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Abstract

A shared system bus is a key feature of modern system-on-chip design methodolog

allows the independent development of major macrocells which are then brought tog

in the final stages of development. The use of a synchronous bus in a synchronous

brings with it problems as a result of clock-skew across the chip and the use of m

timing domains in a system. In an asynchronous system, the use of a synchronou

would subvert many of the benefits offered by asynchronous logic such as red

electromagnetic emissions.

This thesis describes an asynchronous system-on-chip bus which offers a solution t

problems. Existing shared-bus techniques are re-investigated in the context

asynchronous implementation and a complete bus design is presented that ha

developed for use in an asynchronous subsystem of a mixed-synchrony chip. This

will imminently form part of one of the first commercially available products

incorporate components that use asynchronous VLSI techniques.

The split-transfer primitive, often avoided or added as an optional extension

synchronous designers, is used as the basis for the chosen bus architecture. It offers

grained interleaving of bus activity and a better bus availability than would

interlocked-transfer technique as found in many synchronous alternatives. This tech

is viable in an asynchronous design because of the very low arbitration latency.

Simulation results show that the proposed architecture achieves a perform

comparable with synchronous buses that use similar levels of resource, whilst mainta

the benefits of the asynchronous design style.
9



f an

ther

ither

y

ter.

uch

e with

the

this

nt to

out

any

take
Declaration

No portion of the work referred to in this thesis has been submitted in support o

application for another degree or qualification of this or any other university or o

institute of learning.

Copyright

(1). Copyright in text of this thesis rests with the Author. Copies (by any process) e

in full, or of extracts, may be madeonly in accordance with instructions given b

the Author and lodged in the John Rylands University Library of Manches

Details may be obtained from the Librarian. This page must form part of any s

copies made. Further copies (by any process) of copies made in accordanc

such instructions may not be made without the permission (in writing) of

Author.

(2). The ownership of any intellectual property rights which may be described in

thesis is vested in the University of Manchester, subject to any prior agreeme

the contrary, and may not be made available for use by third parties with

permission of the University, which will prescribe the terms and conditions of

such agreement.

Further information on the conditions under which disclosures and exploitation may

place is available from the Head of the Department of Computer Science.
10



from

en as

the

een

oller

BLE

d the

f the

LSI
The Author

John Bainbridge obtained an M.Eng degree in Electronic Systems Engineering

Aston University in 1996. This thesis is the result of three years of research since th

a member of the AMULET Group of the Department of Computer Science at

University of Manchester. During that period, most of the AMULET group have b

working on the design of the asynchronous half of a telecommunications contr

system-on-chip.

The author was responsible for all aspects pertaining to the design of the MAR

backbone in this system, and the design of the initiator and target bridges an

synchronous on-chip bus (SOCB) bridge. In addition to contributing to the design o

processor local-bus to MARBLE bridges the author also had a small hand in the V

layout of the processor core.
11



tion

T3

uable

.

evel

luding

ace to

e top-

els

ner,

ert

fine

less
Acknowledgements

Whilst working as a part of the AMULET group I have received support and inspira

from many of my colleagues, especially those involved directly with the AMULE

project. Special thanks are due to a few individuals:

First and foremost of these is my supervisor, Prof. Steve Furber without whose val

guidance and support this work would not have been possible. Many thanks Steve

Dr Jim Garside and Dr Steve Temple have provided much advice on low l

implementation issues and assistance with the CAD tools when problems arose, inc

a hack for the y2k bug of the Compass Design Tools. Steve also served as an interf

the commercial partners of the project, proof-read the thesis and manually laid out th

level wiring of the chip.

Dr David Lloyd performed the unenviable task of converting my behavioural mod

written in an in-house language into a VHDL model for use by our commercial part

and in the process raised many interesting issues for discussion.

Finally, I would like to acknowledge Andrew Bardsley, Phil Endecott and Dave Gilb

for many useful discussions; Doug Edwards and Ian Watson for introducing me to the

arts of navigation and the downhill ride to the pub; and my parents for their time

support whatever I choose to do.
12



uits is

ing

ology

in the

ns of

rers.

ctronic

could

h a

cked

r high-

s [69]

y the

sors,

ever,

s and

, the

reuse.

sical

blem

r bus.
Chapter 1: Introduction

The major challenge that faces designers of System-on-Chip (SoC) integrated circ

achieving the required functionality, performance and testability whilst minimis

design cost and time to market. The key to achieving this goal is a design method

that allows component reuse. Such methodologies have been an enabling factor

success of vendors of intellectual property, such as ARM Limited, who license desig

the same processor core macrocells to many competing semiconductor manufactu

The problem of design reuse has arisen at earlier stages in the development of ele

technology. A case in point is 8-bit microprocessor systems where the designer

pick-and-mix cards from many vendors’ libraries, connecting the cards throug

backplane. This approach only works if standard interfaces are widely used. Clo

buses were used for very simple systems, but asynchronous buses were preferred fo

performance or large-scale systems. In more recent times, the synchronous PCI bu

has become the dominant solution for board-level interconnection, driven largely b

x86 [43] PC processor market which provides a ready supply of both proces

peripheral cards and chips with interfaces for direct connection to the bus. How

asynchronous buses are still used, such as SCSI [74] in high-end disk subsystem

VME [84] and the IEEE FutureBus [32] at the rack level.

Now that integrated circuits can contain many millions of transistors on one chip [76]

emerging System-on-Chip industry must again address the problem of component

This time, the components are macrocells which may be sold in both hard (i.e. phy

layout) and soft (i.e. descriptions for synthesis) forms. The solution to the reuse pro

is again to have common interfaces and a standardised interconnection network o
Chapter 1:  Introduction 13
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Industry has so far adopted only synchronous macrocell buses, such as ARM’s A

[2], as the interconnect solution, using a global clock to control the transfers. Restri

the ‘common interface’ using a clock may be a short-sighted solution in the ligh

impending clock-skew problems and anticipated requirements for SoC design

incorporate multiple clock domains and asynchronous macrocells.

This thesis presents the case for an asynchronous solution to SoC interconnect u

split-transfer system, allowing the seamless connection of asynchronous and synchr

components with multiple clock domains. The potential benefits include:

• support for both clocked and self-timed macrocells;

• improved macrocell reuse;

• zero power quiescent state;

• reduced electromagnetic emissions.

Supporting arguments for these claimed benefits are presented later.

As a concrete illustration of the feasibility of asynchronous interconnect, chapt

describes the AMULET3H subsystem of a commercial telecommunications contr

chip. At the heart of this subsystem is the Manchester Asynchronous Bus for Low En

(MARBLE), a dual channel split transfer bus that is summarised in chapter 8.

The remainder of this chapter presents the merits of both synchronous and asynch

design styles and concludes with an overview of the rest of the thesis.

1.1 Asynchronous design and its advantages

Asynchronous design, where timing is managed locally (as opposed to globally w

clock system as in synchronous design), was used in the early days of computers (

the days of VLSI technology) when machines were constructed from disc

components. With the arrival of the integrated circuit, the synchronous design para

gained popularity and became the dominant design style due to the simple, easy-to-

one-sided timing constraint that it provides. However, in recent years asynchro
Chapter 1:  Introduction 14
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design has been reborn. Research and tool development in this area are still adva

spurred on by the following advantages that asynchronous design offers.

1.1.1 Avoidance of clock-skew

Synchronous design methodologies use a global clock signal to regulate operation

all state changes in the circuit occurring when the clock signal changes level. As fe

sizes decrease and integration levels increase, the physical delays along wires in

are becoming more significant, causing different parts of the circuit to observe the

signal transition at different times. If the affected signal is a clock, then this t

difference, known as clock-skew, limits the maximum frequency of operation o

synchronous circuit.

Through careful engineering of the clock distribution network, it is possible to mitig

the clock-skew problem, but solutions such as balanced clock trees [85] are expens

silicon area and power consumption and require extensive delay modelling

simulation [25].

The absence of a global clock in an asynchronous circuit avoids the problems of

skew and the complexity (and design time) of the clock distribution network.

1.1.2 Low power

Power consumption is important in many embedded systems where battery life is

premium. In larger, higher performance, systems power consumption affects

packaging cost of the system due to the need both to supply the energy onto the ch

to remove the heat generated. With some recent integrated circuits (ICs) dissipating

watts and processor data sheets now featuring sections on thermal management [1,

has become a significant problem.

Asynchronous design can reduce power consumption by avoiding two of the proble

synchronous design:

• all parts of a synchronous design are clocked, even if they perform no us

function;
Chapter 1:  Introduction 15
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• the clock line itself is a heavy load, requiring large drivers, and a significant amo

of power is wasted just in driving the clock line.

There are synchronous solutions to these problems, such as clock-gating, but the so

are complex and the problems can often be avoided with no extra effort or compl

when using asynchronous design.

1.1.3 Improved electro-magnetic compatibility (EMC)

The global synchronisation of a clocked design causes much of the activity in the c

to occur at the same instant in time. This concentrates the radiated energy emissions

circuit at the harmonic frequencies of the clock. Synchronous design approach

spreading this radiated energy across the spectrum, such as varying the clock peri

complex to implement and affect the performance of the system since the clock perio

only be made longer (not shorter) than the minimum for safe operation of the circu

Asynchronous circuits produce broadband distributed interference spread acros

entire spectrum, as confirmed by field strength measurements of the energy radia

the AMULET2e microprocessor [31]. This can be a significant advantage in syst

which use radio communication where interference must be minimised.

An asynchronous macrocell bus, even when connecting entirely synchronous macro

should still offer EMC advantages in that it allows an arbitrary phase difference betw

the clocks used in different regions of the chip, giving rise to some cancellation o

radiated electromagnetic fields.

1.1.4 Modularity

The performance of an asynchronous design can be improved by modifying only the

active parts of the circuit, the only constraint being that the communication protocol

on the interface to the module must still be obeyed. In contrast, for a synchronous d

improved performance can often only be achieved by increasing the global c

frequency which will usually require most of the design to be reimplemented.
Chapter 1:  Introduction 16
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In the context of system-on-chip design, the implications of this are enormous. Con

a library of synchronous components, designed to operate at a given clock frequ

probably determined by one system design. Later, a different system is designed tha

a processor and DMA controller with a higher global clock frequency for performa

reasons but requires the use of some of the peripherals in the library, for example an

interface. The ISDN interface is still limited in its throughput to the ISDN data-rate,

either must be interfaced to the higher clock frequency using multiple clock domain

the one system, or must be redesigned to operate at the higher frequency. If the s

and the library had been asynchronous, the same interface would be usable, even w

higher throughput components, without any modification whatsoever.

1.1.5 Better than worst-case performance

In a synchronous system the minimum clock period must be chosen to accommoda

combination of the worst-case variations in:

• power supply voltage;

• temperature;

• transistor speed (which varies due to variations in the processing of the silico

• data-dependent evaluation time, e.g. a ripple carry adder can complete an ad

with a small carry propagation distance faster than one with a long c

propagation distance.

Typically, the worst case combination is encountered very infrequently, and s

asynchronous circuit that is not restricted by having to run at a fixed clock frequency

achieve better than the worst-case performance whenever all the worst-case conditi

not coincide.
Chapter 1:  Introduction 17
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1.2 Disadvantages of asynchronous design

Asynchronous design has a number of disadvantages compared to synchronous

which may account for the apparent unwillingness of industry to adopt such techni

1.2.1 Complexity

The clocked design paradigm has one simple fundamental rule;every processing stage

must complete its activity in less than the duration of the clock period. Asynchronous

design requires extra hardware to allow each block to perform local synchronisatio

pass data to other blocks. Furthermore, to exploit data-dependent evaluation times

completion-detection logic is necessary. This added complexity results in larger cir

and a more difficult design process.

1.2.2 Deadlock

Control logic designed using an asynchronous design technique is likely to deadlock

event is either lost or incorrectly introduced, for example as a result of noise or ion

radiation. Synchronous control circuits offer better tolerance of such problems wher

example, the extra event may cause an incorrect output, but will not normally cau

complete system deadlock. Of course in some systems neither alternative can be tol

1.2.3 Verification

Verification of synchronous designs requires the checking of the static timing const

imposed by the clock and of the logical functionality of each module. For

asynchronous design, verification is difficult due to the non-deterministic behaviou

arbiter elements, and deadlock is not easy to detect without exhaustive state

exploration. Formal techniques for asynchronous circuit design [11] may assist in

area.
Chapter 1:  Introduction 18
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1.2.4 Testability

Testing for fabrication faults in asynchronous systems is a major obstacle due to the

deterministic behaviour of arbiter elements. This problem also affects synchro

designs which often have arbitration or synchronizers at their periphery where the

also non determinism and the additional problem that metastability is (incorre

assumed to resolve within a clock period. Furthermore, scan-path techniques are

difficult to apply [65] in an asynchronous design than in an equivalent synchron

design.

1.2.5 “It’s not synchronous”

Synchronous design techniques are widely used and have been taught in universit

over two decades. Most designers are thus not familiar with asynchronous d

techniques and the benefits they offer. Clocks are so ingrained in the industry that

asynchronous design techniques offer major advantages over synchronous appro

asynchronous design may never becomes more than a niche activity.

1.3 Thesis Overview

This chapter has made a case for asynchronous SoC interconnect and highlighted th

and cons of asynchronous VLSI design. The remainder of the thesis is arrang

follows:

Chapter 2 presents the fundamentals of asynchronous VLSI design showing the t

models in common use. Summaries of a number of example designs, from a low-p

pager based upon an asynchronous microcontroller to high-performance asynchr

microprocessors, show the commercial readiness of asynchronous design.

Chapter 3 discusses the interconnection requirements of computer systems, w

discussion of the techniques used in large networks, at the system-board level and

chip systems.

Chapters 4, 5, 6 and 7 investigate the issues involved in designing an asynchr

macrocell bus, at four levels as shown in figure 1.1. This figure shows how a sim
Chapter 1:  Introduction 19
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interface can be presented to the macrocell using two channels, one carrying com

(from an initiator to a target) and one carrying responses (from a target to the initia

The bus-interface consists of components at four levels, each level building

functionality on top of the lower level:

• a shared bus is in essence a group of wires with a fixed protocol ensuring that

will not be driven by multiple drivers at the same time. The wires themselves f

the lowest level of the hierarchy presented in figure 1.1, the physical la

Important parameters of long wires on submicron VLSI technology include

length, width and separation, all of which affect the speed of signal propagation

the coupling between the wires. These issues are discussed in chapter four.

• an asynchronous multipoint channel that can have many senders and many rec

forms the next level of the hierarchy, the link layer, as discussed in chapter

This chapter looks at grouping a set of wires and imposing a signalling prot

upon them so that ordered communications between senders and receivers

performed. Issues addressed include arbitration for access to the channel, ch

Figure 1.1: Bus interface modules
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signalling protocols, address decoding and signalling and data hand-

Centralisation versus distribution of the control for the channel is also discus

Finally, asynchronous multipoint channel controller implementations are sh

that allow the connection of a non-multipoint channel to the multipoint channe

• for performance reasons a macrocell bus will usually use more than one multi

channel. The middle level of the hierarchy, the protocol layer, defines the

transfer protocol and how the macrocell bus is built upon the link layer. Chapte

investigates the issues involved at this level where transfer phases must be m

onto cycles on the channels provided by the lower-level link layer and meas

must be taken to ensure that activity on different channels that belongs to the

transfer is routed between the same two devices.

• the previous three levels provide for transfers between initiators and targets

transaction layer, addressed in chapter 7 is responsible for mapping the com

and response channel packets passing between the bus-interface and the

device onto individual bus transfers. Simple transaction layers only permit

outstanding transfer across the bus at any instant, whereas more com

implementations allow a greater number, and hence deeper pipelining of the e

system.

As a concrete example of the viability of asynchronous SoC interconnect, chap

presents MARBLE, a complete specification for a dual-channel asynchronous bus

a split transfer protocol, in the context of the AMULET3H telecommunicatio

subsystem, thus bringing together the issues discussed in the earlier chapters. Full

of both initiator and target interfaces are included with descriptions of features other

the protocol, such as support for burst optimisations.

Chapter 9 presents an evaluation of the MARBLE bus architecture. Performance m

analysed include the bandwidth and latency of the system. The delays inherent

different parts of the bus system are also investigated to highlight potential area

improvement.
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Finally, chapter 10 draws conclusions about how MARBLE demonstrates the advan

and disadvantages of an asynchronous macrocell interconnection strategy in addi

suggesting future expectations and possibilities for the use of asynchronous

interconnect.

1.4 Publications

The following papers, based on the work presented in this thesis, have been publis

submitted for publication:

• Asynchronous macrocell interconnect using MARBLE [5]

(ASYNC 98 Conference);

• MARBLE: A proposed asynchronous system level bus [6]

(2nd UK Asynchronous Forum);

• Bridging between MARBLE and a clocked peripheral bus [7]

(4th UK Asynchronous Forum);

• Multi-way arbitration [8]

(5th UK Asynchronous Forum)

• Crosstalk analysis for AMULET3/MARBLE [9]

(5th UK Asynchronous Forum)

• MARBLE: An asynchronous on-chip macrocell bus

(Microprocessors and Microsystems Journal, scheduled for July 2000)

• AMULET3i - an Asynchronous System-on-Chip

(ASYNC2000 Conference)
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Chapter 2: Asynchronous Design

This chapter provides an introduction to asynchronous design. The information pres

here is intended to set the context for the overlap of two themes: asynchronous desig

SoC interconnect, in the form of an asynchronous macrocell bus. Further details o

aspects of asynchronous design are available elsewhere [82].

2.1 Introduction

Fifty years ago, computer pioneers designed digital computers based upon therm

valves [86,87], and systems such as the Ferranti Mark 1 [30] constructed on large

with custom inter-rack connections occupied large rooms or buildings. The principle

binary digital design were the same then as they are now:

• Two values, 0 and 1, represent information and they are represented as d

signal values (most commonly voltages);

• Signals must only be sampled or observed when in one of these two distinct s

Much of the methodology of digital design is a consequence of the latter requirem

imposed upon the designer because thedigital circuit is really an analogue circuit

approximating a digital behaviour. The approximation breaks down at the point wh

circuit switches state from 0 to 1 or from 1 to 0, which takes a significant time as the si

passes through the analogue space between the two digital threshold voltages. If the

is sampled during this time, which appears as a delay in the digital model, its val

unpredictable and may give unexpected behaviour (a phenomenon known as a ha

Digital design methodologies differ in how they indicate when the signals are in a s

0 or 1 state (and are thus ready to be sampled reliably):
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2.1 Introduction

all

on

ated

codes

came

plexity.

cards,

ore

styles

s and

ated

es and

delay

c, and

ed.

chip,

plane

finding

ing a

hich

elay

this

circuit

reuse

VLSI
• the synchronous (clocked) methodology globally distributes a timing signal to

parts of the circuit. Transitions (rising and/or falling depending on the design)

this clock line indicate moments at which the data signals are stable;

• the asynchronous (self-timed) methodology utilises the passing of time, as indic

by local matched delay lines, to indicate when the data signals are stable, or en

the timing information in the data line activity itself.

The advent of the transistor meant that much larger, more reliable, systems be

feasible and design methods advanced to meet the needs to handle greater com

Systems were constructed from racks using a backplane hosting many daughter

each with a standard interface, allowing extra functionality to be provided by adding m

cards to the system. During this period both synchronous and asynchronous design

were commonplace, the latter using techniques based on the use of local-clock

delays based upon multiples of the clock period. Circuits of this era typically oper

under what is known as the bounded delay model, where the delays in both the gat

wires are assumed to be within a bounded range (as opposed to the unbounded

model where the delay can be any finite value). This approach was somewhat ad-ho

when the VLSI era arrived, the more disciplined synchronous design style dominat

The VLSI era has allowed whole system components to be constructed on a

requiring fewer boards and racks per system and allowing higher performance. Back

buses advanced in complexity to meet these performance requirements.

Over the past two decades, research into asynchronous design has concentrated on

more disciplined approaches which can challenge clock-based design in offer

reliable basis for VLSI design. Often unbounded delay assumptions are used, w

guarantee that a circuit will always operate correctly under any distribution of d

amongst the gates and wires within the circuit.

Currently, asynchronous design methods are well developed (as shown later in

chapter), and whole computer systems can be constructed as a single integrated

using either synchronous or asynchronous methods. Now, the interconnect and

problems that affect designers at the circuit-board and rack level also affect the
Chapter 2:  Asynchronous Design 24
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designer. Again the solution is to have a standardised interface allowing modules

mixed-and-matched. This interface is the macrocell bus.

2.2 Asynchronous design

Fundamental to the understanding of asynchronous design is a familiarity with

assumptions commonly made regarding the delays in the gates and wires within a c

and the mode in which the circuit operates. The two common delay models, boun

delay and unbounded-delay, were introduced above. The bounded delay mode

commonly used in the early days of asynchronous design, and is still used in

backplane level interconnection schemes such as the SCSI bus [74] where part

protocol is based upon known, fixed delays. Current asynchronous VLSI designs

research efforts use the unbounded delay model for the implementation of state-ma

and controllers since it leads to circuits that will always operate correctly whateve

distribution of delays. It separates delay management from the correctness issue, al

the functionality of the circuit to be more easily verified. The bounded-delay model is

commonly used for datapath components, however, since in this area it can lead to s

implementations.

The following sections discuss other aspects of various asynchronous d

methodologies.

2.2.1 Circuit classification

Within the unbounded delay model, there are various different design styles in com

use, each with its own merits and problems. In order of increasing number of tim

assumptions they are:

Delay-insensitive (DI) circuits

A circuit whose operation is independent of the delays in both circuit elements (gates

wires is said to be delay-insensitive. Martin has shown that the range of true d

insensitive circuits that can be implemented in CMOS is very restricted [53].
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Quasi delay-insensitive (QDI) circuits

If the difference between signal propagation delays in the branches of a s

interconnecting wires is negligible compared to the delays of the gates connected to

branches then the wires are said to form anisochronic fork[77]. Circuits created using the

DI design style augmented with the isochronic fork assumption are said to be quasi d

insensitive (QDI).

Speed-independent (SI) circuits

If wire delays in a circuit are assumed to be zero (or, in practice, less than the mini

gate delay), and the circuit exhibits correct operation regardless of the delays in any c

elements, then the circuit is said to be speed-independent. The assumption of zer

delay is valid for small circuits.

2.2.2 The channel

In asynchronous design, data is passed between modules using a group of

collectively known as a channel. These channels are normally unidirectional poi

point connections, and over the years, a number of different asynchronous VLSI ch

implementations have been defined. In such channels, the data always flows in

direction between two devices:

• thesender is the device that delivers data onto the channel;

• thereceiver is the device that accepts data from the channel.

Orthogonal to this classification is the concept of which end caused the transfer to o

• the initiator is the device that caused the transfer to occur;

• thetarget is the device that responds to the initiator.

Which device performs which function is determined by the protocol and tran

direction used on a given channel.
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2.2.3 Signalling conventions

The transfer of information across a channel is negotiated between the sender and re

using a signalling protocol. Every transfer features arequest (req)action where the

initiator starts a transfer, and anacknowledge (ack)action allowing the target to respond

These may occur on dedicated signalling wires, or may be implicit in the data-enco

used (as described below), but in either case, one event indicates data validity, a

other signals its acceptance and the readiness of the receiver to accept further dat

The flow of information relative to the request event determines whether the chann

classified as apushchannel (where information flows in the same direction as the requ

or a pull channel (where information flows in the same direction as the acknowled

These two types of channel are illustrated in figures 2.1a and 2.1b. Designers often

of pushing or pulling data, thus implying the protocol used.

The request and acknowledge may be passed using one of the two protocols des

below; either a 2-phase event signalling protocol (a non return-to-zero scheme) o

phase level signalling protocol (a return-to-zero scheme). Conversion betwee

different protocols has been well documented elsewhere [50], with many types of

controller documented for converting between the different 2-phase and 4-p

signalling protocols.

