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Abstract

A high performance, low power asynchronous branch target cache with several

new features has been developed for the AMULET3 microprocessor at a low

hardware cost. A new design for the THUMB instruction set has been

implemented, together with several circuit design techniques including dynamic

comparison logic, resulting in a comparison time in 1.06ns with 0.35 µm three-

level metal CMOS process technology.
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Introduction 1

Following the advent of the semiconductorintegratedcircuit (IC) in the 1960s,many

researchershave tried to find waysto improve theperformanceof ICs [1]. For thelast30

years,the main streamof very large scaleintegrated(VLSI) chip designhasbeenthe

synchronousdesignstyle.It hasbeenthoughtthatasynchronousdesignstyleis easierto

develop and more reliable in operationthan an asynchronousone [2][3]. Recently,

interestin asynchronousdesignstyleshasincreasedsincethe synchronousdesignstyle

faces many difficulties [3][28].

This thesispresentstheresultsof adesignexercise,theobjectiveof which is to developa

branchprediction mechanismfor the AMULET3 asynchronousmicroprocessor. This

chaptergivesthebackgroundto this work. Section1.1describesthemainadvantagesof

using an asynchronousdesignstyle for making a VLSI chip. Section1.2 presentsthe

historyof theAMULET processors,andanoverview of this thesisandthecontribution

made by the author are contained in the last two sections, 1.3 and 1.4, respectively.



Introduction        13

1.1   Why asynchronous design?

Asynchronousdesignhasattractedrenewed interestin recentyears.Peoplearetalking

aboutit asif it is a new idea.It is, however, not a new paradigmbut rathera resurrection

from the forgottenpast[4][5]. The advantagesof using an asynchronousdesignstyle

[27] are as follows, where they are compared to the opposite style, synchronous design:

• No clock skew problem. In synchronousdesign,thereis a globalsynchronous

clockwhich is usedto storeandaccessthestateof eachstorageelementin the

storagedevicesof a silicon chip. As the clock cycle time is reducedandthe

numberof transistorsconnectedto a global clock increasesit is difficult for

designersto keepexactsynchrony dueto delaysin theclock distribution net.

The differencesin the clock delaysto differentnodesis called‘clock skew’,

andthiscancausetheunwantedmalfunctionof storageelementssynchronised

by the clock signal. This problem is getting more severe as transistorsare

shrinking with new processtechnology. This can be explained as follows:

shrinking the design improves clock speedbecauseparasitic capacitance

reduceswith theshrinkage.This clock-speedgain is hardto achieve,however,

when building a bigger chip on the new process.In fact, designerscan

confront the problemof the samelength of clock track with reducedmetal

width, which meansthat if theheightof theclock metalline andthedistance

betweenthis line andanothermetalline in anadjacentlayerarereducedat the

samerateasthewidth of theclock metalline, thecapacitance(C) of theclock

line will beheldconstant,but theresistance(R) of theclock line will increase.

ThereforetheRCproductwill make thedelayof theclock line worse,andthis
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is the main causeof the clock skew. It hasbeenshown that this effect needs

very careful designeffort, for example in the DEC Alpha chip [6] and the

AMD-K6 chip [7]. On the other hand,in asynchronousdesign,there is no

clock signal.This meansthatanasynchronousdesign,asa resultof its nature,

has no clock skew problem.

• Low electro-magnetic interference. Since hand-held wireless electronic

productslike cellular phonesbecamepopular, electro-magneticcompatibility

problemsincluding excessive electro-magneticemissionandsusceptibilityto

interferencefrom electro-magneticfields have been increasinglyimportant

issuessince such productsare required to meet rigorous electro-magnetic

compatibility specifications.Asynchronousdesignmay offer reducednoise

emissionsince there is no interferencegeneratedby regular clocking and

asynchronoussignalsspreadtheir energy over a broaderandlower frequency

rangeanddo not generaterelatively high-energy levelsat any onefrequency.

On the other hand, repetitive signals, such as clocks, are potentially

troublesome,becauseperiodic signals concentratetheir energy in discrete

harmonicsandhigh-frequency clock signalsaretheprimarysourceof electro-

magnetic radiation from a system.

• Low power consumption. ComplementaryMetal Oxide Semiconductor

(CMOS)technologyhasbecomethemosteffective fabricationprocessfor the

productionof VLSI digital circuitsbasicallybecauseof low powerdissipation.

Even if a designerusesCMOStechnology(which is usedfor theAMULET3
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microprocessorand is the assumedtechnologythroughoutthis thesis),the

recent trend to portable systems creates a need for decreasingpower

consumptionto increasethe life of the battery [8][9][10]. In synchronous

design,theclockkeepsrunningevenif ablock is notactivated.Thiscancause

unnecessarypower consumption.Asynchronousdesigndoesnot suffer from

this kind of problem since it has no clocking mechanism.

• Potential for better performance. In synchronousdesign,the critical path in

every pipeline stageis constrainedby the fixed clock period,and the clock

periodmustbenoshorterthanthelongestpathin any stage.Evenif adesigner

canmakeacircuit in aparticularpipelinestagefaster, thiswill havenobenefit

unlesseveryotherpathis alreadyfasterthanthisone.Thisargumentappliesto

the differentpipelinestagesalso.Even if a designercan implementa faster

pipelinestage,hemustalsospeedup otherslower stagesbeforehecanmake

the global clock faster. In summary, sincethe clock periodis definedby one

critical path, other faster paths must wait doing nothing. As a natural

consequence,synchronoussystemdesignusesa worst-caseapproach.On the

otherhand,in asynchronousdesign,communicationshappenwhenindividual

blocks are ready, so an average-case performance can be achieved.

• Easy to modify. Whena higherclock rate is neededor a new VLSI process

technologyis introduced,a synchronousdesignerneedsto checkevery effect

causedby thenew clock rateandthenew processandevery circuit mustobey

the new timing requirements.An asynchronousdesigneronly needsto see
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whetherthecommunicationprotocolis observedor not. This latterprocedure

is akind of functionaltest.Normally, a functionaltestis easierto verify thana

timing test.

1.2   History of the AMULET processors

The AMULET (AsynchronousMicroprocessorUsing Low Energy Techniques)group

wasestablishedlatein 1990,led by ProfessorSteve Furber, to investigatethepossibility

of using asynchronoustechniquesfor VLSI designand to seehow electrical power

consumption can be reduced with asynchronous design [11].

In April 1994thegroupdeliveredtheAMULET1 microprocessor[12], theworld’s first

implementationof a commercialmicroprocessorarchitecture(ARM) in asynchronous

logic. The primary intent wasto demonstratethat an asynchronousmicroprocessorcan

offer a reductionin electricalpower consumptionover a synchronousdesignin thesame

role. It demonstratedthe feasibility of asynchronousdesignand openeda new era of

asynchronousdesign in the respectthat it showed comparablecharacteristicsto its

synchronouscounterpart.The 2-phasemicropipeline design method was used (see

chapter2 for anexplanationof theseterms).In spiteof thesuccessof AMULET1, it did

not fully exploit the potential of the asynchronousdesignstyle to deliver improved

performance and power consumption.

AMULET2e wasproducedin 1996[13]. It is anembeddedsystemchip incorporatingan

enhancedversionof AMULET1. AMULET2e demonstratedcompetitive performance

and power-efficiency, ease of design, and innovative features that exploit its
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asynchronousoperationto advantagein power-sensitive applications.Sinceit turnedout

that the 4-phasesignalling protocol is more efficient than the 2-phaseone, 4-phase

micropipelineswereusedin AMULET2e (again, thesetermsareexplainedin chapter2

and an explanationof why the 4-phaseprotocol is more efficient than the 2-phase

protocol is also presented there).

Currently AMULET3 is being developed as the first commercial embedded

asynchronous32 bit microprocessorin theworld. It will bea significantmilestonefrom

the viewpoint of the commercialacceptanceof asynchronousdesignby industryandis

expectedto leadto a commerciallyviableproductasa resultof its inherentlow electro-

magnetic interference properties.

1.3   Overview of the thesis

This thesiscoversa numberof aspectsof silicon designusingasynchronoustechniques.

The main topic is the implementationof the branchtarget cachefor the instruction

prefetchunit in AMULET3. This thesisshows how to implementan asynchronous

systemfrom thestandpointof transistorlevel designandgivespracticalexamplesrather

thana theoreticalapproachwith theparticularsubjectmatterof thebranchtargetcache

of theinstructionprefetchunit. However, detaileddescriptionsof theblock implementa-

tionsarenot includedin themaintext. Insteadseveralmajorschematicsandlayoutsare

attached as appendices at the end of the thesis.

It shouldbe notedhere that the designof the AMULET3 microprocessoris a major

cooperative project involving many people.The authoris responsiblefor designingthe
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instructionprefetchunit in theAMULET3 microprocessor, andthebranchtarget cache

is a part of the instruction prefetch unit.

In chapter2, basic and fundamentalbackgroundknowledge is introduced.A brief

descriptionof theAMULET3 microprocessorfollows in chapter3 to give thereaderan

overview of thecontext of thebranchtargetcache.To help thereaderto understandthe

functionsof the branchtarget cachein the instructionprefetchunit, chapter4 explains

what the instructionprefetchunit is, what kinds of sub-blocksexist, anddescribesthe

functionsandconfigurationof the instructionprefetchunit. The remainingchaptersare

devoted to the designof the branchtarget cachefor the instructionprefetchunit. An

improvedbranchpredictionmechanismis describedin chapter5, whereit is comparedto

the prediction mechanismused in AMULET2e. The implementationis presentedin

chapter6, startingfrom aschematiclevel andreferringto thelow level. Front-enddesign

is carried out using static and dynamic circuit techniques,and then the back-end

implementationsof circuitsfor thedataandcontrolpathsfollow. Finally, in chapter7 the

work is evaluated and future work is proposed.

Before going any further, it is worthwhile mentioning particular features of the

instructionprefetchunit in AMULET3 comparedto thoseof AMULET2e. They areas

follows:

• Harvard architecture. In AMULET2e the instruction prefetch unit was

coupled with the data addressinterface, allowing the processorto be

connectedto a single memoryfor both instructionsand data.This led to a

complex architecturewhich was not efficient. For AMULET3, a Harvard
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architecture is introduced and the instruction addressand data address

interfacesareseparated.Eachis connectedto its own memoryport throughits

own bus.Thefirst AMULET3 systemincorporatesa dualportedmemory, so

theinstructionanddataaddressinterfaceshave independentaccessto aunified

instruction and data memory. This will boost the total performanceof

AMULET3 to supportfasteroperationof theaddressingblocksandto give the

chip more concurrent behaviour.

• Non-sequential instruction address stream handling. An interrupt can be

treatedas a branch instruction from the point of view that it causesthe

processorto deviatefrom sequentialinstructionexecution.Becauseof this, the

AMULET3 interrupt handling block is included in the instruction prefetch

unit. Normal instructionaddresssequencescanbe changedby threefactors:

systemreset,an interrupt, or a branch.All the logic handling this issueis

implementedin the instructionprefetchunit. Using an asynchronousarbiter,

theasynchronousnatureof aninterruptwhich couldleadto a synchronisation

problem in synchronousdesign can be implementedeasily, and several

innovative control mechanisms are used.

• Improved branch prediction mechanism. A branchpredictionmechanismwas

introducedin AMULET2e to improve performancesince a non-sequential

instructionfetchtakessometime to settledown into a sequentialstream[14].

In AMULET2e, thebranchtargetcachestores20 predictedbranchesandthis

is expandedto 32entriesin AMULET3. Thegreaterthenumberof entries,the
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more possibility there is to improve performance.Since the THUMB

instructionset [15] is introducedin AMULET3, in which the length of an

instruction is 16 bits, new special circuitry is required to support it.

• Halt function. Anotheradvantageof usinganasynchronousdesignstyleis the

‘halt’ function. In a synchronousdesign,when halting a chip, a designer

shouldconsiderwhethertheclock is stoppedor not andif it is stoppedhow it

canbebroughtbackwhennecessary. By contrast,in anasynchronousdesign,

a chip can be stoppedabruptly and revived instantly without any redundant

circuitry. Exceptfor minimal power consumptiondueto the inherentleakage

currentsin a CMOStransistorcell, thepower consumptioncanbealmostzero

when ‘halt’ is asserted.This halt function is also implementedin the

instruction prefetch unit.

Detailed explanations are presented in chapters 4, 5, and 6.

