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Abstract 

 

Digital Images require large storage space as higher and higher resolution becomes 

possible, at the same time as the storage becomes cheaper it becomes feasible to 

store rather than discard useful detail. Compressing digital images not only saves 

storage space but reduces transmission time if the image has to be transmitted. 

  

Depending on requirement images are either compressed using lossy or lossless 

compression methods. Lossy methods allow very large compression ratios as 

compared with lossless compression methods at the expense of losing information. 

In cases where smallest image detail matters such as in medical image processing, 

preservation of art work and historical documents, satellite images and images from 

deep space probes images are compressed using lossless image compression 

methods. Despite the importance of lossless image compression of continuous-tone 

images there is a paucity of standard algorithms.  

 

This thesis analyses different methods of lossless image compression which use 

prediction based on context. These methods exploit information from context and 

the performance of these methods is proportional to the precision of prediction. 

There may be more room for compression because more information can be 

exploited from the context. It is demonstrated that combining existing methods or 

including more information from the context can improve prediction results thereby 

improving compression ratios. Results are compared with JPEG-LS which is state of 

the art method in Lossless Image Compression. 
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1. Introduction 

 

As the data grows in volume, the need for its compression becomes increasingly 

important. In comparison to textual data, image data is much more voluminous and 

requires specialized methods for compression. These methods are custom tailored to 

compressing image type information. Compressing images not only saves the data 

storage space, but more importantly, it makes transmission of images faster. The 

transmission of data still remains to be a much costlier resource in comparison to 

computational or memory resources. [Furh95] [Pirs95] .  

 

Many tasks in various fields of life require production, acquisition, storage and 

transmission of different kinds of images. Many kinds of images, especially 

photographic images, being highly voluminous require large storage space. The time 

to transmit these images is also proportional to the size of the image. Image 

compression addresses both of these problems. A compressed image not only takes 

less space for storage but the smaller size of compressed data also takes less time to 

transmit. Compressing and decompressing of images however requires 

computational resources. As computational logic becomes cheaper 

compression/decompression of images becomes more practicable. 

 

Image Compression belongs to two fields of science namely Data Compression and 

Image Processing. 

 

1.1 Data Compression 

If the size of data is reduced by removing redundancy in the data it is said to have 

been compressed. Information is considered redundant if it is can be inferred from 

some other information already available. It is this redundancy which if removed 

yields data of a smaller size.  

Data can be represented in different forms for example the number 7 is represented 

as ‘vii’ in roman and ‘111’ in binary. All three representations convey the same 

information.  

At times using a different representation can also reduces the size of data. Data 

compression techniques change the representation of data having two goals in mind 

(1) no information is lost (2) size of data is reduced. For example if a book consists 
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of a hundred pages, but contain only the word ‘Computer’ repeated 50,000 times, 

then the whole content of the book can be described in one sentence. The reason for 

this is that the information content of the book is very low, although the data in the 

book is very large. The word ‘Computer’ in the book is redundant. Removal of 

redundancy yields reduction in the size of data. This modified form of data 

representing exactly the same information is the compressed data. 

1.1.1 Redundancy 

Redundancy is synonymous to repetition, but it also means the information which 

need not be put explicitly because of being known already, or can be deduced from 

the already available information. For example, if someone says that ‘my only 

daughter is married to a doctor’. Now if the speaker says that my son in law is a 

doctor this information will be redundant, because it can be deduced from the 

previous sentence. 

 

Some of the commonly used compression methods are as follows: 

1.1.2 Methods of Compression 

Run-Length Encoding: Suppose the string to be compressed (source string) is 

‘AAAABBB’. Using the well known run length encoding (RLE) method, it can be  

written as ‘4A3B’ meaning ‘repeat A four times and repeat B three times’. 

Assuming that each alphanumeric character requires 1 byte for representation, 

source string which contains 7 bytes can be represented by compressed string which 

contains only 4 bytes.  

 

For this method to work, it is important for the writer (compressor) and the reader 

(de-compressor) that they agree on the method. This means that if the compressor 

compresses ‘AAAABBB’ to ‘4A3B’; the de-compressor knows how to decompress 

‘4A3B’ back to ‘AAAABBB’. Therefore the compressor and the de-compressor 

have to agree on an algorithm. The book containing the word computer repeated 

50,000 times (section 1.1), will not compress nicely using this method. However 

some other suitable representation will work better in this scenario.  

Sometimes the source data has redundancy which cannot be exploited properly e.g. 

if source string ‘ABBAABBA’ is compressed using the above algorithm one ends 

up with compressed string ‘A2B2A2BA’, which requires the same number of bytes 
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as the source string, thereby rendering no compression. Although the representation 

of data got changed but the size of the data remained the same. Alternatively if the 

source string ‘ABBAABBA’ is written 4ABBA2 meaning that the next 4 characters 

are to be repeated twice then a reduction in the size of data is achieved. This 

reduction in size was achieved by finding patterns in the text. The redundancy of 

pattern ‘ABBA’ was exploited by the compressor and was used to advantage. The 

book containing the word computer repeated 50,000 times (section 1.1), will 

compress very nicely using this method, yielding the compressed string ‘9Computer  

50000’.  

 

1.1.3 Equal length and Unequal length codes 

Equal length codes are those which use the same number of bits for representing 

each symbol. Above given examples assumed the use of equal length codes. Equal 

length codes are optimal only when all symbols are equally likely. When some 

symbols occur more often than others, greater efficiency can be achieved by using 

unequal length codes and assigning the shortest code words to the most likely 

symbols and longer code words to the least likely symbols. 

 

1.1.4 Statistical Compression 

Statistical compression methods make use of statistics of the source data in order to 

take some advantage. For example it is a common observation that in English 

language the frequency of occurrence of the alphabets ‘X’ and ‘Z’ is small as 

compared to other alphabets. Similarly the frequency of occurrence of ‘A’ and ‘E’ is 

very large. Taking advantage of this fact, variable sized codes are designed. Smaller 

sized codes are assigned to more frequently occurring alphabets like ‘A’ and ‘E’, 

and larger sized codes are assigned to less frequently occurring alphabets like ‘X’ 

and ‘Z’. By doing so large portion of the source data occupied by the high frequency 

alphabet is encoded using a small number of bits and the remaining small portion of 

the source data occupied by the low frequency alphabet is encoded using a large 

number of bits. In most cases there is a considerable reduction in the size of data. 

 

Entropy: If the probabilities of occurrence of data elements are known, then variable 

sized codes can be generated to minimize the number of bits for representing the 
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data. There is however a limit to this minimization, which is known in terms of 

information theory as Entropy [Shan48]. 

 

Given M random variables Mααα ,...,, 21 . If these variables have probabilities of 

occurrence p1=p(α 1), p2=p(α 2), …, pM=p(α M). Then the entropy E is given by the 

following relation. 

k

M

k
k ppE 2

1

log∑
=

−=  

Equation 1-1 

         

Entropy is a measure of amount of information in the given data according to 

probability distribution of the alphabet. It defines the minimum number of bits 

required to encode the data [Shan48]. 

 

Suppose there are M=8 random variables r1, r2, …, r8, having the same probability 

of occurrence; i.e. p1=p2= … = p8 = 1/8. Then using Equation 1-1  

8

1
log

8

1
2

8

1
∑

=
−=

k

E   

    =  3 

On the other hand, if p1=1, p2= p3=… = p8 =0, then the entropy is  

 E = 0 

The entropy of M random variable can range from 0 to log2M 

Entropy is a measure of the degree of randomness of the set of random variables. 

The least random case is when one of the random variables has probability 1 so that 

the outcome is known in advance and H=0. The most random case is when all events 

are equally likely. In this case p1=p2= … = pM = 1/M and H=log2M.  

Entropy gives a lower bound on the average number of bits required to code each 

input symbol; in case of images it gives the average number of bits required to code 

each pixel. If the probabilities of occurrence of each input symbol is known to be p1, 

p2, …,  pM, then we are guaranteed that it is not possible to code them using less than  

k

M

k
k ppE 2

1

log∑
=

−=  

bits on the average. 
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1.1.4.1 Huffman Coding 

This is a well known statistical compression methods [Huff52] and generates 

variable length codes.  This method makes use of the uneven probabilities of 

occurrence of symbols. The codes generated using this method are optimal if the 

probabilities of alphabets are negative powers of two even otherwise the codes are 

near optimal. 

Step wise construction of codes 

1) Write the list of alphabet in descending order of their probabilities. 

2) Construct a tree whose leaf nodes are all the alphabet in the following way 

Find the two nodes with the lowest probability and create a node having 

probability equal to the sum of the probabilities of two leaf nodes.  Arbitrate 

if necessary 

3) Repeat the procedure in step two, to combine two nodes to make another 

node. Note the node created in step 2 may as well be combined if it has the 

least probability. 

 

When all the leaf nodes are combined with other nodes, there is only one node left in 

the tree. The above procedure renders a tree which is binary in nature i.e. every node 

has two child nodes (except the leaf nodes).  One of the two branches coming out of 

every node is assigned label (0) and the other is assigned label (1).  

Codes are assigned to each alphabet by traversing the tree from root to the leaf. 

 

Example: 

The probability distribution of 4 alphabets is shown in (Table 1) 

 

Table 1 Probabilities of symbols 

Alphabet Probabilities 

a1 0.4 

a2 0.35 

a3 0.2 

a4 0.05 
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Figure 1-1 Huffman coding 

 

Since a3 and a4 have the minimum probabilities of occurrence, these two nodes are 

combined to make a node (a34) as shown in (Figure 1-1). This new node is assigned 

probability equal to the sum of two probabilities (0.05+0.2=0.25). Repeating the 

same procedure, the nodes with least probabilities a2 and a34 are combined to make 

node (a234) which is assigned probability equal to (0.35+0.25=0.6). Finally the last 

two symbol are combined to make a node a1234, having probability 1. 

One branch coming out of each node is labelled (0) and the other is labelled (1). 

Codes are assigned by traversing the tree from the root to each leaf node, 

concatenating each label on the way. The codes assigned to alphabet are shown in 

(Table 2) 

 

Table 2 Assignment of codes by Huffman Coder 

Alphabet Codes Assigned 

a1 0 

a2 10 

a3 110 

a4 111 

 

The entropy of the data is equal to 1.74 bits/symbol. If Huffman code is used then 

the average length of data will be 1.85 bits/symbol instead of 2 bits per symbol, used 

by equal length codes. When all the input symbols in the data have probabilities of 

occurrence which are negative powers of 2, the codes produced by Huffman coding 

are optimal i.e. the average length of compressed data equals the entropy. 

 

1.1.4.2 Arithmetic Coding 

The code assigned to each symbol by the Huffman coder contains an integral 

number of bits i.e. if the entropy of a symbol is 1.2 bits then either it is assigned 1 bit 

 
Assignment of codes with Huffman Method 
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code or a 2 bit code, but not a 1.2 bit code. This is the reason that using Huffman 

code average length of data cannot equal the entropy. 

 

Arithmetic coders [Riss76, Riss79, Witt87] however, have been able to overcome 

this problem. Arithmetic coders do not assign codes to individual symbol. These 

coders assign a very long code to the entire data stream, yielding one long code 

word whose average code length is equal to the entropy of data stream. 

 

A very small introduction to data compression was given in this section. Out of the 

numerous methods available, only a few methods of data compression were 

mentioned briefly, according to relevancy. The next section gives brief definitions of 

the relevant digital image processing terminology before contrasting image 

compression with data compression. 

 

1.2 Image Basics 

1.2.1 Digital Image 

A monochrome digital image is a 2 dimensional array of dots arranged in m rows 

and n columns (Figure 1-2). These dots are called picture elements (pels) or pixels. 

