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Abstract

Boosting Single Thread Performance in Mobile Processors using
Recon�gurable Acceleration
Geoffrey Ndu
A thesis submitted to the University of Manchester for the degree
of Doctor of Philosophy, 2012.

Mobile processors, a subclass of embedded processors, are increas-
ingly employing CMP (Chip Multi-Processor) designs to improve per-
formance. Single-thread performance in CMP suffers as vendors move
to fewer per core resources to enable them to instantiate more cores
on a die. Single thread performance is still important according to
Amdahl’s law. The traditional technique for ef�ciently boosting se-
rial performance in embedded processors, dedicated hardware accel-
eration, is unsuitable for modern mobile processors because of the
heterogeneity and the diversity of applications they run. This thesis
investigates the possibility and potential bene�ts of using a general
purpose accelerator (placed within the datapath of a CPU), recon�g-
ured on an application-by-application basis, as a means of ef�ciently
increasing single-thread performance. Con�gurations for the acceler-
ator are generated at runtime, via a JIT compiler, which allows it to
accelerate dynamically generated code. This is important as dynamic
code generation is now prevalent on mobile processors.
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1
Introduction

Mobile processors, a subclass of embedded processors, are General Purpose Pro-

cessors (GPPs) designed primarily for small, fan-less, battery powered, mobile

computing devices such as smart-phones. They are characterised by high perfor-

mance, low energy consumption, small area and low cost. Mobile processors be-

gan as processors tuned for particular classes of applications, Application Speci�c

Instruction-set Processor (ASIP). For instance, early mobile phones had baseband

processors (e.g. Philips KISS-16-V2 [1]). Simple scalar processors augmented with

Application Speci�c Integrated Circuits (ASICs) for processing speech and radio

signals in real-time. Baseband processors also run the user interface on phones but

at a lower priority. The dedicated hardware accelerators on these processors im-

proved performance and reduced energy consumption in a cost and area effective

manner [1].

Mobile processors have evolved from ASIPs to full blown GPPs as mobile

computing moved from embedded devices, with few functionalities, into portable,

connected, general purpose computers. A typical Android [2] smart-phone can

install and run about 500 000 [3] diverse applications, often called ‘apps’, ranging

from Linpack [4], a library for numerical linear algebra, to Visidon AppLock

[5], a face recognition tool for protecting applications. Relying on dedicated

accelerators, as in the early days of mobile phones, to boost performance is no

longer practical as apps are diverse and not known at design time. Further, mobile

processors are increasingly being used outside portable devices such as in micro-

servers. Micro-servers are servers built using a large number of relatively slow

16



1. Introduction

pipelining

superscalar

out-of-order

multicore

1
9

8
5

1
9

8
8

1
9

9
1

1
9

9
4

1
9

9
7

2
0

0
0

2
0

0
3

2
0

0
6

2
0

0
9

2
0

1
2

2
0

1
5

Intel
ARM

486

586

686

CoreDuo

strongarm

Cortex-A8

Cortex-A9

Cortex-A9 MP

Figure 1.1: Intel (desktop) vs. ARM (mobile).

but cheap and power ef�cient mobile processors [6]. Therefore, a modern mobile

processor is more like a conventional (desktop) processor, see �gure 1.1, making

it a challenge to manage the contradictory constraints of power/energy, area,

�exibility and cost.

Mobile processor vendors are increasingly employing Chip-MultiProcessor

(CMP) designs, multiple ‘simple’ Central Processing Units (CPUs) (often called

‘cores’) on the same integrated circuit die, to improve the performance and en-

ergy ef�ciency instead of more powerful single processors. Single processors are

no longer scaling in performance (see Figure 1.2 for past and future trends in

microprocessor technology), because technology scaling no longer provides con-

sequent clock frequency improvements. Furthermore, it costs less to exploit the

ever increasing number of transistors provided by process technology by sim-

ply instantiating more copies of the relatively simpler (and relatively easier to

design) CPU in each successive chip generation instead of designing and debug-

ging a new large single processor each time. A mobile CMP is actually part of a

System-on-Chip (SoC) that enables a typical mobile device such as a smart-phone

17
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Figure 1.2: Microprocessor trends: past and future [7].

to provide more processing power than was available to supercomputers of the

1970s at 4× 10−11 of the cost; see Table 1.1. For instance, the Texas Instrument®

OMAP5432 SoC has up to 12 processors in a 14mm × 14mm package that runs

within the maximum system power limitation of 2.5–3.0W for mobile devices

while costing less than $50. These processors range from a 2-core 2GHz mobile

processor to a 16-core General Purpose Graphics Processing Unit (GPGPU), see

Figure 1.3, all running off a 1000–1500mAh battery.

CMPs, also called multi-core microprocessors, improve performance and re-

duce power consumption by handling more work in parallel on simpler, more

energy ef�cient CPUs compared to single processors. They exploit Thread-Level

Parallelism (TLP) [8], distributing execution processes/threads across cores [8, 9].

Performance improvements depend on the fraction of the application that is par-

allelised. Performance is compromised for lowly threaded applications as CMPs

tend to have limited single thread capabilities (because of fewer per core resources).
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Single thread performance is still important as some key applications have lim-

ited TLP. According to Amdahl’s law [10], serial sections within a parallel ap-

plication are performance constraints. Current and future challenge for mobile

processor vendors is how to increase single thread performance in these resource-

constrained, general purpose cores ef�ciently. Most traditional methods employed

by conventional cores are unsuitable for mobile processors because of energy, area

and cost issues.

Table 1.1: Supercomputer Cray-1 vs Mobile Phone HTC HD2.

Feature Cray-1 HTC HD2

Year 1976 [11] 2009 [12]

Number of processors 1 [11] 1 [12]

Frequency(MHz) 80 [11] 1000 [12]

MFLOPS(Linpack 100) 3.4 [13] 74 [14]

Volume(mm2) ≈196 846 795 [11] 88 845 [12]

Power(W) 115000 [11] 3 [12]

Cooling Freon [11] none [12]

Weight(kg) 4762 [11] 0.2 [12]

Price($ Million 2009 ) 20–36 [15] 0.0008

Main Memory(MB) 8 [15] 512 [12]

1.1 Improving Single Thread Performance

Improvements in single thread performance, at the architectural level, have largely

come from superscalar processing and pipelining. Superscalar processing [16] ex-

ploits Instruction Level Parallelism (ILP) [17, 18] by dynamically increasing the

number of instructions issued simultaneously to functional units on the processor.

Pipelining [19] breaks down a single instruction into a sequence of small steps and

performs the steps of adjacent instructions in parallel, allowing the clock rate to

be increased more than suggested by Moore’s ‘law’ [20]. Unfortunately, extracting
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ILP from an instruction stream is power-hungry as the complexity of the addi-

tional logic needed for dynamic discovery of ILP is approximately proportional

to the square of the number of instructions that can be issued simultaneously [9].

Cost and power issues mean that mobile processors do not employ ‘aggressive’

superscalar processing. Further, the degree of parallelism in a typical instruction

stream is limited [21], so using transistors to build even more complex superscalar

processors achieves very little additional bene�t for most applications.

Figure 1.3: A state-of-the-art mobile SoC. Courtesy of Texas Instruments.

Similarly, increasing performance via deeper pipelines is expensive as more

transistors are needed for adding pipeline registers and bypass path multiplexers,

increasing power consumption further. This, and performance losses from pipeline

�ushes, primarily caused by branches, combine to make very deep pipelining

unsuitable for mobile processors.

The time-tested approach of accelerating compute-intensive parts of applica-

tion using dedicated hardware is not suitable for mobile processors because of
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the heterogeneity and diversity of applications they run. The next best alternative

is having ‘general purpose’ Recon�gurable Hardware (RH), which can be recon-

�gured on an application by application basis to implement frequently occurring

functions. This approach, recon�gurable computing, is less ef�cient in terms of

area, cost and power than �xed hardware but allows a GPP to be specialised

based on the application it’s currently running. GPPs augmented with RH are

known as Recon�gurable Processors (RPs). RH has been used successfully to

accelerate single thread performance in experimental and commercial processors

[22, 23, 24, 25, 26]; the challenge is how to map dynamically generated code

onto the recon�gurable hardware ef�ciently.

1.2 The Need for Dynamically Generated Code

Software cost is now signi�cant, up to 80% of the development cost for mobile

computers [27]. This, and the short development cycles of mobile computing de-

vices makes it inconceivable to rewrite millions of lines of code for each processor

generation. Some mobile ‘ecosystems’, such as Google’s Android [2], require all

but low-level system code to be written in platform independent Intermediate

Representation (IR) which is compiled to binary ‘just-before-use’ via a Virtual

Machine (VM). Mobile processors are designed to be binary compatible across

generations and, at most, a simple recompilation is all that is required to port

software to a new generation. With a mobile CMP, simply moving a parallel

application to a newer generation of processor may degrade performance as the

application may be very sensitive to hardware parameters such as core count

or inter-core latencies, that vary from one generation to another. Consequently,

mobile software development is gradually moving to programming systems that

support forward-scaling [28].

Forward-scaling is the ability of parallel application performance to scale

with new core counts and cope with constant evolution of the Instruction Set

Architecture (ISA) with little or no rewriting and compilation i.e. binary and

performance portability [28]. For example, the data width of vector extensions

increase with each new generation of chip causing dif�culties in terms of binary

compatibility. Forward-scaling systems such as Array Building Blocks (ArBB) [28]
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generate vector instructions at runtime to match the width on the processor even

though the programmer can’t know what they might be when the program was

created.

One of the key enablers of forward-scaling in programming systems is dy-

namic compilation [29, 30]—the runtime compilation of platform independent

IR to native code—which allows applications to adapt to particular architectural

characteristics at runtime. Most state-of-the-art parallel programming systems

now support dynamic compilation. This, potentially, allows applications to take

advantage of the latest hardware and software features without the need for re-

compilation at the cost of runtime overheads.

Dynamic software compilation is now so common on mobile processors that

vendors provide hardware to speed it up. For instance ARM processors have

ThumbEE and Jazelle [31]. Most state-of-the-art Placement and Routing (P&R)

only support off-line mapping on the RH which is inadequate for mobile com-

puters where compilation is now largely dynamic. They need the compiler or

programmer to identify suitable section(s) for acceleration and to synthesize con-

�gurations for them off-line. The dynamic generation of con�guration, dynamic

mapping, is particularly dif�cult for RPs as time consuming tasks such as P&R

now need to be performed at runtime. Recent studies [22, 23, 24, 32, 33] have

investigated dynamic mapping to RH using Dynamic Binary Translation (DBT)

[34]. A dynamic binary translator, which could be software, hardware or a soft-

ware/hardware hybrid, is used to map sequences of machine code to the RH.

DBT for RH has the advantage of low overheads since the semantic gap between

microprocessor machine code and RH con�gurations is small compared to trans-

lating from a high-level language. Binaries, however, lack the high-level semantic

information required for ef�cient mapping to the RH requiring binary translators

to decompile binaries to recover such information [23]. The sophistication of de-

compilation differs from design to design. Decompilation is expensive and does

not always recover enough high level information. Furthermore, DBT introduces

additional overheads reducing performance and increasing energy consumption.

Even without the drawbacks of DBT, present DBT-based dynamic mappers are

still unsuitable for mobile CMPs because of area, cost, resource (e.g. memory

footprint) or power issues.
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This thesis advocates dynamic mapping based on compilation from IR instead

of DBT. RH dynamic compilers can be integrated into VMs already present on the

CMP eliminating the need for an extra, distinct translation layer. Furthermore, IRs

usually contain enough high level information to remove the need for decompila-

tion. The translation overheads, however, are high compared to DBT. This thesis

explores a hardware/software co-design approach to reducing the overheads of

dynamic compilation on RH.

1.3 Contributions

This thesis explores the possibilities and potential bene�ts of an architecture that

uses RH to accelerate single thread execution of dynamically generated code on

mobile CMPs. Its main contribution is the co-design of a mobile CMP (augmented

with RH) and associated RH dynamic compiler the Just-In-Time (JIT) variant ca-

pable of accelerating single threads in the code produced at run-time. It speci�cally

targets forward-scaling programming systems such as the Array Building Blocks

where kernel (critical) code is dynamically generated.

Speci�cally, the key contributions include:

• VIrtual REcon�gurable Micro-ENgine for Translation (VIREMENT), a mo-

bile CMP architecture where each CPU has recon�gurable hardware inte-

grated as a functional unit. The architecture is restrictive which reduces

mapping overhead enabling the run time generation of con�gurations. The

recon�gurable hardware speeds up single threads by exploiting the ‘small’

ILP within a typical basic block. As such, it consists of a two-dimensional

array of interconnected simple, programmable, word-sized functional units

with data routed using multiplexers.

Since CMPs have stringent cost constraints (e.g. chip size), the design aims to

keep the recon�gurable extension to the CPU small by using a recon�gurable

array of modest size.

• Dynamic Compilation Engine (DCE), a JIT compiler for VIREMENT which

dynamically translates IR into con�gurations for the RH. The DCE design
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aims to be a back end JIT complier for the numerous VMs available on vari-

ous mobile software platforms but the primary targets are VMs of forward-

scaling programming systems. Like hardware, mobile software platforms

have stringent cost constraints (e.g. memory footprint) as such DCE design

places emphasis on being lean and fast. The JIT is intended for the transla-

tion of kernels (critical sections of an application) to enhance the chances

of amortization of overheads.

P&R in the DCE is with a novel, single pass algorithm suitable for resource

constrained mobile platforms. The algorithm was developed as part of this

thesis.

1.4 Overview

The rest of this thesis is divided into seven chapters:

Chapter 2 reviews recon�gurable processing in general with emphasis on the

challenges of dynamic translation. It also discusses related work.

Chapter 3 presents a quantitative characterization of the targeted application

and how that impacts the design of VIREMENT.

Chapter 4 discusses the design of VIREMENT.

Chapter 5 discusses the design of DCE and illustrates its operation with some

examples.

Chapter 6 presents the proposed evaluation methodology and framework for

VIREMENT and DCE.

Chapter 7 is an evaluation of the VIREMENT architecture using the the

methodology and framework proposed in chapter 6.

Chapter 8 concludes the thesis with a summary, a list of achievements, and an

outline of potential improvements to VIREMENT.

1.5 Publications

The following articles, based on the work presented in this thesis, have been

published or accepted for publication:

24



1. Introduction

1. Geoffrey Ndu, Jim Garside: Boosting Single Thread Performance in Mobile

Processors via Recon�gurable Acceleration. 8th International Symposium

on Applied Recon�gurable Computing (ARC 2012): 114-125

2. Geoffrey Ndu, Jim Garside: Architecture for Runtime Hardware Compila-

tion. 5th HiPEAC Workshop on Recon�gurable Computing 2011, and also

as: HiPEAC Technical Report, TR-HiPEAC-0014, January 2011

3. Geoffrey Ndu, Jim Garside: A Co-designed Dynamic Compilation Frame-

work for Recon�gurable Processors (Abstract). Sixteenth International Con-

ference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS 2011), March 2011.
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Recon�gurable Computing

Recon�gurable computing employs some form of post-fabrication programmable

hardware potentially allowing the same hardware to be specialised to �t any appli-

cation. A Recon�gurable Hardware (RH) combines post-fabrication programma-

bility with the spatial (parallel) computation style of ASICs, unlike the less ef�cient

temporal (sequential) computation style of Von Neuman processors [35]. Recon-

�gurable computing offers a good balance between the contradictory design aims

of implementation ef�ciency and �exibility. This trade-off is depicted in Figure 2.1

for common processing architectures. From the �gure, �exibility improves at the

expense of ef�ciency. Augmenting a General Purpose Processor (GPP) core with

RH potentially improves ef�ciency at the cost of reduced �exibility.

2.1 Recon�gurable Computing Advantages

Implementing a section of an application using RH may speed up performance

signi�cantly compared to software on a microprocessor, especially if the section

is highly parallel e.g. extensive bit-level manipulation.

The ef�ciency of bit-level operations can be improved signi�cantly by using an

Field-Programmable Gate Array (FPGA), a type of RH, instead of a microproces-

sor. Bit-level operations are inef�cient on microprocessors as they typically require

a separate instruction or several instructions. Figure 2.2 compares bit reversal on

an FPGA to a microprocessor. Figure 2.2a is an ef�cient software implementation

of a bit reversal [36] that requires approximately 38 instructions and 48 cycles
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Performance ASIC Application Specific Integrated 
Circuit
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FPGA Field-Programmable Gate Array

ASIP Application-Specific Instruction Set 
Processor

GPP General Purpose Processor

Figure 2.1: Flexibility and performance trade-off for various processing architec-
tures

to reverse a 32-bit integer on ARM9Erev2 . However, the same operation can

be performed in a single cycle on an FPGA, by simply reversing the connections

betweens two buffers as shown in �gure 2.2b, achieving a speedup of 48× (as-

suming equal cycle lengths).In this example, an instruction to achieve the same

effect has been added to later implementations of ARM which illustrates that

ef�ciency in ‘rarely’ used operations may be important. However, adding many

speci�c instructions to a GPP is not practical because of the limited hardware

budget and cost.

