
SCALP: A Superscalar Asynchronous

Low-Power Processor

A thesis submitted to the University of

Manchester for the degree of Doctor of

Philosophy in the Faculty of Science and

Engineering

Philip Brian Endecott

Department of Computer Science

1996

- 2 -

Contents

Contents . 2
List of Figures. 6
List of Tables . 8
Abstract. 10
Declaration . 12
Copyright and Intellectual Property Rights 12
Acknowledgements. 13
The Author . 13

Chapter 1: SCALP: A Superscalar Asynchronous Low-Power Processor. . . 14
1.1 The Importance of Power Efficiency . 15
1.2 Low Power Design Techniques . 16

1.2.1 Low-Level Power Efficiency . 16
Process Technology. 16
Transistor Level Design . 17
Charge Recovery and Adiabatic Systems 17
Logic Optimisation . 18
Supply Voltage Adjustment . 18
Parallelism. 19
Precomputation . 19
Clocking Schemes and Asynchronous Logic 19

1.2.2 Higher-Level Power Efficiency: Microprocessors 20
External Memory Bandwidth . 20
Cache Characteristics . 20
Datapath Arrangement . 21

1.3 Previous Low Power Processors. 21
1.4 Overview of the Thesis . 22

Chapter 2: Reducing Transitions . 24
2.1 Code Density . 24

2.1.1 Variable Length Instructions . 27
2.1.2 Register Specifiers . 29
2.1.3 Previous High Code Density Processors 31

D16 . 31
Thumb . 32
Transputer . 32

2.2 Datapath Activity . 33

Chapter 3: Parallelism . 35
3.1 Parallelism and Power . 35
3.2 Power, Parallelism and Cost . 37
3.3 Parallelism in Special Purpose Processors 38
3.4 Parallelism in General Purpose Processors. 39
3.5 Pipelining . 40

3.5.1 Branch Instructions . 43
3.5.2 Dependencies . 45
3.5.3 Different Pipeline Arrangements . 48

- 3 -

Shorter Pipelines. .48
Longer Pipelines .48

3.6 Superscalar Parallelism. .49
3.6.1 Dependencies .50
3.6.2 Branch Instructions. .54
3.6.3 Observations. .54
3.6.4 Simpler forms of Multiple Functional Unit Parallelism.56

3.7 Speculative Execution .57

Chapter 4: Asynchronous Logic. .59
4.1 Asynchronous Logic and Power Efficiency.59

4.1.1 Asynchronous Circuits can be Faster. .59
4.1.2 Asynchronous Circuits can be Smaller. .61
4.1.3 Asynchronous Logic in Variable Demand Systems.62
4.1.4 Asynchronous Logic and Dynamic Supply Voltage Adjustment. 63
4.1.5 Asynchronous Logic Doesn’t Waste Transitions.64
4.1.6 Other benefits of Asynchronous Logic. .65
4.1.7 Tangram and the Philips DCC Error Corrector66
4.1.8 Conclusion .67

4.2 Asynchronous Pipelines .67
4.2.1 Forwarding in Asynchronous Pipelines .69
4.2.2 Conditional Forwarding .71
4.2.3 Explicit Forwarding .73

4.3 Asynchronous Superscalar Parallelism. .74
4.3.1 Simple Superscalar Structures .74
4.3.2 Superscalar Forwarding .76

4.4 Previous Asynchronous Processors .77
The Caltech Asynchronous Processor.77
AMULET1 and AMULET2 .79
NSR. .80
Fred .81
Counterflow Pipeline Processor .82
Hades. .83
ECSTAC .83
TITAC .84
ST_RISC. .84
FAM .84
STRiP .84

4.4.1 Observations. .85

Chapter 5: The SCALP Architecture .87
5.1 Explicit Forwarding and Non-Global Registers.88
5.2 Deadlocks and Determinism. .94
5.3 Other SCALP Features. .99
5.4 A SCALP Instruction Set .100
5.5 The SCALP Programming Model .104
5.6 Interrupts and Exceptions. .115
5.7 Related Work .117

5.7.1 Stack Processors. .117
5.7.2 Architectural Queues .117

- 4 -

5.7.3 Explicit Forwarding . 118

Chapter 6: Implementation . 120
6.1 Asynchronous Design Styles . 120

6.1.1 Timing Models for Control Circuits . 122
6.1.2 Timing Models for Datapaths . 122
6.1.3 Asynchronous Signalling Protocols . 123

6.2 Implementation Methodology . 125
6.3 Overview of the Design . 129

Memory Interface . 129
Fetcher . 129
FIG Fifo. 131
Issuer . 131
Instruction Queues. 131
Operand Queues . 131
Branch Unit . 131
ALU. 132
Load/Store Unit . 132
Move Unit . 133
Register Bank . 133
Result Queues . 133
Result Routing Network . 133

6.4 Implementation of the Instruction Issuer 134
6.4.1 The Need for Parallelism . 134
6.4.2 The Proposed Solution . 136
6.4.3 The Implementation . 141

Token Block . 141
Decode Block . 143
Sequence Block . 144

6.4.4 Adding Branch Instructions . 146
6.4.5 Adding Variable Length Instructions . 147
6.4.6 Performance of the Instruction Issuer. 148

Architectural Performance . 148
Implementation Performance . 150

6.5 Implementation of the Result Routing Network. 151
Arbitration . 153
Other Organisations. 154

6.6 Functional Units . 155
6.7 Size of the Implementation. 158

Chapter 7: Evaluation . 162
7.1 Evaluation Procedure . 162

7.1.1 Test Stimuli. 162
Instruction Sequences . 163
Example Programs . 164

7.1.2 Evaluation Programs. 165
Pipeline Visualisation . 166
Resource Utilisation . 166
Instruction Rate . 167

7.1.3 Use of the Geometric Mean . 167

- 5 -

7.2 Code Density . 169
7.3 Pipeline Performance . 171

7.3.1 Performance of Isolated Stages . 171
FIG Fetch. 171
Instruction Issue . 172
Functional Units . 173
Result Network . 174

7.3.2 Overall Performance . 175
Starvation and Blocking . 177
Pipeline Performance with Branches 179

7.3.3 Measured Performance . 181
Instruction Sequences . 181
Example Programs . 182

7.3.4 Conclusion . 183
7.4 Functional Unit Parallelism . 183
7.5 Comparative Performance . 188
7.6 Evaluating the performance of Asynchronous Logic 189
7.7 Power . 190

7.7.1 High code density . 190
7.7.2 Parallelism . 190
7.7.3 Asynchronous Implementation. 191
7.7.4 Variable width datapath operations . 192
7.7.5 Summary. 192

7.8 Evaluating the SCALP Programming Model 193

Chapter 8: Conclusions. 196
8.1 Summary. 196

Motivation . 196
Architecture . 198
Implementation . 198

8.2 Improving the SCALP Architecture . 199
8.3 Improving the SCALP Implementation 201

8.3.1 Branch Prediction . 202
8.3.2 Faster Asynchronous Logic . 203
8.3.3 Variable Length Instructions . 204
8.3.4 Functional Unit Pipelining . 205

8.4 The Future of SCALP. 205
8.5 SCALP and Conventional Architectures 206
8.6 Conclusions. 207

Appendix A: Benchmarks . 208

References. 211

- 6 -

List of Figures

2.1 Decoding Fixed Length Instructions . 28
2.2 Decoding Variable Length Instructions . 28
2.3 More Efficient Variable Length Instruction Decoding. 28
2.4 Variable Length Instruction Decoding with a Control Field 29
3.1 The Relationship between Parallelism and Power Efficiency . . . 37
3.2 A 6-Stage Pipeline . 42
3.3 Timing of a 6-Stage Pipeline . 42
3.4 Branches in a 6-Stage Pipeline . 43
3.5 Timing of Branches in a 6-Stage Pipeline 43
3.6 A Pipeline with a dedicated branch adder 44
3.7 Timing of Branches with a dedicated branch adder 44
3.8 A 6-stage Pipeline with Forwarding . 46
3.9 Control for Forwarding. 46

3.10 Symmetric 2-way superscalar processor 50
3.11 Forwarding in a Superscalar Processor. 50
3.12 Superscalar Processor with Out of Order Issue and Register

Renaming . 54
4.1 Speed of Synchronous and Asynchronous Circuits 60
4.2 Power Saving in Variable Demand Systems 63
4.3 Dynamic Supply Voltage Adjustment controlled by Fifo

Occupancy . 64
4.4 Dynamic Supply Voltage Adjustment controlled by a HALT

instruction . 64
4.5 A Simple Synchronous Pipeline . 68
4.6 A Simple Asynchronous Pipeline with Matched Delays 68
4.7 A Simple Asynchronous Pipeline with Completion Detection . . 68
4.8 A Synchronous Pipeline with Forwarding 70
4.9 An Asynchronous Pipeline with Forwarding 70

4.10 Performance of Synchronous and Asynchronous Pipelines with
and without Forwarding . 72

4.11 An Asynchronous Pipeline with Conditional Forwarding 73
4.12 Synchronous Parallel Functional Units . 74
4.13 Asynchronous Parallel Functional Units 75
4.14 Counterflow Pipeline Processor . 83
5.1 SCALP Processor Organisation . 89
5.2 Scalp Program Dataflow Representation 92
5.3 SCALP Instruction Format . 99
5.4 Move unit instruction format . 101
5.5 Register bank instruction formats . 101
5.6 ALU instruction format . 101
5.7 Load/Store instruction format. 102
5.8 Branch instruction format . 102
5.9 Five Instruction Group (FIG) format . 102

5.10 The division of responsibilities between hardware and the
compiler (from [HOOG94]) . 119

6.1 Four Phase Asynchronous Signalling. 124

- 7 -

6.2 Two Phase Asynchronous Signalling . 125
6.3 An Example Muller C Gate . 127
6.4 SCALP Implementation Overview. 130
6.5 An Unsatisfactory Issuer Architecture . 135
6.6 Instruction Issuer Architecture . 137
6.7 Issuer Token Path . 141
6.8 Issuer Cell Internal Organisation . 142
6.9 Token Block Implementation . 143

6.10 Decode Block Implementation . 144
6.11 Sequence Block Implementation . 145
6.12 Instruction Issuer Architectural Performance 150
6.13 Single Bus Network . 152
6.14 Fully Populated Crossbar Network. 152
6.15 Two Bus Network. 152
6.16 Four way mutual exclusion circuit built from two way mutual

exclusion elements . 153
6.17 Arbiter for Result Network. 154
6.18 An Asymmetric Result Network . 155
6.19 Function Units General Structure . 156
6.20 Branch Unit Sequencer . 156
6.21 SCALP Block Sizes . 161
7.1 Pipeline Visualisation . 167
7.2 Instruction Issuer Performance . 173
7.3 Performance of Isolated Pipeline Stages 176
7.4 Performance and Branch Interval . 180
7.5 Instruction Sequence Functional Unit Parallelism 184
7.6 Example Program Functional Unit Parallelism 185
7.7 Functional Unit Use for Example Programs. 186
8.1 Instruction Encoding with Separate Instructions and Result

Routing . 200

- 8 -

List of Tables

2.1 Improvement in SPARC code density resulting from
instruction set changes . 26

2.2 Frequency of 2-address instructions in SPARC code. 30
2.3 Frequency of Last Result Re-use . 30
3.1 Video Decompression Circuits from [RABA94] 39
3.2 Programmer-visibility of parallelism . 40
3.3 Effective parallelism in a 6 stage pipeline 47
3.4 Instruction Mix . 48
3.5 Performance Advantage of Major Processor Features (from

[JOHN91]) . 55
3.6 Branch Prediction and Power Efficiency 58
4.1 Performance Of Synchronous and Asynchronous Pipelines 69
4.2 Performance Of Synchronous and Asynchronous Superscalar

Processors . 75
4.3 Recent Asynchronous Microprocessors . 78
4.4 Characteristics of the AMULET1 compared with ARM6;

slow-slow silicon . 80
5.1 Number of times each instruction result is subsequently used

(from[ENDE93]). 93
5.2 Instruction Set Summary . 103
5.3 Functional Unit Use for Conventional Program (Example 1) . . 111
5.4 Functional Unit Use for SCALP Program (Example 1) 112
5.5 Functional Unit Use for Conventional Program (Example 2) . . 114
5.6 Functional Unit Use for SCALP Program (Example 2) 115
6.1 Macromodules used in the SCALP implementation 128
6.2 Issuer Decode Block Function . 144
6.3 Instruction Issuer Architectural Performance 149
6.4 Total Gate Counts . 158
6.5 Gates per Block. 160
6.6 SCALP, AMULET and ARM sizes . 161
7.1 Illustrating the use of the Geometric Mean 168
7.2 Static Code Size / bytes . 169
7.3 Dynamic Code Size / bytes. 169
7.4 Register Bank and Move Unit Instructions per Useful

Instruction . 170
7.5 FIG fetch performance, no branches . 171
7.6 Instruction issuer performance . 172
7.7 Functional Unit Performance . 174
7.8 Network Performance . 175
7.9 Performance of Isolated Pipeline Stages 175

7.10 Pipeline Decoupling Queue Lengths . 178
7.11 Ideal and Actual Queue Lengths. 178
7.12 Branch Latency. 179
7.13 Instruction Sequence Throughput. 181
7.14 Example Program Throughput . 182

- 9 -

7.15 Maximum Potential Functional Unit Parallelism for Example
Programs . 186

7.16 Average Functional Unit Parallelism . 187
7.17 Example Program Performance . 188
7.18 Power Saving due to Inactive Functional Units 192
8.1 Example Program Code Sizes for SCALP with Separate

Result Routing . 201
A.1 Benchmark Programs . 208

- 10 -

Abstract

The design of low power microprocessors is an important research area because of the

increasing demand for high-performance portable computers with long battery life. Most

previous low power microprocessor designs have been constrained by the need to

maintain compatibility with existing instruction sets and so have been able to apply power

efficiency techniques only at the implementation level and below. Furthermore

conventional design approaches have prevented processor implementations from

exploiting the power saving potential of asynchronous logic. This thesis describes a

processor, SCALP, whose architectural design and implementation are free from these

constraints.

SCALP is motivated by three objectives: high code density, highly parallel operation, and

asynchronous implementation. These three objectives should all lead to increased power

efficiency and also dictate the nature of the architecture.

Conventional instruction sets indicate the flow of data between instructions by means of

register numbers; each instruction gives register numbers for its operands and result. This

technique leads to complexity in pipelined superscalar implementations: register numbers

from many instructions must be compared to identify dependencies and activate

appropriate forwarding paths. In asynchronous systems these forwarding paths cause

further inefficiency due to the additional synchronisation that they impose. Furthermore

the register specifier bits in a typical instruction set take up around half of the total

instruction, making them crucial to code density.

SCALP’s main architectural innovation is its use of “explicit forwarding”. SCALP does

not use a global register bank but rather indicates for each instruction to where the result

should be sent. This takes the form of a destination queue identifier. One such queue is

- 11 -

associated with each operand required by each functional unit. Using this scheme the need

for many register specifier comparators is eliminated. The arrangement also suits

asynchronous implementation and increases code density.

SCALP has other features aimed at increased code density or other ways of increasing

power efficiency: it has variable length instructions and operations need only activate part

of the datapath for byte operations.

After describing the background to and features of the proposed architecture the

implementation is described. SCALP is the first known asynchronous implementation of

a superscalar architecture. It operates using the four-phase bundled data protocol like the

AMULET2 processor. Much of the design uses a “macromodule” design approach, and

the total size of the design is around 9,500 components. The design of some of the more

interesting parts of the implementation, such as the parallel asynchronous instruction

issuer, are described in detail.

The implementation has been taken to gate level using the hardware description language

VHDL. The implementation is extensively evaluated in comparison with a conventional

instruction set and conclusions about its effectiveness are drawn.

- 12 -

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning, except as indicated in section 2.1.

Copyright and Intellectual Property Rights

(1) Copyright in the text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the Author and lodged in the John Rylands University Library of Manchester.

Details may be obtained from the Librarian. This page must form part of any such

copies made. Further copies (by any process) of copies made in accordance with

such instructions may not be made without the permission (in writing) of the

Author.

(2) The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions

of any such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Head of Department of the Department of Computer Science.

- 13 -

Acknowledgements

During my three years as a postgraduate student in Manchester I have received a great

deal of support and encouragement from many students and staff in the Department of

Computer Science. I would like to thank everyone for their help.

I am especially grateful to my supervisor Prof. Steve Furber who has encouraged my

creativity, and to the other members of the AMULET research group.

Thanks are also due to those people who have helped by proof reading and commenting

on this thesis, in particular Richard York and David Gilbert.

The Author

Philip Endecott obtained a B.Sc. (I) degree in Computer Science from the University of

Manchester in 1991. After a year employed by Advanced RISC Machines Ltd in

Cambridge he returned to Manchester as a postgraduate student. In 1993 his M.Sc. thesis

entitled “Processor Architectures for Power Efficiency and Asynchronous

Implementation” was submitted. This thesis represents the result of a further two years

work in this area.

- 14 -

Chapter 1: SCALP: A Superscalar
Asynchronous Low-Power
Processor

To design a superscalar microprocessor is a complex and challenging task. To do so using

asynchronous logic - the subject of this thesis - makes it doubly difficult. So what is it that

makes such a processor desirable? The answer is that superscalar and asynchronous

operation, along with a number of other factors, should help to make SCALP a highly

power efficient processor.

Power efficiency is becoming an increasingly important factor in digital design,

particularly as a result of the proliferation of portable battery-operated applications.

Proposed design techniques for low power systems are discussed later in this chapter.

These techniques have been applied with particular success in special purpose signal

processing applications such as the Philips Digital Compact Cassette Player [BERK95]

and the Berkeley InfoPad [CHAN94]. In the case of general purpose processors however

designers have been less adventurous.

Many constraints influence the designer of a general purpose microprocessor. Often it is

necessary to maintain code compatibility with a previous design. If absolute code

compatibility is not necessary then the processor is expected to follow a model that

assembly language programmers and compiler code generators are used to. At the very

least an execution model that is a suitable target for common high level languages is

needed.

SCALP: A Superscalar Asynchronous Low-Power Processor

- 15 -

Other constraints limit the choice of implementation technology. Compatibility with

existing memory and interface circuits requires that the processor operates in a

conventional synchronous fashion at a fixed standard supply voltage. All these

restrictions limit the designer’s ability to apply novel and radical ideas that may have

benefits in terms of power efficiency or other factors.

This work has suffered no such impediment. SCALP, the processor described here,

deviates significantly from the conventional idea of a microprocessor in order to try

architectural and implementation ideas that may contribute towards increased power

efficiency.

This first chapter starts by providing a background explaining why power efficiency is

becoming increasingly important. Proposed techniques for improving power efficiency

are reviewed, and finally an overview of the remainder of the thesis is presented.

1.1 The Importance of Power Efficiency

There are several reasons why power efficiency is becoming increasingly important. Most

importantly portable systems powered by batteries are performing tasks requiring

increasing computational performance. At the same time these systems are becoming

physically smaller and battery weight is becoming more significant. Users demand longer

battery life and this can only be obtained by increasing the capacity of the battery or by

increasing the efficiency of the logic. The rate of progress in battery technology is slow,

so the onus is on the digital designer to improve efficiency.

There are other reasons why power is becoming important. As the heat output of chips

increases it becomes more difficult and expensive to provide sufficient cooling in the form

of special packages, heat sinks and fans. Furthermore increased temperatures lead to

greater stress on the component and reduced reliability.

SCALP: A Superscalar Asynchronous Low-Power Processor

- 16 -

Electrical issues are also important. Providing a supply of sufficient capacity requires a

large number of bond wires between the chip and the package, and a large proportion of

the potential signal routing space is occupied by power distribution. High current

densities can lead to electromigration. At the system level, increased power demands

larger and more expensive power supplies.

Even the cost of the electricity used can be important. It is estimated that at the end of the

decade 10 % of U.S. non-domestic electricity consumption will be by personal

computers. Reducing this contribution would have significant economic and

environmental benefits.

These factors, and others described in [ENDE93], combine to make power efficiency an

increasingly important factor in the design of digital systems.

1.2 Low Power Design Techniques

This section reviews techniques that have been suggested for improving power efficiency.

These techniques apply at a number of levels from transistors through to high level design.

The savings obtained at each of these levels tend to combine multiplicatively, so a

successful low power system must employ techniques at all levels.

The descriptions in the following sections apply to CMOS logic unless otherwise

indicated.

1.2.1 Low-Level Power Efficiency

Process Technology

The ever-diminishing feature size possible with successive generations of fabrication

processes is greatly beneficial to power efficiency. As feature sizes shrink capacitances

SCALP: A Superscalar Asynchronous Low-Power Processor

- 17 -

are reduced and gates become faster. As a first approximation the energy per gate

transition is proportional to the cube of the feature size and the gate delay is directly

proportional to the feature size if the supply voltage is scaled with the feature size

[WEST93].

As feature sizes continue to scale interconnect delays become increasingly significant.

Interconnect delays do not scale with feature size or with supply voltage and so eventually

limit the available performance.

Improving process technology also allows for the construction of increasingly large

circuits on single chips. Inter-chip connections are far more power consuming and slower

than on chip connections, so as the number of inter-chip connections necessary is reduced

the power efficiency of the system is improved.

Transistor Level Design

The size of the transistors used to build basic logic gates affects their speed and power

consumption. One objective is to obtain fast output changes as short-circuit current flows

in the driven gate at intermediate voltages during the transition. On the other hand it is

desirable to minimise transistor sizes in order to reduce capacitances. Recent work

[FARN95] has investigated the ideal transistor sizes for greatest power efficiency.

In some cases asymmetric gates can be constructed; some input to output paths are faster

and are used for critical paths while others are more power efficient and are used for less

critical paths. The scope is greatest in the case of complex gates where the order of the

transistors can be chosen based on known input transition orders and probabilities

[GLEB95].

Charge Recovery and Adiabatic Systems

Conventional circuits charge nodes that must become high by connecting them to the

positive supply and discharge nodes that must become low by connecting them to the

SCALP: A Superscalar Asynchronous Low-Power Processor

- 18 -

negative supply. This mode of operation leads to the conventional CMOS power

consumption equation:

Other schemes use different techniques. Adiabatic systems [SOLO94] use inductors,

capacitors and sinusoidal clock / power signals to charge nodes in a more efficient fashion

such that

More readily implementable schemes use charge sharing between signals; signals that are

high and wanting to become low are connected to signals that are low and wanting to

become high, moving all nodes to an intermediate level. Subsequently the power supply

is used to complete charging or discharging the nodes [KHOO95].

Logic Optimisation

For conventional CMOS the majority of the power consumption is dynamic; that is power

is consumed only when signals change. Power efficiency can therefore be improved by

reducing the probability that signals will change.

In many cases the most common mode of operation of a block is known, for example a

typical sequence of states for a state machine or a typical set of inputs for a combinational

block. Low power consumption in this mode can be an objective of the design process.

Algorithms have been proposed that provide state encodings and implementations for

optimum power efficiency for state machines based on typical state sequences [OLSO94].

Supply Voltage Adjustment

Optimum power efficiency occurs when a circuit is powered from the lowest supply

voltage at which it can provide the necessary performance. Recent work [USAM95] has

suggested providing multiple supply voltages to a system. Gates on the circuit’s critical

P CVsupply
2∝

P VsupplyVthreshold∝

SCALP: A Superscalar Asynchronous Low-Power Processor

- 19 -

path are operated from the higher voltage and those not on the critical path are operated

from the lower voltage. Other work [NIEL94] [KESS95] proposes that the power supply

to the whole circuit is dynamically adjusted in response to the varying workload (see

section 4.1.4).

Parallelism

Increasing the parallelism in the system permits individual gates to operate more slowly

while maintaining the same overall throughput. Slower operation may be performed at a

lower supply voltage, increasing power efficiency [CHAN94] (see chapter 3).

Precomputation

Precomputation may be used to prevent unnecessary operations from being performed;

for example in a comparator it is possible to initially compare only a few of the bits. Only

if these bits match need the remaining bits be compared. In the case where the first

comparison gives a false result power has been saved [ALID94].

Clocking Schemes and Asynchronous Logic

In synchronous systems significant power is consumed by the clock signal, its driver and

the driven latches. Clock gating may be employed to disconnect the clock from parts of

the circuit that are inactive at a particular time [BENI95].

A more radical approach is to eliminate the global clock altogether. In asynchronous

systems, local timing signals control communication between blocks which occurs only

when useful work has to be performed (see chapter 4).

SCALP: A Superscalar Asynchronous Low-Power Processor

- 20 -

1.2.2 Higher-Level Power Efficiency: Microprocessors

At higher levels of abstraction methods of increasing power efficiency are dependent on

the particular application. In the case of microprocessors, this means the architectural

properties of the processor and its instruction set.

Previous work by the author identified three particularly important architectural features:

external memory bandwidth, cache characteristics, and datapath arrangement [ENDE93].

External Memory Bandwidth

The power consumed operating an external signal is substantially larger than the power

used by an internal transition; consequently it is important to minimise number and size

of external memory accesses. This can be effected by:

• Increasing the code density; a processor with a higher code density will require

fewer or smaller instructions to be fetched for a given workload.

• Reducing the frequency of load and store operations. This may be achieved by for

example incorporating a larger register bank.

• Improving the on-chip cache characteristics. A higher cache hit rate will reduce the

frequency of external memory accesses. Cache write policy is also important; write-

through caches will cause more external memory accesses than copy-back caches.

Cache Characteristics

Because the cache is a large regular structure its power efficiency properties are both

important and easy to study. Larger caches will consume more power than smaller ones;

this must be traded off against the corresponding reduction in external memory access

frequency mentioned above.

SCALP: A Superscalar Asynchronous Low-Power Processor

- 21 -

Greater power efficiency can be obtained with multiple levels of on-chip cache. In this

case the power consumption should be determined by the small size of the more

frequently used first level cache, whereas overall performance should be determined by

the large size of the second or further levels.

Datapath Arrangement

Typical RISC processors have a 32-bit datapath which is used for all operations. Many of

those operations will be operating on smaller quantities such as characters or small loop

counters that could be processed using a small fraction of the datapath width. Power

efficiency will be improved if the instruction set provides datapath operations of various

widths.

1.3 Previous Low Power Processors

Most previous low power microprocessors make use of only low level power efficiency

techniques in order to maintain code compatibility with previous high power versions of

the processors. This section describes the low power techniques used by these

conventional processors.

The ARM processor [FURB89] is considered to be one of the most power efficient

microprocessors available [ARM95]. Its power efficiency is due primarily to its

simplicity and consequent small size. The processor was designed for simplicity in order

to reduce both design complexity and cost; the resulting low power consumption was a

bonus. While most microprocessors are available only as single integrated circuits the

ARM is available as a VLSI macrocell which can be incorporated into a larger chip. In

this way the number of off chip interconnections required is reduced, increasing power

efficiency.

Other processors that are inherently more complex must apply other mechanisms to

increase their power efficiency. The most common approach is to introduce a number of

SCALP: A Superscalar Asynchronous Low-Power Processor

- 22 -

power saving modes in which parts of the processor are disabled. Typically there would

be several modes such as “standby”, “sleep”, “hibernate” etc. As deeper levels are entered

the number of active blocks reduces. Generally these modes are controlled by operating

system software. As one example the NEC 4100 processor [TURL95b] has standby,

suspend, and hibernate modes that reduce power consumption to 10%, 5%, and virtually

zero respectively. This processor is targeted at the portable “personal digital assistant”

market. Another example is the Hitachi SH7708 processor [TURL95a] which allows the

clock frequency to be dynamically changed to 1, 2, or 4 times the input frequency.

Some processor designs have made use of transistor sizing to minimise power

consumption. The PowerPC 400 series processors [CORR95] have been designed using

a large library of basic gates with many different combinations of transistor sizes. The

choice of which gate to use is made by a synthesis tool; the result is that relatively few

gates on critical paths use large transistors for high speed and the majority use smaller

transistors for low power consumption.

Some other processors do incorporate architectural features that benefit power efficiency,

though often these features were not incorporated with power efficiency in mind.

Specifically section 2.1.3 considers a number of processors with high code density.

Generally though no current microprocessors make high-level architectural choices such

as changing the underlying execution model in order to improve power efficiency.

1.4 Overview of the Thesis

Whereas the previous work described above has considered primarily the low level power

efficiency techniques, this work concentrates primarily on three of the higher level

techniques described in section 1.2, namely parallelism, asynchronous logic and high

code density.

The thesis is arranged as follows:

SCALP: A Superscalar Asynchronous Low-Power Processor

- 23 -

Chapters 2 to 4 consider each of the areas of interest in turn. Chapter 2 considers how the

number of transitions required to execute a program can be reduced by increasing code

density and reducing the datapath activity. Chapter 3 considers parallelism, particularly

how parallelism is obtained in pipelined and superscalar processors. Chapter 4 considers

asynchronous logic, investigating how its use can improve power efficiency and

considering how the parallel structures described in chapter 3 can be implemented

asynchronously.

Chapter 5 describes the SCALP architecture and explains how its novel organisation helps

several of the objectives identified in the previous chapters. Chapter 6 gives an

introduction to asynchronous design styles before describing the implementation of

SCALP as a gate level VHDL model. It gives an overview of the design and then

concentrates on some of the more interesting blocks. Chapter 7 presents an evaluation of

the processor and studies how well it meets its objectives, identifying strengths and

weaknesses.

Chapter 8 gives a summary of the work and then considers ways in which the architecture

and implementation could be improved. Ways in which the successful SCALP techniques

could be applied to more conventional processors are also considered.

- 24 -

Chapter 2: Reducing Transitions

One way in which power efficiency can be increased is to reduce the amount of circuit

activity required to carry out a computation. This chapter considers two particular ways

in which the number of signal transitions that occur while executing a program can be

reduced.

The first section is concerned with increasing code density. If code density can be

increased then the number of signal transitions in the instruction memory and instruction

fetch logic is reduced. The second section considers how datapath activity can be reduced

and proposes that when operands are smaller than the whole width of the datapath only

the required part of the datapath should be activated.

2.1 Code Density

Code density is a measure of the compactness of encoding of a processor’s instruction set.

In this section the relationship between code density and power efficiency is shown, and

ways in which code density can be altered through changes to the instruction set

architecture are investigated. Much of this section is based on previous work by the author

in [ENDE93].

The code density of a processor can be defined as the reciprocal of the amount of program

code required to perform some standard benchmark task. There are two variants of this

measure:

Reducing Transitions

- 25 -

• Static code density measures the total amount of memory required to store the code

for the benchmark program.

• Dynamic code density measures the total amount of processor - memory code

communication required for the execution of the benchmark program.

Static code density and dynamic code density tend to be correlated, but factors such as

compiler optimisation can lead to differences. For example, if the compiler unrolls loops

in the program the static code density will decrease but the dynamic code density will

increase.

Static code density is important when questions such as the size of cache memories are

considered; a processor with a higher static code density can obtain equivalent

performance with a smaller cache. For questions related to power efficiency it is generally

the dynamic code density that is most important.

As a first approximation power consumption in the memory and related parts of the

system is inversely proportional to the dynamic code density. If dynamic code density

could be doubled then the activity in the memory would be halved, and consequently its

power consumption would be halved. The power consumption associated with the main

memory system is particularly important as the main memory is typically on a different

chip from the processor itself and inter-chip communication is less power efficient than

on-chip communication.