Each individual pixel p at location (x,y) can assume a value between 0 and N-1 

representing the intensity of light at that location.  

 

 

Figure 1-2 Monochrome digital image 

 

 

 
A monochrome digital image consisting 256 rows and 
256 columns (65536 pixels). Image depth equals 256. 
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1.2.2 Image Resolution 

Digital images are represented as pixels along the x and the y axes. A picture 

consisting of m pixels on the x-axis and n pixels on the y-axis has a resolution  

m x n. Higher the value of m and n, higher the resolution of the image. Higher 

resolution images depict better quality images, because more image detail is 

included. More image detail means more information, and therefore a greater 

volume of data. 

 

1.2.3 Image Sampling 

Image acquisition devices such as scanners or cameras, have sensors which can take 

samples from the scene (light reflected from objects). The samples are usually taken 

in the form of a 2-Dimensional array having m rows and n columns resulting in m x 

n samples. 

 

1.2.4 Grey-Levels 

In a monochrome image, if the intensity of light equals 0 the pixel is black and if the 

intensity of light equals N-1 (where N is usually 2n) the pixel is white while in all 

intermediate cases the intensity of light is between black and white or grey. Because 

both black and white are also shades of grey therefore all different intensities that a 

pixel can assume are called grey-levels.  

 

1.2.5 Quantization 

Depending on requirement or on the sensitivity of the scanning sensors there is a 

limited number of grey-levels which each pixel can assume. The number of grey-

levels which the scanning device distinguishes during analogue to digital conversion 

is called the quantization levels. 

 

Quantization levels in scanners can be set to as small as 2 in which case the image is 

a black and white or binary image, and it can be set to as large as 1024 or more in 

case the data is to be analyzed by specialized applications.  
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1.2.6 Neighbours of a Pixel 

A pixel p at co-ordinates (x,y) in an image has 8 neighbours surrounding it (Figure 

1-3). Four of these neighbouring pixels informally called TOP, BOTTOM, LEFT 

and RIGHT are adjacent to it. These pixels have co-ordinates (x,y-1), (x,y+1), (x-1,y) 

and (x+1,y) respectively. These pixels are called the 4-neighbours of the pixel or N4. 

These four pixels are at distance 1 from pixel p i.e. the distance from the centre of 

pixel p at (x,y) to the centre of either of these pixels equals 1. The rest of the 4 

neighbours of p have diagonal corners touching p. These pixels informally called 

TOP-LEFT, TOP-RIGHT, BOTTOM-LEFT and BOTTOM-RIGHT have co-

ordinates (x-1,y-1), (x+1,y-1), (x-1,y+1) and (x+1,y+1) respectively. These pixels 

are called Diagonal neighbours of p or ND. The Diagonal neighbours are at a 

distance of 2  from p. N4 and ND together are called N8 neighbours of p [Gon2002]. 

 

 

Figure 1-3 Neighbours of a pixel 

 

1.2.7 Raster Scan 

An image consisting of n rows and m columns, if scanned one row at a time from 

top to bottom, and each row scanned from left to right is referred to as raster scan as 

depicted in (Figure 1-4).  This is the order of scanning which is used in CRT 

(Cathode Ray Tube) monitors, where the electron gun focuses the beam at one spot 

at a time, starting from the top left corner. The gun goes from left to right pixel by 

pixel and at the end of the first line moves to the leftmost pixel of the second line 

and again goes from left to right. Moving in this order when all the rows are drawn 

 
N4 Neighbours and ND Neighbours of a pixel (Pix) 
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the scan is complete. This order of scanning is also used by most of the image 

processing programs which filter the image pixel by pixel starting from top-left 

corner pixel and finishing at bottom-right corner pixel. 

 

 

Figure 1-4 Raster scan order 

 

1.2.8 Types of Images 

An image conveys information visually. Historically sketches, heliographs and 

paintings were used and in the modern ages photographs and video are common. 

Moreover images can be graphs, charts, sketches, cartoonic characters, vector 

graphics, Computer aided tomographs, X-ray images, satellite images etc. All of the 

above kinds of images have their specific purposes. For the purpose of image 

compression it is useful to distinguish the following types of images. 

 

1. Bi-Level Image: This kind of image can have only two colours usually black 

and white. This kind of image is transmitted and reproduced by facsimiles 

and laser printers. When the resolution of such an image is very high as 

produced by laser printers it can closely mimic many grey-levels arranging 

different densities of black dots in regions (half-toning). 

2. Gray Scale Image: Images taken by black and white cameras are grey scale 

images, where each pixel can assume different intensities. Black has the 

lowest intensity and white has highest intensity. In between black and white 

are shades of grey. Because black and white are also considered strongest 

and weakest shades of grey, all the light intensities including black and white 

are called shades of grey or grey-levels. In image processing the model used 

 
Raster order of scanning. After scanning the last pixel of 
the first row, the first pixel of the second row is scanned. 
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is that of grey-scale images, because it can be generalized to colour images 

as well. 

3. Continuous-tone Image: All natural images such as those taken by a digital 

camera are continuous-tone images. A property of these images is that 

adjacent pixels usually have same or very similar grey-levels. Even if there 

are sharp edges the transition from one grey-level to the other is not very 

abrupt. For example (Figure 1-5 a) shows an image (Figure 1-5 b) shows an 

enlarged portion of the same image showing a sharp boundary (marked in 

original). Close observation reveals that the transition from one grey-level to 

the other is not very abrupt. 

 

 

Figure 1-5 Continuous-tone image 

 

Discrete Tone Image: This is normally an artificial image. It may have few colours 

or many colours, but it does not have the noise and blurring of a natural image. 

Examples of this type of image are a photograph of artificial object or machine, a 

page of text, a chart, a cartoon, and the contents of a computer screen (Not every 

artificial image is discrete-tone. A computer-generated image that is meant to look 

natural is a continuous-tone image in spite of being artificially generated.) 

[Sal2004]. 

 

   

(a)  (b) 
(a) A continuous-tone image  
(b) Enlarged portion of the image. 
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1.3 Summary 

In this chapter the need for compression of images was discussed. With the advent 

of Graphical User Interface and Multi-media, the need for efficient storage and 

transmission of images becomes more pressing and dictates the need for image 

compression. Compressing images not only reduces the storage requirement, but 

also helps to reduce the transmission time. This becomes more practicable as the 

processing capacity of computers grow. 

i. The basic concepts of data compression were introduced, and some 

related data compression methods were discussed. The concept of 

entropy in conjunction with variable sized codes was discussed. Two 

well known statistical compression methods (Huffman coding and 

Arithmetic coding) were introduced.  

ii.  The basic concepts of data compression and image processing were 

introduced in order to be able to have a better understanding of the 

concepts of image compression related to this research.  

 

In the next chapter basic concepts of image compression will be introduced, and 

the method of compression (DPCM) related to this research will be described.  

 

1.4 Research Aims 

The research presented in this thesis aims at exploiting the correlation among 

neighbouring pixels of continuous-tone image, in order to design good predictors. 

Besides the design of predictors, the aim was to search methods which use 

maximum information from neighbouring pixels, while minimizing the time to 

process that information. 

1.5 Contributions 

Following are the contributions made during this research 

• Design of a new predictor for use with DPCM methodology of lossless 

image compression 

• Use of multiple predictors suited to different regions in an image and the 

proper segmentation of the image 

• Enhancement in the basic design to make a composite predictor 
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2. Background 

 

All data compression methods aim at removing the redundancy in the data. In order 

to remove the redundancy, the data is transformed and the representation of data is 

changed. Image Compression can be of two types, lossless compression and lossy 

compression. 

2.1 Image Compression 

In data compression any transformations applied to the original data are reversible, 

such that the original data is recovered using inverse transforms; the compression in 

this case is lossless. In image compression however, it is acceptable to loose original 

image data to a certain extent due to the insensitivity of the human eye to certain 

features. For example the human eye is sensitive to small changes in luminance but 

not in chrominance therefore if luminance information is saved in full detail while 

some part of chrominance information is truncated, this does not affect the overall 

image quality for human perception. This is one of the main ideas behind the type of 

image compression called lossy image compression. Lossy image compression 

methods aim not only at removing the redundancy in the image, but also try to 

remove irrelevancy. An image can be lossy-compressed by removing irrelevant 

information even if the original image does not have any redundancy [Sal2004]. 

At certain situations it is not acceptable to loose any information in the image, even 

if the human eye is insensitive to those details, for example medial images, like 

computer aided tomographs (CAT), X-Rays, ultrasounds etc. are considered so 

important that loosing any information at all from the image is considered 

unaffordable. Likewise those images, acquisition of which is in itself difficult and 

expensive, for example images from deep space probes, are also considered very 

precious and loss of any information contained in these images is considered 

unaffordable. In such cases where rare and precious information needs to be kept in 

the original form, image compression techniques are sought which do not truncate or 

transform any information of the original image. Such methods are reversible such 

that after decompression the original image can be recovered. These image 

compression methods are called lossless. 
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2.1.1 Compression Process 

The process of compressing images consists of three steps viz. (1) Transformation 

(2) Quantization (3) Coding. 

 

Transformation: During this step the image data is transformed from the pixel 

domain to some other domain. This transformation is usually one-to-one i.e. for each 

element in the pixel domain there will be an element in the transformed domain. For 

example JPEG compression uses Discrete Cosine Transformation, which is a one to 

one transformation. Using such, one-to-one transform there is no reduction in the 

size of data during transformation, and sometimes there is an increase in the size of 

data. 

At times the transformation is not one to one. For example in run-length encoding, 

the sequence of pixels scanned in a raster scan order is transformed into pairs (g1,l1), 

(g2,l2),…, (gn,ln), where gi denotes the grey-level and l i denotes the run length of the 

ith run. In run-length encoding the transformation itself may reduces the size of data. 

This step of transformation is reversible, such that using a reverse transform; the 

original data can be restored. 

 

Quantization: During this step the transformed data is quantized to a limited number 

of allowed values. This step of quantization is irreversible; such that once the data 

element is quantized it cannot be recovered. This step is used where the loss of data 

is tolerable. For example in JPEG the transformed data is quantized, but even after 

considerable loss of data the fidelity of the reproduced image is high although not 

absolute. Quantization is therefore not done if lossless compression is required.  

 

Coding: The quantized data consists of a limited number of allowed values 

(alphabets). The task of the coder is to assign a unique code to each of these 

alphabets. Depending on the requirement these codes vary. For example if the 

alphabet have very uneven probabilities of occurrence, then variable length codes 

like Huffman codes may be assigned. This step is also reversible. 
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2.1.2 Lossy Compression Methods 

Lossy compression methods as described above make use of the fact that the eye is 

insensitive to certain features in an image. These methods store full information of 

those components of an image to which the eye is most sensitive. Only partial 

information is saved about those features of the image to which the eye is less 

sensitive. 

There are numerous lossy compression methods, but here only one well known 

method of lossy compression is presented, the JPEG.  

 

JPEG: JPEG is a well known lossy compression method. The colour version of 

JPEG makes use of the insensitivity of the eye to small changes in chrominance. 

JPEG uses the luminance/chrominance colour model, and saves the luminance of the 

image in greater detail and the chrominance part with lesser detail. 

2.1.2.1 JPEG Compression 

The JPEG method divides the image into blocks of 8x8=64 pixels called data units. 

Discrete Cosine Transform (DCT) is applied to each of the data units. After applying 

the DCT, each block is quantized to a limited number of allowed values. This is 

where much of the image data is irretrievably lost. Each data unit is saved using 

RLE or Huffman coding. 

2.1.2.2 JPEG Decompression  

During decompression all the steps during compression are applied in the reverse 

order. First each data unit is decompressed using a RLE or Huffman de-compressor, 

then Inverse DCT is applied to each data unit to recover the original data of each 

unit. Note that in spite of being quantized, application of the Inverse DCT returns 

very similar values as the original.  