2.2 Recon�gurable Hardware

2.2.1 Granularity

The RH design space is extensive and can be broadly classi�ed into two segments—

�ne-grained and coarse-grained—based on the data width of the smallest Processing

Element (PE). Fine-grained recon�gurable hardware, like an FPGA, employ PEs

of data width 1 i.e. bit-level programmable. Conversely, coarse-grained hardware
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x =  (x >>16)               |  (x <<16);
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);

mov r3, r0
asr r2, r3, #16
lsl r3, r3, #16
orr r3, r2, r3
asr r2, r3, #8
bic r2, r2, #-16777216
bic r2, r2, #65280
lsl r3, r3, #8
bic r3, r3, #16711680
bic r3, r3, #255
orr r3, r2, r3
asr r2, r3, #4
mov r1, r2
...............
...............
...............
...............

Binary
Compilation

ProcessorProcessor

 Requires 48 
cycles on ARM9

C Code for bit reversal

(a) bit reversal ARM9Erev2.

Hardware for bit reversal

Bit Reversed X Value

. . . . . . . . . . .

. . . . . . . . . . .

Original X Value

Processor         FPGA

 Requires only 1 cycle 
(speedup of 48x)

(b) bit-reversal on FPGA.

Figure 2.2: Comparing bit-reversal on ARM9Erev2 and FPGA.

employs PEs working at word level. Fine-grained hardware is very �exible and can

implement arbitrary digital logic. However, its �exibility leads to performance,

area and power inef�ciencies as will be explained shortly. Therefore, a typical

FPGA compared to standard cell ASIC requires approximately 20 to 35 times

more area with a speed roughly 3 to 4 times slower and consumes roughly 10

times as much dynamic power [37]. The huge difference in ef�ciency is better

understood by looking at the architecture of a typical FPGA, the Altera Cyclone

II [38].

At the heart of the Cyclone II PE is the Lookup Table (LUT). This is a high-

speed 16× 1 Static Random-Access Memory (SRAM). The PE is programmed by

loading a function’s truth table. Therefore, any logic function with one output and

up to four inputs can be implemented on the LUT. More complicated functions

can be implemented by aggregating several LUTs.

The LUT and other logic such as �ip-�ops make up a Logical Element (LE)

and 10 of them form a Logic Array Block (LAB). Figure 2.3 shows a simpli�ed

LE. Cyclone II devices range in capacity from 4,608 to 68,416 LEs interconnected

in a two-dimensional row and column-based architecture. Generally, routing is

unsegmented but each wiring segment spans only one LAB before terminating in a

switch box. Consequently, an FPGA requires a lot switches, typically 200–400 per
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Configuration SRAM

4-LUT

D FF

Figure 2.3: Simpli�ed depiction of an LE [40].

4-LUT resulting in an inef�cient implementation, especially when used to compose

operators for wide datapaths. FPGAs also require large con�guration memories

because of the high number of con�guration points. Partial recon�guration—

reprogramming a portion of the FPGA while the rest is still operating—could be

used to reduce/hide recon�guration times at the cost of increased hardware and

software complexity.

Some of the disadvantages of FPGAs, lack of forward compatibility and long re-

con�guration times, can be tackled with Pipeline Recon�gurable FPGAs (PipeRench

architecture) [39]. PipeRench breaks large, single static con�gurations into pieces

that correspond to pipeline stages in the application.These small con�gurations

are swapped in and out automatically at run-time allowing a circuit that would

otherwise be too large to �t on the available hardware. Con�gurations com-

piled for one instance of PipeRench can used for a larger (or smaller) instance of

PipeRench with a corresponding increase (or decrease) in performance.

In summary; �ne-grained hardware trades area, speed, and power for �exibility.

As such, they are unsuitable for designs where power ef�ciency is of primary

importance, and with their long con�guration time it would be slow to implement

an execution model which relies of a rapid change of con�guration.

In contrast to �ne-grained hardware, the PEs in a coarse-grained hardware

are complex logic blocks ranging from Arithmetic and Logic Units (ALUs) to

small Reduced Instruction Set Computer (RISC) type programmable cores often

arranged as a 2D array. The use of complex logic blocks allows for an ef�cient

implementation of complex operators in silicon rather than having to compose

such operators from LUTs. Coarse-grained hardware also has fewer con�guration
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points leading to a signi�cant reduction in con�guration data and time. However,

they are potentially inef�cient for bit-level processing. There are also unable to

leverage optimizations in the size of operands as the size of each logic block is

static. For instance, con�guring a 64-bit ALU for 8-bit operations leads to a high

degree of inef�ciency.

2.2.2 Recon�guration Model

The recon�guration model is largely determined by when a new con�guration can

be loaded into the recon�gurable hardware. Traditionally, a new con�guration is

only loaded at the beginning of execution and remains unchanged for the duration

of the application. This is referred to as static recon�guration and requires the

system to be halted while the recon�guration is in progress.

Dynamic recon�guration allows concurrent recon�guration and execution.

This is achieved by grouping con�gurations into contexts allowing the device to

quickly switch between different planes, or context to be swapped as needed. Code

that may not have been able to implement completely onto the recon�gurable can

be partitioned and swapped as needed.

The dynamic recon�guration model enables implementation which are other-

wise too large for the RH. Recon�guration overhead, however, becomes signi�cant

if not carefully managed [41].

2.2.3 System Architecture

It is often impractical to implement the entirety of an application on a RH. Most

applications have large number of sections that are executed relatively infre-

quently, and attempting to implement all of these sections on the RH would

be non-viable (a section needs to be executed suf�ciently frequently on the RH

to recover con�guration overhead). In practice, RH is used to accelerate only

the most critical sections (kernels). As such, the RH is usually coupled to a host

processor(s) that executes the non-critical control sections. However, some recon-

�gurable systems [42, 43] are without host microprocessors.

The RH and its host can be integrated in a number of ways as shown in

�gure 2.4. In some systems [44, 45, 46], the RH is a separate device attached to the
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Figure 2.4: Types of RFU coupling

host processor through the system bus. The host processor simply of�oads kernels

to the hardware for processing. However, the overheads of communicating over

the system bus makes this approach suitable only for computations requiring little

communication between the RH and the host. For example: graphics processing,

where the RH may only need the source and destination addresses from the host to

process a large chunk of pixels. Systems employ SRAM-based data buffers (which

consumes a signi�cant amount of power), analogous to a data cache, between the

recon�gurable hardware and the memory to service applications with data.

An attached processor system is easy to construct and does not require any

modi�cation to the host or its compiler. However, the cost of communicating over

the system bus limits it to applications where the communication to computation

ratio of an application is low.

The recon�gurable hardware can also be coupled to the host processor as a

coprocessor [23, 47, 48, 49, 50]. This reduces communications overhead com-

pared to an attached processor as data is exchanged using protocols similar to

those used in �oating point coprocessors. The host processor requires little or

no modi�cation but the communication overhead can still be signi�cant if the

communication to computation ratio is high. In such a situation, employing the

RH as a extra functional unit in the host processor’s data path is more suitable
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[50, 51, 52]. This reduces the communication overhead to a minimum as the

RH has direct access to the host processor’s register �le and the decoder issues

‘special’ instruction to the RH to perform processing just like any other functional

unit. However in this case, the host processor needs to be modi�ed to integrate

the RH, often called the Recon�gurable Functional Unit (RFU). Such designs are

often termed Recon�gurable Instruction Set Processorss (RISPs) [53]. The merits

of these different approaches to integration are summarised in table 2.1

Coupling Powera Speed b Bottleneck Applicationc

Attached high slow high overhead of
system bus com-
munication

large data set, low
communication to
computation ratio

Coprocessor low fast limited coproces-
sor register �le
size

medium/small
data set, high
communication to
computation ratio

Functional unit low very fast limited processor
register �le size

small data set,
very high com-
munication to
computation ratio

a power consumed by data-storage elements used for communication.
b communication speed between RH and host.
c characteristics of application best suited for.

Table 2.1: Comparing RH integration techniques.

2.3 Recon�gurable Architecture Programming

RPs are not yet widespread—despite signi�cant performance improvements re-

ported by academic and commercial projects—because they are signi�cantly more

dif�cult to program compared to conventional processors.

Programming a RP often involves �rst choosing a target processor and then

writing high-level application code for it, almost always in C/C++. Coarse-grain

parallelism is often required to be written in a particular style to exploit the

capabilities of the architecture. The application is then optimised for the speci�c

32



2. Recon�gurable Computing

architecture by identifying parts of the application that can bene�t from hardware

acceleration, and replacing them with RH con�guration(s). Compilation tools

are now able to generate the RH con�gurations—with little or no help from the

programmer—and interface them with the rest of the code. Designers, however,

still prefer hand-mapping as automatic compilation remains signi�cantly less

ef�cient [54].

Recon�gurable computing is a volatile and fragmented �eld, new architectures

are introduced and previous architectures retired within a short time by differ-

ent vendors. These architectures do not have common hardware architecture,

even those from the same vendor, thus requiring the programmer to re-program

substantially each time the application is moved to a new device. This makes

recon�gurable processing uncompetitive against standard microprocessors where

different hardware architecture implementations are hidden behind a standard-

ised ISA.

Dynamic mapping avoids these problems by translating code to run on RH

automatically at runtime. The most common technique is translating executing

microprocessor binary onto a restrictive RH (a form of DBT [34]). Restricting

the �exibility of the RH drastically reduces the time and resources required to

perform tasks such as P&R. Translating from binaries instead of source code keeps

overheads small but requires expensive, and not always effective, decompilation

to recover high-level constructs such as loops, arrays and functions which are

critical to ef�cient mapping [23].

Mapping without decompilation might result in slower and bigger circuits—

Vahid et alia [55] reported an average slowdown of 4×—while mapping with very

limited decompilation lead to implementations that are only slightly faster than

software [23, 55]. Therefore, decompilation is a prerequisite for effective binary-

based dynamic mapping. As an example, consider that for many applications,

compilation exposes parallelism by unrolling loops. Without recovering enough

information about loop structures and bounds from binary, the parallelism visible

to a binary translator is very limited.

The main problem with decompilation is that the representation of data and

instructions in the Von Neumann architecture are indistinguishable. Data is often

located in between instructions e.g. indexed jump tables. Furthermore, program-
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mers often write self-modifying code. As such, it is hard and expensive to decom-

pile a software binary [56]. The successes of the recon�gurable architectures that

employ extensive decompilation, such as Warp [23, 55] (discussed later), is that

they operate in the embedded and DSP domains, where applications tend to be

written using constructs that are ideal for decompilation [57].

A Directly Interpretable Representation (DIR) [58], an IR with a simple syntax

and a relatively small set of simple operators, such as Lower Level Virtual Machine

(LLVM) [59], is a middle ground between the need for high level information and

minimising translation overheads. It is portable across RPs and has relatively little

run-time translation overhead. A DIR retains enough semantic information to

allow more aggressive program transformations than are easily attainable with

binary (even with decompilation).

Architectures that employ dynamic mapping are discussed next with emphasis

on their suitability for mobile processors.

2.4 Warp

Warp [23] is a family of processors that automatically extracts and compiles criti-

cal software kernels to FPGA. A typical Warp processor (see �gure 2.5) is an SoC

with a main processor for executing application, a less powerful CAD processor

on which a lean FPGA compiler—Riverside On-Chip CAD (ROCCAD)—runs, a

pro�ler and an FPGA.

Execution starts on the main processor. A hardware pro�ler monitors the

executing application and determines the critical kernels de�ned as loops that

account for 10% or more of total application execution time. The pro�ling result

is then passed to ROCCAD which �rst analyses the pro�ling results to determine

the candidates for implementation on the FPGA. The selected kernels are �rst

decompiled to an IR and then synthesised for the FPGA. The hardware con�gura-

tion generated by ROCCAD is then loaded onto the FPGA. Finally, the executing

binary is patched so that the next time the kernels are encountered they are pro-

cessed on the FPGA instead of the main processor.

Despite the signi�cant reduction in execution times and energy consumption

for applications, Warp still suffers from the disadvantages of FPGA-based sys-
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Figure 2.5: Architecture of Warp processors

tems (see subsection 2.2.2). Furthermoremore, decompilation, used to convert

the executing binary to a format suitable for synthesis, is expensive and does

not always recover enough high level information to generate ef�cient hardware.

Finally, the signi�cant on-die memory requirements of ROCCAD and the large

memory footprint (which makes them unsuitable for mobile processors) for stor-

ing FPGA con�gurations limits Warp to only applications where a few inner loops

dominate.

2.5 Con�gurable Compute Array

The Con�gurable Compute Array (CCA) [22, 60] is a matrix of simple, heteroge-

neous functional units, coupled to a host processor as a functional unit. The CCA,

depicted in �gure 2.6, is con�gured with hardware primitives ,‘microops’, similar

to microcode. Data �ows from top to bottom with the outputs of functional units

fully connected to the inputs of the units in the next row.

Accelerating applications on the CCA involves two steps: the discovery and

delineation of critical subgraphs, subsets of an application’s Directed Flow Graph

(DFG), suitable for the CCA and the replacement of such subgraphs with microops

that con�gure the CCA. Static and dynamic approaches for generating microops
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Figure 2.6: A block diagram of a depth 7 CCA.

have been presented [22, 60].

The dynamic approach uses an of�ine compiler to identify and delineate crit-

ical subgraphs that can be mapped onto the RH. However, mapping itself is

performed at runtime by a hardware engine which generates the RH con�gura-

tions necessary to execute the subgraphs. This involves initially executing critical

subgraphs without the RH, constructing traces of retiring instructions using a

trace cache [61] (a special instruction cache which captures dynamic instruction

sequences) and feeding the traces to the mapping engine.

The dynamic mapping approach is completely transparent but requires a trace

cache which is rare in a mobile processor because of area, cost and energy issues.

Furthermoremore, the mapping engine, based on rePlay [62], uses a very com-

plex graph analysis technique which leads to huge resource overhead. The static

approach is similar to the dynamic one but is completely of�ine.

As implied by �gure 2.6, suitable subgraphs are restricted to those having at

most four inputs and two outputs which may be limit performance [24]. Further-

more, subgraphs must not contain memory or shift instructions, which constitute

a signi�cant proportion of operations (see chapter 3), as they are not supported

on the CCA.
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Figure 2.7: Architecture of DIM.

2.6 Dynamic Instruction Merging

Dynamic Instruction Merging (DIM) [24] (see �gure 2.7) dynamically translates

executing instructions onto a 2D recon�gurable array of functional units attached

to a host processor as an extra functional unit. The translation algorithm, imple-

mented in hardware, detects and transforms instruction groups into microops for

execution on the RH.

Translations occur as soon as instructions are fetched and the result is stored in

a dedicated con�guration cache indexed by the Program Counter (PC). The next

time the processor starts fetching the same sequence of instructions the processor

loads the previously stored con�guration from the cache and the operands from

the register bank, then it activates the RFU. The RH now performs the processing

and updates the PC, to the end of the sequence, for execution to continue with

standard instructions.

DIM makes the RH transparent to executing binaries and can handle dy-

namically generated code. However, DIM takes up a very signi�cant amount of

die area. Furthermore, the binary translation algorithm is simple and fast (as

it is implemented in hardware) but misses opportunities for optimising the mi-
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croops produced. It has been shown that decomposing instructions into microops

produces suboptimal internal code sequences [63]. Optimising the internal code

sequence is non-trivial and best performed in software instead of hardware [64].

Furthermore, energy is spent translating instruction sequences that contribute

little to performance as DIM attempts to translate all instructions.

Custom Recon�gurable Arrays for Multiprocessor System (CReAMS) [33] is

the multiprocessor variant of DIM but has a 4-stage pipelined translation unit

termed Dynamic Detection Hardware (DDH). As with DIM, the DDH is respon-

sible for detecting and translating instructions. The DDH and its con�guration

memory are tightly coupled to a 5-stage processor. The host CPU, the RH and

the DDH together form the Dynamic Adaptive Processor (DAP). Multiple DAPs

were coupled together to form a CMP. CReAMS, like DIM, suffers from high

area overhead.

2.7 RHU and RIG cores

Another project [25, 32] is based on a heterogeneous multiprocessor where each

core is either a Recon�gurable Hardware Unit (RHU) or a Recon�guration In-

struction Generation (RIG). A RHU is a superscalar processor augmented with

RH. The RIG is based on the same processor as the RHU but with dedicated

hardware for recon�gurable con�guration generation and without the RH (see

�gure 2.8). Each RIG services a number of RHUs.

Each RHU collects traces of committed instructions which are dispatched to

a RIG for translation. A trace starts whenever a backward branch instruction

commits. When a con�guration is received from the RIG it is stored at the ex-

ecuting thread address space. When the start of a translated trace is detected it

is processed using the RH instead of the standard datapath. Standard execution

continues from the original instruction after the end of the translated trace. The

RH is a 2D array of functional units that only handles integer ALU and simple

memory operations.

A RIG generates a con�guration using a combination of hardware and soft-

ware. Analysis is in hardware with code generation in software that is part of the

Operating System (OS).
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Figure 2.8: Datapath of a RIG-core.

A 4-core model, a single RIG servicing three RHU, improved per-core perfor-

mance by an average of 23% [32]. However, the architecture may be too ‘complex’

for a mobile processor as it uses trace caches which are rare in mobile processors

because of area, cost and energy issues.

2.8 Summary

This chapter introduced the concept of recon�gurable computing and discussed its

advantages and potential issues . Dif�culty of programming and diminished binary

portability were identi�ed as major barriers to the widespread adoption of RPs.

Then, architectures that use dynamic mapping to overcome these drawbacks were

reviewed. The merits and demerits of each architecture were discussed. The next

chapter is on the quantitative characterization of applications targeting mobile

processors with the aim of using the results to guide the design of VIREMENT.
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3.1 Introduction

Application characterisation, the quantitative understanding of workload char-

acteristics, is important to the design of processors. This often involves instru-

menting and executing reference applications to generate records and summaries

of the time cost of subroutines, algorithms, number of calls etc. The output of

application characterisation guides architecture and microarchiecture design.

