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Abstract

Power consumption has become a significant concern in the design of digital inte-

grated circuits. A solution to the need for both low-power and high-performance

systems is power-adaptivity, the capability of a system to dynamically scale its

power consumption according to the demand for processing.

This thesis examines micro-architectural techniques that can be used to build

an asynchronous, power-adaptive microprocessor. Two main techniques are pre-

sented using AMULET3, an asynchronous processor designed at the University

of Manchester, as a basis for development and evaluation. The first controls the

pipeline occupancy using a token mechanism, while the second enables adjacent

pipeline stages to be merged, thus altering the processor’s micro-architecture.

These techniques manage the processor’s power consumption by controlling its

speculation depth. The execution time may be increased but, if the method is

applied to programs with slack time, the user-perceived performance will not be

degraded. Hardware-based methods for controlling the speculation depth dynam-

ically are also investigated.

A large proportion of a system’s power budget is also attributable to its mem-

ory. As a step towards the design of a power-efficient memory system, a self-timed,

adaptive, Content-Addressable Memory (CAM), for use in associative caches, is

developed that consumes almost a quarter of the power of a standard CAM.

Together these techniques exploit asynchronous design in a way which would

be difficult in a clocked system. Results are presented which show that such tech-

niques are of significant benefit, but only in certain classes of programs; thus for

a general-purpose processor the ability to control the micro-architecture dynam-

ically adds more operating flexibility and potentially greater energy and power

savings.
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Chapter 1

Introduction

Power consumption in digital electronics is becoming an ever-increasing concern

for circuit designers. Initially the fast-growing demand for portable electronic

devices, such as mobile phones, was the main driving force for low power design.

Recently, low power has become important even for high-speed desktop and server

processors, as the high temperatures they reach start not only to increase the

unit cost, because of the more expensive packaging required, but also limit their

performance and their lifetime.

Ideally, low-power design techniques improve the power consumption consider-

ably for no, or very little, speed degradation. These are usually new, improved al-

gorithms for implementing functional units or new, power-efficient circuits. Such

a technique can be ‘hard-wired’ in a system almost without a second thought.

Unfortunately, in most cases, power savings come at the cost of speed re-

duction, so incorporating such power-saving techniques into a system cannot be

hard-wired. A better approach is to have the option of enabling them while the

system is operating, so that the decision to use them may be made when the

system is being used rather than when it is manufactured. This is not useful if

the system under consideration is a busy, high-performance processor, which al-

ways has computationally demanding tasks to perform as, in this case, the extra

delay imposed by those methods cannot be hidden. Instead, these methods can

be applied successfully in systems that have idle time, either while waiting for

user input or when running applications with soft real time deadlines (e.g. some

multimedia applications or communication protocols) [Bur01].

In the latter systems the slack time may be better exploited for energy effi-

ciency by slowing down the application rather than running the system at normal

14



CHAPTER 1. INTRODUCTION 15

(high) speed and putting it to sleep for the remaining time. In a typical system

there are considerable energy and delay penalties associated with changing pro-

cessor activity state [BBdM00] so, if the slack time is too short for these tech-

niques to be effective, the processor will be busy-waiting and some energy will be

wasted during the slack time. Even in an ideal system with no dynamic energy

consumption when idling or zero-overhead sleep/restart transitions, allowing the

application to use up all of the available time can have energy benefits; for exam-

ple if the slow-down is combined with a lower supply voltage or lower switched

capacitance than normal, e.g. by (micro)architectural modifications.

Currently a number of processors use dynamic voltage scaling (e.g. [BPSB00],

[CHM+01], [Fle00]) and a number of architectural adaptations have been pro-

posed (e.g. [MKG98], [BM01b], [KSB02]). All these methods were developed

for synchronous processors. Since adaptation is a key issue in this class of low-

power techniques, this thesis investigates the use of asynchronous design [SF01]

for power saving architectural modifications. Asynchronous circuits do not syn-

chronise all activities with a global clock, so they can be more flexible. This

flexibility is exploited by new techniques, such as pipeline occupancy control

[EG02a], described here.

1.1 Research goals and contribution

The goal of this research is to develop micro-architectural techniques for asyn-

chronous processors that will enable them to adapt their power consumption ef-

ficiently according to their processing workload. The key research contributions

are:

• Development of two techniques for controlling the occupancy of an asyn-

chronous pipeline. The first uses an external feedback mechanism for con-

trolling the occupancy, while the other changes the pipeline structure dy-

namically by collapsing the pipeline latches while the system is operating.

• Development of a new, adaptive, low-power CAM organization, which makes

CAM-based caches more power efficient than way-predicting or pseudo as-

sociative caches.

• A detailed power analysis of an asynchronous processor and comparison of

the results against an equivalent synchronous processor.



CHAPTER 1. INTRODUCTION 16

• Development of a fast energy estimation method based on a commercial

simulator.

• An analysis of the effect of speculation on the energy consumption of an

asynchronous single-issue processor.

The following papers have been published presenting some aspects of the work

described in this thesis:

A. Efthymiou, J. Garside, “Adaptive Pipeline Depth Control for Processor

Power-Management”, Proc. of the International Conference on Computer Design

(ICCD), pp. 454–457, September 2002.

A. Efthymiou, J. Garside, “An adaptive serial-parallel CAM architecture for

low-power cache blocks”, Proc. of the 2002 International Symposium for Low

Power Electronics and Design (ISLPED), pp. 136–141, August 2002.

A. Efthymiou, J. Garside, “A Comparative Power Analysis of an Asynchronous

Processor”, Workshop on Power And Timing Modelling Optimization Simulation

(PATMOS), September 2001.

S. Furber, A. Efthymiou, J.D. Garside, M.J.G. Lewis, D.W. Lloyd and S.

Temple, “Power Management in the AMULET Microprocessors” IEEE Design

and Test of Computers 18(2):42-52, March-April 2001 (special issue Ed. E. Macii)
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1.2 Thesis organisation

Chapter 2 provides some background material on low-power design. The sources

of power consumption in CMOS circuits are described and some of the well-

known techniques for low-power design are presented. A brief introduction to

asynchronous design and its low power aspects is also included.

The concept of power-adaptive processing is introduced in chapter 3 and the

differences compared to power management in conventional processors are iden-

tified. Some of the current techniques for adaptive processors are presented,

namely dynamic voltage scaling (DVS) and micro-architectural adaptation, with

emphasis on the latter since this is where this thesis aims to make a contribution.

Chapter 4 presents the power analysis of an asynchronous processor, namely

AMULET3 [GFC99], which was developed by other members of the AMULET

research group, at the University of Manchester. The same processor is used as a

basis for the techniques presented later, so its organisation is briefly described. A

detailed breakdown of the power consumption in the processor core is presented.

A number of techniques that can enable an asynchronous processor to be

power-adaptive, by dynamically changing key parts of its micro-architecture are

presented in chapter 5. The emphasis is on controlling the pipeline occupancy as a

way to control the processor speculation. The experimental setup that supported

the simulations of these techniques is also described in this chapter.

Chapter 6 describes in more detail the techniques presented in chapter 5,

providing circuit implementations for them.

Chapter 7 builds on the techniques presented in chapter 5 to adapt dynami-

cally the processor pipeline. Two hardware methods are developed and evaluated

which improve the speed of the adaptive processor compared to an unpipelined

configuration using the techniques of chapter 5 statically.

As an initial attempt to provide power adaptation for the memory system,

chapter 8 describes a low power cache implementation based on an adaptive

CAM organisation. The CAM is capable of operating in two modes allowing

energy-speed trade-offs. The detailed, transistor-level circuits are presented and

an evaluation based on Spice-like simulation is given.

Finally, chapter 9 provides the concluding remarks and suggestions for future

work.



Chapter 2

Low-power design overview

This chapter presents an overview of power dissipation in digital CMOS circuits

and of the basic low-power design techniques. In addition the relationship of

power dissipation to energy consumption and circuit delay is presented, to provide

metrics for evaluating the efficiency of circuits in a low-power environment. At

the end of the chapter a brief introduction to asynchronous design is given and

the advantages it offers for low-power design are discussed.

2.1 Power dissipation in CMOS circuits

There are four sources of power dissipation in CMOS circuits [CB95a]:

static Static power is consumed when there is a continuous flow of current from

the supply terminal to ground.

leakage Leakage power is due to leakage currents from reverse-biased diode junc-

tions and transistor subthreshold conduction.

short circuit Short circuit power is due to current flowing from the supply to the

ground for the short time when both the pull-up and pull-down transistor

stacks are conducting.

switching Switching power is due to the current used for charging and discharg-

ing capacitances in the circuit when nodes switch logic states.

Switching and short circuit power are collectively called dynamic power, be-

cause they are related to currents that flow when transitions are made.

18
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2.1.1 Static power

Static power is consumed in analogue circuits and in ratioed circuits (e.g. pseudo

NMOS), where some transistors are not completely turned off. Design styles that

draw static current are avoided in circuits intended for low-power applications,

therefore this source of power consumption is regarded as a design error in the

context of this work.

2.1.2 Leakage power

In the most common CMOS technology (bulk CMOS) transistors form diodes at

their source and drain terminals with the well in which they are made, or the

substrate below them. These diodes operate in reverse bias and have a leakage

current that is proportional to their area. The reverse biased diode leakage current

depends heavily on the temperature and, as a rule of thumb, it doubles for every

10◦C degree increase in temperature [Tsi87]. Similarly, the wells also form reverse-

biased diodes with the substrate causing further current leakage.

The other component of leakage power is due to current through transistors

that are supposed to be ‘turned off’, since the gate to source voltage, Vgs, is

below the threshold voltage, Vt, but in reality they are still conducting when Vgs

is above the weak inversion point [Tsi87].

Although currently leakage power is not a significant part of the total power

dissipation when the system is operating, it is very significant when the system

is in a ‘stand-by’ state. The problem is that the system is consuming energy

even though it does not appear to do any useful work. This mainly affects the

usability of portable, battery operated devices.

In future technologies, as the supply voltage is scaled down, transistor thresh-

old voltages are also scaled down in order to retain the circuit speed. This leads

to increased leakage power, which becomes significant even when a system is

operating.

2.1.3 Short circuit power

Short circuit power is similar to static power, but it is considered a dynamic effect

because it occurs only when an output switches. It does not appear in all types of

circuits: carefully designed dynamic circuits, without feed-back elements, do not

consume any short circuit power, because the P and N transistor stacks are never
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conducting at the same time. The same is true for static circuits operating at a

supply voltage lower than the sum of the two transistor type threshold voltages.

Short circuit power becomes important when the input rise/fall times are

longer than the output transition times. Designing a gate with slow output

transition times, to minimise its short circuit power consumption, does not solve

the problem as it will cause higher short-circuit power consumption in the fanout

gates. The best solution is to try to have equal transition times for both input

and output transitions. When this condition is observed, the short circuit power

is typically less than 10% of the total [Vee84].

2.1.4 Switching power

Switching power is the major contributor to the power consumption of digital

CMOS circuits. The switching power formula for a gate driving its output at full

voltage rail is

P = α0→1CLV 2

ddfclk (2.1)

where CL is the switched capacitance, Vdd is the supply voltage, fclk is the clock

frequency, and α0→1 is the output node transition activity factor, which is the

average number of low to high transitions of the output node in a cycle. The

total switching power of a system is found by calculating the above formula for

each node and summing the results:

P =
∑

α0→1CLV 2

ddfclk = CeffV
2

ddfclk (2.2)

where Ceff , the effective capacitance, is the sum of the products of transition

activity and capacitance for every node in the circuit.

The activity factor α0→1 depends on a number of parameters. The logic

function implemented by the gate is one of them. For example the output of

a two input NOR gate can only be 1 when both inputs are 0, so, assuming all

possible input values are of the same probability, the 0 to 1 activity factor is

3/4 × 1/4 = 3/16. For an XOR gate it would be 1/4. Another factor is the

probability of the inputs taking specific values, as this would affect the output

0 to 1 transition probability as computed above. Finally, the logic style (static,

dynamic logic, dual-rail) in which the gate is implemented plays an important

role in determining the activity factor. The above examples of the NOR and

XOR gate assume an implementation in static logic. For an N-tree domino logic,
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the probability of an output transition of 0 to 1 is equal to the probability of

the output evaluating to 0, because the output will be set to 1 anyway, during

the precharge phase. Thus a two input dynamic NOR gate will have an activity

factor of 3/4. Dual-rail dynamic logic (e.g. CVSL [HGDT84]) generates both the

required logic function and its inverse, so one of the two outputs will always be 0

when the gate is evaluated and thus the activity factor will be 1 for all the logic

gates of the family.

The above discussion assumes that all inputs arrive at the same time at a gate.

In practice this does not always happen. Consequently the gate, upon receiving

the first input change, may switch its output only to switch it back again when

another input arrives. These unwanted transitions, due to the difference in the

arrival times of the inputs, are called glitches. They waste energy which can be

a significant part of the total, 15% - 20% reported by [BFR94]. Glitches cannot

happen in dynamic logic circuits because they can only have one transition when

they are evaluated.

The rest of the thesis ignores all other sources of power consumption except

switching power, as this is currently the dominant factor in a CMOS digital

system.

2.2 Energy, power and speed

Even in a low-power system, performance is still important. There is no practical

use for a processor that has a very low power consumption, but is too slow to

run any useful application. Furthermore, in most systems, it is low energy rather

than low power that is the design target. Portable electronic devices operate on

batteries, which have a limited energy (or charge) storage. For such devices, the

aim is to be able to do as much work as possible with the available energy.

In order to assess different circuit implementations, it is useful to have a met-

ric, so that power/energy efficiency can be measured quantitatively. Obviously,

using power as a metric is not adequate because it does not take delay into ac-

count. Similarly using energy as a metric, usually measured in Joules/instruction

or its inverse MIPS/W, also has drawbacks. Energy is the product of the average

power dissipation and the time to complete an operation. So a processor A, that

dissipates half the power of B but completes a task in double the time, consumes

the same energy. Thus, although the faster processor B is better in this case,
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using energy as a metric shows that they have the same efficiency.

Burd et al. [BB96] have proposed energy to throughput ratio (ETR), which

can be extended to include the processor idle energy. This is useful for processors

operating in “burst mode” which are mostly idle and spend only a fraction of their

time performing computations, but when computation is demanded, the faster

they complete it, the better. Unfortunately this metric requires many parameters

so it has not been adopted by the low-power design community.

One of the most widely used metrics is energy delay product [GH96], which is

usually expressed (inversed) in MIPS2/W. This metric correctly shows processor

B from the example above to be the most efficient. A similar metric of E×D2 has

been proposed [PM02] and later generalised as E×Dn in a number of independent

publications [ZS02], [Hof02]. This metric allows flexibility in setting energy-delay

trade offs; depending on the importance of the delay increase caused by an energy

reduction technique, an appropriate value of n is selected.

2.3 Basic low-power design techniques

From the switching power equation 2.2, it is clear that a low-power design should

try to minimise the supply voltage, the effective switched capacitance (i.e. the

switching activity and the node capacitances) and the operating frequency. Re-

ducing the operating frequency without affecting any of the other parameters

does not produce any energy savings; it just delays the execution by the same

factor as it reduces the power dissipation. Since the focus here is on low-energy,

operating frequency reduction on its own is not considered.

The following sub-sections describe the most common design techniques, or-

ganised according to the parameter minimised.

2.3.1 Voltage scaling

From the switching power equation 2.2 it is evident that the best way to make

CMOS digital circuits dissipate less power is to lower their supply voltage, because

of its quadratic contribution. The drawback is that a lower supply voltage means

slower circuits. An approximation of the delay through a logic gate is given by

[CB95b]:

Tdelay =
CL · Vdd

Iavg

≈
CL · Vdd

k(W/L)(Vdd − Vt)2
(2.3)
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where k is a technology constant, W, L are the transistor dimensions and Vt is the

transistor threshold. From the equation, it is evident that as the supply voltage

approaches Vt, the delay rises rapidly.

Equation 2.3 is not totally accurate for contemporary, sub-micron, velocity-

saturated technologies, but it is sufficient to show the trend. Using high-accuracy

HSpice [Met96] simulations of a fanout-four inverter, figure 2.1 shows the nor-

malised delay and power with a range of supply voltages. It is clear that as the

supply voltage approaches Vt, the delay increases rapidly. The graph is produced

by simulating an inverter with a fan-out of four identical inverters in a 0.35µm

bulk CMOS technology with a nominal supply voltage of 3.3V.
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Figure 2.1: Normalised delay and power versus supply voltage.

Technology considerations for voltage scaling

From the discussion above it can be concluded that in order to save power and not

suffer from a large increase in delay, supply voltage scaling should be combined

with threshold voltage (Vt) scaling. Unfortunately this is not as straightforward

as it appears. Firstly a small decrease in threshold voltage causes a significant

increase in leakage current through the transistors [GGH97]. Secondly the tran-

sistor thresholds are not easily controlled during fabrication, so the actual values



CHAPTER 2. LOW-POWER DESIGN OVERVIEW 24

have significant variation. This variation in turn causes a variation in their driv-

ing currents and speed, which is greatly exaggerated as the supply voltage is

lowered [GGH97]. As a result the supply voltage is usually set no lower than 4–5

times the nominal threshold voltage.

The semiconductor technology imposes limits to the supply voltage [CB95a].

A relatively high supply voltage creates a high electric field under the transistor

gate. This attracts more carriers in the channel, increasing the transistor drive

and thus the circuit speed. Unfortunately, the high electric field degrades the

devices possibly leading to failure. As a result an upper-limit to the supply

voltage is set for reasons of reliability. With shrinking device sizes, the gate oxide

is becoming thinner, lowering this upper-limit.

Another supply voltage practical upper limit is due to velocity saturation in

sub-micron technologies. Velocity saturation limits the maximum current drive

of the transistors and thus sets a ‘minimum’ supply voltage above which any

increase does not affect the delay significantly [CB95a].

With the continued shrinking in CMOS technologies, the nominal supply volt-

age is getting lower because of the above limits. Thus some power savings come

without any effort from the designer! The remainder of this section describes

voltage scaling methods that lower the supply voltage to achieve further power

and energy reduction.

Architecture-driven voltage scaling

As explained previously, a low supply voltage reduces the speed, so architec-

tural modifications can be employed to win back the lost performance. This is

generally achieved through parallelism: either by deeper pipelining or by using

(more) functional units in parallel. The performance loss because of the lower

throughput of each unit is recovered by having more of them operating in par-

allel. This technique, termed “architecture-driven voltage scaling” [CB95a] has

been very successful in the digital signal processing (DSP) world [CBB94] due to

the fixed throughput of DSP computations. Naturally there is a significant area

cost in this solution, but area is often not as important as performance and power

consumption.

In ideal conditions1, a single unit operating at voltage Vr can be replaced with

1
Vt = 0, no leakage power, and no energy consumption in the circuits distributing the data

to the parallel units.
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N units operating at Vr/N . The aggregate throughput will be the same and the

parallel implementation will be consuming 1/N 2 times the power of the original

[CB95a]. These power savings would come at a cost of increasing the area N

times.

In systems with irregular throughput, like microprocessors, architecture-driven

voltage scaling cannot be used effectively. Using multiple processors, each operat-

ing at a low voltage, has a high synchronisation overhead. Moreover, not all tasks

can be made to work in parallel. Those that cannot will be the speed bottleneck

of the whole system.

A potential problem arises from taking architecture-driven voltage scaling to

the extreme in systems composed of several modules which have different optimal

supply voltages, as in a “system on a chip”. If each module has a different

‘optimal’ supply voltage, a very high cost in area, both on-chip and on the printed

circuit board, has to be paid to supply and distribute the different voltages. For

practical reasons only a few, if not just one, supply voltages will be provided. As

a consequence most of the components will operate at a higher than their optimal

voltage and thus the system’s power consumption will be higher than optimal.

Reduced voltage swing

The switching power equation 2.2 only applies to circuits that drive their signals

at full swing from the supply voltage to the ground. When the voltage swing of a

signal is Vs the power consumption of the gate driving it is P = α0→1CLVddVsfclk.

Thus by reducing the voltage swing, power and energy can be saved in a linear

fashion.

Using reduced voltage swings for signals reduces the noise margins which could

lead to low yield and reliability issues. Thus this technique is used in highly

controlled, full-custom circuits, where noise is accounted for and some margins

are provided.

A low-swing signal cannot be connected directly to a ‘common’ logic gate as

it will keep the transistors it drives continuously conducting, thus causing static,

short-circuit currents. Special circuits are required to ‘restore’ the signal to full

swing, before it can be used as an input to other circuits.

Low swing is usually employed when driving long wires with high capacitance,

where both power and delay can be reduced by its application. A typical example

is a memory array where sense amplifiers are used to amplify the voltage difference
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on the bit-lines which are weakly driven by the memory cells that are being read.

Low power memories stop discharging the bit-lines when the sense amplifiers have

triggered which limits the voltage swing on the bit-lines to the lowest possible

[AH98]. Another common application is on main system buses as exploited by a

number of designs [ZGR00].

2.3.2 Effective switched capacitance reduction

In order to reduce the effective switched capacitance, the transition activity

and/or the circuit node capacitances must be reduced. Reducing the capaci-

tance of a node also improves the time required for its driving gate to switch the

node voltage and thus, in the long run, improves the circuit speed.

Capacitance reduction

Figure 2.2 shows a ‘typical’ node in a CMOS circuit; the inverters are shown for

simplicity, each one can be any logic gate. The node capacitance in fig. 2.2 has

been grouped in three lumped capacitances. Co is the output capacitance of the

gate that drives the signal. It is formed by the drain to bulk and drain to gate

capacitances of the transistors connected to the output. Cw is the capacitance of

the interconnect. Ci is the total capacitance of the transistor gates the signal is

connected to.

Cw CiCo

Figure 2.2: Breakdown of node capacitance.

Generally Co is the smallest and depends on the transistor sizes of the driving

gate. The latter are sized according to the driving current required to (dis)charge

the node in a ‘reasonable’ time, which obviously depends on Ci and Cw. Thus

reducing Ci and Cw will also reduce Co.

Ci, in addition to technology (e.g. gate oxide thickness), depends on the num-

ber of logic gates driven and the sizes of the transistors controlled by the signal.
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Thus circuits with low fanout generally help to reduce the power consumption.

Transistor sizes depend on the load the gate drives, so minimizing them is a mat-

ter of careful engineering practice2. Logical effort [SSH99], [SL01] is a method for

transistor sizing primarily focused on high-speed, while Borah et al. [BOI96] focus

on power consumption — including short-circuit power — with delay constraints.

Cw depends on the actual distance between the gate generating the signal

and those using it. In addition, the more gates a signal is an input to, the more

interconnect capacitance it has. Careful routing is the best way to reduce Cw but,

typically, thousands of nets must be routed, so the attention each net receives

depends on the available design time.

In summary, the capacitance depends primarily on the technology and the

ability of the designer and the CAD tools to produce a good layout. When

designing the circuits the only optimisation is to keep the fanout of the gates as

small as possible.

Switching activity

A large number of factors affect the switching activity of a circuit, ranging

from the algorithm that is implemented and the data representation to micro-

architecture and circuit style.

At the highest level, the operations that make up the algorithm are very

important. For example cos(x) can be calculated approximately as 1 − x2/2 +

x4/24 [BdM00]. By slightly relaxing the accuracy, it can be calculated as 1 −

x2/2 + x4/32 where the last division is avoided, as it can be implemented with a

right shift. Generally the fewer (and simpler) the operations, the less the activity,

thus optimising the steps of an algorithm is very important.

One way to minimise the transition activity is to encode the data appropriately

for computation, storage, or for transmission.

Various encoding techniques have been investigated especially for buses and

inter-chip communication, where the wires have very high capacitances [SB97],

[AS00], [HL01]. For example, in Gray code, sequential numbers cause a single bit

transition so it is ideally suited for encoding address buses. In less predictable

situations, bus-invert coding [SB95] can save 25% of the average power consump-

tion on buses at the cost of an added signal called invert. When the Hamming

2When using standard cells there are gates with fixed sizes so it may not be possible to size
the transistors optimally. Moreover, this could be a slow process affecting the design time.
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distance between the current and next bus values is larger than half the bus

bit-width, the next bus value is transmitted inverted and the invert line is set.

One recent communication protocol in the asynchronous framework [FES00] uses

optimal delay insensitive codes (3 out of 6) [Ver88] for transmitting information

with as few transitions as possible.

Data representation also affects switching activity in memories. Chang et

al. [CPK99] propose two methods for memory structures with single bitline

evaluation, such as ROMs and multi-ported SRAMs (e.g. processor register files).

A more advanced method [VZA00] compresses bytes containing all zeros to single

bits for both reading and writing, giving a data cache energy reduction of 26%

for a 9% size increase. Moshnyaga et al. [MIF02] show a 20% energy reduction

in video memory by not writing or reading the MSBs that are not different. The

advantage of this method is that it does not depend on the presence of a large

number of zeros as do the other two methods.

Two’s complement representation is usually used for numbers in digital sys-

tems because the basic arithmetic operations are easily performed with this rep-

resentation. In digital signal processing (DSP), where the processed numbers

come from sampled analogue signals that switch frequently around zero and don’t

utilise their entire bit width, it is well known that sign-magnitude is a better rep-

resentation [CB95b]. When a two’s complement number changes sign, a large

number of the more significant bits switch; e.g. +1 to -1 in 32-bit representation

causes 31 transitions. On the other hand a number represented in sign-magnitude

undergoes only a single bit change in the above example.

Micro-architecture, i.e. resource time-sharing, sequencing of operations etc.,

is also one of the principal issues affecting the effective switched capacitance, i.e.

both the switching activity and the node capacitances. For example, choosing

to share a bus amongst a number of units saves silicon area — thus reducing

capacitance — while at the same time increases the switching activity in the

shared bus. All such decisions have to be made with careful consideration of all

these factors.

A common issue is ‘guarding’ the inputs of a unit when it is not in use [DT99].

It is quite common to connect units performing different operations to the same

buses which provide the input data. When the inputs of such a unit are not

‘disconnected’, whenever new data appear on the buses a result will be produced,
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consuming energy, even though the result is not needed. Two options are gener-

ally available: inserting latches at the inputs that are only loaded when the result

of the unit is needed, or inserting some simple logic gate, e.g. AND, OR, that will

convert the inputs to values that will not cause internal transitions. The energy

consumption of the added circuits and of the signal controlling them should be

lower than the energy they save.

In a synchronous circuit, ‘clock-gating’ — conditional disabling the clock input

to latches or dynamic circuits — is usually employed for the above situation

at the pipeline stage level. The clock can be gated either because there is no

useful operation to be performed in the current cycle (as determined by a control

unit) or, more aggressively, when the data are such that they will produce no

new result in all, or part of, the bit-width [BM00]. This technique poses many

design challenges because it makes it harder to control the clock skew and to test

and verify the circuit and it exaggerates the power supply noise problem due to

large differences in current from cycle to cycle (L × di/dt) [BBS+00]. Despite

the problems, clock-gating has been used in microprocessors for several years

[GBJ98].