This method of compression gives a compression ratio up to 10:1 with high fidelity. 

With higher compression rates the image quality is degraded appreciably. 

 

2.1.3 Lossless Compression Methods 

There are numerous methods of lossless Image Compression of continuous-tone 

images. Most of these methods make use of the correlation among neighbouring 

pixels to predict the value of the next pixel thereby gain some advantage, these 
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methods are called predictive methods. Some of these methods make use of 

transforms like Wavelets. The CALIC method [WU96] follows the predictive 

approach becoming one of the most efficient lossless image coders in terms of 

compression performance. JPEG-LS standard [Marc2000], which replaced the 

lossless mode of the original JPEG standard uses multiple predictors and has a very 

efficient implementation. SPIHT [Said96] and EZW [Shap93] are tree-based lossy 

wavelet image encoders that also can store an image in lossless mode with SNR 

scalability.     

Amongst these methods the Differential Pulse Code Modulation (DPCM) or 

predictive coding methods are considered most effective [Mem97]. This research 

has contributed towards improvements in DPCM, which is discussed in detail in the 

following sections. 

 

2.1.3.1 Differential Pulse Code Modulation 

Differential Pulse Code Modulation (DPCM) is a method of compression used for 

compressing continuous-tone images. This method is also referred to in the literature 

as lossless DPCM or lossless predictive coding. In this method the value of the each 

pixel is predicted; the prediction is compared with the actual pixel value. The 

difference between the two values is computed and stored. It is possible to 

reconstruct the original data, using only the differences; therefore the actual pixel 

value is discarded. The difference values are more compressible than the actual data, 

as will be shown in the following sections. The rationale behind this method of 

compression is that, in continuous-tone images, majority of adjacent pixels have 

same or very similar values. Because the adjacent pixels are highly correlated, 

therefore their values can be predicted with good accuracy.  

 

For example if the value of a pixel is predicted as equal to its left neighbour, then in 

a large majority of cases this prediction is found to be accurate. Amongst most cases 

when the prediction is not accurate, it is found to be very similar to the actual pixel 

value. This method of compression works by scanning the image typically in a raster 

scan order. Each pixel is predicted using a predictor. A simple predictor can be the 

LEFT predictor, which predicts the value of the current pixel as being equal to the 

value of the neighbour on its immediate left. There is however a relatively small 
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number of pixels which do not have a left neighbour. These pixels either go 

unpredicted or can assume the value of some other available neighbour.   

 

(Figure 2-1 a) shows a 256x256 image having 256 grey-levels. (Figure 2-1 b) shows 

the histogram of the occurrence of grey-levels in the picture. 

 

 

Figure 2-1 Image and histogram of grey-levels 

 

Every row of pixels x1, x2,…, xn, can be mapped to a new set of difference values x1, 

x2- x1,…, xn- xn-1. Having the difference values original pixel values can be 

reconstructed as follows. 

 

Since first value x1 is stored unmapped, it is not reconstructed. The second 

difference value x2-x1 is added with the value of the previous reconstructed value x1 

to get x2-x1+x1 = x2. For the reconstruction of each successive value the reconstructed 

value of the previous pixel is used. 

 

(Figure 2-2 a) shows the difference image using the LEFT predictor and the 

histogram of the difference image. Negative of the image is shown i.e. white 

represents grey-level 0 and black represents grey-level 255. Most parts of the image 

appear white showing zero error between the prediction and the actual value. Most 

of the pixels in this histogram are within a very small range. This kind of 

distribution of probabilities of occurrence makes the entropy of the difference image 
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much smaller than the original image. The figure shows that a large number of 

differences are very small. Most pixels are with the range of -15 and +15.  

 

Figure 2-2 Difference image and histogram of difference value 

 

(Figure 2-2 b) shows that there are a large number of small differences, and a very 

small number of large differences between the actual pixel values and the predicted 

values of pixels. The entropy of the difference values is much lower than the entropy 

of the original data, this is because large numbers of difference-values have a high 

probability of occurrence and a small number of difference-values have a low 

probability of occurrence. Making use of these uneven probabilities of occurrence of 

difference-values, some variable length coders, like Huffman coder (1.1.4.1) or 

Arithmetic coder (1.1.4.2) may be used to compress the difference image. 

  

Figure 2-3 Neighbour conventions 

 

If we extend the idea of prediction further then a composite predictors may be 

designed. For example a predictor can predict the average of the values of the TOP 

and the LEFT neighbour. Such a predictor will be called (TOP+LEFT)/2 in this text. 
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(Figure 2-3) shows the convention of referring to the neighbours of the current pixel 

(P[x,y]). The current pixel will also be referred as PIX.  

Since the value of the current pixel is not just correlated with the LEFT neighbour, 

information from other neighbours may also be used. By using information from 

multiple neighbours more accurate predictions are usually made. As a result smaller 

differences are obtained, thereby reducing the entropy of the difference image. Some 

predictors use two or more neighbours, in order to give more accurate predictions.  

 

2.2 Importance of DPCM 

Among the various methods which have been devised for lossless compression, 

predictive techniques are perhaps the simplest and most efficient [Mem97].  

The JBIG/JPEG committee of the International Standards Organization (ISO) gave a 

call for proposals in 1994, titled “Next Generation Lossless Compression of 

Continuous-tone Still Pictures”. Nine proposals were submitted of which seven used 

lossless DPCM or lossless predictive coding [Mem97] . 

Given the success of predictive techniques for lossless image compression, it was no 

surprise that seven out of the nine proposals submitted to ISO, in response to the call 

for proposals for a new lossless image compression standard, employed prediction. 

The other two proposals were based on transform coding. 

Of the seven predictors the Median Edge Detection (MED) predictor gave the best 

performance. Although the three best predictors MED, Gradient Adjusted Predictor 

(GAP) and ALCM gave competitive performance, but when averaged over a number 

of images MED gave the lowest average value. The new JPEG-LS standard uses 

MED for prediction. 

 

2.2.1 The MED predictor 

Hewlett Packard’s proposal, LOCO-I (low complexity lossless decoder) [Marc2000] 

, used the median edge detection (MED) predictor. MED only examines the TOP, 

LEFT and the TOP-LEFT pixels, to make a prediction. Following is the prediction 

algorithm of MED predictor 

if  TOP-LEFT>max(TOP,LEFT) then 

P[x,y]= min (TOP,LEFT) else 

if  TOP-LEFT<min(TOP,LEFT) then 
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P[x,y]= max (TOP,LEFT) else 

 P[x,y] = TOP + LEFT -TOPLEFT 

 

This predictor examines the TOP and the LEFT neighbours to detect horizontal or 

vertical edges. It predicts the TOP pixel if a vertical edge is detected, and LEFT 

pixels if a horizontal edge is detected. If no edge is detected then the value of the 

pixel is interpolated using the equation P[x,y] = TOP + LEFT –TOPLEFT. This 

value lies on the same plane as TOP, LEFT and TOPLEFT. 

A similar predictor was given by Martucci [Mart90] who named it MAP (median 

adaptive predictor). The MAP predictor predicts the median of a set of three 

predictions. Martucci reported that the predictor always selected the best or the 

second best prediction. Best results were reported by using the following three 

predictors. 

1. TOP 

2. LEFT 

3. TOP-LEFT 

Comparative studies show that MED predictor gives superior performance over 

most linear predictors [Mem95] [Mem97]. 
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3. Design of Predictors 

 

In the previous chapters the idea of image compression was introduced with 

emphasis on lossless compression. Context based prediction methods were discussed 

and the state of the art method of prediction used by JPEG-LS was summarized. In 

this chapter some techniques are introduced to leverage the advantages from 

previously known methods. It is demonstrated that segmenting the image into 

regions and then using different predictors in different regions gives an added 

advantage. 

 

For all the experiments it was considered reasonable to use most commonly used 

images as benchmarks. Publicly available classical benchmarks were taken from the 

database of Signal and Image Processing Institute of the University of Southern 

California (http://sipi.usc.edu/database/index.html). The database contains different 

datasets like aerials and textures and miscellaneous. Miscellaneous dataset was 

chosen because it contains most of the commonly used benchmark images; 

moreover most of these images are general images because they do not fall in a 

particular category like aerials and textures. The miscellaneous dataset contains 

more than 40 images out of which some were binary and some lacked detail 

therefore did not particularly fall in the continuous-tone category. Of the remaining 

23 were chosen at random. 

 

In order to achieve this, perspectives on prediction are presented, and required image 

features are analyzed. A method from prediction is developed from scratch starting 

from the association of neighbouring pixels and analyzing each observation in a 

sequence to reach a conclusion. In the following section, association of neighbouring 

pixels will be discussed, with the help of an experiment. 

3.1 Proximity map 

By definition a continuous tone image is an image in which grey-level changes are 

not abrupt as discussed in chapter 1. Even sharp edges, are generally slightly blurred 

as a result of sampling. This means that pixels usually have the same or very similar 

values as their neighbours. How similar and in roughly what percentage of cases it is 

same and in what percentage it varies, and how much it varies are all questions 

which need to be answered before attempting to exploit this information.  

http://sipi.usc.edu/database/index.html
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To have a rough idea about answers to the above questions, the following 

experiment was performed. This experiment shows the similarity of pixels to its 

neighbours according to distances, which is why it is called the proximity map. In 

this experiment all pixels of an image except the pixels which lie on the perimeter of 

the image are analyzed, the variation of each pixel from its neighbours is recorded, 

and then all the variations are averaged. The results are shown in grey-scale from 0 

to 255, where 0 represents white and 255 represents black. This experiment was 

performed on all the 23 images taken from the classical benchmarks (Appendix A), 

the results of a few are presented 

 

(Figure 3-1) shows the image of a girl and its proximity map. The white square at 

the centre of the proximity map represents the fact that each pixel is equal to itself. 

The squares gets progressively darker towards the perimeter of the map representing 

the fact that closer pixels are typically more similar in value than distant pixels. 

 

 

Figure 3-1 Picture of Girl and Proximity map 

 

3.1.1 Inferences 

The following can be inferred by observing the proximity map 

1. There is some correlation between neighbouring pixels. 

2. In general, closer neighbours are closer in value. 

     
    (a) (b) 
(a) Picture of a girl with smooth background and broad vertical stripes. 
(b) Proximity map showing more vertical association than horizontal association. 
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3. N4 neighbours of pixels are closer in value than ND neighbours 

4.  On both x-axis and y-axis, there is an increase in the brightness towards the 

centre, which shows that similarity increases with proximity. 

 

The above are general observations which are common in almost all 

photographic images. However, there are certain observations which are specific 

to images. For example, in the proximity map of the girl shown in figure (Figure 

3-1) the squares on the vertical axis are brighter than the squares on the 

horizontal axis which is apparent from the picture because a large portion of the 

image has vertical stripes of almost constant grey-level. The proximity map of 

House (Figure 3-2) shows variation from other typical proximity maps, in which 

distant neighbours are brighter than near neighbours. This is apparently due to 

the pattern involved in the structure of bricks of the walls of the house. 

Similarly, the proximity map of the tree in (Figure 3-3) is also not very 

symmetric on both axes. It is comparatively brighter on the x-axis than on the y-

axis. However, the brightness of the squares diminishes, as the distance from the 

centre increases on each axis. Note that reduction in brightness on each axis is 

not very regular, and rate of change of brightness on each axis is also different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Picture of House and Proximity map  

 

     
      (a) (b) 
(a) Photograph of a house, with an almost constant background sky and prominent brick pattern 
(b) Proximity map of house showing deviation from typical proximity maps due to pattern of bricks. 
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Figure 3-3 Picture of Tree and Proximity map 

 

The above observations from the proximity map confirm the well known fact that 

near neighbours can be used as predictors. An example of this approach is given in 

(2.1.3.1) where each pixel’s value is predicted to be equal to its immediately left 

neighbour. In the next section, the use of more neighbours for prediction is analyzed. 

