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Abstract

BUILDING AND OPERATING LARGE-SCALE SPINNAKER MACHINES

Jonathan Heathcote

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016.

SpiNNaker is an unconventional supercomputer architecture designed to
simulate up to one billion biologically realistic neurons in real-time. To achieve
this goal, SpiNNaker employs a novel network architecture which poses a num-
ber of practical problems in scaling up from desktop prototypes to machine
room filling installations.

SpiNNaker’s hexagonal torus network topology has received mostly theo-
retical treatment in the literature. This thesis tackles some of the challenges
encountered when building ‘real-world’ systems. Firstly, a scheme is devised
for physically laying out hexagonal torus topologies in machine rooms which
avoids long cables; this is demonstrated on a half-million core SpiNNaker pro-
totype. Secondly, to improve the performance of existing routing algorithms,
a more efficient process is proposed for finding (logically) short paths through
hexagonal torus topologies. This is complemented by a formula which provides
routing algorithms with greater flexibility when finding paths, potentially re-
sulting in a more balanced network utilisation.

The scale of SpiNNaker’s network and the models intended for it also present
their own challenges. Placement and routing algorithms are developed which
assign processes to nodes and generate paths through SpiNNaker’s network.
These algorithms minimise congestion and tolerate network faults. The pro-
posed placement algorithm is inspired by techniques used in chip design and
is shown to enable larger applications to run on SpiNNaker than the previ-
ous state-of-the-art. Likewise the routing algorithm developed is able to toler-
ate network faults, inevitably present in large-scale systems, with little perfor-
mance overhead.
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Lay abstract

BUILDING AND OPERATING LARGE-SCALE SPINNAKER MACHINES

Jonathan Heathcote

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016.

SpiNNaker is a supercomputer designed to simulate neural networks, such
as those that make up the brain. Unlike biological experiments, simulations
running on SpiNNaker allow neuroscientists to control and observe the be-
haviour of these networks while avoiding the need for animal experiments.
Though it is extremely unlikely that SpiNNaker will ever ‘think’, it may lead to
a better understanding of the functions and disorders of the brain.

Like most supercomputers, SpiNNaker is made up of many smaller com-
puter processors interconnected by a network. When the largest planned ma-
chine is completed, SpiNNaker will contain over one million computer pro-
cessors – each responsible for simulating several hundred neurons – together
capable of simulating neural networks similar in scale to a cat’s brain.

This thesis makes three contributions towards the construction and opera-
tion of full-sized SpiNNaker machines. Firstly, I devised a new way of organ-
ising the physical components which make up a large SpiNNaker machine so
that only short cables are required to construct its network making SpiNNaker
cheaper and easier to build. Secondly, I developed a method that makes it
possible for the processors in SpiNNaker to communicate reliably, even when
some connections are faulty – an unavoidable situation in practice. Finally, I
adapted a technique normally used to design computer chips to assign neural
models to SpiNNaker’s processors. This method ensures connected neurons
are assigned to nearby processors inside SpiNNaker’s network meaning that
signals between neurons have to travel less distance and are not as likely to
get in each other’s way. This makes it possible to simulate larger and more
complex neural networks.
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Chapter 1

Introduction

The Spiking Neural Network Architecture (SpiNNaker) is a novel supercom-

puter architecture designed to simulate biologically realistic models of brains

in real-time [FT07]. Though neurons, the building blocks of the brain, are rel-

atively well understood, their complex interactions remain mysterious. Just as

understanding the workings of a transistor is insufficient to understand a mi-

croprocessor, neuroscientists believe that neurons in isolation cannot explain

the brain and that understanding their connectivity is key [Eli13, ET14]. Ex-

periments on real brains, however, are fraught with difficulty. In addition to

ethical concerns, variations between individuals can be significant. Further-

more, it is only possible to record tens or hundreds of the brain’s trillions of

signals at once and even then only limited control is possible over which signals

are recorded. Computer simulations of models of neural networks, however,

enable researchers to develop repeatable experiments and gain complete vis-

ibility of any signal and any neuron. Models such as Spaun [ESC+12], built

from millions of simulated neurons, have shown great promise in expanding

our understanding of higher-level brain functions such as memory and simple

problem solving. Unfortunately, these models are expensive to simulate due to
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their enormous implicit parallelism, requiring hours of serial compute time to

simulate each second of neural activity. As well as being inconvenient, this pre-

cludes the use of robotics to immerse these models in real-world environments

and also limits studies of long-term behaviours such as learning.

SpiNNaker is designed to enable the real-time simulation of models con-

taining up to one billion neurons – approximately 1 % of a human brain or ten

mouse brains [FTB06]. To achieve this goal, the largest planned SpiNNaker

machine will contain over one million low-powered computer processors, in-

terconnected by a bespoke network architecture.

SpiNNaker’s large processor count matches the current trend in supercom-

puters where processor counts are growing exponentially [Meu16], mimicking

the growth of the number of components in the processors themselves pre-

dicted by Gordon Moore’s famous ‘law’ [Moo75]. As a result of this growth,

the interconnection networks which enable these processors to work together

have grown in importance [DT01]. Network designers must carefully balance

performance against practicality and financial cost. SpiNNaker’s network is no

exception to this rule and, as the systems scale up from desktop prototypes to

machine room scale installations, the reality of building and exploiting these

machines presents an array of challenges.

As in all supercomputers, SpiNNaker’s network interconnects its processors

in a particular network topology which defines how different processors may

communicate with each other. Unlike the tree and N -dimensional torus topolo-

gies found in contemporary supercomputers [DT04, chapter 3], SpiNNaker

employs a ‘hexagonal torus topology’. In this topology, nodes fit together in a

honeycomb-like pattern where messages may ‘hop’ from node to node to reach

their destination. As we will see in chapter 2, the hexagonal torus topology,

in theory, sits at a ‘sweet spot’ in terms of network performance and practical-
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ity. As the first known large-scale installation of a hexagonal torus topology,

however, there remain a number of practical challenges for large SpiNNaker

machines.

As supercomputer networks have grown in scale to millions of processors,

the task of dealing with previously rare faults has grown. Though fault rates in

networks remain consistently low, architectures such as SpiNNaker may have

hundreds of thousands of links meaning that even fault rates of a fraction of

a percent will impact tens or hundreds of links. To enable reliable operation,

networks must be able to adapt the routes taken by messages to avoid faulty

links and nodes. The techniques conventionally employed are often closely

tied to a particular network architecture and because of this SpiNNaker’s novel

network architecture demands its own approach.

Another challenge introduced by the growing scale of supercomputers is

making efficient use of network resources. Communicating processes should

be located on logically ‘nearby’ nodes to reduce network load. The neural

models for which SpiNNaker is designed are often described abstractly, rather

than geometrically, using modelling languages such as PyNN [DBE+08] and

Nengo [BBH+13]. Consequently, communication requirements can be irregu-

lar making finding ‘good’ placements of neurons onto processors non-trivial.

This thesis addresses the practical challenges of scaling up the SpiNNaker

architecture in a real-world setting summarised by these research questions:

1. Can the hexagonal torus topology be deployed and used in real, large-

scale systems?

2. Does SpiNNaker’s router architecture help, or hinder fault tolerance?

3. How can the parts of a neural simulation be placed onto a large hexago-

nal torus topology to reduce network load?
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Chapter 2 introduces the SpiNNaker architecture and, in particular, de-

scribes its hexagonal torus topology and network architecture.

In chapter 3, I develop a cabling scheme for hexagonal torus topologies

which enables arbitrarily large networks to be constructed using only short,

inexpensive cables. This theoretical work is then evaluated through the con-

struction of a range of prototype SpiNNaker systems. The largest of these pro-

totypes contains over half a million processor cores and spans several machine

room cabinets. In addition, I propose the use of built-in diagnostic facilities

to assist technicians performing network installation and maintenance. This

technique was found to greatly reduce the effort required and the number of

mistakes made.

In chapters 4 and 5 I develop new routing techniques for SpiNNaker’s net-

work. Chapter 4 describes an improved approach to finding the shortest paths

through hexagonal torus topologies, an integral part of many routing algo-

rithms. This approach is cheaper to compute than the state-of-the-art and,

unlike previous efforts, is able to discover all valid short paths through the

topology. This theoretical advance brings hexagonal torus topologies in line

with conventional topologies by providing routing algorithms with complete

information about the paths available to them. In chapter 5 I propose a fault

tolerant routing algorithm for SpiNNaker which is able to avoid arbitrary static

fault patterns with minimal performance overhead. A key finding of this chap-

ter is that the flexibility afforded to fault tolerant routing algorithms by SpiN-

Naker’s unconventional router architecture is what facilitates the low over-

heads reported.

Finally, in chapter 6, I explore the problem of application placement in

SpiNNaker’s network. As in other networks and applications, neural simu-

lations should be arranged so that communication occurs primarily between
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processors close together in the network to control network load. Due to the

irregular connectivity and large scale of the neural models expected to run on

SpiNNaker, an automated approach is necessary. I develop a novel placement

algorithm based on algorithms used for circuit layout in computer chips. My

algorithm is found to allow some larger neural models to run on SpiNNaker

for the first time while enabling other applications to run at greater speeds.

In addition, synthetic benchmarks containing over one million processes indi-

cate that this algorithm should handle the anticipated demands of the neural

models expected to run on large-scale SpiNNaker installations.
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Chapter 2

The SpiNNaker architecture

SpiNNaker is a massively parallel computer architecture designed to simulate

biologically realistic neural models [FT07]. In this chapter we will explore this

unconventional architecture in detail, starting with its purpose before focusing

on its most distinctive feature: its network.

2.1 Neural simulation

Human brains contain billions of neurons connected together by trillions of

‘synapses’. Neurons communicate by transmitting and receiving ‘spikes’ through

their synapses. Each spike is ‘valueless’ in that a spike’s only significant features

are when it arrived and where it came from.

Though some detailed models of the electrochemical processes occurring

inside neurons are computationally intensive, simplified models such as the

Leaky Integrate-and-Fire (LIF) model can be implemented in just a handful of

CPU instructions [VG11]. Figure 2.1 illustrates a simple LIF neuron in which

incoming spikes cause charge to build up (integrated) which, over time, ‘leaks’

away. If an incoming spike causes the charge to rise above a certain threshold,
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Figure 2.1: A Leaky Integrate-and-Fire (LIF) neuron.

the neuron ‘fires’ producing an outgoing spike. Despite the simplicity of this

model, large neural networks such as Spaun [ESC+12], built entirely from LIF

neurons, exhibit complex behaviours such as fine motor control and problem

solving.

The computational expense of large-scale simulations of networks of LIF-

like neurons does not arise from the cost of modelling the neurons but instead

from distributing spikes. In biology, neurons produce spikes at an average rate

of 10 Hz and synapses connect each neuron’s output to (order) 1000 neurons

[NLMA+09]. Consider an example neural model with 7 × 107 neurons, ap-

proximately the number in a house mouse and 1/10th of the design target of

SpiNNaker. This network might produce 7 × 108 spikes per second. Because

each neuron connects to many others, this equates to 7 × 1011 spikes being

received per second. If each spike were transmitted as a UDP datagram con-

taining a 32 bit payload, the total network throughput required for this simu-

lation would be 179.2 Tbit s−1. At the time of writing, this is more than double

the bisection bandwidth (the theoretical worst-case throughput) of the world’s

most powerful supercomputer [Don16].
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2.2 Alternative neural simulation solutions

Architectures such as IBM’s Blue Gene [CCWS11] and Cray’s XK7 [Oak16] em-

ploy powerful compute nodes interconnected by networks designed to trans-

fer multi-kilobyte blocks of data. Since neural simulations have relatively

light computational requirements and communicate only small pieces of data

(spikes), this type of architecture is poorly suited to the task. In spite of this,

neural simulators such as NEST [GD07], have been developed and used with

some success. To reduce the overhead of transmitting spikes in supercomputer

networks, NEST groups spikes into batches which are transmitted in a single

network packet. This approach is possible because spikes are often modelled as

taking some number of milliseconds to reach their destination and so buffering

delays can be incorporated into the simulation. Unfortunately, neural models

with smaller transmission delays still suffer a loss of efficiency. Further, due to

the mismatch of computational and communication needs, neural simulations

can be wasteful of supercomputer resources. Knight et al. [KTK+16] found that

a Cray XC-30 supercomputer uses around 45× more power than SpiNNaker

when simulating an identical neural network.

SpiNNaker is not the only alternative to conventional supercomputer ar-

chitectures aimed at neural simulations. Numerous researchers have created

a range of custom silicon solutions for neural simulation [MS10]. These so-

called ‘neuromorphic’ devices implement neuron models directly in silicon.

The BrainScaleS [SBG+10] and Neurogrid [BGM+14] projects, for example,

have built a neural simulators composed of large arrays of analogue neuron

models with programmable interconnect. Analogue neuron models can be very

energy efficient but suffer from environmental sensitivity and calibration diffi-

culties making them difficult to use in practice. Fully digital neural simulators

like Bluehive [MFM+12] avoid these problems at the expense of some energy
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efficiency and can be much easier to use.

Though hardware implementations of neural models can be fast and en-

ergy efficient, these architectures become restricted to simulating only specific

classes of neuron models making them unsuitable for many researchers. SpiN-

Naker, by contrast, uses software to implement its neural models allowing it to

cater to a much wider range of models.

2.3 Network architecture

SpiNNaker’s architectural target is to support real-time simulations of models

containing up to one billion neurons. Since neural models such as LIF are

inexpensive to compute and many neurons can be simulated independently

in parallel, SpiNNaker employs many small, energy efficient general-purpose

processors [FT07]. To support the unusual communication requirements of

neural simulations, a bespoke interconnection network is used which is the

background to this thesis.

The fundamental building block of the SpiNNaker architecture is the SpiN-

Naker chip (figures 2.2 and 2.3) [FLP+13]. Each chip contains eighteen low

power ARM968 processor cores each capable of simulating between 200 and

2000 LIF neurons in real-time [MKSF15]. Each core has a total of 96 kB of pri-

vate Tightly-Coupled Memory (TCM) and shares access to 128 MB of on-chip

SDRAM with other cores on the same chip. Finally, each chip contains a pro-

grammable router which routes network packets to and from the local cores

and six neighbouring SpiNNaker chips. SpiNNaker machines are constructed

by combining many SpiNNaker chips.

Processor cores can communicate by sending and receiving network pack-

ets forwarded by routers through the network. Since SpiNNaker’s network is
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Figure 2.2: SpiNNaker chips (actual size) connected to their six neighbours.
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2

. . . Core
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SDRAM

Router
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neighbours

Links from
neighbours

Figure 2.3: Block diagram of a SpiNNaker chip.
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Figure 2.4: SpiNNaker’s 40 bit and 72 bit multicast packet format.

designed to transmit neural spike events efficiently, individual network packets

are small, either 40 bits or 72 bits compared with tens or hundreds of bytes in

typical network architectures.

Since at biological timescales a computer network delivers packets ‘instan-

taneously’, the time at which a spike is produced is implicitly indicated by the

time it is received in a real-time simulation.

Consequently, the only information which must be explicitly encoded is

the identity of the neuron which produced the spike. In SpiNNaker, a spike

may be represented by a single 40 or 72 bit ‘multicast packet’ whose format

is illustrated in figure 2.4. The 8 bit header is used by SpiNNaker’s routers

to determine the type of packet and the 32 bit ‘routing key’ is used to iden-

tify the neuron which produced the packet. The routing key is also used by

SpiNNaker’s routers to determine how the packet should be directed through

the network. The optional 32 bit payload is not used by conventional spiking

neural simulations [GRDF10] but has been exploited to enable more efficient

simulation of a particular class of neural models [MKSF15].

2.4 The SpiNNaker router

The SpiNNaker router employs an unconventional design which, despite its

compact size and small energy requirements, implements a flexible multicast

routing mechanism. Unlike some routers which employ hard-coded routing

rules [DT04, chapter 8], the SpiNNaker router uses a programmable ‘routing
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table’ to determine how packets should be forwarded. In addition, to avoid

deadlocks, SpiNNaker’s router employs a simple, timeout-based mechanism

which exploits the ability of neural networks to tolerate occasional missing

packets. As we will see in chapter 5, this mechanism greatly simplifies the task

of routing in SpiNNaker’s network. In this section we will look at SpiNNaker’s

router in greater detail.

2.4.1 Routing tables

When a multicast packet arrives at a SpiNNaker router (either from a local

core or a neighbouring chip), the router looks up the routing key in its routing

table. This table consists of 1024 programmable table entries, each specifying a

routing key and mask to match and a set of routes. If a multicast packet’s key is

matched by a routing entry, the packet is forwarded along every route specified

by that entry, potentially duplicating the packet. This ‘multicast’ technique

allows packets to be transmitted once but received in a number of places while

making efficient use of the network [NLP+12].

Though routing table entries are in finite supply (1024 entries per router),

it is still possible for many thousands of traffic flows to be routed through a

single router. The key and mask in each routing entry matches against the

32 bits of a routing key as either ‘1’, ‘0’ or ‘X’ (‘don’t care’). This means that a

single routing entry may, for example, be used to match all routing keys with

a certain prefix. If a routing key is not matched by any entry in the routing

table then the packet is ‘default routed’ in a straight line. For example if a

packet with an unmatched key is received from the chip to the left, the packet

will be default routed to the chip on the right. By assigning routing keys and

defining routes carefully to take advantage of these features, the number of

routing entries required by a simulation is greatly reduced [DNGF12].

29



Consider the simplified example in figure 2.5 in which a number of (4 bit)

routing table entries have been configured in the routers of a small SpiNNaker

network. If a packet with the routing key 1011 is transmitted by a core in the

chip labelled (0,0, 0), this will match the first routing table entry on that chip

and will be routed to chip (1,0, 0). Here the packet once again matches the

first routing entry and is routed to chip (2,1, 0). No entries match on this chip

so the packet is default routed to (3,2, 0). On this chip, the packet matches

a routing entry which routes the packet to core 7. In this example, default

routing allows only three routing table entries to direct a packet through four

chips.

As a second example, if a packet with the routing key 0010 is transmitted

by a core on chip (0,0, 0), this key will be matched by the second routing entry

since Xs in the table entry will match both 1s and 0s in the corresponding

bits of the routing key. When the packet arrives at chip (1,1, 0) the matching

routing entry forwards the packet to both (1, 2,0) and (2, 1,0) simultaneously.

The copy of the packet arriving at (1, 2,0) is routed to core 5 on that chip.

Meanwhile, the copy forwarded to (2, 1,0) is duplicated again with one copy

being routed to core 11 and another being routed to chip (3,2, 0). Here the

packet is finally delivered to core 6. In this example, the ability of the router

to multicast (duplicate) packets as they pass through the network meant that

sending one copy of the packet was sufficient to reach three destination cores.

In addition, by using Xs in the routing table entry, the same routing entries are

sufficient to route packets with the keys 0000, 0001, 0010 and 0011.

In spite of these mechanisms, it is still possible for an application to run out

of routing table entries. As we will see in chapter 6, by arranging applications

appropriately within SpiNNaker’s network, routing table usage can be reduced.

In addition, other behaviours of SpiNNaker’s router may be exploited to com-
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1011:1011:
00XX:00XX:

(0,0, 0)

1011:1011:

(1,0, 0) (2, 0,0)

(0,1, 0)

00XX:00XX: ,

(1,1, 0)

00XX:00XX: C11C11,

(2, 1,0) (3, 1,0)

00XX:00XX: C5C5

(1,2, 0) (2,2, 0)

1011:1011: C7C7
00XX:00XX: C6C6

(3, 2,0)

Figure 2.5: Multicast routing example with 4 bit routing keys. Each box repre-
sents a SpiNNaker chip whose router has been programmed with the routing
entries shown. Grey lines mark connections between chips. Coloured lines
illustrate example routes.
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Figure 2.6: SpiNNaker router architecture.

press an application’s routing tables further [MHG16], however discussion of

the specific techniques employed are beyond the scope of this thesis.

2.4.2 Timeouts

SpiNNaker’s router is built on a pipeline architecture. As shown in figure 2.6,

the router is fed packets by an arbiter which serialises packets arriving from

other chips and local cores. Every (100 MHz) clock cycle, the router pipeline

accepts one packet from the arbiter and routes a packet to one or more out-

put links. If any of the required output ports are busy then the packet is not

forwarded to any output link and the pipeline stalls. Once a packet has been

blocked for a programmable timeout, it is ‘dropped’ (discarded) and routing

continues as usual for the next packet in the pipeline. Links become blocked

while transmitting packets or waiting for the remote receiver to become ready.

For example, a receiving processor core may be busy performing some compu-

tation or a receiving router may be blocked waiting for some of its outputs to

become ready.

The timeout-based packet dropping mechanism is designed to defuse dead-

32



locks in the network. For example, if two routers are trying to send each other

a packet at the same time they may become deadlocked, each waiting for the

other router to accept a packet before continuing. SpiNNaker’s timeout mecha-

nism breaks deadlocks by dropping packets which have been blocked for some

time and therefore may be in a deadlock. Once a packet has been dropped it

is left to software to either tolerate the missing packet or trigger a retransmis-

sion. In neural simulations, as in biology, the loss of a single spike is unlikely

to have a significant impact on the behaviour of a neural model and therefore

these simulations are inherently tolerant of occasional dropped packets. Dur-

ing application loading and other system tasks a higher-level, software-driven

protocol based on acknowledgements and retransmissions is used to ensure

guaranteed delivery.