2-phase (transition) signalling

In the 2-phase signalling scheme, the level of the signal is unimportant; a transition c

information with rising edges equivalent to falling edges, each being interpreted

signalling event. A push channel using the 2-phase signalling protocol thus passe

using a request signal transition, and acknowledges its receipt with an acknowledge

transition. Figures 2.1c and 2.1d illustrate the push and pull data-validity schemes fo

2-phase  signalling protocol.

Proponents of the 2-phase design style try to use the lack of a return-to-zero ph

achieve higher performance and lower power circuits.
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4-phase (level) signalling

The 4-phase signalling protocol uses the level of the signalling wires to indicate

validity of data and its acceptance by the receiver. When this signalling scheme is u

pass the request and acknowledge timing information on a channel, a return-to-zero

is necessary so that the channel signalling system ends up in the same state after a

as it was in before the transfer. This scheme thus uses twice as many signalling edg

transfer than its 2-phase counterpart. Push and pull variants of the 4-phase sign

protocol are shown in figures 2.1e and 2.1f.

4-phase control circuits are often simpler than those of the equivalent 2-phase s

because the signalling lines can be used to drive level-controlled latches and th

directly.

a. Push channel b. Pull channel

c. 2-phase push protocol d. 2-phase pull protocol

e. a 4-phase push protocol f. a 4-phase pull protocol

Figure 2.1: Channel signalling protocols
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2.2.4 Data representation

A further dimension in asynchronous design is the choice of encoding scheme us

data representation where the designer must choose between a single-rail, dual-rai

or other more complex N-of-M scheme. These alternatives are discussed in the follo

sections.

Single-rail encoding

Single-rail encoding [63] uses one wire for each bit of information. The voltage leve

the signal represents either a logic 1 or a logic 0 (typically Vdd and Vss respectivel

CMOS technology). This encoding is the same as that conventionally use

synchronous designs. Timing information is passed on separate request and ackno

lines which allow the sender to indicate the availability of data and the receiver to ind

its readiness to accept more new data. This scheme is also known as thebundled-data

approach. All single-rail encoding schemes contain inherent timing assumptions in

the delay in the signal line indicating data readiness must be no less than the delay

corresponding data path.

Single-rail design is popular, mainly because its area requirements are similar to tho

synchronous design, as is the construction of any arithmetic components using

scheme.

Dual-rail encoding

Dual-rail circuits [81] use two wires to represent each bit of information. Each tran

will involve activity on only one of the two wires for each bit, and a dual-rail circuit th

uses 2n signals to represent n bits of information. Timing information is also implic

the code, in that it is possible to determine when the entire data word is valid by dete

a level (for 4-phase signalling) or an event (for 2-phase signalling) on one of the two

for every bit in the word. A separate signalling wire to convey data readiness is thu

necessary.
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4-phase dual-rail data encoding is popular for the QDI design style but, as with all d

rail techniques, it carries a significant area overhead in both the excess wiring an

large fan-in networks that it requires to detect an event on each pair of wires to dete

when the word is complete and the next stage of processing can begin. As an illust

of this point, figure 2.2 shows a circuit fragment suitable for detecting the presence

valid word on a 4-bit datapath. In practice, it is also necessary to detect when all o

bit-lines have returned to zero, for which the AND gates must be replaced by Mulle

elements  as described in section 2.2.5.

One-hot encoding / Null Convention Logic (NCL)

One-hot circuits use 2n signal lines to represent n bits of information, each lin

representing one n-bit code. One line can thus transmit n-bits of information and

associated timing information (data validity).

The Null Convention Logic (NCL) design style from Theseus Logic Inc. [29] uses a 1

encoding where each wire indicates eitherdataor null combined with a four-phase (return

to zero) protocol. The scheme permits an arbitrary number of wires, e.g. decimal num

could be represented directly using ten wires, with only one wire in a group allowe

signal data at any one time. Typically, only two wires are used (as for dual-rail lo

where one wire is used to indicate true and the other false.

The NCL design style does not use Muller C-elements (as described in section 2.2.5

instead uses threshold (majority) gates [70]. These gates give a high output w

specified number (or greater) of their inputs are high but, as for the Muller C-elem

Figure 2.2: 4-bit dual-rail completion detection logic
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Chapter 2:  Asynchronous Design 30



2.2 Asynchronous design

puts

2 (or

will

itly

ssary

ld

our as

C-

eme

ectly

elay-
they feature hysteresis such that after the output has risen, it will not fall until all in

have fallen.

For example, the gate shown in figure 2.3 has five inputs and a threshold of 2. If any

more) of the inputs are high, then the output will switch to a high level. The output

then remain high until all the inputs are low.

As with the dual-rail logic described above, NCL carries the timing information implic

with the data, and again suffers from the large fan-in requirements of the logic nece

to detect when a complete word is present - a 4-bit data path requires a 4-of-8 thresho

gate which can be realised as shown in figure 2.4. This circuit has the same behavi

that achieved if the AND gates of the circuit in figure 2.2 are replaced by Muller

elements, but is shown using threshold gates here to illustrate the NCL approach.

N-of-M encoding

Dual-rail encoding and one-hot encoding are examples of an N-of-M encoding sch

where N=1. Coded data systems using an N-of-M code where M>N operate corr

regardless of the distribution of delay in the wires or gates, and are thus said to be d

insensitive [81].

Figure 2.3: 2-of-5 Threshold Gate

Figure 2.4: NCL Four-bit word completion detection logic
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More complex codes exist (where N>1) which use actions on more than one wire

group to indicate one of a set of possible codes. These offer better utilisation o

available wires (for example a 2-of-7 code can transmit 4-bits of information over 7 w

in a delay-insensitive manner), but result in larger arithmetic circuits and conver

between the coded form and a single-rail scheme is more expensive than for the 1

codes.

2.2.5 The Muller C-element

The Muller C-element (often known as C-element or a C-gate) is commonly encoun

in asynchronous VLSI design where it is used both for synchronising events and as a

holding element. Figure 2.5a shows a symmetric 2-input C-element, its logic function

one possible pseudo-static CMOS implementation.

In a CMOS implementation of a symmetric C-element the n and p stacks are a refle

of each other. Asymmetric variants of the C-element have different structures for

and p stacks, and thus some input signals may only affect either the rising or falling o

transition, not both. Example asymmetric C-elements are shown in figures 2.5b, 2.5

2.5d.

2.2.6 Specifications and automated circuit synthesis

A number of specification techniques are available to the asynchronous designer. He

summarise those for which a synthesis route is currently available. For small-

asynchronous designs, there are two classes of specification commonly used: state

and event-based, as described below. Unfortunately, these techniques do not sca

so they are only used for the construction of small modules. Larger designs are

created from compositions of these small modules. Balsa [10] and Tangram [78,79

examples of such a synthesis approach based upon the syntax-directed translatio

programming language based on CSP [37].
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Event-based specification and synthesis

Petri Net [64] specifications describe the behaviour of systems in terms of sequenc

events, incorporating the concurrency and causality between the events.

Current event-based asynchronous circuit synthesis methodologies (including the P

tool [19,20] used for some of the work presented in this thesis) are based upo

foundations laid by Chu [15,16]. These use an interpreted Petri Net, known as a S

Transition Graph (STG), as the input specification with the transitions labelled with si

names. In the STG notation a transition is labelled with either a ‘+’ (represents a r

signal), ‘-’ (representing a falling signal) or a ‘~’ (representing a change in lev

Dependencies and causalities are represented in the STG using the notations sh

figure 2.6. As an example of the STG specification style, figure 2.7 shows

specification of the two input Muller C-element described above with inputs ‘a’ and

and output ‘o’. The dotted arcs show the behaviour of the circuit’s environment, and

solid arcs show the behaviour of the circuit (the C-element in this case).

o=a.b+o.(a+b) o=a.b+o.b o=a.b+o.(b+c) o=b+o.c

a. c2 b. c1_2 c. c2_2 d. c2_1

Figure 2.5:  Muller C-elements, their function and their implementation
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State machine based specification and synthesis

Huffman state machines [40] are the classical asynchronous finite state mac

operating in fundamental mode. Burst-mode, as introduced by Stevens[17,24,71

formalized by Nowick [59], and extended burst mode state-machines are a relaxat

the fundamental mode condition of only one input changing at a time. The MEAT

[17] was the first burst-mode synthesis package, although this has been superse

tools such as Minimalist [60].

a+ enables b- a+ AND b+

enable c+

b+ AND c+

follow a+

a+ enables

b- OR c-

a+ OR b+

enable c+

Figure 2.6: STG notation

Figure 2.7: STG specification for a 2 input Muller C-element

b-

a+ a+ b+

c+ b+ c+

a+

b- c-

a+ a+ b+

c+

b+a+

o+

b-a-

o-
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2.2.7 Metastability, arbitration and synchronisation

Section 2.1 introduced the problems in modelling a digital system with an analo

approximation. Similar problems are encountered when a bistable system must dete

an ordering of two asynchronous inputs that occur almost simultaneously. In this

time is the continuously varying input, and during the period where the decision is m

the state of the output may be neither a 0 nor a 1, but somewhere in between. This sit

is known as metastability [13]. Furthermore, making a reliable decision in a bounded

is fundamentally impossible [21,47,14,38] because a circuit with a finite gain-bandw

product cannot resolve a continuously varying input into a discrete output in bou

time.

This is accommodated in a synchronous system by waiting for a predefined peri

clock cycle for example, before using the output from the bistable circuit. This ac

sampling an asynchronous input at the instant when a transition on the other

(typically the clock in synchronous design) occurs is known as synchronisation1. There is

always a chance of synchronisation failure in a synchronous system because the b

circuit may still be metastable when its outputs are used in a subsequent clock p

Careful engineering to optimise the gain-bandwidth product of the bistable circuit

usually make this probability acceptably small but cannot eliminate the possibilit

failure.

Asynchronous design uses the alternative approach of waiting until the bistable

resolved its output to a defined logical value, 0 or 1, before allowing the output to

into the rest of the system. This act of determining which event came first is ca

arbitration. It can be achieved using an analogue filter attached to a bistable to cre

mutexstructure as proposed by Seitz [68]. A suitable CMOS implementation of Se

NMOS design is shown in figure 2.8.

Theoretically the arbitration can require an unbounded time, but in practice

probability of remaining in the metastable state for a long period is sufficiently smal

it to be insignificant. If the occasional long delay can be tolerated then arbitration ca

1. Not to be confused with the synchronisation of two event streams as when using
element as the AND function in a 2-phase system as described in section2.2.8
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‘failure free’. Asynchronous arbitration thus incurs the average case delay whe

synchronisation always results in the worst case delay and a higher probability of fa

2.2.8 Sutherland’s micropipelines

In his 1988 Turing Award lecture, Ivan Sutherland introduced a framework for desig

elastic asynchronous pipelines. The lecture, entitled ‘Micropipelines’ [72], propos

library of asynchronous modules (shown in figure 2.9) with two-phase, unidirectio

bundled-data channel interfaces which could be interconnected to build la

asynchronous circuits.

Figure 2.8: CMOS mutex implementation

a. OR function b. AND function c. TOGGLE

d. SELECT e. CALL f. ARBITER

Figure 2.9: Micropipeline event control modules
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Theor function for events is provided by the exclusive-or (XOR) gate. This is also kno

as amergebecause it allows two or more event streams to be merged into one. For

transition on an input, a corresponding event will be seen on the output. For co

operation, input events must be well separated. In practice this means that each

event should be acknowledged by an output event before the next input event is a

Theand function for events is provided by the Muller C-element. A transition will occ

on the output only when there has been a transition on both of the inputs. The C-g

also known as arendezvouselement because the first input event is held-up until it

joined by an event on the other input before being allowed to pass to the output (

referred to as a synchronisation of the two events).

The toggle steers events to its outputs alternately. The first event after initialisatio

steered to the output marked with a dot, the next to the unmarked (blank) output and

the cycle repeats.

The selectblock again steers incoming events to one of its outputs. However here

output is selected by the level of the boolean select signal (indicated by the diamo

figure 2.9d). The select signal must be set-up before the input event arrives, a s

requirement to the bundling constraint.

The call block allows two mutually exclusive processes to access a shared resour

procedure, much the same as a procedure call in software. The call routes input eve

either r1 or r2 to the output r, and then routes the acknowledge/done event from the d

to either d1 or d2, dependent upon which input request event was routed previousl

correct operation the call block requires activity on the input channels to be mutu

exclusive.

Thearbiter provides arbitration between two contending asynchronous input stream

r1 and r2). It handles metastability internally (as described in section 2.2.7) whilst

presenting valid logic levels at its outputs (g1 and g2). Like a semaphore in softwa

delays subsequent grants until it has received an event on the done wire (d1 o

corresponding to an earlier grant thus ensuring that there is no more than one outsta

grant.
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2.2.9 Large Asynchronous Circuits

Asynchronous design is now achieving maturity with a number of groups ha

fabricated functional microprocessors. The following sections introduce the output

few of the key players in the field of asynchronous design. The Philips pager describ

the first commercially available product to incorporate an asynchronous VLSI chip.

AMULET

The AMULET group at the University of Manchester, UK, have produced a series of

power asynchronous reduced instruction set (RISC) microprocessors that execu

ARM instruction set. These processors all offer low power and good electromag

compatibility, with the latest release, AMULET3, delivering 100 Dhrystone 2.1 MI

and a power efficiency of 780 MIPS/W. The AMULET processors use custom data

layout and a single-rail bundled data signalling protocol.

AMULET1 [62] was a 2-phase implementation constructed to demonstrate the viab

of the asynchronous micropipelined design style. Innovative asynchronous features

AMULET1 included a simple ripple carry adder with a data-dependent propagation

and an instruction prefetch unit which had a non-deterministic (but bounded) pre

depth beyond a branch.

Although functional, the final silicon implementation presented problems when using

2-phase protocol at the system board level (there was no on-chip RAM), but

performance was within a factor of 2 of the equivalent synchronous AR

microprocessor.

AMULET2e [31] used a 4-phase protocol throughout and a reorganized pipeline allo

it to achieve a performance of 42 Dhrystone 2.1 MIPS (between an ARM 710

ARM810). Power consumption was measured to be 150mW (giving a power efficie

of 280 MIPS/W). Major features of the AMULET2e included:

• a simple off-chip interface that relied upon an external delay line for its timing
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• a low-power halt mode where an idle-loop instruction causes a control event

blocked. The stall eventually propagates though the processor, causing all ac

to cease. The processor is re-awoken when an interrupt occurs;

• a branch target cache to reduce the frequency of pipeline flushes following br

instructions;

• a 4-KB on-chip cache which can also be used as a memory mapped RAM.

AMULET2e also used more carefully dimensioned FIFO buffers than AMULE

because the AMULET1 design had shown that although deep asynchronous pipelin

easy to build, they can have an adverse effect on performance [31].

In a further bid for increased performance, the AMULET3 core uses a Harv

architecture and a five stage processing pipeline. A reorder buffer provides suppo

resolution of dependencies and late exceptions. This core has been developed in p

with the MARBLE bus presented in this thesis, and the first version of both are inclu

in the AMULET3H chip described further in chapter 8. Coverage in more depth of

AMULET3 core architecture is also provided in chapter 8.

TITAC-2

An asynchronous microprocessor based upon a modified MIPS R2000 instruction s

been designed by members of the Tokyo Institute of Technology. The TITAC-2 [57

processor uses a dual-rail encoding of data and aScalable Delay Insensitivedelay model.

This model uses more relaxed delay assumptions than the QDI model, but is limit

application to small blocks, which are then connected using a QDI model.

Philips pager and 80C51 microcontroller

An asynchronous implementation of the 8-bit complex instruction set (CISC) 80

microcontroller and assorted peripherals have been synthesized using the Tangram

by van Gageldonk [80]. The single-rail bundled-data asynchronous implementation o
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microcontroller has a similar performance (4 MIPS) to its synchronous counterpart

consumes only one third of the power at a cost of twice the silicon area.

This microcontroller has been used in production in the Philips Myna pager, where its

level of electromagnetic emissions offers a competitive advantage over an equiv

system based upon a synchronous microcontroller.

ASPRO

The ASPRO-216 [66] is a QDI 16-bit scalar RISC standard cell microprocessor from

Ecole Nationale Superieure Telecommunication (E.N.S.T.) in Bretagne, Franc

addition to the usual arithmetic and control instructions found in any RISC processo

instruction set allows up to 64 custom instructions which can be used to drive addit

‘non-core’ functional units. Instruction issue is performed in-order, but instructions

allowed to complete out of order, using a register locking mechanism to res

dependencies.

2.3 Summary

Asynchronous design has reached the situation where a number of groups

successfully produced complex designs which are now beginning to appea

commercial applications. As such, asynchronous design now faces the same challe

synchronous design: combining a number of macrocells to form a complete System

Chip design.
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Chapter 3: System Level Interconnect
Principles

The increase in integration of functionality onto a single chip means that a greater de

is being placed on the on-chip interconnects, and so techniques that have been u

larger scale networks are now being considered for on-chip use also. This ch

discusses the basic concepts of a multipoint interconnect, with emphasis on the shar

which is often favoured for its low hardware cost. Alternative approaches are discu

but at present these are still expensive to implement for an on-chip interconnect

compared to a shared bus. Finally, a precis of three common synchronous SoC bu

provided.

3.1 Point-to-point communication paths

The simplest of link approaches, the serial point-to-point connection, is often use

long distance connections with the links implemented using wires, satellites or op

fibres. Slower (conventional wire-based) serial connections have many applications

classical example of this category is the RS232 [67] protocol used for the serial po

most modern microcomputers, and for the connection of terminal apparatus to

mainframe systems.

Where improved performance (throughput or latency) is required, often over sh

distances, parallel connections are commonplace. The parallel interconnection

between printers and their host computers is a prime example. On-chip buses are

latency critical, and hence use a parallel non-multiplexed approach with each bit of

the address and data flowing over separate wires.
Chapter 3:  System Level Interconnect Principles 41



3.2 Multipoint interconnect topology

n the

wing

imal

same

oured

s (the

vices

r the

g that

ng the

t is a

ntre of

. The

d-bus

ciated

oint

g a

alised
3.2 Multipoint interconnect topology

Many systems require the interconnection of a number of devices. Depending o

performance requirements and the available hardware resource, one of the follo

alternatives will be used.

3.2.1 Shared buses

The shared bus is often favoured for multipoint connections because of its min

hardware requirements, and there is a plethora of standards in this area. The

arguments over hardware requirements mean that the bus is also the fav

interconnection technique for on-chip use.

With a shared bus interconnection, many devices are connected to a group of wire

bus), but only two devices are allowed to use the wires at any one time. The two de

are referred to as the initiator and the target (the same terminology as used fo

asynchronous communication channel). The bus protocol is responsible for ensurin

the wires are used in an ordered manner, and for defining a mechanism for passi

active initiator and target roles between devices.

3.2.2 Star and Ring Networks

Alternatives to the shared-bus are the star or ring network. 10-base-T Etherne

commonly encountered example. These systems contain packet-switches at the ce

the star, or at each node of the ring, to route incoming packets to an outgoing link

packet-switch can be implemented as a localised (hence very low load) share

(maybe using a gated multiplexer rather than the tristate techniques usually asso

with a bus) which can operate at very high frequencies.

3.2.3 Meshes

The ultimate in interconnectivity is the mesh approach, which provides multip

interconnectivity using point-to-point links between nodes, the many links formin

mesh. As with the star and ring networks, the switches are in essence (fast) loc

shared buses with a very low capacitive load.
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As an example, two initiators can be connected to four targets using a group of b

arranged as shown in figure 3.1. Here the address-decode is performed first to dete

which of the horizontal buses to use. Then the merge function is performed on a horiz

bus-channel unique to the addressed target. The resulting cross-bar matrix pr

exactly the same interface as that presented by a single channel, i.e. 2 initiators

targets for the figure shown, but supports concurrent transactions when there is no c

for a client.

3.3 Bus protocol issues

A bus is often preferred over the other topologies introduced above because of its

implementation cost. This thesis addresses the design of an asynchronous shared

bus for use in on-chip systems. The features typically found in shared buses includ

following:

Figure 3.1: Fully interconnected bus-channel matrix
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Target
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Target

Target Initiator Target Initiator

Target Initiator
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3.3.1 Serial operation

Where large distances are involved, serial operation provides a cost advantage as

very few wires. A prime example of a commonly used serial bus is the 10-base-2 Eth

which uses coaxial cable (two conductors) to interconnect a number of nodes and op

at 10 Mbit/s.

3.3.2 Multiplexed address/data lines

Parallel bus systems where the same signal lines are used to send first an ad

command and then a data value are known as multiplexed address and data buses

are usually found in backplane buses where connector pins are at a premium and

buses cannot meet the required performance. The PCI [69] bus is an example o

approach.

3.3.3 Separate address and data lines

Where lower latency or greater bandwidth is required, the address and data are tran

over separate signal lines. Techniques such as pipelining of subsequent address a

transfers are very common in such buses.

Some variants of this approach use bidirectional tristate lines, with the direction cha

between reads and writes, whereas others use separate lines for read and write data

data is always transferred in only one direction on any set of lines. Others dispense

the tristate drivers altogether, favouring a gate-multiplexed datapath which will typic

operate much faster than a tristated solution. Such schemes don’t share any wires

sense usually associated with a shared bus, but their protocol is usually very simila

Furthermore, whichever datapath approach is taken, the timing of the data validity v

between systems. Some pass the write data at the same time as the address; others

the transfer so that read or write data is always passed after the address.
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3.3.4 Arbitration

Shared buses only have one data highway to provide transport between many nod

avoid corruption (and in some technologies also to avoid damaging short-circuits)

mandatory that only one device drive the bus at once. Arbitration is the techniqu

ensuring mutually exclusive access to the bus. Again there are a number of approa

• collision detection - where a bus client has to check for corruption of any da

sends onto the bus, and if corruption occurs (due to a collision with another c

also using the bus at the same time) then the client retries the transfer after

delay. Such schemes do not enforce mutually exclusive use of the bus, but do e

that data is passed correctly. 10-base-2 Ethernet uses this scheme. This techn

satisfactory for low occupancy buses in technologies where collisions (and mu

drivers active at the same time) can be tolerated. However, as bus occup

increases, so does the number of collisions, and performance (in terms of succ

transfers per second) is degraded.

• distributed arbitration - whilst collision detection is in effect a distributed form

ensuring that data is transferred uncorrupted, distributed arbitration is usually t

to mean a system of negotiating who owns a shared resource where the nego

circuits are distributed between the contenders. This can be clarified by an exa

a (narrow) SCSI bus can have one of eight possible owners at a given time. W

device requires the bus, it places its unique SCSI-ID on the bus during

arbitration phase of the protocol (which lasts for a fixed duration). If more than

initiator contends for the bus, then the one with the highest unique-id wins.

• centralised arbitration - gathers the choice-making logic into one unit, wh

communicates with each possible owner of the shared resource using a ded

connection that uses a request/grant protocol (usually very similar to the 4-p

handshakes found in asynchronous design).

When dealing with the allocation of a critical shared resource, the issues of fair

priority and starvation, as discussed in any good operating-systems design text, a
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relevant. They can be accommodated to some degree through the design of the arb

protocol for a distributed scheme or the arbiter design in a centralised approach.

3.3.5 Atomic sequences

Some actions require that an initiator is allowed to make a number of consec

transfers across the bus or to a specific target without other devices using that resou

the meantime. These transfers are said to beatomicor locked. One use of such transfer

is in implementing the semaphore operations used by operating system software.

3.3.6 Bursts

Similar to the concept of an atomic transfer sequence is the burst transfer. Here, a n

of related transfers are performed at an accelerated rate, often by transmitting one a

packet and then performing a number of data transfers. Such bursts are often us

cache line refills where a known number of data-words must be transferred from the

page of memory. Burst transfers usually allow a higher throughput than when perfor

the same operation using multiple distinct transfers. The higher performance results

reducing the number of arbitrations (and possibly address decodes) that have

performed. However, because a burst occupies the bus for multiple transfers, it can

an adverse effect on the latency encountered by other initiators awaiting access to th

3.3.7 Interlocked or decoupled transfers

Buses where the command/address phase and the response/data phase of the tra

tightly coupled are known as interlocked buses. This approach usually leads to s

synchronous control circuits. The alternative approach is to provide minimal coup

between the two phases of a transfer, allowing the command/address and response

be passed separately. A separate arbitration stage is then required for each part

transfer.

