|145 156 168|181 184 188 186 176 166157 145 130
C14 128 100 102 110 1244|137 155 173||186 191 197 188 175 164155 139 125
C15 154 132 111 113 122}|134 150 172192 195 205 190 174 161147 136 151
C16 153 159 128 118 123]|130 147 167|185 192 197 185 171 160159 163 151
C17 168 168 143 125 128|129 140 159|177 186 188 179 167 161179 172 165
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(a) (b)
(a) Grey-levels of Rowsnumbered 1, 2, and 3in

Table 3 containing pixel data from nose of girl igue 3-6

Figure 3-7 Graphs of 3 rowsand 3 columns of picture of Girl

3.4 Predictor based on L east Differences

In (section 3.1.1) it was inferred that nearesghleours are nearest in value to a
pixel. The potential of using both the left and tppedictors was discussed in
(section 3.2.1). The difficulty of choosing betwetne right predictions for each
pixel was also discussed in (section 3.2.1). Hezepresent a method of prediction
which uses both predictors TOP and LEFT. The kei®prediction method is the
introduction of ananipulatorwhich will choose either left or top predictiorr feach
pixel.

The predictor suggested in this section is baseti®following observations.

As discussed in (section 2.1.3.1) that the valuenuhediately left pixel as a
prediction for the next pixel gives reasonable Itssuand following similar
argument any of the othersNneighbours (section 1.2.6) may be chosen as a
predictor, and similar results may be expected wither choice. If a raster scan
order is assumed for prediction then of the foynBighbours, we are left with only

two choices i.e. top or left.

A method of prediction is presented which is basedhe observation in (section
3.3.1) that‘In individual rows and columns of images adjacgitels have similar
differences’ It is also based on the following inferences drdmm the proximity
map in (section 3.1.1).

» “In general, closer neighbours are closer in vakoea pixel.”

= “N4neighbours of pixels are closer in value thanr¢ighbours.”
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34.1 Method

The manipulator's selection is based on the grad@nthe two immediately
preceding pixels on the vertical and the horizoatas. If the difference is lower on
the vertical axis then the top neighbour is setbas prediction, while if the
difference is lower on the horizontal axis then ta& neighbour is selected as

prediction as shown in (Figure 3-8)

In the case when both the vertical and horizontéérénces are equal then average
of top and left pixel is selected. This method iscdssed through following

example.

This is again a carefully chosen example to shawwibrking of the method. The

method will be developed and enhanced in the faligwgections.

top-top—|

top J

|eft-left left X
| IS E—

if vertical difference (|top-toptop|) < horizontal difénce (|left-leftleft]) then
X=top else

if horizontal difference (|left-leftleft|) < vertitdifference (Jtop-toptop|) then
X=left

Figure 3-8 Horizontal and Vertical differences

Example:

An even smaller portion of the data from the sulagm of the nose of the girl is
shown in Table 4 to give an illustration of the huet of prediction above. The pixel
with the double border is predicted with this metho

The row and the column data of the pixel to be joted is plotted in (Figure 3-9).

The row and the column curve intersect at the tgyel. Both curves seem to have
some slope; the slope of the column pixels appgester than that of row pixels.
Since adjacent pixels have the tendency to havelasirdifferences, it seems

reasonable to expect the top and the left pixdiffer from the target according to
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their respective slopes. Based on this premiseanesgpect the top pixel to be three
units distant from the target pixel and the leftgbito be 1 unit distant from the
target pixel. Therefore left seems a more accuyaess than top. This assumption

was tested by experiment and was found to be amahte assumption.

Table 4 Pixel Data from the picture of girl
192 190 194 197 197 199
190 190 194 193 194 195
188 189 188 189 189 192
186 185 187 187 184 189

181 182 182 183| 184| 189

172 176 178 179 183 184

198

195 \\\
192
\ —e— Row 5
189
\ —=—Col5
186

Grey-Level

Grey-Level intensity curves along the vertical and horizaamak of the pixel to be predicted

Figure 3-9 Row and column pixel values plotted on the same axis

We first find the horizontal difference from theavimmediately left pixels which

equals |183-182|=1; then we find the vertical d#fee from the two immediately
top pixels which equals |186-189|=3. Finding theizomtal difference to be lower
than the vertical difference we choose the pixehadiately on the left (183) as the
prediction. In this case we see that the predictiB8) differs by 1 unit from the

actual value. If we had chosen top as the predidti@ error would have been 2
units apart from the actual value.

This is a carefully chosen example, and the prixicis not correct in all cases,
especially around the edges where the appearanpeals is more random. An

experiment is therefore performed to check theaéfy of this prediction method.
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3.4.2 De€finitions

A few terms are defined which will be used as aveotion in the following

experiments

Hits: The wordhit will be used in two contexts. (1) When only onedictor
will be used to predict the next pixel a hit willean that the value of
the pixel and the prediction were a perfect matehthere was no error
in prediction. (2) When two predictors will be usied prediction then
a hit will mean that the prediction of the predictor endiscussion was
more accurate than the prediction of the otheripred

Left Left will be used in two contexts (1) As a pixatferring the pixel on
the immediate left (2) As a predictor; Left will Bre a predictor that
uses the value of the immediately left pixel agimtion.

Top Top will be used in two contexts (1) As a pixelferring the pixel on
the immediate top (2) As a predictor; Top will meampredictor that
uses the value of the immediately top pixel as ipteoh.

Difference Difference will mean the absolute value of thi#edence between the
values of pixels i.e. Horizontal difference will are |Left — LeftLeft|

and Vertical difference will mean [Top — TopTop|.

3.43 Reault

A comparison of the effectiveness of the methodeaft differences is shown in
(Figure 3-10). Number of hits and entropies usirgt,LTop and Least Difference
method are compared for three different Images. Teast Difference method
shows an increase in the number of hits and a dser@ entropies when compared
with simplistic predictions of Top or Left. Manyhar images were tested and most
showed increase in the number of hits and decrieasetropies. It is also important
to note that in the case when the difference orvéngcal and the horizontal axis is
exactly the same, the average of top and left isdusvhich may also have
contributed to the improved performance. This Widlcome more evident in the
following sections.