2.5 The hexagonal torus topology

Each SpiNNaker chip is a node in a ‘hexagonal torus topology’ as illustrated

in figure 2.7. Network packets sent by SpiNNaker’s processor cores may ‘hop’

through several nodes in the network to reach their intended destination. In

each hop, a packet may advance one node along one of the three axes of the

topology. For example, a packet sent by the node labelled α (in the bottom-left

corner) to the node labelled β , might take a route with the following sequence

of hops: X+, X+, Z−. Packets sent from α to γmight take the route: X−, X−, Y+,

Y+. The first hop of this route ‘wraps around’ from the bottom-left node to the

bottom-right node in a single hop.

The wrap-around connections in the topology are what give it the ‘torus’

part of its name. Laid out as a sheet (figure 2.8a) the topology may be rolled

up such that the top and bottom nodes become adjacent, forming a tube (fig-
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Figure 2.7: A hexagonal torus topology. Each hexagon represents a node (i.e.
a SpiNNaker chip). Touching nodes are directly connected. Nodes on edges a,
b and c are also directly connected to the corresponding nodes on edges a′, b′

and c′, respectively. The three axes of the hexagonal torus topology, ‘X’, ‘Y’ and
‘Z’ are also shown.

(a) (b) (c)

Figure 2.8: Visualisation of a hexagonal torus topology as a torus.
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ure 2.8b). This tube can then be bent to bring together the nodes at the ends

of the tube to form a torus as shown in figure 2.8c.

A hexagonal torus topology is typically defined in terms of its width and

height along the X and Y axes respectively. For example, the hexagonal torus

in figure 2.7 is 10×10. The nodes in a hexagonal torus topology are addressed

using hexagonal coordinates of the form (x , y, z) [Ami15]. The bottom left

node (labelled α in the figure) has the coordinate (0,0, 0) and other nodes are

assigned coordinates according to the number of hops along each dimension

from (0,0, 0), for example node β has the coordinate (2,0,−1). Because the

hexagonal torus topology’s axes are non-orthogonal, it is possible to define

several coordinates for the same location. For example (3,1, 0) and (1,−1,−2)

are also valid coordinates for node β . These dual coordinates emerge from the

fact that adding (1, 1,1) to a coordinate produces an equivalent, but different,

coordinate. The cause of this particular phenomenon is explained in detail in

appendix B and related phenomena will be discussed in chapter 4.

The hexagonal torus topology was chosen over a more conventional net-

work topology – such as a 2D or 3D torus (sometimes known as a 2-ary N-cube

or 3-ary N-cube respectively) [DT04, chapters 3 and 5] – due to its balance of

theoretical performance and practicality. The bisection bandwidth of a topol-

ogy indicates the theoretical worst-case total throughput the network is able

to sustain [DT04, chapter 1]. In networks with homogeneous link throughput,

bisection bandwidth is determined by the number of links cut by a balanced bi-

section of the network. Figure 2.9 illustrates bisections of several torus topolo-

gies.

In an N×N 2D torus topology, the bisection bandwidth is 2N links and each

node requires four links. The hexagonal torus topology requires six links per

node but provides double bisection bandwidth (4N links). The 3D torus topol-
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(a) 2D Torus (b) Hexagonal Torus (c) 3D Torus

Figure 2.9: Bisections of torus topologies. Connections cut by the bisection are
drawn as lines.

ogy also requires six links per node but by connecting the nodes differently

achieves a bisection bandwidth of 8N links. The 3D torus topology, however,

comes at a price – when immersed into the (approximately) 2D space provided

by a large machine room or row of server cabinets, some connections require

long cables. By contrast, the 2D and hexagonal torus topologies are both in-

herently two dimensional and consequently do not suffer from this effect. The

hexagonal torus topology, therefore, shares the practicality of construction of a

2D torus while still gaining some of the performance of a 3D torus topology. In

addition, because nodes in a hexagonal torus topology have a greater number

of links, greater redundancy is available in the network to tolerate faults.

Most torus topologies, including hexagonal, 2D and 3D toruses, have a

related ‘mesh’ topology. These mesh topologies maintain the same general

connectivity structure as their toroidal counterparts but omit the wrap-around

links. In practice, this saves a small number of links at the expense of halv-

ing the network’s bisection bandwidth. Because of their poorer performance,

mesh networks are rarely used as the basis of a network architecture. Mesh net-

works, however, are occasionally formed when a torus is partitioned into sev-

eral smaller sub-networks to allow multiple users to share a system [Hea16b].

The hexagonal torus topology is not to be confused with the ‘H-torus’ topol-

ogy. The H-torus also uses a hexagonal tiling of nodes and even wraps this
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Figure 2.10: Hexagonal torus vs. H-torus topology. Each numbered hexagon
represents a node. The thick outline indicates the bounds of the topology after
which the network repeats. In each topology, the path taken by advancing in
the Y+ direction from the node labelled ‘0’ is shown.

tiling into a torus-like topology [ZYW08]. However, H-toruses have very dif-

ferent characteristics to the hexagonal torus topology and bear similarities to

the ‘twisted torus’ topology [CMV+10]. Figure 2.10 illustrates one difference

in the way paths wrap around the peripheries of both topologies.

2.6 Scaling up SpiNNaker machines

To build large SpiNNaker systems comprising tens of thousands of SpiNNaker

chips, groups of forty-eight chips are mounted onto circuit boards as illustrated

in figure 2.11a. These boards may be connected together to form larger sys-

tems. Figure 2.11b shows a prototype three board system. Though the chips

are physically arranged in a (nearly) 7×7 grid on each SpiNNaker board, they

logically form a hexagonal ‘wrapped triple’ [Dav13] (see appendix A) which

fit together as illustrated in figure 2.11c. The labelled exposed corners of the

three forty-eight chip boards connect together to form a 12 × 12 hexagonal

torus topology as illustrated in figure 2.11d. Larger SpiNNaker machines are
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assembled by combining more boards.

SpiNNaker chips on the same circuit board connect using low power links

requiring sixteen wires each. If this link technology were used to connect chips

on neighbouring boards, each pair of boards would need to be connected with

a 128 wire cable. Cables and connectors supporting this many signals are ex-

pensive, less reliable and physically large. Instead, chip-to-chip connections

between boards are multiplexed and demultiplexed onto a single High-Speed

Serial (HSS) link [AC05] carried via commodity S-ATA cables which are often

used to connect hard disks in desktop computers and servers [Ser08]. The

six high-speed links are implemented by three onboard FPGAs (the three large

chips at the top of the SpiNNaker board) and are logically transparent to the

underlying network. The underlying technology and the choice of S-ATA ca-

bles limits each board-to-board connection to spanning, at most, one metre

gaps. In chapter 3 I present a cabling scheme for hexagonal torus topologies

which enable large SpiNNaker systems to be assembled using only short cables

between boards.

2.7 Conclusions

The SpiNNaker architecture has been designed to enable the simulation of

large biologically realistic neural models in real-time. To support this, its net-

work architecture takes on an unconventional design based on a custom router

and hexagonal torus topology. In the remainder of this thesis, I will tackle a

number of the challenges in scaling up the SpiNNaker architecture outlined in

this chapter.
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(a) A SpiNNaker board (b) Three board prototype
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(c) Three board topology (d) . . . as a parallelogram

Figure 2.11: SpiNNaker boards and their topology.
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Chapter 3

Building large SpiNNaker

machines

Like any supercomputer, physically assembling a large SpiNNaker machine

poses many practical challenges in terms of arranging, installing and main-

taining the hundreds of metres of network cables required. For conventional

architectures and network topologies, techniques are well understood and em-

bodied by industry standards such as TAI-942 [Ass06]. SpiNNaker’s use of the

hexagonal torus topology renders existing approaches insufficient.

In the first part of this chapter I extend existing techniques for mapping

network topologies into standard data centre physical infrastructure to sup-

port the hexagonal torus topology. This mapping is designed to ensure that

all cables are kept short (under 1 m) to reduce costs and simplify the network

hardware required. The techniques described introduce little overhead in ca-

ble length over existing torus wiring schemes and confirm the suitability of the

hexagonal torus topology for real-world applications.

The second part of this chapter uses SpiNNaker as a case study on the suit-

ability of the mappings introduced in this chapter. In this case study I con-
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sider various SpiNNaker systems ranging in size from desktop machines to

multi-cabinet machine room installations. As well as validating the cabling

schemes introduced in this chapter I also describe a new technique which im-

proves the efficiency of the cable installation process. As a consequence of

SpiNNaker’s fine-grained connectivity, the cabling is unusually dense, exacer-

bating the complexity of the cabling patterns to be installed. By exploiting

network diagnostics hardware and on-board LEDs to guide cable installation,

construction of large SpiNNaker machines takes a matter of hours rather than

the days reported for other architectures. In addition, preliminary experiments

suggest that neither the maintainability nor cooling performance of the system

are hampered by the dense cabling employed.

In this chapter, the term unit refers to the smallest physical component

between which network interconnection cables are installed. For example, in

a SpiNNaker machine a unit is a 48-chip board while in a data centre network

a unit might be a server blade.

3.1 Cabling non-hexagonal torus topologies

Naïve arrangements of torus topologies, hexagonal or otherwise, feature phys-

ically long ‘wrap-around’ connections which connect units at the peripheries

of the system. Long connections can be problematic for several reasons:

Performance: Signal quality diminishes as cables get longer, requiring the use

of slower signalling speeds, increased error correction overhead or more

complex hardware.

Energy: Some energy is lost in cables; longer cables lose more signal energy

requiring higher drive strengths and/or buffering to maintain signal in-

tegrity.
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(a) A ring network

1 2 3

456

(b) Folded

1 2 3 456

(c) Folded and interleaved

Figure 3.1: Folding and interleaving a ring network to reduce maximum cable
length.

Cost: Shorter cables are cheaper than long ones. Longer cables imply more

cabling in a given space making the task of cable installation and sys-

tem maintenance more difficult, increasing labour costs by as much as

5× [CCE+12].

In some cases, long connections in supercomputers may be eliminated by

creative physical organisation of the system. For example, the distinctive ‘C’-

shaped design of early Cray supercomputers was chosen to reduce the lengths

of physical connections and thus improve system performance [THO13]. Un-

fortunately, this approach does not scale up in the general case and requires

potentially expensive bespoke physical infrastructure. Instead the need for

long cables is often eliminated by folding and interleaving units of the net-

work [DT04, chapter 5]. This process is illustrated for a 1D torus topology (a

ring network) in figure 3.1. A naïve arrangement of units in this topology re-

sults in a long cable connecting the units at the ends of the ring (figure 3.1a).

To eliminate these long connections, half of the units are ‘folded’ on top of

the others (figure 3.1b) and then this arrangement of units is interleaved (fig-

ure 3.1c). This ordering of units requires no long cables while still observing

the physical constraint that units must be laid out in a line.

The folding and interleaving process may be extended to N -dimensional

torus topologies by folding each axis in turn. Since all axes are orthogonal in

non-hexagonal topologies, the folding process only moves units along the axis

being folded. Due to the non-orthogonality of the three axes of the hexagonal
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(a) Not folded (b) X (c) Y (d) Z

Figure 3.2: Schematics showing folding along each axis of a hexagonal torus
topology failing to eliminate wrap-around connections. Same-shaped-and-
coloured dots show the endpoints of two example wrap-around connections.

torus topology, this type of folding does not work. As figure 3.2 illustrates,

folding along any axis results in connected units on opposing edges not being

brought together. For example, when folding along the X axis, the two units

marked with a green circle are moved closer together on the Y axis but remain

apart on the X axis.

3.2 Partitioning hexagonal torus topologies

The nodes in supercomputer networks are usually relatively small, for example

a single chip. Tens of nodes are packed together into a single unit, such as a

circuit board or server blade, to simplify assembly and share common power

and cooling resources [Gil14, AIHS12]. In commercial supercomputers built

on non-hexagonal torus topologies, each unit’s nodes represent a hypercube

partition of the overall topology as illustrated in figure 3.3a [CEH+11, AIHS12].

An analogous ‘parallelogram’ partitioning scheme exists for hexagonal torus

topologies, however, this results in imbalanced connectivity requirements be-

tween neighbouring partitions. In figure 3.3b, for example, the partitions

above, below, left and right of the central partition are connected by seven

node-to-node connections each while the partitions above-right and below-left

are connected by just a single connection each. To simplify assembly, connec-
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(a) 2D hypercube (b) Parallelogram (c) Wrapped triple

Figure 3.3: Partitioning of non-hexagonal (a) and hexagonal (b and c) torus
topologies into units.

tions between all nodes in a pair of neighbouring partitions are often made by a

single cable. If connectivity requirements are imbalanced, as in this example,

this may mean multiple connector types may be required, increasing design

complexity.

To avoid connectivity imbalance, SpiNNaker uses a ‘wrapped triple’ parti-

tioning scheme [Dav13], as illustrated in figure 3.3c and explained in detail

in appendix A. In this partitioning scheme, the same number of connections

connect all six neighbouring units. As explained in the appendix, a hexagonal

torus topology is constructed from groups of three partitions.

For completeness, both parallelogram and wrapped triple partitioning are

considered in this chapter even though SpiNNaker uses wrapped triple parti-

tioning. The parallelogram partitioning scheme may be more appropriate for

architectures where connections between nodes in neighbouring partitions do

not share a single connector. In addition, in architectures where a unit corre-

sponds to a single node, this can be treated as a 1× 1 parallelogram partition.

This special case occurs in coarse-grained architectures and Networks on Chip

(NoCs) where nodes are not grouped together into multi-node units.
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3.3 Folding & interleaving hexagonal toruses

To exploit the folding technique used by non-hexagonal topologies, the units

in a hexagonal torus topology must be mapped into a space with orthogonal

coordinates. The choice of transformation to an orthogonal coordinate system

can have an impact on how physically far apart logically neighbouring units

are in the final arrangement. A good mapping should attempt to reduce ‘dis-

tortion’ which moves adjacent units apart in the final folded and interleaved

arrangement.

In this section I propose two transformations which map hexagonal ar-

rangements of units into a 2D orthogonal coordinate space. The first trans-

formation, ‘shearing’, is general purpose but introduces some distortion. The

second transformation, ‘slicing’, is less general but can introduce less distortion

than shearing and therefore may lead to shorter cable lengths.

Both the slicing and shearing transformations are carried out in two steps:

Rectangularisation Units are transformed from being laid out in a parallelo-

gram into a rectangular arrangement. The specific transformation used

is the key difference between the slicing and shearing transformations.

Uncrinkling Units are mapped into a 2D coordinate system without gaps be-

tween units.

3.3.1 Rectangularisation

The hexagonal torus topology is illustrated in figures 3.4a and 3.5a for parallelogram-

partitioned units and wrapped triple units respectively. The first step in the

folding process is to rearrange units so that they form a rectangle using one of

two techniques: shearing or slicing.
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(a) Original (b) Sheared (c) Sliced

Figure 3.4: Rectangularisation of parallelogram partitioned hexagonal toruses.
Thin lines show wrap-around links. Pointy-topped hexagons represent paral-
lelogram partitioned units.

(a) Original (b) Sheared (c) Sliced

Figure 3.5: Rectangularisation of wrapped triple partitioned hexagonal
toruses. Thin lines show wrap-around links. Flat-topped hexagons represent
wrapped triple partitioned units.

(a) 5× 5 (b) 5× 7 (c) 5× 10

Figure 3.6: Schematics showing the patterns of wrap-around connections in
sliced systems of various aspect ratios.
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The shearing technique applies a 30◦ shear transformation to distort the

arrangement of units so that the X and Y axes of the hexagonal torus topology

become orthogonal. This transformation leads to a rectangular arrangement

of units as illustrated in figures 3.4b and 3.5b.

The shear transformation introduces some distortion causing connections

between units in the Z axis to become
p

2× longer. The transformation does

not alter the pattern of wrap-around connections: long connections between

units on the extreme left and right sides and the top and bottom remain, along

with a single connection between the bottom left and top right units.

The slice transformation aims to avoid the elongation of the Z axis by mov-

ing the units without distorting their layout. Units protruding from the left-

hand-side of the parallelogram are ‘sliced off’ and moved into the matching gap

on the opposite side as illustrated in figures 3.4c and 3.5c. This transformation

does not introduce any distortion but changes the pattern of wrap-around con-

nections. Connections from left to right remain while the connections between

the top and bottom units now criss-cross (figure 3.6). The proportion of con-

nections going from bottom-left to top-right and from bottom-right to top-left

varies depending on the aspect ratio of the topology. Only certain patterns of

wrap-around links can be eliminated by folding and, as we shall see later, this

limits us in which network topologies can be rectangularised by slicing.

3.3.2 Uncrinkling

Before folding can occur, the rectangularised arrangements of units produced

in the previous step must be mapped into a 2D grid. Applied to parallelogram

partitions, the shear transformation results in a mapping into a 2D grid with

no further distortion (figure 3.7a). For other combinations of transformation

and partitioning scheme, the units do not exactly fit a 2D grid. Instead, the
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units form ‘crinkled’ rows or columns which may be ‘uncrinkled’ (straightened

out) to fit a regular 2D grid as illustrated in figures 3.7b – 3.7d.

3.3.3 Folding

Once a regular 2D grid of units has been formed, this may be folded in the

conventional way as illustrated in figure 3.8a. Folding once along each axis

eliminates long connections crossing from left to right, top to bottom and from

the bottom-left corner to the top-right corner. Any shear-transformed network

may be folded this way since its wrap-around connections always follow this

pattern. Slice-transformed networks may only be folded like this when their

aspect ratio is 1 : 2 when the pattern of wrap-around links is the same as a

shear-transformed network.

When ‘square’ networks (i.e. those with a 1 : 1 aspect ratio) are sliced, the

network must be folded twice along the Y axis as in figure 3.8b to eliminate the

criss-crossing wrap-around links. It is not possible to eliminate wrap-around

links from sliced networks with other aspect ratios by folding.

After folding, the units are interleaved, yielding a 2D arrangement of units

in which no connection spans the width or height of the system. The maximum

connection distance is constant for any network allowing the topology to scale

up.

3.3.4 Choosing a transformation

In each step of the transformation from hexagonal torus to a folded and in-

terleaved 2D grid, the distances between connected units may increase. When

designing a system, the transformation with the least distortion should be used

to minimise the average length of the cables required.
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(d) Wrapped triple units, sliced

Figure 3.7: Uncrinkling rectangularised arrangements of units into a 2D grid.
Thick lines show how crinkled rows and columns of units are uncrinkled. An-
notations show how the relative positions of units change after uncrinkling.
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(a) Sheared systems and 1 : 2 sliced systems

(b) 1 : 1 sliced systems

Figure 3.8: Schematic illustrating elimination of long wrap-around links dur-
ing folding. In each example a single link has been highlighted to aid in fol-
lowing the process.
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By referring to figure 3.7 again, it is possible to calculate the overhead

introduced by each type of transformation. For example, to compute the over-

head introduced by the slicing transformation when applied to units composed

of wrapped triples we consider figure 3.7d. The uncrinkling pattern used to

transform this topology is a repeating pattern of two units, a pair of which have

been labelled 1 and 2 respectively. Unit 1 is immediately surrounded by the six

units labelled a, b, c, 2, g and h. Unit 2 is surrounded by the units 1, c, d, e,

f and g. Before the transformation, the distance between units is 1; after the

transformation is applied this is not always the case. Folding and interleaving

into fx columns and f y rows also introduces overhead. For each pair of previ-

ously neighbouring units in the example, their distances after folding may be

computed as follows:

D1↔ a =
q

f 2
x + f 2

y

D1↔ b = f y

D1↔ c =
q

f 2
x + f 2

y

D1↔2 = fx

D1↔ g = f y

D1↔h = fx

D2↔1 = fx

D2↔ c = f y

D2↔ d = fx

D2↔ e =
q

f 2
x + f 2

y

D2↔ f = f y

D2↔ g =
q

f 2
x + f 2

y

From these values, along with similar formulae for other partitioning schemes

and transformations, mean and maximum connection distances may be calcu-

lated. The expressions for each combination are as follows:
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1 : 2 Other

Parallelogram
Either Shear

Dmean ≈ 2.28 Dmax ≈ 2.83 Dmean ≈ 2.28 Dmax ≈ 2.83

Wrapped triples
Slice Shear

Dmean ≈ 2.28 Dmax ≈ 2.83 Dmean ≈ 3.00 Dmax ≈ 4.47

Table 3.1: Recommended transformations for folding hexagonal toruses.

Dmean =







7 fx+3
p

f 2
x + f 2

y +
p
(2 fx )2+ f 2

y

9 if sheared wrapped triple units

fx+ f y+
p

f 2
x + f 2

y

3 otherwise

Dmax =







q

(2 fx)2 + f 2
y if sheared wrapped triple units

q

f 2
x + f 2

y otherwise

Using these formulae it is possible to determine which approach – shearing

or slicing – results in the lowest mean and maximum cable lengths and thus

which technique should be used. This is summarised in table 3.1.

3.4 A SpiNNaker case study

As the only known large-scale hexagonal torus-based architecture, SpiNNaker

is a good case study for the techniques described in this chapter. Each unit in

a SpiNNaker machine is a 48-chip SpiNNaker board forming a wrapped triple

partition. Systems of various sizes have been constructed using the techniques

introduced in this chapter ranging from twenty-four board ‘portable’ systems

to a five cabinet, half-million core installation with plans in place to build a

machine of twice this size in the future.

