DEPENDENCY AND
EXCEPTION HANDLING IN
AN ASYNCHRONOUS
MICROPROCESSOR

A thesis submitted to the University of
Manchester for the degree of Doctor of
Philosophy in the Faculty of Science and

Engineering

1997

DAVID ALAN GILBERT

Department of Computer Science

Contents

@0 01 1= 0] £ 2
LISt Of fIQUIES.. . e eaees 7
LISt Of tADIES ... e 9
ADSIIACT.o 10
DTl = = (o 11
Copyright and intellectual property rights..........cccoooovviiiiiiiiniinnnnn, 12
ACKNOWIEAGMENTS.....uuiiiieiiiiie et 13
The QUENOT ... e 14
I | 1 70 o [U [ox 1] o 15
1.1.... Synchronous and asynchronOUS deSIgN.........cceerereereereeieesee e e 15
1.2.... Arguments for asynchronOUS AESIGN.........cecveuererereneseeeeeeee e 16
1.2.1...Clock SKEW aVOIaNCE..........cccuieieiieiecie et 16
1.2.2 ... Better than worst case eXeCUtion tiMEe..........coeveveereeieeneeneecie e 17
1.2.3 ... POWEr CONSIAEIALIONS.......eeiveeieeiesieesieeeesreesteeseesreesreeeesseeseeeeesneesseeneens 17
1.2.4 ... Electromagnetic compatibility (EMC)ccccocvieeiieeieiieceee e 17
1.2.5..Modularity Of deSIgNc.coeeiiriiiiereeee e 18

1.3.... Problems with asynchronous deSign..........ccccceeenereneneneeeeese e 18

1.3.1...Control 10giC COMPIEXILYccveeeeieeriieieseesie e 18
1.3.2... TESADIHITY oo 18
1.3.3...Therisk of deadlOCKccevvriiierieecee e 19
1.3.4...Theloss of implied Knowledgeccceeieiiiii i 19
1.4.... Asynchronous handshaKingccccceeiiieiiecieesee e 20
1.5.... MICIOPIPEIINES ..ottt 22
1.6.... The ARM MIiCIOPIOCESSOccueeiuerueeseeereaseesseesseseesseesseeessseesseseesseessensenns 24
1.7.... EXiSting AMULET PIrOCESSOIS.ueeirieirieitieaieesseesseessessseesseessesssessssesssens 25
1.8.... AIMSOf AMULETS ..ottt e 27
1.9.... Other asynchronouSs MiCrOPrOCESSOISccueiueerrereesreesseeeesseessesseesseessenseens 28
1.10.. The structure of thiISTNESIS........cccoiiiiieee e 29
DEPENUENCIES.... .o 30
2.1.... TYPeS Of dEPENUENCYcovveeeieeececie ettt 30
2.1.1 ... Procedural dependenCies..........ccccuveeierienieneere et 30
2.1.2 ...Read after write (RAW) data dependencies..........cccoveeveneneneneniennns 32
2.1.3...Write after write (WAW) data dependencies..........coceveveeveeceeceecveenne. 33
2.1.4...Write after read (WAR) dependencies..........ccoceeeereeieneeneeneseeseeens 35
2.1.5...RESOUICE CONTENTIONveeeeceeeieeieseeesie e sree e seeeae s e sreene e e sneenes 36
2.1.6 ... Summary of dependency tYPES.........ccovcveeeereeieeee e eee e 37
2.2.... Enforcing dependenCies............cooeereiieneeiie e 37
2.2.1...Procedural dependenCies..........ccoiiierererenieseniesieeee e 37
2.2.2...RAW dePendenCiES.........cccceeieeiieiieiieciie ettt 38
2.2.3 ... WAW dePendenCies...........cccererrirreenieeiie e sieenee e e e see e sseeeas 40
2.2.4 .. WAR dEPENTENCIES ..ot 40
2.2.5... RESOUICE CONTENTIONoviviiieieeieeieie ettt 40
2.2.6...Summary of dependency enforcement techniques............ccccevveeereennee. 41
2.3.... Reducing the effect of dependenCiesccoveverenenecceiesesere e 42
2.3.1 ... Procedural dependenCies..........cccvueeieeieiieieeie e 42
2.3.2 ... RAW dependenCies..........ccoceereeieneeneeie et 46
2.3.3...WAR and WAW dependenCi€s...........ccocerererererenieeienieseesesie s 49
2.3.4...0UL Of OFEr ISSUEcvereiiiriesiieieieie et sbenneas 50
2.4.... Dependencies and external State..........ccooeeviieeieeie s 52
2.5.... Novel approaches to dependency resolution..........cceeeeeeeerenenenesieseesnenne 54
2.5. 1 ... SCALP...eee et benneas 54
2.5.2 ... The counterflow pipeline processor architecture...........cccceecvevevenennen. 55
2.5.3 . HAOES ... e 57
2.5.4 ... The Micronet-based asynchronous processor (MAP)ccccccvecveevenee. 58
2.6.... SPECIAl FEQISTEIS ...ttt st e ettt esreenreeneens 59
2.7 . SUMIMY ..ottt b et b e s saeesne e s e e neenbeeanesreenneennens 59

3 EXCEPLONS .oueeceie e 60

3.1.... CauSES Of EXCEPLIONS........coiieiiriesieeie ettt eas 60
311 . EXEErNal INTEITUPES ..ottt 60
312 . AMTENMELIC BITOIS ..t 61
3.1.3... Undefined/unimplemented INStruCtionscceceeeenereeseeneseescenen 61
3.1.4 ... MEMOIY GCCESS EITONS.....cuerueerieerreeeesseesreseesseessesnesseesresresseessesneesseenns 61
3.1.5... SOftWar€ iNtEITUPLSc.eeiveeie ettt 62
3.1.6 ... Unpredicted/mispredicted branches.............cccooeeiniiniiieecee, 62
317 ... BIrEAKPOINES. ...ttt 62
L8 i RESEL ... et 63

3.2.... The effect Of EXCEPLIONS.......ccciiiereeeee e 63

3.3.... Cost and frequency of different types of exception..........cccccceverererenennns 64
3.3.1...Frequency Of eXCEPLIONS.........cccevieieeieeiece et 64
3.3.2...COSt Of EXCEPLIONSoeieeieieeie ettt 66

34.... MechanismS for SAVING SALE.........ccoeriiieieere e 67
3.4.1...In-order, lookahead and architectural State..........ccceveeveeverereneneseenne, 68
3.4.2 ... Saving state using CheCKPOINES.ooveiiriiiiereee e 69
3.4.3 ... The hiStory BUFTEr ..o 70
34.4.. . Thereorder DUFFEN ... s 72
3.4.5...Reorder buffer with forwarding paths...........ccoooeeiieienii e, 74
34.6... TheTULUIE Tl cueeeeee e 76

3.5.... Exceptionsin the AMULET L PrOCESSOc.ecvevveerueeeesreesieseesseesseeseesseeneas 78

3.6.... Exceptions in the Fred ProCeSSOrcoeeieeieeeeneeie e 79

3.7.... Exceptions and external Sate...........ccoererierierene s 81
3.7.1...Exceptionsin apipelined MEMOXYcccceveereeciecieese e 82
3.7.2...Multiple forms of external State...........cccevereereeieneereee e 83

38t SUMIMAIY ..ttt sn e n e e nneens 84

4 Issues in implementing the ARM architecture 85

RO o (070050 g 100 (=SS 85

I =0 (= £ TS 86

4.3.... TNRE Program COUNLENccoueiiueeieecieesiee e esieecre et e et sre e e sreesneeenneens 87

N I L= O S S 88

4.5.... The SPSRs and their rolein exception entrycccccveceeveeeeseeseeseeseenen 90

4.6.... EXIENAl STALE......ooiiiee e s 91
4.6.1 ... MBIMONY ...ttt r e e b e e e nesanenneenas 91
4.6.2 ... COPIOCESSOIS ...cuuveeeiureresireeesseeesseesssseessssessssseesssseessssesssaeesnseeesnbeessnseeas 91

4.7 EXCEptioNS ONthE ARM ... 92

4.8.... ConditioNal EXECULIONcceeieieieeeesieesie e sie e ste e sre e sneenees 93
4.8.1...Conditional execution and the use of futurefiles..........ccccoecvvivvnerenne. 9
4.8.2 ...Conditional execution and the Hades forwarding mechanism.............. 96

4.9.... Load/store multipl€ INSIrUCLIONS.........coeriiieicierese e 97
4.9.1...LDM with base register in the transfer list.........ccccevevivecevierecceceenne, 98
4.9.2...LDM with PCinthetransfer list........ccooriinieneniinenee e 98
4.9.3...Conditional LDM/STM INSrUCHIONScceveerieeirneenieeeeseenee e 99
4.9.4 ...USer MOJE rEQiStEr @CCESSccverueeeeerierieeeesreesseeeesseesseeeesseessesseesseenees 99

4. 00.. SUMMEIY eoiveeeirieeeieeesieeesiesessresesssesessaesssseesasseesssseeessseessssesssssessnssessnsenesns 100

5 An Asynchronous Reorder Buffer........ccccccoeeiiiiiiiiiiinicennnnn, 102

5.1.... Dependency and exception handling in AMULET2.........cccoooviiiiennnenne 102
5.2.... Anew pIPeliNn@ MOCE!ccoeiiiiiieeere s 104
5.3.... Parallel aCCeSS FIFOS......ccoiiieieieeeee et 106
5.4.... Three process view of the paralel FIFO buffer.........ccoooieiiiieiiciecnne 109
5.5.... Five process view of the DUFTErcooiiiiiniiineee e 111
5.6.... Operation with the five process modelcccccevievieiiceececceceee 112
56.1...The PIPEliNe SLAGES.......coveeieeeceeeie e 113
5.6.2...A Jal@ OPEIaiONceevviriiiiriieiee et 113
5.6.3... MEMOrY OPEratiONS.........ccceeiieiieiieesieeeesreesteeeesreesreeeesseesreeeesreesneennens 117
5.6.4...Datavalidity inthe read ProCesS........cccereriererrerieeseere e 121
5.6.5...Lack of synchronisation between the read and allocate processes...... 122
5.7.... Process SynChroniSatioNcceecueeeereeiie s et 124
5.8.... Thereorder buffer eNtrieS ... 125
5.9.... SUMMArY Of CONSIIAINTSevveruiriirieeieie e 126
5.10.. SUMIMBIYvviiiiiieiiiie sttt sre e ssae e s ss e s ssae e s nssesssaesssaeesnaeenns 127
6 Auxiliary mechaniSmsS.........ccovviiiiiiiiin i e 128
6.1.... TREINSIIUCLION COLOUNeoiiiiiiiiiece e s 128
6.2.... The Program COUNLETcccceeiieiiiiesieecite e s e sie e sree e e ere e e e s reesnaeenreens 129
6.2.1...Reading the program COUNLEYcooererinenenenieeeee e 129
6.2.2 ... Changing the program COUNLEScccceereeeeseerieseeseesie e 131
6.2.3...Loading PC viathefetch unit...........c.ccooeviiiiiiie e, 135
6.2.4 ... Discarding instructions at the decode Stageccooevevenerenenennne 138
6.3 ... TRECPSR....ciiiee et s b e 139
G I A I 0TS0 o] oL TSRS 140
B.4.... TRE SPSRS......ccuicieieiese sttt sttt a et snenrenneens 141
6.4.1...Theinteraction of the SPSRs and data aborts...........cccceverereneriennene 142
6.5.... BASE IESLOraLION.....c..eeiiiiiiieeiee ettt 144
6.6.... EXCEpioNS in the MEmMOrY..........ccocvirieiiiesere s 145
6.6.1 ... Pipelined memory and reorder buffer Size.........ccoeceveve e, 145

L A 411 1o £ 145
6.8.... LONG MUILIPIICATON. ..o s 146
L S U 1 1 010 07! VAT 147
7 Simulation and resultSccooovvveiiiin e 150
7.1.... The SImulation eNVIFONMENTccccveiereereee e 150
7.1.1...Tracebased SIMUIALION.........cccceirierierese e 150
7.1.2 ...Behavioural SIMUlation...........ccooeeiirienieieeeeee e 150
A A = 1= 0 001 7= T 155
7.3 i RESUITS. ..ot b s 156
7.3.1...Results from the trace based SImulation.cccceeeveeiencenenienene 156
7.3.2... The benefits of the reorder BUFfer..........ccoooveerievecce e 159
7.3.3...Loading the PC viathe instruction fetch mechanism.......................... 163
7.3.4 ... The penalty of SPSRIOCKINGcoovriiiiriiniireeeee e 164
7.4.... ADSOIULE PEITOIMANCE.......oitiiiieeee s 165
7.4.1...Cost Of Stream ChanQES.........ccceceeiieeee e 167
A W0 = o [T (= 10y S 168
7.4.3...5tage COMPIEXITY ...ooveeireeiiiriieeee et 169

8 Conclusions and Future Workccccooeeeeiiivieiiiiiiiinnnnenn. 172
8.l SUMIMIY ..ttt ettt e et e st e nae e e e e e nne e srneesaeeenneennnas 172
S22 0] o 11 [0 01T 174
8.3.... Advantages and disadvantages of the proposed architecture..................... 175
84 ... FUIUIE WOIK ...ttt 178

8.4.1 ... COPIOCESSOISceveeurerueesieesseeseesseessesieesseessesseesbeenesaeesneenesanesneenennne e 178
842 ... TRUMD ..ottt 180
8.4.3...PC change PrediCtioN...........ccoceieeieriesee e 180
8.5.... The asyNChronOUS FULUIE...........c.cooiririeieeese e 181

RETEIENCES. ..t 182

A The ARM INSIrUCtiON Stcovvviiiiieeieeeiii e 188
A.L... ConditioNal EXECULTONcceiviiiiiiriesiieeeie et 188
A.2...Normal data processing OPErationS.........cccuvevveereeiiieesieeeieeseeeieesee e 189

A.2.1..Dataprocessing With PC WIIte.........cceviiiiineieseeeeeee e 190
A3 BranCh.ce 191
A3 1 ..Branch With 1INk ..o 191
A4 ... Singlevalue Memory tranSfarcovveeieieieresese e 192
A.4.1 ..Hafword and signed byte aCCesSeS........ccccvevereeviece s 192
S V7o ST 193
A.5... Multiple value memory transfer.........ooeeeererenenereeseeee e 193
A.6... ACCESS O the CPSR/SPSRc.ciiiiiiiiseeie ettt 194
) A \V LW 1§ (] o] 1= (] RS 194
A.8... COProCESSOr INSITUCTIONS.......coiviieriiniirieeieeee ettt 195
A.8.1..Coprocessor data OPEratioNS..........ccverveereereeriesieeseeseeseesreeseeseesseennens 195
A.8.2..Coprocessor datatransfers.........ccvcveieeiiieiie e 196
A.8.3..Coprocessor register tranSfarS........uvveererene e 196
A.9 ... SOftWArE INLEITUPLS......cueeieeeieeeesie ettt ee et et nne e 197
A.10. UNdefiNed INSLIUCLIONScoviiiiiieeie ettt 197
AL SUMMEBIY oottt sn e s e sn e e sreennennne s 198

B The structure of existing ARMs and AMULETS.................. 199
2 T R AV 2 B T RS 199
B.2 ... ARM 8. et 200
B.3 ... SITONGARM ...t 201
B.4... The AMULET1 and AMULET2ocvoieieeecese e 203
B.5 oo SUMME@IY ittt nnn e s na e snee s 205

List of figures

Figure 1.2.... A two phase handshake...............ccccoiiiiiiiiii, 21..
Figure 1.3.... A four phase handshake.............ccccccmrrmiiiiiiii e, 22..
Figure 1.4.....Variations on the 4 phase handshake

bundled data protocal...............coooiiiiiiiiiiii e 23...
Figure 1.5.... MICrOPIPEliNG......cooiieeecee e 23....
Figure 1.6.....Micropipeline With l0giC............ccuiiiiiiiiiiiiiiice e, 24..
Figure 2.1.... A SIMPIe PIPEINE.......oeiiiiiiiiiiiieee s 31...
Figure 2.2.....Five stage pipeling............ooovviiiiiiiiiiiiiie e 33...
Figure 2.3.....Pipeline with out of line memory unit.............cccccccoeeevvennnnnnn. 34
Figure 2.4..... Pipeline with out of order iSSUe...........ccccceeeeiiiiiiiiiiciiieee, 36.
Figure 2.5....The AMULETL LOCK FIFO........cccooiiiiiiiiiiiiiiiiiieeeeeecce 39..
Figure 2.6...... Arbitration for a shared register write bus........................... 41
Figure 2.7......Instruction fetch unit with BTC..........ccoiiiiiiiiiie, 45.
Figure 2.8......Pipeline with result forwarding............cccccceeeeeeeeiviiieeeiiiiininnns 47.
Figure 2.9.... Tomasulo’s algorithm............ccooooiiiiiiiiiiei e bhl..
Figure 2.10Q...A simplified model of the CFPP..............oooviiiiiiiiiiiii 56.
Figure 3.1.....Checkpoints for exception reCOVerY.......cccevuivieeeeeeereeereennnnnnd 69.
Figure 3.2.... The history buffer.............cooooiiii e, 71...
Figure 3.3.....Format of a history buffer entry...........ccooooviiiiiiiiiiiiiiie 71.
Figure 3.4......Processor organisation with a reorder buffer....................... 73
Figure 3.5.....Format of the reorder buffer entries...............cccccvveeiieeeinnnnn. 73
Figure 3.6......Processor organisation with a reorder buffer

With forwarding............cccceeiieiiii e, 14....
Figure 3.7......Processor organisation with a future file............................. 46
Figure 4.1....The ARM ReQISter SeL.........cccciciiiiiiiiiiiiiiiieeeee e 81...
Figure 4.2.....Organisation of the CPSR and SPSRS.............ccccevvvvviinnnnns 89
Figure 5.1.....Initial pipeline model...........c.ocooiiiiiiiii e 104.
Figure 5.2.... Micropipeline and parallel FIFO implementatians.............. 107
Figure 5.3......Parallel FIFO with forwarding..............cccoovvrrriviiiiiiicieeenn. 109
Figure 5.4......Pipeline with reorder buffer.........c.cccooooviiiiii 112
Figure 6.1.... The commit block in the pipeling..........ccccccoenn, 129
Figure 6.2.....Adding the offset to the program counter........................... 130
Figure 6.3....Writing to the PC via the reorder buffer..................cccoue... 131
Figure 6.4......Writing to the PC via the commit block.................cc...c....... 132
Figure 6.5......Reading the PC from memory via the fetch unit................ 136

-7 -

Figure 6.6 The relationship of the execute unit and the commit block........ 140

Figure 6.7Duplicate copies of the SPSRS...........cccccveverieve s, 143
Figure 6.8The Base Restore Pipe (BRP).......cccoviieiiie vt 144
Figure 6.9 ArChiteCture OVEIVIBWcccocieiieierene e 148
Figure7.1......Model as simulated: Reorder buffer without forwarding............ 152
Figure7.2...... Model as simulated: No reorder buffer..........cccocoveieiiieiiinns 152
Figure 7.3Operand age diStribUtioncccooerinininineneeeeee e 159
Figure 7.4Relative execution times for the JPEG benchmark 160
Figure 7.5 Summary of execution times for reorder buffer

WIthOUL FOrWaIdiNgcoveiveriiriieieeeese e 161
Figure 7.6Percentage of reorder buffer allocations which had to stall

(NO TOrWardiNg)cccveeeueeeiieiie e 161
Figure 7.7Summary of execution times for reorder buffer

WIth FOrWardingcoeeeeeeerece e 162
Figure7.8...... Percentage of reorder buffer allocations which had to stall

(WIth FOrwarding)coceeererereeeresese s 163
Figure B.1......ARM 2/3/6/7 Organi ZatioN...........ccccereeveeieeseesieseeseesee e sveeeas 200
Figure B.2......ARMS8 Integer Unit organiSation...........cccceevvueeveesireeseecineesieeenne 202
Figure B.3......StrongARM pipeline core organi Zation.............ccecererereeneereenne 204
Figure B.4.....AMULET Internal organiSationcccceeereevesceeseesesseeseeenen 205

Table1.1.......
Table4.1.......
Table5.1.......
Table7.1.......
Table7.2.......

Table7.3.......
Table7.4:......
Table7.5.......
Table7.6.......
Table7.7:......
Table7.8.......
TableA.1:.....
TableA.2:.....
TableA.3:.....

List of tables

An overview of the ARM inStruction Setccoveeveneeneeiienene 26
Mapping of variableSto Storage..........covveeereeeeieeieeseseseie 95
Example forwarding key for R1L........ccccoovevvveevecce e, 114
Instruction set usage (dyNamicC)........ccccueeireeneeeieesiee e e 157
Relative execution time: PC |oad via data

interface/PC load viafetch interfaceccooveieviveiiniie 164
Absolute execution times (INMS)ccccevceeveecieeree e 166
Percentage slower than StrongARM (ROB 4 entry)c.cc...... 166
Branch costs on StrongARM and the VHDL model (cycles)167
Branch type occurrence in benchmarks...........ccccvvevieeiieciieenen. 168
Branch costs for benchmarks...........ccooevvrcvneencinceseeeecee, 168
Benchmark performance having compensated for branch costs.168
ARM Condition COUES.........cceeririrriirieeie et 188
ARM data processing OPerations............ccverererierieeneeseeseesseneennes 189
ARM CompariSon OPErationS...........cccverveeeeseesiesieeseessessessseenes 190

Abstract

Dependency and exception handling mechanisms are an important part of modern
high-performance microprocessors. In a pipelined microprocedemendency and
exception handling require thrent stages of the pipeline to interact with each other to
determine the current state of the processor as a whole. In a synchronous processor inter-
actions between separate pipeline stages are managed using a global clock. Communica-
tion between non-neighbouring pipeline stages is more complex in an asynchronous
microprocessor which does not have a global clock.

This thesis describes a solution to this problem in the context of a third generation
asynchronous implementation of the ARM instruction set architecture. The architecture
described provides powerful andieient dependency resolution while simultaneously
providing a flexible, low overhead exception handling mechanism. The mechanism pro-
vides the basis for the architecture of the AMULET3 microprocessor

Existing exception handling and dependency resolution mechanisms are re-evaluated
in the context of asynchronous implementation and the ARM architecture. The Reorder
Buffer is chosen as the basis of the architecture and novel enhancements are proposec
which enable its use in an asynchronous environment.

Simulation results are presented that show that the proposed architecture is signifi-
cantly faster and more flexible than comparable architectures while still providing com-
plete compatibility with the ARM instruction set architecture.

-10 -

Declaration

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other

institute of learning.

Copyright and intellectual property rights

@ Copyright in text of thisthesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions given by
the Author and lodged in the John Rylands University Library of Manchester. Details
may be obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions may

not be made without the permission (in writing) of the Author.

2 The ownership of any intellectual property rights which may be described in
thisthesisisvested in the University of Manchester, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written per-
mission of the University, which will prescribe the terms and conditions of any such

agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Head of the Department of Computer Science.

-12 -

Acknowledgments

| would like to thank all the members of the AMULET research group and of the
Department of Computer Science who have helped and encouraged me while | carried

out the research described in this thesis.

Special thanks are due to my superyigor Jim Garside, who has endured many
hours of questioning andgaments relating to this research and this thesis. | am also
especially grateful to the head of the AMULET group, Professor Steve Fimberany
interesting discussions on the material presented in this thesis and other aspects of Com-

puter Science.

| am grateful to the authors of a number of free software packages used during the
course of his research. These include the GNU set of tools, the Linux operating system

and its associated tools, the TGIF drawing package and the VILE text editor

| would also like to thank Nigel Paver for allowing the use of figusefrom his the-
sis[Pave94] and Professor Steve Furber for the use of figures B.1-B.4, which were taken

from his bookARM System Architecture [Furb96].

Finally, | would like to thank DrPhilip Endecott, Andrew Bardsler. Steve Emple

and Professor Steve Furber for proof reading this thesis.

-13 -

The author

The author graduated from the University of Manchester Department of Computer

Science with a ¥ class honours degree in Computer Science in 1993. He received the

ICL award for the top single honours student in the final year

In 1995 he was awarded an M.Sc. in Computer Science for research titled “Rendering
Architectures for use iniktual Reality Systems” which was carried out in the Advanced

Interfaces Group of the University of Manchester Department of Computer Science.

Since then the author has been conducting research on computer architecture in the

AMULET research group, culminating in this thesis.

-14 -

Chapter 1. Introduction

This thesis describes the architectural design of a third generation asynchronous
implementation of the ARM microprocessor architecihk&®M96]. In particular the
thesis describes techniques for dependency and exception handling. The work described
was performed in the AMULET research group at the University of Manchester and will

be used (with some modification) in the AMULET3 microprocessor

Implementations of a commercial processarch as the ARM, must include
solutions to many problems which do not exist in idealised processor designs. The most
important of these problems is maintaining total compatibility with the original proces-
sor specification. Maintaining compatibility often causes added complication and a loss
of efficiency but is required to make the implementation commercially useful. The tech-
niques described in this thesis address these compatibility issues and show that it is pos-
sible to produce an f&fient asynchronous implementation of the ARM compatible with

the synchronous ARMs.

1.1 Synchronous and asynchronous design

Conventional synchronous design styles rely on a single synchronising clock.
The clock cycle is stitiently long to ensure that all blocks have read their input data,

processed it and placed their result on the output before the next clock edge.

-15 -

In asynchronous design there is no clock and so another mechanism must be
used to indicate when data is available for a block to procebandshake is used to
synchronise two blocks before data is transferred; various types of handshake are
described in section 1.4. The handshake ensures that a block is told when data at its
inputs are valid, when the blocks connected to its outputs are able to accept data, and
when they no longer require the data. The handshake produces local synchronisation
between blocks during data transfer; this has replaced the global synchronisation of all

blocks in a synchronous system.

1.2 Argumentsfor asynchronous design

Many possible advantages have been claimed for asynchronous design, includ-

ing:

121 Clock skew avoidance

Synchronous designs rely on clock edges reaching all sections of the design
‘simultaneously’. Howeverin practice propagation delays make this impossible. The
difference in time between the clock reaching various sections of a design is referred to
as theclock skew. Since the data must be available to all blocks by the time the clock
edge reaches the destination, the clock skew must be subtracted from the total cycle time
to give the amount of cycle time available for processing. As designs get more complex
the clock must be distributed to increasing numbers of gates in the design; also, as
designers simplify pipeline stages so that clock speeds can be increased the fraction of
the clock cycle taken up by clock skew increases and thus the impact of clock skew on
performance increases. These requirements lead to increasirggy ¢amplex and

power hungry clock drivers.

-16 -

1.2.2 Better than wor st case execution time

In a pipelined microprocessor each stage of the pipeline may takéeemif
time to complete its work. In the synchronous world the pipeline must be clocked slowly
enough for the worst case time of the slowest stage. An asynchronous design, ,however
can take advantage of variations in the completion times of the stages caused by varying
data. For example, an ALU can complete an addition with a small carry propagation dis-
tance faster than one with a long carry propagation di§@ace93]. It is therefore pos-
sible that given suitable data the pipeline will execute instructions faster than the worst

case.

1.2.3 Power considerations

In CMOS VLSI most of the power is expended when a node changes voltage
level. In a conventional clocked system all sections of the design are clocked simultane-
ously, including those which are not in use on all cycles (for example a multiplier in a
typical CPU). This causes many nodes to toggle unnecessdabk gating can be used
to reduce this é&tct but at the expense of increased complexity and clock. $kean
asynchronous design transitions only occur when a block is being used, thus reducing the

power consumption.

124 Electromagnetic compatibility (EMC)

Clocked systems radiate harmonics of their clock over a wide range of the radio
frequency spectrum. The interference manifests itself asgga farmber of relatively
high intensity signals at multiples of the clock frequemeysystems which utilise radio
communication (such as mobile telephones) this can degrade the performance of the
radio receivers significantlyt is strongly believed that asynchronous systems produce
broadband distributed interference without the high amplitude peaks. This may make

such designs more suitable for use in radio communication equipment.

-17 -

1.25 Modularity of design

It is claimed that asynchronous design leads to more highly modular designs,
since each block can be designed without knowledge of the timing characteristics of the

other blocks in the desig®suth89].

1.3 Problems with asynchronous design
While asynchronous design has many potential advantages, it also has a number
of disadvantages which can make it harder to design with; some of these disadvantages

will be explained in this section.

131 Control logic complexity

In asynchronous designs the control logic performing the synchronisation
between blocks often becomes significant in area, power and time. Every block of the
design needs hardware to perform synchronisation to wait for input data and to trigger
other blocks when it has produced its datatake advantage of data dependent process-
ing times completion detection circuitry is needed to detect the end of computation in

each block.

132 Testability

At the time of writing, testing asynchronous circuits to check for the presence of
fabrication faults is dffcult [Pet!|96]. The problems stem from the number of state hold-
ing elements used to implement the asynchronous handshakes and from the absence of ¢
clock. In testing synchronous circuits it is useful to stop the clock, apply a test pattern,
cause another clock edge and then observe the resitheut\such a clock it becomes

complex to apply test patterns.

-18 -

Figure 1.1 Global synchronisation

1.3.3 Therisk of deadlock

The use of explicit communications between blocks makes it easy to introduce
design errors which cause deadlocks in asynchronous systems. Such errofaite dif
to reason about, di€ult to detect during simulation and often involve situations caused

by the interoperation of many parts of the design.

134 Theloss of implied knowledge

The clock in a synchronous system can be thought of as providing both local and
global synchronisation. Local synchronisation (i.e. between two adjacent blocks in a
pipeline) is easily replaced by the handshake. Howéveruse of the clock as a global
synchronisation mechanism is morefidiflt to replace. Figuré.1 shows a model of a
pipeline similar to that of a simple microprocessor with result forwarding of the type
which will be encountered later in this thesis. In this system results generated by block C
can either pass through block D before returning to block B or can be forwarded on the
fast (dashed) path directly from block C. In a synchronous system the position of an

instruction and its result is deterministic, so that in a particular system an instruction

-19 -

issued in the present cycle by block A will be at the output of block B in the next cycle.
Thus if block B wishes to use the result of the instruction which it processed on the pre-
vious instruction it can wait for just one cycle and know that it can use the result via the
fast path from C. In an asynchronous system once a packet is put into the head of a sec-
tion of pipeline there is no way of knowing where it will be at any time. l&tebe able

to reuse a result from later in the pipeline an explicit synchronisation is needed. How-
ever causing the pipeline always to be synchronised causes lockstep operation with the
pipeline operating at the speed of the slowest block. The alternative is to synchronise
only when the result is needed; however this introduces complicated control logic which
can reduce the throughput of the pipeline and it may not be possible to know that syn-

chronisation is required before sending the current packet down the pipeline.

This thesis treats asynchronous design as a technique which requires investiga-
tion and examines some of the potential problems associated with it. Hpweéveot
the intent of the author to judge whether asynchronous design is better or worse than syn-

chronous design for any particular task.

Very few of the theoretical benefits of asynchronous design have been demon-
strated. However the AMULETZ2e microproces$burb97] shows that asynchronous

designs can be competitive with their synchronous counterparts.

1.4 Asynchronous handshaking
This section explains two handshaking mechanisms which have been used in
asynchronous designs; these t@ve phase andfour phase handshakefSuth89]. Both

mechanisms use a pair of control lines, calegiest andacknowledge, between the two

-20 -

blocks which must synchronise. Handshakes can be used on their own to synchronise a
pair of blocks or they can be used with a bus carrying data to indicate the validity of the

data in a&undled data protocol.