Compared with previous generations, modern RISC processors have a relatively low code

density. This has occurred for a number of reasons:

• In order to minimise the complexity and increase the speed of the processor’s

instruction decoding logic, the instruction encoding is simple and hence redundant.

Older designs used a microcode ROM for decoding which made more arbitrary

encodings possible.

Reducing Transitions

- 26 -

• All instructions are the same length, and the length is determined by the longest

required instruction. Other instructions have unused bits. Previous designs used

variable length instructions.

• RISC processors have a large number of registers. Typically five bits are used to

specify one of 32 registers, and instructions may specify three registers, requiring a

total of 15 bits. In earlier systems compilers were unable to make use of so many

registers and fewer were provided.

Previous work [ENDE93] measured the potential improvement in code density that could

be achieved for a SPARC processor by changing certain aspects of its instruction set

architecture. Please refer to appendix A for details of the benchmark programs used. The

possible improvements are summarised in table 2.1; following sections interpret many of

the values in this table. It can be seen that there is no single way in which the code density

can be dramatically improved, though taken together a combination of these changes

could have a substantial effect.

Change Relative code density

1 Remove unused bit fields 1.03

2 Fixed length 5-bit opcode field 1.08

3 Huffman encoded variable-length opcodes 1.25

4 10-bit branch displacements 1.07

5 1, 3 and 10-bit add and subtract immediates 1.04

6 2- and 3-address instructions 1.05

7 Explicit use of last result 1.05

8 Explicit generation and use of last result 1.08

9 16 registers 1.01

10 Workspace pointer register 1.03

11 Load and store multiple 1.11

Table 2.1: Improvement in SPARC code density resulting from instruction set changes

Reducing Transitions

- 27 -

This section investigates two of these areas where SCALP makes improvements over

conventional architectures. These areas are the use of variable length instructions and the

code density of register specifiers. The final subsection describes a number of other

processor designs that have higher than usual code density.

2.1.1 Variable Length Instructions

There are two ways in which the use of variable length instructions can improve code

density:

• Opcodes can be encoded with longer codes for less common operations and shorter

codes for more frequent operations. Line 3 of table 2.1 above shows that this

technique can increase SPARC code density by 25%; however to achieve this

increase it is necessary to allow opcodes to be any number of bits in length. Realistic

variable length instruction formats will allow only a small number of instructions

lengths, reducing the benefit of this approach.

• The lengths of immediate fields can be varied. Lines 4 and 5 of table 2.1 shows that

if a branch instruction with an immediate field of 10 bits and arithmetic operations

with immediate fields of 1, 3 and 10 bits are added SPARC code density can be

increased by 11%.

The reason why RISC processors avoid variable length instructions is that they are more

difficult to decode than fixed length instructions. This is especially true when a

superscalar processor needs to decode more than one instruction at once.

Figure 2.1 shows how two fixed length instructions can be decoded in parallel. In contrast

figure 2.2 shows how five variable length instructions in the same total number of bits

must be decoded (the solid lines indicate instruction boundaries, the dotted lines indicate

boundaries between parts of the same instruction). Because it cannot tell in advance where

the boundaries between instructions lie the decoder must consider the instruction parts

serially, making the operation significantly slower.

Reducing Transitions

- 28 -

There are ways in which decoding variable length instructions can be made easier. The

simplest modification is to ensure that the first part of each instruction contains all of the

control information to indicate the total length of the instruction. In this case the decoder

can operate more quickly as shown in figure 2.3.

A more radical approach is indicated in figure 2.4. Here a “control field” is associated

with each group of instructions. The control field is decoded first and indicates the layout

of the instructions within the group to the decoder. The decoder is therefore able to decode

all instructions in parallel once the control field has been decoded, making the decoding

process nearly as fast as the fixed length instruction decoding. This is the technique used

by SCALP.

Figure 2.1: Decoding Fixed Length Instructions

Figure 2.2: Decoding Variable Length Instructions

Figure 2.3: More Efficient Variable Length Instruction Decoding

Reducing Transitions

- 29 -

2.1.2 Register Specifiers

RISC processors typically use up to about half of the bits in their instructions to represent

register numbers. When other techniques such as less redundant opcode encodings and

variable length instructions are used this fraction grows more significant. It is important

to be able to reduce this factor in order to increase overall code density.

Simply reducing the number of registers is not a solution. Compilers are able to use 32

registers effectively and if the number is reduced the number of load and store instructions

is increased.

Reducing the number of register specifiers per instruction is a strong possibility. It is

common to find that the destination register is the same as one of the source registers; this

was quantified in [ENDE93] (see appendix A) and is summarised in table 2.2. This form

of encoding is known as a 2-address encoding rather than a 3-address encoding. Table 2.2

shows that in around one third of instructions one register specifier can be eliminated and

a 2-address instruction used. Line 6 of table 2.1 indicates that this can lead to a 5 % code

density increase.

Using 2-address instructions is a way of exploiting the locality of register specifiers: if a

particular register is given by one register specifier in an instruction then there is an

increased chance that it is given by another register specifier in the same instruction. This

idea of locality can be taken further. It can be observed that if a register is used in one

instruction it has an increased chance of being used by preceding or following

instructions.

Figure 2.4: Variable Length Instruction Decoding with a Control Field

Reducing Transitions

- 30 -

It is very common for the result that has been computed by one instruction to be used by

the immediately following instruction. By referring to “the result of the last instruction”

in shorthand rather than by giving its register number a significant code density increase

can be obtained. Table 2.3 summarises measurements of this property made in [ENDE93]

(see appendix A).

Line 7 of table 2.1 indicates that code density can be increased by 5% by using an

instruction encoding which indicates last result reuse in shorthand.

Line C of table 2.3 suggests how this idea can be taken further. Many instructions use the

result of the previous instruction and that result is subsequently never used again. In this

case it is not necessary for either instruction to provided a register specifier to refer to this

Instruction category Example % of instructions

No register specifiers Branch 19.7

One register specifier Move immediate 12.0

Two register specifiers, equal ADD R1,R1,#1 25.6

Two register specifiers, not equal ADD R1,R2,#1 32.4

Three register specifiers, two equal ADD R1,R1,R2 5.8

Three register specifiers, not equal ADD R1,R2,R3 4.4

Total potential 2-address instructions 31.4

Table 2.2: Frequency of 2-address instructions in SPARC code

Instruction category % of instructions

A: Use the result of the previous instruction 43.8

B:
As A, but excluding branch instructions that use the
boolean result of a preceding compare

29.4

C:
As B, and the value used is not used by any subse-
quent instructions

20.6

Table 2.3: Frequency of Last Result Re-use

Reducing Transitions

- 31 -

value; both may use shorthand. Line 8 of table 2.1 indicates that both forms of shorthand

together provide an 8% code density increase.

It is possible to go further and to allow instructions to refer to the results of other

preceding instructions, leading to further code density improvements. This idea forms the

basis of the “explicit forwarding” mechanism used by SCALP which is described in

chapter 5.

2.1.3 Previous High Code Density Processors

Conventional RISC processors have relatively poor code density due to their regular fixed

length instruction format. In comparison the preceding generations of CISC processors

made use of a more dense variable length instruction encoding.

In addition to the CISC processors a number of other architectures have increased code

density. This section considers three processor designs; D16 and Thumb use 16-bit RISC-

like instructions whereas the transputer uses a variable length stack based instruction set.

D16

[BUND94] proposes a 16-bit RISC-like instruction set called D16. This is based on DLXe

which is in turn very similar to the MIPS architecture. Comparisons are made between the

code density and power efficiency of D16 and DLXe.

D16’s instruction set is relatively simple with only five instruction formats. The

instructions specify at most two register specifiers and can access 16 registers.

The dynamic code density of D16 is found to be around 70% higher than that of DLXe.

However as the 16 bit instruction set contains less redundancy than the conventional

instruction set, more bits on the instruction fetch bus change per cycle. For D16 on

average 3.88 bits change per byte of instruction; for DLXe 2.85 bits change. This means

Reducing Transitions

- 32 -

that the 70% code density increase leads to a power efficiency increase on the instruction

fetch bus of only around 30%.

Thumb

Thumb [ARM95] is an extension to the ARM architecture that extends the instruction set

to include a set of 16-bit instructions. These 16 bit instructions are dynamically translated

to ARM 32 bit instructions during decoding.

The Thumb instruction set is complex with 19 different instruction formats. Most

operations use a two address format and can access 8 registers. The standard 32 bit ARM

instruction set is available when necessary; for example the Thumb instruction set

contains no floating point instructions.

The motivation for Thumb is to increase code density so that ROMs in embedded

applications may be smaller, and so that performance can be increased when the processor

is connected to a byte or 16 bit wide instruction fetch bus. The reduced instruction fetch

requirement also leads to increased power efficiency. Thumb’s code density is around

50% higher than the standard ARM processor.

Transputer

The transputer [MITC90] is an unusual processor with two key features that lead to

increased code density.

Firstly the execution model is based on a stack rather than a register bank. Most

instructions receive their operands from and write their results to a three entry stack. Other

data must be stored in memory, though a small memory is integrated with the processor

making this relatively efficient. Memory accesses may be relative to a workspace pointer.

Secondly short variable length instructions are used. Instructions are multiples of one byte

long. The most common instructions using only implicit stack addressing without

Reducing Transitions

- 33 -

immediate values are encoded in a single byte; less common instructions and immediate

values are encoded using “prefix instructions”.

2.2 Datapath Activity

Conventional RISC processors normally have a 32 or 64 bit wide datapath consisting of

register bank, ALU, shifter, multiplexors, latches etc. This datapath works efficiently

when it is processing quantities of this full width such as addresses but many of the values

dealt with by a program are significantly narrower than this. Examples include characters

which are encoded by only 8 bits and booleans which require only one. When a 32 bit

datapath is used to operate on these smaller quantities much of the power used is wasted.

The solution is to add operations to the instruction set that operate on small quantities.

When executing these instructions the processor need only activate a part of the datapath.

The power benefit of the reduced datapath activity must be balanced against the reduced

code density resulting from the additional width information in the instructions. SCALP

chooses the simplest possible scheme with each instruction using a single bit to indicate

whether it operates on byte or word quantities.

Many earlier CISC processor architectures included datapath operations of more than one

width. In some cases these features lead to complications when advanced

implementations of these architectures were considered. Consider the following example:

• An early instruction writes a 32-bit value into a register.

• A later instruction starts execution and will write an 8-bit value into the same

register.

• The immediately following instruction wishes to read a 32-bit value from this

register.

Reducing Transitions

- 34 -

In a pipelined implementation, a forwarding path would be used to send the result of the

second instruction to the third. However the value that the third instruction should receive

should contain 8 bits from the second instruction and 24 from the first instruction. It is

therefore necessary for the third instruction to get part of the value from the forwarding

path and part of it from the register bank. This is complex and undesirable.

This problem has recently been reported in the Intel P6 processor which is a superscalar

implementation of the old 8086 architecture [GWEN95].

To avoid this type of problem SCALP defines the most significant bits of a value to be

undefined when an instruction has operated on only the least significant byte.

- 35 -

Chapter 3: Parallelism

This chapter investigates the idea that increased parallelism can be beneficial for power

efficiency, and then describes forms of parallelism that can be used in microprocessors

and other systems. Firstly the relationship between power, computational throughput,

parallelism, and supply voltage is established.

3.1 Parallelism and Power

Let

 be the supply voltage

 be the power consumption

 be the speed at which gates operate

 be the extent of parallelism

and be the computational throughput

For CMOS circuits, over a reasonable range of supply voltages the gate speed depends

directly on the supply voltage [WEST93]:

(1)

V

P

S

N

T

S V∝

Parallelism

- 36 -

If the potential parallelism is fully utilised, the throughput depends on the gate speed and

the parallelism:

(2)

If there is no overhead associated with the parallelism, for conventional CMOS power

consumption depends on the square of the supply voltage and the throughput [WEST93]:

(3)

Let us derive the relationship between and for constant and variable :

Substituting from (1) and (2) into (3):

(4)

Since is constant, from (4)

(5)

So power decreases with the square of the parallelism. For example, if a processor with

no parallelism is replaced by another with parallelism of two, the power consumption is

reduced by a factor of four if the supply voltage is adjusted to maintain the same

throughput. The overhead of the parallelism will eat in to this advantage to some extent;

the additional control logic will consume power, and the utilisation of the parallelism may

be incomplete. Although these effects may be quite significant in some cases they are

unlikely to exceed the factor of four mentioned here.

Figure 3.1 plots the relationship derived above for parallelism between 1 and 5.

T SN∝

P TV
2∝

P N T V

P T
T
N
---- 

  2
∝

T

P
1

N
2

------∝

Parallelism

- 37 -

3.2 Power, Parallelism and Cost

One practical disadvantage of an increase in parallelism is the resulting increase in cost,

particularly as many power-sensitive embedded applications are also cost sensitive.

For most forms of parallelism circuit area increases at least linearly with the degree of

parallelism (the important exception is pipelining which is discussed later). Cost depends

on area, and as area increases yield decreases further multiplying the cost.

In most cases the question of what additional cost can be sustained for a particular

increase in power efficiency is a matter of marketing. In some cases however a

quantitative argument can be made.

Figure 3.1: The Relationship between Parallelism and Power Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

re
la

tiv
e

po
w

er

relative parallelism

Parallelism

- 38 -

Consider a system comprising a processor and a battery. If the power efficiency of the

processor can be increased then a cheaper lower capacity battery could be used with the

same overall system performance. If

 is the cost of the non-parallel processor

and is the cost of the battery for the non-parallel processor

then the optimum degree of parallelism, , to minimise total cost is given by

(6)

This result is unappealing because it suggests that in this case even two-way parallelism

is attractive only when . Other factors for desiring low power, such as

increased battery life or reduced battery weight, are less quantifiable but may be more

compelling.

3.3 Parallelism in Special Purpose Processors

The use of increased parallelism to reduce power consumption has been applied in a

number of digital signal processing applications with good results.

An excellent example is the Berkeley InfoPad work [CHAN94] [RABA94] which has

implemented a number of signal processing functions for a portable multimedia terminal

including video decompression. These circuits incorporate substantial parallelism,

allowing them to operate at reduced supply voltages and hence with increased power

efficiency. Table 3.1 compares two implementations of a video decompression circuit.

These results show that in this special purpose processing application the use of

parallelism and reduced supply voltage can lead to very great power savings. It would be

a great success to achieve the same sort of savings in general purpose processors.

Cp1

Cb1

Nopt

Nopt

2Cb1

Cp1
------------3=

Cb1 4Cp1=

Parallelism

- 39 -

3.4 Parallelism in General Purpose Processors

In the past parallelism has not been applied to general purpose processors with the

objective of improving power efficiency, but it has been extensively used to improve

performance and exactly the same techniques may be applied. These techniques and their

applicability to low power processors are described in the remaining sections of this

chapter.

Parallelism in processors may be divided into two categories:

• Parallelism that is explicitly visible to the programmer, for example the multiple

communicating processors of a transputer network.

• Parallelism that is not visible to the programmer, for example using pipelining to

overlap the execution of several instructions.

Making parallelism visible places the duty of exploitation on the programmer rather than

the processor designer. In the case of a transputer network the hardware overhead is low;

the only requirement is for a number of communication channels between the processors.

On the other hand the programmer’s overhead is large: he must re-write his algorithms to

use message-passing parallelism.

When parallelism is invisible to the programmer, code that has been written for a

conventional processor can be executed unchanged on the parallel machine. The hardware

Design Style
Clock Fre-

quency / MHz
Supply

Voltage / V
Power / mW Area / mm^2

Uni-processor 8.3 3.3 10.8 72

Multi-processor 1.04 1.1 0.25 112

Table 3.1: Video Decompression Circuits from [RABA94]

Parallelism

- 40 -

takes responsibility for detecting and exploiting the available parallelism; consequently

the processor design is more complex.

Some examples of programmer-visible and invisible parallelism are show in table 3.2.

With all of these approaches the potential for increased power efficiency is determined in

the same way by the degree of parallelism achieved, as explained in section 3.1. SCALP

uses parallelism that is generally invisible to the programmer and so this chapter focuses

on pipelining and superscalar execution.

The following two sections describe the implementation of conventional pipelined and

superscalar processors, and it will be seen that particularly in the case of superscalar

processors the implementation complexity is high. SCALP finds a compromise that can

maintain the programming simplicity of programmer-invisible parallelism and bring

some of the hardware simplicity of programmer-visible parallelism.

3.5 Pipelining

Pipelining is a particularly attractive form of parallelism because it does not carry the

same area overhead that other forms do. This section seeks to find out what degree of

pipeline parallelism can be obtained reasonably in a microprocessor and what cost is

associated with its implementation.

Fully Visible Visible only to compiler Invisible

Message passing multi-
processors

Vector processors Pipelined processors

Shared memory multiproc-
essors

VLIW processors Superscalar processors

Table 3.2: Programmer-visibility of parallelism

Parallelism

- 41 -

The degree of parallelism depends on two factors:

• The number of pipeline stages.

• The extent of utilisation of the stages.

Pipelining is possible in RISC microprocessors as a result of their regular instruction sets.

In these processors all instructions follow virtually the same sequence of micro-

operations1:

• Generate the address of the instruction.

• Fetch the instruction from the memory.

• Decode the instruction.

• Read the source registers.

• Perform the ALU operation.

• For load and store instructions, access the memory.

• Write the result to the destination register.

There are a number of ways in which these operations can be organised into pipeline

stages. The particular organisation chosen will depend on the relative speeds of each of

the operations. Here we consider a six-stage organisation where each of these operations

is carried out in a separate pipeline stage, with the exception of instruction decode and

register read which can be carried out together2; other pipeline organisations are

considered later.

1. branch instructions excepted.

2. The positions of the source register specifiers in a RISC instruction are fixed so these registers can be
read while the rest of the instruction is decoded.

Parallelism

- 42 -

The structure and timing of this pipeline are shown in figures 3.2 and 3.3. In figure 3.3

each column represents a clock period and each row a pipeline stage; the numbers indicate

which instruction is active in each stage at each time. It would appear that this

organisation offers 6 fold parallelism which has a potential 36 fold power saving. In fact

a non pipelined processor would not have to execute exactly 6 times as many cycles as the

pipelined processor because many instructions do not need to perform every operation;

only loads and stores access the memory, compares and stores do not write a result to the

register bank, branch instructions do not access the register bank etc.

Furthermore there are two particular problems that could reduce the performance of the

pipelined processor: branches and dependencies. The following sections explain these

problems and the mechanisms used to mitigate their effects; afterwards table 3.3

quantifies the parallelism that is obtainable.

Figure 3.2: A 6-Stage Pipeline

Figure 3.3: Timing of a 6-Stage Pipeline

Fetch Read ALU Mem Write

+1 I-MEM DEC

READ

D-
MEM WRITE

PC Inc

New PC

Read

ALU

Mem

Write

Fetch 2 3 4 5

2 3 4

2 3 4 5

2 3 4 5

2 3 4

1

1

1

1

1

2 3 4 51 6

5

6

7

6

7

8

6

7

8

9

Parallelism

- 43 -

3.5.1 Branch Instructions

Branch instructions do not work well in simple pipelines because until they have

computed their target address instructions from the target address cannot be fetched and

begin execution. In a processor with a single adder branch target addresses take the path

highlighted in figure 3.4. The timing of this organisation is shown in figure 3.5;

instruction 3 is a branch to instruction 10. Two instructions (shaded) must be discarded

after the branch is fetched.

If a dedicated adder is available for branch target computation and branch instructions can

be decoded quickly the approach shown in figures 3.6 and 3.7 can be used. In this case

only one cycle is lost.

Figure 3.4: Branches in a 6-Stage Pipeline

Figure 3.5: Timing of Branches in a 6-Stage Pipeline

Fetch Read ALU Mem Write

DEC

READ

D-
MEM WRITE

+1

PC Inc

I-
MEM

New PC

Read

ALU

Mem

Write

Fetch 2 3 4 5

2 3 4

2 3 4 5

2 3 4 5

2 3 4

1

1

1

1

1

2 3 4 51

5

10 11 12

10 11

10

11 12 1310

Parallelism

- 44 -

Two principle techniques may be used to reduce the impact of this effect on the pipeline’s

performance. Firstly branch delay slots can be used. In this system the instructions in the

locations following the branch instructions are fetched and executed irrespective of

whether the branch is taken. The compiler has to find instructions that can be placed here

to do useful work. [HENN90] claims that it is able to do so usefully about half of the time

for the first slot and significantly less of the time for any second or subsequent slots (see

appendix A).

The second approach is to use branch prediction. In this system the branch target is

guessed and instructions from the target are fetched and executed. The true branch target

is computed concurrently. If the branch turns out to have been wrongly predicted the

speculatively fetched instructions are cancelled. The prediction scheme may be a simple

one such as “predict not taken” where instructions are always fetched from beyond the

branch target or a more complex dynamic scheme based on the instruction’s previous

Figure 3.6: A Pipeline with a dedicated branch adder

Figure 3.7: Timing of Branches with a dedicated branch adder

Fetch Read ALU Mem Write

DEC

READ

D-
MEM WRITE

+1

PC Inc

I-
MEM

New PC

Read

ALU

Mem

Write

Fetch 2 3 4

2 3 4

2 3 4

2 3 4

2 3 4

1

1

1

1

1

2 3 41 10 11 12 13 14

10 11 12 13

10 11 12

10 11

10

Parallelism

- 45 -

behaviour. The effectiveness of branch prediction depends on the complexity of the

branch history mechanism but correct prediction rates of around 90% have been reported

[HENN90].

3.5.2 Dependencies

Consider the following instruction sequence:

R1 := R2 + R3

R4 := R1 + R5

Note that the second instruction uses the result of the first instruction as an operand. This

is referred to as a “read after write” or RAW dependency.

In the simple pipeline shown in figure 3.2 this instruction sequence would execute

wrongly; when the second instruction read R1 from the register bank it would read the

value of R1 existing before the first instruction executed.

There are three solutions to this problem:

• The anomalous behaviour described here could be defined to be the correct

behaviour and the problem of ensuring that the correct value is ready be assigned to

the compiler.

• The dependency could be detected at the register read stage by means of some sort

of locking mechanism and the second instruction could be stalled until the first had

completed.

• The dependency could be detected at the register read stage and a mechanism could

be used to “forward” the result from the first instruction directly to the second.

Parallelism

- 46 -

In practice only the third of these techniques is used in synchronous processors with this

type of pipeline; the others are mentioned here because they are of interest later in the

cases of asynchronous and superscalar processors.

The necessary forwarding busses for this pipeline are shown in figure 3.8. In terms of

control, the processor has to record the destination of each previous instruction that is still

in the pipeline (two in this case). These destination register numbers are compared with

the source register numbers of the instruction being issued. Each possible match activates

one of the forwarding paths (figure 3.9).

Note that when the result of a load is used by the following instruction forwarding is not

possible; in this case the pipeline must be stalled for one cycle or the next instruction must

be prohibited from using this register.

Figure 3.8: A 6-stage Pipeline with Forwarding

Figure 3.9: Control for Forwarding

Fetch Read ALU Mem WritePC Inc

+1 I-MEM DEC

D-
MEM WRITEREAD

=

=

=

=

DEST SRC1 SRC2

Forwarding

Control

Signals

CLK

Parallelism

- 47 -

With the exception of the load instruction, in this simple synchronous pipeline the

addition of forwarding paths means that RAW dependencies have no effect on

performance. This is in contrast to superscalar processors, described in the next section,

and most existing asynchronous processors.

The effective parallelism obtained in the 6 stage pipeline with each of these factors taken

into account is shown in table 3.31.

Table 3.3 shows that the greatest parallelism achievable with the pipeline described is

4.34; this could be used to give a power saving of about 19 times compared with the non-

pipelined processor.

1. The instruction mix used is shown in table 3.4. This and other statistics from [HENN90] (see appendix
A).

Execution
Cycles

Relative
Parallelism

Non-pipelined processor 473 1.00

Perfect pipeline, no stalls 100 4.73

As above but stalling when a load result is
used by the following instruction (23 % of
loads)

104 4.54

As above and allowing for stalls due to
branches:

Single adder 132 3.58

Dedicated branch adder 118 4.00

Dedicated branch adder and branch delay
slot, filled usefully 48 % of the time

111 4.24

Dedicated adder and branch prediction, 90 %
of predictions correct, 90 % of branches
cached

109 4.34

Table 3.3: Effective parallelism in a 6 stage pipeline

Parallelism

- 48 -

3.5.3 Different Pipeline Arrangements

Shorter Pipelines

Shorter pipelines are worthwhile when some operations take much longer than others.

The ARM2 processor was designed for use without a cache memory and its cycle time

matches the dynamic RAM to which it was interfaced. The cycle time of this RAM is

relatively long so the processor merges the register read, ALU and register write

operations into one pipeline stage. As a consequence there is no need for any forwarding

mechanism.

Longer Pipelines

When the desired performance or power efficiency exceeds that which can be achieved

with the type of pipeline described above it is necessary to consider using a longer

pipeline where each stage performs a simpler operation. To build a longer pipeline it is

necessary to find a way of subdividing the internal structure of the stage that limits overall

pipeline throughput. This probably means either the memory access cycles (instruction

fetch and load/store) and the ALU.

Subdivision of these stages is likely to be difficult and costly in terms of area. More

importantly the longer pipeline will worsen the problems caused by branches and

Type Count

Branch 14

Load 18

Store 8

Compare 3

Others 57

Total 100

Table 3.4: Instruction Mix

Parallelism

- 49 -

dependencies; for example if the ALU is pipelined then forwarding is not possible

between one instruction and the next so the pipeline will have to stall more often.

At this point the designer must consider other forms of parallelism. One possibility is

superscalar execution which is considered next.

3.6 Superscalar Parallelism

The evolution of conventional RISC processors progressed from pipelined processors to

so-called Superscalar processors. Superscalar processors contain multiple parallel

pipelined datapaths sharing a single global register bank. They aim to fetch several

instructions at a time from memory and issue one to each of the pipelines. They do this in

a way that does not change the programmer’s model of the processor: the result of the

program must be the same as would be obtained with a single pipeline. Interactions

between instructions must be detected and dealt with by the hardware.

There are many ways in which superscalar processors can be organised. One structure is

shown in figure 3.10. This is a symmetrical arrangement where two pipelines of the sort

shown in figure 3.2 are combined. A global register bank is shared by the two pipelines;

it has 2 write ports and 4 read ports.

Ideal code could execute on this processor with twice the degree of parallelism that it

would obtain on a single pipeline machine. This parallelism could be used to provide a

four-fold power saving. Unfortunately real code does not match this ideal.

The realisable parallelism in a superscalar processor is limited by the same two factors

that limit pipeline performance: branches and dependencies.

This section focuses on how these two problems affect this processor and how their

effects can be mitigated. The answer is that good performance is possible but complex

logic is required to control how and when instructions are issued.

Parallelism

- 50 -

3.6.1 Dependencies

As in the pipelined processor forwarding mechanisms can be used to move results within

and between the pipelines; an arrangement of forwarding paths for the processor of figure

3.10 is shown in figure 3.11.

Because of the increased complexity of the processor the number of forwarding paths is

increased. Each ALU input must select between the register bank output and four

forwarding paths. To control these forwarding paths the destination of the last two

Figure 3.10: Symmetric 2-way superscalar processor

Figure 3.11: Forwarding in a Superscalar Processor

+2

Fetch Read ALU Mem WritePC Inc

I-MEM DEC

READ
MEM

D-

WRITE

+2

Fetch Read ALU Mem WritePC Inc

I-MEM DEC

READ
MEM

D-

WRITE

Parallelism

- 51 -

instructions in each pipeline must be stored and compared with each operand of each

instruction being issued. This requires 16 register specifier comparators compared with

the 4 required in the single pipeline.

Unfortunately despite the increased complexity of the forwarding logic, whereas in the

pipelined processor the forwarding paths solved nearly all RAW dependencies, in the

superscalar processor many dependencies have to lead to pipeline stalls. Consider this

sequence:

R1 := R2 + R3

R4 := R1 + R5

Because of the RAW dependency between these instructions they cannot be issued at the

same time. The first may be issued but the second cannot be issued until the next cycle1.

Detecting these dependencies requires that the destination register of the first instruction

in the decoder is compared with the source registers of the second instruction. Any match

indicates that the pipeline must be stalled.

This restriction significantly limits the effective parallelism of a superscalar processor of

this type. This limit may be overcome but it requires yet more complexity in the

instruction decoding and issuing. One technique that may be used is out of order issue.

Consider this sequence:

R1 := R2 + R3

R4 := R1 + R5

R6 := R7 + R8

R9 := R6 + R10

Here the second instruction depends on the first instruction and the fourth instruction

depends on the third instruction. In order to fully occupy two pipelines these instructions

1. If the ALU is not the processor’s critical path, then it may be possible for results computed by an ALU
in one pipeline to be forwarded to another pipeline to be used in the same cycle. This technique is applied
in the Sun SuperSPARC processor [SUN92] but is not considered further here.

Parallelism

- 52 -

can be issued out of order: in the first cycle the first and third instructions are issued, and

in the second cycle the second and fourth instructions are issued.

By using out of order issue the utilisation of the available parallelism in a superscalar

processor is significantly increased. Unfortunately another form of dependency

introduces another limit. The following code sequence illustrates a write after read

(WAR) dependency:

R1 := R2 + R3

R4 := R1 + R5

R5 := R7 + R8

R9 := R5 + R10

The first and second instructions cannot be issued together because of a RAW dependency

between them. However the first and third instructions are independent and so it would be

desirable to issue them together. Unfortunately the third instruction modifies R5, one of

the registers that is used as an operand by the second instruction, and so it cannot be issued

before it. This is a WAR dependency.

WAR dependencies can be avoided using a technique called “register renaming”. Register

numbers from instructions are considered as “logical” register numbers and are mapped

to the “physical” registers during decoding. In this code sequence, the references to R5 in

the third and fourth instructions are made to a “renamed” version of R5 which is actually

a different physical register:

R1 := R2 + R3

R4 := R1 + R5

R5a := R7 + R8

R9 := R5a + R10

With this re-arrangement the first and third instructions can be issued together, and the

second and fourth instructions can be issued together in the next cycle.

Parallelism

- 53 -

To support out of order issue and register renaming the organisation of the superscalar

processor must be significantly changed. One possible organisation from [JOHN91] is

shown in figure 3.12. The operation of this processor is as follows:

• Instructions are decoded in order and distributed to “reservation stations” (RS), one

per functional unit. Each reservation station contains a number of entries storing an

instruction and its operands.

• As each instruction is issued an empty entry is allocated in the reorder buffer (ROB)

for its result. This entry contains the instruction’s destination register number and a

“tag”.

• As instructions are placed into the reservation stations their source operands are

fetched from the register bank (REG) or reorder buffer. If the registers concerned

are subject to update by currently executing instructions then a tag is obtained rather

than an actual operand value.

• As preceding instructions complete, each reservation station entry containing a tag

compares its tag value with the tag value of the completing instruction. If the tags

match the result value is copied into the reservation station.

• When an instruction in a reservation station has obtained all of its operands it is

removed from the reservation station and put into the functional unit (FU) pipeline.

• Results are written into any matching reservation station entries and the reorder

buffer.

• Reorder buffer entries are copied into the register bank in issue order. This is so that

“in order state” is maintained in the register bank so that branch prediction failures

and exceptions can be handled correctly.