In this section I describe how the folded and interleaved arrangement of
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19′′ cabinet

Frame
(5 per cabinet)

SpiNNaker
board

(24 per frame)

Figure 3.9: Physical architecture of a SpiNNaker machine.

units produced by the techniques in the previous chapter may be translated

into physical arrangements of SpiNNaker boards in a machine room. I then

describe how the thousands of S-ATA cables are installed and report on the

maintainability and cooling impact of this cabling scheme in practice.

3.4.1 Mapping into physical cabinets

In SpiNNaker systems, the physical architecture used is illustrated in figure 3.9.

SpiNNaker boards are installed into card frames containing twenty four boards

each. Five frames are mounted into standard, 600 mm wide 19′′ cabinets with

further cabinets being added, arranged in a row, to scale the system up. The

2D grid of units produced by the folding process described in this chapter is

mapped to cabinets and frames as illustrated in figure 3.10.

Figure 3.11 shows the cabling plan for the largest planned SpiNNaker ma-

chine. This system will fill ten 19′′ cabinets and implement a 240×240 hexag-

onal torus topology partitioned between 1200 48 chip SpiNNaker boards. The

largest gap to be spanned by any cable is 66 cm, well within the 1 m limit on

SpiNNaker’s interconnect technology.
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Figure 3.10: Mapping from the abstract folded and interleaved 2D grid layout
into physical cabinet and frame positions. Arrows indicate the order in which
units (boards) are mapped into each frame, from left to right.

6 m

Figure 3.11: Cabling plan for a 1200 board (1036 800 core) SpiNNaker ma-
chine.
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Figure 3.12: Histogram of connection distances in a 1200 board SpiNNaker
machine annotated with the selected cable lengths.

3.4.2 Cable selection and routing

Because of the dense packing of SpiNNaker boards, cables span short distances

as shown in figure 3.12. Conventional cable management techniques (e.g.

cable trays) are not practical. To ensure the reliability and maintainability of

SpiNNaker’s wiring, cable slack must be carefully controlled. If cables are too

tight cables, connectors and SpiNNaker boards can become damaged. When

cables are too slack, the excess obstructs access to the machine and can easily

become tangled [Cis07].

In this case study the ‘rule of (three-)thumbs’ proposed by Mazaris [Maz97]

is used which suggests that a minimum of 5 cm of slack be provided. As SpiN-

Naker uses off-the-shelf S-ATA cables, only standard lengths of cable are avail-

able. For any given span, the shortest length of cable providing at least 5 cm

of slack is used.
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(a) Pre-labelled cables and sockets (b) Installation of cables

Figure 3.13: BlueGene/Q cable installation [CSC13].

3.4.3 Installation practicality

In other large-scale architectures, the task of cable installation is completed by

a team of technicians aided by the use of standardised labelling for cables and

sockets as illustrated in figure 3.13 [Ass06]. In these architectures the cabling

patterns required are relatively straightforward, thanks to the coarseness of the

units used [LMMS07] or they use network topologies whose cabling centres

around high-fan-in switches [Cis07, Cse15].

It has been reported in the literature that when copper cables are used,

labour costs dominate [PRI+10] and while cable costs are expected to de-

cline, labour costs are not [MYM11]. Many researchers have attempted to

control cable installation costs by trying to reduce the number or length of ca-

bles required by developing alternative network topologies [CCE+12, PRI+10,

MYM11]. Unfortunately, these techniques do not apply to SpiNNaker since its

network topology is fixed.

Supercomputer architectures such as BlueGene/Q make use of large custom

‘midplane’ PCBs in place of cables to connect units within a cabinet [ML13].
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(a) Diagnostic LEDs indicate the
endpoints of each cable.

(b) A GUI and text-to-speech indicate what
type of cable to install.

Figure 3.14: Interactive software guiding cable installation.

This scheme can reduce wiring complexity since only coarser-grain, cabinet-to-

cabinet connectivity is implemented by cables. Unfortunately, this technique

is expensive and constrains the dimensions of the network topology supported

by the machine. Since SpiNNaker is designed to scale from desktop machines

to machine room installations, this scheme is not practical.

Due to the high density of units in a SpiNNaker system, the detailed ca-

bling patterns used can be complex, despite their overall regularity. To cope

with this complexity, I developed a software system which employs diagnostic

hardware built into SpiNNaker, to guide technicians through the cable instal-

lation process. As shown in figure 3.14, diagnostic LEDs on each SpiNNaker

board are used to indicate which boards to connect. The software also provides

step-by-step cabling instructions via a Graphical User Interface (GUI) and audi-

ble instructions delivered via headphones. These instructions explicitly specify

the length of cable to use for each connection avoiding the common problem

of technicians over-estimating the cable length required [Maz97]. Diagnostic

registers in the network hardware are then used to verify the correct installa-

58



Size Cables Time Notes

24 boards 72 10 min
1 cabinet 360 4 h Real-time validation not used.
2 cabinets 720 2 h
5 cabinets 1800 4 h 20 min Three people working simultaneously.

Table 3.2: Cable installation times for various sizes of SpiNNaker machine.
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Figure 3.15: Two cabinet SpiNNaker machine cable installation times.

tion of each cable in real-time ensuring that mistakes are highlighted and fixed

immediately.

Table 3.2 shows cable installation times for various sizes of SpiNNaker sys-

tem. The times reported do not include breaks and, with the exception of the

five cabinet system, are for the one person working alone. Figure 3.15 shows

the histogram of cable installation times for a two cabinet machine. These

results confirm the observation by Mudigonda et al. that cables which span

cabinets and frames take longer to install [MYM11], even though these dis-

tances are still very short in SpiNNaker. Compared with commercial installa-

tion efforts, per-cable installation times are much shorter for SpiNNaker taking

seconds compared with minutes in other architectures [MYM11].

The positive impact of real-time validation of installed cables can clearly
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Figure 3.16: The five cabinet SpiNNaker system. The cabinet on the right
contains conventional host servers which control SpiNNaker.

be seen by comparing the installation times of the one and two cabinet sys-

tems. Though double the size, the two cabinet machine was built in half the

time required to build the single cabinet machine. While building the smaller

machine, real-time cable validation had not yet been implemented and the in-

stallation process was interrupted for several minutes every time a misplaced

connection was discovered.

In the three-person cable installation effort employed for the five cabinet

system, the guidance software was configured to assign each technician cables

in non-overlapping parts of the machine ensuring minimal interference be-

tween the technicians. As expected, this renders the problem embarrassingly

parallel, as in commercial computer installations.

The completed five cabinet system is photographed in figure 3.16. A time-

lapse video showing the construction and cable installation of this machine is

also available on YouTube [Hea16a].
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3.4.4 Thermal implications

In large SpiNNaker machines, each 24 board frame contains a fan tray which

pulls cool air from the front of the frame, between the SpiNNaker boards. The

warmed air is then ejected out of the rear of the frame where ducting directs

it into industrial chillers. Conventional guidance on data centre design sug-

gests that routing cables in the path of the system’s airflow can have a serious

impact on cooling performance [Cis07]. To determine what effect the cabling

described in this chapter had on SpiNNaker’s cooling, a test program was exe-

cuted to simulate heavy load before and after cable installation. The temper-

atures reported by the sensors on the top of each SpiNNaker board were sam-

pled at regular intervals and once the overall system temperature stabilised,

the mean temperature was recorded.

Before the cabling was installed, the temperature stabilised at 49 ◦C while

after installation it stabilised at 42 ◦C.

These two data points suggest that the system’s temperature is unlikely to

have been been seriously impacted by cable installation. Since the two exper-

iments were run on different days (with potentially different ambient temper-

atures) and are based on a single experiment, it is not possible to infer much

more from this result.

3.4.5 Maintenance

At the time of writing, the five cabinet machine is still being commissioned

and so the long term maintenance impact of the system’s cabling is not known.

One important factor in the maintainability of the system is the ease with which

faulty boards can be replaced. During commissioning a number of boards have

been replaced due to discovery of defects not found during manufacture. These
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replacements were carried out by someone not involved in the machine’s in-

stallation who reported that boards near the centre of a frame (i.e. those most

likely to be blocked by unrelated cables) take around ten minutes to replace,

including time spent removing and replacing cables obstructing the board be-

ing exchanged. By comparison boards at the edge of the machine take around

six minutes to replace. Though similar timing reports are unavailable for other

architectures, these times appear reasonable in practice and suggest mainte-

nance is not impaired by the wiring plan used.

3.4.6 Verification

The real-time cabling verification process ensures that each board is connected

correctly to its neighbours according to the cabling pattern described in this

chapter. To verify that this pattern actually implements the desired hexago-

nal torus topology, SpiNNaker’s system software was upgraded to check the

correctness of the network topology during boot.

When the system is first booted a single chip is assigned the coordinate

(0, 0,0). From this, its six neighbouring chips may in turn discover their own

locations in the topology, followed by their neighbours and so on. Eventually

every chip knows its location. If the cabling scheme does not form a valid

hexagonal torus topology, some chips will be assigned conflicting coordinates,

causing a boot error.

All of the SpiNNaker machines constructed were found to have the correct

network topology. Furthermore, the machines constructed have been used suc-

cessfully in practice, including in later work described in chapters 5 and 6.
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3.5 Conclusions

In this chapter I presented a practical method of constructing real-world in-

stallations of large hexagonal torus topologies such that long cables spanning

the width and height of the system are not required. Two transformations,

shearing and slicing, are presented which allow conventional network folding

techniques to be applied to hexagonal toruses to eliminate long ‘wrap-around’

links. Though both techniques incur some overhead in terms of mean and

maximum cable length, the maximum cable length does not grow with the

size of the network. This result makes hexagonal torus topologies a practical

and scalable choice for future systems.

The theoretical results presented in this chapter have been confirmed through

the successful construction of several large-scale SpiNNaker machines which

implement hexagonal torus topologies. During construction, diagnostic fea-

tures of SpiNNaker’s hardware were employed to guide technicians perform-

ing cable installation. This technique was found to be highly effective with

cable installation times measured in seconds rather than minutes as reported

for other architectures. Surprisingly there was no evidence found of this tech-

nique being applied to other architectures and consequently this secondary

result may be of interest for future research.
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Chapter 4

Finding shortest path vectors in

SpiNNaker’s network

In the previous chapter we explored the practical challenges of building ma-

chines which use hexagonal torus topologies working at the scale of units con-

taining several nodes. To exploit these machines, however, we must also be

able to route packets efficiently through the nodes in the resulting network.

This chapter tackles the problem of finding shortest path vectors in hexagonal

torus topologies. Shortest path vectors are used by many routing algorithms

as the basis for route generation. In non-hexagonal torus topologies, finding

shortest path vectors is trivial and intuitive but in hexagonal toruses, this is

not the case. In this chapter I introduce the Irregular Quadrant (IQ) method, a

new technique for computing shortest path vectors in hexagonal torus topolo-

gies. This method is cheaper to compute and more general than pre-existing

techniques, functioning correctly on hexagonal torus topologies of any aspect

ratio.

In some hexagonal torus topologies, many shortest path vectors may exist

between a given pair of points. I propose a technique for discovering all possi-
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Figure 4.1: An example 2D mesh network with example shortest-path routes
from ‘A’ to ‘B’ and ‘B’ to ‘C’.

ble shortest path vectors. Using these alternative shortest path vectors, routing

algorithms may be able to produce routes which load a network more evenly.

In this chapter, I assume an idealised hexagonal torus topology without

faults or other irregularities. The challenge of handling these artefacts of real-

world systems will be tackled in chapter 5.

4.1 Shortest path vectors

Many popular routing algorithms for torus topologies, including all published

algorithms designed for SpiNNaker [DNGF12, NLP+15], compute a shortest

path vector between the endpoints of a route and use this to generate a path

through the network. A shortest path vector between two nodes is a vector,

v = (v1, v2, v3, . . .), whose magnitude, ‖v‖ = |v1|+ |v2|+ |v3|+ · · · , is minimal

with respect to all possible vectors between those nodes.

In a non-hexagonal mesh topology, shortest path vectors are computed by

taking the element-wise difference between the source and destination nodes’

coordinates. For example, figure 4.1 shows a 2D mesh topology with three

nodes labelled ‘A’, ‘B’ and ‘C’ with position vectors (1,2), (4,5) and (6,1) re-

spectively. The shortest path vector from node ‘A’ to ‘B’ is (4, 5)− (1,2) = (3, 3)

and from ‘B’ to ‘C’ is (6,1)− (4, 5) = (2,−4). A route may be produced by ad-
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Figure 4.2: Finding shortest paths in a 2D torus topology.

vancing the number of hops specified for each dimension in the shortest path

vector. For example, a route from ‘A’ to ‘B’ may be constructed from any per-

mutation of the hops X+ X+ X+ Y+ Y+ Y+, an example of which is included in the

figure. Likewise routes from ‘B’ to ‘C’ may be constructed from permutations

of the hops X+ X+ Y− Y− Y− Y−. Regardless of the order of the hops, the length

of the route, v, is given by the magnitude of the shortest path vector, ‖v‖.
Many popular routing algorithms such as dimension order routing, right-

turn only routing and longest dimension first routing [DNGF12] are simply

defined as rules for ordering the hops specified by a shortest path vector.

4.1.1 Torus networks

Computing shortest path vectors in non-hexagonal torus topologies is also

straightforward. For example, to find the shortest path vector from node ‘A’

to ‘B’ in the 2D torus topology shown in figure 4.2a both nodes are translated

such that the source node, ‘A’, is at the centre of the network. The shortest path

vector is then computed in the same way as a mesh network (figure 4.2b). Note

that, as in this example, translation may cause the destination node to ‘wrap

around’ the network. As illustrated in figure 4.2c, the computed shortest path

vector is also valid for the two points prior to translation.
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(a) 2D mesh topology

××
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××

(b) 2D torus topology

Figure 4.3: Plots showing the magnitude of shortest path vectors in a 2D (non-
hexagonal) topology from locations marked ×. Darker areas are further away.
Contour lines show equidistant points.
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Figure 4.4: An example hexagonal mesh network topology.

This procedure works because vectors from the centre of a non-hexagonal

torus topology to any other point are identical to those in a corresponding

mesh topology. For example, in figures 4.3a and 4.3b we can see that the

magnitude of the shortest path vectors from the centre of a mesh and torus

grow identically. Conversely, the magnitudes of vectors from other locations in

mesh and torus topologies do not match.

4.2 Related work

The problem of finding shortest path vectors in hexagonal mesh topologies has

been widely considered and formulations may be found in a variety of appli-

cations, including computer games [Ami15]. Hexagonal toruses, by contrast,

have only received limited attention. In this section I briefly summarise the so-

lutions proposed for hexagonal mesh topologies before more deeply examining

existing solutions for hexagonal torus topologies.

4.2.1 Hexagonal mesh networks

In hexagonal mesh topologies it is conventional to define three ‘axes’ X, Y

and Z as shown in figure 4.4 [Ami15]. In this example, the three labelled

nodes ‘A’, ‘B’ and ‘C’ may be given position vectors such as (1,1, 0), (3, 2,0) and
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(0, 0,−7) respectively. As in other mesh networks, a vector between two nodes

is found by subtracting the nodes’ vectors. For example, a vector from ‘A’ to ‘B’

is (3, 2,0)− (1, 1,0) = (2, 1,0). This vector can then be converted into a route

in the same way as a mesh network by taking any permutation of the three

hops X+ X+ Y+.

As explained in detail in appendix B, there are a multitude of vectors be-

tween any two points in a hexagonal mesh. For example, the vectors (1, 0,−1)

and (3, 2,1) also reach node ‘B’ from ‘A’. However, for a given pair of nodes,

there is always a single, unique vector whose magnitude is minimal which is

given by the function:

minimiseVector(x , y, z) = (x , y, z)−median(x , y, z) · (1, 1,1)

For example, the vector (3, 2,1) from ‘A’ to ‘B’ is minimised as follows:

minimiseVector(3, 2,1) = (3, 2,1)−median(3, 2,1) · (1,1, 1)

= (3, 2,1)− (2, 2,2)

= (1, 0,−1)

A side-effect of this is that a minimised vector will always contain at least one

zero element, meaning that shortest path routes will use at most two of the

three available dimensions.

4.2.2 Hexagonal torus networks

Unfortunately, the translation technique used for non-hexagonal toruses can-

not be used in a hexagonal torus. As illustrated in figures 4.5a and 4.5b, short-

est path vectors from the centre, or any other part of a hexagonal mesh net-
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(a) Hexagonal mesh topology

××
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(b) Hexagonal torus topology

Figure 4.5: Plots showing the magnitude of shortest path vectors in a hexag-
onal torus topology from locations marked ×. Darker areas are further away.
Contour lines show equidistant points.

work, do not grow in magnitude in the same way that those of a hexagonal

torus network do. I am aware of two pre-existing approaches to computing

shortest path vectors in hexagonal toruses. These are described below.

INSEE Method

The INSEE interconnect simulator has been used in all published research into

SpiNNaker’s hexagonal torus interconnect to date [NLMA+09, GHN+15]. In-

ternally INSEE finds shortest path vectors by selecting the shortest of a set of

twelve candidate vectors known to always contain a shortest path vector.

The twelve vectors considered are illustrated in figure 4.6 and are con-

structed as follows. First a shortest path vector from the source to target node

is constructed as if the network was a 2D mesh producing a vector (∆X,∆Y).

A second 2D vector, (∆′X,∆′Y), is also defined:
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A

B

(a) (∆X,∆Y) = (5, 3)

A

B

(b) (∆′X,∆Y) = (−3,3)

A

B

(c) (∆X,∆′Y) = (5,−5)

A

B

(d) (∆′X,∆′Y) = (−3,−5)

(X, Y,0) (X− Y,0,−Y) (0,Y− X,−X)

Figure 4.6: The twelve candidate shortest-path vectors considered by the IN-
SEE method represented as dimension-order routes. W = H = 8, (∆X,∆Y) =
(5, 3) and (∆′X,∆′Y) = (−3,−5).
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∆′X =∆X − sign(∆X)W

∆′Y =∆Y − sign(∆Y)H

Where W and H are the width and height of the network respectively. This

vector describes a route from the source to destination node that always wraps

around the peripheries of both the ‘X’ and ‘Y’ dimensions.

Two further 2D vectors, (∆′X,∆Y) and (∆X,∆′Y)may be defined which wrap

around just the X or Y axis, respectively.

Each of the four 2D vectors may be converted into three hexagonal 3D vec-

tors in which one element of the vector is zero. In total this results in twelve

different vectors which cover all combinations of wrapping and non-wrapping

routes and all combinations of axes used. The vector with the smallest magni-

tude must be the shortest path vector.

This method can find shortest path vectors in hexagonal torus topologies

of any aspect ratio but, compared with the XYZ-protocol (described next), is

relatively clumsy and slow to compute.

XYZ-Protocol

Hoffmann and Désérable described the XYZ-protocol for computing shortest

path vectors in hexagonal toruses with equal width and height [HD15, HD11].

First, the source and destination nodes are translated such that the source node

lies at the centre of the topology. The authors observe that from the centre of

the topology, the pattern with which distances grow differs between the four

quadrants outlined in figure 4.7.

If the destination lies in quadrants 1 or 4, a route may be constructed as if in

a hexagonal mesh topology. If the destination lies in quadrants 2 or 3, however,

the algorithm tests whether taking a mesh-like vector within the quadrant or
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Figure 4.7: The four quadrants defined by the XYZ-protocol.

wrapping-around either the X or Y dimensions yields the shortest vector.

By comparison with the twelve vectors considered by the INSEE method,

the XYZ-protocol considers just one for destinations in quadrant 1 or 4 and no

more than three in quadrant 2 or 3. Though the XYZ-protocol can be computed

more cheaply than the INSEE method, it does not produce valid shortest path

vectors for hexagonal torus topologies with aspect ratios other than 1 : 1.

4.3 The Irregular Quadrant (IQ) method

In this section I propose a new technique for finding shortest path vectors in

hexagonal torus topologies called the Irregular Quadrant (IQ) method and

compare its performance with existing techniques.

4.3.1 Computing shortest path vectors

Consider the problem of finding a shortest path vector from (0, 0, 0), at the

bottom-left, to a node somewhere else in a hexagonal torus topology.

Figure 4.8 illustrates how hexagonal torus topologies of various aspect ra-

tios may be partitioned into four irregular quadrants. These quadrants are

defined according to which axes are wrapped around by the shortest path vec-

tors reaching them. The irregular quadrants correspond to locations reachable

by shortest path vectors which:
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Figure 4.8: Hexagonal torus topologies of various aspect ratios divided into
irregular quadrants in which a particular pair of dimensions are wrapped-
around.

1. Do not wrap

2. Wrap around X only

3. Wrap around Y only

4. Wrap around both X and Y

Within each irregular quadrant, we observe that shortest path vectors are con-

strained to using only certain directions:

1. Only X+, Y+ and Z−.

2. Only X− and Y+

3. Only X+ and Y−

4. Only X−, Y− and Z+.
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Given the topology is of width W and height H and the destination node’s 2D

mesh coordinates are (∆X,∆Y) we can define the shortest path vector within

each irregular quadrant as:

1. minimiseVector(∆X,∆Y, 0)

2. minimiseVector(−(W −∆X),∆Y, 0)

3. minimiseVector(∆X,−(H −∆Y), 0)

4. minimiseVector(−(W −∆X),−(H −∆Y), 0)

Since we know that 0 ≤ ∆X < W and 0 ≤ ∆Y < H, we can simplify the

expressions for the magnitude of each of the above vectors. This yields four

expressions giving the magnitude of a minimal vector as if in each irregular

quadrant:

1. max(∆X,∆Y)

2. (W −∆X) +∆Y

3. ∆X + (H −∆Y)

4. max(W −∆X, H −∆Y)

From these expressions we can determine which irregular quadrant the desti-

nation is in by finding the expression with the minimum value. With this in-

formation, the shortest path can be found by minimising the vector associated

with that irregular quadrant. Figure 4.9 shows a simple Python implementa-

tion of the IQ method.

