
DATA CENTRIC AND ADAPTIVE

SOURCE CHANGING

TRANSACTIONAL MEMORY WITH

EXIT FUNCTIONALITY

A THESIS SUBMITTED TOTHE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OFDOCTOR OFPHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2012

By

Herath Mudiyanselage Isuru Prasenajith Herath

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 17

1.1 Contributions . 22

1.2 Thesis Structure . 23

1.3 Publications . 25

2 Transactional Memory 26

2.1 Introduction . 26

2.2 TM Design Considerations . 28

2.2.1 Concurrency Control . 28

2.2.2 Version Management . 29

2.2.3 Conflict Detection . 29

2.3 TM Semantics . 30

2.3.1 Serializability . 30

2.3.2 Strict Serializability . 31

2.3.3 Linearizability . 31

2.3.4 Weak Isolation . 31

2.3.5 Strong Isolation . 31

2.3.6 Single Lock Atomicity . 32

2.3.7 Disjoint Lock Atomicity . 32

2.3.8 Transactional Sequential Consistency32

2

2.3.9 Nested Transactions . 33

2.3.9.1 Flattened Nesting 33

2.3.9.2 Closed Nesting . 33

2.3.9.3 Open Nesting . 33

2.4 TM Performance Considerations . 34

2.4.1 Non-blocking Synchronization 34

2.4.2 Contention Management . 34

2.4.3 Early Release . 35

2.5 Programming with TM . 35

2.5.1 Composability . 35

2.5.2 Conditional Synchronization 36

2.5.3 Memory Allocation . 36

2.5.4 Transactions Everywhere . 37

2.6 Hardware Transactional Memory . 38

2.7 Software Transactional Memory . 46

2.8 Hybrid Transactional Memory . 48

2.9 Summary . 49

I DaCTM: Data Centric Transactional Memory 50

3 DaCTM: Data Centric Transactional Memory 51

3.1 Introduction . 51

3.2 Motivation . 53

3.3 DaCTM Concept . 57

3.3.1 Local (LO) . 57

3.3.2 Read Only (RO) . 58

3.3.3 Concurrently Read and Write (CRW) 58

3.3.4 Write Now Read Later (WNRL) 59

3.3.5 Object Operation . 61

3.4 DaCTM Special Cases . 67

3.5 Summary . 70

4 Architectural Support for DaCTM 71

4.1 Naive Design . 71

4.2 DaCTM support for Memory Regions. 73

3

4.2.1 LO Memory . 73

4.2.2 RO, WNRL and CRW Memory 74

4.2.3 Region Information Table 74

4.2.4 Modifed Translation Lookaside Buffer 75

4.3 DaCTM support for Transactional Memory 75

4.3.1 Basic TM System . 75

4.3.2 DaCTM . 78

4.3.3 Hardware Signatures in DaCTM 79

4.4 Incorporating Memory Regions with Transactional Memoryin DaCTM 80

4.5 DaCTM-CS . 82

4.6 DaCTM-U . 84

4.7 Summary . 85

5 DaCTM Evaluation 86

5.1 Evaluation Environment . 86

5.2 Benchmarks Tested . 87

5.2.1 Genome . 87

5.2.2 Intruder . 87

5.2.3 Kmeans . 88

5.2.4 Labyrinth . 88

5.2.5 Ssca2 . 88

5.2.6 Vacation . 88

5.2.7 Lee-TM . 89

5.3 Evaluation Setup . 89

5.3.1 Building Complete System 90

5.3.2 Building Transactional Memory Support 90

5.3.3 Support for Memory Regions 91

5.3.4 Evaluation Procedure . 92

5.4 Performance . 92

5.5 Characterization of DaCTM . 97

5.5.1 Idle Time . 98

5.5.2 Bus Contention . 100

5.5.3 Bus Usage . 102

5.5.4 Commit Phase Bus Usage 104

5.5.5 Signature Insertions . 106

5.5.6 False Positives . 109

4

5.6 Summary . 113

6 Related Work on DaCTM 114

6.1 Data Centric Synchronization . 114

6.2 Cache Coherence . 116

6.3 Memory Consistency . 120

6.4 Data Separation in Transactional Memory 122

6.5 Memory Management . 125

II SnCTM: Reducing False Transaction Aborts by Adaptively
Changing the Source of Conflict Detection 127

7 SnCTM: Adaptive Sources for Conflict Detection 128

7.1 Introduction . 128

7.2 Motivation . 130

7.3 Related Work on Hardware Signatures 133

7.4 SnCTM Concept . 138

7.5 Summary . 140

8 SnCTM Implementation and Evaluation 141

8.1 SnCTM Architecture . 141

8.1.1 Baseline Architecture . 141

8.1.2 SnCTM Design . 144

8.2 Evaluation . 145

8.2.1 Evaluation Setup . 146

8.2.2 Performance . 148

8.2.3 Characterization of SnCTM 150

8.2.4 Sensitivity Analysis . 156

8.3 Summary . 161

III TM EXIT: Exiting a Transaction In the Context of Hard-
ware Transactional Memory 162

9 TM EXIT: A Case for Exiting a Transaction 163

9.1 Introduction . 163

9.2 Motivation for TM RESTART . 165

5

9.3 Motivation for TM EXIT . 166

9.3.1 Lee-TM [108] . 167

9.3.2 Red-Black Tree . 168

9.3.3 Java Exceptions . 169

9.4 Performance Impact . 170

9.5 Defining and Using TMEXIT . 171

9.5.1 Integrating TMEXIT to Existing Applications 171

9.5.2 Implicit Control Transfer with TMEXIT 173

9.5.3 Incorrect Usage of TMEXIT 174

9.5.4 Increasing Expressiveness With TMEXIT 175

9.6 Summary . 176

10 Implementation and Evaluation of TM EXIT 177

10.1 Architectural support for TMEXIT 177

10.1.1 Requirements for TMEXIT 178

10.1.2 Baseline-1: TM-S . 179

10.1.3 Baseline-2: TM-U . 180

10.2 Evaluation . 181

10.2.1 Evaluation Setup . 181

10.2.2 Performance . 182

10.2.3 Characterisation of TMEXIT 182

10.2.4 Performance Evaluation of Increased Expressiveness 186

10.3 Summary . 189

11 Related Work on TM EXIT 190

11.1 Software Approaches . 190

11.2 Hardware Approaches . 192

11.3 Applicability of TM EXIT on other TM Systems 194

11.4 Summary . 195

12 Conclusions and Future Work 196

12.1 Data Centric Transactional Memory196

12.2 Adaptive Sources for Conflict Detection 198

12.3 Exiting a Transaction without Committing 200

6

Bibliography 202

Word Count: 57081

7

List of Tables

3.1 Determining thetypeof a method when operating on mix of data . . . 63

3.2 Operations to perform for each data type 63

4.1 Instructions to be used in a naive DaCTM design 72

5.1 Benchmark applications and their inputs used for evaluating DaCTM . 89

5.2 Components and features of the DaCTM evaluation environment . . . 90

8.1 Components and features of the SnCTM evaluation environment . . . 147

8.2 Benchmark applications and their inputs used for evaluating SnCTM . 147

8.3 Average performance improvement of SnCTM over baseline 150

9.1 Non-useful commits . 170

10.1 Components and features of theTM EXIT evaluation environment . . . 182

10.2 Usage ofTM EXIT as a percentage of total commits 183

10.3 Bytes committed per transaction .184

10.4 Threshold configurations for Linked-list 186

10.5 Number of times the overflow area is accessed in the Linked-list ap-

plication that usesTM EXIT . 189

8

List of Figures

1.1 Contributions of the Thesis . 23

1.2 Suggested reading structure of the Thesis 25

3.1 Example use of theprivatekeyword in OpenMP 54

3.2 Example use of thefinal keyword in Java 55

3.3 Example use of thesynchronizedkeyword in Java 56

3.4 A pseudocode of a Producer-Consumer application 56

3.5 A memory allocation request that can be considered as LO 58

3.6 A memory allocation request that can be considered as RO 58

3.7 A memory allocation request that can be considered as CRW 59

3.8 A memory allocation request that can be considered as WNRL 60

3.9 DaCTM memory regions . 62

3.10 Proposed memory allocation function in DaCTM 62

3.11 Working with explicitly defined transactions in DaCTM 64

3.12 A Chain of functions taken from Barnes application of SPLASH [109] 64

3.13 Nested transactions for chain functions in DaCTM 65

3.14 Committing before starting another function when operating with chain

functions in DaCTM . 66

3.15 Pseudocode of the Lee-TM [108] application 67

3.16 DaCTM approach to avoid the violation of TM semantics 68

3.17 A library function used in copying vectors 69

3.18 DaCTM approach to allocate memory inside a library function 69

4.1 A code segment for totalling an array 72

4.2 DaCTM memory hierarchy and mapping of memory regions 74

4.3 Proposed Region Information Table (RIT) in DaCTM75

4.4 Modified TLB used in DaCTM . 75

9

4.5 Difference between the original TCC and the improved TCC (which is

used as baseline) . 77

4.6 Inserting an address to a signature 79

4.7 Signature operations used in DaCTM 80

4.8 A complete DaCTM-CS system . 82

4.9 A complete DaCTM-U system . 84

5.1 Scalability of DaCTM . 93

5.2 Performance improvement of DaCTM over baseline architectures . . 95

5.3 Percentage of LO, WNRL and CRW data types in both DaCTM archi-

tectures . 97

5.4 DaCTM idle time normalised to baseline99

5.5 DaCTM bus contention normalised to baseline 101

5.6 DaCTM bus usage normalised to baseline 103

5.7 DaCTM commit phase bus usage normalised to baseline 105

5.8 Insertions to read/write signatures in the CS version of baseline and

DaCTM . 107

5.9 Insertions to read/write signatures in the U version of baseline and

DaCTM . 108

5.10 Number of false positives presented in the CS version of DaCTM and

baselines . 110

5.11 Number of false positives presented in the U version of DaCTM and

baselines . 111

6.1 An example of using data centric approach for synchronization (taken

from [106]) . 115

7.1 Signature requirement for transactions committed 131

7.2 False aborts that could have been avoided 132

7.3 The concept of SnCTM . 139

8.1 Signature operations used in SnCTM 142

8.2 A complete SnCTM system . 144

8.3 Adaptively checking for conflicts in a SnCTM processor 146

8.4 Performance improvement of SnCTM over the baseline 149

8.5 Number of aborts and false aborts occurred in both SnCTM and baseline

with a 1024 bit signature . 152

10

8.6 Number of aborts and false aborts occurred in both SnCTM and baseline

with a 2048 bit signature . 153

8.7 Number of false aborts occurred in both SnCTM and baselinewith 1k,

2k and a perfect (8k) signature . 155

8.8 Signature sensitivity of baseline and SnCTM - Part I(execution time is

normalised to the perfect signature). 157

8.9 Signature sensitivity of baseline and SnCTM - Part II(execution time is

normalised to the perfect signature). 158

8.10 Idle time of SnCTM and baseline normalised to perfect 160

9.1 TM RESTART function used in Vacation application 165

9.2 TM RESTART function used in Labyrinth application 166

9.3 Lee-TM pseudocode . 167

9.4 Red-Black Tree TM pseudocode . 169

9.5 Java TM code with exceptions . 169

9.6 Modifying Lee-TM pseudocode to useTM EXIT 172

9.7 Modifying Red-Black Tree TM pseudocode to useTM EXIT 173

9.8 Modified Java code to usedTM EXIT 173

9.9 Implicit control transfer in Lee-TM pseudocode 174

9.10 Incorrect usage ofTM EXIT . 174

9.11 Pseudocode showing the conventional approach 175

9.12 Pseudocode of revised reverse method usingTM EXIT 176

10.1 Performance improvement when usingTM EXIT over baseline 183

10.2 Effect on bus contention when usingTM EXIT 185

10.3 Number of false positives occurred in Lee-TM for both baselines and

architectures supportingTM EXIT . 185

10.4 Execution time of modified Linked-list normalised to the original . . . 187

10.5 Memory accesses of both modified and unmodified Linked-list applic-

ations . 188

11

Abstract

DATA CENTRIC AND ADAPTIVE SOURCECHANGING

TRANSACTIONAL MEMORY WITH EXIT FUNCTIONALITY

Herath Mudiyanselage Isuru Prasenajith Herath
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 5th December 2012

Multi-core computing is becoming ubiquitous due to the scaling limitations of
single-core computing. It is inevitable that parallel programming will become the
mainstream for such processors. In this paradigm shift, theconcept of abstraction
should not be compromised. A programming model serves as an abstraction of how
programs are executed. Transactional Memory (TM) is a technique proposed to main-
tain lock free synchronization. Due to the simplicity of theabstraction provided by it,
TM can also be used as a way of distributing parallel work, maintaining coherence and
consistency. Motivated by this, at a higher level, the thesis makes three contributions
and all are centred around Hardware Transactional Memory (HTM).

As the first contribution, a transaction-only architectureis coupled with a “data
centric” approach, to address the scalability issues of theformer whilst maintaining
its simplicity. This is achieved by grouping together memory locations having similar
access patterns and maintaining coherence and consistencyaccording to the group each
memory location belongs to. As the second contribution a novel technique is proposed
to reduce the number of false transaction aborts which occurin a signature based HTM.
The idea is to adaptively switch between cache lines and signatures to detect conflicts.
That is, when a transaction fits in the L1 cache, cache line information is used to
detect conflicts and signatures are used otherwise. As the third contribution, the thesis
makes a case for having an exit functionality in an HTM. The objective of the proposed
functionality,TM EXIT, is to terminate a transaction without restarting or committing.

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree or

qualification of this or any other university or other institute

of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to usesuch Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be madeonly in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate,

in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-

tellectual property (the “Intellectual Property”) and anyreproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the authorand may be

owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property an-

d/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (seehttp://documents.manchester.ac.uk/DocuInfo.aspx?

DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-

versity Library, The University Library’s regulations (seehttp://www.manchester.

ac.uk/library/aboutus/regulations) and in The University’s policy on present-

ation of Theses

14

Acknowledgements

I would like to thank Prof. Ian Watson, my supervisor, for accepting me as a PhD

student to the APT group. He not only accepted me as a student,but also provided me

with a scholarship that covered my tuition fees and living expenses. The whole PhD

was funded by an Overseas Research Studentship (ORS) and a School of Computer

Science studentship from the University of Manchester. I amvery grateful to them,

none of this would have been possible if I was not able to secure that scholarship. Prof.

Watson did more than supervising, he helped me a lot in debugging and improving my

writing. He gave me enough freedom to explore new ideas, listened well and always

proposed a solution/suggestion when I was stuck in the dark.Dr. Mikel Luján, my

co-supervisor, helped me in numerous ways throughout my PhD.

When I started my PhD, four years ago, I knew nothing about research. Adapt-

ing to the research environment was painful. The APT group (Jamaicans) was very

helpful. Dr. Jeremy Singer (now a lecturer at Glasgow) and Dr. Ian Rogers (now at

Google), as the research associates of the group at that time, helped me a lot in getting

familiar with the lab and the research environment. Dr. Preethi Sam (now at ARM),

Dr. Christos Kotselidis (now at Intel Labs), Dr. Behram Khan (now a research as-

sociate at Manchester) and Dr. Mohammad Ansari (now a lecturer at Umm Al-Qura

University), as the senior PhD students of the group at that time, gave good insights

about how to get on with the PhD. I would also like to extend my thankfulness to Dr.

Daniel Goodman, for volunteering to present my paper at the Transact 2012 workshop,

when I was unable to participate due to visa issues.

I would also like to extend my heartiest gratitude to the Disability Support Office

(DSO) of the university and to the Environs officer of the Computer Science school,

Mr. Eamon Griffin, for supporting me in every possible way they can for my health

problems.

Friends are part of our lives. During my stay at Manchester, Ihave made good

friends with whom I have shared moments of joy, sadness, frustration, anger (the list

15

can go on and on). Paraskevas (Paris) Yiapanis always had something to talk about. He

is one of the best social beings I have ever known. Demian Rosas, my research partner,

is a good listener. I have wasted lots of his useful hours withmy “fantastic” ideas. The

three of us used to have one to two hours of “lunch hours” discussing non-CS issues

like world politics, economy (again the list can go on). I will always remember those

nice times.

I would also like to thank my former supervisors Dr. Manjula Sandirigama, Dr.

Swarnalatha Radhakrishnan and Dr. Roshan G. Ragel from the University of Peraden-

iya, for supporting and encouraging me to embark on a research career. Dr. Ragel was

like a friend to me. He checked my applications, helped to improve research proposals,

even let me use his credit card to pay the application fee.

My father, Mr. Dhanapal Herath, always valued education. Hetried to give the

best possible education to his kids. If I needed something for my studies (books, exam

papers or anything), he made sure that I would have it by the time I needed it. He

told me the importance of higher education and convinced me to read for a PhD. The

unconditional love of my mother, Mrs. Wimala Dhanapala, wasa magnificent source

of inspiration to me. I thank my parents and my sister for being so loving and present

even from a distance.

It is the Sri Lankan culture that everybody belongs to big family. All my aunts,

uncles, brothers and sisters (I don’t know how many, its thatbig!) sent me well wishes

whenever they can. I never felt alone. My lovely in-laws werein touch with me all the

time, energizing me with Sri Lankan sweets.

Finally, and certainly not least, a great debt of gratitude is owed to Sashila, my

wife, for her understanding and love. You were with me in every single step of this

journey. You tried your best to make it comfortable for me. I love you.

16

Chapter 1

Introduction

Technology enables the doubling of transistors every 18-24months (known as Moore’s

law [76]). This has allowed designers to increase complexity, by including more func-

tional units in a processor, in search for higher performance. The objective of in-

creasing the functional units is to allow a computation to proceed without waiting for

resources. Having more resources facilitates instructions to be executed in parallel,

which is therefore known as Instruction Level Parallelism (ILP). However there exists

a limit to the number of instructions that can be executed in parallel [107]. In addition

to this, the scaling limitations of single-core computing (power consumption and heat

dissipation) [81] urges the hardware designers to investigate other directions.

In an attempt to address these issues, hardware manufacturers consider developing

a processor with more than a single core on the same die, whichis called a chip-

multiprocessor or a multi-core processor. In this multi-core design, the speed of each

individual core is less than the speed of a modern single coreprocessor. As this multi-

core processor comprises many of those average speed cores,an application which is

executed on them is expected to complete in less amount of time than in a single core

processor, or at least in theory that is what should happen.

Just because a processor has higher number of cores, does notguarantee that any

application runs on it will deliver higher performance. A best case scenario would be,

executing an application which comprises several independent work units which can

execute on their own. In such a situation, each work unit can be scheduled in one core

and the output can be produced in considerably less amount oftime than running each

work unit sequentially in a single core processor. However,this is not the case for

most of the applications. In order to gain the advantage of all the cores in this multi-

core processor, first an application needs to be divided intoseveral work units. As the

17

CHAPTER 1. INTRODUCTION 18

execution of this application progresses, some work units may need to communicate

with each other. Sometimes they may try to access the same setof variables at the

same time. Therefore a considerable effort is required whentransforming a single core

application to take the advantage of a multi-core processor. Changing the direction of

processor design from single-core to multi-core has introduced several issues and the

most significant and most relevant of them to the scope of thisthesis is summarised

hereafter.

The data transfer rate between the processor and the memory is much slower com-

pared to the speed of a modern processor. This creates a processor-memory gap, which

is called the Von Neumann bottleneck. A small but faster storage called cache is at-

tached to the processor to address this, by storing frequently used data in cache and ser-

vicing memory requests with them. Even though this was a promising way of achiev-

ing its objective, in a multi-core environment this can leadto a situation where more

than one processor has different values in their caches for the same memory location.

This is possible because now the memory is being accessed/modified by more than one

processor and the cache of one processor may not be aware of the changes made by

another processor. Therefore a mechanism is required to communicate the state of a

cache line in one core, to the rest of the cores. As the issue isrelated to maintaining a

coherent view of caches, the associated communication is called cache coherence pro-

tocol. Quite a number of protocols each having different performance characteristics

have been proposed. All these protocols require a data structure to be maintained in

hardware (a modified cache) to store the state (modified, invalid or identical to memory

copy) of cached entries and a messaging mechanism to communicate the state of the

cache lines concerned.

In a single core processor, instructions are issued by a single entity. Therefore the

order the effects of these instructions appear, is the same as the order they have been

issued. Simply, a read operation to a memory location shouldreturn the last value

written to that location. The definition of “last” is trivialin a single core processor

as there exists only a single program order. Also having a single order allows certain

compiler optimizations such as reordering of instructionsand so on. However in an

environment where multiple entities are issuing instructions, firstly, the ordering is not

trivial. Secondly, some of the compiler optimizations may not match the behaviour

expected by the application developer. Therefore a mechanism is required to ensure

that the memory operations issued by all the processors correspond to some order and

this order should match the behaviour expected by a programmer. Memory consistency

CHAPTER 1. INTRODUCTION 19

models are introduced to address this issue.

In the multi-core computing era, software applications need to be modified to util-

ise the extra cores available in a processor. The workload needs to be distributed to

available cores when executing these applications. Therefore it is inevitable that par-

allel programming becoming the mainstream programming practise. In an application

that is written to execute in parallel, the parallelism can exist either at task level or

method level or thread level. (The discussion is made at the context of thread level

parallelism, but the issues remain the same for other levelsas well). When a program

is executing in parallel, different threads may access/modify the same memory loca-

tion. Programmers need to identify those situations and special mechanisms (locks,

barriers) need to be introduced to the program to produce thecorrect result. This is the

synchronisation issue in parallel programming. In order toensure mutual exclusive-

ness is maintained among those concurrent accesses made to these memory locations,

conventionally, locks are used. To execute a code region protected by locks, first the

lock is acquired. It is released when the execution is completed. In order to acquire

a lock, at the hardware level it is required to first check whether it is available. The

acquire operation happens afterwards. Essentially this involves a read and a write op-

eration. If the process of acquiring a lock is done using conventional read and write

operations, in a multi-core environment it is possible for two processors to acquire the

same lock at the same time. Therefore atomic instructions like Test-And-Set which

allows to atomically read and modify a memory location are used to implement locks.

The instruction pairLoad-Linked/Store-Conditional (LL/SC) is similar to other

atomic instructions, but comprises two instructions. Thisallows it to have intermedi-

ate operations between the load and the store operations. This feature makes LL/SC a

good candidate for constructing other atomic instructions. For example a new atomic

increment instruction can be constructed using this LL/SC instruction.

The simplest form of lock based programming is to have a single program-wide

lock and each thread acquires it before entering the critical region and releases it, once

it has finished executing the critical region. This approachis quite simple and easy

to explain. However this kind of approach is not advisable asthere can be groups of

critical regions where these groups have no relation to eachother. Therefore despite

its simplicity, this kind of coarse grained locking approach can harm the performance

of a parallel application. The other alternative is to associate a smaller lock with each

significant computation inside the critical region. In thismanner if all the associated

locks are available, a thread can complete the computation enclosed in the critical

CHAPTER 1. INTRODUCTION 20

region. Also in this case, non-availability of a lock means that the computation can

not be performed in parallel. Even though this kind of finer grained locking seems

promising in delivering better performance, writing applications with this approach is

a difficult task. A programmer has to ensure that the program does not end up in a

situation where two or more threads are waiting for each other to release a lock. This

kind of situation is known as adead lockand it can occur in any lock based program,

if the locks are not managed properly.

Observing how optimistic concurrency is exploited in databases [37], Herlihy and

Moss proposed a lock free synchronisation mechanism calledTransactional Memory

(TM) [50]. In the TM approach, instead of waiting for a lock tobe available, all

the threads enter the critical region as if the lock is available. In order to ensure the

consistency and the correctness is not compromised, all theoperations performed in

this critical region are made speculatively and kept in isolation from other threads.

Under TM, a critical region becomes a transaction and each transaction appear to rest

of the system, as if it happened atomically. This is achievedby operating speculatively

within the critical region and keeping those operations in isolation. This requires a

mechanism to keep two versions (speculative and original) of memory locations that

are accessed within a transaction. If more than one thread has accessed the same

memory location and one of them has modified it, a conflict has occurred. In order to

check conflicts, each thread is required to maintain a set of locations it has read and

written in the current transaction. Based on how this versioning and conflict detection

is performed several flavours of TM systems exist. Also all these TM related operations

can be performed in hardware, software or using a combination of both (hybrid).

Having described the issues of multi-core computing related to this thesis, the dis-

cussion is now aimed to determine the root cause of these problems. Starting with

a very general approach, a computer consists of large numberof transistors, wires

and so on. In order to make use of this equipment an application program needs to

be developed. In order to facilitate the job of an application program developer, an

abstraction of the underlying system is defined. Programmers write their programs

according to the abstraction provided and this comes in the form of a programming

model. In single-core computing this could simply be the VonNeumann model, since

it comprises only one processor and one memory. Therefore programmers can only

specify “what” operations need to be done with the memory andnot how to do it. Due

to its simplicity, programmers would still favour this kindof abstraction, even in the

multi-core era. A problem occurs when ensuring a Von-Neumann like abstraction in

CHAPTER 1. INTRODUCTION 21

a multi-core processor, because the memory can now be modified by more than one

processor. In order to provide this simple abstraction, at the architectural level, it is re-

quired that each processor has the same view of the shared memory. In this thesis, the

term “global view requirement” is used to represent this. The simplest form of provid-

ing this is to ask each processor to issue instructions in an order, one after the other and

the effects of each instruction becomes visible to the others before the next instruction

is issued. In this regard, a cache coherence protocol can be used to propagate the ef-

fects of the execution of an instruction and a memory consistency model defines when

this propagation should be done.

This kind of approach will certainly be able to provide a Von-Neumann like ab-

straction for a multi-core processor. However, it will restrict the optimizations like

instruction reordering and bypassing and also incurs quitea lot of communication.

Analysing this issue from a high level programming languageperspective, it is clear

that not all the threads are interested in the modifications made to all the memory loca-

tions by other threads. In terms of a coherence protocol thistranslates to, a propagation

not being required for all the cache lines that get modified. The same observation, in

terms of a memory consistency model can be interpreted as, based on the access pattern

certain memory locations can be reordered or bypassed even without the programmer

intervention. Even though the latter is provided in certainrelaxed memory consistency

models, a programmer is required to categorise memory locations to relax the order-

ing. Based on these observations one part of this thesis presents an architecture that

relaxes coherence and consistency of memory locations based on their access patterns.

Going back to the discussion of abstraction, when providingsynchronisation using

locks, programmers have to define not only “what” data needs be synchronised but

also “how” to provide it. It becomes the responsibility of a programmer to acquire and

release locks in a way that the program does not end up in adead lockstate. This clearly

breaks the much believed concept of abstraction in computing. The TM approach to

maintaining synchronisation, is able to provide the same abstraction as it only requires

the definition of the critical section and the underlying TM mechanism takes care of

how the mutual exclusiveness is maintained among accesses to that critical section.

Since TM relies on speculation, aborts can happen due to mispeculation. Also aborts

can happen due the lack of clarity in the mechanism used to detect conflicts (false

aborts). Another part of this thesis proposes a novel technique to reduce these false

aborts.