Parallelism

- 54 -

3.6.2 Branch Instructions

The same fundamental problems affect branch instructions in a superscalar processor as

in a pipelined processor: during the branch latency useful instructions cannot be fetched.

In a superscalar processor this problem is multiplied: the number of cycles of the branch

latency remains the same, but the number of potential instructions that have been lost

grows.

Branch prediction may be used to ensure that useful work is done during the branch

latency. When a branch has been mispredicted it is necessary to undo the effect of all

speculatively executed instructions. This is one of the functions of the reorder buffer;

results are not released from the reorder buffer to the register file until their execution has

been confirmed.

3.6.3 Observations

[JOHN91] makes a very thorough study of the performance of superscalar processors for

general purpose applications with and without various architectural features including out

of order issue, register renaming, and branch prediction (see appendix A). Table 3.5

summarises his conclusions about the importance of the various features.

Figure 3.12: Superscalar Processor with Out of Order Issue and Register Renaming

REG

I-MEM DEC

ROB

RS

RS

FU

FU

Parallelism

- 55 -

It can be seen that in order to obtain reasonable parallelism from a superscalar processor

it is necessary to implement most or all of these complex features; without them the

potential parallelism simply is not achieved. Yet their implementation is complex and

consequently highly power consuming.

It is interesting to quote Johnson’s observations about the complexity of superscalar

processor control logic:

“ 9.1.4 The Painful Truth

For brevity, we have examined only a small portion of the superscalar

hardware: the portion of the decoder and issue logic that deals with renaming

and forwarding. This is a very small part of the overall operation of the

processor. We have not begun to consider the algorithms for maintaining

branch-prediction information in the instruction cache and its effect on cache

reload, the mechanisms for executing branches and checking predictions, the

precise details of recovery and restart, and so on. But there is no point in

belaboring the implementation details. We have seen quite enough evidence

that the implementation is far from simple.

Just the hardware presented in this section requires 64 5-bit comparators in

the reorder buffer for renaming operands: 32 4-bit comparators in the

Feature
Performance advantage resulting from
adding the given feature to a processor
that already has all of the other features

Out of order issue 52%

Register Renaming 36%

Branch Prediction 30%

Four instruction decoder (as opposed
to a two instruction decoder)

18%

Table 3.5: Performance Advantage of Major Processor Features (from [JOHN91])

Parallelism

- 56 -

reservation stations for associatively writing results: 60 4-bit comparators in

the reservation stations for forwarding: logic for allocating result tags and

re-order-buffer entries: and a reorder buffer with 4 read ports and 2 write

ports on each entry, with 4 additional write ports on portions of each entry

for writing register identifiers, results tags, and instruction status. The

complexity of this hardware is set by the number of uncompleted instructions

permitted, the width of the decoder, the requirement to restart after a

mispredicted branch, and the requirement to forward results to waiting

instructions.

If the trend in microprocessors is toward simplicity, we are certainly bucking

that trend. ”

3.6.4 Simpler forms of Multiple Functional Unit Parallelism

The preceding section shows that the parallelism obtainable from superscalar execution

is desirable but its cost is too high. This section considers ways in which the superscalar

control problem can be simplified through changes to the instruction set architecture.

The role of the instruction decoding and issuing logic and the reservation stations in a

superscalar processor can be thought of as translation. In the input language the flow of

data between instructions is described by means of register identifiers; in the output the

same information is described by renamed register specifiers and forwarding control

information. It is interesting to consider encoding some form of this translated

information directly into the instructions.

There are a number of problems with this idea. If the renamed registers and forwarding

information are encoded directly it is not possible to use the same code on processors with

different organisations. It should also be noted that the output of the translation process in

the conventional processor is not a function of only the static program but also its dynamic

behaviour: a particular sequence of instructions may be translated into different

forwarding information depending on which branch instruction lead to its execution.

Parallelism

- 57 -

Despite these problems it is possible to find compromise encodings that require less

processing by the decoder and issuer than the conventional system using register numbers

alone. SCALP uses such a technique called explicit forwarding which is described in

chapter 5.

An alternative method for simplifying the superscalar organisation is to adopt the VLIW

(very long instruction word) approach where each instruction specifies one operation for

each of the functional units. This technique has not been considered for SCALP because

it leads to a substantial decrease in code density; whenever the compiler is unable to find

an operation for a functional unit that part of this instruction is unused. Chapter 2

explained that code density is important to SCALP for low power operation.

3.7 Speculative Execution

The preceding sections have mentioned the importance of branch prediction to obtain

high levels of parallelism in pipelined and superscalar processors. The parallelism

obtained through branch predication can be used to increase power efficiency.

On the other hand it can be argued that when branch prediction is wrong energy has been

wasted in partially executing the wrongly predicted instructions. To obtain the maximum

power efficiency there must be a balance between these two factors.

This is an example of a general question concerning the balance between speculation and

concurrency. Another example occurs in the design of an equality comparator: the

minimum number of transitions occur if the comparator operates serially, stopping as

soon as a mismatch is detected. On the other hand a parallel implementation that compares

all bits simultaneously will operate more quickly allowing for lower voltage operation.

Whether branch prediction is power efficient can be computed as shown in table 3.61.

This table relates to the pipelined scheme described in section 3.5.

1. Note that this excludes the power costs of implementing the branch prediction function itself.

Parallelism

- 58 -

It can be seen that the increased parallelism due to branch prediction leads to a power

saving of 16 %, and on the other hand the power wasted on speculatively executed

instructions amounts to 3 %. There is therefore a net power saving of 13 % due to branch

prediction.

With Branch Prediction Without Branch Prediction

Relative parallelism 4.34 4.00

Power due to parallelism 0.053 0.063

Relative throughput 1.03 1.00

Power due to throughput 1.03 1.00

Overall Power 0.055 0.063

Table 3.6: Branch Prediction and Power Efficiency

- 59 -

Chapter 4: Asynchronous Logic

The previous chapter has studied the organisation of superscalar pipelined synchronous

processors. This chapter considers if and how this type of processor can be implemented

using asynchronous logic. The first section explains the motivation for using

asynchronous logic in low power systems. Subsequent sections consider the

implementation of pipelines and superscalar parallelism using asynchronous logic, and

considers ways in which instruction set features can make implementation simpler. The

final section reviews previous asynchronous processors.

4.1 Asynchronous Logic and Power Efficiency

The SCALP processor uses asynchronous logic because this approach is believed to have

benefits in terms of power efficiency and other factors. This section explains these

benefits.

4.1.1 Asynchronous Circuits can be Faster

All systems, both synchronous and asynchronous, can be divided into regions of

combinational logic separated by storage. In the two cases the speed of the combinational

logic and of the storage elements will be approximately equal. The claim for increased

performance for asynchronous systems comes from the observation that in synchronous

systems the speed of the global clock must match the speed of the slowest logic block with

Asynchronous Logic

- 60 -

its slowest input data. The consequence is that faster blocks will be idle for part of the

clock cycle.

This is illustrated in the upper part of figure 4.1. The light areas represent processing

delays in logic blocks; the dark areas represent storage delays. The cycle time of the

global clock signal is set according to the slowest logic block. For the other blocks there

is an idle period shown in white.

In an asynchronous system there is no global clock; local request and acknowledge signals

indicate when a result is ready and it may advance immediately. This is shown in the

lower part of figure 4.1; there are no idle periods between cycles. Consequently the

overall speed of the system is increased1.

This increase is especially significant when the speed of the logic is data dependent; the

clock speed in a synchronous system would have to allow for the worst case data which

may be very rare.

If asynchronous circuits can be faster than equivalent synchronous circuits then a power

saving can be achieved; by adjusting the supply voltage the circuits can be made to

operate at the same speed, but because of the reduced supply voltage the asynchronous

circuit will do so using less power.

1. Asynchronous pipelines are subject to problems of starvation and blocking which can cause blocks to be
idle at some points. This proviso is discussed in section 4.2.

Figure 4.1: Speed of Synchronous and Asynchronous Circuits

async

sync

time

Asynchronous Logic

- 61 -

4.1.2 Asynchronous Circuits can be Smaller

In some circumstances asynchronous circuits may be smaller than equivalent

synchronous circuits. By reducing the size of the circuit a power saving can be made as

fewer wires of smaller capacitance must be charged and discharged for each operation.

This type of advantage is best demonstrated by two datapath elements, adders and

multipliers. In the case of an adder the main design problem is dealing with the carry

signals. With a simple ripple carry design in the worst case the carry has to propagate

across the whole width of the adder, though in typical cases it only needs to propagate for

a few bits. In an asynchronous system this typical case delay is the important measure and

the relatively small ripple carry adder is satisfactory. In a synchronous environment on the

other hand it is the worst case delay that is important, and adder designs such as carry

select adders are used. These designs provide better performance in the rare worst case

but at a significant cost in terms of area. [GARS93] compares the ALUs from the

synchronous ARM6 processor and the asynchronous AMULET1 processor. The ARM6

carry select adder is 2.5 times larger but operates at about the same speed for typical

operands.

Asynchronous multipliers can be smaller than synchronous multipliers for a different

reason. Multiplication using carry save adders is an example of an algorithm that performs

a simple step a number of times in order to compute its result. In an asynchronous

multiplier the simple carry save adder logic is exercised as many times as is necessary at

high speed by local request and acknowledge signals. In a synchronous design on the

other hand the global clock speed is typically limited by some other part of the design, and

is many times slower than the carry save adders. In order to maintain a reasonable speed

the synchronous designer makes a number of copies of the adders so that several stages

of the computation can take place within one cycle. The result is a circuit that is no faster

than the asynchronous design but is much larger. The increased size means that wires both

within the multiplier and outside it will be longer and hence consume more power when

they transition.

Asynchronous Logic

- 62 -

These examples of the area benefit of asynchronous logic must be balanced against any

change in the the complexity and size of asynchronous control structures compared with

equivalent synchronous circuits.

4.1.3 Asynchronous Logic in Variable Demand Systems

Perhaps the strongest case for the power efficiency benefit of asynchronous logic comes

from the study of systems with variable processing demand. This sort of system is very

common; most computers that operate interactively experience considerable and rapid

fluctuations in processing demand as the user performs different tasks. In embedded

applications it is also common; processors are activated in response to particular events,

operate for a short time and are then suspended.

Synchronous processors take a coarse-grained approach to power saving in this situation.

Portable computers for example monitor user activity and enter various types of sleep

mode by slowing or stopping clocks as activity slows. They use this coarse-grained

approach because switching between clocks is a complex procedure, and typically some

interaction with the system software is needed.

In asynchronous systems the behaviour is quite different. In the absence of demand for

processing, none of the request or acknowledge signals will be asserted. Consequently

there is no circuit activity and no power is consumed. This provides an instantaneous

response to changes in the computational demand and consequently a greater power

saving than can be obtained with a synchronous system.

Figure 4.2 illustrates this. The lower line indicates processor activity. In an asynchronous

implementation power consumption would be proportional to this activity level. In a

synchronous implementation the clock speed would be adjusted more coarsely as shown

by the upper line and the power consumption would be greater. The area between the two

lines represents the power saving that the asynchronous processor would obtain.

Asynchronous Logic

- 63 -

4.1.4 Asynchronous Logic and Dynamic Supply Voltage
Adjustment

Greater power savings can be obtained in a variable demand system if the system supply

voltage is reduced when activity is low. In synchronous systems as with clock speed

adjustment this approach can again only be applied at a coarse level, and the designer has

to ensure that the clock rate and the supply voltage maintain a safe relationship. In an

asynchronous system on the other hand feedback techniques can be used to continuously

maintain the supply voltage at the minimum necessary level.

One possible scheme for digital signal processing applications is described in [NIEL94]

and is shown here in figure 4.3. In this example incoming data is placed into a fifo. The

occupancy of the fifo is measured and is used to set the supply voltage; as the fifo fills the

supply voltage is increased so the processor operates faster, emptying the fifo.

Figure 4.2: Power Saving in Variable Demand Systems

ac
tiv

ity

time

Asynchronous Logic

- 64 -

Another scheme suitable for a general purpose processor such as SCALP is shown in

figure 4.4. This case relies on the program executing a HALT instruction when it has no

useful work to do; in the case of SCALP, HALT means “wait for next interrupt”. When

the processor is halted it asserts an output. This output is integrated to derive an analogue

level indicating the system load. This is used to adjust the supply voltage.

4.1.5 Asynchronous Logic Doesn’t Waste Transitions

A common mode of operation for a synchronous circuit is as follows: in response to a

clock edge, a number of signals change. As these changes propagate through the circuit

outputs change possibly several times before reaching a stable value. These glitches do

not cause the circuit to fail because the next piece of logic will not sample their value until

the next clock edge; however every transition, useful or not, consumes power.

Figure 4.3: Dynamic Supply Voltage Adjustment controlled by Fifo Occupancy

Figure 4.4: Dynamic Supply Voltage Adjustment controlled by a HALT instruction

Input Fifo Output Fifo

Processor

Power Supply

Processor

POWER

Integrator

HALTED
Memory

I/O

Interrupt

Asynchronous Logic

- 65 -

In an asynchronous circuit1 on the other hand every transition has a meaning. Any

spurious transitions caused by hazards will cause the circuit to malfunction, so circuits

must be designed to not create glitches. Consequently the asynchronous circuit may make

fewer transitions and hence consume less power than an equivalent synchronous circuit.

On the other hand it can be suggested that because these asynchronous circuits must be

hazard free they will be more complex, which will in turn lead to greater power

consumption. These two factors must be balanced for each particular application.

4.1.6 Other benefits of Asynchronous Logic

As well as the power efficiency issues discussed above there are other benefits of

asynchronous logic that motivated its use in SCALP:

• Asynchronous systems lend themselves better to the application of formal

techniques for verification or synthesis. Although these techniques are not yet

mature they offer the prospect of more rigourous or rapid validation of complex

designs in the future.

• The nature of the interfaces between blocks in asynchronous systems means that

they can be designed in a very modular fashion. In a synchronous system the

presence of a global clock speed requirement means that existing components may

not be reusable if their clock speeds do not match. In an asynchronous system this

restriction does not apply and the designer is free to exchange modules for other

blocks with the same functional characteristics irrespective of their timing

properties.

1. This applies to many though not all classes of asynchronous circuits; see section 6.1. Specifically it ap-
plies to delay insensitive and speed independent circuits but may not apply to bounded delay circuits.

Asynchronous Logic

- 66 -

4.1.7 Tangram and the Philips DCC Error Corrector

As an example of the potential power efficiency benefits of asynchronous logic, this

section describes work carried out by Philips Research Laboratories using the VLSI

Programming language Tangram. Tangram is an Occam-like high level language which

is compiled into asynchronous circuits. The mathematical approach used makes formal

reasoning about the circuits for purposes such as testability possible, and its high level

nature allows designers to concentrate on architectural factors affecting the power

efficiency.

Recent publications [KESS95] [BERK95] describe the implementation of an error

detection circuit for a digital compact cassette (DCC) player. The nature of the application

requires a constant data throughput, though the work required for each block of data is

variable. The algorithm has two parts:

(i) error detection, which is applied to all input data,

(ii) generation of error correction information, which is only necessary when part (i)

detects errors.

The solution used is as follows: the chip has two power inputs, one providing 1.5 V and

the other 5 V. During part (i) the 1.5 V supply is used. During part (ii) if necessary the 5

V supply is used. In this way the system uses the lowest possible supply voltage.

Interestingly no communication is required with the environment during part (ii),

eliminating the need for voltage level shifters at the interface.

A synchronous implementation of the part already existed which uses a fixed 3 MHz

clock which is gated to some parts of the chip when not needed and a fixed 5 V supply.

In comparison the Tangram design is 20 % larger (due to the increased size of the control

logic components) but gains a factor 5 power efficiency improvement through the use of

asynchronous logic and a further factor of 20 through the use of dynamic supply voltage

scaling.

Asynchronous Logic

- 67 -

Though the DCC chip is not a general purpose processor the techniques that it uses could

be applied to one, with substantial power efficiency benefitis.

4.1.8 Conclusion

This section has presented a number of arguments suggesting that the use of asynchronous

logic can provide power efficiency improvements, and mentioned a recent real design that

seems to justify them.

For the SCALP design, the use of asynchronous logic is more important than just an

implementation technology. Because SCALP is an entirely new design, the use of

asynchronous logic can be taken into consideration throughout the design process

including in the design of the instruction set. This issue is considered further in the

following sections.

4.2 Asynchronous Pipelines

Figure 4.5 shows the familiar structure of a synchronous pipeline with latches (L) and

combinational logic blocks (CL). All latches are controlled by a single global clock signal

and so operate simultaneously.

This form of pipeline is readily implemented asynchronously as shown in figures 4.6 and

4.7. The latches (L) and combinational logic blocks (CL) are the same as in the

synchronous pipeline but the timing is controlled quite differently. Each latch has an

associated latch control circuit (LC). The latch control circuit opens and closes the latch

in response to request (Req) signals from the previous stage and acknowledge (Ack)

signals from the following stage.

The request signal from the latch control circuit must be delayed by an amount greater

than the corresponding data delay in the combinational logic. This may be done either

Asynchronous Logic

- 68 -

using a matched path delay element (D) as shown in figure 4.6 or by using some form of

completion detection as shown in figure 4.7.

The performance advantage of the asynchronous pipeline was mentioned in section 4.1.1

and is summarised in table 4.1. Note however that table 4.1 gives only an upper bound on

the possible performance of asynchronous pipelines; performance can be decreased by

starvation and blocking [KEAR95]. A pipeline stage is said to be starved if it cannot start

Figure 4.5: A Simple Synchronous Pipeline

Figure 4.6: A Simple Asynchronous Pipeline with Matched Delays

Figure 4.7: A Simple Asynchronous Pipeline with Completion Detection

CLK

L CL L CL L CL L CL

D D

Ack

D
Req

Ack

D
Req

Ack

L CL L CL L CL L CL

LC LC LC LC
Req

Req

Ack

Req

Ack

Req

Ack

go done go done go done go done

L CL L CL L CL L CL

LC LC LC LC

Asynchronous Logic

- 69 -

an operation because it is waiting for the result of the previous stage to be available.

Similarly a stage is said to be blocked if it cannot transfer its result to the next stage

because that stage is still processing the result of the previous operation. Starvation and

blocking are less significant in pipelines with small variations among the possible stage

delays.

The effect of starvation and blocking on performance can be reduced by introducing

decoupling queues between the stages. When one stage has to perform a particularly slow

operation the queue preceding it will fill, preventing the previous stage from blocking. At

the same time the queue following it will empty preventing the following stage from

starving.

The performance of an asynchronous pipeline may also be reduced by delays introduced

by the latch control circuit.

4.2.1 Forwarding in Asynchronous Pipelines

The simple linear pipelines described above benefit from asynchronous implementation.

Unfortunately the presence of forwarding paths as described in section 3.5.2 in processor

pipelines makes efficient asynchronous implementation more difficult.

Latency determined by:
Throughput determined

by:

Synchronous pipeline
Slowest block, worst data,
worst conditions

Slowest block, worst data,
worst conditions

Asynchronous pipeline
with matched delays

Typical block, worst data,
typical conditions

Slowest block, worst data,
typical conditions

Asynchronous pipeline
with completion detection

Typical block, typical data,
typical conditions

Slowest block, typical da-
ta, typical conditions

Table 4.1: Performance Of Synchronous and Asynchronous Pipelines

Asynchronous Logic

- 70 -

In a synchronous pipeline forwarding is simple to implement as shown in figure 4.8. Stage

2 uses as input the results of stages 1 and 3. Because all stages use a single clock these

inputs are available at the same time.

Figure 4.9 shows how this can be implemented asynchronously1. The datapath is the same

as in the synchronous pipeline; however the control is modified so that a request is sent to

stage 2 when data from stages 1 and 3 are both available. A Muller C element2 is used to

perform this synchronisation. Similarly the acknowledge signal from stage 2 is sent to

both stages 1 and 3. Stage 3 waits for acknowledgements from stages 2 and 4 using a

second Muller C element.

1. Some additional logic is required to ensure correct initialisation.

2. A Muller C element behaves as follows: when both inputs are high, the output becomes high. When both
inputs are low, the output becomes low. When the inputs differ the output retains its previous level.

Figure 4.8: A Synchronous Pipeline with Forwarding

Figure 4.9: An Asynchronous Pipeline with Forwarding

CLK

L CL L CL L CL L CL

C

C

D D

L CL L CL L CL L CL

D LC LCDLCLC

Asynchronous Logic

- 71 -

The additional timing constraints in this circuit make it adopt a form of locally

synchronous behaviour, constraining the progress of instructions along the pipeline. This

leads to a reduction in performance compared with the simple asynchronous pipeline.

The extent of this performance reduction has been found for an example pipeline by

simulation. The results are shown in figure 4.10. The figure shows performance for

synchronous and asynchronous pipelines with and without forwarding. The pipeline

concerned is a four stage pipeline with random stage delays of 1 [PLUSMINUS] v time

units where v is the variance shown on the x axis. The y axis shows performance relative

to the synchronous implementation.

The top line shows the performance of a perfect asynchronous pipeline. This perfect

performance is not achieved because of starvation and blocking within the pipeline. The

second line indicates the performance of a pipeline allowing for starvation and blocking.

The third line indicates the performance of a pipeline with an unconditional forwarding

path between the third and second stages.

When the variance is 0.2 (for example stage delays are equiprobably 0.8 and 1.2 time

units) the perfect asynchronous pipeline’s throughput is 20% higher than the

synchronous pipeline. Allowing for starvation and blocking this advantage is reduced to

14%. When the forwarding path is introduced it is further reduced to only 6%.

4.2.2 Conditional Forwarding

Operands provided via forwarding paths are not always used by the stages to which they

are sent. Typically the receiving stage uses a multiplexor to select between the forwarded

value and a value received from the previous stage. This multiplexor is controlled by a bit

generated during instruction decode that indicates whether forwarding should be used

(see figures 3.8 and 3.9).

Asynchronous Logic

- 72 -

In principle this conditional nature of forwarding could be used to improve the

performance of asynchronous forwarding pipelines. When forwarding is not to be used no

additional synchronisation is carried out and performance is similar to that of a simple

asynchronous pipeline. When forwarding is required temporary additional

synchronisation can be introduced to allow the forwarded data to be transferred.

Such a scheme could be implemented as shown in figure 4.11: the instruction decode

generates two bits for each instruction, one (USE_FWD) indicating that the instruction

must use a forwarded value produced by a preceding instruction and another

(GEN_FWD) indicating that the instruction must send its result to be used by a following

instruction. At the pipeline stage where the forwarded data is used a “conditional pipeline

merge” (CPM) element synchronises with forwarded data only when the USE_FWD bit

is asserted. At the pipeline stage where the forwarded value is created a “conditional

pipeline fork” (CPF) element sends the forwarded value only when the GEN_FWD bit is

asserted.

Figure 4.10: Performance of Synchronous and Asynchronous Pipelines with and without
Forwarding

0.9

1.0

1.1

1.2

1.3

0.00 0.05 0.10 0.15 0.20

re
la

tiv
e

pe
rf

or
m

an
ce

stage delay variance

asynchronous, perfect
asynchronous, no forwarding

asynchronous, forwarding
synchronous

Asynchronous Logic

- 73 -

The flaw with this proposal is that with conventional instruction sets it is impossible for

the instruction decoder to generate the GEN_FWD bit. The USE_FWD bit can be

generated as shown in figure 3.9, but to generate the GEN_FWD bit it would be necessary

to know the operand registers of future instructions before they are issued.

4.2.3 Explicit Forwarding

One solution to this problem is to change the nature of the instruction set so that the need

to forward a value can be detected by the instruction decoder. This may be done by giving

more information about the way in which a result will be used in the instruction that

produces that result. This technique is referred to here as “explicit forwarding”.

One example of explicit forwarding is the scheme described in section 2.1.2 for using

shorthand to transfer values between adjacent instructions without specifying register

numbers.

Other systems can take the idea further. SCALP entirely replaces the conventional idea of

accessing operands by means of register numbers with a system based on explicit

forwarding. This is described further in chapter 5.

Figure 4.11: An Asynchronous Pipeline with Conditional Forwarding

DD D

L CL L CL L CL L CL

LC LC LC LC

USE_FWD

C
P
M

C
P
F

GEN_FWD

D

Asynchronous Logic

- 74 -

4.3 Asynchronous Superscalar Parallelism

4.3.1 Simple Superscalar Structures

This section briefly considers the implementation and performance of general

asynchronous superscalar structures in comparison with equivalent synchronous

structures.

Figure 4.12 shows a synchronous parallel structure comprising an “issuer” (I) and a

number of functional units (F1 to F3). Each of these blocks operates from the same global

clock and so the performance of the system is limited by slowest block.

Figure 4.13 shows an equivalent asynchronous structure. In this case there is no global

clock and performance is determined by the typical block speed. In fact the advantage of

this structure over the synchronous circuit is greater than the advantage of an

asynchronous pipeline over a synchronous pipeline. Even in an asynchronous pipeline

throughput is limited by the slowest block. With this parallel arrangement this is not the

case and throughput as well as latency is determined by the typical block speed.

Furthermore for this parallel structure there is no equivalent of the starvation and blocking

Figure 4.12: Synchronous Parallel Functional Units

I F2

F3

F1

CLK

Asynchronous Logic

- 75 -

problem that affects asynchronous pipelines. This is summarised in table 4.2 which can

be compared with table 4.1 for pipelines.

The disadvantage of the asynchronous parallel implementation of figure 4.13 is that the

issuer which distributes work to the various functional units must be more complex. In the

synchronous implementation the issuer must make a decision about what to issue once per

cycle; it studies the incoming instructions, looks at the state of the functional units and

decides to issue one or two instructions. In the asynchronous implementation the task is

Figure 4.13: Asynchronous Parallel Functional Units

Latency determined by:
Throughput determined

by:

Synchronous superscalar
processor

Slowest block, worst data,
worst conditions

Slowest block, worst data,
worst conditions

Asynchronous superscalar
processor with matched
delays

Typical block, worst data,
typical conditions

Typical block, worst data,
typical conditions

Asynchronous superscalar
processor with completion
detection

Typical block, typical data,
typical conditions

Typical block, typical data,
typical conditions

Table 4.2: Performance Of Synchronous and Asynchronous Superscalar Processors

I F2

F3

F1

Asynchronous Logic

- 76 -

more complex as the functional units can become ready to accept the next instruction at

any time. Is is also possible that both units can become ready at the same time; in this case

the issuer must arbitrate between them to decide which will receive the next instruction.

4.3.2 Superscalar Forwarding

As in the single asynchronous pipeline forwarding makes implementation more difficult,

but in this case forwarding is required both within and between the pipelines. To provide

unconditional forwarding between all necessary points virtually every stage in every

functional unit has to be synchronised with every other, leading to global lockstep

behaviour and substantially reduced performance.

As for pipelines instruction set extensions may be used to make conditional forwarding

and conditional synchronisation possible. This will lead to more independence between

the pipelines and better performance.

The idea of explicit forwarding can be extended to superscalar processors; each functional

unit output is connected by a conditional forwarding path to each functional unit input.

Instructions explicitly indicate to where their results must be sent to so that only the

necessary forwarding paths need be activated.

Unfortunately the non-deterministic allocation of instructions to functional units makes

this form of explicit forwarding impossible. If an instruction’s result is used by a

particular following instruction then the first instruction must indicate that its result is sent

to the functional unit that will execute the following instruction. That functional unit must

therefore be known to the compiler.

This is not a problem when the functional units are asymmetric. If one functional unit

executes loads and stores, another executes floating point instructions and another

executes integer instructions, for example, then it is statically known which functional

unit must execute each instruction, allowing explicit forwarding. When some instructions

can be executed by more than one functional unit then the allocation must be known by

Asynchronous Logic

- 77 -

the compiler. This can be achieved by performing the allocation of instructions to

functional units in the compiler and encoding the appropriate functional unit identifier in

the instruction.

This is essentially the system used by SCALP. Each instruction indicates the destination

functional unit input to which its result should be sent. At the destination functional unit

inputs forwarded data is paired with instructions arriving from the instruction issuer in

much the same way that a reservation station matches instructions with data.

The SCALP architecture is described in the following chapter.

4.4 Previous Asynchronous Processors

A number of asynchronous microprocessors have been proposed or built recently. This

section describes the architecture and asynchronous design style of each1. Table 4.3

summarises these characteristics.

The Caltech Asynchronous Processor

The first recent asynchronous processor was built by Alain Martin at Caltech [MART89].

The processor was described using a CSP-like notation which was compiled to a circuit

description by means of program transformations. The resulting circuit is delay

insensitive, using dual rail signalling.

The processor has a “RISC-like” load/store instruction set with 16 registers. It consists of

a number of concurrent processes responsible for instruction fetch, operand read, ALU

operate etc. The processor has been implemented in a 1.6µm CMOS process, and

operates at 18 million instructions per second (MIPS) at room temperate and 5 V. The

circuit continues to function at very low supply voltages, with optimum energy per

1. The asynchronous design styles are defined in section 6.1.

Asynchronous Logic

- 78 -

operation at around 2 V. It has also been tested in liquid nitrogen at 77 K when its

performance reaches 30 MIPS.

Processor Design Style Instruction set Organisation

CAP
4-phase, Dual rail,
Delay insensitive

Own 16-bit
RISC-like

Fetch-execute pipeline

AMULET1
2-phase, Bundled
data

ARM Pipelined, No forwarding

AMULET2
4-phase, Bundled
data

ARM Pipelined, Forwarding

NSR
2-phase, Bundled
data

Own 16-bit
RISC-like

Pipelined, No forwarding, De-
coupled load/store and branch

Fred
2-phase, Bundled
data

based on
88100

Pipelined, Multiple functional
units, Single Issue, No for-
warding, Decoupled load/store
and branch

CFPP
2-phase, Bundled
data

SPARC

Pipelined, Multiple execution
stages, Single Issue, Forward-
ing using counter-flow result
pipeline

Hades unspecified Own
Pipelined, Multiple functional
units, Multiple issue, Forward-
ing

ECSTAC Fundamental mode
Own Variable
length

Pipelined, No forwarding

TITAC
2-phase, Dual rail,
Quasi delay insensi-
tive

Own 8-bit Non-pipelined

ST-RISC
Dual rail, Delay in-
sensitive

Own Fetch-execute pipeline

FAM
Dual rail, Delay in-
sensitive, 4-phase

Own RISC-
like

Pipelined.

STRiP
Variable clock syn-
chronous

MIPS-X Pipelined, Forwarding

SCALP
4-phase, Bundled
data

Own
Pipelined, Multiple functional
units, Multiple Issue, Explicit
forwarding

Table 4.3: Recent Asynchronous Microprocessors

Asynchronous Logic

- 79 -

AMULET1 and AMULET2

The AMULET group led by Steve Furber at the University of Manchester built

AMULET1, the first asynchronous implementation of a commercially important

instruction set [PAVE94]. AMULET2 is a similar processor still under development

which also implements the ARM instruction set.

The ARM instruction set was designed for synchronous implementation [FURB89], and

some of its features were included because they were convenient in the synchronous

system. AMULET1 and AMULET2 implement this instruction set “warts and all”, with

some of these features leading to complexity and overheads. AMULET1 and AMULET2

implement the difficult areas of interrupts and exceptions.

AMULET1 was designed using a 2-phase bundled data design style based on [SUTH89].