Compared with the INSEE method, this technique requires fewer cases to

be considered (four rather than twelve) making it cheaper to compute.
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def iq_method(src, dst, w, h):
"""Get a shortest path vector from src to dst in a
hexagonal torus with dimensions w and h. For example::

>>> iq_method((1,2,0), (5,6,1), 10, 10)
(0, 0, -3)

"""
# Break-apart position vectors
sx, sy, sz = src
dx, dy, dz = dst

# Convert to 2D mesh coordinates
sx, sy, sz = sx-sz, sy-sz, 0
dx, dy, dz = dx-dz, dy-dz, 0

# Get the 2D vector from source to destination using
# only positive coordinates.
dx = (dx - sx) % w
dy = (dy - sy) % h

# Consider each irregular quadrant
# Distance Non-minimised Vector
quadrants = [(max(dx, dy), (dx, dy)),

((w-dx)+dy, (-(w-dx), dy)),
(dx+(h-dy), (dx, -(h-dy))),
(max(w-dx, h-dy), (-(w-dx), -(h-dy)))]

# Select the quadrant with the shortest path (ties
# broken arbitrarily)
distance, (dx, dy) = min(quadrants)

# Return a minimised hexagonal vector
median = sorted((dx, dy, 0))[1]
return (dx-median, dy-median, 0-median)

Figure 4.9: A Python implementation of the IQ Method.
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Unlike the four quadrants defined by the XYZ-protocol, the irregular quad-

rants defined by the IQ method correspond exactly to a particular shortest path

vector. This means that, once the irregular quadrant a point lies in has been

discovered, the shortest path vector can be calculated directly without con-

sidering multiple options. Though the boundaries between the four irregular

quadrants are more complex than the quadrants of the XYZ-protocol, it is only

marginally more expensive to discover which irregular quadrant a point lies

in. In addition, the irregular quadrants retain their meaning across different

aspect ratios making the IQ method suitable for any hexagonal torus topology.

4.3.2 Computing distances

The four vector magnitude expressions defined by the IQ method can also be

combined to produce a compact expression of the distance between two points

in a hexagonal torus topology:

‖ shortestPathVector(∆X,∆Y, W, H)‖=min(max(∆X,∆Y),

(W −∆X) +∆Y,

∆X + (H −∆Y),

max(W −∆X, H −∆Y))

This expression has also been derived independently from a graph-theoretic

study of Cayley graphs, of which the hexagonal torus topology is a special

case, by Xiao and Parhami [XP04].
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XYZ-Protocol

INSEE
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Mean execution time (ns)

Figure 4.10: Mean execution time of each shortest path vector function. Er-
ror bars indicate the range of the mean execution times of the fifty 3-billion-
combination experiments.

4.3.3 Computational efficiency

Since computing shortest path vectors forms an integral part of the kernel of

many routing algorithms, the running time of the function chosen can be an

important consideration.

To compare the performance of the three shortest path vector functions

presented, the execution time of a C implementation of each technique was

measured. The C implementation of the INSEE method is taken directly from

the INSEE source code [NLMA+09]. The C implementation of the XYZ-Protocol

is a straight translation of the published pseudocode [HD15].

Each function was called approximately 3 billion times: once for every pair

of source and destination nodes in a 240 × 240 node hexagonal torus topol-

ogy. The total execution time is then divided by the number of calls giving an

average execution time. This experiment was repeated 50 times and the over-

all average execution time of each shortest path vector function was recorded.

The repeats of the experiments were spread across a cluster of idle worksta-

tions with 3.10 GHz Intel Core-i5-2400 CPUs. The function implementations

were compiled with GCC 5.3.0 with optimisations enabled (-O2).

Figure 4.10 shows the execution times of each shortest path vector func-

tion. From these results we can see that the INSEE method is slower than the

other techniques. Although the XYZ-protocol and IQ method have similar per-
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A B

(4, 0,0)
(−4, 0, 0)

Figure 4.11: Two distinct shortest path vectors in a hexagonal torus.

A

B

(10,0,−1)
(6,0,−5)
(2,0,−9)

Figure 4.12: Distinct shortest path vectors between two points, all with mag-
nitude 11.

formance, because the IQ method works for any hexagonal torus topology it is

the better candidate for use in new applications.

4.4 Generating all shortest path vectors

In odd-sized non-hexagonal and 1 : 1 hexagonal torus topologies there is ex-

actly one distinct shortest path vector between any two points (though many

routes may be defined from it). In even-sized topologies there may be two

distinct shortest path vectors between nodes exactly half the length of an axis

away as in figure 4.11. The INSEE and IQ methods may generate either vector

depending on how ties are broken in their implementation.

Unlike non-hexagonal topologies, when the aspect ratio of a hexagonal

topology is not 1 : 1, some points may have many distinct (but equal magni-

tude) shortest path vectors. For example, figure 4.12 illustrates three distinct

shortest path vectors between an example pair of nodes. None of the short-

est path vector functions discussed will generate all possible vectors in this
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situation, potentially limiting the choices available to routing algorithms. To

address this shortcoming, I propose a formula which enumerates every shortest

path vector between a pair of points in a hexagonal torus.

In a W × H hexagonal torus topology, starting from any node the vector

(0, H, 0) straightforwardly wraps once around the Y axis arriving back at the

node it started from. The vector (1, 1,1) also returns to its starting point as

described in appendix B. As a consequence (0, H, 0)−H ·(1,1, 1) = (−H, 0,−H)

must also be a vector which leads back to where it started. Adding this vector

to a shortest path vector of the form (x , 0, z) results in a new shortest path

vector if x ≥ H and z ≤ 0.

For example, the vector (10, 0,−1) (magnitude 11) in figure 4.12 can be

added with (−4, 0,−4) yielding (6,0,−5) (also magnitude 11) which is still

a shortest path vector between the two labelled nodes. Since (6, 0,−5) still

meets the criteria defined above (6 ≥ 4 and −5 ≤ 0), we can add (−4,0,−4)

again yielding another shortest path vector (2,0,−9). This new vector does

not meet the requirement that x ≥ H (since 2 � 4) and so no further shortest

path vectors can be produced.

More formally, a shortest path vector (x , 0, z) may be converted into an-

other shortest path vector (x ′, 0, z′) using the following formula:

(x ′, 0, z′) = (x , 0, z)−
�

trunc
� z

H

�

+ n
�

(H, 0, H)

where
§

n ∈ Z
�

�

� 0≤ n≤
� |x |+ |z|

H

�ª

and trunc( · · · ) is the truncation operator which rounds towards zero to the

nearest integer.

A complementary formula may be derived based on the related observation

81



that the vector (W, 0, 0) results in no movement:

(0, y ′, z′) = (0, y, z)−
�

trunc
� z

W

�

+ n
�

(0, W, W )

where
§

n ∈ Z
�

�

� 0≤ n≤
� |y|+ |z|

W

�ª

Using these two expressions for wide and tall topologies, respectively, all

possible distinct shortest path vectors between any two points may be found.

4.5 Conclusions

The calculation of shortest path vectors in mesh and torus topologies is at the

heart of many routing algorithms. In this chapter, I introduced a new technique

for computing shortest path vectors in hexagonal toruses which generalises

to any hexagonal torus topology while executing more quickly than existing

approaches. In addition, I described a formula for enumerating the distinct

shortest path vectors between points in hexagonal torus topologies. Unlike

previous work, this allows routing algorithms greater freedom by providing

a choice of shortest path vectors between some points. These contributions

demonstrate that key operations such as computing distances and shortest path

vectors in hexagonal toruses can be efficient and exhaustive just as in non-

hexagonal torus topologies.
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Chapter 5

Fault tolerant routing for

SpiNNaker

In the previous chapter I developed an efficient technique for finding short-

est path vectors in hexagonal torus topologies. These vectors are used as the

basis for many routing algorithms, notably including all published SpiNNaker-

specific algorithms. These routing algorithms, however, do not tolerate faults

which are a typical hazard in any large-scale system. In this chapter, I intro-

duce PGS repair, a post-processing step for existing routing algorithms which

employs graph search to alter fault-afflicted routes in order to avoid faulty links

and nodes.

In SpiNNaker, the vast majority of network faults appear to be the result

of manufacturing defects which are static and known of before routing time.

Though transient faults can occur and new faults may develop as the hardware

ages. Because the large SpiNNaker prototype system constructed in chapter 3

is still undergoing initial commissioning, only limited data is available on its

reliability in practice. During my own previous experimental work on the 1/10th

scale SpiNNaker prototype with 5760 chips (103 680 cores), test programs ex-
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ecuting over the course of two to three days did not encounter any transient

network faults. As a consequence, for many short and medium duration appli-

cations, static fault tolerance measures alone may be sufficient.

Numerous heuristic-based fault tolerant routing algorithms exist which tar-

get different network topologies and router architectures. Unfortunately, as I

will show, these algorithms are not portable and rely on, or attempt to work

around, specific features of their target network architecture. In particular, ex-

isting work is dominated by the challenge of developing routing schemes which

avoid or resolve network deadlocks [DT04, chapter 14]. Due to SpiNNaker’s

unconventional use of timeout-based flow-control, it is not subject to the rout-

ing restrictions present in other architectures intended to cope with deadlocks.

The post-processing algorithm proposed in this chapter relies on SpiNNaker’s

built-in deadlock avoidance capability to enable it to generate arbitrary routes

to avoid faults.

To assess the performance of the proposed routing technique, a number of

experiments have been performed using both software models and SpiNNaker

hardware. For realistic fault rates, the proposed fault tolerant routing algo-

rithm incurs negligible execution time overhead during route generation and

only a small increase in network congestion and routing table usage.

5.1 Related work

In this section I discuss the techniques used by the fault intolerant multicast

routing algorithms developed for SpiNNaker to date. I then explore the tech-

niques employed by other architectures to achieve fault tolerance and consider

their suitability for use with SpiNNaker.

84



(a) DOR (b) RTOR (c) LDFR

Figure 5.1: Example multicast routes produced by merging together unicast
routes from a central source node to each destination node.

5.1.1 Multicast routing in SpiNNaker

Various fault intolerant multicast routing algorithms have been proposed and

evaluated specifically in the context of the SpiNNaker architecture.

In 2012, Davies et al. evaluated the use of three common torus routing

algorithms in SpiNNaker [DNGF12]. In each of the algorithms considered,

multicast routes were constructed by merging together unicast routes from the

source to each sink. The following unicast routing algorithms were considered:

Dimension Order Routing (DOR) Packets are routed along each dimension

(e.g. X , Y and Z) in turn until no further hops are available in that

dimension. The order in which the dimensions are traversed is fixed.

Right Turn Only Routing (RTOR) As in DOR except the dimension order is

chosen so that routes only contain right-turns.

Longest Dimension First Routing (LDFR) As in DOR except the dimension

order is chosen in descending order of number of hops in each dimension.

Figure 5.1 illustrates an example multicast route from a central source point

to a number of sinks located along a hexagonal perimeter. The authors con-

cluded that, of the three algorithms, multicast routes built using LDFR deliv-

ered the most balanced and efficient use of network resources.
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(a) ESPR

S

D

(b) NER

Figure 5.2: The ESPR and NER algorithms attempt to connect the node marked
‘D’ to the closest node in the shaded region which is connected to the source
node, ‘S’. If no connected node is found in the shaded region, the LDFR route
is taken to ‘S’. The dotted line indicates the route chosen from ‘D’.

In 2014, Navaridas et al. introduced two new algorithms, ‘Enhanced Short-

est Path Routing’ (ESPR) and ‘Neighbourhood Exploring Routing’ (NER) which

are explicitly designed to generate efficient multicast routes [NLP+15].

In both ESPR and NER, the algorithm considers each sink vertex in turn,

starting with those nearest to the source. For each vertex the algorithm at-

tempts to find a nearby vertex to which a route already exists. If a connected

vertex is found, an LDFR route from that vertex is added. If no nearby vertices

are found, the algorithm inserts a LDFR route from the source vertex. By pro-

ducing routes which connect to already-connected nearby vertices, ESPR and

NER hope to reduce the number of long-distance routes from the source.

ESPR and NER differ in the way they search for nearby vertices. In ESPR,

the algorithm searches within a parallelogram drawn to enclose the current and

source vertices as illustrated in figure 5.2a. The NER algorithm searches for

vertices within a fixed distance of the current vertex as illustrated in figure 5.2b.

The NER algorithm was found to produce higher quality multicast routes

than both ESPR and the simpler algorithms described in earlier work. Unfor-

tunately, as in previous work, this algorithm cannot tolerate faults.
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Node 1 Node 2 Node 3 Node 4

Figure 5.3: A deadlock in a ring network where each node is waiting for the
next to accept a packet before accepting any further packets.

5.1.2 Fault tolerant routing

Numerous fault tolerant routing algorithms have been proposed for supercom-

puter networks but they are largely constrained by the need to maintain dead-

lock freedom. Since SpiNNaker’s routers employ a timeout based deadlock-

breaking strategy, much of this effort is unnecessary in SpiNNaker. As we see

below, this frequently renders existing fault tolerant routing algorithms unnec-

essarily complex and inflexible making them unable to take advantage of the

efficiency savings achieved by algorithms such as NER.

Deadlocks occur in a network when a cyclic dependency on any resource

develops. For example, as illustrated in figure 5.3, in a ring network a deadlock

may occur when every node is waiting for the next node to accept a packet

before accepting new packets from the previous node.

To prevent deadlocks, combinations of router microarchitectural features

and routing restrictions are often employed. For example, a simple deadlock-

free (unicast) routing algorithm for mesh and torus networks mandates the

use of DOR [DT04, chapter 14]. Packets travelling in a positive direction along

each axis take priority over those travelling in a negative direction. Packets

travelling along the X axis take priority over those travelling along the Y axis.

Given these rules it is possible to define a total ordering on all hops in the

network. Figure 5.4 illustrates a 3 × 3 mesh network whose hops have been

numbered according to the total ordering defined above. Any ‘X-then-Y’ DOR
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Figure 5.4: Deadlock-free routing of two example routes using DOR in a 2D
mesh topology. Lower-numbered hops have higher priority. The numbers of
the hops taken by each route are given on the right. (Figure based on [DT04,
figure 14.12].)

route through this network results in the use of hops labelled with strictly in-

creasing numbers. As a result, no cyclic dependencies (and thus no deadlocks)

may occur. So long as incoming packets destined for a node are accepted from

the network upon arrival, forward progress can always be made and thus dead-

lock is prevented.

Unfortunately, the routing restrictions imposed to ensure deadlock freedom

can result in fault-intolerant routing. In the case of the DOR example, if the

node at the bottom-right corner of the figure was faulty, the dotted example

route would be blocked as no alternative routes are allowed. Although some

routing schemes may feature more ‘relaxed’ routing rules [RMF+09], these may

still ultimately not tolerate all faults.

The 3D torus based BlueGene/L supercomputer [AAA+02] notably makes

use of DOR to ensure deadlock freedom while implementing fault tolerance by

disabling so-called ‘lamb’ nodes. Lamb nodes are nodes which, though other-

wise healthy, could potentially have their DOR routes blocked by a fault. This

principle is illustrated in the 2D topology shown in figure 5.5 where a single
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Working node

Dead node

Lamb node

Figure 5.5: ‘Lamb’ nodes may be disabled to ensure DOR will never encounter
a fault.

node has died. Nodes in the same row and column as the dead node are turned

into ‘lamb’ nodes and are configured to forward packets but otherwise take no

part in running applications. DOR routes between the remaining nodes will

never pass through the dead node thus avoiding the fault while maintaining

normal performance. This approach trades off wasted compute capacity for

maintaining network performance in the presence of faults. When faults are

rare and easily repaired this trade-off can be worthwhile. In SpiNNaker, such

fine-grained replacement of nodes is impractical since each chip constitutes a

node and therefore a whole board of 48 chips must be replaced to repair a

single fault.

Other routing algorithms proposed for BlueGene attempt to avoid the need

for lamb nodes by generating routes which reach their destination via a ‘proxy’

node [GDF+04]. In this scheme, a pair of nodes DOR route their messages

via a ‘proxy’ node. This node is chosen so that routes to and from the proxy

are not obstructed by the fault. This approach relieves the need to sacrifice

‘lamb’ nodes at the expense of adding to the workload of the proxy nodes and

increasing routing complexity.

Alternative routing strategies may take a hybrid approach whereby an ef-

ficient but fault intolerant routing algorithm is used which falls back on a less
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efficient, fault tolerant routing algorithm when faults are encountered. For

example, the Immucube network architecture employs three virtual networks

which operate independently over the same physical links [PG07]. Initially,

messages are routed in the first virtual network using a high-performance rout-

ing scheme which may deadlock or be blocked by faults. If a deadlock occurs,

the deadlocked packet is moved into the second virtual network in which pack-

ets are routed using a less efficient deadlock-free algorithm. Finally, if packets

in the first and second virtual networks encounter a fault they are moved onto

the third virtual network. The third virtual network forms a ring network which

eventually reaches every node in the network, though potentially with a high

performance penalty.

Instead of providing multiple routing rules which apply globally, some hy-

brid routing schemes divide the system up into regions in which different rout-

ing rules are used which avoid the particular patterns of faults in those ar-

eas [MFD+06, BC95]. As in other hybrid approaches, fault tolerance is usually

achieved through the use of a relatively inefficient routing algorithm, though

their use is constrained to a single region of the system.

Other routing algorithms are distributed and use only local information

along with limited information from their peers to generate routes [FDC+09].

In SpiNNaker applications, route generation is typically carried out centrally,

allowing algorithms such as ESPR and NER to take advantage of global infor-

mation when producing multicast routes. Since routes in SpiNNaker applica-

tions are often static, using a centralised routing algorithm to produce high

quality routes ‘up front’ may be favourable over potentially faster but lower

quality distributed algorithms.

Algorithms for very different network architectures also tend to be a poor

fit for SpiNNaker. IP networks, for example, must contend with a dynamic and
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irregular network topology and so the trade-offs made in their routing algo-

rithms are a poor match for the applications considered here. Similarly work

focusing on architectures whose topologies differ significantly from a torus, for

example data centre networks [GWT+08, LYYG12], are not general enough to

be of use.

5.2 Partial Graph Search (PGS) repair

As we have seen, existing multicast routing algorithms for SpiNNaker are de-

signed to make efficient use of the system’s network but are not able to avoid

faults. The hybrid routing approach used by Immucube allows an existing, ef-

ficient routing algorithm to be used while falling back on other routes when

faults are encountered. In this section I describe a novel hybrid routing algo-

rithm based on a post-processing scheme called Partial Graph Search (PGS)

repair. By relying on SpiNNaker’s timeout-based deadlock avoidance scheme,

PGS repair is not hampered by the routing restrictions imposed by other ar-

chitectures. For example, expensive router architectural features, such as the

multiple virtual networks used by Immucube, are not required. In addition,

the routes taken to avoid faults are not constrained to inefficient paths, such

as system-wide ring networks, to ensure deadlock freedom.

The PGS repair technique uses a graph search algorithm to find alternative

routes around faulty nodes and to repair fault-afflicted routes generated by

a fault intolerant routing algorithm such as NER. Though graph search algo-

rithms are generally shunned in network routing due to their high computa-

tional complexity, their execution time is often bounded by O(HD) where H is

the number of hops in the generated route and D is the number of dimensions

in the network. Since H is likely to be small because faults are rare and isolated
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Figure 5.6: PGS repair example showing a disconnected multicast route from
A to B, C, D, E and F. × indicates a broken link.

in real systems [GBC+05, AFKR12], the execution time of the graph search will

also be small in practice.

The PGS repair technique proceeds as follows. A route is initially generated

by a fault intolerant routing algorithm such as NER. If no faults are encountered

by this route, the algorithm terminates immediately. Otherwise the algorithm

proceeds to repair the route as follows:

The routing tree produced by the underlying routing algorithm is broken

into subtrees wherever it attempts to route through a broken link or node.

Each subtree is then assigned a unique ‘colour’, as illustrated in figure 5.6a.

From each disconnected subtree’s root in turn, a graph search is performed to

find a short, fault-free route to a subtree of any other colour. Once another

subtree has been found, the route discovered by the graph search is added and

the subtree is coloured to match the tree from which the graph search started

from.

For example in figure 5.6b, a path from the root of the subtree containing

nodes E and F is found which connects it to the subtree rooted at A. In fig-

ure 5.6c a path is also found connecting the subtree containing nodes C and D

back to the subtree rooted at node A. At this point only one tree remains – the

fully connected route.

If the routing tree was broken into N +1 subtrees by faults there will be N
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subtrees disconnected from the root node. Each of the N graph searches per-

formed connects two disconnected subtrees reducing the number of subtrees

by 1 each time. After N iterations, therefore, exactly one tree remains which

connects every node in the original routing tree resulting in a multicast route

not obstructed by faults.

Because SpiNNaker’s network architecture ensures deadlock freedom re-

gardless of the routing pattern used, the graph search algorithm is free to use

any route to avoid dead links, reducing the overhead introduced by avoiding

faults.