3.2 Using more neighbours as predictors: 

Section (2.1.3.1) explains the standard method of DPCM where the predictor 

chooses the value of the left pixel as a prediction of the next pixel. It is shown that 

reasonable accuracy is achieved by choosing the left pixel. It may therefore be 

possible to use information from more than one neighbour to increase the accuracy 

of the prediction. Hypothetically, a prediction based on all 4-neighbours or 8-

neighbours of a pixel may be optimal. However, this is impractical because the 

neighbours themselves are also subject to prediction if a raster scan order is assumed 

where pixels above and to the left of the candidate are known and those below and 

to the right are not.  

It is observed from the proximity map of girl (Figure 3-1) that the top pixel may give 

a more accurate prediction than the left pixel. Using the left pixel value as a 

predictor for the next pixel, results were plotted showing the accuracy of prediction 

in grey-levels from 0 to 255 as shown in (Figure 3-4 a). White shows highest 

accuracy and black shows lowest accuracy. Similarly, (Figure 3-4 b) shows the 

     
  (a) (b) 
Picture of a tree with smooth background containing sky and mountains 
Proximity map showing more association on the horizontal axis than on the vertical axis 
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results of using top pixel as a predictor. These charts, which show the inaccuracy of 

prediction of a predictor, are termed as difference images. 

 

Figure 3-4 Difference Images 

 

As can be seen, that the top guess turns out to be a better guess than the left guess. 

This is true about this image, but not about all the images. This happened because in 

the image of the girl (Figure 3-1 a), there are vertical stripes; the same is also visible 

in the proximity map of the girl in (Figure 3-1 b), where the squares on the vertical 

axis of the central pixel are brighter than the squares on the horizontal axis of the 

central pixel. As can be seen there is a difference between the two accuracy maps 

shown in ( Figure 3-4 a and b). The difference indicates that different information is 

provided by the two predictors. The white regions in the accuracy maps appear in 

similar areas of the image. These are comparatively smooth regions of the image e.g. 

background. The darker regions appear near the areas where there are large grey-

level changes in the image. Here and forward these areas will be called edges.  

If the information provided by both predictors had been exactly the same then using 

the information of both may not have yielded any advantage. However, the 

information from both the predictors is different; therefore it is attempted to use this 

information to advantage. A simple experiment was performed as described in 

(section 3.2.1)  to have a rough measurement of the potential of using two 

predictors. 

 

      
 (a)  (b) 
Pictorial representation of correctness of guesses. Darker pixels show greater deviation from the 
original value white shows exact guesses (hits). 
(a) Accuracy map of Left Predictor 
(b) Accuracy map of Top Predictor 
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3.2.1 Union of top and left predictor 

In an attempt to use both predictors to gain advantage, it is considered important to 

plot the individual hits given by each predictor. (Figure 3-5 a) and (Figure 3-5 b) 

show the hits if left or top pixels were used as predictors, while (Figure 3-5 c) shows 

the union of hits of both the Left and the Top predictor.  

When the left predictor was used the number of hits observed was 7830, while the 

number of hits when the top predictor was used was 10027. The number of hits 

contained in the ( LeftTop∪ ) turns out to be 16258. The union of hits of both 

predictors is less than the sum of hits of each predictor; this is because many of the 

hits are common to both predictors. This relatively large number represents the hits 

given by an ideal predictor which can choose between a better prediction out of a 

choice of left or top. This large number also determines that search for a hybrid 

predictor is worth pursuing. 

 

Figure 3-5 Hits using TOP and LEFT predictors 

 

The above observations are only indicative of the potential of using multiple near 

neighbour predictors. The key problem here is that in having two predictors 

available a third entity term a manipulator is required which can select between the 

right choice i.e. to indicate the prediction which is more close in value to the actual 

value. The manipulator may as well combine information contained in both 

predictions. Another observation about the nature of continuous tone images is 

presented in the next section. This observation will be used to design manipulators 

for the proposed method of prediction. 

         
 (a) (b) (c) 
(a) Black dots showing hits of left predictor. 
(b) Black dots showing hits of top predictor 
(c) Black dots showing Union of images (a) and (b)  
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3.3 Nature of pixels along different axes 

By definition continuous-tone images are those in which grey-level changes are not 

very abrupt. Spatial locality is apparent in such images. In the light of such 

observations and in order to use two predictors i.e. top and left, which lie on the 

vertical and the horizontal axis to the pixel to be predicted, images were analyzed 

from another perspective. Grey-levels of pixels in each row and column of an image 

were plotted. Visual observation of individual rows indicated that adjacent pixels 

had similar gradients on the horizontal axis. Observation of individual columns of 

the image indicated the same nature. These observations are presented in detail. 

 

3.3.1 Observation 

“In individual rows and columns of images adjacent pixels have similar 

differences” 

In continuous-tone images if data is scanned row-wise, then in each individual row it 

is observed that adjacent pixels have similar differences. Similarly if the data is 

scanned column-wise, then we observe that in each column the pixels have the same 

nature. 

This tendency of individual rows and individual columns of having similar 

differences among adjacent pixels is found stronger in smooth areas and weaker in 

rough areas (around the edges). As a typical example a largely smooth area of the 

image of the girl shown in (Figure 3-6) is presented.  

 

Note that this is a carefully chosen example just to show the general tendency of 

pixels in smoother areas of an image. Based on this observation a method will be 

developed which will be further analysed for a complete data set. 

 

Example: (Figure 3-6) shows the image of a girl. A small region of the image 

containing the nose of the girl is highlighted in the figure. The grey-levels of the 

small region are shown in (Table 3). As it is difficult to visualize the raw data in 

numerical format, three rows and three columns of the sub-image are plotted in  

(Figure 3-7). (Figure 3-7 a) shows all pixels of the 1st, 2nd and 3rd row of the sub-

image plotted as graph showing grey-level of each pixel. (Figure 3-7 b) shows all the 

pixels of the 6th, 7th and 8th column of the sub-image plotted as a graph. Pixels of 

each column are also plotted from left to right instead of top to bottom for better 
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visualization. The depicted rows in (Figure 3-7 a) show a very slightly downward 

slope which changes direction after a few pixels and then change the direction again. 

The overall variation in all three rows is very small. The depicted columns show a 

downward slope which more or less remains the same. The slope of rows is 

relatively smaller than that of columns. It is a visual observation that pixels in 

individual rows and individual columns have the tendency to have similar 

differences among adjacent pixel values. Based on this observations a manipulator 

was designed which is discussed in detail in the next section. 

 

Figure 3-6 Smooth portion of the picture of Girl 

 

Table 3 Three rows and Three columns data of picture of the girl 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 

C1 191 192 192 190 194 197 197 199 198 202 204 204 207 210 210 211 208 

C2 191 190 190 190 194 193 194 195 197 198 203 204 204 208 209 211 208 
C3 189 189 188 189 188 189 189 192 195 196 199 203 203 209 207 207 204 

C4 185 185 186 185 187 187 186 189 191 191 196 197 199 202 202 198 196 

C5 174 179 181 182 182 183 184 185 188 190 194 197 196 196 192 190 190 
C6 120 155 172 176 178 179 183 184 187 188 190 191 191 189 188 186 186 
C7 86 112 152 169 171 175 180 182 185 184 187 189 190 187 183 182 180 
C8 86 82 120 158 164 172 178 181 183 184 185 188 186 182 181 181 178 
C9 95 91 115 146 159 168 175 176 180 183 184 184 183 180 179 174 172 
C10 95 103 115 136 150 162 170 175 178 182 185 186 180 179 172 168 159 
C11 92 97 111 125 137 150 160 172 177 182 184 182 178 172 166 158 146 
C12 89 95 102 118 132 145 157 171 180 181 183 183 177 169 161 151 136 
C13 91 94 101 113 129 145 156 168 181 184 188 186 176 166 157 145 130 
C14 128 100 102 110 124 137 155 173 186 191 197 188 175 164 155 139 125 
C15 154 132 111 113 122 134 150 172 192 195 205 190 174 161 147 136 151 
C16 153 159 128 118 123 130 147 167 185 192 197 185 171 160 159 163 151 
C17 168 168 143 125 128 129 140 159 177 186 188 179 167 161 179 172 165 

 

 
Portion of the nose of the girl shown in Table 3 
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Figure 3-7 Graphs of 3 rows and 3 columns of picture of Girl 

3.4 Predictor based on Least Differences 

In (section 3.1.1) it was inferred that nearest neighbours are nearest in value to a 

pixel. The potential of using both the left and top predictors was discussed in 

(section 3.2.1).  The difficulty of choosing between the right predictions for each 

pixel was also discussed in (section 3.2.1). Here we present a method of prediction 

which uses both predictors TOP and LEFT. The key to this prediction method is the 

introduction of a manipulator which will choose either left or top prediction for each 

pixel. 

The predictor suggested in this section is based on the following observations. 

 

As discussed in (section 2.1.3.1) that the value of immediately left pixel as a 

prediction for the next pixel gives reasonable results, and following similar 

argument any of the other N4 neighbours (section 1.2.6) may be chosen as a 

predictor, and similar results may be expected with either choice. If a raster scan 

order is assumed for prediction then of the four N4 neighbours, we are left with only 

two choices i.e. top or left.  

 

A method of prediction is presented which is based on the observation in (section 

3.3.1) that “In individual rows and columns of images adjacent pixels have similar 

differences”. It is also based on the following inferences drawn from the proximity 

map in (section 3.1.1). 

� “In general, closer neighbours are closer in value to a pixel.” 

� “N 4 neighbours of pixels are closer in value than ND neighbours.” 

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pixel
G

re
y-

L
ev

el Row 1

Row 2

Row 3

 

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pixel

G
re

y-
L

ev
el Col 6

Col 7

Col 8

 
 (a) (b) 

(a) Grey-levels of Rows numbered 1, 2, and 3 in  

Table 3 containing pixel data from nose of girl   in Figure 3-6 

(b) Grey-levels of Columns numbered 6,7 and 8 from  
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3.4.1 Method 

The manipulator’s selection is based on the gradient of the two immediately 

preceding pixels on the vertical and the horizontal axis. If the difference is lower on 

the vertical axis then the top neighbour is selected as prediction, while if the 

difference is lower on the horizontal axis then the left neighbour is selected as 

prediction as shown in (Figure 3-8)  

 

In the case when both the vertical and horizontal differences are equal then average 

of top and left pixel is selected. This method is discussed through following 

example. 

 

This is again a carefully chosen example to show the working of the method. The 

method will be developed and enhanced in the following sections. 

 

 

Figure 3-8 Horizontal and Vertical differences 

 

Example: 

An even smaller portion of the data from the sub-image of the nose of the girl is 

shown in Table 4 to give an illustration of the method of prediction above. The pixel 

with the double border is predicted with this method. 

The row and the column data of the pixel to be predicted is plotted in (Figure 3-9). 

The row and the column curve intersect at the target pixel. Both curves seem to have 

some slope; the slope of the column pixels appears greater than that of row pixels. 

Since adjacent pixels have the tendency to have similar differences, it seems 

reasonable to expect the top and the left pixel to differ from the target according to 

 
if   vertical difference  (|top-toptop|) < horizontal difference  (|left-leftleft|)  then 
X=top   else 
if  horizontal difference (|left-leftleft|) < vertical difference (|top-toptop|)   then 
X=left 



 41 

their respective slopes. Based on this premise we can expect the top pixel to be three 

units distant from the target pixel and the left pixel to be 1 unit distant from the 

target pixel. Therefore left seems a more accurate guess than top. This assumption 

was tested by experiment and was found to be a reasonable assumption. 