3.3.8 Split transactions

To improve bus availability, slow devices may be allowed to accept the address/com

part of a transaction and then disconnect from the bus, e.g. SCSI. They then reco
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later and perform the data action of the transaction. In the meantime, the bus is ava

for transfers between other devices. The transaction is said to be asplit-transaction. Such

transactions can be implemented on top of either an interlocked or a decoupled pro

and may require two transfers per transaction, one to pass the command/address a

to return the read-data and any other response bits. A split transaction can be m

directly onto a single decoupled transfer in some cases.

3.4 Interconnect performance objectives

The key performance requirements of an interconnect solution are:

• low latency - essential whenever there is a dependency on the transfer. A data

by a CPU is a good example, since the processor may be stalled until the d

returned (although in AMULET3 the reorder buffer allows the processor not to s

until a data dependency arises). The latency of fetching instructions is impo

when a change of instruction stream is encountered, due to a (non-predicted) b

or interrupt but has a lesser effect when executing sequential code due t

speculative prefetching that is now commonplace.

• high throughput - necessary when large quantities of data are to be transferred

as when a cache line is being reloaded from main memory or for the instruc

fetch process of a microprocessor.

These two goals tend to conflict, a common example being the addition of extra pip

stages to a system which often increases the throughput at the expense of the

pipeline latency.

3.5 Commercial on-chip buses

Over the past two years, a large number of on-chip buses have been proposed by th

companies active in the SoC design industry. Three of the more notable are the Peri

Interconnect (PI) Bus, AMBA and CoreConnect. A short precis of these three buse

provided in the following sections.
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3.5.1 Peripheral Interconnect Bus (PI-Bus)

The OMI PI-Bus [61] is an on-chip bus developed in a (European) project to standa

on-chip interconnect. Like most demultiplexed buses, the PI-Bus consists of an ad

bus and a data bus. Each bus is scalable up to 32-bits in size, and the specification

for a clock frequency of up to 50MHz (on 1996 technology), allowing a maxim

throughput of 200MB/s. This is aided by the pipelining of transfers which allows

address phase of a transfer to occur at the same time as the data phase of the p

transfer.

PI-Bus supports the usual range of bus features such as a multimaster capability, a

transactions, transfer deferral and data accesses of either 8, 16 or 32 bits. Furthermo

protocol includes the necessary acknowledge codes to allow a split transaction

constructed using multiple bus transfers, and there is provision for flexible burst tran

of an arbitrary length.

3.5.2 The Advanced Microcontroller Bus Architecture (AMBA)

AMBA [2,3,35] is a collection of on-chip buses from ARM Ltd. for satisfying a range

differing criteria:

• AMBA-APB - The AMBA Advanced Peripheral Bus is a simple strobed-access

with minimal interface complexity. It is suitable for hosting many periphe

functions (with only one initiator - often a bridge to one of the other members of

AMBA family), and holds the address and control signals valid throughou

transfer, not supporting any pipelining.

• AMBA-ASB -The AMBA Advanced System Bus is a multimaster synchrono

system bus. It operates with a pipelined protocol such that arbitration for the

transfer can occur in parallel with the current address transfer, which in turn wi

occurring at the same time as the previous data transfer. The AMBA-ASB supp

either a central multiplexer interconnection scheme, or a tri-stated approach

AMBA-ASB protocol is very similar to that of the OMI PI-Bus discussed abov
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• AMBA-AHB - The AMBA Advanced High-performance Bus is a high throughp

synchronous system backbone that was added to AMBA in mid-1999 with

release of version 2.0 of the specification [3]. It supports advanced feat

including burst transfers and split transactions (with a maximum of 16 initia

units, each of which can have one outstanding command) with separate data

for read data and write data. It uses single clock edge operation with a multipl

data path (instead of tri-stated bus lines) to provide for high frequency operation

simplify the automated synthesis of AMBA-AHB systems. To further boo

performance the address decoding is performed by a centralised unit and

datapath configurations are available, up to 128 bits.

A typical AMBA system will contain either an AHB or an ASB bus hosting th

microprocessor, a DMA controller and on-chip ROM/RAM, with an APB bus used

the connection of simpler peripheral devices.

Both the ASB and AHB are multimaster system buses and thus support transfer de

for the avoidance of deadlock situations (as when bridging between two buses

described further in section 5.6.4 where the handling of this in an asynchro

environment is addressed). The ASB allowed the use of this same mechanism f

implementation of split transactions, albeit in a crude manner, whereas one of the

features of the AHB is its direct support for split transactions allowing them to

performed much more efficiently. This is possible because the bus-arbiter has been

more intelligence and a direct connection to each target device, allowing the targ

indicate when an initiator should be allowed to retry its transfer (and hence be grante

bus again), rather than requiring the initiator to poll the target using the bus as is the

for AMBA-ASB and PI-Bus.

3.5.3 CoreConnect

The final on-chip bus reviewed here is CoreConnect [36,41,42] from IBM. As was

case for AMBA, CoreConnect is a family of three (synchronous) buses designed to

different performance criteria:
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• CoreConnect DCR - To provide for configuration register access, the CoreCon

architecture defines a separate low bandwidth Device Control Register

connecting all of the devices on the PLB, including the PLB-arbiter and the P

OPB bridge. This allows slow/infrequent configuration operations to proc

without impeding activity on the high throughput PLB.

• CoreConnect OPB - The CoreConnect On-Chip Peripheral Bus protocol is sim

to that of both the OMI PI-Bus and AMBA-ASB including the usual 32-bit addre

and data buses, overlapped arbitration, and bus parking so that one initiator c

given a default ownership of the bus when it is idle so as to reduce that initia

latency on a subsequent access.

• CoreConnect PLB - The CoreConnect Processor Local Bus is the high-perform

member of the family. It uses pipelined/overlapped arbitration, address trans

read data transfers and write data transfers (using separate pathways for rea

write data) combined with burst transfers to perform a maximum of two d

transfers per clock cycle (if both a write and a read are active at once). Fle

DMA support allows either store-and-forward (where the DMA controller fi

reads and then writes the data in two separate transfers) or flyby (where the D

controller issues the addresses for both a read and a write, and then the d

transferred directly between the target devices) DMA techniques to be used

PLB supports bus-widths up to 128 bits.

None of the CoreConnect family use tri-state bus lines, using the alternative

multiplexing approach to pass the appropriate signals onto the bus. The different bu

the CoreConnect family are allowed to operate at different frequencies, but all o

clocks must be derived from a common source so that a common clock edge can b

when bridging between the buses.
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3.6 Summary

The basic principles and issues involved in the connection of multiple system compo

have been introduced, and solutions including the shared bus have been revi

However, for whatever reason (possibly some of the ones in section 1.2), all cu

commercial on-chip buses are synchronous and do not address the needs of a

synchrony chip which may include asynchronous components. The remainder o

thesis investigates the design of an asynchronous System-on-Chip bus and its b

relative to a synchronous bus for the interconnection of asynchronous macrocells.

example of the viability of asynchronous on-chip buses, MARBLE (a 2-chan

asynchronous on-chip bus) is presented in the context of the AMULET3H asynchro

subsystem in chapter 8.
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Chapter 4: The Physical (Wire) Layer

A shared bus is a collection of wires where all interfaces to the wires comply with

ordered protocol devised to avoid deadlocks and data corruption. In the layered

implementation hierarchy of figure 4.1 these wires collectively form the lowest layer

physical layer.

The physical layer of this bus hierarchy defines how the wires will be terminated, t

separation and their size. These issues are addressed for an asynchronous SoC bu

chapter.

Figure 4.1: A layered bus hierarchy
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4.1 Wire theory

Although a wire in a circuit is often considered to have negligible resistance

capacitance, these assumptions are no longer true with submicron silicon feature siz

all of the parameters of the wire must be considered. Since the circuit elements of a

are distributed along its length the description of the wire requires a partial differe

equation. Consider the model of a wire of lengthδx shown in figure 4.2 (with resistance

capacitance, inductance and conductance per unit length of R, C, L and G respect

The conductance G is negligible in silicon chips since SiO2 is an excellent insulator. The

behaviour of the voltage, V on the wire as a function of position (x) and time (t) is t

given by equation 4.1 [23].

(Eqn4.1)

This equation describes the propagation of a signal along the wire by two mechan

diffusion and travelling waves. For on-chip wires the effect of L is very small compa

to that of the resistance, and the travelling wave term is thus insignificant [23]. Si

propagation can therefore be considered to be by diffusion along an RC transmissio

The delay of a signal along the line is then quadratic with the line length (because

resistance and capacitance are proportional to the length of the line) and signal edg

widely dispersed on long lines.

Figure 4.2: Infinitesimal length wire model
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4.2 Electrical and physical characteristics

The electrical properties of a wire that affect the signal propagation described by Eq

are related to the dimensions of the wire. As mentioned previously, the inductance o

chip wires in sub-micron CMOS technologies is generally considered neglig

However, resistance and capacitance are both significant, especially for

interconnects.

The MARBLE bus architecture presented in this thesis has been implemented on a

micron CMOS silicon process (known as VCMN4) from VLSI Technology, Inc. whi

allows up to three metal layers (known here in the order of increasing separation fro

substrate as metal-1, metal-2 and metal-3). Consider the low-level characteristics o

process and their implications for the design of the interconnect.

The important choices to be made here are the:

• wire width;

• wire separation;

• wiring layers to use.

To answer these questions requires a consideration of the resistance and capacit

the wires, and how these affect both the signal delay and the crosstalk between sign

different wires.

Figure 4.3 shows the resistance (in ohms) and the lateral and interlayer capacitanc

fF) per mm length of a group of 0.7µm wide (minimum width) conductors separate

laterally by 1.1µm (the minimum allowable for the metal-3 layer) in the VCMN4 silico

process. Tracks on the metal-2 and metal-3 layers are vertically aligned with those o

metal-1 layer. The values shown were obtained by post-layout extraction using

Compass Design Tools [18].
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4.3 Termination

The diffusive nature of transmission along an on-chip line means that the issu

termination and reflection [54] (as must be addressed for off-chip buses which

travelling wave propagation as their principle mode of signal transfer) can be avo

The only consideration is that all floating lines should be driven by weak feedb

keepers to avoid the power loss that would result from intermediate voltages ca

short-circuit currents in bus voltage sensing logic at each of the bus interfaces.

4.4 Crosstalk

Electrical charges affect their environment both through their presence and through

motion. The effects of a moving charge on neighbouring wires in a circuit occur du

inductive coupling and capacitive coupling. These effects are typically weak, bu

CMOS process technology moves to smaller feature sizes the closer proximity o

wires and transistors means that they become more significant (especially the capa

coupling). Coupling can give rise to effects such as:

• spikes or glitches on a signal due to activity on a neighbouring signal;

• slowdown or speed-up of signal edges due to activity on the surrounding sign

Figure 4.3: Resistance and capacitance for nine 1mm long close packed wire
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These effects, commonly called crosstalk, cause serious problems for both synchr

and asynchronous designers. In both cases, slower edges mean that both the n-st

the p-stack of CMOS gates can be conducting for longer, leading to higher p

consumption. Crosstalk also affects the performance of the circuits:

• in synchronous design, the slowdown of signal edges affects the maximum u

clock frequency;

• in asynchronous design the matched-delay path, used to ensure that the reque

bundled channel arrives at the receiver no earlier than the data, must allow

crosstalk effects.

The spikes or glitches caused on a wire by crosstalk are a form of noise. Dependi

where they happen they can cause the false triggering of gates or latches, upse

machines, and possibly lead to system failure. (E.g. the glitch may be interp

incorrectly as a handshake event on a request signalling line).

Crosstalk effects are difficult to determine through static timing analysis because

depend on the coupling between the wires and the edge-speeds of the signals. Mu

been written on the subject of modelling these effects, and the IEEE Computer So

sponsors an annual workshop onSignal Propagation on Interconnects. Theory indicates

that designers should be careful to keep adjacent wires short and well-separated wh

possible, since the coupling between the wires is proportional to their overlap le

However, for long bus lines the designer needs to know how close the wires ca

packed, since such lines are still commonly routed manually to minimize their

requirement.

Figure 4.4 illustrates the severity of the crosstalk problem in an extreme (but

unimaginable) case. This shows the amplitude at the far end of a 10mm metal-2

surrounded on all three layers (above, below and the same layer) by other pa

conductors as illustrated in figure 4.3, each line driven by a separate inverter.
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The three panes in figure 4.4 show:

• in the upper pane: the output from the far end of the wire. Crosstalk causes the

overshoots and different edge speeds for different sets of transitions in this sy

• in the middle pane: the signals at the node between the drive inverter and the

• in the lower pane: the input to the wires’ drive inverters (observe the clean ed

The plot in figure 4.4 and the other results in this chapter were all generated using S

[39] simulations for the 0.35 micron VCMN4 process technology [83] used for

MARBLE bus and AMULET3H chip described in chapter 8. The model of the chan

used in the simulations was constructed from 0.5mm segments similar to those sho

figure 4.3. These results are corroborated by the theoretical values derived elsewhe

from the solution of Maxwell’s equations.

Figure 4.4: SPICE plot of 9-wire system
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4.4.1 Propagation delay for well separated wires

The graph in figure 4.5 shows the delay from the input of the drive inverter crossing

half-rail voltage to the far end of a single wire on the metal-1 layer (closest to

substrate, hence highest loaded) with no other surrounding wires (hence no cro

effects) crossing the half-rail voltage. There are four visible groups of curves wh

coming down the page, correspond to drive inverters of strengths 2x, 4x, 8x and 16

strength of a minimum sized inverter in this technology. Within each group there are

traces which, moving up the page, correspond to gate-loading of the wires (lumped

far end) of 2x, 4x, 8x and 16x the load presented by a minimum width inverter in

technology. There are no curves corresponding to the use of a minimum width

inverter as its drive strength is only sufficient to drive the inputs of two or three sm

gates with minimal wiring load.

This graph confirms that with small gate loads (up to 16 times the load presented

minimum width inverter) and long wires:

• the load (and hence signal delay) due to a few gates is small compared to the

due to the wire capacitance;

• a driver 16 times the size of a minimum sized inverter should be sufficient to g

reasonably small delays.

Thus, for the remainder of this analysis, all simulations use drivers and loads of 16

the size of a minimum sized inverter in this technology (this was also the largest tri

driver available in the standard cell library used for this work).

4.4.2 Signal propagation delay with close-packed wires

The most densely packed formation for running bus wires around a chip is to use all

metal layers, with the minimum allowed spacing between wires as illustrated earli

figure 4.3. A test system with 9 wires packed in such an arrangement was simulated

graph in figure 4.6 shows the delay (including the driving inverter) from the input of

drive inverter to the far end of the wire for the central wire of the metal-2 layer (i.e.

wire at the centre of the 9-wire bundle). The delays were measured between the s
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crossing the half-rail voltage. This graph when compared to the equivalent ‘drive

load=16’ curve in figure 4.5, (for the same wire and drivers in isolation) shows that

• the delay of a surrounded wire is about double that for an isolated wire, as exp

since the capacitive loading has slightly more than doubled (since most o

capacitive coupling is interlayer, not lateral in this technology);

• a significant variation in delay, of up to 2ns is possible as a result of crosstalk

Thus even if the request line of a channel were well separated from other wire

additional delay of around 1ns would still be required to meet the bundling constra

4.4.3 Alternative wiring arrangements

Although wires may be routed this densely for long point-to-point connections,

situation could be improved by adding additional amplification at intermediate po

along the path, maybe every 2mm or 4mm. However, with a multipoint bus where

wire can have different drivers at different points in time, this is not possible. A

Figure 4.5: Signal propagation delay (transit time) for an isolated wire
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because of the need to tap onto the lines at multiple points, the wires cannot be rou

closely in all three layers (since the tap-off connection requires a metal layer for its w

This raises the question of “what wire formation and separation should be used for

wires such as are used in MARBLE?”. To answer this question for the AMULET3H lo

buses and MARBLE a variety of formations and wire separations as illustrated in fi

4.7 were simulated to investigate the effects of:

• increasing the spacing between the wires;

• not using all three layers;

• staggering the wires between layers, so that wires on one layer are not dir

above or below wires on an adjacent layer.

Figure 4.7 also shows the results of these simulations, each graph showing three c

• in the upper curve: the worst case delay encountered when a signal is changing

in the opposite direction to the transitions being made by its surrounding sign

Figure 4.6: Signal propagation delay (transit time) for a close-packed wire
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• in the middle curve: the normal delay encountered when a signal changes leve

its surrounding signals remain unchanged;

• in the lower curve: the best case delay encountered when all of the signal

changing level in the same direction.

Crosstalk is responsible for the variation in delay between the two extremes o

uppermost and lowermost curves on each graph.

The labels in figure 4.7 are formed according to table 4.1 to show which wires w

present in which arrangement, their separation and width, and if the position of the

on each layer was staggered or the wires were vertically above each other.

Legend Code Meaning

m1 3 parallel wires on the metal-1 layer

m2 3 parallel wires on the metal-2 layer

m3 3 parallel wires on the metal-3 layer

sbc=xxx spacing between centres of the wires inµm (minimum of 1.6)

w=xxx wire width in multiples of 0.7µm (the minimum wire width)

st
adjacent layers were staggered by half the separation so that wir
were not vertically aligned

Table 4.1: Legend codes for figures 4.7 and 4.8
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m1m2m3, sbc=1.6, w=1 m2m3, sbc=1.6, w=1 m2m3, sbc=1.6, w=1, st
u

m1, sbc=1.6, w=1 m2, sbc=1.6, w=1 m3, sbc=1.6, w=1
uf
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Figure 4.7: The effect of wire formation and crosstalk on transmission delay
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One could make a choice of wiring formation purely on the grounds of the basic delay

the delay variation as shown in the above graphs, but usually silicon area is at a prem

To allow performance to be traded against area usage, the worst-case total delay a

10mm wire was plotted against the width of the silicon area occupied by the

(averaged over 36 wires - allowing for a 32-bit data bus and some signalling wires)

resulting graph is shown in figure 4.8
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Figure 4.7: The effect of wire formation and crosstalk on transmission delay
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4.5 Summary

Signal transmission over a set of wires in submicron CMOS technology mus

considered in the design of long interconnects since the resistance and capacitance

wires can cause considerable transmission delays and crosstalk effects.

The simulations presented in this chapter show that for maximum speed, the resul

one would expect: use the metal-3 layer with wide (2x minimum, i.e. 1.4µm wide should

be sufficient) wires separated by at least 2.4µm between centres. This will give a delay o

about (0.5±0.4)ns for a 10mm length with a separation of 2.4µm between wire centres

This configuration was used for the processor local buses in the AMULET3H chip.

However, the best wire-density vs performance trade-off is obtained by using bot

metal-1 and metal-3 layers, with double the minimum width tracks, double the minim

spacing between centres and staggered centres to achieve a delay of (0.75±0.15)ns for a

10mm wire. The wires in the MARBLE bus are actually around 5mm long, for which

configuration gives a delay of (0.35±0.05)ns.

Figure 4.8: Delay versus datapath width per wire
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Chapter 5: The Link Layer

Most asynchronous VLSI channels, as introduced in chapter 2, are designed to cove

distances and provide a point-to-point connection between one sender and one re

with data transferred in only one direction.

The design of an asynchronous macrocell bus requires a new type of channel, one th

connect many ports, supporting transfers in either or both directions. This ch

illustrates the problems encountered in the design of such a channel, and gives pr

solutions to those problems. The multipoint channel introduced here forms the link

of the bus hierarchy shown in figure 5.1.

Figure 5.1: A layered bus interface
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5.1 Centralised vs distributed interfaces

The interfaces to a shared bus may be centralised or distributed, with consequential

on the size and performance of the system and the design of the interfaces themse

• Thecentralisedapproach groups all the bus interfaces and control components

central hub as shown in figure 5.2a, forming a star network. Each device

dedicated point-to-point connections to the hub. This approach is more expe

in area but minimises the length of the shared lines, and hence their load, allo

faster edges and weaker drivers.

• Thedistributedapproach, as shown in figure 5.2b, represents the more convent

view of a shared bus. This approach places the bus interfaces near to the devi

as to minimise the size of the point-to-point links between the device and

interface. It leads to a higher loading on the bus and slower operation, but typi

gives a much smaller implementation due to the reduction in wiring.

 In both cases, the same issues must be addressed as discussed below.

a. centralised hub b. distributed bus

Figure 5.2: Centralised and distributed interfaces
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5.2 Signalling Convention

The issue of 2-phase versus 4-phase signalling has been addressed in the con

conventional point-to-point unidirectional channels, as summarised in chapte

However, the significantly different nature of a multipoint channel warrants

reconsideration of the issues involved in the choice of signalling protocol.

Whilst 2-phase design initially appears to be a good idea for a multipoint channel,

it minimises the number of signalling edges and hence also the cycle time and p

dissipation, the more difficult to detect quiescent state complicates bus hand-ove

turn-around. This is because the signalling protocol affects the state of the channel

transfer in that:

• 2-phase signalling causes the signal lines to toggle state after each cycle;

• 4-phase signalling leaves the signal lines in the same state as before the cyc

As a result, 2-phase signalling suffers relative to 4-phase signalling from an incre

complexity of the logic within the channel (the MERGE elements in figure 5.3) use

generate the channel request and acknowledge signals that are distributed on the c

from the individual signalling outputs of each device. Further details are presente

sections 5.6.2 and 5.7.1.

Data drive hand-over is similarly affected by the choice of signalling protocol. Here, t

is a requirement to avoid drive clashes between one device switching off its drivers

the next device switching its on. With the 2-phase protocol there are insuffic

signalling edges to define anundrivenphase for the data wires, whereas with the 4-pha

channel this can easily be achieved. Further details are contained in sections 5.6

5.7.4.

5.3 Data Encoding

The choice of single-rail or dual-rail presents a similar problem, in that again there

advantages in both styles. Currently, however, for wide parallel interconnects the co

a dual-rail system (twice the wiring area and additional logic to detect the presence
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valid word on the channel) outweigh its benefits. Some of the issues involved in desig

a multipoint dual-rail channel using handshake circuits [78] were addressed by M

[55,56] but the overhead of using a dual-rail approach is too large for use with connec

such as those of a macrocell bus.

For these reasons, this chapter addresses the design of a 4-phase single-rail mu

channel.

5.4 Handshake sources

For a conventional unidirectional point-to-point channel which device signals even

the request wire and which issues the acknowledge event is unimportant.

combination requires a push protocol, the other a pull protocol, but communication

always between the same two devices and in the same direction.

A multipoint channel, such as that shown in figure 5.3, connecting three devices A, B

C presents two complications:

• the initiator and target can be different for each transfer;

• the direction of each data transfer is not known before it occurs.

Figure 5.3: Multipoint (bus) channel wiring

A B C

MERGE MERGE
req
ack
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There are thus two practical alternative schemes for controlling which device will de

which events:

• the sender provides request events, the receiver provides acknowledge even

• the initiator provides request events, the target provides acknowledge events

The first option allows data always to be pushed by the sender, but requires every d

on the channel to be capable of delivering request or acknowledge events depend

which direction data is being transferred. This leads to complex circuits for determi

which unit will provide each signalling event.

The second option gives simpler circuits due to the isolation of the request

acknowledge control functions, even though it requires that the channel allows

initiator to push data to the target or pull data from the target depending on the tra

direction.

5.5 Bidirectional data transfer

Multipoint (bus) channel actions often require both push and pull actions to be perfo

in a single communication allowing simultaneous information transfer in two directio

Typical pushed information includes:

• an originating initiator identifier;

• an address/target identifier;

• the transfer size;

• a transfer action/direction indicator;

• the data payload.