5.3 Evaluation and results

The PGS repair technique is, by design, able to work around all possible fault

patterns (excluding those which completely disconnect entire regions of the

network). As a consequence, my evaluation focuses on the impact on perfor-

mance that PGS repair imposes rather than its ability to avoid faults. Specif-

ically, I concentrate on the impact of PGS repair on three figures of merit:

algorithm execution time, routing table utilisation, and network throughput.

5.3.1 Traffic patterns

Two standard benchmark multicast traffic patterns are considered which have

been used in previous research into SpiNNaker’s network:

Uniform Destinations are chosen with uniform probability anywhere in the

machine. This traffic pattern is widely used in networks research [DT04,

chapter 23] and is representative of applications with either dense com-

munication requirements or poor placement quality (see chapter 6).
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×

Figure 5.7: An example of a 3-centroid traffic distribution. Traffic is sent by the
node at the position marked with an × to nodes chosen randomly with nodes
in lighter areas being selected with a higher probability.

3-centroids Destinations are clustered around the sending node with an 85%

probability or one of 3 randomly chosen ‘centroids’ with a 5% probabil-

ity each as illustrated in figure 5.7. Destinations are distributed around

the sender or centroid according to a geometric distribution with more

distant locations being less likely to be selected. This pattern was de-

veloped specifically to reproduce the traffic patterns found in the neural

applications SpiNNaker is designed for [NLP+15].

There is little consensus on the ‘fan out’ of routes in real SpiNNaker appli-

cations. As we will see in the next chapter (§6.4.2), the fan outs of existing

applications vary between unicast routes and multicast routes with almost one

hundred sinks. Fan out does not have a significant impact on the performance

of PGS repair and so I have simplified this evaluation by only considering routes

with a single source node and sixteen sink nodes. This choice ensures that gen-

erated routes feature multicast branching ensuring PGS repair is suitable for

multicast routing.

5.3.2 Fault models

Two different fault models are considered which are chosen to be representa-

tive of the faults found in real SpiNNaker systems:
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(a) Uniform (b) HSS Link

Figure 5.8: The two link fault models considered.

Uniform Links are selected and disabled at random (figure 5.8a). This mod-

els failures resulting from isolated manufacturing defects or ageing in

individual links.

HSS Link Groups of links corresponding with randomly selected High-Speed

Serial (HSS) links between SpiNNaker boards are disabled (figure 5.8a).

Each HSS link carries several chip-to-chip traffic flows via a single cable;

problems result in a contiguous line of failures.

Though SpiNNaker-specific, the latter fault model is analogous to failure

modes arising in other architectures where a single fault may render several

links impassable in a single area.

Informal measurements of current large-scale SpiNNaker installations sug-

gest that the link failure rate is approximately 0.03 % with failures due to both

individual chip-to-chip links and board-to-board HSS links. Exact link failure

statistics for commercial supercomputer installations are not widely available,

however, published Mean-Time-Between-Failure (MTBF) figures coincidentally

place an upper bound on link failure rates at a similar 0.03 % in one-year-old

BlueGene/Q systems [CCWS11].

In addition to link faults, there is currently an undiagnosed problem with
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the SDRAM packaged with around 1 % of SpiNNaker chips which renders them

unusable. These faulty chips leave gaps in the network which dominate ‘true’

link faults making the effective link fault rate rise to 1 %.

Surprisingly, research into fault tolerant routing in supercomputers appears

to focus on benchmarks with even higher fault rates which range from 3 % to

as high as 7 % [HS04, GDF+04, MFD+06].

In this evaluation, fault rates ranging from 0.01 % to 5 % are considered to

cover both realistic fault levels along with the more extreme cases considered

in the literature.

5.3.3 Base routing algorithm

Since the PGS repair process may be used with any routing algorithm, all ex-

periments have been conducted against routes initially generated by the NER

routing algorithm since this algorithm is known to produce high quality routes

for SpiNNaker’s network [NLP+15].

5.3.4 Algorithm execution time

To assess the execution time overhead introduced by the PGS repair process,

routing problems were generated for a 256 × 256 hexagonal torus topology

with randomly generated faults. For each combination of fault pattern and

traffic pattern, 10 000 route and fault sets were generated and the execution

time of the NER and PGS repair algorithms recorded.

The NER and PGS repair algorithms were written in C and compiled with

GCC 4.8.3 with -O2 level optimisations and instances of the experiments were

spread across a cluster of idle workstations with 3.10 GHz Intel Core-i5-2400

CPUs.
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Figure 5.9: Mean execution time of NER routing and PGS repair. Bars are
stacked and do not overlap. Error bars indicate 95% confidence interval.
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Figure 5.9 shows the mean execution times for both the NER and PGS repair

algorithms. In fault-free networks, the PGS repair post-processing step is not

required and incurs no penalty. As the fault rate increases, the execution time

of the algorithm grows proportionally for both fault and traffic models.

The HSS fault model results in longer execution times for the PGS repair

process compared with an equivalent fault-density of uniform faults. Because

the HSS fault model produces contiguous lines of faults, the PGS repair algo-

rithm must construct a longer path to avoid the fault. Since the space explored

by a graph algorithm grows with O(H2) in a 2D hexagonal torus topology, this

increase in search distance has a significant impact on the execution time of

the PGS repair process.

The centroid traffic pattern tends to result in routes with fewer hops than

uniform traffic since route segments are often shared between destination nodes

in the same centroid. Since the NER algorithm’s execution time is strongly re-

lated to the number of hops in the output route, the execution time of the

algorithm is greater for uniform traffic. Likewise the probability of a route

encountering a fault, and thus PGS repair being invoked, increases with the

number of hops in the route, hence PGS repair execution times are also re-

duced under centroid traffic.

5.3.5 Routing table usage

SpiNNaker uses a table based router with a fixed quantity of table entries in its

multicast router. Algorithms such as NER attempt to exploit ‘default routing’

which allows routing table entries to be omitted on chips where a packet is

forwarded in a straight line by generating routes which avoid turning corners.

PGS repair, however, makes no such effort and thus may be liable to increase

the number of routing table entries required.
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To gain a realistic measure of routing table usage it is necessary to produce

a range of routes for a single example network and generate routing tables

accordingly. To enable a sufficiently large number of samples to be collected

smaller networks with 48× 48 nodes are considered in this experiment.

One thousand 48× 48 node networks are produced according to the HSS

link and uniform fault models. For each of these networks, two sets of 48×48×
16= 36864 routes are generated: one using the centroid model and the other

the uniform traffic model. This number of routes corresponds to one multicast

route per application core in a 48× 48 SpiNNaker system.

Routing table entries are inserted at the source node of each route, at each

destination node and at every corner or fork, exploiting default routing to route

packets along other parts of routes. This table generation scheme is widely

used in SpiNNaker applications due to its simplicity and efficient use of routing

table entries. Though more effective techniques exist for compressing routing

tables for use in SpiNNaker’s network [MHG16], their performance is strongly

influenced by other factors such as routing key selection and so are not con-

sidered here.

For each network model and traffic pattern, the number of routing table

entries required on each node is counted. The maximum count is then recorded

since even if only one routing table is too large to fit in SpiNNaker’s router the

application cannot run.

Figure 5.10 shows the distributions of the largest routing table sizes for

each fault and traffic model. For realistic fault rates (under 0.1 %), routing

table sizes are not significantly impacted.

At a 1 % fault rate, routing table sizes grow little in the presence of uniform

faults but in the presence of HSS link faults exceed routing table size limits.

Since SpiNNaker’s 1 % fault rate can be attributed to isolated, uniformly dis-
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Figure 5.10: Violin plot showing the distribution of maximum routing table
sizes for 1000 random networks. The red line at 1024 entries indicates the
size of SpiNNaker’s routing tables.
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(a) Routing table entries

500 2400

(b) Routes passing through chip

Figure 5.11: The impact of a HSS link fault on routing table usage and con-
gestion. Each hexagon represents a single chip, the red line indicates the chip-
to-chip connections broken by the HSS link fault.

tributed SDRAM faults, the HSS link fault model is not representative of real

faults at this fault rate. As such, I conclude that for the fault rates and fault

patterns experienced by real SpiNNaker machines PGS repair has no significant

impact on routing table usage.

As the fault rates climb to more extreme levels, routing table sizes grow

more quickly under the HSS link failure model. This is because HSS link faults

result in a large concentration of routes being re-routed around the same ob-

stacle. Figure 5.11a shows how routing table sizes have doubled around a HSS

link fault in one instance of the experiment. The peaks in routing table use are

concentrated around the tips of the HSS link fault as a result of PGS repair

always taking shortest path routes around obstacles.

5.3.6 Network congestion

To measure the impact of PGS repair on network congestion, two experiments

were performed. In the first, the same model is used as in the routing table
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usage experiments, using a simple metric to estimate network congestion, and

thus throughput. The second experiment attempts to confirm the validity of

the first using SpiNNaker hardware. A synthetic traffic generator running on

SpiNNaker was used to determine network throughput in the presence of sim-

ulated faulty links. Because of the baseline fault rate of 1 % and limited routing

table size in real SpiNNaker hardware, these experiments are more limited in

scope and sample size.

Software model

For each of the network fault and traffic patterns described in the previous

experiment, the number of times each link is used is counted. The number

of routes passing through the most-used link is recorded, giving an indica-

tion of the peak congestion in the network. In general, network throughput

is bounded by the slowest, or in this case, most congested link in the sys-

tem [DT04, chapter 1]making this metric a suitable proxy for peak throughput.

The results are presented in figure 5.12 and follow the same trends as the

results shown for routing table usage. Again, HSS link faults result in routes

with the greatest congestion due to the concentration of routes finding shortest

paths around an obstacle as seen in figure 5.11b.

SpiNNaker experiments

To verify the results produced by the software model, additional experiments

have been carried out using SpiNNaker hardware. In these experiments a syn-

thetic network traffic generator is loaded onto an 8×8 chip SpiNNaker machine

partitioned from a larger SpiNNaker installation. Because these machines are

subsections of larger torus topologies, they lack wrap-around links and form

hexagonal mesh topologies. It was not possible to use larger topologies be-
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Figure 5.12: Violin plots showing the distribution of maximum routes-per-chip
for 1000 random networks.
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cause, at some of the fault rates and distributions considered, the 1024 routing

table entries available in SpiNNaker are insufficient.

The traffic generation software running on SpiNNaker is configured to pro-

duce uniform and 3-centroid traffic patterns with routes generated by the NER

and PGS repair algorithms. Simulated network faults are inserted according

to the HSS link and uniform fault models in addition to those already present.

Due to the baseline fault rate of 1 % these experiments only consider fault rates

above this.

Packets are generated according to a Bernoulli distribution. The rate of

packet injection is gradually increased across all routes until SpiNNaker’s net-

work becomes saturated and packets start being dropped. Once fewer than

99 % of packets arrive at their intended destinations, the network is deemed

to have saturated and the peak throughput achieved prior to saturation is

recorded. This experiment is repeated 100 times, each time with a different

randomly generated network and on a randomly partitioned block of a larger

SpiNNaker system.

Figure 5.13 confirms that, as suggested by the software model, increased

fault rates result in reduced network throughput. HSS link faults also continue

to result in greater performance segregation than uniform faults. Increasing

the fault rate from 1% to 3% halves throughput for HSS link faults while in the

presence of uniform faults throughput is only reduced by 10%.

In the experiments performed on SpiNNaker, the uniform and centroid traf-

fic patterns differ little. This similarity is attributed to the small size of the

network under test resulting in there being little difference between the shape

of the traffic patterns at that scale.

Overall, the results gathered on SpiNNaker confirm the trends suggested

by the software model.
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Figure 5.13: Maximum throughput achieved by 100 random traffic patterns
running on SpiNNaker. The dots show the recorded result (jittered in the ‘X’
direction for clarity) and the lines show the mean.
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5.4 Conclusions

Fault tolerance is a necessity in large-scale systems such as SpiNNaker and

other supercomputers. Thanks to SpiNNaker’s unconventional use of timeout-

based deadlock avoidance, the expensive trade-offs made by routing algo-

rithms for other architectures need not be made. The PGS repair algorithm

introduced in this chapter is able to exploit the high quality routes generated

by existing fault intolerant routing algorithms while handling faults with min-

imal routing and network overhead.

Unlike some other fault tolerant routing algorithms, PGS repair is able to

work around arbitrary fault patterns when a route exists. In the presence of

fault rates of up to 0.1 %, representative of real-world systems, the execution

time, routing table use and network performance overhead introduced were

found to be negligible. In the presence of more extreme fault rates of up

to 1 %, representative of current SpiNNaker machines suffering from an un-

known SDRAM issue, the overhead remains manageable. Overhead increased

by 30 %, 11 % and 44 % for algorithm execution time, routing table usage and

network performance respectively. As a result of these performance character-

istics, PGS repair is a viable option for SpiNNaker applications.

At more extreme fault rates, not anticipated in real-world systems, PGS re-

pair produces routes which are valid but incur much greater congestion and

routing table overhead, particularly when faults are concentrated in one area.

Future extensions to this algorithm might aim to reduce this overhead by pro-

ducing longer and more varied routes around faults to even out load.

The success of the PGS repair algorithm demonstrates that SpiNNaker’s

unconventional deadlock avoidance scheme may warrant greater attention in

future, larger scale systems in which more faults may be present. It may also

be applicable to low-cost systems with less stringent quality controls.
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Chapter 6

Placing applications in large

SpiNNaker machines

In the previous chapter I tackled the problem of fault tolerant route generation

for SpiNNaker’s network. The centroid traffic pattern was used as an approxi-

mation of the expected network traffic generated by ‘well behaved’ neural net-

work simulation software running on SpiNNaker. This traffic pattern exhibits

locality, with most communication occurring between adjacent nodes. In re-

ality, neural simulation applications are not conveniently specified geometri-

cally but rather as abstract graphs of communicating neurons [DBE+08, EA04].

Although neural models often exhibit localised connectivity, this can only be

exploited if they are laid out sensibly within a network. Producing optimal

placements is an NP-complete problem [HS11].

In this chapter I evaluate the effectiveness of simulated annealing [KGV+83]

for placement of SpiNNaker applications. Though simulated annealing fell out

of favour for use in application placement in the 1990s, I argue that it is time

to re-evaluate its suitability for modern placement problems. Looking to the

field of chip design, where circuit placement problems have also been grow-
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ing exponentially in scale for the past few decades, simulated annealing was

considered ideal for placement problems whose sizes are comparable to that

of modern supercomputer placement problems.

In experiments on existing SpiNNaker applications I find that simulated

annealing achieves placement solutions substantially better than contemporary

application placement techniques. In some cases simulated annealing is shown

to make the difference between an application functioning correctly and not

at all. Using larger scale synthetic benchmarks I have also demonstrated that

my proof of concept simulated annealing based placement algorithm scales up

to placement problems containing over one million vertices while achieving

placement quality similar to an optimal placement solution.

I also build upon the work on hexagonal torus topologies earlier in this

thesis to develop an efficient placement cost estimation function for use in the

kernel of the annealing algorithm.

6.1 Placing neural simulations

At its most abstract, the application placement problem is that of finding a

mapping from an application graph to a machine communication graph. Each

vertex in the machine communication graph represents a node in the machine’s

network (e.g. a SpiNNaker chip) and each edge represents a physical connec-

tion between two vertices. Each vertex in the application graph represents

some process which must be placed onto a vertex in the machine communica-

tion graph. (Multi-)edges between vertices in the application graph represent

communication between those vertices (e.g. a flow of multicast network pack-

ets from one vertex to a number of others).

To give a more concrete explanation, consider the following example of

108



how a typical neural model defined using the PyNN or Nengo modelling tools

might be expressed as an application graph. PyNN and Nengo define models in

terms of ‘populations’ of neurons. A population may contain many thousands

of neurons whose parameters are drawn from a user-defined distribution. The

connectivity between neurons are coarsely defined in terms of ‘projections’ be-

tween populations and not on a neuron-by-neuron basis. The precise neuron-

level connectivity is once again defined by a user-defined distribution.

To simulate a neural model as defined above, populations of neurons are

automatically partitioned into ‘subpopulations’ containing a few hundred neu-

rons such that each subpopulation’s computational needs can be met by an

individual SpiNNaker core. Spikes are transmitted via multicast packets which

are multicast to every subpopulation targeted by a projection. Spikes are fil-

tered on arrival for their relevance to neurons in a given subpopulation. This

process simplifies network routing since only one set of routing entries is re-

quired per projection.

This type of application is represented by an application graph in which

each vertex represents a core responsible for simulating the neurons in a par-

ticular subpopulation. Projections are represented by edges between the sub-

populations they connect in the application graph.

A placement algorithm must assign subpopulations (vertices in the applica-

tion graph) to chips (vertices in the machine communication graph) such that

no chip’s cores or SDRAM are over-allocated. A placement algorithm may also

try to ensure that projections (edges in the application graph) are kept as short

as possible within the machine to reduce the load on the network.

In principle it is possible to place neural simulations at a finer granular-

ity. For example, populations could be broken into individual neurons and

edges might connect on a neuron-by-neuron basis. Though the finer granular-
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ity might allow more efficient packing of neurons into SpiNNaker’s network

it dramatically increases the problem size. As is shown later in this chapter,

increased problem sizes could lead to much longer placement algorithm run-

times.

6.2 Related work

Attempts to address the problem of placing applications in supercomputer net-

works have utilised a variety of approaches ranging from simple greedy algo-

rithms to sophisticated combinatorial optimisation techniques [JMT14]. In the

parallel field of digital circuit placement for chip and FPGA design, placement

algorithms have also received intense study. In this section I survey the work

carried out on application placement before exploring chip design techniques

to see what can be learnt from this perhaps more advanced field.

In the application placement literature, the placement problem is often re-

ferred to by the umbrella term ‘mapping’. Unfortunately, ‘mapping’ is often

used more broadly to include other tasks such as routing and application parti-

tioning. To avoid ambiguity I use the term ‘placement’, as preferred by the chip

and FPGA design communities, to refer specifically to the problem of assign-

ing vertices in an application’s communication graph to nodes in a machine’s

connectivity graph: the focus of this chapter.

6.2.1 Application placement algorithms

Below I consider several popular techniques employed by existing supercom-

puter applications ranging from application-specific manual placement to so-

phisticated general purpose algorithms.
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Figure 6.1: Example partitioning of a 3D volume to fit into a supercomputer
with a 3× 4× 2 torus or mesh topology.

Application-specific approaches (manual placement)

In certain applications such as finite element modelling [BMBL+13], a prob-

lem’s structure defines a ‘natural’ placement of the problem onto the target

machine. For example when simulating a 3D volume in a supercomputer with

a 3 × 4 × 2 3D torus or mesh topology network, the modelled volume might

be divided as in figure 6.1. Each cuboid in the model is then assigned to the

corresponding node in the network topology.

Unfortunately, this technique only applies to a very narrow class of appli-

cations and is not applicable to many of the types of neural models SpiNNaker

is designed to run.

Sequential placement

In the case where a placement solution is non-obvious, one of the simplest and

most popular strategies is to apply a simple sequential placement algorithm.

Sequential placement greedily places the vertices of an application’s commu-

nication graph onto nodes. By carefully selecting the order in which vertices

are picked and nodes assigned in the target architecture, this algorithm can

produce reasonable quality placements.

Supercomputer management software such as SLURM [YJG03] and Blue

Gene’s system software [Gil14] by default naïvely iterate over vertices in an
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(a) Row-order (b) Alternating (c) Hilbert curve

Figure 6.2: Space-filling curves in 2D mesh and torus topologies.

application communication graph in the order in which they are defined by the

application. The nodes in the target machine are iterated over using a simple

space-filling curve. Figure 6.2 illustrates three popular space filling curves.

The row-order (figure 6.2a) and alternating (figure 6.2b) curves illustrate

2D versions of the default node assignment orders provided by the SLURM

and BlueGene systems. The Cray extensions to SLURM software provide a

Hilbert curve [Hil91] node assignment order (figure 6.2c). The Hilbert curve

specifically attempts to maintain the property that points that are close to-

gether along the length of the curve are also close together in the 2D map-

ping [MJFS01, Zum99]. Since the vertex iteration order is also chosen such

that connected vertices tend to be closer together, this property may lead to

improved placement solutions.

Figure 6.3 illustrates how the distance between locations along each space

filling curve map to distances in the resulting 2D space. Both the row-order

and alternating orderings result in distances oscillating between being closer

and spread out in 2D space, just as the space filling curves oscillate from side-

to-side. For the Hilbert curve, however, distances grow more monotonically1

1The growth in distance for Hilbert curves may appear slightly irregular but in fact forms a
fractal as a consequence of the fractal construction of the Hilbert curve itself.
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Figure 6.3: Relationship between distance along a space filling curve and be-
tween the 2D positions assigned. Results shown for Manhattan distances in a
32× 32 2D mesh.

and at smaller 1D distances, 2D distances are often lower than in other space

filling curves.

A number of algorithms have been proposed for automatically selecting

good vertex and chip iteration orders, typically using a graph-traversal based

heuristic. An example typical of this type of technique is ‘graph similarity based

mapping’ described by Hoefler and Snir [HS11]. This algorithm exploits the

Reverse Cuthill-McKee (RCM) algorithm [CM69] to select a linear ordering of

vertices in which connected vertices tend to appear close together. Internally,

the RCM algorithm uses a breadth-first-search-like algorithm to order vertices.