This chapter is about the characterisation of reference applications, assembled

from the Parsec [65], Rodinia [66] and Bots [67] benchmark suites. These appli-

cations are described in section 3.2 and summarised in table 3.1. The emphasis is

on emerging applications such data mining. Section 3.4 describes how the insights

gathered in�uences the design of VIREMENT.

3.2 Application/Kernel Pool

backprop Back Propagation [69] is a machine-learning algorithm, implemented

in OpenMP, that trains the weights of connecting nodes on a layered neu-

ral network. backprop’s domain is pattern recognition and is included

in this pool because of the increasing importance of pattern recognition

applications—such as handwriting recognition—in mobile computing de-

vices.
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Application Suite Domain Thread Imp.
backprop Rodinia Pattern Recognition OpenMP

bfs Rodinia Graph Algorithms OpenMP
bodytrack Parsec Computer Vision Pthreads

facesim Parsec Physics Simulation Pthreads
�b Bots Integer OpenMP
fft Bots Spectral Transforms OpenMP

�uidanimate Parsec Physics Simulation TBB
freqmine Parsec Data Mining OpenMp
kmeans Rodinia Data Mining OpenMP
nqueens Bots Search OpenMP

path�nder Rodinia Grid Traversal OpenMP
sort Bots Integer Sorting OpenMP
srad Rodinia Image Processing OpenMP

streamcluster Parsec Data Mining TBB
vips Parsec Media Processing Pthreads
x264 Parsec Media Processing Pthreads

Table 3.1: Application Pool (TBB refers to Intel Threading Building Blocks [68]).

bfs Breadth-First Search transverses a graph beginning at the root node and then

exploring all the neighbouring nodes. Breadth-First Search is used in solving

many problems in graph theory.

bodytrack tracks a human body with multiple cameras through an image se-

quence. The increasing signi�cance of computer vision algorithms on mobile

computing devices, where it is used in character animation and computer

interfaces, leads to the inclusion of bodytrack.

facesim computes a visually realistic animation of a modelled face by simulat-

ing the underlying physics [70]. Computer animations increasingly employ

physical simulation to create more realistic effects.

fft computes the one-dimensional Fast Fourier Transform of a vector of n com-

plex values using the divide and conquer Cooley-Tukey [71] algorithm. It

was included to represent DSP applications.

�b computes the nth Fibonacci number using recursive paralellization [67]. It
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was included to represent recursive algorithms that need to exploit irregular

parallelism.

�uidanimate employs an extension of the Smoothed Particle Hydrodynamics

method to simulate an incompressible �uid for interactive animation pur-

poses [72]. It was included in the application pool because of the increasing

use of physics simulations for animations.

freqmine identi�es sets of items that often occur together in a given database

using the Frequent Pattern-growth method [73]. It was included because of

the emerging �eld of data mining in resource-constrained mobile computing

environments [74].

kmeans k-means is a clustering algorithm used in data mining that aims to

partition n observations into k clusters. Each observation belongs to the

cluster with the nearest mean. It is used in mobile phone gesture recognition

systems [75]

nqueens computes all solutions of the n-queens problem (�nding a placement

for n queens on an n×n chessboard such that none of the queens attack any

other) using a backtracking search algorithm.

path�nder uses dynamic programming to �nd a path on a two-dimensional

grid from the bottom row to the top row with the smallest accumulated

weights i.e. �nds the shortest path. It is included because of the importance

of mapping applications that �nd directions between physical locations by

�nding the shortest path.

sort is a parallel variation of mergesort [76]. It sorts a random permutation

of n 32-bit numbers and was included because sorting is a computational

building block of fundamental importance.

srad Speckle Reducing Anisotropic Diffusion (SRAD) is an algorithm based

on partial differential equations for removing the speckles in ultrasound

images without sacri�cing important image features [77]. It is included in

the pool because of the emergence of inexpensive mobile ultrasound using

an ultrasound probe connected to a mobile phone [78].
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streamcluster is a kernel that �nds a pre-determined number of medians in data

streams so that each point is assigned to its nearest centre as it is streamed in

[65]. It is part of the application pool because of the increasing importance

of data mining algorithms on mobile devices.

vips is designed for processing images larger than the amount of RAM available

on a device [79]. Photo editing applications on mobile-devices are becoming

more prevalent.

x264 is an application for encoding video streams into the H.264/MPEG-4 AVC

format [80]. H.264, a standard for video compression, is one of the most

commonly used formats for the recording, compression and distribution of

high de�nition video.

3.3 Application Characterisation

The applications described in section 3.2 are characterised using a combination of

publicly available tools (Intel Software Development Emulator [81], Microarchi-

tecture-Independent Characterization of Applications (MICA) [82]) and custom

Pin [83] based tools running on an x86 platform. Pin is a dynamic instrumentation

tool for programs. It allows the injection of C or C++ code at arbitrary places

in the executable. All instrumentations occur at runtime obviating the need to

rewrite binaries.

A major pitfall of application characterisation is that processor microarchitec-

ture could hide underlying, inherent program behaviour [82], hence only microarchitecture-

independent application characteristics are measured. The results are presented

in sections 3.3.1 to 3.3.6.

3.3.1 Dynamic Instruction Mix

The dynamic instruction mix characterises applications according to the frequency

of the different instruction types encountered during execution and serves as a

guide to the type of operations to support on the RH. Instructions are classi-

�ed functionally into 9 groups: load, store, branch, integer arithmetic,
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Figure 3.1: Dynamic instruction mix per application.

integer multiplication, logic, shift, floating-point arithmetic and

others.

The dynamic instruction mix depends on the application, the compiler, and

the processor’s instruction set, but not on architectural/hardware parameters of

the processor such as the number of execution units, cache sizes, etc.

Figure 3.1 depicts the distribution of the instruction classes while �gures 3.2a

to 3.2i, on pages 45 to 47, show dynamic instruction mix in more detail by

displaying the frequencies for each instruction class individually.

3.3.1.1 Observations

The analysis of the dynamic instruction mix leads to a number of observations.

First, 7 of the 16 applications do not have �oating-point operations. The rest have
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Figure 3.2: Dynamic instruction mix for each individual class.
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Figure 3.2: Dynamic instruction mix by class (cont.).
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Figure 3.2: Dynamic instruction mix by class (cont.).

a signi�cant number of �oating point operations with facesim having 50% of its

instructions involving �oating-point operands.

Another is that the individual share of integer multiplication, logic and

shift classes are quite small. The combination of load, store and integer

arithmetic/floating-point arithmetic tend to dominate in almost every ap-

plication.

3.3.2 Kernel Pro�ling

Kernel pro�ling involves locating the kernels of an application that take most

of the execution time. A function breakdown facilitates the identi�cation of ker-

nels in an application. A function breakdown lists all functions of an application

together with the relative contribution of each to execution time. Figure 3.3 on

page 48 is the function breakdown for the applications in table 3.1. The seg-

ments in each bar represent the dominant functions for the application except

the rightmost segment which represents the merged shares of all remaining func-

tions. For instance, in vips the dominant functions are fine_gen, conv_gen and

imb_XYZ2La with 20.64%, 15.98% and 14.14% of execution time. The rest of

the functions represented by the last segment are only 49.24% of execution time.
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Figure 3.3: Function breakdown based on execution time.

3.3.2.1 Observations

Most applications spend a majority of their execution time inside at most two

functions. There are applications, such as fib, where one function dominates.

However, even in cases without clear dominant functions (e.g. vips), the two

most referenced functions still account for a signi�cant proportion of execution

time.

3.3.3 Instruction Level Parallelism

ILP refers to the number of individual ‘machine’ operations executable in parallel.

High ILP is important for applications targeting highly-parallel RH.

To characterize the degree of ILP within each application, an idealised out-

of-order processor model is considered. Architectural features are idealised and

unlimited (perfect caches, perfect branch prediction, in�nite number of functional
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units, etc.) except for the instruction window size. ILP is measured in terms of

Instructions Per Cycle (IPC). Figure 3.4, on page 50, shows the IPCs at window

size of 32, 64, 128 and 256 in-�ight instructions.

3.3.3.1 Observations

As expected, streaming (e.g. x264) and related applications (e.g. streamcluster)—

characterised by compute-intensive numerical code—tend to have relatively high

ILP. Common and important computer science algorithms such sorting (in sort)

tend to have relatively low ILP.

3.3.4 Branch Predictability

Branch predictability refers to how accurately future branch behaviour can be

foreseen. This is important as the amount of ILP within a basic block is usually not

enough to keep typical RH fully utilized. Hence, an increasing number of recon-

�gurable systems [24] speculate across branches. The predictability of branches

determines how accurate and ef�cient speculation as an execution strategy will

be.

The predictor used here is the Prediction by Partial Matching (PPM) predictor

[84]. This allows the capture of branch predictability in a microarchitecture-

independent manner as a PPM predictor can be viewed as a theoretical basis for

branch prediction rather than an actual hardware predictor [82]. Four variations

of the PPM predictor are considered: GAg, PAg, GAs and PAs. ‘G’ is global branch

history, ‘P’ is per-address or local branch history, ‘g’ is one global predictor table for

all branches and ‘s’ is separate tables per branch. The accuracy of the 4 variations

of the PPM using different history lengths are given in �gure 3.5 on page 51.

3.3.4.1 Observations

The branch behaviour of most applications is predictable (over 90% of the pre-

dictions are correct), with a variety of prediction schemes. However, there are

a few exceptions such as sort with accuracy level of less than 80% across all

prediction schemes used. The GAg scheme accuracy level tends always to lag the
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(a) Scaled IPC for window size of 32.
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(b) Scaled IPC for window size of 64.
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(c) Scaled IPC for window size of 128.
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(d) Scaled IPC for window size of 256.

Figure 3.4: Scaled IPC for idealised processor window sizes 32, 64, 128, 256.
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(a) Branch prediction accuracy using predictors with 12 bits history.
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(b) Branch prediction accuracy using predictors with 8 bits history.
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(c) Branch prediction accuracy using predictors with 4 bits history.

Figure 3.5: Accuracy for the 4 variations of the PPM with history lengths (12, 8,
4).
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other 3 schemes and there is little difference in terms of accuracy among the other

3 schemes.

3.3.5 Memory Reuse Distances

Caching frequently used data in smaller, local buffers near the RH is essential

as it reduces the access time to data [50]. The ef�cacy of caching depends on

the principle of locality of reference. The locality of reference in any application

can be quanti�ed using the memory reuse distance. Quantifying the locality of

references enables the determination of the appropriate size for the local buffers.

Memory reuse distance is the number of distinct data element references be-

tween two references to the same data element. It allows the quantitative com-

parison of the locality of applications that is not tied to any particular buffer

design.

Address traces are obtained using MICA [82]. In MICA, reuse distances are

limited to memory reads and are evaluated as follows. The address space is divided

into 64-byte memory blocks. For each memory read, the corresponding 64-byte

memory block is determined. Reuse distance is the number of distinct 64-byte

memory blocks referenced between two references to the same block. The reuse

distances for all memory reads are then sorted into 19 buckets. Each bucket cap-

tures distances within [2n, 2(n+1)[ 64-byte block with n ranging from 0 to 18. The

�rst captures reuse distances of [1, 2[ while the last actually captures [218,∞[. For

example, the fourth bucket corresponds to accesses with reuse distance between

23 and 24 blocks.

Table 3.2 on page 53 shows the probability of reads to the same address having

a particular reuse distance. For instance, the probability of two memory reads to

the same data element in backprop having a reuse distance between 20 and 21 is

0.50. Note that the probabilities in the table do not add up to 1 as cold references

(data elements referenced only once) are not shown in the table. Furthermore,

some of the probabilities are so small that they are shown as 0.00. Columns where

all rows are 0.00 are not shown in the table.
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Buckets

Benchmark [0, 1[ [1, 2[ [2, 3[ [3, 4[ [4, 5[ [5, 6[ [6, 7[ [7, 8[ [11, 12[ [18,∞[

backprop 0.50 0.09 0.04 0.13 0.17 0.02 0.00 0.00 0.00 0.05

bfs 0.56 0.09 0.11 0.05 0.06 0.06 0.07 0.00 0.00 0.00

bodytrack 0.66 0.11 0.11 0.05 0.03 0.01 0.01 0.00 0.02 0.00

facesim 0.68 0.07 0.08 0.07 0.03 0.02 0.02 0.01 0.00 0.01

fib 0.58 0.08 0.11 0.09 0.03 0.04 0.04 0.01 0.00 0.00

fluidanimate 0.58 0.13 0.15 0.04 0.04 0.03 0.02 0.00 0.00 0.00

fft 0.58 0.10 0.09 0.06 0.04 0.02 0.05 0.00 0.00 0.02

freqmine 0.45 0.12 0.14 0.11 0.06 0.07 0.04 0.01 0.00 0.00

kmeans 0.83 0.01 0.02 0.05 0.02 0.06 0.00 0.00 0.00 0.00

nqueens 0.34 0.63 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pathfinder 0.54 0.10 0.08 0.09 0.07 0.05 0.07 0.00 0.00 0.00

sort 0.76 0.15 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.03

streamluster 0.90 0.01 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.03

vips 0.44 0.23 0.18 0.06 0.04 0.04 0.00 0.00 0.00 0.00

x264 0.74 0.12 0.06 0.02 0.02 0.02 0.01 0.00 0.00 0.00

Table 3.2: Memory reuse distance statistics.

3.3.5.1 Observations

Most memory reads from the applications in the pool tend to fall within distance

buckets [0, 1[ and [1, 2[. For a majority of applications the [0, 1[ bucket covers

more than half of all memory reads.

3.3.6 Memory footprint

Memory footprint refers to the amount of memory referenced by an application

during execution. Quantifying memory footprint is important for mobile pro-

cessor design as memory issues play a vital role, and often impact signi�cantly

performance, power consumption and overall cost of a design [85].

Figure 3.6 on page 54 shows the instruction and data memory footprint for

each application in the application pool. Memory footprint is characterized by

counting the number of unique 64-byte blocks and 4KB pages touched. The counts

for data and instruction addresses are presented separately.
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(a) Size of data footprint (64 byte block)
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(b) Size of data footprint (4KB page)
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(c) Size of instruction footprint (64 byte block)
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(d) Size of instruction footprint (4KB page)

Figure 3.6: Size of Data and Instruction Memory Footprints.
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3.3.6.1 Observations

fft has a relatively large data footprint (large working set) compared to the other

applications. However, its instruction footprint is small as it repeatedly applies

a small set of instructions over a large amount of data. Streaming (e.g x264 and

related applications (e.g streamcluster) tend to have larger instruction footprints

than the rest.

3.3.7 Parallel Speedup

Figure 3.7 on page 56 shows the parallel speedup for each reference application.

This indicates the number of processors that can be effectively utilize by an ap-

plication assuming a perfect memory system and communication architecture.

Hence, the speedups in Figure 3.7 could be considered as upper bounds which

may not be achieved in a real machine. This study did not attempt to account for

the effects of load balancing and simply ran applications with the recommended

ratio of threads to CPU. Speedups are across parallel regions of code only and

are measured by counting the number of executed instructions.

3.3.7.1 Observations

Only a few of the applications have speedups close to the ideal. The difference

between the ideal and average speedup becomes signi�cant beyond 8 cores. For

instance, the average speedup at 8 cores is only 60% of the ideal. The non-linear

speedup shown by most of the applications suggests that serial sections are still

signi�cant.

3.3.8 Key Characteristics

• 3 classes of instructions—load, store and integer arithmetic or load,

store and floating-point arithmetic—tend to dominate in every appli-

cation.

• A majority of applications require �oating-point support.

• A few functions dominate execution in most of the applications.
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Figure 3.7: Speedup for 1, 2, 4, 8 and 16 cores.

• Branch behaviours are largely predictable.

• Memory reuse distances for reads are largely within 1 and 4 64-byte memory

blocks.

• Unsurprisingly, speedup via parallelization is not linear even when restricted

to parallel code regions.

3.4 Impact on Recon�gurable Accelerator Design

This section highlights how the application characterisation guides the design of

VIREMENT. The actual design is discussed in chapters 4 and 5.
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• Sequential sections of applications are signi�cant as indicated in section 3.3.7.

This con�rms the need for ef�cient single-thread acceleration in mobile

CMPs, as was suggested in chapter 1.

• The x86 architecture, the platform used during characterisation, has limited

bit-operators. As such, applications that do extensive bit-level computation

have to use a lot of shift and logic instructions to synthesise bit-operators.

However, the analysis of the application pool shows that shifts and logic

operations are relatively small, indicating that the majority of operations

are at the word level. This supports employing a coarse-grained RH in the

proposed architecture.

The proposed RH should support the dominant instruction classes: load,

store, integer arithmetic and floating-point arithmetic. However,

shift and logic instructions are often intertwined with other classes of in-

structions. Not supporting them may reduce the number of operations that

could be executed on the RH.

• The amount of ILP among the applications varies suggesting a two dimen-

sional array of interconnected PEs (see section 3.3.3 on page 48). A 2D

array exploits ILP, when and if available, but is also capable of executing

sequences of dependent instructions. This, potentially, allows the same hard-

ware to accelerate diverse applications such as pathfinder (with relatively

high ILP) and bfs (with relatively low ILP).

3.5 Summary

This chapter characterised a number of reference applications with the aim of

using the output of the characterisation process to guide the design of VIREMENT.