Typical pulled information may include:

• the data payload;

• status bits.
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Simultaneous push and pull communications between two devices can be implem

using two conventional push channels. However this requires four signalling wire

implement the bidirectional information exchange. By merging the protocols of a p

and a pull channel, as illustrated in figure 5.4, a bidirectional exchange can be perfo

in one cycle on a single channel using only two signalling wires, with separate wire

the push and pull datapaths

This is a worthwhile saving in wiring for long channels or multipoint channels with ma

initiators and/or targets, and simplifies the channel control functions for the bus chan

To avoid data clashes, separate data wires must be used for the push-data and pu

Alternatively, the wires may perform one function in one cycle and the other functio

a different cycle.

5.6 Multiple initiators on one channel

When a channel has more than one initiator, extra control complexity is require

determine which initiator should use the channel and to ensure a clean hand-ov

ownership of the channel from one initiator to another. This is the role performed by

bus arbitration logic.

a. Merging two channels b. Data validity

Figure 5.4: 4-phase channel with both push and pull data paths
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5.6.1 Arbitration

For correct operation of the channel avoiding drive clashes, data-corruption and sign

failure, it is imperative that only one initiator acts upon the channel at any one t

Arbitration is thus required between initiators to determine whichownsthe channel. The

distributed arbitration techniques found in off-chip buses or networks such as SCSI

Ethernet or the Trimosbus [73] are not suitable for low-power CMOS on-chip syst

because they permit drive-clashes or polling of the arbitration signals. Consequ

synchronous on-chip buses (e.g. AMBA [2]) and some off-chip buses (such as PCI

use a centralised arbitration system with request and grant handshaking signals (typ

using a 4-phase protocol) connecting the device to the central arbiter. This argumen

justifies the use of a centralised arbitration system in an asynchronous CMOS VLS

Such a system can be built around instances of themutex(mutual exclusion) structure as

proposed by Seitz [68] and shown earlier in section 2.2.7.

In-line arbitration

The multiple initiator function of the channel is logically equivalent to an arbitrated

block. (Figure 5.5 shows a 2-input arbitrated call). This formation provides mutu

exclusive access to the output channel (req0/ack0) for the two input channels (req1

and req2/ack2), ensuring that one complete cycle is performed on the output chann

each input channel cycle.

a. interface b. 4-phase SI implementation [46]

Figure 5.5: Arbitrated-call
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In the multipoint bus channel, there is also data that has to be steered through th

block from the input channel to the output channel, a feature which can be added

arbitrated-call block by connecting the control input of a multiplexer to the output of

NAND gate marked * in figure 5.5b.

Pipelined arbitration

The arbitrated call approach to allowing multiple initiators to access the central

channel has a significant disadvantage: arbitration and bus accesses are seq

consequently the bus is idle whilst arbitration for the next cycle occurs, thus affectin

overall throughput of the channel.

In a high performance system it is possible to hide the latency of the arbiter by sepa

the arbitration function from the call and multiplexing functions. Arbitration for the ne

channel access can then proceed in parallel with the current cycle. The grant signal

anearly-grant, indicating which device will take ownership of the channel when it ne

becomes idle, as shown for one initiator by the STG in figure 5.6.1

Figure 5.6: Hidden arbitration

1. The arc from chan_ack+ to arb_req- could have been from chan_req+ to arb_req
serving the acknowledge event rather than the request event here includes the de
the event to propagate down the channel request wire, through the target and back
acknowledge wire. This is assumed to be sufficient delay to allow all gates connect
the chan_req wire to observe and process the chan_req+ event before a subs
chan_req- event occurs. This technique is used in a number of instances in the des
the multipoint channel.

chan_req+

chan_req-

chan_ack+

chan_ack-
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Arbitration Channel
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This means that the arbitration network can be optimised to give a fast grant to the

contender for an empty bus, since all subsequent arbitrations, whilst the bus is in us

hidden by the current transfer and do not affect either latency or throughput provided

have occurred by the time the bus is available.

N-way arbiter

Current VLSI technology allows the implementation of only two or at most three-way[

mutexes, although the robustness of the latter is not proven. These can be used d

with buses with the corresponding number of initiators to provide very low late

arbitration. Arbitration between a larger number of contenders can be achieved w

network of multiple mutexes connected using the approaches described below.

Mutex cascade

A larger mutex can be constructed from a cascade of two-input mutexes usi

multistage approach. Figure 5.7 illustrates how three- and four-way arbitration ca

implemented using mutexes alone. To generate a grant, a request has to arbitrate w

other contending requests (or their delayed version after passing through a mutex)

for three-way arbitration, a request has to pass through two mutexes, and through

mutexes for four-way arbitration. This scheme gives low latency, but the hardw

requirements grow quadratically with the number of contending input requests.

a. Three-way mutex cascade b. Four-way mutex cascade

Figure 5.7: Arbitration using cascaded mutexes
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Token ring arbiter

A form of arbitration well suited to a distributed approach is the token-ring arbiter [51,

The circuit for a ring arbiter element is shown in figure 5.8a, and a four way ring arb

constructed from such elements is illustrated in figure 5.8b. One of the elements i

ring is initialised with its latch set (giving it the token), all others having their latches re

When an element’s input request, req, is asserted, the state of its latch is checked

token is held (latch set) then a grant is given on gnt, if not then the token is obtaine

performing a cycle on the rreq/rgnt channel. The S-element [78] encloses the com

output cycle in the first part of the arb-call output handshake. The lreq/lgnt channel a

another ring-arbiter element to ask for the token from this element, the arbitrated

resolving conflict between requests on the lreq and req inputs.

However, because the token in such systems has to be passed around the ring on d

the worst case arbitration latency grows linearly with the number of possible conten

devices, as does the hardware required for implementation of the ring.

a. Ring arbiter element (after [52]) b. 4-way ring arbiter

Figure 5.8: Ring arbiter
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Tree Arbiter

A tree arbiter is composed of elements similar to an arbitrated call but uses eager re

propagation [46] to allow the arbitration at each level of the tree to be performe

parallel with activity at higher levels, instead of in series as when a tree is formed fro

set of standard arbitrated calls.

Josephs proposed a speed-independent custom tree-arbiter element that gives v

latencies [46]. Similar techniques can be used with a tree-arbiter element built aro

standard mutex, although the resulting circuit, illustrated in figure 5.9, is slightly slo

(4 inversions per stage) and is not speed independent.

This circuit passes input requests through to the output on req0, and determines

event (req1+ or req2+) came first so that, when gnt0 rises, a grant can be given on

gnt1 or gnt2.

Different tree topologies allow the overallbandwidthin a busy system to be apportione

as a consequence of the fairness of the mutex element. For example, the tree fra

shown in figure 5.10a issues equal numbers of grants to all ports, whereas the t

figure 5.10b issues 50% of the grants to gnt4, 25% to gnt3 and 12.5% each to gnt

gnt1, assuming that all contending devices rearbitrate immediately.

Figure 5.9: Tree arbiter element, after [46]
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Sample-Prioritise Arbiter

Synchronous bus-arbiters implicitly use a two stage process of sampling on a clock

and then prioritizing the active requests to determine which grant to allocate. A sim

scheme can be used for an asynchronous arbiter by sampling when an input req

active. This approach scales approximately linearly in hardware requirement

increasing numbers of inputs, but can potentially offer lower latency (which is m

important than throughput for the arbiter) than a tree-arbiter for larger systems.

Arbitration Summary

Arbitration is a key feature of a multipoint channel which can be implemented in a va

of manners, all based around the mutex component. Table 5.1 shows the number o

inversions involved in an arbitration for the fair-arbitration schemes presented abov

an arbiter with ‘n’ contending inputs (The sample-prioritise approach is not included

requires a prioritising scheme and is difficult to implement such that it behaves fair

A balanced tree arbiter was chosen for use in the MARBLE bus described in chap

because of its low, uniform latency and low hardware costs.

a. balanced tree b. skewed tree

Figure 5.10: 4-way tree arbiters
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5.6.2 Request drive and hand-over

Each initiator must be able to drive the request of the channel when performing a tra

Since the arbitration guarantees that only one initiator will use the channel at any

time, the channel-request that is distributed to the address decoder and to the tar

formed through an OR (merge) function of the individual initiator requests. The wi

OR techniques used in backplane buses are not suitable for low-power C

implementation, so other solutions must be used:

Centralised request merge

A centralised solution for the request merge function is to use an OR-gate to combin

individual initiator requests to form the channel-request. This would be a more com

XOR-gate if using a 2-phase protocol.

Distributed request merge

The gated approach described above provides the necessary functionality, but is

modular solution. If true modularity is required, then a scheme using tri-state signa

lines may be used. This gives a simpler channel routing requirement (the reques

acknowledge wires run with the data wires, with no gates in the path). The problem

such a scheme is that to minimise the risk of malfunction due to the effects of noise

power wastage, the signalling lines cannot be left floating when they are not driven b

of the client devices. Weak charge retention, whilst reducing the power wastage,

little for the noise immunity of the system. To fix this problem, active clamping

Arbiter
Standard Stage

Latency
Number of Stand-

ard Stages
Total Latency
(inversions)

Single Mutex (n=2) 2 1 2

Mutex Cascade 2 n-1 2(n-1)

Ring Arbiter 22 1 to n 22(1 to n)

Balanced Tree Arbiter 4 log2n-1 4(log2n -1)+2

Skewed Tree Arbiter 4 0 to n-1 4(0 to (n-1))+2

Table 5.1: Arbitration latency
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required on the lines when they are not in use, along with a controlled drive overlap d

handovers where both the new and the old driver together drive the signal to the

value. The hand-over sequence from driver A to driver B is thus:

1. A drives the signal to a known level

2. B starts to drive the signal to the same level

3. There is a short overlap when both drivers drive to the same level

4. A stops driving the signal

5. B drives the signal to its required level

Such a scheme is somewhat more complex than the centralised OR-gate app

described previously.

5.6.3 Push data drive and hand-over

With some variants of the 4-phase protocol there is a risk of drive clashes during h

over between initiators on a bus channel. This occurs because one initiator could

driving the data lines before the previous initiator has stopped. This would happen

new driver switch-on and the old driver switch-off had to occur during the same perio

the handshake.

Using the early-push protocol (where data is only valid from request+ to acknowled

means that the new driver starts driving the push data lines whilst both reques

acknowledge are low, holds them driven whilst request is high and acknowledge is

stops driving them when request and acknowledge are high, and leaves the final p

when request is low and acknowledge high, for a guaranteed period where none

initiators drive the bundled data lines. This ensures a clean handover, and also fits

with the corresponding early-pull data-drive hand-over described in section 5

allowing the direction of (some) of the data lines to be changed in subsequent trans

required.
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This approach to data-line drive/validity is equally applicable when using either a tri-s

or a gate-multiplexed data-path. The former, illustrated in figure 5.11a, typically allow

smaller implementation, whereas the latter illustrated in figure 5.11b may be m

suitable for synthesis. Both the approaches shown have an ‘enable’ signal associate

each driver. The control logic of the bus interface should monitor this enable sign

determine when the data is driven since its load will increase with wider datapaths

probably necessary to include a delay in the monitoring path to provide additional m

and to allow for crosstalk effects as described in the previous chapter.

5.6.4 Transfer deferral/hardware retry

The inclusion of a defer mechanism, where the target can ask the initiator to abando

transfer and retry it later, allows bridging between multi-point bus channels. To illus

the necessity of this feature, consider the system fragment shown in figure 5.12 wher

bus channels are connected via a bus bridge. This system allows independent acti

both bus A and bus B when a transfer across the bridge is not required. The bridge a

initiators on bus A to access targets on bus B and vice-versa. If both of these actio

required at once, then there is a risk of deadlock: if initiator A0 occupies bus-A to ac

target B3 via the bridge, and at the same time initiator B0 occupies bus-B to access

A3 via the bridge, then neither transfer can complete unless the bridge can force

bus-A or bus-B to become available. The defer technique allows the bridge to ac

a. Tristate data-path b. Gated/multiplexed data-path

Figure 5.11: Data-path drive
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this, with thenackingarbiter [24,71,78,81] used in the bridge to determine which trans

is allowed to proceed.

When a transfer is deferred, the bus channel cycle must still be completed and the ch

returned to its idle state so that it can be used for other cycles and possibly a retry

same cycle. This action of finishing the cycle, but in such a manner that the transfer

accepted is termed anegative acknowledge or NACK.

Implementation of the NACK requires one additional wire between the initiator and

target, either:

• used as an alternative signalling wire to signal a NACK instead of the ACK, giv

a dual-rail encoding of the acknowledge event where one code signifies succes

the other failure;

• or used as a bundled data line whose validity is indicated by the ACK signa

which case the bundled signal indicates whether the transfer was accepted.

The latter approach is used in MARBLE to minimise the wiring overhead of suppor

negative acknowledgements. Since these are expected to occur infrequently, the b

line is (predictively) driven to the ACK state before the actual required value is kno

thus optimising for the common case. When a NACK is to be signalled, the predic

must first be corrected causing a slight additional delay.

Figure 5.12: Bridging between two bus-channels
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5.6.5 Atomic transfers and locking

Mutexes and arbiters in general act as hardware interlocks, ensuring mutually exc

access for a number of clients to a shared resource. The software equivalent, a sem

is typically implemented using a read-modify-write activity on a memory locati

Special instructions such as the swap (SWP) instruction in the ARM architecture [45

used by the processor to indicate externally that the memory access should be ato

uninterrupted by other devices. Any multi-master bus between the processor an

memory must ensure that during such operations other initiators (e.g. other proce

are not granted access to the resource between the read and write cycles.

This can be implemented either by:

• locking the target (as with PCI [69]), so that any other initiator accessing the ta

is told that it must wait and retry later (see defer above), or;

• locking the bus (as with PI-Bus [61] and AMBA), so that no other devices c

access the bus, hence cannot access the target.

To prevent system deadlock, the defer action must be able to override the arbit

lockout; bridges and other components should ensure that only the first transfer

atomic sequence is deferred. An STG fragment representing this priority of defer

lock is shown in figure 5.13.

Each of the above approaches has disadvantages. The former requires any other in

trying to access the same target to poll the target, a situation which is probably

avoided in a low power environment, and requires extra complexity in the ta

interfaces to implement the locking; the latter may harm overall system perform

because the bus could be locked for a long time, meaning that all other initiator

starved of bus activity during the whole period of the locked transfer.

The implementation of these approaches for the asynchronous multipoint channel e
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• the initiator holding the arbitration request asserted throughout the locked cyc

using hidden arbitration. This means that other transfers are prevented, even i

don’t involve the target(s) on which atomic activities are to be performed.

• choosing to lock either the whole target, or only a part of its address space (e.g

row of a DRAM) and allowing other initiators to access the non-locked regi

when using the target-locking scheme. In either case, extra bus wiring is requir

carry an identifer that is unique to each initiator, so that the target can check

initiator is the one which locked the target.

The hardware required for each of these approaches is identified in figures 5.15 an

in section 5.8 which show complete circuits for an initiator and a target interface.

Figure 5.13: Interaction of lock and defer with hidden arbitration
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5.7 Multiple Targets

When a channel is connected to more than one target, extra functionality is requir

determine which target should respond to each cycle and to ensure that drive

signalling clashes between targets do not occur.

5.7.1 Acknowledge drive and hand-over

Where the initiator is responsible for driving the request signal and arbitration is requ

to avoid possible drive clashes between initiators, the target is responsible for drivin

acknowledge signal. The address on the channel is decoded to indicate that one

target should respond, thus there is no need for arbitration. The case of broadcast w

the exception, in that it allows the same payload to be written to all targets, and

requires an acknowledge from each and every target. The techniques used f

acknowledge drive and hand-over are basically the same as those for the request si

described in the following sections.

Centralised acknowledge merge

A centralised solution for the acknowledge-merge function (in the absence of broadc

is to use an OR-gate to combine the individual target acknowledges into the bus-ch

acknowledge signal. This is a more complex XOR-gate if using a 2-phase protocol

interesting to note that for a broadcast operation, the bus-channel acknowledge c

formed using a C-element to gather acknowledge events from all of the targets b

passing them onto the central bus-channel. A suitable circuit catering for both broa

and non-broadcast transfers is shown in figure 5.14. (The dotted connection to t

input of the C-element ensures that the AND-gate output falls before the output ack s

is lowered. In practice this connection and C-element input would be omitted, sinc

required behaviour is assured by a safe timing assumption.)

This circuit passes acknowledges from a device straight through to the ce

acknowledge during a non-broadcast operation, but when a broadcast is perform

input acknowledges must be high before the central acknowledge is raised, and the

all fall before the output acknowledge falls.
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Distributed acknowledge merge

A distributed acknowledge merge function can be created along the same lines

distributed request merge function in section 5.6.2. Instead of using the AND functio

the arbitration request and grant signals to indicate when to start and stop drivin

signal, the AND function of the request and target-select signals should be use

broadcast operation cannot easily be implemented when using a distributed acknow

merge.

5.7.2 Target selection

Each cycle on a bus-channel may address any of the channel’s targets. Part of the fo

going command information is decoded to determine which target is being selected

decoding may be performed by:

• a central decoder, where the channel has only one decoder which waits until a

address is on the channel and then indicates using a separate target-select lin

addressed target that it should respond.

• a distributed pre-decoder, which requires each initiator to have an address-de

and to decode the address before it is passed to the channel. The address

decoded in parallel with arbitration for the channel. The initiator then drives

appropriate target-select line during its push action on the channel.

• a distributed post-decoder, which requires each target to have a partial-dec

sufficient to allow it identify all transfers to which it should respond. The addres

thus decoded at the far end of the channel, after transport across it.

Figure 5.14: Centralised 4-phase acknowledge merge
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The MARBLE bus presented in chapter 8 uses a central decoder since this give

smallest implementation and gathers the decode logic into one unit, although it

impede bus throughput and increases transfer latency when compared to using

decode and is less modular than the post-decode.

5.7.3 Decode and target exceptions

An error can arise where the address does not map onto any of the targets. This m

handled to avoid a system deadlock. It can be handled in one of two ways:

• holes in the address-map are decoded to address anerror-targetwhose job it is to

respond indicating that an error has occurred;

• a timeout can be used to reset the channel.

In either case the system processor will have to be notified of the exception, an

addressed in the next chapter.

5.7.4 Pull data drive and hand-over

When a channel has multiple targets, the situation regarding pulled data drive hand

is much the same as that for push data drive hand-over on a channel with mu

initiators. Again, using an (early/narrow) protocol where the data is only valid betw

two consecutive signalling events, (acknowledge+ and request- in this case) prov

clean solution whether using a tristate or gate-multiplexed data path.

Furthermore, if push data is valid between request+ and acknowledge+, or pull d

valid between acknowledge+ and request-, (although not both during the same c

then the same lines can safely be used for transfers in different directions in diff

cycles, since there will always be a period where the lines are not driven. So, for exa

the same lines could be shared for read and write activity.

If a multipoint channel is to support a broadcast transfer mode where an initiator can

data to multiple targets in the same transfer, then special care must be taken to ensu

the targets do not try to return any information (e.g. status bits) during the pull pha

this would lead to multiple drivers on the pull-data lines.
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5.7.5 Defer

The defer operation introduced earlier allows the target to ask the initiator to retry

transfer later. The target must decide whether to accept or defer the transfer and i

signal the result, using either a pulled signal or a negative-acknowledge, depending

implementation as described earlier in section 5.6.4. As mentioned above, pulled s

(such as the defer status bit) cause problems with broadcast operations, introduci

possibility of a signal having multiple active drivers at the same time.

A broadcast operation could be supported by mandating that broadcast cycles shall

deferred (in which case all targets would drive the defer signal to the same level - a safe

situation), although this compromises the support for bridging to another multipoint

Alternatively a negative-acknowledge approach would allow the central bus contr

override ack with nack (as part of its signal merge function) if any of the targets defe

the transfer. There is then the problem of notifying this to all of the targets. The MARB

bus (and many others) sidestep these problems by not supporting broadcast opera

5.8 Multipoint bus-channel interfaces

The issues discussed in this chapter affect the design of the centralised bus contro

and the interfaces used to connect devices to the channel. This section brings to

these issues to show circuits for two such interfaces.

Figure 5.15 shows the construction of an initiator interface. The initiator device wo

connect to the left of this circuit, and the multipoint channel to the right. The control lo

involved in handling the arbitration pipelining, arbitration locking and defer

highlighted and the connection of the control logic to the tristate datapath drivers is

shown. The ‘bc_control’ lines carry the address, initator identifier, lock signals and

pushNpull signal to the target. The bc_payload lines are then used either to push o

the data payload in the direction as indicated by the pushNpull signal.
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Figure 5.16 shows the corresponding multipoint bus channel target interface w

connects to the multipoint bus channel on the left and the target device on the right,

a dual rail encoded ack/nack approach.

This circuit shows one of the advantages of asynchronous design in that it has

optimised for the common cases:

• when the target is not locked, there is no need to wait until the initiator-id has b

checked before deciding whether to accept the transfer;

• the bc_ndefer signal is driven to indicate not deferring before the target de

signals its actual requirements using t_ack or t_nack. When not deferring

acknowledge can then be passed straight through with no delay.

Figure 5.15: Multipoint bus channel initiator interface
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5.9 MARBLE’s Link Layer Channels

This chapter has introduced a range of issues relating to the grouping of many wi

form a multipoint channel, with a defined signalling protocol. To summarise, MARB

uses a distributed bus approach with the following features for its channel links:

• single-rail data encoding;

• four-phase, level sensitive, return-to-zero signalling;

Figure 5.16: Multipoint bus channel target interface
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• centralised request merging and acknowledge merging to ensure reliable ope

of the signalling in the presence of noise;

• tristate data-payload signals which are held driven throughout the relevant pu

pull section of the signalling protocol;

• bidirectional information transfer, using separate wires for the control and payl

The main data payload direction can also be changed from one cycle to the

allowing the payload to be pushed or pulled;

• hidden/pipelined arbitration using low latency tree-arbiters. All bus-grants

therefore early, and the new bus-owner cannot start a cycle immediately

receiving a grant, but must first wait until the bus channel is idle;

• atomic cycle support through locking of the arbiter;

• centralised address decoding.

5.10 Summary

This chapter has addressed the design of an asynchronous multipoint ch

concentrating on a 4-phase single-rail protocol. 2-phase signalling is not suitable fo

on a multipoint channel because of the problems of drive hand-over. However, if us

short multipoint bus in a kind of centralised hub, then 2-phase signalling may be advi

for long connections between the hub and the client devices.

Whichever signalling approach is used, the issues of arbitration, request-d

acknowledge-drive and data-drive must all be dealt with, as must the need for a

primitive if multimaster bus bridging is to be supported. This is further complicate

provision must be made to allow the bus and/or targets to be locked for the atomic tra

support required to implement software semaphores. These are all issues whic

successfully be incorporated into a general purpose asynchronous multipoint chan

presented in this chapter.
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Chapter 6: Protocol Layer

The link layer discussed in chapter 5 provides (one or more) multipoint connec

allowing information to be routed between senders and receivers, where these need

the same from one communication to the next. This chapter introduces the next la

the hierarchy illustrated in figure 6.1, the protocol layer. This layer imposes a format

the use of the channels provided by the link layer. The protocol layer must ensure th

phases of a transfer are performed in the correct order whether these occur on the

channel (for a multiplexed bus), or on different channels (in a demultiple

arrangement). Particular emphasis in this chapter is placed upon the implications

dual-channel asynchronous SoC bus, as this can satisfy most requirements.

Figure 6.1: Bus interface module hierarchical structure
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6.1 Transfer phases

The four distinct phases of any bus transfer are:

• the command phase - indicating what action is to be performed;

• the acknowledge - indicating if the command is accepted;

• the data transfer - transferring the payload between the devices;

• the response - indicating if any errors arose during the transfer.

Each of these phases (of which further details are given below) may occur as a se

communication on the underlying link layer, or they may be combined in some fas

(as discussed in section 6.4), a decision which affects the performance and har

resource requirements of the bus.

The protocol layer thus provides a simpler interface to the uppermost layer,

transaction layer, using just two channels per transfer-client, one carrying a comman

the other a response.