1.4   Contribution of the thesis

Thetitle of this thesisimpliesthatthethesisdescribesthedesignwork carriedouton the

branchtargetcachein theAMULET3 microprocessor. Sincetheinstructionprefetchunit

of AMULET3 wasdesignedby the authorandthe branchtarget cacheis a part of the

instructionprefetchunit, thedesignof theinstructionprefetchunit is alsodescribedhere

(in chapter4) to help the readerunderstandthe environmentsurroundingthe branch

targetcache.Thehigh level specificationof andinterfaceto theinstructionprefetchunit

weredefinedby the AMULET3 designteam,led by Dr. Jim Garside.The authorwas
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responsiblefor translatingthe specificationinto a detailedVLSI implementation.The

work involved:

• understandingthe high-level specificationas defined by the AMULET3

‘LARD’ model, which is written in an asynchronoushardware description

language developed by Dr. Philip Endecott [99].

• using the LARD model to explore two alternative organisationsfor the

instruction prefetch unit.

• developing low-level schematic and layout details to yield detailed

performance estimates.

• on the basis of these numbers, rejecting both proposed organisations.

• devising andproposinga third organisationwith increasedconcurrency, and

proving its functionality in the LARD model.

• developinga detailedimplementationof this third organisationto show that it

will meet the performance targets.

• completinganddocumentingthe final designof the instructionprefetchunit,

including design-for-test features.

Thelasttwo stepsin thework will only befully completedwhentheAMULET3 design

is finalised for fabrication.

The main contributionsof the thesis,describingwork carriedout by the authorare,as

follows:

• In chapter 4, a high performance,low power asynchronousinstruction

prefetchunit is introduced.Unlike the caseof AMULET2e, the instruction
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prefetchunit is detachedfrom the dataaddressinterfaceunit - AMULET3

usesa Harvard architecture.All the specificationsand descriptionsand the

new architecture of the instruction prefetch unit are presented.

• In chapter 5, an improved (compared to that of AMULET2e) branch

predictionmechanismis described.It was designedfor higher performance

andsupportsmorefunctions.Thenumberof entriesstoredin thepredictoris

increasedfrom 20 to 32, and new function blocks supportingthe THUMB

instruction set are included.

• In chapter6, varioustechniqueswhich couldbeusedto implementthebranch

target cacheof the instructionprefetchunit and the instructionprefetchunit

itself are shown. Custom cell design techniquesfor the datapathand the

controlpathdesignareproposed.This chaptercanbereadasa guidebookto

asynchronoussystemdesign,not just thebranchtargetcacheof theinstruction

prefetchunit, sinceit includesbothdataandcontrolpathdesignandtogether

these are the components required to build any VLSI chip.
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Asynchronous design 2

In orderto definea systemandits environment,differentapproachesanddiversemodels

areusedin accordancewith differentsituations.So it is for asynchronousdesign.Some

approachesemphasizethe communicationsbetweenblocks and othersemphasizethe

behavioursof theblocksthemselves.Somedescribethecommunicationasa sequential

handshake and others see it as multiple changesof inputs and outputs. Different

approachesto asynchronousdesign offer different prospective and employ different

rules.Subsequentsectionsexplain themodelsusedin asynchronousdesignaccordingto

various different ways to interpret a system and the environment surrounding it.

2.1   Basic concepts

Synchronousdesign forces every circuit to follow one rule - obey the clock. This

centralizedsystemappearsatfirst sightto beaneasiermethodfor implementingasilicon

chip than asynchronousdesign.Becausethe designer’s attention is confined to the

periodicclocking,his concernis solelywhetherhecanmeeta timing constraintwith his

implementedcircuit. Whenhesucceedsin observingthis rule,his circuit is safeandwill

work well.
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Asynchronousdesign,however, hasno clock guidingtheway which you shouldfollow.

In somesenseit soundsanarchic,but throughwell disciplinedmethodsonecomponent

candetectwhetherothercomponentsareready. Thesemethodsarecalledprotocols,with

whichblocksandcellsin asiliconchipcancommunicatewith eachother. This is abasic

conceptin asynchronousdesign.To make asynchronousdesigneasier, many researchers

have investigated and invented many types of models to describe asynchronous

behaviours. The rest of this chapter is dedicated to show these asynchronous models.

2.2   Signalling protocols

Communication requires that something happensbetween two participants. The

‘handshake protocol’ canbe explainedas follows: thereare two sides,a senderanda

receiver. Thesendertransfersinformationto thereceiver with a ‘request’signalandthe

receiver acceptsit. After the receiver has acceptedthe information, it sends an

‘acknowledge’ signal back to the sender. Then the senderis allowed to sendfurther

informationto thereceiver. However, the initiator thatstartsthis communicationcanbe

either side dependingon the specification.Dependingon this, the protocol can be

categorisedaseitherapushtransferor apull transfer[16]. In apushtransfer, theinitiator

sendsthedataasin thecasedescribedabove. In a pull transfer, theinitiator requeststhe

data.In thiscasethereceiversendsarequestsignalto thesenderandthesendercansend

data to the receiver. Even if a pull protocol is available, communicatingdata with

handshakesin a pull protocolis not very common.In this thesis,only thepushprotocol

is considered.
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2.2.1   2-phase protocol

The 2-phaseprotocol usestransition signalling. Since there are only two transitions

available in the digital domain, 0 to 1 and 1 to 0, a data transferhappensat each

transition edge.When data are ready to be transferred,the sendersendsa request

transitionto thereceiver (in thecaseof thepushprotocol).Thereceiver receivesdataand

returns an acknowledge transition to the sender. After the sender receives the

acknowledge,it will beableto sendmoredata.Figure2-1 shows a diagramof thedata-

validity scheme for the 2-phase protocol.

2.2.2   4-phase protocol

The 4-phaseprotocol is called level signalling, since its actionsfollow a signal level

ratherthanatransition.A redundant‘return to zero’signalchangeis required.Unlike the

2-phaseprotocol,the4-phaseprotocolhasthreedata-validity schemes- early, broad,and

late. They are shown in figure 2-2.

Request

Acknowledge

Valid Data Valid Data

Figure 2-1: Data-validity scheme for the 2-phase protocol
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Considerthe early data-validity scheme.When datais readyfor transferringfrom the

senderto the receiver, the sendersendsa requestsignalto the receiver andthe receiver

respondswith an acknowledgesignal (in the caseof the pushprotocol).However, the

transferis not yet finished.The sendermust still return the requestsignalback to the

inactive level and then the receiver must also follow the sameprocedurewith the

acknowledgesignal.Thereturnto zerophaseis aredundantfunctionwhichdoesnothing

but returnthesignalsto theoriginal state.This seemslike a wasteof time.But designers

should take into accountthe fact that most of the datastorageelementsavailable in

reality, such as latches and flip/flops, naturally operate with the 4-phase protocol [17].

Request

Acknowledge

Early Data

Broad Data

Late Data

Figure 2-2: Data-validity schemes for the 4-phase protocol
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2.2.3   Comparison between 2-phase and 4-phase protocol

The2-phaseprotocolhastheadvantagecomparedto the4-phaseprotocolin that it does

nothaveany redundantsignaltransitions.It couldmakea fastercontrolcircuit to usethe

2-phaseprotocol rather than the 4-phaseprotocol, since it could save time taken for

resettingsignalsin the4-phaseprotocol.In orderto usethe2-phaseprotocol,however,

designersmust use a double edge-triggeredflip/flop for data storagewhich requires

approximatelytwicetheareacomparedto a level-sensitive latchandconsumesupto four

timesasmuchpower [18]. Alternatively, if designerswant to usethe 2-phaseprotocol

with a single edge-triggeredflip/flop or a latch as in conventionaldesigns,they must

convert theprotocolfrom 2-phaseto 4-phase[19], whichrequiresrathercomplex control

circuitry. 2-phasecontrol wasusedin the AMULET1 design,but for AMULET2e and

AMULET3 4-phasecontrol waschosen.This wasbecause4-phasecontrol is easierto

usewith dynamiclogic asshown in [94], and2-phasecontrolcircuitsareslow in practice

sincethey maketheexclusiveuseof XOR gateswhich, in CMOS,areexpensive in terms

of speedand area.For thesereasonsthe 4-phaseprotocol seemsto be usedmore in

practice.

2.3   Asynchronous delay models

Asynchronousdesignrequiressomeassumptionsto be madeabout wire and/or gate

delays.Thesedelayassumptionsaresummarizedin table2-1 (Termsareexplainedin

subsequent sections)
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.

2.3.1   Asynchronous finite state machines

Asynchronousfinite statemachines(AFSMs) [4][5] are comprisedof combinational

logic and feedbackdelay pathsfrom outputsto inputs. They appearto be similar to

synchronousfinite statemachines(SFSMs)[34] except for the fact that the clocks in

SFSMsare replacedby feedbackdelay elements.Justas SFSMsshouldobserve the

clockingperiod,AFSMsalsoshouldobserve the limit of thedelayelement.The inputs

of AFSMscannotchangebeforethefeedbackdelaysignalsarestable.This is known as

the limit of fundamentalmodewhich assumesthat only oneinput canchangeat once,

andthenext input changecanenterthecircuit only after theentirecircuit hasreacheda

stable state.

2.3.2   Delay-insensitive circuits

Thedelay-insensitive circuit [20][21][22] operatescorrectlyregardlessof gateandwire

delayvariations.This assumesthat gatesandwires have arbitraryfinite delays.This is

suchan attractive approachin that all the dataand control can be definedby signal

Table 2-1: Asynchronous Circuits Delay Models

Models Gate assumption Wire assumption

Asynchronous FSM bounded bounded

Delay Insensitive Circuits unbounded unbounded

Quasi Delay Insensitive Circuits unbounded unbounded + some
isochronic fork

Speed Independent Circuits unbounded all isochronic fork
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transitionsandthentrueasynchronousdesigncanbeachieved.For datatransfer, dualrail

encodingcanbeused;oneline is usedto transfera 0 andanotheris usedto transfera 1.

Consequently, a delay-insensitive circuit will work with any amountof delay. Delay-

insensitive circuitsmustbedesignedsothatdelayvariationson thewiresdo not causea

malfunction of the circuit.

2.3.3   Quasi delay insensitive circuits

A circuit is saidto bequasidelayinsensitive [25] if its correctoperationis independent

of thedelaysof gatesandwires,exceptfor certainwiresthatform isochronicforks.The

term ‘fork’ meansthat therearetwo or morewire pathsavailablefrom the outputof a

componentto theinputsof othercomponents.Theterm‘isochronicfork’ meansthatthe

delays in wires from the same output to separate inputs are equal.

2.3.4   Speed-independent circuits

In a speedindependentcircuit [29][30][31], it is assumedthatwireshave zerodelayand

theglobalbehaviour of thecircuit is independentof thedelaysof all of thegates.Thatis,

ordered input events produce ordered output events and all the forks are isochronic.

2.3.5   Comparison between asynchronous delay models

Thelimit of fundamentalmodein AFSMsis a very weakpoint in termsof performance,

and only by making many back-annotationsimulationswith timing factorsextracted

from the layout canthe exact behaviour after fabricationbe guaranteed.WhenAFSMs

are used in datapathpipelines, the timing constraintseven affect the next AFSMs

connectedin series.The first AFSM mustnot acceptnew input changesbeforeits own
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timing constraintsandthenext one’s have beensatisfied.This resultsin extremelypoor

throughput in designs with many pipelines.

The set of componentsconnectedwith wires which can supportthe delay-insensitive

delaymodelis very limited, sinceforks areallowed but it cannotbe assumedthat they

are isochronic,and most VLSI componentscan fail due to inputs having a very slow

edge-speed [23][24].

Thequasidelayinsensitive circuit hasa strongpossibilityof failure if designersusean

auto placeand route layout approach.To meet the criteria of quasidelay insensitive

operation,careful circuit designis needed[24]. Designersmust avoid slow edgeson

control wires. If not, two different gates on an isochronic fork may see the same

transition at very different times [26].

Thespeedindependentassumptionis viablewhenthewire within a chip hasnegligible

delayscomparedto gatedelays.Thereforeall thewire routingmustbe localizedsothat

the wire delay is small comparedto the gatedelay, andthe skew betweenwire delays

aftera fork mustbelessthanthegatedelay. Evenif theserequirementsarefulfilled, the

behaviour of isochronicforks canbreakdown wherea wire is connectedto a gatewhich

hasanearly logic thresholdvoltage[24]. Theoutputof this gateis triggeredbeforethe

input reachesa discretelogic level, andthentheoutputof thegatetriggersthenext gate

whenthe input still hasnot reacheda discretelogic level. This canbreakthe isochronic

fork assumption.Thereforeit is importantto keepthelogic thresholdvoltageof gatesas

uniform as possible [24][26].
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Nevertheless,the speedindependentcircuit model is powerful since multiple input

changescan be allowed without timing constraints,therebyinvoking more concurrent

behaviour. This is why theAMULET3 designadoptedthespeedindependentmodelfor

the control path. It is important for the speedindependentcircuit to make correct

correlational specificationsbetweenordered inputs and outputs, since outputs are

followed by inputsandvice versa.Becausedesignerscannotchangethe environment,

they shouldknow the behaviour of the environmentafter the outputsof the circuit are

generated [32].