The following characteristics were quantitatively measured: dynamic instruction

mix, dominant kernels, ILP, branch predictability, memory reuse distances and

parallel speedup. How these impact the design of VIREMENT was discussed.

The next chapter discusses the design of VIREMENT.
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VIREMENT Hardware Architecture

4.1 Introduction

VIREMENT could be described as a multicore dynamic ASIP [86] that uses Re-

con�gurable Functional Units (RFUs) instead of the custom functional units to

boost single thread performance. Application sections targeting the RFU are pro-

grammed with the recon�gurable instruction set, microops, instead of the standard

instruction set. The microops are hardware primitives, similar to microcode [87],

for orchestrating processing on the RFU.

This chapter starts with a high level description of how the VIrtual REcon�g-

urable Micro-ENgine for Translation (VIREMENT) and its associated JIT com-

plier, the Dynamic Compilation Engine (DCE), improve single thread performance.

It then delves into the details of VIREMENT’s design. The DCE is described in

chapter 5.

4.2 VIREMENT Overview

VIREMENT executes instructions like conventional processors but, additionally,

adapts to the executing application at runtime with Recon�gurable Hardware

(RH). The �exibility of the RH, integrated as an extra functional unit, reduces

its ef�ciency compared to an ASIP but enables its use as a programmable general

purpose accelerator. The DCE, based on Lower Level Virtual Machine (LLVM)

[59], generates microops for programming the accelerator on-the-�y enabling
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(b) Recon�gurable execution in VIREMENT.

Figure 4.1: Overview of compilation and execution in VIREMENT.

VIREMENT to adapt to dynamically generated code.

The code generation process is quite simple and is illustrated at a high level

in �gure 4.1a. Initially, critical functions (kernels) requiring acceleration are iden-

ti�ed, translated into a suitable IR and presented to the DCE by the VM that

wants its code accelerated on the RH. Each basic block in a critical function is

then translated into microops by the DCE. The mapped basic block is replaced in

the IR by a single special instruction which serves as a pointer to the location of

the microops for that particular basic block. Finally, the modi�ed IR is complied

to the target binary by the DCE. Each original basic block is now replaced by

the special instruction pointing to its con�guration and executes as an atomic

unit on the recon�gurable functional unit as in �gure 4.1b. Essentially, the DCE

synthesises an application speci�c instruction (or complex custom instruction),

on-the-�y, to replace each basic block in a kernel. Large basic blocks may, albeit,

map into more than one group of microops.

Recon�gurable instructions can also be generated statically for VIREMENT
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but applications written in this manner are no longer portable as the recon�g-

urable ISA is not intended to be backward compatible. However, static compila-

tion could be exploited to develop highly optimised software in situations where

forward-scaling is not a design objective.

4.3 Microarchitecture

VIREMENT assisted by the DCE is required to increase single-thread performance

in the presence of dynamically generated code by synthesising (on-the-�y) and

executing complex custom instructions. Traditionally, complex instructions in

Recon�gurable Processors (RPs) are built from multiple basic blocks to increase

the performance impact and amortise the cost of recon�guration. Combining basic

blocks into more complex structures using traditional complier techniques, such

as superblock scheduling [88] and trace scheduling [89], increases the number of

operations and ILP among the operations. Building such structures at runtime,

however, is expensive. Therefore, VIREMENT has to work with the small number

of operations and ILP available within a basic block. As such, each complex

instruction synthesised will have a small execution period. This implies frequent

switching between the CPU and the RH.

The relatively short execution time of the complex instructions and the fre-

quent switching between standard and recon�gurable execution suggests that

optimal performance will be achieved by integrating the RH as another func-

tional unit within the processor. Compared to other techniques of integration, an

RFU has the lowest communication latency and is the most versatile (see chap-

ter 2). Hence, each core in VIREMENT is a host CPU augmented with a RFU,

the VIREMENT Recon�gurable Functional Unit (VRFU).

4.3.1 CPU

The CPU is comparable to ARM926EJ-S [90]. It is a simple, in-order, 5-stage

pipelined, modi�ed Harvard architecture, RISC core. It can be replicated n times

to form a CMP (see �gure 4.2 on page 61). The L1 caches are 32 KB and the

design is discussed in page 70. Coherence is maintained among the L1 data caches
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Figure 4.2: 4-core VIREMENT processor block diagram.

by an MESI [91] protocol snooping cache controller. The processor implements

a weak ordering memory consistency model [92].

Each core supports three instructions sets: ARM, Thumb and VIREMENT

Execution Environment (VEE). ARM is the 32-bit main instruction set while

Thumb is a subset of ARM with each instruction encoded in 16 bits. VEE is the

recon�gurable instruction set, microops, but can only be accessed by executing

a special ‘ARM’ instruction “Branch-to-Virement"(BXV). The actual ‘decoding’

of microops is done by the VRFU. Each BXV only serves as a pointer to a single

context of microops, uniquely identi�ed by the address encoded in each BXV

instruction.
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Figure 4.3: BXV binary encoding.

The BXV instruction, mapped from the ARM’s system call space, depicted

in �gure 4.3, has a 24-bit immediate �eld that is forwarded to the VRFU by the

ARM decoder. The VRFU interprets the immediate as a 24-bit signed offset to

the memory address of the �rst word in a con�guration (the actual mechanism is

discussed in section 4.4.2.1 on page 72).

All the general purpose registers and the �ag bits of the CPU are hard-wired

(i.e. available) to the VRFU. The actual selection of registers is by the VRFU.

Hard-wiring allows the VRFU access to all the general purpose registers in the

CPU without complicating the hardware design.

4.4 Organization and Integration

The VRFU consists of a two dimensional array of processing elements (see page 56),

the VIREMENT Recon�gurable Datapath (VRD) and the VIREMENT Control

Unit (VCU). The VCU is mainly responsible for managing recon�guration feeding

the VRD with the correct set of microops as selected by the address encoded in a

BXV.

Figure 4.4 on page 63 shows how the VRD is integrated into the CPU. The

numbers indicate the logical steps involved in processing a BXV instruction and

are explained below:

1. The ARM decoder partially decodes a BXV and stalls further instruction

fetches. The address section of the decoded instruction is forwarded to the

VCU. The CPU now awaits the completion signal from the VRFU.

2. The VCU fetches, from memory, the correct set of microops using the address

from the previous step.

3. The VRD selects the particular registers needed from the hard-wired register

lines.
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Figure 4.4: High level description of instruction execution on VRFU.

4. Execution starts on the VRD under the supervision of the control unit.

5. When execution completes the results are written back to the register �le.

6. Finally, a completion signal is sent to the decoder which then removes the

pipeline stall.

4.4.1 VIREMENT Recon�gurable Datapath

The VRD consists of an array of interconnected simple PEs with data routed using

multiplexers (see �gure 4.5 on page 65). Each PE is basically an ALU. The PEs are

arranged into rows and columns, with each row connected to the next through

a switch box (multiplexers). Computation �ows from top to bottom with each

switch box capable of connecting any of the previous row’s outputs to any of the

next row’s inputs. This restrictive interconnection is one of the keys to enabling

dynamic compilation on VIREMENT as it greatly simpli�es the P&R algorithm.

The ‘traditional’ recon�gurable array often has, at least, mesh connection

(there are connections between destinations and sources of adjacent PEs in hor-

izontal and vertical directions). P&R on these arrays has been shown to be a

NP-complete problem [93, 94] and in practice a two step process: �rst the place-
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ment is performed and then routing. Placement is often based on computationally

intensive meta-heuristics [95] such as genetic and simulated annealing algorithms

while the routing stage is usually based on path�nder and similar algorithms

which are also computationally intensive [95, 96]. Consequently, P&R on such

architectures is time and resource (on some architectures the complexity of P&R

approach that of FPGAs) making them unsuitable for resource-constrained mo-

bile processors; hence, the need for a more restrictive array design which simpli�es

P&R.

The VRD is pure combinational logic reducing its complexity, latency and

power consumption. Each PE performs only integer ALU operations, including

address generation for memory operations, keeping the whole structure simple

and ef�cient. Floating-point operations in the VRD are not yet supported.

Floating-point operations are complex and multi-cycled, each operation re-

quires layers of con�guration. With �oating-point intensive applications—a sig-

ni�cant number of reference applications in see chapter 3 are �oating-point

intensive—simply using multiple con�gurations to perform each operation will

lead to the VRD running out of con�guration cache capacity (con�guration caches

as shown on page 72 are used to reduce recon�guration costs), causing costly

fetches of additional con�gurations from main memory. The development of a

cost-effective technique for sharing �oating-point PE may be required necessitated

by the large amount of resources consumed by �oating-point hardware. Possible

starting points for extending the VRD for �oating-point operations are discussed

in chapter 8.

PEs operate on the Multiple Instruction Multiple Data (MIMD) model i.e. each

is con�gured separately via a private context register. The content of the context

register determines the operation performed by the PE. Many RH are specialised

for Single Instruction Multiple Data (SIMD)-style computations. SIMD is more

space ef�cient than MIMD as a single con�guration is shared by multiple PEs.

This style is well suited for streaming type programs, where data parallelism

abounds, saving con�guration and cache storage by sharing an instruction for

multiple data. In the absence of abundant data parallelism performance suffers

on SIMD arrays as each PE cannot execute independently. VIREMENT largely

maps a small number of independent operations at a time to the VRD making
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Figure 4.5: ALU interconnection on the VRD.

MIMD-style more appropriate.

4.4.1.1 ALU

The fundamental processing element in the VRD is the ALU. The VRD’s ALUs are

kept simple to reduce latency, cost and energy consumption. Each ALU operation

can set 4 1-bit �ags: a N-sign �ag (set if operation result is negative), a Z-zero �ag

(set if adding two operands of the same sign yields a result with opposite sign), an

V-over�ow �ag (set if number exceeds range) and a C-carry out �ag (set if there

is a carry out of the most signi�cant adder result bit). The �ag structure is similar

to the one on the host CPU allowing the CPU and VRFU to exchange �ags.

Each operation has three operands, two being 32-bit values and the third a

1-bit value. The third operand can be a �ag from any of the ALUs in a previous

row. Each of the two 32-bit values can be from any of the ALUs in the previous

row, any of the host processor’s general purpose registers or an 8-bit immediate

value encoded in the microop itself. other instruction in the ISA.

Supported ALU operations are listed in table 4.1 on page 66. The operations

selected were determined with the help of the dynamic instruction mix of reference

applications (see page 56).
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Opcode Description
add op1 + op2

addc op1 + op2 + flagC

sub op1 + op2 +1

subc op1 + op2 + flagC
lshl op1�logical op2

lshr op1�logical op2

ashl op1�arith op2

ashr op1�arith op2

and op1 ∧ op2
or op1 ∨ op2
xor op1 Y op2

Table 4.1: Supported data operations.

4.4.1.2 Interconnect

The interconnect links the ALUs together to obtain the desired functionality. There

are no links between PEs on the same row to reduce the complexity of P&R and

the hardware. Figure 4.6 on page 67 shows how the data switches (from �gure 4.5

on page 65) are composed from multiplexers. Flag switches, omitted for clarity, are

similar to the data switches. Since register inputs are hard-wired, see section 4.3.1

on page 60, multiplexers select the registers for each ALU. Another multiplexer,

connected to the output of each ALU, selects the register line on which the ALU

result will continue.

In some situations, e.g. multi-stage operations using temporary values, the

result from an ALU operation should not be written to the register lines but

forwarded to another ALU. To handle such situations, the second operand of

each ALU can be from any ALU in the previous row. Figure 4.7 on page page 68

shows the ALU with this enhancement. A similar arrangement is used to forward

�ags.
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4.4.1.3 VRD Dimensions

To determine the number of columns (width) and rows (depth) for the VRD LLVM

Out-of-Order-Processor Emulator (LLVMOOPE), developed as part of this the-

sis, is used. LLVMOOPE is a custom LLVM tool, based on lli (LLVM byte code

interpreter), that mimics an Out-of-Order-Processor (OOP) processor model in

which everything is idealized and unlimited except for the window size (limited

to a basic block). It takes basic blocks from programs in LLVM bitcode, converts

LLVM instructions into microops, schedules these microops on the ideal OOP

and outputs the schedule in a row/column format termed a schedule matrix (see

�gure 4.8). A schedule matrix is basically a trace of instructions executed in the

ideal processor presented as an x-by-y matrix. The x dimension (width) is the

number of instructions executed in parallel while the y dimension (depth) repre-

sents cycles (time). The functional units of the out-of-order processor supports

only the operations listed in table 4.1 on page 66. Any LLVM instruction that can

not be fused from (or mapped to) the microops in table 4.1 triggers the creation

of a new schedule matrix.

A schedule matrix approximates the dimensions of a VRD needed to execute
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c = (a+8)+(a-4)+ b;

b = b+3;

(a) LLVM code.

i1: t1 = ldr a

i2: t2 = ldr b

i3: t3 = t1 + 8

i4: t4 = t1 - 4

i5: t5 = t2 + 3

i6: t6 = t4 + t2

i7: t7 = t3 + t6

i8: c = str t7

i9: b = str t5

(b) Microops Code.
cycle FU 1 FU 2 FU 3

0 t1 = ldr a t2 = ldr b

1 t3 = t1 + 8 t4 = t1 - 4 t5 = t2 + 3

2 t6 = t4 + t2 t7 = t3 + t6 b = str t5

3 c = str t7

(c) Schedule Matrix.

Figure 4.8: Basic block processing in LLVMOOPE.

the basic block from which the matrix was generated. LLVMOOPE compared

to the VRD, makes a number of simplifying assumptions, such as not modelling

the interconnect by assuming that routing from a producer to a consumer is

guaranteed by storing intermediate values in a central register �le. As such, the

sizes of schedule matrices should be viewed as theoretical limits which may not

be achieved on the VRD.

4.4.1.4 Depth

Table 4.2 on page 70 shows the cumulative percentage of schedule matrix depths

for a number of the integer applications from the application pool (see page 40).

For example, the 86.20% in bfs at depth 2 means that 86.20% of the schedule

matrices in bfs have depths less than or equal to 2.

4.4.1.5 Width

Table 4.3 on page 70 shows the schedule matrix width statistics for 5 integer

applications from page 40. For instance, only 0.81% of schedule matrices have
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Depth bfs �b freqmine nqueens path�nder sort Average
1 65.2 0 46.69 62.5 78.05 60.61 47.06
2 86.21 100 78.86 81.25 87.80 84.85 86.25
3 93.10 100 92.51 87.5 97.57 90.91 92.80
4 100 100 98.56 100 97.57 90.91 97.89
5 100 100 99.71 100 100 96.97 98.34
≥ 6 100 100 100 100 100 100 100

Table 4.2: Cumulative percentage of schedule matrices with varying depths.

1 2 3 4 5 6 7 8 9 10 11 12
1 100.00 72.40 53.40 37.02 25.96 16.38 9.79 5.53 4.04 2.55 1.70 1.49
2 47.97 22.19 12.26 7.66 2.96 1.48 1.48 1.48 1.63 0.86 0.00 0.00
3 19.27 6.90 2.23 1.42 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 7.28 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 1.92 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3: Matrix utilization of schedule matrices.

width 5 or more in row 3. The intensity of the colour in each cell indicates the

level of utilization (higher utilized cells have a darker colour).

4.4.1.6 VRD Size

The ideal would be to have a VRD that covers all the utilized cells in Table 4.3.

However the cost of such a design would be prohibitive. Consequently, VIRE-

MENT uses a 4×4 VRD as a compromise between performance and cost. From

Table 4.3, a majority of the con�gurations would �t on a 4×4 VRD.

4.4.1.7 Data Memory Interface

From the analysis of applications (see �gure 3.2a on page 45) memory accesses

(i.e. load and store operations) are signi�cant. Therefore, supporting memory

accesses on the VRD would boost performance.

The CPU’s L1 data cache is a natural communication medium between the

VRFU and the main memory. Accessing memory through the L1 data cache keeps

programming simple as it eliminates the need for the VRFU to manage coherency
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in a CMP design. Ideally, each PE should be able to perform two reads and a

write to the local memory. Then, an L1 cache with 8 read ports and 4 write ports

is required to service a row in the 4× 4 VRD. Since the VRD is much faster than

the CPU the cache may need to service requests from all the PEs concurrently

for the cache not to become a bottleneck. This will require 32 read ports and 16

write ports. Caches, however, with such number of ports are impractical because

of hardware, energy and delay (access time) costs. hardware arbiter between the

memory requests generated by the PEs and the banks of the memory can be used

to allow each PE access data in any bank. However, a multi-bank memory will not

be able to provide data when there is a bank con�ict, two different PEs requesting

access to the same bank simultaneously. Software/complier techniques have been

developed to reduce bank con�icts [97]

A more cost-effective solution employed in VIREMENT is to restrict memory

to one PE per row with the PE only allowed one memory operand. To increase

the bandwidth of the L1 data cache, cache accesses are time division multiplexed

(virtual multi-porting). A virtual multi-port cache [98] creates the illusion of

having multiple ports by clocking the port at a faster rate that the CPU and (time

division) multiplexing accesses to the caches physical ports. However, virtual

multi-porting may not scale as the frequency of the processor increases. Processors

operating at very high frequencies cannot afford to pump (operate at a higher

frequency) the data cache.

Multi-bank caches may be a better approach to multi-porting as mobile pro-

cessor frequencies enter the gigahertz range. Multi-banking [98] divides the cache

into multiple small banks, each single ported, allowing it to service multiple re-

quests concurrently if they are to different banks.