In the two phase handshake the sender informs the receiver that it has data to
transmit by inverting the state of thequest line; the actual voltage on the line is irrele-
vant, as is the direction of the transition. When the receiver observes this change it proc-
esses or stores the data and then togglesditrwliedge line to indicate that it has

finished with the data. An example of this type of handshake is shown inZigure

—
. -

\\--*/J
Ack

Figure 1.2 A two phase handshake

The case just described represents the operation of aldukg data to the
next block. An alternative is for the destinatiorptl data from the sender by placing an

event on the request line and waiting for the sender to acknowledge.

Thefour phase handshake is shown in figute3. Here data is placed on the out-
put of a block and theequest line is raised, the receiver acknowledges by raising
acknowledge. The sender then lowers request and finally the receiver lowers acknowl-
edge. While there are more transitions in the handshake causing it to expend more
enegy, this technique leads to the simplification of many common control structures

[FuDa9sg].

-21 -

Ack

Figure 1.3 A four phase handshake

There are a number of variations on the basic four phase handshake model
which differ in the period in which the data is valid; these are illustrated in figdrén
the early protocol data is valid between Req rising and Ack rising. Biraad protocol
defines data validity being from Req rising until Ack falls andl#be protocol defines
data validity being between Req falling and Ack falling. The choice of the appropriate
protocol to use varies with the particular application. In particulabribed protocol is

useful in systems incorporating dynamic logtciL i96].

1.5 Micropipelines

SutherlandSuth89] suggests a form of asynchronous pipeline catiedopipe-
lines based on the handshaking mechanisms described above; this is shown h3igure
Each stage consists of a latch and a controller which produces the request out, acknowl-

edge in and latch control signals based on the incoming request in and acknowledge out

signalst The micropipeline acts as aastic FIFO where the number of values in the
pipeline is variable. Micropipelines can be enhanced by logic placed between the stages
as in figurel.6. In this model logic is placed between latches and the request line is

delayed to account for the logic delay

1. In common with the normal convention in the AMULET group, Request in andAcknowl-
edgein lines are the lines from the current block to the previous block wbgeest out and
Acknowledge out refer to the lines between the current block and the next block. Thus (confus-
ingly) Acknowledge in is an output of the current block.

-22 -

(a) - Early protocol

(b) - Broad protocol

Req

(c) - Late protocol

Figure 1.4 Variations on the 4 phase handshake

bundled data protocol
Ack
- ——— ——— ——— -——
o) o) Ie) Ie)
- - S S
[= [= [= =
Daa | & o o o
—3 O =g O =g O | O
+ + + +
C O C e
(&) (&) O (&)
© T T ©
— | —] — _] - _ | —
Req

Figure 1.5 Micropipeline

-23-

Ack
- et] I S—
[e) O O
= = =
C c c
+ S + +
- < <
(&) O O
[© T
— _ Delay -] —
Req

Figure 1.6 Micropipeline with logic

1.6 The ARM Microprocessor

The ARM microprocessor was designed in the early 1980s by Acorn Computers
Ltd as alow cost, high performance microprocessor. Its primary design goals were sim-
plicity (due to a small design team) and low power (so that it could utilise a low cost
plastic package). In 1990 the ARM design team was split off into a separate company,
Advanced RISC Machines Ltd., which has continued to develop the ARM. Since then
the ARM has proved popular in embedded systems due to its low power consumption,
small die size, and the fact that ARM licenses the processor core to be incorporated into

ASICs.

The ARM instruction set is RISC based with only explicit |oad/store instructions
accessing memory and many instructions executing in a single cycle. However, unlike
most other RISC processors the ARM has several additional features that increase the

expressiveness of each instruction.

-24 -

Over the years since the ARM was first developed the instruction set has
evolved and new features have been added. The work described in this thesis aims to
produce a microprocessor that complies with the ARM architecture version 4, which is
the latest version of the architecture at the time of writing. The instruction set and its
semantics are defined in the ARM Architecture Reference MdAURIM 96] (subse-
guently referred to as the ARM ARM). Backward compatibility with the earlier 26 bit

addressing format of the ARM is omitted for simplicity

Appendix A describes the ARM instruction set architecture (ISA) in detail while
chapterd describes some of the problems that the ARM design createsud/features

of the ARM ISA will be introduced throughout the thesis as they are needed.

Tablel.1 provides an overview of the ARM instruction $ap2 refers to either
a constant or a (potentially shifted) register value. Coprocessor instructions are not
shown and have not been implemented in this design; discussions on possible extensions

to provide coprocessor instructions are in section 8.4.1.

The use of the ARM in this project provides the challenge of solving problems
encountered in real microprocessors such as exception handling and coping with instruc-
tion set design choices which suited the original design very well but which are hard to

copy in diferent implementations.

1.7 Existing AMULET processors

The AMULET research group was established in 1990 to investigate asynchro-
nous microprocessor design. The head of the group, Professor Stephenvashkiee
hardware designer of the original ARM and thus the ARM was a natural choice for the

project.

.25 -

Data Operations

ADC Rd,Rn,0Op2

Rd := Rn + Op2 + Carry

ADD Rd,Rn,0Op2

Rd := Rn + Op2

AND Rd,Rn,0p2

Rd := Rn AND Op2

BIC Rd,Rn,0Op2 Rd := Rn AND NOT Op2

CMN Rn,0Op2 CPSR flags:= Rn + Op2

CMP Rn,0Op2 CPSR flags := Rn - Op2

EOR Rd,Rn,0Op2 Rd := Rn EOR Op2

MOV Rd,Op2 Rd := Op2

MVN Rd,Op2 Rd := OXFFFFFFFF EOR Op2

ORR Rd,Rn,0p2 Rd := Rn OR Op2

RSB Rd, Rn,0p2 Rd:=Op2 - Rn

RSC Rd,Rn,0p2 Rd:=0p2- Rn- 1+ Carry

SBC Rd,Rn,0Op2 Rd:=Rn-Op2- 1+ Carry

SUB Rd,Rn,0p2 Rd := Rn - Op2

TEQ Rn,Op2 CPSR flags := Rn EOR Op2

TST Rn,0Op2 CPSR flags := Rn AND Op2
Flow of Control

B address PC := address

BL address R14 := PC; PC := address

BX Rn PC:=Rn; CPSR T bit := Rn[0]
Memory access

LDR Rd,address Rd := (address)

LDM Rd/{ register list } Load list of registers from memory

STR Rd,address (address) := Rd

STM Rd/{ register list }

Store list of registers to memory

SWPRd, Rm, [Rr]

Rd :=(Rn), (Rn) := Rm

Miscellany

MLA Rd,Rm,Rs,Rn

Rd := (Rm*Rs) + Rn

MRS Rn,PSR Rn := PSR (Program status register)
MSR PSR, Rm PSR :=Rm
MUL Rd,Rm,Rs Rd:=Rm* Rs

SMLAL RdLo,RdHi,Rm,Rs

(RdHT,RdL0) = (RdHi,RALO) +Rm * Re

SMULL RdLo,RdHi,Rm,Rs

(RdHi,RdLo) :=Rm* Rs

SWI value

Perform OS call

UMLAL RdLo,RdHi,Rm,Rs

(RdHi,RdLo0) := (RdHi,RdL0) +Rm* RS

UMULL RdLo,RdHi,Rm,Rs

(RdHi,RdL0) :=Rm* Rs

Table 1.1: Anoverview of the ARM instruction set

The AMULET1 processor was designed as part of the Esprit OMI-MAP project.
It was a microprocessor core without cache or other peripherals which presented an

asynchronous interface to the outside world, and nearly complied with ARM Architec-

- 26 -

ture version 3. The structure of AMULET1 is described in more detail in section B.4 and
[Pavedd]. AMULET1 was fabricated in 1993-4 and was found to be functional; however

its performance was lower than expected.

The AMULET?2 microprocesspdesigned as part of the Esprit OMI-DE project,
built on the architecture of the AMULET1 with minor reworking of sections and the
addition of branch prediction and result forwarding. Many stages which used two phase
handshaking were redesigned using four phase handshaking in the belief that this would
simplify the control logic and increase speed. The AMULET2 core was used in the
AMULET2e embedded microprocessor which includes a cache, a synchronous memory
interface, and a number of I/O ports. This was fabricated in the summer of 1996 and
works well and lives up to the performance expected from simulation results obtained
during the later stages of design. The performance is competitive with similar synchro-
nous ARM processors although initial predictions made at the start of the design cycle

were overly optimistic.

1.8 Aimsof AMULET3

The initial design of AMULET3 was part of the Esprit OMI-DE2 project which
had as its objective the development of applications of technology from earlier projects.

The implementation of AMULET3 is part of the Esprit OMTI-@M project.
The initial design criteria were:

» To increase performance by architectural modifications using experience from

the AMULET1 and AMULET?2 designs.

» To provide the added features which have been introduced in to the ARM fam-

ily of processors since the AMULET1 design. These include 64 bit multiplica-

-27 -

tion, 16 bit loads and stores, the Thumb compressed instructipAREL6],

and debug and breakpoint facilities.

A number of the architectural choices for AMULET3 were made prior to the
start of this work, based on experience gained from earlier designs. One of the major
choices is the use of separate data and instruction interfaces to memory (or at least to the
cache). This decision should allow higher bandwidth memory access and simplify the
memory address interface. In AMULET1 and AMULET2 the memory address interface
had to generate address streams for both instruction and data requests, and the complex
ity of this interface proved to be one of the main limiting factors in the performance of

the AMULET?2.

It was also decided that AMULET3 was to be a major redesign rather than an
incremental change to AMULET2. This provided the opportunity to investigate the ideas

presented within this thesis.

1.9 Other asynchronous microprocessor s

The AMULET is one of a number of asynchronous microprocessors which have
been developed. The first was developed by Alain Martin et al. at the California Institute
of Technology in 198§Mart93]. It was a 16-bit RISC-like processor which was
designed using a semi-formal approach. The design was initially described as a sequen-
tial program which was then converted by a series of transformations into the circuit
description. This is a simple microprocessor which does not attempt to handle excep-

tions.

Over the last few years other asynchronous microprocessors have been designed
including Fred[RiBr96], SFRISC [DaGY 93], ECSTAC [ApML95], the Counterflow

Pipeline Processor Architectuf8pSM94], the Rotary pipeline processfivl oPW96],

-28-

SCALP[ENnde96], HADES[ECFS95], and TITAC-2. The mechanisms used by some of
these processors to handle iatestruction dependencies will be described later in this

thesis.

These asynchronous processors range from asynchronous implementations of
conventional architectures (in the AMULET designs), novel architectures for imple-
menting existing instruction sets asynchronously (in the Rotary pipeline processor and
Counterflow pipeline processor) to completely novel designs using new types of instruc-

tion set (in SCALP).

1.10 Thestructureof thisthess

Chapters 2 and 3 describe the general problems of exceptions and dependencies
and explain how existing designs have addressed them. Chapter 4 relates the dependency
and exception problems to the ARM procesS§titapters 5 and 6 describe the mecha-
nisms that the author has used to address these problems. Chapter 7 describes perform
ance measurements taken from simulations which show the benefits of the design.

Chapter 8 presents conclusions and topics for future work.

-29.-

Chapter 2: Dependencies

This chapter investigates dependencies between instructions and howedbey af
the design of a processor pipeline. The various types of dependency andehewiéf

be discussed, together with a number of ways of reducing their impact on performance.

2.1 Types of dependency

In a simple non-pipelined processeach instruction completes before the next
one starts and so any iiestruction dependencies are irrelevant. The performance of
such a processor is related purely to the time taken to execute each instruction. In a pipe-
lined processor the peak performance is related to the time taken for a stage to perform
its processing on the instruction packet, however this peak performance is rarely
achieved due to dependencies. The following sections classify dependencies into a

number of distinct types.

211 Procedural dependencies

One of the simplest forms of pipelining is to separate the fetch, decode and exe-
cute units into separate stages as shown in fRyareEach stage is separated by a regis-
ter; these registers are not shown on the diagram. This scheme was used in all ARM
microprocessors prior to the ARMBurb96]. All operations involved in the actual exe-
cution of an instruction, including register read, arithmetic, memory access and register
write back, are confined to the execute stage, thus before the next instruction begins exe-

-30 -

Fet ch | Decode | Execut e
Uni t 1 Unit 1 Unit

Figure 2.1 A simple pipeline

cution the current one must have completed. The dashed line in the diagram represents a
path from the execute unit to the fetch unit to pass the destination address of a branch

instruction.

An instruction, such as a branch, whickeefs the stream of instructions being

fetched, causes a dependeridye segment of code shown below illustrates the problem:

1) B exit

2) al abel ADD R1, R2, #42

3) B errorcondition
4) exit MOV R6, #54

This type of structure might be found in the execution of a multiway branch in a high
level language (e.g. a switch statement in C). Instruction 1 in the sequence above repre-
sents the end of one branch of the statement, 2 and 3 represent another branch anc

instruction 4 is the first instruction after the multiway branch.

The fetch unit cannot know the address of the next instruction to fetch until the
current one has completed execution since that may be a branch which changes the cur-
rent instruction stream. Thus the fetching of one instructidegendent on the previous
instruction. It is not until the instruction has reached the decode unit that a branch can be
detected and not until reaching the execute unit that a conditional branch can be tested to

see if it will really execute, so it is not possible to stall the fetch unit when a branch is

-31-

fetched. Instead of stalling the fetch unit, instructions are always fetched sequentially
until the execute unit presents a new address to the fetch unit. Thus the fetchoeait is
ulating that in most cases instructions are fetched in sequence; when a branch occurs the

speculation is wrong and the incorrectly fetched instructions must be discarded.

In the simple pipeline design shown in fig@r&, when instruction 1 (B exit)
reaches execute, instruction 2 has reached decode and instruction 3 is being fetched.
However neither instruction 2 or 3 must be executed since they follow the branch. These
instructions are said 1oe in the shadow of the branch. One common way to process the
branch is to calculate the branch destination address in the execute stage and transmit it
back to the fetch stage, and then to force the execute stage to disregard the instructions in
the shadow of the branch. Thus speculative fetching requires extra hardware in the exe-

cute stage to deal with cases where instructions have been fetched erroneously

In the synchronous ARM this branch instruction would take three clock cycles
to execute, one for the execution of the branch itself and two more for the new instruc-
tion stream to fill the pipeline. It is also possible to branch to an address held in a register
or to load an address from memory as the brangettafrhe last case takes even longer

to execute.

Branches constitute around 20% of all instructions fetched on a typical micro-
processofHePa90] and thus more &dctive ways of handling the branch are needed;

some approaches are discussed in section 2.2.1.

21.2 Read after write (RAW) data dependencies

To increase the throughput of the processor shown in fQjlire may be desira-
ble to pipeline the execute stage and to enable one instruction to start executing before

the previous one has finished. One possible structure with pipelined execution is shown

-32-

in figure2.2 and is based on that giver{ 8mwWe94]. In this model the registers are read
in the same pipeline stage as the instructions are decoded and the calculation (labelled

ALU), memory access and register write back have been moved into separate stages.

Decode
Fet ch Unit & Menory Regi st er
Uni t Regi st er ALU Access Wite
read

Figure 2.2 Five stage pipeline

A read after write (R¥W) dependency (also known atrae dependency) occurs
when a source operand of an instruction is the destination operand of a previous instruc-

tion; for example:

1) ADD R1,R2,#8 ; equivalent of RL := R2 + 8
2) ADD R3, R1, #32 ; Dependent on Rl result of previous
i nstruction

The second instruction would reach decode (and thus register read) when the first
instruction had only reached the ALU, and if allowed to continue would read an old ver-

sion of R1. Section 2.2.2 describes how to handle this form of dependency

Procedural dependencies can be viewed as a form 8 8#pendency on the
program counterHowevey since the program counter is highly predictable, procedural

dependencies are managed usinfgdiht techniques.

213 Write after write (WAW) data dependencies

Another method of pipelining the execute stage is shown in f§8rdn this
design memory operations are performed in a separate bloitkasfe side of the pipe-
line; this design could be compared to a simple superscalar design with a separate func-

tional unit for the memoryhowever a lot of the complexity is removed since all

-33-

Menory

> Access |

o Decode L

Fetc Unit & . Regi ster

Uni t Regidst er ALU “Wite
rea

Figure 2.3 Pipeline with out of line memory unit

instructions must pass through the single execute stage. This reduces the latency of nor-
mal arithmetic operations by allowing them to pass through one stage less before being
written back. Memory operations are sidelined in the memory stage and complete some
time later while other instructions continue executing in the main pipeline in parallel.
This is advantageous since memory operations are often slower than normal ALU

instructions.

This modification introducesut of order completion, where an instruction ear-

lier in the instruction stream may complete after its successor; for example:

1) LDR R1, [address]
2) ADD R3, R2, #10

In this example instruction 1 might write its result back after instruction 2. In this exam-
ple this out of order write back does not cause a problem. However if two instructions
write to the same register and can write back out of ptidemwrong final result may be

produced:

1) LDR R1, [address]
2) ADD R1, R2, R3
3) ADD R4, R1, #65

-34 -

If the load in instruction 1 was to write its result back after the ADD in instruc-
tion 2 then instruction 3 will use the wrong version of R1. This sequence of instructions
is redundant in that the load generates a result for R1 which is never used, and thus it
might be expected that such a sequence would never be used. However such sequences
do exist where the second write is after a conditional branch and so is not always exe-

cuted.

Redundant sequences of instructions are legal in most instruction set architec-
tures and if adesign isto be made compatible with such an architecture it must be able to

resolve write after write dependencies.

214 Write after read (WAR) dependencies

Figure 2.4 shows a pipeline with an instruction window which alows instruc-
tions to be issued out of order, thus allowing non-dependent instructions to issue in the

shadow of an instruction which is stalled. In the following example:

1) LDR R1, [addr ess]
2) ADD R2, R3, R1
3) ADD R8, R4, R5

instruction 3 could be issued while instruction 2 is stalled waiting for the result of
instruction 1. Thisis a powerful technique which is most often used when alarge number
of pipeline stalls due to dependencies are expected, such as in a superscalar design.
There are various mechanisms available for implementing out of order issue; some of

these are described in section 2.3.4.

-35-

Menory

Access
Decode
Fet ch I nstruction Unit & Regi st er
Uni t W ndow Regi st er ALU “Wite
read

Figure 2.4 Pipeline with out of order issue

The introduction of out-of-order issue has introduced a new type of dependency
thewrite-after-read dependency (WAR) in which a result which has not yet beead is

overwritten by a later instruction as in the following example:

1) LDR R1, [addr ess]

2) ADD R2, R3, Rl

3) ADD R3, R4, RS Not e: destination is now
R3

In this example instruction 1 is issued first, instruction 2 has to wait for its result. In the
meantime instruction 3 can be issued, however it writes a result into R3 which instruc-
tion 2 needs to read to begin execution. Thus instruction 3 would be writing into a regis-
ter (R3) which has not yet been read. Register renaming, described in section 2.3.3 can

avoid WAR hazards completely given enough hardware.

215 Resour ce contention

Although not strictly a dependencsesource contention is another source of
complexity and performance loss in pipelined microprocessor designs. In the design
shown in figure2.3 one implementation of the write back stage could consist of a single
write bus to the register bank which is used for both the ALU and memory results. Hard-

ware must be added to stop two instructions which complete at the same time attempting

-36 -

to use this bus simultaneousiy superscalar designs hardware must be added to stop
instructions being issued to functional units which are still executing previous instruc-

tions.

2.1.6 Summary of dependency types

In a processor which uses any form of instruction level parallelism, dependen-
cies between instructions can degrade overall performance. In simple pipelined proces-
sors where all register modification and access is performed within the same stage the
only type of dependency is the procedural dependekgythe level of parallelism is
increased (by increased pipelining or by superscalar issue) dependencies on the register

bank become more complex.

2.2 Enforcing dependencies

To produce a working pipelined processor it is necessary to add hardware to stall
parts of the processor until dependencies have been resolved. Where speculative execus-
tion has taken place it is also necessary to add hardware to cope with incorrect specula-
tion. This section presents relatively simple mechanisms to produce a functional
pipeline. More complex solutions which attempt to avoid stalling the pipeline at the cost

of added complexity will be introduced in section 2.3.

221 Procedural dependencies

As has previously been stated, it ididiflt to stall the fetch stage of the pipeline
until the branch has been resolved without losing all the benefits of pipelining and thus it
IS necessary to ensure that instructions in the shadow of a branch dectahafopera-
tion of the processom a simple three stage pipeline (as shown in figutgthis can be

done by discarding instructions at the execute stage.

-37-

Usually this is simple since the number of instructions in the branch shadow is
fixed and thus it is a simple matter to discard this number of instructions in the execute
stage. In the AMULET microprocessors this is not possible since the elastic nature of
micropipelines causes the depth of prefetch to be variable. The solution is to give each
instruction stream a tag known asobour. Each instruction stream present in the micro-
processor at any time has a particular colddien a branch is executed the execute unit
generates a new colour and sends this together with the address to the fetch unit. The
execute unit then discards instructions which do not match the new feémad4]. In
AMULET1 and AMULET?2 the colour is implemented as a single bit added to the
instruction. The added complexity needed is an example of the way asynchronous
designs are penalised through the loss of implied knowledge (the fixed prefetch depth)
available in synchronous designs. Howetbe asynchronous design is more modular

since changes in the pipeline structure do rfecathe operation of this process.

Where the depth of pipelining is greater it may not be possible to discard the
instructions before they start executing. In this case it is necessary to ensure that instruc-

tions in the shadow of a branch do not change the protessate.

2.2.2 RAW dependencies

The simplest technique for handling RiAdependencies is to placéasy flag
on each registeAs each instruction is issued it sets the flag on the register it will write
its result into. The flag is cleared when the result is returned to the register bank. Instruc-
tions are prevented from issuing until the busy bits for all their operands areTtlisar

scheme is simple to implement in a synchronous system and uses little area.

-38 -

AMULET1 usesLock FIFOs [Pave9d4] to avoid RAV dependencies. Each lock
FIFO is a micropipeline which holds a stream of unary-encoded register numbers.
Whenever an instruction is issued the destination register address is placed in the top of
the FIFO and whenever a result is returned the bottom element of the FIFO is removed

and used as the write enable in the register bank.

In the following example

1) ADD RL, R2, R3
2) SUB R4, R5, R6
3) SUB R7, R6, R4

at the start of instruction 3 the state of the lock FIFO would be as shown inZi§ure

Any column containing a 1 represents a register with an outstanding write, and since R4
is outstanding the execution of instruction 3 is stalled. AMULET1 uses two lock FIFOs
where one FIFO is used for ALU results and the other for results from mehherput-

puts of the two FIFOs are combined to form an overall lock flag; this allows out-of-order

completion of instructions flowing down the main pipeline and being processed by the

memory.
R7 R4 RO
7
0O 0 o0j0ofO0O O O O
O 0 0j0|O0O O O O
0O 0 0j1(0 O O O
0O 0 0j0ofO0O O 1 O
N

Figure 2.5The AMULET1 Lock FIFO

The lock FIFO simultaneously solves the problem of\RAependencies and
provides a place to store the write register identifiers for all outstanding writes. More

details can be found [PDFG92].

-39 -

2.2.3 WAW dependencies

Write-afterwrite dependencies can be handled by a simple extension to the
RAW techniques given above. Instructions are only allowed to issue when their destina-
tion register is not busy his is fairly simple to integrate into both systems described in

section 2.2.2 and is incorporated in the AMULET2 microprocessor

224 WAR dependencies

One method of solving AR dependencies is to attacRaad flago each regis-
ter which is set whenever an instruction is considered for execution which needs to read
that registerThe flag is cleared when the register reads are complefds.dépenden-
cies are handled correctly if instructions are not allowed to write their results back until

the read flag for their destination is cl¢drbe82].

225 Resour ce contention

Smith and Pleszkun describe a mechanism calleBaisalt shift egisterwhich
can be used to solve contention problems in synchronous dgSigRE38]. The Result
shift register consists of a FIFO holding a flag stating where the next result will arrive
from and which register it should be written to. At each cycle the last entry is read from
the FIFO and used to read a result from a particular functional unit and write it into the
register bank. As instructions are issued each instruction type will be known to take a
fixed number of cycles (for example an integer add might take two cycles). An instruc-
tion taking ‘n’ cycles reserves theh element in the FIFO (i.e. the element ‘n’ cycles
from the head of the FIFO). If the element is full it is known that another functional unit
will be using the result bus in that cycle and thus the current instruction must be delayed

for a cycle.

- 40 -

This technique is not suitable for use in the asynchronous world since it is not
possible to predict how long each functional unit will take to complete its calculation and
thus the order in which results will return. Howevieran asynchronous environment
arbitration can be used to resolve the contention when the results arrive at the register
bank as shown in figui26. Arbitration is often difcult to reason about and fidult to
test, but it does provide a simple solution to this problem. The solution is simpler and
less expensive than the synchronous case which requires storage in the form of the result

shift register

ALU Menory

oy

Arbitration

4

Regi st er
bank

Figure 2.6 Arbitration for a shared register write bus

2.2.6 Summary of dependency enforcement techniques

The greater the potential parallelism in a design the more dependencies are
exposed and the more complex the level of hardware needed to enforce dependencies.
While enforcing dependencies ensures correct functionality it can easily reduce the over-
all performance. The next section illustrates ways of reducing fieetebf the depend-

encies to regain some of the performance lost.

-41 -

Although solutions to procedural dependencies, various forms of data depend-
ency and resource contention have been described sepatasetprmally not possible
or desirable to implement them in isolation. In particular thecebf branches on other

dependency mechanisms can be quite complex, for example:

1) ADD R4, R2, R3
2) B end

3) ADD R4, R5, #9
4) ADD R9, R1, #1
5) end ADD R8, R4, #2

In this example if instruction 3 is issued it would lock register R4, however instruction 3
will never complete execution since it is in the shadow of a branch and will be aban-
doned. When instruction 5 is issued it would wait for the new version of R4 being gener-
ated by instruction 3. Clearly the hardware which handles procedural dependencies must
ensure that the other dependency mechanisms are kept consistent with the set of instruc-

tions which have actually executed.

2.3 Reducing the effect of dependencies

This section describes some of the techniques available to reducéette ef
dependencies. These techniques often traideiroliit complexity against performance.
Their suitability often depends on the particular circumstances as to whether the extra
complexity can be justified. The techniques either attempt to reduce the time that the
pipeline is stalled due to a dependency or they attempt to execute other instructions while

one instruction is stalled.

23.1 Procedural dependencies

Techniques for reducing performance losses due to procedural dependencies can
be split into those techniques which reduce the number of instruction stream changes and

those techniques which reduce the performance loss due to each change.

-42 -

2.3.1.1 Branch delay slots

In synchronous processors where the depth of prefetch is known it is possible to
define a branch so that a certain number of instructions in the shadow of a branch are
always executed. Compilers can normally gamise the instruction stream by moving
an instruction from before the branch into the delay slot. This technique hides some of
the cost of the dependency and allows the processor design to be simplified since it no
longer requires hardware to deal with the dependé@ampilers normally can only take
advantage of one branch delay $mhn91] and so this is not a complete solution to the

problem.

Branch delay slots expose the detailed design of the processor to the program-
mer. This is dangerous since while branch delay slots may be beneficial in one imple-
mentation they may be didult to add in another Any variation between

implementations would remove code compatihility

2.3.1.2 Split branches

A conventional branch instruction can be split into two separate subinstructions.

The first calculates the address to branch to, often by adding or subtractifgeafrah

the current program counter value. The second operation is informing the fetch mecha-
nism of the new address. One way to reduce the performance impact of procedural
dependencies is to use separate address calculation and stream change instructions. Th:
program may include unrelated instructions between the address calculation and the
stream change; and thus the address calculation can be performed in parallel with these
other instructions. In addition the instruction which causes the stream change (often
calleddoit) can be encoded in a way simple enough to be detected by the fetch unit thus

reducing or removing the need to cancel wrongly prefetched instructions.

-43 -

Split branches can be used in asynchronous processors; hativeyeto require
special features in the instruction set and so are not applicable to the reimplementation of
conventional processors. Theed processor is one asynchronous microprocessor which

uses split branchg&ich96].

2.3.1.3 Branch prediction

As explained in section 2.1.1, the fetch unit works autonomously fetching a
stream of instructions, although it may be that a branch has occurred which renders that
stream invalid. Prefetching is based on the premise that the most likely address for the
instruction after the current one is the next sequential address. This is a simple form of
prediction which presumes that branches are never taken; when branches are taken some
recovery mechanism must be used. An improvement on this scheme is to predict the out-
come of each branch and to predict the destination address of the brancHyrtimshs

prediction.

One branch prediction technique is Branch Target Cache (BTC) [York94].
This technique attempts to reduce the number of instruction stream changes due to
branches, but does nothing to reduce tHecef of each change. In a conventional
prefetch unit an incrementer generates each new address which is passed to memory; a
new address stream may replace the value of the incrementer when a branch has
occurred. Figur@.7 shows a prefetch unit with a BTC; the BTC contains a mapping
from addresses of branch instructions to the addresses of tigetstavhen a branch
instruction is encountered by the execute unit it passes the address of the branch and its
destination to the BTC which stores it. As each instruction address is generated the
address is fed back to the incrementer and the BTC; if the address of the instruction cor-
responds to a branch which is in the BTC the next instruction will be fetched from the

destination of that branch. A flag is added to the branch instruction to indicate whether it

- 44 -

New addr ess
Lat ch <
A\ 4 A\ 4
Hit
Mul ti pl exer Mul ti pl exer
A A
?ﬁ?ﬂ%ﬁg{rah ______ ~——— Branch Target
" Cache

\ 4

Menory address

register I ncrenent er

1

v To nmenory

Figure 2.7 Instruction fetch unit with BTC

was predicted; this is used to ensure that predicted branches really were taken and to
cause their éécts to be reversed if they were not taken. The BTC has only a finite
amount of space and various algorithms can be used to determine which entry to replace
when a new branch is executed. In many programs a BTC can predict 80-90% of the
branches[HePa90], thus significantly reducing the number of instruction stream

changes and hence reducing the cost of branches.

This technique is unique to procedural dependencies since the instructions
fetched are highly predictable; however there are some common cases which the BTC
cannot deal with. In particular branches which use addresses held in a register or that are
loaded from memory cannot be predicted; such branches are commonly used as subrou-

tine return instructions.

-45 -

2.3.2 RAW dependencies

Unlike the program counter value, normal register values are unpredictable, so
the technique used to reduce procedural dependency costs is not applicable to normal
RAW dependencies. The simplest approach to reduciny Bépendencies is to make
the compiler aware of the costs of each instruction and for it to rearrange the instructions

to move dependent instructions as far apart as possible, for example:

(a) (b)
1) LDR R1, [address] 1) LDR R1, [address]
2) ADD R3, R3, Rl 2) LDR R2,[address]
3) LDR R1, [address] 3) ADD R3, R3,R1l
4) ADD R4, R4, R1 4) ADD R4, R4, R2

In the code fragment (a) in the above example instruction 2 is dependent on
instruction 1, and instruction 4 is dependent on instruction 3. Fragment (b) performs
exactly the same task, however each instruction which consumes a value is one instruc-
tion further from the instruction which generates the value than in fragment (a). Note
how fragment (b) requires an extra register and so may be miacaltid implement on
architectures with a small register bank. Rearranging instructions at compile time helps

to reduce the problem, but does not completely eliminate it.