Another important issue in minimising the transition activity is avoiding

glitches. Although there are logic families that are glitch free (e.g. domino logic),

they may not be advantageous over non glitch-free families because of their higher

inherent transition probabilities. In addition the constraints imposed by these

logic families may lead to less power efficient circuits than static CMOS. A lot of

methods have been published targeting this problem either from the CAD tools

approach [RDJ99] or the circuit design [BdMM+00].

2.4 Asynchronous design

The clock signal in a synchronous circuit serves as a global timing reference for

communicating data among the different units in a system. The data communi-

cation is through (pipeline) latches, which use the clock as a ‘load-enable’ signal.

In an asynchronous system there is no notion of a ‘clock’ and all communi-

cation is explicit using a channel that follows a handshake protocol: the sender,

after making the data available, sends a request signal notifying the receiver,

which processes (or stores) the data and sends an acknowledgement back when it

has finished. When two units are separated by a pipeline latch, there is a channel
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Figure 2.3: Synchronous and asynchronous pipelines.

on both sides of the latch. The signal protocol of the channels and the latch are

coordinated by a unit, usually implemented as a separate block, called a latch

controller.

Figure 2.3 shows a simple pipeline in a synchronous and asynchronous imple-

mentation [OS02] where the equivalence of the latch controllers with the local

clock drivers, using clock-gating signals (like freeze), is apparent.

2.4.1 Asynchronous design and power consumption

In a contemporary synchronous processor a large proportion of the power is at-

tributed to the clock. Tiwari et al. [TSR+98] report that about 40% of CPU

power is spent on the clock, including the generator, drivers, distribution tree

and loading. StrongARM [MWA+96] — with a similar architecture to AMULET3

[FEG00] that was developed in the University of Manchester — is reported to
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use 26% of its power in the clock, including the PLL, while in its successor, the

XScale, this figure drops slightly to 23% [CHM+01].

The clock equivalent in an asynchronous processor is the set of latch con-

trollers including the drivers for the large latch-enable loads and some precharge

signal drivers which are controlled by handshake signals. Based on the power

analysis presented in chapter 4, the contribution of all these circuits to the power

consumption of AMULET3 was found to be only 10.5% of the core while running

Dhrystone 2.1 [EGT01]. Comparing this with the proportion of the power taken

by the clock shows that asynchronous techniques have the potential to reduce

power consumption significantly.

Due to the implicit synchronisation by the clock, the units in a clocked design

have to exchange data in every cycle even though there is nothing new (or valid) to

send. Even with aggressive clock-gating, some information will have to be passed

from one pipeline stage to the next — e.g. the information whether the data sent

are valid — which will cause some activity. Asynchronous circuits, on the other

hand, perform operations on request so they do not consume dynamic power when

there is no computation. Depending on the specifics of the implementation, the

above applies to the whole range from a processor to arbitrarily small sub-circuits.

In addition to the ‘no useful work–no power consumption’ property of asyn-

chronous circuits, another related advantage becomes apparent when returning

to normal operation from a ‘deep sleep’ mode. As there is no clock generator to

restart, an asynchronous processor can ‘wake-up’ and start executing instructions

immediately. In contrast a synchronous processor typically suffers a delay of a

few microseconds [MWA+96].

The ability of an asynchronous pipeline stage to have variable delays can be

exploited for power savings. In a synchronous system, a unit that is infrequently

used will still have to be designed so that it meets the clock cycle target, otherwise

all operations will be delayed. This could mean that an implementation which is

not power efficient must be used. In an asynchronous system a power efficient,

but slower, implementation of the unit can easily be incorporated: the delay

through the pipeline stage will be longer only when this unit is used. If the unit

is infrequently used the performance loss will be very small.

Unfortunately asynchronous design is not free of disadvantages. The require-

ment of explicit communication makes some operations difficult in asynchronous
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design, such as communicating with non-neighbouring pipeline stages. Some-

times the communication can be avoided altogether by duplicating information

in many parts of the pipeline. In any case, the duplicated data and the extra

communication will increase the power consumption, of at least the control part,

of the system.

Another disadvantage in power consumption of asynchronous circuit comes

from the practical problem of lack of CAD tool support. This leaves more design

steps to be done manually. A less automated design is much more likely to be

less optimised.

2.4.2 Classification of asynchronous circuits

The above discussion presented the general advantages and disadvantages, in

power consumption, of asynchronous circuits in comparison to synchronous cir-

cuits. These properties are common to every class of asynchronous circuits. In

this section some types of asynchronous circuits are covered and their suitability

for low power design is discussed.

Handshake signalling

The signals used in the handshake protocols are used to communicate events: e.g.

the availability of new data and the acknowledgement of the reception of data.

As signals use two-level Boolean values, there are two transitions for each wire

that can be used as an event: the positive edge and the negative edge. When

both edges are used to mean the same event, the handshake protocol is called

non-return-to-zero (NRTZ) [Sei80]. When only one edge (usually the positive)

represents the event and the other is used to return to a quiescent state, the

handshake protocol is called return-to-zero (RTZ).

Although from the power consumption point of view NRTZ seems prefer-

able since it reduces the number of transitions, the circuits implementing these

handshake protocols are more complex than those implementing RTZ. Currently

almost all asynchronous circuits use RTZ for this reason [SNNS93], [FDG+94],

[FGT+97]. NRTZ signaling would be useful when the channel wires have large

capacitances, for example when the two communicating parts are in different ICs,

as in [FES00]. Since this is rarely the case, for the remainder of this section RTZ

signaling is assumed.



CHAPTER 2. LOW-POWER DESIGN OVERVIEW 33

Delay-insensitive codes

In a handshake protocol the indication of the validity of the data can be inherent

in the data representation. Such representations are called delay-insensitive (DI)

codes because there is no need for a separate valid or request signal to signify

that the data is ready. When such a signal is used it must be guaranteed to be

asserted after the data is ready, which is impossible in a delay-insensitive model

where the delays through both gates and wires are unbounded.

Verhoeff [Ver88] describes the theory and a number of DI codes. The most

common codes used are one-hot, usually found as 1-of-2 (dual-rail) or 1-of-4.

In dual-rail each bit (d) is represented by two wires: one representing logic ‘1’

(d.t) and the other representing logic ‘0’ (d.f). Depending on the actual value of

the bit, only one of the wires is asserted at each time (table 2.1). Using return-

to-zero signaling, when a series of data are transmitted, d.t, d.f must go through

the empty code in between valid data transmissions.

Table 2.1: Dual-rail code

d.t d.f
0 0 empty, data is not valid
0 1 valid 0
1 0 valid 1
1 1 not used, illegal.

In one-hot encoding, n-bits are encoded in 2n wires, each representing one of

the 2n possible values. Since a very high number of wires is needed, such codes

are rarely used for more than 2 bits in a datapath circuit. Groups of more bits

can be split into pairs and 1-of-4 codes can be used for each pair.

In comparison both dual-rail and 1-of-4 require the same number of wires to

represent the same number of bits. Considering the number of transitions though,

1-of-4 uses two transitions, including the return to zero, for sending 2 bits, while

dual-rail would require four. Thus for power consumption 1-of-4 is lower, while

keeping the silicon area (number of wires) the same. This was shown to be true

in practice in a case study by Lloyd et al. [LG01].

Bundled-data

The simplest way to implement a channel is to have the data represented in the

‘common’ binary, or single-rail, format and bundled with a request signal. When
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request is asserted, the data are ready to be used by the receiver. This means

that the data must arrive at the receiver (shortly) before the request signal, which

means that there is a timing dependence that must be verified/implemented by

the designer. In this respect DI codes are superior, since they do not require such

dependencies and the design effort implied by them.

The greatest advantage of bundled-data representation is that they require

fewer wires to encode the same number of bits compared to delay-insensitive

representation. This saves silicon area and, consequently, decreases the average

node capacitance.

In RTZ signaling of bundled-data handshakes, only the request signal need

return to zero. Thus, in comparison to DI codes where the data wires will have to

return to the empty code, the bundled-data style offers a lower switching activity.

From the above discussion it is clear that bundled-data is more suitable for

low-power design, at the expense of greater design effort.



Chapter 3

Power adaptive processors

The previous chapter concentrated on techniques that can be used to reduce en-

ergy consumption without sacrificing performance. This chapter discusses adap-

tive techniques that enable execution time to be traded for energy consumption.

The increase in time does not necessarily affect performance, as perceived by the

user, in many applications for example in interactive tasks or those with soft

deadlines. Moreover, the user may prefer to trade some performance or quality

of service for extended battery life.

The first section defines power adaptability and discusses which parameters

can be adapted. Section 3.2 describes power management techniques in con-

ventional processors, which can be used as a ‘poor man’s’ alternative to power-

adaptive processors. Dynamic Voltage Scaling (DVS), which has recently been

incorporated into commercial processors, is examined in section 3.3. The remain-

der of this chapter considers basic architectural adaptation techniques.

3.1 Power adaptability

Power adaptability is the ability of a processor to scale its power consumption

according to the ‘intensity’ of the work it performs and/or the operating condi-

tions. The same concept is also called power awareness in part of the literature

[BMC01].

Intuitively, power adaptability seems to be a natural property for a processor

to have, but only recently has it started to be considered in depth. To some extent,

even processors which are not designed with energy efficiency as a goal exhibit

some power adaptability, especially when they are executing ‘easy’ instructions

35
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(e.g. register to register move), or computing with ‘easy’ data (e.g. adding with

zeros). But a processor designed with power adaptability in mind should be able

to achieve much greater energy savings.
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Figure 3.1: Energy-Delay plot of an adaptive processor.

Figure 3.1 shows how the energy consumption of an adaptive processor could

relate to the execution delay. There is a minimum energy consumption (B) and

a minimum execution delay (A) when the processor executes a given program.

Increasing the delay further than B does not reduce the energy consumption, but

it could reduce the power dissipation. On the other hand, more energy can be

used, e.g. by using more parallelism, without any speed improvement above A. In

between the two extremes an adaptive processor can offer energy-delay trade-offs,

either continuous, as in the plot, or discrete points.

In a changing operating environment, power adaptability can also be viewed as

robustness: the processor is operating as fast as it can for the current conditions.

An example of such an environment is a contact-less smart-card [ABR+01]. In

these smart-cards there is no physical connection to the card reader and the

processor is powered from the ambient radio field generated by the reader. The

available power — and supply voltage — fluctuates according to the distance

from the reader, requiring the processor to be able to operate continuously in a

range of voltages.
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3.1.1 Motivation

Bhardwaj et al. [BMC01] mention two motivating views for having power aware-

ness:

• The user is allowed to make the trade-off between energy and speed or

‘quality’ in general (e.g. quality of video or sound). Each user has their

own preferences, which probably change even in the time between battery

recharges, and the devices should be able to satisfy these preferences. A

system designed to be power-adaptive is probably the best way to implement

these trade-offs.

• There is significant variance in the workload of many applications which

could be exploited automatically by the system for lower energy consump-

tion. The user need not be aware of this function which should either cause

no ‘quality reduction’, or the reduction should be within a user specified

level.

In addition to the above motivating views, a power-adaptive system can be

used for thermal management [BM01c]. With higher levels of integration, heat

dissipation is becoming an important concern, especially for high-end processors

where, in the near future, the performance may be limited because of heat dissi-

pation [BM01c]. Power adaptivity can be used as a means to reduce the temper-

ature of a processor when it is approaching a hazardous limit, while maintaining

operation, albeit at a reduced speed [HRYT00].

Many application programs exhibit significant variance in their execution

time, depending on the data being processed or, for interactive applications,

the slow — for a processor — response time of the user [PBB00], [HKA+01],

[HRYT00]. For example Pering et al. [PBB00] take advantage of the fact that

a user cannot notice any screen update faster than 50ms, in their voltage scaled

processor. Hughes et al. [HKA+01] report an execution time variability with a

range of 37% to 195%, relative to the mean execution time, for a set of speech,

video and audio codecs at the frame granularity. Finally, Huang et al. [HRYT00]

argue that not only multimedia and interactive applications show variability, but

also general purpose ones, especially when they depend on network operations,

e.g. web-servers.
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3.1.2 Categories

As explained in the previous chapter there are three ‘variables’ that can be

changed to affect speed and energy consumption in a processor:

Time There are two cases depending on the timing paradigm used:

Synchronous The execution time can easily be changed by changing the

clock frequency. Power dissipation will scale with execution time, but

the energy to execute a task will be largely constant.

Asynchronous Since there is no clock the circuits work as fast as they

can. The only way to slow down is to deliberately add delays, using

long inverter chains for example. Power should scale with execution

time as with the synchronous processors, but the delay elements will

consume energy, so this scaling will be worse than linear: in the plot

of figure 3.1, to the right of point B the curve will rise gently instead

of being parallel to the axis.

Supply voltage Dynamic voltage scaling (DVS) [NNSvB94] is the most com-

monly used method to make an adaptive system. As the dynamic energy

consumption of a system depends on the square of the supply voltage, a

small decrease in voltage would yield big savings in energy consumption.

On the other hand circuits are slower at a lower voltage, so the speed will

drop and so will the power dissipation. Although for an asynchronous cir-

cuit the speed loss is handled automatically, for a synchronous one the clock

frequency must be adapted.

Architecture Changing the architecture affects the effective switched capaci-

tance for the dynamic power and the cycles per instruction (CPI) for speed.

It can reduce the energy consumption and usually will slow down the pro-

cessor, thus the power dissipation will decrease too.

Since adapting the architecture or the supply voltage offers more improvement

in energy consumption than adapting execution time on its own, the latter is ap-

plied only as a final resort when all other measures have been applied and still

lower power dissipation is required. Dynamic voltage scaling and adaptive archi-

tecture are discussed in this chapter, after a brief discussion of power management

for conventional, non-adaptive processors is given in the following section.
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3.2 Power management

With a little hardware support, conventional, non power-adaptive processors can

also exploit idle time to save energy. Usually, the processor completes the task

in its usual operating mode, and then enters a ‘sleep mode’, which is a condition

where the processor does not execute any commands and shuts down some of its

activity to save energy.

Most contemporary processors support ‘sleep’ or ‘power-down’ modes (e.g.

[MWA+96], [GDE+94]). The typical offering is three modes: a normal-operation

or run mode and two sleep modes. Figure 3.2 (from [BBdM00]) shows the state

transition diagram of the power-down states of StrongARM, the power consump-

tion at each state and the delay to switch states. Typically, in idle mode all

operations are halted, but the interrupts and the PLL are still enabled, so that

the processor can resume operation quickly when an interrupt happens. In Stron-

gARM, during sleep mode the power supply of the internal circuits is turned-off.

The I/O circuits are still powered so that the specified logic levels are observed

on the external wires.

P=50mW P=0.16mW
90us

90us10us

10us 140us

P=400mW

idle sleep

run

Figure 3.2: Power modes state transition diagram.

When there are no tasks to execute, selecting which power-down mode to

switch to and when, is a gamble. The lowest power consuming mode is obviously

best for long idle times, but it is hard to predict when a new task is going to

require the use of the processor so that the idle time can be predicted efficiently.

Benini et al. [BBdM00] define ‘break-even time’ of a power-down mode as the

minimum idle time required to compensate the cost of switching to that mode.

If the idle time is less than the break-even time, there is no energy benefit from

entering the power-down mode; on the contrary, there will be an energy loss.

A wide range of algorithms have been reviewed [BBdM00] for deciding when to

enter a power-down mode, the simplest of which is the common timeout policy

used in most personal computers.
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Figure 3.3: Wasted energy due to idle time.

In figure 3.3 the solid line shows the instantaneous power consumption of an

ideal power management policy, where the processor can switch to a low-power

mode and back with no delay. The dashed line shows how a processor with a

timeout power management policy would behave for the same workload. The

shaded area represents the wasted energy. The energy consumption while in

sleep mode is the low limit of this wasted energy and this is common to both the

ideal and the timeout policies. All gray areas above the sleep power level are the

energy overhead of the timeout policy, which is quite substantial.

Finally, the possible behaviour of a power-adaptive processor is also shown.

From the graphs it is clear that, although using power-management on conven-

tional processors can save some energy, power-adaptive processors can be more

efficient by slowing down the execution so that each task finishes just before the

next one begins.

3.3 Dynamic voltage scaling

Dynamic voltage scaling (DVS) is a technique that dynamically varies the sup-

ply voltage and the clock frequency (for synchronous systems) in response to

computational load demands [BPSB00], with the purpose of saving energy while

maintaining high speed when it is needed. DVS is different to techniques like

architecture driven voltage scaling (described in chapter 2), where the supply

voltage is fixed at a (generally low) value, and architecture techniques are used

(typically parallelism) to keep the performance at the appropriate level. The
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Figure 3.4: Voltage converter and processor connection for DVS.

difference is twofold: the speed and the supply voltage both change dynamically.

A number of recent processors use DVS: lpARM [PBB98], XScale [CHM+01],

Crusoe [Fle00]. XScale and Crusoe are commercial processors, so not many details

about how they are designed are published. For this reason the description here

is based on lpARM [PBB98], [BB00], [BPSB00].

DVS requires carefully designed circuits, a voltage converter, and some sup-

port to decide when to switch voltage levels. Each of these elements are described

in the following sections.

3.3.1 Hardware requirements

The central part of a DVS system is a regulator consisting of a voltage converter

combined with a clock generator. When the processor wants to change its energy-

speed level, it sends the requested new clock frequency to the regulator which

changes the supply voltage to the lowest possible level that can achieve the clock

frequency.

Figure 3.4 shows how the regulator was implemented by Burd et al. [BB00]

and how it is connected to the processor. The regulator compares the current

frequency to the desired one and changes the operating voltage accordingly by

pumping charge in or out of a large capacitor (C) that provides the energy supply

for the processor. During this process, as the supply voltage changes so does the

processor clock frequency and the correcting action is modified until the desired

frequency is reached. The ring oscillator generating the processor clock operates

from the same supply voltage as the processor and it is designed to track its worst

delay path.
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The size of the capacitor is critical [BB00]. Increasing C reduces supply ripple

and the energy loss of the conversion, but it also increases the transition time

(switching between supply voltages) and the energy loss during the transition.

While the supply voltage is changing it is possible to continue the operation

if the circuits are designed according to some guidelines [BB00]:

• Static CMOS circuits are very tolerant to supply voltage changing and

should be used as much as possible.

• NMOS pass transistors should not be used, because they cannot operate at

a supply voltage lower than twice the threshold voltage1 (Vt).

• Stacked devices with more than 3–4 transistors should be avoided. Their

delay cannot be matched easily, at low supply voltages, by an inverter

chain that is commonly used in a ring oscillator. This means that the clock

generator will not be able to “follow” the critical path.

• Dynamic logic could cause latch-up or false evaluation if the supply voltage

changes too fast. This can be avoided by using a PMOS device on the

dynamic node controlled by an inverted stage of the output. A similar

problem could happen in tri-state buses that can be left undriven for a

number of cycles. In this case bus-keepers, a pair of cross-coupled inverters,

can be used to retain the bus value and follow any changes in the supply

voltage.

• In SRAMs, sense amplifiers that are symmetrical and tolerant of supply

voltage changes must be used.

Crusoe [Fle00] operates somewhat differently. When the decision is made to

change the supply voltage, the processor is halted for some time (20µs) for the

clock generator to switch frequency. Then the processor resumes operation, at

the low speed, while the voltage is slowly ramped in a number of steps.

3.3.2 DVS in asynchronous systems

In asynchronous circuits there is no global clock. Thus an asynchronous processor

with DVS capability should require a simpler regulator, since there is no need

1Assuming equal absolute values of NMOS and PMOS transistor thresholds.
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to generate an appropriate clock frequency for the supply voltage level. When

the supply voltage changes, the circuits automatically adapt and operate at the

maximum speed for the new voltage. Obviously, similar restrictions to those

stated above apply to the circuits for voltage scaling to work. The feasibility of

DVS in an asynchronous environment was shown by Nielsen et al. [NNSvB94],

in the early days of low-power design.

Due to the absence of a reference clock, it is harder to associate a supply

voltage with a desired speed. In the early work by Nielsen et al. [NNSvB94] the

speed requirement was to maintain a fixed throughput. The solution was to place

two FIFOs around the main asynchronous unit and by measuring the occupancy

in the input FIFO, they raised the voltage when it was almost full and lowered it

when it was near empty. In this solution the feedback mechanism that sets the

supply voltage is based on the actual delays of the circuit. The ring oscillator

used in synchronous implementations must be made to match precisely the delay

of the critical path, which is not easily achieved, forcing the use of safety margins

which reduce the power savings.

For an asynchronous processor it is not clear how an appropriate supply volt-

age can be estimated from the desired speed. A table of average speeds for a

large number of supply voltages could be created experimentally and then used

as a reverse look-up table to set the appropriate voltage for a selected speed, but

this is not precise and the average speed of the initial measurements may not

match the speed of the executed application. Es Salhiene et al. [EFR02] have

recently proposed a voltage scheduling mechanism for an asynchronous processor

[RVR98] but they do not show the mechanism that converts a required speed to

a supply voltage.

3.3.3 Voltage scheduling

To make effective use of DVS in a processor a ‘voltage scheduler’ is used to

examine the current and predict the future processor workloads and set the new

desired speed and voltage [PBB00]. As this task is quite complex and related

to normal task scheduling it is implemented in software as part of the operating

system.

The voltage scheduler need not take both time and supply voltage into con-

sideration. In a synchronous DVS processor, setting a target clock frequency

automatically generates an appropriate supply voltage. As explained earlier this



CHAPTER 3. POWER ADAPTIVE PROCESSORS 44

can be harder or less accurate in an asynchronous processor. Thus the voltage

scheduler only has to decide the desired processor speed.

Program threads need to provide an estimate of how many instructions they

are going to execute and a completion deadline. Based on the number of threads

and the information they provide, the voltage scheduler calculates the minimum

processor clock frequency which should allow all tasks to complete on time. Per-

ing et al. [PBB00] include the threads that are not currently runnable in the

calculation with the aim to reserve time for them in the future. On the con-

trary Es Salhiene et al. [EFR02] use only the runnable and ready threads for the

calculation which could avoid overestimating the processing requirements. The

speed setting is reviewed each time a thread is created or completed and at the

deadlines.

3.4 Power adaptive micro-architecture

Adapting the (micro-)architecture is equivalent to changing the effective switched

capacitance for dynamic power consumption. At the same time performance pa-

rameters are also affected, namely the (average) number of cycles per instruction

(CPI) and/or the cycle time. As expected, simplifying the micro-architecture

usually reduces the power consumption, but increases the CPI.

Although a number of micro-architectural features can be adapted at run-

time, they can all be placed in two categories depending on which part they

mainly affect: datapath or control. Common datapath techniques, discussed

in section 3.4.1, exploit narrow data bit-width or trivial computations [CGS00],

[YL02], [BM00], [NS99]. ‘Speculation control’ [MKG98], [EG02a], ‘pipeline bal-

ancing’ [SKO+97], [BM01b], [KSB02], and ‘resource scaling’ [IM01], [BM01a] in

processors supporting instruction-level parallelism are the main classes of control-

based micro-architecture adaptation. These classes are not disjoint, for example

most pipeline balancing methods indirectly control the speculation of a processor.

Another way to classify adaptive micro-architecture methods is by how they

are initiated.

Some methods can be ‘automatic’ or ‘opportunistic’, in a sense that they

always try to save energy without external enabling. Methods that can detect

energy-saving opportunities without affecting the speed, or when this effect is

reasonable, could fall in this category.
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Most methods, though, have a significant speed penalty so they cannot be

permanently hardwired into the system. They can be selectively enabled by an

entity that has more knowledge, such as the operating system, the user, higher-

level control logic, etc.

3.4.1 Datapath-based adaptation

Although current processors typically operate on 32-bit data operands, a large

number of operands actually use many fewer bits; e.g. 62% of register values are

just one byte in the Mediabench suite [CGS00]. This can be exploited in storage

and functional units to save energy.

Brooks et al. [BM00] propose extending the clock-gating technique from bas-

ing its decision on the operation type to also consider the operand values. In

their method the datapath width is split into a low (significant) part and an up-

per part. The upper-part, when the operands are just sign extensions, is gated-off

to reduce the switching activity. With this technique they exploit ‘narrow-width

instructions’ to save energy. They claim a 45%–60% power reduction in a 64-bit

integer unit, without including the overhead of the detection circuits. A second

more aggressive technique they propose is to pack a number of narrow width

instructions in a single functional unit to be executed in parallel. They do not

give any power consumption results for this technique.

A similar technique was used in an asynchronous, interpolated finite impulse

response (IFIR) filter implementation [NS99]. Taking advantage of the asyn-

chronous design flexibility, the 16-bit adder was split into two parts and the most

significant was only operated when needed.

To save energy in simple pipelined processors, Canal et al. [CGS00] developed

‘significance compression’. The least significant byte of a 32-bit value is consid-

ered to always contain useful information, but each of the other three bytes is

augmented with an extension bit. For each byte which contains just the sign

extension of the previous byte, the corresponding extension bit is set. Using this

data representation for the cache, the pipeline latches, the registers and the func-

tional units, a number of pipelined implementations are presented, varying from

a completely byte-serial implementation to a fully 32-bit parallel with gating for

the unused datapath parts. The activity is reduced by around 30%–40% in all

cases with an increase in CPI from 24% for the byte serial implementation to

2-6% for the parallel one.
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Trivial computations, i.e. computations that can be simplified or where the

result is 0, 1, or equal to one of the operands, are targeted by Yi et al. [YL02]

mostly to improve performance, but it is expected that they can save energy too.

They show that even when compiling a program with full optimizations, about

30% of arithmetic operations, which is 12% of all dynamic operations, are triv-

ial. The performance improvement comes solely from the fact that instructions

performing trivial computations do not have to wait for both their operands to

become ready in order to be issued. This improvement is approximately 8% but,

unfortunately, the potential energy savings were not investigated.

3.4.2 Pipeline balancing

One class of control-based micro-architecture adaptation techniques try to bal-

ance the processor throughput by throttling its front-end, i.e. instruction fetch

and decode.

The earliest such method is called ‘instruction cache throttling’ [SKO+97] and

was used for thermal management in PowerPC processors. In normal operation

four instructions are fetched in each cycle if there is a cache hit. When the

processor temperature is high, i.e. its power consumption has been high for some

time, the rate of instruction delivery is restricted. It was shown that halving

the fetch rate reduces the processor speed by 12% while dropping 7◦C of the

temperature. The power reduction due to I-cache throttling saturates at a value

of 2.13W when clock power dominates the other power consumption sources in

the processor.

A more recent method by Baniasadi and Moshovos [BM01b] balances the

throughput of a processor’s front-end (fetch, decode, issue) with that of the back-

end, by throttling the instruction-fetch rate. Three methods are used to measure

the throughput or ‘instruction flow’ at the front- and back- ends:

Decode/commit rate (DCR) The rationale is that if there are many more

instructions being decoded than committed, speculative (pre)fetching is not

successful, so why not stop it. The best results are achieved when fetching

stops if 3 times more instructions are decoded than committed during a

cycle.