6.1.1 The command phase

Every transfer begins with the initiator issuing a command to the target. The comm

indicates:

• the address in the memory map at which the action should be performed;

• the activity to be performed, typically a read or a write;

• the quantity of data to be affected, also known as the transfer size;

• any atomicity requirement, such as locking of the bus or the target.

Other information may be provided as a part of the command, such as the relations

this command with any previous or subsequent commands. The command may

contain a code indicating which initiator it originated from.
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6.1.2 The acknowledge phase

Having received a command from an initiator, a target must either decline or accep

command, and signal its decision during the acknowledge phase. By signa

acceptance of the command, the target is indicating that it can complete the com

without causing the system to deadlock. This implies that the target may first nee

arbitrate for any shared resources that it needs to perform the transfer, before perfo

its acknowledge phase. If the target is unable to complete the action because a

resource (possibly the bus itself if the target is part of a hybrid device that need

perform a transfer in its initiator role before being able to continue as a targe

unavailable then it should indicate a defer action during the acknowledge phase

initiator will then retry the whole transfer later.

6.1.3 The data phase

The data phase of a transfer is where the payload is transferred betwee

communicating devices. For a read transfer, data is transmitted from target to init

and for a write transfer data is transmitted in the opposite direction.

Burst transfers may perform a multi-cycle data phase, with a number of data packets

transferred. The command will usually indicate the size of the transfer unit, and may

specify how many such units are to be transferred.

6.1.4 The response phase

The response phase usually occurs at the end of the transfer. It may, in fact, be us

the target to cause the termination of the transfer, especially for bursts that the targ

no longer continue. The main use of the response phase, however, is to allow the s

of precise exceptions as discussed below.
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6.2 Exceptions

The designer of a bus-based environment has to specify what action shall be taken

an error occurs. Typically, this is handled in software by one of the processors in

system, and the bus architecture need only specify how the routine will be invoked

two common approaches are:

• An imprecise exceptionwhere an asynchronous interrupt pin of the processo

used to signal the presence of an exception. This carries no information rega

when the problem arose;

• A precise exceptionmechanism passes an extra status bit on each proce

interface, so that for every read, write or fetch activity performed by the proces

it is notified of its success or failure. This mechanism identifies uniquely wh

action caused the error, so that software can better recover from the error.

The imprecise technique is more readily implemented but the precise exce

mechanism is more general, and can be used to emulate imprecise exceptions if re

Furthermore, the ARM architecture [45] (and hence the AMULET processors) req

precise exceptions. Further details of the AMULET implementation of precise excep

are available elsewhere [33,34].

The bus architecture presented here thus uses a precise exception model, always re

a status bit to the initiator indicating the success or failure of the action.

This bit can be affected by bus errors where the address does not map to a known

and by the target devices themselves where internal errors may be detected. The l

important since a target may contain multiple logical functions, and may itself be a br

to a secondary bus.
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6.3 Defer and bridging

The potential for deadlock when bridging from one multimaster bus to another

introduced for the multipoint channel in section 5.6.4. The same problem can arise w

multi-channel bus, when a hybrid device needs to act as an initiator before it is ab

behave as a target. Again the solution is to use the defer technique.

The acknowledge phase of a bus transfer is used to allow the target to accept a tra

or to defer it until later, in which case the initiator will retry the whole transfer beginn

with a new command phase. The initiator must thus store sufficient state to be ab

restart a transfer until the target signals its acceptance of the transfer, at which poi

initiator can discard the stored information.

Where there is a sequencing of the occurrence of the bus phases, for example

sequenced bus protocol where the phases occur in strict order (command-acknow

data-response), then any phases that would normally occur after the acknowledge

will be skipped if a deferral is indicated during the commit phase. Similarly, if there

concurrency between the phases, then the content of the data and/or response ph

performed) will be ignored and the phase will be retried later.

6.4 Mapping transfer phases onto channel cycles

The flow of activity in a bus transfer was presented above as a sequential stream. Ho

there is no inherent reason why these actions must be performed entirely sequentiall

performance of the bus can be improved through a variety of combinations of the p

to reduce the number of cycles and/or channels required to perform a transfer.

possible combinations (labelled a to e) are illustrated in figure 6.2.

Mapping a, (the first mapping shown in figure 6.2) shows the sequential appr

described above, where each of the phases occurs in a different link layer channel

These may be on the same channel, or separate channels.

Mapping b shows the other extreme case, where all of the phases are performed with

handshaking of a single cycle. This combination is possible because, as shown in c
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5, information can be both pushed and pulled in a single four-phase signalling c

although separate wires are required for each of the phases’ information.

Neither of the two extremes discussed above leads to both high performance and

implementation cost (for the reasons described below). A much better solution ca

achieved using two cycles, with the transfer phases distributed between them in one

arrangements shown in mappings c, d and e, described further in the following sec

6.4.1 Sequential operation using a single channel

The channel cycles required to form a complete transfer could be performed us

channel layer made up of only a single channel, giving a multiplexed bus protocol fo

arrangements (a, c, d, e) of figure 6.2 (above) using more than one cycle per trans

Figure 6.2: Transfer Phase Combinations / Channel Mappings
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such a system the choice of mapping affects the number of wires required since the

off being made is time (number of cycles) versus channel-width (determined by the w

combination of phases). Table 6.1 shows how the mapping affects the number of w

for the five mappings illustrated in figure 6.2. (In this table C, A, D and R represent

number of wires used to implement the command, acknowledge, data and response

respectively).

Multiplexed buses (using the same wires for different phases of a transfer at diff

times) are often found at the system board level, where wiring costs are much highe

on-chip and component pins are at a premium. The consequence of the multip

approach is the sequential nature of the transfer, which limits the performance. Eve

the single-cycle implementation, (mapping b in figure 6.2) the sequential nature o

target device will impose a delay between the presentation of the command an

subsequent return of read data.

For a general purpose macrocell bus, a higher performance is required than c

achieved using sequential phases on a single channel. On chip, the cost of a

additional wiring is reduced (but still significant) and a demultiplexed, multi-chan

approach can thus be used.

Mapping No. of Cycles No. of wires
Example

C=40, A=2, D=32, R=2

a 4 max(C, A, D, R) 40

b 1 C+A+D+R 76

c 2 max(C+D, A+R+D) 72

d 2 max(C+A+D, R+D) 74

e 2 max(C+A, R+D) 42

Table 6.1: Wire requirements if using only one channel for the entire transfer
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6.4.2 Parallel operation using multiple channels

A demultiplexed approach gives approximately double the performance of a multipl

single-channel approach and allows the overlapping of phases from different tran

Such overlapping is a feature found in most parallel buses that use separate wir

address and data. The advantage of this approach in an asynchronous environmen

the skew between the address and data cycles can be varied whereas in a synch

environment it is fixed to being a multiple of the bus clock period. This separation o

two or more channels may also reduce the latency added by the bus, whilst incurring

additional cost relative to the single channel approach.

Table 6.2 shows the implementation costs for the mappings shown in figure 6.2 w

each cycle is allocated its own channel. As can be seen, there is little extra wiring c

using a multiplexed approach, although what is not shown is the increased control

required for coordination between the channels. In this table C, A, D and R represe

number of data wires used to implement the command, acknowledge, data and res

phases respectively, and the H indicates the total number of signalling wires fo

channels.

The 4 channel scheme (mapping a above) offers little extra performance over the

channel alternatives, but requires additional control logic, thus only a dual-channel b

considered in the remainder of this chapter. MARBLE is such a bus, using the map

shown in figure 6.2 e.

Mapping
No of

Channels
No. of Wires

Example
C=40, A=2, D=32, R=2, H=2

a 4 C+A+D+R+4H 84

b 1 C+A+D+R+H 78

c 2 C+A+R+2D+2H 112

d 2 C+A+R+2D+2H 112

e 2 C+A+R+D+2H 80

Table 6.2: Wire requirements if using separate channels for each cycle of a tran
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6.5 Transfer cycle routing

The command phase of a transfer will either pass an address that can be deco

indicate which target should respond, or will contain an explicit indication showing

transfer target. In either case the target (or targets for a broadcast operatio

unambiguously identified.

Subsequent phases of the transfer must then be performed between the same initia

target(s). Much of the complexity of a bus system requiring more than one cycle

transfer (including multiplexed buses) comes from the constraints necessary to e

such behaviour. Techniques for passing meta-knowledge of which devices should

part in a transfer may be:

• Implicit - where a fixed time relationship (in the form of an interlock, overlap

sequential relationship) between the occurrence of each cycle of a transfer a

the bus allows both the initiator and target to switch seamlessly from one pha

the next; or

• Explicit - where each phase is tagged with an identifier (usually unique to

originating initiator) so that all of the phases of a transfer can be routed betwee

same initiator and target through recognition of the tag by the appropriate unit.

phases may then be performed in a decoupled manner, forming what is know

split-transfer.

Figure 6.3 shows a timing diagram illustrating typical examples of bus activity for b

the interlocked and decoupled schemes. Command A and response D show the a

that would be observed with an interlocked strategy where the command cycle cann

completed until the response has begun, thus the routing information is implicitly st

in the fact that the two participating devices are active on the command channel whe

begin the response cycle.

In contrast, commands B and C and responses E and F show possible relationshi

could occur when using a decoupled transfer strategy. Here, an overlap of the end

command activity with the start of the response activity can still occur but is no

requirement for correct operation. Further, there is no way of knowing just from
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signalling shown which command belongs with which response (B with E, C with F

B with F and C with E), an issue which is investigated further in chapter 7.

6.5.1 Interlocked protocols

An interlocked bus protocol performs a handover of therouting informationfrom one

phase to the next by ensuring that there is a fixed time relationship between the cyc

the transfer. In synchronous systems, the relationship is often that phases occur in ad

clock periods. The initiator thus knows to expect a response packet during the

period after it sent the command.

A suitable equivalent approach that can be used in an asynchronous multi-channel

to ensure that there is an overlap of the end of the command cycle with the beginni

the response cycle, either by delaying the completion of the command activity or sta

the response cycle before the necessary response information is availabl

transmission. Ensuring an overlap of activity in this way means that both initiator

target know that activity on the response channel is intended for them.

As stated above, the overlap can be ensured through one of two approaches,

prolonging the command cycle or starting the response cycle earlier than would othe

be necessary. The example bus activity in figure 6.4 illustrates this situation, with fi

6.4a showing the required activity to pass the command and response and figures 6.

6.4c showing the consequence when using a prolonged command and then an early

response respectively.

Figure 6.3: Example of dual channel bus activity
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Using the early started response to provide the overlap is attractive in that it does no

the command channel any longer than necessary, thus allowing the next trans

commence (although its response cannot be transferred until after the current trans

completed). Whilst this strategy works well with initiator started response cycle

unfortunately degenerates into the prolonged command technique when using a

started response cycle because this requires the payload to be pushed on the cha

the response request cannot be raised until the payload is ready.

6.5.2 Decoupled protocols

The alternative to forcing an overlap between the command and response cycle

transfer is to allow the cycles to proceed in their own time using a decoupled appro

The advantage of using a decoupled protocol is that it gives a greater overal

availability, allowing transactions to be interleaved on a cycle-by-cycle basis instead

transfer-by-transfer basis, effectively bringing the interleaving down from the transa

layer into the protocol layer. Further details on such behaviour, and its uses, are pre

in chapter 7, but what should be noted here is how easily it is achieved when us

decoupled protocol layer.

The disadvantage of using a decoupled protocol layer is the extra implementation

because the routing information must now be passed explicitly from the command a

to the response action requiring:

• an arbitration network to ensure mutually exclusive access to the response ch

a. required activity b. prolonged command c. early started response

Figure 6.4: Causing a command and response to overlap
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• additional wires (possibly on both the command and response channels) to tra

routing information for the response cycle identifying the initiator from which t

transfer originated;

• storage at the target to hold the unique initiator identifier between the command

response cycle;

• anaddress decoderon the response channel to decode the routing information

activate the correct initiator so that it can receive the response.

6.6 Transfer cycle initiation

The final consideration when choosing a protocol layer phase-to-cycle mappin

whether the initiator or target should initiate the response cycle. By definition, the tran

(and hence the command cycle) must be initiated by the transfer initiator but there

such requirement on the response activity. The implications of the choice of which

should initiate the response cycle vary depending on the type of bus and ord

constraint used.

Figure 6.5 shows the causal relationship between commands and responses, the in

between the command and response cycles (in bold) and additional arcs (dotted

reduce the state-space of the system, simplifying the interface controller implementa

when using an interlocked protocol. Three alternative interlocking protocols are show

this figure:

• the red arcs show an initiator started response cycle where the response

performed for a deferred transfer. This approach avoids wasting response ch

bandwidth with redundant response cycles;

• the blue arcs show an initiator started response that is always performed eve

deferred transfers. This gives simpler control logic since there are no conditi

responses;

• the green arcs show a target started response that is only performed if the tran

accepted (i.e. not deferred).
Chapter 6:  Protocol Layer 101



6.6 Transfer cycle initiation

oth

data

sibly in

ises

cycle

s not

ng to

arted

ing the

sponse.
Allowing the transfer initiator to start the cycles (i.e. be the channel initiator) on b

channels means that with mapping ‘e’ in figure 6.2, as used in MARBLE, the write-

can be pushed on the response channel as soon as that channel is available, pos

parallel with the corresponding activity on the address channel. This behaviour minim

the extra write-latency when compared to that of mapping ‘c’ or ‘d’.

When using a decoupled protocol, the choice of which end should start the response

is clearer. Here, an initiator started response cycle makes little sense (and i

considered further), since the initiator would then have to either poll the target (leadi

unwanted power consumption) or ‘hog’ the response channel. With a target st

response cycle on the other hand, the bus is available for use by other transfers dur

gap between the target’s acceptance of the command and readiness to transmit a re

Figure 6.5: Interlocked protocol STG
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6.7 MARBLE’s dual channel bus architecture

MARBLE uses a dual-channel arrangement, where the two channels are known

command and response channels. The channels are related through a dec

arrangement as described in this chapter, with all activity on the response channel in

by the target.

There are thus separate arbiters for each of the channels, and latches at the target

routing information between the command cycle and the response cycle.

The command channel is used to pass the command phase during the push sectio

4-phase signalling handshake, and to return the acknowledge phase (indicating

deferral or acceptance of the command) during the pull section of the signa

handshake. Deferred commands have no corresponding response channel activity

Responses are pushed on the response channel when they are available, thus min

the bus usage for each transfer. All data is transferred on the response channel, wi

data pushed at the same time as the exception status bit, or write data pulled later

signalling handshake. MARBLE thus uses the format described by mapping ‘e’ in fig

6.2.

The combination of a decoupled protocol with a target started response transfer perfo

only when the transfer is accepted, restricts the exception support provided by MAR

This is because errors detected after the write data has been delivered to the target

be signalled precisely (as the exception status is signalled in the same cycle as the

data is transferred, but prior to the write data being pulled to the target) and must in

be signalled using an interrupt. However, such errors are unlikely to occur very ofte

they would typically only occur as a result of action involving a bridge from MARBL

to another (possibly off-chip) bus. Two example causes are an address decode fai

a write data parity failure. Both situations are probably best handled imprecisely sinc

added delay incurred by the master in waiting for such an exception to be deliv

precisely would severely limit overall system performance.
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Chapter 7: Transaction Layer

This chapter addresses the uppermost level of the communication hierarchy of an o

bus, the transaction layer. This sits above both the channel layer and the protocol la

illustrated in figure 7.1. As discussed in chapter 5, the link layer provides (one or m

multipoint channel connections allowing information to be routed between senders

receivers, where these need not be the same device from one communication to th

The protocol layer, discussed in chapter 6 is responsible for imposing a format ont

use of the channel layer, mapping transfer phases onto channel cycles such

bidirectional information transfer can take place between an initiator and a target.

Figure 7.1: Bus interface modules
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The role of the transaction layer is threefold:

• to ensure that responses and data are delivered in the correct order;

• to prevent slow targets from unnecessarily stalling the bus, thus giving a greate

availability for servicing other transactions;

• to allow and regulate the pipelining of transactions across the bus.

These issues are related, and are affected to some degree by the choice of whe

interlocked or decoupled approach is employed at the transfer protocol-layer level.

7.1 Split transactions

A transaction begins when the initiator presents a command (and any write data) to i

interface, and ends when a response (and any read data) is returned in the op

direction. Between these actions, the command will have been routed to the targe

target will have performed some action, and then the response will have been ret

across the bus.

A system where other bus activity (from other transactions) is allowed between

passage of the command and the response is said to support split transactions, wh

command and response are treated as separate packets to be transferred.

Support for split transactions can be provided no matter which implementation techn

has been used for the protocol layer, be it interlocked or decoupled, although the i

and implementations involved are slightly different. In fact, with some decoup

protocol layer implementations, every transaction is performed as a split transactio

the problem becomes one of flow control.

The following sections describe how such support can be provided for an asynchro

SoC bus although the same ideas have been used for many years off-chip and hav

introduced recently for some synchronous on-chip buses.
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7.1.1 Split transactions give better bus availability

The advantage of a split transaction is that it can alleviate the bus occupancy pro

encountered with slow targets. A split transaction allows the target to release the bus

processing the command, so that other transactions can use the bus, thus interl

command and response actions of different transfers on the bus. This is a partic

important issue in the SoC area when the core microprocessor is performing an of

memory access. Without split transaction support, the on-chip bus would be occ

throughout the transaction, impeding any other bus activity. With split transac

support, other transfers (including autonomous DMA transfers) can continue unimp

throughout. The split transfer thus gives greater bus availability and allows the activi

multiple transfers to be interleaved.

7.1.2 Implementation on an interlocked protocol layer

With an interlocked protocol layer a split transaction can be fabricated using one o

techniques shown below. These techniques need not be applied to every unit on

and the split action can be negotiated between the initiator and target on a per trans

basis. In any case, split activity implemented in this manner has a similar hardware

to implementing a decoupled protocol layer, but may not offer the same availab

improvement.

Initiator Back-off

The bus can be released before the completion of the target activity related to the tr

through the defer mechanism. The initiator must then retry the command later to c

for its completion. In the meantime, the bus is available for use by other initiators. F

the outside, this behaviour presents the functionality of a single outstanding com

split transaction interface in that multiple transactions can be interleaved on the bu

If further commands are presented to the target (e.g. from other initiators) while it is

processing a previously accepted command, then the target must also defer

commands, but may optionally also store them for later processing (though this req

extra hardware and complexity). Similarly, when the target has completed process
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command, it may choose to defer or queue any new commands until it has transmitt

response from the previous transfer.

Generally hardware polling (and hence deferral) is undesirable in a low power sy

and, although simple to implement, is only used where essential (such as when bri

between multimaster buses). To obtain the increased bus availability through

transactions implemented by a defer mechanism, some buses such as AMBA-AH

extra connections into the arbitration logic so that the target can indicate when it is r

for the initiator to collect its response. The initiator is then blocked by the arb

(preventing unnecessary retries) until the target releases it. Clearly this requires add

complexity in the arbitration logic, and this scheme quickly becomes unwieldy (henc

16 initiator limit on the AMBA-AHB).

Dual Role Interfaces

An alternative means of achieving split transaction behaviour on an interlocked bus

provide both initiator and target functionality at each client, as illustrated for the initi

in figure 7.2.

Figure 7.2: Dual-role split transaction initiator interface
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The split transaction can then be performed using two separate transfers; the first w

transaction initiator sending the command to the target, and then the second with the

reversed so that the transaction target becomes a transfer initiator to send the re

(which is received by the transaction initiator acting as a transfer target).

This implementation of split transaction functionality suffers from:

• one extra target loading of the bus for each split transaction capable initiator;

• one extra initiator loading (and corresponding arbitration network support) for e

transaction target supporting split operations;

• Extra complexity in the address decoding logic since the response transfer mu

routed by initiator identifier rather than the address field used to route the comm

As with the polling technique, this approach adds extra complexity, and again it af

the arbiter network, whose performance is critical to the latency experienced by a tra

7.1.3 Implementation on a decoupled protocol-layer

A decoupled protocol level, where the target is responsible for starting the response

read data) cycle, is inherently a split transaction bus, since every transfer is perform

two discrete actions. All that is required to provide minimal bus occupancy is to en

that arbitration for the response cycle does not occur until the target is (almost) rea

supply the required information. The bus will then remain available for use.

When the initiator is responsible for starting the response cycles (i.e. pulling the resp

from the target), the same problem must be addressed as for an interlocked protoco

to release the bus until it is required again. The solutions are as described previou

section 7.1.2. This problem is avoided when the target is responsible for startin

response cycles.

For the remainder of this chapter, afully decoupledbus protocol is assumed to mean a b

where the cycles are fully decoupled, with all but the first cycle started by the ta

device. Any other type of bus is classed aspartially coupled, including those with an
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interlocked protocol and those where the initiator is responsible for starting any cyc

a transfer after the first.

7.2 Response ordering

The use of an interlock between the command and response activity of a transfe

discussed in section 6.5 in the context of passing routing information from one cha

cycle to the next. Breaking this interlock to decouple the cycles and give a decou

protocol was addressed in section 6.5.2 where additional hardware was introduc

perform this handover. The behaviour shown in figure 7.3, where a second comman

be transferred by the bus without having to first wait for a response cycle from

previous transfer, was thus supported, allowing the interleaving of transfers invo

different initiators as described earlier.

The use of decoupled transfers, either at the protocol level or using the dual role inte

technique shown in section 7.1.2, brings with it an ordering problem. Depending o

speed and behaviour of the (possibly different) targets for each transfer then the ord

of the returned responses will be:

• the same order as the commands were issued, as illustrated in figure 7.4a;

• different order from that of the commands, as illustrated in figure 7.4b.

For correct system operation, the latter scenario must be avoided, (as it was wit

interlocked protocol layer) or managed through adding a reordering capability a

initiator. The former leads to what is known as asingle outstanding commandconstraint

whilst the latter approach is said to permitmultiple outstanding commands.

Figure 7.3: Two decoupled commands and two responses
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To illustrate the above ordering problem and its solutions it is useful to consider the

of control during a transfer, as illustrated in figure 7.5. Consider the token (the b

circle) to indicate the primary activity of a transfer (in a bus system with two decoup

channels), which always begins with an initiator sending a command across the bus.

reception of the command, there will be a delay while the command is processe

response is then sent across the bus to the initiator and the control token is then back

it started. The single outstanding command constraint limits (via the throttle) the num

of tokens in the loop to just one per initiator whereas the multiple outstanding comm

support allows multiple tokens, although an upper limit will be imposed

implementation reasons. The decoupling shown in this figure allows for the ske

activity between the command and response channels. For a single outstanding com

constraint it amounts to a latch, but a more complex first-in, first-out (FIFO) buffe

required when multiple outstanding commands are allowed.

a.In-order responses b.Out-of-order responses

Figure 7.4: Possible order of bus cycles for two transfers

Figure 7.5: Bus transfer control flow
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7.2.1 Single outstanding command

The single outstanding command constraint requires that an initiator does not issue

command until a response cycle has begun for any previous command issued

prevents responses being presented to an initiator in the wrong order. Note tha

approach can still permit the interleaving of transfers from different initiators across

bus, and the responses for these transfers can be passed in a different order fr

commands.

Where the interlocked protocol of section 6.5.1 enforced a constraint (shown by

middle arrow in figure 7.6) that a command cycle would end only after the start of

corresponding response cycle, the single outstanding command constraint dictates t

next command will begin after the start of the previous transfer’s response cycle.

behaviour is shown by the rightmost arrow in figure 7.6.

The interlocked constraint also implies the single outstanding command constrain

not vice versa) hence the need for additional control when using a split transfer pro

Figure 7.6: Interlocking and single outstanding command constraints
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7.2.2 Multiple outstanding commands and pipelining

Figure 7.7 shows a target interface connected to a target device through a latch

command path. A latch (as illustrated) allows commandn to be processed at the target an

to use the response channel whilst the next command,n+1 is transferred on the bus. This

latch thus provides for a single stage of decoupling between commands and resp

analogous to the pipelining found in many microprocessors.