Table 4 Pixel Data from the picture of girl 

192 190 194 197 197 199 

190 190 194 193 194 195 

188 189 188 189 189 192 

186 185 187 187 186 189 

181 182 182 183 184 185

172 176 178 179 183 184 

 

 

Figure 3-9 Row and column pixel values plotted on the same axis 

 

We first find the horizontal difference from the two immediately left pixels which 

equals |183-182|=1; then we find the vertical difference from the two immediately 

top pixels which equals |186-189|=3. Finding the horizontal difference to be lower 

than the vertical difference we choose the pixel immediately on the left (183) as the 

prediction. In this case we see that the prediction (183) differs by 1 unit from the 

actual value. If we had chosen top as the prediction the error would have been 2 

units apart from the actual value.  

This is a carefully chosen example, and the prediction is not correct in all cases, 

especially around the edges where the appearance of pixels is more random. An 

experiment is therefore performed to check the efficacy of this prediction method. 

180

183

186

189

192

195

198

1 2 3 4 5 6

Pixel

G
re

y-
L

ev
el

Row 5

Col 5

 
Grey-Level intensity curves along the vertical and horizontal axes of the pixel to be predicted 
 



 42 

3.4.2 Definitions 

A few terms are defined which will be used as a convention in the following 

experiments 

Hits:  The word hit will be used in two contexts. (1) When only one predictor 

will be used to predict the next pixel a hit will mean that the value of 

the pixel and the prediction were a perfect match i.e. there was no error 

in prediction. (2) When two predictors will be used for prediction then 

a hit will mean that the prediction of the predictor under discussion was 

more accurate than the prediction of the other predictor. 

Left:  Left will be used in two contexts (1) As a pixel, referring the pixel on 

the immediate left (2) As a predictor; Left will mean a predictor that 

uses the value of the immediately left pixel as prediction. 

Top:  Top will be used in two contexts (1) As a pixel, referring the pixel on 

the immediate top (2) As a predictor; Top will mean a predictor that 

uses the value of the immediately top pixel as prediction. 

Difference:  Difference will mean the absolute value of the difference between the 

values of pixels i.e. Horizontal difference will mean |Left – LeftLeft| 

and Vertical difference will mean |Top – TopTop|. 

3.4.3 Result 

A comparison of the effectiveness of the method of least differences is shown in 

(Figure 3-10). Number of hits and entropies using Left, Top and Least Difference 

method are compared for three different Images. The Least Difference method 

shows an increase in the number of hits and a decrease in entropies when compared 

with simplistic predictions of Top or Left. Many other images were tested and most 

showed increase in the number of hits and decrease in entropies. It is also important 

to note that in the case when the difference on the vertical and the horizontal axis is 

exactly the same, the average of top and left is used, which may also have 

contributed to the improved performance. This will become more evident in the 

following sections. 

An important question which arises at this point is that why only the top and the left 

neighbours are used for prediction, and why not the Top-left and the Top-right 

pixels are used as well. The reason for this is that the proximity map shows that a 

pixel has stronger correlation with Top and Left pixel as compared to the correlation 

with Top-left and Top-right pixel. Although the information contained in the Top-
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left and the Top-right pixel also needs to be exploited, for the sake of simplicity only 

two predictors were used.  

 
Figure 3-10 Number of hits and Entropies using different predictors 

 

The results obtained from the method of least difference shows improvement in 

prediction as compared to simple near neighbour predictors like Top and Left. 

Although the method of least difference gives improved performance in terms of hits 

and entropy, it was important to quantify the results. For this the following 

experiment was performed. 

 

3.4.4 Experiment: 

“Count the number of cases when the actual value of the pixel was precisely equal to 

the neighbour on the axis of least difference and count the number of cases when the 

value of the pixel was precisely equal to the neighbour on the axis of the higher 

difference.” 
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Following were the results of the experiment: 

Table 5 Hit by following lower or higher difference 

Image Lower Higher Total 

Couple 9683 4176 64516 
Girl1 6390 4307 64516 
Girl2 8394 4926 64516 
Girl3 11139 5589 64516 
House 7438 4632 64516 
Tree 5986 3448 64516 
Aerial-1 2658 2064 64516 
Chemical Plant 3172 2381 64516 
Clock 10533 5286 64516 
Airplane 10194 6081 64516 
Moon Surface 3240 2879 64516 
    
Fishing Boat 16144 11274 260100 
Car 31197 14829 260100 
Girl4 26137 18177 260100 
Lena 23271 16423 260100 
Mandrill 7850 6524 260100 
Sailboat on Lake 14775 10536 260100 
Peppers 17087 12625 260100 
Aerial 2 20677 12946 260100 
Elaine 13989 10713 260100 
Truck 29595 20316 260100 
    
Airport 44193 37402 1044484 
Man 74855 52402 1044484 
 

The results of the experiment shown in (Table 5) not only suggest that choosing the 

value of neighbour on the axis of the lower difference is indeed a better choice, but 

also suggest that the pixel on the axis of the higher difference is also not ineffective. 

If the number of hits on the axis of the higher difference had been negligible, then 

they may not have caught attention.  The comparatively large number of hits gave an 

abstract idea that the pixel on the axis of the higher gradient might also have some 

correlation with the target pixel. In the next section, this issue is discussed in detail. 

3.5 Effect of difference on pixel value 

Looking at the results of the above experiment we conjecture that differences on 

both the axes may have some correlation to the value of a pixel. We also know from 

the inferences in (section 3.1.1) that proximity has an effect on the value of the 

pixel, and (section 3.3.1) that adjacent pixels have similar differences on both the 
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horizontal and the vertical axis. An experiment is designed which assigns weights to 

the top and left neighbour proportional to the value of the differences on either axis. 

3.5.1 Difference Weighted Average (DWA) Predictor 

The predictor first calculates the differences on both the horizontal and the vertical 

axes. The Top pixel is assigned a weight equal with the ratio of horizontal difference 

to the sum of differences and similarly the Left pixel is assigned a weight equal to 

the ratio of vertical difference to the sum of differences. Suppose the vertical 

difference is higher than the horizontal difference then a lower weight will be 

assigned to the Top pixel, and vice versa. The weights will also be proportional to 

the relative value of the differences on either axis. 

Example: In the image data of Table 4 the pixel to be predicted has value 184. The 

difference on the x-axis is xδ =|183-182|=1 and the difference on the y-axis is  

yδ =|186-189|=3. 

Prediction= 
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Prediction = (183 x 0.75) + (186 x 0.25) 

Prediction= 137.25 + 46.5  

Prediction= 183.75 ≅  184 

 

This method of prediction based on weighted average of neighbours according to 

differences, gave better results than the method of least differences. Figure 3-11 

shows the results. 
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Figure 3-11 Performance of Difference Weighted Average predictor 

3.5.2 Comparison 

The method of Difference Weighted Averages (DWA) gave improved results than 

the method of Least Differences. The MED predictor of JPEG-LS was chosen as a 

benchmark; therefore the results were compared with this predictor. Figure 3-12 

compares the entropies of the MED predictor against the proposed Difference 

Weighted Average (DWA) predictor. 

 

 

Figure 3-12  Comparison with MED predictor 

 

Classic benchmark images were used for comparison. The images are in three 

different sizes i.e. 256 x 256, 512 x 512, and 1024 x 1024. 
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Figure 3-12 shows the entropies using both the predictor of MED and the DWA 

predictor. The DWA predictor gives equally good or better performance than the 

MED predictor for 11 images (Girl3, Tree, Airplane, Moon Surface, Girl4, Mandrill, 

Sail-boat on Lake, Peppers, Elaine, Airport and Man) out of a total of 23 test images. 

The average entropy of MED was 4.80 and that of DWA was 4.83. Although the 

average entropies of both methods are approximately the same but it is important to 

mention that the average entropy does not provide a good measure for comparison. 

(Section 4.1) shows a more detailed comparison of the two methods, where it is 

shown that MED is superior to DWA in general.  

The performance of the proposed DWA predictor in the above mentioned 

proportionately large number of cases demanded further analysis. An experiment 

was performed to see precisely which pixels were predicted better with which 

predictor.  

 

3.5.3 Experiment 

This experiment predicts the value of each pixel using both the MED predictor and 

the proposed DWA predictor. Both the predictions are compared with the actual 

value of the pixel to find the error in prediction. For all the pixel locations where the 

MED predictor gives comparatively smaller error (hit) a black dot is plotted on a 

separate graph and for all the cases where the DWA predictor gives smaller error 

(hit) a black dot is plotted on another separate graph. In cases where the errors are 

equal in magnitude a white dot is plotted. (Figure 3-13 a) shows original pictures, 

(Figure 3-13 b) shows the pixels where the MED predictor performed better (Figure 

3-13c) shows the pixels where DWA predictor performed better. 

3.5.4 Performance of Predictors 

3.5.4.1 Performance of MED predictor 

Observation of the comparative performance of MED predictor in Figure 3-13(b) 

shows a high concentration of dots in areas around sharp edges in all the images 

which signifies the superiority of MED predictor near sharp edges. Observation of 

the pictures of the girl, house and tree in column (b) it can be seen that the edges are 

more prominent as compared to those in column (c). The performance of the MED 

predictor around the edges is distinctly higher than the DWA predictor in most 

cases; this observation will be used in the following sections to gain advantage.  
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Figure 3-13   Pixel wise comparison between MED and DWA 

 

3.5.4.2 Performance of Gradient Weighted Average Predictor 

The performance of the DWA predictor is shown in Figure 3-13(c). Close 

observation of the performance graphs show higher concentrations of dots in smooth 

areas of the images. The concentration of dots in smooth areas is not distinctly better 

than that of the MED predictor but, in some smooth areas of images dominancy is 

evident with visual observation. For example in the inner regions of the hair of girl a 

     

     

 

     
(a)     (b)     (c) 

 
(a) Original pictures 
(b) Black dots show the pixels where MED performed better 
(c) Black dots show the pixels where DWA performed better 
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higher population of dots as compared to that of MED predictor is visible. In the 

image of the house the concentration of dots is higher in the area covering the 

smooth sky. In the image of tree, both the sky and the inner regions of the leaves of 

the tree show higher concentration of dots as compared to the MED predictor. These 

are observations and may be subject to error therefore rigorous analysis is done in 

the following sections. 

3.6 Image Segmentation 

It was observed in the previous section that the MED predictor performs better than 

the DWA predictor around sharp edges, and the DWA predictor performs better than 

the MED predictor in relatively smooth regions of the image. It seems reasonable to 

segment the image in two parts one consisting of edges (rough regions) and the other 

consisting of smooth areas (smooth regions). Once the image is segmented we may 

use the MED predictor in rough regions and the DWA predictor in the smooth 

regions.  

3.6.1 Edge detection 

Edges in an image can be detected using many different methods [Marr80]. One of 

the simple methods of detecting sharp boundaries in an image is by using gradients. 

The gradient of a point at location (x,y) is approximated by the following relation 

[ ] [ ]{ } 2/122 )1,(),(),1(),()],([ fyxfyxfyxfyxfyxfG +−++−≅  

Equation 3-1 

A further approximation of the above equation uses absolute values of gradients as 

follows 

)1,(),(),1(),()],([ +−++−≅ yxfyxfyxfyxfyxfG  

Equation 3-2 
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Figure 3-14 Pixels used to detect edges 

 
 
The relationship between pixels in is depicted in Figure 3-14. This method of edge 

detection using gradients compares a pixel with its right and bottom neighbour.  