It has a 5-stage execute pipeline (register read, multiply/shift, ALU, empty stage, register

write) but does not provide for result forwarding. A locking mechanism is used to stall

instructions at the register read stage until their operands have been written by previous

instructions. Consequently the pipeline throughput is low.

Similar problems affect branch instructions. A branch instruction has to pass through 10

pipeline or fifo stages between being fetched and the target address being sent to memory.

This results in large numbers of prefetched instructions being discarded and significant

periods during which the pipeline is stalled.

AMULET1 permits out of order completion of load instructions relative to normal ALU

instructions, though the instructions must commit to completing without fault in order.

Comparison of AMULET1 with the synchronous ARM processor is shown in table 4.4

(from [PAVE94]).

It should be noted when considering the figures in table 4.4 that the ARM6 is the fourth

generation of this synchronous microprocessor and is considered to have particularly high

power efficiency and small size.

Asynchronous Logic

- 80 -

The AMULET2 processor is being designed using a 4-phase bundled data design style

because this is believed to have benefits in terms of speed, size, and power. AMULET2

has a slightly shorter pipeline than AMULET1 and employs both forwarding and branch

prediction to increase the pipeline utilisation. Forwarding is performed by means of a “last

result” register at the ALU. Because this forwarding is around only a single pipeline stage

the performance degradation mentioned in section 4.2.1 is not a problem. Other

forwarding mechanisms are used to allow the result of a load instruction to be used in a

following instruction. These enhancements are expected to give AMULET2 significantly

better performance than AMULET1.

NSR

The NSR (Non-synchronous RISC) processor was built using FPGA technology by Erik

Brunvand at the University of Utah [BRUN93] [RICH92]. It is implemented using a 2-

phase bundled data protocol.

NSR is a pipelined processor with pipeline stages separated by fifo queues. The idea of

the fifo queues is that they decouple the pipeline stages so that an instruction that spends

a long time in one stage need not hold up any following instructions - see section 4.2. The

disadvantage of this approach is that the latency of the queues themselves is significant

and because of the dependencies within a processor pipeline the increase in overall

latency is detrimental.

AMULET1 ARM6

Process 1.2µm 2-layer metal CMOS 1.2µm 2-layer metal CMOS

Cell core area 5.5 mm x 4.1 mm 4.1 mm x 2.7 mm

No. of transistors 58,374 33,494

Performance 9 K Dhrystones 14 K dhrystones @ 10 MHz

Dissipation 83 mW 75 mW @ 10 MHz

Design Effort (approx.) 5 man years 5 man years

Table 4.4: Characteristics of the AMULET1 compared with ARM6; slow-slow silicon

Asynchronous Logic

- 81 -

Like AMULET1 NSR uses a locking mechanism to stall instructions that need operands

produced by previous instructions; it has no forwarding mechanism.

NSR has a 16-bit datapath and 16-bit instructions. The instructions include three 4-bit

register specifiers and a 4-bit opcode - much like a half-length RISC instruction. Some

aspects of its instruction set are specialised for the asynchronous implementation: load,

store and branch instructions make the fifos that interconnect the functional units visible

to the programmer.

Load instructions have two parts. One instruction specifies a load address. A subsequent

instruction uses the load result by reading from a special register r1. There may be an

arbitrary separation between the two instructions, and it is possible to have several load

operations outstanding at one time. Store instructions work similarly by writing the store

data to r1.

Conditional branch instructions are decoupled by a boolean fifo from the ALU that

executes comparison instructions. Computed branch instructions also use a fifo to store

computed branch addresses.

Fred

Fred is a development of NSR built by William Richardson and Erik Brunvand at the

University of Utah [RICH95]. Like NSR, Fred is implemented using 2-phase bundled

data logic. It is modelled using VHDL.

Fred extends the NSR to have a 32-bit datapath and 32-bit instructions, based on the

Motorola 88100 instruction set.

Fred has multiple functional units. Instructions from the functional units can complete out

of order. However the instruction issuer can only issue one instruction at a time, and it

seems that the register bank is only able to provide operands for one instruction at a time.

This allows for a relatively straightforward instruction issue and precise exception

mechanism, but limits the attainable level of parallelism.

Asynchronous Logic

- 82 -

There is no forwarding mechanism; instructions are stalled at the instruction issuer until

their operands have been written to the register bank. There is no out of order issue.

Like the NSR, Fred uses programmer-visible fifo queues to implement decoupled load/

store and branch instructions. This arrangement has the possibility of deadlock if the

program tries to read from an empty queue or write to a full one. Fred chooses to detect

this condition at the instruction issuer and generate an exception.

Counterflow Pipeline Processor

The Counterflow Pipeline Processor (CFPP) is being developed by Ivan Sutherland,

Robert Sproull, Charles Molnar and others [SPRO94]. Its implementation is based on

extensions of the techniques proposed in [SUTH89].

The CFPP executes SPARC instructions. Its novel contribution is the way in which it

solves the problem of result forwarding in an asynchronous pipeline.

CFPP has two pipelines as shown in figure 4.15. In one pipeline instructions flow

upwards; in the other results flow downwards. As instructions flow upwards they watch

out for results of previous instructions that they must use as operands flowing downwards.

If they spot any such operands they capture them; if not they eventually receive a value

that has flowed down from the register bank which is at the top of the pipelines. When an

instruction has obtained all of its operands it continues to flow upwards until it finds a

pipeline stage where it can compute its result (there can be several functional units

associated with different stages of the pipeline). Once computed the result is injected into

the result pipeline for use by any following dependent instructions and is also carried

forward in the instruction pipeline to be written into the register bank.

The counterflow pipeline neatly solves the problem of result forwarding. However it

seems that the throughput of the processor is ultimately limited by the rate at which

instructions can progress, and this is not likely to be particularly fast in view of the amount

of comparison and arbitration logic required at each stage.

Asynchronous Logic

- 83 -

Hades

Hades is a proposed superscalar asynchronous processor in the early stages of design from

Corrie Elston at the University of Hertfordshire [ELST95]. It is in many ways similar to

a conventional synchronous superscalar processor; it has a global register bank,

forwarding, and a complex (though in-order) instruction issuer. Its forwarding mechanism

uses a central scoreboard to keep track of which result is available from where.

ECSTAC

ECSTAC is an asynchronous microprocessor designed by Shannon Morton, Sam

Appleton and Michael Liebelt at the University of Adelaide [MORT95].

ECSTAC is implemented using fundamental mode control circuits.

It is deeply pipelined with a complex variable length instruction format. It has 8 bit

registers and ALU. The designers report that the variable length instructions and the

mismatch between the address size and the datapath width made the design more complex

and slower.

Figure 4.14: Counterflow Pipeline Processor
in

st
ru

ct
io

n
pi

pe
lin

e

re
su

lt
pi

pe
lin

e

instructions

register bank

Asynchronous Logic

- 84 -

There is no forwarding mechanism within the datapath, and a register locking scheme is

used to stall instructions until their operands are available.

TITAC

TITAC is a simple asynchronous processor built by a group at the Tokyo Institute of

Technology [NANY94]. It is based on the quasi delay insensitive timing model and so has

to use dual rail signals to encode its datapath; this results in about twice as many gates in

the datapath compared to an equivalent synchronous datapath.

Architecturally TITAC is very straightforward with no pipelining and a simple

accumulator-based instruction set.

ST_RISC

ST-RISC is an architecture proposed by a group from the Israel Institute of Technology

[DAVII93]. It is delay insensitive and uses a dual-rail datapath.

ST-RISC has a two stage fetch-execute pipeline and a 3-address register based instruction

set.

FAM

FAM [CHO92] is a dual rail asynchronous processor with a RISC like load-store

instruction set. It has a four stage pipeline but register read, ALU, and register write occur

in a single stage eliminating the need for any forwarding.

STRiP

STRiP was built by Mark Dean at Stanford University [DEAN92]. Its instruction set is

that of the MIPS-X processor.

Asynchronous Logic

- 85 -

STRiP is included here even though it has a global clock signal and could be considered

synchronous. It is unusual in that the speed of the global clock is dynamically variable in

response to the instructions being executed, giving much of the advantage of an

asynchronous system. The performance of STRiP is typically twice that of an equivalent

synchronous processor.

By maintaining global synchrony STRiP is able to implement forwarding in the same

simple way that synchronous processors do.

4.4.1 Observations

The processors described here can be divided broadly into two categories:

• Those built using a conservative timing model, suitable for formal synthesis or

verification, but with a simple architecture: CAP, TITAC, ST-RISC.

• Those built using a less cautious timing model using an informal design approach,

but with a more ambitious architecture: the AMULET processors, NSR, Fred, the

Counterflow Pipeline Processor, Hades, ECSTAC and STRiP.

From the point of view of this work it is the second category that is more interesting. The

lessons that each of these processors teaches us are

AMULET1: Asynchronous implementation of a commercially important processor is

possible. Exceptions and interrupts are possible. The lack of forwarding and branch

prediction are significantly detrimental.

AMULET2: Forwarding is possible in a simple pipeline.

NSR: Decoupling with fifos is easy, but perhaps too easy as it is detrimental to

performance. An instruction set with explicit queues and decoupling is possible.

Asynchronous Logic

- 86 -

Fred: Multiple functional units can be used with a single instruction issuer, but the

throughput will be limited by the issuer.

CFPP: An interesting though expensive general implementation of asynchronous

forwarding.

Hades: Superscalar control of the style used by synchronous processors is applicable in

principle to asynchronous processors.

ECSTAC: Variable length instructions are unpleasant to deal with.

STRiP: Global synchrony does not have to mean fixed frequency clock signals.

- 87 -

Chapter 5: The SCALP Architecture

Having given the motivation for SCALP in the previous chapters, this chapter describes

the SCALP architecture and explains how it meets the objectives that have been set out.

To summarise these objectives:

For high power efficiency we desire high code density, parallelism and asynchronous

implementation.

To obtain high code density:

(1) Use variable length instructions (section 2.1.1).

(2) Have the minimum possible redundancy in the instructions (section 2.1).

(3) Reduce the contribution to code size of register specifiers by exploiting the fact that

the result of one instruction is typically used very soon by a following instruction (section

2.1.2).

To obtain parallelism:

(4) Employ pipelining (section 3.5).

(5) Use multiple functional units (section 3.6).

(6) Issue multiple instructions out of order (section 3.6.1).

(7) Try to reduce the complexity of the superscalar instruction issuer (section 3.6.3).

The SCALP Architecture

- 88 -

To permit asynchronous implementation:

(8) Adapt the architecture so that conditional forwarding may be used within and between

the pipelines (section 4.2.2).

(9) Provide decoupling between functional units (section 4.2).

Also:

(10) Have a HALT instruction (section 4.1.4).

(11) Have instructions that operate on quantities narrower than the full width of the

datapath (section 2.2).

SCALP’s main architectural innovation is its lack of a global register bank and its result

forwarding network. This approach is motivated by points (3), (7), (8), and (9) above.

5.1 Explicit Forwarding and Non-Global Registers

Most SCALP instructions do not specify the source of their operands and destination of

their results by means of register numbers. Instead the idea of explicit forwarding is

introduced. Each instruction specifies the destination to which its result should be sent.

That destination is the input to another functional unit where the instruction that uses that

result will subsequently execute, consuming the value.

Instructions do not specify the source of their operands at all; they implicitly use the

values provided for them by the preceding instructions.

SCALP does have a register bank; it constitutes one of the functional units. It is accessed

only by read and write instructions which transfer data to and from other functional units

by means of the explicit forwarding mechanism.

Figure 5.1 shows the overall organisation of the processor.

The SCALP Architecture

- 89 -

Several instructions are fetched from memory at a time. Each instruction has a small

number of easily decoded bits that indicate which functional unit will execute it1. The

instruction issuer is responsible for distributing the instructions to the various functional

units on the basis of these bits.

1. Note that the instructions are statically allocated to functional units. If there is more than one functional
unit that is capable of executing a particular instruction, one must be chosen by the compiler. This helps to
simplify the instruction issuer and is essential to the explicit forwarding mechanism. It may be slightly det-
rimental to performance if the compiler is not able to predict accurately which functional units will be most
busy.

Figure 5.1: SCALP Processor Organisation

Result QueuesFunctional
Units

Instruction and Operand
Queues

Result Router
In

st
ru

ct
io

n
Is

su
er

Instruction
Fetch

Memory

The SCALP Architecture

- 90 -

Each functional unit has a number of input queues: one for instructions and one for each

of its possible operands. An instruction begins execution once it and all of its necessary

operands have arrived at the functional unit.

The functional unit sends the result along with the destination address to the result routing

network. This places the result into the appropriate input queue of another functional unit.

Consider the following code:

a = b+c;

d = 10-a;

If we assume that variables b and c are initially in memory, a conventional architecture

would compile this to the following code:

load rb,[b_addr]

load rc,[c_addr]

add a,b,c

sub d,#10,a

SCALP would treat the code as follows: it observes that the loaded values are used only

by the following addition and that the result of the addition is used immediately by the

subtraction. The compiler will be able to tell whether variable a will be read again before

it is next written to. If it is not then the following code is possible:

load [b_addr] -> adder_input_a

load [c_addr] -> adder_input_b

add -> subtracter_input_a

sub #10 -> ...

This code uses the same number of instructions as the conventional architecture, yet each

instruction can be significantly smaller. The instructions do not need to specify any input

operands and the destinations are specified simply by a functional unit input code, which

can be encoded in only a few bits.

The SCALP Architecture

- 91 -

The advantages of explicit forwarding are as follows:

• Code density is substantially improved. In the SCALP instruction set described in

section 5.3, the 4 functional units have a total of 8 operand input queues, so a 3 bit

field is needed to specify the destination of an instruction. This is small compared

with the 15 bits needed to specify 3 registers in a conventional RISC architecture

(though SCALP will tend to execute more instructions).

• The complexity of the superscalar instruction issue problem is substantially

reduced. SCALP has no need to check for dependencies at the instruction issuer. If

an instruction is issued before its operands have been computed it will wait at the

input to the functional unit until they arrive.

• By explicitly indicating where each result must be sent to, an implementation using

conditional forwarding is made possible.

• The operand and instruction queues provide decoupling between the functional

units, so a slow instruction in one functional unit may not hold up instructions in

other functional units.

One way of viewing the result routing network and the associated queues is as an

additional level in the processor’s memory hierarchy. In a conventional processor the

register bank is used for both short term storage from one instruction to the next1 and for

medium term storage of local variables. In SCALP, the register bank is still used for

medium term storage of local variables but the result routing network and associated

queues are used for short term storage between instructions.

The fifo queues associated with each functional unit input make it possible to use explicit

forwarding to transfer values between instructions that may not be immediately adjacent,

as was the case in the earlier example. A simple example is the following code that

increments two memory locations:

1. In fact in conventional processors the register bank is not used for short term storage between instruc-
tions; the forwarding busses are. However the programming model makes it appear that the register bank is
being used, and the values will be written into the register bank even when it is not necessary.

The SCALP Architecture

- 92 -

LOAD -> alu

LOAD -> alu

ADD #1 -> store

ADD #1 -> store

STORE

STORE

Here a form of software pipelining has been applied to reduce the number of data

dependencies in the code, permitting faster execution.

There are some superficial similarities between the SCALP approach and dataflow

computing. In particular it is possible to describe SCALP programs by means of dataflow

graphs such as figure 5.2. This similarity is only superficial however; flow of control in

SCALP is determined by a conventional control driven mechanism, not a data driven

mechanism.

Figure 5.2 shows a dataflow diagram for a simple SCALP program to sum the values in

an array. The left hand loop generates a sequence of addresses; in the middle a load

instruction reads the array value; at the right hand side a loop sums the loaded values. The

code listing is shown alongside.

Figure 5.2: Scalp Program Dataflow Representation

DUP

+1

LOAD +

The SCALP Architecture

- 93 -

L1: ADD 1 -> movea

DUP -> alua, mema

LOAD -> alub

ADD -> alua

BR L1

The basic execution model allows each result to be used by only one following

instruction. This is sufficient in very many cases. When a result needs to be used more

than once two possibilities are available to the programmer:

• The value can be written into the register bank, and read as many times as necessary.

• A duplicate operation can be used to send two copies of the value to two different

destinations.

The program shown in figure 5.2 makes use of a duplicate instruction.

Analysis of SPARC code carried out for [ENDE93] (see appendix A) measured the

number of times that each instruction result is used. This is summarised in table 5.1 and

shows that around two thirds of instruction results are used exactly once, and hence could

make use of explicit forwarding without using a duplicate instruction.

Number of uses Proportion of results

0 17%

1 64%

2 11%

3 4 %

4 2 %

>4 2 %

Table 5.1: Number of times each instruction result is subsequently used (from[ENDE93])

The SCALP Architecture

- 94 -

One way of viewing the instruction and operand queues is as reservation stations. The

difference is that in SCALP the instructions are issued from the queues in the same order

that they arrive. Furthermore operands must arrive in the correct order to match their

instructions; this is guaranteed by the structure of the code.

[JOHN91] (see appendix A) considers the possibility of in-order issue to functional units

from reservation stations and concludes that it has only a small detrimental effect on

performance compared with out of order issue from the reservation stations:

“ 7.1.3 A Simpler Implementation of Reservation Stations

...each reservation station can issue instructions in the order that they are

received from the decoder. Instructions are issued in order at each functional

unit, but the functional units are still out of order with respect to each other,

and thus the processor still performs out of order issue. The advantage of this

approach is that each reservation station need only examine one instruction

to issue - the oldest one. Also, ... the reservation station can be managed

as a first in first out queue.

The performance advantage of out of order issue at the reservation stations is

negligible in some cases. Across the entire range of reservation station sizes

[1 to 16 entries], the biggest difference in average performance between the

two approaches is 0.6% for a two instruction decoder and 2% for a four

instruction decoder. ”

5.2 Deadlocks and Determinism

A number of questions may be asked about the safety of the proposed architecture:

• What happens when an instruction needs to fetch an operand from an input queue

to which no preceding instruction has sent a result?

The SCALP Architecture

- 95 -

• What happens if instructions send many results to an operand queue without any

instructions consuming them?

• What happens if two functional units send results to the same operand queue at

about the same time?

The answers are that in the first two cases the processor will deadlock. In the third case

the behaviour will be nondeterministic.

Note that all three cases represent programming errors. Correctly constructed programs

should not exhibit any of these code sequences.

In the case of the deadlock problems, the Fred architecture (see section 4.4) has the same

situation in the case of its memory access decoupling. Fred chooses to detect any illegal

instruction sequences in the instruction issuer and raise an exception. Using this approach

in SCALP would require a number of up/down counters and comparators in the

instruction issuer and would both complicate and slow down the issuing process. In view

of this SCALP chooses another approach. Deadlocks are allowed to occur and are

detected by means of a watchdog timer associated with for example the instruction fetch

logic. In the event of a watchdog timer timeout the processor is reset and restarts from an

exception vector with empty queues. If necessary a mechanism could be provided to store

a copy of the program counter value at the time when the reset occurred so that the system

software could identify the faulty code.

The non-deterministic instruction sequences are more interesting. At first sight it may

seem that these sequences also represent programming errors and should be illegal.

Unfortunately some apparently useful program constructs lead to this form of non-

determinism. Consider the following code sequence:

LOAD -> alu

ADD -> xyz

READ REGISTER -> alu

SUB -> pqr

The SCALP Architecture

- 96 -

The effect that is wanted here is that the result of the load instruction is sent to the ALU

where it is used by the following ADD instruction, and that the result of the read register

instruction is sent to the ALU where it is used by the SUB instruction.

Unfortunately one possible sequence of events in an asynchronous implementation is the

following:

• The load instruction is issued and enters the load unit instruction queue. The load

unit starts to access the memory which is slow.

• The add instruction is issued and enters the ALU instruction queue. It cannot start

execution because its operand has not arrived.

• The read register instruction is issued and enters the register bank instruction queue.

It executes quickly and sends its result to the ALU.

• The add instruction is matched with the result of the read register instruction,

executes and sends its result to “xyz”.

• The sub instruction is issued and enters the ALU instruction queue. It cannot start

execution because its operand has not arrived.

• The load instruction completes and sends its result to the ALU.

• The sub instruction is matched with the result of the load instruction, executes and

sends its result to “pqr”.

This is not the desired behaviour, yet the original code sequence seems to be a useful one.

It should be noted that there are many similar situations where this problem does not

occur. For example instructions that are executed by the same functional unit may not

overtake each other. The routing network also guarantees that two values sent between the

same pair of points will reach their destination in the same order that they left their source.

Consequently the following code sequence is legal:

The SCALP Architecture

- 97 -

LOAD -> alu

ADD -> xyz

LOAD -> alu

SUB -> pqr

Often the order of the instructions will be enforced by data dependencies between the

instructions. Consider the following sequence:

LOAD -> alu

ADD -> regd

WRITE REGISTER

READ REGISTER -> alu

SUB -> pqr

Here the register read must execute after the register write (even if a different register is

being accessed). The register write is dependent on the result of the add which in turn

depends on the load. It is therefore impossible for the result of the register read to reach

the ALU before the result of the load.

It can be argued that when this problem occurs it indicates that the code is not written in

a particularly parallelisable way, or that the processor does not have the right balance of

functional units. For example in the faulty example presented above the code makes

greater use of the ALU than of the other functional units, making it a bottleneck. If two

ALUs were present the code would operate more efficiently and without any problems of

determinism. In this case the program would be as follows:

LOAD -> alu_1

ALU_1:ADD -> xyz

READ REGISTER -> alu_2

ALU_2:SUB -> pqr

Despite this there are situations where non-determinism needs to be eliminated. There are

two approaches.

The SCALP Architecture

- 98 -

Firstly a sequencing instruction is provided. Two operands are sent to the move unit where

they arrive on different input ports. The seq instruction, which is executed by the move

unit, sends the two values to their ultimate destination in a defined order. For example:

LOAD -> movea

READ REGISTER -> moveb

SEQ -> alu

ADD -> xyz

SUB -> pqr

Alternatively the code may be re-ordered to introduce new dependencies, ensuring a fixed

execution order. For example this code

READ REGISTER -> load address

READ REGISTER -> alu

LOAD -> write data

ADD -> write data

WRITE REGISTER

WRITE REGISTER

may be re-written as

READ REGISTER -> load address

LOAD -> write data

WRITE REGISTER

READ REGISTER -> alu

ADD -> write data

WRITE REGISTER

The disadvantage of this second approach is that it tends to serialise the code, reducing

the potential parallelism.

To help the programmer, the scaSIM simulator (see section 6.2) detects any non-

deterministic sequences and produces an error message.

The SCALP Architecture

- 99 -

5.3 Other SCALP Features

There are two other features of the instruction set that increase power efficiency: variable

length instructions and variable width operations.

The format of a SCALP instruction is shown in figure 5.3. The instruction comprises 4 or

5 parts: a functional unit identifier, a destination address, an opcode whose meaning is

specific to the functional unit, a width bit, and an optional immediate value.

The width bit indicates whether the instruction operates on 32 bit or 8 bit data. Power is

saved by activating only a quarter of the datapath for 8 bit operations.

Making the immediate value optional increases the code density as many instructions do

not need an immediate operand. This makes the instruction format variable length. As was

mentioned in section 2.1.1 variable length instructions potentially make instruction issue

more difficult in a superscalar processor. SCALP tries to reduce this effect as follows:

• There are only two sizes of instruction.

• The additional bits in the longer format contain only the immediate value and not

any information that may be needed early in decoding.

• Instructions with and without immediate values are easily distinguished early in

decoding.

Figure 5.3: SCALP Instruction Format

opcode width optional immediatedestinationfunctional
address

identifier
unit

The SCALP Architecture

- 100 -

5.4 A SCALP Instruction Set

This section describes a proposed instruction set for a SCALP processor. This instruction

set is used for the examples in this chapter and is implemented in the next chapter.

However it should be noted that the SCALP principles described in the preceding sections

need not apply only to this instruction set; in fact this instruction set has been chosen as

just about the simplest SCALP instruction set possible and so has some weaknesses.

There are five functional units:

• The ALU. This performs a standard set of arithmetic, logical, and comparison

operations. It has two operand queues, alua and alub. Normal arithmetic results can

be sent to any of the other functional units’ input queues, but comparison results are

handled separately and can be sent only to the move unit for conditional move

instructions and the branch unit for conditional branch instructions.

• The register bank. This executes read and write instructions, operating on the 32

general purpose registers. It has one input queue, regd, for write data.

• The load/store unit. This performs memory accesses. It has two input queues, mema

and memd, for addresses and store data respectively. The unit includes an adder

which can add a displacement in the instruction to the address from the mema

queue.

• The move unit. This performs the seq and dup instructions described in sections 5.2

and 5.1. It also performs a conditional move instruction and the mvlink instruction

which is used in subroutine calls. It has four input queues; two normal ones (movea

and moveb), a special boolean input queue for conditional move conditions and a

special input for subroutine return addresses.

• The branch unit. This provides conditional and unconditional relative branches,

computed branches for case statements and subroutine returns, and a branch and

link instruction for subroutine entry. There are two input queues; a normal one for

The SCALP Architecture

- 101 -

computed branch addresses and a boolean queue for conditional branch conditions.

The branch unit also executes the HALT instruction.

There is a total of 8 operand queues (alua, alub, regd, mema, memd, movea, moveb, brc)

which can be encoded using 3 bits.

Move unit and register bank instructions have a fixed length of 12 bits, as shown in figures

5.4 and 5.5.

Other instructions can be either 12 or 24 bits long. In the case of 24 bit instructions the

additional bits form an immediate value used by the instruction; all of the control

information is contained in the first 12 bits. The formats of the ALU, load/store and

branch instructions are shown in figures 5.6, 5.7, and 5.8.

Figure 5.4: Move unit instruction format

Figure 5.5: Register bank instruction formats

Figure 5.6: ALU instruction format

address
destinationfunctional

unit
identifier

1 1 0

opcode
destination

second width

address
destinationfunctional

unit
identifier

1 0

widthopcoderegister
number

address
destinationfunctional

unit
identifier

10

opcode width optional immediate

The SCALP Architecture

- 102 -

The instruction stream is divided into blocks of 12 bits, referred to here as “chunks”, each

of which is either an instruction chunk or an immediate chunk. Five of these chunks are

then placed together into a 64 bit “FIG” (Five Instruction Group) (figure 5.9). The five

chunks use 60 of the 64 bits. The additional 4 bits form a control field that encodes which

of the five chunks is an immediate and which is an instruction1. As was noted in section

2.1.1, when carrying out superscalar instruction issue with variable length instructions it

is essential to be able to tell where each instruction starts and finishes. The control field

has this effect.

1. Only four bits are needed because not all possible combinations of immediate and instruction chunks are
possible within the FIG; two immediate chunks may never be adjacent to each other.

Figure 5.7: Load/Store instruction format

Figure 5.8: Branch instruction format

Figure 5.9: Five Instruction Group (FIG) format

address
destinationfunctional

unit
identifier

0 0

immediate optional extra immediatewidthopcode

functional
unit

identifier

11 1

opcode optional extra displacementdisplacement target
chunk no.

control
field

chunk 0 chunk 1 chunk 2 chunk 3 chunk 4

063

The SCALP Architecture

- 103 -

Branch target addresses are specified by giving the address of the FIG containing the

target and then giving the chunk number of the target instruction within the FIG.

There are two particular reasons why this scale of organisation has been chosen. Typically

approximately one instruction in five is a branch and one instruction in five is a load or

store. If more than five-fold parallelism is required then it becomes necessary to execute

more than one load or store instructions or more than one branch instruction concurrently.

This adds extra complexity which this simpler architecture avoids.

The instruction set is summarised in table 5.2. d indicates a result destination (i.e. a

functional unit input queue), bd indicates a boolean destination, [i] an optional immediate

value and i a compulsory immediate value. t indicates a branch target address.

Instruction Functional Unit Operation

DUP -> d1, d2 MOVE Duplicate

SEQ -> d MOVE Sequence

CMOVE -> d MOVE Conditional Move

MVLINK -> d MOVE Move result of last branch and link

READ n -> d REG Read register

WRITE n REG Write register

ADD [i] -> d ALU Addition

SUB [i] -> d ALU Subtraction

RSB i -> d ALU Reverse subtract

NEG -> d ALU Negate

OR [i] -> d ALU Logical OR

AND [i] -> d ALU Logical AND

XOR [i] -> d ALU Logical XOR

CMPEQ [i] -> bd ALU Compare for equality

CMPLT [i] -> bd ALU Compare for less than

Table 5.2: Instruction Set Summary (Part 1 of 2)

The SCALP Architecture

- 104 -

5.5 The SCALP Programming Model

The previous sections have described the SCALP architecture and instruction set in terms

of their hardware-related characteristics such as code density and suitability for simple

asynchronous implementation. The purpose of this section is to consider the architecture

from a software viewpoint and to ask whether SCALP makes a good programming target.

Specifically there two questions that must be resolved:

• How many extra instructions such as duplicate and sequence operations does

SCALP need in comparison with a conventional architecture?

• What effect does the presence of these instructions have on the parallelism possible

between the functional units?

This section tries to address these questions by considering an example program and

showing how it can be translated to the SCALP instruction set. The program is small but

CMPLTEQ [i] -> bd ALU Compare for less than or equal

MOV i -> d ALU Move immediate

MKIMM i -> d ALU Build large immediate value

LOAD [i] -> d LD/ST Load

STORE [i] LD/ST Store

BR t BRANCH Unconditional branch

BRT t BRANCH Branch if true

BRF t BRANCH Branch if false

BRL t BRANCH Branch and Link

BRC BRANCH Computed Branch

HALT BRANCH Halt

Instruction Functional Unit Operation

Table 5.2: Instruction Set Summary (Part 2 of 2)

The SCALP Architecture

- 105 -

it illustrates the necessary points. It is a function from a graphics program that takes the

(x,y) coordinates of the vertices of a triangle abc. It executes the following function

if (bx-ax)*(cy-ay) > (cx-ax)*(by-ay)

then

/* do nothing, order OK */

else {

swap(bx,cx);

swap(by,cy);

}

which first checks whether the triangle is constructed in a clockwise or anti-clockwise

direction. If the triangle is constructed anti-clockwise the coordinates of b and c are

exchanged to make it clockwise. An implementation of the function in a conventional

register-based instruction set (based on the ARM instruction set) is shown below.

MK_CLOCKWISE:

LOAD RBX,[bx]

LOAD RAX,[ax]

SUB RP,RBX,RAX # compute bx-ax

LOAD RCY,[cy]

LOAD RAY,[ay]

SUB RQ,RCY,RAY # compute cy-ay

MUL RR,RP,RQ # compute (bx-ax)*(cy-ay)

LOAD RCX,[cx]

SUB RS,RCX,RAX # compute cx-ax

LOAD RBY,[by]

SUB RT,RBY,RAY # compute by-ay

MUL RU,RS,RT # compute (cx-ax)*(by-ay)

CMP RR,RU # (bx-ax)*(cy-ay) > (cx-ax)*(by-ay) ?

BRGT Rlink # return if order is OK

STORE RBX,[cx] # store b and c swapped

STORE RCX,[bx]

STORE RBY,[cy]

STORE RCY,[by]

BR Rlink # return

Note that it is assumed that the coordinates are initially in memory and must be loaded

into registers. The function consists of 19 instructions totalling 608 bits.