2.3.2.1 Result forwarding

One method for reducing the cost of RAlependencies is to make results avail-
able for reuse sooner by usirggult forwarding as shown in figur2.8. With result for-
warding the result of an instruction can be reused before it has reached the write back
stage. Extra result paths are added between the output of each stage and the register rea

stage.

- 46 -

Fet ch
Uni t

Menory _|Regi st er
Access Wite

A

-

Fronlexeche

From nmenor

To execute

Figure 2.8 Pipeline with result forwarding

The decode unit keeps track of which stage each instruction is in; if an instruc-
tion whose operands have been calculated but not yet written back enters decode, decode
reads the operand from the output of the stage which the source instruction has just
passed through. A set of multiplexers placed after the register bank substitutes the result

in place of the value read from the register bank.

This mechanism requires a significant amount of wiring to route the results to
earlier stages in the pipeline and logic to keep track of the position of results. As the
number of stages in the pipeline increases and the number of register read ports is

increased the amount of hardware required increases considerably

- 47 -

Result forwarding as previously described cannot be used in asynchronous sys-
tems since once an instruction has been inserted into the pipeline its rate of progress
along the pipeline is variable and thus the decode cannot know which stage to read its
result from. One solution to thisis to force synchronisation between the register read of
the following instruction and the result production of the current instruction. This effec-
tively causes lockstep operation reducing the advantage of variable execution time
present in asynchronous systems. Ideally synchronisation would only be used where the

result of an instruction actually needs to be forwarded.

2.3.2.2 Lastresult reuseon AMULET2

AMULET?2 uses atechnique called Last Result Reuse as an alternative to result
forwarding. The decoder keeps a record of the destination register of the previous
instruction. When an instruction is decoded its source register numbers are compared
with the destination of the previous instruction and if they match the register read is
bypassed and the operand is collected from the output of the execute stage. No synchro-
nisation is needed because the reuse path is held completely within the execute stage so
that results are forwarded from the output of the ALU back to itsinput. Sincethe ALU is
not pipelined, the output of the ALU at the start of one instruction is the result of the pre-
vious one. Thistechnique isonly used if the instruction from which the result will be for-

warded is unconditionally executed.

In addition AMULET?2 includes a Last Memory Result Register which holds the
last result returned from memory. Results are forwarded from this register when an
instruction following aload requires the loaded value. A lock FIFO ismaintained for this

register in asimilar manner to registers within the register bank [Furb96].

-48 -

2.3.2.3 Freds R1 queue

The Fred processor designed at the University of Utah uses a conventional
scoreboard mechanisiiHePa90] to manage general dependencies, however it also
incorporates a queue of results to be used by later instructions knownRisQ@uoeue
[Rich96]. The register identifier R1 is used to access a FIFO queue instead of the register
bank. An instruction specifying R1 as the destination causes the result to be stored in a
FIFO queue which can be read by another instruction reading from R1. Read after write
dependencies are handled by simply stalling the processor if the R1 queue is read while
empty A similar mechanism is provided to hold branch destination addresses using a

split branch mechanism similar to that described in section 2.3.1.2.

2.3.3 WAR and WAW dependencies

The performance degradation caused by boAR\Wnd WAW dependencies can

be reduced byegister renaming. Consider the following example which causesARN

dependency:
(a) (b)
1) LDR R3, [addr ess] LDR a, [addr ess]
2) LDR R1, [addr ess] LDR b, [addr ess]
3) ADD R2, R3, R1 ADD c, a, b
4) ADD R3, R4, R5 ADD d, e, f

The decoder must prevent instruction 4 from completing before instruction 3 has started
execution because instruction 4 would overwrite R3 which is needed by instruction 3.
This is a VAR dependency and it is the only reason that the issue of instruction 4 would
be delayed in an out-of-order issue architecture executing this example. This delay can
be eliminated by providing separate logical and physical register identifiers agéra lar
number of physical registers than logical registers. As each instruction is issued a physi-
cal register is allocated to the result that the instruction will generate and a mapping is

created between that physical register and the logical register identifier in the instruction

- 49 -

destination field. Also during issue logical register numbers in operands are replaced
using the logical to physical register identifier mapping. Section (b) of the example
above shows the same instruction sequence after this mapping (lower case letters have
been used to represent physical register numbers, ‘e’ ahavihg been allocated prior

to the code shown). Thus R3 in instructions 1 and 3 is mapped to physical register ‘a’,
while R3 in instruction 4 is mapped to physical register ‘d’. Thus since instruction 4
overwrites a physical register which is not currently in use tA®RWependency has

been eliminated.

One form of register renaming, used in the MIPS R1(Q8685095], consists of
a lage register bank containing more registers than are needed by the logical register file
and a mapping table which translates logical register addresses to addresses in the physi-
cal register file. Th&®eoder buffer discussed in section 3.4.4, can also be regarded as a

form of register renaming.

234 Out of order issue

In superscalar processor designs which alloge@mounts of parallelism, pipe-
line stalls due to dependencies degrade performance se®nely the déct of stalls in
these systems is so high, extra hardware may be added to perform useful work while
instructions are stalleddut of oder issueallows instructions to be issued while others

are stalled due to dependencies.

One of the best known out of order issue techniqudsnsasulcs algorithm
[Toma67] which is shown in a simplified form in figuBed(a); this was first used in the

floating point unit of the IBM 360/91.

-50 -

I nstruction
FI FO

Decoder -«

Regi sters

I ,,

Reservati on Reservati on
Stations Stations
Mul tiply
Adder Di vi de
Resul t Resul t

Conmon Dat a Bus (CDB)

(@)

Tag Tag
1 Data 1 2

Data 2 ‘ Cont r ol

(b)
Figure 2.9 Tomasulo$ algorithm

As the decoder issues instructions they are plac&dsarvation Sations asso-
ciated with each functional unit with a copy of any of their source operands which are
already available; the format of a reservation station entry is shown in 2i§{p3. Any
operand which is not available is replaced bBagwhich points to the reservation sta-

tion holding the instruction which will produce that operand.

-51 -

When all operands for an instruction are present and its functional unit is free it
may execute. Thus a functional unit may have an instruction which is waiting for oper-
ands and another instruction (issued later) which already has operands available; this
second instruction may execute even though the earlier instruction is stalled. After exe-
cution an instruction broadcasts its result to all the reservation stations and the register
bank along th€ommon Data Bus (CDB) together with the reservation station number in
which it was stored prior to execution. All reservation stations include comparators
which compare the tag on the CDB with the tags in their entry and if a match is found the

data on the CDB is stored in the reservation station.

Tomasulos Common Data Bus algorithm allows multiple functional units to
execute instructions, potentially out of program ardére inherent tagging system is
another example of a register renaming technique which allcd® &id WAW depend-
encies to be overcomew® disadvantages of the system are that withgelaumber of
high throughput functional units contention for the CDB could slow the system down

and that a laye number of tag comparisons are required.

Tomasulos algorithm is dficult to implement diciently in an asynchronous
design due to the way values are broadcast to multiple units. In an asynchronous imple-
mentation the producer of a result would have to synchronise with all consumers (includ-
ing all other functional units) to ensure that they have had time to read the data from the

bus.

24 Dependencies and external state

The processor registers are not the only state holding elements in a computer;
the memory subsystem, processor extensions (i.e. coprocessors) and input/output

devices also hold state and dependency mechanisms must include support for them.

-52 -

An example of dependencies occurring in state external to the processor is a
store followed by a load some time later from the same location. Many processor designs
treat the memory as a functional unit which processes requests in the order which they
are passed to it, and leave it to the memory to resolve dependencies. Haseavitn

state internal to the processtire problem grows as the level of parallelism grows.

One example of a memory dependency common to all pipelined processors is
that of a program which loads a new section of code to be executed. The running pro-
gram writes code to memory using conventional memory access instructions and then
calls the code it has just written; this may happen whenever a program is loaded from
storage, or it may be used to generate segments of code specific to a problem encoun-
tered at run time; the latter is known sef-modifying code. The dependency occurs
because the processor may already have prefetched from the destination of the writes
before the writes have completed and thus the processor will execute the instructions

which were previously in memary

In practice, self modifying code is rare and when it does occur the code is often
executed a long time after it was written and so the writes have already occurred; how-
ever when separate instruction and data caches are present this can become a problem
Since loading code is reasonably rare this problem is normally solved by requiring the
operating system to perform a special instruction after it has written the code to be exe-

cuted.

Other forms of external dependency cdecfjust data accesses. The inclusion
of write bufers and write back caches to increase the performance of the memory system

can both cause RKX dependency problems.

-B3 -

Some of the techniques used to process register dependencies are unsuitable for
use on the memory subsystem. In particular locking individual registersis unlikely to be
useful for a memory system since adding a lock to each memory location would be pro-

hibitively expensive.

2.5 Novel approachesto dependency resolution

A number of novel approaches to the problem of dependency resolution have
been introduced in asynchronous microprocessors. Although these techniques are aimed
at asynchronous implementation they are often also applicable to synchronous imple-

mentation.

2.5.1 SCALP

SCALP is an asynchronous superscalar processor which takes a novel approach
to dependency resolution [Ende96]. SCALP consists of a number of functional units
interconnected by a routing network and an instruction issuer which distributes instruc-
tions among the functional units. Each instruction states only which functional unit it
should be executed by, which subfunction of that unit is needed, and where to send the
result. In the following example the LOAD instruction tells the memory unit to wait for a
memory address (which we will assume a previous instruction has generated) and use it
to load a value from memory. This result is then sent to the input port on the duplicator.
The DUPLICATE instruction tells the duplicator to wait for a value and then send it to
both the input ports on the ALU. The ADD instruction tells the ALU to wait for two

input values, add them and then pass the result to the memory unit.

LOAD -> duplicator
DUPLI CATE -> alu_a, alu_b
ADD -> nmem addr

Read after write dependencies are handled locally by each unit; thus the ALU waitsfor a

value on both of its inputs. It is possible that more than one instruction passes results to
the same functional unit and that there is no other constraint which determines the arrival
order of the results; in this case the program would execute non-determinisfioally
solve this problem a sequencing instruction is provided which the compiler must use

wherever non-determinism is present.

The instruction issuer in SCALP is not simple, however it would be significantly

more complex if it had to determine inrdestruction dependencies.

SCALP has reduced the hardware costs for dependency analysis by increasing
the burden on the compildt is up to the compiler to find non-deterministic instruction
sequences and insert sequencing instructions and also for the compiler to distribute
instructions among functional units. One disadvantage is that code compiled for one
implementation of SCALP would not execute on a SCALP withfareifit mix of func-

tional units.

2.5.2 The counterflow pipeline processor achitecture

The Counterflow Pipeline Processor Architecture (CFPP) developed at Sun
Microsystems Laboratories is a novel processor architecture which enforces dependen-
cies using only local communicati¢8pSM94] Figure2.10 is a simplified representa-
tion of the CFPPThe lack of global communication makes it an interesting architecture
for implementation using asynchronous techniques. The pipeline has two streams of data

running in opposite directions; instructions flow upwards and results flow downwards.

A block of logic called the&Cop between each stage regulates the flow of data
between the stages. As instructions and results meet (Qofheesults are copied into

instructions which use them, and newer results from executed instructions replace older

-55 -

Regi ster file |«

A

A

Mul tiplier

A

Logi cal

Sour ce bi ndi ng nanes

Adder

Decode

| I'nstruction

S "| fetch (recover)
- A
S ¥
) 3
— \ 4
0 O
S8 | Instruction

B fetch (launch)

A

\ 4

Program count er

Figure 2.10A simplified model of the CFPP
results in the result stream. The logic is such that results cannot overtake instructions
which use the results and so all instructions are guaranteed to receive the latest version of

the result. More details can be found 3pSM 94].

-56 -

The main disadvantage of the design is the amount of logic needed between each

stage to route results between instructions.

253 Hades

The Hades processor developed at the University of Hertfordshire is an asyn-

chronous superscalar procesgoCFS95]. Its main features are:

» Boolean register file
Hades has two register files; an integer file and a boolean file. All comparisons
write their results into the boolean register file and conditional branches use

boolean registers as their condition.

» Explicitly declared delayed branching
Each branch instruction has a delay count incorporated into the instruction,
thus the compiler can state how many branch delay slots each branch is to use.
This enables the compiler to tune the number of delay slots to the number of

instructions it can find to put in the branch delay slots on a per branch basis.

» Decoupled Operand Forwarding
Each functional unit has associated with it a forwarding regMtbenever a
result is written back to the register file it is also written into the forwarding
register During the instruction decode stage a note is kept of the last register
written to by each functional unit and thus the value which will be found (or
which is due to be written) in each functional uftrwarding registetn the
instruction decode stage as each instruction is decoded its source operand reg-
isters are compared to the register numbers known to be held in the forward-
ing registers; if a match is found the register bank read is cancelled and the

value is read from the forwarding regist€he forwarding register may not

-57 -

yet have received the result to be forwarded and thus will stall before provid-
ing the forwarded data. The same piece of data can be forwarded from afor-
warding register by multiple instructions since the value is not removed from
the register once forwarded. A traditional register locking mechanism is used
to perform RAW dependency resolution on register bank reads, however this
forwarding mechanism enables instructions to be issued before their operands
have been generated and thus avoid stalling on a locked register. They can,

however, stall later waiting for an operand from a forwarding register.

254 The Micronet-based asynchronous processor (MAP)

The MAP processor is based on the concept of Micronets which are ageneralisa-
tion of micropipelines [ArRe94]. Each stage of the micronet has its own independent
control in the form of microagents which communicate with microagents in other stages.
The control for these communications is local to the microagents involved. The aim of
this generalisation is to increase the parallelism in the design. The designers of MAP
implement RAW dependency resolution mechanism with locking in the register bank.
Reguests to access a register are not acknowledged unless the register is unlocked. A
token ring mechanism is used to provide distributed arbitration of accessto aresults bus.
The results on this bus are tagged with information which enables forwarding off this bus
inamanner similar to that described in section 2.3.4; however it isnot clear how the data
validity on this write back bus is guaranteed, thus alowing forwarding from the bus by
other sections of the processor. The most notable feature of MAP is the decentralisation

of control.

- B8 -

2.6 Special registers

While the discussion in this chapter has treated all dependencies on registers in
the same wayeal-world processors often have a number of special registers which have
different access characteristics from normal data processing registers. These include
processor status registers which determine the privilege level of the processor and regis-
ters holding carry and sign flags from arithmetic computation. The access patterns of
these registers is often veryfdifent from normal data registers and thus the mechanisms

chosen for handling dependencies may bedint.

2.7 Summary

In all processors with instruction level parallelism some dependency resolution
mechanism is needed. The techniques described in section 2.2 provide functional solu-
tions to the dependency resolution problem at the cost of performance while those in sec-
tion 2.3 provide increased performance at the cost of added compléxgyincreased
complexity may cause the cycle time of the processor to increase and thus it may actually
reduce the overall throughput of the design. It is therefore necessary to consider the costs
and benefits of various pipelining schemes and dependency avoidance mechanisms care-

fully to determine the best solution for a particular application.

The inability of asynchronous implementations to construct simple result for-
warding mechanisms makes the linear five stage pipeline shown inZiguradesirable
because of its high latency even for instructions which do not access mé&hsrig one
reason why AMULET1 and AMULETZ2 used a pipeline structure similar to figiie
However as is evident from the variety of techniques shown in section 2.5, other tech-

niques are available to the asynchronous designer

-59 -

Chapter 3: Exceptions

Most instruction sets make provision for handling rarexaeptional occur-
rences such as interrupts, bus errors and arithmetic oveffitowandle these occur-
rences (which we will describe under the general headilegcgptions) extra hardware
must be added which can severely complicate the design of a pipelined proEessor
chapter investigates the causes of exceptions, their appearance to the programmer anc
the hardware mechanisms needed to handle them. Later in this thesis these mechanism:

will be developed for use in an asynchronous environment.

31 Causes of exceptions

Exceptions are caused by manyfeliént sections of the processor and system
under a number of ddrent circumstances. The exceptions can be characterised accord-
ing to how often they occur and how often they patentially occur For example,
memory access faults are very rare. Howeseery memory operation could potentially

generate one, and as section 7.1.1 shows these make up around 25% of all instructions.

311 External interrupts

Interrupts are often generated by I/O devices requesting service from the operat-
ing system to transfer some data or initiate a new operation. Systems typically provide a

number of diferent external interrupts with dé&frent priorities; a fast, high priority inter-

- 60 -

rupt might be provided for servicing high bandwidth network connections while a low

priority interrupt may be provided for handling a keyboard.

3.1.2 Arithmetic err ors

Some systems require that an operation that produces a result which cannot be
correctly represented must produce an exception to report the error; an example of this
might be an arithmetic overflo@ther systems avoid producing an exception by requir-
ing the application to explicitly test for errors after each operation. The IEEE 754 stand-
ard for floating point arithmetic (which is widely used) states that both a flag based and a
trap based mechanism should be available, though the flag based error reporting is the

default[IEEES85].

3.1.3 Undefined/unimplemented instructions

Most instruction sets do not provide definitions for all possible instruction
encodings, and many architectures require théseefined Instructionso cause an
exception. This allows a program which has crashed and executed these instructions
unintentionally to be dealt with by the operating system in an appropriate m&mier
larly some implementations of a particular ISA may not implement all instructions.
Complicated instructions like multiplication or floating point operations may be omitted;
when one of these instructions is executed the operating system is called to emulate the
instruction. This allows the same program to run on a variety of implementations with

different sets of features.

3.14 Memory access erors

The memory subsystem would produce an exception if it waalieto com-
plete an access due to a fault (such as a parity errdor @xample, due to an access to
an area of virtual memory not presently mapped to a region of physical mdmory

would also produce an exception if it was witing to complete an access if the mem-

-61 -

ory request was made in a non-privileged execution mode to an area of memory requir-
ing privilege. Some memory subsystems can be built with reduced hardware by
requiring software intervention for rare occurrences (such as TLB re]8ad94]);

these interventions would be signalled using exceptions.

Instruction and data accesses can both cause memory access errofscthe ef
on the processor of failed data accesses are oftiredit from the décts of failed

instruction accesses due to the stage in the pipeline in which the access originated.

3.15 Softwareinterrupts

A program running in a non-privileged mode may require the operating system
to perform a privileged task (such as accessing hardware); typically the program signals
to the operating system by a mechanism similar to an exception often caifgxica

software interrupt.

3.16 Unpredicted/mispredicted branches

In a system with branch prediction, branches may cause flushing of the pipeline

so rarely that they can be treated in a similar manner to exceptions.

3.1.7 Breakpoints

Many processors and operating systems provide facilities to aid debugging of
software under development. The most common provision is thaBreflgpoint which
is a mechanism to cause an exception when a particular instruction is executed or a par-
ticular memory access is made. Normad#ifter a breakpoint the program is suspended
and a monitor is run which allows the programmer to examine the current state of the
program before possibly allowing it to continue. In many ways tleetadf a breakpoint

is similar to a software interrupt.

-62 -

318 Reset

Reset of the processor can also be regarded as an exception; however unlike
many of the other exceptionsit isnot necessary to continue execution of the original pro-

gram after the reset has occurred.

3.2 The effect of exceptions

An exception will cause the processor to:

Prioritise exceptions. Since many architectures support a variety of different
exceptions, some of which may occur simultaneously, the exceptions are prioritised so
that an exception occurring during the processing of another exception may or may not
be acted upon depending on the priority rules. For example, a low priority interrupt
occurring during the execution of a high priority interrupt handler may have to wait for

the handler to return before its own handler is called.

Compl ete previously issued instructions: Instructions issued prior to the instruc-
tion which caused the exception are normally forced to complete before exception
processing continues, however some designs store the state of partially completed

instructions.

Save the state of the running program: This is necessary to enable the operating
system to continue execution of the program after the cause of the exception has been

discovered and dealt with.

Enter a privileged mode: In many architectures programs run in an unprivileged
mode without access to 1/0 devices. Since recovery from many exceptions requires
access to /O devices or protected areas of the operating systems data, the processor is

placed in a privileged mode before the exception handling routine is executed.

-63-

Entry of the exception handling routine: The section of code which processes the
exception is called aixception Handler. The processor calls this routine either by
jumping to a predefined location in memory or by reading the address of the handler

from a predefined location.

After the exception handler has finished execution the state will generally be
restored from that previously saved to allow the original program to continue execution.
The system state as seen by the program should Hectedfby the exception. A possi-
ble exception to this rule is that the emulation of an unimplemented instruction might

cause the visible state to be changed.

Some of these steps may be unnecessary when handling certain exceptions; for
example it might not be necessary to save the state for a reset, and it is usually not neces-

sary to enter a privileged mode to recover from a mispredicted branch.

3.3 Cost and frequency of different types of exception

Given the various types of exception described above it is interesting to consider
how often the dierent types occur and how important it is to process them quildhily
information would allow the designer to choose from the various forms of exception
handling hardware and trade tiie amount of hardware against the expected perform-
ance benefit it would bring. Ddrent approaches may be employed for handling each

type of exception within the same processor design.

331 Frequency of exceptions

In a system with branch prediction which correctly predicted 90% of branches
and which had programs running upon it which caused a branch every 5 instructions, a

mispredicted branch would occur approximately every 50 instructions. Thus if branch

-64 -

misprediction is treated as an exception it must be handlectefly and speedily since

it occurs frequently

The frequency of external interrupts varies greatly depending on the application
and on the external hardware providing support to the processor; however except in the
most heavily loaded system the frequency of external interrupts is much lower than the
frequency of mispredicted branches. The processor on which the author is writing this
thesis is receiving approximately 120 external interrupts per second, with 100 of those
originating in the system timer and the other 20 being caused by the keyboard as the
author enters this text. Since the processor clock runs at 90MHz this implies that an
interrupt occurs approximately once every 750 000 cycles. From these figures it can be
seen that on a system being used for text editing interrupts are rare. Hahvevage
amount of data is read from a hard disc with a controller requiringga &mount of
processor intervention this figure increases to well over 2000 interrupts per second. Sim-
ilar data read from a disc with an intelligent controller causes only a couple of hundred

extra interrupts per second to the host.

The time taken to process arithmetic errors and undefined instruction errors can
be lage since they are expected to be caused solely by errors and thus do not occur in

normal use.

Unimplemented instruction exceptions may occur frequently on a system mak-
ing use of an instruction which is not present in the particular implementation but may
appear infrequently on a similar system with a hardware extension. Thus a processor
with an optional floating point coprocessor must implement unimplemented instruction

exceptions diciently so that it can work well in the case the coprocessor is not present;

- 65 -

however the hardware needed to implement the exception is wasted when the coproces-

sor is present.

Memory access errors due to paging in a virtual memory environment are rare in
a system with a lge enough amount of real memory for the task it is performing; how-
ever some operating systems may use memory protection systems for other tasks such as
demand loading of binaries, uncompressing sections of data or programs and other sys-
tem specific tasks; these all increase the frequency with which memory access errors

occut

332 Cost of exceptions

As well as varying in frequency of occurrence, the cost of processing each
exception varies. While a mispredicted branch usually has no cost other than the cost of
discarding wrongly executed instructions, a memory access error in a virtual memory

system is often much more expensive.

The cost of processing the exception can be split into the time taken:

 for the processor to enter the exception handler

» for the exception handler software to perform system management tasks neces-

sary to handle the exception.

» to perform what ever action is necessary to recover from the cause of the excep-

tion.

 to return to executing the original program.

- 66 -

In a system with virtual memory an access to a page which is presently stored on
disc rather than main memory will causpage fault exception. ® process this excep-
tion requires that a page of memory is written to disc and another loaded from it. This
will take many milliseconds since head movement and disc rotation are relatively slow
Since processing a page fault is so slow an extra few microseconds to enter the exception
handler and store state will make very little overafledénce to a simple system. How-
ever some multitasking systems may be able to find useful work to do while waiting for

the disc system and thus the time taken to perform the exception entry is important again.

3.3.2.1 Exception latency

The performance of systems using externally generated interrupts is sensitive to
both the total time taken to process an exception and the intiatenly. Latency in this
situation means the time from the external device notifying the processor of an interrupt
to the time the appropriate interrupt handler is called. In some situations the amount of
latency is constrained by the external hardware, for example arfengduU) ART which
causes an interrupt when a character arrives must be serviced before the next charactet
has arrived otherwise it will lose one of the characters. Uatad devices such as these
are very demanding on exception handling mechanisms since slow response is penalised

by failure rather than by a reduction in performance.

34 M echanismsfor saving state

In a processor which executes one instruction at a time implementation of
exceptions is relatively simple. Once the exception is detected the state, i.e. the contents
of the register bank, program counter and other internal registers is stored and the
instruction stream changed to the address of the haidisrform of exception handling
is known as grecise exception since the stored state represents the state of the processor

at a particular point in the logical execution of the program.

-67 -

In processors which execute more than one instruction at a time the register bank
and program counter represent only part of the processor state; in addition there is the
state of the dependency enforcing mechanisms, the state of each functional unit and (in a
pipelined processor) the state of the pipeline latches. In principle it is possible to design a
system which stores all this state when an exception occurs, and then allows it all to be
restored after an exception, allowing execution of the original program to continue. The
stored state would however bmprecise since it does not correspond to a particular
point in the sequential model of program execution; some instructions may be partially

executed.

Most microprocessor architecture definitions require precise exception handling
and so in parallel processing implementations sped@mitehust be made to generate a

state corresponding to a precise exception when an exception occurs.

341 In-order, lookahead and architectural state

When considering diérent exception handling mechanisms it is useful to keep

in mind the classifications of state made by Johfi3oim91]. His definitions are:

* “Thein-order stateis made up of the most recent assignments performed by the

longest continuous sequence of completed instructions.”

* “The lookahead state consists of all assignments, starting with the first uncom-

pleted instruction, to the end of the sequence.”

* “The architectural state consists of the most recently completed and pending
assignments to each registeelative to the end of the known instruction

sequence, regardless of which instructions have been issued or completed.”

- 68 -

For example, if an instruction was outstanding (which possibly causes an excep-
tion) the contents of all registers as seen at the start of that instruction represent the in-
order state. The lookahead state would consist of those assignments made by instructions
after the potentially failing instruction and the architectural state would be a combination
of the lookahead and in-order states giving the view of the processor state as seen by the

next instruction to be decoded.

34.2 Saving state using checkpoints

One approach to the problem of saving state is to take a snapshot of the current
in-order processor state, known as a checkpoint, every n instructions. These copies can
be used in the event of an exception to return the state of the processor to the state at the
time of the checkpoint. Figure 3.1 represents an instruction stream with checkpoints
taken every four instructions (represented by the thick bars). Instruction 11 causes an
exception, perhaps due to a memory fault. Before the exception handler is entered the
processor state is restored to that stored in the second checkpoint and instructions 9 and
10 are re-executed to produce the state corresponding to that prior to the execution of

instruction 11.

Figure 3.1 Checkpointsfor exception recovery

To produce a precise exception state it is necessary to stall instruction issue and

wait for all outstanding instructions to complete before taking the checkpoint; this leads

to a performance loss. This mechanism is also expensive in terms of hardware to store

- 69 -

the various copies of the state and in the complexity caused by the re-execution of the
instructions between the checkpoint and exception. Furthermore the mechanism as

described does not take account of state outside the processor

Hwu and Patt describe an enhanced mechanism which reduces the need to stall
the pipeline[HwPa87]. The mechanism that they present stdPesding Consistent
Sates (PCS) which correspond to the architectural state at the time of the checkpoint
without allowing outstanding instructions to complete. As instructions complete they
update both the current state and all checkpoints taken after the instruction was issued.
Before the state can be restored all outstanding instructions prior to the checkpoint must

complete.

34.3 The history buffer

The history buffer is one of three mechanisms proposed by Smith and Pleszkun
to handle precise interrupts in pipelined processardg188]. Like checkpointing mech-
anisms, the history bigr maintains some state to be restored when an exception is
encountered. Howevaunlike checkpointing only the part of the state which has changed
recently is stored. Figui®2 shows the basic structure of a system with a histofgrbuf

while figure3.3 shows an entry in the history farf

As each instruction is issued:

» The old value of the instructisdestination register is placed in thid value

field of the next free slot in the history bairf

» The destination register number and program counter are stored in the slot and

the exception and valid flags in the slot are cleared.

-70 -

Oper ands

Regi st er Functi onal
Bank » Units
— —>
a d val ues
Tag
Val ues
for
exception) -
| recovery H story

Buf f er

Val i d, exception
bits

Resul t bus

Figure 3.2 The history bukr

Destination | Od Val ue Program | Valid | Except i on

Count er

Figure 3.3 Format of a history btgr entry

» The position of this slot is passed as a tag with the instruction down the rest of

the pipeline.

As results return from the functional units to the register bank the exception flag
is set if the instruction caused an exception and the valid flag is set to indicate that the

instruction has completed.

In normal operation old results are discarded from theebuf a FIFO manner
once the valid flag is set. If an instruction causes an exception, issue is stopped and all
outstanding instructions are allowed to complete, then the old values held in the history
buffer are written back to the register bank with the newest value being written back first.

The program counter of the instruction which caused the exception is restored from the

-71 -

entry in the history bdér. This restoration removes thdesft of any instruction issued

after the instruction causing the exception.

In addition to the storage and control logic for the historyebufself, the sys-
tem requires an extra read port on the register bank to supply the old values of the desti-

nation register

If the history buffer does not contain enough entries, the decode and issue stages
will be stalled waiting for a free space in thefbubefore issuing the instruction, so the
history bufer can cause a performance degradation beyond that caused by the added

complexity of the control logic.

The history buer does not help in the resolution of dependencies and it imposes
a dependency itself: it may be necessary to wait for the old value of the destination regis-
ter at issue before it is written into the historyfbufThus an additional dependency res-

olution mechanism is needed.

The history buker has two advantages over checkpointing systems. The first is
that only a small part of the state needs to be stored, reducing the amount of storage

needed. The second is that the cost of periodically copying the whole state is removed.

In a system using a history lberf the register bank holds the architectural state,
as can be seen by the fact that the functional units access values directly from the register

bank. The history btér is used to restore the in-order state when an exception occurs.

344 Thereorder buffer

Thereorder buffer is another mechanism suggested by Smith and Pleszkun. The
structure of a system with a reorderfeuis shown in figur&.4. The reorder btdr is a

gueue holding values returned from the functional units; an entry is shown inJigure

-72 -

The entry is similar to the history hef except that the old value field has been replaced

by a ‘result’ field.

Resul ts Oper ands >
, Register ~ Functional _
Bank ~ Units
| Reorder <
Buf f er Resul t s

Figure 3.4 Processor ganisation with a reorder faf

Desti nation Resul t Excepti on

Program valid
Count er

Figure 3.5 Format of the reorder bief entries

During instruction issue a space is reserved in the reorder o which the
current program counter is written together with the destination register ideftifeer
index for the allocated entry is then associated with the instruction. As with the history
buffer, if the reorder bdér is too small the issue stage will stall waiting for a space, lead-
ing to performance loss. Results returning from the functional units write their results
into the allocated spaces in the reordefdyufather than writing the results directly into

the register bank.