 

Figure 3-15 shows the order of prediction of pixels in an image. It shows that some 

of the pixels have already been predicted and errors in prediction are recorded, 

therefore their actual values are known. These pixels are represented by dots (.). The 

rest of the pixels represented by question mark (?) are unknown and are to be 

predicted. Pixels P,Q and R lie in the unknown area and pixels A,B and C lie in the 

known area. To detect an edge at pixel P, the values of Q and R are required, but all 

three pixels will be unavailable because the proposed algorithm will predict in a 

raster scan order. However, as an approximation, values of pixels A, B and C can be 

used to detect if pixel P is part of an edge. 

If we assume that if a near neighbour of a pixel is a sharp edge, the pixel itself is 

also a sharp edge. This assumption will be true in most of the cases where there are 

thick edges and false in most cases where there are thin edges. Moreover in 

continuous tone images the assumption will not be entirely wrong since grey-level 

changes are not very abrupt.  

 

 
Set of pixels used to detect an edge using Equation 3-2 
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Figure 3-15 Order of prediction of pixels in an image 

 

3.6.2 Detection and Segmentation in Rough and Smooth regions 

Based on approximate edge detection procedure a segmentator is proposed whose 

purpose is to segment the image in two parts, (1) those where the MED predictor 

gives better prediction and (2) those where DWA predictor gives better prediction. 

The reason for choosing an edge detector for this segmentation was that visual 

observation (section 3.5.4) suggested that MED predictor performs better near sharp 

edges and the DWA predictor performs better in smooth regions thereby suggesting 

segmentation of the image in edges (Rough areas) and non-edges (Smooth areas). 

Edges are changes in grey-levels which can be very abrupt and they can be relatively 

smooth. Using (Equation 3-2) there can be potentially 2n-1 different levels in which 

we can classify intensities of edges, where n is the image depth. If the number of 

grey-levels used is 256 then image pixels can be classified in 511 levels from 0 to 

510. We term these levels as Edge Intensity levels. 

 

If a pixel falls in the middle of an area having a constant grey-level, then using 

(Equation 3-2) will return edge intensity level equal to zero (0), implying the 

absence of an edge. Higher changes in grey-levels adjacent to a pixel will return 

higher edge intensity levels. Segmentation of the image according to each pixels 

edge intensity level is proposed. By doing so, the image will be segmented in 511 

segments. The segments belonging to lower numbered edge intensity levels will 

have a higher probability of being in the smooth regions (non-edges) of an image, 

 
Pixels represented by (.) are known pixels and those represented by (?) are unknown. 
To detect that pixel P is and edge equation 4.1 uses value of P,Q and R. As a crude 
approximation we use values of pixels A, B and C since A,B and C are known. 
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while the segments which will belong to higher numbered edge intensity levels will 

have a higher probability of being in the rough regions (edges) of an image. It has 

been observed that typically about 100 initial edge intensity levels contain the most 

significant part of the image. The very small numbers of pixels which belong to the 

rest of the edge intensity levels do not play a significant role towards reducing the 

entropy. 

3.6.3 Hypothesis 

“Segment an image in regions according to edge intensity levels. If a pixel lies in a 

segment having a lower edge intensity level, its probability of being detected 

correctly by the DWA predictor will be higher. Similarly if a pixel lies in a segment 

having a higher edge intensity level, its probability of being detected correctly by the 

MED predictor will be higher”. 

The correctness of the above hypothesis needs to be tested, especially because the 

edge detector described above is also less accurate. 

3.6.4 Hybrid threshold predictor 

The image prior to compression could be examined to find out the probability of 

each predictor of being correct in each edge intensity level. It is expected that the 

probability of DWA predictor being more accurate will be higher than the MED 

predictor in the lower numbered segments. Assuming the probability of DWA 

predictor is higher than MED predictor in the initial segments and it drops gradually 

as the edge intensity level increases, it is proposed to set a threshold value equal to 

the value of the edge intensity level where the probability of both predictors 

becomes roughly equal. This threshold can be stored in the header of the compressed 

file for information of the de-compressor. The working of the hybrid threshold 

predictor is explained with the help of an example. 
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Figure 3-16 Performance of DWA and MED for an image of Tree 

 

Example: 

(Equation 3-2) is used to calculate the edge intensity level at each pixel. For each 

edge intensity level it is calculated whether MED gives a better prediction than the 

DWA. The total number of pixels for each predictor being better than the other 

(hits), in each edge intensity level is recorded. For example if edge intensity level 1 

contains 100 pixels out of which the MED predictor predicts 40 pixels better (hits) 

than the DWA predictor and for 35 pixels the performance of both predictors is the 

same, then remaining 25 pixels are predicted better by the MED predictor. The 35 

pixels where the performance of both methods is the same are not recorded, while 

the 40 pixels for which the performance of DWA predictor is better than the MED 

predictor are recorded and the 25 pixels for which the performance of MED 

predictor is better is also recorded. Figure 3-16(a) shows the number of hits in each 

edge intensity level for both methods. Notice that in the first 38 edge intensity levels 

the hit count for DWA predictor is higher and for the rest of the pixels the hit count 

for the MED predictor is higher.  The same information is shown in Figure 3-16(b) 

where percentage of pixels where DWA predictor gives better performance is 
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shown. The X-axis shows the edge intensity levels, whose value is lower in 

smoother areas and higher in Rough areas. The initial values on the Y-axis show 

higher number of hits for the DWA predictor. Note that the performance of DWA 

predictor decreases as we approach rougher regions. Also note that that the 

performance of DWA predictor decreases on the whole, but there are ups and downs 

on the micro-level, for example initially it goes down and reaches almost 50% and 

then gradually goes higher and then comes down again towards the 50% threshold. 

In the example the performance of DWA predictor drops lower than the 

performance of MED predictor at edge intensity level 39. The performance curves 

vary to a great extent for different images. In the image set of classical benchmarks 

used, this threshold value varies from 1 to 100. In this example the performance of 

DWA predictor is better for all edge intensities less than or equal to 38, while the 

performance of the MED predictor is better for all edge intensity levels greater than 

38. Therefore we can conclude that using DWA predictor for edge intensities less 

than or equal to 38, and MED predictor for the rest of the edge intensities may give 

improved performance. 

Figure 3-16 shows the performance of both methods of prediction for the images of 

the tree in Figure 3-13(a). 

3.6.5 Results 

The Hybrid Threshold method of MED and DWA predictor gives improved 

performance. Performance for the images of girl-2, house and tree are shown in 

Figure 3-17. It is noticed that the performance of the hybrid threshold method is 

usually better than both MED and DWA predictors. 
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Figure 3-17 Comparison of MED, DWA and Hybrid Threshold predictors 

 

3.7 Composite predictor 

 

The preceding section demonstrated that different predictors can be used in different 

regions and the regions can be identified with reasonable confidence. However 

simply choosing one prediction discards the other, which may contain useful 

information. 

The final predictor in this chapter weights the two predictors according to the 

appropriate graph as in (Figure 3-16) and forms a composite prediction 

appropriately. This requires the transmission of the appropriate graph, which 

represents an overhead; however as can be seen from a (Figure 3-16) piecewise 

linear approximation may convey an adequate description with a little extra data. 

Even transmitting the whole graph would incur a small overhead. 

Preliminary analysis using this approach is shown in (Figure 3-18) as predictor. It is 

clear in those graphs for the test images that a further reduction in entropy is 

achieved here. 

 

3.7.1 Method 

Similar to the method of Hybrid threshold predictor this method also calculates the 

percentage of pixels in each region where DWA predictor gives better prediction. It 

also calculates the percentage of pixels in each edge intensity level where the MED 

predictor gives better prediction. The compressor calculates these values and stores 

them in the header of the compressed file as information for the de-compressor. The 
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de-compressor loads these values prior to decompression in a table. The de-

compressor then finds the edge intensity level for each pixel. It then looks up the 

table to find the weights appropriate for the edge intensity level. Once the weights 

are known the weights are multiplied with the respective predictions of DWA and 

MED predictors and summed. The resulting value is the weighted average of both 

predictions. 

 

3.7.2 Results 

This method of prediction gives comparatively better results as compared to the 

Hybrid threshold predictor. But the improvement in performance is very small. The 

advantage of this method needs to be compared with the extra cost involved, of 

storing the look up table. The results compared with MED, DWA and Hybrid 

Threshold predictors, for three images are shown in Figure 3-17. 

 

 

Figure 3-18 Comparison of MED, DWA, Hybrid Threshold and Composite 
predictors 

 

The methods discussed in this chapter were shown to be advantageous, in that they 

gave a certain percentage decrease in the entropy. However, the decrease in entropy 

does not qualify their effectiveness, therefore the methods are further analysed in the 

following chapter.  
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4. Results and Analysis 

 

In the preceding chapter DWA method of prediction was developed, which gave 

comparatively more accurate predictions as compared to the MED predictor in 

relatively smooth areas of the image. The performance comparison the DWA 

predictor was then compared with the MED predictor, and it was found that the 

MED predictor performed comparatively better around sharp edges (rough areas) in 

an image. In order to take advantage of merits of each method of prediction, it was 

suggested to segment the image in rough and smooth regions, and use a different 

predictor in each region. Two composite methods were developed viz. Hybrid 

Threshold and Composite.  

In this chapter performance of all the developed methods is compared, and the 

methods are analyzed in detail. 

4.1 Performance of DWA predictor 

It was shown in (Chapter 3 Design of Predictors) that DWA method of prediction 

performed better than MED method of prediction, in a large number of the 

benchmark pictures used. The reason for the better performance of DWA method 

can be attributed to the presence of large smooth regions in many of the benchmark 

pictures. It is difficult to examine the accuracy of prediction of both predictors for 

each pixel, therefore the entropy of the differences image are used as a measure for 

quantification. (Table 6) shows the entropies of the all the benchmark images used. 

Entropy (1.1.4) in this context indicates the number of bits required to encode each 

pixel of the image. Of the 23 images used as benchmarks the entropy of MED was 

found to be less in 12 cases and the entropy of DWA was found to be less in the 

remaining 11 cases.  

 

The last two columns in (Table 6) show the performance difference of each method 

as compared to the other in percentage. It is clear that although DWA performed 

better in almost half of the cases but percentage difference in performance compared 

with MED is not very high. On the other hand in all the cases where MED 

performed better there is usually a comparatively large performance gain. The last 

row of (Table 6) shows the sums of individual columns. The first two column sums 

show the sum of entropies of each method for all images, which are nearly equal in 

value, and do not convey the complete picture. However, the sums of last two 
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columns showing the sum of performance gains of each method over the other show 

more distinct superiority of MED over DWA. (Figure 4-1) shows the performance 

gain of using DWA method over the MED method. Note that the images, for which 

the overall performance of DWA method was relatively less accurate than the MED 

predictor, are shown in negative, showing a comparative loss. (Figure 4-1 ) shows 

smaller gains for a smaller number of images for the DWA predictor when 

compared to the MED predictor. 

Table 6 Comparative gains of MED and DWA 
Image MED DWA % gain DWA % gain MED 

Couple 3.96 4.18  5.19 

Girl1 4.38 4.43  1.21 

Girl2 3.96 4.11  3.58 

Girl3 3.51 3.46 1.44  

House 4.17 4.34  3.95 

Tree 5.35 5.32 0.46  

Aerial-1 5.87 5.90  0.52 

Chemical Plant 5.37 5.61  4.33 

Clock 4.00 4.07  1.89 

Airplane 3.60 3.59 0.40  

Moon Surface 5.23 5.07 2.99  

Fishing Boat 5.10 5.11  0.08 

Car 4.55 4.76  4.39 

Girl4 4.44 4.41 0.58  

Lena 4.55 4.58  0.61 

Mandrill 6.27 6.27 0.10  

Sailboat on Lake 5.39 5.34 0.93  

Peppers 4.95 4.80 2.85  

Aerial 2 5.32 5.39  1.25 

Elaine 5.34 5.12 4.08  

Truck 4.66 4.74  1.79 

Airport 5.55 5.51 0.80  

Man 4.94 4.93 0.03  

     

Sum of Entropies 
 

4.80 
 

4.83 
 

14.64 
 

28.80 
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Figure 4-1 Percentage gain in entropy using DWA predictor as compared to 
MED predictor 

 

Although the performance of MED is superior to that of DWA but it was shown 

with example charts (3.5.4) that DWA gave more accurate predictions in smoother 

region of an image. This can be further confirmed by observing that the entropy of 

DWA was lesser in images which contained large smoother regions. This 

observation is largely true. The images used as benchmarks are given in Appendix 

A.  

