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Abstract

DATA CENTRIC AND ADAPTIVE SOURCE CHANGING
TRANSACTIONAL MEMORY WITH EXIT FUNCTIONALITY
Herath Mudiyanselage Isuru Prasenajith Herath
A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy, 5th December 2012

Multi-core computing is becoming ubiquitous due to the iscplimitations of
single-core computing. It is inevitable that parallel pragming will become the
mainstream for such processors. In this paradigm shift,ctreept of abstraction
should not be compromised. A programming model serves abstraation of how
programs are executed. Transactional Memory (TM) is a tigclerproposed to main-
tain lock free synchronization. Due to the simplicity of @estraction provided by it,
TM can also be used as a way of distributing parallel work meéning coherence and
consistency. Motivated by this, at a higher level, the thesakes three contributions
and all are centred around Hardware Transactional MemofiW(H

As the first contribution, a transaction-only architectigeoupled with a “data
centric” approach, to address the scalability issues ofdhmer whilst maintaining
its simplicity. This is achieved by grouping together meynlocations having similar
access patterns and maintaining coherence and consistermyling to the group each
memory location belongs to. As the second contribution &ht@chnique is proposed
to reduce the number of false transaction aborts which an@usignature based HTM.
The idea is to adaptively switch between cache lines andgiges to detect conflicts.
That is, when a transaction fits in the L1 cache, cache linerimdition is used to
detect conflicts and signatures are used otherwise. Asitigectintribution, the thesis
makes a case for having an exit functionality in an HTM. Thotive of the proposed
functionality, TMEXI T, is to terminate a transaction without restarting or cortingt
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Chapter 1
Introduction

Technology enables the doubling of transistors every 18@dths (known as Moore’s
law [76]). This has allowed designers to increase comptelit including more func-
tional units in a processor, in search for higher perforrean€he objective of in-
creasing the functional units is to allow a computation tocged without waiting for
resources. Having more resources facilitates instrusttorbe executed in parallel,
which is therefore known as Instruction Level ParallelisbiP). However there exists
a limit to the number of instructions that can be executecamajtel [107]. In addition
to this, the scaling limitations of single-core computipg\yer consumption and heat
dissipation) [81] urges the hardware designers to invatgigther directions.

In an attempt to address these issues, hardware manufaatoresider developing
a processor with more than a single core on the same die, vihichlled a chip-
multiprocessor or a multi-core processor. In this multiecdesign, the speed of each
individual core is less than the speed of a modern singlem@@essor. As this multi-
core processor comprises many of those average speed aoragplication which is
executed on them is expected to complete in less amount efthian in a single core
processor, or at least in theory that is what should happen.

Just because a processor has higher number of cores, dogsanantee that any
application runs on it will deliver higher performance. Asbease scenario would be,
executing an application which comprises several indepeingdork units which can
execute on their own. In such a situation, each work unit @sdheduled in one core
and the output can be produced in considerably less amotimi@than running each
work unit sequentially in a single core processor. Howetrgs is not the case for
most of the applications. In order to gain the advantageldhalcores in this multi-
core processor, first an application needs to be dividedsieweral work units. As the
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CHAPTER 1. INTRODUCTION 18

execution of this application progresses, some work unég need to communicate
with each other. Sometimes they may try to access the sanud gatiables at the
same time. Therefore a considerable effort is required witagsforming a single core
application to take the advantage of a multi-core proces3loanging the direction of
processor design from single-core to multi-core has intced several issues and the
most significant and most relevant of them to the scope ofttigsis is summarised
hereafter.

The data transfer rate between the processor and the mesnorych slower com-
pared to the speed of a modern processor. This creates apoogremory gap, which
is called the Von Neumann bottleneck. A small but fasteragjercalled cache is at-
tached to the processor to address this, by storing frelyuesed data in cache and ser
vicing memory requests with them. Even though this was a mioghway of achiev-

ing its objective, in a multi-core environment this can léad situation where more
than one processor has different values in their cachefiéosame memory location.
This is possible because now the memory is being accesseifieddoy more than one
processor and the cache of one processor may not be aware didahges made by
another processor. Therefore a mechanism is required toncomate the state of a
cache line in one core, to the rest of the cores. As the iss@saited to maintaining a
coherent view of caches, the associated communicationiéeglaache coherence pro-
tocol. Quite a number of protocols each having differenfqremance characteristics
have been proposed. All these protocols require a datatsteuto be maintained in
hardware (a modified cache) to store the state (modifiedjdhvaidentical to memory
copy) of cached entries and a messaging mechanism to coroateitine state of the
cache lines concerned.

In a single core processor, instructions are issued by desargity. Therefore the
order the effects of these instructions appeatr, is the santteeaorder they have been
issued. Simply, a read operation to a memory location shreildn the last value
written to that location. The definition of “last” is triviah a single core processor
as there exists only a single program order. Also having glesiorder allows certain
compiler optimizations such as reordering of instructiang so on. However in an
environment where multiple entities are issuing instdi firstly, the ordering is not
trivial. Secondly, some of the compiler optimizations mayt match the behaviour
expected by the application developer. Therefore a meshais required to ensure
that the memory operations issued by all the processorssmond to some order and
this order should match the behaviour expected by a progeanivtemory consistency
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models are introduced to address this issue.

In the multi-core computing era, software applicationsdteebe modified to util-
ise the extra cores available in a processor. The workloadsto be distributed to
available cores when executing these applications. Towxdfis inevitable that par-
allel programming becoming the mainstream programmingti@@ In an application
that is written to execute in parallel, the parallelism caisteeither at task level or
method level or thread level. (The discussion is made at diméegt of thread level
parallelism, but the issues remain the same for other lagelgell). When a program
is executing in parallel, different threads may accessiindde same memory loca-
tion. Programmers need to identify those situations andigpmechanisms (locks,
barriers) need to be introduced to the program to producedtrect result. This is the
synchronisation issue in parallel programming. In ordeerisure mutual exclusive-
ness is maintained among those concurrent accesses ma@seanemory locations,
conventionally, locks are used. To execute a code regiotegiex by locks, first the
lock is acquired. It is released when the execution is cotegleln order to acquire
a lock, at the hardware level it is required to first check Wwheit is available. The
acquire operation happens afterwards. Essentially thivas a read and a write op-
eration. If the process of acquiring a lock is done using eational read and write
operations, in a multi-core environment it is possible %0 processors to acquire the
same lock at the same time. Therefore atomic instructidesTist - And- Set which
allows to atomically read and modify a memory location aredu® implement locks.
The instruction pait.oad- Li nked/ St or e- Condi ti onal (LL/SC) is similar to other
atomic instructions, but comprises two instructions. Tdlisws it to have intermedi-
ate operations between the load and the store operatiorsfeBture makes LL/SC a
good candidate for constructing other atomic instructidf@ example a new atomic
increment instruction can be constructed using this LLASSEruction.

The simplest form of lock based programming is to have a sipgbgram-wide
lock and each thread acquires it before entering the driécgon and releases it, once
it has finished executing the critical region. This approachuite simple and easy
to explain. However this kind of approach is not advisabléhase can be groups of
critical regions where these groups have no relation to e#feér. Therefore despite
its simplicity, this kind of coarse grained locking apprba@an harm the performance
of a parallel application. The other alternative is to aggec smaller lock with each
significant computation inside the critical region. In thgnner if all the associated
locks are available, a thread can complete the computaticltoged in the critical
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region. Also in this case, non-availability of a lock meahattthe computation can
not be performed in parallel. Even though this kind of finestiged locking seems
promising in delivering better performance, writing apptions with this approach is
a difficult task. A programmer has to ensure that the prograssdot end up in a
situation where two or more threads are waiting for eachrdtheclease a lock. This
kind of situation is known as dead lockand it can occur in any lock based program,
if the locks are not managed properly.

Observing how optimistic concurrency is exploited in datds [37], Herlihy and
Moss proposed a lock free synchronisation mechanism céitiasactional Memory
(TM) [50]. In the TM approach, instead of waiting for a lock be available, all
the threads enter the critical region as if the lock is aldéla In order to ensure the
consistency and the correctness is not compromised, abigbeations performed in
this critical region are made speculatively and kept inasoh from other threads.
Under TM, a critical region becomes a transaction and eacts#iction appear to rest
of the system, as if it happened atomically. This is achidwedperating speculatively
within the critical region and keeping those operationssimidation. This requires a
mechanism to keep two versions (speculative and origirfall@mory locations that
are accessed within a transaction. If more than one threachteessed the same
memory location and one of them has modified it, a conflict ltasiwed. In order to
check conflicts, each thread is required to maintain a setaztions it has read and
written in the current transaction. Based on how this veisgpand conflict detection
is performed several flavours of TM systems exist. Also &sthTM related operations
can be performed in hardware, software or using a combmafi®oth (hybrid).

Having described the issues of multi-core computing rdl&dehis thesis, the dis-
cussion is now aimed to determine the root cause of thesdegongb Starting with
a very general approach, a computer consists of large nuoflbeansistors, wires
and so on. In order to make use of this equipment an applicatiogram needs to
be developed. In order to facilitate the job of an applicagwogram developer, an
abstraction of the underlying system is defined. Prograrameite their programs
according to the abstraction provided and this comes indha bf a programming
model. In single-core computing this could simply be the Ysumann model, since
it comprises only one processor and one memory. Therefagrgmmers can only
specify “what” operations need to be done with the memoryratdchow to do it. Due
to its simplicity, programmers would still favour this kired abstraction, even in the
multi-core era. A problem occurs when ensuring a Von-Neumnige abstraction in
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a multi-core processor, because the memory can now be nbdifienore than one
processor. In order to provide this simple abstractiorh@atrchitectural level, it is re-
quired that each processor has the same view of the sharedmndmthis thesis, the
term “global view requirement” is used to represent thise $Simplest form of provid-
ing this is to ask each processor to issue instructions in@ergoone after the other and
the effects of each instruction becomes visible to the sthefore the next instruction
is issued. In this regard, a cache coherence protocol casdzbta propagate the ef-
fects of the execution of an instruction and a memory comscst model defines when
this propagation should be done.

This kind of approach will certainly be able to provide a \Weumann like ab-
straction for a multi-core processor. However, it will regtthe optimizations like
instruction reordering and bypassing and also incurs cuiket of communication.
Analysing this issue from a high level programming langupgespective, it is clear
that not all the threads are interested in the modificationdento all the memory loca-
tions by other threads. In terms of a coherence protocotrtslates to, a propagation
not being required for all the cache lines that get modifickhe $ame observation, in
terms of a memory consistency model can be interpreted ssdlmn the access pattern
certain memory locations can be reordered or bypassed atleoutvthe programmer
intervention. Even though the latter is provided in certalaxed memory consistency
models, a programmer is required to categorise memoryitosato relax the order-
ing. Based on these observations one part of this thesisnisesr architecture that
relaxes coherence and consistency of memory locationsl lnasstheir access patterns.

Going back to the discussion of abstraction, when provigyrgchronisation using
locks, programmers have to define not only “what” data needsymchronised but
also “how” to provide it. It becomes the responsibility of@grammer to acquire and
release locks in a way that the program does not end ugdéad lockstate. This clearly
breaks the much believed concept of abstraction in comgufline TM approach to
maintaining synchronisation, is able to provide the sans¢rabtion as it only requires
the definition of the critical section and the underlying TMechanism takes care of
how the mutual exclusiveness is maintained among accesghattcritical section.
Since TM relies on speculation, aborts can happen due toeudgation. Also aborts
can happen due the lack of clarity in the mechanism used &cteobnflicts (false
aborts). Another part of this thesis proposes a novel tegtenio reduce these false
aborts.

It is the job of a programmer to mark the critical sections iV application and
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the underlying TM system guarantees that all these criieations will be executed
speculatively and committed at the end. Committing requioesmunicating the spec-
ulative modifications to others. If there is a condition desa critical section, in some
cases it possible that all the prior computation becomesuserful if this condition
is not met. As the underlying TM mechanism is not aware of arghscondition, a
commit phase will always take place as it is the only way to glete the transaction.
Another part of this thesis recognizes that, in those cistances, there is a need to
exit from a transaction without committing it, hence suchiactionality is proposed.

1.1 Contributions

At a high level, this thesis makes three major contributiofise first contribution is
the Data Centric Transactional Memory (DaCTM) in which theaedpased coherency
and consistency is introduced. The basic idea of DaCTM isdaagtogether memory
locations of similar access patterns and to allocate thedifferent memory regions.
The required level of coherence and consistency for eachameregion is defined
according to the access pattern of the locations it holds.KEly idea is that, a location
itself defines the required level of coherence and congigtiem that location, which is
the basis of the “data centric” concept. DaCTM is inspiredi®/fTransactions Every-
where” [60] approach and Transactional Memory CoherenceCamsistency (TCC)
[39] which suggest the development of an application egtirem transactions. The
attractive component from those proposals is that traitgectan be considered as the
basic unit of parallel work, maintaining coherence and =tescy, therefore provides
a simple abstraction. However this simplicity comes at & of a higher bandwidth
requirement which is not desirable in a multi-core envirenin This is addressed
in DaCTM by coupling this sort of “transactions-only” appebawith the data cent-
ric concept. Using this approach, DaCTM is able to provideddme simplicity as
“Transactions Everywhere” [60] and TCC [39] without saturgtthe communication
network.

The second contribution of the thesis is SnCTM, a novel wayedficing false
transaction aborts in a hardware TM system. The key ideauséceither cache lines
or signatures to detect conflicts in a TM system, dependintpersituation. SnCTM
is motivated by two facts: (1)signatures produce false tab@2)signatures are only
required when a transaction cannot fit in the cache. Thexeéfa proposal of SnCTM
is to use cache lines to detect conflicts when a transactiablésto fit in the cache,
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signatures are used otherwise. By adaptively changing leetweese two sources,
SnCTM is able to reduce false transaction aborts in a hardivistesystem. Also
SnCTM is able to reduce the size of a signature without conmgrihie performance.
As the third contribution, the thesis makes a case for haamexit functional-
ity in a hardware TM system. The objective of the proposedtionality (TM.EXI T)
is to exit from a transaction without committing it. Oncetex, the program con-
trol is transferred to the line immediately following thamsaction. The proposal is
motivated by the fact that when there is a condition insideaasaction, the whole
computation can be non-useful when this condition is not nitlwever, regardless
of the fact that the condition is met or not, a commit phasegsgkace. If there is a
mechanism to notify that the commit is not useful, it coulgpgkat step and go to the
line immediately following the atomic block. The exit furanality proposed in the
thesis fits well for this purpose. By avoiding these unneggssammits, the network
utilization can be reduced. In addition to making the caseHs functionality, ways
to improve expressiveness using this approach are alsasdisd in the thesis.

1.2 Thesis Structure

The contributions made in this thesis are centred arourdifaae transactional memory
and each of them is independent of the others (as shown imeé=igll). Therefore the
thesis is organized in to three parts.

Hardware

\_~ Transactional /

Figure 1.1: Contributions of the Thesis

Part | presents the Data Centric Transactional Memory (DaCaid) comprises
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Chapters 3, 4, 5 and 6. The concept of DaCTM is presented in Gi&aplde archi-
tectural extensions required to support the DaCTM conceptlascribed in Chapter
4. The performance evaluation of DaCTM is presented in Ch&pt€he other related
work of DaCTM, except TM, is presented in Chapter 6. The detadlentributions
related to DaCTM are described in the first chapter of Part I.

The SnCTM approach to reduce false transaction aborts i®mexs in Part Il
which comprises Chapters 7 and 8. The motivation and the pblt@ising adaptive
sources to reduce false aborts is presented in Chapter 7.anie chapter also sum-
marises related work on hardware signatures. The archrdaesign of SnCTM and
its evaluation is presented in Chapter 8. A list of contrisi made with the SnCTM
approach is presented in the first chapter of Part Il. TheiteRart Il is mostly based
on [45].

Part 11l which comprises Chapters 9, 10 and 11, makes a casefang an exit
functionality in an HTM. The motivation for the proposed @tionality, TMEXI T, is
presented in Chapter 9. The same chapter formally defineBVMiEXI T function and
describes how to use it in TM programming. Even though irgirepperformance
is not the prime objective ofMEXI T, the effect of it towards the execution time is
presented in Chapter 10. Related hardware and software Thvagpes that could
either deliver or one would think is able to deliver the sannactionality asTMEXI T
are discussed in Chapter 11. All the contributions made bypdioicingTMEXI T are
described in the first chapter of Part lll. The text in Partdlinostly based on [44].

In addition to these three parts, Chapter 2 describes thegbmakd of Transac-
tional Memory (TM). It focuses on conceptual aspects sucboasurrency control,
versioning and conflict detection; theoretical aspectd stscsyntax and semantics of
TM; and implementation aspects such as hardware TM, sadtiilr and Hybrid TM.
As the thesis is centred around hardware TM, a significartiqggoof the chapter is
dedicated to describe some of the key HTM proposals. Thelasinas of the contri-
butions made in the thesis is presented in Chapter 12. The dzapéer also discusses
the possible future research directions of each high levatiriution.

Figure 1.2 shows the suggested reading order for the th&sisach part is inde-
pendent, the reader can only read the relevant chaptersinfeaasted part and jump
directly to the conclusions chapter. Also if the reader ipegienced in the area of
Transactional Memory, Chapter 2 can be skipped as each & $eparate chapter-
/section describing most of the related work to the contidims made in that part.
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1: Introduction

‘ 2: Transactional Memory ‘

Part | Part Il Part 111
3: DaCTM: Data Centric 9: TM_EXIT: A Case for
Transactional Memory - Exiting a Transaction
7: SNnCTM: Adaptive Sources
‘ for Conflict Detection ¢
4: Architectural Support 10: Implementation and
for DaCTM Evaluation of TM_EXIT

v '

. ; 8: SNnCTM Implementation
5: DaCTM Evaluation o EvaluaFt)ion 11. Related Work on
¢ TM_EXIT
6: Related Work on
DaCTM

\

‘ 12: Conclusions and Future Work ‘

Figure 1.2: Suggested reading structure of the Thesis
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Chapter 2
Transactional Memory

The contributions made in this thesis are centred aroundwhae Transactional Memory
(HTM). In order to facilitate the reader to understand thetdbutions, to compare and
contrast them with the existing proposals, this chaptevides a comprehensive sum-
mary of hardware transactional memory. It also gives anweer of software and
hybrid transactional memory systems. The chapter statdiftussion by elaborating
on theoretical and semantical aspects of TransactionaldvefTM) in Sections 2.2
and 2.3 respectively. Design considerations that couketathe performance of a TM
system are discussed in Section 2.4. Advantages, issugaails for programming
with TM are discussed in Section 2.5. A comprehensive summiaHTM based on
the most influential existing proposals is presented ini&e&.6. Brief overviews of
software and hybrid TM systems are provided in Sections2d72a8. Finally, Section
2.9 summarises the chapter.

2.1 Introduction

When writing parallel programs mutually exclusive accessesrequired in certain
cases. Conventionally, a programmer may use locks to ensatehe mutually ex-
clusive execution is guaranteed. In order to acquire a latkhe hardware level it
is required to first check whether it is available. The aaguiperation happens af-
terwards. Essentially this involves a read and a write dfmera If the process of
acquiring a lock is done using conventiomalad andwr i t e operations, in a multi-
core environment it is possible for two processors to aechie same lock at the same
time. Therefore atomic instructions liKest - And- Set which allow to atomically read
and modify a memory location are being used to implementdockhe instruction

26
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Load- Li nked/St or e- Condi ti onal (LL/SC) is similar to other atomic instructions,
but it also gives the possibility to construct other atonmstiuctions. For example
a new atomic increment instruction can be constructed uisg.L/SC instruction.
However the atomicity is still maintained only for a singlemory location.

Herliny and Moss [50] propose to generalise this LL/SC undion in order to
provide atomicity to more than a single memory location. iTla@proach is called
Transactional Memory (TM) which is based on the concept t¢élolzse transactions
[37]. They also inherited the conceptatbmicblocks proposed by Lomet [69] as a ho-
tion of structuring a program. The initial TM proposal of Hiey and Moss introduced
a new multi-core architecture that is capable of providouktree synchronization. A
programmer is expected to mark any number of instructioatribed to be executed
atomically. The atomic execution on multiple memory looas is made possible with
speculation. When the end of the atomic region is reachedgthedifications are
communicated to other processors. The idea of executing btmtks and checking
conflicts at commit points has also been expressed by Knigtjt [n the architecture
proposed by Knight, all the modified cache entries are keptsacond cache called a
confirmcache. Once a block has completed its execution, entriégitonfirmcache
are written back to the main memory. During this process,ahgr processor which
has accessed these locations gets aborted.

Transactional Memory and database transactions havercsitailarities. For ex-
ample, some of the properties that a database system needsritain, are also re-
quired to be maintained in a TM system. These are known as Atohfkity, Consist-
ency and Isolation) properties. A transaction in TM conxtompasses one or more
memory operationsAtomicityrequires a transaction to either complete all its memory
operations or to leave the system as if none of those toolepl#ca transaction is
successful, it commits all its speculative operationsgahgmaking them visible to the
rest of the system. If a transaction is not successful, ittattbereby abandoning all its
speculative modifications and leaving the system unmodifihsistencyequires a
system to be transferred from one consistent state to anodhsistent state. In other
words it ensures no transaction leaves the system in a hadféd state. Finally the
Isolation property requires all the modifications made within an atoregion to be
kept in isolation until the commit point. Modifications malog one processor are not
visible to others until they are committed.



CHAPTER 2. TRANSACTIONAL MEMORY 28

2.2 TM Design Considerations

When executing transactionsonflictsoccur when more than one processor accesses
the same memory location and one of them is a write. Theseicisrttien need to be
detectedandresolved The detection and resolution of conflicts can be perfornted a
the time the conflict occurs or they can be deferred untir letehe execution. The
concurrency control of a TM system defines how these eveatsardled.

2.2.1 Concurrency Control

Currently there are two basic approaches to concurrencyatofrt the first approach,
known aspessimistic concurrengyll three events happens at the same time. That is
when a transaction is about to access a memory locationesttiv get the exclusive
ownership of the location. If another transaction has dlyesccessed this location a
conflict is detected and, depending on the conflict resalypalicy, one of the trans-
actions is aborted immediately.

In the second approach, known@simistic concurrencythese events can happen
at different times. For example multiple transactions cadify the same memory
location. Even though this results in a conflict, it is noteéed until one of the trans-
actions decides to commit. When the committing transactidiighes the locations it
has accessed, the TM system detects conflicts and resoéras th

It is hard to advocate which form of concurrency is betterdose it depends on
the nature of the application. If the application has highteation, it tends to produce
more aborts. For such situatiopsssimistic concurrendyecomes useful because it
help to reduce the wasted work. However it requires exatuswnership before ac-
cessing a memory location. This could lead to a live-lockatibn, which affects the
forward progress of the execution. On the other hapiiimistic concurrencyloes not
require such ownership, allowing any number of speculBtireodified entries to ex-
ist for the same memory location. Therefore it does not duoe any live-lock and it
guarantees at least a single thread will progress.

In addition to these two basic mechanisms, there is a thietraltive of eager
detection but delayed resolution. In this scheme, confiiotsdetected as they occur.
However, which transaction to abort is decided later, mosib@bly when an affected
transaction is committing. The advantage of such a mecimaisigshat, occurring of
live locks in apessimistic concurrenagontrol system can be avoided asojotimistic
concurrency, by delaying the conflict resolution. At the same time thiseni mode
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has the ability to detect conflicts early agi@ssimistic concurrency

2.2.2 \Version Management

In order to ensure the atomicity and isolation propertie§Mf it is required to main-
tain the original and speculatively modified versions of rogymocations that are ac-
cessed within a transaction. Thersion managememtf a TM takes care of this. In
the first approachiazy versioningall the speculative operations are performed on a
local copy thereby keeping the original memory location odified throughout the
execution of a transaction. Once the execution of the tdiwsais finished, all the
original memory locations are updated with the speculbtinedified values.

In the second approackager versioningthe original memory locations are mod-
ified during the execution of a transaction. Since the oagmemory location is mod-
ified, the old value needs to be recorded in a separate log i3 Imnportant because
if a transaction is not successful it should leave the systermhnothing has happened.
Since the original memory locations are modified in this apph, they are restored
using the values from this log in such situations.

Again it is hard to decide which is better, because each agprbas its advantages
and disadvantages. The overhead of an abort operationligibégin lazy versioning
because it only requires to clear the local copies of memmrsgtions as the original
memory locations remain unmodified during the execution wéasaction. However
a commit operation requires to explicitly update originammory locations. There-
fore lazy versionings better suited to applications in which aborts are fregqué€mn
the other hand the overhead of a commit operation is netgigibeager versioning
systems because when a transaction is completed, all itslsgpige modifications are
already published. Aborts are costly for these systemsegsréquire to first access
the log file and to revert all the modifications made to the mgrtaxations during the
atomic execution. For applications which have fewer abedger versionings better
suited.

2.2.3 Conflict Detection

When more than one transaction accesses the same memomgyri@at one of themis
a write, a conflict has occurred. A TM system employ®aflict detectioomechanism
to identify conflicts. This can be categorised based on the vf the detection and
granularity of the detection. If conflicts are detected atgame time they occur, then
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it is called aneager conflict detectionin such a system when a transaction is going
to access a memory location, it is checked to see if any otaesaction has already
accessed this data in their current transaction. If thaieisase, one of the transactions
has to abort or wait until the other one completeslalzy conflict detectionconflicts
are checked when a transaction commits. There, when a ttesrsaommits it notifies
the TM system about the memory locations it has modified aad M system checks
whether any other transaction has accessed these locations

When considering the granularity of conflict detection, &tk TM systems can
check the conflicts either at word level or at the cache lirelleWhen conflicts are
checked at cache line level false conflicts can occur duedioecne sharing. This can
be avoided if conflicts are detected at word level granylatien a cache line will have
certain valid words and invalid words. Therefore extra ¢am@quired to avoid using
invalid words. In software TM, conflicts can be detected geclevel granularity or
at word level granularity.

2.3 TM Semantics

This section describes semantics of TM systems. It desculigt properties are re-
quired to maintain in a transaction and how the transadtiand non-transactional
accesses are handled. The section also describes sewfatms for defining char-
acteristics of an atomic block. Different classes of tratisaal nesting are covered at
the end of the section.

2.3.1 Serializability

Serializability requires that the effects of a transacbhenomes visible to the rest of the
system as though they had executed in a serial order. Thatraenean the ordering
should be the same as they execute. For example if a systemwvbasansactions
T1 and T2, the effects of them can be visible either as>T2 or T2—T1. Relaxing
the ordering could be advantageous in certain cases. Fompdeaf the operations
associated in the next transaction have no relation to thremiiransaction, the order
they becomes visible can be relaxed. However if the secamsaction depends on
the data produced by the first one, relaxing the order cantteextonsistencies.
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2.3.2 Strict Serializability

Strict Serializability is a stronger requirement than a&ability. This requires that
the order, the effects of transactions become visible terstshould be the same as
the order they execute. For example if the transaction Tters before T2, then the
effects of T1 should be visible to the others before T2.

2.3.3 Linearizability

Linearizability requires that a transaction appear to ltawrapleted all its operations at
a single point in the program order. This emphasise thahalspeculative operations
should atomically become visible to others. Reasoning abbuexecution is made
easier with linearizability because all the read write agiens inside an atomic block
can be represented by a single operation in the program.order

2.3.4 Weak Isolation

In a program there can be transactional and non-transattmtesses, even to the
same memory location. Weak Isolation (WI) guarantees the dilestics only among
transactional accesses. Even though this reduces thesakdm a TM system, in cer-
tain cases this can be problematic. For example consideradisn where a transaction
reads the same memory location several times and a norattansal write is made
to the same memory location between those reads. If Wl is iceplhis produces an
inconsistent view of the memory as the latter reads obséee@pdated value whilst
early reads see the old value within the same transaction.

2.3.5 Strong Isolation

The above problem can be addressed with Strong Isolatign8th guarantees TM

semantics among transactional and non-transactionadseseWhen Sl is maintained,
transactions are isolated from other transactions and &oyrother non-transactional
operations. Therefore in the previous example, a traragtill not see the update
by the non-transactional write. It might either signal aftiohor the non-transactional

write will be delayed until the transaction commits.
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2.3.6 Single Lock Atomicity

Single Lock Atomicity (SLA) is a model that can be used to defsgemantics of a
transaction with respect to other transactional and namstictional operations. Under
SLA, the behaviour of a transaction is defined as if there i®gnam wide global lock.
For example under SLA, the execution of T1 and T2 transastiaiti be similar to as
if one of T1 or T2 acquiring the global lock and finishing thartsaction and thereafter
the other one doing the same. SLA model is quite simple ara@lsgrammers can
easily become familiar with it as it extends the lock basesypamming model to
TM. Despite its simplicity, SLA cannot be used to define théadwour of all the
situations that occur in TM programming. One such problenucewhen defining the
behaviour of nested transactions. This is because, acgptalithe definition of SLA,
if there is only one program wide lock, the inner transactias to wait indefinitely
as the outer transaction has already acquired the glodal kother situation arises
when a transaction enters an infinite loop thereby prevertlia progress of all others
transactions as they cannot acquire the global lock.

2.3.7 Disjoint Lock Atomicity

Some of these issues have been addressed in Disjoint Locki¢itg (DLA), which is

a weaker model than SLA. Under DLA, there is no global lockteéad a transaction
is required to acquire a set of locks corresponding to the thet it intends to access.
Therefore if two transactions access disjoint data, thepatoneed to wait for each
other. For example, in order to execute transaction T1 ubdd, it only requires
to acquire locks related to the memory locations it intermsdcess. If the other
transaction T2 does not access the same set of memory logatiey can execute in
parallel.

2.3.8 Transactional Sequential Consistency

Transactional Sequential Consistency (TSC) proposes toed#fan semantics of a
transaction using TM itself. TSC is derived from extendirefj@ential Consistency
(SC) to the TM domain. Under TSC, transactions appear to hgyadmeed atomically
without any interleaving with other operations in the systelSC stands as a better
model than any lock based models, because it allows a progeano precisely reason
about the outcome of an application which has transactamainon-transactional ac-
cesses.
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2.3.9 Nested Transactions

A transaction becomes nested if it is inside another traigadn such situations it is
not straightforward to define the behaviour of a nested &etien. Typical questions
which arise with nested transactions are whether the comiah inner transaction
becomes visible to other transactions or whether the abart mner transaction aborts
the outer transaction and so on. Different approaches tdléaested transactions are
summarised below.

2.3.9.1 Flattened Nesting

This is the simplest form of nesting. The inner transactiecdmes a part of the outer
transaction. Therefore committing the inner transactimesthot make its changes vis-
ible to the others until the outer transaction commits. &irtyi if the inner transaction
gets aborted, the outermost transaction gets aborted as wel

2.3.9.2 Closed Nesting

In closed nesting, when an inner transaction gets aborteoei$ not affect the outer
transaction. If the inner transaction commits, its chariggeomes visible to the outer
transaction. However these changes do not become visiliteeteest of the system
until the outermost transaction commits. If the inner teanti®n commits the behaviour
of both flattened and closed nesting are the same. Howeveptrations involved in
closed nesting are more costly than the flattened nestingreidre if commits are
frequent flattened nesting will outperform the closed mgstiConversely if aborts are
frequent closed nesting will prevent aborting the ent@@saction, thereby performing
better than flattened nesting.

2.3.9.3 Open Nesting

In open nesting, when an inner transaction commits, its @sibecome visible to the
rest of the system. Therefore even if the outer transacts goorted, the modifica-
tions made by the inner transaction are kept committed. @psting could be used to
improve concurrency by treating the inner transaction apargate transaction. How-
ever extra effort is required when using open nesting assiblation property of the
outer transaction can be dropped by the inner transachergly leading to inconsist-
encies.
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2.4 TM Performance Considerations

Programming with locks can harm the performance of a parafiplication as it is
a blocking operation. One of the motivations for proposing iE because it is a
non-blocking operation. As there can be different ways avjgling non-blocking
synchronization, this section first briefly summarises th&he section also covers an-
other performance consideration which is the contentionagament of a TM system.
Finally the section also describearly-releasewhich is an optimization proposed to
reduce conflicts, as they can affect the performance.

2.4.1 Non-blocking Synchronization

The first consideration of TM performance is the extent toohtii supports the liveli-
ness of an application. Liveliness is reflected by the amotiptogress which is guar-
anteed in an application when using TM. In other words, wiethe synchronization
provided by TM isnon-blocking An algorithm can be considered@sn-blocking if

a pre-empted operation does not block the other operati@ahksig progress. Several
variations ofnon-blockingsynchronization exist. The strongest onevait-free [46]

in which each transaction is guaranteed to complete in & fimitnber of steps regard-
less of the actions of other transactions. A slightly wealéerion islock-free[47]

in which some transactions are required to finish in a finiteloer of steps. Herlihy
et al. proposed an even weaker criterion fayn-blockingsynchronization which is
obstruction-freg48]. Synchronization techniques belonging to this typly guaran-
tee forward progress when there is no contention. This is @bprovide a simplified
implementation of TM algorithms whilst delivering the bétseof wait-freeandlock-
free

2.4.2 Contention Management

Another performance consideration is what sort of contentianagement (CM) policies
are supported in a TM system. CM is responsible for decidiego#st course of ac-
tion when a transaction aborts. The simplest policy is tatdtransaction whenever
it encounters a conflict. This can result in aborting the siaresaction multiple times,
for example, if another transaction is operating insideagp land modifying a shared
variable. In some cases, introducing a delay with an expteaddrackoff can solve the
problem. Another solution is to give priority to transacsobased on the number of
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operations performed. In such a scheme, when a conflict stoartransaction with a
lower priority aborts and the higher priority one continu€his can lead to starvation.
It is hard to define which policy is the best, because it dep@mdhe characteristics of
the application. Several CM policies have been proposed god@survey of them is
presented by Scheret al. [97].

2.4.3 Early Release

Another way to improve performance in a TM system is to redilge number of
conflicts. Several implementation techniques can be erspldy achieve this. This
can also be achieved by extending the TM system to allow argnogrer to manu-
ally define certain memory locations as non conflicting rdtgms of being accessed
inside transactions. Early-release provides this kinduotfionality [49, 100]. The
most common example to demonstrate the use of early relsagleen one transac-
tion is performing a search and another one is modifying & gfathe data structure
being searched. This can lead to conflicts even if both doowtd on the same data
item. With early release, a programmer can explicitly reenentries from the read
set of the transaction. For example in the above scenaecgitiries accessed in the
search method can be removed thereby reducing unnecessdligts. However using
early-releasaequires great care as it can compromise the correctnessjables are
removed from the read set erroneously.

2.5 Programming with TM

Even though the initial goal of TM was to provide atomicity fmore than a single
memory location, it has grown substantially as a progrargmaodel with particular
emphasis on the exploitation of future multi-core archiiees. This section describes
the advantages of TM over lock based programming. It alssudies certain function-
alities that either cannot be provided or are difficult toyiie with TM as opposed to
lock based programming. Finally it also describes a progmarg model which is
completely based on TM.

2.5.1 Composability

One of the advantages provided by TM is that the programmeo i®nger required
to name the resource that the synchronization is based ois. i different to lock
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based programming in which programmers have to state tlkedoavhich the syn-

chronization is based on. In TM, they can simply state thateghod or a block of

code needs to be synchronized. Programming is made ea#fief Mibecause it only

require programmers to define what to synchronize, not hatotio. The indirect ad-

vantage of this is the composability. That is with TM any n@mbf atomic blocks can
be combined together in order to form another atomic blo¢ks @oes not require any
programming effort, whilst achieving a similar outcomelwlitck based programming
requires great care.

2.5.2 Conditional Synchronization

One of the issues that a programmer faces with TM is how toigeogonditional
synchronization. For example consider a situation wheeetmansaction has to wait
if a data structure is empty and another transaction is pgsiems in to this data
structure. With lock based programming this can easily beeaed by asking the
first thread to wait on a condition variable (gg:hr ead_cond_wai t [54]). A similar
approach cannot be applied in TM programming as the opasaperformed within
an atomic block are done in isolation. Haresal. [43] proposed aet ry statement
to support this kind of scenario. The underlying functiatyadf ret ry is to transfer
the control to the beginning of the same atomic block whick ingoked it. Simply,
the same transaction is retried usirgd ry. For example consider a situation where a
pop function has to wait until a list is not null. In this casgfunctionality similar to
conditional waiting can be delivered witlet ry. That is by issuing aet ry statement
when the list is null. Thereafter the same transaction isaetuntil the list is not null,
hence similar to waiting for the list to be not null.

2.5.3 Memory Allocation

Another issue that needs addressing is memory allocatidre fifst problem with

memory allocation is, it can be a serializing operation. dina a situation where
a memory allocation is happening inside an atomic block. Asnory allocations

are served serially, all the concurrently running transastalso become serialized.
This could ruin the whole concept of TM. However this can bdradsed by having a
parallel memory allocator similar to Hoard [6]. A secondldeam arises when defining
the behaviour of speculative allocation. If TM semantiesstrictly enforced, then the
allocation should not be visible to other threads until themit point of the requesting
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transaction. That means, for example, if there were 5 freekisl and a speculative
request is allocated 3 blocks, the rest of the transactioosld still see that 5 blocks
are available, not 2 (5-3). This means the memory allocaaonot keep a precise
count on the available memory, because the speculativielgaaiéd memory cannot
be given to any other request because then it will overwhigevialues written by the
other atomic block. For example in the same scenario, ifr@rdtansaction requests 3
memory blocks, the request cannot be serviced becausasherenough free blocks
to serve that request. However looking at this denial froerlquesting transaction’s
view, there is nothing stopping the allocator granting éguest because, according to
the requester’s view, there are 5 free blocks available. ésohthese issue has been
addressed by Hudsast al. in their McRT-Malloc allocator [53].