Results are written to the register bank in the order in which they were allocated
once the instruction is known to have completed without.eéWWben a result is encoun-
tered which causes an exception, issue stops and all remaining results (corresponding to

instructions issued after the instruction with the exception) are discarded and the pro-

-73 -

gram counter is restored from the reordefdruéntry of the instruction with the excep-
tion. Once all outstanding instructions have completed (and their results discarded)

instruction issue can continue at the exception handler

The reorder bdér holds lookahead state while the register file holds in-order
state. As operands are read from the register file the performance degradation due to
RAW dependencies is increased since it is necessary to wait for the in-order state to be

resolved as results drain into the register bank.

345 Reorder buffer with forwarding paths

The primary disadvantage of the reorderféutiescribed above is itsfeft on
RAW dependencies. Thisfett can be reduced (or removed) by adding forwarding paths

from the reorder btér around the register bank as shown in figli6d SmPI88].

Regi st er
Bank -
N
-
Results _’, | ,
Oper ands Functi onal
Conpar at or s/ ~\J Units
Bypass >
| ogi c L
Reor der <
Buf f er Resul ts

Figure 3.6 Processor ganisation with a reorder faf
with forwarding

If it is possible to forward from every entry in the teufa new mechanism for
enforcing RAV dependencies is formed; this is similar to the model presented by Sohi

and \ajapeyaniSoVva87].

-74 -

When an instruction is being issued the reordefebu$ searched for entries
whose destination register field corresponds to a source operand that the instruction
needs. If no entry in the reorder farf matches the register number then the result has
already reached the register file and the operand is read from there. If one match is found
the instruction issue may be stalled until the reorddebehtry contains a valid result,
whereupon it is used as the operand for the instruction being issued. If more than one

reorder bufer entry matches the latest version is used.

The primary disadvantage of this mechanism is the complexity of the logic
required to test for the presence of registers in the reorder.bitis consists of a Con-
tent Addressable Memory (CAM) whose size increases with the number of entries in the
buffer and the number of operands that are forwarded. The comparison is complicated by

the need to select the latest version of a register if multiple matches are found.

The main advantage of the reorderfeufvith forwarding is that in addition to
providing a mechanism for exception handling it also resolvéd/ RAd VAW depend-
encies. Its handling of ¥V dependencies can be seen to be a form of register renaming.
Effectively each entry in the bief is another registeand multiple versions of each reg-
ister may be present in the Barfat any time. The bfédr reorders values so that where
there are \WW dependencies the values are written back to the register bank in the cor-
rect orderand the search mechanism ensures that instructions which are issued read the
most recently allocated version of registers rather than the most recently completed ver-

sion.

To summarise, the register file still holds in-order state, the reorder bofds

lookahead state, but now the functional units read from the architectural state formed by

-75 -

a combination of the in-order and lookahead state. This combination is done with the aid

of the CAM and other control logic.

3.4.6 The future file

The future file is the final mechanism described by Smith and Pleszkun. The

mechanism described here is a modified form described by Joldobm®1].

The oganisation of a system using the future file is shown in figurelt con-
sists of a model similar to the simple reorderféruivith the addition of an extra register
file known as thduture file As in the simple reorder ef system the reorder af
holds lookahead state and the register bank holds in-order state. In normal operation the
future file holds the architectural state, however upon recovery from exception the archi-
tectural state is formed by a combination of the future file and the register bank.

Instruction results

I n- Or der
Reor der State J|Regi ster | _
Buf f er Bank
— ©
) .| Functional
) % Units
Instruction results | Future |
File

Figure 3.7 Processor ganisation with a future file

Each entry in the future file consists of a validity flag and either a register value
or a tag indicating that an outstanding instruction is due to place its result in the future
file. As each instruction is issued the location in the future file corresponding to its desti-
nation register is marked to indicate that it is valid, and a tag is stored corresponding to

the instruction which is to write the result.

-76 -

As results arrive from the functional units they enter the reordéerbarid the
future file. If the instruction returning the result does not match the future file tag the
result is discarded; this allowsAW dependencies to be resolved by discarding older
versions of the register irrespective of the order that they return from the functional units.

If the tag matches the result overwrites it.

When an instruction is being issued and needs to read its operands it reads the
same location in the register file and the future file. If the future file location is marked as
invalid the operand is read from the register bank, otherwise the tag or value is read from
the future file. If the future file contains a tag the instruction issue must stall to wait for
the result to arrive. This lookup and flag check replaces the tag comparator lookup used

in the reorder buér.

During normal operation the validity flags in the future file are set and results are
read directly from the future file without having to wait for the in-order state to be deter-
mined. When an exception occurs the valid results in the reorder bafore the excep-
tion drain into the register file, completing the in-order state. The valid flags in the future
file are then cleared. Any instruction which is now executed will read from the in-order

state in the register bank.

The future file removes the need for the associative lookup of the reortler buf
while still not incurring cost in saving state. In a system with a future file recovery from
an exception is simple since it is only necessary to drain the reorfkar dnd clear a set

of flags.

The cost in terms of hardware is a duplicate register bank (the future file itself),
and the validity and tag logic. It is the area cost of the duplicate register bank which is

the main disadvantage of the future file.

-77 -

The future file cannot, by itself, solveAR dependencies and so is unsuitable

for out-of-order execution without the addition of extra hardware.

3.5 Exceptionsin the AMULET1 processor

In AMULET1 exceptions fall into two broad categories: those that can be
detected before instruction issue and those which can only be detected afterwards. Exter-
nal interrupts, software interrupts, and memory exceptions while fetching instructions
are all in the first class, while failure to complete data memory operations (data aborts)

are in the second.

Exceptions which can be detected during decode cause the next instruction to be
substituted by an exception entry; ifieet a special instruction. Consequently this form
of exception needs very little extra hardware. Instructions which have already been
prefetched are discarded as the substitute instruction behaves in a similar fashion to a

subroutine call.

The processing of data aborts is more complex because other instructions may
have been issued after the memory access instruction. A memory operation proceeds
down the pipeline in the same manner as any other operation until it reaches the bottom
of the ALU, which is used to calculate the address on which the memory operation is
performed. The address is passed todiidress interface which performs all address
interactions with the memory system. Howeuwbe ALU is not yet freed for further
instructions. The address interface then waits for an exception response from the mem-
ory subsystem. If the response indicates that there was nptkeeractual data access is
allowed to continue and the ALU is freed to allow further instructions to execute in the

shadow of the memory operation. If the response was that a data abort should occur (for

-78 -

example on a page fault) the ALU changes the instruction colour (section 2.2.1) and
informs the primary decode of this. Since the colour has changed no instructions after the

aborting instruction complete.

With this mechanism the memory operation has been split into two subopera-
tions. The first is a test of the ability of the memory operation to perform the access and
the second is the actual memory access itself. If the exception test is expensive the per-
formance of the processor would be significantly impaired since other operations would
not be able to execute in the shadow of memory operations. In complex memory control-
lers (such as the one used in the ARMGARM91]) determining whether a memory
access is possible may itself require other memory accesses which could take a signifi-
cant amount of time. In addition the separation of the two stages of the memory opera-
tion is not always possible; this is true if a system must be able to detect errors such as

parity errors which are only detectable after the entire access has completed.

3.6 Exceptionsin the Fred processor
The Fred asynchronous processor provideduactionally precise exception
model which splits the problem of exception handling between the hardware and the

operating-systenmrich96].

The basis of Fred’ exception handling mechanism is thetruction window
which forms part of Fred’ dispatch unit and is based on the instruction window by
Torngand Day[ToDa93]. The instruction window holds status information on all cur-
rent instructions which is used during the dispatch of instructions and during exception

processing.

-79 -

The instruction window operates as a circular queue with instructions being
issued in order and being removed when they reach the top of the queue having com-
pleted successfullyThe status of an instruction moves through issued, issued, and

then arrives at eitheomplete or a status reflecting an exception.

When an instruction with an exception reaches the head of the instruction win-
dow all instruction issue is halted and the processor waits for all outstanding instructions
to complete. At this point the instruction window holds a copy of all instructions which
have caused an exception and all instructions which have been fetched but not yet exe-

cuted.

A copy of the instruction window is then stored in shadow instruction win-
dow and the instruction window is cleared. The exception handling code is then entered.
It is now up to the exception software to analyse the contents of the shadow instruction
window, save all other state (including the R1 queue and branch queue described in sec-
tion 2.3.2.3) and handle the exception. Once it has finished it issues a return from excep-
tion instruction which causes the shadow instruction window to be copied back to the

main instruction window and execution to continue.

Since Fred allows out-of-order completion it is possible that an instruction after
the one causing the exception could finish execution and overwrite one of the registers
used by the failing instruction. Richardson gives an example similar to the following

[Rich96]:

LDR R2, [R3, R4]
ADD R4, R5, R6

If the load was to fail but the add was to complete, R4 would be corrupted so that it
would not be possible to re-execute the load after the exception had been handled. This

problem is solved by holding the values of the operands to each instruction in the instruc-

- 80 -

tion window In this example the load would keep a copy of R3 and R4 at the time of
issue while the add would keep a copy of R5 and R6. It is then a job for the exception
handling software to restore the registers (by examining the shadow instruction window)

before returning from the exception.

This system requires significant additional hardware to implement the instruc-
tion window and the shadow instruction winddach entry in the window is @er than
would be otherwise necessary due to the storage of the instruction operands in addition
to other control information. The addition of the shadow instruction window then dou-
bles the amount of hardware requiredrivus methods for reducing this overhead are

discussed ifiRiBr95].

The designers of Fred had the advantage that they could design their own
instruction set and exception handling semantics. This has enabled the use of function-
ally precise exception semantics rather than conventional precise exception semantics.

This option is not available when reimplementing existing systems.

3.7 Exceptions and external state

As well as a consistent state in the registers a consistent state in the memory sys-
tem must be provided at the entry to an exception handies in itself is not sdicient
in all systems since thect of reading or writing to a memory location may have side-
effects (for example accessing I/O devices) making it impossible to unddebeadfan
access. An example of this might be a memory mappedTUsich has a bdér where
received characters are stored. Reading a location in the prosessanory space
causes this btgr to be read and to be freed for the next chardt&foad instruction in

the shadow of an exception was executed and caused this location to be read a characte

-81-

would be lost. Some systems solve this problem by having special I/O instructions, oth-
ers have the ability to mark areas of memory as being I/O areas and force special consid-

eration of accesses in these areas.

Techniques such as the historyfeufand the reorder bigir can be adapted to
preserve or restore state in the memory system. Utilising a histdey beduires that the
old contents of the memory location is read before each modification, and in many sys-
tems this would double the time taken to perform the access and so would be unaccepta-
ble. A reorder bdér can be used to implementaite buffer. In a system with a write
buffer write operations to memory enter thefbuimmediately upon execution of the
write instruction but only move from the lbeif to memory when all preceding instruc-

tions are known to have completed successfully

3.7.1 Exceptionsin a pipelined memory

Another problem which often fafcts exception handling in memory systems is
pipelining within the memoryModern memory systems are often highly suited to
pipelining, for example a system with a cache might be split into CAM lookup and RAM
access stages which allow two memory operations to be in progress at any one time. The

problem comes when the operation in a later stage causes an exception, thus:

LDR R1, [bad address]
STR R2, [good addr ess]

When the store is issued to memory the processor may not yet have received the
response from memory stating whether the load has completed successftiily store

has already been passed to memory even though it should not execute as it is in the
shadow of the aborting loado Bolve this problem the memory system itself must per-
form some level of exception handling and discard operations in the shadow of opera-

tions which have failed. This might be done with the aid of a flag which is set when an

-82-

exception occurs and causes all future memory operations to be ignored until the excep-

tion is recognised by the processor

If more than one stage in the memory pipeline holds state which is modified by
the memory accesses then there is the question of where the exception flag is stored anc
where it is examined. For example, consider a memory pipeline with two stages; an
exception can be generated in the second stage and there is state which can be modifiec
in both stages. Now consider two consecutive memory accesses, the first causes an
exception in the second stage and the second access causes a modification to the state i
the first stage. The exception in the second stage will set the exception flag in the mem-
ory and thus cause no more modifications to the state, however the modification of state
by the second instruction is being carried out in parallel with the first access and thus the

exception flag will not have been set by the time the state modification is carried out.

The author believes this is a potentially interesting problem, however it lies out-

side the scope of the processor itself and is thus not explored further in this thesis.

3.7.2 Multiple forms of external state

Where there are many thfent types of external state, processed by separate
(potentially concurrent) execution units the problem is compounded since an exception
caused by one section of external state migctbperations already issued to one of the
other sections. An example of this might be an external floating point coprocessor and
the memory subsystem. A store in the shadow of a floating point operation which caused
an exception must not execute, and similarly a floating point operation in the shadow of a

memory operation which caused an exception must not execute.

-83 -

3.8 Summary

There are many didrent forms of exception in a typical system. Each form has
different characteristics, (such as the frequency with which it occurs), whictieste @f
not just by the forms of exception but also by the application and the environment the

processor is being used in.

In a pipelined (or otherwise parallel) processor design the méstutiproblem
to be solved in exception handling is saving a consistent copy of the préosedate

which can be used to continue execution after the exception has been dealt with.

Various exception handling schemes have been proposed. Each scheme has its
own advantages and disadvantages in terms of performance (both in degradation of nor-
mal execution speed and in the cost of exception handling), hardware requirements and

the burden placed on the software.

The reorder bdér (with forwarding) and the future file have a major advantage
over the other techniques presented in this chapter as they integrate a dependency
enforcement mechanism with the exception handling mechanism. It is hoped that by

using one mechanism to solve both problems a simpler design might be produced.

-84 -

Chapter 4: Issues in implementing
the ARM architecture

The previous two chapters have discussed the twin problems of dependencies
and exceptions in a processodependent mannerhis chapter describes the ARM and

the problems involved in implementing its instruction set.

Since exception and dependency handling are both related to the maintenance of

processor state, the chapter starts by describing the state held in the ARM processor

4.1 Processor modes

The ARM operates in one of seven processor modes:

User - for normal user programs

SVC - for general purpose OS work

System - Similar to SVC.

FIQ - Used by the high priority &ST) interrupt handler

IRQ - Used by the low priority interrupt handler

-85 -

» Abort - Used by the handler for aborted memory operations

» Undef - Used by the handler for undefined instructions.

All modes other than User mode are privileged in that a program running in that
mode is allowed to change to any other mode and is given privilege when accessing
memory (thus in most systems is allowed to access I/O devices). The privileged modes

are entered automatically during exception entry

4.2 Registers
The ARM architecture defines thirty general purpose registers, the Current Proc-
essor Status Register (CPSR), five Saved Processor Status Registers (SPSRs) and a Prc

gram Counter (PC).

At any given instant 15 of the general purpose registers are visible and are
referred to as RO-R14. R15 is used to access the program cdineteurrent set of vis-
ible registers is defined by the current operating mode as shown inZigufiéhis mech-
anism provides a number of temporary registers for use in each mode; in particular FIQ
mode is provided with seven private registers allowing interrupt routines to be written
without needing to stack and restore registers. Register values are preserved between
uses of each mode, allowing the operating system to initialise R13 of each mode as a pri-
vate stack or data pointérhe System mode is a privileged mode with the same register

set as user mode.

The registers other than R0-R7 are referred toaaked registers andparticular
versions of a register are referred to by appending the mode name to the register identi-
fier - for example R13_svc refers to the R13 register as seen in SVC mode while R13

would refer to R13 in the current mode.

- 86 -

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14

R15

-------- Available in all modes

Unique to particular modes

Available in all but FIQ mode

| R8_fig

{ RO fig

| R10_fig

| R11_fiq

R13 _und

R13 svc

R13_abt

R13 irq

. R12_fiq

R13_fiq

R14 usr

R14 und

R14_svc

R14_abt

R14 irq

R14_fiq

user and
system
mode

SPSR_und

undefined
mode

SPSR_svc

svc
mode

SPSR_abt

abort
mode

SPSR_irq

irq
mode

Figure4.1 The ARM Register set

SPSR_fiq

fiq
mode

While R14 isagenera purpose register it also serves as areturn address register.

The BL (Branch and Link) instruction, used to perform subroutine calls, stores the

address of theinstruction after the call in the current R14 register. Exception entry causes

R14 of the exception mode to be set to the address at which execution must continue

after the exception has been serviced (plus a predetermined offset determined by the

exception).

4.3

The Program counter

The program counter (PC) is accessed in the same way as a general purpose reg-

ister using register number R15. When read, R15 holds the address of the current instruc-

tion plus 8; this offset is an artifact of the pipeline implementation in the earlier ARMSs.

-87-

R15 can also be used as the destination of almost any instruction. A write to R15
causes a branch to the address written. Combined with the BL mechanism described

above this provides the complete subroutine entry and exit mechanism, thus:

BL subrouti ne R14:=addr+4, PC:=subroutine

subr outi ne
do work
MOV PC, R14 PC :=R14

This mechanism does not allow nesting of subroutine calls, but since R14 is a general
purpose register it can be stacked using the LDM and STM instructions described in sec-

tion 4.9:

BL subrouti ne
subrouti ne

STMFD R13!,{ RO-R3,R14 } Stack RO, R1, R2, R3
and R14 (use R13 as
base pointer)

BL anot her

LDVFD R13!,{ RO-R3, PC} Unstack RO, R1, R2, R3
& the program counter

In this example the return address of the current subroutine is stacked while another is
called. This example also shows that the program counter can be loaded directly from

memory

The flexibility allowed by writing directly to PC is useful while performing sub-

routine calls, complex multiway branches and vector indirections.

4.4 The CPSR

The CPSR, shown in figure2, holds the current mode, a number of control
flags and the ALU result flags. The ALU result flags, N - Negative, Verfw, Z -

Zero, C - Carrycan be written in any mode, while the other bits may only be written in

- 88 -

the privileged modes. The | and F flags determine whether interrupts and fast interrupts

are enabled. On ARMs with the Thumb extension the T bit enables the Thumb instruc-

tion set.
31 30 29 28 27 8 7 6 5 4 0
N ‘ Z ‘ C ‘ V Reserved | ‘ F ‘ T ‘ Mode

Figure 4.2 Organisation of the CPSR and SPSRs

The ALU result flags are written by any data operation or multiply with its S bit

set. Thus:

ADD R1, R2, R3 Does not change the flags,
ADDS R1, R2, R3 Changes the flags.

The CPSR can also be modified explicitly by the use of the MSR instruction
which enables a general purpose register to be transferred to the CPSR. This is infre-
guent and is generally only used by operating system code. The MSR instruction allows

partial writes of the CPSR, thus:

MSR CPSR all, RO Write all bits of the CPSR from RO
MSR CPSR flg, RO Write only the ALU flags
MSR CPSR ctl, RO Write only the control and mode bits

The contents of the CPSR are used by many instructions. The current mode
affects all instruction and data fetches and all banked register operations. The ALU flags
are used by instructions such as add with carry and some of the shift operations. In addi-
tion all ARM instructions can be executed conditionally on the basis of the ALU flags,
so:

ADDVC RO, R1, R2
would only modify RO if the overflow flag was clear before the instruction executed. As

will be seen later this complicates many of the exception and dependency mechanisms.

-89 -

The CPSR can also be read with the MRS instruction which provides the com-

plementary operation to MSR.

4.5 The SPSRs and their rolein exception entry
Each privileged mode has associated with it an SPSR which is identical in struc-
ture to the CPSR. The current SPSR can be read and modified in the same way as the

CPSR using MSR and MRS instructions.

On an exception entry on the ARM the following steps are taken:

1. The CPSR is saved into the SPSR of the destination mode.

2. The CPSR mode bits are changed to the destination mode. In the case of some
exceptions the | and F flags are modified to disable interrupts. The T flag is
cleared.

3. R14 destination is set to the return address of the exception (plUsetrappro-
priate to the exception).

4. The program counter is set to the address of the appropriate exception handler

entry point.

Thus to return from the exception, R14 must be copied to PC and the SPSR must
be copied to the CPSR. Since modifying the CPSR would hide the relevant R14, one
instruction must be used to perform both tasks. This instruction is a form of data opera-
tion which is special because its destination is the program counter and it has the S flag

set (indicating it should update the ALU flags):

MOVS PC, R14 or
SUBS PC, R14, #4

The SUBS is used where arfsgt has previously been added to R14 during exception
entry or where the instruction which called the exception is to be reexecuted. As

expected these instructions write their result to the PC but instead of updating the ALU

-90 -

flags they restore the SPSR to the CPSR.

4.6 External state
The sections above have described all state internal to the prodessever
both memory and coprocessors are part of the system state which must be correctly

maintained.

46.1 Memory

All instructions in the shadow of a branch or exception must avoid accessing

memory even by performing a read. Given:

LDR RO, [bad address] Causes an abort
LDR R1, [good address]
STR R2, [good addr ess]

if the first instruction causes an exception the access by the following load and store must
not be seen externally to the processarexplained in section 3.7, although a load may

not have any obvious fett on normal memorya read from a location in memory
mapped 1/O space couldfedt its state. Prefetch of instructions in the shadow of an

exception is however allowed.

4.6.2 Coprocessors

The ARM has provision for up to 16 coprocessors which can be attached to per-
form extensions to the instruction set, for example floating point or DSP type operations.
As in the AMULET1 and AMULET2, the issue of coprocessors has been ignored in the
design presented in this thesis, mainly because of the added complexity to the depend-

ency and exception mechanisms.

Ideally instructions destined for a coprocessor should begin execution as soon as
possible, i.e. while preceding ARM instructions carry on executing. However if a pre-

ceding instruction causes an exception the coprocessor instruction must be prevented

-91 -

from changing the system state. Thus some mechanism for informing the coprocessors
of the status of instructions sent to them must be provided. In practice with the addition
of exceptions caused by the coprocessor this complicates the architecture significantly

Mechanisms for handling this problem are discussed in section 8.4.1

4.7 Exceptionson the ARM

The classes of exception are:

IRQ - Externally generated interrupt.

* FIQ - Externally generated high priority ‘fast’ interrupt.

» Prefetch abort - Failure/refusal by the memory system to fetch an instruction.

» Data abort - Failure/refusal by the memory system to perform a data memory

transfer

» SWI - Software interrupt instruction encountered.

Undef - Undefined or unsupported coprocessor instruction encountered.

The IRQ, FIQ, Prefetch abort and SWI exceptions can all be handled at instruc-
tion issue time by treating them as special instructions which perform an exception.
These instructions are similar to a subroutine entry (BL) instruction but also cause the

processor mode to be changed and the CPSR to be stored.

Undefined instructions fall into three classes. The first is a class of instructions
set aside for future expansion known asuhdefined instructionghese are &éred to

coprocessors for execution. The second class are instructions specifically intended for

-92.-

coprocessor execution. At execution time these first two classes of instructions are
offered to coprocessors which may accept or reject them. If no coprocessor accepts the

instruction the undefined exception vector and mode is entered.

The third class of undefined instructions is instruction encodings which do not
fall into any other class of instruction. The behaviour of these instructioons defined
and they may perform any operation other than causing the processor to crash irrecover-
ably or performing an operation which cannot be performed in the current mode; e.g.
executing such an instruction in user mode may not disable interrupts. While the behav-
iour of these instructions has not been defined it is regarded as desirable that they enter

the undefined instruction vectdrhis can also be handled prior to instruction issue.

Thus only two forms of exception can occur after instruction issue: data aborts
and undefined coprocessor instructions. As mentioned previously coprocessor instruc-
tions have not been implemented and always cause the undefined instruction exception

to be entered: this is decided before issue. This leaves only data aborts.

4.8 Conditional execution

Perhaps the most unusual feature of the ARM instruction set is the fact that any
instruction can be made conditional. It was introduced in the design of the original ARM
to reduce the number of branches and so reduce the number of stalls due to procedural

dependencies.

Conditional execution complicates the implementation of many exception and
dependency handling techniques. There are several potential methods of solving the con-
ditional execution problem, most of which severely degrade performance for code which
uses conditional instructions. For example, one method would be to stall all condition-

ally executed instructions at decode and only allow them to continue once the condition

-903 -

code could be determined (i.e. any outstanding CPSR writes had been concluded).
Although this would work, and code could be reoptimised to avoid using conditional
execution, it goes against the aims of the AMULET project. The aim of the project is to
produce a processor compatible with the ARM to the extent that existing software, tools
and knowledge can be applied to the resulting procelssignificant changes were
made to the relative performance offeliént instruction set features it would be neces-
sary to recompile or recode applications to maintdiniefcy This would be contrary to

the aims of reusing existing software. While it is clear that the relative performance of
some features is going to change in a new implementation, it seems wrong to turn a fea-

ture which was a strong performance optimization into a strong performance penalty

48.1 Conditional execution and the use of futue files.

Of the exception handling mechanisms described in chaptée future file
described in section 3.4.6 is one of the most attractive because it solves the exception and
dependency handling problems while avoiding the extra register read port required by
the history buer and the associative lookup of the reordefdsut his section considers
the difficulties associated with using a future file in an implementation of the ARM

architecture.

Given the following fragment of C:

if (a==6) {

b = c;
} else {

b =d+ e;
}
g =>b + 5

-94 -

and the following mapping of variables to storage:

Variable Stored in
RO
R1
memory
R2
R3
g R4

Table 4.1: Mapping of variables to storage

DO TLD

the following piece of ARM assembler could be produced by a compiler:

1) CWP RO, #6 if (a==6) {
2) LDREQ R1,[..] b = c;
} else {
3) ADDNE R1, R2, R3 b =d + e
}
4) ADD R4, R1, #5 g=>b + 5

This example makes good use of the ARMbnditional instruction set, thus
avoiding the need for several branches. At the time of issue, the CPSR flags needed for
the evaluation of an instructiantondition codes may not be available since they may
have been set by the preceding instruction which has not yet completed execution. The
approach taken by most ARM implementations is to issue all instructions, irrespective of
their condition codes, and then to check the condition codes later in the pipeline. So both
instruction 2 and instruction 3 would be issued. The condition code is calculated in paral-
lel with the execution of the instruction and is thus available together with the result of
the instruction. If both instructions 2 and 3 are allowed to execute in parallel ftaaltif
to know which will complete first. For the purpose of this example assume that instruc-
tion 2 (the load) returns its result after instruction 3 has been issued but before
instruction3 completes, and assume that RO is 6 and thus instruction 3 returns an invalid

result since it failed its condition code.

- 95 -

Instruction 2 will discard its result because instruction 3 has overwritteh R1’
result tag in the future file. Instruction 3 fails its condition code, generating an invalid
result, and so does not write its result. This leaves instruction 4 in a state where it cannot

issue as it is waiting for the result of instruction 3 which will never arrive.

One possible solution would be for returning instructions, which would have
discarded their result due to newer result tags in the future file, to wait until the instruc-
tion corresponding to the tag in the future file completes, and for the other instructions

only to discard their results if a later instruction produces a valid result.

The management of such a scheme would quickly become complex and it com-
plicates the result write back mechanism which was previously simple. For this reason
the future file has not been considered as a viable mechanism in this thesis for imple-

menting the ARM ISA.

4.8.2 Conditional execution and the Hades for war ding mechanism

The forwarding mechanism proposed for the Hades proces$erssudém simi-
lar limitations when faced with conditional executidCFS95] (described briefly in
section 2.5.3). A conditional instruction could potentially generate a result and store it in
one of Hades’ forwarding registers. A subsequent instruction might intend to use this
result but would first have to determine whether the result really was generated by the
conditional instruction. In the case of the mechanism used in Hades this problem could
be solved by giving up the ability to forward results generated by conditional instruc-

tions.

-96 -

4.9 L oad/store multipleinstructions

Another unusual feature of the ARM is tload multiple registers andstore mul-
tiple registersinstructiongLDM and STM respectively). LDM allows any set of the cur-
rently visible general purpose registers (including PC) to be loaded from sequential
memory locations in one instruction. Similarly STM allows any set of the currently visi-
ble registers (including PC) to be stored. The instructions also allow the base register to
be pre- or post-incremented or decremented. These instructions are very flexible, having
many diferent modes of operations selected by flags in the instruction word. This flexi-
bility leads to a number of cases which significantly complicate the entire processor

design.

LDM and STM are commonly used in two ways in ARM programs. The first (as
was shown in section 4.3) is in subroutine entry and exit where they are used to store and
restore registers and to return from subroutines. The second use is in routines which ini-

tialise or copy lage areas of memary

The problem presented by these instructions is that they must accege a lar
number of registers in one instruction. While most other instructions access no more than
three registers an STM can read 17 registers. It is clearly not possible to do this in one
pipeline packet so it is necessary to generate multiple packets for each LDM and STM
instruction at some point in the pipeline where each packet will cause one (or more) reg-

isters to be processed.

-97 -

49.1 LDM with baseregister in thetransfer list

Any of the memory transfers making up the LDM or STM can cause a memory
abort and thus an exception enffis leads to a number of fidult cases for the excep-
tion recovery mechanism. In particyltire following instruction includes the base regis-
ter in the transfer list:

LDM A R3, { RO, R1, R3, R4, R5}

This instruction loads RO,R1,R3,R4 and R5 from memory with RO being loaded
from the address in R3 and each subsequent register coming from the next sequential
word in memory Registers are transferred in numerical ardi@e dificulty is encoun-
tered if a data abort occurs while transferring R4 or R5. In this case a new value of R3
(which was the base register) has already been loaded from mdmbtire exception
handler must be able to recover the old R3 value in order to re-execute the instruction.
The ARM ISA defines the architecture in such a way that all instructions can be re-exe-
cuted after an exception handler has corrected the cause of an exception, so care must be
taken in preserving the base register across the exception. In this case hibabees
registers which will be reloaded by the re-executed instruction to be left corrupted after
the exception, and so the value of RO and R1 are unimportant since they will be reloaded

by the instruction as it is re-executed.

49.2 LDM with PC in thetransfer list

As with most other classes of ARM instruction the program counter can be used
in an LDM. For example the following instruction loads all currently visible registers
(including the PC) from memory:

LDM A RO, { RO- R14, PC}
The instruction set is defined in such a way that registers must be loaded in order

so that the PC is loaded last. Although this ordering rarely makegedde in practice,

- 908 -

LDM instructions are sometimes used to fetch data out of FIFf@rbufi I/0 devices, so

the order is important.

An LDM with the PC in the transfer list produces a procedural dependency
which, because the PC is loaded last, can causgeadarformance loss. This can be sig-
nificant as these instructions are used to return from nested subroutine calls. In section
6.2.3 a technique is presented which overcomes this problem, given the assumption that

an LDM .. {..PC} would never be used to load data from I/O space.

49.3 Conditional LDM/STM instructions

Like all other instructions an LDM or STM can be conditionally executed. One
issue that this leads to is whether the instruction is expanded into multiple cycles before
or after the condition code has been tested. If the expansion is carried out before the test
then an LDM which fails its condition code will cause multiple cycles to be wasted in the
pipeline. Expansion is, howeverasiest to perform during decode, before the condition

test can be carried out.

494 User mode register access

A final feature of the LDM and STM instructions is that they can access user
mode registers while in a privileged mode, for example:
LDM A R13, { RO- R14} "
when executed in a privileged mode causes user mode registers R0-R14 to be loaded
from the address held in the privileged R13. This feature, which is normally used only in
operating system code, can significantly complicate the way in which registers are
accessed in the pipeline, since registers from twerdiit modes must be accessed in the

same instruction.

-99 -

410 Summary

The ARM processor presents a number of interesting implementation chal-

lenges:

» Banked registers - The ARM’s banked register mechanism complicates result
forwarding mechanisms since (for example) registet Rfitten in one mode
may or may not be forwarded as a value fot Rilthe current mode depending

on the particular combination of modes.