Cache misses imply that the data operations with memory operands have vari-

able delay. The exact mechanism for managing this is discussed in section 4.4.2.

4.4.2 VIREMENT Control Unit

The VCU’s primary responsibility is runtime recon�guration management. It

fetches con�guration bits from main memory, caches them locally, and loads

them on demand into context registers. It is also responsible for coordinating
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execution between the VRFU and the CPU.

The main components of the VCU are the Execution Engine (EE) and the

Recon�guration Cache (RC). The EE is a dedicated hardware sequencer responsi-

ble for managing execution on the VRFU. The RC is an on-chip SRAM memory

(and associated control logic) for caching con�guration contexts. The RC allows

the almost instantaneous loading of con�gurations into context registers.

4.4.2.1 Recon�guration Cache

The RC is essentially a fully associative cache. Each cache slot is indexed by the

address of the �rst memory word in a con�guration. The address of the �rst word

in a context is calculated by: (1) sign extending the 24-bit signed offset speci�ed

in BXV to 32 bits, (2) shifting the result two bits to the left to form a word offset

and (3) adding it to the contents of the PC. This is the same mechanism used to

determine the target of other branch instructions.

A cache miss is serviced by the main memory via DMA (set to burst mode).

The DMA controller is given the start address of the microops and the number of

bytes to fetch. Contexts are padded to align them to a memory word boundary

and are of the same size regardless of the actual number of PEs used, keeping

the RC design simple at the cost of memory space. The cache employs a LRU

replacement policy.

Figure 4.9 on page 73 depicts how control signals are generated for a PE. Each

PE requires a minimum of 20 control bits (�gure 4.10 on page 73 shows the exact

number of control bits per PE) while the data and the �ag switches that move

data from one row to another (see �gure 4.6 and �gure 4.5) require 51 bits per

stage. 3 control bits per 5:1 multiplexer for each of the CPU’s 16 general purpose

registers and the status register. The entire 4×4 VRD requires 393 control bits.

4.4.2.2 Execution Engine

The EE, depicted in �gure �gure 4.11 on page 74, manages the VRFU. It deter-

mines when to signal the CPU that execution on the recon�gurable array is valid.

Basically, the EE loads a con�guration into the context registers, waits for results

on the register lines to become valid and then signals the CPU.
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Figure 4.9: PE with all control bits and signals.
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Figure 4.10: Control bits per PE on the 4× 4 VRD.
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Execution Engine

VRD

RC

Cache
Controller

RC
Memory

L1 Interface

Interface
Controller

Memory
Buffers

register file Data cacheMemory via DMA

Figure 4.11: Block diagram of the VRFU.

The EE uses a counter to determine when to signal the CPU that data on the

register lines are valid. Once a con�guration is loaded, the EE sets the counter to

a value such that when the counter zeros the results on the register lines are valid.

The EE orchestrates memory accesses between the VRD and CPU data cache.

The EE has 1 store buffer per row of the VRD, which is uni�ed into a single

4-entry array. All stores reside in the buffer until written back to data cache. This

allows state to be restored easily if the block terminates unexpectedly. The EE

services a load request from the store buffer, if the requested address exits in the

store buffer. Since the cache is physically single-ported, the EE buffers data from

it on behalf of each of the PEs that use memory operands. On a cache miss, the EE

simply restarts the execution by loading a value into the counter used in timing

when VRD data becomes valid. The value depends on the row of the PE that

triggered the cache miss.
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4.5 Summary

This chapter presented a system overview of VIREMENT followed by a detailed

discussion of its design. The next chapter discusses the design of the DCE, the JIT

compiler that maps applications onto the VRD.
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5.1 Overview

The Dynamic Compilation Engine (DCE) is VIREMENT’s dynamic compiler. The

necessity of dynamic compilation on mobile processors was explored in chapters 1

and 2. The DCE generates code on the �y for the VRFU, starting from LLVM IR

[59] as shown in �gure 5.1. As with time- and resource-limited run-time compil-

ers used on battery powered mobile processors, the emphasis is on speed, small

memory footprint and energy ef�ciency rather than code quality. The DCE relies

heavily on the LLVM compiler framework for transformations and analysis.

Every dynamic compiler, even the leanest, has substantial overhead that may

degrade overall performance. However, DCE targets VMs such as ArBB where

kernels, which are typically few as shown in chapter 3, are the only dynamically

Microops

source

key kernels

LLVM IR

DCEComplier

VRFU

offline runtime

Figure 5.1: Compilation in DCE.
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compiled sections of an application. As such, compilation overheads are largely

amortised in the typical DCE usage model as only a relatively small part of the

application, which runs for a relatively long period of time, is complied. Quality

issues can be tackled with split compilation [99], performing time consuming

analyses of�ine and saving the results for runtime use. However, this has not been

implemented in DCE yet and is part of the potential extensions (see chapter 8).

LLVM offers a number of advantages to the DCE. The LLVM IR describes

applications with low-level, RISC-like, instructions while still retaining key high-

level information for effective analysis such as explicit data�ow representation

using an in�nite, typed register set in Static Single Assignment (SSA) [100] form.

This reduces translation overheads near to that of binary translators while still

allowing for more sophisticated analyses and transformations than possible in

binary translators. The IR can serve as a persistent, of�ine code representation

and as a compiler internal representation, with no semantic conversions needed

between the two. This increases the �exibility of DCE as kernels can be com-

plied to LLVM IR of�ine. Finally, LLVM IR is increasingly being used in parallel

compilation systems targeted by DCE making integrating DCE in such systems

straightforward. For instance, AMD embeds LLVM IR source for kernels in its

OpenCL Binary Image Format (BIF) 2.0 [101].

5.2 DCE's Structure

DCE leverages the LLVM target-independent code generator [102]—a suite of

reusable components that can be used for translating LLVM IR to binary machine

code format—for code generation.

The generation of recon�gurable instructions is a post-pass optimisation within

LLVM’s target-independent code generator. CPU instructions are �rst generated

and then translated into microops. This allows for the seamless intermixing of

standard and recon�gurable instructions since not all operations can be performed

on the VRFU. The novel pass, developed as part of this thesis, is designed to be

fast and lean (discussed later) allowing its use in mobile devices with constrained

processing power and storage.
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a

add i32

b

e

add i32

k

sub i32

%c =  add i32  %a,  %b;
%z =  sub i32  %c,   %k;
%d = add  i32 %e,   %c;

DAG FormationLLVM IR

a

add

b

e

add

k

sub

Instruction Selection

c = add a, b;
z = sub c, k : d = add e, c; 
 

Scheduling &Formation

r1 = add r2, r3;
r4 = sub r1, r5;
r6 = add r7, r1; 
 

 add1

sub add2

01110010 00110001 00100000 
00111101 00100000 01100001 
01100100 01100100 00100000 
01110010 00110010 00101100 
00100000 01110010 00110011 
00111011 00001101 00001010 

Reconfigurable Instruction 
Generation

Register Allocation & 
SSA Deconstruction

Code Emission

c = a + b ; z = c + k; d = e - c;

Figure 5.2: A pictogram of DCE’s compiler stages.

5.2.1 Runtime Code Generation Process

Runtime code generation can be logically divided into nine distinct steps (see

�gure 5.2):

1. DAG Formation: The �rst step is the expansion of the LLVM input into a

Directed Acyclic Graph (DAG) of LLVM instructions.

2. Instruction Selection: This step converts the DAG of LLVM instructions

into a DAG of native CPU instructions using a pattern-matching instruction

selector.

3. Scheduling and Formation: In this step, a scheduler assigns linear order to

the DAG from the previous stage. The DAG is now converted to a sequen-

tial list of native CPU instructions. These instructions are represented using

MachineInstr [102]. MachineInstr is an abstract way of representing ma-

chine instructions where each instruction is simply an op-code number and
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a set of operands. The list is still in Static Single Assignment (SSA) form as

registers are still virtual.

4. Register Allocation & SSA Deconstruction: Virtual registers are eliminated

from instructions and replaced with physical registers. The register allocator

is a fast, lean, local allocator from LLVM that attempts to keep values in

registers and reuses registers as appropriate [102]. Register allocation is

accompanied by the complete deconstruction of the SSA form.

5. Recon�gurable Instruction Generation: This step extracts and translates

suitable CPU instructions into microops, emits the microops into binary

form and replaces each set of translated CPU instructions with a single BXV

instruction that points to the location of the microops for that particular set

of instructions. The pass is a functional-level pass i.e. it executes on each

function in the program independent of all of the other functions.

Logically it has four stages (each stage is discussed in greater detail later):

(a) Instruction Translation: This stage identi�es and translates suitable

CPU instructions to microops. Instructions are extracted, sequentially,

from the list of CPU instructions and translated into microops repre-

sented using VIREMENT Intermediate Representation (VIR). The VIR

is an n-tuple consisting of an operator and operands. Each microop is

given a unique number, an ID, as it is translated. IDs help in tracking

dependencies between microops.

Translation starts from the beginning of a basic block and ends at an

unsupported CPU instruction or the end of a basic block. When trans-

lation stops, and the number of already translated CPU instructions is

above a certain threshold, compilation proceeds to next stage, else the

block is deemed not worthwhile, the translated microops are discarded

and translation restarts at the next instruction (or the next basic block)

beyond the unsupported one.

(b) Microops optimisation: A number of optimisations could be applied

to the microops at this stage. Presently, the main one is the removal
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of copy (register-to-register move) instructions. Copy instructions are

redundant as data can be moved directly from producers to consumers.

(c) Microops Placement and Routing: This stage involves the simultane-

ous placement and routing of microops on the VRFU. The output

of this stage is pseudo-assembly code for the VRFU. P&R of the mi-

croops uses a simple, single-pass greedy algorithm to keep resource

consumption and overhead to a minimum. The algorithm, described

later, simply takes a microop and determines, based on data dependen-

cies and resource availability, where to place it on the VRD.

(d) Microops Code Emission: Binary code is emitted for the VRFU. This

actually happens during code emission for the target CPU.

6. Code Emission: Machine code is emitted into memory ready for execution.

Each BXV in the machine code points to a corresponding VRFU con�gura-

tion.

5.3 Recon�gurable Instruction Generation

5.3.1 Translation

Algorithm 5.1 on page 81 is the Recon�guration Instruction Generation (RIG)

pass algorithm for translating a basic block of CPU instructions into microops. Re-

con�gurable instruction generation starts off with the allocation of memory space

for translated microops ( line 2 of algorithm 5.1). Then, each CPU instruction,

represented using MachineInstrs, is translated into microops (lines 3 to 6 of algo-

rithm 5.1). The translation process stops at recognizable basic block boundaries

like conditional branches, indirect branches and return instructions. Function

calls and unsupported instructions are also considered as basic block terminators.

The basic block by basic block mapping in the RIG pass limits it to the small

number of operations and ILP available in each block. The alternative, combing

multiple basic blocks, with techniques like trace [89], superblock [88], and soft-

ware pipelining [103], to increase the number of operations and ILP available is

80



5. Dynamic Compilation Engine

Algorithm 5.1: Algorithm for Recon�gurable Instruction Generation pass.

Input: MBB ; /* Basic-block of CPU instructions */

Output: MBBBXV ; /* Basic-block post translation */

Output: Con�gs1,2,...,n ; /* VRFU configurations */

1 while CPU instructions in MBB do
2 initialise_translation_buffer ;
3 while CPU instruction is supported do
4 translate_to_microop;
5 save_microop_in_translation_buffer;
6 end
7 if number_translated_CPU_instrs < threshold then continue;
8 optimize_microops;
9 place_&_route;

10 if P&R fails or P&R not bene�cial then continue;
11 replace_successfully_routed_CPU_instrs_with_bxv;
12 emit_microops_to_memory;
13 end

expensive to perform online.

An example translation of a basic block is shown in listings 5.1 and 5.2 on

page 81. The PC relative branch in line 5 of listing 5.1 ends the translation.

The subscript numbers in listing 5.2 are the IDs. %f, %i, %r, %t denote �ag,

register, immediate and temporary operands. %f1 means that a �ag is supplied

by instruction with ID 1 which means that line 1 of listing 5.2 must be placed at

least one row before line 2. %i8 is an immediate of size 8 bits.

1 bb12 :

2 %r5 = adds %r4,%r3

3 %r3 = adc %r2,%r5

4 %r4 = ldr [%r3,-%r0]

5 br %i8

Listing 5.1: Translation: CPU Instrs.

1 %r5 = add1 %r4,%r3

2 %r3 = adc2 %r2,%r5,%f1

3 %t1 = sub3 %r3,%r0

4 %r4 = ldr4 [%t1]

Listing 5.2: Translation: Microops.
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5.3.2 Optimisation

The next step in the RIG pass is to optimise the microops, line 8 of algorithm 5.1

on page 81. However, this only happens if the number of translated CPU instruc-

tions exceed a threshold. In other words, the algorithm simply abandons further

processing and goes back to line 1 of algorithm 5.1 if the number of translated

CPU instructions is below the pro�tability threshold. The threshold depends on

the particular implementation of VIREMENT targeted by the DCE.

Optimisation involves removing copy instructions i.e. register-to-register move

instructions, which are redundant on the VRD. The optimiser simply walks the

microops, bottom-up, removing each copy instructions and then updating the

operand(s) of each microop that depends on the eliminated instruction.

5.3.3 Placement and Routing

The next step in RIG is the Placement and Routing (P&R) of the translated

microops (line 9 in algorithm 5.1 on page 81). P&R maps each microop to a PE

and selects the appropriate inputs for that PE. The P&R algorithm is quite simple:

the �rst step is to retrieve the next unscheduled microop. The operands (including

�ags) are read to verify data dependencies. Data dependencies are tracked using a

small data structure called the Dependency table which shows the row and column

on the VRD where each operand was last de�ned. The columns are numbered

from left to right while the rows are numbered from top to bottom. The row

numbers of all the microop’s source operands are compared and the operand

with the highest row number determines where the microop is to be placed.

The next step is to search for a free PE on the VRD to place the microop.

Resource usage is modelled with a matrix-like data structure, the PE Table, with

the same dimensions as the VRD. Each element represents a PE and contains

information such as resource availability and routing data. Each row in the PE

Table is scanned from left to right, starting from the row determined by the De-

pendency table, until a free unit is found. The Dependency table is then updated

if the microop just placed produces a value(s). The con�guration for the multi-

plexers that select the inputs to PEs are generated from information stored in the

PE Table.
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register location

(a) Dependency Table.

row
col

0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.3: Tables before �rst P&R.

5.3.3.1 Example P&R

To enhance the understanding of the P&R algorithm, a time-line of the P&R algo-

rithm processing the microops in Listing 5.2 on page 81 is presented. Remember

that the size of the VRD is 4×4 with one memory access per row via the rightmost

PE (see chapter 4).

The state of the key data structures just before P&R of listing 5.2 starts is

shown in �gure 5.3. The Dependency Table is empty while all the elements of

the PE Table are initialised to 0 i.e. not occupied. To simplify the example and

enhance understanding the auxiliary tables necessary for emitting microops to

memory are ignored. Since the Dependency Table is empty, the �rst microop for

P&R cannot be data dependent on another microop. So, the microop on line 1

in listing 5.2 is placed on PE00. Cell 00 of the PE Table is changed to 1 indicating

that a microop has been mapped to it. Entries for %r5 and %f are made in the

Dependency Table as %r5 and %f are de�ned in line 1 of Listing 5.2. To help

in tracking �ag dependencies, microops that de�ne �ag values are tagged during

translation from MachInstrs to microops. This allows the P&R algorithm to

know when to add the �ag register to the Dependency Table. Figure 5.4 shows

the state of PR tables just after the mapping of line 1 of Listing 5.2.

To determine where to place line 2 of Listing 5.2 a search for where the input

operands are de�ned is made. %r2 is not in the Dependency Table so will be

supplied by the register �le. However, %r5 and %f are de�ned by PE00 requiring

that the microop be placed on row 1 onwards. Next, the PE table is searched,

starting from row 1 and moving from left to right, for a free PE. PE01 is the
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register location
%r5 PE00

%f PE00

(a) Dependency Table.

row
col

0 1 2 3

0 1 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.4: Tables after �rst P&R.

register location
%r5 PE00

%f PE00

%r3 PE01

(a) Dependency Table.

row
col

0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.5: Tables after second P&R.

�rst empty PE, so the microop is mapped to it. An entry for %r3 is added to the

Dependency Table as %r3 is produced by the microop. Cell 01 is then set to 1.

Figure 5.5 shows the tables after line 2 of listing 5.2 has been placed and routed.

The same process used in the mapping of line 1 and line 2 is employed for

line 3 and line 4. The state of the Dependency Table and PE Table after placing

and routing each line is shown in �gure 5.6 and �gure 5.7. Note that the microop

in line 4 is placed on the rightmost PE as only the rightmost PE can access memory.

5.3.3.2 Handling Register False Dependencies

Running the RIG pass post register allocation allows the seamless intermixing of

standard and recon�gurable instructions. However, this introduces false depen-

dencies (because of limited registers in the CPU) among microops which must be

eliminated to exploit fully the processing resources available on the VRD. This

section shows that the P&R algorithm is capable of handling false dependencies

introduced by register allocation. The microops in listing 5.3 on page 85 have a
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register location
%r5 PE00

%f PE00

%r3 PE01

%t1 PE02

(a) Dependency Table.

row
col

0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 1 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.6: Tables after third P&R.

register location
%r5 PE00

%f PE00

%r3 PE01

%t1 PE02

(a) Dependency Table.

row
col

0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 1 0 0 0
3 0 0 0 1

(b) PE Table.