2.5.4 Transactions Everywhere

Two major approaches can be used when integrating TM withllphprogramming.
The most straightforward way is to replace locks with atoblacks. In certain situ-
ations this can lead to problems. If the code region proteoydocks uses conditional
synchronization, then the code needs to be modified to refiecavailable function-
ality in TM to support such a feature. Another situation ighe mutually exclusive
code has certain irreversible actions or interactive ifquiput operations then the un-
derlying TM specification should be studied to realise hogvltdtk based code can be
transformed to a TM version to perform similar to the origina

The other approach is to transform the entire program intollaation of transac-
tions. The “Transactions Everywhere” approach proposeaduszmaul and Leiserson
[60] belongs to this category. The objective of this appho&cto free the user from
managing complex synchronization protocols as the entiogram can be seen as
a collection of atomic blocks. As all the operations have ¢oplerformed within a
transaction, there cannot be any data races within transatend non-transactional
accesses. The authors extend the Cilk [32] programming &geywith theat om ¢
keyword to denote that a method or an operation followed Ingéds to be transac-
tional. In their approach transaction boundaries of aniegipbn are defined at places
like return statements, spawning a thread and so on. If thmielty is required to
be maintained across these exit points,ahen ¢ keyword is used explicitly. Trans-
actional Memory Coherence and Consistency (TCC) [39] is an taxthie proposal
for using transactions as the basic unit of parallel workinta@ning coherence, con-
currency and synchronization. The same authors also pedpop based and fork
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based programming extensions to support the TCC archieef38t. When a typical

f or loop is replaced with the proposed or construct, all the iterations of the loop are
guaranteed to be executed as separate transactions ebiffwvours of this construct
allows to change certain parameters of the execution, ssicomrolling the number

of iterations included in a transaction or maintaining atleoramong them and so on.
They also proposetd f or k which allows the execution of a method call as a separate
transaction while the callee method continues its exegttimm the line immediately
following the method call.

2.6 Hardware Transactional Memory

Systems in which all the TM related operations (conflict ded®, version manage-
ment) are performed in hardware belong to the category ofiMare Transactional
Memory (HTM). When compared to Software based TM systems, Hydems can
provide better performance. Also they do not require appibo rewriting. However
they are not as flexible as software TM systems. Another daatdge of HTMs over
software TMs is that the limitations imposed by the physi@idware such as caches.
For example, speculative data is stored in the Level 1 (Ltheaf a TM processor.
This implicitly requires a transaction to be bounded by tize f the L1 cache. In
addition, HTMs found it difficult to maintain speculativetdaamong context switches
and/or thread migration. This is because, in either caskesaceed to be evicted to
the main memory before performing the associated opematloran HTM system this
cannot be performed directly, hence require further extaiss The literature on the
area of HTM is huge, therefore summarising them all is beytbadcope of this thesis.
Interested readers are directed to the Chapter 5 of the Tataosal Memory book [42]
by Harriset al.. This section describes some of the key proposals in HT Vhalitee.
HTM systems can be categorised in several orthogonal axXesfifBt criterion is
whether the HTM is implicit or explicit. The latter requirgpecial read and write
instructions to be used when accessing a location insidaresdction. Since new
instructions are introduced, it is possible to treat onby lecessary memory locations
as transactional, even if they are performed within an atdstock. The advantage
of this approach is that the read and write set of a transactidy contains memory
locations which require ACI properties to be maintained. sTigsults in a smaller
read and write set, hence is useful in addressing the probleesource limitation in
HTM. The disadvantage of these explicit HTMs is that theyurezja TM application
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to be rewritten to use new transactional read and write dp@sa This introduces

a problem when using library functions or application codach has already been
compiled. One solution is to have different versions fordity routines, a TM version
and a non-TM version. However this is not possible when thraty is available only

in binary format.

The TM system proposed by Herlihy and Moss [50] falls in tg ttategory. In their
proposal, programmers are equipped with three memory tipesaload- t r ansact i onal
(LT) -to read a memory locatiohpad- t r ansact i onal - excl usi ve (LTX) -to read a
memory location with the intention of modifying it or e-transacti onal (ST) -to
speculatively modify a memory location. All the memory lboas accessed with LT
become the read-set and locations accessed with LTX and &frigethe write-set of
a transaction. In addition they also introduced three dfmrato control the execution
of a transaction. Th€omit operation makes all the speculative updates visible to
others by updating their original memory locations. All ggeculative modifications
are abandoned by calling tAéort operation. The last operatiovial i dat e, is used
to test the status of a transaction itself. If a transactesdborted, it returrizalse else
it returnsTrue They do not provide an operation to indicate the start ochagaction,
the first call to LT, LTX or ST is considered as the start of as@ction and is com-
mitted by explicitly callingComm t. Each processor is equipped with a transactional
cache in addition to the regular cache and they are exclusieaning that an entry
can only be residing in one cache. The transactional cadds tie speculative values
which become visible to others on a commit or discarded orbartaTransactions are
aborted if an interrupt happens when a processor is exgcatiransaction. The same
applies for transactional cache overflows.

The Oklahoma Update proposal by Stateal. [104] is a synchronization mech-
anism that requires explicitly defined memory operationseiiproposal comes with
three operation to manipulate daRead- and- Reser ve -reads a memory location and
reserves it in a register called theservationregister;St or e- Cont i ngent -modifies
the data after copying it to a reservation register, thesdifications do not become
visible to other processordyite-if-Reserved -this takes multiple reservation re-
gisters as its argument and updates their original memasatilans with the speculat-
ive data. Thereafter the speculative data becomes visbb¢her processors. When
Wite-if-Reserved is executed, it tries to acquire the ownership of the memaey |
ations corresponding to the giveeservationregisters. Once all the ownerships have
been obtained, all the locations are updated and owneratepgleased thereafter.
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The Advanced Synchronization Facility (ASF) [21] is a preglbfrom AMD to
support HTM. It also falls into the category of explicitly fdeed TM systems. ASF
proposes seven new instructions. BRECULATE instruction starts a new transaction
and theCOW T instruction finishes it. Th&€OCK MOV instruction is used to transfer
data between the processor registers and memory. Thisilaisimexplicit read/write
operations from Herlihy and Moss [50] and Oklahoma Upda@&]1 The ABORT in-
struction of ASF, explicitly aborts a transaction. In aduht system calls, exceptions,
interrupts and eviction of transactionally modified ergfi®m the cache cause a trans-
action to abort. Th&ELEASE instruction releases an entry from the read-set of a trans-
action. Thereatfter it is not checked for conflicts. FinallTCHR and WATCHWdetect
stores and loads from other processors, to a set of giveresgiEs. In ASF, when a
transaction is aborted it jumps to the line immediatelydaihg the SPECULATE in-
struction. One option is to continue executing the atomickl The other is to jump
to an alternate location by manipulating the Zero flag. Usieglatter approach, ASF
can execute an abort handler and it allows the passing of@m edde which tells the
handler the cause of the abort [23].

Most of the HTM systems belong to the category of implicitlgfided ones. In
this category a programmer is expected to only mark the starthe end of an atomic
block, the underlying TM system treats all the operationhwmvithese two boundaries
as transactional. The advantage of such an approach ishthdiM application can
use any external library without modifying it. The disadiage of such an approach is
all the memory locations accessed within an atomic bloclkcansidered transactional
regardless of whether they require it.

Speculative Lock Elision (SLE) [87] was one of the to first t@pose implicit
hardware support for lock free execution using speculatitrent though the authors
did not use the term “Transactional Memory”, it is basicaigilar to a TM system.
No modifications are required to the application code in ptdegain the advantage
of SLE. In the proposed architecture, when a lock acquireatjms is detected, the
lock is not acquired, instead it is assumed that the lock asdave and the execution
is continued. All the modifications made within the lock @yiare buffered so that
no other processor sees them. EXxisting cache coherenaeplotire used to check
whether any other processors are accessing the same toeatiiis one. If that is
the case, a conflict has occurred and the execution is redtdnis time by explicitly
acquiring the lock. If no conflicts have occurred, the budteentries are committed
atomically. The same authors proposed Transactional Lockdwal (TLR) [88] in
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which locks in a lock based program are replaced with tramsescand timestamps
are used to detect conflicts.

Rundberg and Stensim [92] argue that having an order for entering and exiting
the lock region in SLE [87] can harm the concurrency. Instbéagl propose to specify
an order once all the threads have reach the lock releasanstat. Their proposal,
Speculative Lock Reordering (SRL), works as follows. All thestads enter the lock
region assuming the lock is available, similar to SLE [87hc® all the threads have
reached the lock release statemertraad dependency graph created. Using this
graph a commit order is formed in order to minimize depengsnc Conflicts are
detected at commit time in SLR, as opposed to eager confliettien in SLE.

Hammoncet al. propose Transactional Memory Coherence and Consistency (TCC)
[39] in which transactions are considered as the basic dimarallel work, commu-
nication, cache coherence and memory consistency. In TCGgagm is decomposed
into several transactions and the underlying architechaimtains coherence and con-
sistency at transaction level, thereby providing a singadiprogramming model. How-
ever this simplicity comes at the cost of higher bandwidtfureements. Cache lines
are extended to record read and write sets of a transactioarder to maintain the
isolation property of a transaction, speculatively modigatries are not allowed to be
flushed during the execution of an atomic block. The authoopgse to either use a
victim buffer or to gain exclusive commit permission if thashing is inevitable due
to the capacity of the L1 cache.

Ananianet alpropose Unbounded Transactional Memory (UTM) [3], an ideal
ised HTM design which supports the execution of unboundaastctions. The term
“unbounded” encompasses transactions of arbitrary sidedaration. Arbitrary size
means that transactions can have a read or write set biggethk L1 cache, in fact
they can even be bigger than the physical memory but have tessethan the vir-
tual memory. Arbitrary duration means that transactionslwalonger than the time
slice or the scheduling quanta. The first requirement iseupg by having a structure
calledxstatein the memory and storing all the transactional informatrothat struc-
ture. If the size of this structure is not enough for a paléictransaction, it is aborted
and restarted after the operating system allocates a baygarfor the structure. By
treating thexstateas a system-wide data structure and saving a pointer tottbsre
in the processor state, UTM is able to allow transactionsttmhger than the schedul-
ing quanta or even to migrate from one processor to anotiven though UTM is an
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attractive proposal for executing unbounded transactibnsquires significant modi-
fications to the processor hardware and to the memory sumsy3therefore the same
authors also proposed Large Transactional Memory (LTM)Wig a simplified ver-
sion of UTM. LTM can support transactions which have a reait#vset bigger than
the L1 cache, but they have to be smaller than the physicalaneniTM cannot
support transactions which are longer than the scheduligta. In LTM when a
transactionally modified cache entry is flushed while thecgssor is still executing
the same transaction, the ejected entry is stored in an hedaarea in the memory.
The L1 cache is extended to have an additional ‘O’ bit to detioat a transactionally
modified entry has been removed from the cache. When detemimtjcts both the
L1 cache and this overflow area is examined.

Rajwaret al. argue [89] that most of the HTM proposals require progransmer
to be aware of system specific parameters such as the buféeasd the scheduling
guanta, hence can be unattractive. They propose Virtuasacional Memory (VTM)
in which those system specific parameters are shielded freraggammer, similar to
the virtual memory shielding the parameters of the physiwaiory. The idea is to
decouple the TM from the underlying architecture by virizialy it using several data
structures. In VTM each transaction is associated wiffransaction Status Word
(XSW) which acts as the sole authority of the associated actim. The attractive
component of the VTM is th@ransaction Address Data Tab{8ADT), which keeps
track of the overflowed memory locations. This gives VTM thmlity to support
transactions that exceed the size of the L1 cache, transadhat can be swapped from
one processor and scheduled in the same or another proeeggssp on. They also
proposed to include adADT Filter (XF) to support fast execution of transactions that
fitin the cache and do not encounter context switches. In ViTdtiansaction is able
to fit in the cache, it will be executed without using any ofd@elata structures. When
this is not the case, these data structures are used. Honewerof these structures
are visible to the programmer, thereby making the programiess worried about
managing internal TM data structures.

Mooreet al. argue [77] that most of the TM proposals use lazy version gana
ment, hence require buffering of all the speculative dateclwheeds to be committed
at the end, making it a slow process. Their proposal, Log-fElles on eager version-
ing and eager conflict detection. In Log-TM all the memory afed are performed
in-place and the old values are stored in a per thread calehlegb Therefore when a
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transaction commits, it does not require to transfer ang datthe speculatively modi-
fied entries are already updated. When a transaction getedbttnis log file is walked
and all the modified entries are replaced with old ones. Lbbd$es the existing cache
coherence protocols to detect conflicts. They introducedvasticky-M state which
allows a processor to keep the ownership of a transactionatidified cache entry
even after it has been evicted from the cache line. The adgans that conflicts can
be detected even for evicted cache lines without examiniteyeal data structures as
in LTM [3] or VTM [89].

Page based Transactional Memory (PTM) is proposed by Chetal [22] in
order to support transactions that are not limited by theespad/or time. Even though
their approach is similar to VTM [89], PTM maintains overflomformation at page
level granularity whereas VTM does it at the cache line glamy. In PTM if a
transactionally modified cache entry is evicted before cdtmyg, a shadow pagés
allocated and original data is copied there. The modified dastored either at the
home pager at theshadow pagelepending upon the type of PTM (Copy or Select).
As the pagesshadowandhomg used in PTM are physical, as opposed to virtual data
structures in VTM [89], no data is moved on commit. Howeveraonabort, original
data needs to be restored to timmepage.

Cezeet al. propose [15] to use hardware signatures to represent tdearehwrite
sets of a transaction. A signature is a fixed set of bits, implged using bloom
filters [7], in which certain bits are set according to the radd being considered.
The important contribution from their approach, Bulk, istthead and write sets of a
transaction do not need to be recorded in the L1 cache thed&dying transactions
to grow beyond the size of the L1 cache. In order to insert ainess to a signature,
certain bits are selected by hashing the address. In ordestavhether an address is
already in the signature, the same hashing is performedeoadtiress and the bits are
checked. The disadvantage of using signatures is that #reproduce false positives,
meaning when checked for membership they may assert positen though it is not
the case.

In order to simplify the modifications required to supporbaanded transactions,
Blundell et al. [9] proposepermissions-only cache cache like structure that can
record the speculatively modified cache lines that are estiduring the execution of
a transaction. As their HTM uses eager versioning, updatesnade in-place and
the original values are recorded in a log as in Log-TM [77]. Whetransactionally
modified cache entry is evicted, the address is recordedspéinmissions-only cache
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but not the data. By using an efficient encoding mechanismaditieors claim that a
4KB permissions-only cachean support up to 1MB of transactional data. They also
propose QeTM, an HTM system which supports unbounded transactionsplgi by
restricting one overflow at a time. InN@T'M-Serialized version, once a transaction is
allowed to overflow all the other transactions have to stailst ONeTM-Concurrent
allows non-overflowing transactions to execute conculyevith the overflowing one.
In order to facilitate conflict detection among overflowingdanon-overflowing trans-
actions, the authors use per-block meta data.

Following the proposal for encoding read and write set ofagdaction to a fixed
sized signature by Ce=zt al. [15], LogTM Signature Edition (SE) was proposed by
Yenet al.[110]. LogTM-SE decouples the version management and cbd#iection
of an HTM from hardware caches thereby making them virtaale. Signatures are
used to track read and write sets in LogTM-SE. The authonsge®to use aummary
signature which is a union of all the signatures of threads that areecly inactive,
to detect conflicts among active threads and inactive tlstreasithe software logs used
by the LogTM-SE are accessible by the operating systensdrdions can be migrated
from one processor to another processor as simply as nmgratonventional process.
Even though the logs are software accessible in LogTM [T €amnnot support virtu-
alizable transactions as it relies on R/W bits in the cacleslio detect conflicts. This
is because, in LogTM, conflict detection was not decouplethfcaches..

Chafiet al. [17] propose to integrate a distributed directory struetiar the TCC
[39] proposal in order to provide a scalable architectursing this approach the au-
thors were able to allow parallel commits which were notladé in the original TCC
design. This is made possible by introducin&laaring Vectorand aWriting Vector
which keep track of the directories that the current tratgatas read and written re-
spectively. Even though Scalable TCC does not rely on coisaitcache coherence
protocols, it does not need to write-back data on a commit) agginal TCC.

Adapting the concept abkensfrom token coherencgrl], Bobbaet al. propose
TokenTM [10], an HTM system which relies on per block metaadatdetect conflicts.
In TokenTM each memory block is associated with T number kéns. In order to
perform a transactional read, a transaction is requiredtaim a single token. All the
T tokens of a memory block are required to perform a transaatiwrite. Meta-data
is stored in the memory by reusing some of the bits used fomst@rror correction
and detection information. As meta-data is stored in membokenTM can easily
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virtualize transactions. The advantage of TokenTM overTMeSE in implement-
ing virtualizable transactions is that, the former can mte\precise conflict detection
whereas the latter encounters a large number of false dsrdiie to the use of signa-
tures. As meta-data requires to record the an ID of the thfE&) who has acquired
the token, in order to make transactions virtualizable tiissTheed to be unique among
all the processes.

HTMs systems which support eager conflict detection areldapz minimizing
the wasted work and also require minor modifications to thstiegy cache coherence
protocols. However, they require a good contention managémechanism to decide
which transaction to abort as they occur eagerly. On therdthad, systems sup-
porting lazy conflict detection do not have this problem, thxaty require a validation
mechanism at the commit phase. The term conflict detectidhisncontext actually
refers to both the detection of the conflict and resolvingAl. the proposed HTMs
consider these two events together, hence performed aathe 8me. Tong et al.
[105] proposed to separate these two events, thereby takivantages of both eager
and lazy conflict detection. Their system, EazyHTM, deteotslicts eagerly, but the
resolution of conflicts is deferred until the commit time. Bsing the conventional
cache coherence protocol, each processor tracks configexlg and maintains two
lists: Races-listandKillers-list. The former records the processors to be aborted on
completion of the current transaction and the latter rextné list of processors who
are allowed to abort the current transaction. This is usedaad false aborts.

Sun Microsystems was the first to develop a commercial psocesgith TM sup-
port [18, 29]. Their Rock processor comes with two new ingtoms chkpt and
comm t which specify the start and the ending of the atomic bloCkkpt takes an
addressfgil-address as the argument which is the location to resume the exatutio
in case of a failure. All the speculative stores are buffénedn on chip queue. The
shared L2 cache is notified about these speculatively mdddieries, which tracks
reads of the other processors to detect conflicts. If thisig@ets full before a trans-
action is committed, Rock proposes to abort the transacliberefore the size of the
transaction’s write set is limited to 32 entries, which is #ize of the speculative buf-
fer. When a transaction is aborted, the cause of the aboxiredsin a register called
Checkpoint StatugCPS).

Azul Systems also have developed a commercial processormMMtsupport [25]
to accelerate Java locks. As the intention is to accelerafiatly exclusive Java
code regions, they do not introduce any programming langkagword to define an
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atomic region, hence rely on the existisgnchronizedkeyword. Three new instruc-
tions SPECULATE, ABORT andCOW T have been introduced. In order to track read and
write sets, caches are extended vageculatively-reacindspeculatively-writterbits.
Therefore the size of a transaction is limited by the sizehefltl cache. If a specu-
latively modified cache line is evicted from the cache, th@saction is aborted. Azul
rely on software heuristics to determine when to use the Hadilify available within
the chip.

Intel recently announced Intel Transactional SynchrdiondExtensions (Intel TSX)
in a future processor, codenamed Haswell [55]. Intel TSXosus two modes of ex-
ecution for providing optimistic concurrency: HardwareckcElision (HLE) and Re-
stricted Transactional Memory (RTM). HLE which is basigadimilar to SLE [87],
is for executing legacy code which is written using locks. BEHbrovides two new in-
structions XACQUI RE andXRELEASE. When the application code tries to acquire a lock,
XACQUI RE is used and the lock variable is added to the read set. No opieation
is performed on the lock variables, thereby making it ald@do others. While this
enables multiple threads to acquire the same lock, if argathhas performed a con-
flicting read/write operation, the lock region is executgaia, without lock elision.
RTM provides three new instructioBEG N, XEND and XABORT to start, commit and
abort a transaction, respectively. Similar to Rock [18, 2BEG N also takes an ad-
dress as the argument, fallback address, to resume thetiexecucase of a failure.
Conflicts are detected at cacheline granularity in Haswediker&fore if the read/write
set exceed the L1 cache capacity, the transaction needsdbdreed. In addition,
transactions need to be aborted in events like the execatiar€PUl D instruction or
the occurrence of exceptions.

2.7 Software Transactional Memory

In Software Transactional Memory (STM) all the TM relatecemdions (conflict de-
tection, version management) are performed in softwares ifbreases the flexibility
of a TM system as different policies can be used dependindhers¢enario. Also
an STM does not encounter the physical limitations such edtiffer size, faced by
an HTM system. However they have the inherent disadvanthauing to perform

everything in software, which in general is slower than gdimardware. The work
presented in this thesis is mainly focused on HTM, theretaneeying the area of
STM is of lesser relevance, however for the sake of compésten brief summary of
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two proposals are presented in the remaining section.dsiied readers are directed to
Chapter 4 of the Transactional Memory book [42] by Haetial.,, for a comprehensive
summary of the available STMs.

The first STM discussed, is proposed by Shavit and Touitol [Bi&ir STM only
supports static transactions in which all the memory locettithat a transaction might
access have to be known in advance. Mamorydata structure is used to store the
speculative updates. Aswnershipvector records the owner of each blockviemory
Another vectorAdd which is maintained per process, contains the set of adthiasa
transaction accesses. Old values are kept in a vector €ltkrcluesvhich is updated
on a successful transaction. A transaction first acquire®wmership and writes the
old values to the transaction’s record. New values are tztd thereafter and the
memory is updated with those. Ownerships are freed theredfta transaction fails
to acquire the ownership, it is considered a failure.

The STM proposed by Shavit and Touitou [98] has a constrhatitthe data set of
a transaction needs to be defined in advance. This issue weesadd in the Dynamic
STM (DSTM) [49] proposed by Herlihgt al.. In DSTM, when a transaction requires
to access an object, it creates a clone of it. Thereaftehalhtodifications are done
on the clone object. If a transaction is to commit succebstfile pointer of the object
is changed to refer to the clone object. Only the transadtas a reference to the
clone object, therefore no other thread will see the spéealg modified object until
it is committed. When a transaction requests a clone of arclties cloning function
checks whether any other thread has already been given @ afdhat object. If that
is the case, the request is denied. However this may limip#rallelism because it
does not consider whether the objects have been cloned éadeoperation or a write
operation. In order to remedy this, the authors propose sbdpen all objects in a
read-only mode and to walk through the objects to decide hvbiijects are going to
be speculatively modified. The authors also propose a el@@shanism to remove
an object from its read mode in order to reduce conflicts. DS¥&4 an influential
proposal in STMs, since then quite a number of proposal heee lmade and a good
summary of those can be found in Chapter 4 of the TransactMaaiory book [42]
by Harriset al.
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2.8 Hybrid Transactional Memory

HTM and STM are combined in Hybrid Transactional Memory (l)Tto achieve
the benefits of both. In HyTM some of the TM related operatiare performed in
software whilst the rest are performed in hardware. Danetal. [28] propose to use
the underlying HTM to boost performance, and to retry in tR&Sf the execution in
HTM fails due to limitations. Their design comes with a colrapand a STM library.
The compiler produces two versions of the application code,for HTM and one for
STM. Initially a transaction is tried in HTM, if it fails a fustion in their HyTM library
is called which then decides whether to retry in HTM or in STMeir HTM system is
equipped with a function to access read and write sets nia@utdoy the STM in order
to detect conflicts between transactions running in HTMsSiflls.

Concurrently with Damroret al, Kumar et al. also propose a Hybrid Transac-
tional Memory system [59]. Their HyTM is based on extending DSTM (an object
based STM system proposed by Herlétyal. [49]) to work with HTM. DSTM relies
on creating a new object on the first transactional access t/hile this gives the
flexibility to commit or abort simply by resetting the pointéhe allocating space and
copying data is a costly operation. In order to remedy thg&glgmperation, Kumar’s
HyTM suggests to modify data objects in-place while opagain hardware mode. In
addition, transactions do not need to perform a commit-wadalation as in DSTM
[49] because conflicts are detected eagerly using cacheearateeprotocols. Similar
to the HyTM by Damroret al. [28], Kumar's HyTM also decides a mode (software or
hardware) for operation at the beginning of a transactiomially a transaction is tried
in hardware mode, if it fails it is retried in software mode.

Lev et al. propose Phased Transactional Memory (PhTM) [67], whicltebes
transactions using the best available platform. PhTM hasrabmodes of execution.
When operating undeARDWARE mode all the transactions are executed using HTM.
When operating unde&SOFTWARE mode, all the transactions are executed using STM.
All the transactions are executed using the HyTM when opegatnder theHYBRI D
mode. PhTM also suppor8eQUENTI AL andSEQUENTI AL- NOABORT modes which are
basically software modes without the overhead of managsagl and write sets as
no conflict detection phase is involved. In additi®@tQUENTI AL- NOABORT does not
require the logging of memory operations as no abort oparas involved in that
mode. In order to ensure that the correctness is not compeahfiy having different
modes of execution, PhTM proposes to complete all the tcdioses in one mode
before switching to another.
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SigTM, a HyTM system proposed by Mirgt al. [75], uses hardware signatures to
detect conflict in a STM. Unlike other HyTMs, there is no s\ittg between modes
of execution. All the TM related operations like versionilwgmmitting, aborting are
done in software. Signatures are updated and conflicts deetdd using existing
cache coherence protocols. Therefore no modificationseap@red to the caches to
detect conflicts. Since versioning is done in software thay support unbounded
transactions without aborting, unlike other HyTM systerAs. conflicts are detected
using cache coherence, SigTM is able to provide strongtisolas well.

Again the survey provided in this section is not comprehenas it does not co-
incide with the main focus of the thesis, however intereseatlers are directed to
Chapter 5 (Section 5.2.3) of the Transactional Memory bo@klpy Harriset al..

2.9 Summary

This chapter presented the both theoretical and implerientdetails of TM systems.
As the thesis is focused on HTM, the majority of the chaptetegoted to HTM re-
lated literature. However to make the reader aware of otvadtadle implementation
platforms, it also gives an overview of software and hybrid 3ystems. The intention
of the chapter is to provide background material to fadeitiie reader to read the rest
of the thesis. Separate chapters/sections describinganpasing the closely related
work to each contribution are presented in the respectivts pathe thesis.
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Chapter 3

DaCTM: Data Centric Transactional
Memory

This is the first chapter of Part | of this thesis. The chaptscdbes the concept of
Data Centric Transactional Memory. After making the caseafgsystem supporting
synchronization, coherence and consistency using the ‘@attric” approach in Sec-
tion 3.2, the concept of DaCTM is presented in Section 3.3.ti@e8.4 discusses
several issues that can arise when using DaCTM approach amidhosed solutions
to address them. Finally Section 3.5 summarises the chapter

3.1 Introduction

Given the increasing rate of the number of cores per chiglleghprogramming is be-

coming mainstream. Simply most programmers would assuhmerésl memory” and

sequential consistency(SC) [62] as the default programmiodel and memory model
respectively. This simplicity comes at the cost of hardwsaneport for maintaining a

global view of the shared memory. The term “global view” me#rat every processor
is aware of the operations done on the shared memory by otbeegsors. In order
to ensure this, processors need to communicate with eaeh @bnventionally this is

achieved via cache coherence protocols.

When providing a global view of the shared memory with conieeratl cache co-
herence protocols, the issue of the “cache coherence vi&d]’if encountered. In a
system with hundreds, if not thousands, of cores the interect can easily be sat-
urated with these coherence messages. Hence the appreabkamame impractical.
The message passing programming model does not requireal glew, but comes at

51
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the cost of explicit communication at the programming leaelding extra complexity

that is not imposed by the shared memory approach. Therdéf@a@im is to design a

scalable system without compromising the inherent adgastaf the shared memory
approach.

In its strictest form, to maintain a global view of the shamedmory, every pro-
cessor is required to see the modifications made on every ngdamation in the same
order. In order to achieve this, a cache coherence protooplgates a newly writ-
ten value to other processors, and the memory consistendglndefines when this
propagation must be done. In a parallel program not all thesatls are interested in all
the variables accessed/modified by other threads. In tefpgoessors, this means
that not all the processors are interested in the modificatimade by others. Therefore
cache coherence and memory consistency could be enfoleethgady to the locations
that are of interest to other processors. To achieve thigaamnism is needed to com-
municate the required level of coherence and consisteneacti memory location,
from the high level program to the underlying architecturetially, this may appear
as an extra burden. However several keywords (eg.vat e [82], synchroni zed
[83]) have been introduced in parallel programming langsag distinguish memory
accesses. The premise of this work is that an architecturbéea@xtended to take ad-
vantage of such information provided by programmers, imtaaiing the global view
of shared memory and propose a new multi-core architecthrehshas the potential
to overcome the “coherence wall”.

Access pattern of a memory location can be used to define ehietiequires syn-
chronization, how easy/hard it is to reorder operationfi&b location with respect to
others and, whether the caches need to communicate witho#laehto avoid using
stale data. For example if tisgnchr oni zed keyword is used in a program written in
Java [83], it can be deduced that variables enclosed witlbthek requires synchron-
ization. Similarly in a program written in OpenMP [82], wh#re keywordpri vat e
is being used for a variable, that variable is guarantee@ tackessed only by a single
thread. If the memory locations of similar access patteandoe grouped together, they
can be allocated in memory regions according to their gréopexample all the local
variables can be allocated in one region and the all conatlyreead/write variables
can be allocated in another region. In a high level programevaldper already knows
this information and it is a matter of communicating it to tivederlying hardware.

To this end, Part | of the thesis proposes DaCTDéta Centric Transactional
Memory, a transactional memory [50] system coupled with @& dentric concept
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[106]. The premise of the work is to associate the accessrpaif each memory loca-
tion with the required level of Synchronization, Coherenog @onsistency (later in all
the chapters of Part | this is referred as SCC). In this way theajlview requirement
is maintained per memory location, whilst preserving thereti memory abstraction.
The DaCTM approach to parallel computing has the potentiavémcome the “coher-
ence wall”. The following contributions are made in the pant this thesis.

e A mechanism to maintain coherence and consistency base@mom regions
is introduced. In this approach the address space of a progaa be viewed
as a collection of non-overlapping memory regions, eachnigaa predefined
level of coherence and consistency. The union of all theoregis equal to the
available address space.

e An application programming interface (API) to manage thenoey regions, is
also introduced. In this way the programmer is relieved froamually managing
different memory spaces.

e As the third contribution, a proposal is made to attach sbrabd memories
(SPMs) [5] to each processor to implement one type of menegipn (LO)6ee
Section 3.3 This removes the need to use the interconnect for memagsaes
related to this region, thereby reducing the contention.

e Overall design of the architecture to support the above imiead region-based
coherence and consistency, is presented as the last emiomibThe evaluation
of DaCTM shows that with the proposed approach, bus utibmatind con-
tention, processor idle time and false transaction abantsbe greatly reduced
thereby aiding scalability. The performance evaluatiogspnts improvements
of up to 4.52 times speed-up over an optimized baseline TNesyshat uses
lazy versioning and lazy conflict detection (an improved TG@]].

3.2 Motivation

Memory consistency models define the event ordering on dimaeenory parallel com-
puters. Most programmers assume sequential consistei@)y[63] as the default
memory model. The advantage of having SC is that executi@apzrallel program
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can be seen as an interleaving of the parallel processesd$iinstructions on a se-
guential processor. This enables programmers to use ti@esghared memory ap-
proach to do parallel programming. Current shared memoryittoile processors use
cache coherence protocols that rely on small low latencysages to keep a coherent
view of the memory. If this approach is used in a system withdneds or thousands
of processors, the interconnect could easily be saturaeaiuse of these messages.

Transactional Memory Coherence and Consistency (TCC) [39]ggexpto main-
tain coherence at bulk level thereby eliminating these ktericy coherence messages.
In addition, the authors also showed that one simple prétoao be used to main-
tain synchronization, coherence and consistency (SCC)eindlpproach, a coherent
global view is maintained at block level. The proposal is pemte atomically and
speculatively within a block and to communicate the modifwe at the end. Their
approach was attractive in terms of eliminating the corieeal coherence messages
that are incurred due to write operations performed by memes. A TCC processor
does not produce coherence messages for each write opepatiftormed within a
block, instead all the modifications are communicated atetinek of the block. This
approach demands a higher bandwidth. In a parallel progaralithe memory loca-
tions are accessed by all the threads (for exampleat e variables in OpenMP [82]).
Therefore communicating the changes made to these sortriables incurs unne-
cessary overhead, which is reflected as the high bandwidthresment in TCC. This
can be avoided if the hardware is made aware of the requivetslef SCC of each
memory location. In a high level program this informatiomdze found by looking
at the access pattern of the variables, from which the reduavels of SCC can be
determined.

long sum = 0, loc sum = 0;
#pragma omp parallel for private(w,loc sum)

for(i = 0; 1 < N; i++)
{
w = 1i*i;
loc _sum = loc sum + w*a[i];
}
#pragma omp critical
sum = sum + locC_sum;

}

printf("\n %li",sum);

Figure 3.1: Example use of thwivate keyword in OpenMP
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Parallel programming languages have introduced diffédteyvords to distinguish
different types of data. OpenMP [82] has the keywardvat e to denote that a partic-
ular memory location is local to that thread. In the examplge; shown in Figure 3.1,
written in OpenMP, ther i vat e clause has been used for variableand!| oc_sum
The information that can be extracted from this code is thatblesw andl oc_sum
are local to each thread. Therefore any write operationdedhocations does not re-
quire to be communicated to other processors. Simply, nereoite is required fov
andl oc_sum

Java [83] has the keyworfd nal to emphasise that the data is immutable. In ad-
dition, it also has immutable data structures I8e i ng which never gets modified.
Consider the Java code segment shown in Figure 3.2. Therkeyweordfi nal has
been used when initializing variableadi us, xpos, ypos, zpos. This indicates that
these variables never gets modified during the lifetime®fttogram. The information
that can be extracted from this is, that coherence is notnexdjfor these locations. For
example in a cache coherence protocol, the cache contiofiet required to maintain
the state bits for these memory locations. Also operationtdse locations can be
reordered as required since the only operation that can e wathese locations is
“Read”.

public class Sphere {
public final double radius=2;
public final double xpos=3;
public final double ypos=3;
public final double zpos=3;

Figure 3.2: Example use of tHimal keyword in Java

Most of the parallel programming languages support loogspehr ead _nut ex_| ock,
synchr oni zed) to maintain synchronization. Consider the Java code segshemwn
in Figure 3.3. Several points can be extracted from this cddhe first and the obvi-
ous one is that operations within the block needs to be atandanutually exclusive.
The second observation is that the processor which perftrengrrite operations on
| ast Name andnaneCount variables must send a message to other processors to in-
validate their local copies for these memory locations. fhirel observation is that if
there is any read operation to thast Name variable after theynchr oni zed block, it
cannot be issued before the write operation to the sameblatiakes place.
Programmers place barriers in programs to ensure thattzesuent accesses wait



CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 56

public void addName(String name) {
synchronized(this) {
lastName = name;
nameCount++;

}

namelList.add(name);

Figure 3.3: Example use of tlsgynchronizedeyword in Java

until all the previous accesses are completed. This is erteced with data that is pro-
duced at a given time and consumed subsequently in the pnogider. Applications
that are developed according to tducer-consumemodel falls into this category.
Consider a multi-threaded environment for the code segnienrsin Figure 3.4. In
such a situation several threads can be producing whilst®#ire consuming. It can-
not be guaranteed that ahemwill be consumed by the same thread that produced
it. Therefore write operations to a particuldremneed to be communicated to other
processors before any read operation to tham happens in theonsune method.
Even though theset em variables are shared among threads, no synchronization is
required among accesses to the satemby different threads, as they do not occur
concurrently. The information that can be extracted from tode segment is that:
coherence is required for these memory locations; any reachtion to amt emneeds

to be delayed until the write operation is globally perfochi®y the producer of it;
synchronization is not required among accesses to the isemne

procedure producer() {
while (true) {
item = produceltem();

putItemIntoBuffer(item);

}

procedure consumer() {
while (true) {

item = removeltemFromBuffer();

consumeItem(item);

Figure 3.4: A pseudocode of a Producer-Consumer application
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From the examples discussed so far, it can be seen thateddeirels of SCC
for most of the memory locations can be extracted from thesspatterns of those
locations or using the explicit keywords used in the progrdfrthis information is
communicated to the architecture, it can select differandWvare operations. The crux
of the proposal is to associate the required level of SCC ofraonglocation with the
memory location itself, which is the basic principal of thaata centric” approach to
programming. In the light of this, the proposal is to grougéather data structures or
individual memory locations (later in the discussion them®bject is being used to
refer to either of them) having similar access patterns aradidcate them in different
memory regions. The aim is to trigger different hardwarerapens based on the
region of a particular object. Since the intention of thepmsal is to handle SCC
as a whole, an improved version of TCC [39] is chosen as thdibas@chitecture.
DaCTM proposes to couple this improved TCC with the data ceatmcept to deliver
a computing model which has the potential to overcome thaépoence wall”.

3.3 DaCTM Concept

The concept of DaCTM is based on deriving the SCC of objects fitogir access
patterns. As the first step tgpefield is associated with each object and in the current
version thistype remains immutable throughout its lifetime. DaCTM suppohts t
following types

3.3.1 Local (LO)

These objects are accessed only by the owner processore &g one processor
accesses these objects, neither synchronization noreruteers required. Regarding
consistency, any sort of reordering/bypassing can be alloas long as a write fol-
lowed by a read, as well as a read followed by a write to the dacation by the same
processor respects the program order. Consider the codeseghown in Figure 3.5,
taken from Lee-TM [108].