» Program counter visible as a register - Since most instruction classes can write
to the program counter most instruction classes can potentially constitute a
branch. This complicates instruction decoding and maKeseet branch pre-

diction more dificult.

* CPSR update - The ability to update the CPSR in data operations complicates
the operation of the process@ata operations are the most common form of
instruction. Howeverparticular forms of data operation can change the operat-

ing mode of the processor; a rare and expensive operation.

* Slit SPSRs - The SPSR registers are unusual in that it is possible to write to
part of a register in an instruction; for example to update just the ALU flags
while leaving the mode bits unchanged. This makes ficdif to treat the
SPSRs as general purpose registers since many register forwarding schemes can

not handle sections of a single read coming froffiediht outstanding results.

* Exception handling - The ARM defines a conventional exception mechanism
with precise exceptions. This limits the type of exception mechanism that can

be used.

- 100 -

» Conditional execution - Conditional execution significantly complicates imple-
mentation of the ARM instruction set. Many techniques afedif to use with
conditional execution without making conditional instructionsfioieint. Con-
ditional execution also causes a \WAdependency on the CPSR, which is
potentially updated by every data operation. Since the CPSR is read so fre-
guently and potentially updated frequenttile normal register dependency

mechanisms may not be suitable for use on the CPSR.

» Load/store multiple - The LDM and STM instructions provide anfieient
mechanism for lgje data transfers on the ARM; however they arkcdlf to
implement due to the Ige number of registers that they access. They also have
a lage number of dferent operating modes which present extra complexity

such as accessing user mode registers in privileged modes.

- 101 -

Chapter 5: An Asynchronous
Reorder Buffer

This chapter describes the asynchronous reorder buffer, designed by the author,
which forms the core of the dependency and exception handling mechanism in the archi-
tecture described in thisthesis. The description is evolutionary in style, starting at earlier
designs, stating the problems that they present, and then working forward until the cur-

rent stage of the design isgiven.

51 Dependency and exception handlingin AMULET2

AMULET?2 uses two lock FIFOs of the type described in section 2.2.2, to man-
age dependencies. One lock FIFO contains a list of the destination registers of the out-
standing results from the ALU and the other holds a similar list for outstanding memory

operations.

Before reading the operands for an instruction, the lock FIFOs are interrogated
to determine whether there is a write pending on a source operand register; if thereis a
pending write there is an unresolved RAW dependency and the instruction must be

stalled until that write compl etes.

During decode the destination registers for the current instruction are placed in

the appropriate lock FIFOs to indicate the pending write that the instruction will cause.

-102 -

WAW dependencies are managed by testing for pending writes on the destination regis-

ters before inserting new registers into the FIFO.

As results return from either the ALU or memory subsystem they use the bottom
element of the appropriate lock FIFO to select their destination rediseuse of two
separate lock FIFOs allows instructions for the ALU and memory to execute concur-
rently and it allows either the ALU instruction or the memory instruction to complete

first.

Exceptions caused by the memory subsystem are managed éxgdloentrol
block. Memory operations are split into two stagmeeption detection anddata access.
During the exception detection stage the memory system is presented with the required
operation and address and must produce a fault/no fault response indicating whether that
operation will cause an exception. Tdea access stage actually performs the operation.
When executing an instruction which includes a memory access, the exec control block
first performs the exception detection stage. Until the memory has responded the data
access stage for the current instruction and any operations in future instructions cannot

proceed.

The main disadvantage of this mechanism is that instructions after a memory
access instruction cannot complete execution until the exception detection stage has
completed. In systems with complex memory management systems, systems where the
entire memory access must be completed before an exception can be detected and in sys
tems where the memory is significantly slower than the ALU, this can infliaje fbear-

formance penalty

- 103 -

5.2 A new pipeline model

An alternative to stalling the pipeline until an exception response has been
returned from the memory system is to allow subsequent instructions to complete but to
hold their results back from the register bank until the exception response has been
received and thus it is clear that the results are valid. This is the basis of a redegder buf
as described in section 3.4.4. It is the authdevelopment of this idea into a practical
solution in an asynchronous environment which forms the basis of this thesis.3zigure

shows a simple architecture based on this idea.

—> Menory control informtion—>

Menory
Fetch ——— Decode i
el e—
Regikst e& S | : |I | P
Bank an “Resul tn
Lock — FExecute CUFIFO

FI FO |||

Figure 5.1 Initial pipeline model

Figure5.1 shows a simple pipeline with the instruction and data caches hidden
inside fetch anddata memory. At this stage assume that each block represents one or
more independent pipeline stages and is decoupled from previous stages allowing paral-
lel execution; the position of the pipeline latches will be described Mtkeen the
decode block sends a packet down the pipeline for execution it places a packet in the
control FIFO stating whether the result of that instruction will come from the memory or
from the execute pipeline. Thein block removes an item from the control FIFO; this
indicates the source of the next result to be written to the register bank. The join block

then waits for the appropriate result and writes it back to the register bank from where it

-104 -

can be used by later instructions. Store instructions must produce a result packet to indi-
cate whether they caused an exception, but this result packet is discarded by the join

block.

The job of detecting and handling exceptions is given to the join block which,
after detecting an exception coming from the data memory, can discard all results until
instructions from the exception handler are detected. A colour mechanism similar to that
described in section 2.2.1 can be used to mark the new stream. The result FIFO holds
multiple outstanding results from the execute pipe so that a number of instructions can

execute in the shadow of a memory operation.

This mechanism is similar in operation to a simple reorder buffer without for-
warding (section 3.4.4) with the exception that only results from the execute unit, and
not the memory, are stored in the buffer, because only the memory can generate excep-
tions and thus there need never be more than one memory result which has arrived at the
processor and has not been written into the register bank. The result FIFO holds |ooka-

head state while the register bank holds in-order stete.

As in the simple reorder buffer, this mechanism increases the performance loss
due to RAW dependencies since results produced by instructions in the shadow of a
memory operation cannot be used until the memory operation has completed. The
impact of this depends both on the program being executed and the memory system
available. The trace driven analysis of ARM programs presented in section 7.3.1 will
show that around 25% of instructions are memory operations and around 50% are regis-
ter to register data operations. Thus the likelihood of data operations and memory opera-
tions being interleaved is high. The same analysis shows that a high percentage of

operands are generated by recently executed instructions, indicating that stalls due to

- 105 -

RAW dependencies would be common with this architecture. Tieetesf memory
loads will be less than thefeft of stores since the result of the load is often used shortly
after and so imposes a RAdependencywhereas since stores do not produce a result

they cannot cause a dependendye following example illustrates the problem:

STR R1, [R2, #64]
ADD R3, R4, R5
ADD R6, R3, #16

The data operations have no direct dependency on the preceding store, but they cannot
be allowed to complete because the store may cause an exception. The first ADD may
pass through the execution unit and place its result in the result FIFO. Hoigeresult

will not be available to the second ADD until after the store completes.

Even instructions which are not in the shadow of a memory operation are
affected since the results have to pass through the result FIFO and join block before
reaching the register bank. In particular the result FIFO, if implemented as a micropipe-

line, introduces a latency proportional to its length.

5.3 Paralldel access FIFOs

As stated in section 2.3.2.1, once a block places a data item into a micropipeline
the items position at a later time is unknown to the block since the data moves independ-
ently down the pipeline. For this reason it is impossible to forward directly out of a result
FIFO implemented as a micropipeline, since it is impossible to determine which stage to
forward the value out of and also because the value may be moving between stages as the
forwarding operation is performed. The autkdirst observation is that, by replacing the
micropipeline implementation of the result FIFO by a circular queue implementation, the

problems of latency are reduced and the forwarding problem becomes manageable.

- 106 -

A circular queue can be implemented as a set of latches together with a pair of
counters; one counter selects which location the next input packet is stored in and the
other selects which location provides the ouffuth89]; this is called #arallel Access
FIFO. It is necessary to design the queue in such a way that one counter cannot ‘lap’ the
other when data is provided faster than it is removed or removed faster than it is pro-
vided. Figures.2(a) shows a micropipeline FIFO, and a circular queue is shown in
figure5.2(b); the two are presented together for comparison. The dashed line on the dia-
gram of the circular queue represents the control necessary to stop the two counters lap-
ping each other

Control— — — — — Control

Lo

Data—» —» —» —» —» Data

(@)

Cont rol

T ——
-—

(b)
Figure 5.2 Micropipeline and parallel FIFO implementations

The external interfaces to a micropipeline and a parallel access FIFO may be
identical, but there are a number of importantedénces in the behaviour of the two
designs. In the micropipeline, data must pass through all elements of the FIFO and inter-
act with all control elements before being available at the output, so diee the FIFO

the higher the latencwhile in the parallel implementation the data passes through only

- 107 -

one storage element. This gives the parallel implementation the potential advantage of a
lower, constant, latencylThe control logic on the parallel implementation is, however

more complex.

The main disadvantage of the parallel FIFO implementation is the fan out
of the circuit providing data to the FIFO and of each of the latches which must drive the
common output bus (although this could be implemented as a multiplexer). As the FIFO
grows in size this problem becomes worse. This disadvantage can (with the complexity
of the control circuitry) lead to a higher cycle time for the parallel implementation. The

trade of of latency against cycle time is discussed in more detfy ant95].

The most useful feature of the parallel FIFO in relation to this work is that when
data is placed in the FIFO it stays in the same position until it is overwritten by a new
data value &nown number of input data packets later. For the purposes of forwarding
the parallel FIFO implementation is ideal since the input process can record the position
at which it stored data and use this position to specify that the data be forwarded for use
in later computation. Thus the FIFO evolves into the structure given in &diir this

figure the control for the data forwarding is not shown.

- 108 -

Cont r ol
— Count er

47
-]
<«

Latch Latch

[\, Enable
[\, Enable [\, Enable
\‘ :Enab\ e

54 Three process view of the parallel FIFO buffer
The parallel FIFO bdér as described above is accessed by three types of proc-

ess: the input process, the write back process and the forwarding process (there may be

multiple forwarding

* Input- The input process is connected to the output of the execute pipeline and

thus data is inserted when a new result is generated.

» Wirite back- The write back process is connected to the join unit and produces a

result when the join unit is ready to write a new value and when the value in the

1| \
*************** Count er

Figure 5.3 Parallel FIFO with forwarding

processes).

Dat a
(for forwarding)

Dat a
(for forwarding)

Dat a
(to join unit)

next available FIFO place has arrived from the input process.

» Forwarding- Finally, the forwarding processes produce data for reuse. The

result of these processes is used in the same stage as the register read, just

before the execute unit.

- 109 -

The design of the control for the Ilferf is heavily influenced by the need to
reduce the synchronisation between théed#t processes within the microprocessor in

order to take advantage of the asynchronous nature of the design.

In a conventional FIFO when an item is written out (by the write back process)
that data is no longer available; thus it is necessary to synchronise the write back process
and the forwarding process which must also read data out of the FIFO. Hothever
addition of the forwarding paths mean that this is no longer a simple FIFO, and the paral-
lel implementation means that the data is still available once the data has been written
back. Data can be forwarded beforeafber the data has been written out of the FIFO (or
even while the write back is in progress), so the need for synchronisation between write
back and forwarding is removed. This is important because the write back process and
forwarding processes are at logically opposite ends of the pipeline and synchronisation

would force most of the pipeline to act in lockstep.

Synchronisation is still required between the input process and the forwarding
processes. This synchronisation is necessary to cause the forwarding process to wait for
the arrival of data. The input process is at the base of the execute pipeline and the for-
warding process at the head of the execute pipeline and so strict synchronisation may

make it dificult to read the operands of one instruction while executing the previous one.

This synchronisation can be reduced by the realisation that the input process is
performing two separable tasks. The first is the allocation of space in thednd the
second is the arrival of data from the execute pipe. Thus the input process can be split
into an ‘allocate’ process and an ‘arrival’ process. These two processes can be called

from separate stages of the processor pipeline as long as some information is passed

-110 -

from allocate to arrival. Similarly the forwarding process is performing two separable
tasks, ‘lookup’, where the bigfr is searched to find the data to be forwarded, and ‘read’

where the data is read out.

55 Five process view of the buffer

There are now five processes involved in the management of tee buf

» Allocate - The allocate process is called by the decode stage to allocate a space
in the bufer for the result of the instruction being decoded. At this time it stores
in a control field of the btdr the register identifier of the result. The Allocate
process produces a token which is carried along with the instruction indicating

where in the bdér the result must be written.

» Lookup- The lookup process is also called by decode and is used to search the

buffer for results which need to be forwarded.

» Read- This process happens in parallel with the register read and reads the data

from the bufer using information produced by Lookup.

» Arrival - As data arrives from the execute pipeline the Arrival process places it

in the bufer.

» Wirite back- Write back writes data out of the beif and into the register bank.

Essentially the Allocate and Lookup processes are operating on information
concerned with register identifiers and the Read, Arrival anite\Wack processes are

operating on result data which has arrived from the execute pipeline.

-111 -

This reoganisation has moved the job ofjanising where to forward from into
the lookup process rather than being external to tHerb&urther functionality can be
encapsulated within the operation of thefufBy adding an extra arrival process to
write data arriving from the data memory system, and bygimgithe tasks of the Join
block into the write back process, most of the work involved in exception handling has
been hidden inside the operation of this paralleldouf his produces an overall pipeline

organisation as shown in figuse4.

Al'l ocation request

Dat a
Menory

Fetch — — Decode
Reor der
Buf f er

Regi st er
ggg'é __, Execute

Forwar di ng path

Result writeback

Figure 5.4 Pipeline with reorder btdr

Effectively this design process has evolved a mechanism very similar to the
reorder bufer described in section 3.4.5. The five process Vviegether with the state
mechanism, show that the reorderfbuis highly suitable for use in an asynchronous
environment. In addition, it will be shown that it is highly suitable for use with the

ARM'’s conditional instructions.

5.6 Operation with the five process model

This section describes the operation of the pipeline using the five process view
of the reorder biiér described above. The description follows the progress of an instruc-
tion down the pipeline and describes the way in which it uses the five reorflar buf

processes.

-112 -

5.6.1 The pipeline stages

The grey bars in figurg.4 represent pipeline latches; not all the pipeline latches
in the design are shown, but Bcient detail is given to support the following descrip-
tion. In particularit should be noted that the four main stages of the pipeline are fetch,

decode, operand access and execute.

5.6.2 A data operation

This section will follow the ARM instruction AND RO,R1,R2 as it flows down
the pipeline. This instruction performs a bitwise AND of the contents of the registers R1

and R2 and places the result in RO.

5.6.2.1 The decode stage

During the decode stage of the pipeline the operand and result register numbers
are extracted from the instruction. Each operand register is passed to one instance of the
lookup process. This interrogates the list of registers held in the reortlardnd gener-
ates aforwarding key which lists the locations in the reorder fenfwhich potentially
contain the required registérhe list of registers in the reorder faufis held in a CAM

allowing fast implementation of the lookup process.

The forwarding key consists of a bit vector in which each bit is set if the corre-
sponding location in the reorder Berfcontains a value for the required regisidre key
also contains the address of the last location which was allocated. The forwarding key
needs to be this complex because multiple versions of the same register may be con-
tained within the reorder bfigir. For this instruction two forwarding keys are generated
(in parallel), one for R1 and the other for R2. The forwarding keys are passed to the next

stage of the pipeline for use in the read process.

-113 -

After the decode stage has received the forwarding keys from the lookup process
it calls the allocate process to allocate a space for RO. A space can only be reallocated if
its previous contents have been written back to the register bank, thus the allocate proc-
ess may stall waiting for the write back process. Once a location becomes free in the
reorder bufler the allocate process updates the register identifier for that location and
marks the location as allocated. The allocate process then retiage/hich identifies

the location just allocated; this tag is placed in a FIFO for later use.

Once the allocate process has finished modifying the state of the reofder buf
the decode process is free to start processing the next instruction. The allocate and
lookup processes are called sequentially so that the lookup process is never examining

data being modified by the allocate process.

5.6.2.2 The read stage

The read stage has been passed the forwarding keys generated by the lookup
processes in the decode stage of the pipeline. In addition, it has been passed the registel
identifiers which are to be read. The register identifiers are used to start register bank
reads while in parallel the forwarding keys are passed to the read processes in the reorder
buffer. One read process exists for each operand; in this way all operands are read from

the bufer in parallel with all register reads.

The read stage must use the forwarding key to determine whether a value for the
register is held in the bigr and if there is more than one value it must determine which

is the most recent. Consider the forwarding key below:

0 1 2 3
@) 0 1 0 1

Table 5.1:. Example forwarding key for R1

- 114 -

This key represents part of the state of a four entry reordérkarid would
have been generated for the register R1 during the lookup process of the last instruction

in the following sequence:

ADD R1, R4, RS
ADD R4, R4, #1
ADD R1, R1, #8
ADD R5, R5, R9
* AND RO, R1, R2

At the time the key was generated by the lookup process the last entry to be allocated
was entry 2 (shown in parentheses) and thus entry 3 is the oldest entry in the reorder
buffer. Entries 1 and 3 both contain values for the appropriate register; signified by the 1
in those locations in the keyhe read stage must search backwards from the last allo-
cated entry to find the most recent version of the registéhis case the value held in
location ‘1’, generated by the ADD R1,R1,#8 instruction. Having identified location ‘1’

as holding the latest version of the registiee read process must wait for the arrival of

the value in that location to be signalled by one of the arrival processes.

The read process returns to the operand read stage a value and a flag indicating
whether the value is valid; this flag is set if the register value was found in the reorder
buffer. This flag is used to control a multiplexer which selects either the value from the

register bank or the value from the reordeifdruf

The act of searching through the reorderfdruio find the latest valid version of
the register is potentially complex and expensive to implement. Howegharperform-
ance implementations of reorder taug have been produced in the qagaDB94]. An
asynchronous implementation of this mechanism may be able to take advantage of the

fact that some of the cases of operation are rare. Thus an implementation might be possi-

-115 -

ble which was slower when there were multiple valid versions of a register present and

very fast when only one version was present.

5.6.2.3 The execute stage

The values generated by the read process are used by the ALU to generate a
result which is passed to the execute arrival process of the reorfier Boé result will
rendezvous with the tag generated by the allocate process. The tag is used to place the
result in the correct location of the reorderfeyfthat location is then marked as ‘full’
enabling it to be forwarded by the read process and written back by the write back proc-

ess.

5.6.2.4 Write back

Unlike all the other processes within the reordefdsuthe write back process is
autonomous and is not directly triggered by processes outside the reofder T
write back process examines the locations of théebuf order and waits for the loca-
tions to be allocated and for the results to arrive. The process then writes these results to

the register bank and marks the entry as written back, allowing it to be reallocated.

5.6.2.5 Conditional execution and invalid reorder feufentries

A result generated by the execute stage may be marked as invalid upon its
arrival at the reorder bigr. This invalidation is performed to discard invalid results in
the shadow of branches or results generated by ARM conditional instructions which
failed their condition check. The mechanism for marking these results as invalid is

described in more detail in chapéer

To process invalid data each reorderfé@uéntry has associated with it a validity
flag. The write back process does not perform register writes for entries marked as

invalid. The most complex impact of invalidation is with the result forwarding process,

- 116 -

where the read process must avoid forwarding an invalid result. Referring to the example
in section 5.6.2.2, if the R1 value in location ‘1’ was invalid the result from location ‘3’
would be forwarded. If both values were invalid no value would be forwarded and the
value in the register bank would be used. This modification to the read process provides
the correct values even when ARM conditional instructions are used. Howevezad
process is now much more complex to implement. The complexity of the read process is
acceptable since it occurs in parallel with the register bank read. As long as the search of
the reorder bdiér can be carried out in a comparable time to the register bank read no
performance loss will be incurred. This is only possible with a small reorder. (&gc-

tion 7.3.2 will investigate the size of the reorderf@ufequired.

5.6.3 Memory oper ations

This section will examine the operation of the following instruction sequence:

LDR RO, [R1, R2]! Base write back indicated by the !
ADD R3, R4, R
SUB R3, R3, #9
ADD R6, RO, R3

The LDR instruction shown will load RO from the address given by the sum of R1 and
R2 writing the sum back to R1. During decode the allocation process of the reorder
buffer is called twice, once for the result from memory and once for the base write back.
The tags for the two operations are put in separate tag FIFOs. At this point in the descrip-
tion it will be assumed that the load succeeds and that the base write back result is allo-

cated after the reorder lief entry for the result from memory

The operands are read in the same way as for the previous example; this pro-
duces values for R1 and R2 which are passed to the execute stage. The ALU adds R1 anc
R2, producing the address of the memory operation. This address is passed to the data

memory and is also passed to the ALU result arrival process of the reorgerasuhe

-117 -

base register write back value. After the address has been passed to memory the execute
stage is free to execute following instructions. For the purpose of this example it is
assumed that the reorder faufis lage enough so that the first add instruction executes
successfully and completes before the load result has arrived from mdrheryor-

warding process enables the SUB instruction to be executed by forwarding the R3 value
generated by the first ADD from the reorderfbufthis R3 value will not have been

written back to the register bank at this stage.

The second add instruction stalls during the read process for its RO value. Even-
tually the memory returns a result which is placed in the reordérkayf the memory
result arrival process at the location specified by the tag allocated for it. €2nloer this
has happened the second ADD instruction can proceed. Once the load result has been
written back the new base value and the results of subsequent instructions can be written

back to the register bank.

5.6.3.1 An abort

Using the same example as in the previous section it will now be assumed that
the LDR fails due to an exception in the memory - this is a ‘Data abort’. The first ADD
and the SUB instruction execute successfully in the shadow of the LDR. However
value returned from memory is marked as being the result of an exception. This value is
marked as invalid in the reorder Bifin a similar way to instructions in the shadow of a
branch; it is, howevealso specially marked to indicate the exception. No change in exe-
cution takes place until the write back process examines the location allocated for RO in

the reorder bdiér.

-118 -

Having encountered an aborted result the write back process must:

* Modify R14 abort to hold the address of the instruction causing the exception.

» Signal an earlier stage of the pipeline to cause it to jump to the abort exception

vector (and change mode).

« Ensure that no results after the aborting result are written back to the register

bank.

» Ensure that no results after the aborting result are forwarded by future instruc-

tions.

Since the write back process has access to the register bank write port it can eas-
ily write the aborting instructios’address into R14 (the address is passed to it down the
Xpipe introduced in section 6.3.1), although there are issues involving data validity of

R14 discussed in section 5.6.4.

Ensuring that no result in the shadow of the aborted result is written back or for-
warded could be easily accomplished in a synchronous design by invalidating all entries
in the reorder bdiér. Unfortunately in an asynchronous design it is impossible for the
write back process to guarantee that the forwarding process is not examining the valid
bits at the time it intends to clear them. If this was happening the forwarding process
might enter an undefined state having read a value from the valid bits which was neither
true nor false since it was being modified at the time it was examiogotoVide this
functionality in an asynchronous implementation two extra mechanisms are required

which are described in the following subsections.

-1109 -

5.6.3.2 Inhibiting write back of results in the shadow of aborted operations

To avoid writing back results which have already been placed in the reorder
buffer but which are invalidated by an exception, an extra colour flag, known as the
exception colour, is associated with each instruction. This flag is maintained by the reor-
der bufer write back process and is toggled each time an exception is encountered. The
write back process will only write a result which has the same colour as the current

exception colourThe following example is used to explain this:

I nstruction Exception Exception
col our col our
during in
fetch wite back
ADD RO, R1, R2 0 0
LDR RO, [abort!] O 0
ADD R2, R3, R4 0 1
STVFD R13!,{...} 1 1 1st instruction of excep-

tion handler

Initially instructions are fetched with the same colour as the current exception
colour When their results arrive they are written back. When the aborting load is
encountered by the write back process it toggles its exception .ceilother results are
then ignored because their exception colouiedsffrom the current exception colour
When the write back process forces the jump to the exception vector it simultaneously
passes back the new exception colour to the fetch mechanism and thus the instructions
fetched from the exception vector execute in the new exception colour and are thus writ-

ten back.

5.6.3.3 Inhibiting forwarding of results in the shadow of aborted operations

In the example given in section 5.6.3.2, the first instruction of the abort handler
could read R2 and it is important that the R2 value generated by the ADD in the shadow

of the aborted load is not forwarded for use in the abort handler

- 120 -

To avoid this the decode stage detects the changing exception colour and issues
a number of dummy instructions down the pipeline which generate invalid results. Thus
each of these instructions’ results occupies a reordderblafication but since it is
marked as invalid it will not be forwarded. Decode issues enough dummy instructions to
ensure that the reorder Ieif is clear of valid values before the first instruction of the

exception handler is executed.

5.6.4 Data validity in theread process

Since the write back process is not synchronized with the operand read stage
(which reads the register bank and performs operand forwarding) there is the possibility
that a register may be read from the register bank while it is being written to by the write
back process of the reorder fauf thus the value read is unpredictable. This situation is,
avoided by the forwarding mechanism implemented by the read and lookup processes.
Since the reorder bigr always contains the latest version of the redgstealue and
since the forwarding mechanism is always used, any value not written back to the regis-
ter bank or in the process of being written back will be forwarded from the reorder
buffer. This value will always replace the value read from the register bank whenever

there is any possibility that it is being written to.

Unfortunately there is an exception to this rule caused by the abort mechanism
described above. When the write back process writes R14_abort during exception entry
there is no entry for it allocated in the reorderféuénd thus any attempt to read it will
not cause a forwarded value to be used. Thus it is possible for an instruction to read a

value from the register bank while it is being written to; potentially this would cause

metastability issues if the result was used in a control cHreuit

1. The same problemfafts the base register written by the base restore mechanism described in
section 6.5.

-121 -

The instructions which could be reading this invalid result lie in the shadow of
an aborting memory operation and so their own results are marked as invalid and the
invalid data does not get propagated far through the proc@$sws while the data is
never used in a valid instruction, care must be taken in the implementation to ensure that

this invalid data can not pass through control circuitry and cause metastability problems.

Although not elegant, this approach is a valid engineering solution to the prob-
lem. A more elegant solution would be to cause the dummy instructions generated by
decode to clear the reorder faufto perform the R14_abort write. This is significantly

more complex to implement in decode but does solve the problem completely

5.6.5 Lack of synchronisation between the read and allocate processes

The reader may have noticed that in the example in section 5.6.2.2 the result of
the AND instruction is allocated to location ‘3’ which is also a location containing a
result which is potentially forwarded. This is a perfectly valid (if somewhat counterintu-
itive) situation since the allocation process modifies the register identifier storage which
is not used by the read process. This approach does, howessgnt two problems

which are described in the following two subsections.

5.6.5.1 Result arrival indication

One method for indicating result arrival would be to store a single ‘arrived’ bit
with each piece of data. This bit would be cleared during allocation and set by the arrival
process. The ‘read’ process would have to wait for the bit to be set. This fiastiin
this system since the read process may examine the ‘arrived’ bit for an operand while the

‘allocate’ process resets the bit for a future result.

-122 -

An alternative is to hold two flags for each reordefdysuélement. The first flag
(the *allocation colouj is toggled by the allocation process when the element is reallo-
cated, the second flag (the ‘arrival colpus toggled by the arrival process which
receives the result for the element. Initially both colours are false; upon allocation the
allocation flag is toggled and upon arrival the arrival flag is toggled. Thus when the two
flags are equal the current result matches the current allocation. A copy of the current
‘allocation colout is included in the lookup keys. The read process now waits for the
arrival colour to match the allocation colour captured at the time of lookup. Thus the

read now waits for the result for which the lookup was performed.

5.6.5.2 Overwriting of data

It is, of course, important that an instruction does not overwrite one of its oper-
ands. Normally this can not happen since all operands are needed before any result can
be produced. Thus in the example of AND RO,R1,R2 the instruction will stall in the
operand read stage until both R1 and R2 are available and thus there is no possibility that
RO will overwrite one of the operands. Howevitere is one instruction which can
potentially produce a result before all operands have been read; this is STR
Rn,[Rn,Rm]!. In this instruction the register Rn is read twice, once as a piece of store
data and once as the base register in the address calculation. This instruction includes a
base write back and thus Rn is modified. If the three forwarding and register read proc-
esses were implemented independently the read for the store data could be performed
after the base had been modified. It is important that in this situation a deadlock is not
created due to the read process waiting for the original Rn value to become available as
the store data. The precisdeets of this instruction are classeduapredictable by the
ARM ARM because of the way it reads a register which is being modified; however it is

unacceptable for the instruction to deadlock the processor

- 123 -

5.7 Process synchronisation

Seven constraints regulate the interaction of the processes:

1. The ‘allocate’ and ‘lookup’ processes share access to the register number CAM
and thus access must be mutually exclusive. This is implemented by calling the
allocate process after all lookups for an instruction are complete and not perform-
ing any more lookups until allocation has completed.

2. The ‘read’ process requires the key generated by the ‘lookup’ process. These two
processes are used in separate pipeline stages and once the lookup process ha:
generated its key it may continue with the next operation.

3. The ‘read’ process must wait for data arrival. This can be implemented using the
‘colour’ mechanism described in section 5.6.5.1.

4. The ‘arrival’ process must wait for an allocation key stating where to store the
data. This is implemented via the tag FIFOs.

5. The ‘write back’ process must not write back a location multiple times. This
could happen if the write back process was much faster than the allocate process
and thus the write back process would write all entries in the reorder hnfl
arrive back at the first location and write this again. This constraint can be imple-
mented by the addition of a ‘write back colohit to each location which is tog-
gled as each location is written back. If the colour does not match the logation’
allocation colour it has not been written back.

6. The ‘write back’ process must wait for data arrival. This can be achieved by wait-
ing for the allocation colour to match the arrival colour

7. The ‘allocate’ process must not reallocate a space which has yet to be written
back. A location which has been written back is signalled by the allocation colour

and write back colour matching and thus that location may be reallocated.

- 124 -

It should be noted that there are no conventional request/acknowledge hand-
shakes taking place directly between any of the processes, so while one process may
need to wait for another to complete a task it never has to acknowledge the end of the

wait to the original process.

58 Thereorder buffer entries

The fields in each reorder lbeif entry are:

» Data - The result of the instruction which will be written back to the register

bank by the write back process.

» Register identifier - The register which the result is written to and which is

matched during the forwarding comparison.

» Valid flag - This flag is returned from the execute or memory unit with the result
data and indicates whether the instruction passed its condition code. It is also
used to invalidate instructions in the shadow of a mispredicted branch in a simi-

lar manner to that used [\WaDB94]; this is described in detail in section 6.2.2.

» Abort flag - This flag is set if the result is invalid because the instruction which
generated it produced an exception. The Abort aaddl Wlags together distin-
guish valid results, invalid results due to condition code failures and invalid

results due to exceptions.

» Exception colour - The instructi®yexception colour is stored in the reorder
buffer; this is used in the write back process to discard results in the shadow of

an aborted memory operation.

- 125 -

» State - These indicate whether the entry is allocated, whether its result has
arrived or whether it has been written back. The state consists of the allocated,

arrived and written back colour bits described above.

» Control - Some information is needed to mark entries with special require-
ments; for example place holders for store operations must be marked since

they never generate a real result. This control information is stored here.

5.9 Summary of constraints

The design of the asynchronous reordefdyutlies on a number of constraints,
imposed by the inteworking of a number of separate blocks, to remove synchronisation
and arbitration from the design. These are:

1. Datais left in the reorder hef after being written back to the register bank. This
removes the need for synchronisation between the write back process and the for-
warding and lookup process.