Figure 5.7: Tables after fourth P&R.

number of false dependencies that could prevent their parallel execution.

1 %r1 = add %r3 , %r2

2 %r3 = sub %r9 , %r2

3 %r6 = and %r3 , %r5

4 %r3 = add %r8 , %r2

Listing 5.3: Microops with false dependencies.

There is a false dependency (Write After Read (WAR)) between between line 1

and line 2 of Listing 5.3. The sub and the add cannot execute in parallel because

of register constraints. A false dependency, Write After Write (WAW)—introduced

by the register allocator—exists between line 2 and line 4. They write to the same

register, therefore cannot be executed in parallel.

Figures 5.8 to 5.11 on pages 86 to 87 show how the P&R algorithm eliminates

false dependencies. Figure 5.8 depicts the state of the Dependency table and the PE
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register location
%r1 PE00

(a) Dependency Table.

row
col

0 1 2 3

0 1 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.8: Tables after placing line 1.

register location
%r1 PE00

%r3 PE01

(a) Dependency Table.

row
col

0 1 2 3

0 1 1 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.9: Tables after placing line 2.

table after line 1 is placed. From the Dependency table there is no true dependency

between the add and the sub, therefore line 2 is placed in the same row as line 1

(see �gure 5.9). The and is placed on the second row as it is dependent on line 2

(see �gure 5.10). There is no true dependency between line 2 and line 4, so line 4

is placed in cell 00 of �gure 5.11. The entry for %r3 in the Dependency table of

�gure 5.11 now refers to the most recent position where %r3 is produced, hence

the false dependency is eliminated.

5.3.3.3 Handling False Memory Dependencies

Unlike registers, tracking data dependencies in memory, at compile time, is dif-

�cult and expensive as memory addresses are often computed dynamically. Dis-

ambiguation or alias analysis, telling whether two memory references access the

same memory location, is further complicated by the use of pointers. The P&R

algorithm, therefore, is ‘conservative’ when reordering memory accesses.

The P&R algorithm can move a load before another load as long there is no
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register location
%r1 PE00

%r3 PE01

%r6 PE10

(a) Dependency Table.

row
col

0 1 2 3

0 1 1 0 0
1 1 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.10: Tables after placing line 3.

register location
%r1 PE00

%r3 PE02

%r6 PE10

(a) Dependency Table.

row
col

0 1 2 3

0 1 1 1 0
1 1 0 0 0
2 0 0 0 0
3 0 0 0 0

(b) PE Table.

Figure 5.11: Tables after placing line 4.

intervening store. The intervening store restriction prevents reading a memory

location that has not be written; at compile time the P&R algorithm cannot

guarantee that the load and store do not alias.

5.4 Summary

This chapter discussed the design of the DCE which is responsible for dynamically

mapping kernels onto VIREMENT’s recon�gurable hardware. The logical steps

required to map a function presented in LLVM IR format to executable binary

were presented and discussed. Examples were used to enhance understanding of

the process. The simple, novel P&R algorithm, which is the heart of theDCE, was

also presented. Using examples, the P&R algorithm is shown to be able to handle

false data dependences introduced by making the microops generation post pass

which allows the seamless intermixing of microops and standard instructions.

How the algorithm handles false memory dependencies is discussed last.
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The next chapter is on the design of VIREMENT’s evaluation framework. The

framework allows the gathering of system-level performance estimates.
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Evaluation Methodology

Replicating a hardware design in software to evaluate its performance has al-

ways been a fundamental design tool of architects. This chapter describes the

methodology and framework that allows performance statistics to be gathered

for VIREMENT at the system level using software-based simulation. The frame-

work and some of the reference applications in chapter 3 are used, in the next

chapter, to qualitatively determine if VIREMENT boosts single-thread perfor-

mance ef�ciently.

6.1 Evaluating Recon�gurable Processors

The main aim of performance evaluation is to quantitatively assess the quality of

a processor ‘early’ in the design process i.e. before building the actual hardware.

This is often achieved by simulating system behaviour and generating quantitative

estimates of expected performance. Relying only on intuition and experience is no

longer adequate for estimating performance due to the complexity of modern mo-

bile processors. In a recon�gurable processor, such as VIREMENT, performance

is largely determined by these key factors: the architecture of the host CPUs and

the recon�gurable unit, the system integration mechanism and the applications

to be executed. A good simulator should model all these factors.

Pure computational performance, measured via the execution time of a refer-

ence application, is often the primary concern of architects. For mobile processors,

however, area and power consumption are important. Presently, the framework
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lacks area and performance estimation capabilities. As such, area and perfor-

mance estimation are viable extensions to the framework. Possible starting points

are discussed in chapter 8.

Designing and building a Recon�gurable Instruction Set Processors (RISP)

simulator largely involves integrating a model of the recon�gurable unit into a

regular CPU performance simulator (in this case gem5 [104, 105]). Simulation

of the recon�gurable unit falls into two broad categories: functional simulation

(this work’s method of choice) and execution-based co-simulation. Each method

is discussed below.

6.1.1 Functional Simulation

Functional simulation avoids explicit modelling of the recon�gurable hardware

by treating con�gurations (only one particular con�guration is used for a �ne-

grained recon�gurable hardware) of the recon�gurable unit as additional CPU

instructions. A static function and timing behaviour, often obtained from a gate

level model, is assigned to these additional instructions. Functional simulation

is often used for RISPs [51, 52, 106] since the recon�gurable hardware is just

another functional unit in the CPU that gets its operands from the CPU’s register

�le.

Functional simulation is implemented by extending a CPU performance simu-

lator with an additional software component that implements the functional and

timing behaviour of recon�gurable unit. During simulation, the CPU performance

simulator steers recon�gurable operations to the new component.

6.1.2 Execution-Based Co-simulation

In execution-based co-simulation, the recon�gurable unit is not abstracted but

is simulated in its own cycle-accurate simulation environment usually interfaced

with a cycle-by-cycle CPU simulator. A particular con�guration is simulated by

loading the con�guration into the model and executing the con�guration. Models

are very detailed, covering the recon�gurable hardware, the con�guration and

the control circuitry. As such, they are often written at the Register Transfer

Level (RTL) level in Hardware Description Languages (HDLs), such as Verilog
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[107] and simulated with cycle-accurate HDL simulators, such as Synopsys VCS

[108]. The HDL simulators export interfaces that provide CPU simulators with

direct access to the simulation kernel.

Execution-based co-simulation produces more accurate performance estimates

compared to functional simulation but developing and testing such detailed mod-

els is non-trivial and expensive. As such, the evaluation framework uses functional

simulation for stimulating the VRFU.

6.2 VIREMENT Evaluation Framework

This section introduces VIREMENT’s evaluation framework. The framework,

based on the gem5 [104, 105] simulator which allows for the gathering of system

level performance estimates.

VIREMENT is particularly suited for functional simulation as it is a RISP.

Using an execution-based approach may produce more accurate results but the

overhead of communicating and synchronizing across two different simulation

environments reduces simulation speed unacceptably [109] especially when mod-

elling CMP designs. The simulator, therefore, trades accuracy for speed by em-

ploying functional simulation for the VRFUs.

6.2.1 Major Framework Components

The framework consists of:

• Gate-level Model of the VRFU: This describes the function, timing, and

structure of the recon�gurable functional unit (see chapter 4) in terms of

structural interconnection of Boolean logic blocks. This is used, with syn-

thesis tools, to obtain latency and area estimates. Latency estimates are used

to calibrate simulation models.

• Architecture Simulator: This consists of ISA models, CPU models and other

components that, together, enable the execution of (standard and recon�g-

urable) instructions and gathering of performance statistics. The architec-

ture simulator leverages gem5.
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• Compilation System This compiles the reference applications (chapter 3) for

the simulator. The main component is an implementation of the Dynamic

Compilation Engine (DCE) (see chapter 5). The compilation system relies

largely on LLVM compiler infrastructure.

6.2.2 Gate-Level Model

The 4× 4 VRFU in chapter 4 is described in Verilog [107] and synthesised—with

Design Compiler [108] for the NanGate 45nm standard-cell library [110]—to

obtain area and latency estimates.

Designing a functional model as described in section 6.1 requires the latency of

VRFU relative to the CPU. This is obtained by synthesising a Verilog description

of VIREMENT’s host CPU (see page 60). The CPU’s Verilog description builds on

MARS [111], a ARM-like processor. Timing estimates from the gate-level model

is used to derive the latency of the VRFU relative to the CPU. CPU synthesis also

targets the NanGate 45nm standard-cell library [110].

6.2.3 Architecture Model and Simulator

The performance simulator is based on gem5 [104, 105]. The key features of

gem5 are summarised below:

• Object-Oriented Design: Major simulation structures (CPUs, buses, caches,

etc.) are represented as objects. These objects are composed to describe the

VIREMENT architecture.

• Discrete-Event Simulation Core: A simulation is basically a collection of

objects (CPU, cache, etc.) interacting directly through method calls. Each

of these objects is responsible for managing its own timing by scheduling

its own events on the global event queue. The level of granularity within

each object is independent of others.

• Full System Multicore simulation: gem5 simulator models Realview’s ARM

development board with suf�cient detail to boot unmodi�ed Linux 2.6.35+
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with up to 4 CPUs. The OS required no modi�cation as the VRFU is com-

pletely transparent at the system level.

6.2.3.1 CPU Objects

The CPU object(s) is cycle-approximate. Cycle-approximate, in modelling taxon-

omy, refers to models that promise that operations will generally take the correct

number of cycles [112]. However, not all cycles within each operation are mod-

elled, unlike cycle-accurate models. For instance, a 64-bit multiply operation with

a latency of, say, 6 clock cycles may only produce the �nal result expected at the

end of 6 cycles i.e. it only gives the �nal value without providing intermediate

values. This differs from cycle-accurate models that compute and present each

intermediate value. As such, exactness is traded for simulation speed in the frame-

work. Very few cycle-accurate performance models exist, most simulators are

cycle-approximate [113].

In gem5, the ISA models plug into the generic CPU object and the memory

systems without having to specialize one for the other. The CPU object and ARM

ISA model were extended to model microops and the VRFU.

6.2.4 Compilation and Execution Model

VIREMENT targets forward-scaling programming environments where kernels

are dynamically compiled (see chapter 1). To enhance understanding, a forward-

scaling programming environment (Intel ArBB [114]) is described next.

6.2.4.1 A Forward-Scaling Programming Environment

Intel ArBB [114], depicted in �gure 6.1 on page 94, is an example of state-of-the-

art forward-scaling programming systems. The framework’s compilation system

models the ArBB (see next section). Kernels (parallel regions) are expressed in

ArBB language, an embedded language—as types, control �ow constructs, and

operators are all expressed using standard C++ constructs—whose syntax is imple-

mented as an Application Programming Interface (API). The kernels are complied

with a standard C++ complier, linked with the ArBB library and distributed as
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Virtual Machine

Runtimes:

TRT - Threading 
MM  - Memory
HRT - Heterogeneous 

   JIT:

   HLO
  LLO
  CCG

Services:

Debug

C++ APIs Other Language Bindings

Accelerator  Heterogeneous MulticoreHomogeneous Multicore

Figure 6.1: ArBB Virtual Machine.

normal applications. Function calls to kernels at runtime trigger mapping and

compilation.

The ArBB VM dynamically maps the abstract, latent parallelism in kernels,

expressed with the API, onto parallel mechanisms (e.g. threads, SIMD instructions,

etc.) in the physical machine. As such, it provides four major services:

• The Threading Runtime (TRT) dynamically selects the task granularity and

synchronization method to suit the underlying architecture. This is a key to

forward scaling as threading and synchronization overhead change between

processor generations. The TRT provides a �ne-grained threading model

for both data and task parallel threading.

• The Heterogeneous Runtime (HRT) orchestrates the loading and execution

of code on accelerators. It is responsible for moving data between the host

processor and the accelerators.

• The Memory Manager (MM) manages the memory with kernels in different

logical memory space. It has lock-free dynamic memory allocators as well

as a reference-counting garbage collector. It is responsible for allocation,

data formatting and partitioning data, in conjunction with the TRT and the

HRT, for parallel operations.

• JIT compiler dynamically builds intermediate representations of the com-

putation speci�ed by the ArBB API, performs optimisations and generates
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Figure 6.2: Framework’s compilation system.

object code for execution. Code for a kernel is compiled lazily and is cached

for reuse on subsequent calls. The complier is split into three components:

High-Level Optimizer (HLO), Low-Level Optimizer (LLO) and Converged

Code Generator (CCG).

6.2.4.2 Compilation on the Framework

The framework’s application compilation and execution system (depicted in �g-

ure 6.2) mimics the ArBB (described earlier) which is an example state of the art

forward-scaling programming environment. As such, it divides an application

into two parts: kernels and host. Kernels are those functions in an application

targeting the VRFU while the rest (and often bulk) of the application is the host.

Kernels are complied from source to LLVM IR—the persistent, of�ine variant—

with llvm-gcc [115]. llvm-gcc is a derivative of the GNU Compiler Collection

(GCC) [116] with GCC’s optimizers and code generators replaced with those

from LLVM. The host, rewritten to reference the kernels through the DCE like in

forward-scaling programming environments, is complied to object code for the

target CPU. The kernels, now in LLVM IR, are embedded into the host’s object

code and distributed as normal application binaries.

At runtime, a reference to a kernel triggers its compilation, using the DCE, and

execution on the VRFU. Kernels are complied once and cached for subsequent

use. Performance statistics in the evaluation framework (presented in the next

chapter) are only gathered across kernels since the aim is to evaluate single thread

performance of execution on the VRFU.

The DCE is based on LLVM Compiler Infrastructure, release 2.8. Development

and testing was largely on a virtual platform based on Open Virtual Platform
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(OVP) [117]. A virtual platform is a functional software model of a full system

used for software development in the absence of hardware [118]. OVP is an

instruction cycle accurate simulator, in which events are speci�ed in terms of

the processing of an instruction stream, making it much faster than the cycle

approximate evaluation framework.

6.3 Summary

The simulation methodology and the design and implementation of the simula-

tion infrastructure was the focus of this chapter. Two common simulation meth-

ods for recon�gurable processors, functional simulation and execution-based co-

simulation were discussed. Functional simulation is more suited to VIREMENT

(and faster); hence its adoption for the evaluation framework. The CPU model

used in simulation was calibrated using gate level models. It was also shown that

the framework’s compilation system models forward-scaling parallel program-

ming environments that VIREMENT is targeting.

The next chapter uses the framework and some of the reference applications

in chapter 3 to qualitatively determine if VIREMENT boosts single-thread per-

formance ef�ciently.
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Results and Analysis

7.1 Introduction

Previous chapters introduced VIREMENT and its associated JIT complier DCE,

a mobile CMP platform built to accelerate single threads using Recon�gurable

Hardware (RH). This chapter quantitatively evaluates the performance of the

platform, via simulation, to determine how well it meets its stated objective: the

ef�cient acceleration of single threads in dynamically generated code. Simulations

are based on the methodology and framework of chapter 6.

7.2 Area

Area, along with power/energy consumption, is an important constraint for mobile

processors often used in portable devices such as smart-phones. Mobile processors

are particularly sensitive to cost [119] and area is directly related to cost—cost

per die is roughly related to the square of die area [8].

Table 7.1 on page 98 shows the area of a VIREMENT core for different

Recon�guration Cache (RC) capacities. The area estimates are from gate level

models as described in chapter 6. BC is the baseline core and is similar to the

cores in VIREMENT but without the VIREMENT Recon�gurable Functional

Unit (VRFU) (see chapter 4). VIREMENT_x refers to the baseline core extended

with a VRFU having a RC capacity of x con�gurations. As such, VIREMENT_4 is a

VIREMENT core with RC of 4 con�guration slots. The number of gates is based
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CPU 
80% 

Control Unit 
11% 

PEs 
1% 

Interconnect 
8% 

VRFU 
20% 

Figure 7.1: VIREMENT’s resource usage.

on the assumption that designs are implemented using AND2_X1 (2-input-and

gate with driving strength of 1) gates. Area overhead is the ratio of the area of

VIREMENT_x to that of BC.

Design Area (µm2) Number of gates Area overhead

BC 297 920 280 000 1.00
VIREMENT_4 366 951 344 878 1.23
VIREMENT_8 368 185 346 039 1.24
VIREMENT_16 372 538 350 130 1.25
VIREMENT_32 381 984 359 008 1.28

Table 7.1: VIREMENT area cost.

From table 7.1, a VIREMENT core increases the area of the baseline core by

only 23% – 28%. Figure 7.1 shows the percentage make up of VIREMENT_16 core

with the VRFU split into there components: Control Unit, PEs and Interconnect.

Control Unit is the VIREMENT Control Unit (VCU) (see page 71) while PEs

refers to the VIREMENT Recon�gurable Datapath (VRD) (see page 63) with-

out the interconnection network (see page 66) which is reported separately as

Interconnect.

The majority of the VRFU, which is 20% of the VIREMENT_16 core, is the
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interconnection network and the control unit. The PEs accounts for just 1%

of the core’s area. The interconnect is bigger than the computational elements

because it provides each PE with access to all general purpose registers and the

status register in the host CPU. The size of the interconnect can be reduced by

providing only a subset of the registers in the VRFU. This, however, makes code

generation more dif�cult and hits performance as the complier is now required

to move data to and from this subset of registers before and after processing on

the VRFU.