There the functiorronnect is executed in parallel and each thread allocates a 2D
array of sizeGRI D_SI ZE X GRI D_SI ZE. This array is only being read and written by
the thread who created it. Therefore this array can be detlas LO, hence can be
allocated in thdocal memory region of the processor.
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void *connect(void *parameter)
{
int **tempg = (int**)malloc(GRID SIZE*sizeof(int*));
tempg[0] = (int*)malloc(GRID SIZE*GRID SIZE*sizeof(int));
for(j=1; j<GRID SIZE; j++)
{

tempg[j] = tempg[j-1] + GRID_SIZE;

¥ree(tempg[0]);
free(tempg);

}

Figure 3.5: A memory allocation request that can be consalas LO

3.3.2 Read Only (RO)

Objects that never get modified throughout their lifetimbbg to this category. They
can be read by more than one processor. Since these objeut$ cltange their value,
they do not require coherence or synchronization. Sincetiye operation that can
be performed on this type of objects is a “read”, they can loedered as needed.
Consider the code segment shown in Figure 3.6, taken from Bam@ication of the

SPLASH benchmark suite [109].

static long Child Sequence[NUM DIRECTIONS][NSUB] =
{

{2,5,6,1,0, 3, 4, 7}, /* BRC_FUC */

{2,5 6,1, 0, 7, 4, 3}, /* BRC_FRA */
{1,6,5, 2, 3,0, 7, 4}, /* BRA FDA */

{1, 6, 5, 2, 3, 4, 7, 0}, /* BRA FRC */
(3,0,7, 4,5, 6, 1, 2}, /* FDA BDC */
{3,0,7, 4,5, 2,1, 6}, /* FDA BLA */
};

Figure 3.6: A memory allocation request that can be constlas RO

In the application this array is read in thend_ny _bodi es function which is ex-
ecuted in parallel. Since this array never gets modifiedntloe declared as RO, hence
can be allocated in thead-onlymemory region.

3.3.3 Concurrently Read and Write (CRW)

This category corresponds to objects that can be read attémecioncurrently by dif-
ferent processors. Since they are accessed concurreytishrenization has to be
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maintained among accesses. Since more than one processsseg the same object,
reads and writes from different processors must respedlttal program order. Co-
herence is required to communicate the changes made by ooesgor to the other
processors. Consider the code segment shown in Figure 3ah wghiaken from Lee-
TM [108].

void backtrack(int **tempg, int xs, int ys, int xg, int yg)

{
while ((tx !'= xs) || (ty != ys))
{
global grid[tx][ty] = 0CC:

global grid[xgllyg]
global_grid[xs][ys]

END;
END;

}

Figure 3.7: A memory allocation request that can be consttlas CRW

In the application, thdacktrackmethod is executed in parallel and each thread
writes to the samgl obal _gri d. Since threads are concurrently reading/writing from/to
this gl obal _gri d it needs to be declared as CRW, hence can be allocated in the
concurrently-read-writanemory region.

3.3.4 Write Now Read Later (WNRL)

Objects which are written at a particular time and read syibsetly by different pro-
cessors belong to this category. For example imagine disituahere several threads
are waiting on a barrier to perform a read operation on aryamtach is being cur-
rently written by another thread. In this situation the pigsshared, but read and write
operations to this array are happening at different pomtke program order. As read
and write operations to the same memory location is takiageht different places,
the program does not require to obtain mutually exclusiveess before performing
an operation as required for CRW data. However coherencestbeigeas accesses can
be from more than one processor. Considering the event agjexiread operation to
an object needs to be delayed until the previous write to &éineeslocation has been
performed and vice versa. Consider the code segment shoviguirel3.8, taken from
the Ssca2 application of the STAMP benchmark suite [74].

In the application, the functioconput eG- aph is executed in parallel. In the code
segment shown in Figure 3.8, each thread performs seveita aperations to the
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void
computeGraph (void* argPtr)

{
for (i =i start; 1 < i stop; i++) {
Gptr->outDegree[i]++;
GPtr->outDegree[i] = Gptr->outDegree[i]+1;
}
thread barrier wait();
prefix_sums (GPtr->outVertexIndex, GPtr->outDegree, Gptr->numVertices);

Figure 3.8: A memory allocation request that can be constlas WNRL

out Degr ee array. After that they wait on a barrier. Once each threadHeud their
operations, each thread calls threef | x_suns function, which takeut Degr ee ar-
ray as an argument. When each thread is operating inside #ié x _suns function,
the system needs to guarantee that write operations thpediemed by each thread
on theout Degr ee array have been made visible to all the threads. However no sy
chronization is required for previous write operationsaaese each thread operates on
a completely disjoint portion of the array.

Having described the types of memory locations used in DaCIEks, see the
global view requirement for each of them. In the case of LGefypdoes not require
the global view property to be maintained as each locatiomig accessed by the cre-
ator of them. In the case of RO type, these locations can lesaed by more than one
processor/thread. However as the only operation involwd thhem is “read”, no ex-
tra effort is required to maintain the global view prope@pnsidering the WNRL and
CRW, both of them require the global view property to be manad, but the degree
to which it is required differs.

In the case of WNRL objects, they need to maintain a global viatvniot syn-
chronization. These objects are written at a timg Ifly one processor and read at a
time (t,) by another processor wherg< t,. In order to maintain the global view,
changes made to a particular WNRL object at tigneded to be communicated to the
other processors at timg tinstead of doing this DaCTM proposes to update the global
copy of the corresponding WNRL object and to discard any looples before en-
abling the operation at time,ft The protocol is very similar teeconcileandflushin
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Dag-consistency [8] and also to thelor_stepin the data coloring [16] programming
model.

Regarding the CRW objects they need to maintain a global viedvadso syn-
chronization among accesses. The primary requirement totamaa global view is
to communicate the newly modified memory locations to otlec@ssors. In its very
basic form, transactions in the TM context keep all the modifons made during the
atomic execution in a speculative state and communicate thehe other processors
at the end. Since communicating the changes made by onespoyd® the others
is the basic requirement to maintain a global view, TM doesyflicitly. Therefore
in DaCTM, TM is used to maintain the global view of CRW objectsanhdition to
maintaining synchronization.

According to the above description, the descending ordireadiegree of the global
view is CRW> WNRL > RO = LO.

3.3.5 Object Operation

Associating atype with an object can be done manually using the keyword used in
modern programming languages (@gi vat e, critical in OpenMPfi nal in Java
etc.). Literature in the area of escape analysis [65, 6699Bshows that in certain
cases it is possible to categorise datéoaal or sharedand this information is mainly
used in memory management. This means it is also possiblgetsuch techniques
to categorise data into types used in DaCTRegardless of the method used, all the
objects in a DaCTM application has a type associated with ithé current version of
DaCTM the programmer classification of objects is trustedutare, a classification
checking tool similar to SharC [4] should be employed to emghat the declared
runtime usage for objects is correct.

Thetypeinformation is used to decide the memory region from whi@gpace is
going to be allocated for each object. This is because DaCTéd ddgferent memory
regions to allocate objects according to thgpe Each processor has its own memory
space to allocate LO type objects. Only the owner of a pdaidtO memory space is
allowed to allocate/deallocate from that space. In additicere exists three separate
shared memory regions to allocate RO, CRW, WNRL type objecty. pkacessor is
allowed to allocate memory from these regions. Dependirmy tipetypeof an object,
space is allocated in one of the memory regions shown in EigL¥.

Ldeveloping the compiler support is outside the scope ofttigsis, only referenced to show the
possibility of using it in a future version of DaCTM
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Local Memory Core 0
Local Memory Core 1 LO Obijects
Local Memory Core N
Write-Now-Read-Later .
Memory } WNRL Objects
Read-0Only Memory } RO Objects
Concurrently-Read- } CRW Objects
Write Memory

Figure 3.9: DaCTM memory regions

The memory allocation function is modified in DaCTM in orderatxept an extra
argument, which is thgype If the typefield is not present, memory is allocated from
the CRW memory region. The advantage of doing so is that, iptbgrammer is not
certain about which type to use for a certain object tyfpefiled can be left blank and
the space will be allocated from the CRW region, which guaesithe highest degree
of SCC. In this manner DaCTM ensures that the correctness iongiromised even
if the type information is not available. The Lee-TM [108]deosegment shown in
Figure 3.5, modified to allocate memory from the LO regionhievgn in Figure 3.10.
There, the memory allocation function takes an extra arguinviich is the type of the
object.

void *connect(void *parameter)

{
int **tempg = (int**)MALLOC(LO, GRID SIZE*sizeof(int*));
tempg[0] = (int*)MALLOC(LO, GRID SIZE*GRID SIZE*sizeof(int));

?ree(tempg[@]);
free(tempg);

}

Figure 3.10: Proposed memory allocation function in DaCTM

The proposal of DaCTM is to maintain SCC at bulk level than atiddal memory
locations as in conventional protocols, hence a unit to oneaa block needs to be
established. In this regard DaCTM considers a method body wastaof work as
in the first proposal to use Data Centric Synchronization (DROp]. That said,
programmers have the flexibility to break a method into sdveub work units or
to combine several methods to one work unit. This is desdti@ier in the chapter.

Operations are required to associate with methods in oodemvide SCC for the
data that the method operates on. Since DaCTM has alreadyocat objects, the
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typeinformation can be extended to methods as well. Therefotbads can also be
characterised either as LO, RO, WNRL or CRW according to the ttheya operate
on. If a method contains only LO objects, then it become®anethod and the same
continues for RO, CRW and WNRL objects. When a method has mix efctdbjype
is determined according to the relation CRWWNRL > RO = LO. This is shown in
Table 3.1.

Data types Allocated Type
RO, LO LO

WNRL, RO, LO | WNRL

CRW and any | CRW

Table 3.1: Determining thiypeof a method when operating on mix of data

If a method contains only LO or RO type objects, it is categgatias LO. However
there is no difference even itis categorised as RO sincepl@@éoperation is involved
while executing it. A CRW method is executed as a transactOh [Also a WNRL
method, is executed as a transaction. That said, at thetesttival level, the way in
which the Atomicity, Consistency and Isolation (ACI) propestare maintained for
CRW and WNRL objects differs. Therefore both WNRL and CRW methodg ma
appear as transactions at the high level language, butdleis ot apply at hardware
level. Proposed operations for each type is shown in TaBle 3.

Data types Operation
LO none
WNRL transaction
CRW transaction

Table 3.2: Operations to perform for each data type

Classifying a method to be of a certain type is done staticHltiiere is not enough
information available to do this, DaCTM requires them to baypie CRW, thereby
requiring them to be executed as transactions. This predacerrect output because
there is no harm in executing a method as a transaction eitas ifot required.

There might be situations where a larger method has an gldedshed small trans-
action in the middle of the code. In such scenarios, DaCTMstalke first half of the
method (that is from the beginning of it to the existing tr@cteon) as one unit and
defines the required operation. Thereafter it takes theirenggportion of the method
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void
processPackets (void* argPtr)

if (data) {

}

TM BEGIN(); Programmer
bytes = TMSTREAM GETPACKET (streamPtr); } Defined
TM_END() ; Transaction

Associate
a Type

error_t error = PDETECTOR PROCESS(detectorPtr, data); }Needs to

Figure 3.11: Working with explicitly defined transactionsDaCTM

as another unit and defines the required operation. For dratopsider the code seg-
ment shown in Figure 3.11, taken from Intruder applicatibthe STAMP benchmark
suite [74]. There, inside thpr ocessPacket s method, there is an already defined
transaction. That transaction does not encompass the emtithod. Therefore an op-
eration needs to be associated with the rest of the methodder to maintain SCC
for those memory locations. This is done by associatitgpato that portion of the
method and selecting an operation according to Table 3.2.

maketree(my Local, ProcessId);

iqptr = (nodeptr) SubdividelLeaf(my Local, le, ...
E = InitCell(my Local, parent, ProcessId);
E = makecell(my Local, ProcessId);

cellptr makecell(struct local memory *my Local, long

}

void stepsystem(struct local memory *my Local, long ProcessId){

void maketree(struct local memory *my Local, long ProcessId){

HyiLocal—>Current7Root = (nodeptr) loadtree(my Local, p, ...);

}
nodeptr loadtree(struct local memory *my Local, bodyptr p, ...){

)

cellptr SubdividelLeaf(struct local memory *my Local, ...

}
cellptr InitCell(struct local memory *my Local, cellptr parent, ...){

o

ProcessId){

Figure 3.12: A Chain of functions taken from Barnes applicabbSPLASH [109]

Another situation that needs to be considered is when arncatiph has a chain of
function calls. Consider the code segment shown in Figui 8aken from the Barnes

application of the SPLASH benchmark suite [109].

There,cfiom st epsystem
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callsmaket r ee which in turn callsl oadt r ee and this chain continues until function
InitCell calls functionmakecel | . As the first step, @ypeis associated with each
function in the chain. If more than one of them requires toXexated as transactions,
i.e. CRW or WNRL, special consideration is required. Lets assuntballunctions in
the chain are of CRW. DaCTM proposes two solutions for this kihdcenario. One
approach is to use nested transactions as shown in FiguBe Bhg other approach is
to start a transaction at the beginning of each method andntorit it before calling
the next method. This is shown in Figure 3.14.

void stepsystem(struct local memory *my Local, long ProcessId){
TM BEGIN();

Haketree(myiLocal, ProcesslId);

M END() ;
void maketree(struct local memory *my Local, long ProcessId){
TM BEGIN();
my Local->Current Root = (nodeptr) loadtree(my Local, p, ...);
TM END();
}
nodeptr loadtree(struct local memory *my Local, bodyptr p, ...){
TM BEGIN();
*qptr = (nodeptr) SubdividelLeaf(my Local, le, ...);
M END() ;
cellptr SubdividelLeaf(struct local memory *my Local, ...){
TM BEGIN();

E = InitCell(my Local, parent, ProcessId);
M END() ;

}
cellptr InitCell(struct local memory *my Local, cellptr parent, ...){
TM BEGIN();

¢ = makecell(my Local, ProcessId);
TM END();

}
cellptr makecell(struct local memory *my Local, long ProcessId){
TM BEGIN();

M END() ;
}

Figure 3.13: Nested transactions for chain functions in DdCT

Even though DaCTM considers a method as a unit of work, therpnogner always
has the flexibility to break a method into several work unitg<@mcombine several
methods into one work unit by using explicit transactionisTis because if atomicity
and isolation are required to be maintained across methbds, programmers can
explicitly useTM BEG NandTM END to mark the region of the transaction. For example,
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void stepsystem(struct local memory *my Local, long ProcessId){
TM BEGIN();

TM_END() ;
maketree(my Local, ProcessId);
TM_BEGIN();

M END() ;

void maketree(struct local memory *my Local, long ProcessId){
TM BEGIN();

M END() ;
my Local->Current Root = (nodeptr) loadtree(my Local, p, ...);
TM BEGIN();

TM END();

}
nodeptr loadtree(struct local memory *my Local, bodyptr p, ...){
TM BEGIN();

TM END()
*qptr =
I

2nodeptr) SubdividelLeaf(my Local, le, ...);
TM BEGIN()

N();
TM _END();

}
cellptr Subdivideleaf(struct local memory *my Local, ...){
TM_BEGIN();

M END() ;

c = InitCell(my Local, parent, ProcessId);
TM BEGIN();

™M END() ;

}
cellptr InitCell(struct local memory *my Local, cellptr parent, ...){
TM BEGIN();

™ END() ;

c = makecell(my Local, ProcessId);
TM_BEGIN();

TM END();

cellptr makecell(struct local memory *my Local, long ProcessId){
TM BEGIN();

M END() ;
}

Figure 3.14: Committing before starting another functiorewloperating with chain
functions in DaCTM

consider the pseudocode of Lee-TM [108] shown in Figure .3A&cording to the
previous discussion, thexpand andbackt r ack methods would have been executed as
two separate transactions. In that case, atomicity anatisalwould not be maintained
between the two methods, and this would produce erronedpsitoaccording to the
algorithm being used. Therefore as shown in Figure 3.15pthgrammer can use
explicitly defined transactions to break the method levangtarity in DaCTM. In
such situations, data centric type derivation of methodishet take place.

It is also necessary to consider the following situation: Athod is being used
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TM BEGIN();
expand();
if(path _found)

backtrack();
TM END();

Figure 3.15: Pseudocode of the Lee-TM [108] application

more than once in a program. In the first instance it operatésobjects, but in the
second instance it operates on CRW objects. The situatidd etso apply to a library
function. In both situations &ype has to be associated with the function at compile
time. In both situations DaCTM proposes to execute the medB@dtransaction. Even
though the method appear as a transaction at high leveklatestural level, the way

in which the ACI properties of each transaction are mainthidiéfers substantially.
For example consider a situation where a method has begyocised as CRW, but it
actually operates on LO objects. In this case, none of the AGHgaties are maintained
for the LO object.

3.4 DaCTM Special Cases

This section discusses the issues that might arise whewioly the DaCTM approach
to computing. The first concern that might arise is about tivalrer oftypesproposed
in the current version. Even though the current version sapports four regions (LO,
RO, WNRL, CRW), if a need arises, more regions can be introdudeitituirns out
that the performance benefit is negligible for certain regjahey can even be merged.

The size of the regions and their overflow management mesimainianother issue
that needs addressing. Even though the issue of handlinfjawe is important, it
was not a priority at this stage. The solution proposed ircthreent version, in case of
overflow, is to allocate from the CRW region. This is because,fixed sized regions
from the virtual memory are being reserved for WNRL and RO negimnd CRW uses
the rest of the space. When allocated from the CRW region, eebh®, RO and
WNRL objects, SCC properties will be maintained. Even thougghithnot required,
this will produce the correct output.

Other issues that need to be considered are possible TMdistencies and al-
locating memory inside library functions. TM inconsistezgcmight occur due to the
following: (1) operating non-speculatively on LO objeatside a transaction; (2) al-
lowing transactional cache overflows of WNRL objects. In batises, if the first
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entryIndex = threadId * partitionSize;*—
begin_tx
while (((void*)constructEntries[entryIndex].segment)) != NULL)
i entryIndex = (entryIndex + 1) % numUniqueSegment;
end_tx
(@)
begin_tx ‘/////////
entryIndex = threadId * partitionSize;
Qﬁiie (((void*)constructEntries[entryIndex].segment)) != NULL)
, entryIndex = (entryIndex + 1) % numUniqueSegment;
end tx

(b)

Figure 3.16: DaCTM approach to avoid the violation of TM setitan

operation is a read and, an abort happens after a subsequentwhen the transac-
tion is restarted, it would read the new (but wrong) valuenyahet al. [96] report
that only 1% of the accesses in the STAMP [74] benchmark daiténto this cat-
egory and they propose an undo buffer to store the old valsaici local variables.
Their approach requires extra hardware cost and also tkeeo$ithis buffer cannot
be determined accurately in advance. Therefore, in DaCTMiflsue is addressed
through the programming model. DaCTM proposes to move thialization of LO
objects inside the transaction. Consider the code segmewnsh Figure 3.16 which
is taken from the Genome application of the STAMP [74] benatinsuite. There,
Figure 3.16(a) shows the original code in which variagméryl ndex is initialised
outside the transaction. Since no other threads are itter@sthe changes made to
entryl ndex, it can be categorised as LO. If the transaction gets abaifted one or
more iterations in the while loop, the value of tbet r yl ndex would have changed
from its original value. When the transaction is restartedewa (but wrong) value is
read forent ryl ndex during the first read operation. As proposed above, in the cod
shown in Figure 3.16(b), the initialization efit ryl ndex has been placed inside the
transaction. Therefore even if the transaction is abottesl variable is reinitialized
during the next transaction.

However there are situations where this solution cannotpipdéied. For example
consider the code segment for copying a vector, shown inr€igli7, which is taken
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bool t Pvector copy (vector t* dstVectorPtr, vector t* srcVectorPtr)
{
long dstCapacity = dstVectorPtr->capacity;
long srcSize = srcVectorPtr->size;
if (dstCapacity < srcSize)
{
long srcCapacity = srcVectorPtr->capacity;
void** elements = (void**)MALLOC(srcCapacity * sizeof(void*));
FREE (dstVectorPtr->elements);
dstVectorPtr->elements = elements;
dstVectorPtr->capacity = srcCapacity;
}
memcpy (dstVectorPtr->elements, srcVectorPtr->elements, (srcSize * sizeof(void*)));
dstVectorPtr->size = srcSize;
return TRUE;

Figure 3.17: A library function used in copying vectors

from the STAMP suite. Here the objetdt Vect or Pt r is read first and updated later
in the function. Imagine if this method is called within artsaction with a LO object
as an argument, all the operations on the LO object will bglawe. If the transaction
is aborted after a modification is made to the LO object, nefyvalues have been lost
hence an erroneous output is produced. The previous suggeannot be applied in
this situation because the initialization of the vector Imilgave taken place at the very
beginning of the program and this operation might be takiaggat any time in the
program. In such cases, objects are categorised as CRW anthéhenderlying hard-
ware will enforce TM properties. However, this does not maththe objects stored
in the vector need to be of type CRW. For example in Figure Zpdce allocated for
el ement s can be of LO or RO or WNRL or CRW. The only requirement is the vector
object to be of type CRW to ensure the correctness of the catipnt

bool t Pvector copy (int type, vector t* dstVectorPtr, vector t* srcVectorPtr)
{
long dstCapacity = dstVectorPtr->capacity;
long srcSize = srcVectorPtr->size;
if (dstCapacity < srcSize)
{
long srcCapacity = srcVectorPtr->capacity;
void** elements = (void**)MALLOC(type, srcCapacity * sizeof(void*));

Figure 3.18: DaCTM approach to allocate memory inside atjbianction

Another issue to consider in DaCTM is memory allocation tgkiface inside a
library function. DaCTM proposes to address this by intradg@n extra argument
to the library function which is théype of the object being allocated. Figure 3.18



CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 70

shows a library functionRvect or _copy) modified to work with DaCTM. There, the
typeargument defines the type of the object that is going to bequusithe vector,

which is then passed to the memory allocation function. Alste that r ee does not

take any extra argument. This is because the type is detednfiom the address of
the object so that the appropriate memory space is freeddingty.

3.5 Summary

This chapter presented the concept of DaCTM. Taking exanfpdes several pro-
gramming languages it showed that already programmerscplieidy distinguishing
memory locations according to their access patterns. Taptehidentifies four differ-
ent types of access patterns and propose to associatehisvith the required level
of SCC of that memory location. It shows the presence of thesetypes in the code
segments taken from known benchmark suites and suggesiup gremory locations
of similar types together. Thereafter it shows how to asgeciequired operations
for each method as in a “data centric” approach. Finallysbahowed special situ-
ations where the DaCTM approach cannot be applied and alpmged solutions to
overcome them.



Chapter 4

Architectural Support for DaCTM

This chapter describes how to extend an architecture toostithipe DaCTM concept.
First, in Section 4.1, it discusses a naive way to support DAC@ncept in hardware.
Later in the same section it also explains why such a designatde used in certain
scenarios. Thereafter the design of DaCTM is presented iarakesections. It is
composed of DaCTM Support for Memory Region (Section 4.2), DdGUpport for
Transactional Memory (Section 4.3) and two versions of DaCSygtems proposed
to address the issue of transactional cache overflow (DaCTMSesgtion 4.5) and
DaCTM-U (Section 4.6)). The section also shows how it canav@ie the difficulties
that a naive design cannot handle. Finally Section 4.7 sumsasthe chapter.

4.1 Naive Design

A program written for the DaCTM architecture can be seen adlaction of trans-
actions and non-transactions. The fact that a transackistsan the code does not
necessarily mean that the entire block is going to be exdattamically and in isol-
ation. In DaCTM architecture the definition of a transactibamges according to the
typeof the data it operates on. Objects of a DaCTM application ldypeassociated
with them. Thistypedefines what sort of operations are required to maintain SCC of
each object. Since DaCTM relies on conveyingtiyygeof an object to the underlying
architecture, in a naive design it is only required to haviedint types of instructions
for different types of data. This can be done using extrauietibns similar to those
shown in Table 4.1. In this approach when an application ®ttanslated to machine
code, all the conventional read and write operations caeleced with the appropri-
ate one. For example if the operation is a “Read” and the meiooation is of type

71
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LO, then aREAD._L instruction can be used. Based on the type of the instruchieimg
executed, hardware can perform required operations totamai8CC. For example if
WRI TE_WNRL is executed, hardware needs to perform a coherence operS§imilarly
if WRI TE_L is executed, no operation is required to maintain coherefselescribed
here, this approach is less complex and requires less nettfis to existing hard-
ware. This design works when the application program iskmal

Data types Naive Instructions

LO READ_L, WRI TE_L

RO READ_O

WNRL READ_WARL, V\RI TE_V\NRL
CRW READ_CRW WRI TE_CRW

Table 4.1: Instructions to be used in a naive DaCTM design

However there are certain situations where this approachatde used. Imagine
the case of an application in which a particular function éng used at different
places. For example consider the code segment shown ineHglr There, a pointer
to an array is passed to the functismmand it sums up the content of the array and
returns the result. It is very likely that this function whlé reused to calculate the sum
of different arrays.

int sum(int* arg)
{
int total=0;
for(int i=0;i<length;i++)
total+=arg[i];

return total;

¥

Figure 4.1: A code segment for totalling an array

When this code is translated to machine code, for the reacitperelated to the
variablear g, the compiler has to decide which of the read operations bieT4.1
to use. There is no information available during the contipifatime to make this
decision. When theum function is used in an application, there can be situations
in which the type of the argumeat g is either LO, RO, WNRL or CRW. Since the
function sumis already being translated to machine instructions, wiffe hardware
behaviours depending on thgeof the argument cannot be performed. If the compiler
inserts theREAD_CRWinstruction, then the architecture will try to ensure thalierence
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is maintained foer g even if it is oftypeLO. On the other hand if the compiler inserts
the READ_LO instruction, then the architecture will not maintain cadrere even if the
typeof ar g is CRW.

A quick solution might be to have four versions machine cagtesim That is
one version with all LO instructions and other with CRW instrans and so on. It
would work in this scenario, however if the number of argute@mthe library function
increases, Afunctions are needed wheRds the number of arguments. This is because
it is not guaranteed that all the arguments will be of same.t{iinis requires compiled
versions for all the combinations. Therefore DaCTM does albd\v this approach as
its architecture.

4.2 DaCTM support for Memory Regions.

DaCTM associates the required levels of SCC of a memory latatith the memory
location itself. Objects are allocated in the correspogdiemory region (shown in
Chapter 3, Figure 3.9) according to thgipe Then the responsibility of maintaining
the required level of SSC of the regions is passed to the DaCidMitacture. In
order to support region based coherence and consistenaygchitecture should have
either separate physical memories or a logical partitiprmhthe shared memory for
these regions. DaCTM follows a mix of both. It uses separatesiphl memories
for LO memory regions. For RO, WNRL and CRW memory regions it @skxyical
partitioning of the shared memory.

4.2.1 LO Memory

DaCTM propose to attach a separate physical memory to eackhgsor to act as the
LO memory of that processor. LO type objects are only accebgethe processor
that allocates them and in doing so, there is no interconmssge. For this private
memory attached to each processor, DaCTM considers Sgrattmemories (SPM)
as a good candidate because of their low power and areaatibhz[5]. These SPMs
are managed locally. In a conventional memory hierarchiy)S&re placed at the same
level as level 1 (L1) caches. Therefore in DaCTM no LO objemtscached in L1 and
are only stored in the SPM of the corresponding processor.
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‘ Processor Core ‘

7N\

LO
C o
ﬁ RO WNRL CRW
Region | | Region | | Region

Figure 4.2: DaCTM memory hierarchy and mapping of memoryoreg)i

4.2.2 RO, WNRL and CRW Memory

All the other memory regions (RO, WNRL and CRW) use the existiragesthmemory.
Separate regions are created for egplein the virtual memory. These regions are mu-
tually disjoint and have page level granularity. The erigtshared memory is used for
these regions as they can be accessed by all the processioessiystem. Once a pro-
gram is loaded to the memory, it notifies the hardware abageldifferent regions.
Since virtual addresses are fixed for each process, theisa tegundaries will remain
constant throughout the lifetime of an application. Figi2shows the memory hier-
archy of DaCTM with the proposed SPM attached to a processars@ame figure also
shows how memory regions are mapped on to this hierarchy.

When an application is loaded, it will use these regions basethe intended
usage of data. An obvious question to ponder here is how dicappn with shared
libraries use these regions. Again the answer depends ontdreled usage of the
data produced by these libraries. For example considesuhefunction shown in
Figure 4.1, which can be considered as a library functiohimsituation, if the array
which is being summed is accessed concurrently by multipkseds, then it should be
allocated in CRW region. On the other hand if the array is oclieased by a single
thread, it can be allocated in the LO region.

4.2.3 Region Information Table

Each processor has a Region Information Table (RIT), like tieestiown in Figure 4.3,
to store the boundaries of memory regions. Ideally these Blibslld be maintained
per process. In order to make the discussion simple, it isnasd that the number of
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Type Start |End
RO

WNRL
CRwW

Figure 4.3: Proposed Region Information Table (RIT) in DaCTM

available threads are equal to the number of processoran Ibe observed that, in the
RIT, there is no entry for the LO type. This is because regidormation is required
only for objects that can be accessed by more than one payceSince separate
physical memories are being used for the LO region, noneeofrttmory operations
destined for them go through the conventional cache hieyaRIT is only required to
distinguish memory locations that are stored in local cache

4.2.4 Modifed Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is modified to store tiygeof each virtual
memory location. In the case of a TLB miss, RIT is accessed teriakne the type
of the incoming memory location. In case of a TLB hit, tiypeis readily available.
Figure 4.4 shows the modified TLB used in DaCTM. Each objea tygs a different
cache behaviour. Therefore when an entry is added to the tHecdhetype of the
location is also stored. This saves the cache controllen frontinually accessing the
RIT to gettypeinformation of a cache entry to decide the required opematio

Virtual |[Physical |Type
Address |Address

Figure 4.4: Modified TLB used in DaCTM

4.3 DaCTM support for Transactional Memory

4.3.1 Basic TM System

In its very basic form, the transactional memory implemgoitein DaCTM is similar
to any other lazy-lazy hardware TM system. A TM system regpitwvo new instruc-
tions to start TMBEGA N) and to commit TM.END) a transaction. When thEM BEG N
instruction is executed, hardware is notified by setting@ tlaat it is operating inside
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a transaction. In addition, a snapshot of the registerkentand stored in a separate
register file. This is used to restore the processor statesiof an abort. When a trans-
action is aborted, all the speculatively modified cacheesntreed to be flushed and the
processor is reinstated from the snapshot saved in theeegis. When operating in-
side a transaction, in a lazy-lazy TM, all the memory operetineed to be performed
speculatively and in isolation. That means no write operatishould be made visible
to other processor until thHEM END instruction is executed. Each processor is required
to keep track of memory locations accessed/modified duhagkecution of a trans-
action, which are communicated to others whenERNEEND instruction is executed.
In a lazy-lazy TM, an abort operation takes place in the caserevtwo processors
have accessed the same memory location and one of them is &*\Wperation and
the other one is a “Read” operation. A contention managemaidypdecides which
processor to abort in such a situation. Under the lazy-laigyy write-write conflicts
do not cause a transaction to abort [39].

During this commit phase, no other processor is allowed &the interconnect.
This step is taken to prevent an aborted processor readitegddta. Imagine a situ-
ation where the processor 2 gets aborted because it hashedaocationx and the
processor 1 has modified the same location. After being ethoit the processor 2
reads location for its restarted transaction, before processor 1 finisipeiéting it, an
erroneous output is produced. Therefore no other procesatiowed to use intercon-
nect during the commit phase.

Once the next level memory is updated with all the specudbtimodified cache
entries, all these entries need to be cleared. This stekes teecause DaCTM does not
implement any cache coherence protocol. For example iraagsituation where, the
processor 1 modifies the locatigmwithin a transaction and updates the next level copy
of x at the end of the atomic block, but does not flush the cachey. ittereafter the
processor 2, who is also executing a transaction, modifeefottationx and commits
its transaction. During this time the processor 1 is, eitfe¢rexecuting a transaction or
has not accessed locatignn its current transaction. Therefore, processor 1, doés no
get aborted by the committing of the processor 2. Now the@adcopy of locatiorx
in the processor 1 is stale data. Thereafter whenever tloegsor 1 accesses location
X, it will read a wrong value, hence will produce an erroneouipot. Therefore once
a transaction is committed, all the entries that are readhaitigbn during a transaction
needs to flushed from the Level 1 (L1) cache.
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The baseline TM architecture uses transactions to maigyaichronization, coher-
ence and consistency. Therefore it is conceptually sinddrCC [39]. The original
TCC proposal relies on obtaining exclusive commit permissiben handling trans-
actional cache overflows. In TCC, when a processor who is exgcattransaction
requests to overflow, conflicts are detected using the reddvaite bits in the cache
lines. Thereafter the overflowing transaction progressesadl the other transactions
are stalled. This is because, once an entry is removed freroabhe, read and write
sets are no longer accurate. Therefore the overflowingdcios is not able to detect
conflicts with others at the time of committing. This can ilmpsome performance
overhead. For example consider the situation shown in Eigu(a). There, two trans-
actions T1 and T2 are executed in parallel. After tigethe transaction T1 requests
to overflow, hence conflicts are detected. T2 is not abortatiexs are no conflicts.
Thereafter T2 is stalled and T1 is continued. After anotheturation T1 commits.
T2 is resumed afterwards and commits later ( agemte). In order to complete two
transactions T1 and T2, the original TCC proposal takes$;t+t, duration.

T1 T2 T1 T2

t t
0 0

T1 Overflow ———— T1 Overflow
t1 tl t2

T1 Commit ————— T1Commit
¢ T2 Commit
2

T2 Commit

(@) (b)

Figure 4.5: Difference between the original TCC and the impdoTCC (which is
used as baseline)

This performance overhead incurred by stalling transacti? can be addressed
by decoupling conflict detection from caches by employinglivare signatures [95]
(a description of signatures is presented in Section 4.3\)h the use of hardware
signatures, caches are no longer required to maintainatyaed write sets. Therefore
the overflowing transaction does not require to get the sik@ucommit permission
and to stall others. Instead all the transactions progregsanflicts are detected using
signatures. This scenario is shown in Figure 4.5(b). In shigation the total time
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required for completing both transactionsgs-t;. By employing hardware signatures
the total execution time is reduced ytime in the improved TCC. The commit time
not considered in both situations.

If the original TCC is used as the baseline, the benefits woalg ltcome due
to memory regions and also due to unnecessary serialisiggré~4.5(a)). The aim
of the experiment is to evaluate how much an architecturebeapenefited from the
knowledge of memory regions. Therefore, for the experimentsented in the thesis,
this improved version of the TCC is used as the baseline.

4.3.2 DaCTM

DaCTM does not use any cache coherence protocols, therafgigitly, all the read
and write operations are performed in isolation. This afggias to operations within
a transaction as well. Since the TM system uses lazy vergjpmo extra effort is
required to operate speculatively within a transaction fit&in the L1 cache. This is
because the key requirement for speculation is that thenatighemory location does
not get modified. When a transaction is able to fit in the L1 caalée modifications
are done on the L1 cached copy and the original value remamsgdified in the Level
2 (L2) cache or/and main memory.

When a transaction is not able to fit in the L1 cache, that is veheaiche controller
requests to overflow when the processor is executing withiaressaction, extra opera-
tions are required to maintain the isolation property. Opgreach used in designing
one version of the DaCTM is to allow the overflow request and &kerthe transac-
tion, which the processor is currently executing, an uniaixe one. The latter step,
of making a transaction unabortable, is required becaude@ial the overflow has
resulted in modifying the original value of that particulmaemory location. This is
a non-reversible action. In order a make a transaction utedtle, none of the other
processors are allowed to commit until the transactiongeamsidered commits. Also
it is worth noting here that, at any given time there can omyhe unabortable trans-
action.

The second approach used in designing the other versioe @akCTM is to have
a separate area in the memory, to which each processor cdloawvineir speculative
modifications. In this second approach there can be any nuafl@ocessors over-
flowing during the execution of a transaction. More deswipbf these two systems
are covered in sections 4.5 and 4.6.



CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 79

4.3.3 Hardware Signatures in DaCTM

Hardware signatures [95] are used in DaCTM to keep track dhellread and write
operations that are performed within a transaction. Sigeathave a fixed length (eg:
1k bits [15], 2k bits [110]) and they are implemented using $&AWhen maintaining
read and write sets of a transaction, for each read and wr@gation, a hash function
is applied to the address of the memory location. The regphiash value is added
to the signature by performing a bitwise OR operation. Thishown in Figure 4.6.
There, the hash value of a given address is first createdhEaatke of simplicity lets
consider bit selection, which is used in Bulk [15], as the Haslstion. When this hash
function is employed, the bit value of the address is diydetl to the hash value. Bulk
[15] used following bits of the address [0-6, 9, 11, 17, 78, 12, 13, 15-16, 18-20,
14] as the hash value. Once the hash value is produced, daxlitlis logically ORed
with the existing signature, thereby delivering the resglsignature. In the proposed
architecture when implementing signatures, parallel ilditters are used in order to
increase the accuracy.

Address

o

m bit hash value i Current signature

‘ ‘ ‘ ‘ ‘ ‘ Resulting signature

Figure 4.6: Inserting an address to a signature

When a processor needs to commit a transaction, it first ré&xjaesmit permis-
sion from the centralised commit arbiter. Commit permissggranted based on a
least recently granted policy. Once the commit permisssayranted, the committing
processor broadcasts its write-signature to all the othecgssors. Upon receiving
this write-signature, each processor performs a bitwis®Alderation with their read-
signature. If all the hashes in the resulting signature arezero, then it is considered
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as a conflict and the processor aborts. Figure 4.7 showstsrgngperations used in
the DaCTM architecture. There, Figure 4.7(a) shows perfognain AND operation

between two signatures and Figure 4.7(b) shows how to chbekher all the resulting
hashes are zero.

S1 Sz ]
h1 ;
h2 T/F
h3
S, N S, L
hA%

Figure 4.7: Signature operations used in DaCTM

After sending the write-signature to all the other processthe committing pro-
cessor updates the next level memory (either L2 cache or mamory) with all the
speculatively modified values. During this commit phase,dbmmunication arbiter
denies any request to use the interconnect. Once the nettrfemory is updated
with all the speculatively modified cache entries, all thes&ies need to be flushed
and both read and write signatures need to be cleared as well.