2. The forwarding mechanism. The forwarding mechanism is not just a mechanism
to speed up access by bypassing the delayed register write; in addition it ensures
that the latest result is always available from the reordéerband thus enables
the removal of arbitration between register read and register write back as
described in section 5.6.4.

3. The allocation and arrival mechanisms ensure that no attempt will be made to
read a location which is awaiting the arrival of a result, thus no arbitration is
needed to avoid reading a location while it is being written.

4. The allocation mechanism ensures that no more than one instruction is due to
write to each reorder biegfr entry; this removes the need for arbitrating between

multiple write attempts at each reorderfeutocation.

- 126 -

5. The separation of ‘allocation’ and ‘arrival’ has removed the need for synchronisa-

tion of the decode and execute stages.

These constraints savedaramounts of hardware required for synchronisation
and arbitration but make the entire architecture much mofieutifto reason about.
With these constraints in place it is no longer possible to analyse each block on its own,
define and check interface specifications agdegabout the correctness ofgar blocks
of the architecture; instead it is the combined operation of all blocks which make the

operation of each block correct.

The aim of many high level asynchronous hardware description languages is to
allow the description of individual blocks and to enable automatic synthesis by the addi-
tion of arbitration on shared variables and synchronisation between processes. However
these languages often do not have the mechanisms to describe the higher level con-

straints which make this arbitration and synchronisation unnecessary

510 Summary

This chapter has described the derivation of an asynchronous reorfeeritsuf
integration into a pipeline and the constraints necessary to make it work. It is the realisa-
tion that the reorder bigr can be implemented as a parallel access FIFO, that forward-
ing can continue after a result has been written back, and the constraints listed above,

that enable the reorder lfeif to function in an asynchronous environment.

The reorder bdér simultaneously solves the problems of exception and depend-
ency handling while providing result forwarding and mechanisms for dealing with the
ARM'’s conditional instructions. It will be shown in section 7.3.2 that the reordier buf
provides a significant performance increase over the lock FIFO mechanism used in

AMULET2.

- 127 -

Chapter 6: Auxiliary mechanisms

The reorder bidér is a powerful mechanism for resolving dependencies and han-
dling the efects of exceptions on the main registers. Howeveloes not solve all the
processds dependency and exception handling problems. This chapter describes other
mechanisms which provide an environment in which the reordéerhbzgn operate and
which provide dependency resolution and exception handling for other parts of the proc-

essors state.

6.1 Theinstruction colour

As described in section 2.2.1 tbelour matching mechanism solves the prob-
lem of invalidating instructions in the shadow of branch instructions. In this design the
expected instruction colour is stored in ttwenmit block. This is a block immediately
after the execute stage whose primary role is to ensure that instructions fetched in error
and instructions that have failed their condition code test do not change the ptecessor
state. The colour is stored in the commit block as a collection of flags that are modified
whenever an instruction which changes the instruction stream passes through. The fetch
unit appends the current instruction colour to instructions as they are fetched and this
propagates down the pipeline. If, at the commit block, the instrustamour does not
match the expected colguhe instructiors result is marked as invalid, so preventing

any permanent state changes occurring. Fi§ureshows the position of the commit

- 128 -

block in the pipeline and how it routes addresses to the data address interface. Sinceit is
positioned before the data memory in the pipeline the commit block can stop data
accesses by instructions which have failed their condition code or have mismatched col-

our values.

Al l ocation request

Dat a
Memory

Fetch ——— Decode
Reor der
Buf f er

Regi ster
Bank
Read

Commi t

Bl ock

Execute ——

Forwar di ng path

Result writeback

Figure 6.1 The commit block in the pipeline

6.2 The program counter

The ARM is unusual in its treatment of the program counter in that it can be
used in much the same way as a conventional register. Many instructions can use the pro-
gram counter as their source or destination register. For example, a subroutine return can
be implemented as a normal move instruction with the destination set to the program

counter. In this design the program counter is stored in the fetch unit.

6.2.1 Reading the program counter

In the early synchronous ARMSs the program counter was read by the execute

stage directly from aregister in the fetch stage. Since the currently executing instruction

had been fetched two cycles earlier the program counter was always two words ahead? of

1. Onthe ARM 2 and ARM 3 there were a number of instructions in which PC was three words
ahead of the fetch address; this behaviour was removed in later ARMSs.

- 129 -

the address from which the executing instruction had been fetched. In an asynchronous
design it is not possible for one stage to read a value from a register in another stage

without extra synchronisation which is not considered desirable.

Figure6.2 illustrates an alternative solution to this problem. As each instruction
is fetched a copy of the address used to fetch it is sent down a pipeline to the decode unit.
As the decode unit receives the instruction from the fetch mechanism it also reads the
associated program counter value which can then be used wherever the PC is required as
a source operand. The address must first be modified by adding eight to simulate the

pipelining of the early ARM designs.

—

New PC stream

Program
Count er +4
Addr ess
To nenory
+8
fpipgef I nstruction
From nmenory
i
|
Decode
1
i
¥

| medi at e
PC
|
vaiues Regi ster and
R O

B. read Cont r ol

Regi ster &
queue
val ues

\ Ml tiplexor fo—o

To execute

Figure 6.2 Adding the ofset to the program counter

- 130 -

6.2.2 Changing the program counter

The first design considered treats modifications to the program counter in the
same manner as modifications to any other register by passing them through the reorder
buffer. Figure6.3 shows how an extra path (shown dashed) is added to the design shown

in figure6.1 to route new PC values to the fetch unit rather than to the register bank.

Al'l ocation request

1
¥ Dat a
Menory

1

Fetch ——— Decode !
Reor der .

Buf f er

Regi st er

Bank Commi t

> Read Execute > Block T~

Forwar di ng path

Result writeback

Figure 6.3 Writing to the PC via the reorder lheif

An advantage of this design is that the reordefelbufan cause instruction
stream changes due to exceptions simply by passing the new address to the fetch unit.
The disadvantage is that changes to the program counter have a high latency because
they must travel the entire length of the pipeline before reaching the fetch unit. This
would cause excessive prefetching which wastes power and reduces performance. The

problem is especially severe when a branch follows a slow instruction such as a load.

Figure6.4 shows an alternative arrangement in which the commit block routes
PC modifications directly from the execute unit to the fetch unit. This eliminates the
delay caused by passing the modifications through the reorder. dmmit is the most

appropriate block to do this since it holds the expected instruction colour flag and so can

-131-

All ocation request

Fet ch Decode
Reor der
Buf fer

RegLster
Ban Conmi t
Read Execute Bl ock
)
'
—
1
1

Forwar di ng path

Conbi ned new PC stream New PC from menory/ abort

Resul t writeback

Figure 6.4 Writing to the PC via the commit block
determine the validity of the instruction producing the new PC value. The example
below shows how this mechanism processes branches (and other instructions which gen-

erate a new PC value via the execute stage) with the aid of a single bit colour flag:

I nstruction Fet ch Expect ed col our at
Col our Commit when
the result

arrives
1 CW RO, R1 0 0
2 BEQ | abel 1 0 0 Assume this branch is taken.
3 B label2 0 1 Colour toggle caused by pre-
vious branch
4 ADD R2, R3, R4 0 1
5 label1: MOV R2,#6 1 1 First instruction at branch des-

tination.

In this example we assume that the comparison causes the branch in instruction
2 to be taken while instructions 3 and 4 are prefetched in the shadow of the branch.
When the first branch reaches commit its condition code is checked and found to be valid
and so the branch will be executed. Commit togglestpected colour and sends this
new colour value together with the branch destination address to the fetch unit. Instruc-
tions 3 and 4 which were incorrectly prefetched are discarded by the commit block

because their fetch colqu, is diferent from the current expected colour which is 1.

-132 -

Discarding instruction 3 is simply a matter of ignoring it since it has no otfest eh

the system. Discarding instruction 4 involves writing its result into the reordfar buf
marked as invalid; it can not simply be discarded because a place has been reserved for
its result during the decode stage. When instruction 5, which is the first instruction of the
new instruction stream, reaches commit it is known to be valid because its dglour

matches the expected colour

A single colour bit can also manage PC values loaded from memory and

returned to the commit block via the reorderféuf

I nstruction Fet ch Expected col our at
Col our Commt when
the result arrives

1 LDRPC[....] 0 0
2 MOV RO, R1 0 1
3 ADD R3, R4, R5 1 1 Destination of LDR PC

In this example when instruction 1 reaches commit the current colour is changed and all
further instructions in the current stream (in this case instruction 2) are discarded. At
some point commit receives the new PC value from the reordfar buhich it then

passes to the fetch unit with the current colour

Exceptions complicate the colour mechanism significantly; the following exam-

ple shows the problem.

I nstruction Fet ch Expected col our at commit
colour when the result arrives

1 LDR R1, bad address O 0

2 B dest 0 0

3 ADD RO, R2, R3 0 1 Toggle due to branch

4 ADD R4, R5, R6 0 1

5 SUB R7, R8, R9 0 0 Toggle due to exception reach-
ing commit

6 B dest2 0 0

-133 -

In this example, at instruction 5 the reorderféuhas notified commit of the
exception. Commit then toggles the colour and issues the exception vector address to the
fetch unit. Howeversince instructions from the destination of the previous branch had
not yet arrived, the &fct of toggling the colour was to revalidate the remaining instruc-

tions in the shadow of the original branch. This would enable instruction 5 to write its

result into the reorder bigi! and instruction 6 to cause yet another instruction stream

change - this time incorrectly

This problem has arisen because there are now three streams of instructions in
the system:
1. The original stream including the load and branch.
2. The stream fetched at the destination of the branch.

3. The stream fetched at the abort vector caused by thes leaciption.

The role of the colour is to select which of the streams currently in the system is
the valid one and it is clear that a single bit is no longédicgarit for this. The solution is
a two bit colour; one bit is toggled by commit when an instruction from the execute stage
causes a PC change and the other bit is toggled when the stream is changed by a value
from the reorder béér. Instructions are only valid when both of the colour bits match

the current expected colour

1. However this incorrect value will be thrown away due to the mechanisms described in section
5.6.3.

-134 -

Considering the previous example with this change:

I nstruction Fet ch Expected col our at commit
col our when the result arrives

1 LDR R1, bad address 0 O 00

2 B dest 00 00

3 ADD RO, R2, R3 00 01 Toggle due to branch

4 ADD R4, R5, R6 00 01

5 SUB R7, R8, R9 00 11 Toggle due to exception reach-
ing commit

6 B dest2 00 11

7 SUB RO, RO, R1 01 Destination of the first branch

8 BI C RO, R14, #3 11 11 The first instruction of the
exception handler

The example shows that the first instruction to produce a valid result after the load is
instruction 8 which is the first instruction of the exception hanttistruction 6 which
was previously executed incorrectly is now not executed because its fetch colour does

not match the current expected colour

6.2.3 L oading PC viathefetch unit

The mechanism above has reduced the branch latency by removing the delay
through the reorder big. However it has not reduced the delay for instructions that
load the PC from memanAn approach that does reduce this delay involves allowing the
fetch unit to load the PC value from memory instead of using the normal data memory
access mechanism. Since this design is based on a modified Harvard architecture, the PC
load can proceed in parallel with the data accesses for the rest of the LDM instruction.
This modification is particularly useful in the case of LDM instructions which load the
PC value after loading a number of other values from memory; as illustrated in section

4.3 this is commonly used for returning from nested subroutines.

-135-

A modified fetch unit, as shown in figueb, accepts the address from which the
program counter must be loaded rather than the program counter value itself. It then per-
forms a load and routes the result back as a replacement program counter value. An
advantage of this technique is that the bus carrying the loaded program counter value
becomes a short local bus in the instruction fetch unit; loading the value via the data
memory interface requires a bus travelling to the commit block from the data interface.
With the forwarding paths from the reorderfeuthere is little space left for buses in the
main part of the data path and so this optimisation is useful in removing the need for yet
another 32 bit bus. In addition, with this mechanism the only stream changes caused by
the reorder bdiér are due to exceptions so the 2nd bit of the colour described above and
the exception colour described in section 5.6.3.2 can be implemented by the same colour

bit.

New PC stream

-

Program
Count er +4

PC
from menory

To menory

Instruction or
PC from nmenory

Instruction
routing

|

Instruction to decode

Figure 6.5 Reading the PC from memory via the fetch unit

- 136 -

The order of memory accesses in an LDM instruction is defined in the
ARM ISA; this enables LDM to be used to load data from memory mapped input/output
devices. Howeverthe order of accesses is not important when loading from normal
memory and a load which includes the program counter is unlikely to be performed from
an input/output device. It can begaed that, although this deviates from the behaviour
of existing ARMs, it is therefore reasonable to allow the program counter to be loaded

via a separate mechanism.

This allows earlier availability of the PC value in an LDM .. {...PC} instruction.
This approach has four disadvantages:

1. The firstis that if the PC load causes an exception it is not possible for the instruc-
tion fetch unit to signal this back to the rest of the pipeline. This is solved by also
performing the load from the data memory and discarding the result if no abort
occurs and processing it as a normal abort if it does .o¢tis solution will
cause a small increase in the memory bandwidth used.

2. The second problem is that there is a dependency between data written from the
data memory interface and the loaded PC value which is read by the instruction
memory interface. @ ensure correct operation the PC load must be delayed until
all outstanding store instructions have completed.

3. The third problem is that the technique is incompatible with split instruction and
data caches since any modifications to memory made through the data cache
would not be seen by the instruction cache. In particulaere a return address
had been placed on the stack recently an old stack value might be present in the
instruction cache. This may be a serious limitation. Howesggit instruction and
data caches are considered unsuitable for use with ARM code because data and

instructions are often tightly interwoven. This causes contamination of the data

- 137 -

cache by instructions and of the instruction cache by data making poor use of the
available cache size. (Note, howevidrat split caches are used by the Strong-
ARM implementation of the ARM).

4. The mechanism produces behaviour which deviates from that of existing ARMs
in the case of an LDM PC from an input/output device. This is however very

unlikely to be used in practice.

6.2.4 Discarding instructions at the decode stage

In this design, complex instructions such as LDM are turned into multiple cycles
in the decode stage. If these instructions should not be executed (due to a condition code
failure or due to lying in the shadow of a branch) the decode stage (and potentially a
number of stages below it) are still kept busy partially executing the instruatiavoid
this a mechanism is introduced that discards some instructions at decode rather than

commit.

In this scheme the decode stage sets a flag whenever it decodes an instruction
which definitely causes a change of instruction stream, e.g. an unconditional branch
instruction. It then discards all following instructions until the flag is cleared by the
arrival of a new instruction stream of afdrent colour This new stream may have
resulted from the execution of the instruction which set the flag or it may have resulted

from an exception.

However this mechanism does not address the problem created by conditional
branch instructions since the decode must assume that the branch is not taken and carry
on decoding later instructions. It has been suggested that one possible way of reducing
this problem would be to send copies of the ALU flags back from the execute stage to the

decode stage and so allow it to eliminate instructions earlier in the pipea&a97].

- 138 -

6.3 The CPSR

The CPSR, described in section 4.4, consists of the ALU flags, the processor
mode and a number of control flags. The ALU flags are stored in the commit block,
while the mode and other CPSR control flags are stored in the fetch unit. A copy of the
mode and control flags is passed down the pipeline with each instruction and its program
counter value; this is used to control any instructions which behdeeedifly in privi-
leged modes, to permit banked register decoding and to provide access to the current

mode when needed.

The reasons for these choices are:

1. The ALU flags of the CPSR are generated by the execute unit; these can be
passed to the commit block along with the result from the execute unit which is
already passed to the commit block.

2. Commit already invalidates instructions if their colour is wrong; with access to
the ALU flags it can also invalidate instructions if their condition codes fail. This
contains the task of processing ARM condition codes almost completely within
the commit block.

3. The current processor mode is needed by the fetch unit to determine if instruc-
tions should be fetched from memory in a privileged mode. For this reason it is
useful to store the mode in the fetch unit.

4. Almost all modifications to the CPSR control flags and mode are made during
entry and exit from exception handlers when the program counter is also modi-
fied. Again it is useful to have the CPSR in the fetch unit since the commit block
can send the new CPSR flags to the fetch unit at the same time as the new PC

value.

- 139 -

5. The MRS and MSR instructions which are used by system code to explicitly read
and modify the CPSR can be implemented in the commit block by routing results

between the execute stage, the CPSR and the reoréar buf

The commit block and the execute stage (including the ALU) form one pipeline
stage as shown in a simplified form in fig6ré. This single pipeline stage mechanism
ensures that the previous instruction has stored its flags into the commit block before a
new instruction begins execution. In this way the commit block can provide the previous

instructions ALU flag results to the new instruction.

Oper ands
ALU
Fl ags for current
instruction
Resul t Resul t
Dat a flags
Commi t

Resul t
Dat a

Figure 6.6 The relationship of the execute unit and the commit block

6.3.1 The Xpipe

A problem arises in situations similar to the following:

LDR RO, bad address
CW R1, R2

The load is allowed to execute and the CMP executes and enters commit; since at this

stage commit has not been notified of the failure of the load, the CMP is allowed to exe-

- 140 -

cute causing the ALU flags to change. By the time the load has completed the CPSR has
been changed, but the exception handler must see the old value. This problem arises

because access to the CPSR is not made through the reofder buf

The solution adopted requires the commit block to store the current CPSR in a
FIFO, known as th&pipe, as each memory operation is despatched. The write back
process of the reorder lheif discards entries from the Xpipe as memory operations com-
plete successfullyin the event of an exception the next Xpipe entry is passed back to
commit and written back into the CPSR. The Xpipe also holds the PC value of the mem-
ory access instruction; this value is written into the R14_abort register during exception

entry. The Xpipe is, in déct, a simple history bigr.

6.4 The SPSRs
The SPSRs hold a copy of the CPSR taken at the time of exception entry and are

used to restore it after exception processing has completed.

Two exception handling mechanisms were considered for the SPSRs. The first is
to treat the SPSRs in a similar manner to conventional registers, storing them in the reg-
ister bank and using the reorder feafto perform dependency and exception handling.
Unfortunately the MSR instruction is able to modify a subsection of the current SPSR.
This leads to the problem that it may be necessary to combine partial SPSR results from
multiple reorder buér entries and the register bank. This would significantly complicate

the reorder budiér read process.

The second option is to store the SPSRs in a separate unit in the commit block.
This makes copying between the SPSR and CPSR much easier but extra hardware must

be added to manage SPSR values during exceptions.

-141 -

6.4.1 Theinteraction of the SPSRs and data aborts

The SPSR is vulnerable to the same form of corruption as the CPSR during data

aborts. For example:

LDR RO, bad address
SW causes entry into SVC mode

In this code the SWI could enter the commit block before the abort response has been

returned by the load and so update the SPSR_svc register to contain a copy of the current
flags and mode. When the memory exception is detected, abort mode will be entered

(with SPSR_abt set appropriately) but with the SPSR_svc incorrectly modified by the

SWI which lies in the shadow of the aborting load.

Three mechanisms have been considered to handle this eventuality:

6.4.1.1 Expansion of the Xpipe

The Xpipe could be expanded to hold copiealbEPSRs (other than the abort
SPSR which the data abort will overwrite anyway) and the Xpipe entry could then be
used to restore all SPSRs upon the abort exception &ntige SPSR writes are rare the

performance impact is not significant, however the Xpipe has become ngmh lar

6.4.1.2 Locking the SPSRs

A semaphore could be created to represent the number of outstanding memory
operations; when this is zero it would be safe to perform writes to the SPSR. Thus all
instructions writing to the SPSR (other than memory operations which only cause a write
in the case of a data abort) must wait for the semaphore to be zero. The semaphore would
be decremented by the write back process of the reorder hsfit checks each memory

operation has successfully completed.

- 142 -

6.4.1.3 Duplicate copies of the SPSRs

Each SPSR could be represented by two registers and a generation bit could
state which is the current copy; this is represented in fgdrtaVhen an SPSR is written
only one copy is modified, the other copy holds the old SPSR value, the generation bit is
set to indicate the current valid cof@uring a memory operation the current state of the
generation bits is stored; if an exception occurs it is only these which need to be restored.
Extra logic would be needed to ensure that given a number of memory operations and
SPSR modifications that the old SPSR values were not discarded until the appropriate

memory operations had completed.

Stored for Stored for

exception exception
New SPSR New SPSR
val ue val ue
Pl SPSR svc_1 fSPSR_undef 1
/ /7
/ 7/
l, - 1 > Ceneration /l ~ 1+ > Ceneration
’ ! ; :
| > >
,_ — = [] [} I_ R
\ > \ >
\ \
\ \
AY \
\ \
\ \
N SpsR sve 2 NSpsR undef 2
\/ v
SPSR _svc SPSR_undef

Figure 6.7 Duplicate copies of the SPSRs

6.4.1.4 Comparison of SPSR exception handling mechanisms

Expanding the Xpipe to hold SPSR values is similar in principle to a history
buffer; it has the disadvantage that it would use a relativalg lamount of silicon area
and significantly complicate the SPSR writing mechanism. Keeping duplicate copies of
the SPSRs is similar to register renaming with a mapping table. Keeping duplicate copies
is rather complex and thus was not chosen. Locking the SPSRs is relatively simple and is
suitable providing that the locking does not cause pipeline stalls very often. Section 7.3.4

analyses the impact of this locking.

-143 -

6.5 Baserestoration

Section 4.9 describes how an LDM instruction may load a new value for its base
register and then cause an exception so losing the original base register value. Delaying
write back of the loaded values into the register bank until after the last memory cycle
has completed would solve this problem but it would require a reorder bfifat least

sixteen entries which would be expensive and slow

The solution used in AMULET1, AMULETZ2 and this design is a FIFO, known
as theBase Restore Pipe (BRP) into which the commit block places the value and name
of the base registerThe write back process of the reorderf®ufemoves entries from
the BRP at the end of LDM instructions as shown in figue If the LDM completes
successfully the result is discarded; however if any element of the LDM caused an
exception the value in the BRP is written back to the base register before the exception

handler is entered.

Dat a menory

Resul t

Control from decode & Dat a
From
store data Addr ess menory
Interface
Reor der
Buf f er
Addr ess
Result from Resul t
execut e Conmi t Results to
. Bl ock Witeback '€9ister bank

' process
------ — BRP D --

Abort exception request

Figure 6.8 The Base Restore Pipe (BRP)

- 144 -

6.6 Exceptionsin the memory

The model described above allows for a pipelined memory system as described
in section 3.7 and so the commit block can issue a stream of requests to the memory
without waiting for each request to return an exception response. Requests may be made
to the memory subsystem for operations which lie in the shadow of other memory

accesses which have caused exceptions.

This design places the responsibility for handling this problem with the memory

subsystem which must discard all accesses in an exception shadow

6.6.1 Pipelined memory and reorder buffer size

Pipelining the memory subsystem increases the number of instructions which
have been issued but have not yet returned a result. This requires an increase in the size

of the reorder bdiér so that entries can be allocated for the extra outstanding results.

6.7 Interrupts

The external interrupt lines enter this model at the decode stage where they are
combined with the interrupt enable flags flowing down with the instruction. If the inter-
rupt is enabled the current instruction is replaced by an instruction which causes the
exception entryThis instruction is similar to a SWI except that it causederdiit mode

to be entered and a féifent vector to be read.

The interrupt pseudo-instruction operates in the same way as any other instruc-
tion passing down the pipeline and is vulnerable to being invalidated if a previous
instruction causes an instruction stream change. Thus an interrupt which replaces the
instruction immediately after a branch is ignored. Since the interrupt system is level sen-
sitive rather than edge sensitive this does not cause a problem as the decode stage will

continue to replace all instructions by pseudo-interrupt instructions until either the inter-

- 145 -

rupt source is removed or interrupts are disabled. Since the interrupt instruction itself
disables interrupts on entry to the exception handler the decoder will start executing

instructions from the interrupt handler as normal.

A consequence of this mechanism is that it is verfjcdif to calculate the max-
imum interrupt latency; this is a major disadvantage for time-critical embedded systems.
Further research in the AMULET group is, at the time of writing, investigating improv-

ing the interrupt mechanism.

6.8 L ong multiplication

ARM architecture 3M and ARM architecture 4 define a family of multiply
instructions which take two 32 bit operands and produce a 64 bit result. The result is
placed in two separate registers. One variant of this instruction is a 64 bit multiply and
accumulate which reads two values to be multiplied, two registers as a 64 bit value to
accumulate and writes two registers representing the 64 bit result. This instruction is

unusual in that it can read up to 4 register values and write two non-memory results.

The long multiply instructions can be split into multiple pipeline packets in the
decode stage in a similar way to LDM instructions. Care must be taken with the alloca-
tion of spaces in the reorder Brfso that a later cycle of the multiply does not wait for a
result register allocated in an earlier cycle in such a way that a deadlock occurs. The
details of this problem depend on the way in which the multiplier is implemented and in
particular whether all four operand registers are needed to produce the first result regis-

ter. This problem is not investigated further in this thesis.

- 146 -

6.9 Summary
Figure6.9 is a more detailed diagram of the architecture showing the features
described in this chaptéerhis diagram also incorporates a number of other details which

were omitted from previous diagrams for clarity:

» All three register read ports are shown. Port A is the base register for memory
operations. dgether ports A and B form the operands for normal data opera-
tions. Port C provides store data and register based shift values for data opera-

tions.

* The data memory is now connected to the core vid#ia Address Interface
(DAI). This synchronises store data and control information with the address

from the commit block and then accesses the data memory as appropriate.

» The Apipe (so named because it holds the values from the A register port)
passes values to the commit block bypassing the execute unit. This is used dur-
ing memory operations which require both an original base register value and
an incremented value. The original base register is read from the Apipe while

the modified value is received from the execute block.

» A third result port on the reorder Iieif (Cancel) has been added; this is used for
placing invalid results in the reorder Brffor memory operations which failed
their colour or condition code tests. This is simpler than passing dummy opera-

tions down the memory pipeline.

- 147 -

I nterrupt
requests Data nenory

] | |

Allocation request

Instruction l
Menory ‘ l

—_— data nenory control pipe —_— Resul t
Dat a From
Address nenory
Interface—*

S, —

Fet ch g; Decode —_— c Store data pi pe—» Reor der
=1 Buf f er
b4 . Addr ess
< Regi ster —— ,dﬂ&ﬂ»

n

—X pi pe—>

‘1 — R e]—

\ Execute comit Resul t _
1 — Bl ock

E - A]_l: —> BRP —»

: i wope 1 1 |

i =

1

Forwar di ng pat hs

Abort exception request

Conbi ned new PC stream

Result writeback

Figure 6.9 Architecture overview

The pipeline stages (although not shown explicitly in this diagram) can be sum-

marised as:

Instruction address generation (fetch 1)

 Instruction cache/memory read (fetch 2)

» Decode/Reorder bigr allocate and lookup

* Register read/Reorder lbef read

« Execute/commit

« Data memory access - only for memory access instructions.

The reorder buiér itself can also be regarded as a pipeline stage since it accepts

a result and then writes it out sometime later to the register bank.

- 148 -

Many of the dependency and exception handling problems have been confined
to the commit block which maintains the PSRs and the expected instruction colour and
routes values between the execute unit, the meniaryeorder bdér and the fetch unit.

The only reservation about this approach is that the commit block has become more
complex than desired; further research is needed into ways of splitting this block into

smaller more manageable sections.

- 149 -

Chapter 7: Simulation and results

This chapter describes the simulation models which have been created to aid this
research. These models are then used to compare the performance of the architecture
proposed in earlier chapters with previous architectures. The simulations are also used to

assess the benefits of small enhancements to the architecture.

7.1 The smulation environment
Two forms of simulation were undertakdénace based simulation and behav-

ioural simulation.

711 Trace based ssmulation

The first form of simulation was trace based analysis. This used an ARM emula-
tor to produce a trace of instructions fetched and data accesses performed by benchmark
programs. This trace was then fed into an analyser written in C. This analyser produced

statistics which will be presented in section 7.3.1.

712 Behavioural ssmulation

To test the architectural design presented in chapserd chapte® a behav-
ioural model of the architecture was written in VHDL. This model consists of behav-
ioural descriptions of each block of the design with a structural description of the

interconnections between blocks. The model idigehtly detailed to allow normal

- 150 -

ARM programs to execute. The memory model simulates memory mapped I/O allowing
the ARM program to gain access to files on the host computer and provide equivalents of
the standard input and output streams. This memory mapped I/O is typically accessed via
a small OS written by the author (called ‘Davros’) which provides a system call interface
compatible with the ARM ‘Demon’ OFARM95]. This enables ANSI standard C pro-
grams (which can call the ANSI C library) which were compiled for the ARM ‘PIE’ card

to run unaltered under the simulation model. The model was parameterised to allow the

size of the reorder bigr to be altered and the memory timings to be changed.

Three variants of the architecture were modelled:

» Reorder buer with forwarding - This is the architecture described in chdpter

and chapte6. Figure6.9 is a detailed block diagram of this model.

» Reorder buer without forwarding - This architecture, shown in figédrg, uses
no forwarding and has a single lock FIFO (see section 2.2.2) to resolve depend-
encies. This represents a combination of the old lock FIFO method and the
method being proposed. Its advantage is that it does not need the complex

searching mechanism used during forwarding.

» Dual lock FIFO model - This architecture uses no reorddebahd instead has
two lock FIFOs to resolve dependencies. The two result streams arbitrate for the
result bus in theoin block. The result, together with an indication of the source
of the result, is passed to theite control block which removes an entry from
the appropriate lock FIFO and writes the result into the register bank. This
model uses dependency and exception handling mechanisms similar to those

used in AMULET?2. Figuré.2 shows this architecture in more detail.

-151 -

I nterrupt
requests Data nenory

Instruction ‘ ‘
Menory

Allocation request 1

— data nenory control pipe —— Resul t

Dat a From
Decode Address nenory
c Interface—>
° j=2)
5E —_— Store data pi pe—>» Re
oS- > or der
Fetch —— 3% —> Buf fer
a8 _— Addr ess
= Regi st er Cancel
— Bank
l I —X pi pe—>
Execut e i
Commi t Resul t > -
Bl ock

e
FI FO ‘[: —> BRP —

A

A pipe _f 1

1

1

1

1

Conbi ned new PC stream New PC from memory/ abor t

Result writeback

Figure 7.1 Model as simulated: Reorder buffer without forwarding

I nterrupt
requests Data menory
Instruction ‘ ‘
Menory
—_— data nenory control pipe —_— Resul t
Dat a From
Decode Address nenory
- Interface—T>
) .
sE —_— Store data pi pe—» 1
Fetch —— 52 —> 1 Join
_é .
] . Addr ess _
< Regi st er .
" ——— Bank I N
1 1
' lI 11 Ex .
ecute i 1
I Conmi t Resul t
' Bl ock >
fl Lock Lock 1
1 FI FO FI FO 1
1 1
1 Iy 1
: 4 ' A pipe —1 o !
! Wite control : [l :
: 1 : 1
1 1 f 1
___ 1 R ———
Conbi ned new PC stream New PC from nemory/ abor t

Result writeback

Figure 7.2 Model as simulated: No reorder buffer

Last result reuse, as used in AMULET?2 and described in section 2.3.2.2, was
used in the model without forwarding and in the lock FIFO model (although without a
last memory result register). A 32 entry branch-target-cache, similar to that used in

AMULET2, isincorporated in the fetch mechanism.