2.4   Data signalling

MostVLSI chipscontainadatapathonwhich thedatais transferredwhenacomputation

is running.A typical synchronousdatapathis formedby pipelinesthathave registersin

their input and output sidesto store the data betweencombinationalcircuits. These

registers are controlled by clocks.

In asynchronousdesign,two kinds of datatransfermethodare available: the bundled

data method and the data-encoding method.

2.4.1   Bundled data

The bundleddatamethod[16][33][34], asshown in figure 2-3, hasa requestsignal,an

acknowledge signal, and data lines. A block of combinationallogic sendsa request

signalto thenext block whendatais available,andthenext block sendsanacknowledge

signalto thepreviousblock in returnto indicatethat thedatahasbeenreceivedandit is

available for the next data transfer.
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2.4.2   Encoded data

Theencoded-datamethod[35] generatesthecompletiondetectionsignalwhenthedata

transferis finisheddependingon the latcheddatapatternasshown in figure2-4. Oneof

thepossibleencodeddatamethodsis thedual-railstyle,whichhas2 wiresfor everydata

bit. For example,suppose01 is usedto transfera 0 bit and10 is usedto transferto 1 bit;

everydatabit will beencodedas01or 10afterthecomputationis done.Thereforeoneof

the2 wiresbecomes1. Whenonewire of every databit changesto 1, thesendersends
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thecompletiondetectionsignalto thereceiver andthereceiver returnstheacknowledge

signal back to the sender and then the sender will reset every data bit.

2.4.3   Sutherland’s micropipelines

Micropipelineswereintroducedby IvanSutherland[36]. A micropipelineis similar to a

synchronouspipeline without the clocking mechanism.There are registers between

combinationallogic blocks,which arecontrolledby circuits which usethe requestand

acknowledgesignal.Eachstageof amicropipelinehasarequestsignalto inform thenext

stagewhenthedatais readyandthenext stagereturnsanacknowledgesignalwhenthe

data is received. In conclusion, micropipelines use the bundled data method for

transferringdataandanevent-driven2-phasesignalprotocolfor thecontrolcircuit. This

is shown in figure 2-5.
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2.4.4   Comparison between data signalling techniques

An advantageof thebundleddatamethodis thatnormalstandarddatapathcomponents

canbeused.This is why all AMULET processorsadoptedthebundleddatamethod.A

disadvantageof this methodis that a matcheddummy single-bit datapathis normally

usedto generateacompletionsignal,to useasarequestsignalto thenext block,andthis

delaymustbeat leastequalto theworstcasedatapathdelay. This meansthatdesigners

may have to sacrificeone of the advantagesof asynchronousdesign- the ability to

achieve average case performance.

The encoded-datamethodcanbe efficient in termsof speedcomparedto the bundled

data method - it achieves averagecaseperformance- but the completiondetection

overheaddueto using2 wires for every databit cannotbe neglectedin termsof power

andsilicon area.Evenwhendesignersimplementa processingpipeline,no benefitwill

beobtainedby completingprocessingearlyif thesubsequentpipelinestageis not freeto

acceptthe data.This may meanthat the averageperformanceobtaineddoesnot justify

the overhead of the dual-rail logic and completion detection circuits.

Sutherland’s micropipelinessharethe sameproblemmanifestedin othercircuits which

usethebundleddatamethodasmentionedin section2.4.1- delaymatching.It mustbe

guaranteedthat thedataarrivesat thereceiver beforetherequestsignalfrom thesender.

So carefully designeddelay elementsmay be required in the sender’s requestline.

Furthermorein order to copewith the 2-phaseprotocol, a speciallydesignedregister

must be used, which Sutherland also proposed in [36].
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2.5   Control circuit synthesis

Somedesignerscanmake control circuits intuitively but not everybodycando it well.

Testingthesecircuitsis alsoempirical.Theintuitivemethodcanresultin mistakeswhich

designersdo not recognizewhen they first make the circuits. Therehave beenseveral

designmethodsproposedfor controlcircuitswhich formalizethedesignflow andassure

the result if the specifications are correct.

2.5.1   Compilation style

This method makes circuits by compiling high-level languageswhich express

concurrency [37][38][39][40][41][42]. The result of synthesis is usually a delay-

insensitive or a speed-independentcircuit. Fundamentally, this methodmapslanguage

descriptions to hardware components.

2.5.2   Asynchronous finite state machine style

Theasynchronousfinite statemachine(AFSM) [4][5] wasthefirst asynchronousdesign

methodology. It assumedthatasingleinputchangeinvokesthesystemandthenext input

cannotenterbefore the systemis stable.This meansthat inputs that changeserially

shouldwait for sometimeto guaranteethesystemandtheoutputis settled.This is called

the fundamentaldelaymode.This may be a weakpoint to make a systemin termsof

concurrent behaviour.

To overcomethis disadvantage,a new AFSM was proposed,namedthe burst-mode

machine[43][44][45], which allows multiple input changes.Whenthe specifiedsetof

input edgesappear, thesystemgeneratesa setof outputchangesandthennew multiple
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inputchangescanbeaccepted.Thespecifiedinputchangescanhappenin any timeanda

setof outputchangescanhappenconcurrently. Sinceburst-modeAFSMs usethe same

finite machinestyle as usedin synchronousdesign,they appearfamiliar to designers.

However, they suffer from the problem that input changesare not allowed to be

concurrent with output changes.

Recently, the extendedburst-modemachine[46][47][48] was introducedto reducethe

problemof the burst-modemachineand to add more flexible input choice.Directed-

don’t-caresandconditionalsweredevised.Directed-don’t-caresallow aninput signalto

changeconcurrentlywith outputsignalsandconditionalsallow control flow to depend

on the input signal levels.

2.5.3   Graph based style

Thegraphbasedstylemeansusinga Petrinet [49] or a similar graphicalrepresentation

[50] of concurrency to specify the required functionality. The Petri net is a model

describing a concurrent system. The signal transition graph (STG)

[51][52][53][54][55][56][57][58][59][60] was introducedasan interpretedPetri net. It

interpretsvaluechangeson input andoutputsignalsof thespecifiedcircuit astransitions

of the STG. Positive transitions(labelledwith a ‘+’) representa 0 → 1 changeand

negative transitions(labelledwith a ‘-’) representa 1 → 0 change.This way, designers

canspecifychangesof all the inputsandrelatedoutputs.Generally, the strongpoint of

this method lies in its ability to describe concurrency.

Recently, a very powerful tool namedPetrify [61][62] was introduced.It has basic

functionswhichallow themanipulationof concurrentspecifications.This tool surmounts
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theproblem,which wasthoughtto bea disadvantageof this method,of specifyinginput

choices.Givenaninitial STGor Petrinet,thetool checksthepropertyof CompleteState

Coding [63]; whetherdifferent statesof the systemareencodedwith the samebinary

code.If thereis a violation of this property, thetool automaticallyinsertsa new internal

statevariable. The tool can make a speedindependentcircuit which has no timing

constraints, unlike the extend burst-mode machine.

2.5.4   Comparison between control circuit synthesis techniques

An advantageof the compilationstyle is that designerscan write a conciseand well

orderedprogramandget a silicon result in muchshortertime thanusinga traditional

handmadedesignmethodology. However, a drawbackis that it is difficult to geta very

optimizedcircuit, sincea mappingfunction is usedto do the translationandengineers

cannotoptimizefurther to the level below the basiclibrary components.A methodfor

simplifying these synthesizedcircuits by repeatedprovable refinement has been

demonstrated which allows some of this complexity to be reduced [98].

Whentheextendedburstmodemachineis usedto designasystem,becauseit is basedon

the fundamentaldelay mode, it must be guaranteedthat input changescannotoccur

beforethe systemhasstabilized,anddelayelementsmustbe insertedin the feedback

paths.However, this methodcould be attractive to designerssince this is the same

methodasusedin synchronousdesignexceptthat in thesynchronousmachinetheclock

is used to control feedback paths using memory elements.

As wasmentionedearlier, thegraphbasedstylehastheadvantagein that it canbeused

to describehighly concurrentsystemswithout timing constraints.This is why this
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methodhasbeenadoptedfor AMULET3. In many cases,however, thismethodproduces

very complex andslow circuitry to implementthe full concurrency. It is necessaryfor

designersto be aware of the critical path in their STG definition and to reduce

concurrency to lessenthe complexity of the circuitry within the limits of the system

specification requirement. This process needs very careful intuition and experience.
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The AMULET3 microprocessor 3

Though several asynchronous microprocessors have been developed

[64][65][66][67][68][69][70][71][72][12][13], most were designedfor the purposeof

demonstratingthe feasibility of asynchronousdesign.AMULET1 andAMULET2e are

in thiscategory. UnlikeAMULET1 andAMULET2e, AMULET3 is beingdevelopedfor

a commercial application as an embedded 32bit RISC microprocessor in a

communicationschip. Currently AMULET3i (the AMULET3 asynchronousisland) is

under development[73]. AMULET3i is an asynchronousembeddedsubsystemchip

incorporating AMULET3 as a microprocessor.

AMULET1 showed the feasibility of implementingan asynchronousdesign with a

highly concurrent behaviour. AMULET2e proved that asynchronousdesign could

achieve competitive performanceon an equal footing with synchronousdesign.

AMULET3 is intended to be the first commercial application of the AMULET

asynchronoustechnology. Through AMULET3’s use in the commercial domain,

asynchronousdesigncan win recognitionas having a role in mainstreamVLSI chip

design.Therestof this chapterwill describethestructuresandfunctionsof AMULET3

andAMULET3i in orderto giveanoverview of thecontext for thework describedin the
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rest of the thesis, which covers the design of the instruction prefetch unit for the

AMULET3 microprocessor.

3.1   AMULET3i

AMULET3i (the AMULET3 asynchronous island) is an integrated asynchronous

microprocessor subsystem based around AMULET3. Its block diagram is shown in

Figure 3-1.
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Figure 3-1: AMULET3i block diagram (Courtesy of Prof. Steve Furber)
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In addition to the AMULET3 processor, AMULET3i comprises:

• 8 Kbyte RAM. The 8 Kbyte internal static memory is divided into eight 1Kbyte

blocks. Each block contains 64 lines of 4 words.

• DMA controller. The DMA controller has 32 independently programmable

channels each of which can perform memory to memory, memory to

peripheral, peripheral to memory or peripheral to peripheral transfers.

• MARBLE bus. The Manchester AsynchRonous Bus for Low Energy is a multi-

master on-chip bus for connecting macrocells.

• MARBLE/SOCB bridge. The MARBLE to Synchronous On-Chip Bus bridge

is a single MARBLE target device which handles the bus handshake and

control signal retiming on behalf of the SOCB.

• 16 Kbyte ROM. The 16 Kbyte ROM contains application code and also a

number of routines to support the testing of AMULET3i components.

• Test interface controller. The test interface controller supports the direct access

to individual on-chip macrocells via the external memory interface and

MARBLE.

• Memory interface. The AMULET3 external memory interface supports the

direct connection of external memory and peripheral devices.

• Synchronous peripheral subsystem. This contains telecommunication

peripheral devices.

Static memory devices, such as SRAM, EPROM and peripheral chips, can be connected

directly to the processor with no extra logic. In addition, DRAM is supported, again with

no external support logic.
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3.2   AMULET3

AMULET3 is thethird generationasynchronousARM microprocessorcoreandsupports

theARM 32bit RISCarchitecture.It implementstheARM architectureversion4T [74]

andsupportsThumb instructionset compatibility [15][74]. The processorcorecanbe

divided into 5 sub blocks, as shown below in figure 3-2. The ‘Prefetch’ block is the

instruction prefetchunit which is being developedby the author. This is explained

further in chapter4. The ‘Decode& Register read’ block is to decodeinstructions,to

readtheregistervalues,andto producecontrolsignalsto relevantblocks.The‘Execute’

block is comprised of the ALU and the multiplier to execute arithmetic/logical

manipulations.The ‘Data access’block is to accessdata memory. The ‘Reorder &

Writeback’block is to implementareorderbuffer andresultforwardingmechanism.The

detailed AMULET3 organization is shown in figure 3-3.

The processorcorecontainsa numberof novel featuresto enhanceperformance.This

chapterexplainsin brief only the distinguishingfeaturesof AMULET3 comparedwith

the previous AMULET1 and AMULET2e designs. They are:

• A Dual Bus Interface (Harvard Architecture). As shown in Figure 3-2, the

instructionprefetchunit andthedatainterfaceunit areseparated,unlike those

of AMULET2e. Thedatainterfaceis sidelinedfrom themaininstructionflow

allowing the decoupling of data transfer operations(especially multiple

register moves) from purely internal operations. Interestingly, although

separateinstructionanddatabusesareused,a unified memory(which is an

internalRandomAccessMemory(RAM) in thecaseof AMULET3i) canstill
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be used. This is possible becausea new memory architecturehas been

developedusingblock-level arbitrationbetweeninstructionanddatarequests.