Dependence based (DEP) Using this metric, if there are more dependencies

than a specified number, fetching stops for 3 cycles. The idea is that if there
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are too many dependencies, few instructions will be executed in parallel,

so bringing more from the cache is not likely to improve the performance.

The best results are achieved when the threshold is set to half the decoding

width.

Adaptive DCR/DEP From the simulations it emerged that, when the commit

rate is relatively low, DEP works best, otherwise DCR is better. So this

method gets an indication of the commit rate and switches between DEP

and DCR accordingly.

Adaptive DCR/DEP is the best of these methods and it reduces the average

instruction throughput — used as a first-order energy metric — by 11% and 15%

for the fetch and decode stages respectively, while slowing down the processor by

about 3.6%

A similar approach is followed by Karkhanis et al. [KSB02] by trying to

offer ‘just in time (JIT) instruction delivery’. With JIT instruction delivery,

instructions stay in the issue queue for only a short time and the number of mis-

speculated instructions is reduced indirectly. The proposed implementation uses

a simple up-down counter that is incremented for each fetched instruction and

decremented for each committed one. When the counter exceeds a programmable

maximum value, fetching is halted. A simple algorithm sets the maximum value

by monitoring the program execution.

One of the novelties of this method is that it reduces stall cycles in the decode

and issue queues. Stall cycles can expend energy (in the local clock drivers) by

reloading the same values into the pipeline registers. By reducing the number of

stall cycles this energy is saved. In the simulation study with only 3% performance

degradation, energy savings of 10%, 12% and 40% were achieved in the fetch,

decode, and issue queue respectively.

3.4.3 Resource scaling

The goal of resource scaling techniques is to “determine the changing needs of each

program and tune processor resources to the program with the aim of reducing

power consumption” [BM01a]. The processor resources that are scaled include

the number of registers [AIC+01], the issue width [IM01] and the number of active

functional units [BM01a].
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Extending their earlier work [MBB01], Bahar and Manne [BM01a] target

resource scaling by adjusting the pipeline issue and execution capabilities of a

processor. They assume a base processor with 8 integer, 4 floating point units

and 4 memory ports, split equally into two clusters. In this configuration they

define two low-power modes: a 4-wide issue mode, implemented by just disabling

one of the two clusters, and a 6-wide issue mode, implemented by disabling both

floating point units in one cluster.

A simple finite state machine controls changes between these modes depending

on the IPC measured in a sampling window. As the instruction-level parallelism

in a program changes, the state machine follows the changes and adjusts the

active units in the processor accordingly, saving energy by shutting down the

unused units.

The simulation results of the adaptive processor running SPEC95 benchmarks

show a power reduction of 10%–23% in the issue queue and 5%–12% in the

execution units. The overall energy reduction for the processor is at most 8%,

out of a maximum possible of 12%, while the average performance loss is 1% to

2%.

Iyer and Marculescu [IM01] use (some quite expensive) profiling hardware used

to identify ‘hot-spots’ of a program and a power estimation method to trigger

changes to the micro-architecture, specifically the issue width. The achieved

energy savings per instruction are only up to 8%, while the energy overhead of

the profiling hardware seems to be underestimated.

3.4.4 Speculation control

A very important aspect of high-end processors is speculation, as it allows the

processor to overcome control dependent stalls and extract more instruction-level

parallelism, especially when the behaviour of the branches cannot be predicted

accurately [HP96]. Speculation is always wasteful of energy for two reasons:

• A percentage of the speculatively fetched instructions are discarded when

the prediction upon which they were fetched is wrong. The energy expended

on fetching these instructions is wasted.

• Energy is expended at every cycle to support speculation, for example mak-

ing predictions, keeping information to restore the processor state in case

the instructions are mispredicted or an exception is caused.
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In an ideal processor where every functional unit is optimally energy efficient,

the only energy wasted would be due to speculation. Thus all the control-based

micro-architectural techniques described earlier, in effect, control the degree of

speculation of a processor.

‘Pipeline gating’ [MKG98] is the best known speculation control technique.

The branch prediction hardware is coupled with a confidence estimation mecha-

nism, which reports on how much confidence there is in each prediction. When

there are more than a set number of low confidence branches in the pipeline,

the probability that the instructions currently being prefetched will actually be

executed is quite low. For this reason the front-end of the processor is stalled

until the combined confidence improves, which happens after resolving (some of)

the branches at the write back stage. The paper [MKG98] investigates a number

of parameters and the best results showed that up to 38% of extra work can be

saved at the fetch and decode pipeline stages while the performance is affected

by only 1%.

3.5 Comparison of DVS and micro-architectural

adaptation

A brief overview of the limitations and strengths of DVS and micro-architectural

adaptation is given here. The results of a comparison for thermal management

[BM01c] and in multimedia applications [HSA01] are also presented.

3.5.1 Limitations of micro-architectural adaptation

There are three main limitations to micro-architectural adaptation:

• In every architecture there is a finite number of changes that can be made.

Thus the most important limitation of micro-architectural adaptation is

that it cannot offer a continuous range of energy-delay options, as can supply

voltage scaling.

• Since each program uses a processor’s resources differently, the same pro-

cessor configuration could have different effects on the energy consumption

and the execution delay for different programs. Thus micro-architectural

adaptation must be automatically customised to the executing application.
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• As the contribution of effective switched capacitance to energy consumption

is linear while the supply voltage has a quadratic effect, micro-architectural

adaptation does not generally achieve as much energy savings as DVS.

3.5.2 Limitations of DVS

As explained earlier DVS requires careful design and verification of the circuits

that can have their supply voltage changing while they operate. This can signif-

icantly increase the design time of a system.

In modern system-on-a-chip (SoC) designs, a large number of blocks are

present and each could have different speed and energy requirements. Usually

the environment in which the SoC operates provides only one or two supply volt-

ages and all others have to be generated on-chip. If each block requires a separate

voltage converter, a large area will be used by these converters and the distribu-

tion of power on the chip will be a hard problem. Operating all of the blocks from

the same regulator would require that they all operate at the same frequency for

the whole range of supply voltages, which is hard to achieve in large ICs and

probably suboptimal in most cases.

In addition to these practical problems, a limiting factor of DVS is the rel-

atively slow transition times to change voltage (and frequency) levels. Crusoe

[Fle00] requires up to 20µs to change the clock frequency and then it begins scal-

ing the voltage, which takes another 20µs per step. It could take up to 300µs for

a voltage change. XScale [CHM+01] and lpARM [BPSB00] both need at most

70µs to switch to a different voltage level which is over 5000 cycles for lpARM

and much more for XScale. Moreover each transition expends energy which can

be up to 4µJ in lpARM [BPSB00] that is equivalent to 712 full-load cycles at the

maximum speed.

The high cost of each transition means that the decision to change voltage level

must be carefully made. Thus the algorithms used for voltage scheduling must

be quite conservative, so that they do not cause voltage switches too frequently.

3.5.3 DVS and micro-architectural adaptation

Brooks and Martonosi [BM01c] compared architectural adaptation with DVS

for processor thermal management. In their simulations at a preset temperature

level, a sensor causes an interrupt which triggers a ‘response mechanism’ to reduce
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the power consumption and thus the temperature. As response mechanisms they

experiment with DVS, frequency scaling, and a number of micro-architectural

adaptation methods. In their findings the response delay was much longer for

DVS because of the time it takes to change the voltage and resynchronise the

clock. Moreover using architectural adaptation as a thermal response mechanism

achieves lower performance losses than DVS while managing to keep the temper-

ature below the critical level. From these results it is clear that the slow response

times of DVS could affect its usefulness.

It is possible to combine micro-architectural adaptation with DVS for further

energy savings than can be achieved by each method alone. Hughes et al. [HSA01]

present a case study of discrete and continuous DVS combined with resource scal-

ing adaptation using multimedia applications for benchmarks. The applications

first run in a ‘profiling’ phase where, for each type of frame and each processor

configuration, the energy per instruction is measured and the results are used

to order the configurations according to energy per instruction. The remaining

frames are run in the ‘adaptation’ phase, where the number of instructions for

the next frame (of the same type) is predicted and an appropriate configuration

and supply voltage is selected so that the frame can be processed at the allowed

time with the minimum energy consumption. Depending on the predicted num-

ber of instructions, the appropriate configuration and, when DVS is enabled, the

appropriate frequency and voltage are selected.

The simulation results show an average energy reduction of 68% to 78% for

DVS only and 22% for micro-architectural adaptation only. Combining micro-

architectural adaptation with DVS offers an additional improvement of 11% to

17% relative to DVS alone. This result shows that micro-architectural adaptation

can be successfully combined with DVS.

3.6 This thesis

All the micro-architectural adaptation techniques published are for synchronous,

superscalar processors. While there is obviously far more scope for experimen-

tation in superscalar architectures, the majority of embedded systems still use

single-issue processors. This thesis aims to exploit micro-architectural adapta-

tion for this class of processors.
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Moreover, with the possible exception of LPX [BBB+02], there are no micro-

architectural adaptation techniques developed for asynchronous processors. Even

LPX is not entirely asynchronous; it follows the ‘locally asynchronous, globally

synchronous’ paradigm proposed by Athas [Ath01] and uses asynchronous circuits

only for some functional units, while the global control is synchronous.



Chapter 4

Power analysis of AMULET3

In order to gain a better understanding of where the power is consumed in an

asynchronous processor, a detailed power analysis of AMULET3 was undertaken.

The analysis is based on simulations for the following reasons. First, there were

no fabricated chips available to measure at the time; even if there were, the taped-

out chip contains much more than the processor and there are no separate supply

pins for each component. Second and more importantly, the focus is on the power

consumption at a very fine granularity, in which case it would be impractical to

build an IC with so many different supply lines and pins.

Although the main emphasis is on the core, all of the other components in

the AMULET3i system were monitored, but the interest is in their total con-

sumption, not in the breakdown into sub-blocks. This is very important because

there is no point in investigating methods of improving the processor’s power

efficiency if its contribution to the system power is small. The information on the

power consumption of the other components will keep the analysis in the right

perspective.

This chapter first describes the hardware that was simulated and the software

that was run on the processor. The power breakdown is then presented at the top

level and at the main block level. Based on the power analysis, a comparison with

the closest synchronous processor, ARM9, is presented in section 4.6. Finally the

last section summarizes the chapter and sets the main direction for the main part

of this thesis.

53
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Figure 4.1: Simulated system.

4.1 Simulated hardware

The simulated system is shown in figure 4.1. It is an AMULET3i system [GBB+00],

[AMU99] with small additions. There are three types of modules:

Behavioural support modules: Tube, SRAMs, clk These are included so

that the system is easier to simulate. They are C functions linked with the

simulator and behave like memory-mapped peripherals.

Tube is a multi-purpose ‘peripheral’ which can imitate external interrupts,

terminate the simulation, and print characters to the screen and/or a file,

including the current simulation time. All these operations are initiated

by the processor writing appropriate values into the Tube memory-mapped

registers. For these simulations the Tube is used as an output device only, so

that the executed programs can print their results, or the elapsed time. It

is also used to stop the simulation when the executed program has finished.

The two SRAM blocks extend the total memory available to the system by

128K bytes, in addition to the local 8K byte RAM. Finally, clk generates a

reference clock which can be used by some of the peripherals.

All of these modules were used for the validation of AMULET3 and were

previously created by other members of the AMULET group.
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Flat netlists: Peripherals, buses, local RAM These are circuit netlists ex-

tracted directly from layout so there is no hierarchy within them. This is

because the back-end tools of the Compass Design Automation software,

that was used to design AMULET3, destroy the design hierarchy. All of

them are part of the previously designed AMULET3i chip and they are

described in [GBB+00].

Hierarchical netlists: processor core The processor core is the only fully hi-

erarchical circuit netlist. It also contains the parasitic capacitances ex-

tracted from layout. This was generated by joining the flat back-end rep-

resentation with the hierarchical schematic representation and its extrac-

tion was the non-automated, laborious work of a member of the AMULET

group. For this reason the other parts of the system were left flat.

4.1.1 Core description

Figure 4.2 shows a block diagram of the AMULET3 asynchronous processor core

[GFC99]. It implements the ARM v4T architecture [Fur97] using 4-phase (return-

to-zero) handshake protocols and bundled-data representation. This architecture

implements two instruction sets: the ‘standard’ 32-bit and a compressed, 16-bit

instruction set called “Thumb”. Although AMULET3 is a single-issue processor,

limited out-of-order completion is supported: data transfer instructions, espe-

cially ‘load multiple’ (LDM), can be overtaken by subsequent data processing

instructions. For this reason a four-place reorder buffer is used [GG97].

AMULET3 has two independent memory ports, one for instructions and one

for data, to avoid pipeline stalls when load or store instructions are executed. The

local memory in AMULET3i is shared by instructions and data; it is segmented

in banks and interleaved. Thus pipeline stalls can still (seldomly) occur when the

same bank is accessed by both memory ports simultaneously.

The prefetch unit is responsible for generating the address of the next instruc-

tion to be fetched. It contains a small, 16-entry branch target buffer (BTB) for

branch prediction. Branches that are taken once are stored in the BTB and are

subsequently predicted taken, until the entry is removed from the BTB to make

room for a more recently taken branch. As all the information for previously

predicted branches is kept in the BTB, the instruction fetch stage is bypassed

when they are to be fetched.
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Figure 4.2: Organisation of AMULET3.

If the processor is executing Thumb instructions, the Thumb stage receives

32-bit words from memory, splits them into two 16-bit Thumb instructions and

translates them into ARM instructions one after the other. Generating two in-

structions from one word is easily accommodated with the asynchronous design

style; the upstream stages are slowed down by simply acknowledging their re-

quests at a slower rate. When 32-bit instructions are being executed, Thumb

behaves as a simple buffer.

The next stage in the processor pipeline, decode, decodes the instructions,

fetches their operands and directs them to the appropriate unit(s) for processing.

In addition, space is reserved in the reorder buffer for the instruction result and

forwarding paths are set up.
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Execute checks the instruction’s condition code with the current processor

status and then performs the data processing operations or the calculation of the

memory address for data transfer instructions. Branches are also resolved in this

stage and, if they are taken, the target address is sent to prefetch via a decoupling

latch shown to the left of the pipeline in figure 4.2.

The data interface handles the data transfers, getting the initial addresses

from the execution unit but generating subsequent addresses of multiple data

transfer instructions internally. The reorder buffer gathers the execution results

and the loaded data, possibly out-of-order and handles the forwarding of the

results back to the decoder stage when the latest value of a register is not in the

register file. Finally, the register write stage empties the reorder buffer into the

register file.

4.2 Simulated software

The power consumed by a processor depends on the operations it performs. So

the selection of the set of programs used to measure a processor’s consumption is

important. Unfortunately, there is no de facto collection of benchmarks used to

measure processor power as there is for performance (e.g. SPEC). Many of the

published results are based on Dhrystone [Wei84], which is a synthetic benchmark

that claims to have a dynamic mix of instructions similar to “typical” application

programs. In addition to Dhrystone, DES encode/decode [How92] and GSM

codec [DB94] were also used.

Apart from the unavailability of power benchmarks, there are two other rel-

evant limitations: One is that the local memory of AMULET3 is very small for

most benchmarks and their data sets to be stored. An obvious solution would

be to use the “second level” SRAM that is available, but since this memory is

a behavioural model, no measurement can be made for its contribution to the

total power. The solution chosen was to use the most critical functions of the

benchmarks in place of the full benchmark. This can be done by running the

complete benchmarks with a profiler on an instruction level simulator. The most

critical function is usually much smaller than the full benchmark and should fit

in the system’s 8K RAM, together with its data set. With this method, the local

memory can be considered as a perfect cache, with no misses at all, even for the

first time it must fetch a line.
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The second limitation is simulation time. The simulated system has about

800,000 transistors and 300,000 capacitors, excluding the behavioural parts. As

full transistor level simulation (Powermill [Syn98]) was chosen, the simulation is

slow. This low level of simulation is preferred because it gives much more accu-

rate results compared to higher level simulations [Seg96],[BP94]. The increased

simulation time limits the number of instructions that can be executed by the

processor in reasonable time. For example, two iterations of the Dhrystone main

loop take about 15 hours to simulate on a Sun Ultra 5 workstation. For this

reason the number of iterations and/or the data set sizes of the benchmark pro-

grams were limited, so that the total number of instructions executed is below

5000, which keeps the simulation time to about 24 hours.

All of these benchmarks were written entirely in C and were compiled using

the C compiler of the ARM development tools. In the results presented here, the

programs were compiled using speed optimisation options and the 32-bit ARM

instruction format was used for the target code.

Of the benchmarks used, Dhrystone and DES encode and decode were small

enough to fit in the local memory. GSM codec is large and by profiling the encode

and decode parts, the most time consuming functions were chosen for the simu-

lations. The input data for the functions were gathered by encoding/decoding a

speech sample in a modified version of the full benchmark, where the input data

of the functions were saved to files. The set of functions selected for the encoder

proved to be too slow to simulate, so only the decoder’s most time consuming

function, a signal filter, was finally used for this benchmark.

4.3 Configuration options

AMULET3 has a number of built in configuration options. The ones that are im-

portant for power consumption are those that control the enabling of the Branch

Target Buffer (BTB), the colour counterflow mechanism, and the latch controlling

power/performance signal (Turbo).

The colour counterflow mechanism is a way to flush, from the pipeline, in-

structions in the shadow of a taken branch at the decode stage. Following a taken

branch, the execute stage counterflows the information that a branch happened

to decode, which starts discarding instructions until those from the branch target

arrive. A 1-bit colour is attached to each instruction at the prefetch stage, which
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is toggled every time a branch happens, so that subsequent stages can know when

a new flow of instructions arrive. Colour counterflow is an optimisation because

these instructions would have been recognised as invalid at the execution stage

anyway. From the power consumption point of view this optimisation seems ben-

eficial because stopping these instructions earlier saves energy in the decode and

register read pipeline stage and also the energy spent to nullify the space reserved

in the reorder buffer for these instructions.

The pipeline latches of the processor core can be configured to be either nor-

mally open or normally closed [LGB99]. Normally open means that the latches

become transparent as soon as the downstream stage has signalled it has pro-

cessed the data, even if no new input data are available. This means that spurious

transitions can propagate to the following pipeline stage consuming unnecessary

energy. If the latches are normally closed they pass their inputs to their outputs

only after it is known that the input data are valid. This makes the data transfer

slower, but saves energy. There is clearly a power - performance trade off that

is controlled by the control signal (turbo) that selects the operating mode of the

latches.

4.4 Power consumption measurements

Table 4.1 shows the total power consumed by the system (sys), the processor core

(core) and the local memory (mem), for the three benchmarks and for a number

of configuration options. Note that up to 10% of the power is unaccounted for

in the table. This is consumed by the bus and the peripherals. Table 4.2 shows

the execution times and energy-delay products for the benchmarks and their

configuration options.

From these results it is clear that the processor is the major consumer of power

in this system. It is responsible for 59% to 73% of the total power in all of the

benchmarks and configurations.

The local memory accounts for 21% to 31% of the system power. This cor-

responds to the ideal case where everything the processor needs is always in the

local memory. Usually, the processor will either have to access some data at a

second level of memory or there will be some form of memory management to

move blocks of code and data along the memory hierarchy. In both cases the

energy consumption in the memory system will be increased compared to this
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Table 4.1: Power consumption and breakdown of the system (mW).

Options Dhrystone DES encode GSM decoder (filter)

B C T sys core mem sys core mem sys core mem
√ √ √ 223 138 64 260 165 75 238 172 50

100% 62% 29% 100% 64% 29% 100% 73% 21%
√ √ 215 129 65 253 158 75 228 162 51

100% 60% 30% 100% 63% 30% 100% 71% 22%
√ √ 226 141 64 260 165 75 239 174 49

100% 62% 28% 100% 64% 29% 100% 73% 21%
√ √ 219 134 64 256 162 74 237 173 49

100% 61% 29% 100% 63% 29% 100% 73% 21%
√ 211 125 65 249 155 74 226 159 51

100% 59% 31% 100% 62% 30% 100% 71% 22%

Table 4.2: Execution time and energy delay product (EDP) (µs, nJs).

Options Dhrystone DES encode GSM decoder

BTB C/flow Turbo Time EDP Time EDP Time EDP
√ √ √

15.452 32.9 46.014 349.3 52.514 477
√ √

15.563 31.2 46.041 335.3 56.541 517
√ √

15.604 34.3 46.087 350.5 52.608 481
√ √

15.558 32.4 46.403 348.8 52.743 480
√

15.679 30.7 46.434 334.4 56.843 516

analysis and the average access time will be affected.

The contribution of local memory and processor to the system power presented

here matches quite closely that reported by Pering et al. [PBB98]: 58% core, 33%

cache, 7% processor bus and 2% SRAM. They also use an ARM architecture

processor, but their system is fully synchronous and uses a 16KByte cache. Their

results also include the effect of the external SRAM. It is not clear however if this

power decomposition is valid with or without the dynamic voltage scaling that

they use.

4.4.1 Effect of configuration options

The impact of the processor configuration options for each benchmark can be seen

in table 4.1. Five configurations were simulated. They are represented here as

strings of the letters B, C, T, where the existence of the letter in the string means

that feature is enabled: B - BTB, C - colour Counterflow, T - Turbo (normally

open latch controllers).
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BCT All of the features are enabled in this configuration. This is considered the

high performance configuration, with all the performance options turned on.

Evidently, it achieves the fastest execution time in all benchmarks. At the

same time, in all but GSM, the energy efficiency (EDP) of this configuration

is the second worst.

CT Branch prediction is disabled in this configuration. This leads to a lower

power consumption for the core but somewhat higher for the local memory.

This is because the BTB avoids accesses to memory, both because the

branch instruction itself is not fetched and, when the prediction is successful,

only the correct instructions are fetched. In order to have these benefits the

BTB table has to be consulted for every new instruction to be fetched, which

has a quite significant power cost for the processor core. From table 4.2 it

is clear that branch prediction always saves some execution time, although

this is significant only in the GSM benchmark. This configuration achieves

the second best energy efficiency for Dhrystone and DES encode, but the

worst for the GSM filter.

BT Branch colour counterflowing is turned off in this configuration. From the

results it is clear that colour counterflowing is beneficial for the power con-

sumption of the processor and the system, albeit slightly. It has to be noted

that the branch prediction is enabled in this configuration which means that

the effects of the branch colour counterflowing will be minimised, assum-

ing the prediction is successful. The execution times of all benchmarks

increased for this configuration in comparison to BCT and the energy effi-

ciency is the worst for all but GSM filter.

BC Turbo is disabled in this configuration, so the pipeline latches are normally

closed. Having normally closed latches, makes a pipelined circuit consume

less power when the pipeline is not fully occupied [LGB99]. The fact that

there is some benefit from turning Turbo off in AMULET3 means that the

processor’s pipeline is not always fully occupied. This is not surprising since

it is well known that branches affect the average occupancy. In addition,

due to the asynchronous nature of the pipeline and the differences between

the minimum and maximum times for neighbouring stages to finish, it is

natural for the pipeline to have some slack. The performance is worse for

all of the benchmarks compared to the BCT configuration but by less than
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1%, so the energy efficiency is in the middle of the range for all benchmarks.

C Only branch colour counterflow is enabled in this configuration. Branch pre-

diction and Turbo are independent, so the result of combining them should

be aggregate. Evidently, from the results it can be seen that this is roughly

true. The performance of this configuration is consistently the worst for

all of the benchmarks, but the energy efficiency is the best in all but GSM

filter.

From the above discussion it is concluded that Dhrystone and DES encode

have similar behaviour in all of the configurations, while the GSM filter is differ-

ent. The difference is based on the fact that branch prediction makes a significant

difference to the execution time of GSM filter, while this is not the case for the

other benchmarks. This is because the GSM filter code is a double nested loop

which is executed many times, so branch prediction is very successful, while

branch behaviour is more unpredictable in Dhrystone and there are almost no

branches in the DES encode program.

4.5 Core power breakdown

The processor power breakdown into the top level blocks is presented in figure 4.3.

The biggest consumers are the execution block and the registers1 block, followed

by the prefetch unit, when the branch prediction is enabled, and the decoder.

From these results it is clear that the increase in the absolute processor core

power consumption observed in the DES and GSM benchmarks is attributed to

the registers and execution blocks. Interestingly when running Dhrystone or DES

encryption both blocks consume about the same power, but for the GSM filter

the execution unit power consumption exceeds that of the registers block. This

is attributed to the frequent use of the multiplier which is not used in the DES

encryption program.

It is also clear that, apart from the significant reduction of the prefetch block’s

power when branch prediction is turned off, no configuration option makes a

significant difference to the power consumption of a specific block.

The power breakdown in the main blocks is described in the rest of this section.

1The registers block comprises the register file and the reorder buffer.
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Figure 4.3: Processor core power breakdown.

4.5.1 Prefetch

In the prefetch block the power is consumed mostly in the block’s control unit,

the branch target buffer, when it is enabled, and the instruction memory address

drivers (see figure 4.4).

When enabled, the BTB performs a 16 entry CAM look up in every cycle.

The RAM is read only when a match is found, which means that the active
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Figure 4.4: Prefetch block power breakdown.

parts of the branch prediction hardware were kept to a minimum. Even with this

optimisation branch prediction is a costly — in energy consumption — feature

of the processor.

The PC incrementor is implemented as a simple ripple carry adder. It is well

known ([CB95a]) that the probability of a PC bit switching is halved from a bit

position to the next most significant bit position. For this reason the ripple carry

adder was selected and it is apparent that the incrementor’s power consumption

is negligible.

Finally, the address bus drivers make a non-negligible contribution to the

block’s power consumption. Naturally, the address bus has a high parasitic ca-

pacitance and, although on average only a few bits are switched every cycle, the

contribution of the bus drivers is a sizeable part of this block.

4.5.2 Decode

Within the decode block, the sub-blocks that consume most of the power are the

sequencer (main control), which drives high-fanout control signals, the input latch

controller (from Thumb) mainly for driving the very high-fanout load enable, the

branch target adder and the immediate generator (figure 4.5). ‘Others’ represents

the combinatorial circuits that perform the actual decoding of the instruction

opcodes.
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The input latch controller drives the load enable signal for the decoder block

input latches. The latch inputs originate from the Thumb block and the total

number of bits latched is 151, so the fanout of the load enable signal is significant.

In fact about 80% of the controller’s power is spent driving this signal, which is

about 1.4% to 1.8% of the processor power, depending on the benchmark and

configuration.

Sequencer is the main controller of the decoder. As with most other control

circuits in AMULET3, its high contribution to this block’s power consumption is

due to the high capacitance of the control signals that it drives.

The branch target adder is a fast adder, similar to that used in the ALU. This

choice was made because this adder is in the critical path for branch instructions.