-152 -

7.1.2.1 Timing

At the time of writing other members of the AMULET group are taking the
architecture described in this thesis, building upon it and designing low level schematics
to implement it; thus at this time there is no accurate timing information available. Due
to this lack of timing information the simulation models used in this research have been
written with the assumption that the designers’ aim is to produce a balanced pipeline in
which all pipeline stages take approximately the same time; this is common since a bal-
anced pipeline leads to mordieknt utilisation of the hardware. In practice pipelines
are never balanced and in asynchronous systems pipeline stages take data dependen

times. Howeverit is a common design goal.

Throughout the model two separate time units are used. @eeuatt is used to

represent pipeline blocks and another very small unit is used to represent the logic

involved in handshakes and synchronisation. In this model 1@@ssused for the Ige

time and 1 ps for the small time; thus the handshake time cafebtvedy ignored.

One consequence of this overly simple model is that, as its size is changed, the
time taken to search the reorderfbufemains constant. This should be considered when

reading the results later in the chapter

7.1.2.2 Choice of modelling language

In retrospect the choice of VHDL as a behavioural description language for an
asynchronous microprocessor was paiDL was chosen over a conventional pro-
gramming language (such as C or C++) because of its concurrent programming capabili-
ties, its inbuilt concept of time and its integration with available CAD tools. It was found

that it is possible to model an asynchronous system using \éHbadel of concurrency

1. These figures are arbitrary - they are just used to distinguish calculation time from handshaking
time during simulation.

- 153 -

but the resulting model is overly complex. The author believes that the main reason for
this is that the act of creating a parallel process in VHDL is complex and is more suited
to expressing lge scale parallelism rather than the fine grain parallelism of the type
needed to represent the handshaking mechanisms in asynchronous systenfectidfe ef
this is that the model is dominated by code representing the parallelism in the handshak-
ing and the actual problem is hidden from those examining the model. A language for
asynchronous development should make this parallelism simple to express and hide the
details of the handshaking mechanisms. Anothécdify with VHDL is a consequence
of its ‘wait until’ statement. Often in an asynchronous design a block will need to wait
for a request to be high (for example); initially it might be thought that the VHDL state-
ment:

wait until Req="1";
would be suitable. However if ‘Req’ was already ‘1’ this statement would wait until it

changed away from ‘1’ and then back, thus the required VHDL is:

if Reg/="1" then
wait until Req="1";
end if;

While this structure can be placed inside a function for frequent use there are many vari-

ations on this same problem.

At the time when the author started writing the model no asynchronous hard-
ware description languages were available for use. How#haze are now a number of
languages such as BALSBard96] and LARD under development in the AMULET
research group. These appear to be better suited to the task of describing asynchronous

systems.

-154 -

7.2 Benchmarks

One of the limitations of the VHDL model is its execution speed: around 20
ARM instructions per second on a SUN SparcStation 5. The simulations were run
mainly at night using a lge number of workstations, each simulating &ed#nt config-
uration of the architecture. This limits the dynamic number of instructions in the simula-
tion to that which can be achieved overnight to aroundd@®dinstructions. Fortunately
the forwarding and dependency mechanisms operate over a short range of instructions
and so simulation of small programs is a valid method of assessing the systeiorm-

ance.

Given the constraint on the execution speed of the simulatgpe benchmarks
such as the SPECIint95 suite could not be used. Instead the following six benchmarks

were used:

» Dhrystone Version 2.1 - This is the standard ‘Dhrystone’ benchmark, imple-
mented in C (compiled without the ‘register attribute’ option Toops of the

benchmark itself are executed.

* Numeric sort - One thousand random numbers are generated and then sorted

using the quick sort routine in the standard C library

e Sring sort - This program reads a text file from its standard input stream, sorts
it and then prints it out on its standard output stream. The sort is performed
using the standard C library quick sort routine. The text to be sorted is the

ctype.h header file from the ARM cross development toolkit.

» Espresso - The espresso logic minimisation tool with a small input file.

- 155 -

* Mandelbrot - A program to calculate and display a section of the Mandelbrot
set. This program makes heavy use of floating point calculations which, for the
purposes of these experiments, were performed via a floating point emulator
which intercepted floating point instructions using the ARMindefined

instruction exception vector

» JPEG - A program to decompress a JPEG image file. This benchmark consists
of the independent JPEG grosip]jpeg program (version 6a) decompressing a
small JPEG image. The decompressor is configured to use a fast integer mode

of operation rather than the optional floating point mode.

All the benchmarks are written in C and have been compiled using the compiler

in the ARM cross development toolkARM 95].

7.3 Results

This section presents the results of the simulation models described above.

731 Resultsfrom thetrace based simulation.

The first set of results from these simulations is the distribution of instruction
types. Bble7.1 shows the distribution of instruction types for each of the benchmarks

and the mean figure.

- 156 -

Mean [Dhrys- |EspressoJPEG |Mandel- [Numeric|String
tone brot Sort sort

Data Op 56.83% |52.25% |46.45% [56.65% |71.38% |60.73% [53.52%
Single Loadf22.12% [23.30% [32.48% |24.19% [6.28% [22.21% |24.26%
Store
Multiple 3.40% |4.00% |4.40% [3.94% |4.48% |0.11% (3.48%
Load/Store
Multiply 0.29% |0.01% |0.22% [0.54% [0.92% |0.07% [0.01%
Branch 17.18% [20.38% [16.41% |14.68% [16.04% [16.86% |18.70%
SWiI 0.02% |0.06% |0.02% [0.01% |<0.005%0.01% [0.04%
Coprocessor0.02% [<0.005%0.01% |<0.005%0.13% |<0.005%) <0.005%
PSR transfef0.14% [<0.005%0.03% [<0.005%0.77% [<0.005%<0.005%

Table 7.1: Instruction set usage (dynamic)

The entries in the table represent

nation.

» Single Load/Store — LDR or STR instructions.

» Multiple Load/Store — LDM or STM instructions.

* Multiply — All ARM Multiply instructions.

» Branch — Explicit Branch or Branch and link instructions; this figure does not

include branches caused by data operations or loads, such as procedure returns.

» SWI - Software Interrupt.

» Coprocessor — Any form of coprocessor instruction.

* PSR Tansfer — The ARM MSR and MRS instructions.

1. More details of the ARM instruction set can be found in Appendix A.

- 157 -

Data Op — Data operations involving one or two registers with a register desti-

These figures show that on average 26% of instructions are memory operations
and so may cause an exception. The SWI and coprocessor instructions which cause
exceptions are executed ratedyen in the Mandelbrot program which makes heavy use
of emulated floating point coprocessor instructions. Thus instructions bbettially
cause exceptions occur frequently and exception handling mechanisms must be able to

handle these at least afi@éntly as instructions which always cause exceptions.

The second important result from the trace based simulations relates to the age
of operands. The X axis of figure3 represents the age of the operand and is 1 if an
operand was written in the previous instruction. The Y axis represents the percentage of
operands written within the corresponding number of instructions; thus (from the mean
result) 51% of operands were written 5 or fewer instructions prior to the current instruc-
tion. Last result reuse (as used in the AMULET 2) can only avoid the penalty aVa RA
dependency if the operand was produced ormté&8ous instruction; this case accounts
for only 25% of operands and so half of the operands written recently cannot be for-

warded using that mechanism.

In a system with a reorder lbef the return of results to the register bank is
delayed; this graph shows that the results in thiebafe likely to be required by subse-
guent instructions. Not forwarding from the reorderféauis therefore likely to stall the

pipeline.

The graph shows that between 20% and 30% of operands are more than 20
instructions old. This behaviour can be accounted for by cases such as registers being

written prior to a loop and being read many times from within it.

- 158 -

100 T T T

80 PN |

40 dhrystone <—
jpeg —+-
numsort -2--
stringsort -
espresso —4--
mandel - -

ol mean -o- - i

Cumulative percentage

0 1 1 1
0 5 10 15 20
Age

Figure 7.3 Operand age distribution

7.3.2 The benefits of the eorder buffer

Using the VHDL model described above simulations have been carried out to

compare the reorder Waf architecture with the lock FIFO architecture. Fighe

shows a comparison for the JPEG benchmark. All times are measured relative to the lock
FIFO model using a memory model that returns an abort response in half the time allo-
cated to the delay through one pipeline stage (i.e. comparable to 0.5 cycle); this model is
represented by a horizontal line at 1 on the execution time axis; the other two horizontal
lines represent lock FIFO systems with faster and slower abort responses. From this
graph it can be seen that reducing the abort response time to 0.1 cycle time in the lock

FIFO model produces a small performance change of approxin2étely

7.3.2.1 Reorder buer without forwarding

From figure7.4, and figur&@.5 (which show just the graphs relating to the reor-
der bufer without forwarding for all benchmarks), it can be seen that for small sizes of

reorder bufer (marked ROB on the grapjithout forwarding the execution time is

- 159 -

Relative execution time: JPEG

1.2 T T T T T
1.15 lock FIFO 0.1 cycle abort —— -
lock FIFO 0.5 cycle abort ----
5 lock FIFO 0.9 cycle abort -----
G 11r ROB+forwarding o i
o | ROB no forwarding —+--
s 105 o -
S e eeeen e e e Nfeeesteeeateesasesesassseeesesesssesesssesesssesesssesesssesesssssesssesesssesesssesesssesesssessesseseeees
O N
L 1 S
L $o
S T
°
o 0.95 - —
(3]
=
i 0.9 |- _
o
= 085 F - e
c
o i
O 0.8 -
x
| .
075 | E— -
e
07 | | | | |
2 3 4 5 6 7 8

Reorder buffer size
Figure 7.4 Relative execution times for the JPEG benchmark

worse than that of the lock FIFO model while fogkaisizes of reorder ket the per-
formance is slightly better than the lock FIFO model. The reason for the performance
loss at small sizes is believed to be that a significant proportion of the reofeeabiaf

cation requests cause the processor to stall, waiting for spaces in the rededtethisif

is substantiated by figui®6 which shows the percentage of allocation requests which

had to stall waiting for a space.

At larger sizes of reorder bief the abort response time penalty has been
removed leading to much of the performance gain shown. In addition the processor is
free to execute instructions free of dependencies in the shadow of memory operations

which could potentially cause exceptions.

- 160 -

Execution time relative to lock FIFO 0.5 cycle abort

% of allocation requests causing stall

Relative execution times for Reorder buffer without forwarding
1.2 T T T T T

1.15 lock FIFO 0.5 cycle abort —— -
dhrystone -¢--
espresso -+--
JPEG &+ -
mandel —-x--
numsort -4---
stringsort -*---

1.05

1 4

0.95 | R el - Pttt . Sttt i St 3
09]
0.85]
0.8 -
0.75 -

07 | | | | |
2 3 4 5 6 7 8

Reorder buffer size
Figure 7.5 Summary of execution times for reorder buffer
without forwarding
Queue allocation stalls (Reorder buffer no forwarding)
70 T T T T T

dhrystone —<—
espresso —+-
JPEG -5--
mandel - -
numsort -&--
stringsort - --

2 3 4 5 6 7 8
Reorder buffer size

Figure 7.6 Percentage of reorder buffer allocations which had to stall
(no forwarding)

- 161 -

7.3.2.2 Reorder bukr with forwarding

From figure7.4, and figur&.7 (which shows just the graphs relating to the reor-
der bufer with forwarding for all benchmarks), it can be seen that in all cases the reorder
buffer with forwarding has produced a reduction in execution time; this is true even for
small reorder buiér sizes where the benefits of forwarding more thésebthe penalties
of waiting for space in the bief. At larger sizes of reorder Hef the reduction in execu-
tion time is significant at between 19% and 28%. FiguBeshows the percentage of
reorder bufler allocation requests which had to stall in the model with forwarding. Thus
it can be seen that at a reorderfbusize of 6 very few allocation requests cause stalls
since there is almost always some free space in tierbuf

Relative execution times for Reorder buffer with forwarding

1.2 T T T T T
1.15 lock FIFO 0.5 cycle abort — -
dhrystone -o--
espresso -+--
11r- JPEG & i
mandel -<--
numsort -4 -
1.05 - stringsort -x--- _
1

0.95 F "\ .
o

0.9 }

0.85

0.8

Execution time relative to lock FIFO 0.5 cycle abort

xb

0.75

+

-0

0.7

~
o]

Reorder buffer size

Figure 7.7 Summary of execution times for reorderfeuf
with forwarding

- 162 -

Queue allocation stalls (Reorder buffer with forwarding)
70 T T T T T

dhrystone —<—
espresso —+-
, JPEG -B--
60 - mandel > 4

10 numsort —&---
stringsort - --

50

40 F

30

20

% of allocation requests causing stall

10

0

2 3 4 5 6 7 8
Reorder buffer size

Figure 7.8 Percentage of reorder loerf allocations which had to stall
(with forwarding)

7.3.2.3 Appropriate sizing of the reorder lheif

From figure7.7 it can be seen that very little increase in performance is gained
by increasing the reorder lieif above 4 entries in size. In practice increasing the size of
the bufer will probably slow the implementation and so the small performance increases
which can be seen for the 5 entry reordefdyuh the graph above will probably not be

seen in an implementation.

For this reason a 4 entry reorderfeufvould appear to be the best configuration

in designs based on the architecture modelled.

7.3.3 L oading the PC via theinstruction fetch mechanism
Section 6.2.3 described how the instruction fetch mechanism can be used to exe-
cute instructions which load a new PC value from membhys mechanism is used

partly because it is easier to implement and partly because it promises increased per-

- 163 -

formance. It does, howevdrave the disadvantage that it is incapable of working with
split instruction/data caches and it also uses more memory bandwidth. The simulations

presented above have been performed with this mechanism enabled.

Table7.2 shows the execution times of the benchmarks executing on an archi-
tecture with a 4 entry reorder lheff with forwarding, without using the fast PC load
mechanism relative to an architecture with the fast PC load mechanism. The perform-
ance benefit of this mechanism is small; this is because PC loads are relatively rare in the
benchmarks used. Howeyaétr is still felt that this mechanism is useful because of the

likely simplification of the implementatidizaGi97].

Benchmark |Relative exe
cution time
Dhrystone |1.024
Espresso 1.015

JPEG 1.012
Mandelbrot [1.002
Numeric sort|1.000

String sort |1.020

Table 7.2: Relative execution time: PC load via data

interface/PC load via fetch interface

734 The penalty of SPSR locking

In section 6.4.1 a number of mechanisms were proposed for maintaining the cor-
rect value of the SPSRs after an exception. The simplest of these, SPSR locking,
involves holding a count of the number of outstanding memory operations, and thus
potential exceptions, and stalling updates of the SPSR until there are no outstanding
memory operations. The simulations described above have used this locking mechanism.
Although this mechanism will stall the processor it is expected to occur infrequently and
thus cause a very small reduction in overall performanzeas€ertain whether a more
complex but more &tient mechanism is needed simulations were carried out with the

mechanism disabled; this meant that the architecture was incapable of processing an

-164 -

exception correctlybut the penalty for checking the lock was not incurred. The perform-
ance diference between this model and the normal model with locking enabled shows
the penalty due to the locking. The simulations were carried out only on a model with a
reorder bufler of four entries with forwarding. For this model all benchmarks showed a
performance loss of well under 0.01% when using SPSR locking. For this reason it is
recommended that the SPSR locking mechanism be used since the performance loss is

insignificant.

74 Absolute performance

The results presented so far in this chapter have been comparative timings
between diierent versions of the authierown simulation models; this section compares
the absolute performance of these models with the performance of existing ARM proces-
sors. D assess the performance of other ARMsAtREIulator, a cycle level ARM simu-
lator produced by ARM,[ARM95] was used to simulate the execution of the

benchmarks on a variety of ARM processors.

Comparing absolute performance at the cycle levelfisdif because the length
of the cycle is influenced by the implementation and by tHerdiit oganisations of
each processw pipeline. For this comparison the cycle time of all processors was
treated as equivalent by configuring the ARMulator to run with a cycle time of 100ns

which was equivalent to the pipeline stage time of the VHDL models. This is unrealistic

- 165 -

but is the best which can be achieved until implementations have been produced for the

architecture described in this thesiable7.3 shows the raw results.

ARM7 ARMS8 Strong- ROB ROB
ARM 4 entry 8 entry
Dhrystone | 32.88 27.86 25.37 27.64 27.38
Espresso 92.28 75.24 68.86 89.76 89.13
JPEG 134.87 115.91 103.87 115.55 114.56
Mandel 108.58 104.79 N/A< 110.86 109.42
Numeric 44.27 37.42 32.40 47.00 46.78
sort
String sort | 64.53 54.92 49.27 55.04 54.48

Table 7.3: Absolute execution times (in ms)

a. The ARMulator failed to complete the Mandel benchmark when configured for Strong-
ARM; since the benchmark successfully completed on all other simulators and configura-
tions it is believed this is due to a fault in the ARMulaidiis has been reported to ARM
but no solution has been found.

From these results it can be seen that the asynchronous model with a four entry
reorder bufer is faster than the ARM7 for most benchmarks. For three of the 6 bench-
marks the four entry model is comparable in performance to the ARM8 while for the
other three benchmarks it is significantly slower than the ARMS8. For all benchmarks the

asynchronous model is slower than the StrongARM.

The speed relative to StrongARM is summarisedahbld7.4. The remainder of
this section will explain the reason for the low performance of the model when compared

with the StrongARM.

% slower
Dhrystone 8.93
Espresso 30.35
JPEG 11.24
Numeric sort 45.06
String sort 11.72

Table 7.4: Percentage slower than StrongARM (ROB 4 entry)

- 166 -

74.1 Cost of stream changes

The model as presented has a stream change (branch) cost of 6 cycles compared
with the StrongARM which can execute a branch in one or two cycles depending on the
form of branch. Howevelthis model has branch prediction which StrongARM lacks.

The StrongARM has branch hardware using a specialised path for executing subroutine
returns in one cycle and a separate branch adder to speed the execution of normal branck

instructions.

Stream changes can be broken down into 7 types:

StrongARM| VHDL

Unpredicted, untakenl 1
Unpredicted, taken |2 6
Mispredicted 14 6
Predicted 2 1
Other 2° 6
LDR PC 4 7

Table 7.5: Branch costs on StrongARM and the VHDL model (cycles)

a. This figure represents the time to execute a
branch which would have been mispredicted in
the VHDL model

b. This represents subroutine returns and other stream
changes caused by arithmetic operations writing to
the PC - for the purposes of this investigation these
are assumed to be mainly due to subroutine returns.
It is also assumed that no dependency exists on the
value transferred to the PC.

From this point on unpredicted, untaken branches will be ignored since they exe-
cute in the same time on both processaabld7.6 shows the frequency with which each
branch type occurs in the benchmarkabl&7.7 shows the costs of branches in the
benchmarks for the two architectures whisblE7.8 shows the total execution time for
the VHDL models with the branch cost above a StrongARM removed; this table also

includes the percentage by which these times are slower than the StrongARM.

- 167 -

Dhrystone |Espresso |JPEG Numeric String sort
sort
Unpredicted, |[2515 17637 4725 4141 4342
taken
Mispredicted [116 4464 2079 3004 647
Predicted 21104 32165 68399 17995 40168
Other 441 2481 347 26011 2023
LDR PC 3992 6538 7226 95 6916
Table 7.6: Branch type occurrence in benchmarks
StrongARM cycld VHDL ‘cycle’ [VHDL cycle| VHDL time
cost cost penalty penalty
Dhrystone| 64204 67480 3276 0.328 ms
Espresso | 135182 225423 90241 9.02 ms
JPEG 177925 161887 -16038 -1.60 ms
Numeric |99678 217596 117918 11.79 ms
sort
String sort| 121377 130652 9275 0.93 ms
Table 7.7: Branch costs for benchmarks
VHDL compensated timg% slower than StrongARMW
Dhrystone 27.31 ms 7.64
Espresso 80.73 ms 17.25
JPEG 117.16 ms 12.79
Numeric sort 35.20 ms 8.66
String sort 54.12 ms 9.84

Table 7.8: Benchmark performance having compensated for branch costs

From thesetables it can be seen th#te numeric sors excellent perform-

ance on theStrongARM is primarily due to its fagbath for returnfrom subroutines

which the numeric sorperforms oftert. In general it canbe seen that the long branch

latency in the VHDL models are far too high and contributes to a signifigaerform-

ance loss.

74.2

A load followed by an instruction which accesses the data incurs a one cycle
penalty on the StrongARM and a two cycle penalty in the architecture presented here.

This difference appears to account for the majority of the remaining performance loss

L oad latency

1. This is mostly likely due to the comparison being performed in a separate small subroutine
which will be called many times.

- 168 -

compared to StrongARM. This theory is reinforced by the observation that the Espresso
benchmark, which has significantly worse performance compared to StrongARM, per-
forms more memory operations than the other benchmarks #bé=/T1). The bench-

mark programs were compiled with a compiler designed for an ARM7 processor which
does not stér from avoidable penalties due to load latency and which therefore does not
need to schedule instructions between loads and instructions dependent on the load data.
Thus optimisations which would remove some of the load latency penalty have not been

performed.

7.4.3 Stage complexity

The reason for both the increased branch and load latency isgeriamber of
pipeline stages in the model presented when compared with any of the commercial ARM
implementations. In particular the model as presented splits the decode and register read
into separate stages which the StrongARM performs in one stage. Thus comparing the

two models at the cycle level is bound to be inaccurate.

This pipeline stage was split because the author was concerned that the decoding
of instructions (which is potentially complex and slow on the ARM), together with the
logic to perform the reorder et search, might slow the stage down to the point where
it became the limiting speed facttfrthis is indeed the speed limiting stage the split may
allow a faster cycle time and a time performance comparison (rather than a comparison
at the cycle level) may come out more favourably in terms of the asynchronous architec-

ture.

Determining which stage limits the cycle time isfidiflt without implementa-
tion and simulation at the gate level. Since producing a gate level implementation is a

long and complex task it is not in general possible to correct the architecture (in terms of

- 169 -

the number of pipeline stages) after the implementation is completed and it is found that
a stage should be added or removed. At the same time ificultlifo determine the

number of pipeline stages to use until the gate level implementation is completed. The
author believes that this paradox can only be solved by the use of higher level simulation
and synthesis which allows the designer to determine which stage was the limiting stage

earlier in the design process and allow the architecture to be adjusted as appropriate.

7.5 Summary
The results given in this chapter show that the dependency and exception mech-
anisms described in this thesis provide a significantly higher level of performance than

those found in the earlier AMULET designs. The key points are:

» The reorder bdér with forwarding provides a performance benefit of more than
20% compared to a model using lock FIFOs (as in AMULET1 and AMULET?2)

for the benchmarks used in this work.

* A reorder bufer of four entries is recommended. While these results show a
slight performance increase for a five entryf@uthis may be d$et by the

slower implementation and the increased cost in area.

* Loading the PC via the instruction fetch mechanism provides a small perform-
ance benefit based on these simulations. Howavex full system the extra
cache bandwidth used may outweigh these benefits. The strorggestat for
its use is that it will simplify the implementation by reducing the procéssor

bus complexity

-170 -

* SPSR locking, the simplest mechanism to maintain the SPSR values during
exception processing, is adequate since the possible performance gain from any

other mechanism is very small.

» The branch and load latency of the pipeline model given is too high, indicating
that there are too many pipeline stages in the design and that, combining some

of the stages (e.g. decode and register read) is likely to improve performance.

» Additional fast branch mechanisms (similar to those used in StrongARM)

should be investigated as possible ways of reducing the branch cost.

-171 -

Chapter 8: Conclusions and
Future Work

This chapter summarises the work described in the thesis, draws conclusions and

suggests directions for future work.

8.1 Summary
This thesis has described the design of exception and dependency handling
mechanisms for a third generation asynchronous microprocessor which implements the

ARM instruction set architecture.

Chapter2 described the general problem of dependencies, fieeetif forms of
dependency and existing mechanisms for resolving dependenadidional result for-
warding mechanisms used in synchronous systems were shown to be unworkable in
asynchronous systems due to the absence of a global timing reference. This influences
the overall pipeline structure and makes the simple linear five stage pipelines used in the
ARMS8 and StrongARM (see Appendix B) unsuitable for use in an asynchronous imple-

mentation.

Chapter3 described the problems of exceptions, théedht types of excep-
tions and exception handling mechanisms which have been proposed. In particular it was

shown that many forms of exception, such as interrupts, can be dealt with in the early

-172 -

stages of the pipeline in a similar way to normal instructions. However there are some
forms of exception, particularly those generated by memory operations, which may be

caused by a lge proportion of instructions but which rarely occur

Chapted summarised the ARM ISA and described the unusual features of the
ARM. The ARM'’s conditional execution facility proves to be a particularlfialift fea-
ture to implement &tiently. The presence of this feature makedftitere file one of the
possible solutions to the exception problem, unworkable in the context of the implemen-

tation of an ARM.

Chapters described the evolution of the asynchronous reordéerbari which
this thesis is based. A set of constraints was given which removed the need for synchro-
nisation and enabled the creation of ditieint asynchronous implementation of a reor-
der bufer. In particulay allowing forwarding after the result has been written back to the
register bank removes the need for géaamount of synchronisation between logically

distant sections of the processor pipeline.

Chapter6 described additional mechanisms that provide dependency and excep-
tion handling mechanisms for other parts of the processor state. In paraquladifica-
tion to AMULET1's colour mechanism is described which can be used to label

instructions in all instruction streams currently in the processor

Chapter7 presented the results of agamumber of simulations used to assess
the efectiveness of the proposed mechanisms. These results show that the reéeder buf
provides a performance increase of around 20% over the techniques used in AMULET1
and AMULET2. Howeverthese results show that more work is needed to reduce the

effect of procedural dependencies and load latency

-173 -

8.2 Conclusions

The work described in this thesis has led to a high performance data dependency
and exception handling architecture for an asynchronous microprodessing tech-
niques have been examined and it has been determined that the reded¢Simid 88]
is a suitable candidate for asynchronous implementation and is also suitable for use with

the ARM'’s conditional instruction execution.

A number of problems have been identified which influence the implementation
of an asynchronous reorder faif Solutions to these problems have been provided along
with mechanisms for solving the other dependency and exception handling problems
involved in implementing the ARM ISA. The resulting architecture has been modelled in
VHDL and has been compared with models of previous architectures. The results have
shown increased performance and flexibility when compared with earlier mechanisms.
These results also show that the branch dependency mechanisms in the architecture neec

significant improvement.

At the time of writing the architecture is being refined and implemented by other
members of the AMULET group and will form the basis of the AMULET3 microproces-

SOr

-174 -

8.3 Advantages and disadvantages of the pposed achitecture
The benefits of the dependency and exception handling mechanism described in

this thesis are:

* Increased performance
The reorder bdiér provides increased performance compared with the mecha-

nisms used in AMULET2.

* Increased flexibility
The reorder bdér is significantly more flexible than the mechanism used in
AMULET2. Unlike the mechanism used in AMULET2, the reordefdrutan
be used with pipelined memory systems which generate exceptions and mem-

ory systems which take a long time to produce an exception response.

» Unification of dependency and exception handling
In AMULET2 the interinstruction dependency mechanisms were imple-
mented using lock FIFOs while exceptions were processed using ad hoc logic.
The reorder bdér with forwarding solves both problems in a single mecha-

nism.

» Precise exceptions and complete ARM compatibility
The mechanisms described in this thesis provide precise exception handling
(as defined in section 3.4) unlike the mechanisms used in processors such as
Fred. This is essential in providing complete compatibility with existing ARM

code and operating systems. In addition, the architecture described is com-

-175 -

pletely compatible with existing ARM programs and does not penalise the use

of ARM’s unusual features such as conditional instructions.

* Generality
While the asynchronous reorder faufwas developed for use in an implemen-
tation of the ARM it is general enough to be used in other processor designs.
However other techniques, which are unsuitable for use in an implementation
of the ARM, such as the future file may also be applicable to other processor

architectures.

The mechanisms described in this thesis do have a number of undesirable prop-

erties:

» Lack of modularity
One of the potential benefits of asynchronous design suggested in dhiapter
that it should be possible to make an asynchronous design more modular than
its synchronous equivalent because the timing characteristics of each block
are unrelated. Unfortunately this design is not as modular as might be hoped.
For example, the implementation of the decode block is heavily dependent on
the fact that a reorder Waf is being used; a change to dafiént mechanism

would require the redesign of several parts of the processor

* The commit block is too large
The commit block (described in chapt&) has become too @ and complex
and thus may be di€ult to implement diciently. Initially the purpose of this
block was to combine stream changes from the execute stage and exception
requests from the reorder beif and generate packets representing the new

streams to be sent to the fetch unit. It has, howéalkeen on the role of rout-

-176 -

ing results between the execution unit, the reorddebahd addresses to the
memory interface, maintenance of the CPSR and SPSRs and maintenance of
the colour The block is perhaps the d¢gst, most complex block in the design.

The result is that it is ditult to implement diciently and has been very thf

cult to debug. Wh care it should be possible to split the commit block resolv-

ing this problem.

» Lack of proof
The architecture as presented is believed to be free of deadlocks and the simu-
lations have executed g amounts of ARM code leading to high confidence
that the design is correct. There is, howewerproof of its correctness. For-
mal proof of the architecture is a highly desirable goal which the author hopes

others will undertake.

o Complexity
The architecture described is probably more complex to implement than the
equivalent mechanisms used in synchronous implementations of the ARM
such as the StrongARM. In particular the use of a linear five stage pipeline
with forwarding solves many of the problems described in this thesis in a sim-
pler way unfortunately unavailable to asynchronous designers.
It may be more appropriate to apply the asynchronous reordker boifan
implementation which already requires a powerful dependency handling
mechanism. In particular a superscalar implementation of the ARM (or other
microprocessor) would require a mechanism such as this and would be an

interesting field of future researf@BhEd96].

-177 -

The main direction of the research described in this thesis has been resolving
data dependencies and ensuring data validity during exceptions; this research has
resulted in an @&tient mechanism for doing this. In retrospect more work is needed on
efficient procedural dependency mechanisms which are still impacting processor per-

formance.

8.4 Futurework

A number of important issues have been left unresolved in the architecture
described thus falhese issues (described below) are left for future research. In addition
there are a number of potential sources of performance improvement which have not
been investigated fullyThese are described below to provide more opportunities for

future work.

84.1 Coprocessors

The designers of the ARM2 made provision for extensions of the instruction set
to be provided by a number of separate ‘coprocessors’. Sections of the ARM instruction
set are presented to the coprocessors and if a coprocessor wishes to execute the instruc
tion the ARM and the coprocessor cooperate during the execution of the instruction. If
no coprocessor wishes to execute the instruction the ARM must enter the undefined
instruction exception handleThus the first problem to be solved when designing a
coprocessor interface is to provide a mechanism for passing instructions to the coproces-

sors and for the coprocessors to state whether or not they will execute the instruction.

There are four forms of coprocessor instruction:

» Coprocessor Registerdansfer (CPR): A CPR instruction allows an ARM regis-
ter to be transferred to the coprocessor or a coprocessor register value to be read

and placed in an ARM register

-178 -

* Coprocessor Data Operation (CPD): A CPD instruction is used to ask the

coprocessor to perform an operation within the coprocessor

» Coprocessor Dataransfer (CDT): A CDT instruction is used to allow a coproc-
essor to store some data to memory or to load some data from mdinery
ARM provides the addresses to the memory for each access; the coprocessor

signals the ARM after each access to indicate whether any more are required.

* Undefined instructions: ARM undefined instructions aferefl to the coproc-

essors for execution in a similar way to Coprocessor Data operations.