The memory area is not divided into instruction and data areas.When

instructionanddatarequestsaccessthesameblock in thememory, therequest

which arrives earlier will be granted access to the memory via an

asynchronousarbiter. After this accessfinishes,the later requestwhich was

held at the input to the arbiter will be grantedaccessto the sameblock. In

short, this memory behaves like a dual port RAM but usesa number of

transistornotmuchgreaterthanin asingleportRAM. Comparedto atruedual

port RAM, the new RAM can save a lot of silicon area.

Execute Data access

Reorder &
Writeback

Decode &
Register read

Prefetch

Instruction fetch

Data
transfers

FIQ IRQ

Figure 3-2: AMULET3 block diagram (Courtesy of Prof. Steve Furber)
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• Reorder Buffer and Result Forwarding Mechanism. Instructions can complete

out of order and execution results are stored in the reorder buffer to be written

back to the general registers [76]. The reorder buffer supports a result

forwarding mechanism, so if an operation undergoing processing requires a

recent result which may not have been returned to the general register bank, it

can be accessed from the reorder buffer. If the data fetch operation is aborted,

results in the reorder buffer generated by subsequent instructions are discarded

whereas results from previous instructions are written to the register bank. In

short, the reorder buffer gives each instruction a slot in the buffer and the result

produced by the execution of each instruction goes to its slot, possibly out of

order. Writing out to the general register bank is deterministic and sequential.

This mechanism provides a general solution to the forwarding problem while

still allowing precise aborts.

• Branch Prediction. Branch prediction can be performed on a proportion of

previously encountered branches. This increases performance and lowers

system power consumption since it reduces the number of erroneous prefetch

cycles. Until a branch instruction is decoded and recognized as a branch,

subsequent instructions following the branch are prefetched from the

instruction memory and sent to the decoder through the instruction pipeline.

This will burn unnecessary power when the branch is taken. It has been

estimated in a cached ARM that the processor core is typically responsible for

only 30% of the total power dissipation. 70% of the power consumption

happens in the cache/memory system. This means that even if the branch
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target cacheusespower to check for a predictedbranchevery cycle, and

therebyincreasesthe processor’s power consumptionfor a given instruction

frequency, a predictedbranchcansave power overall by reducingthenumber

of unwanted memory accesses. This is explained further in chapter 5.

• Fast interrupt response. Interruptsarenotdealtwith in theinstructiondecoder

but in the instructionprefetchunit. This wasmadepossibleby separatingthe

instructionanddatainterface.An interruptis treatedasakind of unconditional

predictedbranchandthe interruptservicecodecanbe fetchedassoonasthe

interrupt occurs.

• Halt mechanism. A haltmechanismcanbeimplementedeasilyby intercepting

and disabling requestor acknowledge signalsat somecritical point in the

processor. Furthermore,recovery from the halted state can be achieved

instantly by releasingthe interceptedsignals,while a synchronousdesign

would wait for stabilizationof the clock, which could take sometime and

requirecarefulconsiderationof dealingwith clock generationblocks.In the

instruction prefetch unit, this mechanismis implementedby disabling a

request signal in the unit until an interrupt occurs.

As highlighted above, three of the five major featuresare related to the instruction

prefetchunit. This implies the designof the instructionprefetchunit will be a crucial

factorin determiningthe AMULET3 performance.As wasmentionedin chapter1, the
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interrupt and halt mechanism is explained in chapter 4 and the branch prediction

mechanism is dealt with in detail in chapter 5.
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Instruction prefetch unit 4

This chapterdescribesthe configurationand functionsof the instructionprefetchunit

(IPU) in AMULET3 to help the readerto understandthe function of the branchtarget

cache (BTC).

4.1   Overview

Programsarestoredin a memoryanda processorfetchesappropriateinstructionsand

dataandruns the instructions.The traditionalapproachto connectingthe processorto

the memory started with the simple idea called the von Neumann method. All

instructionsand data are stored together in a single memory. Instruction and data

addressesaregeneratedin adedicatedblock in theprocessor, normallycalledtheaddress

generationunit. Fromtheviewpoint of thememory, instructionsanddataaretreatedthe

same.This approachhasa big disadvantagewhenever a programaccessesinstruction

anddataaddressesin turn. A largeburdenis imposedon theaddressgenerationunit in

order to handle the instruction and data addressestogetherand as a consequence

performancefalls. A solutionis to divide the addressgenerationunit into two separate

units, the instruction and the data addressgenerationblocks, and to have separate

instruction and data memories. This is normally called a Harvard architecture.
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4.2   Instruction prefetch unit

In AMULET2e, theIPU wasincludedin theaddressinterfaceunit. Theaddressinterface

unit generatedboth instruction and data addresses.For AMULET3, a Harvard

architectureis introducedand the instruction addressand data addressinterfacesare

separated.Each is connectedto its own memoryport through its own bus. The first

AMULET3 systemincorporatesa dual ported memory, so the instruction and data

address interfaces have independent access to a unified instruction and data memory.

4.2.1   Configuration

First organisation

Thehigh level specificationof, andinterfaceto, theIPU weredefinedby theAMULET3

designteam, led by Dr. Jim Garside.The author was responsiblefor translatingthe

specificationinto adetailedVLSI implementation.Theoriginalproposedorganisationof

the IPU is shown in figure 4-1.

This organisationhasthe forward path from the memoryaddressregister multiplexer

(MARMUX) to the memoryaddressregister (MAR) and the programcounterregister

(PC)via theexceptionunit (EU), thebranchtargetcache(BTC) andtheprogramcounter

multiplexer (PCMUX). There is also the backward path from the PC to the MARMUX.

The normal instruction addresspath starts from the MARMUX, which acceptsthe

instruction addresseither from the PC or from the ALU, and producesthe program

counteraddressto the EU. The EU checkswhetheror not an exceptionhashappened.
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(The exceptions are explained in section 4.2.3.) The result from the EU is sent to the

MAR, the INC and the BTC. The MAR waits for the result from the BTC.

If a hit happens in the BTC, the condition code and the link bit of a predicted branch in

the BTC go to the MAR, and the MAR sends the program counter address with these

condition code and link bits to the memory control unit. The BTC also sends a branch

target address to the PC.

BTC

INC

PC

EU

MARMUX

to Memory Control Unit

from ALU

INT

PCMUX

Interrupts

Indirect PC

MAR

CC, link

Figure 4-1: First IPU organisation
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If thereis nohit in theBTC, theMAR sendstheprogramcounteraddressto thememory

control unit, and the incremented result from the INC goes to the PC.

When an interrupt or indirect PC load happens,an interrupt vector or the indirect

program counter address takes the path to the PC instead of the BTC or the INC.

In this organisation,the critical path is from the MARMUX to the PC and the MAR

throughthe EU andthe BTC. The forward path is long andthe backward path is very

short.To reducethe long processingtime causedby this long serial forward path,an

attractive organisation was proposed by the author as shown in figure 4-2.

Second organisation

As wasmentionedabove, thefirst organisationhasthelong serialforwardpath.In order

to reducethis forwardtime theauthorproposedthesecondorganisationwhich put more

emphasison thebackwardpathasshown in figure4-2.Thisorganisationhastheforward

pathfrom theMARMUX to theMAR via theEU. Unlike thefirst organisation,theMAR

doesnot wait for theresultfrom theBTC. Theresultfrom theEU goesto theBTC and

the INC.

Whenthereis no hit, the incrementedresult from the INC goesto the PC.Whena hit

happens,theconditioncodeandthelink bit goto thePC,andthePCacceptstheprogram

counteraddressfrom the INC. This is differentfrom thefirst organisation.At this time,

the target addressis storedat the latch in the BTC and the flag indicating that a hit
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happened is set. In the next cycle, the PC gets this latched target address instead of the

incremented address from the INC.

Comparison between first and second organisations

The second organisation was based on the assumption that the total processing time of

the AMULET3 microprocessor would be shorter if the forward path processing time in

the IPU was faster even though the IPU cycle time was same. (The cycle time is the sum

of the forward time and the backward time.) But, simulation using the LARD hardware

description language with the dhrystone test program gave a different result as shown in

INC

PC

EU

MARMUX

to Memory Control Unit

from ALU

INT

PCMUX

Interrupts

Indirect PCMAR

CC, link

BTC

Figure 4-2: Second IPU organisation
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figure4-3.Eachpipelinecycle time in theAMULET3 LARD modelwassetas100time

units, which is a nominal value.Eachblock in the IPU wasset as20 time units. The

figureshows how theBTC processingtime affectsthetotal simulationtime to finish the

dhrystonetestprogram.BeforetheBTC processingtime reaches90 time units, thefirst

organisationhasbetterresults.This meansthat thereis little impact from the forward

time in the IPU on the AMULET3 processingtime. After the BTC processingtime

exceeds90, the forward time burdenin the IPU canbe a major obstacleto the system

simulationrun time. But, in this case,the cycle time in the IPU is too long to meetthe

AMULET3 specification. Therefore, the first organisation was chosen for the IPU.

Figure 4-3: Simulation result comparing first and second IPU organisations
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Need for another organisation

Although the first organisationwas chosenfor the IPU, an unexpectedproblemarose

when the authortried to implementthe IPU schematic.As wasmentionedearlier, the

first organisationhasthe long serialforwardpathfrom theMARMUX to theMAR and

to thePC via theEU andtheBTC. After theauthorimplementedtheschematic,it was

evident that this organisationcould not be used,becausethe forward path time of the

schematicimplementationis too slow to meet the AMULET3 specification.The

AMULET3 specificationrequiresthat theIPU cycle time mustbelessthanabout6.5ns,

which is equivalent to about150 MIPS in a synchronousARM microprocessor. The

schematicimplementationof the first organisationtook about 13ns cycle time. This

result was measuredby counting the number of requestand acknowledge signal

inversions.It wasassumedthatit takesabout0.2nsfor oneinversionof thesignal,which

is equivalent to an inverter delay time. So the author proposeda third parallel

organisation as shown in figure 4-4.

New parallel organisation

The new parallelorganisationwasproposedby the authorasshown in figure 4-4. The

forwardpathof this organisationis from MARMUX to theMAR andto thePCvia the

EU, the INC, the BTC, or the IND. In the first organisation,the EU andthe BTC were

connectedserially. In thenew parallelorganisation,every unit is locatedin parallelafter

the MARMUX. This can reducethe forward time significantly comparedto the first

organisation.Sincetheprocessingtime in theBTC is the longestof theparallelblocks,

we canassumethe total cycle time is definedasfollows: the time for theMARMUX +
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the time for the BTC control circuits + the time for the BTC itself + the time for the

PCMUX + the time from the PC to the MARMUX.

In normal instruction execution, the result of the MARMUX, which is either from the PC

or from the ALU, goes to the MAR via the EU, and the incremented program counter

address from the INC is stored into the PC.

When a hit happens in the BTC, the target address goes to the PC and the condition code

and the link bit go to the MAR. The MAR gets the present PC from the EU and sends it

together with the condition code and the link bit to the memory control unit.

IND

PC

MARMUX

to Memory Control Unit

from ALU

PCMUX

Interrupts

Indirect PC

CC,link

BTCINC

EU

MAR

Figure 4-4: New parallel organisation
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Whenanexceptionhappens,theEU detectsit andsendsanexceptionvectoraddressto

the PC and the MAR. During the next cycle, the IPU doesnothing but incrementthe

programcounteraddressin the INC and store the incrementedaddressinto the PC,

becausetheMAR alreadyhadanexceptionvectoraddressin thepreviouscycle,andthe

next addressin theMAR mustbetheexceptionvectoraddress+ 4. For example,assume

the instruction addressfrom the MARMUX is 100 and the EU detectsthe software

interrupt.TheEU will producetheaddress8 to thePCandtheMAR. TheMAR sends8

to thememorycontrolunit. ThePCsends8 to theMARMUX. TheMARMUX sends8

to eachof theparallelblocks.But, this time only theincrementedvalue12 will go to the

PCandtheMAR doesnothing.ThenthePCwill send12 to theMARMUX andnormal

operationwill becontinued.Thisseemsawasteof anIPU cycle.But exceptionsarevery

rare, and thereforethis redundantcycle affects little the total performance.This was

verifiedby LARD simulationusingthedhrystoneprogramandthe resultsareshown in

figure 4-5.

Comparison between first and new parallel organisations

A comparisonbetweenthefirst andthenew parallelorganisationis shown in figure4-5.

If the IPU cycle time is the same,the simulationtime of the new parallelorganisation

increasesvery slightly sincethereare redundantcyclesafter exceptions.But, with the

new parallelorganisation,the IPU cycle time canmeetthespecification,which is about

6.5ns.Becausethe IPU schematicof thefirst organisationhasabout13nscycle time, it

canbeassumedthat its cycle time is almostdoublethatof thenew parallelorganisation.