The RCM algorithm was originally designed as a tool for reducing the ‘band-

width’ of matrices to improve the performance of linear algebra techniques. A

matrix’s bandwidth is the width of the strip of non-zero elements on its di-

agonal. Figure 6.4 illustrates how a sparse matrix is permuted by the RCM

algorithm to produce a matrix with lower bandwidth. This technique may be

applied to a graph by representing the graph as an adjacency matrix, M , where

113



(a) Original permutation (b) RCM permutation

Figure 6.4: Adjacency matrix representation of a graph before and after per-
mutation by the RCM algorithm.

Mi, j is w if node i is connected by an edge to node j with weight w and 0 other-

wise. When a graph’s adjacency matrix is permuted by the RCM algorithm, the

connectivity of the graph remains unchanged but the vertex ordering changes.

The ordering of vertices in a low-bandwidth adjacency matrix tends to keep

connected vertices closer together in the ordering, making the ordering well

suited for use with a sequential placement algorithm.

In small-scale and densely connected applications such as early neural sim-

ulations running on prototype SpiNNaker machines [GRDF10], these tech-

niques have proven sufficient. As my experiments demonstrate later, however,

sequential placement is insufficient for some SpiNNaker applications.

Simulated annealing

In the academic community, a number of attempts have been made to use

sophisticated optimisation algorithms for the placement of applications. In

1985, Steele [Ste85] first proposed the use of simulated annealing for placing

applications in the 6D torus topology of the 64 node ‘Caltech Cosmic Cube’.

The proposed algorithm is described below.

Initially, the vertices in the application’s communication graph are assigned
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randomly to nodes in the machine. Two vertices are then chosen at random and

swapped. If this swap reduces the ‘cost’ of the placement (as defined later), the

vertices are kept in their new locations. If the cost increases as a result of the

swap, the vertices are moved back to their original locations with a probability

dependent on the magnitude of the cost increase and the current ‘temperature’.

The process of picking and swapping vertices is repeated many times while

the temperature is gradually reduced. Initially the temperature is set to a large

value causing most swaps to be accepted, regardless of their cost. As the algo-

rithm proceeds, the temperature is reduced until only swaps resulting in cost

reductions are accepted. By initially accepting detrimental swaps, the algo-

rithm typically avoids becoming trapped in local minima. Towards the end of

the algorithm’s execution the solution is presumed to be close to the global

minimum-cost solution and so few or no detrimental swaps are accepted.

The cost of a particular placement is defined by some expression approx-

imating the quality of the placement with better quality placements having

lower costs. In Steele’s work, the cost of a placement is computed by finding

the shortest path routes between all connected vertices using Dijkstra’s algo-

rithm. Rather than repeating this relatively expensive computation after each

swap, Steele’s implementation updated the previously calculated cost by re-

computing only the routes connecting the swapped vertices.

The number of swaps to attempt and the rate at which the temperature is

changed is dictated by an ‘annealing schedule’ and can have a major impact on

the execution time of the algorithm and the quality of the placement solution.

I describe one such schedule in detail later in this chapter when describing my

own simulated annealing based application placement algorithm.

Towards the end of the 1980s, application placement appeared to be be-

coming less important as supercomputer network architectures improved, ap-
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pearing to render computationally intensive placement algorithms unneces-

sary [Dal87]. In addition, network and problem sizes remained small: so small

in fact that exact linear-programming based placement algorithms remained a

meaningful point of comparison in application placement research [XH91]. In

this environment, simpler sequential placement algorithms gained favour over

more computationally expensive algorithms such as simulated annealing.

In contemporary application placement algorithms, ‘low temperature’ sim-

ulated annealing algorithms are occasionally employed as a post-processing

step for other placement algorithms [HS11]. Other heuristics are used to gen-

erate an initial placement solution.

Recursive partitioning

As problem and machine sizes have grown and network utilisation has once

again become an important factor in application performance [NPMA09], more

complex optimisation algorithms have reappeared in the literature. One popu-

lar approach employs graph partitioning algorithms such as METIS [KK98] to

perform recursive bipartitioning based placement [PSJ+14, HS11, PR96]. This

placement process is illustrated in figure 6.5.

In the first step, the application communication graph and machine connec-

tivity graph are each bipartitioned such that the number of edges cut by the

partitions is minimised while the size of each partition remains similar. Each

half of the communication graph is associated with one of the halves of the

machine connectivity graph. The partitioning process is then repeated recur-

sively, further partitioning the application and machine graphs. The process

halts when either graph can no longer be partitioned. The vertices in the com-

munication graph are then placed on their associated node in the connectivity

graph.

116



1

2

3

4

5 6

a b

c d

Start

Key:

Partition
Process
Node

Resulting Placement:

a b

c d

1

2

4

3 6

5

1

2

3

a

c

1

2

a

3

c

4

5 6

b

d

4

b

5 6

d

Figure 6.5: Illustration of application placement by recursive partitioning.
Each node has the capacity to hold two vertices.
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Unfortunately, recursive partitioning-based techniques are known to per-

form sub-optimally when the number of nodes is not a power of two [ST97].

In addition, placement problems are often subject to multiple orthogonal con-

straints. For example, a vertex in an application’s communication graph may

consume a certain number of processors and some quantity of SDRAM. Parti-

tioning algorithms require a metric with which the size of each partition may

be measured to ensure that the two halves are balanced. When multiple or-

thogonal resources exist, a single metric is insufficient to express this require-

ment. As a result, partitioning algorithms are of limited use in applications

whose placement is subject to several orthogonal requirements, such as neural

modelling software on SpiNNaker.

Topology-specific approaches

Other approaches employ other optimisation techniques that are specialised for

use with applications and networks with specific connectivity patterns, for ex-

ample, trees [JMT14, Trä02]. Unfortunately, these algorithms cater neither for

SpiNNaker’s hexagonal torus topology nor the range of communication topolo-

gies found in its target applications.

6.2.2 Circuit placement algorithms

The circuit placement problem in chip and FPGA design is similar to that of ap-

plication placement: communicating components must be assigned positions

in a chip so that wiring congestion is controlled.

Following the march of Moore’s ‘Law’ [Moo75], the number of components

in modern chips and FPGAs has been increasing at an exponential rate simi-

lar to that of core counts of supercomputers (see figure 6.6). Today, in 2016,

the largest chips contain billions of transistors, compared with millions of pro-
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Figure 6.6: Historical processor (core) counts for the ‘Top500’ supercomputer
installations. The line shows the mean number of processsors and grey ribbon
indicates the range. Data reported by the ‘Top500 List’ [Meu16].

cessors found in supercomputers. In terms of the raw number of processors,

the world’s largest supercomputers are at a scale comparable with the number

of components in chips designed fifteen years ago. The mean size of today’s

‘Top 500’ supercomputers is somewhat smaller still, similar in scale to chips

designed over 20 years ago.

In view of of the similarity of the chip and application placement problems

and the relative lead the field of chip placement has in terms of placement size,

it appears reasonable to look to chip placement to suggest future application

placement techniques.

The popular approaches to circuit placement can be grouped into three

broad categories [KLMH11]:

Partitioning-based As in application placement, the circuit is recursively par-

titioned to assign related components to areas of a chip.

Analytical These algorithms approximate the placement problem as a simpler

problem to which exact solutions can be computed inexpensively.
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Simulated annealing As in application placement, simulated annealing algo-

rithms selectively apply random permutations to a placement causing

placement quality to improve.

I briefly introduce each technique before assessing its suitability for use in

application placement in SpiNNaker. The interested reader is encouraged to

refer to ‘VLSI physical design: from graph partitioning to timing closure’ by

Kahng et al. [KLMH11] for a more thorough introduction to the field of circuit

placement and the techniques that I summarise here.

Partitioning-based placement

Partitioning based placement has a long history with early examples dating

back to the 1970s [Bre77]. As in recursive partitioning based application place-

ment algorithms, the input circuit is partitioned alongside the target topology

to assign placements. Again, graph partitioning software such as METIS [KK98]

is used to partition the circuits but since the target topology is the 2D surface of

a chip, simple geometric partitioning is used to divide the surface of the chip.

More recent partitioning based placers such as Capo [RPA+05] employ addi-

tional heuristics such as ‘terminal propagation’ where connections between ad-

jacent partitions are considered to attempt to align components on either side

of a cut.

Unfortunately, as with its use in application placement, these partitioning

techniques are not ideal. Consequently, partitioning based placement tech-

niques have largely been superseded in chip design [MHK15].

Analytical placement

The current generation of placement algorithms attempt to approximate place-

ment problems as simpler problems with cheaply computed, closed-form solu-
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Figure 6.7: An optimal 1D quadratic placement solution for two fixed vertices
( f1 and f2), two movable vertices (m1 and m2) and three weighted edges.

tions. One of the common approximations used by these approaches is mod-

elling the components to be placed as point-like objects. As the number of com-

ponents in digital circuits has grown, this approximation has also improved,

resulting in analytical placement becoming the most popular approach in use

today [MHK15].

One popular analytical technique is ‘quadratic placement’ [KLMH11, SSJ08].

In this algorithm the components in a circuit are approximated as infinitesi-

mal objects with wires between them modelled as spring-like forces. Unlike

physical springs, which obey Hooke’s law, the force exerted by a connection is

proportional to the square of the distance between its terminals.

To illustrate this approach, consider the simple one-dimensional placement

problem presented in figure 6.7. In the quadratic placement technique, the cost

of a placement is modelled as the weighted sum of the squares of the distances

between connected components. In this case this yields the expression:

Cost= 1( f1 −m1)
2 + 2(m1 −m2)

2 + 1(m2 − f2)
2

Where f1, f2, m1 and m2 represent the positions of the four components. An

optimal placement is one which minimises this function. To find values which

minimise a quadratic, the equation is differentiated yielding a system of linear

equations. This system of equations is then solved to find the positions of the

movable vertices which minimise the quadratic cost function.
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Quadratic placement is extended to two or more dimensions by simply ap-

plying the process for each dimension separately. Unfortunately, a straight-

forward extension to non-Euclidean geometries such as hexagonal toruses is

non-trivial. For example, quadratic placement relies on cost increasing mono-

tonically as two points are moved in opposite directions, a property which does

not apply to torus topologies. This same problem also applies to the approxi-

mations used by other analytical techniques.

An additional challenge posed by quadratic placement is that some vertices’

locations must be fixed to provide a ‘spreading’ force preventing degenerate

solutions where all vertices are given the same coordinates. In circuit place-

ment, the locations of ‘pads’ used to connect components in a circuit to the

outside world are typically fixed and provide convenient anchors during place-

ment. Algorithms such as SimPL [KLM12] employ a combination of analytical

techniques to add virtual ‘anchor’ components which prevent degenerate solu-

tions from forming. Unfortunately, this approach further adds to the difficulty

of porting the technique to non-Euclidean geometries. These techniques also

work better for larger circuit sizes, making analytical techniques non-ideal for

today’s relatively small (by chip placement standards) supercomputer place-

ment problems.

Simulated annealing

Simulated annealing was originally developed specifically to be applied to

the problem of circuit placement [KGV+83]. Throughout the late 1980s and

early 1990s, simulated annealing was the dominant circuit placement tech-

nique when the first chips breaching one million components appeared [BR97,

SSV85]. Due to the increased effectiveness of quadratic placement as prob-

lems grew beyond tens of millions of nodes, simulated annealing has fallen
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out of fashion as a circuit placement technique. Despite this, various efforts

continue to be made to enhance the simulated annealing process’ performance

by attempting to partition the input problem into several independent prob-

lems [CBZ10, HNCB00] and parallelise the algorithm [LBP08].

Simulated annealing notably remains popular as a stand-alone placement

tool in niche applications where flexibility is important. For example, the flexi-

ble, multi-FPGA, Verilog-To-Routing (VTR) software suite [LGW+14] and Open

Source Arachne-PNR [Cse16] use simulated annealing to produce placements

within multiple FPGA architectures.

Since application placement problems are only now beginning to reach the

scales at which simulated annealing became popular in circuit design, it is

likely to be a good choice for application placement over the next few years.

In addition, simulated annealing’s flexibility potentially makes it a good choice

to handle the wide variety of architectures in use by modern supercomputers.

6.3 Placement by simulated annealing

As we have seen, existing software placement techniques are not well suited

to the large-scale applications projected for the SpiNNaker architecture. In

the field of circuit placement, various algorithms have been proposed which

are explicitly designed to cope with placement problems of similar or larger

sizes. While analytical placement algorithms can produce high quality place-

ment solutions for extremely large problems, the current – and near future –

generations of application placement problems are still too small. Simulated

annealing, however, has a proven record in circuit design at the scale of mod-

ern application placement problems. In addition, the flexibility of simulated

annealing makes it easy to adapt to new network architectures and, in this
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case, SpiNNaker’s hexagonal torus topology.

To demonstrate the suitability of simulated annealing for modern applica-

tions, I have implemented a simple simulated annealing based placer for the

SpiNNaker architecture. Compared with previous simulated annealing algo-

rithms for application placement, this algorithm is intended to cope with much

larger problem instances and draws inspiration from the techniques used by

circuit placement algorithms.

In contrast with circuit placement algorithms built on simulated annealing,

my implementation represents the problem differently to handle the nuances

of application placement. In circuit placement, for example, exactly one com-

ponent may be placed in a given space while in application placement, several

applications may be placed on the same node (e.g. on different cores, or as

separate processes). These differences, along with details of the cost functions

and annealing schedule used are described in the remainder of this section.

6.3.1 Representation

A typical SpiNNaker application is made up of a number of processes which are

executed by individual processor cores, consuming some quantity of on-chip

resources such as shared SDRAM. These processes communicate via multicast

packets which are sent via SpiNNaker’s network.

In the proposed placement algorithm, an application is defined as a graph

where the ‘vertices’ represent the processes as defined above and the multi-

edges, referred to here as ‘nets’, represent directed flows of multicast packets

from one vertex to several others. Each vertex consumes some quantity of on-

chip resources (typically one core and a number of bytes of on-chip RAM). The

placement algorithm must assign each vertex to a specific SpiNNaker chip (i.e.

a node in SpiNNaker’s network) such that the resources available on that chip
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are not exhausted.

An additional soft constraint is imposed: the placement algorithm should

attempt to place connected vertices as close together as possible. Nets may be

annotated with a ‘weight’ which provides a hint to the placer indicating the

relative importance of a particular net. A larger weight indicates the placer

should try harder to keep the vertices it connects closer together. Because this

constraint is soft, the placer should make a ‘best effort’ attempt to obey the

constraint but is not obliged to achieve a perfect placement solution.

The SpiNNaker topology is represented as a 2D hexagonal torus topology

with homogeneous inter-chip links. Each chip is defined to have a certain

quantity of each resource consumed by vertices. For example, SpiNNaker chips

nominally contain 17 application processors and 128 MB of on-chip SDRAM.

Some chips, however, may have fewer working cores while others may be non-

functional, thus effectively having no resources.

Additional constraints

Real-world applications may also apply some additional constraints on place-

ment solutions. Two such constraints are considered here.

Some applications require that certain vertices are always placed on a spe-

cific chip, for example to enable communication with an external device at-

tached directly to a SpiNNaker chip. The placement algorithm must obey this

requirement, treating constrained vertices as a special case.

In other applications, in-memory communication may be required between

certain vertices and therefore these vertices must always be placed on the same

chip. This constraint may be implemented by preprocessing the application

graph such that constrained vertices are merged into a single vertex whose

resource requirements are the sum of the original vertices.
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6.3.2 Algorithm description

As outlined earlier, simulated annealing swaps pairs of vertices keeping bene-

ficial swaps as well as some proportion of detrimental swaps. In the remainder

of this section I describe the exact processes by which vertices are selected and

swapped. I also consider the choice of cost function for use with a hexagonal

torus topology before specifying the annealing schedule used.

Generating candidate swaps

Simulated annealing based placement schemes move vertices by swapping ran-

dom pairs of vertices. In application placement problems, where vertices may

differ in resource requirements, it is not always possible to swap arbitrary pairs

of vertices. For example, if a ‘larger’ vertex is swapped with a ‘smaller’ one it

may not fit in the space left behind by the smaller vertex.

Rather than blindly picking pairs of vertices to swap and abandoning those

which don’t fit, the process described in figure 6.8 is used. This swapping

process reduces the likelihood that swaps involving larger vertices are aborted

when the vertices on the target chip are individually too small to free up enough

room to complete a swap.

Cost function

For each swap made by the algorithm, the change in the placement’s ‘cost’ must

also be determined. In principle, the ideal cost function should accurately pre-

dict network congestion by performing routing and modelling the resulting

network traffic. This approach was used by early application placement algo-

rithms [Ste85] but incurs a large performance overhead. Since the simulated

annealing algorithm must re-evaluate the cost function before and after ev-
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(a) A random vertex, va is selected along with a random target chip (right).

va vb vc

(b) Vertex va is removed from its chip. Vertices are removed from the target chip until
enough space is available to fit va. In this example, vertices vb and vc are removed.

vb vc

va

(c) Vertex va is swapped with vertices vb and vc if there is room. If there is not enough
room the vertices are returned to their original locations and the swap is aborted.

Figure 6.8: Selecting vertices to swap.
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ery swap, a cost function which is slow to evaluate can result in unacceptable

execution time for the algorithm as a whole.

A common alternative to measuring congestion directly used by many cir-

cuit placement algorithms is to approximate the network resources consumed.

In the case of multicast nets, rather than computing efficient multicast routes,

an estimate is made based on the relative locations of the vertices. Two popular

techniques are described below [KLMH11, §4.2].

In the star model, the cost of a net is found by summing the distances from

the net’s source vertex to each sink vertex in turn as illustrated in figure 6.9a.

In a hexagonal mesh and torus topology, the distance between two points can

be cheaply determined (as described in chapter 4) making this cost function

inexpensive to compute. This model will overestimate network resource us-

age for nets with more than two vertices since, in practice, multicast routing

algorithms will tend to generate routes which share some hops.

In the Half-Perimeter Wire Length (HPWL) model, a bounding box is drawn

around all of the vertices connected by the net and the cost of the net is esti-

mated as half of the perimeter of this bounding box. In a non-hexagonal torus

or mesh topology, the HPWL model exactly matches the length of an optimal

multicast route for nets with two or three vertices. In nets with a greater num-

ber of vertices, HPWL underestimates the length of an optimal route by a factor

of
p

n for nets with n vertices [CH79].

The three non-orthogonal axes of hexagonal mesh and torus networks mean

that there are several ways in which a bounding box may be defined. Specif-

ically, the bounding box may extend along any pair of axes resulting in three

possible bounding boxes and, thus, three HPWL values for any net as illustrated

in figures 6.9b, 6.9c and 6.9d. The relative sizes of these three bounding boxes

varies depending on the specific arrangement of vertices in the net, meaning
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Figure 6.9: Net cost estimation functions for hexagonal toruses and meshes.

that no single bounding box is appropriate for all situations.

A single HPWL-like metric for hexagonal toruses can be produced by tak-

ing the minimum of the half-perimeters of the three different bounding boxes

defined for a hexagonal toruses. Like the HPWL function for non-hexagonal

toruses, this ‘hexagonal HPWL’ cost function exactly predicts the length of op-

timal routes for all nets with two or three vertices.

An experiment was performed to determine which cost function provides

the most accurate results. 50000 nets connecting between two and thirty uni-

form randomly selected vertices in a 30 × 30 hexagonal torus topology were

generated. The difference between each cost function and the ‘true’ cost of a

route generated by the NER routing algorithm is plotted in figure 6.10.

These plots confirm that the cost is overestimated by the star model and un-
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Figure 6.10: Estimation error of various cost functions compared with routing
solutions. Positive and negative errors are equally bad. Y-axis limit clipped for
clarity. The error of the star cost function grows linearly with fan out beyond
the axis limit.

derestimated by both the hexagonal HPWL and HPWLx y models. The error for

the star model grew more quickly than both HPWL variants. Both hexagonal

HPWL and HPWLx y perform similarly though, as expected, hexagonal HPWL

is more accurate for low fan out nets.

To attempt to compensate for the theoretical
p

n error in the HPWL cost,

the Hexagonal HPWL and HPWLx y scaled by
p

n are also shown. While this

correction does not eliminate the error of these functions, it does reduce it. This

is probably because the error only tends towards
p

n for very large n [CH79]

and also because the error is being computed against a realistic, non-optimal

routing algorithm.

On the basis of these results, the star cost function is rejected on the grounds

that it produces the least accurate cost estimates. Though the
p

n-scaled hexag-

onal HPWL cost function produces the smallest error in general, its execution

time is three times greater than
p

n-scaled HPWLx y whose accuracy is very

similar. Since the execution speed of the cost function has a significant im-
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pact on the execution time of the simulated annealing algorithm, I have used

the
p

n-scaled HPWLx y net cost function as a trade-off between accuracy and

performance in this work.

Annealing schedule and acceptance function

The annealing schedule and acceptance function described below are taken

directly from that used by the VPR FPGA placement software [BR97]. Due to a

combination of time constraints and this schedule being known to work well,

alternatives have not been considered in this thesis.

Starting with an initial random (but valid) placement, N swaps are per-

formed to gather statistics about the problem, where N is the number of ver-

tices in the graph. The initial annealing temperature, T , is set to 20 times the

standard deviation of the cost changes produced by the N swaps.

The annealing algorithm now performs a round of E×N 1.33 random swaps

where E is a tunable parameter controlling ‘effort’. In all experiments reported

in this thesis, E is set to 1. Increasing E roughly linearly increases execution

time for diminishing returns in placement quality improvements. Each random

swap is accepted with a probability:

Paccept =







1 if ∆C ≤ 0

e−∆C/T otherwise

Where∆C is the change in cost resulting from the swap and e is Euler’s number.