It is the job of a programmer to mark the critical sections in aTM application and

CHAPTER 1. INTRODUCTION 22

the underlying TM system guarantees that all these criticalsections will be executed

speculatively and committed at the end. Committing requirescommunicating the spec-

ulative modifications to others. If there is a condition inside a critical section, in some

cases it possible that all the prior computation becomes non-useful if this condition

is not met. As the underlying TM mechanism is not aware of any such condition, a

commit phase will always take place as it is the only way to complete the transaction.

Another part of this thesis recognizes that, in those circumstances, there is a need to

exit from a transaction without committing it, hence such a functionality is proposed.

1.1 Contributions

At a high level, this thesis makes three major contributions. The first contribution is

the Data Centric Transactional Memory (DaCTM) in which the region based coherency

and consistency is introduced. The basic idea of DaCTM is to group together memory

locations of similar access patterns and to allocate them todifferent memory regions.

The required level of coherence and consistency for each memory region is defined

according to the access pattern of the locations it holds. The key idea is that, a location

itself defines the required level of coherence and consistency for that location, which is

the basis of the “data centric” concept. DaCTM is inspired by the “Transactions Every-

where” [60] approach and Transactional Memory Coherence andConsistency (TCC)

[39] which suggest the development of an application entirely from transactions. The

attractive component from those proposals is that transactions can be considered as the

basic unit of parallel work, maintaining coherence and consistency, therefore provides

a simple abstraction. However this simplicity comes at the cost of a higher bandwidth

requirement which is not desirable in a multi-core environment. This is addressed

in DaCTM by coupling this sort of “transactions-only” approach with the data cent-

ric concept. Using this approach, DaCTM is able to provide thesame simplicity as

“Transactions Everywhere” [60] and TCC [39] without saturating the communication

network.

The second contribution of the thesis is SnCTM, a novel way of reducing false

transaction aborts in a hardware TM system. The key idea is touse either cache lines

or signatures to detect conflicts in a TM system, depending onthe situation. SnCTM

is motivated by two facts: (1)signatures produce false aborts; (2)signatures are only

required when a transaction cannot fit in the cache. Therefore the proposal of SnCTM

is to use cache lines to detect conflicts when a transaction isable to fit in the cache,

CHAPTER 1. INTRODUCTION 23

signatures are used otherwise. By adaptively changing between these two sources,

SnCTM is able to reduce false transaction aborts in a hardwareTM system. Also

SnCTM is able to reduce the size of a signature without comprising the performance.

As the third contribution, the thesis makes a case for havingan exit functional-

ity in a hardware TM system. The objective of the proposed functionality (TM EXIT)

is to exit from a transaction without committing it. Once exited, the program con-

trol is transferred to the line immediately following the transaction. The proposal is

motivated by the fact that when there is a condition inside a transaction, the whole

computation can be non-useful when this condition is not met. However, regardless

of the fact that the condition is met or not, a commit phase takes place. If there is a

mechanism to notify that the commit is not useful, it could skip that step and go to the

line immediately following the atomic block. The exit functionality proposed in the

thesis fits well for this purpose. By avoiding these unnecessary commits, the network

utilization can be reduced. In addition to making the case for this functionality, ways

to improve expressiveness using this approach are also discussed in the thesis.

1.2 Thesis Structure

The contributions made in this thesis are centred around hardware transactional memory

and each of them is independent of the others (as shown in Figure 1.1). Therefore the

thesis is organized in to three parts.

Figure 1.1: Contributions of the Thesis

Part I presents the Data Centric Transactional Memory (DaCTM)and comprises

CHAPTER 1. INTRODUCTION 24

Chapters 3, 4, 5 and 6. The concept of DaCTM is presented in Chapter 3. The archi-

tectural extensions required to support the DaCTM concept are described in Chapter

4. The performance evaluation of DaCTM is presented in Chapter5. The other related

work of DaCTM, except TM, is presented in Chapter 6. The detailed contributions

related to DaCTM are described in the first chapter of Part I.

The SnCTM approach to reduce false transaction aborts is presented in Part II

which comprises Chapters 7 and 8. The motivation and the concept of using adaptive

sources to reduce false aborts is presented in Chapter 7. The same chapter also sum-

marises related work on hardware signatures. The architectural design of SnCTM and

its evaluation is presented in Chapter 8. A list of contributions made with the SnCTM

approach is presented in the first chapter of Part II. The textin Part II is mostly based

on [45].

Part III which comprises Chapters 9, 10 and 11, makes a case forhaving an exit

functionality in an HTM. The motivation for the proposed functionality, TM EXIT, is

presented in Chapter 9. The same chapter formally defines theTM EXIT function and

describes how to use it in TM programming. Even though increasing performance

is not the prime objective ofTM EXIT, the effect of it towards the execution time is

presented in Chapter 10. Related hardware and software TM approaches that could

either deliver or one would think is able to deliver the same functionality asTM EXIT

are discussed in Chapter 11. All the contributions made by introducingTM EXIT are

described in the first chapter of Part III. The text in Part IIIis mostly based on [44].

In addition to these three parts, Chapter 2 describes the background of Transac-

tional Memory (TM). It focuses on conceptual aspects such asconcurrency control,

versioning and conflict detection; theoretical aspects such as syntax and semantics of

TM; and implementation aspects such as hardware TM, software TM and Hybrid TM.

As the thesis is centred around hardware TM, a significant portion of the chapter is

dedicated to describe some of the key HTM proposals. The conclusions of the contri-

butions made in the thesis is presented in Chapter 12. The samechapter also discusses

the possible future research directions of each high level contribution.

Figure 1.2 shows the suggested reading order for the thesis.As each part is inde-

pendent, the reader can only read the relevant chapters of aninterested part and jump

directly to the conclusions chapter. Also if the reader is experienced in the area of

Transactional Memory, Chapter 2 can be skipped as each part has a separate chapter-

/section describing most of the related work to the contributions made in that part.

CHAPTER 1. INTRODUCTION 25

Figure 1.2: Suggested reading structure of the Thesis

1.3 Publications

The work presented in thesis has resulted in following publications.

• Isuru Herath, Demian Rosas-Ham, Mikel Luján, and Ian Watson. SnCTM: Re-

ducing False Transaction Aborts by Adaptively Changing the Source of Conict

Detection. In Proceedings of the 9th Conference on Computing Frontiers, CF

’12, pages 65-74, New York, NY, USA, 2012. ACM.

• Isuru Herath, Demian Rosas-Ham, Daniel Goodman, Mikel Luján, and Ian Wat-

son. A case for Exiting a Transaction in the Context of Hardware Transactional

Memory. In TRANSACT ’12: 7th ACM SIGPLAN Workshop on Transactional

Computing, February 2012.

Chapter 2

Transactional Memory

The contributions made in this thesis are centred around Hardware Transactional Memory

(HTM). In order to facilitate the reader to understand the contributions, to compare and

contrast them with the existing proposals, this chapter provides a comprehensive sum-

mary of hardware transactional memory. It also gives an overview of software and

hybrid transactional memory systems. The chapter starts the discussion by elaborating

on theoretical and semantical aspects of Transactional Memory (TM) in Sections 2.2

and 2.3 respectively. Design considerations that could affect the performance of a TM

system are discussed in Section 2.4. Advantages, issues andmodels for programming

with TM are discussed in Section 2.5. A comprehensive summary of HTM based on

the most influential existing proposals is presented in Section 2.6. Brief overviews of

software and hybrid TM systems are provided in Sections 2.7 and 2.8. Finally, Section

2.9 summarises the chapter.

2.1 Introduction

When writing parallel programs mutually exclusive accessesare required in certain

cases. Conventionally, a programmer may use locks to ensure that the mutually ex-

clusive execution is guaranteed. In order to acquire a lock,at the hardware level it

is required to first check whether it is available. The acquire operation happens af-

terwards. Essentially this involves a read and a write operation. If the process of

acquiring a lock is done using conventionalread andwrite operations, in a multi-

core environment it is possible for two processors to acquire the same lock at the same

time. Therefore atomic instructions likeTest-And-Set which allow to atomically read

and modify a memory location are being used to implement locks. The instruction

26

CHAPTER 2. TRANSACTIONAL MEMORY 27

Load-Linked/Store-Conditional (LL/SC) is similar to other atomic instructions,

but it also gives the possibility to construct other atomic instructions. For example

a new atomic increment instruction can be constructed usingthis LL/SC instruction.

However the atomicity is still maintained only for a single memory location.

Herlihy and Moss [50] propose to generalise this LL/SC instruction in order to

provide atomicity to more than a single memory location. Their approach is called

Transactional Memory (TM) which is based on the concept of database transactions

[37]. They also inherited the concept ofatomicblocks proposed by Lomet [69] as a no-

tion of structuring a program. The initial TM proposal of Herlihy and Moss introduced

a new multi-core architecture that is capable of providing lock-free synchronization. A

programmer is expected to mark any number of instructions that need to be executed

atomically. The atomic execution on multiple memory locations is made possible with

speculation. When the end of the atomic region is reached, these modifications are

communicated to other processors. The idea of executing code blocks and checking

conflicts at commit points has also been expressed by Knight [57]. In the architecture

proposed by Knight, all the modified cache entries are kept ina second cache called a

confirmcache. Once a block has completed its execution, entries in theconfirmcache

are written back to the main memory. During this process, anyother processor which

has accessed these locations gets aborted.

Transactional Memory and database transactions have certain similarities. For ex-

ample, some of the properties that a database system needs tomaintain, are also re-

quired to be maintained in a TM system. These are known as ACI (Atomicity, Consist-

ency and Isolation) properties. A transaction in TM contextencompasses one or more

memory operations.Atomicityrequires a transaction to either complete all its memory

operations or to leave the system as if none of those took place. If a transaction is

successful, it commits all its speculative operations thereby making them visible to the

rest of the system. If a transaction is not successful, it aborts thereby abandoning all its

speculative modifications and leaving the system unmodified. Consistencyrequires a

system to be transferred from one consistent state to another consistent state. In other

words it ensures no transaction leaves the system in a half-finished state. Finally the

Isolation property requires all the modifications made within an atomic region to be

kept in isolation until the commit point. Modifications madeby one processor are not

visible to others until they are committed.

CHAPTER 2. TRANSACTIONAL MEMORY 28

2.2 TM Design Considerations

When executing transactions,conflictsoccur when more than one processor accesses

the same memory location and one of them is a write. These conflicts then need to be

detectedandresolved. The detection and resolution of conflicts can be performed at

the time the conflict occurs or they can be deferred until later in the execution. The

concurrency control of a TM system defines how these events are handled.

2.2.1 Concurrency Control

Currently there are two basic approaches to concurrency control. In the first approach,

known aspessimistic concurrency, all three events happens at the same time. That is

when a transaction is about to access a memory location, it tries to get the exclusive

ownership of the location. If another transaction has already accessed this location a

conflict is detected and, depending on the conflict resolution policy, one of the trans-

actions is aborted immediately.

In the second approach, known asoptimistic concurrency, these events can happen

at different times. For example multiple transactions can modify the same memory

location. Even though this results in a conflict, it is not detected until one of the trans-

actions decides to commit. When the committing transaction publishes the locations it

has accessed, the TM system detects conflicts and resolves them.

It is hard to advocate which form of concurrency is better because it depends on

the nature of the application. If the application has high contention, it tends to produce

more aborts. For such situationspessimistic concurrencybecomes useful because it

help to reduce the wasted work. However it requires exclusive ownership before ac-

cessing a memory location. This could lead to a live-lock situation, which affects the

forward progress of the execution. On the other handoptimistic concurrencydoes not

require such ownership, allowing any number of speculatively modified entries to ex-

ist for the same memory location. Therefore it does not introduce any live-lock and it

guarantees at least a single thread will progress.

In addition to these two basic mechanisms, there is a third alternative of eager

detection but delayed resolution. In this scheme, conflictsare detected as they occur.

However, which transaction to abort is decided later, most probably when an affected

transaction is committing. The advantage of such a mechanism is that, occurring of

live locks in apessimistic concurrencycontrol system can be avoided as inoptimistic

concurrency, by delaying the conflict resolution. At the same time this mixed mode

CHAPTER 2. TRANSACTIONAL MEMORY 29

has the ability to detect conflicts early as inpessimistic concurrency.

2.2.2 Version Management

In order to ensure the atomicity and isolation properties ofTM, it is required to main-

tain the original and speculatively modified versions of memory locations that are ac-

cessed within a transaction. Theversion managementof a TM takes care of this. In

the first approach,lazy versioning, all the speculative operations are performed on a

local copy thereby keeping the original memory location unmodified throughout the

execution of a transaction. Once the execution of the transaction is finished, all the

original memory locations are updated with the speculatively modified values.

In the second approach,eager versioning, the original memory locations are mod-

ified during the execution of a transaction. Since the original memory location is mod-

ified, the old value needs to be recorded in a separate log. This is important because

if a transaction is not successful it should leave the systemas if nothing has happened.

Since the original memory locations are modified in this approach, they are restored

using the values from this log in such situations.

Again it is hard to decide which is better, because each approach has its advantages

and disadvantages. The overhead of an abort operation is negligible in lazy versioning

because it only requires to clear the local copies of memory locations as the original

memory locations remain unmodified during the execution of atransaction. However

a commit operation requires to explicitly update original memory locations. There-

fore lazy versioningis better suited to applications in which aborts are frequent. On

the other hand the overhead of a commit operation is negligible in eager versioning

systems because when a transaction is completed, all its speculative modifications are

already published. Aborts are costly for these systems as they require to first access

the log file and to revert all the modifications made to the memory locations during the

atomic execution. For applications which have fewer aborts, eager versioningis better

suited.

2.2.3 Conflict Detection

When more than one transaction accesses the same memory location and one of them is

a write, a conflict has occurred. A TM system employs aconflict detectionmechanism

to identify conflicts. This can be categorised based on the time of the detection and

granularity of the detection. If conflicts are detected at the same time they occur, then

CHAPTER 2. TRANSACTIONAL MEMORY 30

it is called aneager conflict detection. In such a system when a transaction is going

to access a memory location, it is checked to see if any other transaction has already

accessed this data in their current transaction. If that is the case, one of the transactions

has to abort or wait until the other one completes. Inlazy conflict detection, conflicts

are checked when a transaction commits. There, when a transaction commits it notifies

the TM system about the memory locations it has modified and the TM system checks

whether any other transaction has accessed these locations.

When considering the granularity of conflict detection, hardware TM systems can

check the conflicts either at word level or at the cache line level. When conflicts are

checked at cache line level false conflicts can occur due to cache line sharing. This can

be avoided if conflicts are detected at word level granularity, then a cache line will have

certain valid words and invalid words. Therefore extra careis required to avoid using

invalid words. In software TM, conflicts can be detected at object level granularity or

at word level granularity.

2.3 TM Semantics

This section describes semantics of TM systems. It describes what properties are re-

quired to maintain in a transaction and how the transactional and non-transactional

accesses are handled. The section also describes several platforms for defining char-

acteristics of an atomic block. Different classes of transactional nesting are covered at

the end of the section.

2.3.1 Serializability

Serializability requires that the effects of a transactionbecomes visible to the rest of the

system as though they had executed in a serial order. That does not mean the ordering

should be the same as they execute. For example if a system hastwo transactions

T1 and T2, the effects of them can be visible either as T1→T2 or T2→T1. Relaxing

the ordering could be advantageous in certain cases. For example if the operations

associated in the next transaction have no relation to the current transaction, the order

they becomes visible can be relaxed. However if the second transaction depends on

the data produced by the first one, relaxing the order can leadto inconsistencies.

CHAPTER 2. TRANSACTIONAL MEMORY 31

2.3.2 Strict Serializability

Strict Serializability is a stronger requirement than serializability. This requires that

the order, the effects of transactions become visible to others should be the same as

the order they execute. For example if the transaction T1 executes before T2, then the

effects of T1 should be visible to the others before T2.

2.3.3 Linearizability

Linearizability requires that a transaction appear to havecompleted all its operations at

a single point in the program order. This emphasise that all the speculative operations

should atomically become visible to others. Reasoning aboutTM execution is made

easier with linearizability because all the read write operations inside an atomic block

can be represented by a single operation in the program order.

2.3.4 Weak Isolation

In a program there can be transactional and non-transactional accesses, even to the

same memory location. Weak Isolation (WI) guarantees the TM semantics only among

transactional accesses. Even though this reduces the overhead on a TM system, in cer-

tain cases this can be problematic. For example consider a situation where a transaction

reads the same memory location several times and a non-transactional write is made

to the same memory location between those reads. If WI is in place, this produces an

inconsistent view of the memory as the latter reads observe the updated value whilst

early reads see the old value within the same transaction.

2.3.5 Strong Isolation

The above problem can be addressed with Strong Isolation (SI) which guarantees TM

semantics among transactional and non-transactional accesses. When SI is maintained,

transactions are isolated from other transactions and fromany other non-transactional

operations. Therefore in the previous example, a transaction will not see the update

by the non-transactional write. It might either signal a conflict or the non-transactional

write will be delayed until the transaction commits.

CHAPTER 2. TRANSACTIONAL MEMORY 32

2.3.6 Single Lock Atomicity

Single Lock Atomicity (SLA) is a model that can be used to define semantics of a

transaction with respect to other transactional and non-transactional operations. Under

SLA, the behaviour of a transaction is defined as if there is a program wide global lock.

For example under SLA, the execution of T1 and T2 transactions will be similar to as

if one of T1 or T2 acquiring the global lock and finishing the transaction and thereafter

the other one doing the same. SLA model is quite simple and also programmers can

easily become familiar with it as it extends the lock based programming model to

TM. Despite its simplicity, SLA cannot be used to define the behaviour of all the

situations that occur in TM programming. One such problem occurs when defining the

behaviour of nested transactions. This is because, according to the definition of SLA,

if there is only one program wide lock, the inner transactionhas to wait indefinitely

as the outer transaction has already acquired the global lock. Another situation arises

when a transaction enters an infinite loop thereby preventing the progress of all others

transactions as they cannot acquire the global lock.

2.3.7 Disjoint Lock Atomicity

Some of these issues have been addressed in Disjoint Lock Atomicity (DLA), which is

a weaker model than SLA. Under DLA, there is no global lock, instead a transaction

is required to acquire a set of locks corresponding to the data that it intends to access.

Therefore if two transactions access disjoint data, they donot need to wait for each

other. For example, in order to execute transaction T1 underDLA, it only requires

to acquire locks related to the memory locations it intends to access. If the other

transaction T2 does not access the same set of memory locations, they can execute in

parallel.

2.3.8 Transactional Sequential Consistency

Transactional Sequential Consistency (TSC) proposes to define the semantics of a

transaction using TM itself. TSC is derived from extending Sequential Consistency

(SC) to the TM domain. Under TSC, transactions appear to have happened atomically

without any interleaving with other operations in the system. TSC stands as a better

model than any lock based models, because it allows a programmer to precisely reason

about the outcome of an application which has transactionaland non-transactional ac-

cesses.

CHAPTER 2. TRANSACTIONAL MEMORY 33

2.3.9 Nested Transactions

A transaction becomes nested if it is inside another transaction. In such situations it is

not straightforward to define the behaviour of a nested transaction. Typical questions

which arise with nested transactions are whether the commitof an inner transaction

becomes visible to other transactions or whether the abort of an inner transaction aborts

the outer transaction and so on. Different approaches to handle nested transactions are

summarised below.

2.3.9.1 Flattened Nesting

This is the simplest form of nesting. The inner transaction becomes a part of the outer

transaction. Therefore committing the inner transaction does not make its changes vis-

ible to the others until the outer transaction commits. Similarly if the inner transaction

gets aborted, the outermost transaction gets aborted as well.

2.3.9.2 Closed Nesting

In closed nesting, when an inner transaction gets aborted itdoes not affect the outer

transaction. If the inner transaction commits, its changesbecomes visible to the outer

transaction. However these changes do not become visible tothe rest of the system

until the outermost transaction commits. If the inner transaction commits the behaviour

of both flattened and closed nesting are the same. However theoperations involved in

closed nesting are more costly than the flattened nesting. Therefore if commits are

frequent flattened nesting will outperform the closed nesting. Conversely if aborts are

frequent closed nesting will prevent aborting the entire transaction, thereby performing

better than flattened nesting.

2.3.9.3 Open Nesting

In open nesting, when an inner transaction commits, its changes become visible to the

rest of the system. Therefore even if the outer transaction gets aborted, the modifica-

tions made by the inner transaction are kept committed. Opennesting could be used to

improve concurrency by treating the inner transaction as a separate transaction. How-

ever extra effort is required when using open nesting as the isolation property of the

outer transaction can be dropped by the inner transaction, thereby leading to inconsist-

encies.

CHAPTER 2. TRANSACTIONAL MEMORY 34

2.4 TM Performance Considerations

Programming with locks can harm the performance of a parallel application as it is

a blocking operation. One of the motivations for proposing TM is because it is a

non-blocking operation. As there can be different ways of providing non-blocking

synchronization, this section first briefly summarises them. The section also covers an-

other performance consideration which is the contention management of a TM system.

Finally the section also describesearly-release, which is an optimization proposed to

reduce conflicts, as they can affect the performance.

2.4.1 Non-blocking Synchronization

The first consideration of TM performance is the extent to which it supports the liveli-

ness of an application. Liveliness is reflected by the amountof progress which is guar-

anteed in an application when using TM. In other words, whether the synchronization

provided by TM isnon-blocking? An algorithm can be considered asnon-blocking, if

a pre-empted operation does not block the other operations making progress. Several

variations ofnon-blockingsynchronization exist. The strongest one iswait-free [46]

in which each transaction is guaranteed to complete in a finite number of steps regard-

less of the actions of other transactions. A slightly weakercriterion is lock-free[47]

in which some transactions are required to finish in a finite number of steps. Herlihy

et al. proposed an even weaker criterion fornon-blockingsynchronization which is

obstruction-free[48]. Synchronization techniques belonging to this type only guaran-

tee forward progress when there is no contention. This is able to provide a simplified

implementation of TM algorithms whilst delivering the benefits of wait-freeandlock-

free.

2.4.2 Contention Management

Another performance consideration is what sort of contention management (CM) policies

are supported in a TM system. CM is responsible for deciding the best course of ac-

tion when a transaction aborts. The simplest policy is to abort a transaction whenever

it encounters a conflict. This can result in aborting the sametransaction multiple times,

for example, if another transaction is operating inside a loop and modifying a shared

variable. In some cases, introducing a delay with an exponential backoff can solve the

problem. Another solution is to give priority to transactions based on the number of

CHAPTER 2. TRANSACTIONAL MEMORY 35

operations performed. In such a scheme, when a conflict occurs the transaction with a

lower priority aborts and the higher priority one continues. This can lead to starvation.

It is hard to define which policy is the best, because it depends on the characteristics of

the application. Several CM policies have been proposed and agood survey of them is

presented by Schereret al. [97].

2.4.3 Early Release

Another way to improve performance in a TM system is to reducethe number of

conflicts. Several implementation techniques can be employed to achieve this. This

can also be achieved by extending the TM system to allow a programmer to manu-

ally define certain memory locations as non conflicting regardless of being accessed

inside transactions. Early-release provides this kind of functionality [49, 100]. The

most common example to demonstrate the use of early release is when one transac-

tion is performing a search and another one is modifying a part of the data structure

being searched. This can lead to conflicts even if both do not focus on the same data

item. With early release, a programmer can explicitly remove entries from the read

set of the transaction. For example in the above scenario, the entries accessed in the

search method can be removed thereby reducing unnecessary conflicts. However using

early-releaserequires great care as it can compromise the correctness, ifvariables are

removed from the read set erroneously.

2.5 Programming with TM

Even though the initial goal of TM was to provide atomicity for more than a single

memory location, it has grown substantially as a programming model with particular

emphasis on the exploitation of future multi-core architectures. This section describes

the advantages of TM over lock based programming. It also discusses certain function-

alities that either cannot be provided or are difficult to provide with TM as opposed to

lock based programming. Finally it also describes a programming model which is

completely based on TM.

2.5.1 Composability

One of the advantages provided by TM is that the programmer isno longer required

to name the resource that the synchronization is based on. This is different to lock

CHAPTER 2. TRANSACTIONAL MEMORY 36

based programming in which programmers have to state the lock on which the syn-

chronization is based on. In TM, they can simply state that a method or a block of

code needs to be synchronized. Programming is made easier with TM because it only

require programmers to define what to synchronize, not how todo it. The indirect ad-

vantage of this is the composability. That is with TM any number of atomic blocks can

be combined together in order to form another atomic block. This does not require any

programming effort, whilst achieving a similar outcome with lock based programming

requires great care.

2.5.2 Conditional Synchronization

One of the issues that a programmer faces with TM is how to provide conditional

synchronization. For example consider a situation where one transaction has to wait

if a data structure is empty and another transaction is pushing items in to this data

structure. With lock based programming this can easily be achieved by asking the

first thread to wait on a condition variable (eg:pthread cond wait [54]). A similar

approach cannot be applied in TM programming as the operations performed within

an atomic block are done in isolation. Harriset al. [43] proposed aretry statement

to support this kind of scenario. The underlying functionality of retry is to transfer

the control to the beginning of the same atomic block which has invoked it. Simply,

the same transaction is retried usingretry. For example consider a situation where a

pop function has to wait until a list is not null. In this case,a functionality similar to

conditional waiting can be delivered withretry. That is by issuing aretry statement

when the list is null. Thereafter the same transaction is retired until the list is not null,

hence similar to waiting for the list to be not null.

2.5.3 Memory Allocation

Another issue that needs addressing is memory allocation. The first problem with

memory allocation is, it can be a serializing operation. Imagine a situation where

a memory allocation is happening inside an atomic block. As memory allocations

are served serially, all the concurrently running transactions also become serialized.

This could ruin the whole concept of TM. However this can be addressed by having a

parallel memory allocator similar to Hoard [6]. A second problem arises when defining

the behaviour of speculative allocation. If TM semantics are strictly enforced, then the

allocation should not be visible to other threads until the commit point of the requesting

CHAPTER 2. TRANSACTIONAL MEMORY 37

transaction. That means, for example, if there were 5 free blocks and a speculative

request is allocated 3 blocks, the rest of the transactions should still see that 5 blocks

are available, not 2 (5-3). This means the memory allocator cannot keep a precise

count on the available memory, because the speculatively allocated memory cannot

be given to any other request because then it will overwrite the values written by the

other atomic block. For example in the same scenario, if another transaction requests 3

memory blocks, the request cannot be serviced because thereis no enough free blocks

to serve that request. However looking at this denial from the requesting transaction’s

view, there is nothing stopping the allocator granting its request because, according to

the requester’s view, there are 5 free blocks available. Some of these issue has been

addressed by Hudsonet al. in their McRT-Malloc allocator [53].

2.5.4 Transactions Everywhere

Two major approaches can be used when integrating TM with parallel programming.

The most straightforward way is to replace locks with atomicblocks. In certain situ-

ations this can lead to problems. If the code region protected by locks uses conditional

synchronization, then the code needs to be modified to reflectthe available function-

ality in TM to support such a feature. Another situation is, if the mutually exclusive

code has certain irreversible actions or interactive input/output operations then the un-

derlying TM specification should be studied to realise how the lock based code can be

transformed to a TM version to perform similar to the original.