The SCALP Architecture

- 106 -

One simple scheme for SCALP code generation is to take a conventional program such

as the above and to replace each instruction with a sequence of register read instructions

to fetch operands, an operate instruction, and a register write instruction to store the result.

This scheme is clearly inefficient since it makes no use of the explicit forwarding

mechanism, but it has the advantage of being able to encode any program without needing

duplicate or sequence operations or other transformations to ensure determinism. This

scheme can be used to give a worst case measure of SCALP code complexity. In the case

of this example the SCALP program would have 50 instructions including 12 writes and

19 reads, totalling 640 bits - more than the conventional program.

A more efficient translation will make use of the explicit forwarding mechanism when

appropriate dataflow exists between the instructions. When explicit forwarding cannot be

used the translation can fall back to the register-based mechanism described above.

An initial dataflow-based translation to SCALP code gives the following as yet

unsatisfactory program (note that for the purpose of this example the SCALP instruction

set has been extended to include a multiply instruction):

MK_CLOCKWISE:

MVLINK -> brc # store return address

LOAD [bx] -> alu_a

LOAD [ax] -> alu_b

SUB -> mul_a # compute bx-ax

LOAD [cy] -> alu_a

LOAD [ay] -> alu_b

SUB -> mul_b # compute cy-ay

MUL -> alu_a # compute (bx-ax)*(cy-ay)

LOAD [cx] -> alu_a

LOAD [ax] -> alu_b

SUB -> mul_a # compute cx-ax

LOAD [by] -> alu_a

LOAD [ay] -> alu_b

SUB -> mul_b # compute by-ay

MUL -> alu_b # compute (cx-ax)*(by-ay)

CMPGT -> br_cond # (bx-ax)*(cy-ay) > (cx-ax)*(by-ay) ?

BRT DONE

LOAD [bx] -> st_data # swap bx, cx

LOAD [cx] -> st_data

STORE [cx]

The SCALP Architecture

- 107 -

STORE [bx]

LOAD [by] -> st_data # swap by, cy

LOAD [cy] -> st_data

STORE [cy]

STORE [by]

DONE: BRC

This program suffers from the following problems:

• It contains more LOAD instructions than are necessary. Unlike the conventional

program a new load is used each time an operand is required as previously loaded

values are not kept in local storage.

• There are problems with the order in which operands reach functional units. For

example note that the result of the first multiply is supposed to reach the ALU for

the comparison, yet it will probably arrive much earlier in the middle of some other

calculation.

Both of these problems are addressed in the following version of the code (| indicates

changed lines). This reorders the early part of the calculation so that the ax and ay

operands are duplicated after they have been loaded, avoiding two loads. In addition the

multiply instructions are repositioned so that their results go to the correct destination

instructions.

MK_CLOCKWISE:

MVLINK -> brc # store return address

LOAD [bx] -> alu_a

| LOAD [ax] -> move_a

| DUP -> alu_b, alu_b

SUB -> mul_a # compute bx-ax

| LOAD [cx] -> alu_a

| SUB -> mul_a # compute cx-ax

LOAD [cy] -> alu_a

| LOAD [ay] -> move_a

| DUP -> alu_b, alu_b

SUB -> mul_b # compute cy-ay

LOAD [by] -> alu_a

SUB -> mul_b # compute by-ay

| MUL -> alu_a # compute (bx-ax)*(cy-ay)

The SCALP Architecture

- 108 -

MUL -> alu_b # compute (cx-ax)*(by-ay)

CMPGT -> br_cond # (bx-ax)*(cy-ay) > (cx-ax)*(by-ay) ?

BRT DONE

LOAD [bx] -> st_data # swap bx, cx

LOAD [cx] -> st_data

STORE [cx]

STORE [bx]

LOAD [by] -> st_data # swap by, cy

LOAD [cy] -> st_data

STORE [cy]

STORE [by]

DONE: BRC

The remaining question is that of determinism. A simple check for possible

nondeterminism is to study the source of values for each operand queue. If the source is

always the same functional unit there cannot be a problem as values taking the same path

through the result routing network must arrive in the same order that they left. For the

move_a, mul_a, mul_b and st_data queues the source is always the same functional unit

so the operand order is deterministic.

For the alu_a queue the source is normally the load unit with the exception of the first

multiply instruction. For the alu_b queue the source is normally the move unit with the

exception of the second multiply instruction. Can the results of the multiply instructions

arrive at the ALU sooner than they should?

In the case of the alu_b queue there is no problem because the multiply instruction is itself

dependent on the previous ALU result, and so cannot generate its result out of order.

In the case of the alu_a queue there is a problem. The first multiply instruction and the

preceding load instruction can execute concurrently, and either could be first to write to

the alu_a queue. The solution to the problem is to reorder the code slightly and introduce

a SEQ instruction that guarantees the order of the resulting values, as shown in the

following.

The SCALP Architecture

- 109 -

MK_CLOCKWISE:

MVLINK -> brc # store return address

LOAD [bx] -> alu_a

LOAD [ax] -> move_a

DUP -> alu_b, alu_b

SUB -> mul_a # compute bx-ax

LOAD [cx] -> alu_a

SUB -> mul_a # compute cx-ax

LOAD [cy] -> alu_a

LOAD [ay] -> move_a

DUP -> alu_b, alu_b

SUB -> mul_b # compute cy-ay

| LOAD [by] -> move_a

| MUL -> move_b # compute (bx-ax)*(cy-ay)

| SEQ -> alu_a

SUB -> mul_b # compute (by-ay)

MUL -> alu_b # compute (cx-ax)*(by-ay)

CMPGT -> br_cond # (bx-ax)*(cy-ay) > (cx-ax)*(by-ay) ?

BRT DONE

LOAD [bx] -> st_data # swap bx, cx

LOAD [cx] -> st_data

STORE [cx]

STORE [bx]

LOAD [by] -> st_data # swap by, cy

LOAD [cy] -> st_data

STORE [cy]

STORE [by]

DONE: BRC

This final code contains 27 instructions, 42% more than the conventional code. Three of

the extra instructions are DUP and SEQ instructions required because of the explicit

forwarding mechanism. Four are extra load instructions in the swap code required

because of the lack of a global register bank for short term storage. One is an extra

instruction required because of the operation of the subroutine return mechanism.

The increase is substantially offset by the smaller size of the SCALP instructions. The

total program size for the SCALP code is 346 bits, only 57% of the conventional

program’s size.

The SCALP Architecture

- 110 -

The code reordering and other changes to the program have affected the way in which it

can be executed on a superscalar processor. Table 5.3 shows a possible occupation of

functional units for the conventional program. Loads, stores and multiplies are assumed

to take 3 time units, subtracts, compares and untaken branches 2 time units; these values

are arbitrary but may approximate to the relative speeds of these operations in an

asynchronous processor.

This shows that the total execution time for the program is 39 time units.

Table 5.4 is a similar representation for the SCALP code. Move operations take 1 time

unit.

This shows that the total execution time for the program is 52 time units, 13 more than the

conventional architecture. This is largely explained by the additional LOAD instructions

in the swap code. Apart from this there has been virtually no loss of concurrency resulting

from the introduction of the SEQ and DUP instructions or the code reordering.

While any conventional program can be translated to SCALP code using an inefficient

scheme, this example has shown that an approach based on dataflow can give

substantially better results. The problems of result ordering and determinism that require

the introduction of DUP and SEQ instructions and other transformations are solvable and

do not substantially affect the efficiency of the program in terms of code size or available

concurrency between the functional units.

This example illustrates well the problems encountered in the translation of straight line

code within basic blocks; however it has a relatively simple control flow structure which

does not demonstrate how branches can disrupt the dataflow. In the presence of more

branches there is likely to be greater reliance on the register bank.

The SCALP Architecture

- 111 -

LOAD/ STORE SUB/ CMP MUL BRANCH
LOAD RBX,[bx]

*

*

LOAD RAX,[ax]

*

*

LOAD RCY,[cy] SUB RP,RBX,RAX

* *

*

LOAD RAY,[ay]

*

*

LOAD RCX,[cx] SUB RQ,RCY,RAY

* *

* MUL RR,RP,RQ

LOAD RBY,[by] SUB RS,RCX,RAX *

* * *

*

SUB RT,RBY,RAY

*

MUL RU,RS,RT

*

*

CMP RR,RU

*

BRGT Rlink

*

STORE RBX,[cx] BR Rlink

* *

*

STORE RCX,[bx]

*

*

STORE RBY,[cy]

*

*

STORE RCY,[by]

*

*

Table 5.3: Functional Unit Use for Conventional Program (Example 1)

The SCALP Architecture

- 112 -

LOAD/ STORE SUB/ CMP MUL BRANCH MOVE
LOAD -> alu_a MVLINK -> brc

*

*

LOAD -> move_a

*

*

LOAD -> alu_a DUP -> alu_b, alu_b

* SUB -> mul_a

* *

LOAD -> alu_a SUB -> mul_a

* *

*

LOAD -> move_a

*

*

LOAD -> move_a DUP -> alu_b, alu_b

* SUB -> mul_b

* *

MUL -> move_b SEQ -> alu_a

SUB -> mul_b * *

* * *

MUL -> alu_b *

*

*

CMPGT -> br_cond

*

BRT DONE

*

LOAD -> st_data BRC

* *

*

LOAD -> st_data

*

*

STORE

*

*

STORE

*

*

LOAD -> st_data

*

*

LOAD -> st_data

*

*

STORE

*

*

STORE

*

*

Table 5.4: Functional Unit Use for SCALP Program (Example 1)

The SCALP Architecture

- 113 -

The effect that branches can have is shown in this second example. The problem is simply

to find the greatest of four values a, b, c and d:

max4(a,b,c,d) = max2(max2(a,b),max2(c,d));

max2(x,y) = if x>y then x else y

One possible conventional implementation is as follows (note that it overwrites its

operands during its operation):

CMP Rb,Ra

BGT L1

MOV Rb,Ra

L1: CMP Rd,Rc

BGT L2

MOV Rd,Rc

L2: CMP Rd,Rb

BGT DONE

MOV Rd,Rb

DONE: # result is in Rd

On average each execution of this code will execute 7.5 instructions using 240 bits.

A SCALP implementation suffers from the problem that the pattern of forwarding needed

depends on the outcome of the comparisons, by which time it is too late to specify the

destination in the source instructions. The most efficient solution is to use the register

bank for all operand communication (except compare result to branch unit) as shown in

the following listing:

READ Rb -> alu_a; READ Ra -> alu_a; CMPGT -> br_cond

BRT L1

READ Ra -> regd; WRITE Rb

L1: READ Rc -> alu_a; READ Ra -> alu_a; CMPGT -> br_cond

BRT L2

READ Rc -> regd; WRITE Rd

L2: READ Rd -> alu_a; READ Rb -> alu_a; CMPGT -> br_cond

BRT DONE

READ Rb -> regd; WRITE Rd

DONE: # result is in Rd

The SCALP Architecture

- 114 -

On average each execution of this code will execute 15 instructions using 192 bits. This

is twice as many instructions and 80% of the code size of the conventional code’s size.

Tables 5.5 and 5.6 show functional unit usage in the same style as for the first example.

For illustration the first branch is taken, the second not and the third is taken again.

The execution time for the conventional program is 14 time units and for the SCALP

program is 20 time units. Neither version exhibits any functional unit parallelism due to

the tight data and control dependencies.

This second example shows that in unfavourable conditions such as the presence of many

data dependent branches SCALP does best by falling back on its global register bank. In

this case its code density still exceeds that of the conventional processor, and SCALP does

no worse than the conventional processor at exploiting functional unit parallelism.

General results should not be implied from these very limited examples, but they are

sufficiently encouraging to suggest that proceeding with the design is worthwhile.

SUB/ CMP/MOV BRANCH
CMP Rb,Ra

*

BGT L1

*

CMP Rd,Rc

*

BGT L2

*

MOV Rd,Rc

*

CMP Rd,Rb

*

BGT DONE

*

Table 5.5: Functional Unit Use for Conventional Program (Example 2)

The SCALP Architecture

- 115 -

5.6 Interrupts and Exceptions

Providing support for interrupts and exceptions is often a challenging part of the design

of a processor. SCALP’s asynchronous implementation and the explicit forwarding

scheme make exception handling somewhat different from exception handling in a

conventional architecture.

No exception handling is incorporated in the SCALP implementation described in chapter

6. This section serves to show that exception handling is not an insurmountable difficulty

with the architecture.

The greatest difficulty is that the exception handler must be able to save the transient state

of the main program and restore it later. In a conventional processor this is not difficult as

the transient state is contained within the register bank; the exception handler simply

copies the contents of the register bank to a safe area of memory. For SCALP it is

SUB/ CMP BRANCH REG
READ Rb -> alu_a

READ Ra -> alu_a

CMPGT -> br_cond

*

BRT L1

*

READ Rc -> alu_a

READ Ra -> alu_a

CMPGT -> br_cond

*

BRT L2

*

READ Rc -> regd

WRITE Rd

READ Rd -> alu_a

READ Rb -> alu_a

CMPGT -> br_cond

*

BRT DONE

*

Table 5.6: Functional Unit Use for SCALP Program (Example 2)

The SCALP Architecture

- 116 -

necessary to save and restore the contents of the operand queues which is more difficult

for the following reasons:

• The exception handler will not know how many values are stored in each of the

queues. If it tries to read more values than are present the processor will deadlock.

• The connectivity of the queues is limited. A value in the ALU queue cannot be

saved to memory unless it can be transferred through the ALU unchanged and into

the store data queue.

There are several possible solutions:

• Additional hardware can be provided to assist in saving the state. One solution

would be to modify the operand queue registers to allow a parallel read out of both

data values and empty/full information. This solution is the most general but it has

significant hardware cost.

• The interrupt handler’s knowledge of the contents of the queues can be increased in

some way. One possibility is to maintain counters in the instruction issuer that count

how many values are in each queue. The interrupt handler could use this

information to read only the correct number of values from each queue.

• Restrict the occasions on which interrupts can be taken to times when the operand

queues are empty. This can either be detected by means of counters in the

instruction issuer or by software control. This is similar to the transputer approach

[MITC90] where interrupts occur only when branch instructions are executed, and

the contents of the stack are not preserved over branches.

In practice some combination of these approaches would be most practical with some

higher priority forms of exceptions using more additional hardware than others.

The SCALP Architecture

- 117 -

5.7 Related Work

This section describes other work that proposes an alternative to the global register bank

model. The transputer uses a stack model; NSR, Fred, PIPE and WM use various forms

of architecturally visible queues and “Transport Triggered” processors use a form of

explicit forwarding.

5.7.1 Stack Processors

The stack processor is the only alternative to a global register bank that has been used in

a commercial processor, namely the transputer [MITC90]. In a stack processor instruction

sources and destinations are not normally specified explicitly by the instruction; rather

they are implicitly taken from and returned to the top of a stack. Special operations must

be provided to duplicate, delete, and reorganise the stack items. The code density

advantage of this approach is discussed in section 2.1.3.

The disadvantage of the stack model is that it does not work particularly well in a parallel

environment. The stack itself becomes a bottleneck that must be shared by the functional

units in the same way that a global register bank would, but with the added problem of

maintaining the stack pointer. Every instruction implicitly changes the stack pointer; it is

hard to conceive of an implementation where these changes do not occur serially.

5.7.2 Architectural Queues

Some previous designs have made use of programmer-visible queues to communicate

between some functional units. Typically this form of communication is restricted to the

results of load operations, store data, and branch conditions as it is in these cases that the

decoupling provided by the queues is most useful. Synchronous processors that have used

this technique include PIPE [GOOD85] and WM [WULF88]. The technique is more

natural for asynchronous processors and it is used by the NSR and Fred Processors

The SCALP Architecture

- 118 -

(section 4.4) [BRUN93] [RICH92] [RICH95]. In all of these designs a global register

bank is retained and used for the majority of communication. Special register numbers are

reserved to refer to the queues.

5.7.3 Explicit Forwarding

Transport triggered architectures (TTAs) [CORP93] [POUN95] share with SCALP the

idea of transferring values between functional units by explicitly stating the functional

units concerned, rather than by using a global register bank. The Transport Triggered

Architecture is also referred to as the MOVE processor because it has a single instruction

which moves a value from the output of one functional unit to the input of another.

Each functional unit has a number of input registers for the various operands. One of these

is designated the “trigger register”. When a value is written into the trigger register the

functional unit is activated and after a known number of cycles its result is written into its

result register.

The principle differences between the TTA idea and SCALP are:

• TTAs do not associate queues with the operands.

• TTAs require the compiler to be aware of the latencies of the functional units.

• TTAs allow the results of operations to be used many times without explicit

duplicate operations.

The designers of the TTA consider it to be an example of a processor where the compiler

takes responsibility for a greater proportion of the preparation for execution than in

conventional architectures. Figure 5.10, from [HOOG94], illustrates this.

Like the TTA, SCALP makes many additional tasks the responsibility of the compiler.

The compiler (or assembly language programmer) must be aware of dependencies

The SCALP Architecture

- 119 -

between instructions to write SCALP code. SCALP code makes a static allocation of

instructions to functional units. Like TTAs and unlike any of the other processor types in

figure 5.10 SCALP code makes a static allocation of result and operand movement to

particular paths within the processor.

The transport triggered architecture work is significant because a compiler has been

ported to the processor and significant benchmark programs have been simulated. This is

encouraging because it suggests that SCALP’s execution model may also make a

reasonable compiler target.

Figure 5.10: The division of responsibilities between hardware and the compiler (from
[HOOG94])

Execute

Bind Transports to Busses

Bind Operations to Functional Units

Determine Independencies

Determine Dependencies

Bind Transports to Busses

Bind Operations to Functional Units

Determine Independencies

Determine Dependencies

Frontend and Optimizer

TT VLIWs

OT VLIWs

Indep. Arch

Dataflow

Superscalar

Responsibility of the HardwareResponsibility of the Compiler

- 120 -

Chapter 6: Implementation

A gate-level implementation of the architecture and instruction set described in the

previous chapter has been carried out using the hardware description language VHDL.

This design is at a sufficiently detailed level that it could be used for a silicon

implementation, but this has not been done and instead the correctness and performance

of the design have been established by simulation.

The first sections of this chapter describe the choice of asynchronous design style used

and the overall design methodology. Later sections describe the implementation of

selected parts of the architecture: the instruction issuer, the result routing network and the

functional units. These areas have been chosen as they illustrate the more interesting parts

of the processor in terms of asynchronous design. The final section concludes by

measuring the size of the complete design.

6.1 Asynchronous Design Styles

The term “asynchronous design” is very broad; it simply means not synchronous. Within

this category there are design styles that differ from each other as much as they differ from

synchronous design. This section briefly describes some of these styles and investigates

their properties.

Implementation

- 121 -

Underlying each design style is a timing model. The timing model specifies what

assumptions the designer is allowed to make about the relative timing of events in the

system.

There are three basic timing models [SEIT80]:

• In the bounded delay model an upper and a lower bound is known for each gate

delay.

• In the speed independent model gate delays are assumed to be unbounded but finite,

but wires are assumed to have zero delay.

• In the delay insensitive model both gate delays and wire delays are assumed to be

unbounded but finite.

In the progression from bounded delay to speed independence to delay insensitivity the

designer is given less and less freedom in what he may build; all delay insensitive circuits

are speed independent and all speed independent circuits work under bounded delay, but

the converse is not true.

On the other hand this progression gives the designer increasing freedom in how the

circuits may be constructed. In a delay insensitive circuit any interconnection of

functionally correct components will operate as desired. For speed independence any

collection of gates will function but wires must act as equipotential regions, that is all gate

inputs driven by the wire must change together. Under the bounded delay model the

designer must use gates whose delays are known to be within the limits of his delay

assumptions.

This trade-off is an important one. A pragmatic designer may choose to use some

combination of the different timing models in different parts of his system. For example

when using full-custom tools to design at the layout level the delays in gates and wires

can be accurately predicted. In this case it is reasonable to use a bounded delay timing

model which allows the greatest choice of circuits. When designing at a more abstract

level with less control over circuit geometry and capacitances accurate knowledge of gate

Implementation

- 122 -

delays may not be possible. Here the speed independent or delay insensitive model may

be applied.

6.1.1 Timing Models for Control Circuits

The structure of control circuits is often quite random in nature and automatic placement

and routing tools are generally used. This gives the designer little control over

propagation delays and consequently control circuits may be designed to be speed

independent or delay insensitive.

Asynchronous control circuits are often built up from simple subcircuits that perform

operations such as sequencing, merging, and selecting. Because these macromodules will

be used many times the designer may choose to make a bounded delay internal

implementation. This requires more effort and may require manual placement and routing

(or at least manual verification after automatic placement and routing), but the bounded

delay circuit may be significantly simpler than the alternative speed independent or delay

insensitive circuit.

6.1.2 Timing Models for Datapaths

Datapaths are important for two reasons: firstly they comprise a large part of many

designs so their efficient implementation is important. Secondly they have a very regular

structure which can sometimes be exploited for timing purposes.

Datapath busses comprise a number of bits whose values are used together. When each

bit of the bus has been computed by one stage of the datapath the next stage may start its

operation.

Under the speed independent and delay insensitive timing models the individual bits may

become valid at quite different times. Consequently it is necessary for each bit of the bus

Implementation

- 123 -

to encode three possible states: logical 0, logical 1 and “not yet ready”. This is typically

done using a “dual rail” encoding where two wires represent each bit.

A number of designs1 including the Caltech asynchronous processor, TITAC, and the

earlier Tangram work [BERK91] used this dual rail encoding. These designs

demonstrated the substantial overhead of a dual rail encoding in terms of area, power and

possibly performance compared with a single rail datapath.

Under the bounded delay timing model a different approach known as “bundled data” is

possible. In a bundled data system the datapath uses a single wire for each bit like a

synchronous datapath and provides a single timing signal. This timing signal is delayed

by an amount guaranteed to be greater than the longest delay of any of the data bits. In

this way the area is reduced compared with the dual rail implementation. However it is

necessary to calculate and implement the necessary delays for the timing signal.

The previous section suggested that the bounded delay model is most appropriate for

small circuits where the delays can be accurately predicted. Datapaths do not meet this

criterion. However datapaths do have a very regular structure and so delays in all bits

should be well matched. The timing signal’s delay path may be implemented safely by

adding an extra bit to the datapath and adding some suitable safety margin.

6.1.3 Asynchronous Signalling Protocols

Communication between blocks in an asynchronous system typically uses pairs of wires

called “request” and “acknowledge”. Request indicates that an action should be initiated;

acknowledge indicates that the operation is complete. In bundled data systems this

request-acknowledge handshake also indicates the validity of associated data signals.

This exchange is sometimes referred to as handshaking.

1. See section 4.4

Implementation

- 124 -

Two alternative signalling protocols have been proposed for handshaking using the

request and acknowledge signals; these are the 2-phase and the 4-phase protocols.

The 4-phase protocol is a return to zero protocol. The behaviour of the request and

acknowledge signals and any associated data bus is indicated in figure 6.1. The rising

edge of request indicates the validity of the data and the desire for the action to begin. The

rising edge of acknowledge indicates that the data may become invalid and that the action

has completed. The falling edges of request and acknowledge comprise the recovery

phase of the protocol and perform no useful work1.

The 2-phase protocol is a non return to zero protocol. The rising edges of request and

acknowledge indicate the start and end of data validity and the start and end of the

required operation as before. However the handshake now finishes with the request and

acknowledge signals both high. The subsequent falling edges of request and acknowledge

indicate the next handshake as shown in figure 2.

The combination of 2-phase signalling and bundled data is proposed by Sutherland in his

paper Micropipelines [SUTH89].

Arguments in favour of 2-phase signalling are that fewer signal transitions are required

which reduces power consumption and that the lack of a recovery phase gives potential

1. Other 4-phase protocols are possible; for example in the “long hold” protocol the data remains valid until
after the falling edge of acknowledge. These alternative protocols may sometimes permit implementation
optimisations.

Figure 6.1: Four Phase Asynchronous Signalling

req

ack

data valid

Implementation

- 125 -

for faster operation. On the other hand advocates of 4-phase signalling suggest that 4-

phase macromodule components are simpler and smaller than equivalent 2-phase

components, giving both speed and power benefits.

The AMULET1 microprocessor was implemented using 2-phase signalling. Subsequent

work [DAY95] has investigated the possibility of using the 4-phase protocol. The

conclusion is that 4-phase is superior in terms of speed, power, and area; the AMULET2

microprocessor is being implemented using 4-phase signalling.

Interestingly the opposite conclusion has been drawn by the TAM-ARM project at

Manchester which has implemented part of the asynchronous ARM using an ECL

process. In this technology, which uses differential voltage signalling, the 2-phase

protocol is preferred.

The SCALP design choices have been made with conventional CMOS implementation of

the same type used by the AMULET processors in mind. Consequently the SCALP

implementation uses 4-phase signalling1 with bundled data datapaths.

6.2 Implementation Methodology

The overall design flow was as follows:

• Instruction set design.

1. Section 6.3 describes one case where the 2-phase protocol was found to be superior.

Figure 6.2: Two Phase Asynchronous Signalling

req

ack

data valid valid

Implementation

- 126 -

• Assembler and instruction set simulator written in ‘C’.

• High-level behavioural simulation written in VHDL.

• High-level simulation verified against ‘C’ simulation using general test programs.

• Simple gates and basic asynchronous elements modelled using behavioural VHDL.

• More complex asynchronous macromodules designed in terms of basic elements by

hand or with simple asynchronous synthesis tools.

• Gate level implementations of functional units and other blocks designed.

• Blocks verified against ‘C’ simulation using block level test programs.

• Blocks combined to form complete gate level processor model.

• Processor model verified against ‘C’ simulation using general test programs.

• Processor model evaluated using “real” programs and specially developed test

sequences.

The primary tool used in the implementation of SCALP has been the hardware description

language VHDL. VHDL has a number of characteristics which make it ideal for this task:

• Good range of high-level types and constructs suitable for abstract behavioural

modelling.

• Good low-level features for gate-level modelling.

• Good modularity suitable for a large project.

• Event based simulation model suitable for asynchronous logic.

• Fast and reliable simulators.

Implementation

- 127 -

• Good support from other CAD software.

The set of basic gates used is based on the AMULET Low Power Cell Library [FARN95].

It includes conventional gates such as and, or, nand, nor, and xor as well as special

asynchronous gates such as Muller C gates. An example C gate’s symbol, simplified

implementation using dynamic logic, and truth table are shown in figure 1; 17 different

types of C gate are used in the design. C gates are the main state holding elements in this

type of asynchronous circuit.

More complex asynchronous macromodules were built from these basic gates. The

designs come from three sources:

• The AMULET2 design.

• Designs synthesised from choice free signal transition graphs using the program

FORCAGE [KISH94]. FORCAGE is less sophisticated than some of the other

synthesis programs and cannot be applied to many of the macromodules because

they include choice.

• Designs carried out by hand.

The macromodules used are described in table 6.1.

The majority of the macromodules carry out quite simple functions, such as sequencing

or selection of events. Undesirable complexity results from two things:

Figure 6.3: An Example Muller C Gate

A

B

CA

B

C

A

1
0
0

1
0

0
B

1

1 1
C
0
0
C

Implementation

- 128 -

• What to do with the acknowledge signals. Often the logic required to generate the

output request signal is straightforward, but more complexity is associated with

storing some internal state so that the correct acknowledge signals are subsequently

generated.

Name Function

once_or_twice
For each input handshake perform either one or two output
handshakes depending on the value of a condition input.

twice For each input handshake perform two output handshakes.

cond
For each input handshake perform either zero or one output
handshake depending on the value of a condition input.

cond_undec
As cond, but input acknowledge is not deasserted until output
acknowledge is deasserted i.e. there is no decoupling between
input and output.

seqj2
For each input handshake perform a handshake on each of the
two outputs in turn.

seqj3
For each input handshake perform a handshake on each of the
three outputs in turn.

seqs2
As seqj2 but second output request is not asserted until first
output acknowledge is deasserted.

seqs3
As seqj3 but second and third output requests are not asserted
until first and second output acknowledges (respectively) are
deasserted.

cond_pipe_merge

When condition input is asserted, wait for both input requests
to be asserted before asserting output request. When condition
input is not asserted, wait only for first input request. See fig-
ure 4.11.

pipe_merge
Wait for both input requests to be asserted before asserting out-
put request.

sel2
Send each input handshake to one of the two outputs depending
on the value of the condition input.

steer2 As sel2 but without acknowledge signals.

call2
Handshakes on either of two mutually exclusive inputs cause a
handshake on the output.

Table 6.1: Macromodules used in the SCALP implementation

Implementation

- 129 -

• What to do with the return to zero phases of the 4-phase protocol. Generally a

simple approach to the return to zero phases is possible but it has poor performance.

The alternative is to add additional components to “decouple” the return to zero

phases. These additional components may have the effect of slowing down the

forward logic. Which solution is best in a particular application is hard to evaluate

and depends on the speed of the environment.

6.3 Overview of the Design

Figure 6.4 shows the top-level of the SCALP implementation. This section presents a

brief overview of the function of each of the blocks in the design. The following sections

consider the more detailed implementation of some of the more interesting areas.

Memory Interface

The SCALP model has a single memory port which is shared by instruction fetch and

load/store accesses. The memory interface is responsible for arbitration and multiplexing

between the load/store unit and the fetcher for access to the memory.

Fetcher

The fetcher contains the program counter. When a free space is present in the FIG fifo the

fetcher reads the next FIG1 from memory using the memory interface. The 64 bit FIG is

fetched in two cycles as the memory interface is only 32 bits wide.

Branch target addresses are sent to the fetcher by the branch unit. If a space is available

in the FIG fifo but no new address has been sent from the branch unit then the fetcher

increments the last program counter value and sends this to the memory. The block has to

1. FIG: Five Instruction Group

Implementation

- 130 -

arbitrate between the arrival of a new address from the branch unit and the dispatch of an

incremented program counter value.

Figure 6.4: SCALP Implementation Overview

load/
store
unit

ALU

move
unit

register
bank

bool queue

oper queue

instr queue

oper queue

oper queue

instr queue

oper queue

oper queue

instr queue

oper queue

oper queue

oper queue

bool queue

instr queue

oper queue

branch

unit

result queue

result queue

result queue

result
routing
networkFIG

fifo

issuer

result queue

memory
interface

fetcher

delay

new pc queue

to memory

pc
taken

branch instrs

brc

cbran

ldst instr

mema

memd

alu instr

alua

alub

move instr

movea

moveb

link

cmove

reg instr

regd

FIG
PC

Implementation

- 131 -

FIG Fifo

The FIG fifo is a three stage queue that stores FIGs between the fetcher and the issuer. Its

purpose is to provide decoupling between the two units so that neither unit suffers

blocking or starvation; for example if the load/store unit gains access to the memory

interface then the fetcher will be unable to supply new FIGs, but due to the FIG fifo the

issuer will be able to continue to operate.

Issuer

The issuer decodes the functional unit identifier bits in the instructions in incoming FIGs

and distributes them to the appropriate functional units via the instruction queues.

Instruction Queues

The two deep instruction queues provide decoupling between the instruction issuer and

each of the functional units.

Operand Queues

The operand queues store values that have been computed by previous instructions and

sent to their next instructions by explicit forwarding. The values remain in the queues until

they are matched with instructions. The queues are each two deep.

Branch Unit

The branch unit executes branch instructions. For conditional branch instructions it

receives comparison results from the ALU via the CBRAN boolean queue. For the

computed branch instruction it receives a target address via the BRC queue. It sends target

addresses to the fetcher via a single stage queue.