4.4 Incorporating Memory Regions with Transactional
Memory in DaCTM

Having described the baseline TM system in Section 4.3s@ttion discusses how to
extend it to use region information. All the RO, CRW and WNRL algeare stored
in L1 cache and all LO objects only stored in SPMs. Therefbeeltl cache needs to
distinguish different types of memory locations. Since D&Joes not use any cache
coherence protocol, the existing entry for the state fielthefprotocol can be reused
to store thetypeinformation of each cache entry. Thigpeinformation is used for
several purposes. One is to decide whether to insert thesslitly the corresponding
signature. When a “Read” or “Write” operation takes place onched entry, théype
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field is checked. In DaCTM, the address of the cache line isteddo the relevant
signature only if the entry is of type CRW.

The other usage is to decide what action to take in case ofnaaction cache
overflow. The baseline TM architecture, described in Sacid, propose either to
overflow to the original memory location and to make the pssoe unabortable or
to overflow to a separate area in the memory. With the DaCTM @tifipr memory
regions both these protocols can be improved. That is overflermission is only
sought if the overflowing entry is dypeCRW. If it is of any othettype it is evicted to
the original memory location. This does not pose any cosscst violations because,
if the location is not CRW then no other processor is intecestéhis memory location
at this time. The last usage of thgeinformation in the cache lines is to decide which
entries needs to be flushed in case of an abort or a commit. GTBlaonly WNRL
and CRW objects need to be flushed from L1 cache. RO objectseckeph in the L1
cache unless the space is required by an incoming cache line.

Since all the LO objects are only stored in their SPMs, the ifitadions made
to them are made in-place. Therefore the speculative ewecistimplicitly dropped
for all the operations performed on SPMs. Regarding the tisolathe fact that no
other processors are interested in them make these obgetased implicitly. This
reduces the amount of speculative data that need to be nh#ek to the next level
memory at the end of each transaction. Regarding CRW objeats, |’V properties
are maintained just as in other TM systems. Regarding RO @hjeeither versioning
nor conflict detection is maintained as they never get matifiRegarding WNRL
objects, local copies (in L1 cache) are kept speculativdiaitly. However, no extra
care is taken to avoid shared copies being updated in caseaah& overflow. These
objects are not considered in the conflict detection ph&s®. ¢ache overflow occurs,
the behaviour of WNRL objects is similar to that of CRW objecksept that the latter
objects are considered during the conflict detection ph@isihe end of a transaction,
the next level memory copies of both, CRW and WNRL objects aratgodand local
copies are flushed.

This section and Sections 4.2 and 4.3 presented the basienmaptation of the
DaCTM architecture. Two approaches to maintain the isolgii@perty during trans-
actional cache overflows are described in Section 4.5 anib8eL6.
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Tag | V | D | Region | Data
IN_TX
Overflow_Status
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Register
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Figure 4.8: A complete DaCTM-CS system

4.5 DaCTM-CS

When addressing cache overflows, DaCTM-CS (Commit Serializé&glises com-
mits as proposed in @TM-Concurrent [9]. The only difference betweemgIM-
Concurrent and DaCTM-CS, in terms of TM properties, is that tirenér detects
conflicts eagerly using per block meta data, whilst latteéecks conflicts lazily using
hardware signatures.

In DaCTM-CS , when a cache entry needs to be rejected while agsocis inside
a transaction, permission is sought from twerflow arbiter Overflow permission is
also granted based on a least recently granted policy. Orwcevierflow permission
is granted, the processor flushes the cache line from its thecand updates the
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corresponding entry either in L2 cache or main memory. Inbéseline architecture
a processor is required to ask for overflow permission if &ydintry is to be rejected
while the processor is operating within a transaction. lmEB@CTM-CS architecture
this protocol is improved in such a way that a DaCTM-CS proaessseds to ask for
overflow permission only if the cache line is dirty and it isygbe CRW. If it is of type
RO or CRW or WNRL and the dirty bit is not set, no overflow operai®nequired
since the value has not been modified. In the case of WNRL objgztsermission is
required to overflow to the original memory location, evethi dirty bit is set. This
is because, overflowing of WNRL objects to their original meynlmrcations does
not pose any consistency violation as no other processarcissaing this memory
location concurrently with this processor. Therefore ewgthin a transaction, for
dirty WNRL objects, a DaCTM-CS processor is allowed to overflowh&r original
memory location. This does not apply to LO objects, becalsie todifications are
made in-place in the corresponding SPMs.

If an overflow request is denied, the processor stalls uméilrequest is granted.
In this case, DaCTM-CS has an advantage over the baselinedeeitaunly asks for
overflow permission if the cache line is of type CRW. In Sectdds, the policy of the
commit-arbiteris described akast-recently-grantedThere is an exception to that in
the CS version. That is, once the overflow permission is gdattea processor, all
the commit requests from other processors are denied thatdverflowing processor
commits. Again the DaCTM-CS processor has an advantage avéageline in this
situation. Since the baseline has no knowledge about thedaes that request over-
flow permission within a transaction, the permission cowadehgranted to a WNRL or
LO type block. When the overflow permission is granted all ttieepcommit requests
are denied. In the case of DaCTM-CS, since it filters out cactes]ithis situation
would not occur. When a processor with overflow permissiomtgh commits, it
only needs to write back the remaining dirty cache entrigssihl cache. Again in
this situation DaCTM has an advantage because all the dirty WblBécts that re-
quire overflowing have already been copied to their origmamory location, where
as in the baseline these entries are still waiting for overf)ermission. A complete
DaCTM-CS system is shown in Figure 4.8.
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4.6 DaCTM-U

In order to support an unbounded amount of transactional @&#CTM-U overflows
to a separate uncached area of memory as in Large Transdddemory (LTM) [3].
The design and the protocol is similar to that of LTM, excepM-U does not
stall to check for potential conflicts that might arise fromedlowed locations. This
is because, DaCTM-U uses signatures, and conflicts can bergiedel by checking
signatures. When a cache line is to be evicted while operatside a transaction,
the baseline U architecture proposes to overflow to a separat of memory. In the
DaCTM-U architecture this operation takes place only if thgeot is of type CRW.
When overflowing to this separate area of memory, the entekechne including all
the tag, valid, dirty and data bits are preserved in this cined area.

Tag | V | D | O | Region | Data

IN_TX

Overflow_Address

Core 0
Register

RIT TLB Checkpoint SlEL —
R Sig. W Sig. Processor Node 0 )

Bus Commit

Arbiter Arbiter ID

Coreld | LRU Core ld | LRG

0 0

<:> Interconnect
1 1

N N
Arbiter Module

Figure 4.9: A complete DaCTM-U system

Each entry is indexed by the hash value of the overflowed mgfooation. Each
processor has an extra registeverflowAddres$which points to the starting location
of this separate area. In the case where more than one meoratjoh produces the
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same index, a linked list is formed. DaCTM-U has an extra bieda per cacheline to
indicate the overflow status. This is set when a cache lineaegflowed and is cleared
only when a transaction commits or aborts. Even if an exjstache line is replaced
with new data, this bit does not get changed. When a cache wusssto a cache line
with O bit set, the request is directed to the overflow aredefrhemory. Thereafter
the entry is located using the hash value of the overflowedeongtacation. If an entry
has more than one cache line (which could happen due to timefinastion mapping
more than one memory location to the the same entry), a Isesach is performed by
comparing the tag and the index of each element in the ligtofe of the entries in
the current index match the memory location that causedecaniss, then it is fetched
from the original memory address.

When a processor requests to commit, it first commits all thy éntries in its
L1 cache. Thereafter all the entries in the uncached areaogied to their original
memory locations. In the case of DaCTM-U, it has an advantage the baseline
because, it only overflows CRW objects to this uncached aresaeal the baseline
architecture overflows all the objects regardless of tlypie t Because of that DaCTM
only has to copy CRW objects from the uncached area to thgjmadimemory loca-
tions, whereas the baseline has to copy all the object todhginal memory locations.
A complete DaCTM-U system is shown in Figure 4.9.

4.7 Summary

The design of two architectures that are aimed to exploiD&ETM concept is presen-
ted in this chapter. The crux of the architecture is to be awéthe types of memory
locations that a program accesses. This information i®dtor a hardware structure
called the Region Information Table (RIT). As an optimizatidranslation Lookaside
Buffers have also been modified to store tigpe of a particular address. Hardware
signatures are used to keep track of the read and write satsafisaction, so that the
conflict detection is decoupled from caches. In order to @skithe issue of transac-
tional cache overflows DaCTM-CS proposes to serialise comiftitat is to allow one
processor to overflow to its original memory location and takmit unabortable. All
the other processors has to wait until the unabortable omenits. The other system,
i.e. DaCTM-U proposes to overflow to a separate area in the memonyldM. This
version allows multiple overflowing processors.



Chapter 5

DaCTM Evaluation

This chapter describes the evaluation of DaCTM-CS and DaCTNIHg. evaluation
environment is described in Section 5.1. A brief descriptd the benchmarks used
for the evaluation and the input configurations used for eddmem are presented
in Section 5.2. The evaluation setup is discussed in Seéti®n The scalability of
DaCTM-CS and DaCTM-U and performance improvement of them d\e2r baseline
architectures (improved versions of TCC [39]) is presente@ection 5.4. Charac-
terisation of the results of DaCTM on processor idle time, bostention and false
positives, is shown in Section 5.5. Finally, Section 5.6 siaries the chapter.

5.1 Evaluation Environment

Simics [70] which is a full system simulator, is used to moitel both DaCTM sys-
tems. In its very basic form, any instruction executed indimeulator takes one cycle
to complete. However the simulator provides two handleraetatiming-modeland
snoop-memorywhich can be used to change the behaviour of the commuuorcitm
a processor to the memory and from the memory to a procegspectively. It also
provides a feature callelsapswhich are triggered when a particular event that is re-
gistered with thahap occurs in the simulated machine. For exampleag can be
registered to trigger when a processor switches its modwa @reerto supervisoror
vice versa. The advantage of this feature is that it trangher control to a user defined
function in such a situation.

Another useful feature provided by the simulator is the $ating of adding custom
instructions. This is achieved by usingnaagic-instruction This is a speciaNOP
instruction and in the X86 architecture itxshg %bx %x. This magic-instruction

86
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also works as &ap Therefore when thechg %x %x instruction is executed, the
magic-instructiorhap occurs and the control is transferred to a user definexidum

In this manner a desired behaviour can be simulated by dgfihin the user module
and registering the particular user function with thagic-instructiorhap. In order to
trigger themagic-instruction-hapaxchg %x %x instruction needs to be inserted in
the user code.

The above mentioned functions and features are used tqsfEeuenvironment
used for evaluating the DaCTM architecture. In addition tosth Simics provides
quite a lot of other functions as well. Describing them albigside the scope of this
thesis.

5.2 Benchmarks Tested

This section describes the benchmarks used for the evatuatid the modifications
made to them to work with an architecture that uses trar@@stb maintain SCC. All
the benchmarks except for Lee-TM [108] are taken from thel@FPAenchmark suite
[74].

52.1 Genome

The application takes large number of gene segments andhrtiem to reconstruct
the original source genome. Thequencer _r un method is executed in parallel and it
has several user defined transactions inside the methodeféhethe other portions of
the method are analysed to check which portions accessebdhed data and transac-
tions were inserted in those places. Those were mainly #Heeplthe application code
accesses data structures that are not created withgetjuencer _r un function itself.

5.2.2 Intruder

This application scans network packets and checks thenmstgaiknown set of in-
trusion signatures. In the application theocessPacket s function is executed in
parallel. The function has three user defined transactidinme rest of the function
accesses data structures that has not been created wétouartient function, therefore
that portion of the function is also enclosed with a transact
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5.2.3 Kmeans

The application groups objects into K clusters. In the aggpion thewor k function is
executed in parallel. The function also has user definedaciions. Therefore the rest
of the function is analysed to see whether it accesses amgafdta structures that are
not created within the current function. One such situatvas found and a transaction
was inserted enclosing that portion of the code.

5.2.4 Labyrinth

This is a routing algorithm similar to Lee-TM [108], whichtatnpts to find a path
form a given source point to a given destination in a threeedisional grid. In the
application the out er _sol ve function is executed in parallel and it has several user
defined transactions. Even though the non-transactiord® escesses several data
structures, all of them are created within theut er _sol ve function. Therefore no
extra transactions have been added to Labyrinth in ordeaintain SCC.

5.2.5 Ssca?

Ssca?2 is an application comprising four kernels and the Tk&ioe presented in
STAMP [74] focuses on kernel 1, which constructs an efficggaph data structure. In
the application theonput eG aph function is executed in parallel. The function has
few user defined transactions with small transaction lenigthwever a larger portion
of the code accesses data structures that are created Ineatioead, mostly by the
thread bearing identity zero. Therefore several extrasaetions have been added to
maintain SCC.

5.2.6 Vacation

This application emulates a travel reservation systemei@aéelient threads concur-
rently interact with the database of the travel system. dlheent run function is
executed in parallel. The function has some user defineddcdions. The majority
of the parallel function is executed as transactions. Thetremsactional code only
accesses data structures defined within the parallel imdinerefore no extra trans-
actions have been added in this application in order to ras8CC.
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52.7 Lee-TM

Lee-TM is a routing algorithm proposed by Watsetral. [108]. The objective of the
application is to find a path from a given source point to amgidestination point. For
the experiment, a two dimensional grid has been usedcdireect function which is
executed in parallel, has two user defined transactions.i<xodind and mark routes
in the shared global grid and the other is to obtain work frolistaby incrementing
a shared counter. An extra transaction has been added wheingehe source and
destination points from a global list, in order to maintaldG

The input configurations used for each benchmark are showabte 5.1. Apart
from Genome-Large, all the applications from the STAMPesuge the standard input
[74]. An additional input for Genome is used because, thedsted input did not scale
beyond 8 processors.

Application Input

Genome -0256 -s16 -n16384
Intruder -a10 -14 -n2038 -s1
Kmeans-Low | -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
Kmeans-High | -m15 -n15 -t0.05 -i random-n2048-d16-c16.ixt
Labyrinth -i random-x32-y32-z3-n96.txt
Ssca2 -s13-i1.0 -u1.0 -I13 -p3
Vacation-Low | -n2 -q90 -u98 -r16384 -t4096
Vacation-High | -n4 -q60 -u90 -r16384 -t4096
Lee 75x75 Grid, 320 routes
Genome-Large -g1024 -s32 -n262144

Table 5.1: Benchmark applications and their inputs usedvaiuating DaCTM

5.3 Evaluation Setup

This section describes the evaluation setup used for avadudne DaCTM architec-
ture. First it discusses how to build a complete system in&ims the basic configur-
ation only comprises a processor and a memory in which aihiteuctions complete
the execution in one cycle.
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5.3.1 Building Complete System

In its very basic form the Simics simulator does not have awches or an intercon-
nect. Therefore the communication from processor to memiaryhe timing-model
interface has been intercepted and certain delays haveibhsemed to simulate the
cache hierarchy. In order to simulate the bus, another oigakem, slower than the
processor, has been added to the system. A user module haddxedoped to sup-
port the coordination between interconnect, processatstacache hierarchy. With
the developed module the DaCTM system is configured with tihepoments shown
in Table 5.2. In addition to those, DaCTM-U uses a perfect Hiasttion to index its
overflowed memory locations. A perfect hash function is usedhat the performance
is not affected by the quality of the hash function.

Component Feature

Processors 1-16, in-order

L1 Data Cache 2 way assoc, 64 B line, 32 KB size,

2 cycle latency, private per core

SPM 256 KB, 2 cycle latency, private per core
Signature 2048 Bits, 4 Parallel H3 [12] Hash functions
L2 Data Cache 8 way assoc, 64 B line, 4 MB size, 20 cycle latency, shared
Interconnect | Split-transaction bus, 4 cycle latency, 64 B data width
Main Memory | 100 cycle latency

Table 5.2: Components and features of the DaCTM evaluatioinogmaent

5.3.2 Building Transactional Memory Support

Since the basis of the proposal relies on transactionsydday hardware transactional
memory system is modelled in Simics [70], a full system satd running Linux
kernel version 2.6.16. Two major requirements for impletimgnTM support are, to
notify the hardware about start and end of a transaction @mckke the hardware to
operate speculatively within that region. To realise thst fiequirement, two extra
instructions namelyfMBEG N and TM END were added using thmagic-instructions
feature of Simics, which allows the simulation of the aduitof custom instructions.
The second requirement, that is to operate speculatigayghieved by interrupting the
processor memory communication via tiraing-modeinterface. Once theM BEG N
instruction is executed, the operations associated witth@lsubsequent instructions
are buffered until th@MEND instruction is executed.
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A snapshot of the processor registers are taken whefwiBeG Nis executed and
saved in an internal data structure of the user module. Shised to restore processor
registers in case of an abort. The commit arbiter and the dopmotocol are also
implemented in the user module. The former decides to whogrdat the commit
permission whilst the latter ensures all the conflicts aselked and appropriate ac-
tions have been taken to abort the conflicting processoralsdt ensures that all the
next level memory copies have been updated and local caeledleen flushed.

5.3.3 Support for Memory Regions

Scratch-pad memories were added as separate memory uwhéds anmapped address
range in physical address space was assigned to these SPidse addresses were
then mapped to virtual addresses and a separate functicedaed to allocate memory
from these SPMs, which acted as theal memory region of each processor. These
SPMs attached to each processor are used to allocate obfeigige LO. In order

to supportread-only (RO) andwrite-now-read-later(WNRL) regions, two memory
spaces were reserved from the shared memory region and heo foinctions were
developed to allocate memory from those regions. The rangamemory space of the
shared memory is used as tbencurrently-read-writg CRW) region and the default
memory allocation function is used to allocate memory frbima tegion.

It is also required to record the memory regions in hardwdit@s was straight-
forward for thelocal region because the hardware is aware of the unmapped physica
address range that was assigned to SPMs. In the casadbnlyandwrite-now-read-
later regions, this has to be explicitty communicated to the haréw Two memory
blocks of 256 MB each, are allocated from the shared memagespt the beginning
of the execution of each application for these two regiortgerilthe hardware is noti-
fied with the upper and lower bounds of these regions. Alltéggon information is
then stored in the Region Information Table.

However, the applications used for the evaluation did noelemy objects of type
RO, therefore no data is allocated from tead-onlyregion. Lee’s routing algorithm
[108] and applications from the STAMP [74] benchmark suiezewsed to evaluate the
DaCTM architecture. Memory allocation requests of thosdiegpons were analysed
manually to identify the types of object being used in thegpam. Thereafter existing
memory allocation requests were replaced with either LO, WNMRCRW memory
requests. For comparison purposes, unmodified versionk thieaapplications were
executed on a baseline architecture as well.
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However, due to the fact that no cache coherence protocoplemented in DaCTM,
none of these applications were able to execute withougbawdified. Since DaCTM
provides coherence using transactions, all the applicaitiere modified by adding ex-
tra transactions in places where they access shared dageefdie, the transactional
characteristics of the applications used in the evaluatiay not be similar to those
presented in STAMP [74]. In the rest of the discussion, tlmt&unmodified ap-
plications” refers to those using default memory allogafiionction as in the original
benchmark suite. Therefore when unmodified applicatioasaecuted on DaCTM,
no region information is available, hence no filtering ofeadtg is performed. During
the rest of the discussion the term baseline is used to r@f@n improved version of
TCC [39] executing unmodified applications.

The reason the default TCC system is not used, is becausé&stdactain features
like hardware signatures to allow an unbounded amounte$éetional data, as well as
an uncached area in the memory to hold cache overflows likerteeised in LTM [3].
The aim of experiment is to evaluate the advantages of §jasgiobjects as of certain
types and to select hardware operations based on that tylperefére the baseline
system, which is conceptually similar to TCC, has all the feztiia corresponding
DaCTM system has except that the latter has support for meragigns.

5.3.4 Evaluation Procedure

All the evaluations are made on the parallel region of thdieaions. In addition

to the configuration shown in Table 5.2, a baseline systetn 266 KB of L1 cache

was used for evaluation as well. The latency of this L1 wag k&g cycles which is

the latency of 32 KB L1 and 256 KB SPM as well. This evaluatisone because
applications which are modified to use SPM have an inhererdgrddge of increased
level 1 storage coming from both SPM and L1 cache and thetintewas to check
whether the improvements in DaCTM were coming from the ineeddevel 1 memory
space or from the DaCTM support for memory regions.

5.4 Performance

Figure 5.1 shows the scalability of both CS and U versions o TM. All the ap-
plications scaled well except Labyrinth and Genome. In teecof Genome, when
the number of processors is increased from 8 to 16, the busmon of the latter
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becomes 2 to 3 times that of the former. This makes it fail @esteyond 8 pro-
cessors. The reason Labyrinth does not scale is because DaSdd/signatures to
keep track of the read and write sets of transactions. Withagures an element can
be inserted into the set, but it cannot be removed. Ther&af@TM does not provide
the early-release [100] feature, in consequence quite deauaf aborts are produced.

Among the applications, Kmeans (both Low and High) showsatra linear spee-
dup. The rest of the applications except Labyrinth, shownadr speedup for low
processor counts (2, 4), but the trend is not continued asiuha&er of processors
increase.

Figure 5.2 shows the performance improvement of DaCTM, oeseline archi-
tectures, of all the applications used for the evaluatiam.the figure, Baseline-CS
represents the improvement of DaCTM-CS over the CS versions#lina architec-
ture. Baseline-CS-256k shows the performance improvemeBta@TM (with 32
kB L1 cache) over the baseline with a bigger (256 kB) L1 cactiee Jame applies to
Baseline-U and Baseline-U-256k. Both CS and U versions of DaCTipkoform their
corresponding baseline systems, as well as the baselitiesawigger L1 cache. The
performance improvement of DaCTM over baseline architestwaries from 1.06X
(DaCTM-CS, Kmeans-Low) to 4.84X (DaCTM-CS, Lee).

First the discussion is focused on comparing the performamprovement of
DaCTM architectures in comparison to their correspondirsgldae architectures. There-
after the effect of increasing the L1 cache of the baseliséugied. In the CS version,
the highest performance improvement over the baselinepisrted for Lee, which
is 4.84X. From the rest of the applications, the followingnga of improvements
are reported: Genome (1.100¢ 2.31X), Intruder (1.20X%~ 1.28X), Kmeans-Low
(1.06X < 1.09X), Kmeans-High (1.07%~ 1.13X), Labyrinth (0.99X+> 1.27X),
Ssca2 (1.49%— 4.14X), Vacation-Low (1.40%~ 2.82X), Vacation-High (1.58%~
2.89X) and Genome-Large (1.31% 3.77X). When the L1 cache size is increased in
the baseline, the highest improvement over the baselinegldased to 4.52X in Lee.
In the rest of the applications, the range of the improvesmant¢ as follows: Gen-
ome (1.10X«+ 1.36X), Intruder (1.20%- 1.27X), Kmeans-Low (1.06%- 1.09X),
Kmeans-High (1.07%- 1.14X), Labyrinth (1.04X%~ 1.24X), Ssca2 (1.35X%> 3.89X),
Vacation-Low (1.38X 2.70X), Vacation-High (1.54X~ 2.70X) and Genome-Large
(1.29X «+» 2.01X). Increasing the L1 cache has resulted in the follgwaignificant
changes in the improvements: Genome (2.3%X1.35X), Ssca2 (4.14X~ 3.89X),
Lee (4.84X— 3.31X) and Genome-Large (3.77% 2.01X).
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Similarly considering the U version, the highest perforoemprovement over the
baseline is reported in Lee, which is 4.17X. The performang@ovement range re-
ported in the rest of the applications are Genome (1.40X.32X), Intruder (1.19%
1.27X), Kmeans-Low (1.06X%~ 1.09X), Kmeans-High (1.07X%> 1.13X), Labyrinth
(1.03X+ 1.12X), Ssca2 (1.55% 3.97X), Vacation-Low (1.40%- 2.85X), Vacation-
High (1.56X+ 2.95X) and Genome-Large (1.42% 1.97X). When the L1 cache size
is increased to 256k in the U baseline, the performance imgpnent range changes
to the following: Genome (1.10%» 1.38X), Intruder (1.18X%+~ 1.25X), Kmeans-
Low (1.06X <+ 1.10X), Kmeans-High (1.07X 1.12X), Labyrinth (1.03%- 1.16X),
Ssca?2 (1.43%— 3.92X), Vacation-Low (1.38%— 2.78X), Vacation-High (1.55%~
2.89X) and Genome-Large (1.35% 1.96X). Only Lee reports a significant change
in the performance improvement when the L1 cache is inctkageich is 4.17X—
3.67X.

The important observation to make is that, despite the poesef certain reduc-
tions in the performance improvement for certain configares, none of the reduc-
tions reached 1.0X. This means the performance improvewfeDBCTM over the
baseline is not coming from the increased level 1 storag®aGTM processor, which
is coming from the L1 cache and the SPM. Instead it is comiagnfcategorising ob-
jects into differentypesand triggering different hardware operations based otythe
of the memory location concerned. More discussion on tipsdsented in Section 5.5.

Having observed that solely increasing the L1 cache doesedate the execution
time, the discussion is now focused on describing the caafggsrformance improve-
ments in DaCTM. In the remainder of the section, the discussipresented in very
abstract manner. A comprehensive characterisation ofethdts is presented in Sec-
tion 5.5.

In the case of Ssca2, the reduction of false aborts in DaCTMiges the main
contribution for the performance improvement, this is inliéidn to the general con-
tribution from the reduction in idle time and bus contentidm the case of Vacation,
performance improvements are coming collectively from riduced processor idle
time and bus contention. Lee has significantly less procedksotime, bus contention
and false aborts which all account for the performance ingmreent. The reduced
processor idle time, bus contention and false aborts atdouthe performance im-
provement in Genome-Large. In the case of Kmeans, both LalwHigh versions
report similar execution times in the baseline architextiand in DaCTM. The reason
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for the low performance improvement is because this appdicaises small transac-
tions and has low contention. When transactions used in thgrgm are small, no
transactional cache overflows are required. This removesi¢led to either serialise
commits (CS) or access the uncached area of memory (U). Algm wiansactions
are small, few signature insertions take place resultirigsa false positives. For this
application, two baseline configurations (2,4) also predirero false positives.

5.5 Characterization of DaCTM

This section characterises DaCTM in terms of various pararsetSince DaCTM is
based on the concept of associating a type with each objestity fithe percentage
of accesses present in each category is measured. Figush@®\& the average of
each access type of 2 to 16 processors for each benchmarkndjbety of accesses
belong to the LO type in both DaCTM-CS and DaCTM-U, from which Gee-Large
shows the lowest percentage (71%) and Lee shows the higd89%0.( Both Vacation
High and Low, Intruder and Genome have a considerable nuwib€RW objects
(11%, 11%, 8%, 6% respectively). The rest of the applicatioave less than 5% of
CRW objects and in cases like Lee it is less than 1%. RegardayWNRL objects,
Ssca?2 has the maximum percentage of accesses (31%). Géaogee-Kmeans-Low,
Kmeans-High, Genome also have significant number of WNRL aese@5%, 21%,
21%, 19% respectively). Others have 5% (Intruder) or lesesses.
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2 2
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S 000 S 000
5 NI TSRS IR\ PPN ° S XD N2
(\0&'\\\)65)’\'0 ?2‘& & é’rb > )2\\() \/Q'\;&Q (\0&\\\)6&)’\'0 Q\Q&\(\ é;b(\’\p % o \,Q'\?\Q
QQ' & 'ZS (\6 > ;\}0 O < QQ' N 'ZS (\6 ,50 ;\}0 \OQ 4
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Bcrw Lo MwWNRL

Figure 5.3: Percentage of LO, WNRL and CRW data types in both Da@rnd\itec-
tures

This figure validates the hypothesis that the entire Part thefthesis is based
on, i.e. memory locations used in programs have different accessrpathence can
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be treated differently. For example the majority of accedsslong to LO type and
DaCTM proposes to allocate them on the on-chip scratch-pawlaryewhich is closer
to the processor. By doing so, none of these accesses encaueted to use the inter-
connect, thereby reducing the contention for it. Also fe®&W objects means fewer
insertions to signatures, resulting less false transaetiomrts. In case of a transaction
cache overflow, WNRL objects can be written back to their oebmemory locations.
In the CS version, this reduces the number of times a procéssoto seek over-
flow permission. This in turn reduces the overflow waitingdiof other processors.
Overflow waiting time is the time a processor has to stalllutgioverflow request
is granted. The request can be denied if the permissiongadrgranted to another
processor. By requesting overflow permission only for CRW aisjeDaCTM reduces
the overflow waiting time of processors. Also by overflowindheir original memory
locations, DaCTM reduces the amount of data that needs caimgndt the end of a
transaction.

Having seen the presence of different types of objects irafipdications used for
the evaluation, the discussion now focuses on analysingmpeact of categorising
objects into these types, with various parameters. Figoeso 5.7 show normalised
values for different parameters. In each figure, Baselinen@i8ates that DaCTM-CS
values are normalised to the corresponding Baseline-CS,\atugarly Baseline-CS-
256k indicates that DaCTM-CS values are normalised to thesponding Baseline-
CS with a 256 kB of L1 cache. The same applies for Baseline-U asdIB&-U-256k.

5.5.1 Idle Time

Figure 5.4 shows the idle time of each processor. In thisraxgat, a processor is
considered idle if its is waiting for data to be present irLitscache or if its waiting for
the interconnect to be available. In this regard DaCTM hasdwargage because all
LO objects can be stored in SPM so that they can be used wigsttihg them from
next level memory. The idle time of DaCTM is 95% (Lee) to 17% (@&ans-Low)
less when compared to their baseline systems. One coulé #ngti this advantage
is coming from the increased level 1 storage because of theda8PM in DaCTM.
This argument can easily be nullified because, even with alinassystem having a
L1 cache of 256 kB, processor idle time has not changed significin comparison
to that of the DaCTM processor. In Figure 5.4, it can be sedrréaaction of the idle
time due to increased L1 cache, is negligible in most caségrefore the DaCTM
approach of having a separate on-chip memory and allocatirige LO type objects
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in that memory space is able to reduce the processor idle tirhe evaluation also
showed that increasing the existing L1 cache in the basatirtatecture does not help
to achieve the same impact.

In the case of Kmeans, both high and low show a similar idlestfior various
processor counts. This is because, it is an application thcontention and it has
shorter transactions. Therefore the commit phase is keptl.sWhen the commit
phase is small, the effect of it towards the bus contentigarng small. In general, when
the number of processors increases, the contention foedmasources such as bus,
increases. In TM, this can be aggravated if the the bus isfbeldnger periods during
commit time. Since the commit time does not affect the busesdion in Kmeans, the
processor idle time does not change as the number of prosessmease. Even though
the TM characteristics of Ssca2 are similar to Kmeans in tigegnal version, in this
experiment extra transactions have been inserted to theefdo maintain coherence.
Therefore it shows a different behaviour to Kmeans.

The rest of the applications except Intruder, show a sinéraviour. That is the
normalised idle time is reduced as the number of processorsase. What happens
there is that idle time of both DaCTM and the baseline archites increases as the
number of processors increase. However the rate of incied3aCTM is low com-
pared to that of the baseline. Therefore the normalised tadeces. Also it is worth
noting that when the baseline has an increased L1 cachélszeprresponding norm-
alised value increases. However in most cases this increasgligible.

5.5.2 Bus Contention

Bus contention is another parameter that is relevant to gwmudsion. It is measured
as the number of times a bus request was denied. Figure 5 shese values nor-
malised to the values reported in a corresponding basefsters. From Figure 5.5,
it can be seen that all the applications got from 100% (Le&d (Ssca2) less bus
request denies compared to their baseline systems. A bussegan be denied if
it is granted to another processor or if another processoonsmitting. Therefore if

other processors use the bus frequently to bring data in andhe availability of the

bus is reduced, thus contention is increased. In this pdati@spect of bringing data
in and out, DaCTM has an advantage because LO type data isl stotlee on-chip

SPM. Therefore the interconnect is not used for these typlatafin DaCTM thereby
reducing the contention for it. On the other hand, if prooesspend more time in
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committing, then the bus is not available for the use of offrecessors, thereby in-
creasing the contention for it. DaCTM proposes to operatespaculatively for LO
objects even within a transaction. This reduces the amduspe&culative data that
need committing at the end of a transaction. This in turn cedihe commit time,
thereby increasing the availability of the bus to be usedeyrést of the processors.

In the case of both Kmeans applications, normalised bugatioh does not change
as the number of processors increase. The reason for theitwehs the same as for
the behaviour in processor idle timeg. being a low contention application and hav-
ing shorter transactions. In Figure 5.5 two patterns canbdserved. In one type the
normalised bus contention increases as the number of pacemcrease (Genome,
Ssca2, Genome-Large). In the other type normalised bugiwction is reduced as the
number of processors increase (Vacation-Low, VacatiaghHiln general, in a multi-
core system contention for shared resources such as thabregses as the number
of processors increase. Due to separation of data, DaCTMead@leduced the usage
of it. Having said that, even in a DaCTM system as the numberarfgssors increase,
contention for the bus increases. However as the DaCTM systtmnts the contention
from a low value, there is more space to grow until the satumgtoint. In the case
of the baseline, it started from a high value, therefore hdg little space to grow.
Therefore normalised bus contention increases as the mwhpecessors increase.

Vacation behaves completely opposite to this norm becabse isignificantly less
false positives in DaCTM than the baseline. When a transaci®aborted, its L1
cache is flushed and data is fetched again. When this hapgdsely fand quite a few
times, it can introduce a significant amount of contentioher&fore for the Vacation
applications, the baseline architectures have extra nbatethan those available in
Genome, Ssca2 and Genome-Large. However this is not piedeaCTM. Therefore
in the case of both Vacation applications, DaCTM has lessetiain in comparison
to the baseline due to a reduction in false aborts.

5.5.3 Bus Usage

Two direct approaches used in DaCTM to reduce the bus usagalacating LO type

objects in on-chip memory and to operate non-speculativelyhose objects even
within a transaction. When allocated in the on-chip memdrg, ius is not used to
transfer LO data to/from the processor. DaCTM proposes tcatpaon-speculatively
on LO type objects. The advantage of this is the amount ofttlataneeds committing
is reduced. Since LO objects are allocated in the on-chip ongrand operations
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Figure 5.6: DaCTM bus usage normalised to baseline
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are performed non-speculatively on them, these objectotlase the bus during the
commit phase. With these two techniques, DaCTM reduces lageusy 95% (Lee)
to 20% (Kmeans). The normalised bus usage is shown in Fig@re 5

From Figure 5.6, two patterns can be observed. One is thairityapf applica-
tions (Genome, Intruder, Kmeans, Labyrinth, Lee) showlaintdus usage regardless
of the number of processors in the system. This is the gdnergbected behaviour
because the work which needs to be done does not change astbenof processors
increase. Therefore the amount of data that needs to beltrtauthe processors and
the amount of data that needs to be committed does not chdhgeefore bus usage
is steady regardless of the number of processors in thensystewever applications
like Vacation, Genome-Large and Ssca2 show a differentwetna That is the norm-
alised bus usage reduces as the number of processors ancifidas is because these
applications tend to produce a large number of false pesitior the baseline system
as the number of processors increase. Therefore when adtamsaborts it needs to
clear all its L1 cache and bring data from the next level mgtrenmd the interconnect
is used in doing so. Therefore the bus usage of the basebineaise significantly for
those applications whilst it remains steady for the appbcas executed on DaCTM.
This makes the normalised bus usage of those applicatioesitwe as the processor
count increase.

5.5.4 Commit Phase Bus Usage

The situation described in Section 5.5.3 is clearly ref@:ateFigure 5.7 which shows
the bus usage during the commit phase. There, it can be @uosérat irrespective
of the processor count, bus usage during the commit timeinsnsdeady. This is
because the amount of data that needs committing is independ the number of
transactions aborted due to false positives. However ®afiplications used for the
experiment, this is dependent on the given workload. Tloeedbr a given application,
for a given workload, the number of transactions and the atofuspeculative opera-
tions needed in order to complete the given task, remaihsreihe same or varies by
a small amount. Therefore the commit time bus usage of botiT¥aand baseline
architectures remains similar for all the processor condijons, hence the normalised
value does not get changed. It is also worth noting that bagausf U systems dur-
ing commit time is higher than that of CS systems. This is beedlS systems allow
transactional cache overflows to their original memory fioces, thereby implicitly
reducing the number of memory locations that need comnmgittdm the other hand, U
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Figure 5.7: DaCTM commit phase bus usage normalised to baseli
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systems allow to overflow to a separate area of memory, whael to be written back
to their original locations during the time of committinghd&refore U systems utilise
bus more than CS systems during commit time. Considering thee@$on, the bus
usage of DaCTM during the commit time is 1%(Lee) to 56%(kmedaows) that of the
corresponding baseline. In the case of U version, bus uddga®@TM is 2%(Lee) to
64%(Kmeans-Low) that of the corresponding baseline system

5.5.5 Signature Insertions

DaCTM uses signatures to record the read and write sets. Adled&ature of signa-
tures is that, when detecting conflicts, they can producefabsitives, but not false
negatives. The more addresses being added to the sigrtaritegger the probability
of producing false positives [95]. DaCTM only inserts addessof CRW objects in
the signatures. Since all the applications used for thererpat have fewer CRW
objects, the number of insertions made to read and writeatiiges are reduced. Fig-
ures 5.8 and 5.9 show the number of insertions made to read/atedsignatures in
CS and U versions of baseline and DaCTM architectures respBctin both figures,
R-Baseline, shows the number of insertions made to the rgadtsire in the baseline
architecture. R-Baseline-256k shows the insertions madeetoeiad-signature of the
baseline which has the increased L1 cache of 256 kB. R-DaCTMstiminsertions
made to the read-signature of the DaCTM architecture. Whers'Réplaced with ‘W’
in the legend, the above definition is changed with writexaigre.