The other approach is to transform the entire program into a collection of transac-

tions. The “Transactions Everywhere” approach proposed byKuszmaul and Leiserson

[60] belongs to this category. The objective of this approach is to free the user from

managing complex synchronization protocols as the entire program can be seen as

a collection of atomic blocks. As all the operations have to be performed within a

transaction, there cannot be any data races within transactional and non-transactional

accesses. The authors extend the Cilk [32] programming language with theatomic

keyword to denote that a method or an operation followed by itneeds to be transac-

tional. In their approach transaction boundaries of an application are defined at places

like return statements, spawning a thread and so on. If the atomicity is required to

be maintained across these exit points, theatomic keyword is used explicitly. Trans-

actional Memory Coherence and Consistency (TCC) [39] is an architecture proposal

for using transactions as the basic unit of parallel work, maintaining coherence, con-

currency and synchronization. The same authors also proposed a loop based and fork

CHAPTER 2. TRANSACTIONAL MEMORY 38

based programming extensions to support the TCC architecture [38]. When a typical

for loop is replaced with the proposedt for construct, all the iterations of the loop are

guaranteed to be executed as separate transactions. Different flavours of this construct

allows to change certain parameters of the execution, such as controlling the number

of iterations included in a transaction or maintaining an order among them and so on.

They also proposedt fork which allows the execution of a method call as a separate

transaction while the callee method continues its execution from the line immediately

following the method call.

2.6 Hardware Transactional Memory

Systems in which all the TM related operations (conflict detection, version manage-

ment) are performed in hardware belong to the category of Hardware Transactional

Memory (HTM). When compared to Software based TM systems, HTMsystems can

provide better performance. Also they do not require application rewriting. However

they are not as flexible as software TM systems. Another disadvantage of HTMs over

software TMs is that the limitations imposed by the physicalhardware such as caches.

For example, speculative data is stored in the Level 1 (L1) cache of a TM processor.

This implicitly requires a transaction to be bounded by the size of the L1 cache. In

addition, HTMs found it difficult to maintain speculative data among context switches

and/or thread migration. This is because, in either case caches need to be evicted to

the main memory before performing the associated operations. In an HTM system this

cannot be performed directly, hence require further extensions. The literature on the

area of HTM is huge, therefore summarising them all is beyondthe scope of this thesis.

Interested readers are directed to the Chapter 5 of the Transactional Memory book [42]

by Harriset al.. This section describes some of the key proposals in HTM literature.

HTM systems can be categorised in several orthogonal axes. The first criterion is

whether the HTM is implicit or explicit. The latter requiresspecial read and write

instructions to be used when accessing a location inside a transaction. Since new

instructions are introduced, it is possible to treat only the necessary memory locations

as transactional, even if they are performed within an atomic block. The advantage

of this approach is that the read and write set of a transaction only contains memory

locations which require ACI properties to be maintained. This results in a smaller

read and write set, hence is useful in addressing the problemof resource limitation in

HTM. The disadvantage of these explicit HTMs is that they require a TM application

CHAPTER 2. TRANSACTIONAL MEMORY 39

to be rewritten to use new transactional read and write operations. This introduces

a problem when using library functions or application code which has already been

compiled. One solution is to have different versions for library routines, a TM version

and a non-TM version. However this is not possible when the library is available only

in binary format.

The TM system proposed by Herlihy and Moss [50] falls in to this category. In their

proposal, programmers are equipped with three memory operations:Load-transactional

(LT) -to read a memory location;Load-transactional-exclusive (LTX) -to read a

memory location with the intention of modifying it;Store-transactional (ST) -to

speculatively modify a memory location. All the memory locations accessed with LT

become the read-set and locations accessed with LTX and ST become the write-set of

a transaction. In addition they also introduced three operations to control the execution

of a transaction. TheCommit operation makes all the speculative updates visible to

others by updating their original memory locations. All thespeculative modifications

are abandoned by calling theAbort operation. The last operation,Validate, is used

to test the status of a transaction itself. If a transaction has aborted, it returnsFalse, else

it returnsTrue. They do not provide an operation to indicate the start of a transaction,

the first call to LT, LTX or ST is considered as the start of a transaction and is com-

mitted by explicitly callingCommit. Each processor is equipped with a transactional

cache in addition to the regular cache and they are exclusive, meaning that an entry

can only be residing in one cache. The transactional cache holds the speculative values

which become visible to others on a commit or discarded on an abort. Transactions are

aborted if an interrupt happens when a processor is executing a transaction. The same

applies for transactional cache overflows.

The Oklahoma Update proposal by Stoneet al. [104] is a synchronization mech-

anism that requires explicitly defined memory operations. Their proposal comes with

three operation to manipulate data:Read-and-Reserve -reads a memory location and

reserves it in a register called thereservationregister;Store-Contingent -modifies

the data after copying it to a reservation register, these modifications do not become

visible to other processors;Write-if-Reserved -this takes multiple reservation re-

gisters as its argument and updates their original memory locations with the speculat-

ive data. Thereafter the speculative data becomes visible to other processors. When

Write-if-Reserved is executed, it tries to acquire the ownership of the memory loc-

ations corresponding to the givenreservationregisters. Once all the ownerships have

been obtained, all the locations are updated and ownershipsare released thereafter.

CHAPTER 2. TRANSACTIONAL MEMORY 40

The Advanced Synchronization Facility (ASF) [21] is a proposal from AMD to

support HTM. It also falls into the category of explicitly defined TM systems. ASF

proposes seven new instructions. TheSPECULATE instruction starts a new transaction

and theCOMMIT instruction finishes it. TheLOCK MOV instruction is used to transfer

data between the processor registers and memory. This is similar to explicit read/write

operations from Herlihy and Moss [50] and Oklahoma Update [104]. TheABORT in-

struction of ASF, explicitly aborts a transaction. In addition, system calls, exceptions,

interrupts and eviction of transactionally modified entries from the cache cause a trans-

action to abort. TheRELEASE instruction releases an entry from the read-set of a trans-

action. Thereafter it is not checked for conflicts. Finally,WATCHR andWATCHW detect

stores and loads from other processors, to a set of given addresses. In ASF, when a

transaction is aborted it jumps to the line immediately following theSPECULATE in-

struction. One option is to continue executing the atomic block. The other is to jump

to an alternate location by manipulating the Zero flag. Usingthe latter approach, ASF

can execute an abort handler and it allows the passing of an abort code which tells the

handler the cause of the abort [23].

Most of the HTM systems belong to the category of implicitly defined ones. In

this category a programmer is expected to only mark the startand the end of an atomic

block, the underlying TM system treats all the operations within these two boundaries

as transactional. The advantage of such an approach is that the TM application can

use any external library without modifying it. The disadvantage of such an approach is

all the memory locations accessed within an atomic block areconsidered transactional

regardless of whether they require it.

Speculative Lock Elision (SLE) [87] was one of the to first to propose implicit

hardware support for lock free execution using speculation. Event though the authors

did not use the term “Transactional Memory”, it is basicallysimilar to a TM system.

No modifications are required to the application code in order to gain the advantage

of SLE. In the proposed architecture, when a lock acquire operation is detected, the

lock is not acquired, instead it is assumed that the lock is available and the execution

is continued. All the modifications made within the lock region are buffered so that

no other processor sees them. Existing cache coherence protocols are used to check

whether any other processors are accessing the same location as this one. If that is

the case, a conflict has occurred and the execution is restarted this time by explicitly

acquiring the lock. If no conflicts have occurred, the buffered entries are committed

atomically. The same authors proposed Transactional Lock Removal (TLR) [88] in

CHAPTER 2. TRANSACTIONAL MEMORY 41

which locks in a lock based program are replaced with transactions and timestamps

are used to detect conflicts.

Rundberg and Stenström [92] argue that having an order for entering and exiting

the lock region in SLE [87] can harm the concurrency. Insteadthey propose to specify

an order once all the threads have reach the lock release statement. Their proposal,

Speculative Lock Reordering (SRL), works as follows. All the threads enter the lock

region assuming the lock is available, similar to SLE [87]. Once all the threads have

reached the lock release statement, athread dependency graphis created. Using this

graph a commit order is formed in order to minimize dependencies. Conflicts are

detected at commit time in SLR, as opposed to eager conflict detection in SLE.

Hammondet al. propose Transactional Memory Coherence and Consistency (TCC)

[39] in which transactions are considered as the basic unit of parallel work, commu-

nication, cache coherence and memory consistency. In TCC a program is decomposed

into several transactions and the underlying architecturemaintains coherence and con-

sistency at transaction level, thereby providing a simplified programming model. How-

ever this simplicity comes at the cost of higher bandwidth requirements. Cache lines

are extended to record read and write sets of a transaction. In order to maintain the

isolation property of a transaction, speculatively modified entries are not allowed to be

flushed during the execution of an atomic block. The authors propose to either use a

victim buffer or to gain exclusive commit permission if the flushing is inevitable due

to the capacity of the L1 cache.

Ananianet al.propose Unbounded Transactional Memory (UTM) [3], an ideal-

ised HTM design which supports the execution of unbounded transactions. The term

“unbounded” encompasses transactions of arbitrary size and duration. Arbitrary size

means that transactions can have a read or write set bigger than the L1 cache, in fact

they can even be bigger than the physical memory but have to beless than the vir-

tual memory. Arbitrary duration means that transactions can be longer than the time

slice or the scheduling quanta. The first requirement is supported by having a structure

calledxstatein the memory and storing all the transactional informationin that struc-

ture. If the size of this structure is not enough for a particular transaction, it is aborted

and restarted after the operating system allocates a biggerarea for the structure. By

treating thexstateas a system-wide data structure and saving a pointer to this structure

in the processor state, UTM is able to allow transactions to be longer than the schedul-

ing quanta or even to migrate from one processor to another. Even though UTM is an

CHAPTER 2. TRANSACTIONAL MEMORY 42

attractive proposal for executing unbounded transactions, it requires significant modi-

fications to the processor hardware and to the memory subsystem. Therefore the same

authors also proposed Large Transactional Memory (LTM) which is a simplified ver-

sion of UTM. LTM can support transactions which have a read/write set bigger than

the L1 cache, but they have to be smaller than the physical memory. LTM cannot

support transactions which are longer than the scheduling quanta. In LTM when a

transactionally modified cache entry is flushed while the processor is still executing

the same transaction, the ejected entry is stored in an uncached area in the memory.

The L1 cache is extended to have an additional ‘O’ bit to denote that a transactionally

modified entry has been removed from the cache. When detectingconflicts both the

L1 cache and this overflow area is examined.

Rajwar et al. argue [89] that most of the HTM proposals require programmers

to be aware of system specific parameters such as the buffer size and the scheduling

quanta, hence can be unattractive. They propose Virtual Transactional Memory (VTM)

in which those system specific parameters are shielded from aprogrammer, similar to

the virtual memory shielding the parameters of the physicalmemory. The idea is to

decouple the TM from the underlying architecture by virtualizing it using several data

structures. In VTM each transaction is associated with aTransaction Status Word

(XSW) which acts as the sole authority of the associated transaction. The attractive

component of the VTM is theTransaction Address Data Table(XADT), which keeps

track of the overflowed memory locations. This gives VTM the ability to support

transactions that exceed the size of the L1 cache, transactions that can be swapped from

one processor and scheduled in the same or another processorand so on. They also

proposed to include anXADT Filter (XF) to support fast execution of transactions that

fit in the cache and do not encounter context switches. In VTM if a transaction is able

to fit in the cache, it will be executed without using any of these data structures. When

this is not the case, these data structures are used. Howevernone of these structures

are visible to the programmer, thereby making the programmer less worried about

managing internal TM data structures.

Mooreet al. argue [77] that most of the TM proposals use lazy version manage-

ment, hence require buffering of all the speculative data which needs to be committed

at the end, making it a slow process. Their proposal, Log-TM,relies on eager version-

ing and eager conflict detection. In Log-TM all the memory updates are performed

in-place and the old values are stored in a per thread cacheable log. Therefore when a

CHAPTER 2. TRANSACTIONAL MEMORY 43

transaction commits, it does not require to transfer any data as the speculatively modi-

fied entries are already updated. When a transaction gets aborted, this log file is walked

and all the modified entries are replaced with old ones. Log-TM uses the existing cache

coherence protocols to detect conflicts. They introduced a new sticky-Mstate which

allows a processor to keep the ownership of a transactionally modified cache entry

even after it has been evicted from the cache line. The advantage is that conflicts can

be detected even for evicted cache lines without examining external data structures as

in LTM [3] or VTM [89].

Page based Transactional Memory (PTM) is proposed by Chuanget al. [22] in

order to support transactions that are not limited by the space and/or time. Even though

their approach is similar to VTM [89], PTM maintains overflowinformation at page

level granularity whereas VTM does it at the cache line granularity. In PTM if a

transactionally modified cache entry is evicted before committing, a shadow pageis

allocated and original data is copied there. The modified data is stored either at the

home pageor at theshadow pagedepending upon the type of PTM (Copy or Select).

As the pages (shadowandhome) used in PTM are physical, as opposed to virtual data

structures in VTM [89], no data is moved on commit. However onan abort, original

data needs to be restored to thehomepage.

Cezeet al. propose [15] to use hardware signatures to represent the read and write

sets of a transaction. A signature is a fixed set of bits, implemented using bloom

filters [7], in which certain bits are set according to the address being considered.

The important contribution from their approach, Bulk, is that read and write sets of a

transaction do not need to be recorded in the L1 cache therebyallowing transactions

to grow beyond the size of the L1 cache. In order to insert an address to a signature,

certain bits are selected by hashing the address. In order totest whether an address is

already in the signature, the same hashing is performed on the address and the bits are

checked. The disadvantage of using signatures is that they can produce false positives,

meaning when checked for membership they may assert positive even though it is not

the case.

In order to simplify the modifications required to support unbounded transactions,

Blundell et al. [9] proposepermissions-only cache, a cache like structure that can

record the speculatively modified cache lines that are evicted during the execution of

a transaction. As their HTM uses eager versioning, updates are made in-place and

the original values are recorded in a log as in Log-TM [77]. When a transactionally

modified cache entry is evicted, the address is recorded in this permissions-only cache,

CHAPTER 2. TRANSACTIONAL MEMORY 44

but not the data. By using an efficient encoding mechanism, theauthors claim that a

4KB permissions-only cachecan support up to 1MB of transactional data. They also

propose ONETM, an HTM system which supports unbounded transactions, simply by

restricting one overflow at a time. In ONETM-Serialized version, once a transaction is

allowed to overflow all the other transactions have to stall whilst ONETM-Concurrent

allows non-overflowing transactions to execute concurrently with the overflowing one.

In order to facilitate conflict detection among overflowing and non-overflowing trans-

actions, the authors use per-block meta data.

Following the proposal for encoding read and write set of a transaction to a fixed

sized signature by Cezeet al. [15], LogTM Signature Edition (SE) was proposed by

Yenet al. [110]. LogTM-SE decouples the version management and conflict detection

of an HTM from hardware caches thereby making them virtualizable. Signatures are

used to track read and write sets in LogTM-SE. The authors propose to use asummary

signature, which is a union of all the signatures of threads that are currently inactive,

to detect conflicts among active threads and inactive threads. As the software logs used

by the LogTM-SE are accessible by the operating system, transactions can be migrated

from one processor to another processor as simply as migrating a conventional process.

Even though the logs are software accessible in LogTM [77], it cannot support virtu-

alizable transactions as it relies on R/W bits in the cache lines to detect conflicts. This

is because, in LogTM, conflict detection was not decoupled from caches..

Chafiet al. [17] propose to integrate a distributed directory structure to the TCC

[39] proposal in order to provide a scalable architecture. Using this approach the au-

thors were able to allow parallel commits which were not available in the original TCC

design. This is made possible by introducing aSharing Vectorand aWriting Vector

which keep track of the directories that the current transaction has read and written re-

spectively. Even though Scalable TCC does not rely on conventional cache coherence

protocols, it does not need to write-back data on a commit, asin original TCC.

Adapting the concept oftokensfrom token coherence[71], Bobbaet al. propose

TokenTM [10], an HTM system which relies on per block meta data to detect conflicts.

In TokenTM each memory block is associated with T number of tokens. In order to

perform a transactional read, a transaction is required to obtain a single token. All the

T tokens of a memory block are required to perform a transactional write. Meta-data

is stored in the memory by reusing some of the bits used for storing error correction

and detection information. As meta-data is stored in memory, TokenTM can easily

CHAPTER 2. TRANSACTIONAL MEMORY 45

virtualize transactions. The advantage of TokenTM over LogTM-SE in implement-

ing virtualizable transactions is that, the former can provide precise conflict detection

whereas the latter encounters a large number of false conflicts due to the use of signa-

tures. As meta-data requires to record the an ID of the thread(TID) who has acquired

the token, in order to make transactions virtualizable the TIDs need to be unique among

all the processes.

HTMs systems which support eager conflict detection are capable of minimizing

the wasted work and also require minor modifications to the existing cache coherence

protocols. However, they require a good contention management mechanism to decide

which transaction to abort as they occur eagerly. On the other hand, systems sup-

porting lazy conflict detection do not have this problem, butthey require a validation

mechanism at the commit phase. The term conflict detection inthis context actually

refers to both the detection of the conflict and resolving it.All the proposed HTMs

consider these two events together, hence performed at the same time. Tomíc et al.

[105] proposed to separate these two events, thereby takingadvantages of both eager

and lazy conflict detection. Their system, EazyHTM, detectsconflicts eagerly, but the

resolution of conflicts is deferred until the commit time. By using the conventional

cache coherence protocol, each processor tracks conflicts eagerly and maintains two

lists: Races-listandKillers-list. The former records the processors to be aborted on

completion of the current transaction and the latter records the list of processors who

are allowed to abort the current transaction. This is used toavoid false aborts.

Sun Microsystems was the first to develop a commercial processor with TM sup-

port [18, 29]. Their Rock processor comes with two new instructions chkpt and

commit which specify the start and the ending of the atomic block.Chkpt takes an

address (fail-address) as the argument which is the location to resume the execution

in case of a failure. All the speculative stores are bufferedin an on chip queue. The

shared L2 cache is notified about these speculatively modified entries, which tracks

reads of the other processors to detect conflicts. If this queue gets full before a trans-

action is committed, Rock proposes to abort the transaction.Therefore the size of the

transaction’s write set is limited to 32 entries, which is the size of the speculative buf-

fer. When a transaction is aborted, the cause of the abort is stored in a register called

Checkpoint Status(CPS).

Azul Systems also have developed a commercial processor with TM support [25]

to accelerate Java locks. As the intention is to accelerate mutually exclusive Java

code regions, they do not introduce any programming language keyword to define an

CHAPTER 2. TRANSACTIONAL MEMORY 46

atomic region, hence rely on the existingsynchronizedkeyword. Three new instruc-

tionsSPECULATE, ABORT andCOMMIT have been introduced. In order to track read and

write sets, caches are extended withspeculatively-readandspeculatively-writtenbits.

Therefore the size of a transaction is limited by the size of the L1 cache. If a specu-

latively modified cache line is evicted from the cache, the transaction is aborted. Azul

rely on software heuristics to determine when to use the HTM facility available within

the chip.

Intel recently announced Intel Transactional Synchronization Extensions (Intel TSX)

in a future processor, codenamed Haswell [55]. Intel TSX supports two modes of ex-

ecution for providing optimistic concurrency: Hardware Lock Elision (HLE) and Re-

stricted Transactional Memory (RTM). HLE which is basically similar to SLE [87],

is for executing legacy code which is written using locks. HLE provides two new in-

structions,XACQUIRE andXRELEASE. When the application code tries to acquire a lock,

XACQUIRE is used and the lock variable is added to the read set. No writeoperation

is performed on the lock variables, thereby making it available to others. While this

enables multiple threads to acquire the same lock, if any thread has performed a con-

flicting read/write operation, the lock region is executed again, without lock elision.

RTM provides three new instructionXBEGIN, XEND andXABORT to start, commit and

abort a transaction, respectively. Similar to Rock [18, 29],XBEGIN also takes an ad-

dress as the argument, fallback address, to resume the execution in case of a failure.

Conflicts are detected at cacheline granularity in Haswell. Therefore if the read/write

set exceed the L1 cache capacity, the transaction needs to beaborted. In addition,

transactions need to be aborted in events like the executionof a CPUID instruction or

the occurrence of exceptions.

2.7 Software Transactional Memory

In Software Transactional Memory (STM) all the TM related operations (conflict de-

tection, version management) are performed in software. This increases the flexibility

of a TM system as different policies can be used depending on the scenario. Also

an STM does not encounter the physical limitations such as the buffer size, faced by

an HTM system. However they have the inherent disadvantage of having to perform

everything in software, which in general is slower than using hardware. The work

presented in this thesis is mainly focused on HTM, thereforesurveying the area of

STM is of lesser relevance, however for the sake of completeness a brief summary of

CHAPTER 2. TRANSACTIONAL MEMORY 47

two proposals are presented in the remaining section. Interested readers are directed to

Chapter 4 of the Transactional Memory book [42] by Harriset al., for a comprehensive

summary of the available STMs.

The first STM discussed, is proposed by Shavit and Touitou [98]. Their STM only

supports static transactions in which all the memory locations that a transaction might

access have to be known in advance. TheMemorydata structure is used to store the

speculative updates. Anownershipvector records the owner of each block inMemory.

Another vectorAddwhich is maintained per process, contains the set of addressthat a

transaction accesses. Old values are kept in a vector calledOldvalueswhich is updated

on a successful transaction. A transaction first acquires the ownership and writes the

old values to the transaction’s record. New values are calculated thereafter and the

memory is updated with those. Ownerships are freed thereafter. If a transaction fails

to acquire the ownership, it is considered a failure.

The STM proposed by Shavit and Touitou [98] has a constraint that the data set of

a transaction needs to be defined in advance. This issue was addressed in the Dynamic

STM (DSTM) [49] proposed by Herlihyet al.. In DSTM, when a transaction requires

to access an object, it creates a clone of it. Thereafter all the modifications are done

on the clone object. If a transaction is to commit successfully, the pointer of the object

is changed to refer to the clone object. Only the transactionhas a reference to the

clone object, therefore no other thread will see the speculatively modified object until

it is committed. When a transaction requests a clone of an object, the cloning function

checks whether any other thread has already been given a clone of that object. If that

is the case, the request is denied. However this may limit theparallelism because it

does not consider whether the objects have been cloned for a read operation or a write

operation. In order to remedy this, the authors propose to first open all objects in a

read-only mode and to walk through the objects to decide which objects are going to

be speculatively modified. The authors also propose a release mechanism to remove

an object from its read mode in order to reduce conflicts. DSTMwas an influential

proposal in STMs, since then quite a number of proposal have been made and a good

summary of those can be found in Chapter 4 of the TransactionalMemory book [42]

by Harriset al..

CHAPTER 2. TRANSACTIONAL MEMORY 48

2.8 Hybrid Transactional Memory

HTM and STM are combined in Hybrid Transactional Memory (HyTM) to achieve

the benefits of both. In HyTM some of the TM related operationsare performed in

software whilst the rest are performed in hardware. Damronet al. [28] propose to use

the underlying HTM to boost performance, and to retry in the STM if the execution in

HTM fails due to limitations. Their design comes with a compiler and a STM library.

The compiler produces two versions of the application code,one for HTM and one for

STM. Initially a transaction is tried in HTM, if it fails a function in their HyTM library

is called which then decides whether to retry in HTM or in STM.Their HTM system is

equipped with a function to access read and write sets maintained by the STM in order

to detect conflicts between transactions running in HTMs andSTMs.

Concurrently with Damronet al., Kumar et al. also propose a Hybrid Transac-

tional Memory system [59]. Their HyTM is based on extending the DSTM (an object

based STM system proposed by Herlihyet al. [49]) to work with HTM. DSTM relies

on creating a new object on the first transactional access to it. While this gives the

flexibility to commit or abort simply by resetting the pointer, the allocating space and

copying data is a costly operation. In order to remedy this costly operation, Kumar’s

HyTM suggests to modify data objects in-place while operating in hardware mode. In

addition, transactions do not need to perform a commit-timevalidation as in DSTM

[49] because conflicts are detected eagerly using cache coherence protocols. Similar

to the HyTM by Damronet al. [28], Kumar’s HyTM also decides a mode (software or

hardware) for operation at the beginning of a transaction. Initially a transaction is tried

in hardware mode, if it fails it is retried in software mode.

Lev et al. propose Phased Transactional Memory (PhTM) [67], which executes

transactions using the best available platform. PhTM has several modes of execution.

When operating underHARDWARE mode all the transactions are executed using HTM.

When operating underSOFTWARE mode, all the transactions are executed using STM.

All the transactions are executed using the HyTM when operating under theHYBRID

mode. PhTM also supportsSEQUENTIAL andSEQUENTIAL-NOABORT modes which are

basically software modes without the overhead of managing read and write sets as

no conflict detection phase is involved. In addition,SEQUENTIAL-NOABORT does not

require the logging of memory operations as no abort operation is involved in that

mode. In order to ensure that the correctness is not compromised by having different

modes of execution, PhTM proposes to complete all the transactions in one mode

before switching to another.

CHAPTER 2. TRANSACTIONAL MEMORY 49

SigTM, a HyTM system proposed by Minhet al. [75], uses hardware signatures to

detect conflict in a STM. Unlike other HyTMs, there is no switching between modes

of execution. All the TM related operations like versioning, committing, aborting are

done in software. Signatures are updated and conflicts are detected using existing

cache coherence protocols. Therefore no modifications are required to the caches to

detect conflicts. Since versioning is done in software they can support unbounded

transactions without aborting, unlike other HyTM systems.As conflicts are detected

using cache coherence, SigTM is able to provide strong isolation as well.

Again the survey provided in this section is not comprehensive as it does not co-

incide with the main focus of the thesis, however interestedreaders are directed to

Chapter 5 (Section 5.2.3) of the Transactional Memory book [42] by Harriset al..

2.9 Summary

This chapter presented the both theoretical and implementation details of TM systems.

As the thesis is focused on HTM, the majority of the chapter isdevoted to HTM re-

lated literature. However to make the reader aware of other available implementation

platforms, it also gives an overview of software and hybrid TM systems. The intention

of the chapter is to provide background material to facilitate the reader to read the rest

of the thesis. Separate chapters/sections describing and comparing the closely related

work to each contribution are presented in the respective parts of the thesis.

Part I

DaCTM: Data Centric Transactional

Memory

50

Chapter 3

DaCTM: Data Centric Transactional

Memory

This is the first chapter of Part I of this thesis. The chapter describes the concept of

Data Centric Transactional Memory. After making the case fora system supporting

synchronization, coherence and consistency using the “data centric” approach in Sec-

tion 3.2, the concept of DaCTM is presented in Section 3.3. Section 3.4 discusses

several issues that can arise when using DaCTM approach and the proposed solutions

to address them. Finally Section 3.5 summarises the chapter.