4.1.1 Computaitional Cost of DWA method 

The computational cost of DWA is much higher as compared to the computational 

cost of the MED predictor. (Table 7) shows both the MED and the DWA 

algorithms. In the MED algorithm only a few comparison operations are involved 

while checking the first two if conditions, while in the last if condition an addition 

and a subtraction are involved. On the other hand in the DWA algorithm first the 

two differentials on the X and Y axis are computed where 2 subtractions are 

involved. These two differentials are computed in every case, before any condition 

is applied. The first if condition performs two comparisons and a logical AND, 

followed by an addition and a division by 2. Since the division is by 2 it can be done 

by a shift operation. The last condition in this algorithm turns out to be very 

expensive in that it consists of a large number of arithmetic operations including 

multiplication and division. Division is a comparatively expensive operation, which 

is around at least 10 times more expensive than addition. If the first if condition 

holds, and the else does not need to be computed even then DWA seems to be a 
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comparatively more expensive algorithm. In smoother images the probability of both 

LeftDiff and TopDiff being 0 is relatively higher, but it is not very high, therefore 

the more expensive operations of multiplication and division must be performed in 

the majority of cases.  

Table 7 MED and DWA Algorithms 

MED Algorithm DWA Algorithm 

if  TOP-LEFT>max(TOP,LEFT) then  

P[x,y]= min (TOP,LEFT) else 

if  TOP-LEFT<min(TOP,LEFT) then 

P[x,y]= max (TOP,LEFT) else 

P[x,y] = TOP + LEFT -TOPLEFT 

 

LeftDiff  = Left-LeftLeft 

TopDiff =Top-TopTop 

if ( (LeftDiff=0) AND (TopDiff=0)) then 

P[x,y]:= (Top+Left)/2  else 

P[x,y]:= Left*(TopDiff/(LeftDiff+TopDiff)) + 

(Top*(LeftDiff/(LeftDiff+TopDiff))) ; 

 

 

Even for the images where the performance of DWA algorithm is better than the 

MED algorithm, the computational cost is around 10 times higher. 

 

4.2 Analysis of Hybrid Threshold Method 

4.2.1 Average Frequency Graphs  

The Threshold method first segments the source image in (2n-1) Edge Intensity 

Levels, where n is the number of grey-levels in an image. In our experiments we 

used the classical benchmarks which were quantized to 256 levels of grey. Therefore 

the number of edge intensity levels were 511 (0 – 510). The lowest edge intensity 

level (0) contained those pixels which existed in the smoothest regions of the image 

i.e. in regions where there were no grey-level changes and the highest edge intensity 

level (510) contained those pixels which existed in the roughest regions of the image 

i.e. in regions where there were very large grey-level changes. After the image is 

segmented according to edge intensity levels, each segment is analyzed to find the 

frequency of pixels which can be predicted more accurately using the MED 

predictor and the frequency of pixels which can be predicted more accurately using 

the DWA predictor. A frequency graph was shown in (Figure 3-16), which was not 

representative of all the images. Frequency graph of each image turns out to be very 

different from others. In some graphs the threshold approaches 0 edge intensity level 

while in some the threshold approaches 100. Here a graph  is presented  (Figure 

4-2(a)) which shows a frequency graph averaged across 11 images viz. Couple, 
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Girl1, Girl2, Girl3, House, Tree, Aerial-1, Chemical-Plant, Clock, Airplane, Moon-

Surface. The purpose of this graph is to give another measure of the frequency being 

higher in the initial edge intensity levels. This also gives a rough idea about the 

ordinal number of the edge intensity level, where the frequency of accuracy of 

prediction, of both methods is equal. This ordinal value is termed as the threshold 

value. All pixels which have an edge intensity level less than or equal to the 

threshold are predicted using DWA predictor, and the rest of the pixels are predicted 

using the MED predictor. (Figure 4-2(b)) shows the relative percentage frequencies 

of DWA with MED. The graph shows the percentage of cases for each edge 

intensity level when the DWA method gives a more accurate prediction. It crosses 

the 50% point at Edge intensity level 10 which is the threshold value. The threshold 

value for each image varies to a very large extent from image to image; therefore 

here in the average case it does not imply that the value 10 can be a rough 

approximation across all images. From this figure we can only deduce that in the 

majority of images DWA gives more accurate prediction for the majority of pixels in 

the initial edge intensity levels. It also provides a different kind of approximation of 

the average value of threshold. The percentage frequencies shown in (Figure 4-2(b)) 

shows less variation, and has a relatively smoother downward slope showing that the 

percentage of frequencies of DWA drop linearly, but again this is not true for 

individual images. The relative frequency graphs only indicate that using two 

methods in different regions, for images segmented according to smoothness 

criteria, may yield more accurate predictions. 

 

Figure 4-2 Average performance of DWA and MED 
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(a) Avg. number of pixels where each predictor performs better for each edge intensity level 
(b) Avg. % of pixels in each edge intensity level where DWA predictor performs better 
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4.2.2 Selection of Threshold 

The comparative frequency distribution graph which is used to set the value of 

threshold is not a strictly linear graph. Although it has a downward inclination but it 

has large variations from point to point. These variations make the selection of the 

threshold difficult.  (Figure 4-3) shows the picture of a girl and a tree and their 

respective frequency distribution graphs showing the frequency hits of DWA 

predictor compared to the MED predictor. The comparative frequency distribution 

graph of the girl crosses the 50% line a number of times. This makes the selection of 

threshold value difficult. Similarly in the frequency distribution graph of the tree 

same undulation across the 50% line is found. One method of choosing the threshold 

value in such a case can be to start from the lowest edge intensity level (left hand 

side) and set the threshold at the first occurrence of crossing the 50% line. Another 

method can be to start from the highest edge intensity level (right hand side) and set 

the threshold at the first occurrence of the 50% line. Yet another method can be to 

find a threshold value from the left and then from the right and use their average as a 

threshold. Yet another method can be to approximate the graph with a straight line 

and approximate the threshold value where the straight line crosses the 50% line. A 

computationally less expensive method could be to use the averages of the nearby 

edge intensity levels for approximation, and this approximation only needs to be 

done near the 50% threshold line. In this research only the first method described 

above has be tested, but other methods may be tried for further optimization. 
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Figure 4-3 Comparative frequencies of hits of DWA and MED 

 

 

4.2.3 Gain 

The method of Threshold was tested by manually setting the threshold value equal to 

the first occurrence of the edge intensity level where the frequency of hits of GWA 

dropped below 50%. The performance gain when compared to the method of MED 

are depicted in (Figure 4-4). There was an increase in entropy in all but one image, 

where a negligible increase in entropy was noticed. In the rest of the cases entropy 

decreased varying from 0 to around 3.7% maximum. The average gain was found to 

be 1.45%. The average was taken by dividing the sum of percentage gains of each 

image and then dividing by the number of images. This averaging does not take into 

account the different sizes of the image files used, but this kind of averaging is 

preferable if we want to see average performance for different image features. 
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Figure 4-4 Percentage gain in entropy using Hybrid Threshold predictor as 
compared to MED 

 

4.3  Analysis of Combined Method 

The Combined method uses the frequency of the hits of the two predictors (DWA 

and MED) to approximate the accuracy of each method in each edge intensity level. 

Based on this approximation weights are assigned to the prediction of both methods 

to give a composite prediction. Using this method decrease in entropies have been 

observed in 21 out of 23 cases when compared to the method of MED as shown in 

(Figure 4-5); wherever there was an increase in entropy it was in a very small 

proportion. In the cases where improvement was not observed, there is a negligible 

increase in entropy. The entropy decreased in most of the cases but in certain cases it 

increased in comparison to the Hybrid Threshold method. The entropy varied from 0 

to 3.7%. The average performance gain across all 23 methods was 1.65%. This 

average gain is about 0.20% higher as compared to the average gain achieved using 

the Hybrid Threshold method. 

-0.500
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000

Elai
ne

M
oo

n S
ur

fa
ce

Pep
pe

rs
Girl3

Sail
bo

at
 o

n 
La

ke

Airp
or

t
Girl4 Tre

e

Airp
lan

e

M
an

drill
M

an

Fish
ing 

Boat
Le

na

Aer
ial

-1
Girl1

Aer
ial

 2
Clo

ck
Tru

ck
Girl2

Hous
e

Car

Coup
le

Chem
ica

l P
lant

Images

%
 g

ai
n

 i
n

 E
n

tr
o

p
y

 



 65 

 

Figure 4-5 Comparison between performance gains of Threshold and 
Composite predictor with MED predictor 

 

4.3.1 Comparison of Composite method with Threshold Method 

There is a noticeable gain in performance by using composite method as compared 

to the Threshold method. The average gain of the composite method is 0.20% higher 

than that of the threshold method. However the cost incurred by the composite 

method is also substantial. If only the cost in terms of storage space is considered, 

then the percentage gain achieved by the Composite method must be compared with 

the percentage loss in storing the frequency table. The size of the table varies from 

image to image. (Table 8) shows a typical Frequency table. The percentage of total 

pixels contained up to the current edge intensity level for each method, is shown 

row-wise. Typically the initial edge intensity levels contain large number of pixels, 

and the number of pixels in successive edge intensity levels gradually decreases. In 

the table shown the last column shows the percentage of total pixels contained up to 

the current edge intensity level. 
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Table 8 Pixels contained upto each Edge Intensity Level 
Edge Intensity 
Level Girl-1 Girl-2 Girl-3 House Tree 

1 4.39 6.26 15.50 7.21 5.68 

2 10.19 14.38 29.64 14.42 9.41 

3 19.22 25.82 47.15 23.23 14.07 

4 27.44 35.70 56.36 29.14 17.49 

5 35.82 44.79 64.30 34.85 21.06 

6 42.43 51.24 68.78 39.78 24.23 

7 48.70 56.73 72.49 44.85 27.37 

8 54.01 60.85 75.09 49.80 30.31 

9 58.86 64.38 77.23 54.63 33.14 

10 62.83 67.35 78.92 58.97 35.83 

11 66.25 70.09 80.52 63.13 38.46 

12 69.22 72.41 81.83 66.81 40.95 

13 71.96 74.50 82.96 70.02 43.38 

14 74.33 76.31 84.00 72.87 45.64 

15 76.50 77.93 84.98 75.19 47.77 

16 78.25 79.31 85.88 77.34 49.76 

17 80.01 80.71 86.71 79.10 51.73 

18 81.49 81.96 87.47 80.67 53.57 

19 82.83 83.24 88.17 81.92 55.24 

20 84.00 84.23 88.76 83.09 56.80 

21 85.08 85.14 89.33 84.11 58.35 

22 86.04 86.00 89.95 84.93 59.88 

23 86.84 86.83 90.48 85.65 61.21 

24 87.64 87.58 90.96 86.24 62.47 

25 88.41 88.26 91.38 86.81 63.70 

26 89.05 88.87 91.88 87.38 64.94 

27 89.69 89.46 92.34 87.85 66.11 

28 90.25 89.97 92.79 88.25 67.22 

29 90.82 90.50 93.17 88.72 68.31 

30 91.33 90.96 93.46 89.17 69.36 

31 91.84 91.40 93.78 89.54 70.33 

32 92.27 91.83 94.04 89.89 71.25 

33 92.67 92.21 94.25 90.19 72.14 

 

(Table 8) shows the percentage of pixels which have already been scanned in the 

previous edge intensity levels, including the pixels of the current edge intensity 

level. The last row shows that for the images of girl1, girl2, girl3 and house the 

percentage of pixels which have been scanned have crossed 90%, while in the case 

of tree the percentage is about 72%. The reason for analyzing these percentages is to 

make a decision about storing the important information of the frequency table. 