From both the figures it can be seen that DaCTM inserts only # sunaber of
addresses to their signatures. In the case of DaCTM-CS, Krieam$0.42%-0.43%)
and Lee (0.29%-0.57%) report the lowest percentage oftinesrmade to the read
signature in comparison to those made in the baseline. Isahe architecture, inser-
tions made to the write signature for Lee and Labyrinth agigible in comparison
to the insertions made in the baseline. Comparably higheep&xges of insertions
are made to the read signature in the DaCTM-CS architecturabgrinth (15%, 4P),
Vacation-Low (13%, 2P), Vacation-High (12%, 2P) and Ineul2%, 16P). In the
case of write signatures, comparably higher percentageseftions are made in Ssca2
(14%, 2P). The rest of the applications reported less thawnfG#isertions to the write
signature, in comparison to those made in the baseline.gfdications like Kmeans-
Low, Labyrinth, Vacation-Low, Vacation-High, Lee and Gem®-Large the percentage
of insertions dropped even below 1%.

Similarly in the case of the DaCTM-U architecture, Kmeansvl(6.42%-0.43%)
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and Lee (0.20%-0.43%) report the lowest percentage oftinesrmade to the read
signature, in comparison to those made in the baselinertimse made to the write
signature in DaCTM-U for Lee and Labyrinth applications igliggble, as in DaCTM-
CS. A comparably higher percentages of insertions to the segdture, are reported
in Vacation-Low (13%, 2P), Vacation-High (12%, 2P) and wiaer (12%, 16P). In the
case of write signatures, Ssca?2 reports the maximum pageiaff insertion which is
12%. Insertions made to the rest of the applications aredont and in cases like
Labyrinth, Vacation-Low, Vacation-High, Lee and Genonmegde it falls to less than
1%, that of the baseline.

It can be observed in both Figures 5.8 and 5.9 in most apitatthat the num-
ber of insertions made by the baseline architectures iseraa the number of cores
increase in the system. However this increase is not signififor DaCTM architec-
tures. The reason for this behaviour is that DaCTM producesfidse aborts, due to
a lower number of insertions made to the signatures. Alpdimd restating a trans-
action, increases the contention of the system. When a sysasrhigher number of
cores, the contention for shared resources increases. Waeaystem produces false
aborts, this contention gets even higher. When the conterstisigher, the idle time of
the processor increases, thereby making transactionssusceptible to abort. When
a transaction is aborted, its signature is discarded. Eagtied transaction has to be
restarted. When it is restarted, it has to create a new signdiacause the abort op-
eration has cleared the previous one. This increases thberurhinsertions made to
each signature in the baseline for higher processor counts.

5.5.6 False Positives

As described earlier, signatures produce false positimdsrasserting more addresses
increases the probability of it. The number of false posgiproduced in DaCTM-CS
and DaCTM-U are shown in Figure 5.10 and 5.11 respectivelghEgure also shows
the number of false positives produced in the correspondasgline architectures as
well. False positives presented in the figures are meastitee granularity of cache
lines. It can be seen in both figures that DaCTM architecturedyze either zero or
significantly lower number of false positives than thosedpieed in the corresponding
baseline architectures.

DaCTM-CS did not produce any false positives in Kmeans-Lowelns-High,
Labyrinth, Ssca2 and Lee for all the processor configuratiddoth baseline config-
urations of CS, produced zero false positives for Kmeans Liogvtigh for 2, 4, 8



CHAPTER 5. DACTM EVALUATION 110

Genome Intruder
» L.0E+4 «» L1OE+4
[} [
= =
£ 10E+3 = 1.0E+3
& &
o 1.0E+2 o 1.0E+2
k) k)
& 1.0E+1 $ 1.0E+1
S k]
@ 1.0E+0 & 1.0E+0
£ £
g 1.0E-1 2 1.0E-1
= 2P 4P 8P  16P 2P 4P 8P 16P
Cores Cores
Kmeans-Low Kmeans-High
» 1OE+2 » 1O0E+2
[} [
2 2
‘? D
&£ 1.0E+1 £ 10E+1
[} Q
0 2]
& &
5 1.0E+0 5 1.0E+0
@ 9]
£ £
5 1.0E-1 é 1.0E-1
2P 4P 8P  16P 2P 4P 8P  16P
Cores Cores
Labyrinth Ssca2
« LOE+3 » LOE+3
[} Q
2 2
‘@ 1.0E+2 ‘g 1.0E+2
o o
3 10E+1 8 10E+1
© ©
w w
© 1.0E+0 2 1.0E+0 ﬂ
[} [
£ £
5 1.0E-1 § 1.0E-1
2P 4P 8P  16P 2P 4P 8P  16P
Cores Cores
Vacation-Low Vacation-High
« LOE+5 » LOE+5
[} Q
2 1.0E+4 2 1.0E+4
%) %)
§ 1.0E+3 & 10E+3
[} Q
‘_E 1.0E+2 § 1.0E+2
5 1.0E+1 5 1.0E+1
é 1.0E+0 é 1.0E+0
g 1.0E-1 2 1.0E-1
2P 4P 8P  16P 2P 4P 8P  16P
Cores Cores
Lee Genome-Large
» LOE+4 « LOE+5
: : 1.0E+4
-'g 1.0E+3 -‘g :
o 1.0E+3
o 1O0E+2 <
% % 1.0E+2
uw 1.0E+1 L
5 5 1.0E+1
é 1.0E+0 é 1.0E+0
5 1.0E-1 é 1.0E-1
2P 4P 8P  16P 2P 4P 8P  16P
Cores Cores

M Baseline-CS Baseline-CS-256k [MDaCTM-CS

Figure 5.10: Number of false positives presented in the CSiamerof DaCTM and
baselines



CHAPTER 5. DACTM EVALUATION 111

Number of False Positives Number of False Positives Number of False Positives Number of False Positives

Number of False Positives

Figure 5.11:
baselines

1.0E+3

1.0E+2

1.0E+1

1.0E+0

1.0E-1

1.0E+2

1.0E+1

1.0E+0

1.0E-1

1.0E+3

1.0E+2

1.0E+1

1.0E+0

1.0E-1

1.0E+5
1.0E+4
1.0E+3
1.0E+2
1.0E+1
1.0E+0

1.0E-1

1.0E+4
1.0E+3
1.0E+2
1.0E+1
1.0E+0

1.0E-1

Genome Intruder
» LOE+4
[
=
S 10E+3
e
o LOE+2
0
¢ 1041
bS]
o 1.0E+0
£
2 1.0E-1
2P 4P 8P 16P 2P 4P 8P 16P
Cores Cores
Kmeans-Low Kmeans-High
» 10E+2
Q
=
B
& 1.0E+1
)
0
&
% 1.0E+0
@
£
2 1.0E-1
2P 4p 8P 16P 2P 4p 8P 16P
Cores Cores
Labyrinth Ssca2
» 1.0E+3
[}
=
‘2 1.0E+2
a
3
2 1.0E+1
w
© 1.0E+0 ﬂ
[
£
2 1.0E-1
2P 4p 8P 16P 2P 4p 8P 16P
Cores Cores
Vacation-Low Vacation-High
» 10E+5
[
2 1.0E+4
%]
& 1.0E+3
(o]
E@ 1.0E+2
5 1.0E+1
é 1.0E+0
2 1.0E-1
2P 4P 8P 16P 2P 4P 8P 16P
Cores Cores
Lee Genome-Large
» 1.0E+5
[
2 1.0E+4
%)
& 1.0E+3
)
é 1.0E+2
5 1.0E+1
é 1.0E+0
2 1.0E-1
2P 4p 8P 16P 2P 4p 8P 16P
Cores Cores

M Baseline-U | Baseline-U-256k [l DaCTM-U

Number of false positives presented in the Wigarof DaCTM and



CHAPTER 5. DACTM EVALUATION 112

and 2, 4 processor counts respectively. Among the apmitsifor which DaCTM-CS
has produced false positives, the highest percentage ipason to those produced
in the baseline, is reported in Vacation-High which is 18%e highest percentages
reported in other applications are Genome (11%), Intrué®s)( Vacation-Low (8%)
and Genome-Large (10%).

In the case of DaCTM-U, Kmeans-Low, Kmeans-High, Ssca2 arel did not
produce any false positives for all processor configuratidine U version of baseline
architecture produced zero false positives only with theelins application (both Low
and High) for 2 and 4 processor configurations. Considerirhg thie applications for
which DaCTM-U produced false positives, the highest peamgmiof false positives
in comparison to those produced in the baseline is repont®dcéation-High which is
17%. The highest percentages of false positives reporteither applications are Gen-
ome (11%), Intruder (6%), Labyrinth (5%), Vacation-Low (B%nd Genome-Large
(11%).

Another observation that can be seen in both Figures 5.10bdd is that the
number of false positives produced in the system increaséeeanumber of cores
increases. One reason for this is, as the number of coresaises the number of sig-
natures (to check for conflicts) increases as well. Moresigmatures present in the
system, increase the candidates for checking conflictsefdre total number of false
positives increased as the number of cores increases. ldowey number of false
positives produced per core in both DaCTM architectures mesr&milar for all the
processor configurations for all the applications. Theasitun is not same for baseline
architectures with Genome, Intruder, Labyrinth, Ssca2laaed Among those Intruder,
Labyrinth and Lee are applications with high contentiontr&xransactions have been
added to Ssca2 and Genome to maintain coherence when agc@8dRL data. This
makes Genome behave differently than Vacation which hatasiaoinaracteristics in its
original version [74]. All the above mentioned applicasaan now be considered as
having high contention despite their original charactmsgresented in [74]. Conten-
tion for shared resources increases as the number of caresges. For an application
with higher contention, this could affect it unfavourab§o when false positives are
occurring, contention gets further increased and in tuodpeces more false positives.
This does not apply to DaCTM, because they do not produce palsiives as in the
baseline architectures. Therefore the number of falsdipesiproduced per core re-
mains steady.
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5.6 Summary

Evaluation of two DaCTM systems and their correspondingliessystems are presen-
ted in this chapter. It described the benchmarks used andalddications made to to
them in order to work with DaCTM and baseline architecturesdeAcription of the
simulator along with extensions used to support, TransaatiMemory and Memory
Regions were also given in the chapter. Performance of DaCTeM lmaseline archi-
tecture and also the scalability of DaCTM was presented #fiere Finally the chapter
characterises the results on various parameters suchaspaw idle time, bus conten-
tion, bus usage, commit phase bus usage, signature imseatml false positives.



Chapter 6

Related Work on DaCTM

This chapter describes some of the work related to the DaCBllgsal. The centrepiece
of DaCTM is the hardware support for transactional memorgoAl is the centrepiece
of the work presented in Part Il and Il of the thesis. Therefihe related work in the
area of Transactional Memory is presented in Chapter 2. Ti@&Maarchitecture is
based on the “data centric” approach to computing. Sectibmiéscribes the related
work in the area of data centric computing and also architestthat support it. The
DaCTM architecture maintains SCC at bulk level and optimises¢quired hardware
operation based on the type of memory location. Sectionar®d2.3 briefly describe
related work in cache coherence and memory consistencyséatons also describe
existing work that proposes to distinguish hardware opmratbased on the type of
a memory location. Existing proposals to optimise traneaet memory using the
access patterns of memory locations are presented in 8é&&do The chapter also
presents, in Section 6.5, several approaches from the ngamemmagement literature
that uses access pattern information in different sitaatio

6.1 Data Centric Synchronization

Vaziri et al. [106] argue that operation centric synchronization isreprone because
it requires programmers to have a clear understanding affwdhta structures are ac-
cessed concurrently, hence propose Data Centric SynchtmnzDCS). In DCS a

programmer associates synchronization constraints vaité structures and the com-
piler automatically infers points in the program order tegarve consistency. They
also present an inter-procedural analysis to determiregitots to perform synchron-
ization.

114
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Class Customer{ Class Customer{
String city; atomic(address) String city;
int postCode atomic(address) int postCode
Date date; atomic(purchase) Date date;
Item item; atomic(purchase) Item item;
void updateAddress(String c, int z){ void updateAddress(String c, int z){
atomic { city=c; postCode=z; } city=c; postCode=z;
} }
void newPurchase(Date d, Item i){ void newPurchase(Date d, Item i){
atomic { date=d; item=i; } date=d; item=i;
}
void newStoreGift(Date d, Item 1i){ void newStoreGift(Date d, Item i){
atomic { date=d; item=i; } date=d; item=i;
} }
} }
(a) (b)

Figure 6.1: An example of using data centric approach fockyanization (taken from
[106])

For example consider the code segment shown in Figure 6.If&@re, the class
Cust omer has four variables and three methods and all these threeodsetian get
executed in parallel. Therefore the keywatbmic has been placed inside all the
methods in order to avoid data races. This is the convertaperation centric way
of maintaining synchronization. The code segment showngarg 6.1(b) shows the
“data centric” approach proposed by Vaatial. [106]. In their approach authors pro-
pose to associate tteomickeyword with data, instead of associating it with the op-
erations inside a method. The authors also proposed to giaagntoatomic setsso
that atomic constraints can be associated with sets of dstigad of associating them
with the entire data set used in a program. It can be seenund-g1(b), that variables
city andpost Code are associated with tretomic setaddr ess; variablesdat e and
i t emare associated withtomic sefpur chase. In the proposed framework the com-
plier automatically infers where the locks need to be oletdin order to maintain syn-
chronization. For example, thpdat eAddr ess method is required only to obtain the
lock related to theddr ess atomic setand thenewPur chase method is only required
to obtain the lock related to thgur chase atomic set However thenewSt or eG f t
method is required to obtain locks related to both atomis astit accesses data from
both of them.

Colorama [13] is an architectural solution to support DCS. idea is to group
data structures into consistency domains and to assignoa tmkach domain. If a
thread accesses a data structure from a domain that it dbesvnpa critical section
is started automatically for that particular thread fort tparticular domain. No other
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thread can now access this domain. In order to realise tbyjgogal at the hardware
level, it is required to identify when to start a critical 8ea and when to finish it. In
order to achieve the first objective two types of structuresused. One is a shared
structure calledPalettewhich stores start and end addresses of all the color regions
The second is local to each thread and it stm@srIDs of all the regions that the
thread owns. A critical section is started when a threadssssea color region that
it does not own. In Colorama, the authors also consider a rdedh@ unit of work
as in DCS [106]. Therefore when the execution of a method ispbeted, the critical
section started for that method needs to be finished. Theynasesactional Memory
as the underlying synchronization mechanism. Later, theesauthors proposed Data
Coloring [16], a programming model based on the data colguconcept. In this
model, data structures are grouped into consistency denaaid places are marked
(with the color stepconstruct) in the program order where data should be cemsist

The concept of associatingtgpe with memory locations and inferring required
operations to maintain SCC in DaCTM is similar to DCS and Coloradmavever both
DCS and Colorama only focus on maintaining synchronizatidrereas the focus of
DaCTM is to maintain SCC as a whole. The memory regions andalssigned types
are similar to color regions and color IDs in Colorama. Howekietypefor a memory
location in DaCTM is derived from the access pattern of theatlion. In the case of
Colorama, the color ID does not represent such information.

6.2 Cache Coherence

Caches have been introduced and placed physically closeotegsors to store fre-
guently used data, in order to reduce latency. Memory aesess program show tem-
poral and spatial locality. Therefore by storing the mosgtrently accessed memory
locations and their nearby locations, access latency ofbaegsor can be reduced.
However, a multi-core chip has more than one processor acll g@cessor has at
least one private cache. Due to the presence of locality mong accesses, more than
one processor can access the same or nearby by memory todaien the modifica-
tions to these locations are made on local caches of thegsore an erroneous output
can be produced unless a mechanism is used to avoid oth@sgs using stale data.
The issue that needs addressing here is how to maintain seciveew of the shared
memory.

In order to maintain a coherent view, a coherent detectidreaforcement strategy
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needs to be implemented. A mechanism to detect coherenlegions can be imple-

mented by snooping the bus for read and write requests isguetther processors and
comparing them with the state of the local cache entrieshAsiame implies the state
of a cache line indicates the state of it (shared, dirty andrgo In order to enforce

coherence, a cache controller can either invalidate thieecantry or update it based
on the information gathered by snooping the bus. The coberprotocols which are

based on this fundamental concept are cadleabpbased protocols.

In a chip-multiprocessor as the number cores increaseds édmed interconnect
cannot support the overall network traffic. Therefore anladia interconnect like a
two-dimensional mesh or an omega network is required. Hewesnooping is not
straightforward in such an interconnect as there can bdpteuttommunication chan-
nels among cores. Therefore, those systems rely on a seurdilled a directory to
maintain cache coherence. There, a directory maintainst#ite about the cache lines
accessed by each processor. Read and write operations frahe grocessors go
through the directory. Therefore the directory knows wiaelshe lines are modified
and who has the modified cache entry and which cache lineharedby which pro-
cessors and so on. Therefore the coherence detectiorggtae be integrated with
the directory itself. In order to enforce the coherence, waeviolation is detected,
the directory sends messages to caches which have cacheathéeing considered,
asking them to invalidate their entries. Since a directsrinvolved in these sort of
mechanisms, they are callddectorybased protocols.

The above paragraphs provides a brief summary of cache exateprotocols.
The literature on the subject is quite large and summarisieq all here is beyond the
scope of the thesis, but interested readers are direct&@8td 01, 103]. However, the
rest of this section describes proposals from cache cobelgarature that attempt to
categorise data and perform coherence selectively onloatagtquires it.

Ekmanet al. [31] propose to attach a unit called a Page Sharing Table)(RPST
each processor in order to keep track of the pages accesdbd pyocessor and the
sharers of those pages. The sharers are stored in a shactog, wehich is broadcast
on a separate bus calledsharing vector bus The information in the sharing vector
of one processor is used by other processors in decidingweliidresses require a tag
lookup and which do not. The objective is to reduce the eneagpgumed, in looking
up addresses that are not shared by other processors, in@rsmooherence protocol.

Cantinet al. [11] proposeCoarse-Grain Coherence Trackinghich allows pro-
cessors to send L1 cache misses directly to the main memdnmputichecking those
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misses in other processors’ caches. Each processor igoeguigth a structure called
a Region Coherence ArrafRCA) for monitoring coherence at a granularity bigger
than a cache line. This RCA maintains the coherence state oj@ddigned memory
region. The size of a region is equal to two to the power of nemd§ cache lines.
In their approach, a conventional cache coherence protscnbdified so that when
a cache is snooped for an address, the RCA of that process@ois@boped. The
requesting processor store the response of RCA snooping oftike processor in its
RCA. When a processor encountered a cache miss, if checks its Rib&d& whether
any other processor is caching data in the region that tlieead falls in to. If that is
not the case, the request is directed to memory. The authgusant is that in a con-
ventional coherence protocol, all the cache misses arepsdoegardless of whether
they are cached or not in other processors. In their apprsadoping is done only for
locations that belongs to regions that are cached by otloeepsors. This way their
proposal was able to reduce the request latency of a mukifmmcessor.

Similar toCoarse-Grain Coherence Trackingloshovos [78] proposedegionScout
a filtering mechanism that dynamically detects non-shaggibns. The objective is to
reduce energy, latency and bandwidth utilization by av@dinnecessary snooping
and tag lookups. The proposal is to attach two structuresetygaNot Shared Region
Table(NSRT) and aCached Region Has{CRH), to each node. A region is defined
as an aligned continuous block of memory with size of powetaf. As the name
suggests NSRT records non shared regions. CRH which is a bliemifnprecisely
records locally cached regions. When a node needs to issuenameequest, it first
check it in the NSRT. If an entry is found, it knows that no ethede is caching
this, thus broadcasting can be avoided. When a node recelwemdcast request for
an entry that is cached in its NSRT, the entry is invalidaté¢hen responding to a
memory request, a node uses its CRH to check whether it is cpahyentry in the
region that the requesting address falls in to. This respaased by the requesting
node in deciding whether to insert the entry to NSRT or not.

Zebchuket al. [112] argue that botiCoarse-Grain Coherence Trackirand Re-
gionScoutrequire extra on-chip area which is a scarce resource,ftrerbardware
designers are unlikely to integrate those [11, 31, 78] intarke designs, unless the area
and power consumption of those techniques are addressetheisolution the au-
thors preseniRegionTracke(RT), a framework for coarse-grain tracking without com-
promising the area or performance of a conventional cache.RT design proposes
to replace the tag array with a structure to facilitate redggvel lookups. With a single
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lookup in RT, it can be determined which and where, blocks m#gaon are cached.
The authors showed that their technique can be used to suppdtegionScouf78]
technique, in order to eliminate unnecessary broadcastsmoop coherence protocol,
without any resource overhead.

A distributed cached design called R-NUCA which takes the aihge of ac-
cess pattern information of memory locations is presenyeddrdavellaset al. [40].

In their approach, accesses are categoriselhsisuctions, Data-Sharednd Data-
Private Classification is done at the OS level with page level graitylaThe ad-
vantage is that different block replacement policies camygied to each category.
R-NUCA places private datdD@ta-Privatg in the L2 cache slice of the correspond-
ing processor. Once loaded to the memargfructionsremain as read-only. However
they are read by many processors. Therefore instructi@replicated in local caches.
R-NUCA places shared datB#éta-Sharedlcloser to the cores that access them. It also
ensures that they are evenly distributed across all tild§@reach shared block there
is a unique slice. This way R-NUCA avoids replication, thereliyjinating coherence
as well.

Rather than categorising data as shared or private at paglegianularity,Sub-
space Snoopinfh6] proposes to identify sharers for pages. The argumeahaismost
of the pages are partially shareds. shared by more than one core but less than the
total number of cores in the system. Therefore categorsipgrtially shared page as
“shared” as in the previously described approaches inqunseessary broadcasts and
tag lookups in a snoop based coherence protocol. The projgasaextend a page
table entry and the TLB with a sharing vector to record theeseof each page. For
each coherence operation, the requesting processathé one performing the oper-
ation) can find out the sharers of the page to which this addrebngs, hence the
request is forwarded only to those. Their proposal alsoigesva feature calle8ub-
space Shrinkingvhich allows the removal of obsolete sharers (who does ravesthe
page any more) from the sharing vector. Using this apprdaelatthors were able to
reduce unnecessary snooping in snoop based coherencegbsoto

Cuesteet al[27] also made a proposal to deactivate the coherence misohéor
private data. Similar to R-NUCA [40] anSubspace Snoopirj§6], in their proposal,
the authors also take the advantage of functions availatifeei OS to distinguish data
as private and shared. Initially all the pages are treatgutieate, hence coherence
is deactivated for them. When a processor issues a memorgsequhich results in
a TLB miss, while serving the TLB miss the OS checks whethgraher processor
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is keeping this page in a private state. If that is the cas= (8 issues a coherence
recovery notification to the hardware and the coherenceiaged for that page from
that point onwards. In order to realise the proposal: TLBiestare extended with
extraprivate andlockedbits; page table entries are extended vpitivate, cachedand
keeperbits.

Literature described in this section presented severaingits from cache coher-
ence literature that aimed to distinguish memory accessesharedandprivateand
eliminate the coherence mechanism for pirevate data. One of the objectives of
DaCTM is similar to this, that is to reduce the broadcastingjiaterconnect usage for
privatedata. However, in DaCTNrivatedata is stored in on-chip memories where as
in all the above described approaches they are stored indbally shared memory.
In addition, DaCTM aims to provide Synchronization, Coheesand Consistency as
a whole whereas all these proposals only target the pravidicoherence.

6.3 Memory Consistency

Integrating memory consistency with cache coherence amdding it at bulk level is
one of the objectives of Part | of this thesis. Memory comsisy models define the
event ordering on parallel processors. They range fromtditit easy to understand
and reason about sequential consistency (SC) [62] to relaxetiore complex release
consistency (RC) [35].

Lamport [62] defined Sequential Consistency (SC)iethe result of any execution
is the same as if the operations of all the processors wereugx@dn some sequen-
tial order, and the operations of each individual procesappear in this sequence in
the order specified by its progrdmThis allows programmers to view a program as
a collection of operations issued by different processotheé system and these pro-
cessors are connected to the global memory one at a time byt@hsvince only
one processor is connected to the global memory at any givien the operation per-
formed by it is made visible to others in the system, befoeertéxt processor issues
its memory operation. This ensures that the order in whieldloperations are per-
formed, is in accordance with the order specified by the puogrin order to provide
this simple abstraction, SC enforces constrains on opaaperformed by each pro-
cessor. Therefore it cannot take the advantage of certatitwlaae optimisations such
as reordering, buffering, bypassing and so on. Later, atwamory models like Re-
lease Consistency (RC) [35] which allows relaxations from threstraints imposed by
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SC have been proposed. Summarising all of them is beyondctipe ©f this thesis,
but interested readers are directed to the tutorial [2] byefahd Gharachorloo.

Gharachorloaet al. proposed that prefetching and speculation can be used to im-
prove the performance of any consistency model [34]. Foieprking, authors sug-
gest the use dhardware-controlled non-binding prefetchivith this approach, data is
brought to the cache and kept coherent using coherencecptetd-or speculation, a
mechanism is required to detect whether speculativelysseckdata is correct at the
time of using it and also a correction mechanism is requicednido and repeat the
computation in case of misspeculation. Hill argues [511 thaure multi-core systems
should implement SC as the memory model because the suppapdculation can
narrow the performance gap between SC and RC. He also argudsetiperformance
gained by the relaxed consistency models does not jus&fgdmplexity imposed by
them. This conjecture of Hill’'s is validated by the work of i@dy et al. [36], in which
the authors show that SC can perform as well as RC providedfbdtardware has
enough support for speculation.

Cezeet al. [14] presented BulkSC, an architecture to provide sequectiasist-
ency (SC) at block level. The idea is to dynamically group ecnsive instructions
and to execute them speculatively. Conflicts are checkedeaetid of blocks and
hardware enforces SC at coarse grain level rather thantatigtisn level. They also
achieved performance comparable to a RC implementation. &othese [14, 36]
support Hill's conjecture [51] that a SC implementation pemform as well as RC if
enough hardware support for speculation is provided. BulklS@ proposes to operate
non-speculatively on private data.

Memory consistency provided by DaCTM is somewhat similahtt bf BulkSC.
The differences are, blocks are dynamically created in Bolk#ereas in DaCTM
they are created statically. Both systems propose to opetespeculatively on
private data. In BulkSC, this private data is stored in theesdhanemory whilst they
are stored in on-chip memory in DaCTM. BulkSC considers all-povate data as
shared and hardware is made to maintain consistency comtstoa them. In DaCTM
all non-private data is further categorisedResad-Only Write-Now-Read-Lateand
Concurrently-Read-Writand different consistency constraints are applied on them.
The consistency constraint imposed ©ancurrently-Read-Writdata by DaCTM is
similar to that of the BulkSC on non-private data.

Dag-consistency is proposed by Blumefeal. [8], which is a relaxation of event
ordering based on thBirected Acyclic Graph(DAG) of a computation. There, the
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authors describe Dag-consistency as follows.

The shared memory M of a multithreaded computation G = (\§Eaig-consistent if
following two conditions hold:

1. Whenever any threadd V reads any object & M, it receives a value v modified
by some thread ¢ V such that j writes v to m and there exists no path from thread i t
thread j.

2. For any three threads i, j, & V and there exists a path from thread i to thread j and
a path from thread j to thread k, if j writes some objectenvl and k reads m, then the
value received by k should lastly be written by j not i.

Dag-consistency uses three operations narettj, reconcile, flusto ensure cor-
rect operationFetchcopies a new object from main memory to caakepncilecopies
a dirty object from cache to main memory and the cache is ftusiseng aflushop-
eration. The operation on WNRL objects in DaCTM is similar to E2agsistency.
Within a WNRL-transaction, objects are fetchdet¢h from the next level memory.
When theTMEND instruction is executed, all the speculatively modified WNRi- o
jects are written back to the next level memomgcpncilg and those cache entries are
flushed flush.

6.4 Data Separation in Transactional Memory

Chapter 2 provides literature on the area of Transactionahtg (TM). This section
summarises TM proposals which are similar to DaCTM, mainlihancontext of cat-
egorising data. In Transactional Memory Coherence and Gensis (TCC) [39] the
authors propose to use transactions as the unit for maimggaoherence, consistency
and synchronization. TCC also proposed to exclude the stiikbles from the com-
mit packet, but the work was not extended to identify othealwariables using the
keywords or access patterns as done in DaCTM. They achieisdoltmarking certain
loads and stores as “local”. Even though this is a straigitiod way of categorising
data, it limits the code reusability (similar to the naive@aM design, see Chapter
4, Section 4.1). DaCTM still uses conventional loads andestand it is capable of
dynamically categorising data (see Chapter 3, Section 3g4yé& 3.18). Further, all
the local variables reside in on-chip memory in DaCTM, thgresiving a zero effect
on the interconnect. The baseline implementation usedviauating DaCTM is an
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improved version of TCC.

Matveevet al. [72] proposedvirtual Memory Filter (VMF), a hardware solution
that allows Software TM (STM) code to be executed withouh@enstrumented. This
is because in STM, transactional code needs to be instra@chémtnaintain versioning
at the software level. With VMF, STM programmers are reqliosly to declare which
locations are shared and which locations are unshared.d¥foimentation of the trans-
actional code is required. When a transactional access happe shared location,
VMF detects this and the operation is performed on a shadpw abthe shared loca-
tion. The objective is to provide fine grain memory tracing3d M, without the effort
of instrumenting the code manually. In DaCTM it is also reqgdito define memory
regions according to their access patterns similar to degghared and unshared loc
ations in VMF. However, the objective of DaCTM is to providecalable computing
system by coupling a “data centric” approach with TM wherélt- aims to provide
STM code to be executed without being instrumented.

Yenet al. [111] present Notary, a signature based hardware TM sysiéotary
makes two significant contributions. One is a hashing fomatalledPage-Block-XOR
(PBX) which provides performance similar to H3 [12] hashimg &t a lesser hardware
cost. The second contribution is a privatization interfdtat allows a programmer
to allocate memory from shared and private heaps. It prewster ed_nal | oc and
private_nmal | oc to access both heaps depending upon usage. In Notaryjaosoist
dropped for all the memory operations on the private heap. mppng the isola-
tion on private addresses, Notary achieved a reductionaowdon time by reducing
false conflicts. They also proposed barriers to allow a shhreation to be conver-
ted to private and vice versa. DaCTM also categorises data Hstary. However,
in DaCTM, shared data is further categorised (RO, WNRL, CRW) atic exemory
allocation functions are declared accordingly. Addreséedl the shared memory loc-
ations are inserted to signatures in Notary. In DaCTM addses$ only one type of
shared locations (CRW) are inserted to the signature. In Mgtarate data is alloc-
ated from the shared memory and brought to caches when a neesl\ahilst they are
allocated in on-chip SPM in DaCTM.

Riegelet al. proposed [91] to partition data according to their accestepes, SO
that a STM could implement different concurrency contradxhon the partition it op-
erates on. In their approach partitioning is done autorabiyiat compile-time/runtime
and a programmer is only required to mark the transactiomdaues. Partitions are
identified by constructing a Data Structure (DS) graph uflatp Structure Analysis
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[63] techniques. A DS graph is created for each function uséke program, which
is used byPoolalloc[64] to create pools for DS nodes which have been analysed by
DSA for all its uses. These pools are then treated as paditiothe underlying STM.
The objective is to use different concurrency control athons for different parti-
tions. Even though some of the partitions used in this wotl} fe similar to those
in DaCTM (Thread-local,Transaction-locatLO, Read-OnlyRO), the fundamental
difference is that DaCTM operates at the hardware level vasdi@l] operates at soft-
ware level.

Sanyalet al. [96] present a mechanism to separate shared and unshaaad the
heap by setting a flag in the virtual memory page. They alswigecal ocal _mal | oc
function as in Notary [111] to access private heaps. In aidib this, they also pro-
posed an algorithm to separate stack variables from beirigded in the read and
write sets of a transaction. The authors propose to addyads#lociative buffer named
Local-Undo Bufferto each processor to preserve the original value of certaial |
variables. This is because, in [96], isolation is droppedatbthe local variables and
this could lead to an erroneous output in situations wheefitkt transactional op-
eration is a read and an abort happens after a transactioit@lisvperformed on the
same location. The authors show that only 1% of accesse®iSTAMP suite [74]
fall in to that category and propose to preserve the old vafigich variables in this
Local-Undo Buffer In their algorithm, each memory access is checked agdiest t
Stack PointeandFrame Pointerregisters to determine whether a particular address is
in the stack, hence isolation can be dropped for that addfidss adds a delay to the
critical path. In DaCTM the stack is allocated in the on-chipMsand each SPM is
assigned a range of physical addresses. Therefore when argnegquest is issued, in
DaCTM, it does not need to be checked as in [96]. In additiorCTM does not use
any hardware structures likevcal-Undo Bufferinstead the issue is addressed through
the programming model (discussed in Chapter 3, Section 3.4).

The Advanced Synchronization Facility (ASF) [1, 21, 24] msAMD64 hardware
extension for implementing TM and lock free data structufsven new instructions
have been introduced with ASF. TBBECULATE instruction starts an atomic region and
the COW T instruction commits the speculatively modified entries FAfiso provides
aLOCK MV instruction that moves data between registers and memarnyaagegular
MOV instruction. However the difference is that@CK MOV instruction can only be
used within an atomic block. ASF hardware performs versigaind conflict detection
only for memory locations that are accessed usingt@@ MV instruction. In other
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words, within an atomic block, isolation is dropped for meyntmcations accessed
usingMV instructions. The objective is to reduce the demand on haarelwapacities
required to maintain the isolation property. The conceptaving separate instructions
in ASF is similar to the naive design proposed for DaCTM in Chagt Section 4.1.
Such designs cannot be applied in situations where a singtdibn operates on both
shared and private data, because during the compilatiosepdralyMOV or LOCK MOV
can be included in the binary.

Memory regions have been proposed by Detal. [30] as way of achieving strong
atomic semantics in STM with performance comparable to &iyesomic system.
Similar to DaCTM, the authors also consider a group of memocgations with the
same sharing state as a region. However, the objective chutteors in grouping
memory locations into regions is to change the protectiatustof the entire group
with a single, constant-time operation. Using this appnoadien a protection state of
aregion is changed, all the subsequent operations to tfimrare delayed until all the
currently executing transactions on this region finish. DslQIises regions so that it
can enforce SCC selectively for each region whilst the objedf [30] is completely
different to that.

This section summarised the approaches found in TM litezatdnich are mainly
focused on categorising data in to different groups. Theldnmental difference of
DaCTM to those is that, DaCTM further categorises shared datarscurrently shared,
non-concurrently shared and read-only shared. Privatewas residing in the glob-
ally shared memory in all these proposals, whereas in DaCTgktlare stored in the
on-chip scratch-pad memory.

6.5 Memory Management

This section summarises several approaches, that can bd fioumemory manage-
ment literature, which propose to group data of similar asgatterns and to allocate
them in a suitable memory space. Steensgaard [102] proposdidcate objects that
never escape a thread, in a thread specific heap. Object@réhglhared among other
threads are allocated in a shared heap. The approach eguisnalysis phase to de-
termine which objects are thread-local. The objective & #pproach is that, thread
specific heaps can be garbage collected separately, thexébging the garbage col-
lection latency. Sadet al. [93] proposed the use of escape analysis [65, 66, 94] to
identify memory allocation requests which are used only Igmgle thread. They
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used that sharing information to extend the Hoard [6] menatincator with a thread
local memory allocation functiori (s _nal | oc) to reduce the contention for the global
allocator. However these proposals did not focus on comeating this sharing in-
formation to hardware in order to improve the cache coher@motocols or memory
consistency models as in DaCTM.

The on-chip SPM of a DaCTM processor is a separate physicalomyerut it
is being mapped to the logical address space of the appiicaffhis facilitates a
programmer to allocate LO type objects in the on-chip SPMhaevit the complex-
ity of manually managing separate memories. Similar tq th§ymmetric Distributed
Shared MemoryADSM) [33] maps the physical memory of an accelerator intete
geneous processor, to the shared logical memory spaceoto @lbcessors to access
objects in the memory of the accelerator. In their approatign a function is selec-
ted for acceleration, all its associated objects are akakca the accelerator memory
which is mapped to the logical memory space. This relievesptiogrammer from
manually transferring data between accelerator memonytlamdhared memory. In
ADSM, only the data objects of functions which are selectadatcceleration are al-
located in on-chip memory, whilst all the LO type objectsaltecated in on-chip SPM
in DaCTM.
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Chapter 7

SnCTM: Adaptive Sources for Conflict
Detection

This is the first chapter of Part Il of this thesis, which prege an efficient technique
to reduce the number of false transaction aborts in a HagliMansactional Memory
(HTM) system. The chapter describes the concept and thgrdeENCTM, an HTM
which can adaptively change the source used for detectimigjais. After showing the
motivation for using adaptive sources to detect conflicth whe aid of a preliminary
experiment in Section 7.2, the reader is given an overviesglated work in hardware
signatures in Section 7.3. The concept of SnCTM is describ&ection 7.4. Finally,
Section 7.5 summarises the chapter.

7.1 Introduction

Commodity chips are now shipped with more than one processerand in few years
time a single chip will include hundreds (if not thousandspimcessor cores [52]. It
is inevitable that parallel programming becomes the migast in order to make use
of those cores in the chip. With parallel programming, naimbg mutual exclusive
access is one of the issues that programmers have to facetlewegh this is achieved
via locks in the past, Transactional Memory (TM) [50], a Ido&e solution based on
database transactions [37], has gained attention oveast@lécade. In TM, during
the execution of a critical section, operations are peréatrepeculatively and atom-
ically. All the memory locations that are read/written syglatively, are recorded in a
read/write-set respectively. At the end of an atomic blednflicts are checked using
these read and write sets.

128



CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTIQRO

Initial hardware TM systems like TCC [39], LogTM [77] propasekeep this read
and write set in the Level 1 (L1) cache by extending it with a€afl) and W (write)
bit. However this implicitly placed a limitation on the siaéa transaction, that is able
to fit in the L1 cache. Following the proposal for bulk disagumtion of addresses
by Cezeet al. [15], Yenet al. propose LogTM-SE [110] which suggests the use of
hardware signatures to represent the read and write setgarisaction. A hardware
signature is a fixed set of bits, that can be implemented \&R§Ms, in which certain
bits are set according to the address being considered.n@tant aspect of using
signatures in TM is that, transactions are no longer boubglé¢de size of the L1 cache.
However the disadvantage of using signatures is that theyuee false positives. In
this context, a false positive refers to a situation wheesstgnature mechanism asserts
a conflict, but actually there is not any. False positived leefalse transaction aborts
and this degrades the performance of a TM system.