3.1 Introduction

Given the increasing rate of the number of cores per chip, parallel programming is be-

coming mainstream. Simply most programmers would assume “shared memory” and

sequential consistency(SC) [62] as the default programmingmodel and memory model

respectively. This simplicity comes at the cost of hardwaresupport for maintaining a

global view of the shared memory. The term “global view” means that every processor

is aware of the operations done on the shared memory by other processors. In order

to ensure this, processors need to communicate with each other. Conventionally this is

achieved via cache coherence protocols.

When providing a global view of the shared memory with conventional cache co-

herence protocols, the issue of the “cache coherence wall” [58] is encountered. In a

system with hundreds, if not thousands, of cores the interconnect can easily be sat-

urated with these coherence messages. Hence the approach can become impractical.

The message passing programming model does not require a global view, but comes at

51

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 52

the cost of explicit communication at the programming level, adding extra complexity

that is not imposed by the shared memory approach. Therefore, the aim is to design a

scalable system without compromising the inherent advantages of the shared memory

approach.

In its strictest form, to maintain a global view of the sharedmemory, every pro-

cessor is required to see the modifications made on every memory location in the same

order. In order to achieve this, a cache coherence protocol propagates a newly writ-

ten value to other processors, and the memory consistency model defines when this

propagation must be done. In a parallel program not all the threads are interested in all

the variables accessed/modified by other threads. In terms of processors, this means

that not all the processors are interested in the modifications made by others. Therefore

cache coherence and memory consistency could be enforced selectively to the locations

that are of interest to other processors. To achieve this, a mechanism is needed to com-

municate the required level of coherence and consistency ofeach memory location,

from the high level program to the underlying architecture.Initially, this may appear

as an extra burden. However several keywords (eg:private [82], synchronized

[83]) have been introduced in parallel programming languages to distinguish memory

accesses. The premise of this work is that an architecture can be extended to take ad-

vantage of such information provided by programmers, in maintaining the global view

of shared memory and propose a new multi-core architecture which has the potential

to overcome the “coherence wall”.

Access pattern of a memory location can be used to define whether it requires syn-

chronization, how easy/hard it is to reorder operations to that location with respect to

others and, whether the caches need to communicate with eachother to avoid using

stale data. For example if thesynchronized keyword is used in a program written in

Java [83], it can be deduced that variables enclosed with that block requires synchron-

ization. Similarly in a program written in OpenMP [82], whenthe keywordprivate

is being used for a variable, that variable is guaranteed to be accessed only by a single

thread. If the memory locations of similar access patterns can be grouped together, they

can be allocated in memory regions according to their group.For example all the local

variables can be allocated in one region and the all concurrently read/write variables

can be allocated in another region. In a high level program a developer already knows

this information and it is a matter of communicating it to theunderlying hardware.

To this end, Part I of the thesis proposes DaCTM:Data Centric Transactional

Memory, a transactional memory [50] system coupled with the data centric concept

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 53

[106]. The premise of the work is to associate the access pattern of each memory loca-

tion with the required level of Synchronization, Coherence and Consistency (later in all

the chapters of Part I this is referred as SCC). In this way the global view requirement

is maintained per memory location, whilst preserving the shared memory abstraction.

The DaCTM approach to parallel computing has the potential toovercome the “coher-

ence wall”. The following contributions are made in the partI of this thesis.

• A mechanism to maintain coherence and consistency based on memory regions

is introduced. In this approach the address space of a program can be viewed

as a collection of non-overlapping memory regions, each having a predefined

level of coherence and consistency. The union of all the regions is equal to the

available address space.

• An application programming interface (API) to manage the memory regions, is

also introduced. In this way the programmer is relieved frommanually managing

different memory spaces.

• As the third contribution, a proposal is made to attach scratch-pad memories

(SPMs) [5] to each processor to implement one type of memory region (LO)(see

Section 3.3). This removes the need to use the interconnect for memory accesses

related to this region, thereby reducing the contention.

• Overall design of the architecture to support the above mentioned region-based

coherence and consistency, is presented as the last contribution. The evaluation

of DaCTM shows that with the proposed approach, bus utilization and con-

tention, processor idle time and false transaction aborts can be greatly reduced

thereby aiding scalability. The performance evaluation presents improvements

of up to 4.52 times speed-up over an optimized baseline TM system that uses

lazy versioning and lazy conflict detection (an improved TCC [39]).

3.2 Motivation

Memory consistency models define the event ordering on shared memory parallel com-

puters. Most programmers assume sequential consistency (SC) [62] as the default

memory model. The advantage of having SC is that execution ofa parallel program

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 54

can be seen as an interleaving of the parallel processes/threads/instructions on a se-

quential processor. This enables programmers to use the simple shared memory ap-

proach to do parallel programming. Current shared memory multi-core processors use

cache coherence protocols that rely on small low latency messages to keep a coherent

view of the memory. If this approach is used in a system with hundreds or thousands

of processors, the interconnect could easily be saturated because of these messages.

Transactional Memory Coherence and Consistency (TCC) [39] proposed to main-

tain coherence at bulk level thereby eliminating these low latency coherence messages.

In addition, the authors also showed that one simple protocol can be used to main-

tain synchronization, coherence and consistency (SCC). In their approach, a coherent

global view is maintained at block level. The proposal is to operate atomically and

speculatively within a block and to communicate the modifications at the end. Their

approach was attractive in terms of eliminating the conventional coherence messages

that are incurred due to write operations performed by processors. A TCC processor

does not produce coherence messages for each write operation performed within a

block, instead all the modifications are communicated at theend of the block. This

approach demands a higher bandwidth. In a parallel program not all the memory loca-

tions are accessed by all the threads (for exampleprivate variables in OpenMP [82]).

Therefore communicating the changes made to these sort of variables incurs unne-

cessary overhead, which is reflected as the high bandwidth requirement in TCC. This

can be avoided if the hardware is made aware of the required levels of SCC of each

memory location. In a high level program this information can be found by looking

at the access pattern of the variables, from which the required levels of SCC can be

determined.

Figure 3.1: Example use of theprivatekeyword in OpenMP

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 55

Parallel programming languages have introduced differentkeywords to distinguish

different types of data. OpenMP [82] has the keywordprivate to denote that a partic-

ular memory location is local to that thread. In the example code, shown in Figure 3.1,

written in OpenMP, theprivate clause has been used for variablesw andloc sum.

The information that can be extracted from this code is that variablesw andloc sum

are local to each thread. Therefore any write operation to these locations does not re-

quire to be communicated to other processors. Simply, no coherence is required forw

andloc sum.

Java [83] has the keywordfinal to emphasise that the data is immutable. In ad-

dition, it also has immutable data structures likeString which never gets modified.

Consider the Java code segment shown in Figure 3.2. There, thekeywordfinal has

been used when initializing variablesradius, xpos, ypos, zpos. This indicates that

these variables never gets modified during the lifetime of the program. The information

that can be extracted from this is, that coherence is not required for these locations. For

example in a cache coherence protocol, the cache controlleris not required to maintain

the state bits for these memory locations. Also operations to these locations can be

reordered as required since the only operation that can be made on these locations is

“Read”.

Figure 3.2: Example use of thefinal keyword in Java

Most of the parallel programming languages support locks (eg: pthread mutex lock,

synchronized) to maintain synchronization. Consider the Java code segment shown

in Figure 3.3. Several points can be extracted from this code. The first and the obvi-

ous one is that operations within the block needs to be atomicand mutually exclusive.

The second observation is that the processor which performsthe write operations on

lastName andnameCount variables must send a message to other processors to in-

validate their local copies for these memory locations. Thethird observation is that if

there is any read operation to thelastName variable after thesynchronized block, it

cannot be issued before the write operation to the same variable takes place.

Programmers place barriers in programs to ensure that all subsequent accesses wait

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 56

Figure 3.3: Example use of thesynchronizedkeyword in Java

until all the previous accesses are completed. This is encountered with data that is pro-

duced at a given time and consumed subsequently in the program order. Applications

that are developed according to theproducer-consumermodel falls into this category.

Consider a multi-threaded environment for the code segment shown in Figure 3.4. In

such a situation several threads can be producing whilst others are consuming. It can-

not be guaranteed that anitem will be consumed by the same thread that produced

it. Therefore write operations to a particularitem need to be communicated to other

processors before any read operation to thatitem happens in theconsume method.

Even though theseitem variables are shared among threads, no synchronization is

required among accesses to the sameitem by different threads, as they do not occur

concurrently. The information that can be extracted from this code segment is that:

coherence is required for these memory locations; any read operation to anitem needs

to be delayed until the write operation is globally performed by the producer of it;

synchronization is not required among accesses to the sameitem.

Figure 3.4: A pseudocode of a Producer-Consumer application

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 57

From the examples discussed so far, it can be seen that required levels of SCC

for most of the memory locations can be extracted from the access patterns of those

locations or using the explicit keywords used in the program. If this information is

communicated to the architecture, it can select different hardware operations. The crux

of the proposal is to associate the required level of SCC of a memory location with the

memory location itself, which is the basic principal of the “data centric” approach to

programming. In the light of this, the proposal is to group together data structures or

individual memory locations (later in the discussion the term object is being used to

refer to either of them) having similar access patterns and to allocate them in different

memory regions. The aim is to trigger different hardware operations based on the

region of a particular object. Since the intention of the proposal is to handle SCC

as a whole, an improved version of TCC [39] is chosen as the baseline architecture.

DaCTM proposes to couple this improved TCC with the data centric concept to deliver

a computing model which has the potential to overcome the “coherence wall”.

3.3 DaCTM Concept

The concept of DaCTM is based on deriving the SCC of objects fromtheir access

patterns. As the first step, atypefield is associated with each object and in the current

version thistype remains immutable throughout its lifetime. DaCTM supports the

following types.

3.3.1 Local (LO)

These objects are accessed only by the owner processor. Since only one processor

accesses these objects, neither synchronization nor coherence is required. Regarding

consistency, any sort of reordering/bypassing can be allowed as long as a write fol-

lowed by a read, as well as a read followed by a write to the samelocation by the same

processor respects the program order. Consider the code segment shown in Figure 3.5,

taken from Lee-TM [108].

There the functionconnect is executed in parallel and each thread allocates a 2D

array of sizeGRID SIZE X GRID SIZE. This array is only being read and written by

the thread who created it. Therefore this array can be declared as LO, hence can be

allocated in thelocal memory region of the processor.

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 58

Figure 3.5: A memory allocation request that can be considered as LO

3.3.2 Read Only (RO)

Objects that never get modified throughout their lifetime belong to this category. They

can be read by more than one processor. Since these objects donot change their value,

they do not require coherence or synchronization. Since theonly operation that can

be performed on this type of objects is a “read”, they can be reordered as needed.

Consider the code segment shown in Figure 3.6, taken from Barnes application of the

SPLASH benchmark suite [109].

Figure 3.6: A memory allocation request that can be considered as RO

In the application this array is read in thefind my bodies function which is ex-

ecuted in parallel. Since this array never gets modified, it can be declared as RO, hence

can be allocated in theread-onlymemory region.

3.3.3 Concurrently Read and Write (CRW)

This category corresponds to objects that can be read and written concurrently by dif-

ferent processors. Since they are accessed concurrently, synchronization has to be

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 59

maintained among accesses. Since more than one processor accesses the same object,

reads and writes from different processors must respect theglobal program order. Co-

herence is required to communicate the changes made by one processor to the other

processors. Consider the code segment shown in Figure 3.7, which is taken from Lee-

TM [108].

Figure 3.7: A memory allocation request that can be considered as CRW

In the application, thebacktrackmethod is executed in parallel and each thread

writes to the sameglobal grid. Since threads are concurrently reading/writing from/to

this global grid it needs to be declared as CRW, hence can be allocated in the

concurrently-read-writememory region.

3.3.4 Write Now Read Later (WNRL)

Objects which are written at a particular time and read subsequently by different pro-

cessors belong to this category. For example imagine a situation where several threads

are waiting on a barrier to perform a read operation on an array which is being cur-

rently written by another thread. In this situation the array is shared, but read and write

operations to this array are happening at different points in the program order. As read

and write operations to the same memory location is taking place at different places,

the program does not require to obtain mutually exclusive access before performing

an operation as required for CRW data. However coherence is needed as accesses can

be from more than one processor. Considering the event ordering, a read operation to

an object needs to be delayed until the previous write to the same location has been

performed and vice versa. Consider the code segment shown in Figure 3.8, taken from

the Ssca2 application of the STAMP benchmark suite [74].

In the application, the functioncomputeGraph is executed in parallel. In the code

segment shown in Figure 3.8, each thread performs several write operations to the

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 60

Figure 3.8: A memory allocation request that can be considered as WNRL

outDegree array. After that they wait on a barrier. Once each thread finished their

operations, each thread calls theprefix sums function, which takesoutDegree ar-

ray as an argument. When each thread is operating inside theprefix sums function,

the system needs to guarantee that write operations that areperformed by each thread

on theoutDegree array have been made visible to all the threads. However no syn-

chronization is required for previous write operations because each thread operates on

a completely disjoint portion of the array.

Having described the types of memory locations used in DaCTM,lets see the

global view requirement for each of them. In the case of LO type, it does not require

the global view property to be maintained as each location isonly accessed by the cre-

ator of them. In the case of RO type, these locations can be accessed by more than one

processor/thread. However as the only operation involved with them is “read”, no ex-

tra effort is required to maintain the global view property.Considering the WNRL and

CRW, both of them require the global view property to be maintained, but the degree

to which it is required differs.

In the case of WNRL objects, they need to maintain a global view but not syn-

chronization. These objects are written at a time (t0) by one processor and read at a

time (tn) by another processor where t0 < tn. In order to maintain the global view,

changes made to a particular WNRL object at time t0 need to be communicated to the

other processors at time tn. Instead of doing this DaCTM proposes to update the global

copy of the corresponding WNRL object and to discard any local copies before en-

abling the operation at time (tn). The protocol is very similar toreconcileandflushin

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 61

Dag-consistency [8] and also to thecolor stepin the data coloring [16] programming

model.

Regarding the CRW objects they need to maintain a global view and also syn-

chronization among accesses. The primary requirement to maintain a global view is

to communicate the newly modified memory locations to other processors. In its very

basic form, transactions in the TM context keep all the modifications made during the

atomic execution in a speculative state and communicate them to the other processors

at the end. Since communicating the changes made by one processor to the others

is the basic requirement to maintain a global view, TM does itimplicitly. Therefore

in DaCTM, TM is used to maintain the global view of CRW objects inaddition to

maintaining synchronization.

According to the above description, the descending order ofthe degree of the global

view is CRW> WNRL > RO = LO.

3.3.5 Object Operation

Associating atypewith an object can be done manually using the keyword used in

modern programming languages (eg:private, critical in OpenMP,final in Java

etc.). Literature in the area of escape analysis [65, 66, 93,94] shows that in certain

cases it is possible to categorise data aslocal or sharedand this information is mainly

used in memory management. This means it is also possible to use such techniques

to categorise data into types used in DaCTM1. Regardless of the method used, all the

objects in a DaCTM application has a type associated with it. In the current version of

DaCTM the programmer classification of objects is trusted. Infuture, a classification

checking tool similar to SharC [4] should be employed to ensure that the declared

runtime usage for objects is correct.

Thetypeinformation is used to decide the memory region from which the space is

going to be allocated for each object. This is because DaCTM uses different memory

regions to allocate objects according to theirtype. Each processor has its own memory

space to allocate LO type objects. Only the owner of a particular LO memory space is

allowed to allocate/deallocate from that space. In addition there exists three separate

shared memory regions to allocate RO, CRW, WNRL type objects. Any processor is

allowed to allocate memory from these regions. Depending upon thetypeof an object,

space is allocated in one of the memory regions shown in Figure 3.9.

1developing the compiler support is outside the scope of thisthesis, only referenced to show the
possibility of using it in a future version of DaCTM

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 62

Figure 3.9: DaCTM memory regions

The memory allocation function is modified in DaCTM in order toaccept an extra

argument, which is thetype. If the typefield is not present, memory is allocated from

the CRW memory region. The advantage of doing so is that, if theprogrammer is not

certain about which type to use for a certain object, thetypefiled can be left blank and

the space will be allocated from the CRW region, which guarantees the highest degree

of SCC. In this manner DaCTM ensures that the correctness is not compromised even

if the type information is not available. The Lee-TM [108] code segment shown in

Figure 3.5, modified to allocate memory from the LO region is shown in Figure 3.10.

There, the memory allocation function takes an extra argument which is the type of the

object.

Figure 3.10: Proposed memory allocation function in DaCTM

The proposal of DaCTM is to maintain SCC at bulk level than at individual memory

locations as in conventional protocols, hence a unit to measure a block needs to be

established. In this regard DaCTM considers a method body as aunit of work as

in the first proposal to use Data Centric Synchronization (DSC)[106]. That said,

programmers have the flexibility to break a method into several sub work units or

to combine several methods to one work unit. This is described later in the chapter.

Operations are required to associate with methods in order to provide SCC for the

data that the method operates on. Since DaCTM has already categorised objects, the

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 63

typeinformation can be extended to methods as well. Therefore methods can also be

characterised either as LO, RO, WNRL or CRW according to the datathey operate

on. If a method contains only LO objects, then it becomes aLO method and the same

continues for RO, CRW and WNRL objects. When a method has mix of objects type

is determined according to the relation CRW> WNRL > RO = LO. This is shown in

Table 3.1.

Data types Allocated Type
RO, LO LO
WNRL, RO, LO WNRL
CRW and any CRW

Table 3.1: Determining thetypeof a method when operating on mix of data

If a method contains only LO or RO type objects, it is categorised as LO. However

there is no difference even it is categorised as RO since no explicit operation is involved

while executing it. A CRW method is executed as a transaction [50]. Also a WNRL

method, is executed as a transaction. That said, at the architectural level, the way in

which the Atomicity, Consistency and Isolation (ACI) properties are maintained for

CRW and WNRL objects differs. Therefore both WNRL and CRW methods may

appear as transactions at the high level language, but this does not apply at hardware

level. Proposed operations for each type is shown in Table 3.2.

Data types Operation
LO none
WNRL transaction
CRW transaction

Table 3.2: Operations to perform for each data type

Classifying a method to be of a certain type is done statically. If there is not enough

information available to do this, DaCTM requires them to be oftype CRW, thereby

requiring them to be executed as transactions. This produces a correct output because

there is no harm in executing a method as a transaction even ifit is not required.

There might be situations where a larger method has an already defined small trans-

action in the middle of the code. In such scenarios, DaCTM takes the first half of the

method (that is from the beginning of it to the existing transaction) as one unit and

defines the required operation. Thereafter it takes the remaining portion of the method

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 64

Figure 3.11: Working with explicitly defined transactions in DaCTM

as another unit and defines the required operation. For example consider the code seg-

ment shown in Figure 3.11, taken from Intruder application of the STAMP benchmark

suite [74]. There, inside theprocessPackets method, there is an already defined

transaction. That transaction does not encompass the entire method. Therefore an op-

eration needs to be associated with the rest of the method in order to maintain SCC

for those memory locations. This is done by associating atypeto that portion of the

method and selecting an operation according to Table 3.2.

Figure 3.12: A Chain of functions taken from Barnes application of SPLASH [109]

Another situation that needs to be considered is when an application has a chain of

function calls. Consider the code segment shown in Figure 3.12, taken from the Barnes

application of the SPLASH benchmark suite [109]. There, function stepsystem

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 65

callsmaketree which in turn callsloadtree and this chain continues until function

InitCell calls functionmakecell. As the first step, atype is associated with each

function in the chain. If more than one of them requires to be executed as transactions,

i.e.CRW or WNRL, special consideration is required. Lets assume allthe functions in

the chain are of CRW. DaCTM proposes two solutions for this kindof scenario. One

approach is to use nested transactions as shown in Figure 3.13. The other approach is

to start a transaction at the beginning of each method and to commit it before calling

the next method. This is shown in Figure 3.14.

Figure 3.13: Nested transactions for chain functions in DaCTM

Even though DaCTM considers a method as a unit of work, the programmer always

has the flexibility to break a method into several work units or to combine several

methods into one work unit by using explicit transactions. This is because if atomicity

and isolation are required to be maintained across methods,then programmers can

explicitly useTM BEGIN andTM END to mark the region of the transaction. For example,

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 66

Figure 3.14: Committing before starting another function when operating with chain
functions in DaCTM

consider the pseudocode of Lee-TM [108] shown in Figure 3.15. According to the

previous discussion, theexpand andbacktrack methods would have been executed as

two separate transactions. In that case, atomicity and isolation would not be maintained

between the two methods, and this would produce erroneous output according to the

algorithm being used. Therefore as shown in Figure 3.15, theprogrammer can use

explicitly defined transactions to break the method level granularity in DaCTM. In

such situations, data centric type derivation of methods will not take place.

It is also necessary to consider the following situation: A method is being used

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 67

Figure 3.15: Pseudocode of the Lee-TM [108] application

more than once in a program. In the first instance it operates on LO objects, but in the

second instance it operates on CRW objects. The situation could also apply to a library

function. In both situations atypehas to be associated with the function at compile

time. In both situations DaCTM proposes to execute the methodas a transaction. Even

though the method appear as a transaction at high level, at architectural level, the way

in which the ACI properties of each transaction are maintained differs substantially.

For example consider a situation where a method has been categorised as CRW, but it

actually operates on LO objects. In this case, none of the ACI properties are maintained

for the LO object.

3.4 DaCTM Special Cases

This section discusses the issues that might arise when following the DaCTM approach

to computing. The first concern that might arise is about the number oftypesproposed

in the current version. Even though the current version onlysupports four regions (LO,

RO, WNRL, CRW), if a need arises, more regions can be introduced. If it turns out

that the performance benefit is negligible for certain regions, they can even be merged.

The size of the regions and their overflow management mechanism is another issue

that needs addressing. Even though the issue of handling overflows is important, it

was not a priority at this stage. The solution proposed in thecurrent version, in case of

overflow, is to allocate from the CRW region. This is because, two fixed sized regions

from the virtual memory are being reserved for WNRL and RO regions and CRW uses

the rest of the space. When allocated from the CRW region, even for LO, RO and

WNRL objects, SCC properties will be maintained. Even though this is not required,

this will produce the correct output.

Other issues that need to be considered are possible TM inconsistencies and al-

locating memory inside library functions. TM inconsistencies might occur due to the

following: (1) operating non-speculatively on LO objects inside a transaction; (2) al-

lowing transactional cache overflows of WNRL objects. In both cases, if the first

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 68

Figure 3.16: DaCTM approach to avoid the violation of TM semantics

operation is a read and, an abort happens after a subsequent write, when the transac-

tion is restarted, it would read the new (but wrong) value. Sanyal et al. [96] report

that only 1% of the accesses in the STAMP [74] benchmark suitefall into this cat-

egory and they propose an undo buffer to store the old value ofsuch local variables.

Their approach requires extra hardware cost and also the size of this buffer cannot

be determined accurately in advance. Therefore, in DaCTM this issue is addressed

through the programming model. DaCTM proposes to move the initialization of LO

objects inside the transaction. Consider the code segment shown in Figure 3.16 which

is taken from the Genome application of the STAMP [74] benchmark suite. There,

Figure 3.16(a) shows the original code in which variableentryIndex is initialised

outside the transaction. Since no other threads are interested in the changes made to

entryIndex, it can be categorised as LO. If the transaction gets abortedafter one or

more iterations in the while loop, the value of theentryIndex would have changed

from its original value. When the transaction is restarted, anew (but wrong) value is

read forentryIndex during the first read operation. As proposed above, in the code

shown in Figure 3.16(b), the initialization ofentryIndex has been placed inside the

transaction. Therefore even if the transaction is aborted,the variable is reinitialized

during the next transaction.

However there are situations where this solution cannot be applied. For example

consider the code segment for copying a vector, shown in Figure 3.17, which is taken

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 69

Figure 3.17: A library function used in copying vectors

from the STAMP suite. Here the objectdstVectorPtr is read first and updated later

in the function. Imagine if this method is called within a transaction with a LO object

as an argument, all the operations on the LO object will be in-place. If the transaction

is aborted after a modification is made to the LO object, original values have been lost

hence an erroneous output is produced. The previous suggestion cannot be applied in

this situation because the initialization of the vector might have taken place at the very

beginning of the program and this operation might be taking place at any time in the

program. In such cases, objects are categorised as CRW and then the underlying hard-

ware will enforce TM properties. However, this does not meanall the objects stored

in the vector need to be of type CRW. For example in Figure 3.17,space allocated for

elements can be of LO or RO or WNRL or CRW. The only requirement is the vector

object to be of type CRW to ensure the correctness of the computation.

Figure 3.18: DaCTM approach to allocate memory inside a library function

Another issue to consider in DaCTM is memory allocation taking place inside a

library function. DaCTM proposes to address this by introducing an extra argument

to the library function which is thetype of the object being allocated. Figure 3.18

CHAPTER 3. DACTM: DATA CENTRIC TRANSACTIONAL MEMORY 70

shows a library function (Pvector copy) modified to work with DaCTM. There, the

typeargument defines the type of the object that is going to be pushed to the vector,

which is then passed to the memory allocation function. Alsonote thatfree does not

take any extra argument. This is because the type is determined from the address of

the object so that the appropriate memory space is freed accordingly.

3.5 Summary

This chapter presented the concept of DaCTM. Taking examplesfrom several pro-

gramming languages it showed that already programmers are explicitly distinguishing

memory locations according to their access patterns. The chapter identifies four differ-

ent types of access patterns and propose to associate this type with the required level

of SCC of that memory location. It shows the presence of these four types in the code

segments taken from known benchmark suites and suggest to group memory locations

of similar types together. Thereafter it shows how to associate required operations

for each method as in a “data centric” approach. Finally it also showed special situ-

ations where the DaCTM approach cannot be applied and also proposed solutions to

overcome them.

Chapter 4

Architectural Support for DaCTM

This chapter describes how to extend an architecture to support the DaCTM concept.

First, in Section 4.1, it discusses a naive way to support DaCTM concept in hardware.

Later in the same section it also explains why such a design cannot be used in certain

scenarios. Thereafter the design of DaCTM is presented in several sections. It is

composed of DaCTM Support for Memory Region (Section 4.2), DaCTM support for

Transactional Memory (Section 4.3) and two versions of DaCTMsystems proposed

to address the issue of transactional cache overflow (DaCTM-CS(Section 4.5) and

DaCTM-U (Section 4.6)). The section also shows how it can overcome the difficulties

that a naive design cannot handle. Finally Section 4.7 summarises the chapter.

4.1 Naive Design

A program written for the DaCTM architecture can be seen as a collection of trans-

actions and non-transactions. The fact that a transaction exists in the code does not

necessarily mean that the entire block is going to be executed atomically and in isol-

ation. In DaCTM architecture the definition of a transaction changes according to the

typeof the data it operates on. Objects of a DaCTM application havea typeassociated

with them. Thistypedefines what sort of operations are required to maintain SCC of

each object. Since DaCTM relies on conveying thetypeof an object to the underlying

architecture, in a naive design it is only required to have different types of instructions

for different types of data. This can be done using extra instructions similar to those

shown in Table 4.1. In this approach when an application codeis translated to machine

code, all the conventional read and write operations can be replaced with the appropri-

ate one. For example if the operation is a “Read” and the memorylocation is of type

71

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 72

LO, then aREAD L instruction can be used. Based on the type of the instructionsbeing

executed, hardware can perform required operations to maintain SCC. For example if

WRITE WNRL is executed, hardware needs to perform a coherence operation. Similarly

if WRITE L is executed, no operation is required to maintain coherence. As described

here, this approach is less complex and requires less modifications to existing hard-

ware. This design works when the application program is small.