An important question which arises at this poirthigt why only the top and the left
neighbours are used for prediction, and why not Toe-left and the Top-right
pixels are used as well. The reason for this i$ & proximity map shows that a
pixel has stronger correlation with Top and Lekgbias compared to the correlation

with Top-left and Top-right pixel. Although the orimation contained in the Top-
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left and the Top-right pixel also needs to be exgth for the sake of simplicity only

two predictors were used.

12000 -7.00

-6.00

10000

-5.00
8000

mLeft
mTop
-3.00 + OLeast gradient

O Left
6000 mTop
0 Least gradient

-4.00

Hits
Entropy

4000
-2.00

2000 -1.00

Girl2 House Tree Girl2 House Tree

(a) (b)
(a) Number of hits for different images.
(b) Entropy of the errors for the same images

Figure 3-10 Number of hitsand Entropies using different predictors

The results obtained from the method of least difiee shows improvement in
prediction as compared to simple near neighboudipi@s like Top and Left.
Although the method of least difference gives inweid performance in terms of hits
and entropy, it was important to quantify the resuFor this the following

experiment was performed.

3.4.4 Experiment:

“Count the number of cases when the actual valubeopixel was precisely equal to
the neighbour on the axis of least difference anthtthe number of cases when the
value of the pixel was precisely equal to the nealr on the axis of the higher

difference.”
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Following were the results of the experiment:

Table 5 Hit by following lower or higher difference

Image Lower Higher Total
Couple 968: 417¢ 6451¢
Girll 639( 4307 6451¢
Girl2 839/ 492¢ 6451¢
Girl3 1113¢ 558¢ 6451¢
Hous¢ 743¢ 463z 6451¢
Tree 598¢ 344¢ 6451¢
Aerial-1 265¢ 20€4 6451¢
Chemical Plar 317z 2381 6451¢
Clock 1053:¢ 528¢ 6451¢
Airplane 1019 6081 6451¢
Moon Suface 324( 287¢ 6451¢
Fishing Boa 1614+ 1127« 26010(
Cai 31191 1482¢ 26010(
Girl4 26137 18171 26010(
Lene 23271 1642: 26010(
Mandrill 785( 652¢ 26010C
Sailboat on Lak 1477 1053¢ 26010(
Pepper 1708’ 1262¢ 26010(
Aerial 2 2067 1294¢ 26010(
Elaine 1398¢ 1071z 26010(
Truck 2959¢ 2031¢ 26010(
Airport 4419: 3740: 104448:
Man 7485t 5240: 104448:

The results of the experiment shown in (Table 3)amy suggest that choosing the
value of neighbour on the axis of the lower diffeze is indeed a better choice, but
also suggest that the pixel on the axis of thedriglifference is also not ineffective.

If the number of hits on the axis of the highefatiénce had been negligible, then
they may not have caught attention. The compaaigtiarge number of hits gave an
abstract idea that the pixel on the axis of théndiggradient might also have some

correlation with the target pixel. In the next s&at this issue is discussed in detalil.

3.5 Effect of difference on pixel value

Looking at the results of the above experiment wejacture that differences on
both the axes may have some correlation to theevafla pixel. We also know from
the inferences in (section 3.1.1) that proximitys tem effect on the value of the

pixel, and (section 3.3.1) that adjacent pixelsehaimilar differences on both the
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horizontal and the vertical axis. An experimentésigned which assigns weights to

the top and left neighbour proportional to the eaddi the differences on either axis.

3.5.1 Difference Weighted Average (DWA) Predictor

The predictor first calculates the differences othithe horizontal and the vertical
axes. The Top pixel is assigned a weight equal thighratio of horizontal difference
to the sum of differences and similarly the Leftgdiis assigned a weight equal to
the ratio of vertical difference to the sum of difnces. Suppose the vertical
difference is higher than the horizontal differertben a lower weight will be
assigned to the Top pixel, and vice versa. The lgiwill also be proportional to
the relative value of the differences on eithesaxi

Example: In the image data of Table 4 the pixdbeopredicted has value 184. The
difference on the x-axis i®x=|183-182|=1 and the difference on the y-axis is
Jy =|186-189|=3.

Prediction=(leftx ¥ j+(topx
X+ oy

=3

Prediction= 183><i +|186x !
1+3 1+3

Prediction = (183 x 0.75) + (186 x 0.25)
Prediction= 137.25 + 46.5
Prediction= 183.75_ 184

This method of prediction based on weighted avew@dgeeighbours according to

differences, gave better results than the methotbadt differences. Figure 3-11

shows the results.
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Comparison of entropies of the four predictors (left, tagast Difference and
Difference Weighted Average (DWA) )

Figure 3-11 Perfor mance of Difference Weighted Average predictor

3.5.2 Comparison

The method of Difference Weighted Averages (DWAyaamproved results than
the method of Least Differences. The MED predictbdPEG-LS was chosen as a

benchmark; therefore the results were compared thith predictor. Figure 3-12

compares the entropies of the MED predictor agathst proposedDifference

Weighted AveragéDWA) predictor.

7.00
6.00
= 5.00
o 4.00 I
c 3.00 4 I
" 2.00 ] i
1.00 + I
0.00 -
4 o N Q& ) <
KRR F o o S S P
£ RS SO L S
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Q,é\\ 000 Q\éo
& N\
Images

O MED
mDWA

Comparison of entropies achieved by two predictors (MEDRGiffdrence Weighted Average(DWA))

Figure 3-12 Comparison with MED predictor

Classic benchmark images were used for compari$be. images are in three

different sizes i.e. 256 x 256, 512 x 512, and 102024.
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Figure 3-12 shows the entropies using both theigieadof MED and the DWA
predictor. The DWA predictor gives equally goodbmtter performance than the
MED predictor for 11 images (Girl3, Tree, Airplandoon Surface, Girl4, Mandrill,
Sail-boat on Lake, Peppers, Elaine, Airport and Mart of a total of 23 test images.
The average entropy of MED was 4.80 and that of DWeés 4.83. Although the
average entropies of both methods are approxim#ételgame but it is important to
mention that the average entropy does not provigeoal measure for comparison.
(Section 4.1) shows a more detailed comparisorheftivo methods, where it is
shown that MED is superior to DWA in general.

The performance of the proposed DWA predictor i tAbove mentioned
proportionately large number of cases demandedhduranalysis. An experiment
was performed to see precisely which pixels weredipted better with which

predictor.