The signals and the OR-gate drawn in faint in figure 7.7 show the signalling of

command channel connection to the target device in order to support the

negotiation. An accepted transfer (indicated using the ack line) places control inform

(showing the transfer direction and which initiator the transfer originated from) into

lower latch. This information is required when the response cycle is performed

deferred transfer does not do this.

If the target device contains its own pipeline latches (as would a pipelined RAM,

example), or the latch shown in figure 7.7 is extended to a multistage FIFO buffer (o

termed a command queue in this context) then the target will be able to accept mu

commands before requiring the transfer of responses.

Figure 7.7: Adding pipelining support to a target interface
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For a single initiator to exploit this extra pipelining it must be able to transmit multi

commands before requiring a response. This means that a split transaction system

overcome, or avoid, the single outstanding command constraint inherent in m

interlocked systems, and introduced above for the decoupled transfer protocol.

7.2.3 Number of outstanding commands

One key observation is that, with only one outstanding command, it is impossible

single initiator to saturate an asynchronous bus. In a synchronous interlocked bus s

saturation is possible because the initiator can transmit its next command in the S

clock period as the response is transmitted, whereas for the asynchronous equivalen

is the small overlap discussed earlier. However, the synchronous system has to in

the equivalent time to analyse any wait-state signal within the clock period to deter

whether to start the new command, or continue with the old one for another entire

period.

With higher numbers of outstanding commands, bus occupancy increases until satu

is achieved. The number of outstanding commands required to achieve this varies w

delays of the bus and the target devices. In any case, the number of outstanding com

that can be used is limited by the depth of the target’s pipeline.

A final point to note regarding high numbers of allowable outstanding commands is

in order not to stall the bus (and thus significantly impact upon the latency of other

transfers), targets should be capable of queuing all of the commands sent to them

initiator. With a single outstanding command constraint, this is not a problem since

bus is unused between the command and response transfers.

7.2.4 A grouping of single outstanding command interfaces

Multiple outstanding command functionality can be emulated by grouping a set of s

outstanding command initiator transfer interfaces to form one multi-transaction inte

with the usual one command channel and one response channel connections

initiator device. Extra support logic is required here to distribute commands to the tra

bridges, and gather responses (in the correct order) from these bridges. A su
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arrangement for a four transaction initiator constructed from four single-transfer initia

is shown in figure 7.8. The AMBA-AHB uses this approach.

This implementation of multiple outstanding command split transaction functionality

addition to the problems of hardware polling where applicable) suffers relative to a s

initiator (and the technique presented later) in that:

• each transfer-initiator must be able to arbitrate for the bus, thus extra laten

incurred in the arbitration stage;

• the extra transfer bridges increase the loading of the bus lines.

The sequential nature of typical initiator devices such as microprocessors and

controllers, and the inherent dependencies between the bus transfers that they i

mean that the distribution of commands to and collection of responses from the indiv

Figure 7.8: Four outstanding command transaction bridge
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single outstanding command initiators within the multiple outstanding bridge must en

that:

• commands addressing the same target are presented to the target device in th

order as they were presented to the initiator bridge by the initiator device;

• responses are returned to the initiator in exactly the same order as the correspo

commands were presented.

The latches shown in figure 7.8 and the response collection logic together form a re

buffer that may be written to in any order, and read from in a known, fixed order,

meeting the second requirement.

One technique for meeting the first requirement is for the command distribution un

issue a command only to a single-outstanding command unit when transfer o

previous command across the bus has begun, although this then limits the inter

ability to saturate the bus. Furthermore, atomic transactions require that the bus b

between transfers, and so the atomic sequence of transfers must either use the sam

outstanding command unit or the ownership of the bus must be passed from one to a

without releasing the bus. Both approaches add further complexity.

A target capable of supporting more than one transaction at once (thus allowin

pipelining within the target itself) can be constructed in a similar manner, from a grou

of single outstanding command target interfaces. Of course this is only necessary i

transactions are being used to allow pipelining within the target itself, since, even w

simple target, one command can be active in the target, with a second command in

across the bus.

7.2.5 Sequence tagging and reordering of responses

With a decoupled protocol layer bus (or the provision of similar functionality on

interlocked bus through dual role interfaces as described in section 7.2) mu

outstanding commands can be supported without the need for interface grouping. In

a single interface is used to pass commands and responses between the bus and th

with additional control and data manipulation between the bus interface and the cli
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At the initiator a reorder buffer must be included as illustrated in figure 7.9 to allow

reordering of response packets if they arrive out of order (as described earlier) wh

the target there may be a need to queue commands between the interface a

peripheral to prevent the commands waiting for processing from clogging the

unnecessarily.

Both the reorder buffer required at the initiator and the low-latency FIFO buffers use

store commands at the target can be realised using a combination of a counter, a re

bank and conventional micropipeline FIFO buffers. A low latency parallel-access F

buffer can be built as shown in figure 7.10a where the two counters must notlap each

other. A reorder buffer can be implemented in a similar manner as shown in figure 7

When grouping many single outstanding command initiators to form one mult

command initiator, each of the subunits had its own connection to the bus arbiter

advantage of this approach is that only one connection per (multi-command) initia

required to the arbiter.

Where the unique identifier of each transfer initiator clearly showed where respo

should be returned to for the previous approach, their destination implying the orde

Figure 7.9: Adding a reorder buffer
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this approach requires each command to have a unique (from any other cur

outstanding commands issued by the same initiator) sequence tag to hold the or

information, and all commands and responses from this initiator will share the s

initiator identifier.

The addition of a command queue at a target that supports deferral (such as a bri

another bus) requires additional flow control to avoid deadlock. Either:

• The target must agree to accept each transaction before it can be entered in

queue. This ensures that the target has the opportunity to prevent an a

sequence of transfers from filling the queue and holding the bus if it requires ac

to the bus in an initiator role before it can process the atomic sequence; or

• The queue must have sufficient free space to hold the entire set of transfers tha

an atomic sequence before it can accept the first transfer of that sequence

queue thus handles defer negotiation on behalf of the target.

If the queue size is much larger than the maximum allowable number of atomic tran

then the second approach is preferable because, with this approach, transfers a

a. FIFO buffer implementation b. Reorder buffer implementation

Figure 7.10: Low latency FIFO buffer and reorder buffer implementation
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deferred (and hence retried) if the queue is nearly full, a situation which should, hope

occur infrequently. A small queue, or the first approach above, gives less decou

between the activity of the target and the bus, so the likelihood of deferrals if the ta

requires use of the bus in an initiator role is greater.

7.3 MARBLE’s Transaction Layer

MARBLE uses a decoupled protocol layer, thus providing native support for s

transactions without requiring the use of any of the techniques shown in section 7.1.

keep the complexity of the interfaces down for the first AMULET3H chip, t

implementation of MARBLE presented in this thesis permits only one outstand

command per initiator, thus avoiding any reordering or queuing requirements. This

however mean that a single initiator cannot saturate the bus. Further details of the d

of the MARBLE bus interfaces are contained in the next chapter, and a complete s

schematics can be found in appendix A.
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Chapter 8: MARBLE: A dual channel
split transfer bus

Chapters 4 to 7 have introduced the complex issues involved in the design

multimaster SoC bus presenting asynchronous solutions at each stage. The Man

Asynchronous Bus for Low Energy (MARBLE) described in this chapter provide

concrete example of the feasibility of asynchronous SoC interconnect. It was origi

developed for the AMULET3H telecommunications controller chip described later in

chapter, but is intended to be a general purpose SoC shared bus architecture exploit

benefits of asynchronous design. The chapter is thus broken into three parts:

• MARBLE signal and protocol summary bringing together a complete set of cho

from those presented in the earlier chapters;

• descriptions of single outstanding command initiator and target bus inter

implementations as used in the AMULET3H telecommunications controller ch

• an overview of the AMULET3H telecommunications chip illustrating the role

MARBLE within the system.

8.1 MARBLE protocol and signal summary

The fundamental issues relating to the MARBLE architecture have been presented

previous chapters of this thesis and are summarised here to show the comple

architecture.
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8.1.1 Two channels

A MARBLE bus consists of two asynchronous multipoint channels as presente

chapter 5. One of these channels carries the command from the initiator to the t

returning either an accept or defer status. The other multipoint channel carries a res

from the target to the initiator (and the read or write data in the appropriate direct

Signal definitions for these two channels are shown in tables 8.1 and 8.2. Addit

signals for connection of the bus interface units to the central address decoder and a

are shown in table 8.3.

Name Function Description

MAR Address
Request

The command/address channel request line driven b
the initiator

MAA Address
Acknowledge

The command/address channel acknowledge line
driven by the target

MAO Address
Operation

The command/address operation indicating if the
transfer is a read or a write

MAT[1:0] Address Tag The command/address tag indicating which initiato
the transfer originated from

MA[31:0] Address The 32-bit address, driven by the initiator

MSIZE[1:0] Transfer Size The size of the data packet to be transferred, whic
may be byte, half-word or word

MP[1:0] Privilege Code Privilege information that may be used by a bus pr
tection unit.

MS[2:0] Sequential Sequentiality indicator

ML Lock Lock signal indicating that the current and next trans
fers from this initiator must be performed as an
atomic sequence.

nMDEF Defer Defer completion of transfer. Initiator should try
again later. Driven by target in pull phase of address
cycle.

Table 8.1: MARBLE Command/Address channel signals
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Name Function Description

MDR Data Request The response/data bundle request line driven by th
sender

MDA Data
Acknowledge

The response/data bundle acknowledge line driven b
the receiver

MDO Data Operation The response/data operation indicating if the data
cycle is a read or a write

MDT[1:0] Data Tag The tag indicating which initiator the response/data
cycle is destined for

MD[31:0] Data Used to send (push) read data on the response/dat
channel
Also used to send (pull) write data on the response/
data channel

ME Abort Error Abort indicator driven by the target

Table 8.2: MARBLE Response/Data channel signals

Name Function Description

MNRES Active Low
Reset

Global bus reset signal

MAarbreqn Address Arbi-
trationRequest
n

Signal from initiator to bus arbiter indicating that initi-
ator n requires access to the address channel of the b

MAarbgntn Address Arbi-
tration Grant n

Signal from bus arbiter to initiator n indicating that it
has been granted access to the address channel for
next cycle

MASm Address Select
m

Signal from the address decoder to target m indicatin
that it is to respond as the target of the current addres
cycle

MDArbreqn Data Arbitra-
tion Request n

Signal from target to the bus arbiter indicating that tar
get n requires access to the response/data channel
the bus

MDArbgntn Data Arbitra-
tion Grant n

Signal from bus arbiter to target n indicating that it has
been granted access to the response/data channel 
the next cycle

MDSm Data Select m Signal from the data decoder to initiator m indicatin
that it is to respond to the current data cycle

Table 8.3: MARBLE support signals
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8.1.2 Split transactions

The two channels are used in a decoupled transfer scheme with loose coupling be

the channels to implement split transactions. One (or more if deferred) command ch

cycle and one response channel cycle are used for each transaction as discusse

previous chapters. All activity on the response channel is initiated by the transfer ta

Arbitration for the response channel normally does not occur until the target devi

ready to perform the transfer, so as not to impact bus availability for other trans

although targets are permitted to arbitrate in advance of read data readines

arbitration can take place in parallel with target device activity) to minimise latency

The AMULET3H chip supports only one outstanding command per initiator, t

avoiding any queuing or reordering requirements. (Additional signals would be requ

in each channel to convey asequencing colourif multiple outstanding commands are t

be supported).

8.1.3 Exceptions

MARBLE supports precise read exceptions by passing an exception status bit (ME

part of the response/data cycle. This bit is pushed using a target started response c

cycle, with the consequence that precise exceptions due to a write data parity f

cannot be supported. Nor can the bridging of write cycle exceptions to ano

multimaster bus be supported. Neither of these are required in the AMULET3H sys

8.1.4 Arbitration

A MARBLE bus requires two separate arbiters, one to control initiator access to

command channel, and one to control target access to the response channel. In both

because the arbitration is hidden in busy systems (as described in section 5.6.1

latency is the key requirement of the arbitration system. In the AMULET3H system t

are four initiators and seven targets as described later in this chapter. A 4-way tree a

is thus used for the command channel and a 7-way tree arbiter for the response ch

The tree arbiter elements used for the bus arbiters are built around a standard MU

component and each bus client has its own dedicated request/grant channel for inte

with the central arbiters.
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8.1.5 Atomic transactions and locking

MARBLE supports atomic transaction sequences through initiator locking of the

Thus defer functionality is only necessary in systems supporting bridge-type beha

where a hybrid device needs to be able to preempt an incoming target access in o

perform an initiator action.

8.1.6 Burst optimisation

Burst actions, where one command can cause the transfer of multiple data-packe

found in many synchronous buses), are not supported by MARBLE. Instead there

strict one-to-one correspondence between commands and responses.

This one-to-one correspondence has minimal impact on the overall bandwidth o

system since MARBLE’s two channels each have a similar maximum through

Further, the implicit knowledge that is transmitted as part of a burst command in o

systems is explicitly transmitted in the command with each cycle on MARBLE. T

sequential relationships between cycles are transmitted using the threeMS[2:0] wires of

the command channel. MS[0] is used to indicate if the current address is sequential

previous address issued by the initiator. MS[2] and MS[1] are used to represent one

four predictions shown in table 8.4. The target must mask the MS[2:0] values to en

that a non-sequential cycle is indicated for the first cycle after a change in initiator (w

can be detected by checking the initiator identifier (MAT) with that used in the previ

transfer).

MS[2:1] Relationship Typical applications

00 None non-sequential memory access

01
Next address LIKELY to be
sequential to the current address

instruction fetch
ARM load/store multiple

10
Next address WILL be within the
same 2n size memory page
(where n is system dependent)

DMA transfer,
cache line fetch (wrap-around)

11
Next address WILL be sequential
and within the same page

cache line fetch (sequential)

Table 8.4: MARBLE sequentiality codes
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8.2 Bus transaction interface implementation

Interface modules supporting the full range of features described previously have

constructed for the MARBLE architecture. These are based on the multipoint cha

initiator and target modules presented in chapter 5. Schematics for the modules u

the AMULET3H chip are contained in appendix A.

The initiator and target device connections of these interfaces present and accept th

conventional 4-phase push protocol channel that designers (notably the AMULET g

are accustomed to working with. In each case, two channels are used as shown in

8.1, one for information flowing onto the bus and one for information flowing off the b

The channels are named in the same manner as their multipoint counterparts with

‘-on’ or ‘-off’ indicating their direction relative to the bus. There is an exception to t

rule: the defer negotiation uses an ack/nack approach on the target channel coming

bus. There is one cycle on each of the command and response channels connect

bridge for every non-deferred transfer involving that bridge.

uif

Figure 8.1: Bus bridge interfaces
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The bundled information on the command on/off channels consists of:

• an initiator-id-tag, a hard-wired unique value for each initiator indicating fro

which initiator the transfer originates;

• an opcode indicating the type of transfer to be performed, i.e. read or write, an

size of the transfer (MARBLE is a 32-bit bus with possible transfer sizes of 8, 1

32-bits);

• an address in the memory map at which the operation should be performed; thi

also be decoded as part of the routing action of the transport layer;

• a lock signal indicating that the current and subsequent transfers should be a

• write-data, valid only during a write transaction;

whilst that on the response on/off channels consists of;

• an error-status indicating the success or failure of the transfer;

• read-data, valid only during a read transaction.

8.2.1 Interface structure

The design of the MARBLE interfaces presented here can be subdivided into a num

bus protocol control units and data manipulation blocks. The modules presented he

share the same token-flow control structure which was introduced in section 7.2.

structure of the initiator and target interfaces is shown in figure 8.2. The dark backgr

in this figure shows the boundaries between the command channel and response c

and the arrows show the datapaths (wide arrows) and signalling request direc

(narrow arrows).

The channel controllers are based on those presented in chapter 5. The command c

controllers handle the locking and deferral of transfers (there is no response activ

deferred). All locking is performed by the initiator locking the bus, and so the ta

command controller is very simple. The response channel controllers, in additio
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conveying a response, also have to transmit data in the direction indicated by the M

MDO bits of the command/response channel. The response channel controllers m

course, first wait until the appropriate data is available. The following subsections

further details of the implementation of the other blocks shown in figure 8.2.

8.2.2 Data storage and manipulation

The single outstanding command constraint means that the data-storage requirem

a MARBLE bus interface can be satisfied with simple single-stage latches and the

for FIFO buffers and reorder buffers is avoided.

Much has been written on the subject of latch control in asynchronous VLSI desig

both 2-phase and 4-phase control. Liu [50] presents a collection of latch controllers

different operating modes and input and output protocols. Bus interfaces provide a

example of where normally-closed latches (which are opened to allow the new da

propagate through, and then closed again before acknowledging the input) can r

power consumption. They do this by preventing clients from observing activity on the

Figure 8.2: MARBLE Initiator and Target bridge structures
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data lines unless the client is involved in the transfer, although there is a perform

penalty [49] when compared to operating the latch in a normally-open mode.

The majority of latches in the MARBLE interfaces are thus normally-closed, w

controllers based upon the long-hold normally-closed latch controller illustrated in fig

8.3a. This style of latch controller interfaces an early 4-phase signalling protocol cha

(the ‘Ri/Ai’ signals) to a 4-phase broad protocol channel (where the bundled signal

valid from Ro+ to Ao-) decoupling the input from the output. Its operation is such th

• when ‘Ri’ rises, the Nlt latch control signal is raised to open the latch;

• once the latch is open, signal ‘na’ falls causing the output request to be asserte

the ‘Nlt’ signal to fall, thus closing the latch;

• only once the latch is closed is the input acknowledged. The return to zero o

input channel can then occur in parallel with the cycle on the output channel;

• a new input cycle is held-off from opening the latch again until the previous ou

cycle has completed, with both ‘Ro’ and ‘Ao’ low.

The latch controller thus includes a degree of load-matching in that if more latche

driven from the ‘Nlt’ signal, its transitions will be slower, delaying ‘na’ falling. The ext

buffer (amplification) stages marked **1** and **2** in figure 8.3a were included

ensure that the latch remains open for sufficient time to allow the new data to prop

through it and they also contribute to the delay necessary to meet the bundling cons

in the output channel. This latch controller variant was used for the latches marked➀ in

figure 8.2. The circuits shown in figure 8.3b, 8.3c and 8.3d are all variants on

normally-closed latch controller that were used in the MARBLE interfaces.

Figure 8.3b shows the normally-open latch controller, which allows an incoming req

to be propagated immediately through to the output without having first to wait whilst

latch is opened (providing the previous output cycle has finished and the latch is alr

open) resulting in an improvement in performance. This type of latch controller was

for the latches marked② in figure 8.2 where there would be negligible power saving i

normally-closed latch were used.
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Figure 8.3c shows a controller with two latch control signals, one (nlt_nc) to con

latches in the normally-closed mode and one (Nlt_no) to control latches in the norm

open mode, both sharing the same input and output channel signalling. This mode o

controller was used in the MARBLE target for the latch marked③ in figure 8.2 to allow

the Opcode bit indicating whether a transfer is a read or a write to pass throug

(normally-open) latch ahead of the other signals in that bundle. This gives sufficient s

time to determine if a rendezvous with write data must be performed by the time

command has passed through the normally closed latch, thus avoiding addin

additional performance penalty to read transfers whilst the check is made.

a. Normally-closed b. Normally-open

c. Normally-open and normally-closed d. Normally-closed, conditional-open

Figure 8.3: Long-hold Latch Controllers
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The final latch controller, illustrated in figure 8.3d, again has two latch-control sign

both operating in a normally-closed manner. One of these signals, however, does no

for every input cycle, instead its opening is conditional on one of the bundled in

signals. This feature is used to open the data-path latches (marked④ in figure 8.2) at an

initiator only if the transfer is a read, ensuring that the latches remain closed (whils

response is latched) for a write transfer, thus avoiding any unstable data v

propagating from the bus into the initiator and wasting power.

8.2.3 Token management

With a decoupled protocol split transaction bus the size of the reorder buffer (and/o

width of the sequence-tag field of the bus) determines the upper limit on the perm

number of outstanding addresses for an initiator, as described in chapter 7. The MAR

bus described here permits only one outstanding command per initiator and so avoi

need for such complexity.

The throttling of the number of outstanding commands for an initiator is performed

restricting the decoupling between the initiator’s command and response ch

controllers such that an incoming request on the response channel must be received

a subsequent request on the command channel (or the arbitration for the com

channel if this is not part of a locked transfer) is performed.

The token management unit is thus a dataless FIFO buffer (or latch when there is on

token). The tokens really correspond to the buffer being initialised to a full state, so

it will issue n output handshakes before receiving any input handshakes, and from th

will output one handshake for each input handshake. Thus for the AMULET

implementation of MARBLE, which allows only one outstanding command, the to

management unit is a latch controller that is initially primed to give an output.
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8.3 MARBLE in the AMULET3H System

The AMULET3H [4] chip is the result of the OMI ATOM project [12]. This is a

collaborative project funded by the European Union, one aspect of which is to deve

telecommunications chip exploiting the benefits of asynchronous technology. The

contains a mixture of clocked and asynchronous components, connected throug

MARBLE bus and a simple strobed (single master) synchronous peripheral bus

interconnect provided by MARBLE in this system is shown in figure 8.4, illustrat

where initiator and target interfaces onto MARBLE are required.

Figure 8.4: The AMULET3H system

DMA
Controller

Target

Initiator

Target

Target

MARBLE
Sync Bridge

Target

ROM

ADC

Target

da
ta

ad
dr

es
s

ch
ip

 s
el

ec
ts

D
R

A
M

 c
tr

l

Off-chip Interface

te
st

Initiator

DRAM controller Test controller

Bus Control
(Arbitration/Decode)

M
A

R
B

LE

Target

Initiator

Initiator

Control/Test
Registers

RAM CPU

Target

Instruction
Bridge

Data
Bridge

sy
nc

hr
on

ou
s 

bu
s

synchronous
peripheral

synchronous
peripheral

synchronous
peripheral
Chapter 8:  MARBLE: A dual channel split transfer bus 130



8.3 MARBLE in the AMULET3H System

each

t.

rom

where

LET

nous
The following subsections give short descriptions of the behaviour and function of

of the macrocells in the system, focusing on the interconnect required by each par

8.3.1 The AMULET3 Processor Core

The core organisation of the AMULET3 microprocessor core is shown in figure 8.5 (f

[4]). The architectural features summarised here have been described in detail else

[4,33,34]. This is the third generation asynchronous microprocessor from the AMU

Group at the University of Manchester and is code compatible with the ARM synchro

microprocessors.

Key AMULET3 core features include:

• a modified Harvard architecture;

• decoupled prefetching with branch prediction;

Figure 8.5: AMULET3 core organisation (from [4])
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• support for precise exceptions;

• full support for the ARM architecture v4T [45] including the Thumb 16-b

compressed instruction set;

• register dependency and exception handling using an asynchronous reorder

from which results can be forwarded to allow out-of-order completion a

speculative execution of instructions;

• a very low power halt mode implemented through suspending the prefetch ac

until an interrupt occurs;

• debug support using comparators and mask registers on both the instructio

data ports to provide basic (exact) breakpoint and watchpoint facilities.

Simulations show that the processor core will operate at an average frequency of a

130 MHz on ‘typical’ silicon at 3.3V, 25°C. This is a similar performance to the

equivalent synchronous ARM9 microprocessor operating at 120MHz on the same s

process.

There are two memory interfaces to the processor. One, (the data port), is use

memory accesses by load and store instructions. The other (the instruction port) is

for instruction fetches, and also for data loads to the program counter. This last pecu

means that the processor does not strictly adhere to the Harvard architecture fou

many other high performance processors, but it simplifies the implementation o

processor and allows program counter loads to be performed in parallel with data re

loads. The consequence of this design choice is that the memory subsystem must p

a unified view of memory.