Data types Naive Instructions
LO READ L, WRITE L
RO READ O
WNRL READ WNRL, WRITE WNRL
CRW READ CRW, WRITE CRW

Table 4.1: Instructions to be used in a naive DaCTM design

However there are certain situations where this approach cannot be used. Imagine

the case of an application in which a particular function is being used at different

places. For example consider the code segment shown in Figure 4.1. There, a pointer

to an array is passed to the functionsum and it sums up the content of the array and

returns the result. It is very likely that this function willbe reused to calculate the sum

of different arrays.

Figure 4.1: A code segment for totalling an array

When this code is translated to machine code, for the read operation related to the

variablearg, the compiler has to decide which of the read operations in Table 4.1

to use. There is no information available during the compilation time to make this

decision. When thesum function is used in an application, there can be situations

in which the type of the argumentarg is either LO, RO, WNRL or CRW. Since the

function sum is already being translated to machine instructions, different hardware

behaviours depending on thetypeof the argument cannot be performed. If the compiler

inserts theREAD CRW instruction, then the architecture will try to ensure that coherence

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 73

is maintained forarg even if it is oftypeLO. On the other hand if the compiler inserts

theREAD LO instruction, then the architecture will not maintain coherence even if the

typeof arg is CRW.

A quick solution might be to have four versions machine code for sum. That is

one version with all LO instructions and other with CRW instructions and so on. It

would work in this scenario, however if the number of arguments in the library function

increases, 4R functions are needed whereR is the number of arguments. This is because

it is not guaranteed that all the arguments will be of same type. This requires compiled

versions for all the combinations. Therefore DaCTM does not follow this approach as

its architecture.

4.2 DaCTM support for Memory Regions.

DaCTM associates the required levels of SCC of a memory location with the memory

location itself. Objects are allocated in the corresponding memory region (shown in

Chapter 3, Figure 3.9) according to theirtype. Then the responsibility of maintaining

the required level of SSC of the regions is passed to the DaCTM architecture. In

order to support region based coherence and consistency, anarchitecture should have

either separate physical memories or a logical partitioning of the shared memory for

these regions. DaCTM follows a mix of both. It uses separate physical memories

for LO memory regions. For RO, WNRL and CRW memory regions it usesa logical

partitioning of the shared memory.

4.2.1 LO Memory

DaCTM propose to attach a separate physical memory to each processor to act as the

LO memory of that processor. LO type objects are only accessed by the processor

that allocates them and in doing so, there is no interconnectusage. For this private

memory attached to each processor, DaCTM considers Scratch-pad memories (SPM)

as a good candidate because of their low power and area utilization [5]. These SPMs

are managed locally. In a conventional memory hierarchy, SPMs are placed at the same

level as level 1 (L1) caches. Therefore in DaCTM no LO objects are cached in L1 and

are only stored in the SPM of the corresponding processor.

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 74

Figure 4.2: DaCTM memory hierarchy and mapping of memory regions

4.2.2 RO, WNRL and CRW Memory

All the other memory regions (RO, WNRL and CRW) use the existing shared memory.

Separate regions are created for eachtypein the virtual memory. These regions are mu-

tually disjoint and have page level granularity. The existing shared memory is used for

these regions as they can be accessed by all the processors inthe system. Once a pro-

gram is loaded to the memory, it notifies the hardware about these different regions.

Since virtual addresses are fixed for each process, these region boundaries will remain

constant throughout the lifetime of an application. Figure4.2 shows the memory hier-

archy of DaCTM with the proposed SPM attached to a processor. The same figure also

shows how memory regions are mapped on to this hierarchy.

When an application is loaded, it will use these regions basedon the intended

usage of data. An obvious question to ponder here is how an application with shared

libraries use these regions. Again the answer depends on theintended usage of the

data produced by these libraries. For example consider thesum function shown in

Figure 4.1, which can be considered as a library function. Inthis situation, if the array

which is being summed is accessed concurrently by multiple threads, then it should be

allocated in CRW region. On the other hand if the array is only accessed by a single

thread, it can be allocated in the LO region.

4.2.3 Region Information Table

Each processor has a Region Information Table (RIT), like the one shown in Figure 4.3,

to store the boundaries of memory regions. Ideally these RITsshould be maintained

per process. In order to make the discussion simple, it is assumed that the number of

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 75

Figure 4.3: Proposed Region Information Table (RIT) in DaCTM

available threads are equal to the number of processors. It can be observed that, in the

RIT, there is no entry for the LO type. This is because region information is required

only for objects that can be accessed by more than one processor. Since separate

physical memories are being used for the LO region, none of the memory operations

destined for them go through the conventional cache hierarchy. RIT is only required to

distinguish memory locations that are stored in local caches.

4.2.4 Modifed Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is modified to store thetypeof each virtual

memory location. In the case of a TLB miss, RIT is accessed to determine the type

of the incoming memory location. In case of a TLB hit, thetype is readily available.

Figure 4.4 shows the modified TLB used in DaCTM. Each object type has a different

cache behaviour. Therefore when an entry is added to the L1 cache, thetypeof the

location is also stored. This saves the cache controller from continually accessing the

RIT to gettypeinformation of a cache entry to decide the required operation.

Figure 4.4: Modified TLB used in DaCTM

4.3 DaCTM support for Transactional Memory

4.3.1 Basic TM System

In its very basic form, the transactional memory implementation in DaCTM is similar

to any other lazy-lazy hardware TM system. A TM system requires two new instruc-

tions to start (TM BEGIN) and to commit (TM END) a transaction. When theTM BEGIN

instruction is executed, hardware is notified by setting a flag, that it is operating inside

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 76

a transaction. In addition, a snapshot of the registers is taken and stored in a separate

register file. This is used to restore the processor state in case of an abort. When a trans-

action is aborted, all the speculatively modified cache entries need to be flushed and the

processor is reinstated from the snapshot saved in the register file. When operating in-

side a transaction, in a lazy-lazy TM, all the memory operations need to be performed

speculatively and in isolation. That means no write operations should be made visible

to other processor until theTM END instruction is executed. Each processor is required

to keep track of memory locations accessed/modified during the execution of a trans-

action, which are communicated to others when theTM END instruction is executed.

In a lazy-lazy TM, an abort operation takes place in the case where two processors

have accessed the same memory location and one of them is a “Write” operation and

the other one is a “Read” operation. A contention management policy decides which

processor to abort in such a situation. Under the lazy-lazy policy, write-write conflicts

do not cause a transaction to abort [39].

During this commit phase, no other processor is allowed to use the interconnect.

This step is taken to prevent an aborted processor reading stale data. Imagine a situ-

ation where the processor 2 gets aborted because it has read the locationx and the

processor 1 has modified the same location. After being aborted, if the processor 2

reads locationx for its restarted transaction, before processor 1 finished updating it, an

erroneous output is produced. Therefore no other processoris allowed to use intercon-

nect during the commit phase.

Once the next level memory is updated with all the speculatively modified cache

entries, all these entries need to be cleared. This step is taken because DaCTM does not

implement any cache coherence protocol. For example imagine a situation where, the

processor 1 modifies the locationx within a transaction and updates the next level copy

of x at the end of the atomic block, but does not flush the cached entry. Thereafter the

processor 2, who is also executing a transaction, modifies the locationx and commits

its transaction. During this time the processor 1 is, eithernot executing a transaction or

has not accessed locationx in its current transaction. Therefore, processor 1, does not

get aborted by the committing of the processor 2. Now the cached copy of locationx

in the processor 1 is stale data. Thereafter whenever the processor 1 accesses location

x, it will read a wrong value, hence will produce an erroneous output. Therefore once

a transaction is committed, all the entries that are read andwritten during a transaction

needs to flushed from the Level 1 (L1) cache.

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 77

The baseline TM architecture uses transactions to maintainsynchronization, coher-

ence and consistency. Therefore it is conceptually similarto TCC [39]. The original

TCC proposal relies on obtaining exclusive commit permission when handling trans-

actional cache overflows. In TCC, when a processor who is executing a transaction

requests to overflow, conflicts are detected using the read and write bits in the cache

lines. Thereafter the overflowing transaction progresses and all the other transactions

are stalled. This is because, once an entry is removed from the cache, read and write

sets are no longer accurate. Therefore the overflowing transaction is not able to detect

conflicts with others at the time of committing. This can impose some performance

overhead. For example consider the situation shown in Figure 4.5(a). There, two trans-

actions T1 and T2 are executed in parallel. After time t0, the transaction T1 requests

to overflow, hence conflicts are detected. T2 is not aborted asthere are no conflicts.

Thereafter T2 is stalled and T1 is continued. After another t1 duration T1 commits.

T2 is resumed afterwards and commits later (after t3 time). In order to complete two

transactions T1 and T2, the original TCC proposal takes t0+t1+t2 duration.

Figure 4.5: Difference between the original TCC and the improved TCC (which is
used as baseline)

This performance overhead incurred by stalling transaction T2 can be addressed

by decoupling conflict detection from caches by employing hardware signatures [95]

(a description of signatures is presented in Section 4.3.3). With the use of hardware

signatures, caches are no longer required to maintaining read and write sets. Therefore

the overflowing transaction does not require to get the exclusive commit permission

and to stall others. Instead all the transactions progress and conflicts are detected using

signatures. This scenario is shown in Figure 4.5(b). In thissituation the total time

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 78

required for completing both transactions is t0+t1. By employing hardware signatures

the total execution time is reduced by t2 time in the improved TCC. The commit time

not considered in both situations.

If the original TCC is used as the baseline, the benefits would have come due

to memory regions and also due to unnecessary serialising (Figure 4.5(a)). The aim

of the experiment is to evaluate how much an architecture canbe benefited from the

knowledge of memory regions. Therefore, for the experiments presented in the thesis,

this improved version of the TCC is used as the baseline.

4.3.2 DaCTM

DaCTM does not use any cache coherence protocols, therefore,implicitly, all the read

and write operations are performed in isolation. This also applies to operations within

a transaction as well. Since the TM system uses lazy versioning, no extra effort is

required to operate speculatively within a transaction that fits in the L1 cache. This is

because the key requirement for speculation is that the original memory location does

not get modified. When a transaction is able to fit in the L1 cache, all the modifications

are done on the L1 cached copy and the original value remains unmodified in the Level

2 (L2) cache or/and main memory.

When a transaction is not able to fit in the L1 cache, that is whena cache controller

requests to overflow when the processor is executing within atransaction, extra opera-

tions are required to maintain the isolation property. One approach used in designing

one version of the DaCTM is to allow the overflow request and to make the transac-

tion, which the processor is currently executing, an unabortable one. The latter step,

of making a transaction unabortable, is required because allowing the overflow has

resulted in modifying the original value of that particularmemory location. This is

a non-reversible action. In order a make a transaction unabortable, none of the other

processors are allowed to commit until the transaction being considered commits. Also

it is worth noting here that, at any given time there can only be one unabortable trans-

action.

The second approach used in designing the other version of the DaCTM is to have

a separate area in the memory, to which each processor can overflow their speculative

modifications. In this second approach there can be any number of processors over-

flowing during the execution of a transaction. More description of these two systems

are covered in sections 4.5 and 4.6.

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 79

4.3.3 Hardware Signatures in DaCTM

Hardware signatures [95] are used in DaCTM to keep track of allthe read and write

operations that are performed within a transaction. Signatures have a fixed length (eg:

1k bits [15], 2k bits [110]) and they are implemented using SRAMs. When maintaining

read and write sets of a transaction, for each read and write operation, a hash function

is applied to the address of the memory location. The resulting hash value is added

to the signature by performing a bitwise OR operation. This is shown in Figure 4.6.

There, the hash value of a given address is first created. For the sake of simplicity lets

consider bit selection, which is used in Bulk [15], as the hashfunction. When this hash

function is employed, the bit value of the address is directly fed to the hash value. Bulk

[15] used following bits of the address [0-6, 9, 11, 17, 7-8, 10, 12, 13, 15-16, 18-20,

14] as the hash value. Once the hash value is produced, each bit of it is logically ORed

with the existing signature, thereby delivering the resulting signature. In the proposed

architecture when implementing signatures, parallel bloom filters are used in order to

increase the accuracy.

Figure 4.6: Inserting an address to a signature

When a processor needs to commit a transaction, it first requests commit permis-

sion from the centralised commit arbiter. Commit permissionis granted based on a

least recently granted policy. Once the commit permission is granted, the committing

processor broadcasts its write-signature to all the other processors. Upon receiving

this write-signature, each processor performs a bitwise AND operation with their read-

signature. If all the hashes in the resulting signature are non-zero, then it is considered

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 80

as a conflict and the processor aborts. Figure 4.7 shows signature operations used in

the DaCTM architecture. There, Figure 4.7(a) shows performing an AND operation

between two signatures and Figure 4.7(b) shows how to check whether all the resulting

hashes are zero.

Figure 4.7: Signature operations used in DaCTM

After sending the write-signature to all the other processors, the committing pro-

cessor updates the next level memory (either L2 cache or mainmemory) with all the

speculatively modified values. During this commit phase, the communication arbiter

denies any request to use the interconnect. Once the next level memory is updated

with all the speculatively modified cache entries, all theseentries need to be flushed

and both read and write signatures need to be cleared as well.

4.4 Incorporating Memory Regions with Transactional

Memory in DaCTM

Having described the baseline TM system in Section 4.3, thissection discusses how to

extend it to use region information. All the RO, CRW and WNRL objects are stored

in L1 cache and all LO objects only stored in SPMs. Therefore the L1 cache needs to

distinguish different types of memory locations. Since DaCTM does not use any cache

coherence protocol, the existing entry for the state field ofthe protocol can be reused

to store thetype information of each cache entry. Thistype information is used for

several purposes. One is to decide whether to insert the address to the corresponding

signature. When a “Read” or “Write” operation takes place on a cached entry, thetype

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 81

field is checked. In DaCTM, the address of the cache line is inserted to the relevant

signature only if the entry is of type CRW.

The other usage is to decide what action to take in case of a transaction cache

overflow. The baseline TM architecture, described in Section 4.3, propose either to

overflow to the original memory location and to make the processor unabortable or

to overflow to a separate area in the memory. With the DaCTM support for memory

regions both these protocols can be improved. That is overflow permission is only

sought if the overflowing entry is oftypeCRW. If it is of any othertype, it is evicted to

the original memory location. This does not pose any consistency violations because,

if the location is not CRW then no other processor is interested in this memory location

at this time. The last usage of thetypeinformation in the cache lines is to decide which

entries needs to be flushed in case of an abort or a commit. In DaCTM only WNRL

and CRW objects need to be flushed from L1 cache. RO objects can be kept in the L1

cache unless the space is required by an incoming cache line.

Since all the LO objects are only stored in their SPMs, the modifications made

to them are made in-place. Therefore the speculative execution is implicitly dropped

for all the operations performed on SPMs. Regarding the isolation, the fact that no

other processors are interested in them make these objects isolated implicitly. This

reduces the amount of speculative data that need to be written back to the next level

memory at the end of each transaction. Regarding CRW objects, strict TM properties

are maintained just as in other TM systems. Regarding RO objects, neither versioning

nor conflict detection is maintained as they never get modified. Regarding WNRL

objects, local copies (in L1 cache) are kept speculative implicitly. However, no extra

care is taken to avoid shared copies being updated in case of acache overflow. These

objects are not considered in the conflict detection phase. If no cache overflow occurs,

the behaviour of WNRL objects is similar to that of CRW objects, except that the latter

objects are considered during the conflict detection phase.At the end of a transaction,

the next level memory copies of both, CRW and WNRL objects are updated and local

copies are flushed.

This section and Sections 4.2 and 4.3 presented the basic implementation of the

DaCTM architecture. Two approaches to maintain the isolation property during trans-

actional cache overflows are described in Section 4.5 and Section 4.6.

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 82

Figure 4.8: A complete DaCTM-CS system

4.5 DaCTM-CS

When addressing cache overflows, DaCTM-CS (Commit Serialize) serialises com-

mits as proposed in ONETM-Concurrent [9]. The only difference between ONETM-

Concurrent and DaCTM-CS, in terms of TM properties, is that the former detects

conflicts eagerly using per block meta data, whilst latter detects conflicts lazily using

hardware signatures.

In DaCTM-CS , when a cache entry needs to be rejected while a processor is inside

a transaction, permission is sought from theoverflow arbiter. Overflow permission is

also granted based on a least recently granted policy. Once the overflow permission

is granted, the processor flushes the cache line from its L1 cache and updates the

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 83

corresponding entry either in L2 cache or main memory. In thebaseline architecture

a processor is required to ask for overflow permission if a dirty entry is to be rejected

while the processor is operating within a transaction. In the DaCTM-CS architecture

this protocol is improved in such a way that a DaCTM-CS processor needs to ask for

overflow permission only if the cache line is dirty and it is oftype CRW. If it is of type

RO or CRW or WNRL and the dirty bit is not set, no overflow operationis required

since the value has not been modified. In the case of WNRL objects, no permission is

required to overflow to the original memory location, even ifthe dirty bit is set. This

is because, overflowing of WNRL objects to their original memory locations does

not pose any consistency violation as no other processor is accessing this memory

location concurrently with this processor. Therefore evenwithin a transaction, for

dirty WNRL objects, a DaCTM-CS processor is allowed to overflow totheir original

memory location. This does not apply to LO objects, because their modifications are

made in-place in the corresponding SPMs.

If an overflow request is denied, the processor stalls until the request is granted.

In this case, DaCTM-CS has an advantage over the baseline because it only asks for

overflow permission if the cache line is of type CRW. In Section4.3, the policy of the

commit-arbiteris described asleast-recently-granted. There is an exception to that in

the CS version. That is, once the overflow permission is granted to a processor, all

the commit requests from other processors are denied, untilthe overflowing processor

commits. Again the DaCTM-CS processor has an advantage over the baseline in this

situation. Since the baseline has no knowledge about the cache lines that request over-

flow permission within a transaction, the permission could have granted to a WNRL or

LO type block. When the overflow permission is granted all the other commit requests

are denied. In the case of DaCTM-CS, since it filters out cache lines, this situation

would not occur. When a processor with overflow permission granted commits, it

only needs to write back the remaining dirty cache entries inits L1 cache. Again in

this situation DaCTM has an advantage because all the dirty WNRLobjects that re-

quire overflowing have already been copied to their originalmemory location, where

as in the baseline these entries are still waiting for overflow permission. A complete

DaCTM-CS system is shown in Figure 4.8.

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 84

4.6 DaCTM-U

In order to support an unbounded amount of transactional data, DaCTM-U overflows

to a separate uncached area of memory as in Large Transactional Memory (LTM) [3].

The design and the protocol is similar to that of LTM, except DaCTM-U does not

stall to check for potential conflicts that might arise from overflowed locations. This

is because, DaCTM-U uses signatures, and conflicts can be determined by checking

signatures. When a cache line is to be evicted while operatinginside a transaction,

the baseline U architecture proposes to overflow to a separate area of memory. In the

DaCTM-U architecture this operation takes place only if the object is of type CRW.

When overflowing to this separate area of memory, the entire cache line including all

the tag, valid, dirty and data bits are preserved in this uncached area.

Figure 4.9: A complete DaCTM-U system

Each entry is indexed by the hash value of the overflowed memory location. Each

processor has an extra register (OverflowAddress) which points to the starting location

of this separate area. In the case where more than one memory location produces the

CHAPTER 4. ARCHITECTURAL SUPPORT FOR DACTM 85

same index, a linked list is formed. DaCTM-U has an extra bit called O per cacheline to

indicate the overflow status. This is set when a cache line is overflowed and is cleared

only when a transaction commits or aborts. Even if an existing cache line is replaced

with new data, this bit does not get changed. When a cache miss occurs to a cache line

with O bit set, the request is directed to the overflow area of the memory. Thereafter

the entry is located using the hash value of the overflowed memory location. If an entry

has more than one cache line (which could happen due to the hash function mapping

more than one memory location to the the same entry), a linearsearch is performed by

comparing the tag and the index of each element in the list. Ifnone of the entries in

the current index match the memory location that caused cache miss, then it is fetched

from the original memory address.

When a processor requests to commit, it first commits all the dirty entries in its

L1 cache. Thereafter all the entries in the uncached area arecopied to their original

memory locations. In the case of DaCTM-U, it has an advantage over the baseline

because, it only overflows CRW objects to this uncached area whereas the baseline

architecture overflows all the objects regardless of their type. Because of that DaCTM

only has to copy CRW objects from the uncached area to their original memory loca-

tions, whereas the baseline has to copy all the object to their original memory locations.

A complete DaCTM-U system is shown in Figure 4.9.

4.7 Summary

The design of two architectures that are aimed to exploit theDaCTM concept is presen-

ted in this chapter. The crux of the architecture is to be aware of the types of memory

locations that a program accesses. This information is stored in a hardware structure

called the Region Information Table (RIT). As an optimization, Translation Lookaside

Buffers have also been modified to store thetypeof a particular address. Hardware

signatures are used to keep track of the read and write sets ofa transaction, so that the

conflict detection is decoupled from caches. In order to address the issue of transac-

tional cache overflows DaCTM-CS proposes to serialise commits. That is to allow one

processor to overflow to its original memory location and to make it unabortable. All

the other processors has to wait until the unabortable one commits. The other system,

i.e. DaCTM-U proposes to overflow to a separate area in the memory asin LTM. This

version allows multiple overflowing processors.

Chapter 5

DaCTM Evaluation

This chapter describes the evaluation of DaCTM-CS and DaCTM-U.The evaluation

environment is described in Section 5.1. A brief description of the benchmarks used

for the evaluation and the input configurations used for eachof them are presented

in Section 5.2. The evaluation setup is discussed in Section5.3. The scalability of

DaCTM-CS and DaCTM-U and performance improvement of them over their baseline

architectures (improved versions of TCC [39]) is presented in Section 5.4. Charac-

terisation of the results of DaCTM on processor idle time, buscontention and false

positives, is shown in Section 5.5. Finally, Section 5.6 summaries the chapter.

5.1 Evaluation Environment

Simics [70] which is a full system simulator, is used to modelthe both DaCTM sys-

tems. In its very basic form, any instruction executed in thesimulator takes one cycle

to complete. However the simulator provides two handlers namely timing-modeland

snoop-memory, which can be used to change the behaviour of the communication from

a processor to the memory and from the memory to a processor, respectively. It also

provides a feature calledhapswhich are triggered when a particular event that is re-

gistered with thathap occurs in the simulated machine. For example ahap can be

registered to trigger when a processor switches its mode from user to supervisoror

vice versa. The advantage of this feature is that it transfers the control to a user defined

function in such a situation.

Another useful feature provided by the simulator is the simulating of adding custom

instructions. This is achieved by using amagic-instruction. This is a specialNOP

instruction and in the X86 architecture it isxchg %bx %bx. This magic-instruction

86

CHAPTER 5. DACTM EVALUATION 87

also works as ahap. Therefore when thexchg %bx %bx instruction is executed, the

magic-instructionhap occurs and the control is transferred to a user defined function.

In this manner a desired behaviour can be simulated by defining it in the user module

and registering the particular user function with themagic-instructionhap. In order to

trigger themagic-instruction-hap, axchg %bx %bx instruction needs to be inserted in

the user code.

The above mentioned functions and features are used to set-up the environment

used for evaluating the DaCTM architecture. In addition to those, Simics provides

quite a lot of other functions as well. Describing them all isoutside the scope of this

thesis.

5.2 Benchmarks Tested

This section describes the benchmarks used for the evaluation and the modifications

made to them to work with an architecture that uses transactions to maintain SCC. All

the benchmarks except for Lee-TM [108] are taken from the STAMP benchmark suite

[74].

5.2.1 Genome

The application takes large number of gene segments and match them to reconstruct

the original source genome. Thesequencer run method is executed in parallel and it

has several user defined transactions inside the method. Therefore the other portions of

the method are analysed to check which portions accesses theshared data and transac-

tions were inserted in those places. Those were mainly the places the application code

accesses data structures that are not created within thesequencer run function itself.

5.2.2 Intruder

This application scans network packets and checks them against a known set of in-

trusion signatures. In the application theprocessPackets function is executed in

parallel. The function has three user defined transactions.The rest of the function

accesses data structures that has not been created within the current function, therefore

that portion of the function is also enclosed with a transaction.

CHAPTER 5. DACTM EVALUATION 88

5.2.3 Kmeans

The application groups objects into K clusters. In the application thework function is

executed in parallel. The function also has user defined transactions. Therefore the rest

of the function is analysed to see whether it accesses any of the data structures that are

not created within the current function. One such situationwas found and a transaction

was inserted enclosing that portion of the code.

5.2.4 Labyrinth

This is a routing algorithm similar to Lee-TM [108], which attempts to find a path

form a given source point to a given destination in a three dimensional grid. In the

application therouter solve function is executed in parallel and it has several user

defined transactions. Even though the non-transactional code accesses several data

structures, all of them are created within therouter solve function. Therefore no

extra transactions have been added to Labyrinth in order to maintain SCC.

5.2.5 Ssca2

Ssca2 is an application comprising four kernels and the TM version presented in

STAMP [74] focuses on kernel 1, which constructs an efficientgraph data structure. In

the application thecomputeGraph function is executed in parallel. The function has

few user defined transactions with small transaction length. However a larger portion

of the code accesses data structures that are created by another thread, mostly by the

thread bearing identity zero. Therefore several extra transactions have been added to

maintain SCC.

5.2.6 Vacation

This application emulates a travel reservation system. Several client threads concur-

rently interact with the database of the travel system. Theclient run function is

executed in parallel. The function has some user defined transactions. The majority

of the parallel function is executed as transactions. The non-transactional code only

accesses data structures defined within the parallel function, therefore no extra trans-

actions have been added in this application in order to maintain SCC.

CHAPTER 5. DACTM EVALUATION 89

5.2.7 Lee-TM

Lee-TM is a routing algorithm proposed by Watsonet al. [108]. The objective of the

application is to find a path from a given source point to a given destination point. For

the experiment, a two dimensional grid has been used. Theconnect function which is

executed in parallel, has two user defined transactions. Oneis to find and mark routes

in the shared global grid and the other is to obtain work from alist by incrementing

a shared counter. An extra transaction has been added when reading the source and

destination points from a global list, in order to maintain SCC.

The input configurations used for each benchmark are shown inTable 5.1. Apart

from Genome-Large, all the applications from the STAMP suite use the standard input

[74]. An additional input for Genome is used because, the standard input did not scale

beyond 8 processors.