3.5.3 Experiment

This experiment predicts the value of each pixétgi®oth the MED predictor and
the proposed DWA predictor. Both the predictione aompared with the actual
value of the pixel to find the error in predictidfor all the pixel locations where the
MED predictor gives comparatively smaller errort)fa black dot is plotted on a
separate graph and for all the cases where the [Pvédictor gives smaller error
(hit) a black dot is plotted on another separasplar In cases where the errors are
equal in magnitude a white dot is plotted. (Fig8r&3 a) shows original pictures,
(Figure 3-13 b) shows the pixels where the MED mted performed better (Figure
3-13c) shows the pixels where DWA predictor perfednbetter.

3.54 Performance of Predictors
3.5.4.1 Performance of MED predictor

Observation of the comparative performance of MEBdjctor in Figure 3-13(b)
shows a high concentration of dots in areas araladp edges in all the images
which signifies the superiority of MED predictoraresharp edges. Observation of
the pictures of the girl, house and tree in colybjrt can be seen that the edges are
more prominent as compared to those in columnT(eg. performance of the MED
predictor around the edges is distinctly highemthlae DWA predictor in most

cases; this observation will be used in the follgysections to gain advantage.
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(a) Original pictures
(b) Black dots show the pixels where MED performed better
(c) Black dots show the pixels where DWA performed better

Figure 3-13 Pixel wise comparison between MED and DWA

3.5.4.2 Performance of Gradient Weighted Average Predictor

The performance of the DWA predictor is shown irgufe 3-13(c). Close

observation of the performance graphs show higbecentrations of dots in smooth
areas of the images. The concentration of dotmiposh areas is not distinctly better
than that of the MED predictor but, in some smoatbas of images dominancy is

evident with visual observation. For example initireer regions of the hair of girl a
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higher population of dots as compared to that ofCMiedictor is visible. In the

image of the house the concentration of dots ihdrign the area covering the
smooth sky. In the image of tree, both the sky thedinner regions of the leaves of
the tree show higher concentration of dots as coeapi® the MED predictor. These
are observations and may be subject to error therefgorous analysis is done in

the following sections.

3.6 Image Segmentation

It was observed in the previous section that theDMiEedictor performs better than
the DWA predictor around sharp edges, and the D\W&Aliptor performs better than
the MED predictor in relatively smooth regions bétimage. It seems reasonable to
segment the image in two parts one consisting gégdrough regions) and the other
consisting of smooth areas (smooth regions). Oneanbage is segmented we may
use the MED predictor in rough regions and the D\W&dictor in the smooth

regions.

3.6.1 Edge detection

Edges in an image can be detected using many elifenethods [Marr80]. One of
the simple methods of detecting sharp boundaries iimage is by usingradients
The gradient of a point at location (x,y) is appnoated by the following relation

Gl (x )] Of f (x y) - F(x+ Ly +[F(xy) - F(x y + P}
Equation 3-1

A further approximation of the above equation usesolute values of gradients as

follows

GLf(x VI O|F(xy) = F(x+Ly)+[f(x y) = f(x y+D)

Equation 3-2
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flx.y) flxy+1)

flx+1y)

Set of pixels used to detect an edge using Equation 3-2

Figure 3-14 Pixels used to detect edges

The relationship between pixels in is depicted iguFe 3-14. This method of edge

detection using gradients compares a pixel withigist and bottom neighbour.

Figure 3-15 shows the order of prediction of pixalsin image. It shows that some
of the pixels have already been predicted and ®nmrprediction are recorded,
therefore their actual values are known. Theselpeee represented by dots (.). The
rest of the pixels represented by question markaf@) unknown and are to be
predicted. Pixels P,Q and R lie in the unknown anee pixels A,B and C lie in the
known area. To detect an edge at pixel P, the sadti€ and R are required, but all
three pixels will be unavailable because the pregaslgorithm will predict in a
raster scan order. However, as an approximatidnesaof pixels A, B and C can be
used to detect if pixel P is part of an edge.

If we assume that if a near neighbour of a pixed isharp edge, the pixel itself is
also a sharp edge. This assumption will be trumast of the cases where there are
thick edges and false in most cases where therethémeedges. Moreover in
continuous tone images the assumption will not fii@edy wrong since grey-level

changes are not very abrupt.
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Pixels represented by (.) are known pixels and those repedday(?) are unknown.
To detect that pixel P is and edge equation 4.1 uses VaRi®@nd R. As a crude
approximation we use values of pixels A, B and C since ABGare known.

Figure 3-15 Order of prediction of pixelsin an image

3.6.2 Detection and Segmentation in Rough and Smooth regions

Based on approximate edge detection procedure raesggtor is proposed whose
purpose is to segment the image in two parts,hd3e where the MED predictor
gives better prediction and (2) those where DWAdmmter gives better prediction.

The reason for choosing an edge detector for thggnentation was that visual
observation (section 3.5.4) suggested that MEDipt@dperforms better near sharp
edges and the DWA predictor performs better in smoegions thereby suggesting
segmentation of the image in edges (Rough areakhan-edges (Smooth areas).
Edges are changes in grey-levels which can bealamypt and they can be relatively
smooth. Using (Equation 3-2) there can be potdytial-1 different levels in which

we can classify intensities of edges, where n ésithage depth. If the number of
grey-levels used is 256 then image pixels can assidled in 511 levels from 0 to

510. We term these levels Bdge Intensity levels

If a pixel falls in the middle of an area havingcanstant grey-level, then using
(Equation 3-2) will return edge intensity level afjuo zero (0), implying the
absence of an edge. Higher changes in grey-levésent to a pixel will return
higher edge intensity levels. Segmentation of thage according to each pixels
edge intensity level is proposed. By doing so,ithage will be segmented in 511
segments. The segments belonging to lower numbedge intensity levels will

have a higher probability of being in the smootgioas (non-edges) of an image,
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while the segments which will belong to higher nemdal edge intensity levels will
have a higher probability of being in the roughioeg (edges) of an image. It has
been observed that typically about 100 initial eddensity levels contain the most
significant part of the image. The very small nunsbef pixels which belong to the
rest of the edge intensity levels do not play aificant role towards reducing the

entropy.