Several proposals [19, 20, 61, 84, 85, 86, 111] have been thadduce the num-
ber of false positives that occur in a hardware TM system. oAllhese approaches
focus on the design and the implementation of signaturesiidware. Part Il of this
thesis aims to address the issue of reducing false positivesa different angle. As
an entry point to the discussion, consider the followingsgioe. Can the usage of
signatures, in detecting conflicts, be reducedl reason for raising this question is,
if the use of signatures to detect conflicts can be reduced, ttie false positives can
be reduced. Then the obvious follow-up question wouldfisgnatures are not being
used, what else can be used to detect conflicBh@ answer is cache lines. So the
proposal of Part Il of the thesis is to use both cache linessagithtures to maintain
the read and write set of a transaction. When this approadiiasvied, if the size of a
transaction fits in the L1 cache, the cache line informatsonsed to detect conflicts.
Signatures are used otherwise. To this end, Part Il of thasishproposes SnCTM:
a hardware transactional memory system that adaptivelyggsathe source used for
detecting conflicts.

Part Il of this thesis makes following contributions.

e The concept of adaptively changing the source of infornmatieed to detect
conflicts in a hardware TM system, is introduced. It also shbaw an existing
TM architecture can be extended to support the SnCTM concept.

e The performance evaluation of SnCTM shows improvements abup62 and
2.93 times speed-up over a baseline TM using lazy versicamblazy conflict
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detection (an improved TCC [39]) with two commonly used stgnaconfigur-
ations.

e SNCTM gives the opportunity to reduce the size of a signatuteowt com-
promising the performance. A sensitivity analysis shoves 8nCTM with a 64
bit signature can deliver performance comparable to a giesignature of 8k
bits.

7.2 Motivation

Most of the TM systems (eg: LogTM-SE [110], SigTM [75], VTMYB propose to use
signatures to record read and write sets of a transactios. fatilitates a transaction
to have an unbounded amount of speculative data. Here,tfhéuabounded’ means
that a transaction is not bounded by the size of its locale€athis is because most of
the initial TM systems like TCC [39], LogTM [77] propose to kethe read and write
set of a transaction in the Level 1 (L1) cache. Some of the T#fesys like LogTM-
SE [110] that support unbounded transactions, also supptrélizable transactions,
meaning that transactions can even be longer than the dofgeduanta. However
the support for virtualizable transactions cannot be gediby only having signatures
to record read and write sets of a transaction, thus reqgsupport from the runtime
system. Therefore the discussion is only focused on TM Bysthat use signatures to
support an unbounded amount of speculative data.

Early HTM system like TCC and LogTM propose to extend L1 caclte Wead
and Write (R and W) bits to record the read and write sets of as#ietion. This
requires transactions to be bounded by the size of the Llecaich processor. Bulk
[15] proposes to encode this information into a fixed sizadware ‘signature’. This
approach allows the size of a transaction not to be boundéuesize of the L1 cache.
Signatures have the disadvantage of producing false ypesitThat is, when tested for
the membership of an address in a signature, it may assetivp@ven if the address
is not present in the signature. False positives lead te tadsisaction aborts, thereby
degrading the performance of a transactional memory system

False transaction aborts which are caused by false pasitiae be reduced by
optimising the implementation of a signature. A number gbrapches to achieve
this are discussed in Section 7.3. Part Il of this thesiss@keompletely orthogonal
approach to those and proposes a simple hardware solutieduce false transaction
aborts.
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In order to make a case for the proposed scheme, the folloguegtion is con-
sidered initially. ‘Does an HTM system require signatures all the time, to dei@act
flicts 7. The answer isNo’. This is because, not all the transactions exceed the size
of the L1 cache. When this is the case, the read and write setseckept in the L1
cache of the processor. For such transactions, there isetbtoeuse signatures. In
order to validate the above answer and to get an intuitionowf many transactions
actually needed a signature, a preliminary experiment genéth a lazy-lazy HTM
system, similar to TCC [39], using 2-16 cores. The experimead carried out with
two signature bit widths (1024, 2048) which are the sizeegaly used in hardware
TM experiments.
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Figure 7.1: Signature requirement for transactions coachit

Figure 7.1 shows the number of transactions committed amd those commits
how many actually needed a signature. In the legda@€ommitgepresents the num-
ber of commits made in the system with 1024 bit signaturel&8hould use Signature
represents the number of commits that actually requirereatiige mechanism to detect
conflicts in the same system. When the legend2kasstead ofLk, the same definition
applies to a system with 2048 bit signature. The correspgnelues are the average
of 2-16 cores.

For both signature configurations, it can be seen that thébruwf commits that
require a signature is either low or negligible. The disadlage of using signatures
is that they produce false positives. The same experimerisisused to measure the
amount of false positives that could have been avoided isitpeatures are not being
used for situations where the read and write set fits in thkecathe following mech-
anism is used for this measurement. The simulator is eqdipféh a monitor mode
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which can take certain statistics without affecting theinignmodel of the simulation.
When the conflict detection phase asserts an abort, the momitde uses its internal
data structures to determine whether the abort is a trug abarfalse abort. In the
case of a false abort, the monitor mode also checks whethgnatsre is required for
this commit. If a signature is not required, it marks this ralas an abort that could
have been avoided.

Figure 7.2 shows the number of false transaction abortagemtlin the system and
how many of them could have been avoided if the signaturebeirg used only for
situations which require the use of it. Here in the leg&kdralse Positivesepresents
the number of false positives that occur in a system with 1fiPdignature and k-
Could Have Avoidedhows the number of false positives that could have beexegtoi
if signatures are not being used. Similarly when the legeasPh instead oflk, the
same definition applies to a system with 2048 bit signaturethé same figure, the
X axis represents the number of processors in the system-22ptocessors, 44
processors and so on). It can be seen from Figure 7.2 thatitgagbfalse positives
could have been avoided if the signatures are only used asaakich requires to do
SO.

Using this observation from the preliminary experimentestiasis, the hypothesis
of Part Il of the thesis is formed. That is, the execution twh@ TM application can
be reduced by reducing false aborts by means of changingotireesof the inform-
ation used to detect conflicts. The term “changing the soof@eformation” means
adaptively using signatures or the ‘R’ and ‘W’ bits in the calthe, to detect conflicts.

7.3 Related Work on Hardware Signatures

Transactional memory (TM) [50] has been proposed as a wagloéang optimistic
concurrency in parallel programming. In Transactional MeyrCoherence and Con-
sistency (TCC) [39] the authors propose to use transactiotieasit for maintaining
coherence, consistency and synchronization. Since thany MM approaches have
been proposed and Chapter 2 provides a good summary on key HiT&lso provides
a good overview on semantic and performance consideratibm®! systems. This
section only focuses on literature related to using sigeatin TM systems.

Cezeet al. [15] defines a hardware signature as a fixed bit width reptaten of
a set of addresses. The objective of Ceze’s prop8sak, is to produce a hash value
by encoding all the access information of a thread, so thatesmremain unmodified.
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In order to insert an address to a signature, a hash funstiperformed on the address
and a logical OR operation is performed with the hash valuktha existing signa-
ture. The authors also formally define the operations ireehwith signatures. The
operation, which is similar to a union operation, is usedambine several signatures
together. This is useful in supporting nested transactaanthe signature of a child
transaction can be combined with the parent using this tiparaThen operation is
used to perform an intersection operation among two sigesturhis can be used to
check if two signatures have at least one item in common. iBHat intersecting two
signatures and checking if the resulting signature is enptgrder to check whether
a signature is empty, the authors define another operati@,In order to check the
membership of an address in a signature, gtuperator can be used. This is done
by, first generating a temporary signature using the givelness, then intersecting it
with the real signature, and finally checking if the reswgtgignature is empty. The
last operationg, is used to decode a signature into the set of addresseg¢hagiag
used to generate it. This is done by first generating cachexewdthat could set the
corresponding bits in the signature, and checking the ctxhalidate whether those
entries have actually been accessBdlk proposes to use simple bit permutations on
an address as its hash function in order to generate a signatu

LogTM-SE [110] also uses signatures to maintain read ani\wsats of a transac-
tion. Their signature implementation is based on seledifigrent bits of the address.
LogTM-SE comes with three signature implementations. Tihsdlect (BS) scheme
takes then least significant bits of a block address and produces atsignaf size
N = 2" bits. The double-bit-select (DBS) produces a signature Ioybioing two BS
implementations. The first one takes the firbits and the second one takes the second
n bits. The resulting signature is of siz€%Y. The third scheme, coarse-bit-select
(CBS), produces a signature by taking théeast significant bits of a macro block
(block of 1KB is used in their experiments). The authors &sgdo use this scheme
for large transactions.

SigTM [75] which is a hybrid TM system, also uses hardwarepsupto main-
tain signatures. They use combination of permutation ahghsiting as their hash
functions. As SigTM is a hybrid TM system, it also providegmukevel instructions to
manage signatures. SigTM supports four hash functionsurffpermuted cache line
addresses; (2) permuted cache line addresses as in Bulk(B5hifting the output
of step 2 by 10 bits; (4) permuting the 16 least significarg bfta cache line address.
The authors also conclude that the choice of the hash functa play a significant
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role in producing an accurate signature.

Sanchezt al. concluded [95] that the H3 [12] class of hash functions sthdd
used in signatures instead of bit selection as in previopdposed signature imple-
mentations [15, 75, 110]. The authors also showed that tkssgiggle ported SRAMs
(parallel bloom filters) to implement signatures is an ariéi@ient technique. The
authors also show that there is a relation between the nuailiesh functions, num-
ber of addresses inserted and the probability of produatsg fpositives. That is, for
large transactions, a signature with smaller number of hasttions tend to produce
lower false positives. When the transactions are smallégreasire mechanism hav-
ing higher number of hash functions tend to produce low fatsstives. They propose
a technique which they call Cuckoo-Bloom signatures, whiatiope better for both
smaller and larger transactions. They use a table whiclesttree hash values for
a given address. When inserting an address, three hashdiosetie used, resulting
three hash values. The first two are used to index this tabikstvwhe third provides
extra information about the address, so that the entireesgptation becomes more
accurate. However implementing Cuckoo-Bloom signaturesandwiare is complex
and it does not support the intersection operation as well.

Yenetal.[111] argue that H3 implementations use many XOR gates,ititueas-
ing the area and power overhead of signatures. They propesBage-Block-XOR
(PBX) hash function that delivers performance similar to @hdsh function, but at
a lesser hardware cost. Their proposal is motivated by @xgiahe randomness of
addresses. In addition to introducing a new hash functiom authors also proposed
a filtering mechanism to reduce the number of addresses beiaged to signatures.
This is provided via a new privatization interface whichyades memory management
functions to allocate and deallocate memory from sharedoandte heaps. Accesses
to the private heaps are not added to the signatures andasoia dropped as well.
By reducing the number of insertions made to a signature,ri¢1d 1] was able to
reduce false aborts thereby reducing the execution tima apalication.

Quislantet al. [85] propose to take advantage of locality of memory refeesn
to design hardware signatures. The authors observe tisatdhlorts can arise due to
address aliasing and filter occupancy. When a transactiomadl, st only occupies
a small fraction of the signature, but due to address atiagican introduce false
positives. When a transaction is bigger, the filter occupasdygher and this leads
to false aborts as well. In order to reduce false aborts reduby the first case, in
the proposed scheme, nearby memory addresses only shazédgenm the filter. By
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exploiting the locality of addresses, their proposal iedblreduce false aborts which
arise due to address aliasing. However, the system stilidhses aborts arising due to
filter occupancy.

Choi et al. [19] present an interesting fact, that is sometimes falsgtiges in a
signature based TM system can be helpful as well. They almatewhen a signature
asserts an abort erroneously, it could also be the casehikatransaction is meant
to be aborted in future due to a real conflict. Therefore ifamsaction aborts early
because of a false abort, it could save the wasted work thaiutd have been doing
from the false abort to the real abort. They categorise tfadse aborts as “good” and
use this early conflict detection to improve the performanbeeir proposal is based
on an observation that there is a relation between the gadd#ise positives and the
granularity of bits used in the address. In order to explog ood and bad positives,
the authors propos&daptive Grain Signatureshich changes the granularity of the bit
range input to the hash function. Their mechanism uses ant Mistory Table (AHT)
which contains the starting addresses of transactionsrwiage aborted others. The
output (hit/miss) of the AHT is fed to a multiplexer which dées the range of bit
field to be used in the rest of the addresses accessed witttittahsaction. Using this
approach the authors were able to increase the nhumber airperfice friendly false
positives and reduce the number of performance destruaties.

Labrecqueet al. [61] propose to use reconfigurable signatures. Their appra
to customise the signature to match with the access pattehe @pplication and to
minimize the false conflicts. In order to use their approdickt a trie is constructed
using the memory addresses obtained from a trace of an appitic Each leaf of
the trie represents a bit in the signature. As the number ofiomng accesses is large,
this initial signature will have a higher bit width. Thereafthe trie is truncated by
selecting the most frequently accessed branches. Afestage the false positives of
the trace are calculated and the trie is expanded with additibranches to reach a
desired false positive rate. The signature bits that do fiettethe false positive rate,
are removed thereafter, resulting in the final signature.

Quislantet al. proposed multiset signatures [86], which combine read ariid w
signatures into one. In this manner the size of the signagudeubled without adding
any extra hardware. As both read and write signatures ardioeah, each bloom
filter is equipped with two hash functions, one for read ofiena and one for write
operations. This is required to distinguish between readnaite operations. However
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when it comes to the implementation, this poses a challesgé r@ow requires 2-
ported SRAMSs instead of single-ported ones. This doublesitba requirement of a
signature. In order to overcome this issue, the authorsgseo useé double-ported
SRAMs andk-i single-ported SRAMs to implement the combined signaturethi
manner, ifi is low, the area requirement is similar to the original. Tregproach is
also enhanced using locality sensitive signatures [85p@sed by the same authors.
However the authors did not describe a mechanism to avoikeaborts that can be
caused by read-read dependencies.

Concurrently with the work of Quislargt al. [86], Choiet al. propose the use of
a single signatureufified-signaturgfor both read and write sets [20]. Similar to the
multiset signature [86], thenified-signaturas able to double the size of the signature
by combining both read and write signatures. By having a fasggnature without
any hardware cost, they were able to reduce the false pesitiiereby increasing the
performance. However the authors did not consider the arsaas Quislanet al.
[86] did. Unlike the multiset proposal [86], the authors sler the false aborts that
can arise from two transactions reading the same memortidocdn order to reduce
the impact from these read-read dependencies signallimifjats, they also proposed
to use a small helper signature alongside the unified signailhe helper signature
works as a write signature, but is smaller in size. When detgconflicts forread-
exclusiverequests, only the main signature is checked. When detectinfijcts for
readrequests, both the main and the helper signature is cheEkedhe latter case, a
conflict is said to occur if both signatures asserted the neeshiip of the address.

Instead of using fixed size signatures, Oresal. [84] propose to dynamically
assign resources to a signature. The objective of the pabpgtiexSig is to lower the
false positive rate by redistributing the available handna@mong signatures:lexSig
does not have fixed number of signatures. Instead, it coagfibloom filters, with
the capability of providing one td signatures. Since signatures are created at runtime,
FlexSigalso comes with an allocation and deallocation algorithm. ekdvh thread
requires a signature, the request is forwarded to the aitocaoutine, which then
produce a signature combining one or more bloom filters.dfalare no bloom filters
available it will free some of the existing ones to accomntedhe current request.
A signature is composed of one or more registers (64 bitsthvhas its own hash
function. When a signature wants to record an address, egddtereperforms the
hash function on the address and a bit is set in their registeorder to check the
membership of an address, hash functions of each regigepglied to the address
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and each register checks whether the corresponding bit srset. As the bloom
filters are independent of each other, they can be added/eshfoom a signature
without comprising the correctness.

Even though the objective of SnCTM is similar to many of thewhdhat is to
reduce false aborts, it differs from all these approachastly-because it is not an-
other signature implementation. The proposal is to uselit wmhen there is a need
to do so. Secondly it is not tied to any signature implemématherefore any of the
above mentioned signature implementations can be usecasterlying signature
mechanism in SnCTM.

7.4 SnCTM Concept

The objective of SnCTM is to adaptively change the sourcefofimation used during
the conflict detection phase in a Hardware Transactional dgifHTM) system. The
concept of SNCTM is described in this section. When signataresised to detect
conflicts in HTM systems, they can produce false positiveswéler signatures are
required for detecting conflicts, only if a particular trangon has speculative data that
cannot be stored within its L1 cache.

In the proposed approach, whether to use cache line infaymat signatures to
detect conflicts is decided at the time of committing. Thisisien depends on the
overflow status of currently running transactions. In thigpr@ach, when a transaction
is going to commit, the committing processor needs to chewdtiner any of the other
processors have encountered a cache overflow during thelapee execution. If that
is the case, the write signature of the committing processoommunicated to the
others and they check their read signatures with the ret@me to detect conflicts. If
none of the concurrently running transactions have eneoedta cache overflow, then
there is no need to use signatures to detect conflicts. Tdrerdie committing pro-
cessor communicates its write-set to the other processorg the ‘W’ bit information
in its cache line. When they receive this ‘W’ bit informatiother processors check it
with their ‘R’ bit information in the cache lines.

The communication of the commit message and the conflicttietephase needs
to be generalised to adaptively change between cache lmkesignatures, in order to
support existing HTM proposals. This can be done by inclgdirflag in the header
of the commit message. When a processor is going to commigates the commit
message either using the signature or the cache line infmmand the flag is set
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accordingly. When a processor receives this commit mességs reads this flag and
determines what source to use to detect conflict. FigureyiBgstrates concept of
SnCTM with respect to a committing processor and Figure J.&tbws it from the
receiving processor’s view.

Is
Signature
Flag

Set
?

Has
a Cache
Overflow
Occurred?

Y Y
Communicate R/W set Use cache lines to
using Cache lines detect conflicts
—®  Communicate R/W Use signatures to  leg—
set using Signatures detect conflicts
(a) With respect to a (b) With respect to a
Committing Processor Receiving Processor

Figure 7.3: The concept of SnCTM

In order to realise the SnCTM concept, a mechanism is needwditdain the over-
flow status of the processors in the system. This can be dohewigg a local flag in
each processor and setting it when a transaction overflowthid approach the com-
mitting processor needs to communicate to all the othergasmrs before initiating
the commit phase, in order to decide whether to communiaatbecline information
or signature. A centralized bit map, in which each processts the corresponding
bit when overflowing, can be used for this as well. In that dagecommitting pro-
cessor can check this bit map and decide what source to usésttt donflicts, without
communicating to other processors.

Another aspect that needs to be considered when realin8ri@TM concept is,
when to update signatures and ‘R’ and ‘W’ bits in cache lineshécase of signatures
the term “update” refers to, inserting an address to theasige. In the case of cache
lines, it refers to setting ‘R’ and ‘W’ bits. The most simple apgch is to maintain
read/write sets and signatures simultaneously. That iswtie ‘R’ bit is set in the
cache line, that address is also inserted to the read signaa the same applies to
writes that set the ‘W’ bit in the cache line. Another approecto keep the read and
write set in the cache line and to compose it to the correspgrgignature only if the
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committing processor asks to use signatures. Regardlebs aféthod used to main-
tain signatures and cache line bits, the SnCTM approach giegsthat signatures are
being used to detect conflicts only if it is necessary. In thaner SnCTM aims to
keep the number of false transaction aborts to a minimum, ldwereby reducing the
execution time of an application.

7.5 Summary

This chapter presented the concept of SnCTM, a novel way atiad the false aborts
by adaptively changing the source used during the conflieatien stage. The idea
is to decide at the time of committing which source to usecache line or signature.
This way the use of signatures is limited to situations wisgexulative data cannot be
held in the local cache. The chapter starts the discussi@rdsenting a motivating
example using a preliminary experiment, which shows thel fi@ehaving an adaptive
mechanism to change between cache line information anctsiges to detect con-
flicts. A comprehensive summary of hardware signaturesasiged thereafter, fol-
lowed by the description of the SnCTM concept. The importapeat of the SNnCTM
proposal is that it is not tied to any specific signature impatation. Therefore all
the signature optimising mechanisms proposed in the fitexacan be integrated with
SnCTM.



Chapter 8

SnCTM Implementation and
Evaluation

This chapter describes the architecture of a SnCTM processbthe evaluation of
it, in terms of performance. Architectural extensions iegplito support the SnCTM
concept are described in Section 8.1. The performance ingpaeducing false trans-
action aborts using the SnCTM approach is presented in 3@t Finally, Section
8.3 summarises the chapter.

8.1 SnCTM Architecture

This section describes an architecture that supports t68d Biconcept. First it takes
an existing HTM as the baseline architecture and later mvshwow this baseline can
be extended to realise the SnCTM concept.

8.1.1 Baseline Architecture

An improved version of Transactional Memory Coherence ands@tency (TCC)

[39] is used as the baseline architecture. The baselingidedchere is similar to
the one described in Chapter 4 (Section 4.5). For the sakeropleteness, a brief
description is given in the reminder of the section. Thedsational memory imple-
mentation in this baseline is similar to any other lazy-laaydware TM system. When
the TMBEG N instruction is executed, a flagN_TX) is set. When this flag is set, all
the subsequent operations are performed speculativelythmTM END instruction is

executed. In order to provide an unbounded amount of tréiosat data, the baseline

141
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uses hardware signatures [95] to maintain the read and sat$g using parallel bloom
filters to increase accuracy. Since the baseline archiedtubased on TCC which
does not implement any coherence protocols, transactrenssed to maintain coher-
ence and consistency as well. Therefore at the end of a tmsathe next level

memory copies are updated and local copies which are reittefware flushed. This
is necessary because, local caches may end up keeping atialdwet to the fact that
no conventional coherence protocols are used.

When a processor needs to commit a transaction, it first resjaeexmit permis-
sion from a centralisedommit-arbiter Commit permission is granted based on a least
recently granted policy. Once the commit permission is g@nthe committing pro-
cessor broadcasts its write-signature to all the othergzsmrs. Upon receiving this
write-signature, each processor performs a bitwise ANDratpen with their read-
signature. If all the hashes in the resulting signature arezero, then it is considered
as a conflict and the processor aborts. Figure 8.1 showstsrgnaperations used in
the baseline architecture. Figure 8.1(a) shows performmgND operation between
two signatures and Figure 8.1(b) shows how to check whethéirearesulting hashes
are zero.

Sl Sz ]
h1 ;
h2 T/F
h3
S, N S, L
hA%
(a) (b)

Figure 8.1: Signature operations used in SnCTM

After sending the write-signature to all the other processthe committing pro-
cessor updates the next level memory (either Level 2 (L2he&ar main memory)
with all the speculatively modified values. During this coinphase, the communic-
ation arbiter denies any request to use the interconneate @e next level memory
is updated with all the speculatively modified cache entadisthese entries need to
be flushed and both read and write signatures need to be dlaareell. A more
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elaborative description on signatures is presented in @hdpSection 4.3.3.

The baseline used for the evaluation operates under thddayyl M principle,i.e.
conflict detection and version management happens lazilgeSersion management
is done lazily, the speculatively modified data is held in latte and the unmodified
data is held either in L2 cache or in main memory. Thereforemén speculatively
modified cache entry needs to be evicted for capacity reaspegial measures are
required to maintain the isolation property of TM. This igleeksed in the baseline
by serialising overflows. That is, when a cache entry needsetoejected while a
processor is inside a transaction, permission is sougimt fin@overflow arbiter Over-
flow permission is also granted based on a least recentlytagtgiolicy. Once the
overflow permission is granted, the processor flushes theedaee from its L1 cache
and updates the corresponding entry either in the L2 cactleeanain memory. Each
processor has a register call®yerflow Status which is set once the overflow per-
mission is granted. Once this flag is set, the processor duteseed to seek further
permission. A processor needs to ask for overflow permissidy if the cache line
is modified during the current transaction. An extra ‘W’ bitused to mark all the
speculatively modified entries. A dirty bit is not sufficidat this purpose because the
entry could have been dirty due to a write operation performatside a transaction.
Therefore the baseline architecture cannot eliminate ththnd ‘W’ bits that were
present in the original TCC. It needs to keep the ‘W’ bit to intkdhat this cache line
has been modified during the transaction. If the ‘W’ bit is retf shere is no need to
seek overflow permission. If an overflow request is deniegl pttocessor stalls until
the request is granted.

Even though theommit-arbiterof the baseline operates ofeast-recently-granted
policy, there is an exception to this for processors who heamsactional cache over-
flows. That is, once the overflow permission is granted to agssor, all the commit
requests from other processors are denied, until the owenfjoprocessor commits.
This is because once a speculatively modified entry is writigéck to the next level
memory, either L2 cache or main memory, the old value is lost this is a non-
reversible action. Allowing cache overflows to speculdyivaodified entries, can be
considered as violating the atomicity and isolation prapsrof the lazy-lazy trans-
actional memory. This is because the overflowed cache sntae now be read by
other processors before the current transaction commitstder to maintain the con-
sistency of the system, the current transaction of the @weirily processor, is made
unabortable. This is achieved, as described earlier, byidgmll the commit requests
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until the overflowing processor commits. This policy worksrect because the pro-
tocol simply follows acommitter-winspolicy, in which the committing transaction
progresses in case of a conflict.

8.1.2 SnCTM Design

This section describes how to extend the baseline architsctiescribed in Section
8.1.1, to realise the SNnCTM concept. As described in Chapt&ettion 7.4), the
basic idea of SnCTM is to adaptively change the source of imébion used to detect
conflicts during the commit phase. Since a processor dodgwet in advance which
source can be used to detect conflicts, hardware should iaeapability to store read
and write sets in both formatse. ‘R’ and ‘W’ bits in cache lines and signatures. Since
SnCTM does not use any cache coherence protocol, by reusrthdrexisting entry
for the state field of the coherence protocol to keep ‘R’ and "W, larea utilization of
L1 cache can be kept unchanged. A complete SnCTM system isxsihdwigure 8.2.
The only addition to the baseline, apart from the controidpig the ‘R’ bit field in the
cache lines.

Data

Tag | V
IN_TX
Overflow_Status

Core 0

‘ Register Checkpoint ‘

\ R Sig. \ ‘WSig. \

Processor Node 0 -

1

‘ Interconnect ‘

Il

Atbiter Abter | D] Amier
Coreld | LRU Coreld | LRG Coreld | LRG
0 0 0
1 1 1
N N N
Arbiter Module

Figure 8.2: A complete SnCTM system
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When a processor is executing a transaction, all the reachopes set the ‘R’
bit in the cache line and also they set the correspondingirbitee read signature.
The same applies to the write operations. In this way eacbegsmr keeps both the
sources updated and one of them is used during the commi¢ pbag to the nature
of the baseline used, at any given time only one processobeagranted overflow
permission. Also the commit protocol of the baseline pré&vemy other processors
committing before the overflowing processor. When the conpmiitmission is gran-
ted, without any communication to other processors, thenaitting processor itself
can decide whether to use signature or cache lines. Thisceube if the commit-
ting processor is not the overflowing processor, there daba@ny other processor
in the system which has been granted overflow status. If iseasy other processor
which has been granted overflow permission, then this psocesnnot be granted the
commit permission.

Therefore, if the committing processor has been grantedlowestatus, it broad-
casts its write signature to other processors and they dheutk their read signatures
to detect conflicts. If the committing processor has not lgranted overflow status,
this means the transaction was able to fit in the L1 cache.efdrer it can use the ‘R’
and ‘W’ bit information in the cache line to detect conflicts this case, the com-
mitting processor broadcasts its write set to other prazessnd they check it with
their read set to detect conflicts. In order to adaptivelyidiewhich source to use in
the conflict detection mechanism of the receiving proceshercommit message in-
cludes an extra flag callefypewhich notifies the receiving processor about the type
of information it carriesi.e. signature or cache line.

In order to set th@ypeflag of the commit message, th@\erflow Statu3 flag of
the baseline is used. If set, the signature is included irctimemit message and the
Typeflag in the message is set. If unset, the cache line bits ackarsgtheTypeflag
of the commit message is kept unset as well. Once the otheegsors receive this
commit message, thigypeflag is checked and the corresponding source for detecting
conflicts is determined. Figure 8.3 shows the mechanism ins@&nCTM processor
when checking conflicts as a response to a commit message.

8.2 Evaluation

The evaluation of SnCTM is presented in this section. Aftscdssing the evaluation
setup in Section 8.2.1, the performance evaluation of SnCI'ptesented in Section
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Commit Message

‘ Flag ‘ Signature or Cache Line Info

Y

| ON | DATA | ON | DATA
Cache Line Signature
Conflict Conflict
Detection Detection
Mechanism Mechanism
Abort Operation

Figure 8.3: Adaptively checking for conflicts in a SnCTM prsser

8.2.2. The same section shows that a SnCTM system can outpeafoimproved ver-
sion of TCC [39], with two commonly used signature configuras. Characterization
of the results of SNnCTM is presented in Section 8.2.3. Theitbatysof SnCTM and
the baseline to different signature lengths is shown iniSe&.2.4.

8.2.1 Evaluation Setup

The simulation environment used for evaluating SnCTM is lsinto the one used for
evaluating DaCTM, described in Chapter 5, Section 5.3. Fosdlke of completeness,
a brief description of the system is presented in the reneaintithe section, readers
are directed to Chapter 5 for a more elaborative description.

In order to evaluate the SnCTM architecture, a lazy-lazy Wward transactional
memory system is modelled in Simics [70], a full system setad running Linux
kernel version 2.6.16. The SnCTM system is configured withctiraponents shown
in Table 8.1.

Lee’s routing algorithm [108] and applications from the $AR [74] benchmark
suite were used to evaluate the SnCTM architecture. For cesopapurposes, all
the applications were also executed on the baseline actinige However, due to the
fact that no cache coherence protocol is implemented indkellme or SnCTM, most
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Component Feature

Processors 1-16, in-order

L1 Data Cache 2 way assoc, 64 B line, 32 KB size,
2 cycle latency, private per core
Signature 1024, 2048 Bits,

4 Parallel H3 [12] Hash functions
L2 Data Cacheg 8 way assoc, 64 B line, 4 MB size,
20 cycle latency, shared
Interconnect | Split-transaction bus, 4 cycle latenay,
64 B data width
Main Memory | 100 cycle latency

Table 8.1: Components and features of the SnCTM evaluatianoamrent

of these applications were not able to execute without beiogified. This is be-
cause, these applications access shared data outsidactians. As the baseline and
SnCTM provide coherence using transactions, some of thécapiphs were modified
by adding extra transactions in places where they accessdstiata. No modification
was required for Vacation, Labyrinth and Lee as they do noés shared data out-
side transactions. Smaller transactions similar to theadly existing ones have been
added to Intruder, Genome and Kmeans. The only significaargd has been made
to Ssca2 by adding several large transactions as the nyagdrihe non-transactional
code accesses shared data.

Application Input

Genome -g256 -s16 -n16384
Intruder -al10 -14 -n2038 -s1
Kmeans-Low | -m40 -n40 -t0.05 -i random-n2048-d16-c16.1xt
Kmeans-High | -m15 -n15 -t0.05 -i random-n2048-d16-c16.1xt
Labyrinth -i random-x32-y32-z3-n96.txt
Ssca2 -s13-i1.0 -ul.0 -I3 -p3
Vacation-Low | -n2 -q90 -u98 -r16384 -t4096
Vacation-High| -n4 -q60 -u90 -r16384 -t4096
Lee 75x75 Grid, 320 routes

Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

Table 8.2: Benchmark applications and their inputs usedvaiuating SnCTM

The input configurations used for each benchmark are showiabie 8.2. All
the STAMP applications used their standard inputs [74].I&&at&ons are made on the
parallel region of the applications.
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8.2.2 Performance

Figure 8.4 shows the performance improvement of SnCTM owetbtseline archi-
tecture. In the legend, 1024 refers to the case where thebihe signature of both
baseline and SNnCTM is 1024 bits and 2048 represents when Y&tinss use signa-
tures of 2048 bits. In all the figures, the X axis represergsnitimber of processors
used for the experiment (2P2 processors, 4B4 processors and so on). The first
observation that can be made from the figure is that SnCTM duotpes the baseline
in almost all the cases with an average of 1.51X (1024) an8XL(2048). The per-
formance improvement varies from 1X (Ssca2, 2P) to 4.62X&%an-High, 16P) for
the signatures of 1024 bit width. In the case of signature20d8 bit, the perform-
ance improvement varies from 0.99X (Kmeans-High, 16P) 88%.(Vacation-High,
16P). The second observation from the figure is that the paegnce improvement
over baseline increases as the number of processors issecte

Improvements reported for both Kmeans applications isegoitv in comparison
to others. This is because the transactions used in thosieamms are small, hence
the signature occupancy of the baseline is kept at a lowet v well. This leads
to a reduction in false aborts caused by higher signaturepactcy. The rest of the
applications show moderate to higher performance impreves Also it can be seen
that the relative improvements of some applications is érigbr 1024 bit signature
than the 2048 bit signature. This is because when the signaize is smaller, the
percentage occupancy increases. Also it increases theerushlmappings that are
destined for the same bit locations. Both these facts iner#das number of false
positives, which eventually degrades the performance. ddewthis does not affect
the performance of a SnCTM processor as much as it does foa®ibe, due to the
fact that signatures are used in the former only when nepessa

An observation that requires a further explanation in Fegid is the behaviour of
Ssca2. This application is categorised as one having smdlesactions [74], hence
the signature experiments presented in the literature itgrdified this as one with
less sensitivity to signatures [19], similar to Kmeans. Idoer, in Figure 8.4, the
Ssca?2 application has shown comparably significant impneve: for the 16 core set
for both signature configurations unlike Kmeans. The reason the original Ssca2
application, most of the computation is performed outsidadactions. In the current
experiment, to ensure cache coherence is maintained fee tbemputations, extra
transactions have been added in those places. These weiemtedarge scale trans-
actions. This makes Ssca2 exhibit a behaviour differenhéoanes reported in the
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Figure 8.4: Performance improvement of SnCTM over the baeseli
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signature literature [19].

Table 8.3 shows the average performance improvement for leecdware config-
uration. There it can be seen that, as the number of procesgweases, the perform-
ance improvement increases. In addition, the baselinemesfbetter with a 2048 bit
signature than with 1024.

Processors 1024 | 2048
2P 1.16 | 1.10
4p 1.45 | 1.13
8P 156 | 1.25
16P 1.87 | 1.46

Table 8.3: Average performance improvement of SnCTM oveelivees

As the number of processors increase, bus contention atseaises. This can be
aggravated by introducing false positives to the systene. Atumber of false positives
produced in SnCTM is less than those produced in the basélaise positives cause
a processor to flush its cache and bring data from the neXtriesory. Even though
the operations involved in this process are the same foraoepsor configuration, the
effect on the bus contention increases rapidly as the psocesunt increases. There-
fore the relative bus contention of the baseline with a highenber of processors is
higher than the that of the baseline with a lower number ofg@ssors. Also when the
number of processors increases, the number of live sigemtocreases as well. This
increases the candidates for producing false positivdghislcauses the performance
improvement of SnCTM over the baseline with a higher numb@rotessors to have
a higher value than the improvement shown over a lower nuiqgnocessors.

When the size of a signature is increased, the probabilitwofthemory locations
mapping to the same bits decreases. Therefore the accuracgignature increases
as the size of it increases. This makes the baseline perfettarlwith a signature of
2048 bit size. However, SnCTM still performs better than thsdbine.

8.2.3 Characterization of ShCTM

Since SnCTM is based on the principle of adaptively changnmegsource used for
detecting conflicts, first the effect of this on the numbemrahsactions being aborted
is analysed. Figure 8.5 shows the number of transactionsembavhen a system has
a 1024 bit signature. For comparison purposes the same ffgodas the number of
false positives occurring in both systems. The same déeszmrippplies to Figure 8.6,
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but those results are from a system with a 2048 bit signatarall the figures, the X
axis represents the number of processors used for the mqrdr(2P-2 processors,
4P—4 processors and so on).

From figure 8.5, it can be seen that in most applications SnCas/emcountered
significantly less number of aborts than the baseline. Tleeage lowest reduction in
aborts is reported from Labyrinth, which is 14%. Bayes andutigr have reported
average reductions of 31% and 32% respectively. Reductepwsted in both Kmeans
applications varied significantly for low and high processounts. The reduction
of aborts in Kmeans-Low for lower processor count is arou@d2 whilst that for
higher processor count is around 80%. The same behavioliesjigr Kmeans-High,
reporting 10% and 42% reductions for low and high processnfigurations. A sim-
ilar behaviour is also reported in Ssca2, which has encoenht@% reduction for a 2
processor configuration, whilst having a 25% reduction f@6grocessor configura-
tion. Lee also showed a 52% reduction in aborts comparecketbakeline. Finally the
highest number of abort reductions is reported in both gassof Vacation, reporting
an average of 92% (Vacation-Low) and 88% (Vacation-High).

The number of transactions aborted is mainly a charadteo$tthe application
and also it depends on the the contention management paexyia the TM system.
That said, false transaction aborts which can occur fronhedice sharing or false
positives in signatures, can count towards this as well. ilAggoking at Figure 8.5,
it can be seen that in some applications most of the abortsreo@untered from false
positives. The number of false positives occurring in theetiae system is measured
against the number of aborts incurred. In Bayes around 71%ecflborts occur due
to false positives. On average, the 77% of aborts incurrég@@baseline are due false
positives. For Genome this is around 89% and for both Vacatpplications the figure
goes to 99%. Moderate percentages are shown in Intruder)(46#eans-Low (42%),
Kmeans-High (24%), Labyrinth (26%) and Ssca2 (58%).

Similar to Figure 8.5, Figure 8.6 also shows that the numbaborts encountered
in most of the applications is quite low when using SnCTM applo However the
percentage reduction has changed significantly in compatsFigure 8.5. The low-
est reduction of aborts is reported in both Kmeans apptinatithe baseline acquiring
almost the same number of aborts as the SnCTM system. Amoragitbelower val-
ues, Intruder has 6% reduction whilst Labyrinth, Ssca2 angB8aave 11%, 12% and
14% reduction of aborts when using SnCTM approach. Similénéal024 signature
scenario, both Vacation applications report the most aamt difference between the
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number of aborts occurring in baseline and SnCTM system. tMachow reports a
reduction of 89% of aborts when using SnCTM whilst VacatiagiHachieves a re-
duction of 84%.