In this casewe can comparethe cycle time of 100 time units for the new parallel
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organisationwith thecycle time of 200time unitsfor thefirst organisationin figure4-5.

It is evident that the new parallel organisation produces a faster simulation time.

4.2.2   Functions

The new parallel IPU has five major functions as follows:

1. Program Counter Incrementing

2. Branch Address Management

3. Interrupt Handling

4. Indirect Program Counter Loading

5. Halt

Figure 4-5: Simulation result comparing first and parallel IPU organisations
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Each function is explained as follows:

• Program Counter Incrementing: THUMB is a compressedrepresentationof

the ARM instruction set; ARM instructionshave a 32 bit length whereas

THUMB instructionshave a 16 bit length. In the ARM processorthe two

instruction setscan be usedalternatelybut not mixed. Thus two different

instructionexecutionmodesareavailablein oneARM processor. The first is

calledARM modewhere32bit instructionsareused,andthesecondTHUMB

modewhere16 bit instructionsare used.The current instructionaddressis

incrementedby 4 bytesto producethenext instructionaddressin ARM mode

and, in THUMB mode,the presentinstructionaddressis incrementedby 2

bytes under the normal instruction sequence.Exceptionalcasescausinga

deviation from thenormalinstructionsequencearea branch,aninterrupt,and

an indirectPC.In thesecasesthepresentaddresschangesdependingon each

situation. In AMULET3, the present instruction addressalways can be

incrementedby 4 bytes under normal sequentialexecution as THUMB

instructionsarefetchedin pairs.Thisfunctionis performedin theincrementer.

• Branch Address Management: One of the exceptions from the normal

instructionsequenceis abranch.If thereis abranchin theprogram,thebranch

addressis calculatedin theALU andinsertedinto theIPU. This addressgoes

to MAR via the MARMUX andthe EU. Whena branchhappens,the source

addressandthetargetaddressof thebrancharestoredin theBTC. Thesource

addressis placedin theContentAddressableMemory(CAM) in theBTC and
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the target addressis storedin the associatedRAM memory. At every fetch

cycle thepresentinstructionaddressis passedfrom theMARMUX to theBTC

andis comparedwith addressesin theCAM to seewhetheramatchedaddress

exists.If thereis a matchedaddressin theCAM, theassociatedtargetaddress

in the RAM goesto the PC, insteadof the resultof the incrementer, via the

program counter multiplexer (PCMUX). Thus branch prediction is

accomplished. This mechanism is explained in chapters 5 and 6.

• Interrupt handling: Thereareseveninterrupts(Thesearecalledexceptionsin

the ARM processormanual [74]. In table 4-1, the term exception is used

insteadof interrupt.)in theARM processorasshown in table4-1. Depending

on each interrupt, the EU producesthe appropriatevector address.This

addressgoesto theMAR andto thePCinsteadof theresultof theincrementer

via the PCMUX.

Table 4-1: Exception processing mode

Exception type Mode Vector address

Reset SVC 0x00000000

Undefined Instructions UNDEF 0x00000004

Software Interrupt (SWI) SVC 0x00000008

Prefetch Abort (Instruction fetch memory abort) ABORT 0x0000000c

Data Abort (Data access memory abort) ABORT 0x00000010

IRQ (Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001c
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• Indirect Program Counter Loading: The indirect programcounter loading

happenswhen a load multiple instruction (LDM) containingthe PC in the

register list or any single register load (LDR) to the PC is executed.This

causes the PC to be loaded from the memory via the PCMUX.

• Halt: The ‘halt’ mechanismcan be initiated when a programentersan idle

loop, and is implementedusing the ARM ‘B .’ instruction.This normally

causesan instruction to loop back continuouslyto itself until an interrupt

occurs,which is clearlywastingpower anddoingno usefulwork. Instead,as

in AMULET2e, AMULET3 will halt the processorby blocking a local

handshake until an interrupt occurs.Blocking one handshake causesa local

stall which rapidly propagates through the system, reducing the system

activity to zero.This mechanismcanbe implementedeasilyby intercepting

anddisablingrequestor acknowledgesignals.In the IPU, this mechanismis

implementedby interceptinga requestsignal in the unit until an interrupt

occurs.For example,the requestfrom the MARMUX is grabbedby the halt

functionunit andthentheprocessorwill stopoperatingsincethereis no more

updatingof the presentinstructionaddressin the MAR. After receiving an

interrupt,this reserved requestsignalwill be releasedandthenthe processor

will operate again.
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Branch Prediction Mechanism 5

To improve the performanceof AMULET2e, a branchpredictionunit was introduced

[13]. Dynamicandstaticalgorithmsfor branchpredictionwerefully investigated[14],

thena branchtarget cache(or branchtarget buffer) waschosenbecauseof the easeof

integration into the AMULET2e implementation.

From the viewpoint of low power technology, the branchtarget cacheof AMULET2e

seemsto have a problem. It attemptsa branch prediction during every instruction

prefetchcycle regardlessof the frequency of branchinstructions,checkingwhetherthe

present instruction memory addresscorrespondsto a previously executed branch

instruction.At every instructionfetch, significantcircuitry is activatedto searchfor an

addressmatch, consumingsignificant power. Therefore in the senseof low power

implementation,usinga branchtargetcacheasa branchpredictionunit for AMULET2e

hasa drawback.However, researchhasshown that therecanbe a performancebenefit

from adoptingbranchprediction,especiallywherea pipelinestructureis used[77], and

total systempower can be saved sincethe frequency of wastedmemoryaccessesfor

instruction prefetch is reduced (as shown in [13]).
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From the silicon testresultson AMULET2e shown in [13], the power-efficiency of the

coredropsby 5% whenthebranchtargetcacheis turnedon, thoughtheoverall system

power-efficiency risesby 4%whenthecodeis beingexecutedfrom theexternalmemory

due to the reductionin wastedinstruction fetches.Thus, AMULET2e useda branch

predictionunit using a branchtarget cacheto achieve betterperformanceand to save

power. Furthermore,the comparisonlogic of the AMULET2e BTC is divided into two

areasasshown in figure 5-1: high bits andlow bits. Sincemost instructionfetchesrun

sequentially, thehigh bits changerarelyandthehigh sectionof theContentAddressable

Memory (CAM) need not be invoked. Therefore only the low bits are normally

comparedwith thepresentprogramcounteraddress.This is thepower saving schemeof

CAM

Hit Detection Logic

RAM
(Registers)

From ALU
or PC

Target Address

(high)

CAM (low)

PC
frequently
not used

Figure 5-1: BTC structure

Hit/miss
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the BTC, which saves around70% of the power consumptionof the CAM and also

reducesthe averagelook-up time improving performance.From the test results on

AMULET2e shown in [13], the power-efficiency of the corewith this segmentationof

the CAM is almost the sameas without the BTC due to the reduction in wasted

instructionfetches.This meansthatwhentheCAM segmentationis usedin theBTC the

core power-efficiency loss is eliminatedshowing that branchpredictioncan be power

neutralwith respectto thecorewhencarefullydesigned,andcancontributesignificantly

to overall system performance and power-efficiency.

A very similar branchpredictionalgorithm is usedin AMULET3. (AMULET3 is an

ongoingproject,so thehardwareimplementation,proposedin this thesis,couldchange

later.) However, new functionshavebeenaddedandapreviouslyexistingblockhasbeen

improved. Firstly, the THUMB instructionmode [15] has beenadded.Secondly, the

condition codeand the link bit of a branchaddressare storedin the RandomAccess

Memory(RAM) of thebranchpredictionunit togetherwith thetargetaddressin orderto

avoid fetchingpredictedbranchesfrom memory. Thirdly, the numberof entriesin the

CAM and the RAM in the branch prediction unit has been increasedfrom 20 in

AMULET2e to 32. Detailed explanations of these three features are given in section 5.3.

5.1   Basic concepts

Accordingto HennessyandPatterson[77], about20% of the 80x86instructionsin the

five SPECint92 programs are categorised as branches,of which about 80% are

conditional branch instructions. This suggeststhat microprocessorsusing pipeline

techniquescan have a branchpenaltyevery six or seven instructions.In general,the
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deeperthe pipeline,the worsethe branchpenalty. For example,architectureswith very

deeppipelines,such as the DEC Alpha [78] and MIPS R4000 [79], suffer a heavy

pipelinepenaltyfor mispredictingabranch(upto 10cycles[78]). In orderto addressthis

loss of performance, we should focus on two issues as follows:

1. Detectionof whetheror not thebranchis takenearlyin thepipeline:theearliera

processorknows whetherthe branchis taken or not, the fewer unwantedinstructions

following thebranchinstructionwhich enterthepipeline.Of course,whenthebranchis

not taken, thereis no difference.Whenthe branchis taken,however, a processorneed

not fetch instructionsfollowing the branchinstruction.Thoseinstructionswhich have

enteredthe pipelinewill needto be discarded.This is why the detectionof whetheror

not the branch is taken early in the pipeline is important.

2. Knowing the addressof the branchtarget earlier in the pipeline: even if a

processorcandecidewhetheror not thebranchis takenearly in thepipeline,thebranch

instructionwill stall in the pipelineif the branchtarget addresscannotbe calculatedin

time. If the target is specifiedindirectly, for exampleusingthe contentsof a registeror

memory location, and the branchtarget is not in the data/instructioncache,this will

cause the pipeline to stall until the target can be fetched from the external memory.

5.1.1   Branch target prediction schemes

The first issue is related to the branch prediction strategy. Many branch prediction

strategieshave beeninvestigatedin the questto improve the performanceof pipelined

microprocessors.
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Branch prediction strategies can be divided into two groups: static and dynamic

predictors.Staticpredictorsareso-namedbecausethe actiontaken doesnot dependon

dynamicprogrambehaviour. Dynamicpredictionmeansthat thepredictionwill change

if the branch changes its behaviour while the program is running.

Static branchpredictionschemesuseinformation gatheredbeforeprogramexecution,

suchasbranchopcodesor profiles,to predictthebranchdirection.Thesimplestform of

thesepredictsthatall conditionalbranchesaretaken,asin MIPS-X [80], or arenot taken

asin theMotorolaMC88000[81]. Otherstaticpredictionschemescanbebasedon the

opcodeor onthedirectionof thebranchasin “if thebranchis backward,predicttaken;if

forward, predictnot taken” [82]. This schemeis effective for loop intensive code,but

does not work well for programswhere the branch behaviour is irregular. Some

processors[83] allow the compilerto passpredictioninformationto the hardwarewith

additionalhint bits. Run-timeprofile information from programexecutionis typically

usedto predictbranchesstatically. This profile-basedbranchpredictionis basedon the

results determined by profiling the program on a training input data set [84].

Unfortunately, branchbehaviour for thesampledatamaybevery differentfrom thedata

that appears at run-time.

To get morepreciseresultsfrom branchpredictionschemes,it is essentialto userun-

time information. Dynamic branchpredictionalgorithmsuse information gatheredat

run-time to predictbranchdirection.Smith [82] proposeda branchpredictionscheme

usinga tableof two-bit saturatingup-down countersthatis incrementedwhenthebranch

is taken anddecrementedwhenit is not; the most-significantbit is usedto predict the

futuredirectionsothatthebranchis predictedtakenif thisbit is setandnot takenif reset.
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Eachbranchis mappedvia its addressto a counter. Theadvantageof thetwo-bit method

is that a single unusual iteration will not change the predicted direction.

For further improvementin predictionaccuracy, Yeh and Patt [85] proposedthe two-

level branchpredictor. Theiralgorithmis basedon thefactthatmorehistoryinformation

can enablegreaterbranchpredictionaccuracy. In order to achieve this, two levels of

branchhistory information are used.The first level is the history of the previous k

branchesencountered.Thesecondlevel is thebranchbehaviour for thelasts occurrences

of the specificpatternof thesek branches.The two level branchpredictorusesoneor

morek-bit shift registers,calledBranchHistory Registers(BHR), to recordthe branch

outcomesof themostrecentk branches.It usesoneor morearraysof 2-bit saturatingup-

down counters,calledthePatternHistory Table(PHT), to keeptrackof themorelikely

directionfor branches.Thelower bits of thebranchaddressareusedto selecttheproper

PHTandthecontentsof theBHR areusedto choosetheappropriate2-bit counterwithin

that PHT.