3.6.3 Hypothesis

“Segment an image in regions according to edgengitie levels. If a pixel lies in a
segment having a lower edge intensity level, itebpbility of being detected
correctly by the DWA predictor will be higher. Sianily if a pixel lies in a segment
having a higher edge intensity level, its prob&pitif being detected correctly by the
MED predictor will be higher”.

The correctness of the above hypothesis needs teshbed, especially because the

edge detector described above is also less accurate

3.6.4 Hybrid threshold predictor

The image prior to compression could be examinetintb out the probability of
each predictor of being correct in each edge iittehsvel. It is expected that the
probability of DWA predictor being more accuratellvide higher than the MED
predictor in the lower numbered segments. Assuntireg probability of DWA
predictor is higher than MED predictor in the iaitsegments and it drops gradually
as the edge intensity level increases, it is pregde set a threshold value equal to
the value of the edge intensity level where thebphility of both predictors
becomes roughly equal. This threshold can be siartée header of the compressed
file for information of the de-compressor. The wark of the hybrid threshold

predictor is explained with the help of an example.
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Figure 3-16 Perfor mance of DWA and MED for an image of Tree

Example:

(Equation 3-2) is used to calculate the edge intetesvel at each pixel. For each
edge intensity level it is calculated whether MEMeg a better prediction than the
DWA. The total number of pixels for each predictwing better than the other
(hits), in each edge intensity level is recordeal. &ample if edge intensity level 1
contains 100 pixels out of which the MED predigpoedicts 40 pixels better (hits)
than the DWA predictor and for 35 pixels the pearfance of both predictors is the
same, then remaining 25 pixels are predicted bbttehe MED predictor. The 35
pixels where the performance of both methods isstirae are not recorded, while
the 40 pixels for which the performance of DWA pogar is better than the MED
predictor are recorded and the 25 pixels for whibl performance of MED
predictor is better is also recorded. Figure 3-16f@ws the number of hits in each
edge intensity level for both methods. Notice thahe first 38 edge intensity levels
the hit count for DWA predictor is higher and fbetrest of the pixels the hit count
for the MED predictor is higher. The same inforimatis shown in Figure 3-16(b)

where percentage of pixels where DWA predictor gieetter performance is
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shown. The X-axis shows the edge intensity levelapse value is lower in
smoother areas and higher in Rough areas. Thalindilues on the Y-axis show
higher number of hits for the DWA predictor. Notet the performance of DWA
predictor decreases as we approach rougher regiiss. note that that the
performance of DWA predictor decreases on the whmnlethere are ups and downs
on the micro-level, for example initially it goeswin and reaches almost 50% and
then gradually goes higher and then comes dowmaguaiards the 50% threshold.
In the example the performance of DWA predictor pdrolower than the
performance of MED predictor at edge intensity 163 The performance curves
vary to a great extent for different images. In ithheage set of classical benchmarks
used, this threshold value varies from 1 to 10thla example the performance of
DWA predictor is better for all edge intensitiesdethan or equal to 38, while the
performance of the MED predictor is better foradge intensity levels greater than
38. Therefore we can conclude that using DWA pteditor edge intensities less
than or equal to 38, and MED predictor for the mdihe edge intensities may give
improved performance.

Figure 3-16 shows the performance of both methddsealiction for the images of
the tree in Figure 3-13(a).

3.6.5 Reaults

The Hybrid Threshold method of MED and DWA predictgives improved
performance. Performance for the images of gifh@)se and tree are shown in
Figure 3-17. It is noticed that the performancethad hybrid threshold method is
usually better than both MED and DWA predictors.
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Figure 3-17 Comparison of MED, DWA and Hybrid Threshold predictors

3.7 Composite predictor

The preceding section demonstrated that differeadiptors can be used in different
regions and the regions can be identified with eeable confidence. However
simply choosing one prediction discards the othenjch may contain useful

information.

The final predictor in this chapter weights the twoedictors according to the
appropriate graph as in (Figure 3-16) and forms anposite prediction

appropriately. This requires the transmission oé tmppropriate graph, which
represents an overhead; however as can be seenafr@figure 3-16) piecewise
linear approximation may convey an adequate desumipvith a little extra data.

Even transmitting the whole graph would incur a kmaerhead.

Preliminary analysis using this approach is shaw(Figure 3-18) as predictor. It is
clear in those graphs for the test images thatrthdu reduction in entropy is

achieved here.

3.71 Method

Similar to the method of Hybrid threshold predictbis method also calculates the
percentage of pixels in each region where DWA mtedigives better prediction. It
also calculates the percentage of pixels in eage @tdensity level where the MED
predictor gives better prediction. The compressicidates these values and stores

them in the header of the compressed file as irdtion for the de-compressor. The

55



de-compressor loads these values prior to decosipresn a table. The de-
compressor then finds the edge intensity levelefach pixel. It then looks up the
table to find the weights appropriate for the eddgensity level. Once the weights
are known the weights are multiplied with the respe predictions of DWA and

MED predictors and summed. The resulting valuéenés weighted average of both

predictions.

3.7.2 Results

This method of prediction gives comparatively bretiesults as compared to the
Hybrid threshold predictor. But the improvementpgrformance is very small. The
advantage of this method needs to be compared thwthextra cost involved, of
storing the look up table. The results comparech iitED, DWA and Hybrid

Threshold predictors, for three images are showkigare 3-17.
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4.00 +—— ] T — |@mMED
a DWA
2 3.00 _— _— L] | BPWA
s A Hybrid Threshold
2.00 — —— — | O Composite
1.00 -
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Comparison of Entropies of MED, DWA, Hybrid Threshold arahiposite predictors

Figure 3-18 Comparison of MED, DWA, Hybrid Threshold and Composite
predictors

The methods discussed in this chapter were shovee tmdvantageous, in that they
gave a certain percentage decrease in the entdapyever, the decrease in entropy
does not qualify their effectiveness, thereforerttethods are further analysed in the

following chapter.
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4. Resultsand Analysis

In the preceding chapter DWA method of predictioaswdeveloped, which gave
comparatively more accurate predictions as compaéoethe MED predictor in
relatively smooth areas of the image. The perfoceanomparison the DWA
predictor was then compared with the MED predictord it was found that the
MED predictor performed comparatively better aroshdrp edges (rough areas) in
an image. In order to take advantage of meritsachenethod of prediction, it was
suggested to segment the image in rough and smmegibns, and use a different
predictor in each region. Two composite methodseweeveloped viz. Hybrid
Threshold and Composite.