7.3 Power

Power is another critical design constraint in mobile processors as they often run

on batteries without active cooling (most of the power consumed by a CMOS

circuit is converted into heat). There is no physical implementation of the VIRE-

MENT presently to take power measurements. Gate or netlist level power esti-

mation techniques [120, 121, 122, 123], however, can be used to obtain accurate

power estimates [121, 122].

Power estimates are obtained using the Nangate 45nm cell library [110], the

Synopsys Power Complier [108] and VIREMENT’s gate-level netlist (see page 92).

Power Complier’s power model [124] requires the switching activity of each net

to calculate power. Switching activity is the static probability that a signal is at

a particular logic state plus the toggle rate (the number of logic-0-to-logic-1 and

logic-1-to-logic-0 transitions per unit of time). It is obtained most often from

simulations but this requires simulation vectors that represent actual application

behaviour. It is dif�cult, however, to verify that the test cases covered are the ones

that cause the highest power consumption [125]. Hence, power is estimated using

the vectorless technique [121, 125]. This involves annotating the VIREMENT’s

primary inputs with the worst-case switching values (in this case toggle rates of

80%) which are propagated throughout the design using Power complier’s BDD-

based probabilistic estimation algorithm [120]. This approach has been shown

to provide realistic power-consumption estimates [125].

The worst-case power consumption for the entire VIREMENT_16 is estimated

at 60mW. 55% is consumed by the CPU and the rest by the VRFU (see �gure 7.2
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Figure 7.2: VIREMENT_16 worst-case power consumption breakdown.

on page 100). The worst-case power consumption in the VRFU is estimated to be

27mW with 70% consumed by the VRD and the rest by the VCU. Most power

in the VRD is consumed by the PEs as shown in the �gure.

With a worst-case power consumption of only 60mW for a VIREMENT_16 core,

a reasonable number of VIREMENT cores can be integrated into a mobile SoC

with room for other SoC components without exceeding the power limit of 2–3W

for mobile phones.

The power consumed by DCE during compilation is assumed to be negligible

as compilation is usually only a tiny fraction of execution time as shown in

table 7.11 on page 117.

7.4 Performance

This section evaluates the performance advantage of VIREMENT. Execution

time on VIREMENT_x is compared to that on BC. Only integer dominated appli-

cations (bfs, fib, nqueens, pathfinder, sort) from those characterised (see

chapter 3) are evaluated as VIREMENT lacks support for �oating point opera-

tions (see chapter 4). x264 and freqmine are integer dominated but fail to run on

the evaluation framework because of compilation issues. Further, measurements

are across kernels as explained in chapter 6. Applications for VIREMENT were

prepared as described in chapter 6. The serial version of each application is used
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for the single processors but measurement is still restricted to the kernels that are

parallized in the multi-threaded version. The dynamic instruction count across

the kernels of each of the application is shown in table 7.2.

Application Dynamic instruction count

bfs 2.5× 108

fib 2.2× 1012

nqueens 1.7× 1013

pathfinder 3.0× 109

sort 2.6× 109

average 3.8× 1012

Table 7.2: Dynamic instruction count
across kernels.

Table 7.3 shows the speedup (the ratio of execution time on BC to that on

VIREMENT_x ) for VIREMENT_16 with 1, 2 and 4 cores. The table lists, per ap-

plication, the speedup for 1-core (1xCPU ), 2-core (2xCPU ), 4-core (4xCPU )

VIREMENT_16; Arith_Mean (the arithmetic mean of speedup across the three con-

�gurations of VIREMENT_16) and Geo_Mean (the geometric mean of speedup

across the three con�gurations of VIREMENT_16).

From the table, VIREMENT_16 outperforms the baseline by an average of 2.6×
for the 1-core, 2.1× for the 2-core and 1.9× for the 4-core. pathfinder bene�ts

the most with speedups of 3.7×, 2.8× and 2.5× on the 1-core, 2-core and 4-core

con�guration.

Performance on VIREMENT is largely determined by the interplay of three

factors: (1) the Instruction Level Parallelism (ILP) within each basic block, (2) the

number of VRFU mappable operations within each basic block and (3) the relative

execution weight of each basic block. As such, an ideal application for acceleration

on VIREMENT is one whose frequently executing basic blocks contain a high

number of independent operations that can be executed on the VRFU. pathfinder

is nearer the ideal than the other applications. Applications with relatively low

ILP like bfs (see page 48) still bene�t as the two dimensional structure of the VRD
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Application
Speedup

(Execution Time BC/Execution Time VIREMENT_16)

1xCPU 2xCPU 4xCPU

bfs 3.0 2.1 1.6
fib 1.9 1.9 1.9
nqueens 2.5 1.8 1.8
pathfinder 3.7 2.8 2.5
sort 1.7 1.7 1.7

Arithmetic_Mean 2.6 2.1 1.9
Geometric_Mean 2.5 2.0 1.9

Table 7.3: VIREMENT_16 speedup.

executes strings of dependent operations faster than the host CPU (see chapter 4).

From table 7.3 on page 102, speedup drops when moving from the serial

version of an application to the threaded. Parallel programs use synchronization

primitives for controlling the interactions of threads and avoiding race condi-

tions. These primitives can’t always be mapped to the VRFU; they are often in

system libraries or use operations not supported on the VRFU, hence the decrease

in speedup. The relative time spent in these synchronization primitives often in-

creases as the number of threads increase. As such, performance on VIREMENT

relative to the baseline tends to decrease as the number of threads increase.

Speedup per application for VIREMENT_4, VIREMENT_8 and VIREMENT_32 is pre-

sented in tables 7.4 to 7.6 on pages 103 to 104. Tables 7.3 to 7.6 show that some

applications are more sensitive, in terms of performance, to the capacity of the

RC than others. Sensitivity is largely related to the number of con�gurations in

each application. fib has only 1 con�guration (see table 7.7 on page 104), hence

changing the cache capacity from 4 to 32 con�gurations does not affect perfor-

mance. sort, on the other hand, with 59 con�gurations is very sensitive to the

capacity of the RC.

102



7. Results and Analysis

Application
Speedup

(Execution Time BC/Execution Time VIREMENT_16)

1xCPU 2xCPU 4xCPU

bfs 0.43 0.25 0.15
fib 1.9 1.9 1.9
nqueens 2.4 1.8 1.8
pathfinder 3.6 2.8 2.4
sort 1.5 1.5 1.5

Arithmetic_Mean 2.0 1.5 1.5
Geometric_Mean 1.6 1.1 1.1

Table 7.4: VIREMENT_4 speedup.

Application
Speedup

(Execution Time BC/Execution Time VIREMENT_16)

1xCPU 2xCPU 4xCPU

bfs 3.0 2.1 1.6
fib 1.9 1.9 1.9
nqueens 2.5 1.8 1.8
pathfinder 3.7 2.8 2.4
sort 1.5 1.5 1.5

Arithmetic_Mean 2.5 2.0 1.9
Geometric_Mean 2.4 2.0 1.8

Table 7.5: VIREMENT_8 speedup.

7.5 Area and Power E�ciency

From section 7.2 and section 7.4, it is evident that performance increase is at the

cost of signi�cant area and power overheads. An important question is whether

a conventional processor could have been more ef�cient. This is answered with

the help of Pollack’s Rule [126] which states that the performance increase, by

microarchitecture alone, is roughly proportional to square root of increase in
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Application
Speedup

(Execution Time BC/Execution Time VIREMENT_16)

1xCPU 2xCPU 4xCPU

bfs 3.0 2.1 1.6
fib 1.9 1.9 1.9
nqueens 2.5 1.8 1.8
pathfinder 3.7 2.8 2.5
sort 1.7 1.7 1.7

Arithmetic_Mean 2.6 2.1 1.9
Geometric_Mean 2.5 2.0 1.9

Table 7.6: VIREMENT_32 speedup.

Applicationa Number Con�gurations CPU Instrs./Con�gurationb

bfs 31 6.8
fib 1 7.0
nqueens 12 5.5
pathfinder 27 3.7
sort 59 3.2

a Serial version.
b Weighted average of CPU instructions per con�guration.

Table 7.7: Number of instructions per con�guration.

complexity. As such, doubling the number of gates in a conventional processor

delivers only 40% more performance on the same technology node.

Pollack’s Rule, formulated for desktop processors, is applicable to modern

mobile processors as they both use the same micro (-architectural) techniques as

evidenced by �gure 1.1 on page 17.

It is assumed that the BC of section 7.4 can be enhanced to create a core, BCseq,

with greater sequential performance than that of BC by using the resources of

multiple BCs. Let the performance of a BC core be 1. Architects can expend the

resources of r BCs to create a more powerful BCseq with single thread performance:
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From Pollack’s Rule:

perf(r) =
√
r

�� ��7.1

With equation (7.1), adding r BC more resources increases sequential performance

by
√
r. So, performance can be doubled at a cost of four BCs, tripled for nine BCs,

and so on. Note that equation (7.1) only accounts for cores and does not factor

in components such as last-level caches, the on-chip interconnect, etc.

The area overheads for VIREMENT, see table 7.1, can be written in terms of r

BCs. For instance, the 1-core VIREMENT_16 uses 1.25 BCs to increase pathfinder's

performance by 3.5× relative to the BC. Since the area of VIREMENT and that

of the conventional sequential processor can be expressed in r BCs, the ratio of

their areas can be calculated.

Table 7.8 on page 105 is the area ratio of BCseq to VIREMENT_16 for 1-, 2-

and 4-core con�gurations. In other words, it is the additional area that a con-

ventional core needs (according to Pollack’s Rule) to match the performance of

VIREMENT_16. For multiple cores, it is assumed that loads across the cores are

perfectly balanced.

Application Area BCseq/Area VIREMENT_16

1xCPU 2xCPU 4xCPU

bfs 7.1 3.6 2.1
fib 3.0 3.0 5.0
nqueens 5.0 2.3 2.6
pathfinder 11 6.4 4.8
sort 2.3 2.3 2.3

Arithmetic_Mean 5.6 3.6 3.0
Geometric_Mean 4.8 3.3 2.8

Table 7.8: VIREMENT_16 area ef�ciency.

From table 7.8, it is clear that VIREMENT is more ef�cient at utilizing re-

sources to increase single-thread performance compared to a conventional design.

For instance, a single (conventional) BCseq core processor running pathfinder

is predicted to need nearly 1000% more resources than VIREMENT_16 to match
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VIREMENT_16’s performance.

Improvement in single-thread performance of conventional processors is often

accompanied by an increase in power consumption. A simple power estimation

[127], equation (7.2), can be used to model the relationship between power con-

sumption and performance of such processors.

power = perfµ
�� ��7.2

µ has been estimated to be 1.75 in conventional processors [128]. With Pol-

lack’s Rule, equation (7.2) leads to equation (7.3).

power = perfµ

= (
√
r)µ

= rµ/2

�� ��7.3

Therefore, the power consumption of a sequential microprocessor relative to a

BC can be estimated with equation (7.3).

Table 7.9 shows the additional power consumed by BCseq relative to BC for

its single-thread performance to match that of VIREMENT_16. From the table,

VIREMENT_16’s power ef�ciency— and by extension energy ef�ciency since VIREMENT_16

computes with less power— is better than that of a conventional processor.

Application Power BCseq/Power VIREMENT_16

1xCPU 2xCPU 4xCPU

bfs 3.7 2.1 1.3
fib 1.7 1.7 1.7
nqueens 2.7 1.5 2.6
pathfinder 5.3 3.4 2.6
sort 1.4 1.4 1.4

Arithmetic_Mean 3.0 2.0 1.7
Geometric_Mean 2.8 2.0 1.8

Table 7.9: Extra power to match VIREMENT_16.
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Figure 7.3: CMP design styles: (a) homogeneous CMP that replicates VIREMENT
core, (b) homogeneous CMP that replicates smaller baseline core and (c) hetero-
geneous CMP with numerous baseline cores and one VIREMENT core as host.

In conclusion, a ‘reasonable’ con�guration of VIREMENT, such as VIREMENT_16,

achieves better area, power and energy ef�ciency compared to a conventional de-

sign for the same single-thread performance.

7.6 Power Budget Designs

The power budget of a CMP is a critical design constraint and determines the

maximum number of cores in a design. This section compares, for a given power

budget the performance of VIREMENT_16, BC and BChet (see �gure 7.3) in terms

of performance, performance per watt and performance per joule. BChet is a het-

erogeneous CMP with one VIREMENT core for executing serial sections of an

application and n BC cores for executing parallel sections. It is assumed that the

VIREMENT core is powered off during parallel execution.

7.6.1 Models for VIREMENT_16

performance, performance per watt and performance per joule calculations are

based on extensions [129] of Amdahl’s analytical model [10] for the theoretical

maximum performance (or performance) in multiprocessors. Amdahl’s law states

that:

Perf =
1

(1− f) + f

n

�� ��7.4
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where n is the number of processors, and f (0 ≤ f ≤ 1) is the fraction of the

computation that can be parallelized. The power consumption of a VIREMENT_16-

based CMP can be modelled with the introduction of k (0 ≤ k ≤ 1) into equa-

tion (7.4) where it represents the power a VIREMENT_16 core consumes while idle

[129]. Assuming that a VIREMENT_16-based uniprocessor consumes a power of 1,

by de�nition, the power consumed by the CMP con�guration during the sequen-

tial execution phase is 1, consumed by the active core, plus (n − 1)k consumed

by the n idling cores. The power consumption by n VIREMENT_16 cores during

the parallel execution phase is n. From equation (7.4), it takes a time (1 − f)

plus f/n to execute the sequential and parallel sections, then the average power

consumption on a VIREMENT_16 CMP is:

W =
(1− f)×

(
1 + (n− 1)k

)
+
f

n
× n

(1− f) + f

n

=
1 + (n− 1)k(1− f)

(1− f) + f

n

�� ��7.5

performance per watt (Perf/W), which represents the performance achievable at

the same cooling capacity, can be modelled using equation (7.5) [129]. Since

performance is de�ned as the reciprocal of execution time, this metric is essentially

the reciprocal of energy. Perf/W of a single-core VIREMENT_16 is 1, for a CMP

composed from VIREMENT_16 it is:

Perf

W
=

1

(1− f) + f

n

×
(1− f) + f

n
1 + (n− 1)k(1− f)

=
1

1 + (n− 1)k(1− f)

�� ��7.6

Combining equations (7.5) and (7.6), performance per joule (Perf/J), a metric
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for evaluating the performance achievable with the same battery capacity, is [129]:

Perf

J
=

1

(1− f) + f

n

× 1

1 + (n− 1)k(1− f)
�� ��7.7

performance per joule is essentially the reciprocal of the energy delay product

(performance with the same energy consumption).

7.6.2 Models for BC

The performance of a BC-based CMP relative to a VIREMENT_16 CMP can be

modelled using equation (7.4) and introducing the variable sbc (0 ≤ sbc ≤ 1) [129].

The variable represents the performance of BC normalized to that of VIREMENT_16.

As such, a BC-based CMP’s performance is:

Perf =
sbc

(1− f) + f

n

�� ��7.8

.

Similarly, BC power consumption relative to VIREMENT_16 can be modelled

with two new variables: wbc (0 ≤ wbc ≤ 1) and kbc (0 ≤ kbc ≤ 1) [129]. wbc
represents active power consumption in a BC relative to that in a VIREMENT_16

while kbc is the power consumption of an idle BC normalized to the same core’s

active power consumption. Thus, Perf/W and Perf/J for a BC-based CMP can be

modelled as:

Perf

W
=

sbc
wbc + (n− 1)wbckbc(1− f)

�� ��7.9

Perf

J
=

sbc

(1− f) + f

n

× sbc
wbc + (n− 1)wbckbc(1− f)

�� ��7.10
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7.6.3 Models for BChet

The Pref, Perf/W and Perf/J of a BChet-based CMP, relative to a VIREMENT_16

CMP, can be modelled, as follows, with equation (7.4) [129]:

Perf =
1

(1− f) + f

(n− 1)sbc

�� ��7.11

Perf

W
=

1

(1− f)
(
1 + (n− 1)wbckbc

)
+

f

sbc

( k

n− 1
+ wbc

) �� ��7.12

Perf

J
=

1

(1− f) + f

(n− 1)sbc

×

1

(1− f)
(
1 + (n− 1)wbckbc

)
+

f

sbc

( k

n− 1
+ wbc

) �� ��7.13

7.6.4 Power Equivalent Models

Assuming that a uniprocessor VIREMENT_16 has a power budget of Wbudget and

that nv is the maximum number of VIREMENT_16 cores that can be instantiated

on a die. Since the uniprocessor has a power consumption of 1 then the nv cores

in the CMP con�guration can consume up to nv of power. Hence, the maximum

number of cores in a VIREMENT_16 CMP can be represented as [129]:

nv = Wbudget

�� ��7.14

Similarly, the nbc cores of a BC CMP consume power up to nbc × wbc, which

should be less than or equal to Wbudget. Therefore, the maximum number cores

for a budget of Wbudget is [129]:

nbc =
Wbudget

wbc

�� ��7.15
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Finally, the nhet cores of a BChet CMP consume up to 1+ (nhet− 1)wbc. So, the

maximum number of cores, nhet, is [129]:

nhet =
Wbudget − 1

wc

�� ��7.16

7.6.5 Comparing designs

Using the analytical models, Pref, Perf/W and Perf/J for the three designs are

evaluated and presented in �gures 7.5 and 7.6 on pages 113 and 115. Figure 7.4

on page 111 shows the number of cores used in the evaluations. Note, the number

of cores is rounded down when calculated with equations (7.15) and (7.16), hence

the kinks in the graphs of �gures 7.5 and 7.6 .