Implementation

- 132 -

Most branches are relative to the current program counter value. The branch unit contains

an adder which performs this calculation. The current program counter value is provided

to the branch unit for this purpose with each instruction from the issuer.

The branch unit has no instruction queue. This is so that the branch unit can acknowledge

to the issuer to indicate whether each branch has been taken or not. It is the responsibility

of the instruction issuer to skip over any incorrectly fetched instructions between a taken

branch and the branch target.

The branch and link instruction causes the unit to send the address of the instruction

following the branch to the move unit’s LINK queue. This is used to effect a subroutine

call.

ALU

The ALU executes arithmetic, logical and comparison instructions. Arithmetic operations

are carried out by a completion indicating ripple carry adder. Logical operations are

carried out by a simpler piece of logic with a matched delay path. The results of arithmetic

and logical operations are sent to the result network.

Comparisons are performed by either subtracting or exclusive-ORing the operands using

the normal arithmetic and logical blocks. The result is then tested for equality to zero or

the adder’s carry out is tested. This means that comparison for equality is faster than a

magnitude comparison as the later requires only an exclusive OR rather than a subtract.

Comparison results are sent to either the branch unit’s CBRAN input or the move unit’s

CMOVE input.

Load/Store Unit

The load/store unit executes load and store instructions. It accesses the memory via the

memory interface. The block contains an adder which adds a displacement provided in the

Implementation

- 133 -

instruction to an address provided by the MEMA queue. Store data is provided by the

MEMD queue. Load results are sent to the result routing network.

Move Unit

The move unit executes four special purpose instructions. DUP duplicates its operand,

sending the two copies to any two operand queues. SEQ sequentialises two operands,

sending them to a single destination in a deterministic order. CMOVE is a conditional

move instruction; either one of its input operands is sent to the destination under the

control of a boolean input from the result of a comparison. The MVLINK instruction

transfers a value from the LINK queue to some destination, for example a leaf subroutine

can return by using MVLINK to send the link value back to the branch unit.

Register Bank

The register bank contains a 32 entry register file and executes READ and WRITE

instructions that access it. WRITE data is provided by the REGD input. READ results are

sent to the result network.

Result Queues

The result queues provide a single stage of decoupling between the functional units and

the result routing network. This decoupling helps to prevent functional units from

blocking when the result routing network is temporarily busy.

Result Routing Network

The result routing network transfers the results of instructions from the result queues to

the operand queues. Each functional unit copies the destination address from its

instruction to the result output to accompany the result data. The result routing network

uses this address to select one of the eight operand queues.

Implementation

- 134 -

6.4 Implementation of the Instruction Issuer

The instruction issuer is one of the key parts of the SCALP design. It accepts five

instruction groups (FIGs) that have been fetched from memory and sends the individual

instructions to the five functional units. Each interface uses a 4-phase bundled data

protocol. The issuer is decoupled from the fetcher and the functional units by fifo queues.

Each instruction within the FIG contains three bits that indicate to which functional unit

it must be sent (figure 5.3). The issuer must study these bits for each instruction and select

the appropriate output.

The operation is made more complex by the variable length instructions and the special

treatment of branch instructions. To clarify this description a simplified design excluding

these features is presented first and these additional aspects are added later.

6.4.1 The Need for Parallelism

One functionally correct though unsatisfactory implementation of the instruction issuer is

shown in figure 6.5.

This circuit works as follows: when a FIG arrives from the fetcher, the count5 block and

multiplexor split it into its five constituent instructions which are considered in turn. The

three bits that indicate which functional unit the instruction is for are split off from the rest

of the instruction and control a five way select element. The outputs of this select are

requests to each of the functional unit queues.

The problem with this solution is that it is too sequential. In a pipelined processor it is

essential that no part of the system becomes a consistent bottleneck; the throughput of

each stage must be balanced. The memory interface can fetch several instructions at once

and the five functional units can operate in parallel. This instruction issuer can issue only

Implementation

- 135 -

one instruction at a time and unless it can be made to operate five times as fast as the other

parts of the system - which is unlikely - it will become a bottleneck.

The design of the instruction issuer must therefore incorporate parallelism, allowing

several incoming instructions to be considered and issued to different functional units

simultaneously.

Note that although the order in which instructions for one particular functional unit must

arrive at that functional unit is fixed, the order in which instructions are issued between

the functional units may vary. For example, if a FIG contains five instructions for these

functional units:

 0 1 2 3 4

F0 F0 F2 F2 F1

then initially instructions 0, 2 and 4 can be issued to functional units F0, F2 and F1

respectively. Subsequently instructions 1 and 3 can be issued.

Figure 6.5: An Unsatisfactory Issuer Architecture

count5
mux5to1

sel5
Instructions to functional units

FIG from fetcher

Implementation

- 136 -

The boundaries between FIGs are also unimportant. For example if two FIGs contain

instructions for these functional units:

 0 1 2 3 4

F0 F0 F0 F0 F0

F1 F1 F1 F1 F1

then the issuer may choose to issue instruction 0 in the first FIG to functional unit F0 and

simultaneously instruction 0 in the second FIG to functional unit F1.

A good solution will trade off the performance benefits of these forms of out-of-order

issue against their implementation cost. This trade-off is considered further in section

6.4.6.

6.4.2 The Proposed Solution

The proposed solution makes use of a 5 by 5 crossbar switch to allow unrestricted

connections between each instruction in the FIG and each functional unit. The incoming

FIGs are stored in a “forked fifo”; this is an asynchronous fifo queue whose input is

controlled by a single request/acknowledge pair and whose output has separate request

and acknowledge signals for each instruction. This arrangement means that once an

instruction has been issued then it can be acknowledged and removed from the output of

the fifo making the instruction behind it in the next FIG visible and eligible for issue.

Control is then divided up into one unit corresponding to each of the functional units.

These units “watch” the instructions at the front of the FIG fifo and when they see an

instruction for their functional unit they activate the appropriate switch in the crossbar and

send a request to the functional unit.

This arrangement is shown in figure 6.6 (connections between the controllers and the

crossbar are omitted for clarity).

Implementation

- 137 -

Each functional unit controller can see the following information about each instruction

at the front of the FIG fifo:

• From the state of the request and acknowledge signals, whether any valid

instruction is present.

• From the decoded functional unit bits in the instruction (the “for me” signals)

whether this instruction is for this functional unit.

On the basis of this information the functional unit controller must choose which if any of

the instructions it may issue at this time:

Figure 6.6: Instruction Issuer Architecture

Instruction queues Functional Units

FIG from fetcher

Forked Fifo

Controllers

Crossbar

Implementation

- 138 -

• If none of the instructions is “for me” and “valid” then it can do nothing.

• If one of the instructions is “for me” and “valid” then that one may be issued, unless

a preceding instruction is not valid in which case the controller must wait to see if

it is “for me” first.

• If more than one instruction is “for me” then the first one in program order may be

issued.

Unfortunately the information described above is not quite sufficient because of the way

that the FIG fifo works. Consider the following two cases:

 0 1 2 3 4

F0 F1 F0 F1 F2

F0 F1 F2 F3 F0

 0 1 2 3 4

 F0 F1 F2

F0 F1 F2 F3 F0

In the first case the front row of the FIG fifo is full. In the second case the first two

instructions from the front FIG have already been issued making the first two instructions

from the second FIG visible.

Note that in both cases the instructions visible to the controllers are the same: F0, F1, F0,

F1, F2. Consider the controller for functional unit 0. In the first case the correct behaviour

is for it to issue instruction 0. In the second case the correct behaviour is for it to issue

instruction 2. With the information described above it is not able to distinguish these two

cases.

Here is another example:

 0 1 2 3 4

F0 F1 F0 F1 F2

F0 F1 F0 F2 F2

Implementation

- 139 -

 0 1 2 3 4

F0 F1 F0 F1

F0 F1 F0 F2 F2

Once again the instructions visible to the controllers are the same: F0, F1, F0, F1, F2.

Consider the controller for functional unit 2. In the first case the correct behaviour is for

it to issue instruction 4. In the second case the next instruction in program order for

functional unit 2 is instruction 3 of the second FIG, an instruction which is not yet

available for issue, so the controller must do nothing.

To solve these problems further information must be made available about the

instructions at the head of the FIG fifo. A modulo-3 counter controlled by the request and

acknowledge signals is associated with each column of the FIG fifo. The controllers see

the states of these counters and are able to tell which instructions belong logically before

others. The letters A, B, and C are used to indicate the state of the counter. This is referred

to as the “layer” in which the instruction belongs; this is orthogonal to the rows and

columns of the crossbar.

The algorithm that each controller has to implement is then as follows:

• At reset, the “current column” is column 0 and the “current layer” is layer A

• If the instruction in the current column is not valid (i.e. request is not asserted; it has

not arrived) then wait.

• If the instruction in the current column is for the previous layer then wait.

• If the instruction in the current column is for the current layer and it is for this

functional unit then issue it.

• If the instruction in the current column is for the current layer but it is not for this

functional unit then consider the next instruction.

• If the instruction in the current column is for the next layer then consider the next

instruction.

Implementation

- 140 -

• When the instruction in column 4 has been considered, go on to column 0 of the next

layer.

The algorithm is described here in a sequential fashion, but it could be implemented in

parallel using priority encoders and similar structures. Several possible approaches were

considered and eventually one based on token passing was chosen.

The principle of operation is this: for each column and each layer a block of logic

precomputes what it would do if this column and layer were “current”. The possible

actions are to wait, to consider the next instruction, and to issue this instruction. These

precomputations can be carried out for all columns and layers in parallel. A “token” is

then passed between the blocks. When a block holds the token the column and layer that

it represents are the current column and layer. When the token arrives the block performs

one of three possible actions:

• If the action is to wait, the token is kept by the block. Eventually conditions will

change (for example the input will become valid) causing the action to change to

one of the others.

• If the action is to consider the next instruction then the token is passed to the next

block.

• If the action is to issue this instruction then the appropriate crossbar switch is

activated and a request is sent to the functional unit. When the functional unit sends

an acknowledge then an acknowledge is sent to the FIG fifo and the token is passed

to the next block.

The organisation of the blocks and the token’s path between them is shown in figure 6.7.

Note that there is one token and associated structure of this type for each functional unit.

Implementation

- 141 -

6.4.3 The Implementation

Internally each block is divided into three sub-blocks as shown in figure 6.8. The decode

block performs a combinational function to decide which of the three actions wait, pass,

or issue should be carried out. The sequence block is an asynchronous sequential circuit

that operates according to the required action in response to the arrival of a token, driving

the functional unit and crossbar outputs when necessary. The token block is responsible

for receiving tokens from the previous stage and sending them to the next stage under

control of the sequence block.

Token Block

For reasons described in section 6.1.3 the majority of the SCALP design has been carried

out using the 4-phase signalling protocol. In the case of the token block a 4-phase

implementation was carried out, but it was subsequently found that a 2-phase

implementation can be both smaller and faster1. The design is shown in figure 6.9. Note

1. One reason why the 4-phase implementation was more complex is that it needed acknowledge signals for
the tokens. The 2-phase circuit manages without them.

Figure 6.7: Issuer Token Path

0 1 2 3 4

Column

C
B

A
La

ye
r

Implementation

- 142 -

that it is only the token_in and token_out signals that are 2-phase; the has_token and

pass_token signals are 4-phase.

Operation is as follows: when no token is present, the input and output are the same and

the output of the XOR gate is 0. When a token arrives on the input, the XOR gate output

becomes high asserting has_token. When pass_token is asserted the latch is opened and

the transition representing the token is passed to the output. Both inputs to the XOR gate

are equal once more and has_token returns to zero.

Note that with this circuit pass_token may be asserted before a token has arrived,

indicating that the token should be passed on as soon as it arrives. In this case the token

may pass from block to block with each block imposing only a single gate delay.

Figure 6.8: Issuer Cell Internal Organisation

"precomputation"
decoder

Sequencer

Has Token Pass Token

Enable Crossbar

Request to Functional Unit

Acknowledge from Functional Unit

Acknowledge to Fifo

Request from Fifo

"Issue" "Pass"

LayerFor me

Token
Logic

Token OutToken In

Valid

Implementation

- 143 -

Decode Block

The purpose of the decode block is to decide on the basis of the for_me, layer, and valid

signals what should happen when the token arrives. It has two outputs, “issue” and “pass”.

“issue” indicates that when the token arrives the instruction in this column should be

issued and the token passed on. “pass” indicates that when the token arrives it should be

passed on without issuing anything. If neither is asserted, when the token arrives nothing

should happen i.e. the block waits. The function that the block has to perform is described

in table 6.2.

This function must be implemented so that there are no glitches on the issue and pass

outputs for any valid input change sequences. An implementation is shown in figure 6.10.

Figure 6.9: Token Block Implementation

Pass
Token

Has
Token

Token In Token Out

Implementation

- 144 -

Sequence Block

The function of the sequence block is to carry out the action indicated by the decode logic

when the token arrives. This means either passing the token on by asserting pass_token or

issuing an instruction.

Passing is straightforward: pass_token is asserted in response to pass. Issuing the

instruction involves more steps and some choices. For example, at what point should the

token be passed on? Can it be passed when issuing starts or must it wait until it has

completed? If the token is passed when issuing starts performance will be improved but

subsequent blocks must check that this issue has finished before starting to issue

themselves. This solution takes a simple approach as shown in figure 6.11.

Inputs
Interpretation

Outputs

Valid Layer For_me Issue Pass

X Previous X Can’t see the instruction we want; wait 0 0

0 This X
Must wait until this instruction is valid
to see if it is for me; wait

0 0

1 This 0 This instruction not for me; pass 0 1

1 This 1 For me; issue 1 0

X Next X
The instruction that was here has been
issued by another controller; pass

0 1

Table 6.2: Issuer Decode Block Function

Figure 6.10: Decode Block Implementation

For_me

This_layer
Valid

Issue

Pass
Next_layer

Implementation

- 145 -

The four input Muller C element1 generates the request signal to the functional unit. It is

asserted when the following four conditions hold:

• The issue signal from the decode block is asserted.

• The acknowledge signal from the functional unit is not asserted, i.e. any previous

issue to this functional unit has completed.

• This block has the token.

• The request signal from the FIG fifo is asserted (this will always be the case when

the issue signal from the decode block is asserted).

When the functional unit’s instruction fifo has accepted the instruction it will assert its

acknowledge signal. The role of the second Muller C element is to select only those

acknowledge signals that result from requests from this block. When its output is asserted

two things happen:

1. Asymmetric Muller C elements are represented here by a gate symbol with extensions to one or both
sides. Inputs joining the body of the gate take part in both rising and falling transitions of the output. Inputs
joining a side marked with a + or - take part in only the rising or falling output transitions respectively.

Figure 6.11: Sequence Block Implementation

C

C functional unit request
and crossbar enable

request from
FIG fifo

acknowledge to
FIG fifo acknowledge

functional unit

pass issue

token
pass
token

has

Implementation

- 146 -

• The acknowledge signal to the FIG fifo is asserted.

• The token is passed on.

The top Muller C element’s output is deasserted when the acknowledge to the FIG fifo

and the token passing have completed. This is detected by the request from the FIG fifo

and has_token both being deasserted.

6.4.4 Adding Branch Instructions

Branch instructions complicate the instruction issuer in two ways:

• When a branch instruction is taken, instructions between the branch and the branch

target must be disposed of. This task is the responsibility of the instruction issuer.

Branch targets are identified as such by means of an additional bit per instruction

introduced by the fetcher. The branch unit indicates whether a branch has been

taken when it acknowledges the instruction.

• In order to not issue instructions that should have been disposed of, controllers for

other functional units must not consider instructions beyond the instruction

currently being considered by the branch unit’s controller.

The first of these complications is dealt with as follows:

• The branch unit controller has an additional token signal between each block. The

existing signal transfers “look” tokens and the additional signal transfers “delete”

tokens.

• When a “look” token is received the block considers the current instruction in the

normal way. If the instruction is issued and the branch unit acknowledges indicating

that the branch was not taken then a “look” token is passed to the next block as

normal.

Implementation

- 147 -

• If the branch unit acknowledges indicating that the branch was taken then a “delete”

token is passed to the next block.

• When a “delete” token is received the block studies the bit indicating whether this

instruction is a branch target. If it is not a branch target then the instruction is

discarded by asserting acknowledge to the FIG fifo. A “delete” token is then passed

to the next block.

• If a “delete” token is received and the current instruction is a branch target then the

instruction is considered as normal and a “look” token is passed to the next block.

The second complication of preventing other controllers from overtaking the branch

controller is dealt with as follows: the token block in each block contains additional logic

that delays the arrival of a new token when the branch unit controller has a token in the

same column and layer. At reset the branch unit controller is given a “head start”. In this

way the other controllers all follow behind the branch controller.

6.4.5 Adding Variable Length Instructions

Each of the five chunks of a FIG may be either an instruction or an immediate value

associated with the previous chunk. Which instructions have immediate chunks is

indicated by the FIG’s control field (see figure 5.9).

Three of the functional units (ALU, load/store, and branch) accept instructions with

optional immediates. These functional units have double-width instructions queues that

can accept one or two chunk instructions.

There are three main ways in which the instruction issuer must be extended to deal with

the variable length instructions:

• The crossbar is extended to allow each of the input chunks to be directed to either

the instruction or the immediate part of each instruction queue.

Implementation

- 148 -

• The control field is decoded to provide an additional bit for each column of the FIG

fifo indicating if the instruction in this column has an associated immediate. Each

decode block is then extended to decode two new actions: issue with immediate and

pass with immediate (in addition to the existing issue, pass and wait). The sequence

blocks are extended to deal with these extra actions.

• The token logic is extended to allow tokens to be passed to either the next block or

to the block after next. This is required so that immediate fields are skipped over

and not treated as instructions. Additional token signals are required between the

blocks. Incoming tokens are merged with an XOR gate. Outgoing tokens can be

steered to either of the next two blocks.

The effect of these changes is significant both in terms of the size and the performance of

the issuer. This is studied further in the next section.

6.4.6 Performance of the Instruction Issuer

As with many types of design the performance of the instruction issuer is determined by

its architectural performance and by its implementation performance. Architectural

performance refers to the number of instructions that can be issued per cycle.

Implementation performance refers to the time taken per cycle.

Architectural Performance

The sequential issuer of figure 6.5 operates at 1 instruction per cycle. The parallel issuer

described here can operate at up to 5 instructions per cycle. However this performance can

only be achieved when the instructions within each FIG are evenly distributed between

the functional units. When the instructions are not evenly distributed the performance will

be limited by the controllers for the more heavily used functional units.

Other issuer architectures are possible; in particular it is possible to make the issuer wider

or narrower so that more or fewer than five instructions can be considered at a time.

Implementation

- 149 -

A simulation has been used to measure the performance of the issuer described here for

different instruction mixes and for different widths of instruction issuer. The results of the

simulation are shown in table 6.3 and figure 6.12.

It can be seen from these results that the issuer’s performance could be substantially

increased by increasing the number of instructions that are considered at a time, though

this would be at the cost of substantially increasing its size. If the instruction issuer was a

bottleneck in the processor as a whole then this may be an attractive option. Subsequent

results (section 7.3) will show that this is not the case and that other parts of the processor

limit its performance.

Organisation Instructions
Performance /

chunks per cycle

Sequential issuer (figure 6.5)Any 1.00

As described: 5 columns

Best case 5.00

Evenly distributed random
instructions

2.92

qsort program (see section
7.1.1)

1.86

2 columns

Evenly distributed random
instructions

1.67

3 columns 2.23

4 columns 2.63

5 columns 2.92

10 columns 3.78

15 columns 4.27

20 columns 4.58

25 columns 4.83

Table 6.3: Instruction Issuer Architectural Performance

Implementation

- 150 -

Implementation Performance

This section briefly compares the cycle times of the sequential issuer of figure 6.5, the

simplified issuer described in sections 6.4.2 and 6.4.3 and the issuer as implemented with

additional logic for branch instructions and variable length instructions.

The sequential issuer has not been modelled at gate level but an estimate of the cycle time

is around 8 gate delays (GD) per instruction. This is equivalent to 40 GD per instruction

per functional unit. This does not allow for branch or variable length instructions.

The simplified parallel issuer’s cycle time would be as little as 12 GD per instruction per

functional unit if its performance was limited by the speed at which tokens are passed

from block to block. In practice the critical path lies from the output stage of the FIG fifo,

through the modulo-3 counters to the decode blocks, through the sequence blocks in issue

mode to the input stages of the functional unit instruction queues, and back through the

Figure 6.12: Instruction Issuer Architectural Performance

0

1

2

3

4

5

0 5 10 15 20 25

pe
fo

rm
an

ce
 /

ch
un

ks
/c

yc
le

issuer width / instructions

Implementation

- 151 -

sequence blocks to the FIG fifo acknowledge. This limits the cycle time to around 24 GD

per instruction per functional unit.

The performance of the issuer with support for branch instructions and variable length

instructions is measured in detail in section 7.3.1. Its cycle time is at best 54 GD per

instruction per functional unit.

The difference between the 24 GD cycle time of the simplified issuer and the 54 GD cycle

time of the real issuer can be attributed to the additional complexity of dealing with

branches and variable length instructions.

6.5 Implementation of the Result Routing Network

The result routing network transfers values from the functional unit outputs to the operand

queues of other functional units. Each value has associated with it a bit indicating its

width, byte or word, and three bits indicating its destination. The routing network has four

inputs - one from each of the functional units except the branch unit - and eight outputs.

As with the instruction issuer an important initial question is the degree of parallelism that

is required. A simple sequential design (figure 6.13) could be implemented that processes

only one value at a time. At the other extreme a fully populated crossbar (figure 6.14)

could be used to provide the greatest performance but with significant hardware cost.

Initial analysis suggested that a balanced solution would lie between these two extremes.

The proposed structure is shown in figure 6.15.

The datapath comprises two shared busses. Each of the four network inputs is connected

to both busses by a tri-state buffer, and each bus is connected to each output in the same

way.

Control is divided into two parts associated with the input side and the output side

respectively. The input side is responsible for arbitrating between the four inputs and

granting access to the shared busses. The output side is less complex; it studies the

Implementation

- 152 -

destination specifiers on the busses and activates tristate connections and output requests

as necessary.

Figure 6.13: Single Bus Network

Figure 6.14: Fully Populated Crossbar Network

Figure 6.15: Two Bus Network

Inputs from result queues

Outputs to operand queues

Outputs to operand queues

In
pu

ts
 fr

om
 r

es
ul

t q
ue

ue
s

Inputs from result queues

Outputs to operand queues

Implementation

- 153 -

Arbitration

A complex arbiter is required to control the input side of the controller. It has four request

inputs corresponding to each of the inputs to the network. Associated with each request

input are two grant outputs. In response to a request input being asserted one of the grant

outputs will eventually be asserted. This indicates that that input may drive the associated

bus. The grant output will remain asserted until the request is deasserted. No more than

one input may be granted use of each bus at any time.

The basic arbitration element available for the design is the two input mutual exclusion

element. This element has two request inputs and two grant outputs. When one request

input is asserted the corresponding grant output is subsequently asserted. When both

request inputs are asserted simultaneously the element resolves any metastability

internally and eventually asserts exactly one grant signal. It is guaranteed that no

metastable activity will be observed on the output signals, though the arbiter may take an

arbitrarily long time before asserting either signal.

From these two input mutual exclusion elements it is necessary to construct a four input

mutual exclusion element. One such element will be associated with each bus in the

controller. The circuit used for this purpose is shown in figure 6.16.

The operation of the overall controller is as follows: When a request is received, the

corresponding requests to both four way mutual exclusion elements are asserted.

Figure 6.16: Four way mutual exclusion circuit built from two way mutual exclusion
elements

MX

MX

MX

MX

MX

MX

g4

g3

g2

g1r1

r2

r3

r4

Implementation

- 154 -

Eventually one or other (or both) will assert the corresponding grant signal. A two way

mutual exclusion element is used to arbitrate between the two grant signals so that only

one of the grant inputs is asserted. The request to the other four way mutual exclusion

element is then released.

The circuit used is shown in figure 6.17.

Other Organisations

The network organisations considered here are all symmetric, i.e. all outputs have equal

access to all busses. More efficient solutions may be provided by networks that are biased

towards some patterns of communication and against others. Figure 6.18 shows such an

arrangement. One input has exclusive use of a bus. Two other busses are shared by two

other inputs, with the fourth input given access to only one of them. On the output side

two of the busses are connected to all outputs but the other has limited connectivity.

The interconnections in a scheme of this sort would have to be based on analysis of

network usage by benchmark programs.

Figure 6.17: Arbiter for Result Network

r1 g1 r2 g2 r3 g3 r4 g4

r1 g1 r2 g2 r3 g3 r4 g4

g
MX

r r

g g
MX

r r

g g
MX

r r

g g
MX

r r

g

r g r g g r g ggr gg

MX4

MX4

Implementation

- 155 -

6.6 Functional Units

Although each of the five functional units performs a different function, in terms of

structure they have much in common.

The interfaces to the units are similar. Each has an input for instructions from the issuer

and for one or more operands from the result network. They also have similar outputs to

send results to the result network.

Internally, the functional units are divided into datapath and control sections as shown in

figure 6.19. The datapaths comprise multiplexors, adders and other logic connecting the

inputs and outputs under the control of various signals from the control logic.

The structure of the control logic in each functional unit is similar; it comprises instruction

decoding, input synchronisation and sequencing.

The decoder studies the instruction and generates a number of control signals; some of

these go to the datapath. Other signals indicate which of the various operands are needed

by this instruction.

Figure 6.18: An Asymmetric Result Network

Inputs from result queues

Outputs to operand queues

Implementation

- 156 -

The role of the input synchroniser is to establish when all of the necessary operands and

the instruction have arrived. When this occurs it indicates the fact to the sequencer.

The sequencer is responsible for activating any sequential logic in the datapath such as an

adder and for sending the result to the output; this part of the design varies substantially

from one functional unit to another.

As an illustration, figure 6.20 shows the arrangement of the sequencer for the branch unit.

Figure 6.19: Function Units General Structure

Figure 6.20: Branch Unit Sequencer

CONTROL

DATAPATH

DECODE

SYNCHRONIZE
INPUT

SEQUENCER

O
pe

ra
nd

s
In

st
ru

ct
io

n

R
esult

SEL2

COND
ONCE

OR
TWICE

SEQJ2

SEL2

COND

HALT TAKEN LINK REL

halted
restart

link_req
link_ack

new_pc_req
new_pc_ack

branch_req
branch_ack

ad
de

r_
go

ad
de

r_
do

ne

Implementation

- 157 -

Its operation is as follows: the instruction is decoded to provide the HALT, TAKEN,

LINK and REL inputs which indicate that the branch is a halt instruction, is taken, is a

branch and link instruction and is a relative branch respectively. When any necessary

operands have arrived the branch_req input from the input synchroniser is asserted.

The first block is a two-way select block that deals with the HALT instruction. For halt

instructions the external output “halted” is asserted and the sequencer awaits the “restart”

input before continuing.

For all other instructions the request is passed to the next block. For untaken branches the

conditional block returns the request directly to the acknowledge. For taken branches the

request proceeds to the next block.

Most branch instructions execute in a single “cycle”. The exception is the branch and link

instruction which uses one cycle to compute the target address and a second cycle to

compute the link address (either the address of the current instruction or the address of the

current instruction plus one). The “once or twice” block cycles its output twice for link

instructions and once for others.

The next block is a simple sequencer that activates each of its two outputs in turn. The

purpose of the upper (first) output is to activate the adder when necessary. The adder is

only required by relative branches so a second COND block enables it only in this case.

The second output of the sequencer is used to send the result from the datapath to its

destination. This may be either the link address queue for the link cycle of a branch and

link instruction or the new PC queue of the fetcher for other cycles. An additional output

from the earlier once or twice block controls a select block that steers the signal to the

appropriate output.

Implementation

- 158 -

6.7 Size of the Implementation

The number of basic gates modelled in the VHDL code has been counted and is broken

down by gate type in table 6.4. The total number of components is around 9,500. The

number of gates used by each block is shown in table 6.51.

1. In table 6.5 the RAM part of the register bank is counted as only two components. To provide a fairer
idea of the register bank’s relative size in table 6.6 an estimate of the equivalent number of components is
given.

Count Gate Description

220 and2

AND gates131 and3

1 and4

181 dffr D-type flip-flop

1334 inv Inverter

7 mc101

Muller-C elements; first digit is number of
symmetric inputs, second is number of posi-
tive-only inputs, third is number of negative-
only inputs. R suffix indicates global reset.
In a VLSI implementation some of the larger
gates would be implemented from several
smaller components.

6 mc101R

6 mc102

3 mc102R

1 mc103

174 mc110

1 mc110R

10 mc111

10 mc112R

195 mc120

12 mc120R

98 mc2

24 mc201R

90 mc220

Table 6.4: Total Gate Counts (Part 1 of 2)

Implementation

- 159 -

The relative sizes of the various blocks are indicated in figure 6.21.

The total number of transistors in the design is approximately 64,000. This is compared

with the sizes of AMULET1 and the ARM6 processor in table 6.6.

25 mc2R

1 mc3

75 mc320

18 mutex Mutual exclusion (arbitration) element

2397 nand2

NAND gates551 nand3

42 nand4

497 nor2

NOR gates66 nor3

59 nor4

454 or2

OR gates70 or3

15 or4

1 ram32x24
RAM blocks (register bank)

1 ram32x8

1365 TL

Transparent latches82 TLR

5 TLsetR

838 tridrv Tri-state driver

32 xnor2
Exclusive OR gates

402 xor2

Count Gate Description

Table 6.4: Total Gate Counts (Part 2 of 2)

Implementation

- 160 -

Block Gates Proportion

Issuer 4165 39 %

(of which Switches 550 5 %

Control 3615 34 %)

Result Network 1194 11 %

Register Bank 1158 11 %

ALU 1090 10 %

Operand Queues 624 6 %

Branch Unit 548 5 %

Load/Store Unit 488 5 %

Fetcher 422 4 %

Move Unit 215 2 %

FIG Fifo 228 2 %

Instruction Queues 176 2 %

Result Queues 168 2 %

Memory Interface 106 1 %

Table 6.5: Gates per Block

Implementation

- 161 -

Figure 6.21: SCALP Block Sizes

Processor Transistors

SCALP 64000

AMULET1 54000

ARM6 34000

Table 6.6: SCALP, AMULET and ARM sizes

MEMINT

ISSUER

FETCHER
BRANCH

LD/ST

ALU

MOVE

REG

FIG FIFO

O
P

E
R

A
N

D
 Q

U
E

U
E

S
IN

S
T

R
U

C
T

IO
N

 Q
U

E
U

E
S

R
E

S
U

LT
 Q

U
E

U
E

S

R
E

S
U

LT
 N

E
T

W
O

R
K

- 162 -

Chapter 7: Evaluation

This chapter investigates the SCALP architecture and implementation to see how well it

meets its stated objective high power efficiency through high code density, parallelism

and asynchronous implementation. The first sections introduce tools and example

programs that have been used to carry out the evaluation. Subsequent sections describe

the results of the evaluation.

7.1 Evaluation Procedure

The gate level VHDL model was evaluated as follows: a number of forms of test stimulus

were developed to exercise the model in interesting or representative ways. The model

was then extended by the addition of instrumentation code that reports internal activity

during execution of the stimulus. The activity trace thus obtained was subsequently

analysed by a number of evaluation programs to report statistics about the behaviour of

the processor.