In this chapter performance of all the developedhmds is compared, and the

methods are analyzed in detail.

4.1 Performance of DWA predictor

It was shown in (Chapter 3 Design of Predictorst tAWA method of prediction
performed better than MED method of prediction, anlarge number of the
benchmark pictures used. The reason for the bp&dormance of DWA method
can be attributed to the presence of large smagioms in many of the benchmark
pictures. It is difficult to examine the accuradypoediction of both predictors for
each pixel, therefore the entropy of the differeniteage are used as a measure for
guantification. (Table 6) shows the entropies @& &l the benchmark images used.
Entropy (1.1.4) in this context indicates the numdiebits required to encode each
pixel of the image. Of the 23 images used as beadksrthe entropy of MED was
found to be less in 12 cases and the entropy of DM&A found to be less in the

remaining 11 cases.

The last two columns in (Table 6) show the perfarogadifference of each method
as compared to the other in percentage. It is dhetr although DWA performed
better in almost half of the cases but percentéferehce in performance compared
with MED is not very high. On the other hand in #iie cases where MED
performed better there is usually a comparativatge performance gain. The last
row of (Table 6) shows the sums of individual cohenThe first two column sums
show the sum of entropies of each method for adiges, which are nearly equal in

value, and do not convey the complete picture. Hewnethe sums of last two
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columns showing the sum of performance gains ofi @ethod over the other show
more distinct superiority of MED over DWA. (Figu#el) shows the performance
gain of using DWA method over the MED method. Nibtat the images, for which
the overall performance of DWA method was relatiMeks accurate than the MED
predictor, are shown in negative, showing a contpardoss. (Figure 4-1 ) shows
smaller gains for a smaller number of images fag¢ WA predictor when

compared to the MED predictor.

Table 6 Comparative gainsof MED and DWA

Image MED DWA % gain DWA % gain MED

Couple 3.96 4.18 5.19
Girll 4.38 4.43 1.21
Girl2 3.96 4.11 3.58
Girl3 3.51 3.46 1.44

House 4.17 4.34 3.95
Tree 5.35 5.32 0.46

Aerial-1 5.87 5.90 0.52
Chemical Plant 5.37 5.61 4.33
Clock 4.00 4.07 1.89
Airplane 3.60 3.59 0.40

Moon Surface 5.23 5.07 2.99

Fishing Boat 5.10 5.11 0.08
Car 4.55 4.76 4.39
Girl4 4.44 4.41 0.58

Lena 4.55 4.58 0.61
Mandrrill 6.27 6.27 0.10

Sailboat on Lake 5.39 5.34 0.93

Peppers 4.95 4.80 2.85

Aerial 2 5.32 5.39 1.25
Elaine 5.34 5.12 4.08

Truck 4.66 4.74 1.79
Airport 5.55 5.51 0.80

Man 4.94 4.93 0.03

Sum of Entropies 4.80 4.83 14.64 28.80
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Figure 4-1 Percentage gain in entropy using DWA predictor as compared to
MED predictor

Although the performance of MED is superior to tbatDWA but it was shown

with example charts (3.5.4) that DWA gave more eateupredictions in smoother
region of an image. This can be further confirmgdbserving that the entropy of
DWA was lesser in images which contained large ghero regions. This

observation is largely true. The images used astbearks are given in Appendix
A.

4.1.1 Computaitional Cost of DWA method

The computational cost of DWA is much higher as parad to the computational
cost of the MED predictor. T@ble 7) shows both the MED and the DWA
algorithms. In the MED algorithm only a few compam operations are involved
while checking the first twaf conditions, while in the last condition an addition

and a subtraction are involved. On the other hanthé DWA algorithm first the

two differentials on the X and Y axis are computebere 2 subtractions are
involved. These two differentials are computed\nerg case, before any condition
is applied. The firsif condition performs two comparisons and a logicalDAN
followed by an addition and a division by 2. Sittke division is by 2 it can be done
by a shift operation. The last condition in thigaithm turns out to be very
expensive in that it consists of a large numbeamhmetic operations including
multiplication and division. Division is a compaiketly expensive operation, which
is around at least 10 times more expensive thaitiaaddIf the firstif condition

holds, and theslsedoes not need to be computed even then DWA seerbs &
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comparatively more expensive algorithm. In smootimarges the probability of both
LeftDiff and TopDiff being O is relatively highehut it is not very high, therefore
the more expensive operations of multiplication dihdsion must be performed in

the majority of cases.

Table 7 MED and DWA Algorithms

MED Algorithm DWA Algorithm
if TOP-LEFT>max(TOP,LEFT) then LeftDiff = Left-LeftLeft
P[x,y]= min (TOP,LEFT) else TopDiff =Top-TopTop
if TOP-LEFT<min(TOP,LEFT) then if ( (LeftDiff=0) AND (TopDiff=0)) then
P[x,y]= max (TOP,LEFT) else P[x,y]:= (Top+Left)/2 else
P[x,y] = TOP + LEFT -TOPLEFT P[x,y]:= Left*(TopDiff/(LeftDiff+TopDiff)) +
(Top*(LeftDiff/(LeftDiff+TopDiff))) ;

Even for the images where the performance of DWgorthm is better than the

MED algorithm, the computational cost is aroundifrées higher.