Application Input
Genome -g256 -s16 -n16384
Intruder -a10 -l4 -n2038 -s1
Kmeans-Low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
Kmeans-High -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
Labyrinth -i random-x32-y32-z3-n96.txt
Ssca2 -s13 -i1.0 -u1.0 -l3 -p3
Vacation-Low -n2 -q90 -u98 -r16384 -t4096
Vacation-High -n4 -q60 -u90 -r16384 -t4096
Lee 75x75 Grid, 320 routes
Genome-Large -g1024 -s32 -n262144

Table 5.1: Benchmark applications and their inputs used for evaluating DaCTM

5.3 Evaluation Setup

This section describes the evaluation setup used for evaluating the DaCTM architec-

ture. First it discusses how to build a complete system in Simics as the basic configur-

ation only comprises a processor and a memory in which all theinstructions complete

the execution in one cycle.

CHAPTER 5. DACTM EVALUATION 90

5.3.1 Building Complete System

In its very basic form the Simics simulator does not have any caches or an intercon-

nect. Therefore the communication from processor to memoryvia the timing-model

interface has been intercepted and certain delays have beeninserted to simulate the

cache hierarchy. In order to simulate the bus, another clocking item, slower than the

processor, has been added to the system. A user module has been developed to sup-

port the coordination between interconnect, processors and the cache hierarchy. With

the developed module the DaCTM system is configured with the components shown

in Table 5.2. In addition to those, DaCTM-U uses a perfect hashfunction to index its

overflowed memory locations. A perfect hash function is used, so that the performance

is not affected by the quality of the hash function.

Component Feature
Processors 1-16, in-order
L1 Data Cache 2 way assoc, 64 B line, 32 KB size,

2 cycle latency, private per core
SPM 256 KB, 2 cycle latency, private per core
Signature 2048 Bits, 4 Parallel H3 [12] Hash functions
L2 Data Cache 8 way assoc, 64 B line, 4 MB size, 20 cycle latency, shared
Interconnect Split-transaction bus, 4 cycle latency, 64 B data width
Main Memory 100 cycle latency

Table 5.2: Components and features of the DaCTM evaluation environment

5.3.2 Building Transactional Memory Support

Since the basis of the proposal relies on transactions, a lazy-lazy hardware transactional

memory system is modelled in Simics [70], a full system simulator running Linux

kernel version 2.6.16. Two major requirements for implementing TM support are, to

notify the hardware about start and end of a transaction and to make the hardware to

operate speculatively within that region. To realise the first requirement, two extra

instructions namelyTM BEGIN andTM END were added using themagic-instructions

feature of Simics, which allows the simulation of the addition of custom instructions.

The second requirement, that is to operate speculatively, is achieved by interrupting the

processor memory communication via thetiming-modelinterface. Once theTM BEGIN

instruction is executed, the operations associated with all the subsequent instructions

are buffered until theTM END instruction is executed.

CHAPTER 5. DACTM EVALUATION 91

A snapshot of the processor registers are taken when theTM BEGIN is executed and

saved in an internal data structure of the user module. This is used to restore processor

registers in case of an abort. The commit arbiter and the commit protocol are also

implemented in the user module. The former decides to whom togrant the commit

permission whilst the latter ensures all the conflicts are resolved and appropriate ac-

tions have been taken to abort the conflicting processors. Italso ensures that all the

next level memory copies have been updated and local caches have been flushed.

5.3.3 Support for Memory Regions

Scratch-pad memories were added as separate memory units and an unmapped address

range in physical address space was assigned to these SPMs. These addresses were

then mapped to virtual addresses and a separate function wasadded to allocate memory

from these SPMs, which acted as thelocal memory region of each processor. These

SPMs attached to each processor are used to allocate objectsof type LO. In order

to supportread-only(RO) andwrite-now-read-later(WNRL) regions, two memory

spaces were reserved from the shared memory region and two other functions were

developed to allocate memory from those regions. The remaining memory space of the

shared memory is used as theconcurrently-read-write(CRW) region and the default

memory allocation function is used to allocate memory from this region.

It is also required to record the memory regions in hardware.This was straight-

forward for thelocal region because the hardware is aware of the unmapped physical

address range that was assigned to SPMs. In the case ofread-onlyandwrite-now-read-

later regions, this has to be explicitly communicated to the hardware. Two memory

blocks of 256 MB each, are allocated from the shared memory space at the beginning

of the execution of each application for these two regions. Then the hardware is noti-

fied with the upper and lower bounds of these regions. All thisregion information is

then stored in the Region Information Table.

However, the applications used for the evaluation did not have any objects of type

RO, therefore no data is allocated from theread-onlyregion. Lee’s routing algorithm

[108] and applications from the STAMP [74] benchmark suite were used to evaluate the

DaCTM architecture. Memory allocation requests of those applications were analysed

manually to identify the types of object being used in the program. Thereafter existing

memory allocation requests were replaced with either LO, WNRLor CRW memory

requests. For comparison purposes, unmodified versions of all the applications were

executed on a baseline architecture as well.

CHAPTER 5. DACTM EVALUATION 92

However, due to the fact that no cache coherence protocol is implemented in DaCTM,

none of these applications were able to execute without being modified. Since DaCTM

provides coherence using transactions, all the applications were modified by adding ex-

tra transactions in places where they access shared data. Therefore, the transactional

characteristics of the applications used in the evaluationmay not be similar to those

presented in STAMP [74]. In the rest of the discussion, the term “unmodified ap-

plications” refers to those using default memory allocation function as in the original

benchmark suite. Therefore when unmodified applications are executed on DaCTM,

no region information is available, hence no filtering of objects is performed. During

the rest of the discussion the term baseline is used to refer to an improved version of

TCC [39] executing unmodified applications.

The reason the default TCC system is not used, is because it lacks certain features

like hardware signatures to allow an unbounded amount of transactional data, as well as

an uncached area in the memory to hold cache overflows like theone used in LTM [3].

The aim of experiment is to evaluate the advantages of classifying objects as of certain

types and to select hardware operations based on that type. Therefore the baseline

system, which is conceptually similar to TCC, has all the features a corresponding

DaCTM system has except that the latter has support for memoryregions.

5.3.4 Evaluation Procedure

All the evaluations are made on the parallel region of the applications. In addition

to the configuration shown in Table 5.2, a baseline system with 256 KB of L1 cache

was used for evaluation as well. The latency of this L1 was kept at 2 cycles which is

the latency of 32 KB L1 and 256 KB SPM as well. This evaluation is done because

applications which are modified to use SPM have an inherent advantage of increased

level 1 storage coming from both SPM and L1 cache and the intention was to check

whether the improvements in DaCTM were coming from the increased level 1 memory

space or from the DaCTM support for memory regions.

5.4 Performance

Figure 5.1 shows the scalability of both CS and U versions of DaCTM. All the ap-

plications scaled well except Labyrinth and Genome. In the case of Genome, when

the number of processors is increased from 8 to 16, the bus contention of the latter

CHAPTER 5. DACTM EVALUATION 93

Figure 5.1: Scalability of DaCTM

CHAPTER 5. DACTM EVALUATION 94

becomes 2 to 3 times that of the former. This makes it fail to scale beyond 8 pro-

cessors. The reason Labyrinth does not scale is because DaCTMuses signatures to

keep track of the read and write sets of transactions. With signatures an element can

be inserted into the set, but it cannot be removed. ThereforeDaCTM does not provide

the early-release [100] feature, in consequence quite a number of aborts are produced.

Among the applications, Kmeans (both Low and High) shows almost a linear spee-

dup. The rest of the applications except Labyrinth, show a linear speedup for low

processor counts (2, 4), but the trend is not continued as thenumber of processors

increase.

Figure 5.2 shows the performance improvement of DaCTM, over baseline archi-

tectures, of all the applications used for the evaluation. In the figure, Baseline-CS

represents the improvement of DaCTM-CS over the CS version of baseline architec-

ture. Baseline-CS-256k shows the performance improvement ofDaCTM (with 32

kB L1 cache) over the baseline with a bigger (256 kB) L1 cache. The same applies to

Baseline-U and Baseline-U-256k. Both CS and U versions of DaCTM outperform their

corresponding baseline systems, as well as the baselines with a bigger L1 cache. The

performance improvement of DaCTM over baseline architectures varies from 1.06X

(DaCTM-CS, Kmeans-Low) to 4.84X (DaCTM-CS, Lee).

First the discussion is focused on comparing the performance improvement of

DaCTM architectures in comparison to their corresponding baseline architectures. There-

after the effect of increasing the L1 cache of the baseline isstudied. In the CS version,

the highest performance improvement over the baseline is reported for Lee, which

is 4.84X. From the rest of the applications, the following range of improvements

are reported: Genome (1.10X↔ 2.31X), Intruder (1.20X↔ 1.28X), Kmeans-Low

(1.06X ↔ 1.09X), Kmeans-High (1.07X↔ 1.13X), Labyrinth (0.99X↔ 1.27X),

Ssca2 (1.49X↔ 4.14X), Vacation-Low (1.40X↔ 2.82X), Vacation-High (1.58X↔

2.89X) and Genome-Large (1.31X↔ 3.77X). When the L1 cache size is increased in

the baseline, the highest improvement over the baseline hasreduced to 4.52X in Lee.

In the rest of the applications, the range of the improvements are as follows: Gen-

ome (1.10X↔ 1.36X), Intruder (1.20X↔ 1.27X), Kmeans-Low (1.06X↔ 1.09X),

Kmeans-High (1.07X↔ 1.14X), Labyrinth (1.04X↔ 1.24X), Ssca2 (1.35X↔ 3.89X),

Vacation-Low (1.38X↔ 2.70X), Vacation-High (1.54X↔ 2.70X) and Genome-Large

(1.29X ↔ 2.01X). Increasing the L1 cache has resulted in the following significant

changes in the improvements: Genome (2.31X→ 1.35X), Ssca2 (4.14X→ 3.89X),

Lee (4.84X→ 3.31X) and Genome-Large (3.77X→ 2.01X).

CHAPTER 5. DACTM EVALUATION 95

Figure 5.2: Performance improvement of DaCTM over baseline architectures

CHAPTER 5. DACTM EVALUATION 96

Similarly considering the U version, the highest performance improvement over the

baseline is reported in Lee, which is 4.17X. The performanceimprovement range re-

ported in the rest of the applications are Genome (1.10X↔ 1.32X), Intruder (1.19X↔

1.27X), Kmeans-Low (1.06X↔ 1.09X), Kmeans-High (1.07X↔ 1.13X), Labyrinth

(1.03X↔ 1.12X), Ssca2 (1.55X↔ 3.97X), Vacation-Low (1.40X↔ 2.85X), Vacation-

High (1.56X↔ 2.95X) and Genome-Large (1.42X↔ 1.97X). When the L1 cache size

is increased to 256k in the U baseline, the performance improvement range changes

to the following: Genome (1.10X↔ 1.38X), Intruder (1.18X↔ 1.25X), Kmeans-

Low (1.06X↔ 1.10X), Kmeans-High (1.07X↔ 1.12X), Labyrinth (1.03X↔ 1.16X),

Ssca2 (1.43X↔ 3.92X), Vacation-Low (1.38X↔ 2.78X), Vacation-High (1.55X↔

2.89X) and Genome-Large (1.35X↔ 1.96X). Only Lee reports a significant change

in the performance improvement when the L1 cache is increased, which is 4.17X→

3.67X.

The important observation to make is that, despite the presence of certain reduc-

tions in the performance improvement for certain configurations, none of the reduc-

tions reached 1.0X. This means the performance improvementof DaCTM over the

baseline is not coming from the increased level 1 storage in aDaCTM processor, which

is coming from the L1 cache and the SPM. Instead it is coming from categorising ob-

jects into differenttypesand triggering different hardware operations based on thetype

of the memory location concerned. More discussion on this ispresented in Section 5.5.

Having observed that solely increasing the L1 cache does notreduce the execution

time, the discussion is now focused on describing the causesof performance improve-

ments in DaCTM. In the remainder of the section, the discussion is presented in very

abstract manner. A comprehensive characterisation of the results is presented in Sec-

tion 5.5.

In the case of Ssca2, the reduction of false aborts in DaCTM provides the main

contribution for the performance improvement, this is in addition to the general con-

tribution from the reduction in idle time and bus contention. In the case of Vacation,

performance improvements are coming collectively from thereduced processor idle

time and bus contention. Lee has significantly less processor idle time, bus contention

and false aborts which all account for the performance improvement. The reduced

processor idle time, bus contention and false aborts account for the performance im-

provement in Genome-Large. In the case of Kmeans, both Low and High versions

report similar execution times in the baseline architectures and in DaCTM. The reason

CHAPTER 5. DACTM EVALUATION 97

for the low performance improvement is because this application uses small transac-

tions and has low contention. When transactions used in the program are small, no

transactional cache overflows are required. This removes the need to either serialise

commits (CS) or access the uncached area of memory (U). Also when transactions

are small, few signature insertions take place resulting inless false positives. For this

application, two baseline configurations (2,4) also produced zero false positives.

5.5 Characterization of DaCTM

This section characterises DaCTM in terms of various parameters. Since DaCTM is

based on the concept of associating a type with each object, firstly, the percentage

of accesses present in each category is measured. Figure 5.3shows the average of

each access type of 2 to 16 processors for each benchmark. Themajority of accesses

belong to the LO type in both DaCTM-CS and DaCTM-U, from which Genome-Large

shows the lowest percentage (71%) and Lee shows the highest (99%). Both Vacation

High and Low, Intruder and Genome have a considerable numberof CRW objects

(11%, 11%, 8%, 6% respectively). The rest of the applications have less than 5% of

CRW objects and in cases like Lee it is less than 1%. Regarding the WNRL objects,

Ssca2 has the maximum percentage of accesses (31%). Genome-Large, Kmeans-Low,

Kmeans-High, Genome also have significant number of WNRL accesses (25%, 21%,

21%, 19% respectively). Others have 5% (Intruder) or less accesses.

Figure 5.3: Percentage of LO, WNRL and CRW data types in both DaCTMarchitec-
tures

This figure validates the hypothesis that the entire Part I ofthe thesis is based

on, i.e. memory locations used in programs have different access patterns hence can

CHAPTER 5. DACTM EVALUATION 98

be treated differently. For example the majority of accesses belong to LO type and

DaCTM proposes to allocate them on the on-chip scratch-pad memory which is closer

to the processor. By doing so, none of these accesses encounter a need to use the inter-

connect, thereby reducing the contention for it. Also fewerCRW objects means fewer

insertions to signatures, resulting less false transaction aborts. In case of a transaction

cache overflow, WNRL objects can be written back to their original memory locations.

In the CS version, this reduces the number of times a processorhas to seek over-

flow permission. This in turn reduces the overflow waiting time of other processors.

Overflow waiting time is the time a processor has to stall until its overflow request

is granted. The request can be denied if the permission is already granted to another

processor. By requesting overflow permission only for CRW objects, DaCTM reduces

the overflow waiting time of processors. Also by overflowing to their original memory

locations, DaCTM reduces the amount of data that needs committing at the end of a

transaction.

Having seen the presence of different types of objects in theapplications used for

the evaluation, the discussion now focuses on analysing theimpact of categorising

objects into these types, with various parameters. Figures5.4 to 5.7 show normalised

values for different parameters. In each figure, Baseline-CS indicates that DaCTM-CS

values are normalised to the corresponding Baseline-CS value, similarly Baseline-CS-

256k indicates that DaCTM-CS values are normalised to the corresponding Baseline-

CS with a 256 kB of L1 cache. The same applies for Baseline-U and Baseline-U-256k.

5.5.1 Idle Time

Figure 5.4 shows the idle time of each processor. In this experiment, a processor is

considered idle if its is waiting for data to be present in itsL1 cache or if its waiting for

the interconnect to be available. In this regard DaCTM has an advantage because all

LO objects can be stored in SPM so that they can be used withoutgetting them from

next level memory. The idle time of DaCTM is 95% (Lee) to 17% (Kmeans-Low)

less when compared to their baseline systems. One could argue that this advantage

is coming from the increased level 1 storage because of the added SPM in DaCTM.

This argument can easily be nullified because, even with a baseline system having a

L1 cache of 256 kB, processor idle time has not changed significantly in comparison

to that of the DaCTM processor. In Figure 5.4, it can be seen that reduction of the idle

time due to increased L1 cache, is negligible in most cases. Therefore the DaCTM

approach of having a separate on-chip memory and allocatingall the LO type objects

CHAPTER 5. DACTM EVALUATION 99

Figure 5.4: DaCTM idle time normalised to baseline

CHAPTER 5. DACTM EVALUATION 100

in that memory space is able to reduce the processor idle time. The evaluation also

showed that increasing the existing L1 cache in the baselinearchitecture does not help

to achieve the same impact.

In the case of Kmeans, both high and low show a similar idle time for various

processor counts. This is because, it is an application withlow contention and it has

shorter transactions. Therefore the commit phase is kept small. When the commit

phase is small, the effect of it towards the bus contention isvery small. In general, when

the number of processors increases, the contention for shared resources such as bus,

increases. In TM, this can be aggravated if the the bus is heldfor longer periods during

commit time. Since the commit time does not affect the bus contention in Kmeans, the

processor idle time does not change as the number of processors increase. Even though

the TM characteristics of Ssca2 are similar to Kmeans in the original version, in this

experiment extra transactions have been inserted to the former to maintain coherence.

Therefore it shows a different behaviour to Kmeans.

The rest of the applications except Intruder, show a similarbehaviour. That is the

normalised idle time is reduced as the number of processors increase. What happens

there is that idle time of both DaCTM and the baseline architectures increases as the

number of processors increase. However the rate of increasein DaCTM is low com-

pared to that of the baseline. Therefore the normalised timereduces. Also it is worth

noting that when the baseline has an increased L1 cache size,the corresponding norm-

alised value increases. However in most cases this increaseis negligible.

5.5.2 Bus Contention

Bus contention is another parameter that is relevant to the discussion. It is measured

as the number of times a bus request was denied. Figure 5.5 shows these values nor-

malised to the values reported in a corresponding baseline system. From Figure 5.5,

it can be seen that all the applications got from 100% (Lee) to54% (Ssca2) less bus

request denies compared to their baseline systems. A bus request can be denied if

it is granted to another processor or if another processor iscommitting. Therefore if

other processors use the bus frequently to bring data in and out, the availability of the

bus is reduced, thus contention is increased. In this particular aspect of bringing data

in and out, DaCTM has an advantage because LO type data is stored in the on-chip

SPM. Therefore the interconnect is not used for these type ofdata in DaCTM thereby

reducing the contention for it. On the other hand, if processors spend more time in

CHAPTER 5. DACTM EVALUATION 101

Figure 5.5: DaCTM bus contention normalised to baseline

CHAPTER 5. DACTM EVALUATION 102

committing, then the bus is not available for the use of otherprocessors, thereby in-

creasing the contention for it. DaCTM proposes to operate non-speculatively for LO

objects even within a transaction. This reduces the amount of speculative data that

need committing at the end of a transaction. This in turn reduces the commit time,

thereby increasing the availability of the bus to be used by the rest of the processors.

In the case of both Kmeans applications, normalised bus contention does not change

as the number of processors increase. The reason for the behaviour is the same as for

the behaviour in processor idle time,i.e. being a low contention application and hav-

ing shorter transactions. In Figure 5.5 two patterns can be observed. In one type the

normalised bus contention increases as the number of processors increase (Genome,

Ssca2, Genome-Large). In the other type normalised bus contention is reduced as the

number of processors increase (Vacation-Low, Vacation-High). In general, in a multi-

core system contention for shared resources such as the bus,increases as the number

of processors increase. Due to separation of data, DaCTM is able to reduced the usage

of it. Having said that, even in a DaCTM system as the number of processors increase,

contention for the bus increases. However as the DaCTM systemstarts the contention

from a low value, there is more space to grow until the saturation point. In the case

of the baseline, it started from a high value, therefore has only little space to grow.

Therefore normalised bus contention increases as the number of processors increase.

Vacation behaves completely opposite to this norm because it has significantly less

false positives in DaCTM than the baseline. When a transactions is aborted, its L1

cache is flushed and data is fetched again. When this happens falsely and quite a few

times, it can introduce a significant amount of contention. Therefore for the Vacation

applications, the baseline architectures have extra contention than those available in

Genome, Ssca2 and Genome-Large. However this is not presentin DaCTM. Therefore

in the case of both Vacation applications, DaCTM has less contention in comparison

to the baseline due to a reduction in false aborts.

5.5.3 Bus Usage

Two direct approaches used in DaCTM to reduce the bus usage are, allocating LO type

objects in on-chip memory and to operate non-speculativelyon those objects even

within a transaction. When allocated in the on-chip memory, the bus is not used to

transfer LO data to/from the processor. DaCTM proposes to operate non-speculatively

on LO type objects. The advantage of this is the amount of datathat needs committing

is reduced. Since LO objects are allocated in the on-chip memory and operations

CHAPTER 5. DACTM EVALUATION 103

Figure 5.6: DaCTM bus usage normalised to baseline

CHAPTER 5. DACTM EVALUATION 104

are performed non-speculatively on them, these objects do not use the bus during the

commit phase. With these two techniques, DaCTM reduces bus usage by 95% (Lee)

to 20% (Kmeans). The normalised bus usage is shown in Figure 5.6.

From Figure 5.6, two patterns can be observed. One is that majority of applica-

tions (Genome, Intruder, Kmeans, Labyrinth, Lee) show similar bus usage regardless

of the number of processors in the system. This is the generally expected behaviour

because the work which needs to be done does not change as the number of processors

increase. Therefore the amount of data that needs to be brought to the processors and

the amount of data that needs to be committed does not change.Therefore bus usage

is steady regardless of the number of processors in the system. However applications

like Vacation, Genome-Large and Ssca2 show a different behaviour. That is the norm-

alised bus usage reduces as the number of processors increase. This is because these

applications tend to produce a large number of false positives for the baseline system

as the number of processors increase. Therefore when a transaction aborts it needs to

clear all its L1 cache and bring data from the next level memory, and the interconnect

is used in doing so. Therefore the bus usage of the baseline increase significantly for

those applications whilst it remains steady for the applications executed on DaCTM.

This makes the normalised bus usage of those applications toreduce as the processor

count increase.

5.5.4 Commit Phase Bus Usage

The situation described in Section 5.5.3 is clearly reflected in Figure 5.7 which shows

the bus usage during the commit phase. There, it can be observed that irrespective

of the processor count, bus usage during the commit time remains steady. This is

because the amount of data that needs committing is independent of the number of

transactions aborted due to false positives. However for the applications used for the

experiment, this is dependent on the given workload. Therefore for a given application,

for a given workload, the number of transactions and the amount of speculative opera-

tions needed in order to complete the given task, remains either the same or varies by

a small amount. Therefore the commit time bus usage of both DaCTM and baseline

architectures remains similar for all the processor configurations, hence the normalised

value does not get changed. It is also worth noting that bus usage of U systems dur-

ing commit time is higher than that of CS systems. This is because CS systems allow

transactional cache overflows to their original memory locations, thereby implicitly

reducing the number of memory locations that need committing. On the other hand, U

CHAPTER 5. DACTM EVALUATION 105

Figure 5.7: DaCTM commit phase bus usage normalised to baseline

CHAPTER 5. DACTM EVALUATION 106

systems allow to overflow to a separate area of memory, which need to be written back

to their original locations during the time of committing. Therefore U systems utilise

bus more than CS systems during commit time. Considering the CS version, the bus

usage of DaCTM during the commit time is 1%(Lee) to 56%(kmeans-Low) that of the

corresponding baseline. In the case of U version, bus usage of DaCTM is 2%(Lee) to

64%(Kmeans-Low) that of the corresponding baseline system.

5.5.5 Signature Insertions

DaCTM uses signatures to record the read and write sets. A notable feature of signa-

tures is that, when detecting conflicts, they can produce false positives, but not false

negatives. The more addresses being added to the signature,the bigger the probability

of producing false positives [95]. DaCTM only inserts addresses of CRW objects in

the signatures. Since all the applications used for the experiment have fewer CRW

objects, the number of insertions made to read and write signatures are reduced. Fig-

ures 5.8 and 5.9 show the number of insertions made to read andwrite signatures in

CS and U versions of baseline and DaCTM architectures respectively. In both figures,

R-Baseline, shows the number of insertions made to the read-signature in the baseline

architecture. R-Baseline-256k shows the insertions made to the read-signature of the

baseline which has the increased L1 cache of 256 kB. R-DaCTM shows the insertions

made to the read-signature of the DaCTM architecture. When ‘R’ is replaced with ‘W’

in the legend, the above definition is changed with write-signature.

From both the figures it can be seen that DaCTM inserts only a small number of

addresses to their signatures. In the case of DaCTM-CS, Kmeans-Low (0.42%-0.43%)

and Lee (0.29%-0.57%) report the lowest percentage of insertions made to the read

signature in comparison to those made in the baseline. In thesame architecture, inser-

tions made to the write signature for Lee and Labyrinth are negligible in comparison

to the insertions made in the baseline. Comparably higher percentages of insertions

are made to the read signature in the DaCTM-CS architecture in Labyrinth (15%, 4P),

Vacation-Low (13%, 2P), Vacation-High (12%, 2P) and Intruder (12%, 16P). In the

case of write signatures, comparably higher percentage of insertions are made in Ssca2

(14%, 2P). The rest of the applications reported less than 5%of insertions to the write

signature, in comparison to those made in the baseline. For applications like Kmeans-

Low, Labyrinth, Vacation-Low, Vacation-High, Lee and Genome-Large the percentage

of insertions dropped even below 1%.

Similarly in the case of the DaCTM-U architecture, Kmeans-Low (0.42%-0.43%)

CHAPTER 5. DACTM EVALUATION 107

Figure 5.8: Insertions to read/write signatures in the CS version of baseline and
DaCTM

CHAPTER 5. DACTM EVALUATION 108

Figure 5.9: Insertions to read/write signatures in the U version of baseline and DaCTM

CHAPTER 5. DACTM EVALUATION 109

and Lee (0.20%-0.43%) report the lowest percentage of insertions made to the read

signature, in comparison to those made in the baseline. Insertions made to the write

signature in DaCTM-U for Lee and Labyrinth applications is negligible, as in DaCTM-

CS. A comparably higher percentages of insertions to the readsignature, are reported

in Vacation-Low (13%, 2P), Vacation-High (12%, 2P) and Intruder (12%, 16P). In the

case of write signatures, Ssca2 reports the maximum percentage of insertion which is

12%. Insertions made to the rest of the applications are quite low and in cases like

Labyrinth, Vacation-Low, Vacation-High, Lee and Genome-Large it falls to less than

1%, that of the baseline.

It can be observed in both Figures 5.8 and 5.9 in most applications, that the num-

ber of insertions made by the baseline architectures increase as the number of cores

increase in the system. However this increase is not significant for DaCTM architec-

tures. The reason for this behaviour is that DaCTM produces less false aborts, due to

a lower number of insertions made to the signatures. Aborting and restating a trans-

action, increases the contention of the system. When a systemhas higher number of

cores, the contention for shared resources increases. When the system produces false

aborts, this contention gets even higher. When the contention is higher, the idle time of

the processor increases, thereby making transactions moresusceptible to abort. When

a transaction is aborted, its signature is discarded. Each aborted transaction has to be

restarted. When it is restarted, it has to create a new signature, because the abort op-

eration has cleared the previous one. This increases the number of insertions made to

each signature in the baseline for higher processor counts.