Looking at the consumption of this block when executing the DES encode bench-

mark gives some idea of how much power is wasted in this adder. DES encode

has virtually no branches. Nevertheless, the adder’s consumption as a portion of

the decoder is only approx. half of that of the other benchmarks. This means

that possibly, up to half of this block’s consumption is wasted. However, this

accounts for less than 1% of the core power, so adding hardware (e.g. operand

latches at the input) to remedy this, may result in a slower circuit and higher

power in the control part.
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Figure 4.5: Decoder power breakdown.
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The immediate generator produces various forms of immediate operands used

in a number of instruction types. The inputs are selectively latched if the instruc-

tion is using an immediate operand, thus there is switching activity only when

necessary.

4.5.3 Registers

Figure 4.6 shows the power breakdown in the registers block. As expected, the

register file and the main part of the reorder buffer (Queue) are the highest

consuming sub-blocks. It has to be noted that Queue, QCAM and some of the

blocks under the Others category, form the reorder buffer, so its total power

consumption is slightly less than half of the block’s total consumption.
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Figure 4.6: Registers block power breakdown.

In the register file most of the power is consumed by precharging the read

ports. The power consumed depends on the actual values read through the ports,

as a register containing mostly 1’s will discharge more lines than one containing

mostly 0’s. This is why the DES and GSM spend more power in the register file

compared to Dhrystone.
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4.5.4 Execution

Figure 4.7 summarises the power consumption within the execution block. It is

clear that the highest consumers are the ALU, the multiplier, the control, the

result bus driver, the multiplexor for the second operand of the ALU and the

shifter.

In the ALU, a significant proportion of power is consumed by the output

drivers, which have a quite high capacitance to drive. A factor that increases the

consumption of the drivers is that the ALU uses precharge logic causing increased

transitions in most ALU signals. Another interesting observation is that although

the output of ‘compare’ instructions is used only to generate the condition codes,

the current implementation allows the ALU to drive the result bus as well. Since

comparisons are a non-negligible part of the executed instructions, there is some

room for improvement here.

The control block of the execution unit oversees the reception of the operands

to be acted on, checks the condition codes and branch colour and handles the

communication with the data interface and the reorder buffer. In addition it

provides the trigger signals for the functional units contained in the execution

block. Its power contribution can be attributed to the high fanout control lines

that it has to drive.
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Figure 4.7: Execution unit power breakdown.
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The multiplier’s power consumption was a surprise. It was expected that it

would consume significant power when it operated, but it proved that it also

consumes considerable power even when it is not used. For example, the DES

encode benchmark does not have any multiplication instructions, but still the

multiplier is responsible for about 22% of the execution block’s power. Clearly

some parts of the multiplier are always active. An investigation showed that

Booth encoding and partial product generation were performed for every data

value on the operand buses that connect to the multiplier. This problem was

fixed and the power consumption results presented in the remaining chapters are

based on simulations using the modified multiplier.

4.5.5 Data interface

In the data interface block, control is the main power consumer, followed by

the datapath and the data bus drivers (figure 4.8). The two stage FIFO that

holds the decoder requests, Instruction Pipe, consumes under 10% of the block’s

power. Control is the largest part of the block and drives high fan out signals, so

its proportion of the power consumption is justifiable.
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Figure 4.8: Data interface power breakdown.

The datapath consists of three basic parts. The largest is the data address

multiplexor and incrementor (for the multiple loads or stores). The other two

have to do with the extraction or generation of the sub-word values for loads

or stores, respectively. The address multiplexor and incrementor consume about

70% to 80% of the datapath power.
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Finally, the data bus drivers (drivers) are connected to the high capacitance

external wires of the data address, outgoing data and control buses. As there are

no glitches on these wires there is no power wasted here.

4.6 Comparison with synchronous systems

In a synchronous processor a large proportion of the power is attributed to the

clock. Tiwari et al. [TSR+98] state that about 40% of CPU power is spent on the

clock, including the generator, drivers, distribution tree and loading. StrongARM

[MWA+96], with a similar architecture to AMULET3, is reported to use 26% of

its power in the clock, including the PLL. Other processors state similar results.

It would be interesting to estimate the equivalent of this power in AMULET3.

As there is no simple way to determine which circuits should be considered equiv-

alent to the clock, the choice is somewhat arbitrary. The closest equivalent is

the set of latch controllers of the pipeline latches between the submodules of

the core; these include the drivers for the large latch enable loads. In addition

some precharge signal drivers which are controlled by handshake signals were

also included in this group. The contribution of all those circuits to the power

consumption was found to be 10.5% of the core while running Dhrystone 2.1.

Comparing this with the proportion of the power taken by a clock shows that

asynchronous techniques can significantly reduce power consumption.

Naturally the benefits of the asynchronous design style come at a cost. As the

different stages in the pipeline are not synchronised, state information between

pipeline stages is difficult to exchange. This leads to duplication of information

in several places in the pipeline. For example, in AMULET3 each pipeline stage

holds the address of the instruction being processed there because of the difficulty

in accessing a central PC. This is not a significant power overhead, because only

a few of the PC’s bits switch each time. In addition to duplicating information,

the fine grain control of circuits leads to the existence of more state/sequencing

information compared to a synchronous processor. This translates to an increase

in control power for the processor, proportionately about 40% of the processor

core power in AMULET3. This is quite high compared to other published re-

sults, although this includes most of the ‘clock’ power stated above. It has to

be noted though that the control circuits are implemented using standard cells,
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automatically placed and routed by CAD tools, whereas the datapaths are full-

custom. Thus the wire capacitances tend to be higher and there is less control

over the driving strength of the gates. As synchronous low-power processors are

increasingly using extensive clock gating and functional unit guarding techniques

their control units tend to be as complicated as their asynchronous counterparts.

Moreover, the ARM architecture is quite complex for a RISC machine which

makes the control logic inherently more difficult and power consuming. ARM7

[Seg97], which implements the previous version of the ARM architecture, is stated

to consume 40% of its power in the control part, although the definition of control

circuits may be different.

4.6.1 Comparison with ARM9

ARM9TDMI is the synchronous implementation closest to AMULET3; both ex-

ecute the same instruction set and have been implemented on technologies of the

same feature size and occupy the same silicon area (about 4mm2). On this 0.35

µm process ARM9 [Seg98] operates at up to 120 MHz having a performance of 1.1

MIPS/MHz and consuming 1.8 mW/MHz. This gives an energy per instruction

metric of 610 MIPS/W. Unfortunately a power breakdown has not been given.

The measured results from AMULET3i show a power consumption of 221 mW

at a performance of 85 Dhrystone MIPS. According to the simulation results, the

core consumes 62% of the power (137 mW). This gives an energy per instruction

figure of 620 MIPS/W, effectively the same as that of ARM9.

It has to be noted that the speed of AMULET3i is slower than anticipated

from simulation, which predicted a speed of about 100 MIPS for the system. This

is attributed to the (unoptimised) memory system; the core alone runs at about

130 MIPS in simulation. Thus, it is safe to assume a speed of over 100 MIPS

for the processor on silicon, without the limitations of the memory, which would

raise the energy efficiency of AMULET3 to about 730 MIPS/W.

4.7 Summary

In this chapter a power analysis of an asynchronous processor was presented. The

micro-architecture of the processor core was described and the effect of the con-

figuration options was evaluated. A breakdown of the core’s power consumption

at the top-level and in each of the main components was also given.
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From the power analysis it is clear that, without sacrificing speed, there is no

one specific part that could significantly improve the power consumption of the

processor if an improved design for it were invented. The same is possibly true

for any processor, as the parts that could have a significant impact have already

been optimised. Thus, unless a significant breakthrough in circuit design styles

or computer architecture happens, to improve the energy efficiency of processors,

adaptive techniques such as those presented in chapter 3 should be used. So the

rest of the work presented in this thesis is aimed in this direction.



Chapter 5

Speculation control techniques

This chapter presents a number of new techniques to control speculation in an

asynchronous processor core.

Before the speculation control techniques are described, the experimental

setup with which these techniques were designed, implemented and measured

is presented in section 5.1. Three speculation control techniques are described in

the remaining sections, with the emphasis on pipeline occupancy, as this allows

a wide range of speed/energy tradeoffs.

5.1 Experimental setup

The models, tools, scripts, etc. that are used to simulate relatively large bench-

marks and to get energy estimation and performance information are described

in this section. In addition the tools and benchmarks described in chapter 4 are

also used here wherever they are applicable.

5.1.1 Simulation and energy estimation

Accurate energy estimation by simulation is a difficult task and a research topic on

its own. One of the problems is that, to get accurate results, extracted capacitance

is needed, preferably including post-layout parasitic capacitances. The simulated

system has to be fully designed and mapped to a library of logic gates with known

terminal capacitances for this information to be available. Experimenting with

architecture changes using such an experimental setup is very difficult, as every

idea has to be taken to layout before it can be evaluated.

72
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The other problem is the unavoidable trade-off of simulation time and energy

estimation accuracy. Transistor level simulators, such as Spice and its derivatives,

solve the circuit equations for each component and thus produce very accurate

results, at the expense of very long simulation times. With a claimed accuracy

loss of around 10%, programs like Powermill speed up simulation considerably by

taking shortcuts in solving the equations [Syn98]. The improvement is such that

it is possible to simulate AMULET3i (core, memory and peripherals) running

around one thousand instructions of Dhrystone in approximately 15 hours on

a Sun Ultra-5. To be able to run more instructions in processor simulation,

faster, higher-level simulation is needed. Although such simulators are gradually

becoming available, none of them is universally accepted in the research and/or

industrial community as being accurate enough and, a more practical aspect,

none was available for this work.

The energy estimation accuracy problem can be avoided by re-using the ex-

tracted capacitance from previously designed and extracted blocks. If the previ-

ous designs are in a different technology, as is usually the case, the capacitance

can be converted automatically to the new technology by appropriately scaling

the dimensions of the wires and the transistors. Usually only a relatively small

part of a new system is designed from scratch; in most cases the additional parts

consume so little energy compared to the re-used blocks that a rough estimate of

their average switched capacitance is enough to produce accurate overall results.

Having node capacitances, all that is required to estimate the energy con-

sumption of the system are transition counts for the nodes. In CMOS circuits

an energy of E = CV 2 is consumed in each node for every full-rail transition,

so the total energy consumption of the circuit can be estimated by multiplying

CV 2 by the number of these transitions and summing for all the nodes. If the

high level simulator can provide the number of toggles in the nodes, the energy

consumption can be easily estimated.

The simulation strategy used in this work is based on the above observations

and is quite similar to that of Burd [Bur01] and of a group at IBM T.J. Wat-

son research centre [BBS+00] [BBB+02]. Both use capacitance estimated from

previous designs or analytical models of the circuits and estimate energy during

simulation by measuring node transitions.
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5.1.2 Simulator choice

The asynchronous design style is notoriously badly-supported by CAD tools.

Thus the only available AMULET3 models before this work were a LARD [EF98]

model and the netlist from the design database (annotated with parasitic capac-

itances).

LARD is a language/simulator developed for asynchronous design, based on

“channel” communication. Although it is a high-level behavioural simulator, it

is very slow, mostly because it is interpreted. In addition there are very limited

debugging and waveform viewing capabilities. Counting node toggles in LARD

requires the designer to use variables explicitly to hold the previous values of the

signals and compare them to the current ones each time a block is evaluated. As

there is limited support for extracting specific bits from a variable, after XORing

the current and previous values to find the transitions, shifting and masking is

needed to extract the transitions for each bit within multi-bit variables. The extra

LARD instructions used for these operations add considerably to the simulation

time, exacerbating the problem. There is a recently developed compiled version

of LARD which is significantly faster than the original [JE01], but still slower

than the simulator used in this work. Moreover the way node toggles are counted

is unchanged, so energy consumption is still hard to estimate.

The other available AMULET3 model, the annotated netlist, is only available

in Spice or EPIC (Powermill) format, so it can only be used directly with these

simulators. As explained previously, higher-level simulation is needed, so a Perl

script was developed which converted this netlist into a Verilog netlist, so that it

could be used with fast Verilog simulation. Unfortunately, the library of standard

cells used in AMULET3 does not have a Verilog representation and a large part

of the processor is custom made. Since the technology used for AMULET3 was

already two generations old by the time this work started, there was no point

in investing significant time and effort in characterising and generating Verilog

models for these cells in a technology that would not be used again.

Since LARD was deemed inadequate and the AMULET3 netlist could not be

used directly with a high-level simulator, a significant amount of time was spent

to manually create a Verilog model of AMULET3 from the processor schematics.

To save some development time, the model is mixed structural/behavioural but

retains most of the hierarchy of the processor; all of the important signals are
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preserved, as well as most of the high capacitance intermediate signals. Sim-

ple combinatorial logic parts are modelled using continuous assignments and all

sequential parts are modelled with behavioural “always blocks”. Delays were in-

serted manually based on the delays produced from Powermill simulations of the

original extracted netlist. The model was verified using the ARM validation suite

and the collection of benchmarks used for the evaluation.

Verilog simulation is fast, especially in the “compiled” version, NC-Verilog

from Cadence. Table 5.1 summarises the simulation times for Dhrystone using

Powermill with the full extracted netlist, LARD, Verilog-XL (interpreted simula-

tion) and NC-Verilog. Using NC-Verilog speeds up the simulation by 2000 times

compared to Powermill. Most of the time in the NC-Verilog simulation was taken

up in the simulator’s internal initialisation, so the speed advantage increases when

running larger benchmarks. From the table it is shown that Verilog-XL is 6 times

faster than LARD. The real speed difference is actually higher because the time

presented for Verilog-XL includes the time to parse the input files. That would

have been an additional 108 seconds for LARD, pushing the difference to over 10

times.

Table 5.1: Simulation speed comparison (Dhrystone)

Simulator Simulation time

Powermill 20583 sec
LARD 138 sec

Verilog-XL 23 sec
NC-Verilog 11 sec

5.1.3 Energy estimation

An overview of the energy estimation flow is given in figure 5.1. As explained

earlier, two elements are needed for the estimation of energy consumption at each

node: total capacitance and toggle count.

The capacitance information only needs to be extracted once and then it is

used selectively in simulations that require energy estimation. The capacitances

of these signals are extracted from the processor netlist using a Powermill config-

uration command that reports the total capacitance of a node. This information

is kept in a file with lines containing node name and capacitance pairs. In total

over three thousand nodes and their capacitances are used.
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Figure 5.1: Energy estimation flow.

To count the number of node transitions, Verilog’s programming language

interface (PLI) is used. Specifically the value change link (VCL) is used which

monitors value changes of selected nodes. At the beginning of the simulation,

if energy estimation is required, the list of nodes which should be monitored is

read and, for each node, VCL is set up to call a C function. The function simply

increments a counter for the specific node, which is passed as a parameter. At

the end of the simulation a PLI function is called to dump the collected toggle

counts to a file.

After the simulation a Perl script combines the toggle counts with the capaci-

tance and reports the energy consumption. As all the node names are hierarchical,

i.e. they contain all the instance block names from the top-level, the Perl script

is able to report energy consumption for each block in the design hierarchy, by

summing up the consumption of the nodes in the block.

5.1.4 Benchmarks

Faster simulation allowed the use of more benchmarks (table 5.2) than the three

presented in section 4. The new benchmarks are compress and ijpeg from SPEC

Int95. In addition to faster simulation speed, these benchmarks also require file

input/output and dynamic memory allocation; the following two sections describe
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Table 5.2: Dynamic instruction count of the benchmarks

Dynamic
Benchmark

instr. count

Dhrystone 1100
DES encode 3888
GSM filter 4457
compress 4103550
ijpeg 11247880

how these are handled. It is these requirements that made it difficult to add

more SPECInt95 benchmarks in the list: the development of a complete run-time

system is beyond the scope of this work, so it was not undertaken. Nevertheless,

compress and ijpeg are the most likely of the SPECInt95 benchmarks to run on an

embedded system, for which a processor like the one described here is designed.

The new benchmarks execute a few million instructions, while the previous

ones executed only a few thousand. Their input data sizes were reduced compared

to the provided reference set, as they would otherwise take days to simulate. This

does not seem to affect their usefulness as benchmarks; the execution time was

not dominated by the run-time library functions or file input/output.

Admittedly, even with the addition of the two SPECInt95 benchmarks, the

total number of benchmarks used in this work is relatively low. However adapting

other benchmarks to work with the simulator is a very time consuming task and

it was considered that this time is better spent developing new architectural ideas

than debugging benchmarks.

5.1.5 System calls, I/O emulation

To aid the simulations, some way of printing output messages on the screen

must be provided. The approach used in the Verilog model, was to extend the

previously developed method used in the Powermill (and LARD) simulations of

AMULET3, which was capable of printing characters (or the simulation time) on

the screen and of ending the simulation. This was to use a pseudo-peripheral,

called the Tube, which is mapped to a reserved area in the memory address space.

Writes and reads to specific memory locations in this area have special meaning

and trigger the emulation of input/output operations in the host processor where

the simulation is running. Operations that need more than one parameter are

handled by writing the information in a block of memory and making the last
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write trigger the operation. When there are data to be returned, a subsequent

read of a location in the reserved memory space is used. The operations supported

are listed in table 5.3.

Table 5.3: Supported I/O operations

Operation Description/details

Original Tube Print ASCII character, current time, finish simulation
fopen Open file for read or write
fclose Close file
getc Read character from file
ungetc Return read character to file buffer
putc Write character to file
ftell Current position in a file
fread Read a number of bytes from a file into memory

Some of these operations are handled by Verilog built-in system functions; the

rest are implemented using user-defined functions using the Verilog PLI [Spe99].

When a benchmark is compiled using the ARMtools compiler, the run-time

library functions linked with it are those which work with the ARM debugger-

simulator. To be used with the Verilog model, the library functions had to be

changed to use the Tube and its services for input/output. The library functions

were written in assembly code and are made up of two parts: a user-mode part

and a privileged-mode part. As the Tube is a peripheral, the memory space it

is mapped to should be protected, thus accesses to it are allowed only when the

processor is in supervisor mode. Currently this is not strictly necessary, but it

could be useful for the future if memory protection is used. Thus, the user-

mode part of each library function, loads its parameters to registers and calls the

software interrupt instruction (SWI) providing it with a number representing the

operation it wants to perform. The SWI changes the processor mode to supervisor

and branches to the appropriate privileged-mode routine depending on the SWI

number provided. That routine just writes the parameters to the specific memory

addresses and, if there is a return value to be collected, reads and stores it in a

register. The routine switches back to user mode and to its caller function, which

just returns to the program with the returned result if any.

Apart from the run-time library functions that are used for input/output,

dynamic memory allocation (malloc) had to be supported as it is used by many

programs. The malloc provided by the standard run-time library used by the
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ARMtools could not be used, as it is tightly integrated with the rest of their

run-time support system. Thus a custom dynamic memory allocation system

was developed.

The dynamically allocated area is at the end of the program code and the

global variables, which are stored at low memory addresses. The linker provides a

symbol name pointing to the first memory address of the unused memory and the

custom malloc function maintains a pointer to the highest unallocated memory

address starting from there. As memory is allocated, this pointer moves higher.

To simplify the implementation, the released memory is not recovered, so calls

to free just return back to the caller. In addition no checking is done if the

allocated area runs into the stack. As the stack starts at address 0x7000000 there

is plenty of space between them and memory allocation or overrun problems were

not experienced in the simulations.

5.1.6 The memory model

To allow the processor to run large programs, the memory model has to give

the impression that the complete 32-bit address space is available1. Obviously

it is impractical to declare and use a memory of that size in Verilog. Thus the

equivalent of a paged virtual memory system was implemented, which uses the

host processor’s disk space for secondary storage when needed.

Sixteen memory blocks of 32 KBytes each are defined and a separate transla-

tion table keeps the page numbers of the pages stored in the memory blocks. For

each access, the translation table is looked up to see if the page needed is already

present. If it is, the appropriate memory block is accessed; otherwise, the file

directory where the simulator was started is searched for a file named after the

page number that needs to be loaded. If such a file exists, its contents are loaded

into one of the memory blocks, using a round-robin replacement algorithm. If

the page to be replaced has been modified, the data in that block are saved back

to disk first.

For the memory system to work, the program code to be executed is broken up

into a number of files, named after their page numbers. After reset, the processor

accesses the instruction at address 0, so the file named “0” is loaded first. Thus

there is no need to pre-load the program into memory before the processor starts

executing.

1With the exception of the area reserved for the Tube, which is handled differently.
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Using this memory system, programs of any code size can be executed. As

in the case of a virtual memory system, if the required memory is much larger

than that available thrashing can occur, which will slow down the simulation

enormously. In the simulations performed here a page was replaced in the memory

system only a handful of times, so the simulation time was barely affected by

reading/writing files for the memory system.

5.1.7 Other simulation methods

In some cases testing new ideas does not require full processor simulation because

a good estimate of the energy consumption or performance can be obtained using

simple metrics, e.g. number of fetched instructions. In these cases to speed up the

evaluation and to use benchmarks with more executed instructions, a different

approach was used.

The method under test is implemented as a C program which simulates only

the part of the processor that is affected, using a previously generated trace file.

The fast instruction-level simulator (armsd) contained in ARMtools v2.51 is used

to provide the trace file. Large benchmarks can be executed on the simulator

without modification, as a full run-time library is provided. The instruction-

level simulator has to run only once to produce the trace file. So the most time

consuming process is not repeated for each modification to the method that is

being developed.

5.2 Conditional instructions

Conditional instructions can be considered as a specialised form of speculation:

they must be fetched — because it is not known in advance whether they are

conditional — but they may not be executed, thus the energy spent fetching and

decoding them could be wasted. Nothing can be done about the energy spent

fetching failing instructions, but if their condition is checked as early as possible,

some ‘processing’ energy can potentially be saved.

Currently, in AMULET3 (fig. 5.2), the condition is checked at the begin-

ning of the execution stage since the processor status is kept there. This means

that instructions failing their checks have already wasted energy in the previous

stages, decoding, fetching operands from the register file, assigning space in the

reorder buffer and generating immediates or branch targets. Most of the energy
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Figure 5.2: Block diagram of the AMULET3 processor core.

consumption in decode and registers could be saved for these instructions which

constitute around 10% of the executed instructions [Seg98]. Based on the power

analysis (chapter 4), it can be expected that around 4% of the core energy can

be saved on average: 10% of both 22% (registers) and 16% (decode).

In the ARM instruction set any instruction can be conditional, the intention

being to remove branches that skip a small number of following instructions

[Fur97], as is commonly the case in if statements. The instruction format is

uniform in this respect, so only the four MSBs of the opcode need to be examined

to determine whether an instruction is conditional.

In the Thumb instruction set there is only one conditional instruction, branch.

So there is no need to detect conditional Thumb instructions early, as there is

seldom any wasted energy in decoding Thumb instructions. Moreover, since not

much processing is done in the Thumb stage for ARM instructions, the condition

can be tested at the beginning of the decode stage, where Thumb instructions

have already been translated and thus all instructions can be treated in the same

way.

The following section describes the design of a method that evaluates the

condition at the decode stage. Before allowing any conditional instruction to

proceed with decoding, the latest processor status is read from the execute unit,

the condition is checked and, if it fails, the instruction is discarded without being

decoded.
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Figure 5.3: Block diagram of early condition checking.

5.2.1 Design of early condition checking

As most of decode is made of combinatorial logic, whenever new data are loaded

to the input latch there is nothing to stop the circuits switching and consuming

energy. For this reason conditional instructions should not be allowed to pass

through the pipeline latch before their condition is tested. Thus the circuit that

checks the conditions must be integrated with the latch controller of the pipeline

latch. Figure 5.3 shows an overview of the combined latch controller – condition

checking circuit.

When a new instruction is to be decoded, ir req is raised. Depending on

the four MSBs of the opcode which specify the instruction’s condition (cc in),

either rCond or rAlways is asserted for conditional and unconditional instructions

respectively. Unconditional instructions go through directly, raising the request

input of the latch controller through an OR gate.

Conditional instructions generate a request (flags req) to get the latest pro-

cessor status and specifically the flags: overflow, negative, zero, and carry. For

flags req to be raised, the decode stage must be empty; there must be no instruc-

tion — which can change the flags — between that at the decode input and the
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one (if any) at the execute stage. Otherwise the flags received may not be the

correct ones, if the instruction in the decode stage changes them when it exe-

cutes. In other words, flags req always waits for any instruction currently in the

decode stage to complete before it rises. The latch controller can provide this

information (decode empty). The circuit that drives flags req is thus a little more

complicated than the AND gate shown.

When flags req reaches the execute stage, if there is no instruction execut-

ing or if the executing instruction is not setting the flags, an acknowledgement

(flags ack) is sent. Otherwise the acknowledgement is sent after the instruction

has finished executing and has updated the flags. Generally flags ack is used as

an indication that the flags are valid and it is delay-matched (bundled) with them.

In the condition check block, the instruction’s condition is checked with the

flags and raises aFail or aPass depending on the condition check result. These

signals are generated by a delayed version of flags ack, so that its rising edge

reaches the AND gates when the check is complete. If the condition fails, the

previous stage is acknowledged (ir ack) but the instruction is not loaded into the

decode input latch. Otherwise, the input request of the latch controller is raised

and the instruction is decoded.

Extensions

Currently instructions following taken-branches can be discarded at the decode

stage using a colour counterflow mechanism (described in section 4.3, page 58).

This is done by comparing the incoming instruction’s colour with a current colour

stored in decode which is updated after each branch. Now that there is a mech-

anism which is used to discard instructions before loading the input latch, the

colour can also be checked at the same time as the detection of conditional in-

structions. Instructions that have different colour are not loaded into the latches,

saving more energy.

This idea is used for conditional instructions only: when the current flags are

read from the execute stage, the new colour is also read and compared with the

incoming instruction’s. Thus, in the modified decode stage, an instruction can be

discarded either because it fails its condition check or because it has the wrong

colour, i.e. it is in the shadow of a taken branch.
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5.2.2 Evaluation

The early condition checking design was implemented in Verilog as a variation of

the AMULET3 model and was evaluated using the benchmark suite used through-

out this work. Figure 5.4 shows the execution delay, energy consumption, and

energy-delay product (EDP) for all benchmarks, normalised relative to the stan-

dard AMULET3.
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Figure 5.4: Early condition checking results.

Generally, the processor with early condition checking consumes less energy,

but the execution time is increased. Of all benchmarks only compress shows the

expected energy savings of 4% and the others, except GSM filter, save less energy.

This is because, for these benchmarks, most of the conditional instructions are

branches. Branches don’t read registers and thus expend less energy than the

estimated average in the registers block.

Especially for GSM filter, both the execution time and the energy consump-

tion are lower than the original processor. The method seems to be much more

successful for this benchmark than the others. The reason is that GSM filter has

a high proportion of conditional instructions that fail the condition check (about

30%). As these are discarded earlier, both time and energy are saved.

In all cases, except for Dhrystone and DES, the energy delay product (EDP) is

lower for the modified processor, which means that proportionately more energy

is saved than execution time is increased, so overall the technique is a positive

step towards improving energy efficiency. Moreover it has considerable benefits
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— in the order of 20% — for programs with a large number of conditional data-

processing instructions, like GSM filter, so it could be selectively activated only

for such programs.

5.3 Energy overhead of pipelining

Ignoring the performance implications, pipelining makes a processor consume

more energy than absolutely necessary to perform a task. Gonzalez and Horowitz

[GH96] report a 30% energy overhead using a simplified energy estimation model.

In this section some quantitative data are presented about how much this over-

head is in AMULET3.

An interesting piece of information to have is how much energy the speculative

instructions fetched following a (taken) branch consume, especially in the proces-

sor stages following the fetch: Thumb, decode and execute. In order to collect

this information, a simple behavioural prefetch block was written in C using Syn-

opsys’ ADFMI — the C programming language interface to Powermill/Timemill

simulators. The new prefetch block is linked to the rest of the processor which is

still modelled as a layout-extracted netlist for high accuracy. It reads the program

instructions from a previously prepared trace file which contains only the opcodes

of the instructions that were executed — including those that failed their condi-

tion code test. Thus, no instruction addresses are generated and branch requests

from the execution unit are acknowledged but ignored. The trace file is generated

by dumping the instructions that are executed during a Verilog simulation.

With this method only the “right” instructions are fetched, so the energy

consumption would be the ideal and it would provide an estimate of an upper

limit of the energy that can be saved. This limit is valid if no other changes are

made to the processor pipeline; some of the techniques described later do change

the processor pipeline, so for these the energy limit established can only be used

as an indication of the possible energy savings.

Table 5.4 shows the energy reported by Powermill simulating the ideal and

full-processor versions running three benchmarks. In the “implementation” col-

umn, the energy consumption of the prefetch unit is subtracted from the total of

the full-processor so that the comparison is fair. Branch prediction was enabled

for the full-processor simulations; the energy consumption would have been signif-

icantly higher, especially for the pipeline stages following prefetch, as many more
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Table 5.4: Energy overhead of pipelining.

Benchmark Ideal Implementation Ideal / Impl.

Dhrystone 140µJ 174µJ 0.80
DES enc. 604µJ 647µJ 0.93
GSM filter 707µJ 777µJ 0.91

Table 5.5: Energy overhead of branch prediction.

Branch prediction
Benchmark

enabled disabled
disabled / enabled

Dhrystone 213µJ 200µJ 0.94
DES enc. 759µJ 728µJ 0.96
GSM filter 908µJ 914µJ 1.01

speculative instructions would have made their way into these pipeline stages.

The results show that, even with branch prediction enabled, energy savings

can be achieved. These can be as low as 7% for DES encode, which has very few

branches, and as high as 20% for Dhrystone. It is clear that there is large variation

in the potential savings, so it is essential for whichever techniques are developed

to be dynamically controlled, so that they can be used only for programs which

would really benefit from them.

In addition to the energy spent processing speculative instructions that even-

tually get discarded, pipelined processors use special hardware, such as branch

prediction, to improve their performance. From the information collected in the

power analysis of AMULET3, presented in table 5.5, it is clear that branch predic-

tion has a negative effect on the energy consumption in some benchmarks. Since

branch prediction is responsible for about 5% of the energy consumption of the

processor core, the potential energy savings presented above could be extended

by a similar figure when branch prediction is disabled. Thus up to around 25%

of the energy consumption of the core can be attributed to the pipeline energy

overhead and could be saved by the techniques presented below.

5.4 Token controlled pipeline occupancy

One way of controlling the processor’s speculation due to pipelining, is to control

the pipeline occupancy. In a synchronous processor this is easily achieved by

incrementing a counter for each instruction fetched and decrementing for each
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instruction committed. Unfortunately in an asynchronous processor due to lack

of global synchronisation, other methods, like the one presented here, have to be

used.

The proposed method is easy to illustrate in a simple pipeline like that of

figure 5.5, where a FIFO of tokens is shown under the processing pipeline. The

first stage, must acquire a token before it can proceed to send data to the next

stage. At the other end of the pipeline, the token is returned to the FIFO.

The number of tokens that are present in the system determines the maximum

occupancy of the pipeline (assuming that there are not going to be more tokens

than the actual number of pipeline stages). So this mechanism, called a token

FIFO, gives the capability to vary the number of operations in the pipeline from

none (stalled) to its maximum capacity.

Occupancy control

Token FIFO

Processing pipeline

Figure 5.5: Token controlled serial pipeline.

As an alternative method of controlling the pipeline occupancy in an asyn-

chronous pipeline, the first stage can be made to delay processing each data item

by some time, controlled by a programmable delay circuit. This spaces out the

data items in the pipeline, effectively controlling its occupancy. The advantage

of this method is that only one stage is affected, so the implementation cost is

small. On the other hand, there is no direct relation of the programmable delay in

the first stage to the pipeline occupancy, because of the elasticity of the pipeline.

A large delay will guarantee that the occupancy will be (at most) one, but it is
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hard to estimate an appropriate delay which sets the occupancy to a fixed inter-

mediate level. In addition, the programmable delay line required by the method

must have a very large range. This will make it both expensive to build and

energy consuming to run. As the disadvantages outnumber the advantages for

this method, the token FIFO method was selected for implementation.

5.4.1 Incorporating token FIFO into a processor

The first stage in all processor pipelines is a (pre)fetch stage. In order to use

the token FIFO technique in a processor, this stage must be modified so that it

waits for a token from the FIFO before it can start operating. It is harder to

identify a suitable “last” stage in a modern processor, as the pipeline splits into

multiple parallel pipelines in superscalar processors. In general the token should

be returned at the stage where the next instruction to be fetched is known, that

is after the current instruction has been decoded and, if it is a branch, its target

has been resolved.

If the token controlled pipeline method is used in a single-issue processor, like

AMULET3, the stage that is used to release the tokens is execute. Although

there is one stage following execute (or more, for data transfers), there is no need

to delay returning the token until the very end of the pipeline. The reason is

that conditional instructions, and most importantly, branches, are resolved at

the beginning of the execute stage, so returning the token later than this stage

will not save any more energy.

For correct operation, especially when only one instruction is permitted in the

pipeline, after a taken branch returns the token, its latency through the token

FIFO should be longer than the time it takes the branch request to reach the

prefetch unit. The reason is that on arrival of a token, the prefetch unit fetches

the sequential instruction if there is no branch request pending. Thus if the token

arrives before the branch request, another instruction from the branch shadow

will be fetched instead of the branch target, as it would have been expected for a

processor with a pipeline occupancy of one. To ensure the correct operation, the

execution stage is made to complete its handshake with the prefetch stage before

the token is released.

In addition to interfacing the token FIFO with the prefetch and execute stages,

the incorporation of token-based pipeline occupancy control in AMULET3 re-

quires minor modifications to some other parts of the processor. These are needed
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for handling the tokens taken by instructions that are discarded before reaching

the execution stage, instructions with multiple cycles spent in the execution stage,

and handling indirect PC loads.

Discarded instructions

The handling of discarded instructions is regarded as an advantage of the asyn-

chronous design style. In a synchronous processor, the common practice is to add

a “valid” bit with the instruction and pass it from each pipeline stage to the next.

When the valid bit is not set, the instruction is regarded as a nop and it is not

processed. When an instruction is to be discarded, the valid bit is cleared when

the instruction is passed to the next stage. Only if the valid signal is available

early enough, can the pipeline register be clock-gated to save energy. Unfortu-

nately, in most cases, the valid signal is on the critical path, so clock-gating is

rarely triggered. Conversely, in an asynchronous processor, discarded instructions

just disappear so they are never passed on to the next stage; an approach which

is more energy efficient.

With the introduction of the token mechanism, dropping discarded instruc-

tions at any pipeline stage is no longer possible, because the token acquired at the

prefetch must be returned or the processor will eventually be starved of tokens.

If the tokens can be returned in any order, the solution is relatively simple; just

modify the token FIFO so that it has many “heads” which can collect tokens

concurrently and merge the token flow into a single FIFO by the “tail” of the

token FIFO. If the order must be retained, the tokens must be carried forward

from each stage to the next, until they reach the one that returns them to the

token FIFO. The latter solution would require modifications to the control part

of each pipeline stage involved, but this overhead is minimal: just a handful of

gates when it was implemented in the decode stage of AMULET3 as a test.

Strictly speaking, tokens should be returned in the order they were acquired.

Otherwise there can be situations where the processor speculation is not con-

trolled as intended. Assume, for example, that a pipeline is restricted to two

tokens at a time and that of the two instructions in the pipeline the first is a

branch and the second gets discarded before the branch changes the instruction

flow. If the discarded instruction’s token is allowed to return to the token FIFO

before the branch has executed, another instruction in the branch shadow will be

fetched. Clearly this behaviour is not wanted, as this latest fetch will be wasting
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energy. Such situations are not common though and usually instructions can be

discarded only at a few pipeline stages. Thus, depending on the processor, it can

be a better solution for the implementation to allow the tokens to be returned in

any order.

In AMULET3, the earliest place an instruction can be discarded is at the

decode stage. The only case when this happens is after a branch is taken; the

decode stage is informed with a delay of one instruction; it then starts discard-

ing instructions until those from the branch target arrive. Thus decode starts

returning tokens from the second instruction following a branch. By this time

the prefetch unit has been notified of the branch, so there can be no fetching

of instructions at the branch shadow due to decode returning tokens earlier than

execute. So, for AMULET3, the solution of having a token FIFO with two heads

is used. The arbitration between them is handled internally as described in sec-

tion 6.1.

Multicycle instructions

In AMULET3 there are two instruction types that take more than one cycle to

execute: long multiplications and multiple data transfers.

Multiple data transfers use the execution unit only for one cycle, to check their

condition codes and calculate the first address; the data transfers and address

incrementing/decrementing are handled by the data transfer unit. The PC can

be one of the registers to be loaded, effectively causing a branch. This is examined

in the first cycle and the appropriate address, if any, is given to the fetch unit

as a special case of branch (see also indirect PC loads, below). Although the

instruction may take a number of memory accesses to finish, the only time it can

change the instruction flow — ignoring exceptions — is during this first cycle. So,

by the end of this cycle, the speculation ends and it is safe to return the token.

It is possible for one of the addresses to cause a memory exception (e.g. a

page fault), in which case the instruction(s) fetched because of the early returned

token will be discarded, wasting energy. The frequency of memory exceptions is

deemed low: many embedded processors don’t use memory protection/translation

at all, so they don’t cause memory exceptions. An alternative, more conservative,

implementation would require more hardware overhead, so the simple solution of

returning the token at the first cycle of these instructions was selected.
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Long multiplications take two cycles in the existing processor. A multipli-

cation cannot change the instruction flow of the processor (using the PC as the

destination register has an undefined behaviour) so the token can be returned at

the first cycle without risking a speculative fetch. In this case the execution block

is activated for the second cycle, so the implementation must not pass a second

token to the FIFO.

Indirect PC loads

The implementation of memory PC load is peculiar to AMULET3. Instead of

performing a standard data load and then passing the loaded value to the prefetch

unit, the address is given to prefetch which does the load through the instruction

memory port. The loaded value (the new PC) is then used as the address to

load the next instruction. This was implemented mostly to speed up multiple

load instructions, which are frequently used to restore the registers and the PC

from the stack, when returning from a function call. The PC can be loaded

concurrently with the other loads and the instruction flow from the target address

can be restored quickly [GFC99].

For the token-controlled implementation, only the first cycle (PC load) ac-

quires a token; the second cycle reuses the previous token. This is implemented

by deferring the acknowledgement of the receipt of the token until the second

memory cycle is complete, i.e. only when an instruction is loaded from the mem-

ory.

indirPC

branch

token FIFO

Mem &
Dec

Reg
Prefetch Thumb Exec

Figure 5.6: Token controlled AMULET3 processor core.

Figure 5.6 shows a simplified block diagram of the processor with the token

FIFO. The block arrows are handshake channels and the direction of the arrow is

the same as the direction of the request signal. The only change to the simplified
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linear pipeline example of figure 5.5 on page 87, is that tokens are returned

to the FIFO from two pipeline stages. Arbitration is required between these

two token inputs which is implemented in the token FIFO block. The token

FIFO circuits and some minor circuit changes in the control units of prefetch and

execute that were made to incorporate the new handshake channels, are presented

in section 6.1.

5.4.2 Evaluation of pipeline occupancy control

The modified processor was evaluated using the experimental setup described in

section 5.1. Figure 5.7 shows the normalised power, energy, and execution time

for each pipeline occupancy, with branch prediction disabled, for a number of

benchmarks. The pipeline occupancy was kept constant for the whole duration

of the execution. In addition to the usual power, energy and execution time

metrics, extra work, as defined by Manne et al. [MKG98], is used as an indication

of wasted energy in the various pipeline stages. Extra work is the number of extra

instructions entering the pipeline stage relative to the number of instructions

that are finally executed. In the evaluation, the latter category includes only the

instructions that passed their condition test, so there is some extra work even at

the execute stage. Figure 5.8 shows the extra work per pipeline stage, for each

occupancy, as a percentage of the executed instructions.

DES encryption has only a few branches, so the extra work in any pipeline

stage is insignificant; the same holds for the energy benefits through pipeline

adaptation. GSM filter was optimised by the compiler so that many branches

were replaced by conditional instructions, which is why there is a lot of extra

work at the execute stage from instructions that fail their condition test. For

this benchmark early condition checking, described in section 5.2, gives more

significant energy savings than controlling the pipeline occupancy. The other

benchmarks have a significant amount of extra work, which was successfully re-

moved by lowering the pipeline occupancy and this is reflected in the energy

graphs as well.

In figure 5.7 it is apparent that, as the occupancy decreases, the execution

time increases and, consequently, the power consumption decreases. The token

FIFO method does save energy, as can be seen in the energy curves; these curves

would have been flat if the reduction of power consumption was only due to the

slower execution rate.
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Figure 5.7: Power, energy, exec. time of token-based pipeline occupancy control
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Figure 5.8: Results (extra work) of token based pipeline occupancy control
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Only when the pipeline occupancy is low (1 or 2) are there reasonable energy

savings. At these occupancies the execution time is roughly doubled for all bench-

marks. From the energy savings achieved it is clear that this method cannot be

used in performance critical applications, as the energy delay product gets worse

when the method is applied. Its usefulness comes when there is idle time in the

execution of a program, where the energy savings can be exploited without an

impact on the user-perceived performance.

In the results presented here the pipeline occupancy was kept constant for the

duration of the execution. The token FIFO mechanism could also be used as a

simple way to dynamically control the pipeline occupancy at runtime. Different

programs and even parts of the same program can behave differently and can use

the available range of pipeline occupancy levels to reach the energy/performance

level that is required. In addition, as the operating environment or the available

time to complete a task changes, the pipeline occupancy can be adjusted accord-

ingly. The time for inserting or removing tokens can be decided by a hardware

monitoring block or simply by software writing the required level of pipelining

into a system register. The latter approach is used in the simulations presented

here because of its simplicity and generality of use. Chapter 7 investigates some

dynamic pipeline controlling algorithms, but these are based on the technique

presented in the following section.

5.5 Adapting the pipeline structure

The previous section described a method of controlling the occupancy of the

pipeline to trade speed for energy reduction by removing unneeded, speculative

instruction fetches. The same effect can also be achieved by dynamically changing

the pipeline depth.

A pipeline is defined by the position of the pipeline registers/latches in the

circuit. As there is no way to move these registers after the circuit is fabricated,

the only alternative is to control when they are transparent or opaque. When a

pipeline latch is made ‘permanently’ transparent, its two neighbouring pipeline

stages are effectively joined in one stage. With this method the pipeline structure

can be altered dynamically to suit the power and performance levels required

by the system at any particular time. In a micropipeline-style asynchronous

circuit the latches are controlled by latch controllers so, in order to change the
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Figure 5.9: Collapsed pipeline behaviour

pipeline depth, reconfigurable latch controllers, that can be either ‘permanently

transparent’ (collapsed) or ‘normal’, are needed.

Figure 5.9(a) shows a simple micropipeline with no processing between the

pipeline latches. Figure 5.9(b) shows sample waveforms for the request-acknowledge

signals, when the pipeline is operating at its maximum capacity/throughput. For

comparison, figure 5.9(c) shows waveforms of the same pipeline, but this time the

pipeline latches are collapsed.

In a collapsed pipeline the input is not acknowledged (A0) until the output

acknowledgement (A3) is raised and propagated back to the start. Thus the whole

set of pipeline stages in between behaves like a single, slow pipeline stage. The

request signals of the intermediate stages are just delayed versions of the input

request and similarly the intermediate acknowledgements are delayed versions

of the output acknowledgement. It is clear that in the collapsed configuration

there is only one operation present in the pipeline. In contrast, in normal, fully-

pipelined configuration (figure 5.9(b)) there can be up to three parallel operations

at the same time. All combinations between these extremes are possible, by

collapsing any number of pipeline stages.
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5.5.1 Collapsible latch controllers

For a standard latch controller, when an input request arrives and there is no

pending operation at the output (downstream), the latch loads the data and

then closes, the input is acknowledged, and an output request is made. If the

output is busy, the input is not acknowledged, nor are the latches opened, until

the current output operation has finished. There are a number of variations,

depending on how long the data should be kept valid when the signals return to

zero, and if the latches should be already open before the input request arrives, if

the output side is ready. These are described in more detail in section 6.2, where

the circuit implementations of the collapsible latch controllers are given.

In the collapsed operating mode, the latch controller must ‘pretend’ that it

only connects the inputs and outputs together, as if they were the same wire, while

always keeping the latch transparent. So, an input request will be passed on to the

output, and will only be acknowledged when the output side is acknowledged. In

a series of collapsed latch controllers, the first will have to wait for the last one to

be acknowledged (and propagated back) before it can give its acknowledgement.

The pipeline latches cannot be collapsed at any time. Figure 5.10 shows a

two stage pipeline where the latch controller in the middle becomes collapsed and

the signal waveforms at the time of collapse. The correct time to change from

normal mode to collapsed is when a new input request is received and the latches

are about to be loaded. At this time the downstream pipeline stage (stg2) has

finished processing the previous data so it is safe to merge the two pipeline stages.

After the collapse the upstream stage is not acknowledged (A1) immediately, as

it would normally be, because the new, joined, pipeline stage has not finished

processing the current data; its second half still has work to do. When the

output acknowledgement (A2) is received, which means that processing at the

second half of the stage has finished and the output data are safely stored at the

next latch, the upstream latch controller is acknowledged, notifying the upstream

stage that the whole pipeline stage is finished.

Splitting a previously merged pipeline stage also happens when a new request

is received. After the latches have loaded the input data, the load enable signal

is deasserted, making the latches opaque and acknowledging the upstream stage.

Concurrently the output request is issued as usual. The pipeline stages are now

split and the first stage is free to receive the next data package for processing.

As the operating mode of a latch controller can only change at the time of
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Figure 5.10: Timing of pipeline collapsing

new requests, the signal that sets the latch controller mode, collapse, must be

locally synchronised with the input request signal. This makes it hard to have

a global collapse signal2. The solution (similar to [LGB99]) is to have collapse

bundled with the rest of the data signals that are latched at the pipeline stage.

One possible implementation would be to have the first pipeline stage pro-

duce the collapse signal for the first latch controller, which is then propagated to

subsequent controllers down the pipeline (figure 5.11(a)). En-route, depending

on local conditions, the collapse signal can be changed by the pipeline stages.

Alternatively, for independent control of each latch controller, the first stage can

produce a set of collapse signals which are latched and propagated to the appro-

priate latch controller (figure 5.11(b)). In both cases the first pipeline stage is

the most suitable to generate the signals since, in asynchronous pipelines, it is

2Unless the latch controllers are reconfigured while the pipeline is not operating.
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easy to transmit signals following the pipeline flow but considerably harder in the

other direction.
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Figure 5.11: Collapsible signal distribution.

5.5.2 Integration in the processor

Figure 5.12 shows an abstract block diagram of the AMULET3 core showing

which pipeline latches were changed to use collapsible controllers. Only the

latches marked in the figure with grey waves need to be made collapsible; all

others, including those not shown in the figure, are unaffected. Although the

concept of collapsible pipeline latches may seem more complicated than the to-

ken FIFO method (section 5.4), fewer changes are required.

As can be inferred from the way the collapse signal is drawn in the block

diagram, there is only one such signal propagating from the prefetch stage down

the pipeline to the execute stage, in the same fashion as explained earlier in

figure 5.11(a). One simple way to put collapse under software control, is to
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Figure 5.12: Block diagram of AMULET3 with collapsible pipeline latches.

associate it with one of the unused bit-fields of the processor’s current program

status register (CPSR). An MSR instruction can then be used to write to that

CPSR field, setting or resetting the collapse signal. In AMULET3, the MSR,

after setting the status register, behaves like a special form of branch3 so that the

new status, e.g. a processor protection level change, can start taking effect at the

prefetch stage of the next instruction. Using the same mechanism the collapse

signal will be set at the prefetch stage and then spread to the rest of the pipeline

bundled with the next instruction.

Nearly all the pipeline latches of the processor are modified to be of the col-

lapsible type. A notable exception is the decoupling latch, on the branch path

from execute to prefetch, which must not be collapsed. If it were, in a configu-

ration where all the latch controllers are collapsed, back-to-back branches would

deadlock: the first branch would write its target address to the decoupling latch

and get an acknowledgement, allowing it to finish. The prefetch unit would then

fetch the next instruction which is also a branch, but it would not acknowledge

the decoupling latch until the instruction has executed. When the execution unit

tries to store the target address to the decoupling latch it will still be occupied by

the previous branch, causing the processor to deadlock. To break the deadlock,

a second decoupling latch is added in the branch channel. This latch can be a

standard latch, but then the branch latency will be increased, which is undesir-

able. Alternatively it can be a collapsible latch, which works in the opposite way

to the other latches in the pipeline: it is collapsed when there is at least one other

3It branches to the next instruction, flushing the pipeline.
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latch in the pipeline that is not collapsed. In other words, it works as a latch

only when all the other latches are collapsed, which is when the deadlock could

happen.

The latches at both sides of the instruction memory/cache must also not be

collapsed, to prevent a possible deadlock in the memory system. Although the

system memory appears to be dual-ported, in reality it is composed of a number

of single-ported SRAM blocks. If the latches around the instruction port were

collapsed, the accessed SRAM block would not be released until the instruction

is finished. If the instruction needed to access data in the same block through

the data memory port, it would be blocked and the processor would deadlock.

Although these latches cannot be collapsed, the prefetch stage can still be joined

with the memory fetch stage (and/or the mem. fetch with Thumb) by collapsing

the corresponding latches that hold the control signals (under the memory in

figure 5.12). These parallel latches are independent, but for a stage to proceed

with the next operation, it must have received acknowledgements from both of

the latch controllers. Thus if one of the latches is collapsed, the processor behaves

as if both were collapsed.

Instructions discarded at the decode stage require no special treatment; they

just disappear from the pipeline as in the original implementation. Instructions

that require multiple execution cycles temporarily disable the collapse signal for

the decode-execute pipeline latch (using the AND gate in figure 5.12). This re-

instates the pipeline stage between decode and execute for the duration of the

multi-cycle instruction, so that multiple execution cycles can be performed as

required. This demonstrates the flexibility of this pipeline control method where

locally generated control signals can change the pipeline behaviour.

5.5.3 Evaluation

To evaluate the effect of changing the pipeline structure on the performance

and energy consumption, the AMULET3 Verilog model was modified to support

collapsible latch controllers, as outlined above. In addition, experiments with

the processor having individually controlled pipeline latches were also performed.

These experiments show how each pipeline latch affects the energy consumption

and the performance when it is collapsed. Since the processor with a single

collapse signal is just a special case of the individually controlled version, only

the results from the latter are presented here. All simulations and measurements
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were performed as described in section 5.1.

There are four pipeline latches in the processor core that can be collapsed so

there are 15 possible configurations in addition to the fully pipelined. Of these

there are 4 combinations with one collapsed latch, 6 with two, 4 with three and

1 with all latches collapsed.

Figure 5.13 shows the energy and performance measurements, normalised rel-

ative to the fully-pipelined configuration (i.e. no collapsed stages), for all the

configurations grouped by the number of collapsed latches. As expected, no con-

figuration is faster than the fully-pipelined configuration and generally, as more

latches are collapsed, the performance deteriorates. An interesting observation is

that there are significant differences amongst the results of configurations where

the same number of latches are collapsed, but at different places in the pipeline.

Moreover the performance of each configuration relative to the others is roughly

the same across all benchmarks.

With only one collapsed latch the best results are achieved by joining the first

two stages, prefetch and memory fetch. Collapsing the memory to Thumb latch

achieves a similar energy consumption, but at a lower performance. The other

two combinations just increase the execution delay without saving energy.

Although these results might at first seem unexpected, there is a simple ex-

planation. In fully-pipelined mode usually three instructions are present in the

AMULET3 pipeline, meaning that for every branch the two instructions following

it are wrongly fetched and waste energy. When one of the latches near the end of

the pipeline becomes collapsed (e.g. D2E), the formed pipeline stage becomes the

bottleneck and dictates the new pipeline throughput rate. Immediately after the

collapse, the first stage will continue inserting instructions at its own rate until

the pipeline becomes full. From that time the throughput of the whole pipeline

will adapt to that of the slowest stage. Because the slow stage is at the end of the

pipeline, although the pipeline depth is reduced, it will become more occupied

during the time it takes to adjust the throughput rate. In these experiments the

number of present instructions continued to be three, thus each branch is still

followed by two instructions, so there is no energy saving. On the contrary, when

the collapsed latch is near the start of the pipeline, the rate at which instruc-

tions enter the pipeline drops, decreasing the pipeline occupancy. This means

that fewer instructions are discarded when branches happen, leading to energy

savings.
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In view of the above analysis, it comes as no surprise that the best configura-

tion for two collapsed latches is the one where the first two latches are collapsed.

The same happens for configurations with three collapsed latches.

Starting from the configuration where the first three latches are collapsed, col-

lapsing the remaining latch increases the execution delay for no energy savings.

This means that when a branch is passed from the combined ‘prefetch–decode’

stage to execute, it is processed and a request is sent to prefetch before the com-

bined stage has time to start a new fetch. Examination of the signal waveforms

shows that the time it takes for the acknowledgement to propagate from the

decode-execute latch to the prefetch block, is longer than the time needed to

process the branch at the execute stage and send a branch request to prefetch4.

Thus the lowest energy consumption can be achieved by collapsing the first three

pipeline latches only.

Each benchmark achieves different maximum energy savings by this technique.

DES encode, with its low number of branches, has only marginal energy savings.

The other benchmarks can save from 8% (GSM filter) to 13% (Dhrystone).

5.6 Summary

This chapter presented three methods for controlling the speculation in an asyn-

chronous single-issue processor. In addition the experimental setup is described

and the energy overhead of pipelining is investigated.

The first method deals with conditional instructions and saves energy by not

allowing them to proceed in the pipeline until their condition is checked. On aver-

age a small improvement was measured in the energy delay product of AMULET3

when this technique is enabled. In programs with a lot of conditional instruc-

tions, such as GSM filter, the technique not only manages to save energy, but it

also improves the execution time.

The other two methods control the occupancy of the processor by using a

token-based feedback mechanism, or by restructuring the pipeline itself by col-

lapsing some pipeline latches. Energy savings of up to 16% were measured.

4The target address is calculated at decode, so all that needs to be done in execute is to
check the condition, if any, and send a request to prefetch.



Chapter 6

Circuit-level implementation

This chapter elaborates on the speculation control techniques presented in chap-

ter 5 by providing gate-level circuit implementations of the token FIFO and the

collapsible latch controllers.

6.1 Token FIFO implementation

The token FIFO mechanism of controlling the occupancy of a pipeline was de-

scribed at the architectural level in section 5.4. Figure 6.1, a slightly more detailed

version of figure 5.6, shows a top-level diagram of AMULET3 modified to support

this mechanism. Three stages of AMULET3, namely prefetch, decode and exe-

cute, are connected to the token FIFO and thus require small modifications. The

detailed circuit implementations of these modifications and the gate-level design

of the token FIFO itself are presented in the following pages.
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Figure 6.1: Token controlled AMULET3 processor core.

105



CHAPTER 6. CIRCUIT-LEVEL IMPLEMENTATION 106

6.1.1 Prefetch

Figure 6.2 shows the implementation of the token FIFO interface in the prefetch

unit. Each time the prefetch unit starts the process of selecting the next instruc-

tion to fetch, there are two possible options: the consecutive instruction (R2)

and, sometimes, a branch target (R1). The latter is signalled by a request from

the branch-decoupling latch, br req while the consecutive instruction is ‘automat-

ically’ selected if, after the current address is generated (i.e. ack=1) , no branch

is pending.

Mutex makes the central decision if a consecutive (seq req) or a branch target

instruction (branch req) will be fetched. Whichever input arrives earlier at the

mutex, the corresponding action will be taken. If both input signals arrive simul-

taneously, the mutex will assert only one of the outputs, taking an unbounded

time to resolve which one, but without falling into a metastable condition.

A token must already be available before the mutex operates. The choice to

make both ‘contestants’ wait for a token before they can acquire the mutex is

deliberate, so that the decision is made after the token is available and not earlier.

If there are no tokens in the FIFO and a taken branch has just been executed, the

branch request will reach the prefetch unit before the released token (as explained

in section 5.4.1), so that the branch target will be able to win the arbitration.

If, in the above situation, the token existence was checked after the mutex’s

decision, the consecutive instruction would have already won the arbitration and
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Figure 6.2: Prefetch - token FIFO interface.
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would just be waiting for the token to proceed to the processor pipeline. This is

clearly not the desired behaviour.

When a branch request (br req) and the consecutive instruction simultaneously

become ready, a just-arriving token should generate a request at the ‘branch

input’ (R1) of the mutex earlier than the other input. The choice of having

the token signal (tkIn req) go through an AND gate for the branch target, but

through a C element for the sequential instruction, was made with the intention

to put a handicap on the consecutive instruction. This assumes that an AND

gate has a shorter propagation delay than a C element. As this is not generally

true, some extra delay could be added at the output of the C element generating

the mutex request for the sequential instruction.

The token is acknowledged either when the consecutive instruction is complete

(seq ack) or, for branch targets, when the memory address register is loaded with

the branch target (marBra) and the branch is not for an indirect PC load. In

the latter case, a memory read is performed at the branch target address and

the data is returned back to the fetch unit via the indirect PC channel1. At this

time the branch is acknowledged and the newly loaded PC address is used for

what appears to be a normal consecutive instruction. After this instruction is

acknowledged, the token used for the indirect branch is acknowledged.

6.1.2 Decode

As explained in section 5.4, sometimes decode has to return tokens to the FIFO.

This can happen to instructions discarded following a taken branch if the pipeline

occupancy is relatively high. Figure 6.3 shows the circuits added to the decode

stage, that make up the simple interface to the token FIFO.

Instructions discarded at decode raise the (internal) bypass signal. Normally

(see inset of the same figure) this signal is used to communicate the completion of

instruction processing at this stage (decInAck) to the pipeline latch controller at

the input. For the token FIFO implementation bypass is used to generate a request

to give a token to the FIFO (tkDec req). Instead of bypass, the acknowledgement

of the FIFO (tkDec ack) is used to generate decInAck.

1Removed from figure 6.1 for clarity, see fig. 5.6 on page 91.
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6.1.3 Execute

Execute needs to interact with the token FIFO in order to return the tokens

acquired at the beginning of the processor pipeline. Figure 6.4 shows the token-

FIFO interface circuits added to the execute stage.

The appropriate time to return a token (tkEx req) is when an instruction

completes its execution, that is when the acknowledge signal (realExecAck) is

raised. In order to make sure that the token is sent before the next instruction

moves in, the final execution acknowledge (execAck) is generated after the token

has been received at the FIFO.

The operation sequence is the following: the execution unit completes (realEx-

ecAck) and sends the token to the FIFO (tkEx req). When the FIFO acknowledges

(tkEx ack), the final acknowledge of the execute stage (execAck) is raised. Shortly

afterwards, in the return to zero phase, realExecAck becomes zero, removing the
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Figure 6.4: Execute - token FIFO interface.
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token request, which in turn clears execAck. At this time the pipeline latch con-

troller is ready to send the next instruction to be executed.

The only case when a token should not be sent is for the second cycle of a

long multiplication, so this condition is added to those driving the token request,

as seen in the circuit schematic (fig. 6.4). Multiple loads and stores only use the

execute stage once, at the first data transfer, and return their token at that time;

no extra circuits are needed to handle them.

Using the above mechanism increases the time spent in the execute stage by

the time taken by the token handshake. Since the token FIFO does no processing,

it moves the tokens fast. So at the rate at which tokens are returned (the fastest

execute response time is 3.4ns), the head of the FIFO will always be ready to

receive a token. Thus the handshake delay overhead is minimal, since execute

does not get blocked waiting for an empty place in the FIFO.

6.1.4 FIFO implementation

The abstract figure 5.5 on page 87, describing the token FIFO concept, shows a

simplified version of the FIFO. As explained in section 5.4, the implementation

for the specific processor requires the FIFO to be able to sometimes accept two

tokens simultaneously. In order to accommodate this requirement, the structure

of figure 6.5 is used.
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Figure 6.5: Token FIFO block diagram.

The head of the token-FIFO is split into two single-element FIFOs, one for

each pipeline stage that returns tokens: decode and execute in this case. One

element is deemed enough for each of the two ‘heads’, as the token-FIFO is

able to shift tokens much faster than the processor pipeline can produce them.
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Since there is no processing involved in the token FIFO, tokens move rapidly in

contrast to the processor pipeline stages for which shifting the instructions is (or

must be) just a small part of the stage’s ‘cycle time’. The intention is that the

processor should never be blocked because of the unavailability of space in the

token FIFO. The two single-element FIFOs are joined by an “arbitrating call”

cell which merges the two token flows into one. This cell forwards the requests

from either of its inputs to the output, one at a time.

Each FIFO element is a pair of Muller pipeline elements (distributors) [SF01],

very similar to a latch controller, but without the load enable output. The other

two cell-types in the FIFO are used for inserting and removing tokens and are

described below.

Token insertion/removal

Figures 6.6(a) and 6.6(b) show the circuits that remove and insert tokens in the

FIFO, respectively.

In order to remove a token, all that is needed is to acknowledge an incoming

request without passing it on to the next stage. Because the request to remove

a token can coincide with the arrival of the input request, a mutex is included in

the circuit. When the remove request wins the mutex it sets a ‘direction’ flip-flop

(dir). The flip flop selects which direction the next input request will follow:

either the output request or the input acknowledge. In normal operation the

output request direction is followed. When a token is to be removed, the flip-flop

is set and the next request will be routed to the input acknowledgement wire.

When this happens the direction flip-flop is reset, so that the following requests

will pass through normally.

The ‘direction’ is used as the acknowledgement for the remove request signal

(rm req). The latter should return to zero as soon as the direction is set, to release

the mutex so that the next token request can pass through. The acknowledgement

(dir) is held high, even after the remove request has dropped, until the token

removal is complete.

Adding tokens (figure 6.6(b)) is very similar. Following an input request,

which is forwarded to the output (Rout), the acknowledgement from the output

side (Aout) is used to make the output request return to zero. As Aout returns

to zero to complete the handshake, the input request Rin, which was not ac-

knowledged, causes a second output request. This time the acknowledgement is
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Figure 6.6: Token insertion, removal circuits.

forwarded to the input side, so the input request is finally acknowledged, having

produced an additional token in the meantime.

The token inserting circuit requires the existence of a token in order to produce

another one. For this reason the token FIFO is initialised so that only one element

has a token at start-up. If more tokens are needed they can be inserted using the

token insertion circuit.

6.2 Collapsible latch controllers

Section 5.5 gave a brief description of collapsible latch controllers and how to

integrate them into a processor. This section describes in detail their specification,

circuit design and operation. Finally a detailed evaluation of the controllers is

given.

6.2.1 Latch controller types

Latch controllers are an important element of the control part of an asynchronous

processor. So it is not surprising that there is a great variety of latch controller

types that can be built. This section considers the set of four-phase (return to

zero) controllers implementing protocols used in AMULET3.

Depending on how long data validity is maintained after the handshake signals

return to zero, there are a number of handshake protocols and corresponding
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controllers. Two of the most commonly used protocols are discussed here (see

figure 6.7):

Broad Data are kept valid until the (output) acknowledgement becomes low.

Broadish Data are kept valid until the (output) request becomes low.

Broadish is generally faster but assumes that the return to zero of the ac-

knowledgement is ‘dead’ time for the downstream circuits. Some circuits need

the data to be held for this time, in which case a broad controller/protocol must

be used. As different parts of a processor have different use for the acknowledge

return to zero time, generally both types of controllers are used.

Broadish

Broad
Data

Ack

Req

Figure 6.7: Broad, broadish protocol timing.

For each of the above protocols there can be two variations depending on

when the latches become transparent:

Normally closed After the input request has been received and (obviously)

before the input acknowledgement is asserted.

Normally open When the output side is not busy (which depends on the pro-

tocol) regardless of an input request.

Normally-closed latches isolate the downstream circuits from any spurious

transitions while new data is expected but they suffer from the extra delay of

having to open the latches after the data is ready. Thus normally-closed latch

controllers lead to more energy efficient pipelines, while normally-open controllers

lead to faster pipelines. To enable this trade off at run-time, reconfigurable

latch controllers that can be either normally-open or closed have already been

developed [LGB99] and are incorporated in the design of AMULET3.

Another type of latch controller, early-open, was later proposed [RLB00], but

it requires the existence of a pre-request signal, becoming valid some time before
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the input request, to open the latches just in time. As this signal might not

always exist, this type of controller is not considered here. Nevertheless, when

such a signal is available it is straightforward to apply the early-open concept to

the latch controllers presented below.

6.2.2 Collapsed latch controller types

For a collapsed controller the input and output of both request and acknowledge

signals are expected to behave as if they were the same wire. Specifically, output

request should follow input request and input acknowledge should follow output

acknowledge2. This section determines if the protocols described above are still

meaningful when the latch controller is collapsed. Since the broad and broadish

protocols differ only in the way the return to zero of the acknowledge signal relates

to the data validity, the following discussion focusses only on this phase of the

protocol.
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Figure 6.8: Pipeline with collapsed broad latch controller.

For broad protocol, the output stage expects the data to be kept valid until

it has returned the input acknowledgement (Ao) to zero (see figure 6.8). As

the latch controller is collapsed, its latch(es) will always be transparent, so it

cannot directly guarantee the above condition. Thus this requirement must be

guaranteed by the upstream stage. If the upstream stage adheres to the broad

protocol, it will not change that data until its output acknowledgement (Ai)

has returned to zero. Consequently, for correct operation, the collapsed latch

controller must not allow its input acknowledgement (Ai) to return to zero until

the output acknowledgement (Ao) has; in other words the controller behaves as

if Ai and Ao were the same wire.

For the broadish controller type, the return to zero of the acknowledge signals

2Note that ‘input’ and ‘output’ refer to the flow of data in the pipeline, so the direction of
the acknowledge signals is actually the inverse of what their names imply.
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can happen at any time after the input request becomes low, as it is not related

to the time when the data change. So the collapsible broadish controller can

take a short-cut and allow the return to zero of the input acknowledgement im-

mediately after the input request has fallen regardless of the state of the output

acknowledgement. In this case the behaviour is different: Ai and Ao do not have

to appear as if they were on the same wire.

Normally open/closed controllers

By definition a collapsed latch should be always open, to let data pass through

as if it were not there. So it may seem that the normally-closed variation is of no

use when the latch controller is collapsed.

In reality the unwanted energy consumption caused by glitch propagation

— which triggered the idea for normally closed latches — is magnified when

collapsed latches are used. Moreover it is well known that glitch-induced energy

consumption increases with the logic depth between latches [BLBS+98], which

is precisely what happens when collapsing a pipeline latch. So the benefit of

reducing speculation by limiting the pipeline depth may backfire because of the

increase in the energy consumed by glitches. Having a collapsed latch controller

which only opens when the request input is ready would help, because the request

is asserted only when the data are ready; all intermediate values are stopped from

propagating down the pipeline. Obviously in this case the latch itself is not really

collapsed, but the controller still gives this impression, so the term “collapsed” is

still used here.

From the above discussion, all four types of latch controllers presented above

are still meaningful when they are collapsed, thus circuits for all of them must

be built. The reconfigurable normally open/closed operating mode [LGB99], is

an attractive feature, so it is retained in the proposed latch controllers. The next

section defines two (collapsible) latch controllers (for the broad and broadish

protocols) that are configurable as collapsed or normal and as normally open or

closed.

6.2.3 Circuit specification

A convenient way of describing the operation of asynchronous circuits is by using

state transition graphs (STG) [SF01]. Figure 6.9 shows the STGs for normal
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Figure 6.9: STG’s of all latch controllers.

(a-d), collapsed (e-h), normally open and normally closed configurations for both

broad and broadish protocols.

A brief description of the operation of the broadish latch controller is given

below in both normal and collapsed operating conditions. The broad protocol is

the same with the exception that the latch enable signal is allowed to rise after

both output handshake signals have returned to zero.

Non-collapsed

In the quiescent state of normal, non-collapsed operating mode (fig.6.9(a,b)), all

signals are low, except for Na which is high and En which depends on the normally

open or closed condition. Na is low when a request has been received but not

acknowledged yet. In normally-closed mode, an input request (Rin) causes En

to rise, making the latches transparent. The rising En causes Na to fall, which

turns En back low and makes Rout high, propagating the request downstream.

After the latch has closed, Ain is asserted to acknowledge the input. Rin could

then fall which resets Na to its quiescent value of 1, causing Ain to return to

zero. At the output side, the raised Rout will eventually be acknowledged by a

rising Aout. Then Rout falls re-enabling En to rise, when the next input request
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arrives. The only difference in normally-open mode is that En is set back to 1

whenever Rout falls, regardless of the state of Rin.

Collapsed

In collapsed, normally-closed mode (fig.6.9(f)) the operation is the same as above

except for the rising transition of Ain. This happens whenever Aout rises. At that

time Rin is still held high, so Na is low. Rin can now fall which makes Na high,

turning Ain low again. The high Na combined with Aout will make Rout low.

Na cannot fall again in response to a new input request until Aout has returned

back to zero. In normally-open mode (fig.6.9(e)), En is forced high continuously,

so Na does not depend on it. All other operations are exactly the same.

The STGs of the collapsed controllers have only two added arcs compared

to the normal controllers. By the definition of the collapsed controller, arc

Aout+ → Ain+ is added, so that the input can only be acknowledged when

the output is acknowledged. The corresponding arc for the falling edge is only

needed when the protocol is broad. For the broadish version, an arc from Aout-

to Na- is added instead. This makes sure that if a new input request is received

(Rin+) while the output acknowledgement has not yet fallen, Ain will not be set

high, mistaking Aout for a new acknowledgement. When the latch is collapsed

and normally-open, the load enable is always on, so it is not shown in the STG.

It should be noted that a number of arcs in the collapsed STGs (6.9(e-h)) are

not necessary but are retained to show the similarities to the equivalent normal

STGs (e.g. Aout+ → Rout-).

6.2.4 Collapsible latch controller circuits

The proposed collapsible broadish controller is shown in figure 6.10. For compar-

ison, figure 6.11 shows the original broadish latch controller.

The proposed circuits are based on the existing latch controllers by Lewis et

al. [LGB99]. The STGs in figure 6.9 were synthesised independently using Pet-

rify [CKK+97] and the resulting equations were modified slightly to be useful in

all operating modes. The final circuits are speed independent in either operating

mode. During the transitions between the collapsed and normal modes though,

speed independence cannot be guaranteed. For this reason a few gates are added
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Figure 6.10: Collapsible broadish latch controller.

to ensure smooth transition between the operating modes with some timing as-

sumptions. These proved easy to guarantee and transistor-level simulation in a

0.18um process showed that the latch controllers are operating (and switching

operating modes) correctly in all process corners.

There are four main differences to the existing latch controllers:

• Ain is now driven by an AND-OR-invert gate instead of a NOR gate. For

Ain to rise, Na must be low, meaning that a request has been received.

In addition, En must be low, in normal mode, or Aout must be high, in

collapsed mode, selected by the multiplexor formed by the AND gates con-

nected to the NOR which drives Ain.

• The C element driving Na has two extra inputs controlling when it is going

to fall. When the controller is collapsed, Aout must be low for Na to fall.

This enforces the arc from Aout- to Na- in the STG. The OR gate makes

sure that this is ignored in normal operation. The second new input (loaded)

ensures that the new value of collapse is loaded before an acknowledgement

can be given. It is only used when the controller switches operating condi-

tion.
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• En is forced high when turbo and collapse are both high by the added

NAND gate.

• There is a latch to hold the collapse signal.

Changing to collapsed operating mode

When changing from normal to collapsed mode, the collapseIn signal will be high

some time before Rin rises (bundling constraint). In the simplest case the latch is

normally-open and the previous output has been acknowledged so En is already

high, and the latches transparent, including the one that holds collapse. Thus

collapse becomes high and makes the following changes:

• En is forced high (turbo is on), but it is already high so it doesn’t trigger

any further changes.

• The multiplexor integrated into the C element driving Ain selects ¬Aout.

This can only affect the rising edge of Ain, which must wait for Na to fall

before. Thus no transitions are caused in this case.

• It will let ¬Aout pass through the OR gate integrated into the C element

driving Na. Again no other transitions are triggered.
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In this, the best case, everything will be set before Rin rises, so when it hap-

pens, the behaviour of the circuit will be as defined by the STG of the collapsed

controller (6.9(e)).

The worst case is when Rin is already high when En rises, either because

the controller is normally-closed, or because the output just received its acknowl-

edgement. In this case collapse will rise some time after Rin. Because of the

race between collapse and Na for both En and Ain, Na must not be allowed to

transition until after collapse is loaded and it has set up the various gates it con-

trols. This is done by the XNOR gate of collapseIn and collapse: if collapseIn is

different to collapse, the XNOR output, loaded, is low keeping Na from falling at

the next input request until collapse has been loaded. By that time, everything

that collapse controls must be steady.

This is an additional timing assumption/requirement, which breaks the speed

independence of the controller at mode transition times, but the requirements are

reasonable and can be easily verified by simulation. Two minor circuit changes

that can help in this case are to load the collapse latch from an earlier version of

En (e.g. two inverter gates earlier) and/or to add some extra delay at the XNOR

output. The later will only slow down the controller when changing operating

mode, since loaded is constantly driven high when there is no operating condition

change.

Changing to normal operating mode

When the latch is collapsed and normally-open, the latches are always transpar-

ent, so a change in collapseIn will immediately pass through to collapse. Accord-

ing to the broadish protocol, changes to the data — which extends to collapseIn

— are allowed after Rin has fallen, without waiting for Ain to fall too. So, in the

worst case, collapseIn and Rin will fall at about the same time, causing Na to rise

and collapse to fall, respectively. The cleared collapse will try to make En drop,

as it is held high only because of the turbo-collapse AND gate. Concurrently, as

Na and Aout are both high, they will cause Rout to fall. The combination of high

Na and low Rout will raise En high (normally open, so Rin does not have to be

high). Thus En may exhibit a downwards glitch but it will not have any other

effect on the circuit. Ain can only return to zero and this is triggered by rising

Na without any other condition. Similarly, the falling transition of the glitch on

En cannot affect Na, because it is connected to a ‘+’ input of the C element, and
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the rising edge of the glitch can only clear Na when Rin is also high, which is the

normal operation. Thus the circuit is safe in this case.

To save the unnecessary transition on the En wire, which is heavily loaded

with capacitance, the collapse latch can be made to load only when both En and

Rin are high.

When the latch is normally closed, the rising Rin will open the latches and

collapse will be cleared. If, as mentioned above, loaded is set late enough to give

time to all other gates controlled by collapse to be steady, the operating mode

change will work as normal: Na will drop when En is high regardless of Aout,

and Ain will be acknowledged as soon as Na drops En.

Collapsible broad latch controller

The implementation of a collapsible latch controller is simpler than the broad-

ish one, mostly because, from the specifications, Aout cannot be high when En

becomes high (see broad protocol STGs in figure 6.9(g-h)). This is apparent in

the circuit implementation in figure 6.12. The original broad latch controller is

shown in figure 6.13, for comparison.

Because the broad protocol is simpler, the only race-condition when changing
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Figure 6.12: Collapsible broad latch controller.
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operating mode concerns the input acknowledge (Ain). When changing from

normal to collapsed operating mode, the circuit must ensure that Ain is not

asserted before collapse has been allowed to set all the signals it controls. This

is done using an XNOR gate of collapseIn and collapse, in the same manner

as in the broadish controller circuit. The reverse operating-mode change is also

smooth, without any glitches on the load enable line (En). Falling collapse will

not cause En to drop because at the time collapse falls, En is held high by either

Rin (normally-closed) or the NOR gate of Rout and Aout (normally-open).

6.2.5 Evaluation

For evaluation both the collapsible and the standard latch controllers were de-

signed in STM 0.18µm technology and simulated with Spectre, Cadence’s vari-

ation of Spice. The designs are at transistor level, but they have not been laid

out thus the effect of the interconnect capacitance is not included. In AMULET3

the latch controllers were not custom laid out, because a great variety of them is

needed; the same norm was followed here. The only wire that is likely to have a

considerable capacitance load is the load enable signal En, which is modelled in

the simulations. All the other wires are expected to be short, so their parasitic

capacitance should not make a noticeable difference.

The test harness used is shown in figure 6.14. It consists of four latch con-

trollers, without any data processing blocks between them. At the rightmost side

the output request automatically generates an acknowledgement, if ack is one.
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Table 6.1: Simulation results

Protocol Normally Parameter Collapsible Existing

Broadish

closed

Min. cycle time 1.31ns 1.13ns
Rin+ to Rout+ 0.49ns 0.44ns
Rin+ to Ain+ 0.72ns 0.65ns

open
Min. cycle time 1.02ns 0.89ns
Rin+ to Rout+ 0.21ns 0.19ns
Rin+ to Ain+ 0.43ns 0.39ns

Broad

closed

Min. cycle time 1.82ns 1.32ns
Rin+ to Rout+ 0.48ns 0.44ns
Rin+ to Ain+ 0.96ns 0.68ns

open
Min. cycle time 1.53ns 1.06ns
Rin+ to Rout+ 0.19ns 0.18ns
Rin+ to Ain+ 0.66ns 0.41ns

Similarly at the leftmost side an acknowledgement generates another request if

goB is low. All the load enable wires have a 0.2pF capacitance load on them.

In all the simulations the same test harness was used and the components were

replaced by the latch controller under test. Four circuits were simulated: the new

collapsible latch controller (in the ‘normal’ operating mode) and the standard

latch controller, each in both broad and broadish implementations. Each circuit

was simulated in both normally-open and normally-closed operating modes.

Table 6.1 summarises the results. The cycle time of the collapsible latch con-

troller is always slower than the standard one from 14% (for broadish normally-

open) to approx. 40% (for broad normally-open). This is expected as the col-

lapsible latch controller is significantly more complex.

When data processing functions are inserted between the pipeline latches, the

cycle time will be dominated by the data processing, thus the impact of the latch

controller will be minimal.
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ctrl
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Figure 6.14: Evaluation set-up for the latch controllers.



Chapter 7

Dynamic pipeline adaptation

Chapter 5 presented two methods for controlling the speculatively fetched in-

structions in a processor by adjusting the pipeline occupancy. The evaluation

presented there was based on a constant pipeline configuration for the duration

of the program execution. This is the primary reason for the heavy performance

penalty paid by all the benchmarks when the pipeline occupancy was low. This

chapter investigates algorithms that change the pipeline occupancy adaptively,

based on opportunities or predictions, using hardware mechanisms.

For the lowest possible power consumption a processor with a pipeline occu-

pancy of one should be used. Conversely, if the highest possible speed is required,

the processor should be configured to be fully pipelined. For an in-between trade-

off, the simplest solution is to have a fixed occupancy for each program, deter-

mined by some analysis done by the compiler about how frequently branches are

(expected to be) taken. However, even in different parts of a program, there is con-

siderable variation in the number of speculative instructions fetched. Therefore

dynamic techniques could be more efficient in minimising speculative instruction

fetches while not increasing the execution time by as much as a static occupancy

setting.

As explained earlier, the only speculatively fetched instructions in a single-

issue processor are those following a taken branch. Hence a mechanism that could

predict branches with a good accuracy and with a very low energy overhead is

needed. Standard branch prediction was shown in chapter 5 not to be energy

efficient, thus other prediction schemes are investigated in this chapter.

A conservative solution would be to stop fetching any other instructions after

a branch has been fetched. There are two disadvantages for this solution. First

123
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it slows down the processor for every branch instruction whether taken or not.

Second it is usually not possible to identify that an instruction is a branch until

it gets decoded which is at least after one pipeline stage. During that time the

instruction following the branch is being fetched speculatively. Furthermore, in

asynchronous processors, the decode unit where a branch gets identified must

explicitly synchronise with all the other stages in order to inform them of its

existence. Such global synchronisations are costly in time and are avoided in

asynchronous design.

Compared to a standard branch predictor the branch target is not needed as

the output of the prediction, since speed is not a primary objective. Therefore a

simpler and more energy efficient way of predicting branches than the standard

branch predictor could be designed. Two such methods are presented in this

chapter. The first tries to predict the position of the branch in the instruction

stream from the positions of past branches. The second ‘predicts’ conditional

branches by identifying instructions that change the processor’s condition code

and assuming that a branch will follow.

7.1 Branch anticipation

For dynamic pipeline adaptation to be successful, some mechanism for predicting

branches must be used so that the pipeline occupancy is adjusted at the right

time. This section aims to establish if the position of the next branch in the

instruction flow can be predicted based on the positions of a number of previous

branches. If it is true, the branch can be anticipated and the pipeline occupancy

adapted when the instruction at the anticipated position arrives.

The analysis here assumes a synchronous processor in that all stages take the

same time (1 cycle) and the instructions move from one pipeline stage to the

next at the same time. This is obviously an approximation for an asynchronous

processor, but greatly simplifies the analysis.

7.1.1 Algorithm sketch

After a branch has executed, a new stream of consecutive instructions is fetched

and executed from the new PC address. The distance of an instruction from the

beginning of that stream, i.e. its sequence number, is called instruction position

(α).
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Figure 7.1: Abstract pipeline view.

With pipelining a number of instructions are present in the processor at any

time. Figure 7.1 shows an abstract view of the execution of an instruction stream

in a four-stage pipelined processor. In this example the second instruction is a

branch which ends the current instruction stream and starts a new one. Due to

pipelining, when the branch happens, a number of instructions consecutive to

the branch — at the branch shadow — are already in the pipeline and have to

be discarded. Generally, the number of instructions in the branch shadow is the

same as the number of cycles it takes for the new instruction stream to arrive at

the processor. Branch delay (d) is the common term for this number and is used

here to refer to the number of instructions in the branch shadow rather than the

delay.

Suppose α is the position of the next instruction to be fetched, as in figure 7.1.

If any of the instructions currently in the pipeline, i.e. at positions α−1 to α−d,

is a branch (and is eventually taken), fetching the instruction at α would be

wasting energy since it would be discarded.

Figure 7.2 shows how the branch probability distribution graph is expected to

look like: very few branches at the first instruction positions, a peak somewhere

in the middle, and few branches at positions which are too far. The probability

of having a branch in the pipeline, when the decision for fetching instruction α

has to be made, is represented by the shaded strip of the graph between α − d

and α − 1.

The branch anticipation algorithm works as follows: when the prefetch unit is

to fetch an instruction, it first predicts if the fetched instruction is in the shadow

of a branch or not. If it guesses the instruction is in a branch shadow, it defers

fetching it until the pipeline is drained, otherwise it fetches normally. The decision
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Figure 7.2: Probability of a branch in the pipeline.

is based on the position of the instruction to be fetched (α) and a history of past

behaviour of branches (the probability distribution). If no branch occurs as the

pipeline drains, the processor could either start filling up the pipeline, as in its

normal operation mode, or it could single-step each subsequent instruction until a

branch finally occurs. The first option was chosen here as it offers more flexibility:

the processor can be stopped at a later position again, while the second option is

too conservative.

This behaviour can be easily implemented in a processor with collapsible latch

controllers, by starting to collapse the pipeline latches when the decision to stop

fetching is taken. Collapsing will start from the prefetch stage and spread to

the other stages as the last instruction (at α − 1) moves down the pipeline. By

the time this instruction reaches the execute stage, if there was a branch in the

pipeline, it would have send a ‘branch request’ to the prefetch unit. Otherwise

the acknowledgement of the instruction at α− 1 will propagate from the execute

stage back to the prefetch which will start fetching the next instruction. If single-

stepping is chosen, the latch controllers will be left collapsed, otherwise the first

instruction fetched will revert them to their normal mode as it travels down the

pipeline.
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Position of branches in the instruction stream

The distribution of branch positions is presented as ‘bell-shaped’ above. The

graphs in figure 7.3 show the actual data from three SPECInt95 benchmarks.

The measurements are gathered by scanning executed instruction traces from

instruction-level simulations of StrongARM running the benchmarks. The graphs

are not ‘bell-shaped’ as the number of branches do not increase steadily, peak at

a single position, and then drop. In most cases the graphs continue further to

the right as there is a small number of very long instruction streams.

Interestingly the probability of having a branch immediately after another

branch (at instruction position 1) is quite high. These are returns from subrou-

tines which are called as the last instruction of another subroutine, or jump-tables

implementing “switch” statements. On average approximately 6 instructions can

be expected to be executed before another branch is taken, with blocks of more

than 10 consecutive instructions being very rare.
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Figure 7.3: Percentage of branches occurring at each instruction position.
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Note that the graphs show the distribution of the branches for the duration of

the program execution. In practice the curve shape can change as different parts

of the program are executed. The prediction algorithm should be able to adapt

according to this change.

Deciding when to stop fetching

The outline of the algorithm above left open the question of when the probability

of a branch present in the pipeline is high enough to stop fetching. Depending

on the success of the algorithm in predicting branches, execution time is traded

for energy savings. If fetching stops before the branch shadow, time is wasted

since instructions that will eventually execute are fetched with delay. If it stops

too late in the branch shadow, energy is wasted since unwanted instructions have

already been fetched.

The heuristic used here is to stop fetching when the probability of having a

(to be taken) branch in the pipeline is higher than the probability of a branch

expected further down the instruction stream. Using the graph of figure 7.2,

prefetching stops when the shaded area is larger than the area to the right of

α−1. In every cycle the two areas are calculated based on the current instruction

position and the stored information about the branch position distribution and

a decision is taken before fetching the next instruction.

Branch position distribution

To gather the information needed for the ‘branch position distribution’ (BPD) as

the program is being executed, the number of taken branches at each instruction

position must be counted. Naturally it is not practical to keep information about

all previous branches. Moreover, since the distribution of branch positions could

change as the program is running, some of the old information might be mislead-

ing the algorithm in its predictions. Thus only a number of recent branches, the

branch history (h), is stored in the BPD structure.

In theory, counting (taken) branches at each instruction position would require

an infinite number of counters. In practice, a sufficiently large number of counters

— called buckets here — must be used. These buckets are numbered from 1 to

n according to the instruction position that they keep information for. Since the

average branch position observed in the simulations is 6–8, the number of buckets

(n) does not have to be much larger than that. Since the heuristic needs to know
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the number of ‘future’ branches, the last bucket (n) counts not only the number

of branches that were taken at that instruction position, but also for every further

position. As not all past branches are remembered, the buckets are ‘leaky’, losing

the information about the oldest branch when a new one happens.

When the current instruction position becomes n or greater, the heuristic

cannot be used as no information is kept for these positions. Two options were

examined in the simulations for this situation: either continue at normal speed

(C), i.e. fully-pipelined, or stop prefetching (S), i.e. single-step the remaining in-

structions until the branch. The first option, C, gives up anticipating the branch

and thus will execute the remaining of the instruction stream at full speed, but

incurs the full energy penalty of fetching d instructions when the branch eventu-

ally happens. The second option, S, assumes that the branch should be arriving

at any moment so, very conservatively, sacrifices speed to save energy.

7.1.2 Evaluation setting

Prediction accuracy effect on energy, delay

This section analyses the effect of the prediction accuracy on energy and delay.

Figure 7.4 shows the delay and energy penalties in relation to the prediction

accuracy, i.e. how far from the beginning of the branch shadow the algorithm

decides to stop prefetching. When prefetching stops exactly at the instruction

position following the branch, the prediction is successful as no energy or time is

wasted. This position corresponds to the ‘0’ on the horizontal axis. The values

to its right represent the number of instruction positions beyond the beginning of

the branch shadow where prefetching stopped, while those to the left represent

instruction positions before.

For this evaluation, energy is wasted when instructions following a (taken)

branch are fetched. For simplicity it is assumed that each such instruction con-

sumes the same amount of energy. There are two cases where energy is wasted:

• When prefetching stops at a position to the right of ‘0’ in figure 7.4(b).

The energy penalty increases linearly as the stopping position is further

from the branch, since more instructions are wrongly fetched. There is an

upper limit to this penalty, since d instructions after the branch (d−1 after

‘0’) the pipeline starts filling up with useful instructions again, so no more

energy is wasted.
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Figure 7.4: Branch, delay penalty for branch prediction.

• When prefetching stops before the branch, there is no wasted energy as long

as the processor continues to single-step the instructions up to the branch.

As described in the previous section, variant C of the algorithm starts oper-

ating in fully-pipelined mode again at instruction positions beyond the last

‘bucket’ (n). Thus if the actual branch position is beyond n, stopping early

will waste the maximum energy in variant C. This is shown with a dashed

line in figure 7.4(b).

In the processor considered, every taken branch incurs a delay penalty of d

cycles as all branches are assumed ‘not-taken’. Thus even if the prediction is

successful, this delay will still be incurred. If prefetching stops at an instruction

position beyond the branch, there will be no further delay penalty since the

branch is already in the pipeline and it is progressing at the normal, one cycle

per stage speed.

On the contrary if prefetching stops before (or even at) the branch position,
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there will be a delay penalty. Each instruction fetched after the stop will take

d cycles to complete since it is single-stepped. Thus the delay penalty increases

linearly with the distance from where prefetch stops to the branch position (solid

line in figure 7.4(a)).

The delay penalty of variant C depends on whether the branch position is

before n or after. In the first case the delay penalty is as above (solid line). In

the latter case the penalty depends on the actual number of instructions that

are single-stepped. The graph (dashed line) is parallel to the solid line, since

the same delay is incurred for each single-stepped instruction in both cases, and

meets the minimum delay at the position where n would fall in the horizontal

axis.

The above discussion assumes that when prefetching is stopped, the processor

operates in single-step mode until either a branch occurs or, for variant C, position

n is reached. In reality the processor could resume its full speed earlier. Thus

the delay line should be considered representing the maximum delay.

Simulation

Deviating from the usual evaluation flow (described in section 5.1), branch antici-

pation was evaluated using a C program and instruction traces from an instruction-

level simulator. This method provides a way of evaluation without having to

spend too much time in implementation, as would have been required by the

‘standard’ methodology. Moreover, the algorithm requires significant hardware

resources which should be accounted for their energy consumption, but this is

hard to estimate before they have been implemented.

In order to speed-up run time, the C program does not simulate the full

processor operation, but only part of the behaviour of the prefetch unit, where

the branch anticipation algorithm would be incorporated. It uses a previously

generated instruction trace, containing the addresses and opcodes of the executed

instructions, which is produced by the fast, instruction-level simulator (armsd)

contained in ARMtools v2.51.

As each instruction address is read from the trace, it is passed to the simulated

prefetch unit, unless the address is not sequential. In this case a branch must

have occurred so, to emulate the pipeline behaviour, a number (d) of dummy

sequential addresses are generated internally, before the non-sequential one is

passed to the prefetch unit.



CHAPTER 7. DYNAMIC PIPELINE ADAPTATION 132

At each cycle the simulated prefetch unit decides whether or not to fetch based

on the branch anticipation algorithm. At the end of the simulation, the execution

time in cycles and the total number of fetched instructions are reported based

on the energy-delay analysis presented above. In addition, statistics about the

accuracy of the branch predictions are reported.

Benchmarks

The benchmarks used for the evaluation are compress, li, and ijpeg from SPECInt.

The other benchmarks used in simulations, Dhrystone, DES encode, and GSM

filter execute too small a number of instructions to be used here. All benchmarks

were simulated for 10 million instructions, after skipping the first 1–5 million

instructions, depending on the benchmark. These initial parts of each program

set up the data structures and consist of simple loops which are easily identified

and exploited by branch anticipation. It was decided that excluding them from

the simulations would make the results more indicative. The branch distributions

for the simulated trace parts are selected to be the same as those for the simulation

of the whole benchmark.

Simulation variations

As explained earlier, when the current instruction position exceeds the number

of available buckets n, the simulator can be instructed either to stop fetching (S),

i.e. single step until a branch is taken, or continue fetching (C).

In addition to these options, two further options were evaluated for the way

the heuristic decides to stop fetching. The one already explained compares the

probability of a branch in the pipeline (shaded area in fig. 7.2) to that of a

branch further down the instruction flow. The other compares the probability of

a branch existing in any instruction position up to the current one (equivalent to

the area from 0 to α−1 in fig. 7.2) to that of a branch further down the pipeline.

With the second option once prefetching stops, the processor gets into single-

step mode until a branch occurs (or, combined with option C, until instruction

position n is reached). Since the probability of stopping is higher for the second

option, H(High) is used to show that this option is enabled, while L is used for

the standard option.

Four variations of the branch anticipation algorithm can be simulated using

the above options. The variants are represented in the following results with
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two letters referring to these options. Table 7.1 is provided as a quick reference

explaining these variations and the variables used in the evaluation.

Table 7.1: Symbols used in evaluation of branch anticipation.

d Branch delay
n Number of ‘buckets’
h Branch history size
H Use area from 0 to α − 1
L Use area from α − d to α − 1
S Stop fetching beyond instruction position n
C Continue fetching beyond n

7.1.3 Evaluation results

Figure 7.5 compares the delay and energy of the branch anticipation method to

an unpipelined processor, i.e. a processor which only fetches an instruction after

the previous one has been executed. For reference the delay/energy of the fully-

pipelined processor is also included in the graphs. The data presented are based

on averages (arithmetic mean) of the three benchmarks. The graphs (7.5(a),

7.5(c), 7.5(e)) show how much faster each variant is relative to the unpipelined

processor (higher is better). Energy in the graphs (7.5(b), 7.5(d), 7.5(f)) shows

how many extra instructions were fetched relative to the unpipelined processor

(lower is better). The default values of the three variables are: n = 8, d = 3,

h = 16.

As expected, the energy and speed of all variants for all the possible variable

values lie somewhere between those of the fully-pipelined and the unpipelined

processors. Unfortunately branch anticipation does not achieve a lower energy-

delay product than the fully-pipelined processor, as was intended; the variants

that are close in speed to the fully-pipelined processor do not achieve a number

of extra prefetched instructions as low as an unpipelined processor. After the

analysis of these results below, the next section reports on the prediction accuracy

of branch anticipation.

Options H, L

In many cases variants which differ in their H or L option have similar speed

and energy consumption especially when the number of buckets is comparable to
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Figure 7.5: Dependence of branch anticipation energy, delay on the parameters.
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the branch delay or when the number of branches in the history is low. This is

because in these cases the probability of a branch already present in the pipeline

(L) is similar to the probability of a branch existing before the current instruction

position (H). In other words the difference between the areas of the probability

distribution graph they represent is small. In general the energy delay product

favours the L option.

Options C, S

Forcing the processor to single step after fetching the instruction at position n

(*S) saves more fetches compared to the opposite variants *C, but it also lacks

considerably in speed. The difference between these variants in both energy and

delay gets smaller when a large number of buckets (n) is used, while the other

variables seem to have the opposite effect. Generally the energy delay product

favours the C option.

Number of buckets (n)

Figures 7.5(a) and 7.5(b) show the difference that the number of buckets (n) make

in delay and energy. As n increases, the *C variants are becoming slower while

their energy consumption also drops. On the contrary, *S variants are becoming

faster and their energy consumption increases.

To explain this behaviour consider, for example, n increasing from 6 to 7 and

the instruction to be fetched is at position 6. When n = 6 the processor would

either always fetch (*C) or always stop (*S) at this instruction position, while

when n = 7 the decision will be made based on the branch position distribution.

Thus for variant *C there will be more pauses and consequently fewer fetches,

while for *S there will be fewer pauses.

Branch delay (d)

As the branch delay (d) increases, the branch anticipation method is increasingly

fast, compared to the unpipelined processor, for the *C variants. The speed

difference with the fully-pipelined processor is increasing though. On the contrary,

the *S variants become only slightly faster with higher d. This means that their

delay increases at almost the same rate as the unpipelined processor, which is

proportional to d. There is a (fixed) proportion of instructions at positions beyond
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n, which are single stepped so they take d+1 cycles each to execute. As d increases

so does the time spent in these instructions which explains this observation.

In the energy graphs, for the *S variants the number of extra fetches increases

very slowly, while for *C the increase is much sharper. For instruction positions

lower than n, both variants behave exactly the same, thus the difference in the

number of fetched instructions must come from branches happening at positions

beyond n. At these instruction positions, *C variants always fetch d extra in-

structions for each branch, while *S do not. As d increases so does the difference

in fetched instructions between the two variations which is what is shown in the

graph. The small increase in *S is due to the increased penalty each time a branch

is not predicted.

Branch history (h)

Figures 7.5(e) and 7.5(f) show that the size of the branch history (h) makes a

relatively small difference to the performance and the energy consumption. This

means that just ‘remembering’ the position of the last branch is enough to get

most of the effects of branch anticipation. Consequently the hardware overhead

for keeping the branch position distribution should be small.

The fact that whether keeping the last one branch or more does not make

a significant difference to the algorithm, hints that the prediction accuracy is

limited. This is examined in the following section.

7.1.4 Evaluation of prediction accuracy

Due to the nature of branch anticipation, the effectiveness of the prediction de-

pends on the distance of the predicted position to the actual branch. For this

reason the evaluation presented here is based on both the proportion of predicted

branches and the relative distance of the prediction to the actual branch.

Each graph in figure 7.6 shows the percentage of predicted branches at each

(relative) position, for all four variants of the algorithm. As in figure 7.4 earlier,

‘0’ on the horizontal axis corresponds to when prefetching stops exactly at the

instruction position following the branch. The values to its right represent the

number of instruction positions beyond it where prefetching stopped, while those

to the left represent those before. ‘-X’ represents all prefetch stops at four or more

instructions before the correct position. The percentage of unpredicted branches
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Figure 7.6: Prediction accuracy (avg. for all benchmarks).

is also included in each graph. This category accounts not only for the case where

prefetching never stopped for a branch, but also those where prefetching stopped

early but then restarted so the branch was missed.

Each row in figure 7.6 shows two graphs for representative values of one of

the three variables: number of buckets n, branch delay d, and history h.

The first observation is that only up to 20% of the branches are predicted at

the optimal instruction position (‘0’) and the unpredicted ones always dominate

in the graphs. As expected, *S variants cause more stops so their ‘unpredicted’

bars are always the lowest, while at the same time they frequently stop too early.
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As the number of buckets increases, the percentage of unpredicted branches

drops as some of its share moves into the other categories, especially ‘0’ and ‘-X’.

The same happens when the branch delay gets higher. In this case, a part of the

previously unpredicted branches moves to the new bars appearing to the right of

‘0’.

Finally, increasing the number of branches kept in the ‘history’ causes a small

decrease in the percentage of branches predicted at the optimal position, while

fewer stops happen early. This shows that although there is a good chance for a

branch to be at the same position as the previous one (around 16%–20% in 7.6(e)),

the branch position in general cannot be predicted from the positions of a number

of previous branches.

7.1.5 Conclusion

The evaluation showed that the prediction of branches based on their position

in the instruction stream is not successful with the algorithms presented. This

is the reason for branch anticipation not being more energy efficient, in energy-

delay product, with comparison to a fully-pipelined processor. Regardless, it

could still be useful as an energy-delay configuration between the two extremes

of an unpipelined and a fully-pipelined processor, which may not be expensive to

build, as only the position of the last branch needs to be kept.

7.2 Condition-code setting detection

Instead of trying to predict the position in the instruction stream where a branch

could happen from the behaviour and the positions of past branches, a ‘hint’ from

the instruction stream could be used to predict that a branch is approaching.

Since over 80% of the branches are conditional1 [HP96], the instruction that

generates the branch condition could be used as that hint.

The processor used here implements the ARM architecture which uses condi-

tion codes to specify the branch condition. Thus a technique that can be applied

is to start single-stepping the processor when an instruction that changes the

condition codes is detected, as there is a high probability that it is closely fol-

lowed by a conditional branch. When the first instruction from the branch target

1This figure is for an architecture without conditional instruction execution. The percentage
is probably lower for ARM programs.
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is fetched, the processor will resume its normal operating mode. For processors

that do not use condition codes, comparison-type instructions could be detected

instead.

Detecting instructions that change the condition code is simple in the ARM

instruction set architecture as there is a specific bit in the data-processing in-

struction format which controls this. It is important that the detection occurs as

early as possible in the pipeline; the number of stages between prefetch and the

detecting stage determine how many instructions following the one that sets the

condition code have already been fetched and thus how much energy might be

wasted. In the processor used here, the detection can be done at the first decod-

ing stage (Thumb in figure 5.2), so only one instruction may be already fetched

before the detection happens. This is very useful as over 50% of branches in

the benchmarks used here, immediately follow the instruction (usually compare

- CMP) that sets the condition codes.

In order to detect the condition-setting instructions as early as possible, a

more general opcode pattern could be used for the detection which matches more

instructions than just those setting the conditions. This will obviously put the

processor into single-stepping mode for larger parts of the program execution,

slowing it down but, if it allows the detection to be done at an earlier stage, it

could save an extra instruction fetch per taken branch.

As an alternative to detecting the condition-setting instruction as early in

the pipeline as possible, an optimising compiler could be used to insert some

‘neutral’ instructions between the branch and the condition-setting instruction.

This would make the hardware implementation simpler and could allow enough

time to detect the condition-setting instructions in instruction-sets with complex

encoding. Modifying the existing compiler was not possible for this work, since

the source code is not available. Thus the following design of this technique tries

to detect condition-setting instructions as early as possible.

7.2.1 Design

Of the two methods to control the pipeline occupancy presented, the one which

dynamically changes the pipeline using collapsible latch controllers is the most

appropriate for implementing this technique. When an instruction that changes

the condition code is detected at the Thumb stage, the whole processor should be-

come just one pipeline stage, by collapsing all the pipeline latches. As explained
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in chapter 5 this can only happen gradually; as the condition code setting in-

struction moves down the pipeline it collapses the pipeline latches on the way.

That would still leave the processor a two stage pipeline, prefetch and the rest of

the stages joined, so one instruction following the branch would be fetched and

wasted if the branch is taken.

In order to save this instruction too, the information that a condition-setting

instruction has been detected must be sent back (e.g. counter-flowed) to the

prefetch stage, so that the remaining latch controller can be collapsed as well.

The simplest and safest way would be to pass this information the next time

the two stages ‘synchronise’, when the next instruction is passed from prefetch

to Thumb. The implementation used here takes advantage of the knowledge that

the memory access will take longer than the detection, and passes the result of

the detection to prefetch before the memory acknowledges. This will collapse

the prefetch to Thumb latches (when they next get loaded), making the whole

processor a single pipeline stage. Thus prefetch will not fetch another instruction

until the one following the detected is complete. Consequently, even if a branch

follows immediately after the condition-setting instruction, no extra instructions

will be fetched.

When the first instruction from the branch target is fetched, it resets the

latches to their normal operating mode, as it travels down the pipeline, returning

the processor to its normal, fully-pipelined operating condition.

If the branch is not taken or, generally, the next taken branch is quite distant,

the processor will single-step for a considerable amount of time that could have

a bad effect on its performance. In the ARM instruction set architecture all

instructions can be conditional (not only branches) which can help to avoid some

branches. Thus the design described above might be too conservative. For this

reason a variant was designed and evaluated that detects instructions that are

conditional but not branches and forces the processor to operate in fully-pipelined

mode. Thus when the condition code is set for use by a non-branch instruction,

the processor does not have to operate in single-step mode until a branch occurs.

This method is expected to improve the execution delay without compromising

the energy savings achieved.
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7.2.2 Evaluation

The condition-code setting detection techniques require sufficiently small changes

to the processor that can be evaluated using the standard evaluation methodol-

ogy used in this work (section 5.1). Two Verilog models were produced and

simulated running the usual set of five benchmarks. Figure 7.7(a) shows the ex-

ecution delay of each benchmark for the two variations described above and the

unpipelined version, all normalised relative to the fully-pipelined version. Fig-

ure 7.7(b) shows the normalised energy consumption for the same programs and

processor variations.
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Figure 7.7: Evaluation results for condition code setting.

For DES encode there are insignificant energy savings with any speculation

control technique, as there are very few branches and thus almost no speculative

instruction fetches. Thus, for this benchmark, the interest is in the execution

delay overhead of the method tested. In this case both condition-setting detection

variants managed to keep the execution delay to the levels of the fully-pipelined

version. In contrast the unpipelined version is over three times slower.

The difference in the two variations can be seen in a benchmark like GSM filter.

The execution delay of the first variant is very close to that of the unpipelined

processor, while the execution delay of the second variant is almost half of the

first. As the GSM filter code has many conditional data-processing instructions,

it clearly benefits from restoring the fully-pipelined mode early, as is done by the

second variant.
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Generally, both variants managed to reduce the execution delay compared

to the unpipelined processor, for a small increase in energy consumption. The

second variant is consistently faster than the first, but it also consumes more

energy. It is very useful for benchmarks that behave like GSM filter.

7.3 Summary

This chapter details two methods for adapting the processor pipeline dynamically,

based on the collapsible latch controller technique described in chapter 5.

The first, branch anticipation, predicts when a branch is going to happen

based on the position of branches in the instruction stream in a recent history. If a

branch is predicted, the following instructions are not fetched until the branch has

been resolved. The method was evaluated using high-level simulation: executed

instruction traces and a C model of the prefetch mechanism. Unfortunately the

evaluation results showed that this method of predicting branches is not successful

as at most 20% of the branches were predicted accurately.

The second method, uses compare-type instructions as a ‘warning’ that a

conditional branch may be approaching. Since most branches are conditional,

significant energy savings can be achieved by not fetching instructions following

a branch, until it has been resolved. This method was implemented and shows

comparable energy savings to a unpipelined processor, but with a much lower

speed penalty.

These methods are not the only possible or the best proven solutions to en-

ergy reduction by dynamic pipeline adaptation. A plethora of other techniques

and variation can be designed. Software controlled methods, for example, could

be used to set the number of tokens in the token-FIFO or set which pipeline

stages should be joined. However, the methods described in this chapter do show

that collapsible latch controllers can be successfully employed for dynamic power

management in an asynchronous processor.



Chapter 8

Low-power cache design

As shown in chapter 4, the memory consumes a significant proportion of the total

energy in the system. In a memory system where a cache is used, most of the

energy consumption comes from it. For example the cache is responsible for over

40% of the power consumption in StrongARM [MWA+96]. At the same time

the cache is usually performance-critical so implementations targeting low energy

consumption cannot neglect the access time.

The previous chapters concentrated on saving energy in the processor core.

Here, as a step towards adaptive, low-energy memory systems, a cache architec-

ture is presented which is based on a novel CAM design [EG02b].

8.1 Cache organization

There are many issues involved in designing a cache. This work does not deal with

most of the ‘high-level’ cache design options — total size, replacement algorithm,

write policy — and how they affect the hit rate, but does have some dependence

on associativity and the line size. It is more related to the organization of the

data and tag storage blocks and how these are accessed in order to save energy.

A fundamental assumption throughout this chapter is that the data storage

of the cache is made up of a number of small memory blocks (banks), because

this is more energy efficient than using a single large memory [SD95]. In RAM

blocks energy consumption and access delay increase as the block size increases

[AH00], thus dividing a large memory into small banks gives speed and energy

advantages at the expense of an increase in silicon area due to the overhead of

the (constant size of the) memory periphery circuits: sense amplifiers, decoders,

143
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precharge circuits etc. Burd [Bur01] presented a case study, where he concluded

that banks of about 1 KByte give the best compromise. Banks of that size are

used in almost all ARM implementations [MWA+96], [Seg98], [Bur01], [CHM+01].

Although direct-mapped caches are the fastest and simplest to build they

do not achieve hit rates as high as associative caches of the same size for most

programs [HP96]. High hit rates are important not only for performance but

for energy consumption, since they reduce the number of accesses to larger, sec-

ondary memories via long buses. Thus another assumption is that direct-mapped

caches are inadequate for the hit rates required, so some degree of associativity is

needed. Generally the higher the associativity the better the hit rate, but design

complexity increases with associativity and the hit rate obeys the law of dimin-

ishing returns. As a rule of thumb, an associativity of four is usually adequate,

although a higher associativity — at no extra cost — would still be preferred.

Associative caches can be built using either RAM- or CAM-based tag struc-

tures. The rest of this section discusses the possible organizations of each category

and their advantages and disadvantages.

A cache size of 16 KBytes with a line size of 32 bytes is used as a working

example. Based on the fact that sub-banking is energy efficient, the cache is

made up of sixteen memory banks of 1 KByte. The choice of the bank and cache-

line sizes means that each bank contains 32 cache lines and, similarly, each tag

structure holds 32 tags.

8.1.1 Caches with RAM-based tags

The simplest way a RAM-tagged cache can be organized is as a conventional

n-way set-associative cache, where a number, n, of memory banks are accessed

concurrently (figure 8.1). Since an associativity of four is regarded as giving an

adequate hit rate, for the working example there will be four sets of four memory

banks. Within each memory bank a direct-mapped organization is used, so some

of the address bits are used to select a cache line. A further two bits of the

address would be used to select which set of 4 banks to access, in addition to

those selecting the cache line and word within the line, leaving a tag size of 20

bits for a 32-bit architecture. The conventional set-associative cache is quite

wasteful of energy because, for every memory read, n bank (tags and data) reads

are performed, of which at least n − 1 are wasted1.

1Misses waste all n accesses.
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Figure 8.1: RAM-based cache organisation.

In order to improve the energy consumption of the conventional set-associative

cache, “phased caches” were invented [HKY+95]. They operate in two phases. In

the first phase they read and compare all the tags in parallel. In the second phase,

the one data memory where a hit is found (if any), is accessed. Phased caches

save considerable energy by avoiding unnecessary accesses to the data memories.

However, in a synchronous system, they double the cache latency since they need

two clock cycles (or phases) to read or write data. The first of these cycles

is probably underutilized as the tag read and comparison takes less time than

accessing the data memory. In an asynchronous system the data memory read

can start immediately after the first phase, so phased caches would not suffer

from doubling the latency.

Instead of ‘phasing’ the tag and data memory accesses, the order of accessing

the cache ‘ways’ can be phased. This is the principle behind “pseudo-associative”

caches [HP96].

Pseudo-associative caches

Pseudo-associative caches were originally invented as a cheaper way of imple-

menting associativity in a direct-mapped cache [HP96], [CGE96]. The cache is

initially accessed in the usual direct-mapped fashion. Following a miss at this

access, another line in the cache is tried (usually by inverting the most significant

bit of the address index field) and if this does not hit either, the access is treated

as a miss. Obviously this process of ‘re-trying’ could be repeated a number of

times, to give a higher associativity. In the cache organization described here,
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since the memory banks are relatively small, each attempt can happen in a differ-

ent bank — to spread out the occupied cache lines, instead of trying a different

address at the same bank.

Interestingly, pseudo-associative caches have variable hit (and, in some cases,

miss) latencies depending on the number of bank accesses performed. Although

this could be a disadvantage in a synchronous processor, since the delays must fit

into fixed clock cycle intervals, an asynchronous processor can take full advantage

of this property.

Considering pseudo-associative and phased caches, there are two orthogonal

variations in the way an associative cache can be accessed:

• The order and degree of parallelism in accessing the memory banks of a

set, e.g. all the banks in parallel for conventional set-associative caches, one

bank at a time for the simplest pseudo-associative ones.

• Within the banks, the sequential or parallel accessing of the tags and the

data storage for loads; stores must access them sequentially.

There is a clear speed - energy trade off in these design options. The more par-

allelism, the better the speed but the worse the energy consumption because the

output of most parallel operations is not used. The more a sequential approach

used, the less energy is consumed, but the average access time may be larger.

When a sequential method is employed, if the first bank accessed hits most of the

time, both the average access time and consumed energy would be low. Thus a

successful method of predicting which bank to access first saves both time and

energy, providing the energy consumption of the prediction itself is low. This is

the rationale behind the original way-predicting cache[IIM99] and the variations

proposed by Huang et al. [HRYT01].

A way-predicting set-associative cache [IIM99], speculatively selects one bank

(way) to access first and if there is no hit, the remaining banks are accessed

concurrently, as in a conventional set-associative cache. Using a most recently

used algorithm, the prediction was successful on average 86% for the data cache

and 96% for the instruction cache. Huang et al. [HRYT01] experimented with

combinations of way-predicting and phased caches. Two of the most interesting

ones are “fall back phased” and “predictive phased”. “Fall back phased” works

as a way-predicting cache for the first cycle and if there is no hit, it accesses the

remaining banks in a phased manner: first the tag blocks and then the data block
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where the hit is found, if any. “Predictive phased” caches read all the tag blocks

and the predicted data block in the first cycle and subsequently access a second

data block if the prediction was wrong and there is a hit in another bank. They

both were shown to perform slightly better than way-predicting, with predictive

phased achieving the best energy-delay product.

8.1.2 Caches with CAM-based tags

Using a CAM for tag storage in a cache bank makes the bank a small, fully-

associative cache. Thus every time a bank is accessed, any cache-line in the bank

could be the one required. Given that the associativity within a bank is already

high, the most suitable way to organize the banks is as an array, directly indexed

by some bits from the memory address (figure 8.2).
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Figure 8.2: CAM-based cache organisation.

The CAM-based organization is inherently phased: the CAM must have a

match before the data RAM is accessed. In addition, no other bank is accessed

in parallel. This means that this organization is a good candidate for an energy

efficient cache.

The associativity offered by this cache organization is high, probably more

than required for a suitable hit rate. The high associativity is not intentional,

but rather a side effect of the data bank and the cache line sizes. Using 1 KByte

banks and 32 byte cache-lines, as in the working example, gives an associativity

of 32, since 32 lines fit into one bank. For the 16 KByte cache the tag size would

be 23 bits, for a 32-bit processor.
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8.1.3 Comparison of cache organizations

To decide which cache organisation is the most efficient, a comparison of their

energy consumptions is undertaken. The comparison is based on the number of

accesses to tag and data memories for each cache access.

A variation of the “fall-back phased cache”, where even the first access is

phased, is selected as the most energy-efficient RAM-based cache. In this organ-

isation only one data bank is accessed for cache hits and none for misses. Since

CAM-based caches also have the above property, the comparison needs to exam-

ine only the number of accesses to the tag memories for the two organisations.

In addition the comparison will have to consider the difference in the energy con-

sumed when reading an SRAM and searching a CAM, which is presented in the

following section.

The tag sizes of the two organizations can be different. For the working

example used here, the CAM-tagged organization will have a tag size of 23 bits,

while a direct mapped cache of the same size will have 20 bits of tag. The original

pseudo-associative caches have the same tag size as a direct-mapped cache but

require some extra bits to keep track of whether the cache line is at its original

(direct-mapped) position or not. For simplicity it is assumed that the tag size of

the pseudo-associative cache is the same as that of a direct-mapped cache; this

may favour the RAM-based case slightly.

The way-predicting cache, using a most-recently-used algorithm for selecting

which bank to access first, has a reported prediction rate of about 90% [IIM99].

If the other ways are checked in parallel, the average number of tag accesses will

be 0.9×1+0.1×4 = 1.3. The average number of tag accesses when checking the

other ways in series, depends on the probabilities of hitting in these banks, but

in general it will be somewhat lower. For the CAM-based cache there will always

be exactly one tag search per memory access. So, if a CAM search consumes

less than 1.3 times the energy of a similarly sized RAM, the CAM-based cache

organization is more energy efficient.

Considering the overhead of the prediction for the way-predicting caches and

the better hit-rates achieved by the high-associativity of the CAM-based organi-

zation, the above number is quite pessimistic. Burd [Bur01], comparing a CAM-

based organization to a conventional set-associative organization, claims that a

CAM-based organization is better if a tag CAM search consumes less than twice

the energy of a tag RAM read. The actual number would depend on the details
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Figure 8.3: Low-power RAM block.

of the implementations of the two circuits, but it should lie somewhere in between

these limits.

8.2 Comparison of RAM/CAM energy

consumption

For the comparison a set of RAM, CAM and sense amplifier cells were designed

and laid out in a 0.18µm, 1.8V, dual Vt technology and simulated with Spectre,

a Spice variant. Although the implementations could be further optimised, they

were designed by the same person and a similar amount of time was spent on

each of them, so this comparison should be fair.

The RAM design, shown in figure 8.3 is based on the low-power SRAM of

Amrutur and Horowitz [AH98]. The standard 6-transistor static RAM cell is

used for storage, arranged in an array of 32 rows of 20 cells. The block uses cross-

coupled inverter-based sense amplifiers and pulsed wordlines to limit the voltage

drop on the bit lines to about 15% of the supply voltage. A signal, generated
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Figure 8.4: Low-power CAM block.

from a dummy cell column, is designed to match the delay of the bitline voltage

difference to reach the appropriate level to be detected by the sense amplifiers.

This signal activates the sense amplifiers and, immediately after, deasserts the

wordlines so that the SRAM cells stop discharging the bitlines to conserve energy.

For the CAM design (fig. 8.4), separate search and bit lines were used to

minimise the capacitance of the former, which are more frequently used. The

CAM block is made up of 32 rows of 23 cells. Before starting a search, all

match lines are precharged while the search lines are held low. During the search

operation whichever cell does not match the value on the search lines, pulls down

the match line in its row. No energy is consumed within the CAM cell itself when

a search operation is performed; most of the energy consumption comes from the

discharging of the match lines and from driving the search lines for each search.

To compare the two circuits, a series of ten reads and ten searches were per-

formed on the RAM and CAM blocks respectively and the average delay and

energy consumption were calculated. As neither the value nor the position of the

row being read affects the energy consumption of the SRAM, the Spectre circuit
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description was simplified, having only one cell active and dummy cells to cap-

ture the effect of wire loading for the columns and rows (figure 8.5). A number

of probes were used to measure the supply currents which are then multiplied

appropriately for the columns and the rows that would normally be activated.

The CAM was modelled similarly, with two cells in a row active and dummy cells

for the rest of the row and column. At most one row will match each time and

that row consumes no energy, since it will not discharge its match line, but all

the other rows do. All ten searches were made not to match in the simulation

and the current consumed by the row is multiplied by the number of rows less

one, to capture the most usual case of a cache hit.

The RAM-based tag block has an access time of 0.5ns and an average energy

of 2.3pJ per read access, in typical silicon and operating conditions. These figures

include the energy consumed by the drivers of the precharge and sense amplifier

trigger signals, but not the address decoder consumption, which — for a 32

row memory — is not expected to contribute significantly. The wordline driver

consumption is included however.
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The energy consumed by the CAM is 12pJ per search at a minimum access

time of 0.8ns. This energy consumption is over five times that of the RAM,

although the result is slightly biased in favour of the RAM because the energy

consumed by the decoder and that of the comparator needed to test the tags are

not included. The CAM block is also larger than the RAM, the cell being 25%

bigger and the block width is 23 bits for each of the 32 rows (3 bits more).

Based on these results a (pseudo) associative cache with a low average number

of sub-block accesses per memory request is better than the CAM-based imple-

mentation. The following sections present an alternative CAM architecture that

reverses this situation.

8.3 Application program behaviour in cache tag

matching

Much of the energy consumed in a CAM is due to the frequent precharging and

discharging of all but one of the match lines for each access. It would be useful to

know the number of bits that are actually different in each comparison and their

most likely positions. An analysis of the memory traces of various SPECInt95

benchmarks was undertaken to gather information to answer this question.

The applications were compiled for an ARM processor, with all the speed

optimizations enabled, using the ARM Developer’s toolkit compiler and debug-

ger/simulator version 2.51. The simulator was set to emulate the StrongARM

implementation which is the closest processor model to AMULET3 available in

the simulator.

For each benchmark two cases were analysed:

• A unified 16K cache.

• Split instruction and data caches, each 16K in size.

The cache-line size is 32 bytes in all cases and the caches use a write-back, no

write-allocate policy with round-robin line replacement.

A C program was written to model a cache with the above specifications.

The match operation in the CAM was modelled so that, for every cache line, the

tag is compared serially, starting from the least significant bit. Where there is a

mismatch the operation ends. The program is recording the number of matches
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Figure 8.6: Ratio of tag checks ending at each bit position.

that stop at each bit position. The results, presented in figure 8.6, show that

over 90% of the mismatches are determined within the four least significant bits

of the tags. This behaviour is consistent for all the benchmarks and cache types:

Unified, Instruction and Data, from left to right in the graph.

For these results virtual addressing was used for the caches. If the addresses

were translated to physical addresses, the results may have been different, but for

low-power operation, virtually addressed caches are preferred because they avoid

address translation for most memory accesses.

8.4 Proposed CAM organization

Based on the results of the tag matching behaviour of the applications, an adap-

tive serial-parallel CAM (SPCAM) organisation was designed to take advantage

of the high probability of mismatch in the four least significant bits of the tag. It

is based on the following principles, which are the same as those of Hsiao et al.

[HWJ01]:

Minimize the transitions on the match lines In this case, test the four LSBs

first and only allow any of the other bits to discharge the match-line if the

4 LSBs match.
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Use separate search and bit lines The capacitance on the search lines is low-

ered.

Do not force the search lines to 0 or 1 while charging the match lines

The transitions on the search lines are greatly reduced. The search-line

drivers are the second largest energy consumer after the match line precharge

circuits.

Minimize the use of timing signals The energy spent on the signal drivers

is reduced.

The proposed CAM can operate either in parallel or in serial mode. In serial

mode the four least significant bits of each row are checked serially and, if they

all match, the remaining bits are checked in parallel. In parallel mode the four

LSBs are checked serially again, but testing the remaining bits is performed con-

currently. The match results of the two parts are ANDed together in both cases

to give the final result. The operating mode can be changed at any time when

searches are not performed in the CAM, allowing an adaptive use of this feature.

A row of the circuit is shown in figure 8.7. Note that there are different types

of CAM cells for the serial and parallel parts. The parallel CAM cell is the same as

that in figure 8.4, with the ground connection of the two pull down NMOS chains

testing the equivalence, replaced with VgndMatch. This signal runs lengthwise

and is connected to all the parallel CAM cells in the row.

The serial CAM cell circuit is shown in figure 8.8. A cell that matches opens

its NMOS pass transistor (N1), propagating the result from its less significant

neighbour to its more significant neighbour. If there is no match, the match result

from the previous stages is isolated and a one is generated at the output. Since
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Figure 8.7: A row of the proposed CAM.
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eq is driven high through an NMOS transistor (N2 or N3), its high state suffers

from a (NMOS) threshold drop. In the current implementation, the technology

offers two threshold levels for all transistors, so low threshold NMOS transistors

were used for N2 and N3. In addition a high-threshold PMOS transistor (P1)

is used for pulling up the output, so that it can be turned off by the weak high

voltage of eq.

The match operation in the serial part is similar to the Manchester carry

chain used in binary adders [KEA60]. A match propagates as a zero from the

least significant bit to the most significant. The four serial bits are broken down

into two sets of two bits to limit the maximum number of transistors in series

to three. If the first cell of a set doesn’t match but the second does then a

one is propagated to the right through an NMOS transistor. This is allowed to

propagate only through one device — another reason for separating the four bits

into two sets. The gates at the output of these chains are designed so that their

input threshold is lowered (with widened NMOS transistors) to compensate for

the Vt voltage drop in this case. When both cells in the second set match but

those in the first don’t, transistor Pa (fig. 8.7) is used to pull up the serial part

match signal m3b signifying a ‘no match’.

If all of the four LSBs match, the virtual ground VgndMatch is pulled down

allowing the rest of the row to evaluate the parallel match line mPar. Otherwise

the match line of the parallel part is precharged, via transistor Pb. Most of the

time mPar would not have been discharged previously, so Pb will just replace the

small leakage charge since the last operation.
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In serial operating mode the search lines are not pre-discharged; this saves

energy as transitions only occur when the search data actually change. This

means that the parallel CAM cells will be evaluating even when the match line

is being precharged. If some of these cells don’t match, there will be a path from

the parallel match line mPar to the virtual ground, which is left undriven. This

could leave mPar not fully charged but it will not affect the operation. If during

the following search the LSBs match, VgndMatch will be pulled down and, as

some of the parallel part tags don’t match, mPar will also be discharged. If the

LSBs don’t match, the final match line will stay low, driven from m3b and the

charging of mPar will continue, so its voltage will reach the supply voltage level.

Spectre simulations indicate that the time between two accesses is sufficient to

fully precharge mPar when this form of charge sharing happens.

An interesting situation can occur when the following operations happen con-

secutively: a search is started and in some row the LSBs all match but the

MSBs do not. This will leave mPar discharged. A subsequent search is initiated

which matches the whole row. This would normally fail because mPar was not

precharged in the interim. For this reason evalB — the inverse of the parallel

block evaluation signal eval — is connected to the NOR gate within the LSB

match logic; this forces a ‘no match’ for the LSBs, imposing a precharge of the

parallel match line (mPar) for every search. This implementation was preferred

to combining the evalB signal with m3b in a logic gate to drive VgndMatch and

mPar because it has less capacitive load on evalB.

When the CAM is operating in parallel mode, the virtual ground line, Vgnd-

Match, of the parallel part of the CAM is always connected to ground through the

NMOS controlled by par. In addition the NAND gate G3 isolates the precharging

of the parallel part’s match line, mPar, from the match signal of the serial part,

m3b. A separate signal, eval, is then used for precharging. This signal is gated

off in serial mode so that its driver does not consume power.

The search lines of the parallel part need to be forced low while the (parallel)

match lines are being precharged. The circuits at the periphery of the CAM

ensure that the search lines are only driven during the evaluation phase.

Figure 8.9 shows the most important signals in an SPCAM row for five consec-

utive operations. The potential charge sharing problem mentioned earlier could

occur in the third search (13–15ns), where VgndMatch is being charged up to-

gether with mPar. For the selected precharge transistor size, the problem does
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Figure 8.9: Waveforms of SPCAM in serial mode.

not appear here and mPar is charged to the supply level.

During the same operation m3b (upper group of signals) is shown not to reach

Vdd; this is the case when it is being pulled high through an NMOS transistor,

because the last cell in the serial part matched but the one before didn’t. As

shown in the waveforms, the circuit correctly reports a ‘no match’.

The slowest case for the parallel CAM part, where the parallel match line

(mPar) is discharged by only one non-matching bit is shown in the second and

fifth searches. The discharge time is around 0.5ns and makes the mPar evaluation

one of the most significant parts of the critical path.
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8.5 Results

SPCAM was simulated using the same simulator and technology as the previous

designs. The stimuli have a distribution of mismatches at bit positions which

follows the findings of the previous section. The simulation results for all the

designs are summarised in table 8.1. In serial mode the energy consumption of

SPCAM is only 45% more than the RAM (which does not include the decoder

and comparator); this is almost a quarter of the standard low-power CAM energy

consumption. The cycle time is twice that of the RAM, but only 25% slower

than the original CAM. Thus SPCAM is much more energy efficient than the

conventional CAM. In parallel mode, the energy consumption is 3.5 times that

of the RAM, still 33% better than the conventional parallel CAM, while the

performance is the same as the latter.

Table 8.1: Comparison of tag implementations

Energy per Cycle time
search/access

CAM (32x23) 12.0 pJ 0.8ns
RAM (32x20) 2.3 pJ 0.5ns
Serial SPCAM 3.3 pJ 1.0ns
Parallel SPCAM 8.0 pJ 0.8ns

With a CAM search energy consumption so close to that of a single RAM read,

the fully associative cache organization becomes a much lower energy choice than

any (pseudo) associative, way predicting cache. Caches with conventional CAMs

are reported to have a similar access time to caches with RAM tags [ZA00], thus

the effect of the decoder and the comparator must slow down the RAM-based

designs to a similar speed to the CAM-based ones. With the results presented

here conventional CAMs are only 25% faster than the proposed SPCAM in serial

operation. Thus the performance of a cache using the SPCAM should not be

significantly slower than a cache built with RAM tags.

The proposed CAM is able to switch from serial to parallel mode, trading

energy for speed. In a synchronous processor this is hard to exploit, unless the

cache access is made to take two cycles in serial mode and one cycle in parallel.

As this design is intended for an asynchronous processor, the variation in speed

can be accommodated more easily.
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8.5.1 Related work

A recent CAM design by Hsiao, et. al. [HWJ01], claims to be the lowest power

CAM yet reported. It evaluates the match lines serially (NAND-type) and does

not require discharging of the search lines while the match line is precharged.

However precharging and evaluating the match line segments requires more ‘clock-

ing’ power than the design proposed here. They report a 45.5fJ/bit/search at

12ns cycle time in a .35µm, 3.3V technology. Converting their energy per bit per

search result to the technology used here, suggests about 11fJ/bit/search, which

is over twice that of the SPCAM in serial mode. Moreover their CAM is fully

serial across the length of each line, thus slower than the proposed CAM.

Zhang and Asanovic [ZA00] argue that CAM-based caches are preferable for

low-power processors. They describe a CAM design with separate bit and search

lines and they precharge the match lines through NMOS transistors to reduce

voltage swings. As a speed enhancement they split each match line into two

segments which, in view of the analysis here, would also save energy as the most

significant part will be discharged infrequently. For further speed improvement

they employ single-ended sense amplifiers on both segments of the match lines.

The internals of these are not described but probably consume significant power.

The energy consumed in the tags is not directly compared in that paper but they

showed that the total energy consumption of a cache, with the same configuration

as the working example here, is similar to a 2-way associative conventional (RAM-

based) cache. Their CAM-based cache has an almost identical performance to a

conventional RAM-based cache, which is not phased, i.e. all tags and data are

read in parallel in all ways.

Huang et al. [HRYT01] compared a number of different pseudo-associative

policies. In their results, systems with Fallback regular, Fallback phased and

Predict phased policies have very similar energy consumption and delays. Unfor-

tunately they do not compare these results to CAM-based caches.

Burd [Bur01] presented a CAM which consumes twice the energy of an equiv-

alently sized RAM. This is quite surprising because it is a conventional parallel

CAM with shared bit lines and search lines. The difference is that the bit lines

are pulled up when the match lines are precharged, but one of them still has to

be pulled down for each search. With this modification the bit lines are more

heavily loaded, with two transistor gates and a drain for each cell. Burd argues

that caches using this CAM consume the same energy as a conventional 2-way
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set associative cache built with RAM tags, so the CAM-based design is preferable

since a higher associativity is needed for his design.

8.6 Summary

A new serial-parallel CAM (SPCAM) design is described in this chapter which

consumes about a quarter of the energy of a conventional low-power CAM, when

used as a cache tag store/comparator. It exploits the address patterns commonly

found in application programs, where testing the four LSBs of the tag is sufficient

to determine over 90% of the tag mismatches; the proposed CAM checks those

bits first and evaluates the remainder of the tag only if they match. In addition

the search lines do not have to be forced to ‘0’ or ‘1’ while precharging the match

line, which accounts for almost half of the energy of a conventional CAM.

The proposed CAM is also adaptive, i.e. it can be configured to work serially

as described above or it can operate as a parallel CAM with lower energy savings

than in serial mode, but at the same speed as a conventional CAM. This adaptiv-

ity provides two operating modes which trade speed for lower energy consumption

and can be easily exploited by an asynchronous processor.

SPCAM’s energy consumption is comparable to that of reading a RAM of

similar capacity. Thus using this CAM for the tag parts of a sub-blocked high-

associative cache, would make this cache more energy efficient compared to way-

predicting (pseudo) associative caches.
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Conclusions

Power-adaptive processors are perfectly suited for low power (and energy), as they

are able to scale their power consumption according to their workload. Power-

adaptivity by micro-architectural modification has the advantage of very fast

transition times between the various power-down modes and the normal, full-

speed operation compared to dynamic voltage scaling (DVS). Moreover it can be

combined with DVS for even greater power savings; as much as 17% improvement

according to Hughes et al. [HSA01].

This thesis presented a number of techniques that can enable an asynchronous

processor to be power-adaptive, by dynamically changing key parts of its micro-

architecture. Although this thesis describes how they are designed in AMULET3,

they can be used for any asynchronous processor with minor modifications.

First a simple method for saving energy by delaying the decoding and reading

of operands for conditional instructions was designed. It can save up to 13%

of the processor core energy consumption and even speed-up the execution for

programs with a large number of conditional data-processing instructions.

Two methods for controlling the power consumption of the processor core, by

controlling the pipeline occupancy, were designed and implemented at gate level.

The first restricts the number of instructions entering the processor pipeline us-

ing a FIFO of tokens. The other changes the effective pipeline depth by collaps-

ing pipeline latches, i.e. making them ‘permanently’ transparent. Both methods

achieve energy savings in the order of 15% with a pipeline occupancy of one.

Keeping the processor pipeline occupancy permanently low achieves low power

consumption at the expense of excessive speed loss. In order to reduce the speed

penalty the pipeline has to be dynamically set to a low occupancy only when

161
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branches are expected. Since common branch prediction is shown here not to be

energy efficient, two other techniques were designed. They remove almost half

of the speed loss, for a small decrease in energy savings compared to the single

pipeline occupancy configuration.

As a first step towards the development of an adaptive memory system, a CAM

organisation has been developed for use as tag storage in caches. It consumes

only 45% more energy per search compared to an equivalent-size RAM read while

improving by about a factor of four the energy consumption of a standard parallel

CAM.

9.1 Limitations

The work presented in this thesis is limited by some practical aspects.

The five benchmarks used are obviously not enough for a thorough evaluation

of the micro-architectural techniques presented. This shortage is due to a number

of reasons.

First simulation speed restricts the size of benchmarks that can be executed.

Each of the two large benchmarks, compress and ijpeg take more than a day to

execute with NC-Verilog on a Sun Ultra5 workstation; for example the results in

figure 5.13 on page 103 took about a month of processor time to run! For similar

reasons such large benchmarks could not be used in the more accurate Powermill

simulations.

As the simulation environment was created from scratch there is limited run-

time support. A considerable time is required to modify each benchmark in order

to use only the provided run-time functions. Thus it was decided that the time

spent in making more benchmarks able to execute in the simulation environment

was better spent for developing new ideas.

Another practical limitation is the accuracy of the energy estimation method.

Although it is adequate for comparing the relatively small differences of the pro-

cessor configurations presented in this work, it obviously suffers in accuracy com-

pared to a low-level circuit simulator and cannot be as good as a commercial

energy estimation tool.
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9.2 Future research directions

There are numerous ways to extend the research presented here:

• Most micro-architectural adaptations in the published literature are for su-

perscalar processors and there is much more scope for experimentation in

that class of processors. Asynchronous techniques could prove very useful

in such an architecture, especially in the design of the issue queue.

• The variation in the data values has great potential for exploitation for

energy savings. Although there is some existing work in this area, asyn-

chronous techniques could be used more aggressively to exploit this varia-

tion.

• The memory system consumes a large proportion of a system’s energy.

Dynamically adapting the size of the memory structures while offering a

wide range of access times could improve the ability of a system to adapt

to varying workload demands.

• Finally, although collapsible pipeline latch controllers were used in this work

for saving energy in processors, there may be other applications where they

could be of use.
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