Becausethe completetwo level branchpredictor requiresa time-consumingpair of

lookups,commercialprocessorsgenerallyusea simplified version in which a global

historyvalueis usedto index into thehistorytable.Pan,So,andRahmehproposed[86] a

derivative of this algorithm,calledGselect[87], in which the countertable is indexed

with a concatenationof theglobalhistoryandsomebits of thebranchaddress.Sincethe

sameglobalhistorypatternscanoccurfor differentbranchesduringprogramexecution,

theglobalhistorypatterncanbe lessefficient at identifying thecurrentbranchthanthe

branchaddressitself. To overcomethis disadvantage,McFarling proposedGshare[87],

anotherderivative of the global history two-level predictor which XORs the global
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history with the branchaddressto index the PHT. This algorithm is usedin several

recently announcedmicroprocessorsand is likely to becomestandardpractice as

designersrevise their processorsover the next couple of years [88]. Hybrid branch

predictorshave recentlybeenproposedin orderto improve predictionaccuracy further

[87][89][90]. A hybrid branchpredictorcomprisestwo or moresingle-schemepredictors

and a mechanism to select among these predictors.

In conclusion,Gshareproposedby McFarling is expectedto becomea standardin

industryover thenext coupleof yearsasexplainedabove.However, it is veryhardto say

which branch prediction scheme must be used for every case.

Rememberthat AMULET2e adopteda simplebranchpredictionschemenot becausea

sophisticatedbranchpredictorcannotbedevelopedfor AMULET2e but becauseevena

simple predictor can deliver a good result with a limited silicon resource.Since

AMULET3 is an embeddedmicroprocessorfor a communicationapplication,it cannot

allow thebranchtargetcacheto take anexcessive areato improve performance.If some

of theschemesdescribedabove wereusedfor AMULET3, thecoreperformancemight

increasebut at a significant cost in silicon area.Since an embeddedmicroprocessor

shouldput more emphasison areathan the general-purposemicroprocessor, a similar

scheme to that used in AMULET2e was adopted for AMULET3.

5.1.2   How to get the branch target address earlier

As for the secondissue,we shouldconsiderthe types of addressingmethodsin the

instruction.When the target addressis pointed to with direct or absoluteaddressing,

thereis no problemto getthetargetaddress.Thetargetaddresscanbeproduceddirectly
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from an instructionin the decodingstagein the pipeline,but specifyinga full 32 bit

addresswithin the instructionis not practical.To get the target addressin the decoding

stage,PC-relativeaddressingrequiresanadditionalseparatebranchaddersincethemain

ALU is busy dealingwith an earlier instruction.If the target is specifiedwith indirect

addressing,for exampleusingthecontentsof a registeror memorylocation,gettingthe

target addressin the decodingstageis very difficult sincea pipelinedmicroprocessor

cannotevaluatea register or memorylocation without recognizingwhetheran earlier

instruction is about to alter its contents.

Other solutionsare basedon the cachestructure.When a branchis taken, the target

addressof the branchis storedin a cacheandthis will be usedthe next time the same

branch addressis predicted taken. This results in efficient and fast target address

submissionto the instructionmemoryandwe do not needto usean additionalbranch

adderandlogic to calculatethe target address.A variety of branchpredictionschemes

can be coupled with this branch target address cache.

5.2   AMULET2e branch target cache

Variousstaticanddynamicbranchpredictionschemeshadbeeninvestigatedprior to the

implementationof theAMULET2e branchpredictor. Thechoicewasheavily influenced

by theeaseof integrationinto theAMULET2e implementationasshown in figure5-2.In

view of this, the dynamic Branch Target Cache (BTC) was chosen [14].

Figure5-1 shows thestructureof theBTC in AMULET2e. TheCAM andtheRAM can

store 20 words and each word has 30 bits. The CAM storeswords which can be

comparedagainstan input addressword (bit31...bit2)asshown in figure 6-2. A match



Branch Prediction Mechanism        69

detectionsignalwhich is the hit/missline in figure 6-2 is sentby the CAM to indicate

whetheror not a valuestoredin theCAM arraymatcheswith theinput addressword.A

CMOS implementationfor oneof the CAM word lines is depictedin figure 5-5. It is

readableandwritable just like an ordinaryRAM cell. During the precharge phase,the

hit/miss line is prechargedhigh by the active low Precharge signal,the Write signal is

low, andtheBit linesarepredischargedlow. During thelook-upoperation,thePrecharge

signal is inactive. If the word in the CAM does not match, the hit/miss signal is

dischargedlow. Otherwisethehit/misssignalwill bepreservedhigh andthis meansthat

there is a matched word in the CAM.

As for thewrite procedure,whenanew branchtargetaddress,which is to bestoredin the

RAM, entersfrom theALU into themaininstructionaddressstream,theoriginal branch

BTC

hit

INC

PC

MAR

(cache)

MARMUX

to Memory

MUX

from ALU

PC: Program Counter
Register

MAR: Memory Address
Register

MARMUX: MAR
Multiplexer

MUX: PC multiplexer
INC: Incrementer

Figure 5-2: Address interface of AMULET2e (Courtesy of Jim Garside)
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instructionaddressis alsoinsertedinto the BTC andstoredin the CAM asdepictedin

figure 5-3.

Considerthelook-upoperationin theBTC. TheBTC acceptsanaddressfrom eitherthe

ALU or the PC and comparesit with the stored addressesin the CAM at every

instructionfetchcycle. If thesameaddressis foundin theCAM, theBTC indicatesthis

via thehit signalasexplainedabove. Thehit signalindicatesthat thesameaddresswas

usedpreviously for a branchinstructionaddressandit is predictedto be taken.The hit

signal indexes the appropriatetarget addressout of the RAM, which was previously

loadedwhenthebranchinstructionjumpedto the targetaddressbefore.This procedure

is depicted in figure 5-4.

CAM

RAM
(Registers)

20 entries

30bits

Target

Source

30bits
Address

Address

Figure 5-3: Write operation in the BTC
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The look-up is a simple and efficient mechanismand, becauseof this, the BTC was

chosen for the branch prediction function in AMULET2e.

Since the BTC takes a longer time to produceits result than the incrementer, and is

locatedin parallelto theincrementerasseenin figure5-2, it is partof thecritical pathfor

theperformanceof theaddressinterfacein AMULET2e. To reducethe layoutarea,the

comparisonlogic is implementedusing dynamic circuitry. This is configuredwith a

precharged, wire-ORed miss line as shown in figure 5-5 [92].

To reducethepower consumptionin theBTC, eachCAM entry is split into two partsas

shown in figure 5-1. Thesepartsmay performseparatecomparisons;only if both parts

indicatea hit is the addressrecognised.The advantageof this mechanismis that the

addressbits in the upper section(26 bits in AMULET2e) rarely change,since most

CAM

Hit Detection Logic

RAM
(Registers)

20 entries

30bits
From ALU

or PC

Target Address
to PC

Figure 5-4: Look-up operation in the BTC

Hit/miss
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instruction fetchesrun sequentially(about75% of instruction fetches[14]). Thus by

comparingonly the lower section(4 bits in AMULET2e) in most cycles, the power

consumptionof thesplit BTC canbereducedto about30%of thatof a moresimplistic

designby thetestresultof AMULET2e shown in [13]. Thereis anexplanationin section

6.2.2 of how and when the upper and lower sections are activated.

5.3   AMULET3 branch target cache

Fundamentally, theBTC of AMULET3 is similar to thatof AMULET2e. However, there

are major improvements implemented in the BTC of AMULET3.

1. To supportthe THUMB instruction set, the functionality of the THUMB

mode is added.

2. Theconditioncodeandthe link bit arestoredin theRAM sono instruction

fetch is needed for a predicted branch.

3. To improve performance,thenumberof CAM entriesis increasedfrom 20 to

32.

The instructionprefetchunit (IPU) of AMULET3 is depictedin figure 4-4. The BTC

receivesits addresseitherfrom thebranchchannelwhichcontainsthebranchinstruction

addressor from the PC channelwhich containsthe next address.It sendsthe target

address to the PC register in the case of a hit.

THUMB is a compressedrepresentationof the ARM instructionset;ARM instructions

are32bits longwhereasTHUMB instructionsare16bits longbut with asimilar function
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[15][74]. Two modes,the ARM and the THUMB mode, are available in a single

processor. In theinstructionmemoryof AMULET3, all thecontentsarehandledas32bit

quantities.Thereis no differencebetweenthe ARM and the THUMB modefrom the

viewpoint of the instruction memory. This meansthat two THUMB instructionsare

fetched simultaneously and then decoded separately in the instruction decoder.

In ARM mode,a branchdestinationcanonly be a multiple of 4 bytes,but in THUMB

mode,aftera branch,anaddresscouldbea multiple of 2 bytesandthusonly oneof the

instructionsin the 32 bit word is required.In ARM mode,bit<1> and bit<0> of the

instructionaddressin the IPU are always ‘00’. On the other handin THUMB mode,

bit<0> of the instructionaddressin the IPU is always‘0’ andbit<1> of the instruction

Bit Bit

Write

Precharge

Bit Bit

30bits

............

..................................

Figure 5-5: CAM comparison circuitry

Hit/miss
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addressin theIPU couldbeeither‘0’ or ‘1’. Thereforebit<0> of theinstructionaddress

in theIPU is neverusedandall instructionaddressesin theIPU have31bits. In THUMB

mode,whenthereis no branchinstruction,the instructionaddressalsoincreaseslike in

ARM mode.For example,instructionaddressesincreasethrough0, 4, 8 andso on in

THUMB mode.Whentheaddress0 goesto theinstructionmemory, a32bit wordcomes

out of the instructionmemoryandthis will bedivided into 2 parts;thehigher16 bits of

the instruction correspondto the address2, and the lower 16 bits of the instruction

correspondto theaddress0. Thenaddress4 goesto theinstructionmemoryandthis will

yield two instructionswith addresses4 and6. However, after a branch,the instruction

addressin THUMB modecouldbeanaddresswhich is anoddmultiple of 2 bytes.For

example, the instruction addresscould be 6 if this is a target addressof a branch

instruction.In this case,the contentsof the instructionaddress4 are fetchedfrom the

instructionmemoryandonly the higher16bitsaredecoded.This featureconfusesthe

operationof the BTC CAM, sincea word in the CAM has30 bits. For example,the

addresses4 and6 have no differencein the CAM. It is possibleto make words in the

CAM have 31 bits,but this will increasethelayoutarea.In orderto solve this matterthe

following novel scheme was proposed.

To supportTHUMB code,theCAM is divided into two equalsizedsections,“odd” and

“even”. In THUMB mode, a branch instruction addressmust be cachedin the odd

sectionif bit<1> of its addressis high or in the even sectionif bit<1> of its addressis

low. For example,whereasthesourceaddress4 is storedin theevensection,thesource

address6 is put in theoddsection.In ARM mode,a branchinstructioncanbestoredin

eithersection.For example,thesourceaddress4 couldbestoredeitherin theoddsection
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or in theevensection.This is implementedby attachingsimplemodedetectioncircuitry

to theinput linesof theCAM addressdecoderasshown in figure5-6 andappendixA.4.

The numberof lines in the CAM addressdecoderis 5 bits to support32 entries,and

modedetectioncircuitry is attachedto the most significantbit. In the RAM, a 31 bit

target address is stored, unlike the 30 bits used in AMULET2e.

Thelook-upoperationin theBTC presentsnoproblemin ARM mode,sinceonly onehit

may happenat any time either in the odd sectionor in the even section.In THUMB

mode,only theoddsectionmayhaveahit whenbit<1> of theMAR is high. If bit<1> of

the MAR is low in THUMB mode,however, thereareseveral possiblecases:the BTC

couldmiss,predicta hit in eithersection,or in bothsections.For example,in THUMB

mode,thesourceaddress4 is storedin theevensectionandthesourceaddress6 is put in

theoddsection.SincetheCAM has30 bits in a word,address4 and6 arestoredas4 in

bothcases.Sowhentheinstructionaddress4 enterstheCAM for thelook-upoperation,

the CAM canhave two hits, onein the odd sectionandonein the even section.In the

caseof two hits in THUMB modewith MAR bit<1> low, only theevensectionmustbe

chosen. This mechanism is pictured in figure 5-7.

MAR bit<1>

Original Address Decoder

Modified

Input Bit<5>
Address Decoder

Input Bit<5>

&
OR

Figure 5-6: Mode detection circuitry

ARM/THUMB
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In the RAM, the condition code and the link bit are stored together with the target

address. This makes it possible not to fetch the branch instruction itself. If the BTC

predicts a hit, the target address goes to the PC and the condition code and the link bit are

sent to the memory control block with the bypass signal. Thus there is no need to access

the instruction memory to get the condition code and the link bit of the branch

instruction. This is also expected to reduce system power since the frequency of memory

access is decreased.