7.1.1 Test Stimuli

The test stimuli used take the form of example programs and instruction sequences.

Evaluation

- 163 -

Instruction Sequences

Six instruction sequences have been written with different properties as described below.

The sequences each execute approximately 1000 instructions. They are not “real

programs” in the sense that they do not carry out any useful work.

(i) Distributed independent instructions (dis-ind)

An instruction sequence comprising instructions well distributed between the functional

units with the minimum of data dependencies. There are no taken branches.

(ii) Non-distributed independent instructions (ndis-ind)

An instruction sequence comprising instructions that concentrate on one functional unit

for some time making it a bottleneck before moving to the next. Few data dependencies

exist between the instructions. There are no taken branches.

(iii) Distributed dependent instructions (dis-dep)

An instruction sequence comprising instructions well distributed among the functional

units with many data dependencies. There are no taken branches.

(iv) Non-distributed dependent instructions (ndis-dep)

An instruction sequence comprising instructions that concentrate on one functional unit

for some time making it a bottleneck before moving to the next. There are many data

dependencies between the instructions. There are no taken branches.

(v) Independent branches (ind-br)

An instruction sequence comprising instructions well distributed among the functional

units with few data dependencies. One instruction in five is an unconditionally taken

branch.

Evaluation

- 164 -

(vi) Dependent branches (dep-br)

An instruction sequence comprising instructions well distributed among the functional

units with many data dependencies. One instruction in five is a taken branch which is

dependent on the preceding instructions.

Example Programs

The lack of a high level language compiler for SCALP makes evaluation with real

programs difficult. Five simple example programs have been written in SCALP assembly

language. Brief descriptions of the programs follow.

(i) Shading

A short piece of code that implements the inner loop of the Gouraud shading algorithm:

a number of sequential memory locations are loaded with values that differ by a constant

amount.

(ii) Word Count

A loop whose function resembles the unix “wc” program: the number of words and lines

in an area of memory are counted.

(iii) String Tree Search

A binary tree with string key values is searched recursively for values that may or may

not be present.

(iv) Quicksort

The O(n log n) recursive sorting algorithm is applied to an array of integers.

(v) Sumlist

Integer values in a null-terminated linked list are summed.

Evaluation

- 165 -

For comparison the same programs have also been written in assembly language for two

conventional processors, ARM and “ARMLESS”. ARMLESS is a hypothetical processor

whose instruction set is a subset of the ARM similar to the SPARC processor. Its

properties are

• All instructions are 32 bits long.

• 14 general purpose registers.

• Instructions specify three registers or two registers and an immediate for sources

and destinations.

• Only load and store instructions access memory.

• Branch instructions may be conditional on the value of the condition codes.

The ARM instruction set [FURB89] also features:

• All instructions may be conditional on the value of the condition codes.

• Load and store instructions may write incremented base register values back to the

register bank.

• Load and store multiple instructions may transfer any group of registers to or from

memory in a single instruction.

• Load and load multiple instructions may transfer the program counter to effect a

branch.

7.1.2 Evaluation Programs

A number of programs have been written to analyse the output of the instrumented VHDL

model.

Evaluation

- 166 -

Pipeline Visualisation

Being able to see graphically the flow of data within a processor can be a great help to

understanding limits on performance such as bottlenecks and dependencies. This is

especially true in asynchronous systems where time domain behaviour is less constrained

than in a synchronous design.

Other work has applied visualisation to asynchronous pipelines executing SPARC code

[CHIE95] and to the AMULET processor [SWAI95].

A visualisation program, xpipevis, has been developed to show SCALP’s internal data

flow graphically. Using this tool it is possible to see where bottlenecks occur and what the

processor’s typical behaviour is. The program displays a block diagram of the processor

on which each bus is illuminated using a colour corresponding to its state: idle, busy, or

reseting. The visualisation can run either at a constant rate relative to the simulated real

time or in “single step” mode where the user presses a key to advance the display. A

snapshot of the typical output from the program is shown in figure 7.1.

xpipevis has proved useful for optimising the SCALP implementation, for example when

choosing the number of stages in the instruction and operand queues and the configuration

of the result network.

Resource Utilisation

A common objective in parallel system design is to obtain a high utilisation of the

available resources. If some resources are rarely or never being used the design may be

optimised by removing them; on the other hand if a particular resource is often fully used

it may limit the performance of the system as a whole.

A program has been written to measure the utilisation of the functional units, the result

network busses and the queue stages in the instruction fifo, functional unit instruction and

operand queues, and the functional unit result queues.

Evaluation

- 167 -

Instruction Rate

A simple program has been written to measure the processor’s instruction execution rate

in terms of instructions per second.

7.1.3 Use of the Geometric Mean

Where a set of benchmark programs is used to evaluate the performance of a processor it

is useful to be able to compute a summary value indicating overall performance. If the

benchmark programs constitute a representative workload for the processor then the

Figure 7.1: Pipeline Visualisation

Evaluation

- 168 -

arithmetic mean of the individual execution times can be used to predict the total

execution time for the workload.

In some cases the benchmarks used are artificial or do not constitute a real workload. In

this case no measure can indicate real performance but some sort of summary value is still

useful. The arithmetic mean has the particular disadvantage that the benchmarks whose

execution times are greatest will dominate the result. In contrast the geometric mean gives

equal importance to all benchmarks.

Consider the data in table 7.1, which shows execution times for two programs A and B on

two machines X and Y. X does twice as well as Y on A, but Y does twice as well as X on

B, so in some sense they are equally good overall. This is indicated by their equal

geometric means. The arithmetic mean on the other hand is biased by the fact that A takes

less time than B on both machines.

[HENN90], pages 50-53, discusses the relative merits of the arithmetic and geometric

means for this type of analysis.

Machine X Machine Y

Program A 10 20

Program B 100 50

Arithmetic Mean 55 35

Geometric Mean 31.6 31.6

Table 7.1: Illustrating the use of the Geometric Mean

Evaluation

- 169 -

7.2 Code Density

In this section the code density achieved by SCALP is evaluated. High code density was

an objective of the design because the reduced memory bandwidth resulting from high

code density is beneficial to power efficiency.

Tables 7.2 and 7.3 present the static and dynamic code sizes measured for SCALP and the

conventional processors ARM and “ARMLESS”, using the example programs described

in section 7.1.1.

Program SCALP ARM ARMLESS

Shading 37 44 48

Word Count 54 48 56

String Tree Search 126 116 136

Quicksort 189 168 200

Sumlist 27 32 36

Geometric Mean 66.3 66.7 76.6

Table 7.2: Static Code Size / bytes

Program SCALP ARM ARMLESS

Shading 1024 1024 1280

Word Count 3290 3128 3656

String Tree Search 382 420 500

Quicksort 13194 5908 6648

Sumlist 315 380 464

Geometric Mean 1398 1247 1485

Table 7.3: Dynamic Code Size / bytes

Evaluation

- 170 -

In terms of static code density, SCALP does about as well as the ARM processor and

about 13% better than “ARMLESS”.

In terms of dynamic code density, SCALP does about 12% worse than ARM and about

6% better than “ARMLESS”.

These results are worse than expected and result from a greater than expected overhead

of register bank and move unit instructions. These instructions are required to move

operands when the explicit forwarding mechanism is insufficient. Table 7.4 shows the

number of register bank or move unit instructions required per “useful” instruction.

The large number of these instructions can be attributed to a flaw in the explicit

forwarding mechanism that makes it less useful to the programmer than the results

concerning the frequency of forwarding cited in table 2.3 might lead one to expect. The

consequence is that many results are written to the register bank immediately after being

computed and are read from there before each use.

This failing of the instruction set explained further in section 7.8.

Benchmark Instructions

Shading 0.99

Word Count 0.72

String Tree Search 1.06

Quicksort 1.34

Sumlist 0.61

Geometric Mean 0.91

Table 7.4: Register Bank and Move Unit Instructions per Useful Instruction

Evaluation

- 171 -

7.3 Pipeline Performance

This section investigates the throughput of SCALP’s pipeline and the parallelism that it

is able to achieve between stages. Firstly the cycle times of the individual pipeline stages

are considered and then the processor as a whole is examined using the instruction

sequences and example programs described in section 7.1.1.

Times in this section are generally expressed in terms of standard gate delays (GD). These

can be related to real execution times if a particular technology is considered. Section 7.5

performs this comparison.

7.3.1 Performance of Isolated Stages

FIG Fetch

The FIG fetch stage comprises three components: the fetcher, the memory interface and

the memory itself. In the test environment the fetched FIGs are fed to the FIG fifo, but the

output of the fifo is “short circuited” so that its rate of consumption of FIGs is maximised.

No load or store activity is present.

The cycle time of the FIG fetcher in the absence of branch instructions has been measured

and is shown in table 7.5.

Cycle time / GD

117

Table 7.5: FIG fetch performance, no branches

Evaluation

- 172 -

Instruction Issue

The performance of the instruction issuer has been measured by connecting it between the

FIG fifo and the functional unit instruction queues as normal but with the other ends of

these queues short circuited to provide maximum performance. The performance is

dependent on the instructions being issued; when the instructions are evenly distributed

among the functional units the performance will be greater than when the instructions are

clustered within a subset of the functional units. The cycle times for various representative

FIGs are shown in table 7.6. All branch instructions are not taken.

The cycle time when deleting instructions skipped over after a taken branch has also been

measured and is also shown.

These results are plotted in figure 7.2. It can be seen that when two or more instructions

in a single FIG are for the same functional unit the issuer’s cycle time is approximately

31 GD per instruction for that functional unit. This suggests that in this case the cycle time

is limited by the issuer’s output speed. When no functional unit receives more than one

instruction from a single FIG the cycle time is 54 GD, presumably limited by the issuer’s

input speed.

Instructions (A-E=functional units, I=immediate) Cycle
time /
GDChunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk 4

A B C D I 54

A A B C D 66

A A A B C 93

A A A A B 124

A A A A A 155

Deleting skipped over instructions 75

Table 7.6: Instruction issuer performance

Evaluation

- 173 -

Functional Units

The performance of each functional unit has been measured by connecting it between

instruction, operand, and result queues as normal but with the other ends of the queues

short circuited to provide maximum performance. The load/store unit was connected to

the memory via the memory interface but no instruction fetch activity was present to

compete for the memory bandwidth. The branch unit’s connection to the fetcher was also

short circuited. The cycle times for each of the functional units for various representative

instructions are shown in table 7.7. For those instructions which involve an addition or

similar operation the cycle times were measured for a number of different operands which

cause different carry propagation lengths.

Figure 7.2: Instruction Issuer Performance

0

20

40

60

80

100

120

140

160

1 2 3 4 5

C
yc

le
 ti

m
e

/ G
D

Maximum instructions per functional unit per FIG

Evaluation

- 174 -

Result Network

Functional Unit Instruction Carry Length Cycle time / GD

ALU

Logical function - 38

Logical comparison - 41

Arithmetic function

0 47

4 52

10 65

32 107

Arithmetic comparison

0 49

4 54

10 67

32 109

Move

Duplicate, Sequence - 70

Conditional Move,
Move Link

- 44

Register Bank
Read - 42

Write - 35

Load / Store

Load
0 79

32 123

Store
0 72

32 116

Branch

Non-taken conditional - 26

Taken conditional or
unconditional

0 69

4 69

10 70

28 110

Computed branch - 48

Branch and link 0 77

Table 7.7: Functional Unit Performance

Evaluation

- 175 -

The performance of the result network has been measured by connecting it between the

functional unit result queues and the operand queues as normal but with the ends of these

queues short circuited to maximise performance. The result is given in table 7.8.

7.3.2 Overall Performance

The performance of each of the isolated stages in the absence of taken branches is

summarised in table 7.9. This data is also shown in figure 7.3.

Cycle Time / GD

47

Table 7.8: Network Performance

Stage Cycle Time / GD

Instruction fetch (no branches) per FIG 117

Instruction issuer (input side) per FIG 54

Instruction issuer (output side) per instruction, each output 31

ALU (representative arithmetic operation) 54

Move unit (two cycle instruction) 70

Register read 42

Register write 35

Load (representative operation) 84

Store (representative operation) 77

Untaken branch 26

Result network 47

Table 7.9: Performance of Isolated Pipeline Stages

Evaluation

- 176 -

In the first part of the pipeline which deals with FIGs the throughput is limited by the cycle

time of the instruction fetcher of 117 GD.

In the second part of the pipeline which deals with individual instructions throughput is

generally limited by the functional units. The issuer output generally does not limit

performance because its cycle time of 31 GD is less than nearly all functional unit cycle

times. The result network speed is faster than nearly all instructions that send results to it1.

When the pipeline is considered as a whole the throughput may be limited either by the

rate at which the fetcher can provide FIGs or by the rate at which the functional units

consume instructions. The particular instruction mix determines where the limit is

imposed. As the typical functional unit cycle time is roughly half of the fetcher’s cycle

time the throughput of the whole pipeline is limited by the functional units if each FIG

1. The exceptions are taken branch instructions which are faster than the instruction issuer output and reg-
ister read instructions which are faster than the result network.

Figure 7.3: Performance of Isolated Pipeline Stages

0

50

100

150

fetcher issuer in issuer out functional units result network

cy
cl

e
tim

e
/ G

D

pipeline stage

Evaluation

- 177 -

contains more than two instructions for any functional unit. If each FIG contains two or

fewer instructions for each functional unit then performance will be limited by the fetcher.

It is possibly significant that generally the instruction issuer and the result forwarding

network do not limit performance as these are the parts of the system that received the

greatest design effort. Instead performance is limited by either the instruction fetcher or

the functional units whose design was less involved.

Note that this analysis does not consider the performance effect of data dependencies

between instructions or branch instructions which are considered later.

Starvation and Blocking

Asynchronous pipeline performance may be degraded by the occurrence of starvation and

blocking; that is when individual stages are prevented from operating because the

preceding or following stages are not ready to provide or accept data. This problem may

be reduced by introducing fifo queues between functional units to decouple them; when

one stage performs a slow operation the queue preceding it will fill up, preventing the

previous stage from blocking, and the queue following it will empty, preventing the

following stage from starving.

SCALP’s FIG fifo, instruction queues and result queues perform this decoupling function.

[KEAR95] claims that the ideal length for such queues is approximately four times the

coefficient of variation of the isolated stage delays. Table 7.10 applies this calculation to

the SCALP pipeline. True mean and standard deviation values are dependent on a

particular instruction mix; the values used here are rough approximations.

The length of the queue between two stages should be determined by the greater of the

ideal queue lengths in the preceding and following stages. Table 7.11 compares these

ideal queue lengths with the queue lengths actually implemented.

Evaluation

- 178 -

These ideal queue lengths must be balanced against other considerations. The large FIG

queue helps the instruction issuer to find independent instructions to send to the functional

units by considering parts of up to three FIGs simultaneously. On the other hand the

shorter than ideal result queues help to reduce the latency of sending results between

Pipeline Stage
Mean Cycle
Time / GD

Standard Devi-
ation / GD

Coefficient of
Variation

Ideal Queue
Length

FIG Fetch 119 7 0.1 0

Issuer Input 54 2 0.0 0

Issuer Output 31 4 0.1 0

ALU 57 21 0.4 2

Move Unit 60 13 0.2 1

Load / Store
unit

95 20 0.2 1

Register unit 40 3 0.1 0

Result Net-
work

47 25 0.5 2

Table 7.10: Pipeline Decoupling Queue Lengths

Queue Ideal Length Actual Length

FIG queue 0 3

ALU instruction queue 2 2

Move instruction queue 1 2

Load / Store instruction queue 1 2

Register bank instruction queue 1 2

ALU result queue 2 1

Move result queue 2 1

Load / Store result queue 2 1

Register bank result queue 2 1

Table 7.11: Ideal and Actual Queue Lengths

Evaluation

- 179 -

functional units which is important for code whose performance is limited by data

dependencies.

Generally it can be claimed that in view of these results SCALP will not be subject to

significant performance degradation resulting from starvation or blocking.

Pipeline Performance with Branches

The foregoing results do not consider the effect on performance of taken branches. When

a branch is taken the target PC value must be sent to the fetcher and the target instructions

processed by the issuer before any further instructions may be executed by the functional

units.

The performance of the fetch and issue logic in the presence of branch instructions was

measured by connecting the memory, fetcher, instructions fifo, issuer, functional unit

instruction queues and branch unit as normal but with no instructions issued to other

functional units. The result is given in table 7.12.

This branch latency is large compared with the cycle times of the functional units: each

functional unit could execute four or more instructions in this time. This means that for

each taken branch instruction as many as 20 or even more potential instruction execution

times are lost. The effect of this on throughput is illustrated in figure 7.4.

This figure shows that even for very long intervals between taken branches the

processor’s performance is severely degraded.

Time between taken branches / GD

241

Table 7.12: Branch Latency

Evaluation

- 180 -

There are a number of factors that reduce the significance of this problem:

• Some of the execution times after the taken branch may be occupied by independent

instructions waiting in other functional units’ instruction queues. At most 8 such

instructions could be waiting.

• Throughput may be limited by data dependencies or by an imbalance in the

distribution of instructions among the functional units. In this case the number of

potential instructions lost during the branch latency may be lower.

• As with any superscalar processor, branch prediction could be added to reduce the

effect of the branch latency. The benefit of branch prediction is considered in

section 8.3.1.

Figure 7.4: Performance and Branch Interval

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

sp
ee

du
p

taken branch interval / instructions

Evaluation

- 181 -

7.3.3 Measured Performance

To validate the results in the previous section and to measure the effect of other factors

including data dependencies between instructions the throughput of the processor as a

whole was investigated using the examples described in section 7.1.1.

Instruction Sequences

The performance of each of the instruction streams has been measured and the results are

shown in table 7.13.

As would be expected the greatest performance is achieved by dis-ind, the sequence with

instructions evenly distributed among the functional units, few data dependencies and no

branches. Performance is reduced when either the distribution is unbalanced, data

dependencies are introduced, or branches are taken.

The measure 5 x cycle time can be compared with the cycle times measured in the

previous section - the factor of 5 corresponds to the 5 functional units and to the 5

instructions per FIG. This is valid because these sequences contain very few immediate

chunks. Only the speed of the best case sequence comes close to being limited by the

instruction fetcher. The cycle times of all other sequences are significantly greater than

Sequence Time per instruction / GD 5 x Time per instruction / GD

dis-ind 29.9 150

ndis-ind 56.5 282

dis-dep 48.1 240

ndis-dep 65.8 329

ind-br 48.3 242

dep-br 87.8 438

Table 7.13: Instruction Sequence Throughput

Evaluation

- 182 -

the limits of the fetcher or functional unit throughputs, so they must be limited by

unbalanced functional unit use, data dependencies or branch instructions.

ndis-ind is intended to be limited by individual functional unit throughput. Its cycle time

of 56.5 GD is close to the typical functional unit cycle times of table 7.7.

dis-dep is intended to be limited by data dependencies between instructions. Its cycle time

might be expected to be the sum of the functional unit and result network cycle times (i.e.

around 100 GD) yet the measured cycle time is 48.1 GD. This difference can be attributed

to the difference between the latency of a block (request in to request out) and the cycle

time (request in to next request in); this is clear from pipeline visualisation.

ind-br is intended to be limited by the branch latency and has one taken branch in each

five instructions. The cycle time for five instructions closely matches the branch latency

measured in table 7.12, indicating that the branch latency is limiting the performance.

Example Programs

The performance of the example programs described in section 7.1.1 has been measured

and is shown in table 7.14.

Program Time per instruction / GD

qsort 61.7

shading 47.2

strtree 66.2

sumlist 62.9

wc 57.5

Arithmetic mean 58.1

Table 7.14: Example Program Throughput

Evaluation

- 183 -

Generally the times measured for these programs are about the same as the times recorded

for the instruction sequences with dependences, unbalanced use of the functional units,

and branches.

7.3.4 Conclusion

Limits may be imposed on SCALP’s performance by a number of different factors

depending on the particular code being executed:

• The high branch latency means that frequent taken branches substantially reduce

performance. This could be alleviated by means of branch prediction.

• Concurrency among the functional units can be limited by data dependencies

between instructions executing in separate functional units.

• Concurrency among the functional units can also be limited by an imbalance in the

distribution of instructions between the functional units.

• When other factors do not limit performance the cycle time of the FIG fetcher

determines the throughput.

• The instruction issuer and result network do not generally limit performance.

7.4 Functional Unit Parallelism

This section evaluates the parallelism that SCALP is able to achieve between its five

functional units. Up to five fold parallelism is possible between the functional units, but

how much of this parallelism is actually achieved is dependent on the extent of their

utilisation.

Evaluation

- 184 -

Figures 7.5 and 7.6 show the number of functional units active at any time for each of the

example instruction sequences and programs.

These figures can be interpreted as follows:

• When no functional units are active the processor is likely to be experiencing a

branch latency. Observe that the instruction sequences with no branches spend

relatively little time (less than 25%) with no functional units active; the sequences

with branches spend 40-50% of their time thus.

• When exactly one functional unit is active the processor is likely to be limited by

either data dependencies between instructions or by severe resource contention over

one functional unit. The instruction sequences with many data dependencies spend

around 50% to 80% of the time with one functional unit active; the instruction

Figure 7.5: Instruction Sequence Functional Unit Parallelism

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

%
 o

f t
ot

al
 ti

m
e

Number of functional units active

"dis-ind.dat"
"ndis-ind.dat"
"dis-dep.dat"

"ndis-dep.dat"
"ind-br.dat"
"dep-br.dat"

Evaluation

- 185 -

sequences with severe functional unit contention spend around 75% to 80% of the

time with one functional unit active. The sequences that have neither contention nor

dependencies spend the least time with only one functional unit active.

• When more than one functional unit is active the processor is operating free from

severe data dependencies or resource contention. Most of the sequences spend less

than 15% of the time with more than one functional unit active. The sequences

which are free from resource contention and data dependencies spend around 40%

- 50% of the time with more than one functional units active.

With these points in mind it can be seen that the example programs spend between around

15% and 45% of their time experiencing branch latencies, between around 30% to 50%

of the time experiencing data dependencies or functional unit contention, and between

around 10% to 50% of the time free from these impediments.

Figure 7.6: Example Program Functional Unit Parallelism

0

10

20

30

40

50

60

0 1 2 3 4 5

%
 o

f t
ot

al
 ti

m
e

Number of functional units active

"shading.dat"
"wc.dat"

"strtree.dat"
"qsort.dat"

"sumlist.dat"

Evaluation

- 186 -

The programs themselves impose a limit on the amount of functional unit parallelism that

is possible. Figure 7.7 shows the amount of time that each functional unit must be active

for each example program. From this data it is possible to calculate the maximum possible

functional unit parallelism for the programs. This is presented in table 7.15.

Figure 7.7: Functional Unit Use for Example Programs

Program Maximum Parallelism

qsort 2.60

shading 2.15

strtree 2.90

sumlist 2.88

wc 3.98

Table 7.15: Maximum Potential Functional Unit Parallelism for Example Programs

0

5

10

15

20

25

30

35

40

45

50

qsort shading strtree sumlist wc

%
 o

f
tim

e

program

move
load/store

register bank
alu

branch

Evaluation

- 187 -

Table 7.16 summarises the average number of functional units actually active for the

programs.

The raw values in this table are misleading if compared directly with measures of

functional unit parallelism for a synchronous processor. When a synchronous processor’s

functional unit parallelism is measured it is assumed that the functional units are active

for all of the clock cycle; in contrast the asynchronous functional unit is considered

inactive as soon as its operation is complete. Table 7.16 also provides a measure which

allows for this factor.

In comparison [JOHN91] (see appendix A) proposes a number of conventional

synchronous superscalar architectures for which the equivalent parallelism measure falls

between 1 and 2, typically around one third higher than SCALP.

Benchmark
Functional Unit Paral-

lelism
Equivalent Synchronous Func-

tional Unit Parallelism

dis-ind 1.63 2.34

ndis-ind 0.91 1.24

dis-dep 0.92 1.45

ndis-dep 0.83 1.06

ind-br 1.40 1.45

dep-br 0.69 0.80

shading 1.44 1.48

wc 0.84 1.22

strtree 0.71 1.06

qsort 0.75 1.13

sumlist 1.04 1.11

Table 7.16: Average Functional Unit Parallelism

Evaluation

- 188 -

7.5 Comparative Performance

This section compares the performance of SCALP with the ARM and ARMLESS

processors described in section 7.1.1.

Table 7.15 gives the SCALP execution time in gate delays for each of the benchmark

programs. Alongside are measurements for ARM and ARMLESS in numbers of cycles.

All ARMLESS instructions take one cycle except taken branches which have a one cycle

penalty. For ARM the branch penalty is two cycles; in addition load and store instructions

take extra cycles because ARM has a single memory interface.

In order to compare the ARM and ARMLESS results with the SCALP results the cycle

times of ARM and ARMLESS have been estimated in terms of gate delays. The values

taken are 33 gate delays for ARM and 25 gate delays for ARMLESS. These are

approximations based on the clock speeds of ARM and of ARMLESS-like processors and

estimates of typical gate delays.

These results show that on average SCALP operates 2.4 times more slowly than ARM and

4.1 times more slowly than ARMLESS.

SCALP ARM ARMLESS

GD Cycles GD Cycles GD

Shading 31062 448 14784 384 9600

Word Count 84683 1239 40887 1221 30525

String Tree Search 15822 222 7326 156 3900

Quicksort 459655 2627 86691 1797 44925

Sumlist 10944 217 7161 136 3400

Geometric Mean 46150 19401 11179

Table 7.17: Example Program Performance

Evaluation

- 189 -

This result may be attributed to the following factors:

• The poor code density reported in section 7.2 means that SCALP must execute more

instructions than ARM and ARMLESS.

• The cycle times of the individual functional units and other blocks are slower than

the cycle times of the synchronous processors. This is considered in section 7.6.

7.6 Evaluating the performance of Asynchronous
Logic

The poor performance results reported in the previous section can be attributed in part to

the slowness of the asynchronous control circuits used in parts of the SCALP

implementation.

Consider for example the branch unit control circuit described in section 6.6 and shown

in figure 6.20. This circuit is typical of the control circuits used in SCALP’s functional

units. Two points can be observed about this circuit:

• The circuit’s structure is very much like a flow chart describing the required

functionality.

• The circuit is very sequential in nature.

In contrast consider how a synchronous implementation of this block would be carried

out. Initially a specification could be drawn up describing how each of the control inputs

would be considered in turn to decide on the correct action for this cycle. This

specification could then be optimised, possibly to as little as three levels of logic, and used

as the basis for a finite state machine.

Evaluation

- 190 -

The difference between the synchronous and asynchronous implementations is that there

is no optimisation of the asynchronous circuit, resulting in sequential and hence slow

behaviour. This is a direct consequence of the macromodule design approach.

An important question at this point is whether optimisation techniques for this type of

asynchronous circuit exist, and if so whether they perform as well as well known

synchronous (and combinational) optimisation techniques. The answer is that they

probably do exist but they are more complex than the synchronous techniques and are less

mature. This question is considered further in section 8.3.2.

7.7 Power

The combination of a number of factors was intended to increase SCALP’s power

efficiency. As previous sections have shown in several cases the expected benefits have

not been achieved. The following subsections considers the effects of these factors on the

processor’s overall power efficiency.

7.7.1 High code density

Section 7.2 evaluated SCALP’s code density in comparison with the ARM and

ARMLESS processors and found that it does not achieve any increase. Consequently

there will be no increase in power efficiency resulting from decreased processor to

memory bandwidth and related activity.

7.7.2 Parallelism

Sections 7.3 and 7.4 considered the parallelism due to pipelining and to the multiple

functional units respectively. Section 7.4 concluded that for the example programs the

Evaluation

- 191 -

level of parallelism was rarely greater than one. This low level of parallelism was

attributed to the effect of

• the branch latency;

• the presence of data dependencies between instructions;

• contention for functional units.

It was also observed that conventional superscalar processors are able to obtain a greater

degree of parallelism. Consequently SCALP’s power efficiency cannot be better than

these conventional architectures in this respect.

One important area in which the SCALP architecture could be improved is the provision

of branch prediction which would increase the level of pipeline parallelism. The is

considered in section 8.3.1.

7.7.3 Asynchronous Implementation

The use of asynchronous logic has had two effects on SCALP’s power efficiency. Firstly

in an asynchronous circuit inactive blocks consume no power; in a conventional

synchronous circuit the clock is applied to all blocks at all times. This effect leads to a

substantial power saving compared to a synchronous implementation of the SCALP

architecure as shown in table 7.18. On the other hand this statistic can be seen as simply

reflecting the low utilisation of the available parallelism within the processor.

The second effect of the use of asynchronous logic is its influence on the overall speed of

the processor. As was observed in section 7.6 the sequential nature of the asynchronous

control circuits makes them slow in comparison with synchronous circuits. The pipeline

stage cycle times shown in table 7.7 are generally greater than the assumed cycles times

for ARM and ARMLESS used in section 7.5. To obtain equivalent performance from the

Evaluation

- 192 -

synchronous and asynchronous circuits the supply voltages would have to be adjusted,

substantially favouring the synchronous circuit.

7.7.4 Variable width datapath operations

SCALP’s datapath will consume less power when it operates on byte rather than word

quantities. The occurance of byte operations in the example programs is not in any sense

representative of any real programs and data on the occurance of these operations in real

programs is not available, making estimation of the power saving attributable to this

factor difficult.

7.7.5 Summary

In conclusion SCALP’s overall power efficiency is poor in comparison with conventional

processors.

Program
Average% activity of

functional units
Power Saving

qsort 14.9 6.7

shading 28.7 3.5

strtree 14.2 7.0

sumlist 20.9 4.8

wc 16.8 6.0

Table 7.18: Power Saving due to Inactive Functional Units

Evaluation

- 193 -

7.8 Evaluating the SCALP Programming Model

Section 7.1.1 described five example programs that have been written for SCALP in order

to evaluate its performance. Writing these programs identified problems with the

processor’s execution model that result in longer code sequences than were expected and

hence poor code density - evidenced by the results in section 7.2. This section discusses

these problems.

In writing the example programs it became clear that the explicit forwarding mechanism

was useful in fewer cases than had been expected. For very many instructions it was

necessary to send the result to the register bank, and very many operands were read from

registers. Only in relatively few cases could results be sent directly to the functional unit

of their next use. Consider the following code which sums the values in an array and saves

the sum in another variable in memory:

t = 0

for i in 1 to 1000 loop

 t = t + x[i]

end

a = t

Ignoring the loop control and array indexing and concentrating on just the summation, this

may be compiled to the following code on a conventional processor:

 MOV R2,#0 ; R2 stores variable t

L1: LDR R1,[...] ; load x[i] into R1

 ADD R2,R2,R1 ; t = t + x[i]

 BRNE L1 ; do next loop iteration if terminal

 ; count not reached

 STR R2,[...] ; a = t

Consider what happens to the result of the addition in this code. For 999 of the 1000

iterations of the loop the result is written to R2 by the add and read from it in the next

Evaluation

- 194 -

iteration by the following add. However in the 1000th iteration it is written to R2 by the

add and read by the store corresponding to the assignment to variable a.