When 90% of the pixels have been scanned and the remaining pixels scattered in the 

rest of the Edge intensity levels, the precision of probabilistically assigning weights 

to DWA and MED may give inferior performance. Moreover it has also been 

observed that gains are substantial when the difference in the percentage of hits 

between DWA and MED is not very large. For example for the edge intensity levels 
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where the weight of MED is greater than 0.9 and of DWA is less than 0.1, the 

increase in accuracy of prediction approaches 0.  

(Figure 4-6) shows the percentage of total pixels scanned up an including an edge 

intensity level. The graphs of girl-1, girl-2, girl-3 and house show that 90% of the 

pixels are contained in edge intensity levels less than or equal to 33. This means that 

saving the percentage frequency chart for up to 33 levels may give optimum 

performance in typical cases. The graph of the tree however shows some deviation, 

where only 72% of the pixels are contained up to level 33. This shows that different 

images require different number of frequency values to be saved, but it has been 

observed that most typical images do not need to keep frequency values of edge 

intensity levels greater than 100. Moreover the precision of the percentages need not 

be very precise i.e. instead of saving 0.666666 and 0.333333 it is sufficient to save 

0.33 and 0.66. It need to be worked out what precision would be optimum, but 

roughly 8 to 10 bits per frequency should be sufficient.   

 

 

Figure 4-6 Percentage of total pixels scanned up to the edge intensity level 
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5. Conclusion 

5.1 Summary 

Different images have different characteristics and therefore are compressed 

differently. It is these characteristics due to which they respond differently to 

different compression algorithms. No one method can give best performance for all 

images. The purpose of this research was to investigate image characteristics, in 

order to be able to give prediction methods, for predictive coding based lossless 

compression. In the due course a prediction method named Difference Weighted 

Average (DWA) was discovered. 

 

The method of prediction is based on the statistical observation that of the 

immediate known neighbours (Top and Left) on either of the vertical and the 

horizontal axis, the probability of a pixel being equal to the one which is on the axis 

with minimum difference is higher. The method was further augmented by using 

regional information from the known neighbours to take a weighted average of the 

Top and the Left pixel. The weights were set dynamically for each pixel according 

to the difference on either axis. This method of dynamically setting weights for each 

pixel gave very good performance. 

 

This method of prediction gave overall better prediction in many of the benchmark 

pictures used. It was observed that DWA gave more accurate predictions than the 

MED predictor (used by the JPEG-LS algorithm) in a large number of cases. It was 

further observed that for the images where DWA gave overall better performance 

were those which contained a higher percentage of smooth regions and fewer edges 

(rough regions). It was shown with the help of figures that MED gave more accurate 

predictions near the edges while DWA gave more accurate predictions near the 

smooth areas. 

 

The possibility of segmenting the image in smooth and rough regions was discussed 

in order to use two predictors; one in each region, according to the strengths of each 

predictor in each region. It was suggested and then experimentally shown that by 

segmenting the image, categorized in level of smoothness, advantage can be gained. 

It was shown that the method of segmentation although approximate, did segment 

the image according to the level of smoothness. It was also shown that in the regions 
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categorized by the segmentator as smooth regions DWA did perform better in terms 

of the number of pixels predicted more accurately (hits). Likewise in the regions 

categorized by the segmentator as rougher regions (edges), MED predicted more 

accurately. The segments were numbered according to the degree of 

roughness/smoothness into levels called Edge Intensity Levels. 0 represented 

smoothest regions (no grey-level changes) and 510 represented roughest regions 

(large grey-level changes). The use of one or the other method of prediction in each 

region required a threshold value. This threshold value represents the number of the 

edge intensity level before which DWA method predicted more accurately and after 

which MED method predicted more accurately. It was found out that there was no 

fixed threshold value, and that the value of this threshold varied with each image. It 

was suggested that this threshold value be identified for each image and stored in the 

header of the compressed file. This method of compression (Hybrid Threshold 

Method) gave improved performance in majority of the cases. 

 

Having established that different predictors can be used in different regions and the 

regions can be identified with reasonable confidence, it was realized that simply 

choosing one predictor discards the other, which may contain useful information. 

Therefore it was suggested to improve the method by assigning weights to each 

prediction in each region. It was suggested to assign weights to the prediction of 

each predictor according to the percentage of predictions which were more accurate 

than the other, for each predictor. This gave a further reduction in entropy, but there 

was a cost involved, which was that of storing the weights for each edge intensity 

level.  

 

Segmentation of the image into regions incurs a cost, which depends on the kind of 

segmentation required, and the method of segmentation used. The simple method of 

edge detection used in this research was not very costly, but cheaper methods of 

segmentation may be sought. The last method introduced for prediction required 

computation and storage of a table which again incurred a cost, it is discussed in the 

following section, how this cost can be reduced. 

 

The percentage gain in entropy varied from 0 to a maximum of 3.7%, therefore 

apparently it may not be suitable to pay a relatively high computational cost for such 

small gain in entropy, but as the compression of still images does not usually have 
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very strict real time constraints therefore whatever gain in compression becomes 

available may be utilized. Moreover in the current era computational logic is 

becoming cheap and transmission of data is still relatively expensive. In such 

perspective using the introduced methods will give saving in storage space and 

transmission time.  

 

The methods developed in this research only give a demonstration of taking 

advantage from more than one predictors to do more accurate predictions. More 

research is required in the exploitation of image features, segmentation of images 

according to the features, and matching of predictors for each exploited image 

feature. Some more features which can be exploited using the same methods 

discussed in this research and adaptations are suggested in the following sections in 

order to improve results. 

5.2 Discussion 

The idea of segmenting the image was demonstrated, in order to use different 

predictors in different regions of the image. It was shown, that the accuracy in 

prediction increased by using the methods. The improvement in performance is 

dependent on two factors. 

(1) Identifying the strengths of each predictor. 

(2) Segmenting the image to be compressed in regions such that the strengths of 

predictors match the segment type. If the strengths of methods cannot be 

associated with region types no advantage can be expected, and the 

advantage is proportional to the matching of predictor strengths and area 

types. 

 

While the purpose of this research was to identify and exploit characteristics of 

images in order to improve context based predictions for lossless compression, but 

as the standard benchmark used for comparison of results was that of MED 

predictor, certain weaknesses of the MED predictor came to limelight. MED 

predictor gives less accurate predictions near some types of edges. Strengths and/or 

weakness are comparative terms and the weaknesses of MED predictor identified are 

only in comparison to the proposed DWA method. In spite of these relative 

weaknesses the MED predictor stands as one of the best predictors, if overall 

performance is compared for a very large image set. 
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MED predictor itself does segmentation of the image in three types and uses a 

different predictor for each segment. If the threshold value used in the method of 

(Threshold predictor) would not have varied across different images it might have 

been suggested to incorporate more segments in MED predictor and use the 

threshold value for a more accurate prediction, but as the threshold value varies for 

each image, and there is a cost incurred in computing the threshold, this is not 

suggested. 

 

It is concluded to find more traits; and segment the image according to the identified 

traits. Then use the information from different predictors in different segment in 

order to gain advantage. 

 

5.3 Future Directions 

5.3.1 Identified features for further exploitation 

The prediction methods of DWA and MED were compared in (Chapter 4 Results 

and Analysis). It was indicated that the overall performance of MED was better than 

that of DWA near the sharp edges in an image. The performance charts are 

reproduced in (Figure 5-1) for further discussion. 

 

Although the performance of MED predictor near sharp edges is generally better but 

notice that there are some edges where MED predictor gave less accurate prediction 

for example in the picture of the girl, the edge near the shoulder of the girl on the 

right hand side of the picture, is lighter in the performance graph of MED predictor 

and darker in performance graph of DWA predictor. Similarly in the picture of 

house we can observe that the MED predictor performs less accurately as compared 

to the DWA predictor near the roof of the house in the 1st quadrant of the image. 

Similarly in the picture of tree MED predictor performs better around most edges 

except some edges near the lower trunks of trees. The lower performance of the 

MED predictor around some edges needs further analysis, in order to have a better 

understanding of the phenomenon, which may help in developing better predictors.  
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Figure 5-1 Pixel wise comparison between MED and DWA 

 

The main observation which is common in all these anomalies is that the 

prediction of MED is more accurate around edges which are at an angle of 0o to 90o 

i.e. like a forward slash (/) and less accurate around the edges which are at an angle 

of 0o to -90o i.e. like a backward slash (\). It is suggested that if the two kinds of 

edges be separated then it may be possible to use different predictors around 

different edge types. However separating the forward slash type edges from the 

backward slash type edges will again require segmentation which may not be very 

     

     

 

     
 (a)  (b) (c) 
 
(a) Original pictures 
(b) Black dots show the pixels where MED performed better 
(c) Black dots show the pixels where DWA performed better 
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accurate. Depending on the accuracy of segmentation of edge types, results may 

vary. It cannot be said with absolute confidence whether the segmentation of edges 

will yield any advantage, because the segmentation itself is an approximation. 

A method of segmentation of edges in forward slash type and backward slash type 

edges has been identified, using which some more advantage may be gained. The 

method aims at identifying forward slash type edges and then identifying the 

intensity of the edge. It is suggested that if the edge is identified as a back slash(\) 

type edge then less weight should be given to the MED predictor and if the edge is 

identified as a forward slash(/) type then higher weight should be assigned to the 

MED predictor. 

 

5.3.2 Progressive computation of weights 

The Composite method required the storage of the graph in the header of the 

compressed file, this requires storage of the table in the header of the compressed 

file, although the size of data in the table is not very large, which becomes less 

significant as the size of the image file increases. This happens because in most 

images the significant edge intensity levels are around 100. Storing the weights for 

one of the predictors for each edge intensity level may require 2x100=200 bytes. 

Since the total of both weights equal 1, therefore storing the other weight is 

redundant. The number of bytes required to store the table are independent of the file 

size, therefore this number becomes less significant if the size of the original file is 

large. Never the less the cost is there and calculation of the weights takes place 

during the compression of the image. If however the table is not stored, but is 

maintained by both the compressor and the de-compressor, as each pixel of the 

image is decompressed then storing the table will not be necessary. Both the 

compressor and the de-compressor can find the edge intensity level of each pixel, 

and then predict the pixel using both methods. The prediction of each method can 

then be compared with the actual value of the pixel. The hit counter of the prediction 

which is found to be more accurate can then be incremented. If both predictions are 

found to be equally accurate then none of the counters are incremented. By 

progressively maintaining the table as each pixel is being predicted the table will 

become more and more accurate. It needs to be seen if similar accuracy is possible 

with such a progressive method of computation of weights, and is currently under 

consideration. 
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Appendix A 

256 x 256 Images 

  

Aerial-1  Airplane 

     

Chemical Factory Clock 

   

Couple Girl-1 
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Girl-2 Girl-3 

   

House Moon Surface 

 

Tree 
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512 x 512 Images 

 

Truck 

 

Aerial-2 
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Car 

 

Elaine 
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Fishing Boat 

 

Girl-4 
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Lena 

 

Mandrill 
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Peppers 

 

Sailboat on Lake 
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1024 x 1024 Images 

 

Man 

 



 82 

 

Airport 
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