Odd area Even areabit2

bit31

Word
31

Word
0

CAM

MAR bit<1> MAR bit<1>

Odd Hit Even Hit

Delay
Matching

Even Miss

Figure 5-7: Odd and even hit determination mechanism
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In AMULET3 thenumberof BTC entriesis increasedfrom 20to 32.Figure5-8explains

why the numberof the entriesare important for the performanceof the BTC. For

AMULET2e, two testprograms,espressoanda C compiler, wereusedas the basisto

determinethe numberof entries.Anotherprogram,dhrystone,wastestedbut not used

sincethisprogramhasanuntypicallylong loopwith many branches.In addition,thecost

of implementingmoreentriescannotbedisregardedin termsof layoutarea.However, if

there is enoughareato implementmore entries,there is no reasonnot to implement

more.We cangethigherpredictionaccuracy in thecasewherea programhaslong loop

behaviour suchasdhrystone.As shown in figure5-8,in thecaseof thedhrystonetest,the
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Figure 5-8: Effect of the BTC size on prediction rates (Courtesy of Jim Garside)
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percentageof predictedbranchesincreasesby about 14%. (The increaseare much

smaller in the casesof espressoand the C compiler test.) Furthermore,five bits of

addressarealreadyavailable for 20 entries,and implementing32 entriesincreasesno

overheadin thecontrolcircuitry. Thereforethenumberof entriesis increasedto 32.This

changeis a resultof anengineeringtrade-off - silicon areaversusperformance.The32

entries may be reducedagain later in the design processdependingon the final

AMULET3 layout size.

5.4   Summary

A similar branch prediction scheme is used for the BTCs of AMULET2e and

AMULET3. The main improvements(comparedto the AMULET2e BTC) of the

AMULET3 BTC are as follows.

• In order to supportTHUMB mode,a novel BTC organisationwasrequired.

Two 16 bit THUMB instructionsare fetchedsimultaneouslyfrom memory,

and either or both of thesecould be branchesthat shouldbe cachedin the

BTC. Handling double BTC hits and half-word predicted branch targets

required significant changes to the AMULET2e BTC organisation.

• In orderto avoid fetchingpredictedbranchesfrom memory, theconditioncode

and link bit are storedin the RAM. This reducespower consumptionand

improves performance since the number of memory access is reduced.
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• By increasingthe numberof entries,the percentageof correctly predicted

branchesis expectedto beabout90%whena testprogramsuchasdhrystone

is running.With a moreaccuratebranchpredictionschemesuchasa hybrid

predictor this figure could reach about 97% or 98% in typical programs

[87][90] but only at thecostof substantialadditionalcomplexity. This is afield

for future improvement.

As wasmentionedearlier, dependingon therequirementsof theAMULET3 design,the

detailed implementationof the BTC could be changedlater. However, the branch

prediction scheme will be maintained.



Implementation        80

Implementation 6

6.1   Basic concepts

Several logic design techniques can be used in CMOS. However, all of them belong to

one of the following logic disciplines [91][95][96]:

1. Static logic

2. Dynamic logic

Static logic is simple and straightforward. It is so-named since the information is

permanently stored so long as the circuit is powered, and any gate output node is

connected via a conducting transistor part to either Vdd or Vss.

Dynamic logic is based on the concept of precharging, which consists of pulling a gate

output node up to Vdd or down to Vss either to charge or discharge the parasitic

capacitance associated with that node. If the inputs of a gate generate the output value

driven during precharge, no change in the output node occurs. Otherwise the node is

strongly pulled down if precharge was high, or pulled up if precharge was low. During

precharge, the precharge value is stored in parasitic capacitors, such as the gate



Implementation        81

capacitance,anddisappearsin a time of few hundredsof µs to a few msafterprecharge,

the actual time being a function of the temperature,the storagecapacitance,and the

leakage current, unless the node is recharged (or refreshed).

Static logic has a benefit in terms of power saving since there is no static power

dissipationandno periodicrecharge.It canbe implementedeasilysinceit is a ratioless

logic.

Sincethegateof eachn-channeldevice is connectedto thegateof thecorrespondingp-

channeldevice,staticlogic hasa biggerareaandoutputcapacitancethandynamiclogic.

Thus static logic suffers from low density and long gate delays. Furthermore,in

submicrontechnology, areaandspeedareno longerindependentvariables.Largerareas

lead to longer interconnections and therefore to lower speed.

Dynamic logic has the advantagesof smaller area and faster speedover its static

counterpart.Smallerareacanbe achieved sincethe logic usesthe nMOS circuit of the

staticgatewithout the pMOS circuit, replacingthe pMOS circuit with a singlepMOS

transistorfor precharge.Fasterspeedcanresultfrom several factorswhentheprecharge

phaseis notconsidered;firstly, theoutputof thedynamicgatedrivesacapacitancewhich

is the sum of all the gate input capacitancesof the n-channel(or p-channel)devices

connectedto it, whereasa staticgateseesbothp- andn-channeltransistorcapacitances.

Secondly, theswitchingthresholdof thegatedependson theswitchingthresholdof the

device itself (the device thresholdvoltage), rather than half of “Vdd-Vss” (the gate

threshold voltage) for a balanced complementarystatic gate. Finally, the stray
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capacitances are larger in static logic design, since dynamic gates require less area than

static gates do.

However, dynamic logic has some disadvantages also. Firstly, it has the problem of

charge sharing or redistribution. Dynamic logic can work correctly only when the value

of the sensing capacitor is much smaller than the value of the capacitor which stores

information. Otherwise, it will fail to operate correctly. The charge will redistribute itself

between the sensing capacitor and the output node capacitor. Secondly, the charge stored

in the output node will leak away if there is no recharge operation after precharging the

node. Thus when a power down mode is applied to dynamic logic, there must be a charge

storage scheme on every output node of the dynamic logic. Finally, dynamic logic cannot

be fully utilized. All dynamic logic uses precharging techniques that lower the

availability of the circuit, since during precharge, the logic cannot be utilized.

6.2   Front-end implementation

Dynamic and static logic are used together in the branch target cache (BTC) of the

instruction prefetch unit (IPU). Dynamic logic is used to give smaller layout and faster

speed than static logic. However, dynamic logic needs careful design, since the designer

must make sure that the circuit has the correct behaviour between the precharge and the

evaluation period, and that there is no charge sharing problem.

The subsequent sections will show the reader how to implement the data and control path

of the BTC in detail.



Implementation        83

6.2.1   Data path circuit implementation

The datapathcomponentsin the BTC are divided into three sections:the Content

AddressableMemory(CAM), theRandomAccessMemory(RAM) andtheinput latches

as shown in appendix A.1.

The input latchesaresetsof transparenttrue singlephaseclock (TSPC)latcheswhich

storedatawhentheenablesignalEN is low asshown in appendixA.3. This transparent

latchis opennormally. Thismeansachangeon thedatainput is transferredto theoutput

whentheenablesignalEN is high.After theenablesignalEN goeslow, a changeon the

datainput cannotbetransferredto theoutputandtheoutputof the latchholdsthevalue

that was on the data input before the enable signal EN went low.

TheCAM cell consistsof a normalStaticRAM cell with additionalpasstransistorsP1

andP2 which form an XOR gate,andN1, which is a distributedNOR pull-down [92].

This is shown in figure 6-1 and in appendix A.9.

Bit Bit

Word

N1

hit/miss

D D

P1 P2

Figure 6-1: CAM cell 1
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Thewrite operationis simple.WhentheWord line is takenhigh, theinformationon the

Bit line is storedin D via a passtransistorandtheBit line in D. A look-upoperationis

performedto seewhetherthevaluestoredin theRAM onD andD matcheswith thenew

input valueon theBit andBit lines.During theprechargeperiodtheBit andBit linesare

predischargedandthehit/missline is precharged.ConsiderthecasewhereD is high and

theBit line is alsohigh duringtheevaluationperiod.In this casetheBit line pulls down

the prechargedhit/missline to Vss by switchingthe N1 transistoron via P2. If the Bit

line is low, the N1 transistoris kept off andno changehappenson the prechargedhit/

missline. Thedrainsof theN1 transistorsof all thecellsin thesamerow arecommoned

asshown in figure 6-2. Theseform a distributedNOR gateusingdynamiclogic. Each

bit31 bit31 bit3 bit2bit3 bit2

word31

word30

word1

word0

Global

CAM cell

......
.....

......

......

......

.....

.....

hit/miss 0

hit/miss 1

hit/miss 30

hit/miss 31

hit/miss

Figure 6-2: CAM cell arrays
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hit/missline remainshigh if all thecells in thesamerow have thesamevaluesof D and

D asthevaluesoneachBit andBit line. Thishit/missline is usedto selecttheRAM row

to get the targetaddresswhich goesto thePC.To indicatetheoverall hit/missfunction,

thehit/missline of eachrow is usedasaninput signalin theglobalNOR gateasshown

in figure 6-2. (This figure shows a simplified structureto illustratethe behaviour of the

comparison function, not the exact implementation in the BTC.)

A differentCAM cell structureasshown in figure6-3canbeused[95]. Thiscomprisesa

normalstaticRAM cell with additionaltransistorpairs:N1 + N2 andN3 + N4. This has

an advantageover the previous CAM cell whena dummybit cell is usedfor the self-

timing completion detection function; when the hit/miss line remains high after

comparison,thereis the needto detectwhen the comparisonhasfinished.In order to

Bit Bit

Word

hit/miss

D D

N1

N2

N3

N4

Figure 6-3: CAM cell 2
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implementthis function,a self-timeddummybit cell is usedasshown in figure 6-4. If

the CAM cell in figure 6-3 is used,a more preciseself-timeddummy bit cell can be

implementedasshown in figure6-5. This canbeexplainedasfollows. Bit andBit lines

in the first CAM cell arecoupledthroughtwo passtransistors.Always,oneof the two

passtransistorsis openandtheotheris closed.ThustheBit or Bit line is connectedto the

pull down transistorandtheclosedpasstransistorvia theopenpasstransistor. But, in the

self-timeddummybit cell of figure6-4 bothpasstransistorsshouldbeopentogetherto

hit/miss

Bit Bit

Figure 6-4: Dummy bit cell for CAM cell 1

Bit Bit

hit/miss

Figure 6-5: Dummy bit cell for CAM cell 2
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mimic thehit operationin boththecasewhenBit is high andthecasewhenBit is high.

SotheBit andBit linesarenot connectedto theclosedpasstransistorasshown in figure

6-4.This completiondetectioncircuit canproducea differentresultfrom therealcircuit

operation.If the secondCAM cell is used,the self-timeddummy bit cell is madeas

shown in figure6-5.This canmimic therealCAM cell timing moreprecisely. However,

sincethereare serial nMOS transistorsto pull down the hit/miss line, it might take a

longertime to producetheresulton that line. In orderto escapefrom this disadvantage,

wider nMOS transistor could be required and need more layout area.

Thetopschematicof theRAM is shown in appendixA.12 whichhasanaddressdecoder

andRAM registercells.Theaddressdecoderis simpleandprovidesWrite signalsto the

RAM registercells.TheRAM cell is madeby usinga normalregistercell asshown in

figure6-6 andappendixA.14. This registercanbewritten to usingonewrite enableline

and one data bit line with minimum input capacitance.

Thebehaviour of theRAM cell is asfollows.D is theinputof theRAM cell andO is the

outputwhich is prechargedhigh andstayshigh or is discharged low during the RAM

readoperation.WhentheWrite signalgoeshigh,N2 andN3 areopenandtheinput D is

storedin the internal nodeQ. When D is high, N1 is openand this helpsQ go high

quickly sinceQ is dischargedvia N3 andN1. During thereadoperation,theReadsignal

is high andO dependson thevalueof Q. Whenthevalueof Q is high, this turnson N4

andserially openN4 andN5 will discharge O, which is alreadyprechargedduring the

prechargeoperation.Whenthevalueof Q is low, thisswitchesoff N4 andtheprecharged

O is kept high. SinceO shows the inversevalue of Q during the readoperation,it is

written overlined. The precharge circuit for the outputsof the RAM register cells is
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depictedin appendixA.13. The top view of theRAM cell arrayis shown in figure6-7.

This comprises 32 words and each word has 31 bits.

6.2.2   Control path circuit implementation

The RAM control circuit consistsof the decoderto issuewrite enablesignalsand

dynamiclogic to producetheoutputduringa readoperation.This is shown in figure6-7.

(The decoder is omitted since it is a simple address generator.)

The CAM, aswasmentionedin chapter5, is divided into two sections:odd andeven.

The hit detectionlogic for this featureis describedin chapter5.3 and is implemented

with simplelogic asshown in appendixA.10 andA.11. To reducepower consumption

Read

Write

D

O

Q

Precharge

N1

N4

N2
N3

N5

P6

Q

Figure 6-6: RAM register cell
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during the CAM comparison,the samerow is divided into two sections:the high

bits<31:6>andthelow bits<5:2>.Thebehaviour of this functionis explainedin chapter

5. Thecircuit implementationof this functionis illustratedin figure6-8andexplainedas

follows.

ThenWritesignalcomesfrom theaddressdecoder. If thissignalis low, awrite operation

is activatedandonly whenthis is high canthe readsignalbe invoked. During a write

Q<31>

Precharge

Q<30>

Q<2>

Q<1>

.....