This probability is 1 for any beneficial or neutral change. Small cost increases

are accepted with a greater probability than large cost increases. At higher

temperatures, larger cost increases are accepted with a greater probability than

at lower temperatures.
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After a round of E×N 1.33 of swaps has been performed, the temperature is

updated according to Tnew = αTold where α is determined thus:

α=



































0.50 if Raccept > 0.96

0.90 if 0.80< Raccept ≤ 0.96

0.95 if 0.15< Raccept ≤ 0.80

0.80 if Raccept ≤ 0.15

Where Raccept is the proportion of swaps which were accepted by the algo-

rithm in the previous round. This approach attempts to maximise the time

spent at temperatures in which some, but not all, swaps are accepted since

this is claimed to be when the greatest improvements to placement quality are

made [BR97].

The algorithm terminates when T < 0.005C/Nnets where C is the current cost

of the placement solution and Nnets is the number of nets in the placement

problem.

Towards the end of placement, the solution is likely to be close to the (ide-

ally global) minimum cost. In already-good solutions it is likely that swapping

vertices between nodes which are far apart in the network will result in large

cost increases. As a result, towards the end of the anneal, swaps are only

considered over a limited distance, Dlimit. By limiting the distance over which

swaps occur, the proportion of swaps which are likely to be accepted is also

increased. Dlimit is initially set such that all possible swaps are considered. It is

then updated according to the following formula at the end of each round of

swaps:

Dnew
limit =max(1, Dold

limit(1− 0.44+ Raccept))

This rule attempts to limit swap distance such that the proportion of accepted
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swaps does not drop below 0.44 for as long as possible, that is, such that some,

but not all, swaps are accepted for as long as possible.

6.4 Evaluation

A good placement algorithm should produce placements which result in effi-

cient use of network resources. In addition, in SpiNNaker, routing table usage

is an important concern since routing table entries are a finite resource. Fi-

nally, the execution time of the placement algorithm itself is relevant since,

especially in applications where experiments are of short duration, placement

execution time should not dominate application execution time.

In this evaluation, the simulated annealing based placement algorithm in-

troduced in this chapter is compared with a number of baseline algorithms

representative of existing application placement techniques. I consider a com-

bination of existing SpiNNaker applications and larger-scale synthetic bench-

marks representative of possible future applications. I compare the perfor-

mance of the placement algorithms under consideration using a combination

of software models and confirm these results using experiments running on

SpiNNaker hardware.

6.4.1 Baseline algorithms

To provide a baseline against which to compare my simulated annealing based

placement algorithm, three other placement algorithms are considered:

Hilbert The sequential placement algorithm used by existing SpiNNaker soft-

ware and similar to the algorithm provided by Cray’s extensions to SLURM.

This places vertices along a Hilbert curve path in breadth-first traversal

order of the application communication graph.
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RCM The ‘graph similarity based mapping’ algorithm described by Hoefler and

Snir [HS11]. This assigns vertices and fills chips in Reverse Cuthill McKee

order [CM69].

Random A random placement algorithm which places vertices uniform-randomly

with no regard for connectivity. This algorithm serves as an experimental

control.

6.4.2 Existing applications

To verify the suitability of simulated annealing based placement for existing

SpiNNaker software, a representative selection of benchmark applications has

been collected. The communication graphs for these benchmark applications

are then used to compare the performance of each placement algorithm against

a set of simple performance metrics. In addition, a subset of the applications

were modified to use each of the routing algorithms under test and changes in

their performance are reported.

Table 6.1 summarises each of the benchmarks. While these applications are

much smaller than those expected to run on new, large-scale SpiNNaker sys-

tems, these benchmarks provide a meaningful indicator of the types of connec-

tivity which might be present in future networks. Further experiments using

synthetic benchmarks, described later, will extend this study to applications at

the scale SpiNNaker is designed to operate at.

Communication graph placement performance

Each benchmark’s connectivity graph was placed on into an idealised 13 ×
13 hexagonal torus topology and then routed using the NER algorithm. This

process was repeated 1000 times with various performance metrics recorded
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Name Vertices Nets Fan out Notes

Microcircuit 1338 760 94.50
(98)

Spiking neural model of a
cortical microcircuit [PD14]
implemented in ‘PyNN SpiN-
Naker’ [KTK+16].

Sudoku 299 109 15.86
(21)

Spiking neural model which
solves Sudoku puzzles im-
plemented in ‘PyNN SpiN-
Naker’ [KTK+16].

Card-Sorting 469 919 1.06
(3)

Spiking neural model which
solves the Wisconsin card
sorting test [Aub15] im-
plemented in ‘Nengo SpiN-
Naker’ [MKSF15].

CConv 2560 12 020 3.48
(17)

Spiking neural model which
performs 512D circular convo-
lution [Eli13] implemented in
‘Nengo SpiNNaker’ [MKSF15].
A key component in the Spaun
neural model [ESC+12].

Parse 855 3046 3.26
(64)

Spiking neural model which
performs simple sentence pars-
ing implemented in ‘Nengo
SpiNNaker’ [MKSF15].

MU0 1084 1084 1.38
(3)

A digital circuit simulation of
the data path of a simple com-
puter processor [Pau16] imple-
mented using the digital circuit
simulator example program in-
cluded with ‘Rig’ [HMK15].

Table 6.1: SpiNNaker application benchmarks. ‘Fan out’ refers to the fan out
of the nets in the communication graph and not necessarily the total fan outs
of individual vertices. Both the mean and (maximum) fan out are shown.
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which are analysed below. Experiments were spread across a cluster of idle

workstations with 3.10 GHz Intel Core-i5-2400 CPUs and 8 GB of RAM.

To measure the ‘quality’ of the placement solutions generated, the total

number of hops taken by the generated routes is compared in figure 6.11a. A

better placement solution should require fewer hops and, as an indirect result,

achieve lower network congestion. Since the hop counts vary greatly between

benchmarks, these results are normalised against the number of hops produced

by the Hilbert placer, the placement algorithm used by default in pre-existing

SpiNNaker software.

In the majority of benchmarks, the simulated annealing based placement

algorithm achieves the greatest reduction in hop counts. The RCM and Ran-

dom placement algorithms both consistently produce results similar to or worse

than those of the Hilbert placement algorithm.

Unlike the other benchmarks, the ‘Microcircuit’ benchmark notably shows

little difference in placement quality amongst the four algorithms. This may be

explained by the fact that this network is largely all-to-all connected meaning

that a placement function can do little more than place the vertices tightly

together to improve quality.

The second metric considered is the number of routing table entries re-

quired in the worst case after placement and is shown in figure 6.11b. As is the

practice of the applications modelled by these benchmarks, routing tables are

compressed by the ‘Ordered Covering’ algorithm [MHG16] and default routing

is used when possible.

Though many of the benchmarks do not run out of routing entries when

placed with any of the algorithms, the ‘CConv’ network notably runs out of ta-

ble entries when placed by all but the simulated annealing and random place-

ment algorithms. This can be attributed to the large number of nets the ‘CConv’
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Figure 6.11: Application benchmark placement performance.
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network uses by comparison with other models.

The random placement algorithm can often achieve competitive routing

table sizes because it tends to spread out vertices over the entire machine. Be-

cause longer routes don’t always result in more routing entries being required

(thanks to default routing), this also results in the routing entries being spread

more thinly across the whole system. In these experiments the majority of

benchmarks do not fill the 13× 13 hexagonal torus topology supplied, mean-

ing that some networks can become spread out by the random placer. Though

routing table usage drops, network utilisation, and potentially congestion, in-

creases.

The third metric considered is the execution time of the placement algo-

rithm, shown in figure 6.11c. The simulated annealing algorithm requires

much longer execution times than the baseline placement algorithms consid-

ered; in several cases an order of magnitude longer. This is unsurprising since

the baseline algorithms are comparatively simplistic greedy algorithms. In all

applications considered, however, the execution time of the simulated anneal-

ing placement algorithm is multiple orders of magnitude shorter than other

processes involved in loading executing the simulation on SpiNNaker.

The ‘Microcircuit’ benchmark is notable in that all of the placement algo-

rithms take a long time to execute compared with the other benchmarks. This

longer execution time can be attributed to a preprocessing step shared by every

placement algorithm’s implementation which handles ‘same chip’ constraints.

Unlike the other application graphs, the ‘Microcircuit’ communication graph

makes liberal use of these constraints and, due to the naïve implementation of

the preprocessing step, all of the placement algorithms are slowed down by a

constant amount.
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Impact of placement on ‘PyNN SpiNNaker’

The ‘PyNN SpiNNaker’ based neural models behind the ‘Microcircuit’ and ‘Su-

doku’ benchmarks are compute bound and produce relatively small quantities

of network traffic. Configuring ‘PyNN SpiNNaker’ to use each of the four place-

ment algorithms under consideration did not result in any changes in applica-

tion performance.

It is anticipated that future models built on PyNN SpiNNaker will grow in

size and, unlike the Microcircuit model, not feature all-to-all connectivity and

therefore begin to benefit from good quality placement.

Impact of placement on ‘Nengo SpiNNaker’

The ‘Nengo SpiNNaker’ based neural simulations behind the ‘CConv’ and ‘Parse’

benchmark were run 100 times using each of the placement algorithms under

test. For each run, the number of packets dropped by SpiNNaker during the ap-

plication’s execution was recorded and the results are presented in figure 6.12.

Because the traffic produced by these simulations is multicast, it is not possible

to sensibly normalise these packet counts against the rate of packets being pro-

duced2 and so absolute numbers are given. Unfortunately the ‘Card Sorting’

neural model was not available for comparison in these experiments.

70% of simulations of the ‘CConv’ neural model resulted in fewer than 100

packets being dropped per second when placed by simulated annealing and

41% of runs dropped no packets at all. In 95% of runs SpiNNaker’s routing

tables were not exhausted. In the ‘Parse’ benchmark, 93% of simulations did

not drop any packets when placed by simulated annealing and every simulation

run’s routing entries fit into SpiNNaker’s routing tables.

2For example, one packet may be dropped in several places on its way to its many destina-
tions.
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Figure 6.12: Rates of packet dropping in Nengo SpiNNaker simulations with
different placements. Results shown jittered in the ‘X’ direction for clarity.

In both neural models, placement by the baseline placement algorithms

resulted in fatal quantities of packets being dropped in most runs, rendering

the baseline placement algorithms unsuitable for use with these models. In

addition, for the ‘CConv’ model only 58%, 7% and 9% of placement solutions

resulted in routes which fit in SpiNNaker’s routing tables, for the Hilbert, RCM

and Random placers respectively.

In these experiments, the simulated annealing algorithm reliably produces

the best quality placements, often making the difference between simulations

working or not. Unfortunately, the results show that the algorithm will, on rare

occasions, produce unusable placements in terms of either network congestion

or routing table use. A possible explanation for this behaviour is explored in

§7.2.3 and possible solutions discussed. The experiments performed make use

of irregularly-shaped hexagonal mesh topologies cut from larger SpiNNaker

machines. The irregularities in the edges of the topology are hypothesised to

be producing the same negative effect on route quality as high rates of HSS

link faults noted in §5.3. Simulated annealing occasionally places some parts
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of the network around obstructions at the edges of the network which may

explain these infrequent failures.

Impact of placement on the ‘Circuit Simulator’

The ‘MU0’ CPU simulation built using the ‘circuit simulator’ SpiNNaker appli-

cation produces very little traffic in its default mode of operation and functions

correctly when placed by all four placement algorithms.

The circuit simulator may be configured to run at higher speeds, directly

increasing the density of network traffic generated. To judge the relative qual-

ity of all four placement algorithms the simulation was executed at a range of

different speeds. By determining when or if the network becomes saturated,

the relative placement quality may be compared.

When placed by the simulated annealing algorithm, at 400× the default

simulation speed, the simulator becomes CPU bound but SpiNNaker’s network

does not become saturated or drop packets. By contrast, when placed by the

baseline algorithms, the application saturates the network and drops packets

before becoming CPU bound. Figure 6.13 shows the distribution of simulation

speeds achieved for 100 runs of the simulator placed by each baseline placer.

As in many of the other benchmarks, the Hilbert placer performs better than

the Random and RCM placers with the RCM placer producing the placements

which induced the greatest congestion.

6.4.3 Scalability

Unfortunately, due to the limited size of existing SpiNNaker applications it is

necessary to turn to a synthetic benchmark to demonstrate the scaling proper-

ties of the simulated annealing placement algorithm.
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Figure 6.13: Simulation speeds at which the circuit simulator begins to drop
packets.

A synthetic application graph is considered consisting of a 2D grid of ver-

tices in which each vertex is connected with its neighbours according to a 2D

Gaussian probability distribution. This application graph is then placed into a

hexagonal mesh topology whose size and aspect ratio matches the application

graph. This placement problem may be scaled up by increasing the number of

vertices or by increasing the number of connections made by each vertex. The

graph also has a ‘natural’ manual placement solution which is used as a gold

standard in these experiments.

Placement quality is judged by comparing the total number of hops re-

quired to route all nets in the placed application graph against the number

of hops needed when the vertices are placed ‘manually’ using their natural

placement. Better placements should require a similar number of hops to the

manual placement while worse placements will require more, implying greater

network congestion. Worst-case routing table usage is calculated based on the

use of routes which exploit default routing.

For each combination of placement algorithm and graph size, the experi-

ment was repeated 20 times and the aggregated results are presented below.

All experiments were spread across a cluster of idle workstations with 3.10 GHz

Intel Core-i5-2400 CPUs and 8 GB of RAM.
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Graph size

This experiment intends to determine how the execution time and placement

quality of each algorithm changes as the size of the application graph is in-

creased. In this experiment, each vertex is connected to four randomly picked

neighbours whose distribution of distances have a standard deviation of three

hops. The results are shown in figure 6.14.

In figure 6.14a we can see that, as the placement problem size grows, ex-

isting placement techniques produce solutions requiring many more hops to

route than a ‘manual’ solution. While the quality of the simulated annealing

approach also falls for larger graphs, at 1048 576 vertices, approximately the

number in the largest planned SpiNNaker machine, only twice as many hops

are required to route the placement compared with an ideal placement.

Beyond around a quarter of a million vertices, the quality of the placements

produced by the baseline placement algorithms has dropped significantly. Due

to the increased length of the routes required, routing these placed graphs

requires more memory than was available in the cluster machines and so no

results are reported.

Figure 6.14c shows the execution time of the routing algorithms for each

problem size. Once again, the simulated annealing algorithm’s execution time

consistently dwarfs the other algorithms but grows approximately linearly with

the problem size. For the largest graph in the experiment, the execution time

of the annealing based placer reaches approximately 12 hours. While such

long execution times may not be ideal, for large placement problems, simu-

lated annealing produces placements with substantially greater quality than

the alternatives.
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Figure 6.14: Scalability with respect to graph size. Lines give mean values,
bands give range of results. Some results are absent due to out-of-memory
errors during routing following placement of some larger graphs.
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Fan out

Another factor which can have a significant impact on placement execution

time is the fan out of the nets in an application graph. A second experiment was

conducted to determine the effects of increasing the fan out of the synthetic

application graph. The number of vertices in the graph was fixed at 16 384

and the fan out of the nets connecting these vertices increased. Again, each

combination of placement algorithm and fan out was tested twenty times and

the results are shown in figure 6.15.

As shown in figure 6.15a, the quality of the placements produced does not

change dramatically as the fan out is increased with the exception of the Hilbert

placer which appears to perform better for very small and very large fan outs.

In all cases however, simulated annealing maintains its lead in placement qual-

ity.

In all but the random placer (which does not consider connectivity), the

placement algorithms’ execution times grow in proportion to the fan out (fig-

ure 6.15a). Once again, simulated annealing is significantly slower than the

other algorithms but scales approximately linearly with problem size.

6.5 Conclusions

In this chapter, I re-evaluated the suitability of simulated annealing for appli-

cation placement in supercomputers. In the field of chip placement, simulated

annealing has proven highly successful for placement problems similar in scale

to application placement problems in modern supercomputers. Following this

observation, I developed a simulated annealing based application placement

algorithm for SpiNNaker’s hexagonal torus topology based on techniques used

by circuit placement algorithms.
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Existing applications containing thousands of vertices have demonstrated

improved performance when placed by simulated annealing. Included in these

benchmarks are neural simulations built with Nengo SpiNNaker which do not

function at all when placed by contemporary placement algorithms but run

reliably when placed by simulated annealing.

Synthetic benchmarks have demonstrated that the proof of concept sim-

ulated annealing based placement algorithm developed as part of this work

is able to maintain good placement quality in networks containing over one

million vertices. Though execution times are considerably longer than exist-

ing application placement algorithms, taking over twelve hours for one million

vertex networks, at these scales simulated annealing is the only placement al-

gorithm able to deliver results within an order of magnitude of an ideal place-

ment solution.

Of the baseline placement algorithms considered, the Hilbert placer consis-

tently outperforms the other baseline experiments, followed by the RCM algo-

rithm which often performed similarly. It is worth highlighting that the Hilbert

algorithm exploits knowledge of SpiNNaker’s network while the RCM algo-

rithm is topology agnostic, possibly explaining the discrepancy in performance.

The random placement algorithm consistently produced the worst placement

quality confirming that even the simple baseline algorithms considered gener-

ate some benefit.

These results support the notion that circuit placement techniques may pro-

vide valuable insights for the development of future application placement

techniques. As application placement problems continue to grow, adapting

other placement techniques developed for circuit placement may become more

challenging. A key difference between the circuit and application placement

problems is that, while supercomputer network topologies come in many shapes
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and forms, chips are largely 2D. Because of this, modern circuit placement tech-

niques increasingly exploit geometric properties of the circuit placement prob-

lem which may be more difficult to adapt to supercomputer network topolo-

gies. However, at their current rate of growth, placement problems in super-

computers are likely to remain tractable to simulated annealing based place-

ment techniques for a number of years to come.
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Chapter 7

Conclusions and future research

The SpiNNaker architecture was designed to tackle the challenges presented

by the simulation of biologically realistic neural networks. One of its distin-

guishing features is its network architecture which employs both an uncon-

ventional network topology and multicast router architecture. The hexagonal

torus topology used by SpiNNaker was chosen to enable greater performance

while maintaining ease of construction and scalability compared with conven-

tional network topologies. SpiNNaker’s router design centres around packets

mimicking the neural ‘spike’ signals they are designed to convey by being small,

multicast and not guaranteed to arrive at their destination. This novel design,

though largely complete before this work began, left a number of open prob-

lems which this thesis has attempted to address.

In this concluding chapter I begin by summarising the answers to the re-

search questions raised in chapter 1. This is followed by a discussion of new

research topics which have been uncovered by this work.
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7.1 Answers to research questions

Each of the three research questions are answered below.

1. Can the hexagonal torus topology be deployed and used in real, large-

scale systems?

In chapter 3, I introduced a cabling scheme and assembly technique which has

been used successfully to build a prototype SpiNNaker system with over half

a million processor cores using the hexagonal torus topology. The techniques

shown are expected to enable a final SpiNNaker machine of double this size to

be built, filling a six metre long row of machine room cabinets.

Though SpiNNaker’s processor count places it amongst some of the world’s

largest supercomputers (see figure 6.6, page 119), it is comparatively com-

pact, filling one row of cabinets compared with commercial, warehouse-scale

installations. In spite of this, the techniques described allow hexagonal torus

topologies to scale arbitrarily without needing cables to span the machine.

Chapter 4 described an efficient and general technique for finding and enu-

merating shortest path vectors in hexagonal torus topologies. These devel-

opments bring the hexagonal torus topology in line with other topologies by

enabling routing algorithms to exploit all possible paths in a network. Further-

more, chapter 6 demonstrated that placement algorithms are also adaptable to

hexagonal torus topologies thanks to their similarity to 2D toruses.

Although, as this thesis highlights, hexagonal toruses lack many of the intu-

itive properties enjoyed by other topologies, it is still possible to reason about

them with only limited computational effort. Now that the practicality and

scalability of the topology has also been demonstrated in practice, it represents

a credible option for future network architectures.
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2. Does SpiNNaker’s router architecture help, or hinder fault tolerance?

SpiNNaker’s unconventional use of packet dropping to avoid deadlocks greatly

simplifies the router architecture, part of the motivation for this design. In

chapter 5, this feature is used to the advantage of PGS repair to add fault

tolerance to existing routing algorithms. Compared with the often complex

and wasteful methods used to tolerate faults in other networks, PGS repair

incurs very little performance overhead in the presence of static faults.

Routing table usage does increase in the presence of faults, however, which

may be a concern for applications which already require many routing table en-

tries. Routing table usage, as well as other overheads, were most significantly

increased in the presence of contiguous groups of network faults. This is be-

cause the PGS repair algorithm produces routes which pass tightly around the

corners of faults, resulting in concentrations of routing table entries in those

areas. Though the symptoms of this problem can be attributed to the design of

SpiNNaker’s multicast routing mechanism, the responsibility lies with the be-

haviour of the PGS repair algorithm. Potential improvements to the PGS repair

algorithm are discussed later in §7.2.3.

The overall answer to this research question, therefore, is that the flexibility

provided to routing algorithms in SpiNNaker’s architecture is of great benefit,

enabling arbitrary fault patterns to be inexpensively avoided.

3. How can the parts of a neural simulation be placed onto a large hexag-

onal torus topology to reduce network load?