Increasing the signature length increases the accuraclieotdnflict detection
mechanism. Therefore when comparing the number of aboctgaeg in the baseline
with both signature configurations, as expected, the syst&ém2048 bit signature
performs better. In Bayes, the 2048 signature results in 28%dborts than the 1024
signature. Intruder (28%), Ssca2 (19%) and Lee (19%) alsorted similar values.
The increase of the signature has a moderate effect on Waedtgh (reporting a re-
duction of 52%) and Kmeans-High (reporting a reduction dfd1Genome, Kmeans-
Low and Vacation-Low have achieved a significant advantema the increase of the
signature length, by producing 81% 86% and 65% less abedpectively. Labyrinth
has shown less sensitivity to the change in the signatugghdoy having an almost
zero reduction in number of aborts.

Having seen the number of aborts and false aborts which watur both systems
for both signature configurations, discussion in now foduse analysing the number
of false aborts occurring in both systems for both configorst Figure 8.7 shows
the number of false positives which occurred in both SnCTM baskline systems
for both signature configurations. In addition to 1024 and&6ignature lengths, a
signature configuration of 8k bits is also used for this expent. The 8k signature
is considered as a “perfect” signature and the aim is to coeniree number of false
positives occurring in both baseline and SnCTM systems wipleréect system. In
the legendLk corresponds to a system with 1024 bit signature 2incorresponds to a
system with 2048 bit signature. As the name sugd@atelinerepresents the baseline
architecture an@®&nCTMrepresents the SNnCTM architecture. In all the figures, the X
axis represents the number of processors used for the mqrdr{2P—2 processors,
4P—4 processors and so on).

From Figure 8.7 it can be seen that, both signature configasabf SnCTM re-
port less false positives (except Labyrinth 2P, 1k sigreggttinan their corresponding
baseline systems. It can also be observed that in certads tas number of false pos-
itives in SNCTM is similar to that of the perfect system. Coaesialg the applications
individually, no false aborts occurred in both Kmeans aggtion for both signature
configurations in the SnCTM architecture and also in the bas&lith a perfect sig-
nature. A significant difference of false positives betwbaseline and SnCTM can be
observed in Intruder. This is because these applicationge@fs-Low, Kmeans-High
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and Intruder) have shorter transaction length, thus can fite L1 cache in most of
the time. Therefore SnCTM can use cache lines to detect cinflienost of the time,
whereas baseline has to use signatures all the time. In sleeof&sca2, which is also
categorised as an application having shorter transactiogith in STAMP suite [74],
does not show the similar behaviour in Figure 8.7. This isabee, extra transactions
have been inserted to the Ssca2 application to maintairreobe.

Both SNCTM configurations report higher false positives thengerfect system
(still less than baseline) in Vacation-low, Vacation-hagitd Genome. All these applic-
ations have medium transaction length and low contentinrthése applications not
all the transactions fit in the L1 cache. Therefore SnCTM hassw signatures for
some transactions, which causes it to produce some falsesabtowever, SnCTM
manages to keep the number of false positives lower thanabkelibe by adaptively
changing source used during conflict detection.

In the cases of Lee, Labyrinth and Bayes all of them have loimgesaction length.
Therefore SNnCTM also has to use signatures for most of itsicodéitection, thereby
increasing the false positives. However SnCTM is still ablerioduce less false pos-
itives than the baseline architecture.

One behaviour that can be observed in Figure 8.7 is thatdksgsrof the underly-
ing architecture, any signature implementation tend talpce more aborts when the
number of processors increase. False positives are maanlyed by signature pol-
lution (higher occupancy) and address aliasing. If the tlerof a signature is kept
constant, the effect of the pollution will be the same forta# processor configura-
tions. When the number of processors increases, the disbriaf transactions among
processors changes. For example if Transactions T1 and iE2executed in processor
2, in a 2-core configuration, in a 4-core configuration, T2 lagl executed in processor
3 concurrently with the execution of T1 in processor 2. Iféldelresses used in T1 and
T2 have the tendency to produce similar hashes, then it slgedo introduce a new
false conflict to the 4-core system which was not availabtb@®-core system. There-
fore it can be seen from Figure 8.7 that the number of falséipes have increased
with the increase of the processors in the system.

8.2.4 Sensitivity Analysis

This section presents a sensitivity analysis of the siged&ngth in both baseline and
SnCTM architectures. Signatures of size 64, 128, 256, 5124,19048 and 4096
bits are used for the experiment and an 8k bit signature id as¢he perfect system.
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The execution times of both baseline and SnCTM systems, tiaed&o the perfect
baseline, are shown in Figures 8.8 and 8.9. The figure is elividto two parts in
order to enhance the readability. For each signature caatign, experiments are
carried out with multi-core processors having 2, 4, 8 anddrés The Kmeans-low
application did not successfully complete in a 16 core coméiion with 64, 128 and
256 bits as the signature length. As can be seen from FigQréh& application tends
to produce a higher number of aborts, in the 16 core configurahence requiring
quite of lot of restarting. The inability to complete the em@on could therefore be
due to a limitation in the simulator.

From Figures 8.8 and 8.9 two behaviours can be spotted irhalbpplications
except Bayes, Labyrinth and Lee. The first behaviour is, it gaocessor configura-
tion, the normalised execution time increases as the sigmatze reduces. However,
in SNCTM this increase is either negligible or quite low in garison to that of the
baseline. The reason is, as the size of the signature desrehe probability of pro-
ducing false positives increases [95]. However SnCTM onBsusgnatures for situ-
ations where a cache overflow happens within the transac#aeording to Figure
7.1, shown in Chapter 7 (Section 7.2), not many transactiathsnto this category.
Therefore the reduction in the signature size does notte#e€TM as much as it af-
fects the baseline. This means with the SnCTM approach, eseraber signature can
be used without compromising the performance of the system.

The second behaviour that can be spotted from Figures 8.8.8nd that, for all
the applications except Bayes, Labyrinth and Lee, the nasethkexecution time of the
baseline increases significantly in comparison to the pesigstem, as the number of
processors increases. Several reasons can cause thisobeh@te first is described
in Section 8.2.3. That is, when the number of processor asa® false positives can
be introduced due to a greater number of transactions bestgbodted. Also when
the number of processors is increased, this increases thbenwf signatures in the
system. Increasing the number of signatures means inngeeandidates for checking
conflicts. In an environment where signatures are perfestibes not and should not
cause problems. However when the size of the signature igeed the percentage
occupancy is increased. When the percentage occupancyesgad, the pollution of
the signature is also increased. This leads to more falsgsabo

The increased contention could count towards this as welleMthe number of
processors in a system increases, the contention for tbeeartnect increases. When
the contention increases, a processor has to wait longeettaagess to the shared
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Figure 8.10: Idle time of SnCTM and baseline normalised tdguer

resources, thus the idle time increases. When processaindiéncreases, transaction
length increases. When a transaction takes a longer timeish fih becomes more
susceptible to abort. Aborted transactions result in fhgtall the modified cache
entries and bringing in all the data, once the transactiogsigrted. This also increases
the contention for the interconnect, thus making it a cygtcblem.

Processor idle time of both SnCTM and the baseline is meagaraddl the pro-
cessor and signature configurations. Figure 8.10 showsvdrage of processor idle
time for all benchmark applications (except Bayes, Labfranid Lee) for each hard-
ware configuration. All the values are normalised to thequr$ystem. In the legend,
2P represents 2 processor configuration, 4P representsdssay configuration and
so on. From Figure 8.10 it can be seen that for lower signaizes as the processor
countincreases, the idle time of the baseline architeatgreases significantly, where
as in SnCTM it remains closer to the perfect system. Thereéf@mexecution time of
SnCTM remains comparable to a perfect system even with aansidinature, whilst
the baseline suffers a significant performance degradation

In the case of Bayes, Labyrinth and Lee applications, firstlgy have a high con-
tention [74]. This increases the number of aborts produSedondly, all these applic-
ations have longer transactions. Therefore it is very yikbht they overflow during
atomic execution, requiring the use of signatures to detatfiicts. This makes these
these applications: (1) to have a lower performance impnareg as the processor
count increases; (2) to have less sensitivity to the sigadéngth. Therefore they do
not follow the same behaviour as others.
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8.3 Summary

The first half of the chapter describes how to extend an exj$iTM system to support
the SnCTM concept. The second half of the chapter focuseseoevidiuation of the
SnCTM concept. First the evaluation is carried out with twmomonly used signature
configurations to identify the effect on execution time whesing the SnCTM ap-
proach. The results are characterised to validate the hgpistof Part 1l of the thesis.
Thereafter a sensitivity analysis is performed to evaltizeeffect of signature length
on the execution time in both SNnCTM and baseline. There it skotvat a ShnCTM
system with a smaller signature can perform as well as a giesignature whilst a
baseline with the same signature size can suffer a signifpsaformance degradation.
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Chapter 9

TM _EXIT: A Case for Exiting a
Transaction

Part Ill of this thesis makes a case for a functionality thiwes a transaction to exit
from a speculative region without committing it and star@xting the statement im-
mediately following the atomic block. The discussion ist&td by clarifying the ambi-
guity of two behaviours expressed for the specificatioAlodrt Transaction Section
9.2 shows the need for havifi§ylRESTART functionality in the TM specification. The
need forTMEXI T functionality in TM is described using some code segmeneic-
tion 9.3. A preliminary experiment made to get an intuitiam the need for such
a functionality is described in Section 9.4. The proposetttionality, TMEXI T, is
presented in Section 9.5. The same Section also describe®hoansform the code
segments used in Section 9.3, to take the advantage of theggdIM EXI T function.
Finally Section 9.6 summarises the chapter. Chapter 10 e€pts the architectural re-
quirements to suppofMLEXI T. It also shows how to extend two baseline architectures
to support the proposetM EXI T functionality. The advantages of usiiyLEXI T in
terms of performance is also presented in the same chapégrsactional Memory ap-
proaches that could provide a functionality similafMEXI T are discussed in Chapter
11.

9.1 Introduction

Transactional Memory(TM) [50] was initially proposed asieedt generalisation of
the load-linked-store-conditionainstruction, in order to provide atomicity to more
than a single memory location. Since then, several HTM systeave been proposed
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with different approaches for versioning and conflict detec(eg: TCC [39], Log-TM
[77]). Several attempts [26, 73, 79, 99] have also been n@mdahdardise the syntax
and semantics of TM. Recently, several chip manufactures haveiled proposals for
hardware assisted transactional memory (eg: Sun‘s Rockgsoc[18, 29], Azul [25],
AMD-ASF [1] and Intel's Haswell [55])).

Despite all these efforts, there is a mismatch in the spatidic of theAbort Trans-
actionfunction. When used at a time of a transactional conflict, top@sed behaviour
is to discard all the speculative operations and reinskeggtocessor to the state that
it was in at the beginning of the transaction. All the TM conmity agree on that.
However when this functionality is invoked from the user eakplicitly, two types
of operations have been proposed. One type (eg: Log-TM [projposes to discard
all the speculative operations and to restore the statevessitat the beginning of the
transaction. The majority of the TM proposals follow thigpegach. The other type
of operation (eg: [79, 99]) proposes to discard all the slagiee operations and to
transfer the control to the end of the atomic block. So farthe proposed hardware
TM systems seem to follow the first specification.

This chapter argues that both functionalities are necgg$saa hardware TM. In
order to clarify the discussion, definitions for first and@®it type of operations need
to be established. The first type of operation is nametMVaRESTART and the second
type is named aSM EXI T. The definition follows,

TMRESTART: Discard all the operations performed within the atomic sectand
restart the transaction.

TMEXI T: Discard all the operations performed within the atomic sectnd trans-
fer the control to the end of the atomic region.

The following contributions are made in the Part Il of tHiesis.

e A successful case is made for supportidyEXI T functionality in HTM.

¢ In addition to extending the existing code segments toTdEXI T, a case has
been presented where the expressiveness can be increasgdhesproposed
functionality.

e As the third contribution, the feasibility of integratif@LEXI T to two baseline
HTM systems is presented and the proposed implementatatisdassed.

e As the final contribution, performance evaluationg®fEXI T on two HTMs are
presented.
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9.2 Motivation for TM _-RESTART

This section argues the need for havilgRESTART functionality in TM applications.

In general, programmers place checks (egsert in Clanguage) in a program to
ensure that certain operations are performed correctljadahe intended outcome is
produced. Similarly, within an atomic block, a programmerfprms certain checks to
ensure that functions invoked within the block provide thtended outcome. For ex-
ample consider the code segment shown in Figure 9.1, tagentfre Vacation applic-
ation of the STAMP benchmark suite [74]. There, the functiemager _addCust omer

is supposed to insert thoaist omer | d, which is passed as an argument to the function,
to a data structure inside thenager _t structure. The insert method of this data struc-
ture returng=ALSE if the insertion is not successful. In such a situation a @ogner
may want to retry the transaction. Therefore the outcoméeinsertion is checked
and TM.RESTART is invoked to restart the transaction as shown in Figure @lease
note that only a portion of the transaction is shown.)

bool t
manager addCustomer (TM ARGDECL manager t* managerPtr, long customerId)

{

customer_ t* customerPtr;

customerPtr = CUSTOMER ALLOC(customerId);
assert(customerPtr != NULL);
status = TMMAP_INSERT(managerPtr->customerTablePtr, customerId, customerPtr);
if (status == FALSE) {
TM RESTART();
}

return TRUE;

Figure 9.1:TMRESTART function used in Vacation application

Sometimes TM programmers use certain optimizations toaedle number of
transaction aborts. The Labyrinth application of the STAM#chmark suite can be
taken as an example of such a scenario. The objective of tgggm is to find paths
from given source nodes to given destination nodes and tk them in a shared global
grid. In the algorithm proposed by Mirdt al. [74], first the global grid is copied to
a local data structure in each thread. Thereafter eachdffireds the routes using this
local grid. After the global grid is copied, the cache lindsiat are related to global
grid are removed from the read set of the transaction usmgainly Releas¢49, 100]
feature. Using this approach the authors intend to redwctdnsaction aborts caused
by read/write accesses to the shared grid by multiple tistead
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In the program, once a path is found it is marked in the gloial. gduring this
marking, points used for the proposed path in the global grédchecked again to see
whether they are already being marked by another threads i$hequired because,
finding the path was done on a local grid which is a snapshdteogtobal grid taken
at the beginning of the exploration process, hence may noplie date. Therefore, if
a point in the proposed path is already taken by anotherdhtban the programmer
may want to retry the transaction because this does not rhe@athere cannot exist a
path from the given source to destination. This particutarasion is shown in Figure
9.2. There, when a path is being added toghied t structure in th@Myri d_addPat h
function, it checks whether the location is empty or nothd tocation is already taken,
the transaction is restarted by invokimly RESTART. (Please note that only a portion
of the transaction is shown.)

void
TMgrid addPath (TM _ARGDECL grid t* gridPtr, vector t* pointVectorPtr)
{

for (i =1; i < (n-1); i++) {
long* gridPointPtr = (long*)vector at(pointVectorPtr, 1i);
long value = (long) (*gridPointPtr);
if (value != GRID POINT EMPTY) {
TM RESTART() ;
}

Figure 9.2:TMRESTART function used in Labyrinth application

This section showed that tHEM RESTART function is required in certain cases.
Most of the hardware and software TM proposals provide thigtionality, thereby
allowing a programmer to retry the same transaction.

9.3 Motivation for TM _EXIT

This section argues the need for havidgEXI T functionality. In TM applications, op-
timistic concurrency is maintained, for critical regionamed by programmers. The
marking of critical regions is made either with taeoni c{} keyword or with the
TMBEG N andTM.END pair. Once critical regions are marked in an applicatioa,th-
derlying hardware/software/hybrid TM system ensuresttf@Atomicity, Consistency
and Isolation (ACI) properties are maintained for the manegions. In a lazy-lazy
TM system, all the operations are performed speculativediyimthe critical section
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and atomically committed at the end. In a hardware TM systaim,commit phase
involves writing all the modified cache entries to the nexelenemory.

However the usefulness of the speculative operations am@nsidered at the time
of committing. This is because at the hardware level, thesulsess cannot be determ-
ined. The only information available is a set of memory laoad and their prospective
values. On the other hand, at the programming language, ldhelusefulness of a
transaction can easily be extracted. Before continuing theudsion furtheruseful-
nessof a transaction needs to defined. The definition follows,

if an application contains a set of tasks and committing ansection helps to
reduce the size of this set, then it is a useful transaction.

Some examples are taken from (a) a benchmark, (b) a micrchbeark and (c) a
real-life scenario, to emphasise the needdiEXI T functionality.

9.3.1 Lee-TM[108]

This is a routing algorithm whose objective is to find a patnfra given source point
to a given destination point. The TM algorithm proposed byddhaet al. [108] com-
prises two phasegxpand andbackt rack. Theexpand routine starts from a source
point and expands in all directions until it reaches theidagbn. Once it reaches the
destination, it starts traversing back until it reachesdberce point, thereby finding
the optimal path. The transaction in this algorithm, encasses both thexpand and
the backt rack methods. If theexpand method was able to reach its destination, it
returns TRUE, else it returns FALSE. The pseudocode of therd@lhm is shown in
Figure 9.3.

TM BEGIN;

bool isFound=expand();

if(isFound){
backtrack();

}
TM_END;

Figure 9.3: Lee-TM pseudocode

When the above definition afsefulnesss applied to this scenario, the set of tasks
are to find paths from different source points to differergtolation points. If a com-
mitting transaction is to be considered useful, it shouldehfmund a path from the
given source to destination. Finding a path involves exeg@ixpand andbackt r ack
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phases and the latter is executed only if the former retuRIgH. It is not guaran-
teed thakexpand always returns TRUE, which in turn prevents theekt r ack phase
from being executed. A transaction cannot be considerefdiluseless bothexpand
andbackt r ack functions have been executed. In such situations, evemahaaction
does not do any useful work, the commit operation still tghase. The commit phase
involves writing back the modifications made to the localiafales and to the local
grid in theexpand phase. Even though such commits are not useful to the owgrall
plication, they still use the interconnect to communicaiecsilatively modified cached
entries to the next level memory.

9.3.2 Red-Black Tree

The Red-Black tree is a data structure used in computer sci€ftoe major opera-
tions associated with it are search, insert and delete. Eargh this particular data
structure is used for the discussion, the situation can pkealto any application that
interacts with databases. The insert and the delete opesathould incorporate some
sort of search facility within them. This is because, befoserting an item, it is re-
quired to find whether another item with the same key existhéntree. Similarly,
to perform a delete operation the item with the correspanéiey needs to be found.
A search operation can be defined to return TRUE, if it findstem iwith the given
key. Then the insert and the delete operations can be pextbarcordingly. Ina TM
version of the Red-Black tree, a transaction comprises eifiesearch and the insert
or the search and the delete. The atomicity between the twlwone cannot be broken.
The pseudocode of the algorithm is shown in Figure 9.4.

Along with the definition of usefulness, an insert operatan be considered as
useful only if it tries to insert an item that does not existhe tree. In the case of
delete, it becomes useful only if the item exists in the tr&his discussion applies
to any application that uses a database for storing infeomaEor example, imagine
a customer trying to book a room in a hotel. First they willrsbathe room prices
and availability. If a suitable one is found they will reseiit. In a TM version, both
sear ch andbook have to be within a single transaction and it becomes useilyl o
if the customer completes the booking stage. However wighctirrent approaches,
regardless of the usefulness of a transaction, a commiatpertakes place.



CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 169

insert_item(key){
TM BEGIN;
bool isFound=search(key);
if(!isFound){
insert(key);

}
TM_END;

}
delete item(key){
TM BEGIN;
bool isFound=search(key);
if(isFound){
delete(key);

}
TM_END;
}

Figure 9.4: Red-Black Tree TM pseudocode

9.3.3 Java Exceptions

No specific examples are used for this discussion as it caped to many scenarios.
Consider a Java program that has a critical section and igptilsle to produce an ex-
ception. In the code, &M BEG N instruction can be placed after they keyword. In
a hardware TM, any operation performed after this instamcts performed speculat-
ively until theTM END is executed. ThereforeTMEND s placed within thery- cat ch
block, it does not get executed if an exception is thrownc&ime objective is to ex-
ecuteTMEND regardless of whether an exception happens or not, it igladgthin
thefinal |y block. A pseudocode of the discussion is shown in Figure thghis
scenario, if a transaction is to be considered as usefuhorild not produce any ex-
ceptions. However regardless of the usefulness of the cgrtimaiapplication asks the
underlying TM system to perform it.

try{
TM BEGIN;

}catch(Exception e){}
finally{

TM _END;
¥

Figure 9.5: Java TM code with exceptions
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9.4 Performance Impact

To get an intuition of the usefulness of commits, a prelimyrexperiment is made with
a lazy-lazy HTM system, similar to TCC [39], using 2-16 corége-TM [108] and
a TM version of Red-Black tree are used for the experiment. Ppéication code is
instrumented to check the usefulness of a transaction abiinenit time. For example
in Lee-TM, if thebackt rack phase is not executed, it is considered as a non-useful
commit. In Red-Black tree, trying to insert an already exgs@ntry or trying to delete
a non-existing entry are considered as non-useful comnhits. Lee-TM, a grid of
75X75 with 320 routes to explore is used as program parasdter Red-Black tree,
a tree with 20000 entries and transactionally insertingtdey 16000 items with 50%
probability for each action is used as program parametatde®.1 shows non-useful
commits as a percentage of the total commits.

Processors Lee-TM | Red-Black Tree
2 35% 49%
4 35% 49%
8 34% 49%
16 33% 49%

Table 9.1: Non-useful commits

Table 9.1 presents two interesting facts. One is that, withe application pro-
gram itself it is possible to determine whether a commit isfuisor not. The other
observation is that quite a number of commits are not usefulife overall program
completion, in the applications used for the study. If thelenying TM is not no-
tified about these non-useful transactions, a commit phalse¢ake place for those
transactions similar to others. In HTM, a commit phase imeslcommunicating the
information about speculative modifications (write-setpther processors and updat-
ing the next level memory. Both of these operations requingse the interconnect,
which is a shared resource in a multi-core processor. Iseccasage of shared re-
sources increases the contention for them. This increasageucould be reduced if
these non-useful commits were avoided. Therefore a fumality is required for a TM
API to notify the underlying TM, that committing the modiftcans made in current
transaction does not do any useful work, therefore proae#uktinstruction following
the atomic block.

TheTMEXI T functionality defined earlier in this chapter fits well forgipurpose.
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First of all it increases the programmability of TM programmgy allowing a program-
mer to have multiple exit points in an atomic block. Secontimay also improve
the performance of a hardware TM system, by not committirgrtbn-useful data.
However this functionality has not yet been integrated ta@Wware TM system.

9.5 Defining and Using TM.EXIT

From a programmer’s point of view, the purpose of TIMEXI T functionality is to no-
tify the underlying TM mechanism that the current transacts a non-useful one, and
request an exit from the atomic region. From system’s pdintew, this information
can be interpreted astop speculation from this point onwatd$iowever this is not
sufficient for the underlying TM to function properly becaus fulfil the requirements
of TMEXI T it needs to transfer the execution flow to the line immedydiglowing the
atomic block. In other word§MEXI T looks like aj np instruction which transfer the
execution flow to the line immediately following the atomiotk. If used in this man-
ner, the proposed functionality will become unattractimeoag the TM community,
similar to the obsolete use gbt o statement in C/C++. However if tH®MEXI T func-
tionality is used alongside the definitionagefulnesssuch an explicit control transfer
becomes unnecessary. Before analysing why this is the ¢eseistcussion is directed
to show how to use theM EXI T functionality alongside the definition afsefulness

In order to use th&MEXI T using this approach, first a usefulness criterion for a
transaction needs to be established. Then it is necessangtlt whether there are any
program statements residing outside the usefulnessioniehat affect the usefulness
of the application. If there are no such statements the¥hexI T function can be
used. The rest of the section describes how to modify the sedements shown in
Section 9.3, according to these two steps.

9.5.1 Integrating TM_EXIT to Existing Applications

In the case of Lee-TM, the usefulness criterion is whetheetipand method is able to
reach the destination. Then it is necessary to considefffingd®that can be caused by
any program statements outside the usefulness criteriorte Bfserations performed
within theexpand method and the write operation performed oniteEBound variable
fall in to this category. None of these operations affectubefulness of the program.
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In this application, only operations that could affect tisefulness are the ones per-
formed within thebackt r ack method, which is already encompassed in the usefulness
criterion. This can be seen in Figure 9.6(a). TherefiMeXI T functionality can be
used in the Lee-TM application. The application code needsetmodified as shown

in Figure 9.6(b) to use the proposed feature.

Usefulness
Criteria
TM BEGIN;

TM BEGIN; ¥ bool isFound=expand();
bool isFound=expand(); if(isFound){
if(isFound){ backtrack();

backt rack‘(N Encompass TM _END;
e Statements }else{
TM END; Affecting ™ EXIT;

= Usefulness }
(a) (b)

Figure 9.6: Modifying Lee-TM pseudocode to uB&EXI T

In the case of thensert _i t emmethod of Red-Black Tree, the usefulness criterion
is not finding an entry with the same key as the one which iseodlyr being inserted.
Similarly, for thedel et e_i t emmethod, the usefulness criterion is finding a match-
ing entry with the key that is required to be deleted. Writerapens performed on
stack variables in the search method and the write operpéidormed on thesFound
variable fall into the category of operations performedsaié the usefulness criterion
(shown in Figure 9.7(a)). These operations do not affectuefulness of the pro-
gram. The only operations that could affect this are the ovitsn thei nsert and the
del et e methods. Since they are already encompassed within thelnes$ criterion,
TMEXI T functionality can be used in this situation as well. The pe®ode of the
modified Red-Black Tree is shown in Figure 9.7(b).

In the case of Java exception code segment (Figure 9.5heneisefulness criteria
nor the statements affecting the usefulness can be defiribd esde segmentis a gen-
eric one. A simple assumption to make here is that, it is vetikely for a transaction
to be considered useful if it has encountered an exceptioan &xception is raised,
it will be caught by the relevantat ch block in the program flow.TMEXI T can be
placed in allcat ch blocks allowing the execution to exit from the atomic blodkis
is shown in Figure 9.8. In addition to addifiLEXI T, the program is slightly modified
from the one shown in Figure 9.5. SinCREXI T is placed within theat ch block, it
is no longer required to place tABLEND in thefi nal | y block. As shown in Figure
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Usefulness
Criteria

insert item(key){
TM_BEGIN;
insert_item(key){ bool isFound=search(key);
TM BEGIN; if(!isFound){
bool isFound=search(key); insert(key);
if('isFound) TM_END;
telse{
¥ ™ EXIT;
T™M END; Encompass }
} - Statem _ents }
delete item(ke L@gﬁjﬂggs delete item(key){
TM BEGIN; TM BEGIN;
bool isFoungzﬁggfgnikey%*’ bool isFound=search(key);
if(isFound) if(isFound){
delete ; delete(key);
} TM_END;
TM_END; telse{
} TM_EXIT;
}
}

(a) (b)

Figure 9.7: Modifying Red-Black Tree TM pseudocode to UgéEXI T

9.5, TMEND is now placed within théry- cat ch block. If no exceptions occur dur-
ing the execution of thery- cat ch block, TMEND is executed thereby committing all
the speculatively modified data. If an exception has ocdutreill be caught by the
relevantcat ch block andTMEXI T will be executed, thereby discarding the non-useful
writes.

try{
TM BEGIN;

TM END;
Ycatch(Exception e){
T™ EXIT;
}

Figure 9.8: Modified Java code to usBdEXI T

9.5.2 Implicit Control Transfer with TM _EXIT

Having shown the usage asefulnessriteria to modify applications, the discussion is
now focused on describing how the program execution flow icitly transferred to
the line following the atomic block. Consider the code segnséown in Figure 9.9,
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which is a numbered version of Lee-TM shown in Figure 9.6fo). simplicity, assume
each pseudocode is an instruction and the numbers are themnaddresses of those
instructions. In general, therogram Counter(PC) register stores the address of the
next instruction to be executed. Consider a case in whichhaipédund. When that is
the case, thexpand returns TRUE, then the program execution jumps to address 04
which isbackt rack. Whenbackt r ack is being executed the PC register is pointing
to address 05 which is tHEM END. WhenTMEND is being executed the PC register is
pointing to address 09 which is the end of the atomic block.

01: TM BEGIN;

02: bool isFound=expand();
03: if(isFound){

04: backtrack();

05: TM END;

06: }else{

07: T™ EXIT;

08: }

Figure 9.9: Implicit control transfer in Lee-TM pseudocode

Now consider a case where a path cannot be found, which equad return
FALSE. When this happens, the program execution jumps toeadd7, which is the
TMEXI T. When this instruction is being executed, the PC is pointlmthe address
09, which is the end of atomic block. Therefore when the ettenwof TMEXI T is
completed, program execution will automatically be transfd to the line immediately
following the atomic block without any extra effort.

9.5.3 Incorrect Usage of TMEXIT

0: TM BEGIN; 0: TM BEGIN;
1: AAA 1: AAA
2: BBB 2: BBB
3: if(condition){ 3: if(condition){
4: CCC 4: CCC
5: DDD 5: DDD
7: } 6: TM END;
8: EEE 7: }else{
9: TM END; 8: TM EXIT;
9: }
10: EEE
(a) (b)

Figure 9.10: Incorrect usage ofLEXI T
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The discussion of implicit control transfer raise the gisestWhat happens if there
is an instruction outside the usefulness criterion, bugraitt?”. For example consider
the code segment shown in Figure 9.10(a). There, the conditiline 3 could easily
be misunderstood as the usefulness criterion of the trosaén such a situation the
modified code may look similar to the one shown in Figure 9)0(his is clearly an
incorrect usage ofMEXI T. Recalling the two steps of usifiyLEXI T are to, define the
usefulness criterion and to ensure the operations outselagefulness criterion does
not affect the usefulness of the program. In this situatiempperation at line 8, clearly
affects the usefulness of the application. This is becaegardless of the value of the
condi ti on, line 8 gets executed. Therefore line 8, itself contributethe usefulness
of the application. In this situation, both tiifeconditionin line 3 and the statement
in line 8 collectively contribute to the usefulness of thelagation. Therefore, line 3
alone cannot be considered as the usefulness criteriooghbis application cannot
use theTM EXI T functionality.

9.5.4 Increasing Expressiveness With TMEXIT

This section describes a situation where the expressiseras be increased with
TMEXI T. Following is the problem statement.

A linked list, whose size is unknown, needs to be reversed #izheof the list is
greater than a certain threshold.

A conventional and a naive way of solving the problem is tontdhe items in
the list in a first pass and to reverse it in a second pass, Sieeis greater than the
threshold value. This is shown in Figure 9.11.

length = count(list);

if(length > THRESHOLD) {
reverse(list)

}

Figure 9.11: Pseudocode showing the conventional approach

The ability of TM to operate speculatively within an user @fied block, integ-
rated with the proposeBM EXI T can be used to provide a better solution for the above
scenario. The intended behaviourT EXI T is to discard all the speculative opera-
tions and to transfer the control to the line immediatelydwing the atomic block.
Therefore the ever se method can be modified to speculatively reverse the listevhil
counting the elements. When the end of the list is reachetisifound to have more
items than the given threshold, the transaction is comaitiiethis is not the case, it
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exits from the transaction usingWLEXI T, thereby discarding all the operations made
to reverse the list. This is shown in Figure 9.12.

modified reverse(list){

TM_BEGIN;

while(more elements) {
count
reverse

}

if(count > THRESHOLD) {
TM_END;

}else{
T™M_EXIT;

}

}

Figure 9.12: Pseudocode of revised reverse method Uiyl T

In the naive approach, shown in Figure 9.11, for lists whesgth is greater than
the threshold traversing is done twice (one for counting @mel for reversing). In the
new approach, shown in Figure 9.12, regardless of the sizkeolist, traversing is
done only once. Therefore the amount of computation redquoalerive the solution
is also reduced. This meaf8LEXI T also has the potential to increase the performance
of an application in certain situations, in addition to i&sing the programmability by
having multiple exit points. It can be noted here that, the steps required to follow
in order to useTMEXI T (described in Section 9.5), have not been followed in this
situation. This is because, heFLEXI T is not being introduced to an existing atomic
block, instead an atomic block is added together WNtEXI T to a code segment to
increase the expressiveness. Also the use of atomic bloekaa for maintaining
synchronization, but for maintaining the speculative exieo.

9.6 Summary

This chapter presented a case for haviivgeXIl T functionality in TM programming.

It started the discussion by first clearing the ambiguitywaf behaviours expressed for
the Abort Transactionoperation, by defining each typ&W RESTART and TMEXI T).
Thereatfter the need for both types of operations in TM, isg@méed using some known
benchmark applications. The steps required when modifgkisting applications to
make use off MEXI T function is described using the same set of examples used for
making the case fofMEXI T. Finally it shown how to use th€MEXI T function in
order to increase the expressiveness.



Chapter 10

Implementation and Evaluation of
™ EXIT

This chapter describes the architectural supporffdEXI T and the evaluation of it,
in terms of performance. Section 10.1 describes two bas&lvi systems and how to
extend them to provid@MEXI T functionality. Even though improving performance
is not a major goal of the proposal, a study is done to evaliegtesffect of adding
TMEXI T functionality to two baseline TM systems. This is presentefection 10.2.
Finally Section 10.3 summarises the chapter.

10.1 Architectural support for TM _EXIT

This section discusses how to extend two hardware TM systeragpportTMEXI T
functionality. Two improved versions of Transactional Mam Coherence and Con-
sistency (TCC) [39] are used as baseline architectures. Ba#libas are similar to
those described in Chapter 4, Section 4.3. For the sake ofletanpss, a brief de-
scription of each is given in Sections 10.1.2 and 10.1.3. fféwesactional memory
implementation in the baselines is similar to any otherl@azy hardware TM system.
When theTM BEG N instruction is executed, a flagN_TX in Figures 4.8 and 4.9) is
set. When this flag is set, all the subsequent operations @@ ped speculatively
until the TMEEND instruction is executed. In order to provide an unboundeduarn
of transactional data, the baseline uses hardware sigsai®5] to maintain the read
and write sets, using parallel bloom filters to increase &yu Since the baseline
architectures are based on TCC which does not implement drgr&ace protocols,
transactions are used to maintain coherence and consisienveell. Therefore at the

177
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end of a transaction, the next level memory copies are ugaate local copies which
are read/written are flushed. This is necessary to avoid éaedes using stale data
due to the fact that no conventional coherence protocolased.

When a processor needs to commit a transaction, it first réegjaesmit permis-
sion from a centralisedommit-arbiter Commit permission is granted based on a
least recently granted policy. Once the commit permissayranted, the committing
processor broadcasts its write-signature to all the othecgssors. Upon receiving
this write-signature, each processor performs a bitwis®Adgeration on their read-
signature. If all the hashes in the resulting signature arezero, then it is considered
as a conflict and the processor aborts. After sending thesiginature to all the other
processors, the committing processor updates the nextrie@ory (either level 2
cache or main memory) with all the speculatively modifiecieal During this com-
mit phase, the communication arbiter denies any requesahe interconnect. Once
the next level memory is updated with all the speculativebdified cache entries, all
these entries need to be flushed and both read and write wigaateed to be cleared
as well. The two baseline systems differ from each othemftioe way they handle
cache overflows within a transaction.

10.1.1 Requirements for TMEXIT

When invoked from the user cod&EXI T is supposed to perform two operations.
One is to stop performing speculatively and the other isaodfer the control to the
line immediately following the atomic block. The first objee, that is to stop per-
forming speculatively can be done by clearing theTX flag. From the examples
discussed in Chapter 9, Section 9.5.2, it is clear that na@kpperations are required
in order to transfer the control to the line immediately daling the atomic block. In
that sens@MEXI T is similar to a commit operation except the latter commuieis#he
modifications made within the atomic region to the other pssors. WhefMEXI T is
executed, all the speculatively modified cache entries teebd cleared before execut-
ing the next instruction. In that seng&LEXI T is similar to an abort operation except
the latter restores registers. To summarise, the opesagissociated witfiMEXI T are,

to clear thdN_TX flag and to clear all the speculatively modified entries.
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10.1.2 Baseline-1: TM-S

Overflows are serialised in the first baseline (TM-S) wherresking cache overflows
within a transaction. That is, when a cache entry needs tejeeted while a pro-
cessor is inside a transaction, permission is sought frenoverflow arbiter Over-
flow permission is granted based on a least recently gramtigzypOnce the overflow
permission is granted, the processor flushes the cacherdineifs L1 cache and up-
dates the corresponding entry either in L2 cache or main mgndoprocessor needs
to ask for overflow permission only if the cache line is modifauring the current
transaction. An extra ‘W’ bit is used to mark all the specuigy modified entries. A
dirty bit is not sufficient for this purpose because the entwyld have been dirty due
to a write operation performed outside a transaction. If'¥Nebit is not set, there
is no need to seek overflow permission, a processor can flesbéntiny to its original
location. If an overflow request is denied, the processdissiatil the request is gran-
ted. Even though theommit-arbiteroperates on keast-recently-grantegolicy, in the
TM-S baseline, there is an exception for processors whigh haen granted overflow
permission. That is, all the commit requests from other @ssors are denied, until
the overflowing processor commits. Due to this approachoteeflowing transaction
becomes an unabortable one.

The TM-S baseline needs a mechanism to handle unabortableattions. Ima-
gine a situation where a processor which has been given owgsrmission, invoked
TMEXI T. The associated operations are to discard all the spaailetanges and to
continue to the next instruction. In this baseline, the rficdiions related to the over-
flowed memory locations cannot be discarded as the origieahony locations have
been modified. When this is analysed from the perspectiveecdpiplication code, two
types can be observed. In one type, only the code region grassad with the use-
fulness criterion modifies the global data. Examples like-I&1 and Red-Black Tree
(discussed in Chapter 9, Section 9.5.1) fall in to this catgeda the other type, those
similar to the Linked-list example (described in Chapterégtidn 9.5.4), a usefulness
criterion is not used when adding tRBLEXI T functionality.