.....

.....

.....

.....

.....

.....
D<31>

D<1>

D<2>

D<30>

Write<31> Write<1> Write<0>

Read<31> Read<1> Read<0>

RAM register cell

Figure 6-7: RAM cell arrays
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operation the hit/miss line is discharged. The hit/miss line is divided into two parts: HitH

and HitL.

Normally the HitL line is precharged every cycle for comparison. That is, the low bits are

activated every cycle. When there is a matched address in the low bits, HitL stays high

and this means that a hit has been detected. When the low bits do not match, HitL is

discharged low.

There are four cases when the HitH line is precharged (when the PrechargeH signal is

taken high and the CAM high bits are activated). Firstly, when the special HitH

precharge signal is inserted from the outside, this line is precharged. This forces the high

bits to be activated from the outside. Secondly, after new data is stored in the CAM, this

line is precharged, since the sequential instruction address stream in the IPU is broken.

nWrite
(from the decoder)

Write

HitH

reset

PrechargeH

D[31:6] nD[31:6]

<31:6>

HitL

nPrechargeL

D[5:2] nD[5:2]

<5:2>

Figure 6-8: CAM control circuit for write and hit detection
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Thirdly, if thereis a hit in the BTC, this line is precharged,sincethis also altersthe

sequentialinstructionaddressstreamin the IPU. Finally, whenthe low bits<5:2>of the

addressareall 1s,this line is precharged,sincetheaddressis aboutto overflow into the

higherbits. Whenthereis no matchin the high bits, the HitH signal is dischargedlow

and this makes the HitL signal low also, whether or not there is a match in the low bits.

6.3   Back-end implementation

The BTC has been laid out using 0.35 micron triple metal CMOS technology.

As shown in figure6-9, theRAM is locatedat theleft sideof theCAM. Threedatabuses

calledIndirPC,MAR, andSourceAddress(SA), passacrosstheBTC. TheMAR andSA

buses are directly connected to the CAM. The MAR bus is connected to the RAM also.

RAM CELLS CAM CELLS

IndirPC

MAR

Source Address

Hit Signals
INPUT
LATCHES

Figure 6-9: BTC layout diagram
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Eachlayout in appendixB matchesa correspondingschematicin appendixA with the

same name.

The RAM cell arraysarestraightforward asshown in figure 6-7. The CAM cell layout

diagramfor oneword is depictedin figure6-11.A moredetailedexplanationis givenin

the next section.

6.4   Evaluation

The CAM and RAM have been simulatedusing HSPICE operatingat typical-case

conditions(Vdd = 3.3V, Vss = 0.1V, typical-typical processcorner, at 100 oC). The

simulation results are shown in table 6-1.

The critical path in the CAM for the look-up operationlies in the comparisoncircuit,

from the Readsignalto the hit/misssignalwhenonly onemismatchhappensin the 30

CAM cells,shown asbit<31>of word<31>in theupperdrawing of figure6-10.This is

explainedas follows. The RD signal activatesthe DRIVER cell and this invokes the

look-up operation.The worst casehappensat bit<31> of word<31>,sincethis cell is

farthestfrom theDRIVER andfrom thehit/misssignalat theright sideof theHITL cell.

Thedatawrite time from thewrite signalto dataloadingin theCAM hasbeensimulated

also.Thereadoperationof theRAM hasbeensimulatedfrom thereadsignalto thedata

out line which is shown in the lower drawing of figure 6-10.

The write time simulationof the CAM wasperformedasmeasuringthe time from the

WR signalto theD andDN changesof a CAM bit cell locatedfar away from thedriver,
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which is word<31>in theupperdrawing of figure6-10.In orderto measurethelook-up

operationtime, themostsignificantbit cell, which is bit<31>of word<31>in theupper

drawing of figure 6-10, is given a different value from other bit cells which are from

bit<30>to bit<2> in thesamepicture.Thenthetime from theRD signalrising to HITH

falling andHITL falling aremeasured.(As wasexplainedearlier, thehit/misssignalis at

theright sideof theHITL signal.)Thedifferentrisetimefor D andDN is dueto different

loading dependingon whetherthe passtransistorin the CAM cell is open.The read

simulationof the RAM usedthe samemethodas the CAM. After writing a different

valuefrom therestof thebit cells,thetime from theRD signalrising to Dataout falling

is measured. The test circuit is shown in figure 6-10.

Thesilicon layoutdiagramof a CAM cell arrayis drawn in figure6-11.ThePrecharge

Low cell matcheswith the HITH cell in the upperdrawing of figure 6-10 and the Hit

Detectioncell is identicalwith the HITL cell in the upperdrawing of figure 6-10.The

arrow namedHit Signal to RAM meansthe Hit/miss signal in the upperdrawing of

Table 6-1: HSPICE Simulation result

Simulation Path Result (ns)

WR ↑ -> D ↑ 0.51

WR ↑ -> DN ↑ 0.38

WR ↑ -> D ↓ 0.43

WR ↑ -> DN ↓ 0.43

RD ↑ -> HITH ↓ 0.75

RD ↑ -> HITL ↓ 1.06

RD ↑ -> Data out↓ 0.46
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figure6-10.As depictedin figure6-9, theRAM cell arraysarelocatedat theleft sideof

the CAM cell arraysin figure 6-11 (thoughthis is not drawn in the figure). VDD and

VSS stand for Power and Ground respectively.

6.5   Summary

The designof the BTC for the AMULET3 processorhasbeencarriedout usinga self-

timedtechnique.Themajorityof thedesignis purelystatic,composedof complementary

CMOS gates. In certain situations,wide NOR functions are requiredand theseare

implementedin dynamiclogic. To indicatewhenthereadoperationof theCAM andthe

RD
WR

D DN HITH HITL

bit<2>bit<5>bit<6>bit<31>

............

DRIVER

WORD<0>

WORD<31>

...
...

Figure 6-10: Test circuit for simulation

RD WR

D DN Data out

Word<0>Word<5>Word<6>word<31>

............

Bit<1>

Bit<31>

...
...

CAM

RAM

Hit/miss
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RAM is finished,a self-timedtechniqueis used.That is, anextra self-timingcolumnof

dummybit cellswith a dynamicbit line is implementedto mimic thetiming of thedata

bit lines.

As wasmentionedin section5.3, thenew THUMB function is addedin AMULET3. In

termsof functionality, this is the biggestchangein the designof the AMULET3 BTC

comparedto thatof AMULET2e. The layout for thestoragefor theconditioncodeand

the link bit wasaddedandof coursethe layoutgeometryis totally renewedasshown in

figures 6-9, 6-10, and 6-11.

Dependingontheprogressin designingtherestof theAMULET3 processor, thedetailed

implementationof the BTC may change.However, the major look-up and write

operationsof the CAM cell arraysand the readand write operationof the RAM cell

arrays are unlikely to be changed.
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Figure 6-11: CAM cell layout diagram for one word
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Conclusion 7

This thesishaspresentedengineeringwork on asynchronousdesign.The branchtarget

cache(BTC) wasdesignedandimplementedfor theinstructionprefetchunit (IPU) in the

AMULET3 processor. As was mentionedin chapter1, the author is responsiblefor

designingthe IPU, andthe BTC is a part of the IPU. The BTC consistsof the content

addressablememory (CAM) and the random accessmemory (RAM). These two

componentsdetectcompletionusingdummybit self-timedlogic. The CAM comprises

the CAM cell arraysand the hit/missdetectionlogic which is the critical path for the

performanceof theBTC. Thecoreof thework is mainly engineeringwhich focuseson

implementinglow level transistorcircuitry. Many asynchronousdesigntechniqueswere

used in the course of the work.

7.1   Contributions

The designof the BTC in AMULET3 hasshown that it is possibleto achieve better

performanceandmore functionality usinga new configuration,althoughthe designis

similar to theoneusedbeforein AMULET2e. As shown in figure5-8, in thecaseof the

dhrystonetest,thepercentageof predictedbranchesincreasesby about14%comparedto

that of the AMULET2e BTC. (The increasesaremuchsmallerin the casesof espresso
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andtheC compilertest.)As shown in chapter5.3,new functionalityto supportTHUMB

modehasbeenadded,andtheconditioncodeandthelink bit of abranchaddressarenow

storedin the BTC RAM togetherwith the target address,in order to avoid fetching

predicted branches from memory.

AMULET3 is an ongoingproject,and so is the BTC design.Thereforethe hardware

implementation,proposedin this thesis,couldbechangedlater. For thesamereason,the

exact numericalvaluesof the power consumption,total speed,andtotal layout areaof

the BTC are not available sincethey dependon the rest of AMULET3. Nevertheless,

sincetheCAM andRAM cell designsarefinished,thespeedof theCAM block,which is

the critical path in the BTC and the major factor of the BTC accesstime, can be

ascertained and is given in this thesis.

Methodsfor implementingtheBTC usingstaticanddynamiclogic have beendescribed

in detail. Although a similar BTC was usedin AMULET2e, there are three distinct

improvements implemented in AMULET3.

• In order to support the THUMB instruction set, the functionality of the

THUMB modeis added.Thus from the viewpoint of the BTC the THUMB

and the ARM instruction sets are equally supported.

• The condition codeand link bits in the branchinstructionare storedin the

RAM, sothereis no needto fetchthe instructionfor a predictedbranch.This

saves power and increases performance as it saves a memory access.
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• The number of the CAM entries is increased from 20 to 32. Thus the total

performance is increased.

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows that the

comparison function of the CAM takes 1.06ns to produce the hit/miss signal when a full

30 bit comparison is performed. The higher bit<32:6> comparison takes 0.75ns. Taking

account of the fact that usually only the lower bit<5:2> comparison is performed, just

0.51ns is taken for the CAM comparison in the most frequent case.

In addition, AMULET3 has a much shorter average cycle time than AMULET2e. Some

of this is achieved through using a more advanced process technology, but the rest (about

a further factor 2) has required a radical redesign of the IPU organisation in order to

ensure that the IPU is not a major bottleneck in the design.

7.2   Future work

Historically, asynchronous design has been considered to have potential advantages in

the implementation of designs with low power consumption. As described in chapter 5,

asynchronous design has been shown to have potential for low power consumption, as

evidenced by AMULET2e. It is natural to think AMULET3 will also have good low-

power characteristics in the light of past experience.

There is another issue related to asynchronous design, electro-magnetic interference.

This emerging issue is considered as one of the most important features in asynchronous

design. In synchronous design, clock speeds have already reached 500 MHz, and

gigahertz processors will probably be available within the next few years. At those clock
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rates,evenshorttransmissionlineswill actasantennas,producingunwelcomeamounts

of electro-magneticinterferenceand cross-talk[97]. The fundamentalpropertyof the

periodicoperationdefinedby theclock worsensthis problem.However, this effect does

not appearin asynchronousdesignsince all signal changesare aperiodic.To make

mattersworse,in synchronousdesignlogic activity happensimmediatelyfollowing the

clock edge, whereasin asynchronousdesign it is distributed over time. Thus in

asynchronousdesignthe noise spectrumis spreadwithout the high amplitudepeaks

which arefoundin thespectrumof synchronousdesigns.This rigorousEMI compliance

will be proven in AMULET3.
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Schematics A

This appendix contains the schematics of some of the cell library for the AMULET3

branch target cache. Below is a list of the following appendix sections:

❏ BTC Top

❏ Input Latch

❏ TSPC Latch

❏ Address Decoder

❏ CAM Top

❏ CAM Driver

❏ CAM High Precharge

❏ CAM Low Precharge

❏ CAM Cell

❏ CAM Odd Hit Check

❏ CAM Even Hit Check

❏ RAM Top

❏ RAM Precharge

❏ RAM Cell
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A.1   BTC Top
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A.2   Input Latch
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A.3   TSPC Latch
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A.4   Address Decoder
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A.5   CAM Top
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A.6   CAM Driver
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A.7   CAM High Precharge
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A.8   CAM Low Precharge
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A.9   CAM Cell
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A.10   CAM Odd Hit Check
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A.11   CAM Even Hit Check
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A.12   RAM Top
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A.13   RAM Precharge
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A.14   RAM Cell
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Layouts B

This appendix contains the layouts of some of the cell library for the AMULET3 branch

target cache. Below is a list of the following appendix sections:

❏ TSPC Latch

❏ CAM Driver

❏ CAM High Precharge

❏ CAM Low Precharge

❏ CAM Cell

❏ CAM Odd Hit Check

❏ CAM Even Hit Check

❏ RAM Cell
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B.1   TSPC Latch
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B.2   CAM Driver
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B.3   CAM High Precharge
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B.4   CAM Low Precharge
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B.5   CAM Cell
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B.6   CAM Odd Hit Check
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B.7   CAM Even Hit Check
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B.8   RAM Cell
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