It is assumed that BC consumes 10% of full power while idling. The idle power

in VIREMENT_16 is consumption in BC plus that in the VRFU. Since, the VRFU is

largely a combinatorial circuit, it is assumed that leakage power dominates when

it is idling. Leakage power for the VRFU, from Synopsys Power Compiler, is ≈
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Figure 7.4: Number of cores for each power budget.
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Figure 7.5: Comparing designs for f = 0.3: (a) performance, (b) performance per
watt and performance per joule.
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Figure 7.5: Comparing designs for f = 0.3: (a) performance, (b) performance per
watt and performance per joule.

7% of the total power, as such, k is 0.08. sbc and wbc are 0.46 and 0.55 from the

previous sections.

As �gures 7.5a and 7.6a show, the power-equivalent performance of VIREMENT_16

is highest in most cases. As the relative power-budget increase, the performance

of BChet approaches that of VIREMENT_16 because BChet can have more cores for

the same power budget. BC’s performance is the lowest across all power-budgets,

even with a high f , because of BC’s low single-thread capability.

Figures 7.5b and 7.6b are the power-equivalent performance per watt for

f = 0.3 and f = 0.9. For high and low parallelism levels, VIREMENT_16 gives the

best performance per watt. As the relative power budget increase, the performance

per watt for the designs tends to converge. This is more pronounced when the

level of parallelism is low (f = 0.3).

For f = 0.3 (see �gure 7.5c ), VIREMENT_16 has the highest power-equivalent

performance per joule followed by BChet. However, as power budget increase the

113



7. Results and Analysis

1 2 4 8 16 32 64 128 256

Relative power budget

0

2

4

6

8

10

R
el

at
iv

e
p

er
fo

rm
an

ce

V IREMENT16

BC

BChet

(a) performance

1 2 4 8 16 32 64 128 256

Relative power budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
p

er
fo

rm
an

ce
p

er
w

at
t

V IREMENT16

BC

BChet

(b) performance per watt

Figure 7.6: Comparing designs for f = 0.9: (a) performance, (b) performance per
watt and performance per joule.
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Figure 7.6: Comparing designs for f = 0.9: (a) performance, (b) performance per
watt and performance per joule.

power-equivalent performance per joule for the three, again, tends to converge. For

f = 0.9 (�gure 7.6c), VIREMENT_16, again, has the highest performance per joule

and then BChet. The difference in performance per joule between VIREMENT_16

and BChet tends to decrease as the relative power-budget increases.

Concluding, a CMP composed from VIREMENT_16 outperforms the other al-

ternatives, using BC cores and a heterogeneous design (combing a VIREMENT_16

core with BC cores) in terms of Pref , Perf/W and Perf/J for most power bud-

gets and levels of parallelism. The heterogeneous design only starts to match the

ef�ciency of VIREMENT_16 at very ‘large’ power budgets. Therefore, for a typi-

cal mobile processor—targeting portable devices with small power and energy

budgets—VIREMENT_16 is the most appropriate design because of its performance

and ef�ciency.
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7.7 Evaluating DCE

The DCE needs to run on mobile platforms with constrained processing power,

memory, and storage. For instance, every application running on Google’s An-

droid platform must be able to run on at most 130MB of RAM and 260MB of

Flash external drive [2]. This section evaluates the suitability of DCE for resource

constrained, mobile platforms, such as Android [2], using the following criteria:

1. Memory requirements of DCE since it is targeting, often, memory con-

strained devices such as mobile phones.

2. Translation overheads and ef�ciency as the DCE may have to run on battery

powered devices where any computation depletes the limited battery energy.

All the applications in this section are the multi-threaded variant, running on a

2-core VIREMENT_16 CMP.

7.7.1 Memory Requirements

The memory requirements of DCE are evaluated by measuring three character-

istics: memory footprint, peak memory and the size of DCE itself. The results

are presented in table 7.10. Memory footprint refers to number of unique 16-

byte chunks of memory DCE references while compiling kernels. The maximum

amount of memory consumed by the DCE is the peak memory and is measured

in kB.

From table 7.10, all of the applications can be compiled with relatively small

memory footprints. On the average, the memory footprint is about 1MB while

the peak memory used across the applications averages 410kB. The size of DCE

itself is only 6MB (this can be reduced by ‘stripping away’ components of the

LLVM code generator library not used in the DCE). DCE easily meets the memory

requirement of mobile platforms such as Windows Phone OS 7 which requires

that an application’s RAM consumption must not exceed 90MB [130].

116



7. Results and Analysis

Application Memory Consumption

Peak (KB) Footprint (16B chunks)

bfs 370 61 000
fib 400 53 000
nqueens 440 65 000
pathfinder 310 61 000
sort 530 74 000

average 410 63 000

Table 7.10: DCE memory consumption.

7.7.2 Translation Overheads

Mobile processors are powered by batteries making it imperative that the DCE

is ef�cient as possible to reduce energy consumption. Table 7.11 shows the cost

breakdown of execution time for all the applications evaluated in section 7.4. In

the table, CPU and V RFU refer to the fraction of execution time spent on the

host CPU and on the recon�gurable hardware while DCE refers to the fraction

of execution spent by the DCE mapping kernels to the recon�gurable hardware.

From the table, translation overhead is negligible, less than 1% of total execution

time.

Application Fraction of total execution time

CPU V RFU DCE

bfs 0.749 2 0.210 2 0.040 7
fib 0.657 8 0.342 2 ≈0.000 0
nqueens 0.715 2 0.284 8 ≈0.000 0
pathfinder 0.785 9 0.210 3 0.003 8
sort 0.629 9 0.368 1 0.001 1

average 0.707 6 0.283 1 0.009 1

Table 7.11: Execution time break down
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Table 7.12 shows the average number of CPU instruction needed to map a

single LLVM instruction. In the table, Kernels refers to the number of functions

mapped to the VRFU; LLVM Instrs. is the number of LLVM instructions in the

mapped functions; CPU Instrs. is the total number of CPU instructions used in

mapping the functions and Instrs/Trans is the average number of CPU instruc-

tions used to map a single LLVM instruction.

Application Translation statistics

Kernelsa LLVMInstrs.b CPUInstrs.c Instrs/Transd

bfs 2 282 13 582 401 48 164.54
fib 3 49 8 232 170 168 003.47
nqueens 3 149 13 117 990 88 040.20
pathfinder 2 230 14 450 358 62 827.64
sort 4 355 45 938 461 129 404.12

average 2.80 213 19 064 276 99 287.99
a Number of kernels mapped to recon�gurable unit.
b Number of LLVM instructions in kernels.
c Number of CPU instructions required for translation.
d Average number of instructions needed to translate one LLVM instruction.

Table 7.12: Execution time break down.

Figure 7.7 shows the average time spent in each of the major passes of the

DCE while mapping the applications in table 7.2 to the recon�gurable unit. The

major passes in the DCE were discussed earlier in chapter 5. From the �gure, the

recon�gurable instruction generation pass is only 14.50% of DCE’s execution

time.
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Figure 7.7: Time cost of passes in DCE.

7.8 Summary

This chapter presented the quantitative evaluation of the VIREMENT architec-

ture and its associated JIT complier, DCE. The system increases single-thread

performance by an average of 1.65× – 2.16× depending on con�guration. The

area and power cost of this improvement was shown to be less than that of a con-

ventional processor design. Using analytical models a CMP based on VIREMENT

was shown to outperform a conventional processor baseline in terms of perfor-

mance, performance/watt and performance/joule. The memory requirements of

the JIT complier were shown to be small.

The next chapter presents a short review of the thesis and summarises the

contributions of the thesis. Suggestions on improvements are also presented.
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8.1 Synopsis

Even in the present CMP era—forced upon vendors by unsustainable power con-

sumption and ever increasing design and veri�cation complexity—single-thread

(or sequential) performance is still critical. Chapter 3 shows that the average par-

allel speedup across the 20 reference applications is low. Even with massively

parallel applications the serial sections are a bottleneck and have a signi�cant

in�uence of overall performance (Amdahl’s law [10]). Single-thread performance

suffers as vendors move to fewer per core resources—e.g. narrower issue width,

shallower pipelines, smaller out-of-order execution windows, etc.— to allow them

instantiate more cores on a die. As such, single-thread performance is shown to

be decreasing by �gure 1.2 on page 18.

A present and future challenge is how to increase single-thread performance

in CMPs ef�ciently. This challenge is more daunting for mobile CMPs, the focus

of this thesis, as any proposed solution must be cost, energy and power ef�cient

since they run fan-less from batteries and must meet a certain form factor.

Recon�gurable hardware has been used to accelerate single-thread perfor-

mance in mobile processors (see chapter 2). However, modern mobile platforms

are increasingly using dynamic compilation, forced upon vendors by the high cost

of software development and the need for parallel applications that scale to future

systems (see chapter 1). Most systems with recon�gurable acceleration require

static compilation because compilation on ‘traditional’ recon�gurable hardware
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is too complex and too expensive to perform online. The few systems that map

applications to recon�gurable hardware dynamically were shown, in chapter 2,

to be unsuitable for resource-constrained mobile CMPs because of cost, resource

or power issues.

This thesis proposed an architecture, VIrtual REcon�gurable Micro-ENgine

for Translation, consisting of a CPU extended with recon�gurable hardware and

an associated JIT complier (the DCE), for ef�ciently boosting single-thread per-

formance of dynamically generated code.

The recon�gurable hardware in VIREMENT is a 4×4 array of relatively sim-

ple interconnected ALUs. The design and dimensions were arrived at after pro�l-

ing and analysing the reference applications in chapters 3 and 4. The interconnect

is restrictive, reducing the computational intensity of the P&R algorithm, allowing

the DCE to perform P&R—using a novel algorithm described in chapter 5—at

runtime. The compiler pass that performs P&R in DCE is shown, in chapter 7,

to be only 14.50% of the total execution time of the DCE.

VIREMENT increased performance by an average of 1.65× – 2.16×, com-

pared to the baseline, depending on con�guration. The area overhead of the

recon�gurable extension was shown to be between 1.23 and 1.28. It was shown

that a traditional microprocessor would need between 3.23× and 5.47×more area

to match VIREMENT’s performance. Such a processor would consume as much

as 6× more power than VIREMENT. CMPs built from VIREMENT showed

better performance, performance/watt and performance/joule compared to the

other CMP design alternatives.

VIREMENT’s main advantage is ef�ciency (area, power and energy). Ef�-

ciency is critical in VIREMENT’s primary target market, mobile computers. The

cost of performance improvement with VIREMENT is less than similar gain

through ‘traditional’ means such as out-of-order execution, pielining, etc. Unlike

most of the previous architectures employing recon�gurable accelerators, VIRE-

MENT accelerates dynamically generated code. This is important as dynamic

code generation is now prevalent on mobile processors. The design of VIRE-

MENT’s runtime compilation systems makes for easy integration into the various

mobile system environments that employ dynamic compilation.

VIREMENT’s biggest drawback is the basic-block by basic-block mapping
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which limits performance as the number of operations and ILP available within a

basic block is small. Another drawback is the inability to perform �oating point

operations which have been shown to be signi�cant in applications. The next

section suggests possible ways of improving VIREMENT.

8.2 Improving VIREMENT and DCE

This section suggests possible improvements to the VIrtual REcon�gurable Micro-

ENgine for Translation architecture.

8.2.1 Floating Point PEs

VIREMENT was evaluated using only integer benchmarks as it lacks �oating

point PEs. However, most of the reference applications in chapter 3 have sig-

ni�cant �oating point operations. Adding �oating point PEs, therefore, to the

recon�gurable hardware would improve performance. However, �oating point

units are expensive, compared to integer units and are often multi-cycled. Hence,

research into cost-effective method(s) of introducing such units into VIREMENT

is needed. Possible directions include sharing �oating point units, similar to the

approach used for memory operations. Alternatively (or together with sharing),

fusing two integer PEs together to form a �oating point PE [131]. One of the

PEs is charged with the exponent part of a �oating point number while the other

handles the mantissa.

8.2.2 Split compilation

Split compilation [99, 132]—a single optimisation algorithm is split into multiple

compilation steps and relying on annotations, embedded in the IR, and coding

conventions to transfer semantic information between the different steps—can be

used to improve the quality of code generation in DCE. With this set-up, expensive

but order of magnitude improving optimisations can be performed ‘online’. For

instance, loop nest parallelization, expensive but order of magnitude improving,

could be split into an of�ine and an online stage, with LLVM IR annotated to
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transfer semantic information between the stages. The expensive but platform

independent analyses are run of�ine to prune the optimization space while the

cheap platform speci�c optimisations are deferred to the online stage, when the

precise execution context is known.

8.2.3 Beyond Basic Blocks

Fast, lean and ef�cient region mapping is needed as the current local, block-by-

block, approach limits performance. Region mapping involves jointly scheduling

multiple basic blocks to increase the ILP using techniques such as trace scheduling

[89], superblock scheduling [88] and software loop pipeling [103]. Unfortunately,

these techniques are computationally intensive making them impractical for a JIT

complier, especially one on a resource constrained platform. However, with split

compilation, discussed earlier, such techniques may be usable on a JIT.

8.2.4 Superscalar Processors

The design of recon�gurable unit assumes a CPU with a scalar, in-order pipeline.

Mobile processors, however, are increasingly superscalar with speculative out-of-

order execution. Upgrading VIREMENT for such cores is desirable. First, how-

ever, an ef�cient technique(s) is needed to handle synchronisation between the

recon�gurable functional unit and the other functional units since in such cores

the register �le may not always have the up-to-date data.

8.3 Improving the Evaluation Framework

This section suggest possible improvements to the evaluation framework de-

scribed in chapter 6.

8.3.1 Energy Estimation

The evaluation framework currently lacks power/energy estimation capability

(the thesis relied on synthesis tools for estimates). Possible starting points are

Instruction-level estimation [133] and Micro-architecture-level estimation [134].
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A comprehensive discussion of high-level power/energy estimation techniques is

available [135].

Instruction-level estimation involves assigning a power cost to each instruction

in the standard instruction set. The power cost is determined by measuring the

current drawn by the CPU when an instruction is executed repeatedly in a loop.

The model can be extended to account for other factors—such as the power

overhead when two different instructions are sequentially executed, pipeline stalls,

cache misses, etc.—by locating where the desired effect occurs in the application,

running repeatedly and measuring the current drawn. However, this requires a

silicon implementation of the target processor.

Micro-architecture-level estimation uses functional-block-level, activity-based,

analytical models to estimate power/energy. They are often integrated into cycle-

by-cycle performance simulators which supply the energy estimator with the

activated micro-architecture-level units or functional blocks. Extensible micro-

architecture level estimators, such as Multicore Power, Area, and Timing (McPAT)

[136], can be easily integrated into the VIREMENT’s evaluation framework. Ac-

curacy could be validated with the gate-level models and power estimators.

8.3.2 Area Estimates

In addition to energy estimation, the evaluation framework could be extended

to estimate area. This will speed-up architectural exploration as area estimates

can be available without need for detailed gate-level models. High-level area esti-

mators [136] often combine analytical models [137], for array structures such as

caches, and empirical models[138], for more complex structures such as ALUs.

A possible starting point is extending and integrating McPAT [136] into the eval-

uation framework.

8.4 Summary of Contributions

The major research contributions made by this thesis are:

• The identi�cation and characterization of emerging mobile workloads and

the impact on these workloads on the design of a recon�gurable accelerator.
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• The VIrtual REcon�gurable Micro-ENgine for Translation (VIREMENT)

architecture, a mobile CMP with each core augmented with a recon�gurable

accelerator. VIREMENT ef�ciently boosts single thread performance.

– Architecture of the VIREMENT Recon�gurable Functional Unit (VRFU).

– Method for the seamless integration of the VRFU into a CPU.

• Dynamic Compilation Engine (DCE) a JIT complier for VIREMENT which

dynamically translates IR into con�gurations for the RH. This brings the

advantages of recon�gurable acceleration to dynamically generated code

while still meeting the stringent cost requirements of mobile computers.

– RIG pass, a lean Placement and Routing algorithm that is suitable for

resource-constrained mobile computers. This algorithm is the heart of

the DCE.

– A method for integrating the RIG into a standard dynamic complier

pass pipeline.

• A standard cell ASIC implementation of the VRFU demonstrating the prac-

ticability of the design.

• An implementation of the DCE leveraging LLVM 2.8. This formed part of

the evaluation framework used for gathering performance estimates.

• A demonstration of the merits of VIREMENT and DCE with a combination

of simulation and analytical methods.

8.5 Conclusion

The work in this thesis has demonstrated the feasibility of using recon�gurable

accelerators in resource constrained mobile processors to accelerate single-threads

within dynamically generated code. The advantage of recon�gurable processing,

execution ef�ciency, can now be extended to dynamically generated code.

VIREMENT has highlighted the dif�culty of dynamic mapping on resource

constrained mobile computers where the need to minimize mapping overheads
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reduce performance gains. Whilst this hasn’t prevented VIREMENT from out-

performing conventional designs, there is still the need for research on techniques

for improving the mapping process.

It is hoped that based upon this thesis, recon�gurable acceleration can gain

a foothold in mobile processors since it offers a clear ef�ciency advantage. With

VIREMENT the lack of support for dynamic compilation in recon�gurable accel-

erators, which is a barrier to the widespread adoption of recon�gurable processing

in mobile platforms, has been eliminated.
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