8.3.2 RAM

Eight kilobytes of on-chip SRAM are provided to hold speed-critical routines. The R

comprises eight 1 KB pseudo dual-ported blocks. As illustrated in figure 8.6 each

block consists of a single ported RAM array with separate line buffers for each o

instruction and data ports, and an arbiter to ensure that only one port uses the RAM
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at once. Each block has a RAM array bypass path that allows accesses within the

line as the previous access to the same port to be satisfied from the line buffer.

The combination of the line buffer and the same line access bypasses allow the arb

access single ported RAM to achieve almost the same performance as a fully dual-p

RAM (except for when very rare conflicts occur) but with much lower cost.

The RAM blocks are connected via two shared local buses to bridges (see below

provide connection to both MARBLE and the AMULET3 core.

8.3.3 ROM

The simplest MARBLE target in the AMULET3H chip is the 16kB on-chip ROM us

for program store. This target will generate an exception for any attempted writes

The ROM access time (including control logic) is around 4ns making it one of the fa

targets on MARBLE; to enhance performance further when running code from ROM

MARBLE interface issues an early request to the arbiter (i.e. speculatively before the

data has been retrieved) for the MARBLE response channel, so as to minimise the a

latency.

Figure 8.6: 1KB RAM block
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8.3.4 DMA Controller

The AMULET3H asynchronous subsystem contains an autonomous DMA contr

with 32 independently programmable channels, each capable of performing tran

between two memory-mapped addresses that may correspond to memory or peri

devices. The DMA controller operates using a store and forward technique, requiring

complete MARBLE transactions per DMA transfer. MARBLE does not support fly-p

DMA where the controller sets up a direct data transfer between the two periphera

Much of the DMA controller was synthesised using Balsa [10], with custom-layout u

for the registers and the synchronous DMA request prioritisation logic.

8.3.5 External Memory/Test Interface

A 16-bit data bus is used to interface the chip to external memory parts. In no

operation the AMULET3H chip will be the only master on this bus, all traffic to t

external bus passing over MARBLE and onto the bus via a target interface. An on

test controller allows the ownership of this bus to be reversed for test purposes, so

may be used (via a MARBLE initiator interface) to apply test vectors to, and read re

from, any peripheral that can be addressed over MARBLE. The external interface ca

be either a MARBLE target or initiator.

The MS field of the MARBLE command is primarily for use by the external memo

interface so that it can exploit the behaviour of DRAM parts which typically prov

much faster access times for all but the first access of a group of accesses to the sam

8.3.6 ADC/AEDL

The synchronous section of the chip contains an analogue to digital convertor (ADC)

interface logic that connects this (as a target) to MARBLE permits the reading of the A

result to be synchronised by waiting for a signal which indicates the result is ready. I

context of this chip, this is known as an asynchronous event driven load (AEDL). The

benefit provided by the AEDL is that it allows synchronisation of the software running

the processor with the synchronous hardware event. The split transaction supp
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MARBLE means that the processor can be stalled waiting on the ADC without impe

the DMA engine.

8.3.7 SOCB

There are three interfaces between the synchronous and asynchronous regions of th

the ADC/AEDL, the DMA controller requests and the bridge between MARBLE and

synchronous on-chip bus (SOCB). The synchronous modules in the AMULET3H

comprise library modules and custom units from both the commercial partner in

project and the manufacturer’s component library. They provide the dedicated func

necessary for telecoms applications.

The SOCB is a simple, synchronous, interlocked protocol, strobed peripheral bus

only one master (the bridge from MARBLE). Figure 8.7 shows a timing diagram of

operation of the SOCB illustrating both the read and the write behaviour of the bu

short description of each of its signals is given in table 8.5

Figure 8.7: SOCB timing diagram
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The SOCB clock runs at up to 66 MHz, with a minimum of two cycles required for e

transfer. There is no pipelining of address and data activity and the address must b

stable throughout the data transfer.

When an SOCB transfer is requested from MARBLE, a synchronisation of the req

signal must be performed. Since SOCB transfers always commence on the positive

of the clock, the synchronisation is performed on the negative clock edge. Hence the

from the asynchronous request rising to the start of a transfer takes a worst case t

1.5 SOCB clock cycles and a best case of 0.5 clock cycles, giving an average of 1

added latency due to the synchronisation. Figure 8.7 shows the arrival of

asynchronous requests from MARBLE, labelled (1) and (2), leading to the worst cas

best case synchronisation times respectively.

On the next rising clock edge after synchronisation, the bridge will drive the address

and data (for a write transfer) onto the SOCB. An additional signal, NIOCS is

supplied to activate the SOCB address decoder. A half-cycle setup time is then pro

before read or write strobes are generated.

If the bridge wishes to read from an SOCB peripheral then the information must be s

at the rising edge of NSBrd. In order to avoid drive clashes, the turn-off time (labelle

must be less than the hold time.

Signal Function

Nwait wait signal allowing the peripheral to prolong a transfer by another cy

NIOCS peripheral access strobe

NSBrd read strobe

NSBwr write strobe

SA[19:0] 20-bit address

SD[31:0] 32-bit data lines

SIZE[1:0] data transfer size (byte, halfword or word)

CLK bus clock

Table 8.5: SOCB signals
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The Nwait signal may be used by a peripheral to insert a wait-state, allowing the dur

of a transfer to be extended. Nwait is sampled on the positive edge of the clock wh

read or write strobe is active. If low, the cycle is converted to a wait state. Nwait ma

held low for an unlimited number of clock periods.

8.3.8 Instruction bridge and local bus

The instruction bridge connects the AMULET3 processor instruction port to the on-

RAM and to MARBLE. This unit will never perform write actions to the RAM or to an

other MARBLE target, and is optimised for maximum bandwidth. It uses stand

unidirectional broad-protocol push channels interconnected as shown in figure 8.8

FIFO buffer holds control information to switch the multiplexer to the correct channe

the returning instruction. The depth of this FIFO buffer imposes an upper limit on

number of RAM blocks that can be in use at any one time. This can be greater tha

because of the decoupling between the RAM address inputs and data outputs provi

the RAM line buffers.

Figure 8.8: Instruction Bridge and local bus

FIFO

Decode

Instruction address instruction

MUX

Select

1KB RAM

Command to MARBLE Initiator Response from MARBLE Initiator

control control

address read-data

1KB RAMaddress read-data
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8.3.9 Data bridge and local bus

The data bridge connects the AMULET3 processor data port to the RAM and

MARBLE bus as illustrated in figure 8.9. This unit is more complex than the instruc

bridge since it has to support both read and write transactions. It also has to map the

swap instruction into a read followed by a write; this is performed in the unit labe

SWP in figure 8.9. It must also act as both an initiator and a target on MARBLE to a

other initiators, such as the DMA controller and test interface, to access the RAM

contrast to the instruction bridge, the data bridge is optimised for minimum latency (ra

than maximum bandwidth) to minimise processor stalls due to data accesses.

Figure 8.9: Data bridge and local bus
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Arbitration is required in the data bridge to resolve the contention that can occur whe

processor core and the MARBLE target interface both require service from the RAM.

arbitration is performed before the SWP expansion to simplify the arbiter (which wo

have to support locking if the expansion was performed first). The structure shown

not support concurrent access to MARBLE for the CPU and to the RAM from

MARBLE target (which would improve throughput) as this would give a longer laten

due to the extra control complexity.

A final point to note regarding the connection of the processor core and the RAM to

MARBLE bus via the local bus bridges is that a throttle on the instruction fetch is requ

in the processor core to avoid deadlock. This is illustrated in the following exam

suppose the processor prefetch unit fills the buffer internal to the core, and occupie

local buses and MARBLE whilst fetching instructions from ROM. If the processor tr

to perform a data access to the RAM, this can proceed unimpeded, but if a data acc

a peripheral on MARBLE is attempted, then the transfer must wait for MARBLE

become available. Normally this would occur as instructions filter through the proce

but if there is a dependency between the next instruction and the data access th

system is deadlocked. The solution is to restrict the number of outstanding instru

fetches such that the returning instructions can be stored at the processor w

obstructing the local bus, MARBLE or the RAM.

8.4 Summary

This chapter has introduced MARBLE, a dual-channel asynchronous System-on

(SoC) bus using a decoupled protocol to provide inherent support for split transac

without the need for polling or other complex implementations. This allows

connection of asynchronous macrocells (without introducing a clocked bus) to faci

the construction of entirely asynchronous VLSI SoCs.

Modular construction details have been provided for single outstanding transa

initiator and target interfaces which have been used in a real system, the AMULE

Figure 8.10 shows a die plot of the final AMULET3H layout with an overlay showing

location of the MARBLE bus wires and drivers and other major system components

control logic for the initiator and target interfaces of the DMA controller can be see
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the leftmost end of the region labelled MARBLE. The control logic of the other MARB

interfaces is included into the initiators’ and targets’ compiled blocks of standard ce

The performance of the AMULET3H MARBLE implementation is evaluated in t

following chapter and compared with synchronous alternatives offering sim

functionality.

Figure 8.10: AMULET3H Die Plot
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Chapter 9: Evaluation

Chapters 4 to 7 introduced the issues involved in designing an asynchronous SoC

complete bus was then proposed in chapter 8 and shown in the context o

AMULET3H subsystem. This chapter presents some of the post-layout simula

performed to validate the functionality of MARBLE and to measure its performance

The chapter is divided into four sections:

• the MARBLE testbed used to explore the limits of operation of the interfaces

to verify the correct controller behaviour with a very fast environment;

• the AMULET3H simulations used to validate and measure the MARB

performance in a real system;

• an analysis of delay distribution showing how the different phases of the MARB

protocol and circuit implementations contribute to the time required to perfor

bus transaction;

• performance comparison with common synchronous SoC buses.

All of the simulations used in the comparisons presented in this chapter were perfo

using EPIC TimeMill v5.2 from Synopsis assuming ‘typical’ silicon parameters at 3.

25°C.
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9.1 The MARBLE testbed

A standalone testbed with four initiators and eight targets was created to validat

functionality of the MARBLE interfaces prior to their connection within the AMULET3

subsystem and independently from the initiator and target delays that are endured in

system.

This testbed used initiators that immediately request another transfer as soon as p

after a previous transfer has completed (i.e. they have a very low cycle duration o

non-bus side of the interface), and targets that have very low latencies. These beha

were achieved by tying back the outgoing requests to their corresponding acknowle

and feeding incoming requests via an inverter driven from the correspon

acknowledge.

The use of these high performance initiators and targets allowed the testbed to ex

the timing of the interfaces more rigorously than should occur in practice. The testbed

run with two extremes, a short bus (giving lower load and crosstalk effects) and a lon

to allow the interface behaviour to be verified independently from the initiator and ta

delays that are endured in a real system such as the AMULET3H. In each case the t

used asymmetric arbiters (as opposed to the symmetric ones in AMULET3H) to o

minimal arbitration delay.

After verification of the MARBLE interface functionality using the testbed, and min

improvements to the interface circuits, the defer logic was removed and the inter

were inserted into the AMULET3H system allowing realistic performance measurem

to be made as described below.

9.2 Simulation of MARBLE in AMULET3H

Simulation of MARBLE within the AMULET3H subsystem is a matter of loading AR

code into the ROM, on-chip RAM or into a memory model connected to the exte

memory interface and then simulating the whole system using the Timemill simula

All of the programs were run from ROM as that is the fastest MARBLE target that ca

used by the processor core in the AMULET3H subsystem, thus allowing greater
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occupancy than using other, slower targets. In each case AMULET3 booted from off

code to initialise the interrupt vectors and configure the external memory interface b

running the test program.

The signals visible in the following simulation waveform plots are divided into

following groups:

Group A: MARBLE command channel signals (as described in table 8.1 on page

command channel arbitration request and grant signals (ma_req and ma

mar_i request signals from the initiators to the MAR centralised OR gate,

mas signals from the address decoder to the targets,

maa_t acknowledge signals from the targets to the MAA centralised OR 

Group B: MARBLE response channel signals (as described in table 8.2 on page

response channel arbitration request and grant signals (md_req and md_

mdr_t request signals from the targets to the MDR centralised OR gate,

mda_i acknowledge signals from the initiators to the MDA centralised OR g

Group C: AMULET3 processor core instruction fetch port. Visible signals here are

outgoing address (ia[31:0]) with its request and acknowledge and the retur

instruction (id[31:0]) with its request and acknowledge);

Group D: AMULET3 processor core data access port. Visible signals here includ

address (da[31:0]) with its request and acknowledge, write-data (wd[31:0])

read and write signals (which all have the same timing as the address).

shown is the read-data (rd[31:0]) and its signalling wires. The exception st

bit of this bundle is omitted since it is always inactive in all of the simulatio

illustrated here;

Group E: ROM access signals between the ROM and its MARBLE target bridge. Vis

signals include the address and its request (ardy) and acknowledge, an

read-data bundle (don[31:0], donr and dona).
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The MAT[1:0] and MDT[1:0] signals are used to indicate which initiator the addres

data cycle belongs to, as explained in section 6.5.2 for a decoupled transfer protoco

unique identifiers that can be encoded on these lines were allocated as:

0. External test interface controller

1. AMULET3 processor instruction port

2. AMULET3 processor data port

3. DMA controller transfer engine

The address channel arbitration signals, and the lines connecting the initiator interfa

the centralised OR gates for request and acknowledge merging, are shown i

simulation traces as signals ma_req[i], ma_gnt[i], mar_i[i] and mda_[i] respectiv

where ‘i’ is the unique initiator identifier listed above, as used on the MAT/MDT line

Similarly, each target interface has its own connections to the data channel arbiter (s

md_req[t] and md_gnt[t]), from the address decoder (mas[t]) and to the centralise

gates for request and acknowledge merging (signals maa_t[t] and mdr_t[t]). Here,

allocated as:

0. 8KB on-chip asynchronous SRAM

1. On-chip asynchronous ROM

2. External (off-chip) memory interface

3. Analogue to digital converter (ADC)

4. MARBLE to synchronous bridge (MSB)

5. DMA controller configuration registers

6. AMULET3 processor configuration/test registers

9.2.1 Single initiator to single target

In many scenarios the processor may run code directly from the ROM, so the ava

bandwidth for a single initiator using the bus (whilst all other initiators are idle) is

important parameter. The maximum throughput for this type of communication

measured by allowing the AMULET3 processor to fetch instructions (a mixture of ‘mo

and ‘and’ instructions) from the ROM which are then subsequently discarded bec
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they fail their condition codes (set by an earlier arithmetic instruction). This behav

causes the CPU to fetch instructions more rapidly than if the instructions hav

propagate through the processor pipeline, possibly encountering dependencies alo

way, thus making heavier use of the bus.

The resulting trace is shown in figure 9.1 where the command and response cycles fo

consecutive ROM accesses are highlighted by the overlays. The five command c

performed between the two cursors take an average (over five transfers) of 18.3ns

giving a throughput of 55 million transfers/second for the processor instruction port.

figure clearly shows the overlapping of the command cycle of a transfer with the en

the response cycle from the previous transfer. It also shows the idle periods be

transfers (when both request and acknowledge are low) as a consequence of the

outstanding command constraint. These actually acount for almost 6ns (a little gr

than the access time of the ROM), or around one third of the cycle time.

9.2.2 Two initiators accessing different targets

Using only a single initiator to test the bus does not achieve bus saturation or exerci

arbitration to ensure mutually exclusive bus use. A test using two initiators allows the

occupancy to be increased and the interleaving of transactions from different initiato

be observed as can be seen in the resulting trace shown in figure 9.2.

To avoid clashes over the same target, in this test the processor fetched instruction

the ROM, and performed data operations on another target (the AMULET3 test port)

instructions were a mixture of moves that fail their condition code check (and are

discarded, giving a high instruction fetch rate) and load-multiple data instructions w

give the fastest cycles on the CPU data port.

Figure 9.2 shows a trace of the (fastest) MARBLE command/address channel c

taking an average (over the 5 transfers between the cursors) of 13.6ns each (gi

throughput of 73 million transfers/second). Of the 13.6ns, the channel is actually idl

between 2.6ns and 6ns for the 5 cycles shown, an average of 3.7ns per cycle
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9.2.3 Two initiators accessing the same target

Figure 9.3 shows the results of a test with two initiators (in this case both the C

instruction and data ports) accessing the same target (the ROM).

The test results, as shown in figure 9.3 show both MARBLE and the ROM acce

running at an average of 56 million transfers/second with the ROM kept busy all o

time. This test runs slightly faster than the single initiator to single target test becaus

command channel arbitration must be performed sequentially in that test whereas

be pipelined here.

id

Figure 9.1: AMULET3 fetching code from the ROM
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This confirms that the throughput in the first test was limited by the target performa

and not the initiator. The overlays on figure 9.3 show the access time of the ROM (

the ‘ardy’ address request to the ‘donr’ data request) and the early arbitration by the

target interface before the read data is available from the ROM (visible as the assert

‘md_req[2]’ before that of ‘donr’).

9.2.4 Three Initiators accessing different targets

None of the earlier tests saturated the bus and so a scenario with three conte

initiators was devised. This test involved activity in three initiators and four targets

performed the following actions:

• AMULET3 fetching (and then discarding) instructions from the ROM;

Figure 9.2:  Trace showing interleaved CPU fetches and data accesses
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• AMULET3 performing data accesses to another MARBLE target;

• The DMA controller autonomously reading from the SOCB and then writing to

DMA controller programming registers.

Even with this range of activity, the bus is fully occupied for only short durations. Thi

because the DMA controller takes over 90ns per DMA transfer (one MARBLE read

one MARBLE write), and the processor’s bus requirements vary as its internal pip

fills up with instructions/load dependencies and then drains again, giving a quite com

overall system behaviour.

Figure 9.3: CPU fetches and data accesses both using the ROM
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ROM access (4ns latency) Response channel arbitration
begins before ROM data is ready

89ns / 5 command cycles = 17.8ns per cycle
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The longest period of intense bus activity in the simulation was only three cycles.

instance of such activity is shown in the trace in figure 9.4 where the cycles betwee

cursors take an average of 12.0ns each (the fastest is about 11.5ns) correspondi

throughput of 83 million transfers/second. Of this, the signalling lines are idle betw

transfers for around 2.6ns, although the bus is now fully occupied and this time cann

reduced or used by other transfers with this implementation for the reasons discus

section 9.3.3.

Other behaviours highlighted in figure 9.4 include:

➀ A group of sequential fetches with the MS[0] bit set to indicate their sequen

relationship even though they do not occur consecutively on the bus;

➁ The processor waiting (held up by the arbiter) whilst the DMA controller uses

address channel, and then being granted the bus once the processor low

arbitration request;

➂ An example of the pipelined arbitration where the next grant is issued to an init

whilst the bus channel is still in use by the previous owner;

➃ An idle period between transfers, even though the bus is heavily loaded by

initiators;

➄ The arbitration latency incurred in starting a new transfer on the bus when arbitr

cannot be hidden behind an existing transfer;

➅ The DMA controller reading one byte from the synchronous on-chip bus via

MSB;

➆ An example of the major benefit of supporting split transactions in that ot

initiators (the CPU fetch and data ports) can use the bus whilst the DMA contr

is stalled waiting for read data from the SOCB;

➇ An example of response cycles occurring in a different order from th

corresponding command cycles.
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9.2 Simulation of MARBLE in AMULET3H
Figure 9.4: Three initiators accessing four targets
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9.3 Analysis of delay distribution

Table 9.1 shows the durations of the active phases of some of the fastest hand

observed on MARBLE (these are for an instruction fetch from the ROM by

AMULET3 core).

These timings include the delays caused by:

• signal propagation of the transitions on each of the distributed signalling w

These take between 0.2ns and 0.4ns of each of the durations shown in the

(taking about 1ns in total for the propagation of the four signalling events i

cycle). These times are typical case (the basic delay), not including any cros

effects as discussed in chapter 4;

• latch controller activity within the target which takes 1.7ns of the MAR+→ MAA+

period, and similarly at the initiator 1.7ns of the MDR+→ MDA+ period. See

section 9.3.4 for further details of the time taken by the latch controllers.

The remainder of the cycle time is used for address decoding, setup of the bundled s

and activity in the sender (which is tightly coupled to the bus channel) as discussed b

handshake phase signalling interval duration (ns)

command/address setup MA_GNT+→ MAR+ 2.5

command channel push MAR+→ MAA+ 2.9

command channel pull MAA+→ MAR- 5.0

command channel return-to-zero MAR-→ MAA- 1.8

exception response/read-data setup MD_GNT+→ MDR+ 3.0

response channel push MDR+→ MDA+ 4.3

response channel pull MDA+→ MDR- 2.9

response channel return-to-zero MDR-→ MDA- 2.4

Table 9.1: Handshake phase durations for a CPU fetch from ROM (from figure 9
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9.3.1 Centralised and Distributed Decoding

The command/address channel of MARBLE uses a centralised address deco

determine which target should respond to a transfer, whilst the response/data chann

a distributed decoding technique. The decode on each channel takes a similar time, a

0.2ns (less than 2 percent of the total cycle time), but a direct comparison o

performance of these two mechanisms is not feasible here since the command c

decoder map is more complex than that for the response channel.

9.3.2 Arbitration

Two tree arbiters were used in MARBLE: a 2-level arbiter tree for the command cha

and a 3-level arbiter tree for the response. In each case the uppermost level is a

MUTEX and the other levels use tree arbiter elements as shown in figure 9.5.

arbitration delay is made up of:

• request propagation: 0.2ns;

• MUTEX propagation (no contention): 0.4ns;

• grant propagation: 0.2ns.

These paths are shown in figure 9.5. The rise times of the request and grant s

between the arbiter and the device are around 0.2ns each.

Arbitration thereby imposes a latency of about 0.4ns per stage of the arbiter plus 0.4

the propagation down the long interconnecting wires, with command channel arbitr

taking around 1.2ns and response channel arbitration taking around 1.5ns in total.

The pipelining of arbitration for the next cycle on a channel when there is current act

on the channel means that the next initiator is waiting to drive data onto the chann

soon as it is available (indicated by acknowledge low) as intended. Thus arbitr

latency has no effect on the bus saturation throughput. This behaviour is visible in

of the earlier traces (and annotated in figure 9.4) where the assertion of the next gra

clearly be seen to occur before the channel’s activity ceases.
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9.3.3 Data drive setup time

A breakdown of the ‘lost time’ between cycles on the command channel of the b

shown in table 9.2 . The results for the response channel are similar with over

absorbed by the delay element in the feedback path used to indicate (to the

controller) when the bus lines have been driven, so that the bus signalling event m

issued.

From these numbers, there is a total of 0.9ns+(1.4ns-1.0ns)=1.3ns between the b

data being nominally stable and the corresponding signalling event indicating this to

receivers. This is sufficient to allow for any variations in propagation times due

crosstalk as discussed in chapter 4.

Figure 9.5: Tree arbiter element delays

 Delay period Duration (ns)

Arbitration grant→ drive-enable (channel idle when granted) 0.9

Idle channel→ drive enable (granted before bus becomes idle) 0.3

Drive enable signal asserted→ data stable on bus channel 1.0

Drive enable signal asserted→ data-driven signal asserted 1.4

Data-driven indication→ central bus channel request 0.9

Table 9.2: Delays in driving the bus channel
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9.3.4 Pipeline latch controller delays

As discussed in section 8.2.2, additional buffers were added into the latch controlle

give improved amplification and ensure that the latches remain open for suffic

duration to allow new data to pass through. These delays are necessary to ensure

functionality, but they increase the forward going latency of the latch and the cycle t

both of which are critical to performance. For the basic normally-closed latch contr

(shown in figure 8.3a) used in the MARBLE designs these delays are as shown in

9.3.

Table 9.3 also shows the corresponding results for the normally-open latch controller

to store the tag and opcode control information internally at the MARBLE target bri

interface. Even allowing for the difference in loading of the latch controller lines betw

these latches, the choice of a normally closed latch (for power reasons) has added

0.3ns to the latency and 0.6ns to the cycle time of every operation on a bus chan

should, however, be noted that normally open latch controllers tend to the behavio

their normally closed counterpart if new input data is presented to the latch befor

output channel has completed its return-to-zero phase.

The delay introduced by the latch controller is a significant proportion of the entire c

time of the bus channel (with the fastest cycles actually occupying the channel for 11

and taking 13.7ns in total).