While the Coprocessor Data Operations and Undefined instructions are rela-
tively simple to implement the CPR and CDT instructions are more complex because
they require a lgrer degree of interaction between the main processor and the coproces-
sors. In particular the CDT accesses external memory and can cause data aborts and thus

incur the complexity of handling an exception.

As with any other ARM instruction a coprocessor instruction may be prefetched
in the shadow of a branch instruction and thus might not be executed after being fetched.
If the instruction is passed to the coprocessors before it is known whether it passed its
condition codes and whether its colour matched then a mechanism must be provided for
informing the coprocessor whether the instruction should really be executed. In addition
the coprocessor instruction could execute in the shadow of a data abort and thus there
must be a way to ensure that any instruction in the data abort shadow does not change the

coprocessor state permanently

-179 -

8.4.2 Thumb

ARM Ltd. defines an extension to the standard ARM instruction set known as
Thumb. The Thumb instruction set is a 16 bit instruction set which provide a limited sub-
set of the full ARM instruction set. Programs written in Thumb code are typically more
compact than their ARM equivalents and are suitable for systems where memory is
scarce or slowThe processor can switch between ARM and Thumb modes very quickly
and programs can consist of mixtures of ARM and Thumb code using ARM code for

system tasks or where the extra expressiveness of the full instruction set is required.

In the ARM 7, Thumb is implemented as a translation block placed between the
instruction fetch mechanism and the decode unit. The block translates almost all Thumb
instructions into standard ARM instructions. There are a few Thumb instructions which

must be dealt with by extra instructions provided in the decoder

Thumb has little direct &ct on any part of the design detailed in this thesis.
However it would be interesting to perform simulations which compared the register
usage of programs written in ARM code and programs written in Thumb codex- Dif
ences in register usage patterns, due to the design of the Thumb instruction set, may sug-

gest diferent sizes of reorder Waf.

84.3 PC change prediction

Branch prediction mechanisms work well for predicting branches at the end of
loops and calls to subroutines. Most cannot, howgwavide any benefit for returns
from subroutines or other branches which calculate their destination address. The
instructions after these forms of branch are prefetched in ®rasting power and caus-

ing pipeline stalls which slow down the execution of the program.

- 180 -

The author believes that one possible solution to this problem is to enhance
branch predictors so that they store the address of all instructions which cause a branch,
not just static branch instructions. Although this would not allow the branch predictor to
start prefetching from the destination of the branch instruction it would allow the
prefetch to be halted and thus reduce the power wasted. The implementation of this tech-
nique would consist of a lger branch address CAM and added logic to route all instruc-
tion stream changing instructions to the predictss with many such techniques,
research is needed to determine whether the added complexity producésientsuf
reduction in power usage or performance gained to justify the extra complexity and

power used in the added logic.

8.5 The asynchronous future

The mechanisms described in this thesis provide the opportunity for future
enhancements such as superscalar implementations and show that it is possible to adap
synchronous architectural techniques for use in asynchronous frameworks. It is hoped
that this work will make a useful contribution to the current gesuce in asynchronous

design.

- 181 -

[APMLO5]

[ARMO1]

[ARMO5]

[ARMO6]

[ArRe94]

References

S.S. Appleton, S.VMorton, and M.J. Liebelt, “The Design of a Fast
Asynchronous Microprocessor”, IEEEedhnical Committee on Compu-

ter Architecture Newslette®©ctober 1995.
Advanced RISC Machines Ltd, “ARM600 Datasheet”, 1991.

Advanced RISC Machines Ltd, “ARM Software DevelopmenblKit

Reference Manual”, 1995. ARM document number ARM DUI 0020.

Advanced RISC Machines Ltd, “ARM Architecture Reference Manual”,
ARM Document Number: ARM DDI 0100B; ISBN1B 7362994, Pren-

tice Hall. 1996.

D.K. Arvind and VE.E Rebello, “Instruction-Level Parallelism in Asyn-
chronous Processor Architectures”, In M. Moonen an@dtthooy edi-
tors, Proceedings of the 3rd Internationadr®¢hop on Algorithms and
Parallel VLSI Architectures, pages 203-215, Leuven, Belgium, August

1994. Elsevier Science.

- 182 -

[Bard96]

[ChEd96]

[DaGY93]

[ECFS95]

[Ende96]

[FuDag6]

[FULi96]

A.Bardsley “An Asynchronous Logic Synthesiser”, 3rd year project
report, University of ManchesteiDepartment of Computer Science,

1996.

V.A.Chouliaras and D.A.Edwards, “A Superscalar AMULET", Proceed-
ings of the First UK Asynchronous Forum, D.K.Arvind and S.Furber

(Editors), The University of Edinbgh, pp. 19-25, 1996.

llana David, Ran Ginosgand Michael 8eli, “Self-Timed architecture of
a Reduced Instruction Set Computer”, Proceedings of the IFIRiNg
Conference on Asynchronous Design Methodologies, Manché&sigr

land, 1993.

C.J.Elston, D.B.Christianson,. A2Findlay and G.B.Steven, “Hades -
Towards the Design of an Asynchronous Superscalar Processor”, the pro-
ceedings of the Seconddr%ing Conference on Asynchronous Design
Methodologies, May 30-31, 1995, South Bank Univerdityndon, pp.

200-209.

P.B.Endecott, “Superscalar instruction issue in an asynchronous micro-
processor”, IEE Proceedings on Computers and Digéaehiliques, ¥-

ume 143, Number 5, September 1996, pp. 266-272.

S.B. Furber and.May, “Four-Phase Micropipeline Latch Control Cir-
cuits”, IEEE Tansactions on VLSI Systems, vol. 4 no. 2, June 1996 pp.

247-253. ISSN 1063-8210

S.B. Furber and J. Liu, “Dynamic Logic in FeRhase Micropipelines”,

Proceedings: Async’'96, Aizu-&iamatsu, Japan, March 18-21 1996.

- 183 -

[Furb96]

[Furb97]

[GaGi97]

[Gars93]

[HePa90]

[HwPa87]

[Ibbe82]

[IEEES5]

S.B. Furber “ARM System Architecture”, Addison ®¥g¢ley Longman,

1996. ISBN 0-201-40352-8.

S.B.Furber J.D.Garside, Sémple, J.Liu, Hmay, N.C.Paver
“AMULET2e: An Asynchronous Embedded Controller”, Proceedings of
the Third International Symposium on Advanced Research in Asynchro-

nous Circuits and Systems (Async97), Eindhoven,

J.D.Garside, D.A.Gilbert, “AMULET 3 ideas document”, internal AMU-

LET group document.

J.D.Garside, “A CMOS VLSI Implementation of an Asynchronous
ALU”, Proceedings of the IFIP Wking Conference on Asynchronous

Design Methodologies, ManchestEngland, 1993.

John L. Hennessy and David A. Patterson, “Computer Architecture A
Quantitative Approach”, Mgan Kaufmann Publishers Inc., ISBN 1-

55860-069-8, 1990.

W.W.Hwu and YN.Patt, “Checkpoint Repair for Out-of-order Execution
Machines”, Proceedings of the 14th Annual International Symposium on

Computer Architecture (ISCA87) pp 18-26.

Roland N. Ibbett, “The Architecture of High Performance Computers”,

Macmillan Publishers, ISBN 0 333 33231 8, 1982.

“IEEE Standard for Binary Floating-Point Arithmetic”’, ANSI/IEEE Std

754-1985.

-184 -

[John91]

[Mart93]

[MoPW96]

[Pave94]

[PDFG92]

[Petl96]

[RiBro5]

[RIBro6]

Mike Johnson, “Superscalar Microprocessor Design”, Prentice Hall, Eng-

lewood Clif's, ISBN 0-13-875634-1, 1991.

Alain J. Martin, Chapter 9 of “Synthesis of Asynchronous VLSI Cir-
cuits”, in the Proceedings of the VII BanfNorkshop: Asynchronous

Hardware Design, BafhifCanada, August 28-September 3, 1993.

S.Moore, HRobinson, S.\ltox, “Rotary pipeline processors”, IEE Pro-
ceedings on Computers and Digit&achniques, ¥lume 143, Number 5,

September 1996, pp. 259-265.

Nigel Charles PavefThe Design and Implementation of an Asynchro-

nous Microprocessor”, PhD thesis, University of Manche&®94.

N.C.Paver PDay, S.B.Furber J.D. Garside and JWoods, “Register
Locking in an Asynchronous Microprocessor”, Proceedings of ICCD 92

1992 pp. 351-355.

Oleg A. Petlin, “Design for @stability of Asynchronous VLSI Circuits”,

PhD thesis, University of Manchest&é96.

William F. Richardson and Erik Brunvand. “Precise Exception Handling
for a Self-Tmed Processor”, in 1995 IEEE International Conference on
Computer Design: VLSI in Computers & Processors, October 1995, pp.

32-37.

W.F. Richardson and E. Brunvand, “Architectural considerations for a
self-timed decoupled processor”, IEE Proceedings on Computers and

Digital Techniques, Mume 143, Number 5, September 1996.

-185 -

[Rich96]

[SmPI8g]

[SmS095]

[SMWe94]

[SpSM94]

[S0Va87]

[STB94]

[Suth89]

William F. Richardson, “Architectural Considerations in a Sefidd
Processor Design”, PhD dissertation, University of Utah, Department of

Computer Science, March 1996.

James E. Smith, and Andrew R. Pleszkun, “Implementing Precise Inter-
rupts in Pipelined Processors”, IEEEasactions on ComputersplV37,

No.5, May 1988, pp.562-573.

James E. Smith, and Gurindar S. Sohi, “The Microarchitecture of Super-
scalar Processors”, Proceedings of the IEEE, 196683/ No.12, pp.

1609-1624

James E. Smith, and Shlomaas, “PowerPC 601 and Alpha 21064: A
Tale of wo RISCs’, IEEE ComputeiMolume 27, Number 6, June 1994,

pp. 46-58.

Robert F Sproull, Ivan E. Sutherland, Charles E. Mo)rd&ounterflow
Pipeline Processor Architecture”. Sun Microsystems Laboratories techni-

cal report SMLI TR-94-25.

Gurindar S. Sohi, and Sriramajpeyam, “Instruction Issue Logic for
High-Performance, Interruptable Pipelined Processors”, Proceedings of
The 14th Annual International Symposium on Computer Architecture

(ISCA), Pittsbugh, Pennsylvania, 1987, pp. 27-34.

SFARC Technology Business, “Ultra8RC-I Data Sheet”, April 1994.

I.E. Sutherland, “Micropipelines”, The 1988inhg Avard Lecture, Com-

munications of the ACM, ®. 32, No 6, pp 720-738, Januatp89.

- 186 -

[ToDa93]

[Toma67]

[WaDB94]

[Yant95]

[York94]

H.C. Torng and Martin Day‘Interrupt Handling for Out-of-Order Execu-
tion Processors”, IEEEr&nsactions on ComputersplvV42, No.1, Janu-

ary 1993, pp. 122-127.

R.M. Tomasulo, “An Eficient Algorithm for Exploiting Multiple Arith-
metic Units”, IBM Journal, vol. 1, January 1967, pp. 25-33, Reprinted in
Daniel PSiewiorek, C.Gordon Bell, Allen Newll, “Computer Struc-

tures:Principles and Examples”, 1982.

Steven Wllace, Nirav Dagli, and Nader Bagherzadeh, “Design and
Implementation of a 100 MHz Reorder Barf, 37th Midwest Sympo-

sium on Circuit and Systems, August 1994, pp. 42-45.

J.TYantchev et. al., “Low-Latency Asynchronous FIFO fBtd”, in the
proceedings of the Secondwking Conference on Asynchronous Design

Methodologies, May 1995, pp. 24-31.

Richard York, “Branch Prediction Strategies for Low Power Microproces-

sor Design”, M.Sc Thesis, University of Manchesi€94.

- 187 -

Appendix A:The ARM instruction set

This appendix provides a brief description of the ARM instruction set for those
not familiar with it. For more detail s &aRM 96]. The structure of the ARM’register

bank has already been described in chapter

Al Conditional execution
All ARM instructions can be executed conditionallyne condition is based on a
combination of the ALU result flags; for example the CS condition causes the instruction
to execute only if the carry flag is set. In the assembler notation the condition code is
appended to the end of the instruction, thus the instruction:
MOVCS RO, R1
moves R1 into RO if and only if the carry flag is set. The condition codes are shown in

TableA.1:

EQ | Z(ero) set

NE [Z(ero) clear

CS[C(arry) set

CC| C(arry) clear

MT [N(egative) set (negafive)

PL | N(egative) clear (plus)

VS [(0)V(erflow) set

VC [(0)V(erflow) clear

HI | C set and Z clear (unsigned higher)
LS | C clear or Z set (unS|gned [ower or sarne)
GE [N=V (greater or equal)

LT [NI=V (less than)

GT [Z clear and N=V (greater than)
LE [Z set or NI=V (less than or equal)
AL [Always

Table A.1: ARM Condition codes

- 188 -

A.2 Normal data processing oper ations

The most frequently used ARM instructions are the data poocessing instructions
which perform register-to-register arithmetic and logical operations. These instructions

have the assembly code format:

OPP Rd, Rn, Op2

Where Rd represents the destination register, Rnis the first operandand Op2is

the second operand. The available operations are:

AND | Rd:= Bitwise AND of Rn and Op2
BIC |Rd:=Bitwise AND of Rnand NOT(Op2)
EOR | Rd:= Bitwise exclusive-OR of Rn and Op2
ORR | Rd:= Bitwise OR of Rn and Op2
MOV | Rd:= Op2 (Rn isignored)
MVN | Rd:= NOT Op2 (Rnisignored)
SUB |Rd:=Rn- Op2
RSB |Rd:=0p2- Rn
ADD |Rd:=Rn+ Op2
ADC [Rd:=Rn+0Op2+C
SBC |Rd:=Rn-Op2+C-1
RSC [Rd:=0p2-Rn+C-1
Table A.2: ARM data processing operations

The second operand can either be a constant value (built from a shifted 8 bit con-

stant) or an optionally shifted register value, for example the following are possible

instructions:
ADD RO, R1, #5 Add 5 to R1 and place the result in RO
ADD RO, R1, R2 Add R2 to R1 and place the result in RO

ADD RO, R1, R2, LSL #2
Add the value of R2 shifted two places
to the left to the value of R1 and place
the result in RO.

ADD RO, R1, R2, LSL R3
Shift the value in R2 left by R3 bits,
add the result to R1 and place the
result in RO.

- 189 -

The shifter mechanism allows left shifts, right logical and arithmetic shifts and
bit rotation. This mechanism makes these instructions a lot more flexible than the equiv-

alent instructions on other RISC microprocessors.

Each of these instructions can optionally set the CPSR flags to represent charac-

teristics of the result produced, thus:

ADDS RO, R1, #5 Add 5 to R1, place the result in RO and
set the CPSR flags as appropriate.

The flags are:

eV oVerflow
« C Carry
* N Negative
e Z Zero

In addition the data processing set of instructions include a number of compari-
son operations which are identical to other data operations except thatféotyoaly

the ALU flags and do not write a result into Rd. These instructions are:

TST [Equivalent to AND
TEQ | Equivalent to EOR
CMP | Equivalent to SUB
CMN | Equivalent to ADD

Table A.3: ARM Comparison operations

A.21 Dataprocessing with PC write

Any of the data processing instructions which produce a result can write the

result into the program countéxamples of this are:

MOV PC, R14 Returning from a leaf subroutine
ADD PC, PC, RO, LSL#2 Jumping via a branch table

- 190 -

The case where the destination is the program counter and the S flag is set is
treated speciallyin this case the SPSR is copied into the CPSR after performing the data

operation for example:

MOVS PC, R14 Return from exception

A.3 Branch

The ARM's branch instruction is written in the form

B | abel

and contains a 24 bit signed wordiset and so can branch forward or backwards

by 32 Mbytes relative to the current program counter

A.3.1 Branch with link

For calling subroutines the ARM provides Branch and link instruction which
is written in the form:
BL subroutine
This stores the address of the next instruction (PC+4) into the current R14 regis-
ter (also known as tHenk register or LR) and then performs the bran®OV PC,LR is

used to return from a subroutine called in this.way

-191 -

A4 Single value memory transfer

The LDR and STR instructions load and store single words or unsigned bytes to
and from memory. The instructions also allow the base register to be updated. Examples

of these instruction include:

LDR Rd, [Rn, +/-of f] Load the word at Rn+/-off into Rd.

LDR Rd, [Rn, +/-0of f]! Load theword at Rn+/-off into Rd and then update Rn
to be the address from which the word was |oaded.

LDR Rd, [Rn], +/-of f Load the word at Rn into Rd and then update Rn to be
Rn+/-off

LDRB Rd, [Rn, +/-of f] Load the byte at Rn+/-off into the low byte of Rd and
clear bits 8 to 31.

STR Rd, [Rn, +/ - of f] Store the word in Rd at the address Rn+/-off.

STRB Rd, [Rn, of f] Store the byte in the low 8 bits of Rd into the address
Rd+/-Off

The offset can be either added to or subtracted from the base register (Rn) and is
either an unsigned 12 bit value or a shifted register value similar to that used in the sec-

ond operand of the data operations.

A.41 Halfword and signed byte accesses

In ARM Architecture version 4 instructions to perform signed byte loads and

halfword (16 bit) transfers was added. These include the following operations:

LDRSB Rd, [Rn, of f] Load the byte from the address Rn+off, sign extend it
and place the result in Rd.

LDRH Rd, [Rn, of f] Load the halfword from the address Rn+off, zero
extend it and place the result in Rd.

LDRSH Rd, [Rn, of] Load the halfword from the address Rn+off, sign
extend it and place the result in Rd.

STRH Rd, [Rn, of f] Store the halfword in the bottom 16 bits of Rd at the
address Rn+off

Pre- and post- indexed addressing is available using an 8-bit constant offset or an

unshifted register value.

-192 -

A42 Swap

The swap instruction causes a pair of atomic memory operations. It is provided

as a mechanism for implementing software semaphores. It has the form:

SWP Rd, Rm [Rn] Load Rd with the word from the address in Rn and
then store Rm at the same address
SWPB Rd, Rm [Rn] Load Rd with the byte at the addré&s and then store

the bottom 8 bits of Rm at the same address.
A5 Multiple value memory transfer
TheLDM andSTM instructions allow a subset of the registers to be loaded from
or stored to memory in a single instruction. The most common use of the LDM and STM

instructions is in subroutine entry and exit:

STMFD R13!, { RO- R8, R14}
body of subroutine

LDIVFD. R13!, { RO- R8, PC}

In this example the STM is storing RO-R8 and R14 (the link register) onto a
stack using R13 as the stack pointer which is updated to account for the entries added to
the stack (this is signified by the ! which causes base write back). The corresponding
LDM instruction causes these values to be loaded back from the stack, however this time
instead of loading the old R14 value into R14 it is written into the program cocautisr
ing a return from subroutine. Any combination of the 15 registers and the program coun-

ter can be loaded or stored by a single LDM or STM instruction.

The STM and LDM instructions can use pre or post indexed addressing with an
offset corresponding to the number of bytes loaded or stored added or subtracted from
the base registehus LDMIA corresponds tdncrementAfterwards (i.e. post-incre-

ment) addressing. In the example above RBeoption is used which indicates post-

- 193 -

increment for load and pre-decrement for stores which is suitable for implementing a

Full Descending stack.

The LDM and STM instructions also have a number of system management
capabilities, in particular they can be used to access registers from outside the current

mode and the LDM instruction can cause the SPSR to be copied back to the CPSR.

A.6 Accessto the CPSR/SPSR
The MSR and MRS instructions provide explicit access to the CPSR and SPSR

and are used in operating system code. For example:

MRS Rd, CPSR Copy the CPSR to Rd.

MSR CPSR, RO Write the value of RO into the CPSR.

MSR SPSR, RO Write the value of RO into the current SPSR.

MSR CPSR flg, RO Write only the ALU flag field of the CPSR from the
corresponding bits in RO.

MSR SPSR flg, RO Write only the ALU flag field of the current SPSR

from the corresponding bits in RO.

The value to be written into the SPSR or CPSR is taken from a restricted form of

the data operation second operand.

A7 Multiplication

In ARM architecture version 4 there are two forms of multiplication. The first is
implemented by theMUL and MLA instructions which multiply two 32 bit values

together and provide a truncated 32 bit result; MLA also adds a third register value onto

the result:
MJL Rd, Rm Rs Rd:=Rm*Rs
M_LA Rd, Rm Rs, Rn Rd:=Rm*Rs+Rn

As with the data operations the S flag may be given to force these instructions to

update the CPSR flags.

-194 -

The second form of multiply instruction is the long multiplihese multiply
together two registers and produce a 64 bit result, which is placed in two registers. A 64
bit multiply and accumulate is also provided which multiplies two register values and
then adds this result to the contents of the two result registers. Separate signed and
unsigned variants of both the normal and accumulating long multiply instructions are

provided. Thus:

UMULL RdLo, RdHi , Rm Rs RdHi,RdLo:=Rm*Rs (unsigned)
UMLAL RdLo, RdHi , Rm Rs RdHi,RdLo:=Rm*Rs+RdHi,RdLo
SMULL RdLo, RdHi , Rm Rd RdHi,RdLo:=Rm*Rs (signed)
SMLAL RdLo, RdHi , Rm Rd RdHi,RdLo:=Rm*Rs+RdHi,RdLo

These instructions can have an S flag appended to set the CPSR ALU flags.

A.8 Coprocessor instructions

The ARM architecture defines three forms of coprocessor instructions, coproc-
essor data operations, coprocessor data transfers and coprocessor register transfers. Eac
instruction specifies which of the possible 16 coprocessors the instruction should be
processed hyAlternative assembler mnemonics are commonly used for operations spe-
cific to particular coprocessors, for example there is a set of floating point mnemonics

which map onto the mnemonics given below

A.8.1 Coprocessor data operations
These instructions are designed to be executed completely within the coproces-
sor, for example a register to register operation in a floating point accelérat@xam-
ple:
CDP pn, op, cd, cn, cm x On coprocessorrpexecute operatioop on coproces-

sor register€n andCm and place the result in coproc-
essor registeCd passing the extra constant

-195 -

Other than the sections of the instruction required to identify it as a coprocessor
instruction and the condition code, the ARM ignores all other bits in the instruction; this
makes it possible for a coprocessor to interpret these fields in a compleftetgndif

manner

A.8.2 Coprocessor datatransfers

The Coprocessor data transfers are used to load or store some of the coproces-
sors registers from or to memoihe ARM performs all addressing but the coprocessor
supplies or consumes data while informing the ARM of the number of words to transfer

For example:

LDC pn, cd, [Rn, #of fset] Load coprocessor register cd in
coprocessor pn from the
address Rn+ddet

As with the LDR and STR instructions thefsat can be pre- or post- indexed
with write back optional in the case of the pre-indexed mode. The coprocessor,number
coprocessor register and an optional flag bit (not shown above) are not examined by the

ARM and so may be interpretedféifently by the coprocessor

A.8.3 Coprocessor register transfers

The coprocessor register transfer instructions are used to transfer data between
the ARM registers and the coprocesgor important use of these instructions is to com-
municate with system control coprocessors which are used to control caches and mem-
ory management units on some versions of the ARM processors. Fields are provided to
pass extra information to the coprocessor to inform it to perform extra operations on the

data before transfeAn example of this instruction is:

MRC pn, op, Rd, cn, cm x Coprocessor pn will perform operatiop (sub opera-
tion xX) on registers cn and cm and transfer the result
back to the ARM register Rd

- 196 -

This instruction allows Rd to be set to 15 which instead of writing the result to
the program counter causes the result to be transferred to the CPSR flags register; this
can be used, for example, to transfer information about the result of a floating point

coprocessor operation to the ARM condition flags.

A.9 Software interrupts

The software interrupt (SWI) instruction on the ARM is used to allow unprivi-
leged programs to call sections of the operating system which must execute in a privi-

leged mode. The instruction is written:

SW const ant

The constant is a 24 bit constant which is ignored by the processor and is typi-

cally used by the operating system to determine the operation required.

The efect of the instruction is to preserve the current program counter in
R14 svc, the current CPSR in SPSR_svc and then enter supervisor mode at the SWI

exception vector at address 8.

A.10 Undefined instructions

In ARM terminology theundefined instructionsefer to an area of the instruc-
tion encoding that is defined to cause an undefined instruction exception; other instruc-
tions which have not been defined may or may not cause such an exception. The
exception causes the current program counter to be copied to R14_undef, the current
CPSR to SPSR_undef and then the processor to jump to the undefined instruction vector
at address 4. Coprocessor instructions that no coprocessor is willing to execute cause the

same behaviour

- 197 -

All Summary

The ARM instruction has a small number of instructions, however some of the
instructions (such as the data operations and LDM/STM instructions) are very powerful.
This power comes at the expense of complexity with instructions such as LDM having

many flags which change their behaviour in a complex manner

Some instructions have special responsibilities in system management (such as
MOVS PC,...). While these instructions perform a very specialised task they are encoded
as part of normal, commonly used instructions. This can complicate the design of

instruction decoders.

- 198 -

Appendix B:The structure of existing
ARMs and AMULETs

This appendix provides an overview of the architecture of previous implementa-

tions of the ARM processor. Further details can be found in [Furb96].

B.1 ARM 2/3/6/7

The ARM 2, ARM 3, ARM 6 and ARM 7 share a near identical organization
shown in figure B.1. The processor is organised into three pipeline stages, fetch, decode
and execute. Execute includes register read, processing and write back. Since register
read and write back are performed within the same stage no complex dependency mech-
anisms are required. The register bank has two read ports; this means that multiple cycles
are needed for some store and data operations thus complicating the decode stage. The
program counter holds the address of the instruction being fetched and is normally two
instructions ahead of the instruction being executed. A branch causes the execute unit to
discard two instructions; these are the instructions which have been incorrectly

prefetched in the shadow of the branch.

- 199 -

A[31:0] ﬁ

) address register K
—/] N
P .
C Incrementer
e
=N register
—/ bank
/]
A - NJ multiply
IL_J —,/|__register
b A B
u b b
S u u
barrel
S shifter S
S
VvV
\ ALU /
!

e

control i E

instruction
decode
&

control

N

data out register

data in register

{} D[31:0]

1

Figure B.1 ARM 2/3/6/7 @anization

B.2 ARM 8

The ARM 8 provides higher performance than earlier ARMs through a number

of separate techniques:

* Double-bandwidth memory

The ARMS transfers two words on each clock cycle during the sequential

memory operations which make up the

bulk of instruction fetches and the data

transfers from ARM ‘load multiple’ instructions.

- 200 -

» Branch prediction
The ARM 8 incorporates static branch prediction in which all backwards
branches are predicted as taken, this proves to be a simple model for predict-
ing the efect of branches in loops. This is implemented in a separate prefetch
unit which provides a stream of instructions and PC addresses to the integer

execution unit (shown in figui@.2).

« Smaller pipeline stages
The ARMS has a five stage pipeline consisting of prefetch, decode and regis-
ter read, execute, data memory access and result write back which enables

each stage to be simpler and thus faster than earlier ARM pipeline stages.

No documentation is available on the way in which the result forwarding paths

(shown in the diagram) are used or on how the ARM 8 processes exceptions.

B.3 StrongARM

The StrongARM is an implementation of the ARM by Digital Equipment Cor-

poration; a diagram of its pipelinegamisation is given in figu.3. It uses:

* A modified-Harvard architecture
This has a separate data and instruction cache which provides a higher mem-

ory bandwidth to the core.

» A5 stage pipeline
Like the ARMS8 the StrongARM uses a 5 stage pipeline consisting of fetch
(from the instruction cache), decode and register read, execute, data cache

access, and finally result write back. Forwarding paths are provided to for-

- 201 -

instructions PC+8

coprocessor
instructions {}
<: inst. decode
— L decode

register read

[| S—

32?500 multiplier

)

AN

execute

— y =
\ ALU/shifter /

A4

write
— pipeline

Lo

] | | — —
>address memory
IN% read
I VN data
——
forwarding
bathe rot/sgn ex
> —
N write

register write

Figure B.2 ARMS Integer Unit ganisation

ward from later stages in the pipeline thus avoiding the delay before register

write back.

» Branch adder
The ARMS8's method of reducing the branch penalty is to reduce the number
of branches seen by the core via branch prediction. In contrast the Strong-
ARM does not use branch prediction but instead attempts to reduce the cost of

each branch by providing a separate branch adder and PC forwarding paths

- 202 -

which enable branch et addresses to be calculated in the instruction

decode stage of the pipeline and be quickly routed back to the fetch unit.

» 3read port register bank
In earlier ARMS added complexity in the decode stage was caused by some
instructions requiring three operands while the register bank could only pro-
vide two per cycle. While these instructions are rare and thus reducing their
execution time produces a small increase in overall performance the added
complexity in the decode stage is significant. By adding a third read port this

problem is removed at the cost of agrregister bank.

Both the ARM 8 and StrongARM use a linear pipeline with the data memory
read as a stage in the main pipeline and thus no register is written back in the shadow of

a memory operation which may cause an exception.

B.4 The AMULET1and AMULET?2

The AMULET1 and AMULETZ2 have a similar internal architecture shown in
figureB.4. Theaddress interface is responsible for generating instruction addresses and
also routing data addresses to mem®he instructions return into a pipeline used as an
instruction bufer and then into decode. Operands are read from the register file (after
dependency information has been resolved using a lock FIFO - not shown on the dia-
gram). In common with the earlier ARSMthe AMULET has two read ports on its regis-
ter bank and thus has to perform multiple register bank reads for the more complex
instructions. In contrast to the other ARM implementations the AMULET has a memory
pipeline separate from the execution pipeline. The justification for this is that itiis dif
cult to implement traditional result forwarding paths and the increased pipeline length

would have a detrimentalfett on performance.

- 203 -

next b
pc)

I-cache fetch

be " \' ﬁ _
z

| decode

; bns) renyction

branch register read

immediate

T E fields
; shift Zé reg.
ALY

/ execute

L

|

forwarding
paths

SUBS pc

—— [—

'\
] D-cache buffer/

load/store data

address

rot/sgn ex

LDR pc

|
I

-

register write

write back

Figure B.3 StrongARM pipeline core organization

The AMULET2 includes a last result reuse mechanism within the execution
pipeline to reduce the performance loss due to inter-instruction dependencies and a
branch target cache to reduce the performance loss due to branches. The main perform-
ance limitation of the AMULET?2 is believed to be the complexity of the address inter-

face.

-204 -

E instruction E — éC — PC instructions
[ipeline | L —
— pip - pipeline] values
- {} load data
instruction
decode J results
N/ l;
N register memory
— %e pipeline
— control —3<— execution]
| pipeline _3<_ pipeline _]
_l/
IR
f
next
e oss E address
interface store
data
|| addresses

Figure B.4 AMULET Internal organisation

B.5 Summary

The various implementations of the ARM instruction set architecture described
above show awide range of architectural techniques. The earliest ARMsrely on a short,
simple pipeline to remove the need for expensive forwarding mechanisms and depend-
ency systems. The StrongARM and ARMS8 have opted for longer pipelines to enable
shorter pipeline stages at the cost of needing forwarding mechanisms and other added

complexities.

The AMULET1 and AMULET2 have relatively long pipelines compared to the
synchronous ARMs but do not have sophisticated forwarding mechanisms. This leads to

aloss of performance that isimproved by the architecture described in thisthesis.

- 205 -