4.2 Analysisof Hybrid Threshold Method

4.2.1 Average Frequency Graphs

The Threshold method first segments the source emag(2n-1) Edge Intensity
Levels, where n is the number of grey-levels iniraage. In our experiments we
used the classical benchmarks which were quant@286 levels of grey. Therefore
the number of edge intensity levels were 511 (@8)5The lowest edge intensity
level (0) contained those pixels which existedn@ $smoothest regions of the image
i.e. in regions where there were no grey-level gearand the highest edge intensity
level (510) contained those pixels which existethmroughest regions of the image
l.e. in regions where there were very large grergllehanges. After the image is
segmented according to edge intensity levels, sagment is analyzed to find the
frequency of pixels which can be predicted moreueately using the MED
predictor and the frequency of pixels which campbedicted more accurately using
the DWA predictor. A frequency graph was shownHiggre 3-16), which was not
representative of all the images. Frequency gra@ach image turns out to be very
different from others. In some graphs the threslaplproaches 0 edge intensity level
while in some the threshold approaches 100. Hegeaph is presented (Figure

4-2(a)) which shows a frequency graph averagedsacid images viz. Couple,
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Girll, Girl2, Girl3, House, Tree, Aerial-1, Chemiigdlant, Clock, Airplane, Moon-

Surface. The purpose of this graph is to give aratleasure of the frequency being
higher in the initial edge intensity levels. Thisagives a rough idea about the
ordinal number of the edge intensity level, whene frequency of accuracy of
prediction, of both methods is equal. This ordivalue is termed as the threshold
value. All pixels which have an edge intensity leless than or equal to the
threshold are predicted using DWA predictor, aredriést of the pixels are predicted
using the MED predictor. (Figure 4-2(b)) shows talative percentage frequencies
of DWA with MED. The graph shows the percentagecates for each edge
intensity level when the DWA method gives a moreuaate prediction. It crosses
the 50% point at Edge intensity level 10 whichhis threshold value. The threshold
value for each image varies to a very large extemh image to image; therefore
here in the average case it does not imply thatwddee 10 can be a rough
approximation across all images. From this figue ean only deduce that in the
majority of images DWA gives more accurate predittior the majority of pixels in

the initial edge intensity levels. It also provideslifferent kind of approximation of

the average value of threshold. The percentagedrazes shown in (Figure 4-2(b))
shows less variation, and has a relatively smoatbhemward slope showing that the
percentage of frequencies of DWA drop linearly, lag@ain this is not true for

individual images. The relative frequency graphdyandicate that using two

methods in different regions, for images segmerdedording to smoothness

criteria, may yield more accurate predictions.
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Figure 4-2 Aver age perfor mance of DWA and MED
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422 Selection of Threshold

The comparative frequency distribution graph whishused to set the value of
threshold is not a strictly linear graph. Althoughas a downward inclination but it
has large variations from point to point. Thesdataons make the selection of the
threshold difficult. (Figure 4-3) shows the piduof a girl and a tree and their
respective frequency distribution graphs showing flrequency hits of DWA
predictor compared to the MED predictor. The corapee frequency distribution
graph of the girl crosses the 50% line a numbeinués. This makes the selection of
threshold value difficult. Similarly in the frequen distribution graph of the tree
same undulation across the 50% line is found. Oeod of choosing the threshold
value in such a case can be to start from the lbedge intensity level (left hand
side) and set the threshold at the first occurra@iazossing the 50% line. Another
method can be to start from the highest edge iiyelevel (right hand side) and set
the threshold at the first occurrence of the 5086.liYet another method can be to
find a threshold value from the left and then fribra right and use their average as a
threshold. Yet another method can be to approxirtregegraph with a straight line
and approximate the threshold value where thegsirdine crosses the 50% line. A
computationally less expensive method could bestw the averages of the nearby
edge intensity levels for approximation, and thigraximation only needs to be
done near the 50% threshold line. In this researdi the first method described

above has be tested, but other methods may bedrédrther optimization.
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Figure 4-3 Compar ative frequencies of hits of DWA and MED

423 Gain

The method of Threshold was tested by manuallynggetihe threshold value equal to
the first occurrence of the edge intensity leveemhthe frequency of hits of GWA
dropped below 50%. The performance gain when coadptr the method of MED
are depicted in (Figure 4-4). There was an incrégasatropy in all but one image,
where a negligible increase in entropy was notitedhe rest of the cases entropy
decreased varying from 0 to around 3.7% maximune. &\erage gain was found to
be 1.45%. The average was taken by dividing the supercentage gains of each
image and then dividing by the number of imagess @keraging does not take into
account the different sizes of the image files udmd this kind of averaging is

preferable if we want to see average performancdifferent image features.
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Figure 4-4 Percentage gain in entropy using Hybrid Threshold predictor as
compared to MED

4.3 Analysisof Combined Method

The Combined method uses the frequency of theohitee two predictors (DWA
and MED) to approximate the accuracy of each methadch edge intensity level.
Based on this approximation weights are assigndédegrediction of both methods
to give a composite prediction. Using this methedrdase in entropies have been
observed in 21 out of 23 cases when compared ten#tbod of MED as shown in
(Figure 4-5); wherever there was an increase imopwtit was in a very small
proportion. In the cases where improvement wasoheerved, there is a negligible
increase in entropy. The entropy decreased in ofdke cases but in certain cases it
increased in comparison to the Hybrid Thresholdhoet The entropy varied from 0
to 3.7%. The average performance gain across aln@thods was 1.65%. This
average gain is about 0.20% higher as compardtietaverage gain achieved using
the Hybrid Threshold method.
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Figure 4-5 Comparison between performance gains of Threshold and
Composite predictor with MED predictor

4.3.1 Comparison of Composite method with Threshold M ethod

There is a noticeable gain in performance by usmmposite method as compared
to the Threshold method. The average gain of theposite method is 0.20% higher
than that of the threshold method. However the costirred by the composite
method is also substantial. If only the cost imterof storage space is considered,
then the percentage gain achieved by the Compmsiteod must be compared with
the percentage loss in storing the frequency talile. size of the table varies from
image to image. (Table 8) shows a typical Frequeable. The percentage of total
pixels contained up to the current edge intengtyel for each method, is shown
row-wise. Typically the initial edge intensity ldgecontain large number of pixels,
and the number of pixels in successive edge irtietesrels gradually decreases. In
the table shown the last column shows the percerdatptal pixels contained up to

the current edge intensity level.
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Table 8 Pixels contained upto each Edge I ntensity L evel