5.5.6 False Positives

As described earlier, signatures produce false positives and inserting more addresses

increases the probability of it. The number of false positives produced in DaCTM-CS

and DaCTM-U are shown in Figure 5.10 and 5.11 respectively. Each figure also shows

the number of false positives produced in the correspondingbaseline architectures as

well. False positives presented in the figures are measured at the granularity of cache

lines. It can be seen in both figures that DaCTM architectures produce either zero or

significantly lower number of false positives than those produced in the corresponding

baseline architectures.

DaCTM-CS did not produce any false positives in Kmeans-Low, Kmeans-High,

Labyrinth, Ssca2 and Lee for all the processor configurations. Both baseline config-

urations of CS, produced zero false positives for Kmeans Low and High for 2, 4, 8

CHAPTER 5. DACTM EVALUATION 110

Figure 5.10: Number of false positives presented in the CS version of DaCTM and
baselines

CHAPTER 5. DACTM EVALUATION 111

Figure 5.11: Number of false positives presented in the U version of DaCTM and
baselines

CHAPTER 5. DACTM EVALUATION 112

and 2, 4 processor counts respectively. Among the applications for which DaCTM-CS

has produced false positives, the highest percentage in comparison to those produced

in the baseline, is reported in Vacation-High which is 18%. The highest percentages

reported in other applications are Genome (11%), Intruder (6%), Vacation-Low (8%)

and Genome-Large (10%).

In the case of DaCTM-U, Kmeans-Low, Kmeans-High, Ssca2 and Lee did not

produce any false positives for all processor configurations. The U version of baseline

architecture produced zero false positives only with the Kmeans application (both Low

and High) for 2 and 4 processor configurations. Considering only the applications for

which DaCTM-U produced false positives, the highest percentage of false positives

in comparison to those produced in the baseline is reported in Vacation-High which is

17%. The highest percentages of false positives reported inother applications are Gen-

ome (11%), Intruder (6%), Labyrinth (5%), Vacation-Low (8%) and Genome-Large

(11%).

Another observation that can be seen in both Figures 5.10 and5.11, is that the

number of false positives produced in the system increases as the number of cores

increases. One reason for this is, as the number of cores increases the number of sig-

natures (to check for conflicts) increases as well. More livesignatures present in the

system, increase the candidates for checking conflicts. Therefore total number of false

positives increased as the number of cores increases. However the number of false

positives produced per core in both DaCTM architectures remains similar for all the

processor configurations for all the applications. The situation is not same for baseline

architectures with Genome, Intruder, Labyrinth, Ssca2 andLee. Among those Intruder,

Labyrinth and Lee are applications with high contention. Extra transactions have been

added to Ssca2 and Genome to maintain coherence when accessing WNRL data. This

makes Genome behave differently than Vacation which has similar characteristics in its

original version [74]. All the above mentioned applications can now be considered as

having high contention despite their original characteristics presented in [74]. Conten-

tion for shared resources increases as the number of cores increases. For an application

with higher contention, this could affect it unfavourably.So when false positives are

occurring, contention gets further increased and in turn produces more false positives.

This does not apply to DaCTM, because they do not produce falsepositives as in the

baseline architectures. Therefore the number of false positives produced per core re-

mains steady.

CHAPTER 5. DACTM EVALUATION 113

5.6 Summary

Evaluation of two DaCTM systems and their corresponding baseline systems are presen-

ted in this chapter. It described the benchmarks used and themodifications made to to

them in order to work with DaCTM and baseline architectures. Adescription of the

simulator along with extensions used to support, Transactional Memory and Memory

Regions were also given in the chapter. Performance of DaCTM over baseline archi-

tecture and also the scalability of DaCTM was presented thereafter. Finally the chapter

characterises the results on various parameters such as processor idle time, bus conten-

tion, bus usage, commit phase bus usage, signature insertions and false positives.

Chapter 6

Related Work on DaCTM

This chapter describes some of the work related to the DaCTM proposal. The centrepiece

of DaCTM is the hardware support for transactional memory. Also it is the centrepiece

of the work presented in Part II and III of the thesis. Therefore the related work in the

area of Transactional Memory is presented in Chapter 2. The DaCTM architecture is

based on the “data centric” approach to computing. Section 6.1 describes the related

work in the area of data centric computing and also architectures that support it. The

DaCTM architecture maintains SCC at bulk level and optimises the required hardware

operation based on the type of memory location. Sections 6.2and 6.3 briefly describe

related work in cache coherence and memory consistency. Twosections also describe

existing work that proposes to distinguish hardware operations based on the type of

a memory location. Existing proposals to optimise transactional memory using the

access patterns of memory locations are presented in Section 6.4. The chapter also

presents, in Section 6.5, several approaches from the memory management literature

that uses access pattern information in different situations.

6.1 Data Centric Synchronization

Vaziri et al. [106] argue that operation centric synchronization is error prone because

it requires programmers to have a clear understanding of which data structures are ac-

cessed concurrently, hence propose Data Centric Synchronization (DCS). In DCS a

programmer associates synchronization constraints with data structures and the com-

piler automatically infers points in the program order to preserve consistency. They

also present an inter-procedural analysis to determine locations to perform synchron-

ization.

114

CHAPTER 6. RELATED WORK ON DACTM 115

Figure 6.1: An example of using data centric approach for synchronization (taken from
[106])

For example consider the code segment shown in Figure 6.1(a). There, the class

Customer has four variables and three methods and all these three methods can get

executed in parallel. Therefore the keywordatomic has been placed inside all the

methods in order to avoid data races. This is the conventional operation centric way

of maintaining synchronization. The code segment shown in Figure 6.1(b) shows the

“data centric” approach proposed by Vaziriet al. [106]. In their approach authors pro-

pose to associate theatomickeyword with data, instead of associating it with the op-

erations inside a method. The authors also proposed to groupdata intoatomic sets, so

that atomic constraints can be associated with sets of data instead of associating them

with the entire data set used in a program. It can be seen in Figure 6.1(b), that variables

city andpostCode are associated with theatomic setaddress; variablesdate and

item are associated withatomic setpurchase. In the proposed framework the com-

plier automatically infers where the locks need to be obtained in order to maintain syn-

chronization. For example, theupdateAddress method is required only to obtain the

lock related to theaddress atomic setand thenewPurchase method is only required

to obtain the lock related to thepurchase atomic set. However thenewStoreGift

method is required to obtain locks related to both atomic sets as it accesses data from

both of them.

Colorama [13] is an architectural solution to support DCS. Theidea is to group

data structures into consistency domains and to assign a color to each domain. If a

thread accesses a data structure from a domain that it does not own, a critical section

is started automatically for that particular thread for that particular domain. No other

CHAPTER 6. RELATED WORK ON DACTM 116

thread can now access this domain. In order to realise this proposal at the hardware

level, it is required to identify when to start a critical section and when to finish it. In

order to achieve the first objective two types of structures are used. One is a shared

structure calledPalettewhich stores start and end addresses of all the color regions.

The second is local to each thread and it storescolorIDs of all the regions that the

thread owns. A critical section is started when a thread accesses a color region that

it does not own. In Colorama, the authors also consider a method as a unit of work

as in DCS [106]. Therefore when the execution of a method is completed, the critical

section started for that method needs to be finished. They useTransactional Memory

as the underlying synchronization mechanism. Later, the same authors proposed Data

Coloring [16], a programming model based on the data colouring concept. In this

model, data structures are grouped into consistency domains and places are marked

(with thecolor stepconstruct) in the program order where data should be consistent.

The concept of associating atypewith memory locations and inferring required

operations to maintain SCC in DaCTM is similar to DCS and Colorama. However both

DCS and Colorama only focus on maintaining synchronization, whereas the focus of

DaCTM is to maintain SCC as a whole. The memory regions and theirassigned types

are similar to color regions and color IDs in Colorama. However thetypefor a memory

location in DaCTM is derived from the access pattern of that location. In the case of

Colorama, the color ID does not represent such information.

6.2 Cache Coherence

Caches have been introduced and placed physically closer to processors to store fre-

quently used data, in order to reduce latency. Memory accesses in a program show tem-

poral and spatial locality. Therefore by storing the most frequently accessed memory

locations and their nearby locations, access latency of a processor can be reduced.

However, a multi-core chip has more than one processor and each processor has at

least one private cache. Due to the presence of locality in memory accesses, more than

one processor can access the same or nearby by memory location. When the modifica-

tions to these locations are made on local caches of the processors, an erroneous output

can be produced unless a mechanism is used to avoid other processors using stale data.

The issue that needs addressing here is how to maintain a coherent view of the shared

memory.

In order to maintain a coherent view, a coherent detection and enforcement strategy

CHAPTER 6. RELATED WORK ON DACTM 117

needs to be implemented. A mechanism to detect coherence violations can be imple-

mented by snooping the bus for read and write requests issuedby other processors and

comparing them with the state of the local cache entries. As the name implies the state

of a cache line indicates the state of it (shared, dirty and soon). In order to enforce

coherence, a cache controller can either invalidate the cache entry or update it based

on the information gathered by snooping the bus. The coherence protocols which are

based on this fundamental concept are calledsnoopbased protocols.

In a chip-multiprocessor as the number cores increased, a bus based interconnect

cannot support the overall network traffic. Therefore an scalable interconnect like a

two-dimensional mesh or an omega network is required. However, snooping is not

straightforward in such an interconnect as there can be multiple communication chan-

nels among cores. Therefore, those systems rely on a structure called a directory to

maintain cache coherence. There, a directory maintains thestate about the cache lines

accessed by each processor. Read and write operations from all the processors go

through the directory. Therefore the directory knows whichcache lines are modified

and who has the modified cache entry and which cache lines are shared by which pro-

cessors and so on. Therefore the coherence detection strategy can be integrated with

the directory itself. In order to enforce the coherence, when a violation is detected,

the directory sends messages to caches which have cached theentry being considered,

asking them to invalidate their entries. Since a directory is involved in these sort of

mechanisms, they are calleddirectorybased protocols.

The above paragraphs provides a brief summary of cache coherence protocols.

The literature on the subject is quite large and summarisingthem all here is beyond the

scope of the thesis, but interested readers are directed to [68, 101, 103]. However, the

rest of this section describes proposals from cache coherence literature that attempt to

categorise data and perform coherence selectively on data that requires it.

Ekmanet al. [31] propose to attach a unit called a Page Sharing Table (PST) in

each processor in order to keep track of the pages accessed bythe processor and the

sharers of those pages. The sharers are stored in a sharing vector, which is broadcast

on a separate bus called asharing vector bus. The information in the sharing vector

of one processor is used by other processors in deciding which addresses require a tag

lookup and which do not. The objective is to reduce the energyconsumed, in looking

up addresses that are not shared by other processors, in a snooping coherence protocol.

Cantinet al. [11] proposeCoarse-Grain Coherence Trackingwhich allows pro-

cessors to send L1 cache misses directly to the main memory without checking those

CHAPTER 6. RELATED WORK ON DACTM 118

misses in other processors’ caches. Each processor is equipped with a structure called

a Region Coherence Array(RCA) for monitoring coherence at a granularity bigger

than a cache line. This RCA maintains the coherence state of a large aligned memory

region. The size of a region is equal to two to the power of number of cache lines.

In their approach, a conventional cache coherence protocolis modified so that when

a cache is snooped for an address, the RCA of that processor is also snooped. The

requesting processor store the response of RCA snooping of theother processor in its

RCA. When a processor encountered a cache miss, if checks its RCA tocheck whether

any other processor is caching data in the region that this address falls in to. If that is

not the case, the request is directed to memory. The authors argument is that in a con-

ventional coherence protocol, all the cache misses are snooped regardless of whether

they are cached or not in other processors. In their approach, snooping is done only for

locations that belongs to regions that are cached by other processors. This way their

proposal was able to reduce the request latency of a multi-core processor.

Similar toCoarse-Grain Coherence Tracking, Moshovos [78] proposedRegionScout,

a filtering mechanism that dynamically detects non-shared regions. The objective is to

reduce energy, latency and bandwidth utilization by avoiding unnecessary snooping

and tag lookups. The proposal is to attach two structures, namely aNot Shared Region

Table(NSRT) and aCached Region Hash(CRH), to each node. A region is defined

as an aligned continuous block of memory with size of power oftwo. As the name

suggests NSRT records non shared regions. CRH which is a bloom filter, imprecisely

records locally cached regions. When a node needs to issue a memory request, it first

check it in the NSRT. If an entry is found, it knows that no other node is caching

this, thus broadcasting can be avoided. When a node receives abroadcast request for

an entry that is cached in its NSRT, the entry is invalidated.When responding to a

memory request, a node uses its CRH to check whether it is caching any entry in the

region that the requesting address falls in to. This response is used by the requesting

node in deciding whether to insert the entry to NSRT or not.

Zebchuket al. [112] argue that bothCoarse-Grain Coherence TrackingandRe-

gionScoutrequire extra on-chip area which is a scarce resource, therefore hardware

designers are unlikely to integrate those [11, 31, 78] into future designs, unless the area

and power consumption of those techniques are addressed. Astheir solution the au-

thors presentRegionTracker(RT), a framework for coarse-grain tracking without com-

promising the area or performance of a conventional cache. The RT design proposes

to replace the tag array with a structure to facilitate region level lookups. With a single

CHAPTER 6. RELATED WORK ON DACTM 119

lookup in RT, it can be determined which and where, blocks of aregion are cached.

The authors showed that their technique can be used to support theRegionScout[78]

technique, in order to eliminate unnecessary broadcasts ina snoop coherence protocol,

without any resource overhead.

A distributed cached design called R-NUCA which takes the advantage of ac-

cess pattern information of memory locations is presented by Hardavellaset al. [40].

In their approach, accesses are categorised asInstructions, Data-Sharedand Data-

Private. Classification is done at the OS level with page level granularity. The ad-

vantage is that different block replacement policies can beapplied to each category.

R-NUCA places private data (Data-Private) in the L2 cache slice of the correspond-

ing processor. Once loaded to the memory,Instructionsremain as read-only. However

they are read by many processors. Therefore instructions are replicated in local caches.

R-NUCA places shared data (Data-Shared) closer to the cores that access them. It also

ensures that they are evenly distributed across all tiles and for each shared block there

is a unique slice. This way R-NUCA avoids replication, therebyeliminating coherence

as well.

Rather than categorising data as shared or private at page-level granularity,Sub-

space Snooping[56] proposes to identify sharers for pages. The argument isthat most

of the pages are partially shared,i.e. shared by more than one core but less than the

total number of cores in the system. Therefore categorisinga partially shared page as

“shared” as in the previously described approaches incurs unnecessary broadcasts and

tag lookups in a snoop based coherence protocol. The proposal is to extend a page

table entry and the TLB with a sharing vector to record the sharers of each page. For

each coherence operation, the requesting processor (i.e. the one performing the oper-

ation) can find out the sharers of the page to which this address belongs, hence the

request is forwarded only to those. Their proposal also provides a feature calledSub-

space Shrinkingwhich allows the removal of obsolete sharers (who does not share the

page any more) from the sharing vector. Using this approach the authors were able to

reduce unnecessary snooping in snoop based coherence protocols.

Cuestaet al.[27] also made a proposal to deactivate the coherence mechanism for

private data. Similar to R-NUCA [40] andSubspace Snooping[56], in their proposal,

the authors also take the advantage of functions available in the OS to distinguish data

as private and shared. Initially all the pages are treated asprivate, hence coherence

is deactivated for them. When a processor issues a memory request, which results in

a TLB miss, while serving the TLB miss the OS checks whether any other processor

CHAPTER 6. RELATED WORK ON DACTM 120

is keeping this page in a private state. If that is the case, the OS issues a coherence

recovery notification to the hardware and the coherence is activated for that page from

that point onwards. In order to realise the proposal: TLB entries are extended with

extraprivateandlockedbits; page table entries are extended withprivate, cachedand

keeperbits.

Literature described in this section presented several attempts from cache coher-

ence literature that aimed to distinguish memory accesses into sharedandprivateand

eliminate the coherence mechanism for theprivate data. One of the objectives of

DaCTM is similar to this, that is to reduce the broadcasting and interconnect usage for

privatedata. However, in DaCTMprivatedata is stored in on-chip memories where as

in all the above described approaches they are stored in the globally shared memory.

In addition, DaCTM aims to provide Synchronization, Coherence and Consistency as

a whole whereas all these proposals only target the provision of coherence.

6.3 Memory Consistency

Integrating memory consistency with cache coherence and providing it at bulk level is

one of the objectives of Part I of this thesis. Memory consistency models define the

event ordering on parallel processors. They range from strict but easy to understand

and reason about sequential consistency (SC) [62] to relaxedbut more complex release

consistency (RC) [35].

Lamport [62] defined Sequential Consistency (SC) as “if the result of any execution

is the same as if the operations of all the processors were executed in some sequen-

tial order, and the operations of each individual processorappear in this sequence in

the order specified by its program”. This allows programmers to view a program as

a collection of operations issued by different processors in the system and these pro-

cessors are connected to the global memory one at a time by a switch. Since only

one processor is connected to the global memory at any given time, the operation per-

formed by it is made visible to others in the system, before the next processor issues

its memory operation. This ensures that the order in which these operations are per-

formed, is in accordance with the order specified by the program. In order to provide

this simple abstraction, SC enforces constrains on operations performed by each pro-

cessor. Therefore it cannot take the advantage of certain hardware optimisations such

as reordering, buffering, bypassing and so on. Later, several memory models like Re-

lease Consistency (RC) [35] which allows relaxations from the constraints imposed by

CHAPTER 6. RELATED WORK ON DACTM 121

SC have been proposed. Summarising all of them is beyond the scope of this thesis,

but interested readers are directed to the tutorial [2] by Adve and Gharachorloo.

Gharachorlooet al. proposed that prefetching and speculation can be used to im-

prove the performance of any consistency model [34]. For prefetching, authors sug-

gest the use ofhardware-controlled non-binding prefetch. With this approach, data is

brought to the cache and kept coherent using coherence protocols. For speculation, a

mechanism is required to detect whether speculatively accessed data is correct at the

time of using it and also a correction mechanism is required to undo and repeat the

computation in case of misspeculation. Hill argues [51] that future multi-core systems

should implement SC as the memory model because the support for speculation can

narrow the performance gap between SC and RC. He also argues that the performance

gained by the relaxed consistency models does not justify the complexity imposed by

them. This conjecture of Hill’s is validated by the work of Gniadyet al. [36], in which

the authors show that SC can perform as well as RC provided thatthe hardware has

enough support for speculation.

Cezeet al. [14] presented BulkSC, an architecture to provide sequentialconsist-

ency (SC) at block level. The idea is to dynamically group consecutive instructions

and to execute them speculatively. Conflicts are checked at the end of blocks and

hardware enforces SC at coarse grain level rather than at instruction level. They also

achieved performance comparable to a RC implementation. Bothof these [14, 36]

support Hill’s conjecture [51] that a SC implementation canperform as well as RC if

enough hardware support for speculation is provided. BulkSCalso proposes to operate

non-speculatively on private data.

Memory consistency provided by DaCTM is somewhat similar to that of BulkSC.

The differences are, blocks are dynamically created in BulkSC whereas in DaCTM

they are created statically. Both systems propose to operatenon-speculatively on

private data. In BulkSC, this private data is stored in the shared memory whilst they

are stored in on-chip memory in DaCTM. BulkSC considers all non-private data as

shared and hardware is made to maintain consistency constraints on them. In DaCTM

all non-private data is further categorised asRead-Only, Write-Now-Read-Laterand

Concurrently-Read-Writeand different consistency constraints are applied on them.

The consistency constraint imposed onConcurrently-Read-Writedata by DaCTM is

similar to that of the BulkSC on non-private data.

Dag-consistency is proposed by Blumofeet al. [8], which is a relaxation of event

ordering based on theDirected Acyclic Graph(DAG) of a computation. There, the

CHAPTER 6. RELATED WORK ON DACTM 122

authors describe Dag-consistency as follows.

The shared memory M of a multithreaded computation G = (V,E) is dag-consistent if

following two conditions hold:

1. Whenever any thread i∈ V reads any object m∈ M, it receives a value v modified

by some thread j∈ V such that j writes v to m and there exists no path from thread i to

thread j.

2. For any three threads i, j, k∈ V and there exists a path from thread i to thread j and

a path from thread j to thread k, if j writes some object m∈ M and k reads m, then the

value received by k should lastly be written by j not i.

Dag-consistency uses three operations namelyfetch, reconcile, flushto ensure cor-

rect operation.Fetchcopies a new object from main memory to cache,reconcilecopies

a dirty object from cache to main memory and the cache is flushed using aflushop-

eration. The operation on WNRL objects in DaCTM is similar to Dag-consistency.

Within a WNRL-transaction, objects are fetched (fetch) from the next level memory.

When theTM END instruction is executed, all the speculatively modified WNRL ob-

jects are written back to the next level memory (reconcile) and those cache entries are

flushed (flush).

6.4 Data Separation in Transactional Memory

Chapter 2 provides literature on the area of Transactional Memory (TM). This section

summarises TM proposals which are similar to DaCTM, mainly inthe context of cat-

egorising data. In Transactional Memory Coherence and Consistency (TCC) [39] the

authors propose to use transactions as the unit for maintaining coherence, consistency

and synchronization. TCC also proposed to exclude the stack variables from the com-

mit packet, but the work was not extended to identify other local variables using the

keywords or access patterns as done in DaCTM. They achieved this by marking certain

loads and stores as “local”. Even though this is a straightforward way of categorising

data, it limits the code reusability (similar to the naive DaCTM design, see Chapter

4, Section 4.1). DaCTM still uses conventional loads and stores and it is capable of

dynamically categorising data (see Chapter 3, Section 3.4, Figure 3.18). Further, all

the local variables reside in on-chip memory in DaCTM, thereby having a zero effect

on the interconnect. The baseline implementation used for evaluating DaCTM is an

CHAPTER 6. RELATED WORK ON DACTM 123

improved version of TCC.

Matveevet al. [72] proposedVirtual Memory Filter (VMF), a hardware solution

that allows Software TM (STM) code to be executed without being instrumented. This

is because in STM, transactional code needs to be instrumented to maintain versioning

at the software level. With VMF, STM programmers are required only to declare which

locations are shared and which locations are unshared. No instrumentation of the trans-

actional code is required. When a transactional access happens to a shared location,

VMF detects this and the operation is performed on a shadow copy of the shared loca-

tion. The objective is to provide fine grain memory tracing for STM, without the effort

of instrumenting the code manually. In DaCTM it is also required to define memory

regions according to their access patterns similar to deciding shared and unshared loc-

ations in VMF. However, the objective of DaCTM is to provide a scalable computing

system by coupling a “data centric” approach with TM whereasVMF aims to provide

STM code to be executed without being instrumented.

Yen et al. [111] present Notary, a signature based hardware TM system.Notary

makes two significant contributions. One is a hashing function calledPage-Block-XOR

(PBX) which provides performance similar to H3 [12] hashing but at a lesser hardware

cost. The second contribution is a privatization interfacethat allows a programmer

to allocate memory from shared and private heaps. It provides shared malloc and

private malloc to access both heaps depending upon usage. In Notary, isolation is

dropped for all the memory operations on the private heap. By dropping the isola-

tion on private addresses, Notary achieved a reduction in execution time by reducing

false conflicts. They also proposed barriers to allow a shared location to be conver-

ted to private and vice versa. DaCTM also categorises data as in Notary. However,

in DaCTM, shared data is further categorised (RO, WNRL, CRW) and extra memory

allocation functions are declared accordingly. Addressesof all the shared memory loc-

ations are inserted to signatures in Notary. In DaCTM addresses of only one type of

shared locations (CRW) are inserted to the signature. In Notary, private data is alloc-

ated from the shared memory and brought to caches when a need arises whilst they are

allocated in on-chip SPM in DaCTM.

Riegelet al. proposed [91] to partition data according to their access patterns, so

that a STM could implement different concurrency control based on the partition it op-

erates on. In their approach partitioning is done automatically at compile-time/runtime

and a programmer is only required to mark the transaction boundaries. Partitions are

identified by constructing a Data Structure (DS) graph usingData Structure Analysis

CHAPTER 6. RELATED WORK ON DACTM 124

[63] techniques. A DS graph is created for each function usedin the program, which

is used byPoolalloc [64] to create pools for DS nodes which have been analysed by

DSA for all its uses. These pools are then treated as partitions in the underlying STM.

The objective is to use different concurrency control algorithms for different parti-

tions. Even though some of the partitions used in this work [91] are similar to those

in DaCTM (Thread-local,Transaction-local↔LO, Read-Only↔RO), the fundamental

difference is that DaCTM operates at the hardware level whereas [91] operates at soft-

ware level.

Sanyalet al. [96] present a mechanism to separate shared and unshared data in the

heap by setting a flag in the virtual memory page. They also provide alocal malloc

function as in Notary [111] to access private heaps. In addition to this, they also pro-

posed an algorithm to separate stack variables from being included in the read and

write sets of a transaction. The authors propose to add a fully associative buffer named

Local-Undo Bufferto each processor to preserve the original value of certain local

variables. This is because, in [96], isolation is dropped for all the local variables and

this could lead to an erroneous output in situations where the first transactional op-

eration is a read and an abort happens after a transactional write is performed on the

same location. The authors show that only 1% of accesses in the STAMP suite [74]

fall in to that category and propose to preserve the old valueof such variables in this

Local-Undo Buffer. In their algorithm, each memory access is checked against the

Stack PointerandFrame Pointerregisters to determine whether a particular address is

in the stack, hence isolation can be dropped for that address. This adds a delay to the

critical path. In DaCTM the stack is allocated in the on-chip SPM and each SPM is

assigned a range of physical addresses. Therefore when a memory request is issued, in

DaCTM, it does not need to be checked as in [96]. In addition, DaCTM does not use

any hardware structures likeLocal-Undo Buffer, instead the issue is addressed through

the programming model (discussed in Chapter 3, Section 3.4).

The Advanced Synchronization Facility (ASF) [1, 21, 24] is an AMD64 hardware

extension for implementing TM and lock free data structures. Seven new instructions

have been introduced with ASF. TheSPECULATE instruction starts an atomic region and

theCOMMIT instruction commits the speculatively modified entries. ASF also provides

a LOCK MOV instruction that moves data between registers and memory asin a regular

MOV instruction. However the difference is that aLOCK MOV instruction can only be

used within an atomic block. ASF hardware performs versioning and conflict detection

only for memory locations that are accessed using thisLOCK MOV instruction. In other

CHAPTER 6. RELATED WORK ON DACTM 125

words, within an atomic block, isolation is dropped for memory locations accessed

usingMOV instructions. The objective is to reduce the demand on hardware capacities

required to maintain the isolation property. The concept ofhaving separate instructions

in ASF is similar to the naive design proposed for DaCTM in Chapter 4, Section 4.1.

Such designs cannot be applied in situations where a single function operates on both

shared and private data, because during the compilation phase onlyMOV or LOCK MOV

can be included in the binary.

Memory regions have been proposed by Deanet al. [30] as way of achieving strong

atomic semantics in STM with performance comparable to a weekly atomic system.