Normally
Closed (ns)

Normally
Open (ns)

forward latency
(input request rising→ output request rising)

0.9 0.6

input latching time
(input request rising→ input acknowledge rising)

1.7 0.9

total input cycle time
(input request rising→ input acknowledge falling)

2.2 1.5

Table 9.3: Latch controller performance
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9.3.5 Sender activity

The MARBLE interfaces used in the AMULET3H were deliberately designed so that

were transparent to the sender on each channel, directly coupling the relevant

channel’s protocol to that of the equivalent bus channel. This simplified the design o

control circuits in the interfaces. The consequence of this design choice is that a

sender with a long delay during the return to zero part of the cycle (ack+→ req-) can hold

up the bus. Such behaviour in the local-bus bridges accounts for most of the 5ns be

MAA+ and MAR- shown in table 9.1. The ROM controller which served as the target

the simulation results shown in table 9.1 was much better in this respect, hence the

duration of the MDA+→ MDR- phase of the response/data cycle.

9.3.6 Performance summary

The performance of a bus is typically characterized by its maximum throughput an

latency incurred by transfers across the bus. The maximum throughput of MARBLE

been measured, as discussed above in section 9.2.4, as 83 million transfers/secon

The read latency of MARBLE can be obtained by summing the delays incurred

transfer from the presentation of the command to the initiator interface until the retu

a response from the same interface to the initiator. This of course includes the delay

target device. The full summation may thus be expressed as:

Latency=Tcommand transfer + Ttarget +Tresponse transfer

where the delays of the command and response transfers have been measured f

single initiator test as: Tcommand transfer = 4.0ns+Tcommand arbitration

and Tresponse transfer= 8.2ns+Tresponse arbitration

Thus the total read latency = 12.2ns + Ttarget +Tcommand arbitration +Tresponse arbitration

Which with the 4ns ROM access time, 1.2ns command channel arbitration and h

response-channel arbitration gives a total ROM read latency of 17.4ns.
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9.4 Hardware requirements

The hardware required to implement MARBLE adds little cost to a design. The lar

area requirement of a MARBLE bus is the wiring, and the use of a tristate approach k

this at an acceptable level. The sizes of the controller modules used in the AMULE

are shown in table 9.4, based on an average of 4 transistors per gate. Much of th

involved in the initiator and target interfaces is due to the pipeline latches, with e

interface having around 64 bits of latch on the datapaths of the channels (32-bit ad

latch and 32-bit write data latch at the target, 32-bit write buffer and 32-bit read-data

at the initiator).

9.5 Comparison with synchronous alternatives

Synchronous buses, as introduced in chapter 3, use a clock to regulate the transfer

between devices. Making a direct performance comparison between on-chip bu

difficult since their performance is restricted by the particular process technology us

a given implementation. Furthermore, the bus clock used in a design may not b

maximum possible frequency that the bus could use, but instead a convenient freq

that can easily be derived from the main processor clock (e.g. half its frequency).

example of the flexibility of an asynchronous on-chip bus is that its performance nee

be constrained in this way. However, table 9.5 shows a comparison of the throughpu

read-latencies for MARBLE (in 0.35 micron CMOS) with those for PI-Bus, AMBA-AH

and CoreConnect based on clock-frequencies published in data sheets and p

specifications. Note that latency calculations have been performed assuming that th

was previously idle, with the default grant (if one exists) being given to the conten

initiator.

Module No of gates

Initiator interface 570

Target interface 600

4-way tree arbiter 40

7 or 8 way tree arbiter 100

Address decoder 90

Table 9.4:  MARBLE interface and bus control hardware costs
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This table shows MARBLE achieving a throughput between that of the high-perform

AMBA-AHB and CoreConnect PLB (both of which use a gate-multiplexed appro

instead of tristate bus lines) and the mid-range CoreConnect OPB.

However, the bus imposed read latency of MARBLE is comparable to that obtained

synchronous buses running at around 150MHz. This is a consequence of every tran

a synchronous bus with overlapped address and data phases requiring a minimum

clock cycles, one for the address transfer and then one for the data transfer. Furthe

arbitration on a synchronous bus by a device other than that with the default grant w

require a further clock cycle giving bus-imposed read latencies of the order of 20n

the 150MHz buses. (Note that the figure quoted for MARBLE includes command cha

arbitration delays since there is no default grant mechanism.)
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MARBLE 32 83 332 14 0.35 3 Al AMULET3H

OMI PI_Bus 32 50 200 40 Specification v0.3d

AMBA ASB 32 18 72 110 0.6 3 Al Cirrus Logic CL7110

AMBA AHB 32 150 600 14 <0.25 Predicted for ARM10

CoreConnect OPB 32 50 200 40 0.25 5 Cu PowerPC 405GP

CoreConnect OPB 32 66 264 30 0.18 Cu PowerPC 440 Core

CoreConnect PLB 64 100 800 20 0.25 5 Cu PowerPC 405GP

CoreConnect PLB 128 133 2128 15 0.18 Cu PowerPC 440 Core

Table 9.5: Bus Performance Figures
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Chapter 10: Conclusion

Future SoC devices will require high performance on-chip buses. These are neces

support design methodologies based upon component reuse and the growing ma

SoC intellectual property. The work described in this thesis has identified and pres

asynchronous solutions to the problems that must be overcome in the design of an o

system bus. The work has resulted in the specification of an asynchronous

architecture for use in such systems.

The resulting MARBLE bus architecture supports many of the features found

synchronous on-chip buses and in both synchronous and asynchronous off-chip

providing a similar throughput and imposing a similar latency penalty as for equiva

synchronous buses. Asynchronous implementations of common bus features su

pipelined transfers, overlapped arbitration, atomic transactions and split transactions

all been demonstrated by MARBLE along with support for precise exceptions

AMULET3H the MARBLE architecture has been used in a SoC design, in its simp

form with only one outstanding command allowed per initiator.

MARBLE has been a key enabling factor in the AMULET3H design process, allow

separate work on each of the major macrocells. These were designed using

different techniques, ranging from the full-custom layout of the processor to the synt

of the DMA controller from a high-level channel-based programming language.

major advantage of MARBLE over its synchronous counterparts is that it allows

benefits provided by asynchronous design, as introduced in chapter 1, to be ext

throughout the system, not constrained to a single macrocell. It also offers a cl

defined solution for the globally asynchronous interconnection of many macrocells w

may operate locally under any timing model, be it asynchronous or synchronous.
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10.1 Advantages and disadvantages of MARBLE

Many arguments are proffered both for and against asynchronous circuits. Those re

to the use of asynchronous techniques for SoC interconnect as addressed in this

demonstrated by the MARBLE bus architecture, and realised in the AMULET3H sys

are examined below.

10.1.1 Increased modularity

One of the principal benefits often quoted by advocates of asynchronous desi

improved modularity when compared to a synchronous alternative. This is one o

strongest arguments in favour of using an asynchronous approach to SoC interco

The use of MARBLE in the AMULET3H system clearly illustrates this advanta

allowing each macrocell to be designed independently to perform to the best of its ab

without being constrained to have to fit within a given clock period.

For example, a ROM access takes 4ns, whereas an SOCB read access takes a m

of 22ns (1.5 clock cycles at 66MHz). The DMA controller and the processor can use e

of these peripherals, or the others in the system without the imposition of any addit

delay, unlike in a synchronous system where the delay in an access to a device woul

to be constrained to be a multiple of a fixed clock period. The asynchronous

interconnect approach thus provides a greater modularity than the synchro

alternatives by avoiding the problems of clock distribution.

The other implication of this modularity is the ease with which performan

improvements may be made. For example, in future designs the processor may be

optimised to gain, say, another 20% performance increase and the ROM access tim

be reduced or other faster targets such as an SDRAM interface may be added

MARBLE bus will be able support such changes without modification, and exis

peripherals, including the DMA controller, will still function correctly unmodified. T

perform the same improvements in a synchronous system would require either an in

in the global clock frequency (requiring every device to be re-examined and pos

modified to ensure it meets the new timing constraints) or the introduction of mult

clock domains which brings additional circuit complexity.
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10.1.2 Avoidance of clock-skew

The asynchronous sections of the AMULET3H system show how complex system

be designed in the absence of a clock, thus avoiding the problem of clock skew altog

Where a clock is necessary, its use can be localised to a sufficiently small region that

skew is easily managed, with asynchronous techniques used for global sy

interconnections. AMULET3H does just this, using MARBLE as the global syst

interconnect with some peripherals implemented synchronously, although in this ch

silicon areas occupied by circuits designed using the two different timing methodolo

are similar.

10.1.3 Low power consumption

The system bus is only one part of the entire design, but it nonetheless consumes

when performing transfers. When heavily loaded, there would be little difference betw

the synchronous and asynchronous approaches in terms of their power consum

However, the use of asynchronous techniques for the system bus offers real benefits

the bus is lightly loaded since it has zero quiescent power consumption and can s

from idle to full throughput immediately with no added complexity. Of course, to des

a completely asynchronous system an asynchronous bus is required, and so MARB

also an enabling factor for the design of large, clock-free systems.

10.1.4 Improved electro-magnetic compatibility (EMC)

No EMC measurements or simulations have yet been performed on the AMULE

design, although the results are expected to be similar to those obtained wit

AMULET2e microprocessor where the radiated energy was shown to be of lo

amplitude and less concentrated into narrow spectral bands than its synchr

counterpart. Again one of the more significant advantages offered by MARBLE in

area is the ability to construct large completely asynchronous systems without the u

a clocked macrocell interconnect. It is thus an enabling factor in the applicatio

asynchronous techniques for reducing EMC throughout the system, as the use

synchronous bus would subvert many of the improvements obtained by using a

proportion of asynchronous macrocells.
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10.1.5 Performance

MARBLE’s performance is similar to that of its synchronous counterparts, although

read latency is marginally better than synchronous buses capable of the same throu

This comes from not having to delay the response transfer to start on a clock trans

allowing it to start as soon as the target is ready. From the work presented in this th

would appear that there is little difference between the performance of synchronou

asynchronous SoC interconnect buses. However, as feature sizes shrink and cr

worsens, asynchronous approaches may offer an advantage through their ability t

average case performance instead of the worst-case performance offered by synch

designs.

10.1.6 Risk of deadlock

MARBLE and the AMULET3H design have been extensively simulated without

detection of any deadlocks due to the bus protocol or the bus interface ci

implementations. However, neither the bus protocol nor the circuit designs have

completely formally verified. The bus protocol has been partially investigated u

formal techniques by the Formal Methods Group at the University of Manchester, bu

was performed more as a test of the Rainbow toolkit [11] than as a verificatio

MARBLE. A full formal verification would be of significant value in proving the

robustness of the protocol.

10.1.7 Timing verification

Timing analysis of the MARBLE bus is substantially more difficult than for an equival

synchronous bus. For the correct operation of a synchronous bus, a one-sided

constraint must be met:

For an asynchronous bus such as MARBLE the constraint must also take into accou

effect of delays and crosstalk on the signalling lines, giving a two sided constraint:

data
propagation

delay
+

worst case
additional

crosstalk delay
< allowed transit time

(typically one bus clock period)
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Such constraints are difficult to check statically because of the crosstalk depende

and are not easy to check dynamically. Tools were not available for making these ch

and so substantial margins based on the results of the crosstalk simulations sho

chapter 4 were built into the senders on both the command and response chann

ensure correct timing operation under all circumstances.

10.1.8 Design complexity

MARBLE uses the single rail bundled data design style. As a result, the wire and

requirements of a MARBLE bus are similar to those of an equivalent synchronous

As with many asynchronous circuits, the controllers may be a little more complex th

synchronous equivalent due to the request-acknowledge signalling, but this comp

is difficult as circuit details are not readily available for the proprietary implementati

of equivalent bus interfaces for synchronous buses such as AMBA and CoreConne

10.1.9 Reliable arbitration

One of the lesser cited benefits of asynchronous design techniques is the high relia

of the arbitration of asynchronous inputs. This means that a bus such as MARBLE

never give incorrect arbitration operation, although there is a small probability tha

arbitration may require an infinite time.

Of course, a synchronous arbiter in a synchronous circuit with only one clock domain

also never suffer arbitration failure when arbitrating between internally derived sig

However, when a circuit contains multiple timing domains, possibly including a mixt

of synchronous and asynchronous subsystems, there is a real risk of arbitration fai

the arbitration is performed using synchronous techniques. Waiting for a second, or

clock period can reduce the failure rate, but further increases the arbitration latenc

data
propagation

delay
+

worst case
additional

crosstalk delay
<

signalling
propagation

delay
−

best case
crosstalk
speed-up
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An asynchronous arbiter does not suffer from this problem because the arbitration

constrained to fit in a fixed time window (of a defined number of clock periods). B

arbitration can also be much faster in an asynchronous SoC bus than in a synchrono

as in most cases there will be no contention on the arbiter at the time when it resolv

ordering of the requests. Even when there is contention, there is a high likelihood th

metastability will only last for a short duration (typically much less than the clock per

of equivalent synchronous buses). In MARBLE this means that typically the arbitra

latency is of the order of 1.5ns. This low latency means that split transactions ca

implemented on top of a decoupled bus protocol for EVERY transaction at negligible

in terms of performance or hardware.

10.2 Improving the MARBLE bus

MARBLE achieves a throughput better than the mid-range SoC buses and is n

behind the higher performance SoC buses developed for use at frequencies

100MHz, allowing for implementation technology differences.

The implementation of MARBLE used in the AMULET3H was designed conservativ

to prove the viability of asynchronous SoC interconnect. As such it can be improved

number of ways including the following:

10.2.1 Separating the read and write data paths

MARBLE passes the write-data over the response channel using the same tri-stat

used to pass the read-data. This approach keeps the wire resource requireme

MARBLE low, but limits the performance and the support for precise exceptions. Add

separate datapath wires as part of the command channel to carry write data (a

mapping d in figure 6.2 on page page 95) would mean that:

• the target would not have to wait for a few nanoseconds after receiving

command whilst the write-data is pulled across the response channel;

• precise exceptions could be bridged to another multimaster bus in all circumsta
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10.2.2 Less conservative drive overlap prevention

MARBLE used conservative timing assumptions regarding the switch-on and switc

of the tri-state drivers to ensure that not only was there no overlap, but that there w

significant period (usually at least one phase of a handshake) between one

switching off and another switching on. Simulations show that the drivers actually sw

fairly quickly (although sufficient time must be allowed to accommodate variations

to crosstalk effects) and sufficient margin to avoid significant drive overlaps would

be obtained by allowing:

• new commands to be driven when request is low (as opposed to when both re

and acknowledge are low);

• new responses to be driven when request is low (as opposed to when both re

and acknowledge are low).

The latter is definitely safe for a ‘write-with-command’ scheme, and should also be

for a ‘write-with-response’ scheme such as that of MARBLE where there is also

possibility of a clash between pulled write-data and subsequent pushed read-data 

10.2.3 Allowing multiple outstanding commands

The AMULET3H implementation of MARBLE permits only one outstanding comma

per initiator. Consequently a single initiator cannot saturate the bus as there will al

be a delay between the start of the response cycle and the start of the subsequent co

cycle whilst the initiator arbitrates for the command channel and drives the command

it. Allowing an initiator to have multiple outstanding commands would permit it to st

the second command cycle immediately after the first. The number of outstan

commands required to allow saturation of the bus depends on the speed of the

devices, but four should probably be sufficient; this would mean that a response mu

received less than four command cycle durations after the start of the first comma

allow the fifth command to be issued without delay after the fourth command. F

outstanding commands should also satisfy any pipelining needs with most t
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peripherals allowing one command and one response to be in transit on the bus wit

other transfers active within the target device. Of course MARBLE could be extende

support many more than four outstanding commands if required.

10.3 Alternative interconnect solutions and future work

Crosstalk effects, as discussed in chapter 4, mean that MARBLE has to include signi

delays in its signalling paths to ensure that the bundling constraint is met. To mini

the size of these effects, the wires were spaced at a greater separation than the mi

allowed by the design rules. The alternative interconnect solutions discussed below

provide a better performance at similar cost.

10.3.1 Changing the interconnect topology

A shared bus suffers from large crosstalk effects because the connecting wires m

long so as to connect all of the devices together. The effects of crosstalk could be re

by changing topology from a bus to a centralised hub approach with dedic

unidirectional point to point connections between the hub and each device. This w

greatly reduce the effects of crosstalk through shortening the lines, and allowing

amplification repeaters to be used. Higher cycle-rates would thus be possible.

Alternatively, for a lower resource cost, a ring network as illustrated by figure 10.1 c

be used to connect the devices in a loop using short unidirectional point to point cha

which again could include signal repeaters if necessary.

This topology would allow behaviour similar to that of a bus in that a command coul

flowing from initiator to target, whilst a response was returning around the other pa

the loop. Furthermore, a greater degree of concurrency is supported by suc

architecture than when using a bus. If the performance of a single ring syste

insufficient, two rings could be used, one for commands and one for responses, po

flowing in opposite directions.

As feature sizes shrink and wire delays and crosstalk effects become more signific

may be that such approaches can offer much better performance than a shared b

similar cost.
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10.3.2 Changing to a delay-insensitive data encoding

Interestingly, crosstalk does not cause a slow-down of every transfer; its effect

dependent on the data being transmitted, so the worst case slow-down may not occu

often. Using a delay insensitive data encoding would allow these better-than-worst

scenarios to be exploited. However, again, the penalty may be an increase in res

requirements for the application of such techniques to a SoC bus.

As an example, consider a 1-of-4 one-hot encoding where a symbol is transmitted o

of a group of 4 wires. Two bits of information are thus conveyed over four wires, giv

the same resource requirements as a dual-rail encoding. Within the group of wire

crosstalk slowdown will be the same.

Any two adjacent wires in the single-rail MARBLE design could be changing leve

opposite directions, leading to a significant slowdown. With the 1-of-4 encoding, if

wires are laid out as shown in figure 10.2, then the worst case should only occur

infrequently since most of the time non-adjacent wires would be switching. Furtherm

the wires could thus be spaced differently, with reduced lateral spacing within a grou

a larger lateral separation between groups to trade area for further cros

improvements.

Figure 10.1: A ring network
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Such a delay insensitive code is not easily implemented with a bus type interconne

because of the bidirectional tristate nature of a bus. However, this type of approach w

be ideally suited to the alternative interconnect topologies discussed above in se

10.3.1

Transition signalling

A delay insensitive encoding scheme such as a 1-of-4 one-hot code can be us

conjunction with transition signalling to offer a higher throughput when compared wi

return-to-zero signalling scheme. Further investigation would be required to determ

the cost of converting from a level-based signalling scheme to transition signalling

the long bus wires, and then back again at the far end, is worthwhile, but with ca

design of the converters it should in theory be possible almost to double the throug

over the same wires.

Figure 10.2: A suitable layout for a 1-of-4 encoding
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More complex encodings

Other more complex codes, such as a 3-of-6 or a 2-of-7 code, convey more bits pe

than the simpler dual-rail or one-hot codes. For example, a 2-of-7 encoding can rep

up to 21 different symbols, sufficient to carry 4 bits of information. This encod

requires only 7 wires whereas a dual-rail or 1-of-4 coded system would require 8 wir

carry the same information. Further investigation would be required to determine i

conversion between conventional single-rail encoding and such complex encodings

be performed sufficiently fast for on-chip communications.

10.4 The future of asynchronous SoC interconnect?

The work in this thesis has shown the feasibility of asynchronous SoC interconnect

a concrete example to rival synchronous SoC buses in the form of the MARBLE bus

EMC and modularity advantages of asynchronous design and operation can there

extended throughout the system as a whole.

MARBLE has also highlighted the difficulty of using the bundled-data approach for l

bus wires, where the crosstalk problem becomes difficult to manage, and in practic

requires manual layout of the bus wires. Whilst this approach is not a problem to

automated routing is becoming more common, and indeed necessary, to meet tim

market requirements for large SoC designs. In this respect, the synchronous buses

bundled-data solution used by MARBLE both suffer from the need for extensive tim

analysis to be performed.

It is hoped that based upon this thesis, SoC interconnect is an area where asynch

techniques can gain a foothold since they offer a clear modularity advantage. How

in the longer term, shared buses will have significant problems delivering the requ

performance and a delay-insensitive asynchronous interconnect approach

unidirectional point-to-point connections may be a better solution.
Chapter 10:  Conclusion 168



es as

not

rface
Appendix A: MARBLE Schematics

This appendix contains a complete schematic dump for the MARBLE bus interfac

used in the AMULET3H telecommunications controller chip. These interfaces do

support transfer deferral.

A1 Bus Interface Top Level Schematics

The top level schematics of the initiator interface (schematic A1) and the target inte

(schematic A2) are structured as shown earlier in figure 8.2 on page 126.

Schematic A1: Initiator interface top-level schematic
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A2 Initiator Interface Controllers

The two main controllers in the initiator are both based upon the multipoint cha

controllers introduced in chapter 5. The command channel controller shown in sche

A3 is a channel initiator capable of locking the multipoint channel, with two inp

channels, one for the command and one for the token enabling the transfer to be p

out onto the bus. The response channel controller shown in schematic A4 is a ch

target capable of receiving the response and either receiving pushed read data fro

channel or delivering pulled write data onto the channel depending on the tra

direction as indicated by the incoming MDO line. The throttle for controlling the tok

flow and issuing the first token into the loop is a simple decoupling circuit derived fr

a latch controller, with its output primed at reset. Its construction is shown in schem

A5 .

Schematic A2: Target interface top-level schematic
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Schematic A3: Initiator command controller

Schematic A4: initiator response controller
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A3 Target Interface Controllers

The MARBLE interfaces for the AMULET3H system do not support deferred transf

As a consequence, there is no need for a ‘command channel controller’ at the target

every incoming command will be accepted. The response controller shown in sche

A6 is based upon the multipoint channel initiator in chapter 5. It waits until it has b

granted the channel, and the response is available, before turning on the drivers an

signalling the request. Any write data is delivered to the target peripeheral later in

same handshake.

Schematic A5: Initiator token unit

Schematic A6: Target response controller
172



red

t the

s onto

dling
The logic for checking the initiator id to ensure that the MS[2:0] signals can be filte

correctly to indicate a new, non-sequential transfer when the active initiator is no

same one as for the previous command is shown in schematic A7.

A4 Bus drivers and buffers

Schematics A8 and A9 show the buffers and tristate drivers used to connect signal

the shared bus wires. The delays to provide sufficient margin to meet the bun

constraint (and allow for crosstalk effects) are included in these schematics..

Schematic A7: Target ‘same-initiator’ check

Schematic A8: Initiator bus driver/buffer
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A5 Latch controllers

The four types of latch controller used in the MARBLE interfaces, as described in se

8.2.2 are shown in schematics A10, A11, A12 and A13.

Schematic A9: Target bus driver/buffer

Schematic A10: Normally closed latch controller
174



Schematic A11: Normally open latch controller

Schematic A12: Conditional open latch controller

Schematic A13: Normally closed and normally open hybrid latch controller
175
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A6 Centralised bus control units

Schematic A14 shows the construction of the 4-way and 7-way tree arbiters used f

command channel and response channel arbitration. The construction of the tree

element is shown in schematic A15

The OR functions that combine the individual requests and acknowledges from

interfaces to form the MAR, MAA, MDR and MDA signals are shown in schematic A1

The amap unit in that schematic consists of an address decoder for the AMULE

address map. This unit, shown in schematic A17 was constructed by Dr S. Temple

specified the address map for the AMULET3H. A simple 8-way decoder was used i

MARBLE testbed described section 9.1. The final piece of the centralised bus co

Schematic A14: 4-way and 7-way tree arbiters

Schematic A15: Two input tree arbiter element
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s lines
logic is the weak feedback bus keepers shown in schematic A18 that prevent the bu

floating at voltages near the logic threshold of the gates whose inputs they drive.

Schematic A16: Centralised signalling OR functions and address decoder

Schematic A17: Address map specific section of address decoder
177



Schematic A18: MARBLE bus keepers
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