Edge Intensity
Level Girl-1 Girl-2 Girl-3 House Tree
1 4.39 6.26 15.50 7.21 5.68
2 10.19 14.38 29.64 14.4p 9.41
3 19.22 25.82 47.14 23.238 14.07
4 27.44 35.70 56.36 29.14 17.49
5 35.82 44.79 64.3( 34.86 21.06
6 42.43 51.24 68.7§ 39.78 24.23
7 48.70 56.73 72.44 44.85 27.37
8 54.01 60.85 75.09 49.8D 30.31
9 58.86 64.38 77.23 54.63 33.14
10 62.83 67.35 78.92 58.97 35.83
11 66.25 70.09 80.52 63.13 38.46
12 69.22 72.41 81.8 66.81 40.95
13 71.96 74.50 82.9¢ 70.02 43.38
14 74.33 76.31 84.0 72.87 45.64
15 76.50 77.93 84.98 75.19 47.77
16 78.25 79.31 85.8 77.34 49.76
17 80.01 80.71 86.71 79.10 51.73
18 81.49 81.96 87.47 80.67 53.57
19 82.83 83.24 88.17 81.92 55.24
20 84.00 84.23 88.7¢ 83.09 56.80
21 85.08 85.14 89.3 84.11 58.35
22 86.04 86.00 89.94 84.93 59.88
23 86.84 86.83 90.4 85.65 61.21
24 87.64 87.58 90.9¢ 86.24 62.47
25 88.41 88.26| 91.3 86.81 63.70
26 89.05 88.87 91.8 87.38 64.94
27 89.69 89.46| 92.34 87.85 66.11
28 90.25 89.97, 92.7 88.25 67.22
29 90.82 90.50 93.17 88.72 68.31
30 91.33 90.96 93.4¢ 89.17 69.36
31 91.84 91.40 93.7 89.54 70.33
32 92.27 91.83| 94.04 89.89 71.25
33 92.67 92.21] 94.24 90.19 72.14

(Table 8) shows the percentage of pixels which halveady been scanned in the
previous edge intensity levels, including the pixef the current edge intensity
level. The last row shows that for the images oflgigirl2, girl3 and house the
percentage of pixels which have been scanned hagsed 90%, while in the case
of tree the percentage is about 72%. The reascenfallyzing these percentages is to
make a decision about storing the important infaiomaof the frequency table.
When 90% of the pixels have been scanned and mhamang pixels scattered in the
rest of the Edge intensity levels, the precisiopmibabilistically assigning weights
to DWA and MED may give inferior performance. Moveo it has also been
observed that gains are substantial when the differ in the percentage of hits

between DWA and MED is not very large. For exaniptethe edge intensity levels
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where the weight of MED is greater than 0.9 and®YA is less than 0.1, the
increase in accuracy of prediction approaches 0.

(Figure 4-6) shows the percentage of total pixeEneed up an including an edge
intensity level. The graphs of girl-1, girl-2, gBland house show that 90% of the
pixels are contained in edge intensity levels thas or equal to 33. This means that
saving the percentage frequency chart for up tole’3®ls may give optimum
performance in typical cases. The graph of the li@gever shows some deviation,
where only 72% of the pixels are contained up ¥@ll&3. This shows that different
images require different number of frequency valteebe saved, but it has been
observed that most typical images do not need &p Keequency values of edge
intensity levels greater than 100. Moreover theigien of the percentages need not
be very precise i.e. instead of saving 0.666666(GBA3333 it is sufficient to save
0.33 and 0.66. It need to be worked out what pi@tisvould be optimum, but

roughly 8 to 10 bits per frequency should be sigfit
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Figure 4-6 Percentage of total pixels scanned up to the edge intensity level
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5. Conclusion

51 Summary

Different images have different characteristics dnerefore are compressed
differently. It is these characteristics due to athithey respond differently to
different compression algorithms. No one method giaa best performance for all
images. The purpose of this research was to imastiimage characteristics, in
order to be able to give prediction methods, fardmtive coding based lossless
compression. In the due course a prediction metteded Difference Weighted

Average (DWA) was discovered.

The method of prediction is based on the statistadaservation that of the
immediate known neighbours (Top and Left) on eitbérthe vertical and the
horizontal axis, the probability of a pixel beingual to the one which is on the axis
with minimum difference is higher. The method wasttier augmented by using
regional information from the known neighbours ake a weighted average of the
Top and the Left pixel. The weights were set dyratfty for each pixel according
to the difference on either axis. This method afaipically setting weights for each

pixel gave very good performance.

This method of prediction gave overall better pradn in many of the benchmark
pictures used. It was observed that DWA gave mocairate predictions than the
MED predictor (used by the JPEG-LS algorithm) ila@e number of cases. It was
further observed that for the images where DWA gawerall better performance
were those which contained a higher percentagenobth regions and fewer edges
(rough regions). It was shown with the help of fegithat MED gave more accurate
predictions near the edges while DWA gave more rateupredictions near the

smooth areas.

The possibility of segmenting the image in smoatt eough regions was discussed
in order to use two predictors; one in each regimeprding to the strengths of each
predictor in each region. It was suggested and thgrerimentally shown that by
segmenting the image, categorized in level of smuegs, advantage can be gained.
It was shown that the method of segmentation aghcapproximate, did segment

the image according to the level of smoothnessa#t also shown that in the regions
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categorized by the segmentator as smooth region8 DM/ perform better in terms
of the number of pixels predicted more accuratéiys). Likewise in the regions
categorized by the segmentator as rougher regietgeé), MED predicted more
accurately. The segments were numbered accordingth® degree of
roughness/smoothness into levels called Edge Iiyensvels. 0 represented
smoothest regions (no grey-level changes) and Bpfesented roughest regions
(large grey-level changes). The use of one or theranethod of prediction in each
region required a threshold value. This threshalde represents the number of the
edge intensity level before which DWA method préeticmore accurately and after
which MED method predicted more accurately. It i@sd out that there was no
fixed threshold value, and that the value of thigshold varied with each image. It
was suggested that this threshold value be idedtiir each image and stored in the
header of the compressed file. This method of cesgion (Hybrid Threshold

Method) gave improved performance in majority & tdases.

Having established that different predictors camubed in different regions and the
regions can be identified with reasonable configent was realized that simply
choosing one predictor discards the other, whicly o@ntain useful information.

Therefore it was suggested to improve the methodadsigning weights to each
prediction in each region. It was suggested togasaieights to the prediction of
each predictor according to the percentage of gtiedis which were more accurate
than the other, for each predictor. This gave th&urreduction in entropy, but there
was a cost involved, which was that of storing wWedghts for each edge intensity

level.