Similar to DaCTM, the authors also consider a group of memory locations with the

same sharing state as a region. However, the objective of theauthors in grouping

memory locations into regions is to change the protection status of the entire group

with a single, constant-time operation. Using this approach, when a protection state of

a region is changed, all the subsequent operations to this region are delayed until all the

currently executing transactions on this region finish. DaCTM uses regions so that it

can enforce SCC selectively for each region whilst the objective of [30] is completely

different to that.

This section summarised the approaches found in TM literature which are mainly

focused on categorising data in to different groups. The fundamental difference of

DaCTM to those is that, DaCTM further categorises shared data as concurrently shared,

non-concurrently shared and read-only shared. Private data was residing in the glob-

ally shared memory in all these proposals, whereas in DaCTM those are stored in the

on-chip scratch-pad memory.

6.5 Memory Management

This section summarises several approaches, that can be found in memory manage-

ment literature, which propose to group data of similar access patterns and to allocate

them in a suitable memory space. Steensgaard [102] proposedto allocate objects that

never escape a thread, in a thread specific heap. Objects thatare shared among other

threads are allocated in a shared heap. The approach requires an analysis phase to de-

termine which objects are thread-local. The objective of this approach is that, thread

specific heaps can be garbage collected separately, therebyreducing the garbage col-

lection latency. Sadeet al. [93] proposed the use of escape analysis [65, 66, 94] to

identify memory allocation requests which are used only by asingle thread. They

CHAPTER 6. RELATED WORK ON DACTM 126

used that sharing information to extend the Hoard [6] memoryallocator with a thread

local memory allocation function (tls malloc) to reduce the contention for the global

allocator. However these proposals did not focus on communicating this sharing in-

formation to hardware in order to improve the cache coherence protocols or memory

consistency models as in DaCTM.

The on-chip SPM of a DaCTM processor is a separate physical memory, but it

is being mapped to the logical address space of the application. This facilitates a

programmer to allocate LO type objects in the on-chip SPM, without the complex-

ity of manually managing separate memories. Similar to this, Asymmetric Distributed

Shared Memory(ADSM) [33] maps the physical memory of an accelerator in a hetero-

geneous processor, to the shared logical memory space to allow processors to access

objects in the memory of the accelerator. In their approach,when a function is selec-

ted for acceleration, all its associated objects are allocated in the accelerator memory

which is mapped to the logical memory space. This relieves the programmer from

manually transferring data between accelerator memory andthe shared memory. In

ADSM, only the data objects of functions which are selected for acceleration are al-

located in on-chip memory, whilst all the LO type objects areallocated in on-chip SPM

in DaCTM.

Part II

SnCTM: Reducing False Transaction

Aborts by Adaptively Changing the

Source of Conflict Detection

127

Chapter 7

SnCTM: Adaptive Sources for Conflict

Detection

This is the first chapter of Part II of this thesis, which proposes an efficient technique

to reduce the number of false transaction aborts in a Hardware Transactional Memory

(HTM) system. The chapter describes the concept and the design of SnCTM, an HTM

which can adaptively change the source used for detecting conflicts. After showing the

motivation for using adaptive sources to detect conflicts with the aid of a preliminary

experiment in Section 7.2, the reader is given an overview ofrelated work in hardware

signatures in Section 7.3. The concept of SnCTM is described in Section 7.4. Finally,

Section 7.5 summarises the chapter.

7.1 Introduction

Commodity chips are now shipped with more than one processor core and in few years

time a single chip will include hundreds (if not thousands) of processor cores [52]. It

is inevitable that parallel programming becomes the mainstream in order to make use

of those cores in the chip. With parallel programming, maintaining mutual exclusive

access is one of the issues that programmers have to face. Even though this is achieved

via locks in the past, Transactional Memory (TM) [50], a lockfree solution based on

database transactions [37], has gained attention over the last decade. In TM, during

the execution of a critical section, operations are performed speculatively and atom-

ically. All the memory locations that are read/written speculatively, are recorded in a

read/write-set respectively. At the end of an atomic block,conflicts are checked using

these read and write sets.

128

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION129

Initial hardware TM systems like TCC [39], LogTM [77] proposeto keep this read

and write set in the Level 1 (L1) cache by extending it with a R (read) and W (write)

bit. However this implicitly placed a limitation on the sizeof a transaction, that is able

to fit in the L1 cache. Following the proposal for bulk disambiguation of addresses

by Cezeet al. [15], Yen et al. propose LogTM-SE [110] which suggests the use of

hardware signatures to represent the read and write sets of atransaction. A hardware

signature is a fixed set of bits, that can be implemented usingSRAMs, in which certain

bits are set according to the address being considered. The important aspect of using

signatures in TM is that, transactions are no longer boundedby the size of the L1 cache.

However the disadvantage of using signatures is that they produce false positives. In

this context, a false positive refers to a situation where the signature mechanism asserts

a conflict, but actually there is not any. False positives lead to false transaction aborts

and this degrades the performance of a TM system.

Several proposals [19, 20, 61, 84, 85, 86, 111] have been madeto reduce the num-

ber of false positives that occur in a hardware TM system. Allof these approaches

focus on the design and the implementation of signatures in hardware. Part II of this

thesis aims to address the issue of reducing false positivesfrom a different angle. As

an entry point to the discussion, consider the following question. Can the usage of

signatures, in detecting conflicts, be reduced ?The reason for raising this question is,

if the use of signatures to detect conflicts can be reduced, then the false positives can

be reduced. Then the obvious follow-up question would be,if signatures are not being

used, what else can be used to detect conflicts ?The answer is cache lines. So the

proposal of Part II of the thesis is to use both cache lines andsignatures to maintain

the read and write set of a transaction. When this approach is followed, if the size of a

transaction fits in the L1 cache, the cache line information is used to detect conflicts.

Signatures are used otherwise. To this end, Part II of this thesis proposes SnCTM:

a hardware transactional memory system that adaptively changes the source used for

detecting conflicts.

Part II of this thesis makes following contributions.

• The concept of adaptively changing the source of information used to detect

conflicts in a hardware TM system, is introduced. It also shows how an existing

TM architecture can be extended to support the SnCTM concept.

• The performance evaluation of SnCTM shows improvements of upto 4.62 and

2.93 times speed-up over a baseline TM using lazy versioningand lazy conflict

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION130

detection (an improved TCC [39]) with two commonly used signature configur-

ations.

• SnCTM gives the opportunity to reduce the size of a signature without com-

promising the performance. A sensitivity analysis shows that SnCTM with a 64

bit signature can deliver performance comparable to a perfect signature of 8k

bits.

7.2 Motivation

Most of the TM systems (eg: LogTM-SE [110], SigTM [75], VTM [89]) propose to use

signatures to record read and write sets of a transaction. This facilitates a transaction

to have an unbounded amount of speculative data. Here, the term ‘unbounded’ means

that a transaction is not bounded by the size of its local cache. This is because most of

the initial TM systems like TCC [39], LogTM [77] propose to keep the read and write

set of a transaction in the Level 1 (L1) cache. Some of the TM systems like LogTM-

SE [110] that support unbounded transactions, also supportvirtualizable transactions,

meaning that transactions can even be longer than the scheduling quanta. However

the support for virtualizable transactions cannot be provided by only having signatures

to record read and write sets of a transaction, thus requiressupport from the runtime

system. Therefore the discussion is only focused on TM systems that use signatures to

support an unbounded amount of speculative data.

Early HTM system like TCC and LogTM propose to extend L1 cache with Read

and Write (R and W) bits to record the read and write sets of a transaction. This

requires transactions to be bounded by the size of the L1 cache of a processor. Bulk

[15] proposes to encode this information into a fixed sized hardware ‘signature’. This

approach allows the size of a transaction not to be bounded bythe size of the L1 cache.

Signatures have the disadvantage of producing false positives. That is, when tested for

the membership of an address in a signature, it may assert positive even if the address

is not present in the signature. False positives lead to false transaction aborts, thereby

degrading the performance of a transactional memory system.

False transaction aborts which are caused by false positives can be reduced by

optimising the implementation of a signature. A number of approaches to achieve

this are discussed in Section 7.3. Part II of this thesis takes a completely orthogonal

approach to those and proposes a simple hardware solution toreduce false transaction

aborts.

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION131

In order to make a case for the proposed scheme, the followingquestion is con-

sidered initially. “Does an HTM system require signatures all the time, to detectcon-

flicts ?”. The answer is “No”. This is because, not all the transactions exceed the size

of the L1 cache. When this is the case, the read and write sets can be kept in the L1

cache of the processor. For such transactions, there is no need to use signatures. In

order to validate the above answer and to get an intuition of how many transactions

actually needed a signature, a preliminary experiment is made with a lazy-lazy HTM

system, similar to TCC [39], using 2-16 cores. The experimentwas carried out with

two signature bit widths (1024, 2048) which are the sizes generally used in hardware

TM experiments.

Figure 7.1: Signature requirement for transactions committed

Figure 7.1 shows the number of transactions committed and from those commits

how many actually needed a signature. In the legend1k-Commitsrepresents the num-

ber of commits made in the system with 1024 bit signature and1k-Should use Signature

represents the number of commits that actually require a signature mechanism to detect

conflicts in the same system. When the legend has2k instead of1k, the same definition

applies to a system with 2048 bit signature. The corresponding values are the average

of 2-16 cores.

For both signature configurations, it can be seen that the number of commits that

require a signature is either low or negligible. The disadvantage of using signatures

is that they produce false positives. The same experiment isalso used to measure the

amount of false positives that could have been avoided if thesignatures are not being

used for situations where the read and write set fits in the cache. The following mech-

anism is used for this measurement. The simulator is equipped with a monitor mode

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION132

Figure 7.2: False aborts that could have been avoided

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION133

which can take certain statistics without affecting the timing model of the simulation.

When the conflict detection phase asserts an abort, the monitor mode uses its internal

data structures to determine whether the abort is a true abort of a false abort. In the

case of a false abort, the monitor mode also checks whether a signature is required for

this commit. If a signature is not required, it marks this abort as an abort that could

have been avoided.

Figure 7.2 shows the number of false transaction aborts produced in the system and

how many of them could have been avoided if the signatures arebeing used only for

situations which require the use of it. Here in the legend1k-False Positivesrepresents

the number of false positives that occur in a system with 1024bit signature and1k-

Could Have Avoidedshows the number of false positives that could have been avoided

if signatures are not being used. Similarly when the legend has2k instead of1k, the

same definition applies to a system with 2048 bit signature. In the same figure, the

X axis represents the number of processors in the system (2P→2 processors, 4P→4

processors and so on). It can be seen from Figure 7.2 that majority of false positives

could have been avoided if the signatures are only used in cases which requires to do

so.

Using this observation from the preliminary experiment as the basis, the hypothesis

of Part II of the thesis is formed. That is, the execution timeof a TM application can

be reduced by reducing false aborts by means of changing the source of the inform-

ation used to detect conflicts. The term “changing the sourceof information” means

adaptively using signatures or the ‘R’ and ‘W’ bits in the cacheline, to detect conflicts.

7.3 Related Work on Hardware Signatures

Transactional memory (TM) [50] has been proposed as a way of achieving optimistic

concurrency in parallel programming. In Transactional Memory Coherence and Con-

sistency (TCC) [39] the authors propose to use transactions asthe unit for maintaining

coherence, consistency and synchronization. Since then, many TM approaches have

been proposed and Chapter 2 provides a good summary on key HTMs. It also provides

a good overview on semantic and performance considerationsof TM systems. This

section only focuses on literature related to using signatures in TM systems.

Cezeet al. [15] defines a hardware signature as a fixed bit width representation of

a set of addresses. The objective of Ceze’s proposal,Bulk, is to produce a hash value

by encoding all the access information of a thread, so that caches remain unmodified.

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION134

In order to insert an address to a signature, a hash function is performed on the address

and a logical OR operation is performed with the hash value and the existing signa-

ture. The authors also formally define the operations involved with signatures. The∪

operation, which is similar to a union operation, is used to combine several signatures

together. This is useful in supporting nested transactionsas the signature of a child

transaction can be combined with the parent using this operation. The∩ operation is

used to perform an intersection operation among two signatures. This can be used to

check if two signatures have at least one item in common. Thatis by intersecting two

signatures and checking if the resulting signature is empty. In order to check whether

a signature is empty, the authors define another operation,= θ. In order to check the

membership of an address in a signature, theε operator can be used. This is done

by, first generating a temporary signature using the given address, then intersecting it

with the real signature, and finally checking if the resulting signature is empty. The

last operation,δ, is used to decode a signature into the set of addresses that are being

used to generate it. This is done by first generating cache indexes that could set the

corresponding bits in the signature, and checking the cacheto validate whether those

entries have actually been accessed.Bulk proposes to use simple bit permutations on

an address as its hash function in order to generate a signature.

LogTM-SE [110] also uses signatures to maintain read and write sets of a transac-

tion. Their signature implementation is based on selectingdifferent bits of the address.

LogTM-SE comes with three signature implementations. The bit-select (BS) scheme

takes then least significant bits of a block address and produces a signature of size

N = 2n bits. The double-bit-select (DBS) produces a signature by combining two BS

implementations. The first one takes the firstn bits and the second one takes the second

n bits. The resulting signature is of size 2(n+1). The third scheme, coarse-bit-select

(CBS), produces a signature by taking then least significant bits of a macro block

(block of 1KB is used in their experiments). The authors suggest to use this scheme

for large transactions.

SigTM [75] which is a hybrid TM system, also uses hardware support to main-

tain signatures. They use combination of permutation and bit shifting as their hash

functions. As SigTM is a hybrid TM system, it also provides user-level instructions to

manage signatures. SigTM supports four hash functions: (1)unpermuted cache line

addresses; (2) permuted cache line addresses as in Bulk [15];(3) shifting the output

of step 2 by 10 bits; (4) permuting the 16 least significant bits of a cache line address.

The authors also conclude that the choice of the hash function can play a significant

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION135

role in producing an accurate signature.

Sanchezet al. concluded [95] that the H3 [12] class of hash functions should be

used in signatures instead of bit selection as in previouslyproposed signature imple-

mentations [15, 75, 110]. The authors also showed that usingk single ported SRAMs

(parallel bloom filters) to implement signatures is an area efficient technique. The

authors also show that there is a relation between the numberof hash functions, num-

ber of addresses inserted and the probability of producing false positives. That is, for

large transactions, a signature with smaller number of hashfunctions tend to produce

lower false positives. When the transactions are smaller, a signature mechanism hav-

ing higher number of hash functions tend to produce low falsepositives. They propose

a technique which they call Cuckoo-Bloom signatures, which perform better for both

smaller and larger transactions. They use a table which stores three hash values for

a given address. When inserting an address, three hash functions are used, resulting

three hash values. The first two are used to index this table whilst the third provides

extra information about the address, so that the entire representation becomes more

accurate. However implementing Cuckoo-Bloom signatures in hardware is complex

and it does not support the intersection operation as well.

Yenet al. [111] argue that H3 implementations use many XOR gates, thusincreas-

ing the area and power overhead of signatures. They propose the Page-Block-XOR

(PBX) hash function that delivers performance similar to an H3 hash function, but at

a lesser hardware cost. Their proposal is motivated by exploiting the randomness of

addresses. In addition to introducing a new hash function, the authors also proposed

a filtering mechanism to reduce the number of addresses beinginserted to signatures.

This is provided via a new privatization interface which provides memory management

functions to allocate and deallocate memory from shared andprivate heaps. Accesses

to the private heaps are not added to the signatures and isolation is dropped as well.

By reducing the number of insertions made to a signature, Notary [111] was able to

reduce false aborts thereby reducing the execution time of an application.

Quislantet al. [85] propose to take advantage of locality of memory references

to design hardware signatures. The authors observe that false aborts can arise due to

address aliasing and filter occupancy. When a transaction is small, it only occupies

a small fraction of the signature, but due to address aliasing it can introduce false

positives. When a transaction is bigger, the filter occupancyis higher and this leads

to false aborts as well. In order to reduce false aborts incurred by the first case, in

the proposed scheme, nearby memory addresses only share some bits in the filter. By

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION136

exploiting the locality of addresses, their proposal is able to reduce false aborts which

arise due to address aliasing. However, the system still hasfalse aborts arising due to

filter occupancy.

Choi et al. [19] present an interesting fact, that is sometimes false positives in a

signature based TM system can be helpful as well. They argue that, when a signature

asserts an abort erroneously, it could also be the case that this transaction is meant

to be aborted in future due to a real conflict. Therefore if a transaction aborts early

because of a false abort, it could save the wasted work that itwould have been doing

from the false abort to the real abort. They categorise thesefalse aborts as “good” and

use this early conflict detection to improve the performance. Their proposal is based

on an observation that there is a relation between the good/bad false positives and the

granularity of bits used in the address. In order to exploit this good and bad positives,

the authors proposeAdaptive Grain Signaturewhich changes the granularity of the bit

range input to the hash function. Their mechanism uses an Abort History Table (AHT)

which contains the starting addresses of transactions which have aborted others. The

output (hit/miss) of the AHT is fed to a multiplexer which decides the range of bit

field to be used in the rest of the addresses accessed within that transaction. Using this

approach the authors were able to increase the number of performance friendly false

positives and reduce the number of performance destructiveones.

Labrecqueet al. [61] propose to use reconfigurable signatures. Their approach is

to customise the signature to match with the access pattern of the application and to

minimize the false conflicts. In order to use their approach,first a trie is constructed

using the memory addresses obtained from a trace of an application. Each leaf of

the trie represents a bit in the signature. As the number of memory accesses is large,

this initial signature will have a higher bit width. Thereafter the trie is truncated by

selecting the most frequently accessed branches. After this stage the false positives of

the trace are calculated and the trie is expanded with additional branches to reach a

desired false positive rate. The signature bits that do not affect the false positive rate,

are removed thereafter, resulting in the final signature.

Quislantet al. proposed multiset signatures [86], which combine read and write

signatures into one. In this manner the size of the signatureis doubled without adding

any extra hardware. As both read and write signatures are combined, each bloom

filter is equipped with two hash functions, one for read operations and one for write

operations. This is required to distinguish between read and write operations. However

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION137

when it comes to the implementation, this poses a challenge as it now requires 2-

ported SRAMs instead of single-ported ones. This doubles thearea requirement of a

signature. In order to overcome this issue, the authors propose to usei double-ported

SRAMs andk-i single-ported SRAMs to implement the combined signature. Inthis

manner, ifi is low, the area requirement is similar to the original. Their approach is

also enhanced using locality sensitive signatures [85] proposed by the same authors.

However the authors did not describe a mechanism to avoid thefalse aborts that can be

caused by read-read dependencies.

Concurrently with the work of Quislantet al. [86], Choiet al. propose the use of

a single signature (unified-signature) for both read and write sets [20]. Similar to the

multiset signature [86], theunified-signatureis able to double the size of the signature

by combining both read and write signatures. By having a larger signature without

any hardware cost, they were able to reduce the false positives, thereby increasing the

performance. However the authors did not consider the area cost as Quislantet al.

[86] did. Unlike the multiset proposal [86], the authors consider the false aborts that

can arise from two transactions reading the same memory location. In order to reduce

the impact from these read-read dependencies signalling conflicts, they also proposed

to use a small helper signature alongside the unified signature. The helper signature

works as a write signature, but is smaller in size. When detecting conflicts forread-

exclusiverequests, only the main signature is checked. When detectingconflicts for

read requests, both the main and the helper signature is checked.For the latter case, a

conflict is said to occur if both signatures asserted the membership of the address.

Instead of using fixed size signatures, Orosaet al. [84] propose to dynamically

assign resources to a signature. The objective of the proposal, FlexSig, is to lower the

false positive rate by redistributing the available hardware among signatures.FlexSig

does not have fixed number of signatures. Instead, it comprisesT bloom filters, with

the capability of providing one toT signatures. Since signatures are created at runtime,

FlexSigalso comes with an allocation and deallocation algorithm. When a thread

requires a signature, the request is forwarded to the allocation routine, which then

produce a signature combining one or more bloom filters. If there are no bloom filters

available it will free some of the existing ones to accommodate the current request.

A signature is composed of one or more registers (64 bits) which has its own hash

function. When a signature wants to record an address, each register performs the

hash function on the address and a bit is set in their register. In order to check the

membership of an address, hash functions of each register are applied to the address

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION138

and each register checks whether the corresponding bit is set or not. As the bloom

filters are independent of each other, they can be added/removed from a signature

without comprising the correctness.

Even though the objective of SnCTM is similar to many of the above, that is to

reduce false aborts, it differs from all these approaches. Firstly because it is not an-

other signature implementation. The proposal is to use it only when there is a need

to do so. Secondly it is not tied to any signature implementation, therefore any of the

above mentioned signature implementations can be used as the underlying signature

mechanism in SnCTM.

7.4 SnCTM Concept

The objective of SnCTM is to adaptively change the source of information used during

the conflict detection phase in a Hardware Transactional Memory (HTM) system. The

concept of SnCTM is described in this section. When signaturesare used to detect

conflicts in HTM systems, they can produce false positives. However signatures are

required for detecting conflicts, only if a particular transaction has speculative data that

cannot be stored within its L1 cache.

In the proposed approach, whether to use cache line information or signatures to

detect conflicts is decided at the time of committing. This decision depends on the

overflow status of currently running transactions. In this approach, when a transaction

is going to commit, the committing processor needs to check whether any of the other

processors have encountered a cache overflow during the speculative execution. If that

is the case, the write signature of the committing processoris communicated to the

others and they check their read signatures with the received one to detect conflicts. If

none of the concurrently running transactions have encountered a cache overflow, then

there is no need to use signatures to detect conflicts. Therefore the committing pro-

cessor communicates its write-set to the other processors using the ‘W’ bit information

in its cache line. When they receive this ‘W’ bit information, other processors check it

with their ‘R’ bit information in the cache lines.

The communication of the commit message and the conflict detection phase needs

to be generalised to adaptively change between cache lines and signatures, in order to

support existing HTM proposals. This can be done by including a flag in the header

of the commit message. When a processor is going to commit, it creates the commit

message either using the signature or the cache line information and the flag is set

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION139

accordingly. When a processor receives this commit message it first reads this flag and

determines what source to use to detect conflict. Figure 7.3(a) illustrates concept of

SnCTM with respect to a committing processor and Figure 7.3(b) shows it from the

receiving processor’s view.

Figure 7.3: The concept of SnCTM

In order to realise the SnCTM concept, a mechanism is needed tomaintain the over-

flow status of the processors in the system. This can be done byhaving a local flag in

each processor and setting it when a transaction overflows. In this approach the com-

mitting processor needs to communicate to all the other processors before initiating

the commit phase, in order to decide whether to communicate cache line information

or signature. A centralized bit map, in which each processorsets the corresponding

bit when overflowing, can be used for this as well. In that casethe committing pro-

cessor can check this bit map and decide what source to use to detect conflicts, without

communicating to other processors.

Another aspect that needs to be considered when realising the SnCTM concept is,

when to update signatures and ‘R’ and ‘W’ bits in cache lines. Inthe case of signatures

the term “update” refers to, inserting an address to the signature. In the case of cache

lines, it refers to setting ‘R’ and ‘W’ bits. The most simple approach is to maintain

read/write sets and signatures simultaneously. That is when the ‘R’ bit is set in the

cache line, that address is also inserted to the read signature and the same applies to

writes that set the ‘W’ bit in the cache line. Another approachis to keep the read and

write set in the cache line and to compose it to the corresponding signature only if the

CHAPTER 7. SNCTM: ADAPTIVE SOURCES FOR CONFLICT DETECTION140

committing processor asks to use signatures. Regardless of the method used to main-

tain signatures and cache line bits, the SnCTM approach guarantees that signatures are

being used to detect conflicts only if it is necessary. In thismanner SnCTM aims to

keep the number of false transaction aborts to a minimum level, thereby reducing the

execution time of an application.

7.5 Summary

This chapter presented the concept of SnCTM, a novel way of reducing the false aborts

by adaptively changing the source used during the conflict detection stage. The idea

is to decide at the time of committing which source to use,i.e.cache line or signature.

This way the use of signatures is limited to situations wherespeculative data cannot be

held in the local cache. The chapter starts the discussion bypresenting a motivating

example using a preliminary experiment, which shows the need for having an adaptive

mechanism to change between cache line information and signatures to detect con-

flicts. A comprehensive summary of hardware signatures is provided thereafter, fol-

lowed by the description of the SnCTM concept. The important aspect of the SnCTM

proposal is that it is not tied to any specific signature implementation. Therefore all

the signature optimising mechanisms proposed in the literature can be integrated with

SnCTM.

Chapter 8

SnCTM Implementation and

Evaluation

This chapter describes the architecture of a SnCTM processorand the evaluation of

it, in terms of performance. Architectural extensions required to support the SnCTM

concept are described in Section 8.1. The performance impact of reducing false trans-

action aborts using the SnCTM approach is presented in Section 8.2. Finally, Section

8.3 summarises the chapter.

8.1 SnCTM Architecture

This section describes an architecture that supports the SnCTM concept. First it takes

an existing HTM as the baseline architecture and later it shows how this baseline can

be extended to realise the SnCTM concept.

8.1.1 Baseline Architecture

An improved version of Transactional Memory Coherence and Consistency (TCC)

[39] is used as the baseline architecture. The baseline described here is similar to

the one described in Chapter 4 (Section 4.5). For the sake of completeness, a brief

description is given in the reminder of the section. The transactional memory imple-

mentation in this baseline is similar to any other lazy-lazyhardware TM system. When

theTM BEGIN instruction is executed, a flag (IN TX) is set. When this flag is set, all

the subsequent operations are performed speculatively until the TM END instruction is

executed. In order to provide an unbounded amount of transactional data, the baseline

141

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 142

uses hardware signatures [95] to maintain the read and writesets, using parallel bloom

filters to increase accuracy. Since the baseline architecture is based on TCC which

does not implement any coherence protocols, transactions are used to maintain coher-

ence and consistency as well. Therefore at the end of a transaction, the next level

memory copies are updated and local copies which are read/written are flushed. This

is necessary because, local caches may end up keeping stale data due to the fact that

no conventional coherence protocols are used.

When a processor needs to commit a transaction, it first requests commit permis-

sion from a centralisedcommit-arbiter. Commit permission is granted based on a least

recently granted policy. Once the commit permission is granted, the committing pro-

cessor broadcasts its write-signature to all the other processors. Upon receiving this

write-signature, each processor performs a bitwise AND operation with their read-

signature. If all the hashes in the resulting signature are non-zero, then it is considered

as a conflict and the processor aborts. Figure 8.1 shows signature operations used in

the baseline architecture. Figure 8.1(a) shows performingan AND operation between

two signatures and Figure 8.1(b) shows how to check whether all the resulting hashes

are zero.

Figure 8.1: Signature operations used in SnCTM

After sending the write-signature to all the other processors, the committing pro-

cessor updates the next level memory (either Level 2 (L2) cache or main memory)

with all the speculatively modified values. During this commit phase, the communic-

ation arbiter denies any request to use the interconnect. Once the next level memory

is updated with all the speculatively modified cache entries, all these entries need to

be flushed and both read and write signatures need to be cleared as well. A more

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 143

elaborative description on signatures is presented in Chapter 4, