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Abstract

Portable battery-operated computing equipment requires high processing performance
and low power consumption. Other computer systems may need low power consump-
tion for other reasons such as overcoming the problem of heat transport away from the
processor chip. This thesis investigates ways in which processor architecture can influ-
ence power ditiency.

One implementation technique which may lead to lower power consumption is the use
of asynchronous logic. In particulasynchronous logic can be more powfficient in

a system with a rapidly-changing computational load. Because of tfezedides
between synchronous and asynchronous logic, certain architectural features are more
suited to asynchronous implementation than others. This thesis proposes a number of
features that are more suitable for asynchronous implementation. Important areas
include the branch mechanism and the way in which data dependencies are dealt with.

Other architectural factors that influence power consumption are investigated. Increas-
ing code density will lead to increased powdéicefncy because the power consumed in
many parts of the computer system is proportional to the rate of instruction fetch. Code
density is investigated and ways in which the density of tR&REParchitecture could

be increased are proposed. The most important improvements are found to result from
using a Hufiman encoded opcode field and reducing the length of some immediate
fields. Other factors are the use of 2-address instructions, load and store multiple instruc-
tions and explicit last result re-use.

It is also noted that the powefiefency of the memory system can be increased through
the use of multiple level caches and by using a copy-back write policy

By combining these features, an architecture with a poviiereeicy double that of a
conventional processor could be constructed.
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Chapter 1 : The Increasing
Importance of High
Power Efficiency

This thesis is about designing computer architectures whose implementations can have
low power consumption. This introductory chapter examines the reasons for wanting
low power consumption and the techniques that can be applied to achieve it.

The body of the work concentrates on two techniques that can be used to improve power
efficiency Firstly the idea of using asynchronous logic is considered, and secondly the
influence of processor architecture on powdrciehcy is studied. The objective is to
define a set of architectural features that permit an asynchronouseftieent imple-
mentation.

1.1  Why Low Power?

The most well-known motivation for the design of pow#icient processors is for bat-

tery operated portable applications. As well as this, povieregicy is important or will
become important in some applications because of the problems of thermal management
and power supphA third motivation is the issue of electricity cost and the environmen-

tal impact of power consumption.

These three issues are investigated in this section.

New Application Areas Need Low Power

Increased performance from physically small computer systems has opened up a
number of application areas for portable battery powered equipment. Examples include:

» Portable personal computers. It is not unusual to find portable personal computers
with processing performance, storage capacity and screen resolution closely compa-
rable to desktop machines.

» Personal Digital Assistants (PDAS). This new class of portable computer demands a
high-performance processor for functions such as handwriting recognition.
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The Increasing Importance of High Power Efficiency

* Hand-held video games. Again, performance can be similar to non-portable equip-
ment.

* Personal Digital Hi-Fi. The processing power needed to control a compact disk or
digital cassette player is significant.

» Portable Radio Telephones. The demand to accommodate more channels within the
same bandwidth for cellular telephones means that sophisticated signal compression
techniques are being applied, with considerable processing requirements.

* Global Positioning by Satellite (GPS) systems. Previously used only by the mili-
tary and mariners, GPS is how becoming cheap and small enough to use in cars; soon
perhaps by mountaineers as well.

» Hand-held photo and video equipment. Successful digital photo and video cameras
need good image sensors, high density storage afidiesuf processing power to
apply the necessary image compression algorithms.

Users of these products demand low weight and size and long operating periods between
battery changes or reclgarg. Often, batteries make up a significant proportion of the
size and weight and yet users are not satisfied with the batterylif@pfove the situa-

tion, either the engy density of the battery must be increased, or the power consump-
tion of the system must be reduced. Battery technology will improve, and in the period
1946 to 1980 battery erggr density doubled approximately every ten years [2], but the
growth in demand is likely to exceed the growth in battery capacity

Approximate values for the empr density and cost of some batteries used in portable
equipment are given in table 1.1 [2] [3]. Note that the battery with the highegyener
density the lithium batteryhas a capacity considerably greater than the alkaline battery
but the cost grows even fastBiote also that rechgeable batteries have an eneden-

sity around three times smaller than that of non-reeadoles. In order to keep the cost

of the batteries needed at a reasonable level, the most advanced technology must be
avoided.

The only alternative to increasing battery capacity is to reduce the power consumption
of the equipment. This includes building more ggezfficient processors.

Some might expect that in the applications listed above components such as motors,
speakers, RF transmitters etc. would consume far more power than the control electron-
ics. However in practice the digital electronics actually consumes a significant propor-
tion. For example, in a portable compact disk player approximately 50% of the power
consumption is in the integrated circuits [1].
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The Increasing Importance of High Power Efficiency

Energy density Cost
kJkg ™ pence kJ ™2

Battery

Primary (non-rechgeable) cells

Zinc carbon 230 2.6
Zinc chloride 270 2.2
Alkaline 340 3.0
Lithium 1200 12.7

Secondary (rechgeable) cells

Lead acid 108

Nickel cadmium 111

Table 1.1: Batteries used in portable equipment (approximate)

Thermal and Electrical Issues

Although the obvious applications needing poefficient processors are the battery
operated ones described above, it is probable that it will soon be necessary to apply the
same low-power techniques to mains-powered desktop systems.

Since the beginning of 1992, DEC has announced two processors with very high power
consumption: a CMOS implementation of the Alpha architecture that consumes 30W
[4], and an ECL implementation of the MIPS architecture that consubd4’ 15].
Although this power consumption is currently considered to be high, future processors
will inevitably be announced with still higher power consumption.

How fast will power consumption increase? If current trends continue, the feature size
used in integrated circuit fabrication will continue to decrease by about 12% per year
[6]. If this decrease in feature size is not accompanied by a decrease in supply voltage
(as was the case until recently when all systems used 5V supplies), it would lead to an

increase in power consumption per unit area of about 45% pé'r %zeldowever it

seems that there is now a move to lower supply voltages as components operating at
3.3V are increasingly common. If supply voltage is scaled down linearly with the fea-
ture size there will be no increase in power consumption per unit area, although current
consumption per unit area would increase by about 12% per year

1. With constant voltage, power density increasesibys feature sizes decreasesohySo if
100% —é = 12%, a3 = 1.47. See [6], table 4.12.

2. Assuming that operating frequency is always increased to the greatest possible value.
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The Increasing Importance of High Power Efficiency

As integrated circuit processing techniques improve, defect density will decrease and
larger devices will be feasible with economic yields. The trend in increasing device size
is not as regular or as well understood as the trend in decreasing feature size; however
the capacity of DRAM memory chips has typically increased by around 60% per year[7]
which is about 24% more per year than is explained by the decrease in feature size. This
suggests that area is increasing by about 24% per year

If these trends apply to processors in the future, we can extrapolate the figures in table
1.2, based on the DEC 21064 Alpha in 1992 using 30W from a 3.3V supply as a starting
point.

Constant voltage Voltage scales with feature size
vear Power consump-| Operating voltage Power consump-
tion / W IV tion / W&
1992 30 3.3 30
1994 95 2.6 45
1996 315 2.0 70
1998 1015 15 110
2000 3275 1.2 170

Table 1.2: Projected power consumption (approximate)

a. Note that because the supply voltage is decreasing, supply current will grow
more quickly than power consumption. It will increase 15 fold from 9A in 1992
to 140A in 2000.

Although supply voltages are likely to decline to some extent, there are three reasons
why they may not decline as fast as the feature size:

* In a system it is difcult to operate dierent components with dérent supply volt-
ages, so the system supply voltage will drop only as quickly as the slowest individual
components.

* Maintaining a higher operating voltage permits operation at a higher operating fre-
quency and hence to higher performance. Designers will find ways to avoid scaling
down supply voltage in order to maintain performance.

» Transistor threshold voltages must scale down with supply voltage. It will become
increasingly dificult to make transistors with small enough thresholds.
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The Increasing Importance of High Power Efficiency

Whatever happens to supply voltage, in a few years processor chips will be consuming
far more power than they are nohis will face designers with problems including the
following:

The capacity of power supplies has to be increased and distribution of power on the
circuit board becomes more filiiilt.

Power supply from the board to the dies becomes mdreutiif the number of bond

wires and pins used for power and ground has to be increased. The DEC 21064 Alpha
chip uses a total of 138 power and ground pins to supply its 30W requirement. The

current that can be passed through a gold bond wire before it melts and the closest
pitch at which they can be bonded also imposes a limit on the amount of power that

can be transferred to the chip [8].

Power distribution on the chip becomes morédiift. The DEC ECL BIPS chip has
to use a layer of 26n thick gold power distribution rails over the top of the rest of
the chip for power distribution [8].

The very high currents on the chip can cause electromigration; that is, the force of the
moving electrons hitting metal atoms leads to deformations and breaks in the metal

[9].

Removing the heat from the chip becomes increasingiigulif There is an upper
limit on the amount of heat that can be carried away by a passive heat sink of a few

hundred watts At this point, active devices such as the Pe#ffact heat pump

which cools the package to below ambient temperature [13] and the heat pipe or
thermosiphon (as used by the DEC ECL BIPS chip [8]) become necdssprsc-

tice, at high power dissipations the mosfidifit stage is moving the heat the first
millimetre or so from the die to the heat sink. A good material for this is diamond,
which is an excellent thermal conductor and also an electrical insulaityr com-

puters have used diamond-filled epoxy compounds to attach dies to heatsinks. A
more extreme solution is to etch channels on the back of the die and pump coolant
through the channels. It has been estimated that by using this technique power dissi-
pation up to 4kW per device can be dealt with [10].

Removing waste heat from enclosures requirgetadans and designfeft has to be
spent on aiflow design. The noise level from fans has to be kept low enough to
reduce noise pollution.

1. This calculation is based on the thermal resistance of an infinite hemisphere of copper, which is
around 0.1 °C/W when connected to a heat source ofigize: 1cm.
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Not only are these problems fittilt to overcome, but the solutions can be expensive.
For example, the thermosiphon used by DEC [8] would cost $125g@ tarantities.

The cost of gold power distribution rails and diamond adhesive prohibits their use in all
but a few cost-insensitive applications.

To avoid problems like these, high-performance systems will need to apply similar
power eficiency techniques to the ones used by battery operated equipment.

Environmental Issues

It has been estimated that 5% of the US#on-domestic electricity consumption is used

by computing equipment, and this is set to rise to 10% by the end of the debdade [1
Reasons for this increase include the increased power consumption of individual com-
puters, the increasing number of computers, and the increasing tendency to leave equip-
ment permanently switched on. In the US, the Environmental Protection Agency has
proposed a standard for a low-power personal comptitey estimate that adoption of

this standard could lead to a reductiorCi@, emissions equivalent to 5 million cars.

Adoption of the low-power standard would also lead to significant financial savings on
individual electricity bills. The electricity to operate a personal computer consuming
300W continuously for a year currently costs around £200 in the UK.

In the case of the personal computke majority of the power savings can be made in
areas other than the processor; the most important areas are in the monitor and in
increasing the @tiency of the power supply [12]. However the contribution made by

the processor is not insignificant, and if neglected it will become more significant as the
efficiency of other parts of the system increases. Processor manufacturers have started to
realise this; for example Intel has recently announced that it will incorporate-pawer

ing logic previously used only in processors for portable computers into all of its 486
processors[l].

Conclusions

It has been shown that high poweiaéncy is or will soon become an important factor

in computer system and processor design in all types of equipment. In low-performance
applications, the driving force is increased battery life for portable equipment. In
medium performance applications, the cost of electricity and the environmental results
of electricity use are most important. For the highest performance applications, the high
thermal dissipation and power distribution may become limits.

The next section studies the approaches that exist for reducing power consumption.
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1.2 How Can Power Consumption Be Reduced?

Power reduction techniques can be applied in many of the levels of the computer sys-
tem, from underlying silicon techniques at the bottom level to compiler optimisations at
the highest level.

Approaches Based on the Fundamental Technology

At the lowest level, power consumption is proportional to the capacitance of the wires
and transistors on the chip and the square of the supply voltage [6]. Running the chip at
a reduced voltage will reduce power consumption, but it will also reduce performance as
maximum operating frequency is proportional to supply voltage.

The capacitance of the wires is proportional to the feature siZ@ecreasing the fea-

ture size will give a proportional reduction in power consumption. The limit on feature
size is imposed by the available technology for fabrication and is constantly decreasing.
This decrease in feature size will certainly lead to further increases in pbaieney,

Circuit Design Approaches

In CMOS circuits, power consumption is proportional to the number of signal transi-

tionst. Power consumption can therefore be reduced by reducing the number of signal
transitions that occuConsider for example a state machine whose state is represented
by four bits, which spends 99% of its time alternating between two of these states. If
these states were encoded as 0000 &t there would be 4 times as much power dis-
sipation in the state machine than if they were encoded as 0000 and 0001, because there
would be four times as many signal transitions. It should be possible to incorporate this
sort of optimisation into automatic logic synthesis programs, which could balance the
trade-of between the most engr-efficient encoding and the encoding with the smallest

or fastest implementation.

In another case, there can be a traddsefween power consumption and logic size.
Sometimes pre-chge logic [6] is used, where nodes are ghdrto one state through a
pre-chage transistqrand then possibly disclued to the other state through a transistor
tree. This is in contrast to the simpler static logic approach where transistor trees are
used in the pull-up and pull-down paths. The pregdapproach saves transistors, but

it means that on each cycle the output nodes make twice as many trahsitions

1. In other technologies such as ECL, power consumption is static, i.e. independent of the number
of transitions. Hereafter CMOS is implied unless otherwise stated.

2. Assuming an equal probability that the bit is a zero or a one. It can be worse; in a circuit such
as a content addressable memory (CAM), the ‘hit lines’ may be the output of pre-charge logic. All
but one of the bit lines is charged and discharged, making two transitions, every cycle.
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The Increasing Importance of High Power Efficiency

The use of asynchronous logic rather than clocked synchronous logic may also lead to
improved power diciency This efect results from various possible factors, the most
important of which is the ability of asynchronous systems to perform well in situations
with varying computational load.

Parallelism versus Speed

In some applications it is possible to replace a circuit with another that has greater paral-
lelism but a lower operating frequency and lower power consumption [14]. If a circuit
consists ofn parallel sub-circuits, all operating at frequericand supply voltage, its

throughput is proportional taf and its power consumption is proportionalrmzf. If
the number of sub-circuits was doubled?to and the operating frequency was reduced

to ;f, the throughput would remainf. However since maximum operating frequency
is proportional to supply voltage [6], at the reduced operating frequency the supply volt-
age could be reduced %}/ The power consumption would then %evzf; that is, dou-

bling the silicon area reduces the power consumptionféddr

Designs rarely if ever make use of parallelism with the objective of reducing power con-
sumption. When parallelism is used in processors it is done to increase the performance
that is possible at the supply voltage and operating frequency being used. Examples of
this type of parallelism are multiple ALUs (superscalar processors) and multi-word wide
buses between internal blocks [7].

Sleep Modes

At a higher level, systems can partially disable themselves when inactivity is detected.
This feature is frequently found on portable computers. The simplest approach is to
reduce the clock frequencyo obtain a further reduction in power consumption, once

the clock frequency has been reduced the supply voltage can be reduced to give an even
greater power saving. Reducing the supply voltage to a chip whilst it is enabled may not
be a simple procedure, particularly for memory chips which may contain internal nodes
that can store voltages across the change. The limit on the pdivEnef improve-

ment that can be obtained with a sleep mode depends on the workload pattern of the
computer; if the computer is expected to be idle for gelgroportion of the time, a

sleep mode will be more beneficial than if it is almost permanently active.
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Architectural Approaches

Certain aspects of a processor architecture can indiretelgt @ower consumption, in
particular the engly used to fetch instructions is inversely proportional to the code den-
sity of the instruction set. Another example of an architectural feature influencing power
consumption is the width of the processodatapath; a wide datapath wastes gyner
when it is used to operate on narrow data.

Software and Compiler Techniques

If the algorithms used by the programs in use or the optimisations applied by the com-
piler to those programs can be improved so that they do the same work in fewer instruc-
tions, they will consume less eggras they are executed. These optimisations also lead
to increased speed, and are constantly being improved.

1.3 Introduction to this Work

All of the areas mentioned above are important, and a successfutgiierent proces-
sor will combine the best techniques from each area to obtain the optimum power con-
sumption.

This thesis concentrates on two of these areas, namely the use of asynchronous logic and
the influence of the processor architecture.

Chapter 2 introduces asynchronous logic agdes why it may have better powefi-ef
ciency than traditional synchronous logic in some applications.

Chapter 3 describes why a processor using asynchronous logic can exfdogndif
architectural features from a conventional synchronous proc@ssoAMULET1 proc-

essor design, which is an asynchronous implementation of an architecture originally
implemented synchronouslis considered and features that an architecture needs for
efficient asynchronous implementation are proposed.

Chapter 4 looks at the power consumption in a processor system and finds that it is influ-
enced by code density and other features. The issue of code density is investigated fur-
ther and the densities of various processors are compared.

Chapter 5 describes various experimental studies to find how the code density of an
architecture can be increased. The code density of the Sparc architecture is examined,
and various ways in which its code density could be increased are proposed.

Chapter 6 draws together the architectural features that have been proposed in chapters 3
and 5, and proposes the basis of an architecture that is suitable for aeffimesit
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asynchronous implementation. The chapter concludes with a mention of possible future
work.

There are three appendices, concerned principally with the experimental data used in
Chapter 5. Appendix A studies the pattern of data accesses made by a program to itsreg-
ister bank and to main memory and gives a mathematical model for an aspect of this
behaviour. This data is useful for evaluating the size of register banks, caches etc.
Appendix B presents data relating to the frequency of occurrence of instructions in the
Sparc architecture, the distribution of immediate values, and other data. Appendix C
describes the benchmark programs used.
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Chapter 2 : Asynchronous Logic

Currently most digital design including processor design is done using synchronous glo-
bally-clocked techniques. Synchronous design has been successful but some believe that
asynchronous logic has the potential to perform better in some applications.

There are several @@rent areas where asynchronous logic may have advantages. These
include:

» Speed.
» Power eficiency
» Formal verification and synthesis

This chapter starts by introducing some of these the proposed advantages of asynchro-
nous logic over synchronous logic. Secondlylescribes some of the basic asynchro-
nous implementation techniques.

The reason why asynchronous logic is of interest in this work is its potential for
improved power diciency The third section covers thegaments for why asynchro-
nous logic may have better powefi@éncy than synchronous logic.

2.1 Asynchronous Logic versus Synchronous Logic

Synchronous designs make use of a global clock signal, distributed to all parts of the
system, to control timing. Communication between blocks is all relative to this clock.
Blocks sample their inputs on an edge of the clock signal, and arrange for their outputs
to be stable on some future edge of the same signal.

In contrast, in an asynchronous design there is no such global signal. Abladier
communication occurs at a local level. When a block wishes to communicate with its
neighbouyit does so by means of some form of local request-acknowledge signalling.

The types of asynchronous circuits discussed here fall into the category of being self-
timed. This means that circuits generate their own timing signals by means of matched
paths and delays. This is one of the weakest forms of asynchronous logic. Other asyn-
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chronous designs make use of stronger methodologies, such as delay-insensitive logic
which does not rely on matched delays. [19] [20]

What advantages does the asynchronous technique have over the synchronous? There
are 4 possible guments in favour of asynchronous design:

» The speed of an asynchronous design is dependent on the time taken in the typical
case, whereas for a synchronous design the speed is always limited by the worst case.

» Asynchronous circuits do not $eif from clock skew and may not $eif from ground
bounce.

» Asynchronous design is easier than synchronous design.
* Asynchronous circuits consume less power than synchronous circuits.

These points are discussed in the following sections.

2.1.1 The Typical-Case / Worst-Case Timing Argument

The clock frequency in a synchronous system has to be slow enough to allow all blocks
to propagate changes from their inputs to their outputs in one clock cycle in all condi-
tions. The worst case will occur for:

* The slowest block.
 Its slowest operation.
* Its worst-case input data.

» Its worst operating conditions (i.e. supply voltage, fabrication speed and tempera-
ture).

In the case of an asynchronous system, the delay from data being read into a block to
data being available on the output is variable and need never be longer than is necessary
It may sometimes be as slow as the synchronous clock period, but for a typical block
doing a typical operation on typical data in typical conditions the delay will be smaller
So an asynchronous system wibically operate faster than a synchronous system.

Designers of synchronous systems go to some lengths to minimise the worst case delay
They apply techniques such as the following:

» The delays in blocks are made as close to equal as possible. This means positioning
the divisions between blocks so that the numbers of levels of logic in each block are
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as close to equal as possible. Synchronous designers try to find the critical path in
their designs and speed it up. This means that even rarely-used pieces of logic have to
be analysed in detail. In asynchronous systems, the governing principle is that “the
typical case must be fast, and the unusual case must be correct”. For example, figure
2.1 shows a pipeline where two alternative blocks B and C can occupy the second
stage. If this pipeline was for a synchronous procetis®rclock would have to be as

slow as the slowest of any of the four blocks. Howgefegran asynchronous proces-

sor, the unusual case where block B is used could be allowed to heaslbanly the

typical case where block C is used needs to be optimised.

Unusual route

@)

DN

Figure 2.1: Hypothetical pipeline arrangement

Typical route

» Techniques are applied to increase the speed of the logic for the worst case data input.
The best example of this is for an adder unit. The simplest construction of an adder
uses ripple carrywhere the carry output of each adder cell is fed to the carry input of
the next most significant cell. This circuit is fast for typical cases where the carry
only has to propagate between a few cells, but in the rare cases where a carry ripples
all the way from one end of the circuit to the othiee circuit is relatively slowin a
synchronous system, the clock speed would have to be adjusted to this worst case. T
avoid this, synchronous designers devise much more complex adder circuits using
techniques such as carry look-ahead, carry skip and carry select [7]. These circuits
are much lager than the simple ripple-carry adder and work little if at all faster for
typical operands. However they do work faster in the worst case, allowing the clock
frequency to be increased. In an asynchronous system, this type of circuit is unneces-
sary In [15], the asynchronous ALU used in the AMULET1 processor is described.
The adder in this design has a worst-case delay that is approximately twice the typi-
cal-case delayHowever the worst-case input data occurs only about 5% of the time.
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* It may seem that there is nothing that a designer can do to make his circuit work bet-
ter in the worst case operating conditions. Howaves possible to redefine what the
worst case operating conditions are. For a synchronous designer there is af trade-of
between what he specifies as acceptable operating conditions and the maximum
clock frequency that he allows. For example, the speed of a circuit decreases with
increasing temperature. A designer may have a choice between specifying that his
design is either “Maximum temperature 50°C, Maximum frequency 30 MHz" or
“Maximum temperature 85°C, Maximum frequency 20 MHz”. He has a similar
choice in the case of operating voltage, and possibly also for process speed. On the
other hand, the asynchronous designer can specify the widest possifitesfar
these parameters, on the understanding that achieved performance will be best in cer-

tain conditionst

For many microprocessor applications, having a performance that is dependent on oper-
ating conditions is acceptable. An example is the personal conwbere users would

be happy to accept improved typical performance with variation depending on operating
conditions. On the other hand, there are application areas where worst case performance
Is the important measure. For example consider a microcontroller in an engine manage-
ment system whose purpose is to collect data from various sensors and operate the spark
plugs at the appropriate times. In this application, it is essential that even in the worst
operating conditions the controller is able to process the input data before the time when
the spark has to be generated. In applications such as this, the benefit of asynchronous
logic is limited.

There may be fewer applications that fall into the same category as the engine controller
than one might think. Although the specifications for most signal processing and real-

time applications include maximum response times and minimum throughputs, this is

just because the specification was drawn up with synchronous implementation in mind.

Here are two examples:

Example 1. A Modem Application

Currently modems operate at fixed data rates, e.g. 9600 bits/second. The controller
inside a modem has to do a significant amount of processing to decode the output bit
stream from the input analogue samples. In a synchronous design, the controller would
be clocked stiiciently fast so that it could do the required processing even for the worst
case input data. In an asynchronous design, at first sight it seems that the “engine con-
troller” situation applies, and that the asynchronous controller has to keep up with the
data rate even in worst case conditions. Howeabés is just a result of the specified

fixed data rate. There is no fundamental reason why modems need to use a fixed data

1. This makes writing data sheets for asynchronous processors a challenging proposition!
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rate. If the modem standard was redefined, the speed could be agreed between the send-
ing and the receiving modems (and continuously adjusted) so that both could keep up
with it.

Consider for example a modem in a battery operated portable conWiithes synchro-
nous controlleras the battery voltage drops the controller will stop workinigh Ah
asynchronous controlleas the battery voltage drops the controller will continue to
function correctly but more slowlyAs it does so the communication speed will drop.
Whilst the battery is fully chged (i.e. in typical conditions) the asynchronous modem

will operate more quickly than the synchronous dé’sign

Example 2: A Compact Disk Player

Consider the data processing in a compact disk playes is a similar problem to the
modem application; the controller has to process the digital data from the disk and gen-
erate an analogue signal. The majority of the processing required is for the error detec-
tion and correction algorithms. Howeyemlike the modem, it is not possible for an
asynchronous design to respond to reduced battery voltage or other adverse conditions
by reducing the throughput, as this would slow the sound output. Instead as an alterna-
tive the controller can reduce the amount of error correction that it carries out, or it can
discard some of the samples.the user of a portable CD play#tis means that as bat-
teries run out, the synchronous design will stop functioning, whereas the asynchronous
design will just lose some sound quality

2.1.2 Clock Skew and Ground Bounce

Two communicating blocks in a synchronous design may see slightyedif versions

of the clock signal. This is because thdet#nt blocks may place unequal loads on it
and the clock distribution tracks may be longer to reach some blocks than others. This is
known as clock skewrlhe result is that some versions of the clock will be changing
before other versions. When one block communicates with another block that has a
slightly earlier version of the clock, it must set up its output signals in time for that early
version of the clock. This means that the actual time available for computation within a
block is less than the period of the clock, as shown in figure 2.2.

1. Provided that other factors such as line bandwidth do not limit the speed.
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Block A’s clock

Block B’s clock

T A
Block A samples Block B samples
its inputs its inputs

wost time

Time available for
computation in block A

Figure 2.2: Clock skew

Synchronous designers do what they can to reduce clock $kesvincludes careful
analysis of the load on the clock signal and careful design of the clock drivers. In the
case of the DEC Alpha 21064 chip [16], the designers published a three-dimensional
figure showing the simulated clock skew across the chip. This proseskmmk driver

uses a tree of five levels of ferfs.

In asynchronous design, the absence of a global clock completely eliminates this design
problem, and also removes the need for a clock driver of the type used in the Alpha
implementation.

In CMOS circuits, almost all power is consumed when switching occurs. In a synchro-
nous design, this switching occurs when the clock switches. The power consumed in a
synchronous design therefore occurs mostly around the clock edges. These peaks of
power consumption lead to voltage drops due to the inductance of the power supply
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Clock — —
Supply Current \
o \ﬁ\ﬁ\ﬁb
Supply Voltage
v. /—L/ /—L/ /—L/ /—\
Figure 2.3: Ground bounce

path. This dect is known as ground bounce, and is illustrated in figure 2.3. This varia-
tion in supply voltage can lead to malfunction if it is too extreme as signals may no
longer represent valid logic levels with respect to the power supply

Synchronous designers try to avoid the problem by reducing the inductance of the power
supply and in the case of the DEC Alpha 21064 chip [16] by constructing power supply
decoupling capacitors on the chip.

In asynchronous circuits, because there is no global clock signal power consumption
will be randomly distributed over time, so typically the spikes shown in figure 2.3 will
not occur However there is a probability that by chance gdarumber of nodes will

change simultaneouslgnd a power sge will occut. This is particularly possible if a
group of connected elements such as adjacent stages in a pipeline operate at close to the
same natural frequency

If a significant suge did occurthe resulting voltage drop may have a less severe impact
on an asynchronous circuit than it would on a synchronous circuit. Provided that the

1. The probability per unit time thatnodes in a circuit oh nodes, changing at random with av-
erage frequency, would change within time t is "C_(fs t)". Because of the factorial nature of

this expression, the chance of all nodes in a circuit switching simultaneously is very low (e.g. of
the order of the age of the universe), but the probability of perhaps 90% of the nodes changing may
be relatively high and should be allowed for. 50% of the hodes may change simultaneously very
frequently.
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supply voltage did not change by more than the transstareshold voltage, the asyn-
chronous circuit would simply slow down briefly but it would continue to behave cor-
rectly. In a synchronous circuit this slowing down would mean that the clock may occur
before the next data was readwd the circuit would fail. In both asynchronous and syn-
chronous cases, if the supply voltage change is too great logic levels will be miss-inter-
preted, causing the circuit to fail.

2.1.3 Ease of Design
Several points have already been mentioned that make asynchronous design easier:

* The speed of infrequently used blocks does rfettbverall speed, so in these cases
costly sophisticated design techniques may be avoided.

» Simpler designs may be used for blocks with data-dependent delays (e.g. the ripple-
carry adder).

* Problems with clock distribution, skew and ground bounce may not exist, so the
designer does not need to spend time resolving them.

The other important reason is that asynchronous design can be more modular than syn-
chronous design.

An asynchronous designer can take a “plug-and-play” approach. Provided each block in
an asynchronous design is internally correct and meets the simple timing constraints of
its external interface (see section 2.2), the design will be correct in terms of timing. The
designer can therefore simply replace one block by another wiénedit characteris-

tics, and evaluate any change in performance. The synchronous designer does not have
this flexibility.

Another way of looking at this is by analogy with high-level languages. The global

clock in a synchronous design is like a global variable in a program. The self-contained
local timing of an asynchronous design is more like the limited scope local variable of a
program. Local variables are considered “better” than global variables in high-level lan-
guage programs because they help to hide information in each function from the others.

The benefit of this modularity may be most significant at the level of systems made up of
large components. For smaller designs, keeping track of the timing in a synchronous
system is not too ditult and the asynchronous advantage may not be significant to the
designer

Another reason why asynchronous logic leads to easier design is the potential for syn-
thesis from high-level descriptionsaNbus research groups have shown that it is possi-
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ble to translate from a high-level description of a system written in a CSP-like language
to an asynchronous circuit. Thanigram language [29] for example is translated into so-
called handshake circuits, which are fplnase asynchronous circuits. It has also been
suggested that the same properties that support automatic synthesis can be used to allow
the automatic verification of designs.

2.2  Micropipelines and Other Styles of Asynchronous Logic

This section introduces some asynchronous design techniques. Firstly the design style
used in the AMULET1 asynchronous processor is explained, and then various alterna-
tives are considered.

In reality all timing styles are instances in a multi-dimensional space; synchronous
design and the style used in AMULET1 are simply points in this space. There are very
many other possibilities.

The technique used in the AMULETL processor is knowmiasopipelines [17]. It
uses two fundamental ideas:

» Two-phase event signals.

* Bundled data.

Two-Phase Event Signalling

Signals in a micropipeline design can be divided into two categories: data signals and
event signals. Event signals control timing, and do so by signalling events. Events are
occurrences at points in time; events have no “duration”.

In the micropipeline design style, events are represented by two-phase transition signal-
ling. Transition signalling means that the events are represented by a transition on the
wire. In two-phase transition signalling, both low-to-high and high-to-low transitions
are meaningful and equivalent (figure 2.4).

— =

Figure 2.4: Two-phase transition signalling
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Contrast the concept of an event signal with a level-sensitive signal. A level-sensitive
signal communicates the state of the driver to the receiver at all times. On the other
hand, an event signal does not communicate any information except when the driver has
changed state. If the receiver of an event signal is “not looking” when the event arrives,
it cannot tell that it has missed the event, as levels have no absolute meaning. On the
other hand, the receiver of a level-sensitive signal can tell the state of the transmitter at
all times.

Various logic gates are used to build circuits that process event signals [17]. Some of
these are shown in figure 2.5.

Exclusive Or. Merges events on the
two inputs to the single output.

Muller C Element. Wait for events on
both inputs, then signal an event on the
output.

@

Toggle. Steer events from the input al-
ternately to the two outputs, starting
— with the one marked with a dot.

TOGGLE
.

2x1 Decision-wait. Wait for an event
Q on the x-axis input and an event on one

of the y-axis inputs, then signal an
event on the corresponding output.

Figure 2.5: Example two-phase event logic elements

Bundled Data

Data in a micropipeline is represented using a normal binary encoding in the same way
that would be used by a synchronous design (this contrasts with the alternative of dual
rail encoding, discussed later). This data is ‘bundled’ along with event signals that indi-
cate its validityNormally there is one event signal in each direction. The signal from the
sender to the receiver is called request and the signal from the receiver to the sender is
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called acknowledge. Contrast the approaches used by the bundled data method and the
synchronous method in figures 2.6 and 2.7.

1. Computation in sending block is
complete and data is ready

2. Data is driven onto the data sig-
nals.

request

data

3. Sending block signals an event acknowledgs
on request. I —

4. When receiving block has used
the data, it signals an event on

acknowledge.
5. Sending block can remove the

data.

request 3
1
data 2: :5
4

acknowledge

Figure 2.6: Micropipeline inter-block communication

A micropipelined circuit typically consists of a number of stages each of which commu-
nicates with its two neighbours using a request-acknowledge protocol. If the problem to
be solved can be represented by a sequence of units with unidirectional communication,
then a micropipelined implementation is simple.

When the problem requires less structured communication, the implementation may
become more ditult. In a clocked system, the progress of data between all blocks is in
lockstep. In an asynchronous system, this lockstep does not occur and blocks do not
know the progress of data through other blocks, so when a rendezvous is required extra
control is needed. As a general rule it is therefore a good idea to avoid structures that
require non-local communication.

Page 35



Asynchronous Logic

1. Calculation in sending bloakust have
completed.

2. Sending block puts data on the data sig- Y
nalty, (set-up time) before clock.

clock

3. Receiving blocknust be ready for new data

data.
4. Clock edge occurs.

5. Sending block can remove data atier
(hold time).

clock

/-b

1 3
2 5

" .

Figure 2.7: Synchronous inter-block communication

There are various alternative asynchronous schemes apart from two-phase event signals
and bundled data. These include:

* Fourphase event signalling.
» Dual-rail encoding.

These two techniques are now considered.

Four-Phase Signalling

Fourphase event signalling is an alternative to two-phase signalling. Unlike two-phase
signalling, the meaning of rising and falling transitions are not the same. An exchange of
data using a request-acknowledge signal pair involves not two transitions burfour

example of this is shown in figure 2.8he reason for this apparent additional complex-
ity in the protocol is that the control circuitry needed can be less complex and/or faster
for the fourphase protocol. The elements shown in figure 2.5 have to respond to both

1. Other arrangements where the data is transferred on other edges of the request and acknowledge
signals are possible.
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rising and falling transitions on their inputs. Corresponding elements for four-phase sig-
nalling only need to respond to one edge, and so may be simpler.

1

o 0N ®WN

Computation in sending block is com-
plete and datais ready.

Datais driven onto the data signals.
Sending block raises request.
Receiving block raises acknowledge.
Sending block lowers request

When receiving block has used the
data, it lowers acknowledge.

Sending block can remove the data.

request

data

>

acknowledge
-

-

3
request
1
2
data :
4
acknowledge

Figure 2.8: Four-phase transition
signalling inter-block communication

Dual Rail Encoding

Dual rail encoding is an aternative representation for data signals. A dual-rail encoded
signal uses two wires to represent each bit of the binary value. One of the wiresis used
to communicate a one and the other is used to communicate a zero.

When dual-rail encoded data is used, thereis no need for an external timing signal such
asthe clock in a synchronous system or the request signal in abundled data system. The
timing data is contained within the data itself. Furthermore, in a multi-bit signal, the dif-

ferent bits can become valid at different times.
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There are two-phase and fepitase versions of dual-rail encoding. In the folbiase
version, the two wires can be decoded to give four possible meanings, as shown in table
2.1.

Zero | One | Meaning
0 0 | Value is not yet computed
0 1 | Valueis One
1 0 | Valueis Zero
1 1 | lllegal

Table 2.1: Four-phase dual-rail encoded data representation

Some sort of acknowledge mechanism is needed to allow the wires to return to the 0,0
state; this can be on a gat or persignal basis.

In the two-phase version, a transition on the zero wire indicates that the value has
become zero and a transition on the one wire indicates that the value has become one.
An acknowledge signal is necessary to indicate to the sending block when it is free to
send another value on the same wire.

There are two particular applications where dual-rail encoding has an advantage over
bundled data:

» Certain control circuits, where the bundled data representation would be internally
converted to dual-rail anyway

» Datapath operations where it is advantageous to start processing before all bits have
arrived.

These two cases are now considered.
Dual Rail Control Circuits

Consider the two-phase bundled data circuit shown in figuile R&e, a one-bit bun-
dled data signal is used to produce an event on one of two output signals

1. The rectangular circuit element in figure 2.9 is a select block [17]. It steers an event on its left-
hand input to one of the right-hand outputs, depending on the state of the boolean input at the top.
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block interface

data
reg in ('_) >
| L
B

Figure 2.9: Bundled data circuit
eliminated by the use of dual-rail signals

In this circuit, if the input was instead represented using dual rail encoding, this circuit
could be entirely removed and the two dual rail wires could be connected in place of the
outputs from the select block, reducing silicon area, power and delay. An example of
this occurs in the AMULET1 processor where the ABORT signal enters the chip as a
dual-rail encoded signal.

Dual Rail Datapath Functions

In many cases, datapath functions must wait for al the input bits to be available before
acting. For example, aregister write operation will alwayswrite al bits at the same time
because the input data has to be synchronised with the register address. If dual rail
encoded data was used in this case, a circuit would be needed to detect that all bits had
arrived; that is, adual-rail to bundled-data converter.

However there is one particular case where dual-rail encoded data demonstrates an
advantage. This draws on ideas from the ALU of the superscalar SuperSparc processor
[38] (which is synchronous).

Consider a circuit that adds three operands A, B and C together in two stages. Figure
2.10 shows the timing of the bundled-data implementation of this circuit.
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A_req—————»—___
A_dat A X_req
A_ack<—> X daa ™ T
B_req————»| ~Xack | B |——»Y_req
B_data— - ~ ———— >V data
B_ack<—/ A l«— Y_ack
C_req -
C_datq /
C_ack-=
A_req
B_req
X_req t
C_req 4 L
Y_req
time taken time taken
by ALU A by ALU B
Figure 2.10: Bundled data pipelined ALUs

In the bundled-data implementation, the request output of the first ALU is connected to
a request input of the second ALU, so the total time taken by the circuit is the sum of the
total time taken by each of the two sub-circuits.

Using a dual-rail encoding for the intermediate signals between the two sub-circuits, a
particular property of the adder circuit can be exploited; this is that the least significant
bits are evaluated before the most significant bits. This is because of the nature of the

carry signals that join the individual bit-wide addefurthermore, the most significant
input bits are not required until the carry signals have propagated to them. Figure 2.1
shows how this can be used. The time saving of this circuit over the one using bundled
data for the intermediate value is equal to the time between the least significant bit of the
output of the ALU becoming valid and the most significant bit becoming valid.

The number of cases where this technique can be applied may be fairly limited, but
where it can be used it may lead to significant performance improvements.

1. This is particularly true in the case of a simple ripple-carry adder, but does also apply to other
more sophisticated adders. See the description of adders for asynchronous designs on page 27.
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X[0]

———» Y_req

—————>V daa

« Y ack

X[31]
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Timefor ALU A Timefol ALU A Time for ALU B to

to compute bit 0  to compute bit 31 compute result once in-
put bit 31 is ready

Y_req

Figure 2.11: Pipelined ALUs using dual-rail encoding

2.3 Asynchronous Logic and Power Efficiency

As has been previoudly stated, in CMOS energy is principaly used when nodes switch
from one voltage level to another. Power consumption is therefore proportional to the
rate of node switching. In fact the equation governing power consumption is:

P = ZCV%n

NI =

Where P isthe power consumption, C isthe average capacitance per node, V isthe sup-
ply voltage, f is the switching rate in transitions per second and n is the number of
nodes.

The use of asynchronous logic leads to lower power consumption because asynchronous
circuits can switch fewer nodes per second with less capacitance than equivalent syn-
chronous ones doing the same task.
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The most important factor leading to this reduced power consumption is the fact that
asynchronous systems can potentially have fewer “wasted” transitions than a synchro-
nous system. This point is considered shofiystly, consider the power used in the
synchronous and asynchronous systems for each transaction.

Transitions Per Cycle

Consider the power used in the iAtdock communication schemes outlined in figures
2.6, 2.7 and 2.8.able 2.2 summarises the number of transitions that occur per cycle in
each of the systems.

System Transitions in control signalsTransitions in data signals
Synchronous clock: 2 Ng
2
Two-phase bundled data request: 1 Na
acknowledge: 1 2
Fourphase bundled data request: 2 na
acknowledge: 2 2
Two-phase dual-rail - n
Fourphase dual-ralil - 2n

Table 2.2: Comparison of design styles by number of transitions per cycle

a. This assumes that on average half of the data signals change per cycle. For some situations
fewer signals will change; for example if the data is the output of a counter on average 2 bits
change. When a preclgad logic system is used, the average value will be doubled.

From table 2.2, the following observations can be drawn:
* When the number of data bitsis very small, dual-rail encoding is advantageous.
» Two-phase transition signalling is more povediicient than fomphase.

* In terms of number of transitions per cycle, no asynchronous design style does better
than clocked design.

Despite the final point above, there are reasons to believe that two-phase bundled data
designs can consume less power than synchronous designs:

* In a synchronous pipeline, two non-overlapping versions of the clock signal may be
distributed, doubling the déctive number of transitions.

1. Some recent published designs do make use of a true single-phase clock. [16] [18]
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* Synchronous designs may even distribute the true and inverse of the clock signal or
signals [6], doubling again thefe€tive number of transitions per cy{:Ie

* Asynchronous designs can have smaller loads on control signals

The basis for the final assertion above is that asynchronous control signals have a more
local distribution than the global clock in a synchronous design. Although there are
more control signals in an asynchronous design, their total capacitive load should be less
than the total capacitive load on a clock signal, because they do not have the overhead of
distribution from a central clock generation circuit

Local communication in an Global clock distribution in a sy

asynchronous system. chronous system. The load on
clock will be greater than the to
load on the asynchronous system’s
cal signals.

Figure 2.12: Load on a clock signal compared
to load on asynchronous control signals

The clock generation circuit typically makes use of a tree of drivers to produce the final
clock signal. Power is also dissipated within this tree.

Asynchronous Designs Have Fewer Wasted Transitions

The most important gument for the reduced power consumption of asynchronous logic
Is that an asynchronous system can respond better to fluctuating levels of processing
demand.

1. It should however be noted that some micropipelined units also distribute or generate locally the
true and complement of the timing signals.
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In all practical designs, there will be sections of the circuit that are not active at certain
times. In asynchronous implementations, these circuits will see no events on their
request inputs and will consume no pawer

In synchronous systems, there are two approaches to this situation:

» The clock to the unused circuit can be disabled. When this is done, no power is con-
sumed. However there are disadvantages resulting from the need to insert a gate
between the global clock and the local gated clock to the block in use. This gate will
introduce a delgycausing clock skew (see section 2.1.2). Adding the gate also adds
to the design size and increases complexity as logic is required to control the input to
the gate.

» The clock to the unused circuit can remain enabled, but a control input is used to indi-
cate that no action should occlr this case, the same power may be consumed as
when the circuit is enabled.

In practice, the use of gated clocks is considered as something of a “black art” by many
synchronous designers; for example, it is not mentioned in two of the standard textbooks
[6] [19]. The natural power saving of asynchronous design is an improvement over the
synchronous approach in this area.

The power saving resulting from the use of asynchronous logic can occur on any scale;
from a gate-by-gate level when particular bits in a signal are not being used, to a block-
by-block level when for example some of a processinctional units are not bydp

the highest level when the processor stops and waits for an interrupt before continuing.
In an asynchronous system this po@ewn occurs quite automatically and instantane-
ously, in contrast to the powalown modes of processors used in portable computers
which require software intervention to enter and are generally less flexible.

2.4  The Disadvantages of Asynchronous Logic

There are certainly some areas in which the synchronous design style has advantages
over the asynchronous. At the low level, limited experience suggests that asynchronous
circuits may be layer and slower than synchronous ones. A a higher level, the non-
deterministic nature of asynchronous design introduces problems such as deadlocking
which are not present in synchronous design. A solution to the problem of the test of
asynchronous circuits has yet to be demonstrated.
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Size and Speed of Control Circuits

Experience with the AMULET1 processor suggests that the use of the micropipelined
design style leads to an increase in the area taken up by the control logic compared with
a synchronous implementation [23]. Possible reasons for this include:

» The asynchronous design process is less mature than the synchronous process. Syn-
chronous designers have the advantage of design tools, standard cells and experience
that has not yet evolved for asynchronous implementations.

» The two-phase event signals used need extra logic to react to both rising and falling
edges, whereas a synchronous system needs to operate on one eddeardg of
four-phase event signalling can help this, but it may lead to an increase in power con-
sumption.

The AMULETL1 control circuits also have lower speed compared to clocked circuits.
This can be attributed to the increase in area and complardyalso to a more funda-
mental aspect of the design style; asynchronous control circuits tend to be more sequen-
tial than synchronous circuits which can be more parallel. Circuit diagrams for event
logic circuits have the appearance of flow charts, where wires communicate events rep-
resenting the flow-of-control within the circuit. At any time only one element is active.
Introducing parallelism into an asynchronous control circuit may involve arbitration,
which is also slow

The crucial design objective must be to reduce the delay through the control circuit to no
more than the delay through the datapath. Datapath design for micropipelines is very
similar to datapath design for synchronous logic as both use a straightforward binary
representation of the data. In the AMULET1 processor the datapath was implemented
using custom cells and hand layout and the control logic used standard cells and auto-
matic layout, yet the speed of operation is limited in most cases by the delays through
the control logic.

There are two ways in which the control delay and the datapath delay can be equalised:
the delay through each stage of the control logic can be reduced, or the delay through
each stage of the datapath can be increased.

Possible ways in which the control logic speed can be increased include:
» The use of fouphase event signalling.
» The use of more sophisticated synthesis procedures.

» The replacement of sequential actions by parallel actions.
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» The reduction of the required complexiby implementing a diérent architecture.

The idea of increasing the delay through the datapath logic is only sensible if it results in
an increase in the functionality per stage. An example of an area where this technique
has been applied is in the AMULEBImultipliet

The AMULET1 multiplier is an asynchronous iterative multipli¢rconsists of a con-
trol circuit and a number of multiplier stages, as shown in figure 2.13.

reg_in . reg_out
L Control logic LSS
ack_in ack_out
- l—————

‘“w T ¢ T A% control signals
Yy \A J

-l

(%]
Q
(@)]
D) 7]

—- =2 = =2 Result
Operands | ® S| p—
0 = Q@
=] o =]
= < =
O

fed-back intermediate resu

Figure 2.13: AMULET1 multiplier construction

The total number of stages that the data needs to pass through is fixed by the width of the
multiplication. However there is a tradd-tketween implementing a small number of
stages and feeding back the intermediate resultga tarmber of times to produce the

final result, and implementing more stages and feeding back the data fewer times. The
trade-of was chosen by implementing enough stages to match the delay through the
stages implemented and the control logic. The number chosen was 3.

Adding more stages would be a waste of silicon, as it would perform no faster than the 3
stage solution. Having fewer stages would reduce the silicon area, but the critical path
would then be through the control logic.
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It should be possible to implement the idea used here in other aneagpplications
are immediately apparent:

 The number of pipeline stages in the datapath can be reduced, but to maintain
throughput extra parallel datapaths can be added (i.e. multiple functional units).

» The rate of data transfer in, for example, the instruction fetch mechanism can be
reduced, but the width of the buses can be increased to yield the same throughput.

Interestingly the agument that speed should be reduced and parallelism should be
increased was proposed in section 1.2 to allow a reduction of operating voltage and
hence an increase in powefi@ency The limit on the success of this approach is deter-
mined by the amount of parallelism that can be exploited successfully

Deadlocks

As with systems of communicating processes, micropipelined units can enter a state of
deadlock where all units are waiting for some other unit to act before continuing. In the
design of the AMULET1 processaseveral interesting and not immediately obvious
potential deadlocks were discovered. It is hoped that some mathematical formal tech-
niques may be possible to detect or avoid the possibility of deadlock at a high level in
the design process, but at present no such technique is known.

Test

The action of an asynchronous system is inherently non-deterministic. The presence of
arbiter circuits means that for a particular series of inputs there may be more than one
acceptable series of outputs. The conventional approach to synchronous test where val-
ues are applied to inputs and then the outputs are compared with the expected outputs is
clearly not applicable.

Furthermore, in an asynchronous circuit response time is variable. The problem of
detecting a fault which leads to an increased delay in the chip is practically insoluble.
However the problems of test are being addressed.

2.5 Conclusions

This chapter has given an outline of the asynchronous design style used in the AMU-
LET1 processgrand has explained some of its strengths and weaknesses. Importantly
the use of asynchronous logic has some potential benefit for power consumption.
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The following chapter looks at the question of processor architectures for asynchronous
implementation. @ exploit the power étiency potential of asynchronous logic, it is
first necessary to have an architecture that suits asynchronous implementation.
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Chapter 3: The Architecture of
Asynchronous
Processors

The previous chapter introduced asynchronous logic, and compared its properties with
synchronous logic which has previously been used to implement processors. This chap-
ter investigates the influence of the use of asynchronous logic on the architecture to be
implemented.

Processor architecture has evolved to its current state through experience with synchro-
nous implementations. Some features of current synchronous processor architectures
can be attributed directly to properties of synchronous logic. For example, one of the
arguments of the RISC approach is that complex instructions that slow down the cycle
time should be removed from the architecture. As has been shown an asynchronous
architecture can be tolerant of variable latency functional units, so this architectural
principle need not be applied.

This chapter considers theganisation of a processor in terms of the properties of asyn-
chronous logic, in order to identify those features that are more or less suitable for an
asynchronous implementation. The basis for this analysis is the AMULET1 processor
which is an asynchronous implementation of the ARM architecture [15] [21] [22] [23].
This chapter looks at various architectural ideas and concludes with a summary of fea-
tures that are most suitable for asynchronous implementation.

The ARM architecture has previously been implemented in a family of synchronous
processors. Its principle features are summarised in figure 3.1.

The AMULET1 processor was implemented using the “Micropipelines” asynchronous
design style (see section 2.2). The objective was to show that possibilities exist for
improved power diciency and performance resulting from asynchronous implementa-
tion.

The ARM architecture was chosen for the AMULET1 implementation to show that
asynchronous techniques can be applied to a complex and successful existing design.
Other asynchronous processor implementations have chosen simpler architectures omit-
ting important features such as pipelining and exceptions [24] [25].
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» Fixed length 32-bit instructions.
» 15 general purpose registers.

* Full set of standard 32-bit integer arithmetic and logical instru¢:
tions including multiply

» Arithmetic and logical instructions include an optional shift of
one of the operands, allowing up to 3 source operands per inst
tion.

* Only load and store instructions access memory

. 16N register stores the program counterd can be used as
source or destination by nearly all instructions.

* Load and store have optional address pre- and post-increment
and decrementing.

» Load and store multiple instructions transfer any subset of the
registers to or from memary

» All instructions may be conditional on the condition codes.

» Precise exceptions including data abort on load and store.

Figure 3.1: ARM architecture features

Because the ARM instruction set was originally designed with synchronous implemen-
tation in mind, it can be expected that some features would not suit an asynchronous
implementation as well as a synchronous implementation.

3.1 Data Dependencies

The basic ayanisation of a simple asynchronous procésstatapath pipeline is shown
in figure 3.2. This shows a pipeline which has the following properties:

* Instructions are issued and complete strictly in order
» All input state (operand registers) is read at the same time.
» All result state (destination registers) is written at the same time.

This simple pipeline is relatively straightforward anficegnt to implement as a micro-
pipeline.
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Figure 3.2: A simple processor datapath pipeline

There are however many features of the ARM instruction set which require a more com-
plex structure for the AMULET1 process@imilar features also exist in most or all

synchronous architectures. The first of these features, data dependencies, is how consid-
ered.

Consider the following instruction sequence:

R3:= R + Rl
R5 := R3 + R4

In the normal interpretation of this instruction sequence, the value read from R3 by the
second instruction is the value written by the first instruction. However in a pipelined
processor (synchronous or asynchronous), because of the overlap of instructions the
value is not written to the register by the first instruction until after the second instruc-
tion has read it. This would result in the second instruction getting an old value.

Various techniques have been used to overcome or avoid this problem:

* Do not have pipelining in the execute unit. This is adopted by current implementa-
tions of the synchronous ARM processBuch an approach may lead to low per-
formance however if the pipeline throughput is limited by this stage. This is the ideal
solution if it provides the necessary performance as no extra control logic is required,
but most synchronous processors find that it does not provide enough performance.
Section 2.4 suggests that for a micropipelined implementation it may be appropriate

to have fewer levels of pipelining and greater parallelism, so this may be a good
choice.

» Define the semantics of the instructions so that the result of an instruction is not
available to then following instructions, where is the number of pipeline stages
between register reading a writing. It is necessary to have the compiler interleave
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instructions as much as possible and insert NOP instructions where nedéstary
tunately it is often not possible to order the instructions avoiding NOPs because very

many instructions wish to use the result of the previous instrdcsorthis approach
leads to indfciency and low code densitlf was used by the original MIPS architec-
ture in the case of load instructions grdyt this was dropped in later versions [7]. In
the case of an asynchronous processor the number of following instructiere
variable depending on how full or empty the pipeline happens to be, so implementing
this scheme is virtually impossible.

» Limit the issue of instructions so that following instructions wait for preceding ones,
on which they are dependent, to complete. This requires extra logic in the instruction
issue stage that compares the register numbers of source operands with the register
numbers of the destination operands of outstanding instructions. This is the approach
used in the AMULET1 processor; the register lock fifo [22] keeps track of which reg-
isters will be written to by outstanding instructions, and following instructions are not
allowed to read their source registers until outstanding writes to those registers have
occured. This scheme has the disadvantage that when adjacent instructions are
dependent on each othéne pipeline will contain only one instruction at a time,
resulting in reduced throughput. Compiler optimisations can be applied to interleave
instructions as much as possible, but there is a limit on Hewatigk this can be. This
is recognised as a problem with the AMULET1 processor

* Modify the pipeline to insert forwarding paths. These are buses that connect the out-
put of the ALU to the inputs of earlier stages in the pipeline, so that results can be
forwarded to following instructions that want them. This technique is used by many
synchronous processors. In a synchronous pipeline all pipeline stages produce their
outputs simultaneoushand only multiplexers are required at the inputs to stages (fig-
ure 3.3). In the case of an asynchronous pipeline, there is a problem because the out-
puts are produced with no fixed timing relationship to each.dtheould be very
difficult for the control logic to tell what data should be forwarded from what stage to
what other stage, and synchronisation would be required at the input to each stage.

In all cases, it is harder for an asynchronous processor to deal with data dependencies
than for a synchronous oneo Bupport dfcient asynchronous implementation, the
instruction set architecture should allow the compiler to schedule instructions with the
minimum of data dependencieso To this, the compiler must interleave multiple
threads of execution.

Figure 3.4 shows how a program can be re-arranged to remove some dependencies.
However code that is regainised in this way will tend to need more registers for tempo-

1. See the measurements of last-result use in section B.2.
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Figure 3.3: Forwarding pathsin a synchronous pipeline

a=b+c+d+e+f +g

a=b+c a=b+c
a=a+d x=d+e
a=a+e y=f +g
a=a+f Z=a+x
a=a+g azy+z

No temporary registers. Three temporary registers. Only
All instructions are de- one instruction is dependent on the
pendent on the previous previous instruction; average de-
instruction. pendency length is 2 instructions.

Figure 3.4: Trade-off between number of registers
and data dependencies

rary local variables. This suggests that to minimise data dependencies, an instruction set
should have a generous number of general purpose registers. The ARM architecture has
15 general purpose registers; most other RISC processors have 31 or 32.

Another factor limiting the amount of interleaving that the compiler is able to do is the
use of shared processor resources such as condition codes (figure 3.5). Architectures
such as the Alpha and the MIPS, that can test the value in any register to evaluate a con-
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dition, or the Sparc V9 architecture, which has multiple condition code registers, are
advantageous here.

if (a>b) a++;
if (c>d) c++;

CWP a, b CW a,b -> CC1
if_greater INCa) CW c,d -> CC2

Cw c,d ) if _greater(CCl) INC a
if_greater INC c if_greater(CC2) INC c
One condition code register. Multiple condition code registers.
The instructions cannot be Interleaving results in longer data
interleaved. dependencies.

Figure 3.5: Impact of a contended resource
(condition codes) on data dependencies

Perhaps the most important shared resource that limits the number of threads that the
compiler can generate is the program counter; instructions can be interleaved only in
sequential code between branch instructions, because the non-branching threads must
continue to execute whether the branch is taken or not. To overcome this problem
requires aradical shift in the processing model from a sequentia instruction stream to a
set of parallel instruction streams. Thisideais not explored further.

3.2 Order of Completion and Precise / Imprecise Exceptions

In the smple pipeline model, the instructions all follow the same path, take approxi-
mately the same time to execute and complete in the same order that they were issued.
In a rea pipeline this is unrealistic because different instructions will take different
amounts of time to complete.

Examples of slower instructions are the complex arithmetic instructions such as multi-
ply. In an asynchronous processor it is reasonable to have such instructions because the
pipeline speed is not limited by these slow instructions in the typical case - see section
2.1.1.

The most important slow instruction is the load instruction. Load takes longer than the
simple arithmetic operations because cal culating the address will take aslong as an ordi-
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nary addition, and this is followed by an access to the data menmane are two ways
in which a pipeline can deal with this increased latency:

* In-order completion. Non-load instructions wait behind any load instructions and
instructions complete in the same order that they were issued. A pipeline arrange-
ment for in-order completion is shown in figure 3.6.

» Out-of-order completion. Faster non-load instructions may overtake any load instruc-
tions that are accessing the memory and complete before them. This is shown in fig-
ure 3.7.

Data memory

parallel
Registers S pipeline for Registers
(read) « ALU other —> (write)

\VARRVA |
\VARRVA |

instructions ‘

A
A
A
A

Figure 3.6: Pipeline arrangement for in-order completion

For out-of-order completion in an asynchronous processoarbiter is used to ngs
the load results and the non-load results before register write occurs. In a synchronous
processqrone scheme is to add an extra write port to the register bank.

Out-of-order completion is an attractive idea because it gives non-load instructions a
lower latency through the pipeline. This means that subsequent instructions that are
dependent on these instructions can be issued sooner

However there is a disadvantage to out-of-order completion. Sometimes it is necessary
to cancel an instruction due to some sort of exception; for example a load operation may
cause a protection violation. In the case of in-order completion, when this occurs it is a
relatively simple matter to cause the faulting instruction and any following instructions
that have been issued to be cancelled. When out-of-order completion is used, the
instruction following the load may already have completed by the time the load fault is
signalled, and it is too late to cancel it. This is &dift problem on a synchronous proc-
essof but it is even more complex on an asynchronous processor as the relative timing
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Figure 3.7: Pipeline arrangement for out-of-order completion

of the fault signal and the progress of the following instructions may be non-determinis-
tic.

The ARM architecture specifies that exceptions must be precise; that is when an excep-
tion occurs the processor state must not advance beyond the instruction that causes the
exception. This makes out-of-order completiofficlit to implement.

The alternative to precise exceptions is to have imprecise exceptions, where processor
state is allowed to advance to some extent after an exception. The DEC Alpha architec-
ture [26] uses an imprecise exception model to deal with arithmetic exceptions, because
these events are typically either ignored or signal an.@emause it is not generally
necessary to restart after an arithmetic exception they can be made imprecise to allow
out-of-order completion of these instructions. When tliecebf precise exceptions is
required, the Alpha architecture provides ‘barrier instructions’ which wait for any poten-
tially-faulting outstanding instructions to complete.

In the case of load instructions, it may or may not be necessary for the process to be
restartable after an exception. In the case of the Alpha architecture, an exception may
indicate that the required memory access cannot be dealt with until a page has been
brought in from a swap disk. This implies that code must be restartable so the Alpha

implements precise load exceptions.

In a system which uses hardware to deal with MMU translatidietbmisse$ and does
not store unused memory pages on disk, the only reason for an exception during a load
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operation is a memory error or a protection violation. Such a situation may exist on a
portable system with no disk storage. In this case, a load exception always indicates an
error and it may be acceptable to the operating system for theisibée part of the
processor state to become undefined when it occurs. This allows the use of imprecise
load exceptions.

A trade-of between in-order completion with precise exceptions and out-of-order com-
pletion with imprecise exceptions is to have in-order execution up to a point where
instructions commit to completing without fault. Beyond this point, completion can be
out-of-order This is the scheme used in the AMULET1 procesHwe instructions after

a load are not allowed to pass beyond the ALU to the register write stage until the pre-
ceding load has committed to completing without fault.

For this scheme to workfefiently, the load instruction must typically commit to com-
pleting correctly quicklyThis suggests the use of a translation cache (TLB) closely cou-
pled to the ALU.

3.3 State Changing Actions

In the simple pipeline model, each instruction reads all its input state as it is issued and
changes all its result state as it completes. This arrangement fits well with the simple
pipeline described. However in the ARM instruction set there are various instructions

that make multiple changes to the result state.

All single load and store instructions can optionally write a modified value back to their
base registerThis mechanism is used to implement stacks and other structures. Most
other RISC architectures do not have this facility

On the synchronous ARM, this base-register write-back occurs ‘for free’ during a cycle
when the register write port would otherwise be idle. In an asynchronous implementa-
tion it is not as easyfhe AMULET1 processor implements this by changing the single
‘bubble’ instruction into multiple ‘bubbles’, one for each of the writes, in mid-pipeline.
This causes more complexity in the pipeline control logic.

The other group of instructions that are converted into multiple ‘bubbles’ and change
multiple registers is the load and store multiple instructions. The control logic becomes
more complicated when combined with the problems of dealing with precise exceptions,
described previously

1. This is known as table walking. The alternative is to cause an exception when the translation
buffer misses and to use software to perform the translation.
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As an illustration of the problem with these complex instructions, in the AMULET1
processagra load multiple of less than about 4 registers is slower than an equivalent
sequence of single-register loads.

The result of this complication is an increase in the amount of control logic required,
and an increase in the delay through this control logic, leading to lower performance and
lower power diciency for all instructions. This suggests that the philosophy of remov-

INng unnecessary instructions is at least as appropriate for an asynchronous processor as it
is for a synchronous one.

34 Condition Codes and Conditional Instructions

Like other architectures the ARM processor has a condition code registeflags in
this register are optionally set by all arithmetic and logical instructions.

Unlike other architectures, all ARM instructions can be executed conditionally on the
basis of the condition codes; that is, all instructions contain &bfofield indicating a
condition such as ‘less-than’, ‘not-equal’, ‘always’ which must be true for the instruc-
tion to execute. In most architectures, only branch instructions can be conditional in this
way.

The synchronous implementations of the ARM have a non-pipelined execute stage, so at
the end of one instructiohdecode stage the value of the condition codes resulting from
the previous instruction is known. This allows an instruction to set the condition codes
and for the following instruction to test them without any delay

In the AMULETL1 processothe execute stage is an asynchronous pipeline. The condi-
tion codes are stored in the ALU, where they are generated. There are then two choices
of how to implement conditional instructions:

* Instructions whose condition code is other than ‘always’ are delayed at the issue
stage until any preceding instruction that may set the condition codes has done so. If
the condition code fails, the instruction is discarded. This is simple to implement but
reduces performance, as it is common for instructions to test the condition codes
immediately after they have been set. This is the data dependency problem; see figure
3.5.

» All instructions are issued immediately and the condition codes are tested before the
instruction completes. If the condition codes fail, the result is not written to the regis-
ters. This is more complex to implement because the control for this function has to
interact with the control for instructions that make multiple changes to the result
state, as described above. It also has a performance impact as instructions whose con-
dition codes have failed stay in the pipeline, slowing down following instructions,
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until they are removed at completion; for example a non-executed multiply instruc-
tion will be executed, taking non-trivial time, before its result is thrown away

The AMULETL1 processor implements a scheme that is a combination of the above.
Most instructions have their condition codes tested as they leave the ALU, but the load
and store multiple instructions are treated speci@lis can only add to the complexity

of the control logic.

It is possible that much of the benefit of the conditional instructions could be obtained
from only conditional branches and conditional moves - the only instructions that are
made conditional in any other architecture. This limited conditionality is simpler to
implement than making all instructions conditional. The implementation of conditional
branches is considered in the next section. Conditional moves can be implemented very
simply in the ALU as it is not necessary to cancel the instruction if the condition fails;
the old value is simply written back.

35 Branches and Flow-of-Control

In the ARM architecture, register 15 is the program coutitezan be read by any
instruction just like any other regist@nd can also be written to which causes a branch
to occur The most useful application of this function is to perform procedure entry and
exit using the load and store multiple instructions.

This free availability of the program counter is relatively simple to implement in the
synchronous ARM. This is because the main datapath ALU is used to perform branch
calculations, and so the program counter has to be available at the input to the ALU.

Because of the fixed relationship between the pipeline stages in the synchronous proces-
sor, whenever a program reads from R15 it gets the address of the instruction currently
being read from memory; as there are three pipeline stages it will be PC+8. In the asyn-
chronous processahere is no such fixed relationship, and the AMULET1 has to use a
‘PC pipeline’ to feed PC+8 values to the register bank where they are substituted if R15
IS read.

Figure 3.8 shows the synchronous ARM procéssmganisation. The program counter

is closely coupled to the register bank. This is useful for a synchronous processor that
has a single memory port. Some implementations of the ARM processor have no cache
and so a single memory port is essential. However most processors now implement sep-
arate caches for data and instructions, and give the processor core two memory ports.
This helps to remove the potential bottle-neck caused at the prooemsary inter-

face!, and allows load and store instructions potentially to execute in a single cycle.

1. In a synchronous processor, the cycle time is likely to be limited by the speed of the cache [28].
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The use of separate memory ports for data and instructions leads to the idea of a remote
program counter (figure 3.9). This is a unit that generates sequential memory addresses
and feeds them to the instruction memdriye datapath is still responsible for executing
branch instructions and the main ALU is used for this purpose.

As was observed in the last chaptaicropipelines are most suited to systems where
communication is by means of regular unidirectional paths without global communica-
tion. This makes the idea of a remote program counter attractive as it has more regular
communication than the ARM ganisation. This model is somewhat at odds with the
idea of making the program counter available as a general register

A continuation of the remote program counter idea is a remote branch unit (figure 3.10).

In this scheme, branch instructions are interpreted locally to the program camater

are not passed down the pipeline to the execution unit. This is attractive in an asynchro-
nous implementation because the elastic pipelines mean that the datapath can make use
of the extra bandwidth obtained from not having to perform branch calculations. Fur-
thermore, the reduced amount of communication between the datapath and the instruc-
tion fetch (which are operating with no fixed timing relationship) means that the control
overhead is reduced.

instructions
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+ decoded instructions
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REG Y
Q > addresses
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EZ > MEM
£ 8| branch taget ALU
© addresses ]
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Figure 3.8: Processor arrangement for ARM-style branches

One feature that does require communication between a remote branch unit and the
datapath is the resolution of conditional branches (this is not shown in figure 3.10).
There are various models for branch conditions which work more or less well with a
remote branch unit:
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Figure 3.10: Processor arrangement for remote branch unit

Condition codes. @ use condition codes, the branch unit has to know when the last

instruction that was going to change the condition codes has completed, and it then
has to be able to test the value of the condition codes. This makes it important that
instructions that can set the condition codes are easily identifiable. In the ARM archi-
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tecture, all arithmetic and logical operations can potentially set the condition codes,

but in practice in the majority of cases only the compare instructions are so used.

Because the branch unit would have to track the progress of instructions that may set
the condition codes, their use is unattractive.

» Specify the comparison or test in the branch instruction. This is the approach used in
the MIPS and Alpha architectures [7] [26]. In a remote branch unit scheme, the com-
parison to be computed would be passed to the execute unit like any other instruction,
but with the destination set as ‘branch unit’. The branch unit would then wait for the
result of the comparison.

* An alternative idea which suits asynchronous implementation is to connect the output
of the ALU to the branch unit by means of a micropipeline. Compare instructions
complete by writing a boolean value into this pipeline. A subsequent branch instruc-
tion reads the first value from the pipeline to determine whether it is taken or not.

The last of these ideas appears the most attractive, because it allows the branch condi-
tion to be sent to the branch unit as soon as it is computed. The first two schemes would
lead to greater latencyhe last idea does have its disadvantages; in particular it is possi-
ble that a branch instruction may be executed when no previous compare instruction has
been fetched. In this case the processor could enter a state of deadlock. It is however
possible to detect this condition.

Branch instructions are very frequent and their performance is important; however the
time taken to resolve the direction of a conditional branch candee Rrocessors try to
overcome this latency by employing speculative execution. Instructions are specula-
tively executed in the hope that they are the right ones; when the branch is resolved they
may be cancelled. In a synchronous pipeline where the relationship between pipeline
stages is fixed, it is relatively simple for a controller to know which pipeline stages con-
tain instructions that need to be cancelled. In the case of an asynchronous pipeline where
there is no fixed relationship, this is more complicated. It compares with the problem of
cancelling instructions in a precise exception system after an exception. It is attractive
therefore to consider not implementing speculative execution in an asynchronous sys-
tem.

Speculative execution is also unfavourable from the point of view of power consump-
tion, as doing work that is not ultimately productive is wasteful.

If speculative execution is not implemented, it is even more important that branch
instructions execute as quickly as pos§1’bTEhis suggests that a simple set of branch

1. Note that branch prediction outside the branch unit is still possible - it is only speculative exe-
cution within the execution unit that is discouraged.
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instructions is preferable to the ARM instruction set where any arithmetic or logical or
load instruction can write its result to the program counter

3.6 Conclusions

This chapter has looked at the asynchronous implementation of architectural features
including the following:

» Data dependencies, forwarding and its alternatives.
» Exception models and order of completion.
* Branch mechanisms and condition codes.

Features that have been identified as preferable for asynchronous implementation
include the following:

 ltis likely that data dependencies between instructions will slow the processor down.
The compiler can reduce the impact of thie@f by interleaving small groups of
unrelated instructions.oldo this, the processor will need enough registers to support
more than one threaitemporary storage.

» Also to aid threading, the number of shared resources needed must be minimised.
This suggests using multiple condition code registers or having no condition code
register and using general registers to store condition values.

» Allow the most relaxed exception model possible, so that out-of-order completion
can be used. This means that if a particular exception doesd to be recovered
from, it shouldnt be necessary to preserve the process state. If exceptions sometimes
need to be recovered from and sometimestdbmhay be worthwhile indicating
whether a precise or imprecise exception should be generated using an instruction bit
or a status register flag.

» Avoid instructions that disrupt the pipelinganisation by executing multiple cycles
or by requiring global communication, as these instructions will complicate and
hence slow down the control of the pipeline.

» Define a set of branch instructions that can be executed by a remote branch unit; this
means that a minimum of interaction between the branch unit and the datapath should
be required, and that the instructions should be easily decodable by the branch unit.

» Define a conditional branch mechanism that suits the idea of a micropipelined remote
branch unit. One possible scheme is to implement a fifo between the comparison out-
put of the ALU and the branch unit to communicate the result of branch instructions.
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With these observations made, the following two chapters go on to look at other aspects
of processor architecture that lead directly to increased pofigerety In Chapter 6

these ideas are revisited in order to define a general set of features for -&ffio\wat
processor architecture.
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Chapter 4 . Architectural Factors
Influencing Power
Efficiency

The previous two chapters have explored one way in which architectural choices can
affect power diciency: by incorporating certain features in the architecture, an asyn-
chronous implementation is possible, and the use of asynchronous logic may give
increased power &fiency This chapter will consider other aspects of processor archi-
tectures and will show how they influence powdéicieincy

This chapter starts by investigating where the power consumption in a computer system
occurs, and determines what factorieetfthe scale of the power consumption. These
factors are then related to architectural features.

Figure 4.1 illustrates one possible arrangement of the components of a computer system.
This shows the memory systems for instructions and data, the instruction sequencing
and decoding blocks and the register bank and ALU where the computations are carried
out.

All blocks consume powefrhe amount of power consumed by a block depends on the
rate at which it carries out its operations and by the amount of internal work that it needs
to do for each of those operations. The powkciehcy of a block can be increased by
decreasing the number of actions that it needs to carry out per unit of computation or by
reducing the amount of work that it needs to do for each of those actions.

In the following section, each of the blocks shown in figure 4.1 will be considered from
this perspective. The power consumption will be discussed in terms of the characteris-
tics of the blocks and their throughput. Once each block has been discussed, the archi-
tectural factors that have been considered are summarised.

In section 4.3 the most important architectural factor identified, code desstydied
in more detail.
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4.1 Power Consumption Block-by-Block

4.1.1 Main Memory

The power consumed by the main memory is proportional to the number of read and
write operations that it has to carry out per second and to the number of bits read or writ-
ten by each of those operations.

Because the main memory is not on the same chip as the proéessach access the
processor has to drive PCB tracks. The load of a PCB track is considerably greater than

the load of a track within the processor ¢higp the power dissipated by a main memory
access is greater than the power dissipated by an internal operation. It is therefore pref-
erable to access internal memory whenever possijbécdlly accessing main memory

is also slower than accessing internal memsoyfor performance reasons it is also
desirable to reduce the frequency of main memory accesses.

The frequency of main memory accesses depends on the following factors:
» The rate at which instruction fetches occur
» The rate at which load and store operations occur

» The proportion of instruction fetches and loads and stores that result in a main mem-
ory access.

Instruction fetches and load operations result in a main memory access when the
required data cannot be found in the internal cache. The proportion of the time when this
occurs depends on the size andamisation of the cache and on the behaviour of the
program. A lage cache or a small working set will give a low cache miss rate, and hence
high power diciency.

The efect of increasing cache size on power consumption is one of diminishing returns.

Even an infinitely lage cache will miss sometinfeand a main memory access will
result. There is a tradefdfetween the cost of a tgr cache and the powefieiency
and performance improvements that result.

1. An approximate values for the capacitance of a track on a chip connecting a processor core to
its cache is around 0.5 pF, whereas the combined capacitance of pads, packages and a PCB track
connecting two physically close chips is approximately 15 pF. This indicates a thirty-fold differ-
ence.

2. Because of conflicts between different addresses for the same cache location, and because of
loads after cache flushing.
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Reducing the size of the programworking set means increasing the instructiors set’
code densityor applying highefevel modifications to the program to reduce the
number of instructions executed.

The proportion of store operations that result in a main memory access is a function of
the write policy in use. If a write-through cache or a writddsu$ used, all write opera-

tions cause a main memory access. If a copy-back cache is used, write operations only
cause a main memory access when the cache entry has to be copied back to the main
memory With a lage write-through cache the majority of main memory accesses are
likely to be writes, so changing to a copy back cache will lead to a significant improve-
ment in power diciency.

A reduction in the number of load and store operations can be obtained by increasing the
processads number of registers. M more registers, the program will need to use main
memory to store values less often.

A reduction in the rate of instruction fetches can be obtained by increasing the proces-
sor's code densityVith a higher code densjtthe processor can do more computational
work using the same number of instruction fetches.

4.1.2 Caches

Caches carry out two basic operations: they are accessed by the processor core, and they
are loaded from the main memorhe frequency with which they are loaded is the
same as the frequency with which the main memory is accessed as discussed in the pre-
vious section, and the power used is proportional to the same factors.

Accessing the cache involves two operations:

* A content-addressable memory or an address tag RAM is used to find which cache
line contains the required data (or if it is not present).

* The data is read from or written to the selected line of the data RAM.

The frequency of the look-up operation can be reduced by exploiting the sequentiality of
accesses. Between branches, instructions come from sequential addresses. Caches are
organised into lines storing sequential addresses. So it is necessary to access the address
store only when a branch instruction is executed or when the end of a cache line is
reached. The power consumed can therefore be reduced by increasing the line size and
by reducing the frequency of branch instructions.
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Increasing the line size has the disadvantage of potentially reducindettterehess of
the cache, as ‘dead areas’ can occur at the ends of lines after branch instructions. Com-
piler techniques can reduce thifeet by suitable code ordering [26].

The power used when the cache RAM is accessed depends on the frequency of the
accesses, the number of bits read or written in each access, and gyeusadrby each
bit read or written.

In the case of instruction fetch accesses, the number of bits accessed per unit of compu-
tation depends on the code densihcreasing the code density will therefore lead to
greater power @tiency

In the case of load and store accesses, a reduction in the frequency of load and store
operations will increase powerfiefency Also, a reduction in the number of bits in a

load or store will increase powerfiefency. On processors with 32 bit registers, it is
common to load and store variables whose values are known to cover only a small range
in 32 bit words. This is inétient from the point of view of power consumption.

The enegy used by each bit read or written depends on the size of the cachgelA lar
cache will have longer tracks running through it, which will havgelacapacitance.
The enggy used is proportional to the capacitance, so theygnesed per access is pro-
portional to the cache size.

There is therefore a conflict between increasing the cache size, which increases power
consumption in the cache and reduces power consumption in the main mantbry
reducing the cache size which reduces the power consumption in the cache and
increases the power consumption in the main meniwwer used per access will be
larger for the main memoygo the balance will tend to favour ager cache.

Adding an intermediate second-level cache between a small low-power primary cache
and the main memory may be the best solution, as this will minimise power consump-
tion in the primary cache and in the main memBgrhaps even a g number of small
caches, each activated only when the previous level misses.

The idea of multiple levels of cache is particularly attractive in the context of asynchro-
nous implementation, as an asynchronous processor can tolerate a wide variation in
access time in a way that a synchronous processor cannot. In a synchronous processor
the access time has to be an integer number of clock cycles. In an asynchronous system,
an arbitrary time can elapse between request and acknowledge signals.
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4.1.3 Memory Management

The power used by the MMUs depends on their frequency of use and their complexity
The frequency of use depends on the frequency of instruction fetches and loads and
stores, and on the proportion of these addresses that need to be translated.

The frequency of instruction fetch and load and store operations has been mentioned
before and is dependent on the code density and the number of registers.

There are two ways in which the proportion of addresses that needs to be translated can
be reduced:

« The same sequentiality garments as were mentioned above for caches can be
applied, and an instruction fetch address translation is only performed when a branch
instruction is executed, or when a page boundary is crossed.

» The position of the MMU with respect to the cache can be changed. If the cache
stores virtual addresses, the MMU only needs to be used when the cache misses. This
has the disadvantage that when the virtual-to-physical address mapping changes, the
cache has to be flushed. The other practical disadvantage of a virtual cache is that the
time between a memory access being initiated and its success being confirmed is
increased, because the address translation does not occur until after the virtual cache
has been searched. If a hierarchy of caches is used (as discussed above), the address
translation may occur at some point within the hierarchy

The power used by the MMU for each translation depends on whether the translation
required is present in the translation cache. Like the main cache, the picienaf of
the translation cache can be increased by using multiple levels of caching. This tech-
nique is used for the purpose of power saving in the MIPS R4200 processor [30].

The power used when a TLB miss occurs can be significant if software is used to find
the necessary translation, as the software handler can execugge auarber of instruc-
tions. If hardware is used to load a new translation from a table in memang silicon

area is required for the memory management unit but less power is dissipated.

4.1.4 Datapath

The processos datapath consists of the register bank, ALU and associated logic. The
power consumed here per unit of computation depends on the number of operations
needed per unit of computation and on the power consumed for each of those opera-
tions.
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There are various factors that the instruction set architecture controls that determine how
much power is consumed:

* The number of registers.
» The complexity of the functional units.
* The width of the datapath.

Having a lager number of registers or more complex functional units will increase the
length of the datapath. This will lead to increased capacitance and hengen@daver
consumption per operation.

On the other hand, having more registers reduces the number of load and store opera-
tions that are required, which saves powtaving functional units that are capable of
complex operations replacing a number of simple operations gives a reduction in the
total number of instructions required. For example, removing the multiply instruction
will reduce the capacitance of the datapath but every multiply instruction has to be
replaced by a sequence of add and shift instructions.

Using a wide (e.g. 32 bit) datapath to carry out operations on narrow (e.g. 8 bit) oper-
ands is indfcient because the remaining width of the datapath consumegy evidrout

doing any useful computational work. On the other hand having a narrow datapath
means that when wide operands are being used a sequence of instructions is required.

Various architectural features can be implemented to increasditieney of wide and
narrow operations.

With a narrow datapath:

» Add-with-carry instructions make the implementation of wider arithmetic e&sier
example, the MIPS R3000 and the ARM architectures both have 32 bit datapaths.
The MIPS architecture has no add-with-carry instruction and performing a 64 bit
addition requires 5 instructions. The ARM architecture does have add-with-carry and
the 64 bit addition takes only 2 instructions.

» Wide arithmetic instructions can be implemented using a single multi-cycle instruc-
tion. This technique is common in small 8 bit microprocessors which are able to carry
out 16 bit arithmetic on pairs of registers. It is also used in the floating point units of
some processors.

With a wide datapath:
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 Instructions can be provided to carry out narrower operations that activate only a por-
tion of the datapath. This facility is provided in the 68000 processor family

» It is possible to operate on multiple narrow operands at the same time. This is possi-
ble on any processor if the compiler is good enough for move and logical operations,
but the behaviour of carries means that it cannot be used for arithmetic operations.
The DEC Alpha architecture implements some interesting instructions for processing
8 8-bit operands simultaneously in one 64-bit word, including an 8-byte parallel com-
pare operation.

An architecture for low power consumption should include one of these features to
increase the powerfefiency of its datapath.

4.1.5 Instruction Decoding and Sequencing

The power used by the instruction decoding logic depends on the instruction execution
rate, the instruction length and the decoding compleXitg instruction execution rate

and the instruction length are dependent on the code density; higher code density will
tend to decrease the power consumption. On the other hand, more dense instruction
encodings tend to require more complex decoding logic, which leads to greater power
consumption in this block.

Some choices in the control logic wilfatt power diciency. For example, some proc-
essors increase the performance of branch instructions by means of speculative execu-
tion. Instructions after a branch are issued although it is not known whether the branch
was taken or not. When the direction taken by the branch is known, the instructions may
either complete or be cancelled. Speculatively executing instructions consumes power
which may turn out to be wasted. If the necessary performance can be obtained without
speculative execution, removing it would save power

4.2  Summary of Factors Affecting Power Consumption

Summarising the preceding section, the following architectural factors influence power
consumption:

Code Density

A high code density will lead to increased powdicincy in many blocks of the proc-
essor as the engy used in these blocks is proportional to the instruction fetch band-
width. Most importantly high code density will reduce the power consumed accessing
external memorywhich is a highly poweconsuming action.
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In some of these blocks such as the memory management unit and the cache address
store the engy used is proportional to the number of instructions executed. For the
maximum power diciency these blocks favour higher code density through fewer
longer instructions. In other blocks such as the main memory and the cache data store,
the enegy used is proportional to the total code size in bits that is executed. In this case,
power eficiency can be increased either through fewer instructions or shorter instruc-
tions.

If an instruction encoding with a greater density is used, the function that the instruction
decoder has to carry out is made more complex. This means that the instruction decoder
will consume more power for an instruction set with a higher code density

There are other stronggaments in favour of high code densitycreasing code density

leads to a reduction in the amount of main memory and backing storage required. This
leads to reduced system cost, and in the case of portable equipment to reduced size and
weight. Code density and the ways in which architectural featuiexs @fare consid-

ered further in section 4.3.

“Cache Friendliness”

It is possible for some programs to exhibit better cache behaviour than others as a result
of their memory access pattern. Programs that have a worse cache behaviour will access
main memory more often and use more povgeilding compilers that generate pro-
grams with good cache behaviour is an active research area [7].

It is likely that some instruction set features will lead to better cache behaviour than oth-
ers. However it is not currently clear what these features are.

Number of Registers

An increased number of registers leads to a reduced number of load and store opera-
tions, which saves power because load and store operations can lead to main memory
accesses. On the other hand, more registers lead to greater datapath length and more
power consumption in the datapath per instruction. The appropriate number of registers
will be a balance between these two factors.

Datapath Functions Provided

Datapath functions such as multiply should only be included if the increase in power
consumption resulting from the greater datapath length carfdet bf a reduction in
the total number of operations.
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Width of Datapath

It is inefficient to have a wide datapath such as the ARBZ bit datapath and not pro-
vide some sort of mechanism for saving power when narrower quantities are being used.

Speculative Execution

Speculative execution after branches results in wastedyemdren the speculation is
wrong. To remove the need to use speculation, the architecture must allow for branch
instructions whose tget address and condition can be computed quickly

Memory Hierarchy Size and Organisation
The following features will lead to a powefficient memory hierarchy:

» Multiple levels of cache, with a small low-power primary cache amggtantermedi-
ate levels.

* A large translation cache.

» Translation miss processing (table walking) in hardware.

» A write-back rather than a write-through cache.

» Long cache lines (to reduce the number of cache address tag look-ups).

However the aganisation of the caches and memory management units is an implemen-
tation issue, not part of the architecture. There are few factors that the instruction set
architecture specifies that restrict the choice of implementations. There are however
some factors that canfeét it:

« If a multiprocessor system is possible, cache consistency between the processors is
required. This may make some cache options such as the write-back cache more dif-
ficult to implement.

» The exception model will influence the choice of translation mechanism (see section
3.2).

4.3 Code Density

Code density has been identified as significant in the povieieety of a processor
The remaining part of this chapter investigates the way in which code densigciedf
by architectural choices.
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4.3.1 Defining and Measuring Code Density

The code density of a processor can be defined as the average semantic content per bit of
instruction for average programs in execution on that procédsisrin turn depends on

the average number of bits per instruction and on the number of instructions required for
each unit of semantic meaning or computational work.

Let d be the code densjty be the number of instructions per unit of computational

work and| be the average instruction length. They are related by the following equa-
tion:

1

d=
nl

These variabled, n andl will be used in the following sections to describe the charac-
teristics of the architectures and features considered.

For the purpose of evaluating powefi@éncy it is the dynamic code density that must
be measured; that is the number of instructions that muestdsated per unit of work,

not the number that must Btored. The latter measure is evaluated to find the memory
requirement of a processtm general the dynamic and static code density of a processor
will be similar.

Figure 4.2 plots estimates nfand| values for various processors. This data is approxi-
mate and is derived from various sources [7] [27] [31] [39], between which there is
some disagreement. However the general trend is clear

The following sections consider the properties of the average instruction length and the
number of instructions per unit of computation, taking some of the processors illustrated
in figure 4.2 as examples.
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Figure 4.2: Code density

4.3.2 Fixed and Variable Instruction Lengths

Architectures can be divided into two categories with respect to the length of their
instructions:

» Architectures with a fixed instruction length.

» Architectures with a variable instruction length.
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In the former case, the average instruction length must be exactly the fixed instruction
length. In the latter case, the average instruction length is a weighted average of the pos-
sible instruction lengths.

Most RISC architectures such as the Alpha, Sparc and ARM have fixed instruction
lengths of 32 bits. There are two principle reasons why a fixed instruction length is
advantageous:

» A fixed instruction length makes instruction formats more regular and hence instruc-
tion decoding is simpler

» A fixed instruction width (of 32 bits) means that instructions are always aligned on
word boundaries, which simplifies the process of fetching instructions and computing
branch tagets.

32 bit instructions are used by these processors because a 32 bit instruction is long
enough to encode useful numbers of five-bit register specifiers, opcode bits and immedi-
ate fields, and because other aspects of the architecture such as the datapath are also 32
bits wide.

CISC architectures, including the 68000 and tA&X Mypically have variable instruc-
tion lengths, based on multiples of 8 or 16 bits. This reflects the increased range of com-
plexity present in the CISC instruction sets.

Another reason for the dgrence between the RISC and CISC instruction encodings is
that the CISC architectures predate the RISC architectures, and over time the cost of
memory has fallen. The objective of increasing code density in order to reduce the
amount of memory required has become less important, so the RISC architectures are
more prepared to ‘waste’ some instruction bits in order to reduce complexity

There are a few examples of RISC processors that have a variable instruction length.
The ROMP processor is an early RISC processat at the time of its development the
benefit of reducing memory use was considered important. The ROMP therefore has 16
or 32 bit instructions.

In general the use of fixed instruction lengths leads to lower code deasdityed length
instructions will tend to include unused bit fields and variable length instructions can
assign shorter instruction formats to more frequently used instructions. The benefit of
this efect is studied further in chapter 5.
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4.3.3 The Semantic Content of Instructions

The number of instructions required to carry out a unit of computational work is a com-
plicated function of the architecture, and is also related to the sophistication of the com-
piler used. A compiler can be thought of as translating hiiglvet operations into
sequences of machine code instructions. The length of these sequences depends on what
can be done by a single instruction.

The Sparc, Alpha and MIPS Architectures

These conventional RISC architectures are very similar in many respects and so have
similar code densities. In general the code density is low because the instructions con-
tain unused fields and fields that are sparsely encoded.

Some of the dierences between the architectures do lead fierélifces in the code den-

sity. The most important case is the register windows in the Sparc architecture. By
including register windows, the Sparc reduces the number of loads and stores that have
to be carried out in the program.

The ARM Architecture

The ARM architecture has a fixed length 32 bit instruction format similar to the Sparc,
Alpha, etc. However it has a higher code density than many of the other RISC proces-
sors because it encodes more semantic content into each instruction. Examples include:

* A single instruction can specify an action for both the arithmetic unit and the,shifter
for exampleADD R1, R2, R3 LSL R4.

» Load multiple and store multiple instructions replace up to 16 separate load and store
instructions.

* Load and store instructions have optional post incrementing and decrementing
modes.

+ Conditional instructions remove the need for some short branches.

The ARM adds this extra functionality at the expense of having only 16 registers, com-
pared with the 32 registers of the Sparc, Alpha, etc. It also leaves fewer unused bit fields
in its instructions than some of these architectures. The ARM is believed to have a code
density similar to that of the 68000 processdrich is approximately 1.6 times that of

the conventional RISC processors.
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The D16 Architecture

Like the ARM, the D16 architecture [31] is similar to the conventional RISC architec-
tures in many ways. However in contrast to the ARM it achieves higher code density not
by increasing the semantic content of the instructions but by reducing their length to 16
bits.

D16 is a hypothetical variation on the DLX processdrich is in turn very similar to

the MIPS architecture. D16 has 16 registers, two-address operations (i.e. one of the
source registers is used as the destination), and a more complex instruction encoding
than MIPS. D16 has a code density 1.5 times that of MIPS, which indicates that its
semantic content per instruction is about 0.75 times that of MIPS.

The SH7000 architecture from Hitachi has 16-bit instructions that are similar to D16.
The SH7000 is tgeted at portable applications requiring low pqveer the increased
code density is beneficial.

The Transputer

The Transputer is unique in the processors studied here in that it has fixed-length 8-bit
instructions. In many other ways the transputer is also an unusual architecture; for
example it has a stack based datapath rather than a general purpose register bank.

Although one view is that the instructions are of fixed lengths, it should be noted that
some of the instructions take no direct action themselves but act as prefix instructions
that modify the action of the following instruction. The most important case of this is an
instruction that appends a four bit value to an internal constant regstéra 12 bit
addition is wanted three of these instructions are used to generate the required 12 bit
value. In other instruction sets, these groups of bytes would be defined as a single
instruction, rather than a series of instructions. This is however only a question of termi-
nology as the code density is independent of where the lines between instructions are
drawn.

The Transputels stack architecture rather than a register bank exploits locality of refer-
ence in a way that other processors canmandgputer instructions automatically use the
result of the last instruction because it is at the top of the stack. In a RISC progessor
register specifier is needed to indicate what register every operand should come from,
even in the common case where it is the result of the last operation. See section 5.6.1 for
a discussion of the frequency of last result reuse.
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4.4 Conclusions

In this chapterthe power consumption of a processor has been studied and architectural
features that influence it have been identified. Code density has been considered in most
detall as its @éct is believed to be of most significance.

Code density depends on average instruction length and the number of instructions
required per unit of computation. Fixed length and variable length instruction encodings
have been compared, and the features of a number of architectures that give them high
or low code density have been examined.

In the following chapterthe code density of the Sparc architecture is examined in more
detail and in a quantitative fashion, to find the potential for increasing its code density
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Chapter 5: The Potential For
Increased Code
Density

The previous chapter has suggested that code density is an important influence on power
efficiency, and that code density depends on the average instruction length and the
number of instructions required to perform each unit of computational work.

This chapter goes on to study the potential for increasing the code density of an instruc-
tion set. In the first section, the experimental technique used is described. In subsequent
sections, the instruction set of the Sparc architecture is considered and ways in which its
code density can be increased are proposed. The techniques considered include reducing
the instruction length, making the instruction length variable, and changing the number
and size of register specifiers.

The Sparc architecture is similar to other RISC architectures such as the Alpha and
MIPS in various important ways; many of the measurements made here will be gener-
ally applicable to this category of processors. The Sparc architecture has been studied
because a high-quality simulat@hade, has been available.

At various points, as alternative features are proposed, the possibility of implementing
the instruction set asynchronously is considered.

The chapter concludes by considering how the ideas presented can be reconciled with
the need to maintain a relatively simple instruction encoding with a small number of dif-
ferent instruction lengths.

5.1 Experimental Procedure

Most of the measurements described in this chapter are based on a series of simulations
carried out using a simulator called Shade [36]. Shade executes a Sparc program com-
piled on a Sun computeand allows the user to accumulate various statistics as the pro-
gram executes. Much of the data is presented in appendix B. In this cltapter
density results are calculated from that data.
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The benchmark programs used were chosen to represent a cross-section of those availa-
ble on the Unix system used; they include a compilesompression program and a
graphics file manipulation program. In practice, for the statistics being measured there
was little variation between the programs. The actual programs used are listed in appen-
dix C.

In some sections data obtained in other ways is used, and in these sections the source of
the data is indicated.

The efect of the code density changes is described in terms of the vargbiesnd|

that were introduced in section 4.3.1. These values are measured relative to the standard
Sparc architecture; so, for example, if a particular change incrdasek.2, then it has
increased the code density relative to the standard Sparc by 20%.

5.2 The Sparc Architecture

The principle features of the Sparc instruction set are illustrated in figure 5.1.

» Fixed length 32-bit instructions.
» 31 general purpose integer registers visible at a time.
» Standard set of 32-bit 3-operand arithmetic and logical instructions.

» Load/Store architecture: the only instructions that can access data
memory are load and store. All other instructions operate on data
registers.

-

» Multiple overlapping register windows.

Figure5.1: Characteristics of the Sparc processor

Sparc instructions are made up from bit fields of up to foteréift types:

» Unused fields. Because the instructions are always 32 bits long and some instructions
do not need that many bits, some are unused.

* Opcode fields, which specify which operation is to be carried out.
» Immediate fields, which specify constant values used in the instruction.

* Register specifiers, which indicate which registers are to be used as sources and des-
tinations.
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The potential for increased density in each of these fields is considered in turn in the fol-
lowing sections.

5.3 Unused Fields

The most important example of an unused field is an 8 bit field that occurs in all arithme-
tic and logical and load and store instructions that specify three registers rather than two
registers and an immediate value.

Data described in section B.1 shows that the above instruction types make up 13.1% of
all instructions in dynamic execution for the benchmark programs. If these fields were
eliminated, the length of these instructions would be reduced from 32 bits to 24 bits.
This would reduce the relative average instruction lehdth 0.96. Since the relative

total number of instructions would be unchanged, the relative code densityould
increase td..03.

5.4 Opcode Fields

The majority of Sparc instructions use a total of 9 bits to specify the opcode. Some
instructions that require more bits for other purposes have fewer opcode bits; for exam-
ple the call instructions has only 2 opcode bits and the SETHI instruction has 5 opcode
bits. Branch instructions have 10 opcode bits.

Some instructions are used to implement multiple functions. The most important exam-
ple is the add immediate instruction, which is used for at least three functions:

» To add a register and a constant.

« To move a constant into a register: the source register is set to RO, which always
reads as zero, and the immediate value to load is placed in the immediate field.

» To move one register into another: the immediate field is set to zero.

Another example is the subtract instruction, which is also used to perform the compare
function.

Each of these functions is considered separately in the following, and the length of the
opcode is the total number of bits required to specify the function. For example, to carry
out a move immediate the total opcode length is 14 bits, made up from 9 bits for the add
immediate opcode and 5 bits for the register specifier for RO. The lengths of opcodes
under this definition vary from 2 bits to 22 bits.
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Data presented in section B.1 gives the relative frequency of each of the Sparc instruc-
tions. The data shows that quite a small number of instructions dominate the dynamic

instruction counts. By computing a weighted average, the mean opcode length has been
found to be around112 bits.

Although an 1 bit opcode can specify 2048 féifent instructions, only 16 instructions
make up about 80% of those executed. There is clearly a significant amount of redun-
dancy in this instruction encoding. Reducing this redundancy could lead to increased
code density

There are two ways to reduce the redundancy:

* A large number of the less often used opcodes could be removed entirely from the
instruction set. When the compiler wants to carry out one of these operations, it is
then forced to use a sequence of the more common instructions. This involves a
trade-of of increasingn (number of instructions) against decreasin@gaverage
instruction length).

» The length of the opcode field could be made variable, and shorter codes allocated to
more frequent instructions. This involves a decreaseniith n remaining constant.

The benefits of each approach are considered in the following sections.

5.4.1 Reducing the Number of Instructions

The idea of reducing the number of instructions in a processuwstruction set by
removing the less useful ones is one of the principles of the RISC philosophy

Infrequently executed instructions can be divided into a number of categories, some of
which may be candidates for removal:

 Instructions that are simple to replace with a small number (e.g. less than around 5)
of common instructions.

 Instructions that need a longer sequence of common instructions to replace them, or
perhaps a call to a library function.

* Irreplaceable instructions.
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Table 5.1 lists some examples of these instructions.

Instruction Possible replacement sequence
Short replacement sequences
Add double Add s!ngle, carry put
Add single, carry in
A =B XOR C Xx =B ORC
y = B AND C
z = NOT y
A = x AND z
Long replacement sequences
A=B<<C A =B
x =C
L1: IF x == 0 STOP
Xx =x -1
A = A+A
GOro L1
A=B/ C CALL DIV
Irreplaceable
enable interrupts
flush cache

Table 5.1: Replacement sequences for infrequent instructions

The number of instructions that cannot be replaced depends on the amount of special
state the processor has, as these instructions typically carry out privileged functions or
modify operating modes. The number of instructions of this type can be minimised by
using a simple set of control registers.

The first instructions to be removed from the instruction set are those most infrequently
used and which have the shortest replacement sequences.

Consider the possibilities of implementing four and five bit fixed-length opcode fields. If
the number of infrequent irreplaceable instructions is zero these fields can specify the 16
and 32 most frequent instructions respectiveipm the measurements taken in section
B.1, 16 opcodes can specify 80% of all instructions and 32 opcodes can specify 98%.

If the average number of instructions in the replacement sequence for a removed instruc-
tion is r, then with a foubit opcode field the relative total number of instructions
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would be 80% x1+20% xr. With a five-bit opcode fieldn would be
98% x 1+ 2% xr.

A four bit opcode field would save 7 bits compared with the standard Spasrage of
11 bits to specify the opcode, so the relative instruction lergttvould be
32-7 32-6

5 0.78. A five bit opcode would save 6 bits, lsavould be? = 0.81.

. . . 1 .
The relative code densities are givendbe - Values ofd for various values of are

given in table 5.2.

average replacemert relative denSItyj

sequence length | e field length = 4| opcode field length = 5
2 1.07 1.21
4 0.80 1.16
8 0.53 1.08
16 0.32 0.95

Table 5.2: Relative densityasulting fom 4-bit and 5-bit opcode fields

These results show that a fixed opcode field length of 4 bits could only lead to increased
code density if the average replacement sequence length was 2 instructions .or fewer
This seems unlikelyOn the other hand, a fixed opcode field length of 5 bits would give

an 8% increase in code density even if the average replacement sequence length was 8
instructions. Using a five bit fixed length opcode field is an interesting possibility

However these results are only valid if the number of irreplaceable instructions is nil. If,
for example, there were 16 irreplaceable instructions, the benefits of the 5 bit opcode
field would be reduced to those of the 4 bit field.

5.4.2 Variable Length Opcode Fields

The objective of using variable length opcode fields is to give short opcodes to the most
frequent instructions and long opcodes to infrequent instructions. By making the opcode
length completely variable, i.e. allowing it to take any integer length, the highest code
density can be achieved.

The optimum encoding can be found by using afHaih encoding [37]. The Hiiman
encoding involves repeatedly subdividing the ordered list of opcodes into blocks with
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equal frequency until the blocks contain only one instruction. The technique is illus-
trated in figure 5.2.

Instruction Cumulative Frequency
load word 1 reg 0.111 17 ]
move register 0.207 ] ]
move immediate 0.294 1
add immediate 0.371
branch if equal 0.424
branch if not equal 0.472
load byte 1 reg 0.518 First division
compare registers 0.562
shift left immediate 0.604
compare immediate 0.645
store word 1 reg 0.681 Lo
add registers 0.716 Second leISIOﬂ
subtract immediate 0.746
unconditional branch 0.769
or immediate 0.788

Figure5.2: Assigning divisions for the
Huffman encoding

Under this encoding, the most frequent instruction (load word register + immediate) has
a three bit opcode and the next 7 most frequent instructions have four bit opcodes. The
average opcode length is 4.7 bits.

Since the standard Sparc encoding has an average opcode lenfyth loitsl it must

4.7
—_ = 0
have a redundancy df 112 58%.
This encoding reduces the average instruction length from 32 bits to 25.5 bits, represent-
ing a relative average instruction lengditbf 0.80. Since the total number of instructions

remains unchanged, this increases the relative code ddrsity.25.
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5.4.3 Asynchronous Opcode Decoding

The Hufman encoding naturally associates frequently used instructions with short bit
fields. Following the principle of “making the common case fast and the rare case cor-
rect”, it is reasonable to use a decode mechanism whose latency is proportional to the
length of the opcode.

Figure 5.3 illustrates how an asynchronous decoder could be built using this principle.
At the left hand side is the opcode bundle, consisting of a request/acknowledge pair and
the opcode data itself. At the right hand side is a set of output signals, one corresponding
to each opcode. Each of the rectangles in the figure is a select element. These take a
boolean control input on the top input (indicated by a solid diamond), and when a transi-
tion arrives on the left-hand input, it is steered to either the top or the bottom right-hand
output, depending on the state of the boolean control input.

This circuit decodes two opcodes of length 2 bits, one opcode of length 3 bits, and 6
opcodes of length 4 bits. The latency of the decoder is proportional to the number of
select elements that the signal passes through, and as can be seen exactly one select ele-
ment is used for each significant bit in the opcode. The latency is therefore proportional

to the number of bits in the opcode, and if the opcodes afmbluencoded, the latency

will be inversely proportional to the frequency of the opcodes.

It should also be noted that since power dissipation is proportional to the number of sig-
nal transitions, the power consumed in this circuit is also minimum for the most frequent
opcodes.

55 Immediate Fields

Section B.3 presents data showing the distribution of the values used in immediate
fields. This data and the summary in table 5.3 show that often the number of bits pro-
vided for the immediate value by the Sparc architecturegsrdinan is necessary

For some instructions, the potential for increased density is greater than for others.
Referring to table 5.3, it is apparent that load, store and the logical operations are poor

candidates for increased densityrereas the branch instructions and subltizate sig-
nificant redundancy

1. The reason for the typically small subtract immediates is the high frequency of subtracting 1 in
a loop control variable. Note similarly that around 60% of add operations add 1 (see figures B.3
and B.4).
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opcode

[0] [1] [2] [3]

» out.00
» Out.01

SELECT

req_in

SELECT"

» OuUt.100

SELECT"

SELECT’F SELECT’F SELECT"‘

., 0ut1010
———> out.101l

SELECT

.y o0ut.2100
—— out.1101

SELECT"

L out.1110
» out. 1111

ack_in ack out

Figure 5.3: Asynchronous variable-latency instruction decoder

In the following sections, possible increases in code density by changing the length of
the immediate fields for branch instructions and add and subtract instructions are consid-
ered. Addition is included because although table 5.3 does not show great potential for
improvement, it is a very common instruction and any increase in code density would

have an important influence on the overall density of the instruction set.

Reducing the length of an immediate field reduces the range of values that can be repre-
sented by the field. When the compiler wishes to use a value outside the range that can
be represented by the immediate field it is forced to use an alternative mechanism. For
arithmetic and logical operations, this will typically mean computing the value in a tem-
porary registerFor branch operations, the compiler must compute the brageh iaa

register and then move the register to the program codimeuse of these mechanisms
results in an increase in the relative total number of instructioffis must be bal-
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Instruction N.umber of bits provipled Number of bits suicient
in the Sparc encoding for 90% of cases
add 13 7
and 13 8
andn 13 8
call 30 16
compare 13 7
conditional branch 22 8
load word 13 10
move immediate 13 or 222 10
or 13 10
store word 13 10
subtract 13 3
unconditional branch 22 10

Table 5.3: Potential for shorter immediate fields

a. 13 bits for normal move immediate, 22 bits for the SETHI instruction

anced against the reduction in the relative average instruction lemgsulting from
reducing the length of the immediate field to find the optimum length.

5.5.1 Immediate Fields in Branch Instructions

Figure 5.4 is derived from data shown in figuresladd B.12 and shows how code size

is afected by the length of branch instructions. The lower dark area represents the
change in the average instruction length resulting from a branch immediate field of the
length indicated. The upper light area includes tliecebf the extra computed long
branches that are required when the immediate field is not long enough. This figure
assumes that two instructions are needed to prepare an arbitrary brgatladdress

and a third instruction is needed to jump to this address.

The figure shows that the best code density can be obtained with an immediate field of
10 bits for branch instructions. This means that branch instructions would be 20 bits
long, and that the relative average instruction lengtould be reduced to 0.93. The
extra instructions required when the branch immediate is not long enough would
increase the relative total number of instructionsslightly to 1.008. This would
increase relative code densdyto 1.07.
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Code density of Branch immediates
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Figure 5.4. Branch immediate field length and code density

5.5.2 Immediate Fields in Addition and Subtraction
Instructions

Using the same technique as in the previous section, figure 5.5 shows that the optimum
length for add and sub immediates is also 10 bits.

However comparing figures 5.4 and 5.5 note that the behaviour around shorter immedi-
ate field lengths is significantly &éfent. It seems that the arithmetic operations could
also benefit from a shorter immediate field length of around 6 bits, as the curve shows a
local minimum at this point. Also, as has been previously noted, adding and subtracting
1 are extremely common operations. It is therefore worth considering using a selection
of different immediate field lengths for these instructions. Figure 5.6 showsedbieosf

code density of adding a second shorter immediate field once a 10 bit immediate field
and add and subtract 1 instructions are in existence.

This result shows that the optimum code density can be obtained by using instructions
with immediate field lengths of 3 and 10 bits, and instructions that add and subtract one.
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Code density of ADD/SUB immediates
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Figure 5.5: Arithmetic immediate field length and code density

13

Table 5.4 shows that with these instructions the average length of an add or subtract

instruction can be reduced from 32 bits to 21.2 bits.

. Percentage of aritht Instruction length /
Instruction o , .
metic instructions bits
add or subtract 1 63.0 19
3 bit immediate field 22.1 22
10 bit immediate field 14.9 29
Weighted average 21.2

Table 5.4: Length of arithmetic immediates

This results in an overall relative average instruction lehgf0.96. The small number
of extra SETHI instructions increase the relative total number of instructio;m4.001.

The relative code density is therefore increased to 1.04.
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Code density of ADD/SUB immediates
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Figure 5.6: Adding a second arithmetic immediate field

5.6  Register Specifiers

The sparc architecture has 31 general-purpose registers, affips@®o-register that
reads as zero. It therefore requires five bits per register specifier

Like most RISC architectures, the Sparc has three-address instructions. This means that
each operand and result can use feidint registerin contrast, other architectures have
two-address instructions so that only two registers are specified in the instruction and the
destination is one of the source registers.

There are therefore several approaches to increasing the code density of the register
specifiers:

» The number of registers can be reduced, making the register specifiers shorter
» The number of register specifiers per instruction can be reduced.

» The number of register specifiers needed can be reduced through the use of special-
purpose registers for some functions.

These three approaches are considered in the following sections.
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5.6.1 Number of Register Specifiers Per Instruction

2-Address Instructions

As mentioned above the Sparc instruction set has 3-address instructions. However it is
very common for instructions to specify the same register in more than one of their reg-
ister specifier fields; this corresponds to high level language operations suottds

If 2-address instructions were used, the length of many instructions could be reduced by
5 bits from 32 bits to 27 bits. Data in section B.4 indicates that 57.8% of instructions
could have their length reduced in this way

There are then two alternative ways to deal with the remaining instructions that do have
distinct register specifiers:

» Three-address instructions can be used along with the new two-address instructions.

» The three-address instructions can be transformed into a pair of two-address instruc-
tions; for example the operatida=B+C can be converted into the sequehed;
A=A+C.

In the former case, the relative total number of instructiorssnot increased. The rela-
tive average instruction lengthis reduced to 0.95 because 31.4% of instructions have

duplicate register specifiers. This results in a relative code dehsityl.05. However
the number of opcodes needed is increased which will reduce the benefit.

With the latter approach, the relative total number of instructmissincreased to 1.26
because of the extra move instructions required. The relative average instruction length
| is reduced to 0.90 because 57.8% of the existing instructions and the 26.3% of new
move instructions are 5 bits short@éhis gives a relative code densidyof 0.88; this
reduces the code density

Explicit Last Result Re-use

The previous sub-section has investigated the potential for increasing code density by
exploiting the fact that multiple register specifiers in the same instruction may be the
same. This section investigates the related idea of register specifiers in adjacent instruc-
tions being the same.

The most common case where the same register is used by two instructions in sequence
Is when one register reads the result written by the previous instruction. This is referred
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to as last result re-use, and its frequency is also important from the point of view of
implementations; see section 3.1.

To exploit re-use, new instructions are required that have appropriate register specifiers
omitted but which use the result of the last instruction. The presence of these instruc-
tions will lead to an increase in the number of opcodes needed, and this increase must be
offset against the decrease in instruction length resulting from the removed register
specifiers.

Section B.2 studies the frequency of last result re-use, and finds that around 29% of
instructions use the result of the last instruction. If the length of these instructions was
reduced by 5 bits, the average instruction length would be 30.5 bits and the relative aver-
age instruction lengtHh would be 0.95. Since the total number of instructions is
unchanged, the relative code densitis 1.05.

Section B.2 also shows that the results of around 21% of instructions are used by the fol-
lowing instruction and are then never used again. In this case, it is not necessary for
either the first or the second instruction in the re-use pair to give a register spdusier
means that five bits can be saved from 50% of instructions, giving an average instruction
length of 29.5 bits and a relative code dendityf 1.08.

5.6.2 Number of Bits Per Register Specifier

The number of bits per register specifier is the logarithm to base 2 of the number of
processor registers. Doubling the number of registers increases the length of a register
specifier by 1 bit. Data from table B.3 indicates that on average there are about 1.6 regis-
ter specifiers per instruction, so each doubling of the number of registers increases the
average instruction length by 1.6 bits.

Adding more registers can however reduce the number of operands that need to be
stored in memoryso the number of load and store instructions required is reduced.
Reducing the number of load and store instructions leads to a lower total number of
instructions.

For some number of registers, these two factors will balance to give the best relative
code densityTo find this balance, it is necessary to find the relationship between the
number of registers and the frequency of loads and stores. The model for the pattern of
data accesses presented in appendix A provides the basis for this relationship. Appendix
A finds a relationship between the number of storage locations used and the frequency
of access to those storage locations for benchmark programs.
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Assume that a processor witlregisters will use those registers to storertimeost fre-
guently used variables at any time, and will use memory to store all the other less fre-
quently used variables. Let the threshold frequefjcye the access frequency above

which variables are stored in registers. From equation 3 in appendiadd f, are
related as follows:l{ andc are constants)

o 2
r = Ia(x)dx = Ia(x)dx =b

fth f'[h

o of o ot
f,0 020C

M D°)
0

Rearranging: (assuminrﬁ » o

th — DT

0

The frequency of access to all memory locatidps,is the sum of all access frequen-
cies less thaffy,:

fth -1
f, = J’xa(x)dx = b11 oL of
0

Substituting:

1 1
f :bch+1§1-c
m l-c

Since the value of measured in appendix A is 0.81, we can derive the following rela-
tionship between the number of registers and the frequency of memory accesses:

f Or -0.23

m

Hence doubling the number of registers will reduce the frequency of memory accesses

to 27923 = 0.85 of the previous level.

1. This model ignores some significant factors. The most important two are that the compiler is not
always able to use all of the registers present, and that in order to access operands in memory lo-
cations, some registers must be used to compute addresses and store the value once it is loaded.
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It is now possible to find the fett on code density of increasing or decreasing the
number of registers. Each time the number of registers is doubled, the average number
of bits per instruction is increased by 1.6 because of the increased length of the register
specifiers and the number of load and store instructions is reduced to 0.85 of its previous
number Table 5.5 computes the magnitude of thefectSf for various numbers of regis-

ters.

: relative | proportion | relative to- :
bits per | number| average : relative
. . : average | of instruc- | tal number
register | of reg- | instructio | . | : code
specifier| isters | n lenath instructio | tionsthatare| of instruc- densitvd
P g n lengthl | load or store| tionsn y
3 8 28.8 0.9 0.32 1.09 1.02
4 16 30.4 0.95 0.27 1.04 1.01
5 32 32.0 1.00 0.23 1.00 1.00
6 64 33.6 1.05 0.20 0.97 0.99
7 128 35.2 1.10 0.17 0.94 0.97

Table 5.5: Number of registers and code density

The results shown is this table indicate that from the starting point of 32 registers, code
density can be increased by decreasing the number of registersethefthe reduced
instruction length is greater than thdeet of the increased number of load and store
instructions. However the size of the increase is rather small - only 1% for the move
from 32 to 16 registers.

It should be remembered that reducing the number of load and store instructions is dou-
bly good for power diciency, as each load or store instruction that is executed con-
sumes power both for instruction fetch from memory and for data tramkferpoint is
considered further in section 6.1.

5.6.3 Special Purpose Registers

The use of special purpose registers is unusual in RISC processors, which apply the idea
of a homogeneous general-purpose register bank. There are however a few significant
exceptions to this that are worth investigating.
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Link Address Register

The Sparcs CALL instruction, which is used for subroutine enphaces a copy of the
old program counter into register 15. Similatlye ARM processor copies the old pro-
gram counter into register 14. These register numbers are hard-wired.

Using this mechanism, when a function calls another function it must always save the
previous value from this link registédn the other hand, some other local variables may
not need to be saved if the compiler is able to carry outpnteedural register alloca-

tion.

It would be possible to add a register specifier to CALL instructions, indicating which
register should be used for the link address. This would increase the length of the CALL
instruction by five bits, but it may befsét by the reduced number of store instructions
required in the called function.

It has not been possible to measure the benefit or disadvantage of a special link register
because no machine with a general-purpose link register has been available. However
using data from the experiments described in appendix B it seems that any benefit either
way would be very small, since the frequency of procedure entry.is low

Frame Pointer or Workspace Pointer

In a program compiled from a high-level language such as C, many accesses to main
memory are to variables that are located relative to a frame pointer or workspace pointer
of some sort. Because this register is used more often than other registers in load and
store instructions, it is possible to have special load and store instructions that imply the
use of this register and require one less register spedifiehitectures such as the
Transputer and the Hitachi SH7000 use registers of this type.

Load and store instructions make up 23% of Sparc instructions overall, so ifliothalf
these cases the base register specifier could be removed and replaced with an implicit
reference to a frame pointer registitie relative average instruction lendtiwvould be
reduced to 0.96 and the relative code dertityould be increased to 1.03.

The disadvantage of using a special-purpose frame pointer register is that it is not possi-
ble to use dferent registers in diérent procedures and to apply inpeocedural regis-
ter allocation. The &ct of this has not been measured.

1. Half is an arbitrary proportion, this factor has not been measured.
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5.7 Features of the ARM Instruction Set

The ARM instruction set has a few interesting features, helping to give it higher code
density than the Sparc, that are worth evaluating at this point.

Firstly, the ARM has load and store multiple instructions. These contain a 16-bit field
that indicates which of the processofd6 registers should be loaded or stored. This
instruction increases code density and also increases performance on the ARM because
the single memory port can operate sequentially during the transfer

Measurements have found that the ARM typically transfers 46 registers to and from
memory using 25 load, store, load multiple and store multiple instructions for each 100
instructions executed [27]. If no multiple instructions were present, these 46 register
transfers would each need a separate load or store instruction. This would increase the
ARM’s code size by 21%.

As has been noted elsewhere, the ARM has only 16 registers and as a result needs to

transfer more data to and from memory than the épaku:te that the Sparc typically
transfers around 23 registers to and from memory for each 100 instructions executed.

On average the ARM transfers about 1.8 registers per load, store, load multiple or store
multiple instruction [27]. If the Sparc instruction set was extended to include load and
store multiple and if it could exploit it as successfully as the ARM does, the number of
load or store instructions would decrease by this same .fahs would mean a
decrease in the relative total number of instructions 0.90, and an increase in relative
code densityd to 1.11.

In practice it is unlikely that the Sparc could exploit load and store multiple as well as
the ARM can. The reasons include the following:

* On the ARM, because register 15 is the program cqguaiead multiple instruction
can be used to carry out a subroutine return that restores the necessary registers and
returns control to the calling function.

» Since the Sparc has 32 registers, an ARM-like scheme of one bit per register to indi-
cate which are to be transferred could not be used. Any alternative encoding would
reduce the ééctiveness of the instruction.

As was noted in section 3.3, the asynchronous implementation of load and store multiple
instructions is not simple. This discourages their use in an asynchronous low-power
processar

1. The Sparc’s register windows also reduce the frequency with which it executes load and store
instructions.
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The second interesting ARM feature is its conditional instructions. All ARM instruc-
tions have a condition code which is tested before the instruction is executed. This fea-
ture reduces the number of very short branches.

Measurements indicate that removing the condition codes from the instructions (except
branches) would increase the total number of instructions required by around 9% [27]. If
the same feature could be added to the Sparc processor with the same benefit, the rela-
tive total number of instructions would be reduced to 0.92, and for a 4-bit condition

field the relative average instruction lengitivould be increased to 1.125. The resulting
relative code densitg would be 0.97; code density would be decreased.

5.8 Conclusions

Table 5.6 summarises the potential code density increases that have been identified in
this chapter

Section Feature d
53 Remove unused fields 1.03
54.1 Fixed length 5-bit opcode field, assuming- 8 1.08
5.4.2 Huffman encoded variable-length opcodes 1.25
55.1 10-bit branch displacements 1.07
5.5.2 1, 3 and 10-bit add and subtract instructions 1.04
5.6.1 2- and 3-address instructions 1.05
5.6.1 Explicit use of last result 1.05
5.6.1 Explicit generation and use of last result 1.08
5.6.2 16 registers 1.01
5.6.3 Workspace pointer register 1.03
5.7 Load and Store multiple 1.11

Table 5.6: Summary of code density increases
a. If 50% of loads and stores are relative to this register.

The most beneficial changes are the use of &mduf encoded opcode field, the load
and store multiple instructions, last result re-use and shorter branch displacement fields.

The total increase in code density resulting from applying all of these changes cannot be
found simply by multiplying the individual benefits togettes they are all interdepend-
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ent. For example, whenever it is stated that remoxifgts from y% of instructions
leads to a relative average instruction lengthlpfit is assumed that the other
(100 -y) % have length 32 bits. If this is not true, the valué will be wrong.

To estimate the combinedfeft of the proposed changes, a calculation was carried out
based on the following parameters:

 Instructions can have any length.

* Huffman-encoded opcode fields are used.

» 2-address and 3-address versions of all appropriate instructions are used.
* There are 32 registers.

* Immediate fields are generally 10 bits, except for call which geland for the add
and subtract instructions, wheté, 3-bit and 10-bit immediates are allowed.

» Explicit use of the result of the previous instruction without a register specifier

* Generation of a result that is used only by the following instruction without a register
specifier

« Load and store multiple instructiohs
* No unused fields

This composite architecture has a relative code density of 2.0; it is twice as dense as the
Sparc instruction set.

Unfortunately this high code density comes at the cost ofge lammber of possible
instruction lengths; this encoding has instructions of Héreiht lengths, from 14 bits to

29 bits, and a far lger number of dierent formats of instruction. For a practical
design, it is essential that the number of instruction formats can be simplified. The crite-
ria are that the instruction lengths should be multiples of a basic size such as a byte, and
that the position of fields within the instructions should be regular

Consider the format shown in figure 5.7. This format uses instructions of length 16 bits
or 32 bits. 32-bit instructions are made up from two halves with a similar format. The 16
bit instructions are divided into a 6-bit opcode field and either two 5-bit register specifier
fields or a 10 bit immediate field.

1. Itis simply assumed that each load or store instruction has 1.8 register specifier fields and trans-
fers 1.8 registers.

Page 101



The Potential For Increased Code Density
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Opcode Register | Register| Opcode Register | Register
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Opcode Register | Register Opcode Immediate

Figure5.7: A possible instruction format

With this encoding, instructions such as bran&hA+B, compare registers ans=B

have relatively dicient encodings, whereas others such as load register+immediate and
move immediate are a little too dgr for the 16 bit format yet waste space in the 32 bit
format. Using this encoding, a relative code density of 1.6 is obtained.

The best way to improve on this encoding is to add an intermediate format of 24 bits.
This is particularly useful for the move immediate instruction. However the alignment
on byte boundaries means that implementation is more complicated.

So in conclusion the code density increase obtained depends on the flexibility of the
instruction format. An upper limit of twice the density is possible, but would require
very complex decoding within the processdsing 16 or 32-bit instructions, a code
density increase of 60% can be obtained. By using instructions whose length is a multi-
ple of 8 bits, an increase between these two limits is likely

The following final chapter reviews these results along with those from chapter 3.
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Chapter 6 : Summary and
Conclusions

This work has investigated the influence of processor architecture on power consump-
tion on two fronts:

» Chapter 3 investigated architectural features that permit asynchronous implementa-
tion, which may lead to increased powdrcggncy.

» Chapter 5 investigated architectural features that lead to increased pieienaf
through increased code density

In the first sections of this final chaptérese architectural features are reviewed. In later
sections, other influences on the choice of an architecture are considered, and finally
possible areas for future work are mentioned.

6.1 Summary of Architectural Features

In this section, the architectural features proposed in chapters 3 and 5 are reviewed. The
areas considered are the register file size agahaation, the branch mechanism, data-
path operations and load and store operations. Figure 6.4 shows a possible block-level
organisation of a processor including the features described in this section.

Register File

Section 5.6.2 found that a slight increase in code density could be made by decreasing
the number of registers from the/ARC’s 32. However it was noted that the power con-
sumption of a load or store instruction is greater than that of other instructions because it
involves two memory accesses; one to fetch the instruction and another to transfer the
data. Other instructions access the memory only once.

With this broader perspective, the benefit of increasing or decreasing the number of reg-
isters can be reconsidered@ble 6.1 shows the relative power consumption for various
different numbers of registers.
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, _ _ relative power
number of registers | relative code densitygl .
consumptioft
8 1.02 1.06
16 1.01 1.03
32 1.00 1.00
64 0.99 0.98
128 0.97 0.96

Table 6.1: Power efficiency and number efgisters

a. Assuming that load and store instructions consume twice as much power as any
other instruction.

The result shown in this table is that increasing the number of registers will lead to a
small increase in power fafiency; doubling from 32 to 64 registers saves 2% of the
power

It has also been suggested (section 3.1) thatgarlamumber of registers can help the
compiler to interleave more threads on an instruction-by-instruction basis, which avoids
any delay associated with data dependencies.

On the other hand, an upper limit on the number of registers may be imposed by the
compilers ability to use them. In compiled C programs for example, it may teuttif

to store variables in registers if they are array elements or if there are pointers to them.
In dynamically bound languages, the system may be less able to apply interprocedural
register allocation which again limits the number of registers that can be used. The com-
piler may also have ditulty in identifying which variables have the greatest frequency

of access and hence are appropriate for register storage.

Weighing up these various aspects, 32 registers and 5-bit register specifiers may be the
best compromise.

Not having a register file at all as the transputer does may lead to the highest code den-
sity (section 4.3.3); however the stack structure may become a bottleneck. Further
investigation of alternatives such as this are worthwhile.
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Branches
The following factors influence the choice of branch instructions:
» Branch instructions are common, so their density and their performance is important.

» Branch displacements are typically small; 10 bits igeaht in most cases (section
5.5.1).

» For eficient asynchronous implementation, branches need to be decoded easily in a
remote branch unit (section 3.5).

» The preferred branch condition mechanism for asynchronous implementation is the
branch pipe; the results of compare instructions are directed to the branch unit
through a pipeline stage.

* Conditional move instructions can reduce the number of short branches needed.

A possible set of 16-bit branch and conditional move instructions is shown in figure 6.1.
In addition to these instructions, a computed branch instruction and an instruction to
allow branches with longer displacements are required.

The computed branch instruction may be implemented using a pipe in a similar way to
the branch condition pipe. Instructions must then be provided to put values into this
pipe, such as move register to branch pipe or load to branch pipe, or alternatively one of
the registers can be a pseudo-registeiting to which places a value into this pipe. The
computed branch instruction itself then needs no register specifier or immediate field,
and may be an 8-bit instruction.

The long branch instruction may be a 32 bit instruction, with as long an immediate field
as is possible.

The action of the branch and link instruction is to write the old program counter value
into a dedicated link register

A halt instruction may also be implemented in the branch unit. When the halt instruction
is executed, the processor will stop until an interrupt occurs. This instruction is useful
for implementing a sleep mode.

Branch prediction leads to wasted power when the prediction is wrong; for optimum
power eficiency, branch prediction should not be used and instructions should only be
fetched once it is known that they will be executed. It is therefore not necessary to
include branch hinting bits in the branch instruction. Not including these bits also
improves code density
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15 11 10 9 54 0

fffff m dest src

m=00 move-if-true
m=10 move-if-false

15 12 11 10 9 0

fff m displacement

m=000 branch
m=010 branch-if-true
m=100 branch-if-false
m=110 branch and link

fff = function field

Figure 6.1: Branch and conditional
move instructions.

Datapath Operations

There is little flexibility in the choice of the basic arithmetic and logical operations pro-
vided; AND, OR, EXOR, ADD, SUB etc. are essential.

Compare instructions are required, as described above in respect of conditional branch
instructions. The result of the comparison is to place a true or false value into the branch
condition pipe. Comparisons needed are therefore equal, less than and less than or equal,
plus any signed/unsigned variants. The opposite condition is detected by using branch-
if-false.

The width of the provided operations is important (section 4.1.4). If a 32-bit datapath is
provided, for power étiency it is essential to provide either a set of narrow operations,
such as 8-bit and 16-bit addition, subtraction and move, or a set of instructions that proc-
ess multiple narrow values simultaneoudlge efectiveness of the latter would depend

on the ability of the compiler to find pairs of operands that can be processed together
and may not work very well in general.

The inclusion of shift and multiply instructions must be justified by evaluating their fre-

guency of occurrence and their implementation cost. The best solution may be to pro-
vide a subset of shift instructions, such as 8, 16 and 24 bit shifts for carrying out byte
manipulations and 1,2,4,8 and 16 bit shifts which can be combined to give shifts by arbi-
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trary amounts. In the case of multiplication, it is tempting to include a general-purpose
multiply instruction simply because it is possible to implement a variable-latency multi-
plier asynchronouslybut the benefit must be considered against the implementation
cost. The frequency of shift and multiply operations is very dependent on the program in
use.

The most common instructions should be given shorter formats making use of last result
re-use and 2-address formats. Depending on the use of 2 or 3 operands and the use of the
last result, these instructions may use between 0 and 3 register specifiers. The number of
immediate lengths available should also be flexible. Some possible instructions and their
encodings are shown in figure 6.2.

7 5 4 0 .
e reg Add 1 to register
15 10 9 0
Ffff immediate Compare last result
with immediate
15 1312 8 7 0
_ _ Add immediate to
15 1312 87 5 4 0
Add last result and
fff reg fff reg .
value from regis-
ter, write result to
fff = function field
Figure 6.2: Common instructions with
variable-length encodings

Less common instructions can be given in a simpler general format, more like the for-
mat used by SKRC and the other RISC processors, to ease decoding and to reduce the
number of opcodes required (figure 6.3).

Signalling of overflow can be through imprecise exceptions and precise barrier instruc-
tions. Overflow detection may be enabled or disabled for each instruction. The less com-
mon case (overflow detection if the source program is in C) may use a longer instruction
encoding.
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31 25 24 20 19 15 14 10 9 0
iiiiii func dest src immediate

31 25 24 20 19 15 14 10 9 5 4 0
iiiiii func dest srcl - src2

fff = function field

Figure6.3: Regular instruction formats (32-hbit)
for less common operations

In summarythe datapath instructions may be divided into two groups: the more com-
mon ones where the use of variations such as two-address formats is justified, and the
less common ones where a simpler general format is used. In the former category are
instructions such as add, subtract, compare and move. In the latter category are instruc-
tions such as the logical operations, shifts and multifig variations possible for the
common instructions include the following:

With and without causing an exception on overflow
* 8, 16 and 32 bit operands.

» Use the result of the last operation as one operand.
» Send the result to only the following instruction.

» A variety of immediate field sizes.

e 2-address format.

Memory Operations

Load and store multiple are bad for asynchronous implementation (section 3.3) but are
good for code density (section 5.7). It may be worth implementing a simple form of load
and store multiple; for example prohibiting loading over the base register or loading to
the PC would make dealing with an exception during the transfer.eBiseeway in

which the registers to be transferred are specified is important, and depends on how
many registers are transferred by each instruction. One solution is to specify a first and
last register field and transfer a contiguous sequence of registers.
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Transferring 8- and 16-bit values using 32-bit operations is wasteful of pameso 8
and 16 bit load and store instructions should be provided.

It has been noted that the use of parallelism can improve poficeerefy, To support
shared memory multiprocessing it is necessary to provide some form of semaphore
instruction such as swap, load-locked and store-conditional, or load-and-increment [7].
These instructions involve an atomic read-modify-write cycle which is not very suitable
for an asynchronous implementation as it may disrupt the pipelineTitenoad-locked

and store-conditional operatidnsn the other hand do not involve atomic read-modify-
write, and so may be more suitable. This approach may also lead to less unnecessary
overhead in a non-multiprocessing system.

Non Instruction-Set Issues

The oganisation of caches is not related to the instruction set. However it does have a
significant impact on the poweffiefency.

The idea of employing multiple levels of cache, described in section 4.1.2, is attractive
because it leads to increased powdéciency and because the variable response time
can be dealt with easily in an asynchronous environment.

The data caches should also bgamised as copy-back caches, to reduce the frequency
of writes to the main memary

6.2 Quantitative Evaluation of the Proposed Architecture

The architecture described in the proceeding sections is intended to have greater power
efficiency than conventional architecture. This section briefly evaluates the possible rel-
ative power dfciency and also the relative performance.

1. Load-locked performs a normal load, but tells the memory system to try and lock the location
read from. Store conditional performs a normal store, except in the case when the lock has been
broken by a load-locked from another processor, in which case the store fails.
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6.2.1 Power efficiency

External memory

The number of external memory accesses required per unit of computational work is
reduced as a result of the following factors:

» The direct result of increased code den®fsed on the results from section 5.8, the
code density of the architecture should be between 50% and 100% greater than a con-
ventional RISC processor such as th&Re. If 80% of the memory accesses are
instruction fetches, this will directly reduce the power consumed in the external
memory to 60% -75%.

» The efect of the increased code density on the performance of the internal cache.
Doubling the code density may be equivalent to doubling the cache size. Data [7]
suggests that by doubling the size of a cache from the miss ratio may be reduced to

around 70% - 80% This means that by doubling the code density number of
external memory accesses may be reduced to 70% - 80%.

« Compared to a processor with a similar sized internal cache using a write-through
cache oganisation or a write bidr, this architecture reduces the power consumed in
the main memory because fewer writes take place. If 90% of writes are not passed to
the main memoryif 10% of cache accesses are writes, and if the caches have a hit
rate of 90%, this will reduce the total number of external memory accesses to 55%.

The combined ééct of these factors may be to reduce the power consumed in the exter-
nal memory to 25% - 35% of that of a processor without these features.

Caches

If the multiple levels of caches work well, the power consumed by the caches should
approach that of a single cache of the size of the first level cache whilst retaining the
overall hit ratio of a single cache of the size of the second level cache. If for example the
first level cache makes up a quarter of the total cache, the power consumed by the
caches should be reduced to one quarter of the power consumed by a single level cache.
In practice the benefit would be smalleut it may be possible to halve the power con-
sumed in the caches in this way

The increased code density will also lead to reduced power consumption in the cache,
by the same factor of 60% - 75% that applies to the main meifoeytotal power con-

1. For a 1-way or 2-way set-associative cache, of between 1kbytes and 32 kbytes.
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sumed in the caches may then be reduced to as little as 30% of that of a comparable
processor without these features.

Datapath

The introduction of instructions to operate on 8 and 16 bit data as well as 32 bit data will
lead to a reduction of the power consumed in the ALU and register file. The magnitude
of this saving is hard to quantify as the proportion of instructions that could use these
narrow operations is not known.

Use of Asynchronous Logic

The contribution to power fiency from the use of asynchronous logic is not known.
Hopefully the power consumption of the AMULET1 processor will soon be evaluated in
sufficient detail to derive some useful conclusion. The most important aspect of its con-
tribution is likely to be the power saving that occurs during intervals of inactivigy
magnitude of this é&éct is highly dependent on the processevorkload.

Considering all of these factors, it is possible that the total overall power consumption of
the processor may be reduced to less than half. Referring to table 1.2, this is equivalent
to the likely increase in power consumption over 2 to 4 years.

6.2.2 Performance

This work has reversed the importance of powgciehcy and performance compared

with previous architectural studies. Previously performance has been considered as the
most important aspect of an architecture. There is a trddmbieen the two factors,

and since this architecture has increased powviieregicy it is likely that it will suffler

from reduced performance.

The performance of the processor depends on the speed of the asynchronous logic used
and on the ééct of the various instruction set features proposed. The speed of the asyn-
chronous logic is not well understood, though this will be improved when the AMU-
LET1 processor has been fully evaluated. It is hoped that the performance of
asynchronous logic will be at least as good as that of synchronous logic for suitable
designs. The performance of this architecture should be at least as good as that of the
AMULET1 processar

The performance may be limited slightly by the increased instruction decoding com-
plexity. However with an asynchronous implementation of the decode logic the more
common instructions can be decoded more quickty the penalty of the complex
instruction encoding should be less than for a synchronous implementation.
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The performance will also be influenced by the pipeline dependencies, such as the case
where a comparison is followed by a branch or a load operation is followed by an
instruction that uses the loaded data, and by the absence of branch prediction. The
importance of these fects may be reduced slightly through the use of an optimised
compiler

6.3 Other Considerations for Architectures

To complete an architectural specification, a great many factors that have little or no
influence on power &€iency must be taken into consideration.

If it is successful, a processor architecture can exist in use for many years. The DEC
Alpha architecture [26] for example has a 25-year projected lifetime. Others are more
conservative with their claims, but experience with the 8086 and 68000 architectures

suggests that lifetimes of above 10 years are not unreasbnable

Although the architecture will remain frozen (or at best ‘backward compatible’) over

this lifetime, the compiler technology available will continue to advance. It is therefore

important to design the original architecture with an awareness of possible future
advances in compiler technology

Itis also likely that over time the type of programs being used and the programming lan-
guages in which they are written will change. A good architecture will incorporate fea-
tures that give a positive benefit to all programs, not just those on which it was
evaluated. The RISC principle of providing primitive instructions from which the com-
piler can construct programs rather than complex instructiogetéal at particular lan-
guage structures leads to such features.

6.4 Conclusions

For power diciency and asynchronous implementation, an architecture should include
various features including the following:

» To give a high code density: variable instruction lengths, variable and short immedi-
ate field lengths, explicit last result re-use, 2-address instructions, load and store mul-
tiple.

* Narrow (i.e. 8 and 16-bit as well as 32-bit) datapath operations and load and store
instructions.

1. This situation could change dramatically if systems became less dependent on binary code com-
patibility than they are now.
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» A simple branch mechanism, using a branch condition pipe for conditional branches.
» Multi-level copy-back caches.

By using these features, it should be possible to at least double pbeieney

6.5 Future Work

It is hoped that a detailed architectural specification for an asynchronousedfevent
processor can be drawn up and an implementation made.

This process is likely to be iterative. In particulie only basis on which to judge the
suitability of an architectural feature for asynchronous implementation to date has been
experience with the AMULET1 processdrris probable that some features will prove
more or less suitable for implementation during the implementation process, and revised
ideas will be used.

Ultimately it is hoped that a processor with significantly high powleieicy can be
demonstrated.

It is possible that the most appropriate architecture for peffierent asynchronous
implementation is a totally novel architecture unrelated to the variations on conventional
themes considered here. Some ideas have occurred during the work for this thesis which
deserve more detailed investigation. Elements of these ideas may be incorporated into
the final design.
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Data Operands

At several times during the architectural studies the question of the pattern of accesses to
data items arose. Questions to be answered included, “How frequently are data values
accessed? What is the distribution of these frequencies like? How many storage loca-
tions contain values being accessed with this frequency? How does this behaviour vary
between programs?”

Some examples of situations in which this data was required include the following:

» For the analysis of the benefit of last result forwarding it was necessary to find the
proportion of data accesses that use the result of the previous instruction.

» To find the optimum number of registers for the architecture the number of storage
locations whose access frequency is less than some threshold is needed.

« Similarly, to find the ideal size for a data cache.

This appendix proposes a model for the pattern of access to data operands, from which
answers to these questions can be derived.

Two approaches to the problem were considered, a theoretical approach and an experi-
mental approach. The former was to build a model for program behaviour that would
predict the pattern of accesses. The latter was to measure the access patterns of real pro-
grams and to find an approximation to these results.

The experimental work produced a simple model for the behaviour which is explained
in section A.2. Firstly however the theoretical approach is reviewed.

A.1  Theoretical Models of Program Behaviour

Previous work by Denning, Spirn and others has investigated program behaviour for the
purpose of evaluating page replacement strategies in demand-paged virtual memory sys-
tems [32] [33]. This work shows how program behaviour can be approximated to by sta-
tistical models with constants derived from the study of real programs, and by other
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techniques. One result is Belasly'ifetime Function, which relates the frequency of
paging to the amount of available memory

The frequency of paging in a virtual memory system is orders of magnitude lower than
the frequency of access to registers, and it is not clear that this previous work scales
across all types of memory accesses.

More recent work has applied the concept of fractal geometry to the study of program
behaviour [34] [35]. This work models the pattern of instruction fetch accesses of the
program as a fractal random walk. Because of the well-known property of fractals that
the observed behaviour is the same at any level of magnification, this model can be
applied across a range of memory types from page store to cache méh&wyork

was intended for the generation of synthetic address traces for cache simulation and the
results produced by the fractal algorithm are similar to real traces in many important
respects.

Unfortunately none of this work concentrates on the issue of data accesses. The behav-
ijour of data accesses varies in important ways from the general pattern of memory
accesses, which is dominated by instruction fetch actiwiggruction fetch is essentially
sequential and interrupted by branches. Any sequential pattern in data references is less
important.

These results are therefore not directly relevant to the questions of interest.

In the absence of any inspiration for a more appropriate model, the experimental
approach was considered.

A.2 Experimental Studies of Program Behaviour
The basis of the experimental work is as follows:

Data accesses are considered in terms of lives. A life is a value in a storage location. A
life starts when a value is written to a location and ends when it is read for the last time
before the next write to that location. The life may be accessed more times between the
initial write and the final read.

A life is neither a variable nor a storage locatioaridbles store many lives and storage
locations store many variables over the execution time of a program.

In a processor with a load-store architecture lives exist in the registers and in the mem-
ory. In the memory lives are started by store operations and other accesses occur through
load operations. In the registers lives are started by writing the results of instructions and
are accessed as operands to other instructions.
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Two experiments were therefore conducted. In the first, the access patterns of bench-
mark programs to the processor registers were studied. In the second, the access patterns
to data memory by load and store instructions were studied.

The results of these experiments showed that the behaviour of all the benchmark pro-
grams closely follows a well-defined pattern.

The experiments conducted and their results are now presented.

Register Operand Access Patterns

A simulator for the Sparc architecture, Shade [36], was modified to record each register
read and write operation. For each register a record was kept indicating the time since
the most recent write to and most recent read from that register and the number of reads
that have occurred since that write. Each time a register write occurred the lifetime of
the life (that is the time from the first write to the last read) and the number of events that
occurred during the life were noted. At the end of the simulation these statistics were
output.

The simulator was used to run a number of benchmark programs. The programs used are
described in appendix C. The raw output data from the simulator consists of the distribu-
tion of the lives with respect to the lifetime and number of accesses.

Memory Operand Access Patterns

Memory access traces intended for cache simulation for various benchmark programs

were obtained. The programs used are described in appendix C. These traces were proc-
essed to extract only the data accesses and to discard the instruction fetches. This data
was then analysed by a program that noted the times and count of accesses to each mem-

ory locatiort in a similar fashion to the register access analysis program. Once again the
output of the program consists of the distribution of the lives with respect to the lifetime
and the number of accesses.

Analysis of the Results

The objective of the analysis is to answer questions such as “How many storage loca-
tions are accessed more than once every 1000 instructions?”. Let the total number of

1. Because of the large size of the memory space a hashing technique was used to study only a
subset of the total memory accesses.
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storage locations that are accessed with frequebeya(f). If a(f) is known, then ques-
tions such as that posed can be answered by integration; for example:

Number of locations storing values that are accessed= I a(f)df
more than once every 1000 instructions 1

1000

The problem is to derive an approximation to &ff function from the experimental
data.

Let the total number of lives with accesses and lifetimebe d(n, I). This is the distri-
bution recorded by the experiments.

n
I
d(f, I) can be derived from the experimental results, giving the number of lives during
the execution of the program with access frequdraryd lifetimel .

The frequency of access to a lifds given byf = —. Using this a new distribution

Let the total duration of the program pep is also recorded in the experiments.

At any instant during the execution of the program, the probability that a particular life
with lifetime | is alive isIL, since this is the fraction of the total time for which the life is
alive. It follows that the total number of lives alive at any instant with lifetinaed

access frequendyis d(f, I)I:).
From this,a(f) can be derived by summation over
I
aff) = S df, 1) 1
(f) Z ( )p (1)

This operation was applied to the experimental data to obtain valuag)for

To see the characteristics of this data, it was plotted as shown in figures A.1 and A.2.
The following points should be noted:

» The graphs show cumulatiaf) on the y-axis agains} on the x-axis.

* A cumulative y-axis is used because when the discreted| values are divided to
obtainf a ‘spiky’ distribution concentrated at the common fractions would occur
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* The x-axis represents the period of the accesses, rather than the freqeenicy
shows the reciprocal.

* The axes are logarithmic.

The last two points were found to give graphs on which the trend could be seen most

easily
Cumulative a(f) vs. 1/f
Shade derived register lives

10.0

5.6 In———

3.2 =

1.8 ﬁ A"f/-/l;_
= AT || —— compress
© == —— dhry10
e 10 7T espresso
8 — - — fgrep

0.6 gccbig

= —— gcemed
0.3 gcesmall
— rleflip
0.2
0.1 |
0.3 0.6 1.0 1.8 3.2 5.6 10.0 17.8 31.6
1/f
Figure A.1: a(f) distribution from register-access analysis

The following observations can be made from the graphs shown in figures A.1 and A.2:

» The behaviours of the programs are very similaere is no great deviation from the
centre-line by any of the benchmarks, except for the memory accesses of the tex pro-

gram'-.

1. This discrepancy is attributed to the behaviour of the particular period of execution that was
studied, which contained many iterations of a loop of a fixed size. It was found that the length of

this loop corresponds to the step see%l ato.
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Cumulative a(f) vs. 1/f
Load / Store Traces
1.0e+04
= |
1.0e+03 —
1.0e+02 //
% 1.0e+01 //
=
8 1.0e+00 ccl
tex
1.0e-01 / spice
1.0e-02
1.0e-03
1.0e+00  1.0e+01  1.0e+02  1.0e+03  1.0e+04  1.0e+05  1.0e+06
1/f
Figure A.2: a(f) distribution from memory access analysis

* The register accesses have relatively high frequencies and the memory accesses have
relatively low frequencies.

» The highest access frequency obtained is 2 accesses per instruction. This corresponds
to instructions such DD R1, R1, #3.

» The register access graph can be approximated to by a straight line on these axes up
to an access frequency of around 1 access every 10 instructions, where it starts to tail
off.

» The number of memory locations storing lives accessed more often than about once
every 30 instructions is negligible.

» The memory access graph can be expected to finish aléflouan(105...106 because

of the finite length of the data input.

The relationship between the register access patterns and the memory access patterns
can be seen in figure A.3, which shows the two sets of results superimposed.
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Cumulative a(f) vs. 1/f
Combined
1.0e+04
—
1.0e+03
1.0e+02 //
% 1.0e+01
£
3 Loe+00
1.0e-01 I /]
1.0e-02 /
1.0e-03
1.0e-01 1.0e+00 1.0e+01 1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06
1/f
Figure A.3: Combined a(f) distributions from both analyses

From this figure it is clear that the memory and register accesses are unified by a single
pattern of accesses. Above a threshold of approximately one access in every 20 instruc-
tions, memory is used. Below this threshold, registers are used.

On these axes, a straight-line approximation is possibl% m% < 10°. Remembering

that the axes are unusual the straight line indicates that a relation of the following form
holds:

[EEN

f
1.1 _ .o
f‘(x)dx =barg

whereb andc are constants measured from the graph to be 0.60 and 0.81 respectively
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It is possible to derive the following expression &) :

0 0 f>2
aff) = O o of*t (2)
nb(c+1) 0F O f<2

However it may be more useful to retain the integrated form:

f

r]fxa\(x) dx = b

min

o1 DC_Dl oo frnax <2

o b 3
of 0 .00  f. <2 ®)

f min
Using (3) it is possible to answer the question set out as an objective, “How many stor-

age locations are accessed more than once every 1000 instructions?”. The answer is:

oL of0

O c_
b {1000)°~ = = 161
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Appendix B:  Analysis of the Code
Density of the Sparc
Processor

Chapter 5 considers the potential for increasing the powieieaty of a processor by
means of increasing its code densliigis appendix presents experimental results to sup-
port the aguments made in that chapter

The experimental work was carried out on a Sparc proceé&soous benchmark pro-
grams were executed on a simulator which was modified to record statistics of interest
during the execution. The simulator used was shade [36], and the benchmark programs
used are described in appendix C.

The statistics that were measured include the following:
» The relative frequency of occurrence of each instruction.

» The frequency of occurrence of last result re-use and which instructions are most
likely to use it.

* The distribution of immediate values.

» The proportion of instructions where one source register is equal to the destination
register

These results are presented in the following sections.

B.1 Instruction Frequencies

Figure B.1 shows the relative frequency of each of the most frequent instructions. The
instruction with the highest frequendipe conditional branch, is sub-divided into each
possible condition in figure B.2.
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Figure B.1: Relative instruction execution frequencies

B.2 Frequency of Last Result Re-use

When an instruction writes its result into a register and the immediately following regis-
ter reads from the same registiast result re-use has occurred. The frequency with
which this occurs and the instructions that act as source and destination are important for
the evaluation of forwarding and other architectural featur@sleTB.1 shows the fre-
guency with which last result re-use occurred in the various benchmark programs.

The first two data columns in table B.1 show the frequency of last result re-use inclusive
and exclusive of the condition codes. Re-use of the condition codes is very common as
comparison instructions are often followed by conditional branch instructions. The sec-

ond data column counts only re-use involving a general register

The third data column measures the occurrence of last result re-use when the value that
is re-used is never accessed again; that is the result of one instruction is used as an oper-
and by the next instruction and then discarded.

Note that these results are consistent with the data shown in figure A.1.
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Figure B.2: Execution frequencies for conditional branches

B.3 The Distribution of Immediate Operands

Sparc instructions have immediate fields of length 5, 13, 22 and 30 bits. Most arithmetic
and logical operations and loads and stores use 13 bit fields. Shift instructions use 5 bit
fields and branch and call instructions use 22 and 30 bit fields respectively

Often the most significant bits of these fields are unused. The most common operands
for many of these operations could fit into smaller fields. This is of interest because
using shorter fields would lead to increased code density

To investigate the distribution of these immediate values, the Shade simulator was used
to record the values of the immediate fields during the execution of the benchmark pro-
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Proportion of instructions that use the last result
Program | |ncluding condition | Excluding condition Exclud(i:rz)%gts)ndition
codes codes Never used again
ccreg 0.445 0.300 0.187
compress 0.453 0.361 0.215
dhry10 0.414 0.265 0.155
espresso 0.487 0.375 0.316
fgrep 0.538 0.287 0.252
gccbig 0.422 0.284 0.198
gccmed 0.418 0.269 0.186
gccsmall 0.408 0.239 0.161
rleflip 0.353 0.264 0.180
Mean 0.438 0.294 0.206

Table B.1: Last result re-use

grams. The results are presented as cumulative graphs for each instruction measured in
figures B.3 to B.14.
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Figure B.5: And immediate lengths
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Figure B.6: And Not immediate lengths
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Table B.2 summarises some of the information presented in figures B.3 to B.14.

Immediate field length / bits

Instruction
5 10 15 20
add 86.9 | 99.6 | 100.0 | 100.0
and 59.7 | 95.0 | 100.0 | 100.0
andn 84.2 | 97.1 | 100.0 | 100.0
call 19.8 | 47.4 | 82.5 | 100.0
compare 65.9 | 99.4 | 100.0 | 100.0

conditional branch | 63.1 | 99.4 | 100.0 | 100.0

load word 62.9 | 99.9 | 100.0 | 100.0

move immediate 439 | 91.2 | 920 | 98.4

or 6.8 | 100.0 | 100.0 | 100.0
store word 65.3 | 99.7 | 100.0 | 100.0
sub 97.5 | 100.0 | 100.0 | 100.0

unconditional branch 38.5 | 94.9 | 100.0 | 100.0

Table B.2: Immediate lengths summary

B.4 Two and Three Address Instructions

In order to evaluate the potential code density increase resulting from a change from 3-
address to 2-address instructions, it was necessary to measure how frequently a three-
address instruction could be mapped directly to a two-address instruction; that is, how
often one of the source registers was the same as the destination register

The shade simulator was used to measure this statistic. The results are presented in table
table B.3.

By adding the two sub-totals given in the table it can be see that 57.8% of instructions
fall into the categories where a 2-address format would be possible. 31.4% of instruc-
tions are in one of these categories and have their destination register equal to one of the
source registers, allowing a 2-address instruction to be used.
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Instruction category Example Pﬁ:;?ztg?sng
O-read O-write instructions Branch 19.7
O-read 1-write instructions Move immediate 8.2
1-read O-write instructions Compare Immediate 3.8
2-address | ADD R1, R1, #1 25.6
1-read 1-write instructions 3address | ADD RL, R2, #1 925
total Add Immediate 48.2
2-read O-write instructions Compare Register 9.9
2-address | ADD R1, R1, R2 5.8
2-read 1-write instructions 3-address | ADD RL, R2, R3 38
total Add Register 9.6
3-read O-write instructions Zi(;:e Register+Reg- 0.6

Table B.3: Potential for 2-address instructions
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This appendix describes the benchmark programs that were used to obtain the statistics
given in appendices A and B and elsewhere.

C.1 Programs Executed on the Shade Simulator

The statistics presented in sections A.2, B.1, B.2 and B.3 were obtained by extracting
data from a simulator during the execution of a set of benchmark programs.

The programs used were executed on a simulator of a Sparc processor called Shade [36]
running on a Sun workstation. The execution that has been studied includes the main
program and its calls to run-time libraries, but not the operating system activity in
response to a system call.

The programs used are as follows:

ccreg. The Sun C compileassembler and linkeFhe benchmark involves compilation,
assembly and linkage of the modified simulator using the Sun C compiler and associated
tools.

compress. The standard unix data compression program. The benchmark involves
applying compress to a text file containing the first 5000 lines of the unix dictionary file,
[ usr/dict/words.

dhry10. The dhrystone synthetic benchmark. The benchmark involves executing the
dhrystone loop ten times.

espresso. The logic minimisation program from the University of California at Berke-
ley. The benchmark involves applying espresso to the description of a PLA from the
asynchronous ARM design.

fgrep. The standard unix text search program. The benchmark involves searching for
the stringend in the standard unix dictionary fileusr / di ct / wor ds.

gcebig, gececmed, geesmall. These benchmarks are taken from the tape distribution
accompanying Hennessy and Pattersd@ok [7]. They are benchmarks of the C com-
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piler from the Free Software Foundation, GCC. The version used is GCC v1.26, which
is configured to generate assembly code for the 68000 pracEssanput to the com-

piler is various files from gcc v1.26 itself. The files used for each of the benchmarks are
shown in table C.1. The names small, med and big refer to the size of the input files.

rleflip. A program for manipulating graphics files in the rle (run-length-encoded) for-
mat. The program flips the graphic in the= x axis. The input file used is an image of
Jupitets red spot at a resolution of 505 by 480 pixels with 24 bits of data per pixel.

The total number of instructions executed by each of the benchmarks is shown in table
C.2.

The C compiler used by ccreg and the programs compress and fgrep are supplied as
compiled programs with the Sun computer installation. They are believed to be com-
piled using the Sun C compiler at optimisation level -O2.

The dhrystone program was compiled using GCC2 with optimisation enabled.

The GCC benchmark programs were compiled using the Sun C compiler with maximum
optimisatior}.

The compiler used for the rle program is not known.

gccsmall gccmed gccbig
version.c regcl ass. c expr.c
genfl ags. c stor-layout.c
gencodes. c recog. c
genconfig.c rtl.c
genextract.c genrecog. c
genpeep. C gl obal -all oc.c
genemt.c final.c
obst ack. c | ocal -all oc.c

Table C.1: GCC benchmark input files

1. One part of GCC has to be compiled with optimisation off because of a fault in the Sun compiler.
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Benchmark thal ”“”?ber of
instructions
ccreg 187 422 583
compress 3681 440
dhry10 256 821
espresso 35 959 927
fgrep 8 025 076
gccbig 173 787 819
gccmed 365 934 487
gcesmall 93 665 456
rleflip 51 913 246

Table C.2: Szes of benchmark programs

C.2 Address Traces

For the memory access pattern analysis in section A.2, a set of three address traces was
used. These traces were supplied on the tape accompanying Hennessy and Patterson’
book [7].

The three traces were obtained from the following programs:

ccl. The main part of the GCC compiler

spice. The circuit simulation program.

tex. The text formatting program.

The total number of data memory accesses in each file is around 200 000 - 250 000.

Unfortunately the compiler used, the input data supplied to the programs and the period
of execution that was monitored are not known.
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