Segmentation of the image into regions incurs &, edsich depends on the kind of
segmentation required, and the method of segmentatied. The simple method of
edge detection used in this research was not vestty¢ but cheaper methods of
segmentation may be sought. The last method intextidor prediction required

computation and storage of a table which againriedua cost, it is discussed in the

following section, how this cost can be reduced.

The percentage gain in entropy varied from 0 to aximum of 3.7%, therefore
apparently it may not be suitable to pay a rel&tigh computational cost for such

small gain in entropy, but as the compression itfistages does not usually have
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very strict real time constraints therefore whategain in compression becomes
available may be utilized. Moreover in the currema computational logic is
becoming cheap and transmission of data is stiitively expensive. In such
perspective using the introduced methods will gbawing in storage space and

transmission time.

The methods developed in this research only givdemonstration of taking

advantage from more than one predictors to do maecreirate predictions. More

research is required in the exploitation of imagatdires, segmentation of images
according to the features, and matching of predicfor each exploited image

feature. Some more features which can be explaitgidg the same methods
discussed in this research and adaptations aresteggin the following sections in

order to improve results.

5.2 Discussion

The idea of segmenting the image was demonstratedrder to use different
predictors in different regions of the image. Itswshown, that the accuracy in
prediction increased by using the methods. The argment in performance is
dependent on two factors.
(1) Identifying the strengths of each predictor.
(2) Segmenting the image to be compressed in regiartsthat the strengths of
predictors match the segment type. If the strengthmethods cannot be
associated with region types no advantage can lpeceed, and the

advantage is proportional to the matching of ptedistrengths and area

types.

While the purpose of this research was to iderdifil exploit characteristics of
images in order to improve context based predistimn lossless compression, but
as the standard benchmark used for comparison sfltsewas that of MED
predictor, certain weaknesses of the MED predictame to limelight. MED
predictor gives less accurate predictions near sypes of edges. Strengths and/or
weakness are comparative terms and the weaknddsi opredictor identified are
only in comparison to the proposed DWA method. pites of these relative
weaknesses the MED predictor stands as one of #isé fredictors, if overall

performance is compared for a very large image set.
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MED predictor itself does segmentation of the imagedhree types and uses a
different predictor for each segment. If the thmddhvalue used in the method of
(Threshold predictor) would not have varied acrdgerent images it might have
been suggested to incorporate more segments in MEdictor and use the
threshold value for a more accurate prediction,dsuthe threshold value varies for
each image, and there is a cost incurred in comguitie threshold, this is not

suggested.

It is concluded to find more traits; and segmeastithage according to the identified
traits. Then use the information from different giotors in different segment in

order to gain advantage.

5.3 FutureDirections
5.3.1 Identified featuresfor further exploitation

The prediction methods of DWA and MED were comparedChapter 4 Results
and Analysis). It was indicated that the overalf@enance of MED was better than
that of DWA near the sharp edges in an image. Tedopnance charts are

reproduced in (Figure 5-1) for further discussion.

Although the performance of MED predictor near phediges is generally better but
notice that there are some edges where MED predietce less accurate prediction
for example in the picture of the girl, the edgemthe shoulder of the girl on the
right hand side of the picture, is lighter in thexfprmance graph of MED predictor
and darker in performance graph of DWA predictamitarly in the picture of
house we can observe that the MED predictor peddess accurately as compared
to the DWA predictor near the roof of the housahia ' quadrant of the image.
Similarly in the picture of tree MED predictor pemnins better around most edges
except some edges near the lower trunks of treles.|dwer performance of the
MED predictor around some edges needs further sisalyy order to have a better

understanding of the phenomenon, which may hetfeireloping better predictors.
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@) (b) (©

(a) Original pictures
(b) Black dots show the pixels where MED performed better
(c) Black dots show the pixels where DWA performed better

Figure 5-1 Pixel wise comparison between MED and DWA

The main observation which is common in all thesenaalies is that the
prediction of MED is more accurate around edgeslkviaire at an angle of @ 9¢°
I.e. like a forward slash (/) and less accurateiagathe edges which are at an angle
of 0° to -90 i.e. like a backward slash (\). It is suggesteat fhthe two kinds of
edges be separated then it may be possible to iffegedt predictors around
different edge types. However separating the foiwslash type edges from the

backward slash type edges will again require segatien which may not be very
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accurate. Depending on the accuracy of segmentaficdge types, results may
vary. It cannot be said with absolute confidencetivar the segmentation of edges
will yield any advantage, because the segment#seif is an approximation.

A method of segmentation of edges in forward skgple and backward slash type
edges has been identified, using which some movardage may be gained. The
method aims at identifying forward slash type edgesl then identifying the
intensity of the edge. It is suggested that if ¢dge is identified as a back slash(\)
type edge then less weight should be given to tE®Nredictor and if the edge is
identified as a forward slash(/) type then higheight should be assigned to the
MED predictor.

5.3.2 Progressive computation of weights

The Composite method required the storage of tlaphgin the header of the
compressed file, this requires storage of the tabline header of the compressed
file, although the size of data in the table is wety large, which becomes less
significant as the size of the image file increasdss happens because in most
images the significant edge intensity levels amuad 100. Storing the weights for
one of the predictors for each edge intensity lemaly require 2x100=200 bytes.
Since the total of both weights equal 1, therefetering the other weight is
redundant. The number of bytes required to stardahle are independent of the file
size, therefore this number becomes less signifi€ahe size of the original file is
large. Never the less the cost is there and cdionlaf the weights takes place
during the compression of the image. If however thigle is not stored, but is
maintained by both the compressor and the de-caspreas each pixel of the
image is decompressed then storing the table watl e necessary. Both the
compressor and the de-compressor can find the ietigiesity level of each pixel,
and then predict the pixel using both methods. piesliction of each method can
then be compared with the actual value of the pikieé hit counter of the prediction
which is found to be more accurate can then beemented. If both predictions are
found to be equally accurate then none of the @anare incremented. By
progressively maintaining the table as each pigdbaing predicted the table will
become more and more accurate. It needs to beifssiemlar accuracy is possible
with such a progressive method of computation oighis, and is currently under

consideration.
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Appendix A

Aerial-1 Airplane

Couple Girl-1
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House Moon Surface
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512 x 512 Images
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Fishing Boat
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Girl
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Lena
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Peppers

Sailboat on Lake
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1024 x 1024 Images

Man
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Airport
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