If the result of that add was always used by the same destination functional unit (i.e. the

ALU) then the add could be encoded as follows:

add -> alu_a

but in this case there are two possible destinations. The only general solution is to use the

register bank:

add -> regd

write 2

and to read from the register bank when the destination is known. In this case there are

ways of avoiding the problem, such as the following:

for i in 1 to 1000 loop

 t = t + x[i]

end

a = t + 0

for i in 1 to 999 loop

 t = t + x[i]

end

t = t + x[1000]

a = t

In the first of these examples an additional “dummy” addition is carried out so that the

result of the add within the loop is always sent to the same destination, the ALU. In the

second example the last iteration of the loop is unrolled so that the result of the last

addition can be sent to a different destination. However these two “tricks” cannot be

applied in other more general cases, and in the example programs it was often found

necessary to write results to temporary registers.

Evaluation

- 195 -

Of all the example programs the most inefficient in terms of explicit forwarding was the

quicksort program. Because of the nature of the program virtually all branches are highly

data-dependent. Its typical behaviour is to load a value from memory and compare it with

some other value. Whether the value will be used again and if so where it will be used is

not known until the result of the comparison has been computed.

An important observation about these examples is that they are consistent with the data in

table 5.1 but they indicate that that data is slightly misleading. It is true to say that in a

dynamic instruction trace 64 % of instruction results are used exactly once, but it is not

true to say that for 64 % of static instructions the result is always used by exactly one

subsequent instruction. As far as code generation for SCALP is concerned it is this static

property that is important.

Section 8.2 returns to this problem to consider ways in which the architecture can be

improved.

- 196 -

Chapter 8: Conclusions

The design and implementation of SCALP has been very different from the design and

implementation of other processors. SCALP’s objective has not been purely performance

as is the case with most other designs; rather it has been largely motivated by power

efficiency. SCALP’s architecture is novel: it replaces one of the fundamental entities - the

register bank - with an alternative model for result-operand communication. Finally the

implementation is unusual, using asynchronous logic.

With all of these areas of change it is not surprising to find that SCALP does not perform

perfectly throughout. Despite this, much can be learnt from this implementation about

how one should, and how one should not, design a microprocessor for power efficiency.

This final chapter summarises the features of the SCALP architecture and implementation

and considers ways in which it could be improved upon. These and other possible future

areas of work are described, including ways in which SCALP’s good points could be

incorporated into more conventional processors.

8.1 Summary

Motivation

Previous low power processors have applied mainly low level power efficiency

techniques as they need to maintain code compatibility with previous implementations of

Conclusions

- 197 -

the architecture. In contrast SCALP concentrates on higher level techniques, specifically

code density, parallelism and asynchronous implementation.

High code density is beneficial to power efficiency because the energy consumed in the

memory system is in proportion to the amount of code that must be fetched. Areas where

code density increases can be made are identified as the encoding of register specifiers,

which can take up half of the bits in a conventional instruction set, and the use of variable

rather than fixed length instructions.

By increasing the amount of parallelism in a circuit and reducing the supply voltage it is

possible to operate with the same throughput but with reduced power consumption. Many

conventional processors employ parallelism in the form of pipelining and superscalar

execution in order to increase performance. As the potential maximum parallelism in the

processor increases it becomes increasingly difficult to exploit; techniques such as

forwarding, branch prediction, and out of order issue must be used. These all lead to

increases in the complexity of the control logic which will potentially increase power

consumption and reduce performance. It seems desirable to move some of the

responsibility to the compiler in order to make simpler control logic possible.

Implementation using asynchronous logic has advantages in terms of performance and

power efficiency compared with synchronous implementation, especially in systems with

a variable workload where dynamic supply voltage adjustment is possible. Asynchronous

logic lends itself well to the implementation of pipelines and parallel functional units until

non-local communication such as forwarding is considered. For reasonable performance

without locally synchronous behaviour a technique called conditional forwarding is

required. Conditional forwarding is only possible if the instruction set indicates how the

result of an instruction will be used in the instruction producing the result itself. This is

referred to as explicit forwarding.

Conclusions

- 198 -

Architecture

The SCALP architecture incorporates many of the features suggested by the preceding

paragraphs. Most importantly SCALP does not have a global register bank; rather

instructions specify destinations for their results in terms of the functional unit input

queue to which the result should be sent. Source operands are implicitly taken from these

queues. In this way SCALP requires only three bits per instruction to indicate the flow of

data through the program, compared with up to fifteen bits for a conventional processor.

One problem with the explicit forwarding mechanism is that when the result of an

instruction is used by an instruction beyond a branch the destination cannot be statically

encoded into the instruction. In this case the result must be sent to the register unit and

written into a register, and subsequently read from the register when its use is known. A

second problem is that SCALP provides a fairly inefficient mechanism for sending results

to more than one destination. These effects mean that SCALP requires more instructions

than a conventional processor. The result is an overall code density that is no better than

a conventional processor such as the ARM.

SCALP has five functional units (ALU, Register, Load/Store, Move, Branch) and uses

variable length instructions. To simplify the instruction issuer the instruction length and

functional unit information is made as simple as possible to decode. In particular the

instructions have only two possible lengths and for the longer instructions all control

information is contained within the first part. Instructions are decoded and issued in

groups and a control field for each group indicates which parts of the group contain short

and which long instructions.

Implementation

SCALP is the first known example of a superscalar processor to be implemented using

asynchronous logic. The implementation to a gate level VHDL model has been sucessful

and is supported by a set of software tools. The design has been carried out almost entirely

Conclusions

- 199 -

by hand as the techniques used are relatively new and any automatic tools are still

experimental.

The implementation uses a four phase asynchronous signalling protocol with bundled

data. The datapath is generally similar to synchronous datapaths but adders make use of

completion detection. The control logic uses a macromodular style with largely speed

independent interconnections of modules. The modules use a bounded delay timing

model internally.

Despite the architectural efforts to reduce the complexity of the instruction issue problem

the issuer is a large part of the processor taking up 39% of the gate count. Despite its large

size neither it nor the result forwarding network limit performance. Performance is

generally limited by three factors: branch latency, dependencies between instructions and

contention for functional units. The branch latency is around 8 times as long as a typical

instruction execution period without branches, so 8 potential instruction executions are

lost for each branch.

The asynchronous logic style used is relatively slow compared with synchronous

implementations; typical cycle times for functional units are around 50 gate delays. This

seems to be a consequence of the macromodular design style which leads to very

sequential “flowchart-like” circuits.

8.2 Improving the SCALP Architecture

Evaluation of the SCALP architecture has shown it to have some weaknesses, leading to

worse code density than had been expected. However it is certainly not clear that the

fundamental idea of replacing register-based communication with explicit forwarding is

hopeless. This section considers how the weaknesses in the architecture can be put right.

Section 7.8 revealed that SCALP’s explicit forwarding mechanism is flawed in the way

that it deals with results being passed to destination instructions beyond branches.

Conclusions

- 200 -

Furthermore the mechanism also does not deal very well with results that are used more

than once as explicit duplicate operations are required.

The solution to these problems must be to separate in the instruction stream the routing of

results from the instructions that produce those results. In this way the results can be

routed after the results of any branch instructions are known. Furthermore this approach

lends itself to multiple use of results as more than one piece of routing information can be

associated with each instruction. One encoding scheme is shown in figure 8.1.

In the scheme shown in figure 8.1 the instruction stream is divided into instructions and

routing information. The format of the instructions is similar to the existing SCALP

instructions except that there are no destination bits. Each item of routing information

indicates a source queue (i.e. a functional unit output) and a destination queue (i.e. a

functional unit input). To allow for multiple uses of results it incorporates an additional

bit. This may mean either “this is the last use of this result” or “this is the first use of a

new result from this queue”.

This scheme has similarities to the Transport Triggered Architecture described in section

5.7.3 which is encouraging as it is known that this architectures makes a good compiler

target.

To evaluate this encoding the inner loops of the example programs described in section

7.1.1 have been rewritten in the new format. The static code sizes for these inner loops are

Figure 8.1: Instruction Encoding with Separate Instructions and Result Routing

instructions routing information

opcode source destination "lastfunctional
unit

identifier
queue queue use"

Conclusions

- 201 -

given in table 8.1. It can be seen that the new encoding increases code density by around

20%.

Disappointingly even with this modification SCALP’s code density remains significantly

lower than can be achieved with some variants of conventional instruction sets such as

ARM Thumb (section 2.1.3).

8.3 Improving the SCALP Implementation

Some areas in which the SCALP implementation performs poorly and could be improved

have already been identified; specifically the pipeline throughput would be substantially

increased if branch prediction were used and the speed of the asynchronous control

circuits could be increased by employing more sophisticated implementation techniques.

Program SCALP
SCALP with separate result

routing

Instrs Immeds Bits Instrs Immeds Moves Bits

shading 10 0 130 7 0 8 118

wc 13 2 195 10 2 9 180

strtree 16 0 208 10 0 10 160

qsort 31 0 403 19 0 16 286

sumlist 8 0 104 5 0 6 86

Geometric mean 186 153

Table 8.1: Example Program Code Sizes for SCALP with Separate Result Routing

Conclusions

- 202 -

8.3.1 Branch Prediction

Section 7.3.2 reports that the performance of the processor is significantly affected by the

lack of branch prediction. A conventional branch prediction scheme could be adapted for

use with SCALP’s asynchronous implementation, and indeed one scheme has already

been applied to an asynchronous processor: AMULET2 makes use of an associative

memory to find new PC values.

For SCALP a technique used by conventional superscalar processors and described in

[JOHN91] might be more appropriate. This scheme stores branch prediction information

in the instruction cache. Each cache line would store one FIG plus additional information

to indicate which cache line contains the next FIG. By giving the cache line number rather

than an address the need to perform an associative lookup in the cache is removed, making

the cache potentially faster and more power efficient. The cache lines must also store

information indicating which instructions within the FIG will not be executed because

they lie after a taken branch or before the branch target. This scheme allows for only one

prediction per FIG.

The implementation of prediction checking and incorrect prediction recovery would be

influenced by the asynchronous nature of the design. Incorrect prediction recovery is

similar to exception recovery and as was mentioned in section 5.6 SCALP’s unusual

transient state makes this process different from conventional processors. There are

various ways in which SCALP could implement prediction checking and recovery:

(i) Wait for confirmation at the issuer

In this scheme the instruction issuer does not issue instructions until the branch unit has

confirmed that all preceding instructions have been correctly predicted. This is very

similar to the current scheme where other functional units’ tokens are not allowed to

overtake the branch unit’s token.

Conclusions

- 203 -

(ii) Wait for confirmation at the functional units

In this scheme the instruction issuer issues instructions from beyond branches but the

functional units do not start to execute them until the branch prediction has been

confirmed. When the prediction has failed the functional units are responsible for deleting

the wrong instructions from their instruction queues. This scheme takes less time between

the branch outcome being confirmed and other functional units starting execution.

(iii) Speculative execution in the functional units

In this scheme functional units execute instructions before the branch outcome is known

and subsequently the result network or operand queues discard results that come from

incorrectly executed instructions. This scheme permits the highest performance but in

order to recover from incorrect predictions it is necessary for functional units to keep

copies of their old operands until the instructions have been confirmed.

[JOHN91] claims that the speedup attributable to branch prediction is around 30%. This

agrees with estimates made on the basis of the results in section 7.4; if the periods during

which no functional unit is active were eliminated the speed of the SCALP example

programs would be increased by 34%.

8.3.2 Faster Asynchronous Logic

As was noted in section 7.6 the speed of SCALP’s asynchronous functional units is poor

in comparison with the speed of synchronous processors. This can be attributed at least in

part to the macromodular style of the asynchronous control logic in these blocks.

There are two techniques that can be applied to help improve this performance. One

option is to move from the current style of largely speed independent interconnections of

macromodules to a less constrained more hand-crafted style. The AMULET1 and

AMULET2 designs for example use this approach and obtain better performance than

SCALP. The disadvantage of this technique is that the design takes more effort, is more

susceptible to errors and requires more careful verification.

Conclusions

- 204 -

The other possibility is to make greater use of automatic optimised synthesis. Tools exist

that are able to synthesise asynchronous circuits from formal specifications such as state

graphs or signal transition graphs. Examples include Forcage [KISH94], Assassin

[YKMA95], Meat [DAVIA93], and ATACS [MYER95]. At the present time these tools

and our understanding of their behaviour are not suficiently developed to make them of

significant use. In future implementations provided by these tools have the potential to

avoid the highly sequential nature of the macromodular circuits used by SCALP.

8.3.3 Variable Length Instructions

Although the instruction issuer does not in general limit the performance of the processor,

if the functional units could be accelerated the issuer could become a bottleneck. The

speed and complexity of the instruction issuer are made worse by two aspects of its

functionality: variable length instructions and branches. In light of this it is worth

considering removing some features to simplify and speed up the design.

Branch instructions are indispensable, and indeed the need for branch prediction makes

this part of the instruction issuer more complex. While it is attractive from this point of

view to consider eliminating variable length instructions it is important to note that they

contribute greatly to increasing code density.

One possibility is to simplify the way in which variable length instructions are dealt with.

The idea is to make all instructions the same length, but to have for example “ALU

instruction instructions” and “ALU immediate instructions”. From the point of view of

the instruction issuer these instructions are for different functional units and are dealt with

as such, making a much simpler and hence faster (though larger) instruction issuer

possible. At the functional unit inputs the immediate fields are matched with the

instructions in the same way that operands from the operand queues are matched.

Conclusions

- 205 -

8.3.4 Functional Unit Pipelining

Although the processor as a whole is pipelined the individual functional units are not. In

most cases there is no point in adding internal pipelining as the units are internally very

simple; the register bank for example would be hard to pipeline. One exception is the load/

store unit. Adding internal pipelining to this unit so that address calculation is carried out

first and then the main memory access is carried out would be beneficial to performance

and would not add greatly to complexity.

8.4 The Future of SCALP

Section 8.2 shows SCALP’s explicit forwarding mechanism can be improved upon; yet

the changes described give only a relatively small improvement that still fails to make

SCALP competitive with conventional instruction sets in terms of code density. This

suggests that any future design may do better by moving towards a more conventional

architecture.

On the other hand the Transport Triggered Architecture indicates that a similar system can

operate efficiently. The key to understanding this area must be the development of a

compiler and the analysis of substantial benchmark programs. A SCALP compiler and

other software tools must be a priority.

In terms of implementation it would be very worthwhile to investigate more highly

optimised forms of asynchronous circuit generation.

The power efficiency benefit of SCALP’s asynchronous implementation has not been

proved. This is because the power efficiency benefits of asynchronous implementation are

largely dependent on the application; specifically asynchronous logic saves power when

the workload is variable and more so if the supply voltage can be adjusted. In a fixed

benchmark situation such as measuring the power consumed in executing a loop of a

benchmark program asynchronous logic should not be expected to outstrip a conventional

Conclusions

- 206 -

synchronous design. To demonstrate and measure the benefit it is necessary not only to

build a microprocessor but also to build the hardware and software of a real system

executing an application which makes variable demands on the processor.

SCALP attempts to increase power efficiency by means of parallelism. It does so while

executing a single instruction stream in similar way to conventional superscalar

processors. The parallelism possible with this approach is known to be limited, and it is

probable that for much greater parallelism and hence much greater power efficiency a

different form of parallelism would be preferable. These other forms, such as message

passing or shared memory multiprocessors, have the disadvantage that algorithms must

be recoded to take advantage of them. This may be the cost of increased power efficiency.

8.5 SCALP and Conventional Architectures

It can be argued that the greatest challenge facing computer architects is not how to build

good new architectures but rather how to apply new implementation techniques to

existing instruction sets, maintaining code compatibility. This is most clearly seen in the

world of 8086 compatible processors where the huge effort put in to new implementations

makes up for the technical inferiority of the underlying instruction set architecture. It is

interesting to consider whether the SCALP ideas could in some way be applied to more

conventional instruction sets.

A hybrid processor could be constructed as follows: the programmer-visible instruction

set is a conventional register-based one. This code is read into the instruction cache as

normal. During its first execution the processor detects dependencies between

instructions that need forwarding and stores this explicit forwarding information back into

the cache with the code. On subsequent executions this information activates explicit

forwarding mechanisms to increase the performance of the code.

For an asynchronous processor this approach would provide the benefits of conditional

synchronisation and bring out the potential performance of the asynchronous pipelines.

Conclusions

- 207 -

On the other hand because of the conventional instruction set any code density benefit

would be lost.

8.6 Conclusions

This work ends on a mixed note. There are several areas of related work that suggest that

the ideas underlying SCALP are sound ones:

• The Philips work [BERK95] [KESS95] indicates that asynchronous logic can have

substantial power efficiency benefits.

• The Berkeley InfoPad work [CHAN94] indicates that parallelism can have

substantial power efficiency benefits.

• The D16 design [BUND94] indicates that high code density can have power

efficiency benefits.

• The transport triggered architectures work [CORP93] indicates that a programming

model with no global register bank and the concept of explicit forwarding can be

successful.

On the other hand the SCALP implementation has not performed as well as had been

hoped. It can be seen that SCALP’s explicit forwarding mechanism is flawed but

improvements proposed in this chapter do not make a dramatic improvement. It can also

be seen that it is easier to implement a highly parallel system for a special purpose

computation, as in the InfoPad, than for a general purpose processor.

In conclusion asynchronous parallel processors offer the possibility of increased power

efficiency, but they cannot achieve this using conventional instruction sets and

architectures. One alternative architecture has been proposed and evaluated. Although not

hugely successful the SCALP architecture points to possibilities for future asynchronous

superscalar low power processors.

- 208 -

Appendix A: Benchmarks

Various statistics presented in the thesis are based on analysis of benchmark programs

undertaken by the author or reported by others. The purpose of this section is to

summarise the nature of these benchmarks and to justify their relavence to this work.

The sources of data are sumarised in table A.1.

Reference Processor Applications

[ENDE93]
(Appendix C)

SPARC (Load/Store
architecture with
register windows)

ccreg (C compiler)

compress (data compression)

dhry10 (synthetic benchmark)

espresso (logic minimisation)

fgrep (text search)

gcc (C compiler) (same as [HENN90])

rleflip (image manipulation)

[HENN90]
(figure 2.17)

DLX (MIPS-like
Load/Store architec-
ture)

gcc (C compiler)

Tex (text formatter)

Spice (analogue circuit simulator)

Table A.1: Benchmark Programs (Part 1 of 2)

- 209 -

In all cases the programs have been compiled with optimising compilers.

The applications used are intended to be typical of those commonly used in workstation

environments. Some applications of low power processors have workstation-like

[JOHN91] (ta-
ble 3-2)

MIPS R2000 (Load/
Store architecture)

5diff (text file comparison)

awk (pattern scanning and processing) ccom
(optimizing C compiler)

compress (file compressing using Lempel-
Ziv encoding)

doduc (Monte-Carlo simulation, double pre-
cision floating point)

espresso (logic minimization)

gnuchess (computer chess program)

grep (reports occurences of a string in one or
more text files)

irsim (delay simulator for VLIS layouts)

latex (document preparation system)

linpack (linear equation solver, double preci-
sion floating point)

nroff (text formatter for a typewritter-like de-
vice)

simple (hyrodynamics code)

spice2g6 (circuit simulator)

troff (text formatter for typesetting device)

wolf (standard-cell placement using simulat-
ed annealing)

whetstone (standard floating point bench-
mark, double precision floating point)

yacc (compiles a context-free grammar into
LR(1) parser tables)

Reference Processor Applications

Table A.1: Benchmark Programs (Part 2 of 2)

- 210 -

characteristics (e.g. portable computers) and in these cases these benchmarks are relevant.

In other applications with a different type of workload (e.g. signal processing) these

results are less relevant and should be used with more caution.

- 211 -

References

[ALID94] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,

“Precomputation-Based Sequential Logic Optimization for Low Power”, Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, San Jose,

California, 1994, pages 74-81.

[ARM95] Advanced RISC Machines Ltd, “An Introduction to Thumb”, 1995,

Cambridge, U.K.

[BENI95] L. Benini, G. De Micheli, “Transformation and synthesis of FSMs for low-

power gated-clock implementation”, Proceedings of the 1995 International Symposium

on Low Power Design, Dana Point, California, pages 21-26.

[BERK91] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, F. Schalij, “The VLSI

programming language Tangram and its translation into handshake circuits”, Proceedings

of the European Conference on Design Automation, Amsterdam, 1991, pages 384-389.

[BERK95] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Ronken, F. Schalij, R.

van de Weil, “A Single-Rail Re-implementation of a DCC Error Detector Using a Generic

Standard-Cell Library”, Proceedings of the Second Working Conference on

Asynchronous Design Methodologies, London, U.K., 1995, pages 72-79.

[BRUN93] E. Brunvand, “The NSR Processor”, Proceeding of the 26th Annual Hawaii

International Conference on System Sciences, pages 428-435, Maui, Hawaii, 1993.

[BUND94] J. Bunda, W. C. Athas, D. Fussell, “Evaluating Power Implications of CMOS

Microprocessor Design Decisions”, Proceedings of the 1994 International Workshop on

Low Power Design, Napa, California, pages 147-152.

- 212 -

[CHAN94] A. P. Chandrakasan, A. Burnstein, R. W. Brodersen, “A Low-Power Chipset

for a Portable Multimedia I/O Terminal”, IEEE Journal of Solid State Circuits, Volume

29, Number 12, December 1994, pages 1415-1428.

[CHIE95] C.-H. Chien, M. A. Franklin, T. Pan, P. Prabhu, “ARAS: Asynchronous RISC

Architectue Simulator”, Proceedings of the Second Working Conference on

Asynchronous Design Methodologies, London, U.K., 1995, pages 210-219.

[CHO92] K.-R. Cho, K. Okura, K. Asada, “Design of a 32-bit Fully Asynchronous

Microprocessor (FAM)”, Proceedings of the 35th Midwest Symposium on Circuits and

Systems, 1992.

[CORP93] H. Corporaal, “Evaluating Transport Triggered Architectures for scalar

applications”, Microprocessing and Microprogramming, No 38, pages 45-52, 1993. http:/

/einstein.et.tudelft.nl/~heco/documents/documents.html

[CORR95] A. Correale, “Overview of the Power Minimization Techniques Employed in

the IBM PowerPC 4xx Embedded Controllers”, Proceedings of the 1995 International

Symposium on Low Power Design, Dana Point, California, pages 75-80.

[DAVIA93] A. Davis, B. Coates, K. Stevens, “Automatic Synthesis of Fast Compact

Asynchronous Control Circuits”, Proceedings of the IFIP Working Conference on

Asynchronous Design Methodologies, Manchester, U.K., 1993.

[DAVII93] I. David, R. Ginosar, M. Yoeli, “Self-Timed Architecture of a Reduced

Instruction Set Computer”, Proceedings of the IFIP Working Conference on

Asynchronous Design Methodologies, Manchester, U.K., 1993.

[DAY95] P. Day, J. V. Woods, “Investigation into Micropipeline Latch Design Styles”,

IEEE Transactions on VLSI, Volume 3, Number 2, June 1995, pages 264-272.

[DEAN92] M. E. Dean, “Strip: A Self-Timed RISC Processor”, Technical Report CSL-

TR-92-543, Stanford University, 1992.

- 213 -

[ELST95] C. J. Elston, D. B. Christianson, P. A. Findlay, G. B. Steven, “Hades - Towards

the Design of an Asynchronous Superscalar Processor”, Proceedings of the Second

Working Conference on Asynchronous Design Methodologies, London, U.K., 1995,

pages 200-209.

[ENDE93] P. B. Endecott, “Processor Architectures for Power Efficiency and

Asynchronous Implementation”, M.Sc. thesis, University of Manchester, U.K., 1993.

http://www.cs.man.ac.uk/amulet/publications/thesis/

endecott93_msc.html

[FARN95] C. Farnsworth, “The AMULET Low Power Cell Library”, Technical Report,

University of Manchester, In Preparation, 1995?.

[FURB89] S. B. Furber, “VLSI RISC Architecture and Organization”, Marcel Dekker,

New York, 1989, ISBN 0-8247-8151-1.

[GARS93] J. D. Garside, “A CMOS VLSI Implementation of an Asynchronous ALU”,

Proceedings of the IFIP Working Conference on Asynchronous Design Methodologies,

Manchester, U.K., 1993.

[GLEB95] A. L. Glebov, D. Blaauw, L. G. Jones, “Transistor reordering for low power

CMOS gates using an SP-BDD representation”, Proceedings of the 1995 International

Symposium on Low Power Design, Dana Point, California, pages 161-166.

[GOOD85] J. R. Goodman, J.-T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, H. C.

Young, “PIPE: A VLSI Decoupled Architecture”, Proceedings of The 12th Annual

International Symposium on Computer Architecture, Boston, Massachusetts, 1985, pages

20-27.

[GWEN95] L. Gwennap, “P6 Underperforms on 16-Bit Software”, Microprocessor

Report, Volume 9, Number 10, July 31 1995, page 1.

[HENN90] J. L. Hennessy, D. A. Patterson, “Computer Architecture A Quantitative

Approach”, Morgan Kaufmann, Palo Alto, 1990, ISBN 1-55860-069-8.

- 214 -

[HOOG94] J. Hoogerbrugge, H. Corporaal, “Transport-Triggering vs. Operation-

Triggering”, International Conference on Compiler Construction, Edinburgh, April 1994.

http://einstein.et.tudelft.nl/~heco/documents/

documents.html

[JOHN91] M. Johnson, “Superscalar Microprocessor Design”, Prentice Hall, Englewood

Cliffs, 1991, ISBN 0-13-875634-1.

[KEAR95] D. Kearney, N. W. Bergmann, “Performance Evaluation of Asynchronous

Logic Pipelines with Data Dependent Processing Delays”, Proceedings of the Second

Working Conference on Asynchronous Design Methodologies, London, U.K., 1995,

pages 4-13.

[KESS95] J. Kessels, “VLSI Programming of a Low-Power Asynchronous Reed-

Solomon Decoder for the DCC Player”, Proceedings of the Second Working Conference

on Asynchronous Design Methodologies, London, U.K., 1995, pages 44-52.

[KHOO95] K.-Y. Khoo, A. N. Willson, “Charge Recovery on a Databus”, Proceedings of

the 1995 International Symposium on Low Power Design, Dana Point, California, pages

185-189.

[KISH94] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky, “Concurrent

Hardware - The Theory and Practice of Self-Timed Circuits”, Wiley Series in Parallel

Computing, 1994.

[MART89] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, P. J. Hazewindus, “The

Design of an Asynchronous Microprocessor”, Advance research in VLSI; Proceedings of

the Decennial Caltech Conference on VLSI, MIT Press, pages 351-373, 1989; also as

technical report Caltech-CS-TR-89-02, Computer Science Depatment, California

Institute of Technology, 1989.

[MITC90] D. A. P. Mitchell, J. A. Thompson, G. A. Manson, G. R. Brookes, “Inside the

Transputer”, Blackwell Scientific Publications, 1990, ISBN 0-632-01689-2.

- 215 -

[MORT95] S. V. Morton, S. S. Appleton, M. J. Liebelt, “ECSTAC: A Fast Asynchronous

Microprocessor”, Proceedings of the Second Working Conference on Asynchronous

Design Methodologies, London, U.K., 1995, pages 180-189.

[MYER95] C. J. Myers, P. A. Beerel, T. H.-Y. Meng, “Technology Mapping of Timed

Circuits”, Proceedings of the Second Working Conference on Asynchronous Design

Methodologies, London, U.K., 1995, pages 138-147.

[NANY94] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, A. Takamura, “TITAC: Design

of a Quasi-Delay-Insensitive Microprocessor”, IEEE Design and Test of Computers,

Volume 11, No 2, 1994, pages 50-63.

[NIEL94] L. S. Nielsen, J. Spars[O/], “Low-power operation using self-timed circuits and

adaptive scaling of the supply voltage”, Proceedings of the 1994 International Workshop

on Low Power Design, Napa, California, pages 99-104.

[OLSO94] E. Olson, S. M. Kang, “Low-Power State Assignment for Finite State

Machines”, Proceedings of the 1994 International Workshop on Low Power Design,

Napa, California, pages 63-68.

[PAVE94] N. C. Paver, “The Design and Implementation of an Asynchronous

Microprocessor”, Ph.D. Thesis, Department of Computer Science, University of

Manchester, U.K., 1994. http://www.cs.man.ac.uk/amulet/

publications/thesis/paver94_phd.html

[POUN95] D. Pountain, “Transport-Triggered Architectures”, Byte, February 1995,

pages 151-152.

[RABA94] J. M. Rabaey, “Design Solutions and Challenges for Low Power Systems”,

Tutorial #2, International Conference on Computer Aided Design, 1994.

[RICH92] W. F. Richardson, E. Brunvand, “The NSR Processor Prototype”, Technical

Report UUCS-92-029, University of Utah, 1992. ftp://ftp.cs.utah.edu/techreports/1995/

UUCS-92-029.ps.Z

- 216 -

[RICH95] W. F. Richardson, E. Brunvand, “Fred: An Architecture for a Self-Timed

Decoupled Computer”, Technical Report UUCS-95-008, University of Utah, 1995.

ftp://ftp.cs.utah.edu/techreports/1995/UUCS-95-008.ps.Z

[SEIT80] C. Seitz, “System Timing”, Chapter 7 of “Introduction to VLSI Systems” by C.

Mead and L. Conway, Addison Wesley, ISBN 0-201-04358-0, 1980.

[SOLO94] P. M. Solomon, D. J. Frank, “The Case for Reversible Computation”,

Proceedings of the 1994 International Workshop on Low Power Design, Napa, California,

pages 93-98.

[SPRO94] R. F. Sproull, I. E. Sutherland, C. E. Molnar, “Counterflow Pipeline Processor

Architecture”, IEEE Design and Test of Computers, Volume 11, No 3, 1994. Also as Sun

Microsystems Laboratories Inc. Technical Report SMLI TR-94-25.

[SUN92] Sun Microsystems Inc., “The SuperSPARC Microprocessor”, Technical white

paper, 1992, Mountain View, California.

[SUTH89] I. E. Sutherland, “Micropipelines”, Communications of the ACM, Volume 32,

No. 6, June 1989, pages 720-738.

[SWAI95] O. Swai, “A Micropileine Visualisation Tool”, M.Sc. Dissertation, University

of Manchester, U.K., to be submitted, 1995.

[TURL95a] J. L. Turley, “Hitachi SH3 Hits 100 MIPS”, Microprocessor Report, Volume

9, Number 3, March 6 1995, pages 12-14.

[TURL95b] J. L. Turley, “NEC Plunges into PDA Processor Market”, Microprocessor

Report, Volume 9, Number 4, March 27 1995, pages 12-13.

[USAM95] K. Usami, M. Horowitz, “Clustered Voltage Scaling Technique for Low-

Power Design”, Proceedings of the 1995 International Symposium on Low Power

Design, Dana Point, California, pages 3-8.

- 217 -

[WEST93] N. H. E. Weste, K. Eshragian, “Principles of CMOS VLSI Design”, Second

Edition, Addison-Wesley, 1993, ISBN 0-201-53376-6.

[WULF88] W. A. Wulf, “The WM Computer Architecture”, Computer Architecture

News, Volume 16, No. 1, 1988, pages 70-84.

[YKMA95] C. Ykman-Couvreur, B. Lin, “Optimised state assignment for asynchronous

circuit synthesis”, Proceedings of the Second Working Conference on Asynchronous

Design Methodologies, London, U.K., 1995.