In chapter 6, I explored a number of contemporary approaches to the problem

of placing applications with irregular communication patterns into network

topologies. I observed that researchers working on circuit placement for chips

and FPGAs are tackling similar problems and working at scales as large as, or
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larger than, those faced in application placement. Based on this I developed

a simulated annealing based placement algorithm inspired by the techniques

used in circuit placement, with specific adaptations for use in application place-

ment and SpiNNaker’s network topology.

The simulated annealing based placement algorithm consistently outper-

forms pre-existing placement algorithms included in benchmarks in terms of

placement quality. In the case of one benchmark, simulated annealing based

placement made it possible to run that neural simulation in real-time for the

first time. At larger scales, simulated annealing was also found to be able to

produce good quality placements in benchmarks containing over one million

processes – the largest size supported by the SpiNNaker architecture.

The major shortcoming of simulated annealing based placement is its ex-

ecution speed. Though its execution time grows in proportion to the size of

the problem, the implementation used took over 12 hours to place a synthetic

problem for the largest planned SpiNNaker machine. Though tractable, par-

ticularly given the relative output quality compared with the prior state of the

art, the algorithm is unlikely to function comfortably as-is on larger problems.

The conclusion to be drawn from this result, however, is not just that sim-

ulated annealing is a good solution for today’s placement problems but that

circuit placement techniques in general could be successfully adapted to ful-

fil this role. The placement problems faced by chip designers are growing at

roughly the same exponential rate as the size of supercomputers but circuit

designs hold the lead in terms of problem size. Consequently, as approaches

are retired by chip placement researchers, they may find new life in the field

of application placement.
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Figure 7.1: Multiple rows of interconnected cabinets.

7.2 Future research

Though the goals of this study have largely been met, there also remain some

important limitations which future work may hope to address. Furthermore,

this work has uncovered a number of new research areas warranting future

enquiry. This section outlines a number of future lines of research.

7.2.1 Warehouse-scale cabling

In chapter 3 I developed and implemented a number of cabling schemes for

the SpiNNaker architecture spanning up to a six metre row of machine room

cabinets – a relatively small installation by current standards. In SpiNNaker,

the cabling exists in a 2D plane (i.e. across the faces of the cabinets) but as the

system is scaled up, a single row of cabinets will tend towards a 1D line. Since

embedding a 2D structure in a 1D space necessarily results in long connections,

this cannot scale indefinitely.

In conventional large-scale supercomputer installations, nodes are installed

in rows of cabinets as illustrated in figure 7.1. From a ‘bird’s-eye’ view, the
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system approximates a 2D space, spread across the floor of a machine room.

Therefore, in principle, the folding and interleaving techniques described in

chapter 3 still apply. Unfortunately for SpiNNaker, cables connecting between

rows of cabinets would be longer than the one metre limit imposed by its hard-

ware because of the spacing between rows of cabinets. Future SpiNNaker sys-

tems will need to consider alternative link technologies. For example, a hybrid

system could be used in which intra-cabinet connections continue to use the

current HSS link technology while inter-cabinet links might use optical con-

nections. This type of architecture could be supported by the use of pluggable

‘SFP+’ transceiver modules [Com01].

7.2.2 Cabling assistance for other architectures

A secondary result of the construction of prototype SpiNNaker systems in chap-

ter 3 was the use of real-time guidance and feedback to assist cable installation.

I am not aware of this technique’s use by existing architectures and, following

the success experienced in this project, it is possible that the technique may

also be useful in conventional systems.

During the construction of prototype SpiNNaker machines, each cable took

seconds to install compared with the minutes reported for existing systems [MYM11].

Part of this increase in efficiency appears to result from the immediate identifi-

cation of mistakes made during cabling, saving time-consuming backtracking

later on.

In many real-world network installations, units are less densely packed than

in SpiNNaker and so longer cables are often required. As a consequence, ca-

bling errors may become more likely as cabling patterns are spread over a

larger area making them more difficult to visually verify. Like SpiNNaker, con-

ventional networking hardware is often equipped with a generous range of
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indicator LEDs and diagnostic facilities which might be used to implement real-

time installation guidance. Future work could explore the use of this technique

in the construction of other large-scale networks, such as data centres.

7.2.3 Congestion mitigation

In chapter 5 I found that contiguous network faults cause hot-spots of conges-

tion and routing table depletion where the PGS repair algorithm routed many

paths around the edges of faults. However, it is not just faults which can cause

contiguous blockages in the network topology. In reality, researchers do not

always require a full-sized SpiNNaker system to perform their experiments so

large SpiNNaker systems are soft-partitioned on demand into many smaller

machines [Hea16b]. To ensure isolation between partitioned sub-machines,

HSS links between boards in different partitions are disabled. Because of SpiN-

Naker’s ‘wrapped triple’ partitioning scheme, the resulting sub-machines have

hexagonal mesh topologies (i.e. without wrap-around links) with irregular

boundaries as in figure 7.2.

In partitioned systems, the ‘tooth’-like gaps on the periphery of the network

result in similar congestion to the HSS link failures considered in chapter 5.

When a route is generated between nodes on opposite sides of a gap, the PGS

repair process will produce a shortest-path route around it. Since many routes

may be blocked by a single gap, a hot-spot may develop around the corners of

the gap.

In chapter 6, the ‘CConv’ benchmark application was found to run correctly

the majority of the time when placed by the simulated annealing algorithm but

would occasionally fail by a significant margin. Preliminary experiments sug-

gest these occasional failures are caused by placement solutions which place

heavily communicating parts of the application on opposite sides of gaps along
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Figure 7.2: Irregular edges in a SpiNNaker system comprising 24 boards parti-
tioned from a larger machine. Each hexagon represents a SpiNNaker chip. No
wrap-around connections are present.

the perimeter of the network. Two possible approaches which future work may

consider are presented below.

Avoiding hotspots with PGS repair

Network congestion around faults and network irregularities could be reduced

by forcing the PGS repair process to take more varied routes around faults. For

example, in circuit routing algorithms, routers avoid congestion by increasing

the cost of routes which pass through congested areas [KLMH11]. A similar

technique could be used in PGS repair to spread the routes it produces.

An alternative approach would be to adapt the base routing algorithms

used prior to PGS repair to, for example, attempt alternative dimension order

routes which may avoid blockages due to faulty links.

Fault and irregularity aware placement

One of the shortcomings of the simulated annealing based placer developed in

chapter 6 is that it does not account for network faults or irregularities when
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estimating the cost of placement solutions. Future work may exploit tech-

niques used in congestion-aware circuit placement which could be adapted for

application placement [VPC07].

7.2.4 Reducing placement execution time

The simulated annealing based placer presented in chapter 6 produced good

quality placements but its execution time limits its use beyond one million

vertex placement problems. Future work should explore possibilities for im-

proving the performance and scalability of this technique.

In addition to considering alternative placement algorithms based on other

methods, one possible approach is to attempt to reduce the execution time of

simulated annealing based placement by shrinking the application graph being

placed.

For example, graph clustering [Sch07]may be used to group together strongly

connected vertices which would then be placed as a single unit. Unfortunately,

clustering can suffer from the same problems as graph partitioning based place-

ment: vertices may be grouped together in ways which, in practice, cannot be

packed together into a given portion of a machine. A possible solution to this

problem is to use a two-phase placement approach [KLMH11]. In a ‘global’

placement phase, solutions are permitted which can slightly over-allocate re-

sources but overall achieve good placement quality. In the ‘detailed’ placement

phase which follows, the solution is ‘legalised’ by making small changes to the

global placement to eliminate over-allocation.

An alternative approach suited to SpiNNaker could be to limit the clustering

process to clusters which fit on a single SpiNNaker chip. In typical SpiNNaker

application graphs, clustering to this level may reduce placement problem sizes

by an order of magnitude and, consequently, reduce execution times by the
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same ratio. Preliminary experiments suggest that this approach might result in

little placement quality loss for large placement problems whilst substantially

reducing overall execution time.

7.2.5 Benchmarking

One of the most significant limitations of this study has been the unavailabil-

ity of large-scale SpiNNaker applications for use as benchmarks. As a conse-

quence, much of the scalability experimentation performed has relied on sim-

ple synthetic benchmarks based on projections of future application behaviour.

In the short term, more sophisticated synthetic benchmark generation tech-

niques used by the circuit placement community [NC07] may offer alternative

benchmarks for future work. In the longer term, however, it is hoped that

the availability of large SpiNNaker systems, and placement and routing algo-

rithms better suited to exploit them, will lead to larger scale applications being

developed. Hopefully these applications will lead to more interesting and rep-

resentative benchmarks for use in future work.

7.3 Closing remarks

One of the primary outcomes of this work is that a number of the practical chal-

lenges faced in scaling up the SpiNNaker architecture have been addressed,

leading to the construction of large-scale SpiNNaker machines. The develop-

ment of an effective placement algorithm for SpiNNaker applications has been

shown to enable some neural simulations to exploit SpiNNaker’s architecture

for the first time. The availability of larger SpiNNaker machines paves the way

for future large-scale neural modelling work built on much larger models such

as Spaun, ‘the world’s largest functional brain model’ [ESC+12].
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Beyond the SpiNNaker project, the hexagonal torus topology has also been

validated as a scalable and practical candidate for future network architectures.

As supercomputers become ever larger, the physical scalability afforded by the

2D nature of the hexagonal torus topology may make it a compelling option.

In addition, the finding that circuit placement techniques can be adapted to

support placement of SpiNNaker software indicates that these algorithms may

also be applicable to other applications. Indeed, if this is the case, circuit place-

ment may offer a long-term source of placement algorithms able to handle the

demands of future applications.

Although this work stops short of demonstrating truly large-scale neuro-

scientific simulations running at the scale of newly completed SpiNNaker ma-

chines (largely because such simulations do not yet exist) a number of smaller-

scale neural simulations have been made possible for the first time. The algo-

rithms and techniques devised in this work have subsequently been incorpo-

rated into various software libraries and tools now being used by researchers

building SpiNNaker applications, vindicating the efforts of this thesis (see ap-

pendix C). A successor to the SpiNNaker architecture is also in the early stages

of design and is building on experience of the existing architecture. The cur-

rent intention is to retain the hexagonal torus topology used by SpiNNaker, a

decision supported by the findings of this thesis.

With SpiNNaker’s hardware architecture now operating at scales close to its

architectural limits, it is hoped that the contributions of this work will enable

researchers to develop larger and more detailed neural models for this unique

architecture.
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Appendix A

Partitioning hexagonal toruses

The nodes in supercomputer networks are usually relatively small, for exam-

ple in SpiNNaker each node is a single chip. To allow several nodes to share

resources such as power supplies and to simplify construction, tens of nodes

are typically packed together into a single unit such as a circuit board or server

blade [Gil14, AIHS12]. In commercial supercomputers built on non-hexagonal

torus topologies, units usually represent a hypercube partition of the overall

topology as illustrated in figure A.1a [CEH+11, AIHS12].

The analogue of this scheme in a hexagonal torus topology is a parallelo-

gram as illustrated in figure A.1b. Each partition connects to six neighbouring

partitions and, unlike hypercube partitions, the number of connections to each

is imbalanced. Specifically the partitions above-right and below-left are con-

nected by only one link each while others are connected by many. As a con-

sequence, multiple interconnect technologies may be needed if connections

between partitions are concentrated into single cables as in SpiNNaker (see

chapter 2). This adds both to design complexity and system cost.

In this appendix, I describe how, and why, the ‘wrapped triple’ partitioning

scheme devised by Davidson for SpiNNaker works [Dav13].
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(a) 2D hypercube partitioning (b) Parallelogram partitioning

Figure A.1: Partitioning schemes for 2D and hexagonal torus topologies. (Du-
plicate of figures 3.3a and 3.3b.)

A.1 Tiling

For a particular configuration of nodes to form a valid partition, it must be

possible to use this configuration to ‘tile’ a hexagonal torus. In this thesis, a

‘pointy-topped’ hexagon is used to represent a chip in a hexagonal torus which

is drawn (by convention) in a parallelogram-shaped arrangement.

Any partition which shares the ‘translational symmetry’ of a pointy-topped

hexagon must also tile a hexagonal torus. For example, in figure A.2 we can

see that 2× 2 parallelograms can tile a 9× 9 hexagonal torus topology. In fig-

ure A.3, I demonstrate that this parallelogram partition shares its translational

symmetry with a pointy-topped hexagon. In figure A.3a, the 2× 2 partition is

shown with each node shaded differently and, in figure A.3b, a pointy-topped

hexagon is superimposed. By tiling several copies of the partition (figure A.3c),

we can see that the repeating pattern of the parallelograms matches that of the

pointy-topped hexagons. I refer to this property as the parallelogram sharing

the translational symmetry of a pointy-topped hexagon.

Notice that the parallelogram partition can be redrawn so that parts pro-

truding from the overlaid hexagon wrap around to fill the gaps on opposite

sides producing a pointy-topped hexagon shaped tile as shown in figure A.3d.
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Figure A.2: Tiling a hexagonal torus with parallelograms.

(a) (b) (c) (d)

Figure A.3: Visual proof that a parallelogram shares translational symmetry
with a pointy-topped hexagon.

A.2 How not to tile a hexagonal torus

An ‘obvious’ partitioning scheme for a hexagonal topology, which evenly dis-

tributes links between six sides, is a hexagonal partition. Such a partition might

naïvely be formed by wrapping ‘layers’ of hexagons around a central hexagon

as illustrated in figure A.4a.

While this type of partition exposes six equally-sized edges (satisfying the

requirement that connections between partitions should have a balanced num-

(a) (b) (c)

Figure A.4: Visual proof that a wrapped hexagon does not share translational
symmetry with a pointy-topped hexagon.
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(a) (b) (c)

Figure A.5: Visual proof that a triple of pointy-topped hexagons shares the
same translational symmetry as a flat-topped hexagon.

ber of connections) this partition does not share translational symmetry with a

pointy-topped hexagon. Figure A.4b shows a best fitting pointy-topped hexagon

superimposed on the partition. In figure A.4c, we can see that when tiled, the

partition leaves gaps between the superimposed pointy-topped hexagons indi-

cating it does not share translational symmetry.

Consequently, it is not possible to construct a hexagonal torus from par-

titions of this shape. As an aside, it is possible to construct a H-torus topol-

ogy [ZYW08], a related, but different, topology mentioned briefly in §2.5.

A.3 Triads of triples

A ‘triple’ is a partition made up of three nodes arranged as in figure A.5a. This

partition’s edges may be broken into six groups with an equal number of con-

nections, meeting the requirements set out at the beginning of this appendix.

A triple, however, does not share translational symmetry with a pointy-topped

hexagon but does share it with a ‘flat-topped’ hexagon (the 30◦-rotated cousin

of the pointy-topped hexagon) as demonstrated in figures A.5b and A.5c.

Because a triple made up of pointy-topped hexagons shares translational

symmetry with a flat-topped hexagon, a triple made up of flat-topped hexagons

must also share translational symmetry with a pointy-topped hexagon (turn
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(a) (b) (c) (d) (e)

Figure A.6: Demonstration that a triad shares translational symmetry with a
pointy-topped hexagon.

Figure A.7: A wrapped triple with four layers. Layers are shaded alternately.

figure A.5 by 30◦ to verify this). Therefore, it follows that three triples arranged

as in figure A.6 – a ‘triad’ – share translational symmetry with pointy-topped

hexagons. Consequently, triads of triples may be used to tile a hexagonal torus

topology.

A.4 Wrapped triples

A triple forms a partition which can be used to tile a hexagonal torus when

tiled using triads of triples. To increase the number of nodes in the partition,

layers of hexagons may be wrapped around a triple to form a ‘wrapped triple’

as in figure A.7. Wrapped triples have the same balanced communications as

triples and triads of wrapped triples also share translational symmetry with a

pointy-topped hexagon. Therefore, triads of wrapped triples may be used to

tile a hexagonal torus topology.

165



a

a′

c

c′

bb′

(a) A triad of boards (b) . . . as a parallelogram

Figure A.8: Logical connectivity of chips (hexagons) in a triad of SpiNNaker
boards. (Duplicate of figure 2.11.)

In SpiNNaker, each board partitions the network into a four-layer wrapped

triple (figure A.7) containing forty eight chips (nodes) each, convenient for

implementation on a standard-sized 220.00 × 233.35 mm Eurocard circuit

board [IEE98].

A triad of boards may be interconnected to form a 12×12 hexagonal torus

as illustrated in figure A.8. Six boards may be interconnected to form a 12×24

or 24× 12 topology. Nine can form a 12× 36 or 36× 12 topology. At twelve

boards, a ‘square’ 24 × 24 topology may be formed, corresponding to half a

frame in a large SpiNNaker installation. The architectural limit of the SpiN-

Naker architecture combines 1200 boards to produce a 240× 240 hexagonal

torus topology.
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Appendix B

Minimising hexagonal mesh

coordinates

As in non-hexagonal mesh and torus topologies, coordinates in a hexagonal

torus topology are given in terms of the offset of a point along each axis of the

topology from an arbitrary origin. Hexagonal topologies, unusually, are con-

sidered as having three, non-orthogonal axes. In a conventional 2D topology,

for example, moving along the X axis does not alter your position on the Y axis

because the X and Y axes are orthogonal. In a hexagonal coordinate system,

moving along any one of the three axes results in some movement in the other

two. A consequence of this is that multiple coordinates may exist for the same

position.

Consider the vector (1, 1,1) which takes one hop along each axis. Fig-

ure B.1 illustrates how this vector takes us back to our starting point after

three hops. Because, like (0, 0,0), this vector results in no movement, it may

be added or subtracted to any existing vector or coordinate without changing

the meaning of the vector. Doing so, however, clearly has some impact on the

magnitude of the vector. For example, the coordinate vector (2,−3,−1) has a
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XX

YY
ZZ

Figure B.1: The vector (1,1, 1) in a hexagonal mesh topology results in no
movement.

magnitude of 6. Adding (1, 1,1) results in a new, equivalent vector, (3,−2, 0),

with a reduced magnitude of 5. Adding (1,1, 1) once more produces the vector

(4,−1,1) of magnitude 6 again.

In a hexagonal mesh, every point has a unique coordinate vector whose

magnitude is minimal. To demonstrate this by cases, consider:

• If a vector has three positive elements, subtracting (1,1, 1) reduces the

magnitude of the vector by three overall.

• If a vector has two positive elements, subtracting (1, 1,1) decreases the

magnitude of those two elements and increases the magnitude of the

remaining element resulting in a net reduction in magnitude of one.

• If a vector has only one positive, non-zero element, subtracting (1, 1,1)

decreases the magnitude of that element and increases the magnitude of

the remaining two resulting in a net increase in magnitude of one.

• Similar arguments may be made for vectors with negative elements and

the addition of (1,1, 1).

These cases indicate that vectors and coordinates containing at least one

zero element with the remaining elements having opposite signs are minimal
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since adding or subtracting (1,1, 1) will always increase the magnitude of the

vector.

To minimise a coordinate vector in a hexagonal mesh topology, the follow-

ing function may be used, producing a unique coordinate for any given point:

minimiseVector(x , y, z) = (x , y, z)−median(x , y, z) · (1, 1,1)

As an aside, minimising a hexagonal coordinate vector is not the only way

to determine a unique coordinate for a given point. Given a vector of the

form (x , y, z), subtracting (z, z, z) will result in a vector of the form (x ′, y ′, 0).

Because this form mimics the appearance of a standard 2D coordinate system,

while uniquely identifying points, it is widely used as a convenient and intuitive

addressing scheme by SpiNNaker’s system software.
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Appendix C

Software

I have implemented several of the techniques described in this thesis in various

software systems which are now in use in the wider SpiNNaker ecosystem.

These implementations may prove instructive to future researchers hoping to

take advantage of or extend the techniques described by this work.

SpiNNer: A collection of tools for generating cabling plans and guiding ca-

ble installation and maintenance of SpiNNaker machines using the tech-

niques described in chapter 3.

Source https://github.com/SpiNNakerManchester/SpiNNer

Manual http://spinner.readthedocs.org/

Rig: A library for SpiNNaker application writers which, among other features,

implements the shortest-path vector geometry functions introduced in

chapter 4, the NER/PGS repair routing algorithm described in chapter 5

and the simulated annealing based placement algorithm from chapter 6.

Written in collaboration with Andrew Mundy and Jamie Knight.

Source https://github.com/project-rig/rig

Manual http://rig.readthedocs.org/
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Rig C SA: A C implementation of the simulated annealing based placement

algorithm from chapter 6. An optional drop-in replacement for Python

implementation of the algorithm in the Rig library.

Source https://github.com/project-rig/rig_c_sa

Network Tester: A library for quickly building and running experiments on

SpiNNaker’s network and used to perform some of the experiments in

chapters 5 and 6.

Source https://github.com/SpiNNakerManchester/network_tester

Manual http://network-tester.readthedocs.org/

Spalloc: A centralised system which partitions large SpiNNaker machines into

smaller ones on demand. This system was used to perform many experi-

ments in parallel. This system is also widely used by researchers to share

access to large SpiNNaker machines.

Source https://github.com/SpiNNakerManchester/spalloc_server

https://github.com/SpiNNakerManchester/spalloc

Manual http://spalloc-server.readthedocs.org/

http://spalloc.readthedocs.org/

In addition to these ‘stand-alone’ software packages, the source code and

raw result data for the experiments in this thesis are available to download

from GitHub:

https://github.com/mossblaser/phd_thesis

https://github.com/mossblaser/phd_thesis_experiments
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