In the first type, if theTM EXI T functionality is not supported, a commit operation
will take place. In the case of Lee-TM, for non-useful trastgms, this involves updat-
ing the locations in the local grid. Similarly, for Red-Blacgke this involves writing
back local variables which are modified during the searchagjme. None of the other
threads are interested in the modifications made to thes¢idos. In terms of pro-
cessors, none other than the one who initialised these @megated in these memory
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locations. If a transaction cache overflow happens for tihheseuseful transactions,
some of these memory locations will get modified before therod phase and the rest
will be updated during the commit phase. If the commit phadendt update the rest
of the local grid, it would not make any difference as the ggithitialised at the be-
ginning of the next transaction. Similarly all the local iedrles of the Red-Black tree
will be initialised during the next search method. Thereffar the first type, reinstat-
ing the overflowed locations or committing the rest of thetevset is not required for
the correctness of the execution. However if a need arf$&EXI T can be configured
to commit the rest of the speculative entries in case of as&etion cache overflow.
To summarise, whefM EXI T is invoked from the user code, if no transactional cache
overflows have occurred all the speculatively modified caaitees are discarded. If
there were transactional cache overflows, the system hdkesilality to either com-
mit or discard the remaining cache entries. For the expetisnde latter option is
used, that is to discard the remaining speculative valuditevel 1 cache.

In its current version, the TM-S baseline cannot be used pp@iu TM.EXI T with
applications of type two (like the Linked-List example deéised in Chapter 9, Sec-
tion 9.5.4). This is because, if a transaction which has aeaverflow, decided to
exit from the atomic block, then it could lead to an erroneoutput. For example
consider a situation where a cache overflow occurred dunegpeculative reversing
of the list and this modified the original memory location. viéwer the number of
elements in the list is less than the threshold, therefardrdmsaction decided to exit
usingTM.EXI T. Now the original linked-list is modified even though it slidbvemain
unmodified. Therefore in order to ensure that consistencywisundermined for all
types of applications, further work is required when inggigrg theTMEXI T to TM-S
baseline.

10.1.3 Baseline-2: TM-U

In order to support an unbounded amount of transactional, dla¢ second baseline
(TM-U) overflows to a separate uncached area of memory asrgelLBransactional
Memory (LTM) [3]. The design and the protocol are similar ho$e of LTM, except
that TM-U does not stall to check for potential conflicts thaght arise from over-
flowed locations, since it uses signatures. When a cache lithetlne dirty bit set is
going to be overflowed, the entire cache line including altég, valid, dirty and data
bits are preserved in this uncached area. Each entry iseddaxthe hash value of the
overflowed memory location. Each processor has an extreteeddverflowAddres$
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which points to the starting location of this separate atéaore than one memory
location produced the same index, a linked list is formechdifig an entry involves

first getting the index and then getting the correspondiraipeantry or list of cache
entries stored under that index. Then a linear search isymeeid by comparing the tag
and index of each element in the list. TM-U has an extra bledaD’ per cacheline to

indicate the overflow status. This is set when a cache lineagflowed and is cleared
only when a transaction commits or aborts. Even if an exgstache line is replaced
with new data, this bit does not get changed.

When TMEXI T functionality is invoked in TM-U baseline, in order to cletre
speculatively modified entries it is only necessary to ctaarmodified cache entries
and the entries in the overflow area of the memory. Since owvarf does not af-
fect the original memory location, both types of applicatcan be executed in TM-U
baseline.

10.2 Evaluation

The evaluation oTMEXI T functionality, in terms of performance, is presented is thi
section. After discussing the evaluation setup in Secti@2.1, performance evalu-
ation of TMEXI T is presented in Section 10.2.2. In that section performahdé-S
and TM-U systems that support tRBLEXI T functionality is compared against TM-S
and TM-U systems that do not support such a feature. Chaisatien of the results
are presented in Section 10.2.3. Section 10.2.4 deschiegserformance evaluation
of TMEXI T when used to improve the expressiveness.

10.2.1 Evaluation Setup

The simulation environment used for evaluatindEXI T is similar to the one used for
evaluating DaCTM, described in Chapter 5, Section 5.3. Fosdlke of completeness,
a brief description of the system is presented in this sectieaders are directed to
Chapter 5 for a more elaborative description.

Since the proposal relies on transactions, a lazy-lazyteeltransactional memory
system is modelled in Simics [70], a full system simulatanmmg Linux (version
2.6.16). The TM system is configured with the components shiowTable 10.1.
In addition to those, the baseline-2 (TM-U) uses a perfeshtanction to index its
overflowed memory locations. Lee’s routing algorithm [1@8Jd a TM version of
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the Red-Black tree are used to evaluate ThiEXI T functionality. Both applications

were modified to exit from a transaction if it is found to be aangseful commit, as

shown in Figures 9.6(b) and 9.7(b). Unmodified versions i lapplications were ex-

ecuted for comparison purposes. Lee-TM uses 75X75 grid a@ddutes as the input.
A tree with 20,000 (@»200,000) nodes and 16000«200,000) insertions/deletions
with 50% probability for each was used for the Red-Black trgzeeixment.

Component | Feature

Processors 1-16, in-order

L1 Data Cache 2 way assoc, 64 B line, 32 KB size,
2 cycle latency, private per core
Signature 2048 Bits, 4 Parallel H3 [12] Hash functions
L2 Data Cache 8 way assoc, 64 B line, 4 MB size,
20 cycle latency, shared
Interconnect | Split-transaction bus, 4 cycle latency,
64 B data width

Main Memory | 100 cycle latency

Table 10.1: Components and features of TNEEXI T evaluation environment

10.2.2 Performance

The performance improvement of usiyLEXI T over baseline architectures that do
not support such functionality is shown in Figure 10.1. Whk TM-S architecture,
using TMEXI T functionality, a maximum performance improvement of up 185X
has been achieved and with TM-U the maximum improvement ¢e@t28X. From
Figure 10.1, it can be seen that the Lee-TM application hlasntanore advantage
over the Red-Black tree application by usifig EXI T functionality to exit from non-
useful transactions. Also it can be observed that, for thee Tl application, in the
TM-U system the improvement over the baseline increasefsigntly as the number
of processors increases. However, this does not apply t6NMh& system. Reasons
causing this behaviour are discussed in Section 10.2.3.

10.2.3 Characterisation of TM EXIT

The results of the performance evaluation are charactewgé several parameters in
order to find out the effect of adding tA&LEXI T functionality to two existing HTM
systems and what makes the performance improvements vamgdre both systems
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Figure 10.1: Performance improvement when udibdXl T over baseline

and applications. First, the percentage of transactioaisetkecuted th& MEXI T in-
struction is measured. Table 10.2 shows how many time$hHeXI T instruction has
been executed as a percentage of the total number of conirhése it can be seen for
the Red-Black tree, the percentage is around 50% in both sgstarmfor Lee-TM it
is between 10%-12%. Since Red-Black tree has invokedNHeXI T instruction more
than Lee-TM, one might expect it to show bigger speedup inr€id.0.1, which is not
the case.

Processor TM-S T™-U

Lee-TM | RB Tree| Lee-TM | RB Tree
2 11.40% | 50.11% | 12.02% | 49.97%
4 11.48% | 49.84% | 12.00% | 49.77%
8 11.33% | 50.24% | 11.84% | 49.73%
16 12.46% | 49.58% | 10.83% | 49.84%

Table 10.2: Usage GiVLEXI T as a percentage of total commits

If the size of the write set is small, the amount of time spamhmitting may not
make a significant difference to the overall execution tifhberefore the amount of
speculative data committed in both applications is analyseorder to see the effect
of removing non-useful commits towards the overall exexutime. Table 10.3 shows
the number of bytes committed per transaction in both agptins in both systems.
From Table 10.3 it can be seen that Lee-TM has a significaiglydn write set size in
comparison to that of the Red-Black tree. Therefore exitingifa transaction without
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committing it, gives a bigger advantage to Lee-TM than itslimeRed-Black tree. This
makes Lee-TM show better improvements than Red-Black tree.

It can also be seen in Table 10.3 that the number of bytes ctiathper transac-
tion increases in Lee-TM for both architectures. Accordmdable 9.1, for Lee-TM,
non-useful commits have reduced as the number of cores eneased. This means
more transactions have committed successfully, therafrgasing the number of bytes
committed per transaction.

Processor TM-S T™-U
Lee-TM | RB Tree| Lee-TM | RB Tree
2 9519.15| 518.38 | 9742.59 | 580.00
4 0941.44 | 529.47 | 9704.24 | 588.78
8 11864.72| 534.09 | 9929.95| 592.80
16 15961.10| 534.14 | 10148.61| 591.32

Table 10.3: Bytes committed per transaction

Not using the interconnect for non-useful commits redubesbntention for it. In
other words, one of the overheads incurred by unnecessamnite is the bus conten-
tion. In both TM systems the communication arbiter is desijto give the highest
precedence to commit requests. Since a commit phase takesaicomplete, all the
bus requests are denied during this time. This increaseBuheontention. Figure
10.2 shows the bus contention presented in both TM systemthellegend, TM-S-
Baseline means that the architecture is TM-S (Section 10ah@ it does not support
the TMEXI T functionality. Similarly TM-S-TMEXIT means that the architecture is
TM-S (Section 10.1.2) and it supports tR4EXI T functionality. The same applies for
TM-U-Baseline and TM-U-TMEXIT.

It can be seen in Figure 10.2, as expected according to theeatiecussion, that
both applications show less bus contention whEIEXI T functionality is used. This
is mainly because of the reduction of commits that are ndulisethe completion of
the program. Even though both applications show a reduatibaos contention, Lee-
TM shows a significant performance improvement in Baselif&A\2-U). The reason
behind this is, that the transactions in Lee-TM have quita afl speculative data that
cannot be held in the level 1 cache. Therefore they overflawnguhe execution of
the atomic block. When a transaction becomes longer, monessies are inserted to
the signature. When more addresses are inserted to thewsigraincreases the prob-
ability of producing false positives. Despite its disaceme of serializing commits,
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Figure 10.2: Effect on bus contention when usihgexi T

TM-S has the advantage of having only one large transactianyagiven time. This

is because, TM-S only allows one transaction to overflow dhotlaers have to wait

until this commits. Because of this, the number of false p@stare reduced in TM-S.
In the case of TM-U, there can be any number of large trar@actunning at a given
time. Therefore this could increase the probability ofégh®sitives produced in the
system.
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Figure 10.3: Number of false positives occurred in Lee-TM both baselines and
architectures supportingLEXI T

The number of false positives occurred in Lee-TM for bothdtiass and for both
architectures supportingMEXI T is shown in Figure 10.3. In the legend, TM-S-
Baseline means that the architecture is TM-S (Section 10ah@ it does not support
the TMEXI T functionality. Similarly TM-S-TMEXIT means that the architecture is
TM-S (Section 10.1.2) and it supports tRELEXI T functionality. The same applies
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for TM-U-Baseline and TM-U-TMEXIT. It can be seen from the figure that, by not
invoking a commit phase for non-useful commits, Lee-TM ikedb reduce the num-
ber of false positives in both architectures which supptbsTMEXI T functionality.

It can also be seen than TM-U-Baseline has more false abaortlhieal M-S-Baseline.
Even though botAM.EXI T architectures are able to reduce the number of false aborts,
the reduction is higher in TM-U than that of the TM-S. Therefthe performance im-
provement of TM-U-TMEXIT over TM-U-Baseline is higher than that of the TM-S.

10.2.4 Performance Evaluation of Increased Expressiveness

Section 10.2.2 showed the performance improvement whefMiiXI T functionality

is integrated to existing TM applications. This sectionu®es on the effect of using
TMEXI T to increase the expressiveness. The Linked-list exameseribed in Chapter
9, Section 9.5.4, is used for this experiment. The objeativthe application is to
reverse the linked list, if it has more elements than a tlolelstialue. As shown in
Figure 9.12, transactions have been added to the rever$®dndft the length of the
list is found to be less than the threshold, speculative gbaare abandoned and the
control is transferred to the end of the atomic block usigeXl T. For comparison
purposes a naive implementation of the code, shown in Figurg, is also executed.
As described in Section 10.1.2, the TM-S baseline cannotbd for this experiment.
Therefore experiments are carried out using the TM-U basekxperiments are made
in a system with a single processor.

For this experiment, 200 linked-lists with each having agteress than 10000 are
used. Three threshold values are used for the evaluatiothelrirst configuration
the threshold is set to 100, so that more lists needs to besexe In the second
configuration, the threshold is set to 9000, in order redheenumber of lists that
needs to be reversed. In the final configuration, for eaghhisthreshold is determined
randomly. Threshold configurations are summarised in Tablé.

Configuration| Threshold

a 100

b 9000

c random value

Table 10.4: Threshold configurations for Linked-list

Figure 10.4 shows the execution time of the modified linketidhat useSMEXI T)
normalised to that of the unmodified code. On the X-axid, ¢ stands for the
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threshold configurations shown in Table 10.4. From the figitiean be seen that the
modified application outperforms the unmodified one in camigjonsa andc. In the
case of configuratioh, the modified application takes more time than the unmodified
one.
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Figure 10.4: Execution time of modified Linked-list norns&ld to the original

In the case of configuratiom, since the threshold is a low value, a larger number
of lists (196) need to be reversed. Therefore the unmodifiptication has to traverse
196 lists twice (one to count and one to reverse) whereas titfied application only
makes a single traverse for all 200 lists. Therefore in coméiiona, the application
using TMEXI T has an advantage of a reduced number of traverses. In theotase
configurationb, only 17 lists need to be reversed as the threshold is kephagheer
value. In this case, the unmodified application has only & lio traverse twice.
However one could still argue that modified application aidgs 200 traverses in total
whereas, in this case, the unmodified one does 217 traverdetal. Therefore the
execution time of the unmodified application should stilltigher than the modified
one, which is not the case. An explanation for this behavimpresented later in this
section. Finally in configuration, 92 lists were required to be reversed. Since this is
less than the requirement in configuratenconfigurationc reports a slightly higher
execution time than the former.

The fact that unmodified application has to traverse celisis two times (one
for counting and one for reversing), explains it having ahkigexecution time than
the modified application in configuratiomsandc. However this trend has not been
presented in configuratidn The reason for this behaviour is the increased number of
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main memory accesses present in the TM-U architecture.
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Figure 10.5: Memory accesses of both modified and unmodifiekied-list applica-
tions

Figure 10.5 shows total number of main memory accessesteghiorboth applic-
ations. In the legend, Unmodified refers to the memory aesesscurred in the ori-
ginal linked-list and TMEXIT refers to the memory accesses occurred in the modified
linked-list. There, it can be seen that for all the configiora the modified applica-
tion has a higher number of memory accesses than the unnebdife In the TM-U
baseline, when a transactionally modified entry is evictefdie a commit operation
happens, it is stored in the uncached area an®trexflowbit (‘O’) in that cache line
is set. Thereafter, when a cache miss is occurred for a cashwith the ‘O’ bit set,
it is directed to this overflow area, which is searched for &hiag entry. A miss in
the uncached area, is treated as a normal cache miss, héctuedférom the original
memory location. Since the most of the linked lists used engkperiment are longer,
they cannot be held in the L1 cache during the execution ot@mia block. There-
fore when a transactional cache overflow happens, the modifiehe line is stored in
the uncached area of the memory and the ‘O’ bit in the cacleadiiset. All the sub-
sequent cache misses whose index bits are similar to thisonydotation’s index go
through the uncached area of the memory. Therefore the nuohibgemory accesses
present in the modified application increases. This doesmpoly to the unmodified
application as no speculative operations are performeukitcase.

Table 10.5 shows the number of times the overflow area is sedes the modified
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Configuration| Overflow Accessed
a 18906
b 18906
c 18907

Table 10.5: Number of times the overflow area is accesseckihittked-list applica-
tion that use§MEXI T

application. When the overflow area is accessed, a processtalied a minimum of
100 cycles, which is the latency of main memory. The situaliecomes worse, if the
location is not found in the overflow area. In this experimeoe of these overflow
accesses resulted in a success, which means all of thessesd®ad to be treated as
normal cache misses after receiving the response from tiremremory. This adds a
performance penalty which is not present for the unmodifpgdieation. However this
penalty is masked in configuratioasandc as the total number of traverses required
for the unmodified application is significantly higher thaie modified one. Since the
same condition does not apply for configuratipithe execution time of the unmodified
application is lower than the modified one.

10.3 Summary

When extending to suppofMEXI T, the architectural requirements of two baseline
TM systems are discussed in this chapter. Proposed imptati@nof two TM sys-
tems and their applicability on different programming attans is also described. Fur-
ther it is concluded that one baseline architecture, TMf#iotibe used in certain situ-
ations. Even though increasing performance is not a prinjgctbe of the proposal,
an experiment made to evaluate the effects of ad@MgXl T to existing HTM sys-
tems is also presented in the chapter. The chapter alsoctéasas the results of these
performance evaluations in order to analyse the effe€MdEXI T on various paramet-
ers such as bus contention, false transaction aborts armd $omally it also shows the
performance effects of usifid EXI T to improve expressiveness.



Chapter 11

Related Work on TM _EXIT

This chapter summarises the related workT®hEXI T. Section 11.1 summarises the
proposals made in the context of Software Transactional dMegrf§TM), that are re-
lated to the proposetM EXI T functionality. Several Hardware Transactional Memory
(HTM) approaches and their ability to supp®MEXI T are discussed in Section 11.2.
Section 11.3 focuses on the applicabilityféf EXI T to eager versioning HTM systems.
Finally Section 11.4 summarises the chapter.

11.1 Software Approaches

Early release [49, 100] has been proposed as a way of redaomgntion in both
hardware and software TM systems. The objective is that granomer can remove
an entry from the read set of its current transaction. THereany write operation to
this location by other transactions will not cause confheith the current transaction.
If this feature is to be used to provide the same functiopalgTMEXI T, then a pro-
grammer has to modify the entire application to remove &lrttemory locations that
are read and written during the current transaction fronrelae and write sets, if the
current transaction is found to be non-useful. First ofta tequires a programmer to
keep track of all the memory locations that are read andenrittefore the usefulness
condition of a transaction. Secondly, this may be possibite %TMs and also with
some HTMs, but most recent HTMs use signatures to keep tfaelad and write sets.
Signatures are implemented as a fixed width bit representat which certain bits
are set according to the address being considered. One tdahees of signatures
is that an element can be added to it, but cannot be removestefbine early release
cannot be used to provide the same functionalityME&XI T.
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The TM construcbrElse[43] is used to execute a second transaction if the first one
retries. Therefore by adding a “dummy” transaction as tltesé one and associating
theusefulnessriterion as the retry condition, a programmer may be abéetoeve the
objective ofTMEXI T with orElse For example in the case of Lee-TM failure to reach
the destination iexpandcan be defined as the “retry” condition. In such situatioms, t
dummy transaction would commit, thereby delivering the s@erformance impact as
TMEXI T. However this is achieved at the cost of losing clear and isencode in a
program.

Crowl et al. proposed to integrate TM semantics in to C++ [26]. There, the a
thors discuss different ways to exit from a transaction. gkdog to the authors, the
“normal” way to end a transaction is to commit it. They als@gest committing
a transaction even if it is exited with typical C languagewexds likereturn, break,
continueandgota. In their specification another way to end a transaction éxtowith
longjmp The idea is to abandon the speculative operation withoishiimg it. There-
after the environment is restored with the one saveddiymp This is similar to an
abort operation requiring the transaction to be restattethe case of Lee-TM, if used
when theexpandreturns False, this will lead to a live lock. Consider the cakere
expandcannot reach its destination because all the possible patlesbeen blocked,
hence returns false. The same transaction will continuetty until it succeeds, but
as no route exists this will never happen.

TM constructs_tm.abort [79] anduser-level abort$99] have the same objective
as the proposetM EXI T. The behaviour is, once executed within a critical section,
discard all the speculative modifications and to transferctimtrol to the statement im-
mediately following the critical section. However in thessmantics, the programmer
loses the ability to explicithabort andrestarttransactions, they can only abort.

The Xfork [90] framework allows programmers to define logiredationships betw-
een sibling transactions. The basic idea is to define nestaddctions as AND, OR,
or X-OR. When declared as AND all the sibling transactions &hbe completed in
order to commit a transaction, when declared as X-OR onlysoceessful transaction
should be committed, and for transactions declared as OfRs#laling transaction can
fail or succeed independently. If this approach is used énLibe-TM example, both
expandandbacktrackmethods can be defined as AND sibling transactions ensuring
that the execution of the latter is delayed until the formampletes due to data de-
pendencies. The Xfork API for AND guarantees that, if anylef siblings returns
false, no transaction will commit and the transactions seilty. Once again in the case
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of Lee-TM this can cause a live lock.

Finally, programming language extensions l&gox[41] have been proposed in
order to handle exceptions raised within critical sectidth@wever no direct hardware
support is provided for this antM EXI T fits the required purposes well.

11.2 Hardware Approaches

McDonaldet al. [73] propose the first Instruction Set Architecture (ISAj f6TM.
Along with the functionalities expressed by previously gwsed HTMs, the authors
suggest three major operations to manage transactidnegjin, xcommit, xabartAs
with the abort transactionfunction in Log-TM [77], thexabortinstruction executes a
code that is registered with the abort handler. The purpose allow a programmer
to explicitly abort a transaction. |If this feature is usedatthieve the objective of
TMEXI T, a dummyfunction which can explicitly transfer the control to thedeof
the atomic block needs to be constructed. Such a functiondaast contain agjoto
statement to move the execution to the end of the block. Efterethis function needs
to be registered with the abort handler. Now, whenxabkortis invoked, control can
be transferred to the end of the atomic block. However, itilsrequired to notify
the hardware not to restart the transaction once the abaetiuin completes because
the default behaviour ofabortis to do so. Since such a facility is not provided, the
proposed ISA cannot support a functionality similafkEXI T.

Notary [111] is a TM system which proposes to separate @igad shared data
and to exclude private data from the read and write sets adres@iction. Their ap-
proach relies on using separate virtual pages for sharegrarede memory locations.
If their approach is to be considered, first compiler andfogpamming language sup-
port is needed to allocate all the private data, includiaglstin those private pages. In
addition to that, a programmer is required to categorisa ith& those types. Then for
the Lee-TM application, a write set of zero size can be preduwhen thédacktrack
phase is not executed. However, excluding local varialotes the write set may pose
consistency violations in TM. Sanyat al. [96] propose an undo buffer to overcome
this problem, but this approach requires extra hardwarese/se cannot be determ-
ined in advance and also requires modifications to the memanagement and to the
run time systems.

Hardware support for TM has already been incorporated witaul chips [25].
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Their API also provides aAbort instruction which marks all the speculatively mod-
ified cache lines as invalid. However, it is not well definedetiter the control is
transferred to the beginning of the critical section [73jathe end [99].

Sun’s Rock processor [18, 29] also provides TM support. Tdesign comes with
only two extra instructionschkptandcommit When a transaction is started byla
kptinstruction, a pc-relative fail address can be registergl the transaction itself.
Control is then transferred to this address in case of an.alitwty also provide an
unconditional trap instruction which provides the fagilib cause explicit aborts from
software. This fail address feature is not able to provideftimctionality of TMEXI T
because it has to be registered at the beginning of the ttamsaA programmer can-
not determine at that time whether a particular transadsogoing to be useful or
not. Certain modifications are required to extend this fddrass feature to provide
the TMEEXI T functionality. The first modification is to register two pelative fail ad-
dresses one pointing to the beginning of the transactiortl@dther pointing to the
end of it. Later when an explicit abort is invoked from the usele, an indication
needs to be made stating whether to retry or to exit the tcdiosa Then depending on
this indication, the abort mechanism will decide which @pien to perform.

The Advanced Synchronization Facility(ASF) [1] is a progldsr extending hard-
ware support for lock free data structures. They introdusew instructions including
ABORT Like with the ISA proposed by McDonalet al. [73], the ABORT instruc-
tion rolls back the speculative region and the state is redtosing the snapshot taken
when theSPECULATERNstruction was executed. The control is then transfewete
instruction preceding th8PECULATENstruction. This instruction is ANZ instruc-
tion which will jump to a handler, as theBORThas set the zero flag. This handler
can then decide based on the flags set byAB®RTwhat it should do next. Jumping
to the end of the transaction is an option, but there are ng flaindicate this in the
current version of ASF. As a result, while the required clesngre small, currently
ASF cannot support a functionality similar ToLEXI T.

The XABORTInstruction in Intel's Haswell [55] allows a programmer tqécitly
abort the transaction from the user code. The cause of the isbmbmmunicated to
the software using the EAX register. When an abort happeagxécution is resumed
at the fallback address registered when ¥BEGIN instruction is executed. This is
conceptually similar to the fail-address of the Rock prooedslodifications required
for Haswell in order to support the objective fLEXI T, are similar to those required
for ASF and Rock.
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IBM recently presented speculation support in their Blue G@rdip [80]. Neither
the ISA additions nor the API is available to discuss how toi@e the objective of
TMEXI T in the proposed system.

11.3 Applicability of TM _EXIT on other TM Systems

The motivation and evaluation GMEXI T only focused on HTM systems that sup-
port lazy versioning. This section considers the appliggitwf the TMEXI T proposal
to eager versioning HTM systems. In an eager system all ncatiins are made
in-place, thereby reducing the commit overhead. In suchstesywhenfMEXI T is
invoked it has to discard all the speculatively written &#ras in a lazy versioning
system. If the transaction fits in the L1 cache the cost ofghigess is the same for
both eager versioning and lazy versioning HTMs. If a tratisachas overflowed the
cache, for eager versioning HTMs this involves reading ttgirtal value from a sep-
arate log and replacing the modified entry with this valuer. |I&py versioning HTMs
this depends on how the overflows are handled. For exampleeiiiM-S baseline it
is not possible to restore such memory locations as thenadigalue is not recorded.
In the case of the TM-U baseline, this involves only cleatimg overflow area of the
memory. This means that for lazy versioning HTMs like TM-blette is an advantage
over the eager ones when a transaction does not fit in the LHecddowever, this
costly step is only required if the operations performedsioigt the usefulness criteria
are accessible by other threads. This is not the case fohbear&s like Lee-TM and
Red-Black tree. However for applications like the Linked-#gample, restoration of
overflowed memory locations is required for correctnespses.

Avoiding the commit phase for non-useful transactions ceduthe bus conten-
tion which counts for a certain fraction of the reported shges. In the case of eager
versioning HTMs this will not result in a direct advantageitadoes for lazy ones.
However even eager versioning HTMs will get some benefitefftd EXI T function-
ality is incorporated. For example, consider a situatioemha transaction fits in the
L1 cache of an eager HTM system. Even though the transadtionatiuseful, a com-
mit operation is performed. Since the transaction fits inclaehe, no communication
is done at the commit phase. For simplicity, assume the cachied with trans-
actionally modified entries. Later when a cache miss is emeved space has to be
allocated in the current cache by writing back an existirtgyeiven though this entry
is modified, the value has no use as it belongs to a non-usahddction. IfTMEXI T
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functionality is provided, it could have cleared all thesgries thereby avoiding this
communication. A similar situation whef EXI T can be useful to eager HTMs is
when a context switch happens after the commit phase of aigefud transaction. In
such situations all the dirty cache entries need to be sasfmidallocating space for
cache requests of the new process. This saving of stateresgqeommunication, if
TMEXI T functionality is provided this communication can be avdidy clearing the
dirty cache entries of non-useful transactions.

11.4 Summary

From the survey presented in this chapter, it can be seethératis no direct hardware
proposal to avoid committing non-useful transactions.rgieugh a proposal for such
a semantic has been proposed at the programming languag¢18y99], it has not
been incorporated within hardware TM proposals. It is warting that such a feature
is more valuable in HTM than in STM, because STM systems cadyme a write set
of zero size for Lee-TM when thieacktrackphase is not executed. This is because
when using STM, the application code is instrumented in a thay shared data is
accessed using special read/write operations as in ASH{1he case of Lee-TM all
the operations on shared data is performed withirbektrackmethod, hence STMs
are able to produce a write set of zero size when it is not égdcThis is not the case
with most of the hardware TM systems.



Chapter 12
Conclusions and Future Work

The major contributions of this thesis are centred arourrdiWare Transactional Memory
(HTM). Contributions are grouped into three categories Wlae orthogonal. These
three categories were presented as three separate pdréstiresis. Part | presented
the concept, design and evaluation of Data Centric TrarssdtMemory (DaCTM).
The conclusions and the possible future research directdbaCTM are presented
in Section 12.1. Part Il of the thesis presented the conagstign and evaluation
of SnCTM, a novel way of reducing false aborts in hardwareatignes. Section 12.2
presents the conclusions and future research directicBs©T M. Part 1l of the thesis
makes a case for having a functionalifM(EXI T) to exit form a transaction without
committing it, in the context of HTM. The conclusions and gussible future research
directions of this functionality are discussed in Secti@r31

12.1 Data Centric Transactional Memory

Part | of the thesis presented the concept and the design@fMaa novel architecture
that associates the required levels of coherence, comsysend synchronization of
each memory location with its access pattern. The idea isdopgsets of memory
locations having similar characteristics and to allocaint in a suitable region of
memory so that the underlying hardware can select diffespatations based on the
region of each location. Even though the current versiompstip only four memory
regions (LO, RO, WNRL, CRW), if a need arises, more regions cantibeduced. In
DaCTM the data centric approach is coupled with transadtimeanory.

The thesis evaluated how an architecture can benefit if €g®n information is
communicated to the hardware. As the compiler support ido/ee developed, for
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the evaluation, associatingypewith each memory location was done manually. The
output produced by the benchmarks wiyipe information associated, is the same as
the one produced by unmodified benchmarks. The evaluatioweshthat DaCTM
scaled better and delivered better speed-ups (upto 4.5&8X)am optimized lazy-lazy
TM system (see Figure 5.2). The thesis experimentally aédid the hypothesis of as-
sociating the access pattern of a memory location with gsired level of coherence,
consistency and synchronization to derive a next generabeputing model.

The following contributions were made in the Part | of thesibe

¢ A mechanism to maintain coherence and consistency base@mom regions
is introduced. In this approach the address space of a progaa be viewed
as a collection of non-overlapping memory regions, eachnigaa predefined
level of coherence and consistency. The union of all theoregjis equal to the
available address space.

e An application programming interface (API) to manage thenogy regions, is
alsointroduced. In this way the programmer is relieved froamually managing
different memory spaces.

e As the third contribution, a proposal is made to attach sbrahd memories
(SPMs) to each processor to implement one type of memorgmg@iO). This
removes the need to use the interconnect for memory accedaésd to this
region, thereby reducing the contention.

e Overall design of the architecture to support the above imiead region-based
coherence and consistency, is presented as the last ctiomnibThe evaluation
of DaCTM shows that with the proposed approach, bus utibmatind con-
tention, processor idle time and false transaction abantsbe greatly reduced
thereby aiding scalability. The performance evaluatiogspnts improvements
of up to 4.52 times speed-up over an optimized baseline TNesyshat uses
lazy versioning and lazy conflict detection (an improved TG@]].

Most of the applications used for the evaluation, scale@ Uyt processors (see
Figure 5.1). Also it outperformed both CS and U versions ofttaseline, even if the
latter had a bigger cache (see Figure 5.2). The hypothe&aGiTM is based on the
fact that the access pattern of a memory location repreientequired level of Syn-
chronization, Coherence and Consistency for that locatiencé maintaining a global
view of the whole shared memory is not required. Figure 5@wsithe experimental
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validation of this. Finally, the speedups of DaCTM over theddime comes collect-
ively from reduced processor idle time (see Figure 5.4) ced bus usage (see Figure
5.6) and contention (see Figure 5.5) and reduction of sigeamhsertions (see Figures
5.8 and 5.9) which ultimately resulted in producing lessdgbositives (see Figures
5.10 and 5.11).

The whole concept of DaCTM goes from the high level prograngnmguage to
the low level system architecture. Even though the concepa®€TM is discussed
using programming language examples, the thesis only dered the architectural
aspects of it. The experiments has shown that DaCTM has tleatpatto solve the
scalability issues imposed in multi-core processors whamtaining a global view of
the shared memory using conventional cache coherencecptet@®@enchmarks had to
be manually modified to be able to work with DaCTM architecturkerefore imple-
menting programming language extensions to support diftelypes of memories or
developing escape analysis techniques to extract thisnnatoon at the compile time
are strong candidates for possible future directions of DMCT

In the current version of DaCTM, once a type (LO, RO, WNRL, CRW) soa&
ated with a memory location it remains fixed throughout tfegiine of that memory
location. Therefore if a memory location is accessed sétiaras, it will be declared
as CRW even if only one of these accesses are concurrent.fditeeaefuture version
of DaCTM should have the capability to change the type of a nmgrozation ac-
cording to the changing access pattern of it. This way cofuerand consistency can
be maintained for each memory location only when the locatsguires it and to the
degree which it is required.

12.2 Adaptive Sources for Conflict Detection

Part Il of the thesis presented the concept and the desigm©@T &, a novel way
of reducing false aborts by adaptively changing the sousss Wuring the conflict
detection stage. The idea is to decide at the time of cormgittihich source to use,
i.e.cache line or signature. This way the use of signatures isgihto situations where
speculative data cannot be held in the local cache.

Part 11 of this thesis made following contributions:

e The concept of adaptively changing the source of infornmatieed to detect
conflicts in a hardware TM system, is introduced. It also shbew an existing
TM architecture can be extended to support the SnCTM concept.
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e The performance evaluation of SnCTM shows improvements abup62 and
2.93 times speed-up over a baseline TM using lazy versicamuglazy conflict
detection (an improved TCC [39]) with two commonly used stgnaconfigur-
ations.

e SNCTM gives the opportunity to reduce the size of a signatuteowt com-
promising the performance. A sensitivity analysis shoves 8nCTM with a 64
bit signature can deliver performance comparable to a gesignature of 8k
bits.

The SNnCTM concept is evaluated using the STAMP benchmark aod Lee-TM.
The evaluation showed that the SnCTM proposal delivers isgteed-ups (up to 4.62
and 2.93) over an optimized lazy-lazy TM system with two camniy used signature
configurations (see Figure 8.4). The number of transadtab@ts is reduced by using
the SNCTM approach, by means of reducing false aborts (seedsi§.5 and 8.6). For
some applications, the number of false positives occuinnf§nCTM is similar to a
system with a perfect (8k) signature (see Figure 8.7).

In addition to measuring the effect of SnCTM on the executior®ef a sensitivity
analysis of the signature length is performed. The resfib®th baseline and SnCTM
is compared against a perfect signature. There it showgWeatwith a smaller signa-
ture (64 bit) SnCTM was able to deliver performance comparébh perfect system
whereas the baseline suffers huge performance degradagerigures 8.8 and 8.9).
A further investigation shows that SnCTM achieves this byiotidn of processor idle
time (see Figure 8.10). Another important aspect of the Sn@fdposal is that it is
independent of the underlying signature implementatioher&fore all the proposed
techniques [19, 20, 61, 84, 85, 86, 111] to improve the efimyeof a signatures can
be used in SNCTM as well.

SnCTM uses the H3 [12] class of hash functions as its signatysEmentation.
Several approaches can be found in the HTM literature pingatifferent signature
implementations that can reduce the number of false pesitiMt would be an in-
teresting experiment to see how much benefit can be gained ifrtegrating those
approaches with the signature implementation of SnCTM.heurtSnCTM requires
additional area for having both read and write sets and siges. It also requires some
control logic to decide which source to use for detectingflacis. Another possible
experiment is to conduct a cost (area)-benefit (performaacalysis of the SnCTM
approach. The same experiment can later be extended bylingla third parameter
(signature length) to the equation.



CHAPTER 12. CONCLUSIONS AND FUTURE WORK 200

12.3 Exiting a Transaction without Committing

Part 11l has presented a case for TEXI T function to be added to hardware TM sys-
tems. The objective of the functionality is to exit from artsaction without commit-
ting it. Once invoked within a transaction, all the speduathanges are abandoned
and the control is transferred to the line immediately folloy the atomic block. Un-
necessary commits can be avoided in this manner, thereblyingsn less interconnect
usage. In addition to making the case, it also discussedetsfility of integrating
this functionality with two HTM systems.

The following contributions were made in Part Il of the tises

e A successful case is made for supportidyEXI T functionality in HTM.

¢ In addition to extending the existing code segments toTd6EXI T, a case has
been presented where the expressiveness can be increasgdhesproposed
functionality.

¢ As the third contribution, the feasibility of integratii§yL EXI T with two baseline
HTM systems is presented and the proposed implementatatisdassed.

¢ As the final contribution, performance evaluationg®fEXI T on two HTMs are
presented.

The performance impact @M EXI T is measured using Lee-TM and a transactional
version of the Red-Black tree with two hardware TM systems. rékalts showed that
with hardware support fofMEXI T, a speedup of up to 2.28X can be achieved for
the applications tested (see Figure 10.1). This speedugingd from a combination
of lower false positives (see Figure 10.3) and lower buseraidn (see Figure 10.2)
which ultimately results in less wasted time.

The effect of increased expressiveness is also measurkeawiintrived example
using a linked-list. Depending on the input configuratiothaf linked-list, the speedup
varied from 0.75X to 1.31X (see Figure 10.4). The reductibthe speedup is due to
the HTM (similar to LTM [3]) having to access the uncachedaané memory when
the cache line has the ‘overflow’ bit set (see Figure 10.5 aider10.5).

It would be an interesting study to analyse the available Edhmarks to identify
places wherdMEXI T can be useful. Similarly, analysing some parallel benchkmar
(TM and non-TM) with the intention of increasing the expressess usingMEXI T
would also be an interesting topic. The evaluation preskintthe thesis used two vari-
ations of a lazy-lazy HTM system. Therefore implementing amaluatingTM EXI T
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in other types of research (eg: LogTM [77]) and industriaMB-ASF [21], In-
tel Haswell [55]) HTMs, is also a strong candidate for futoesearch directions of
TMEXIT.
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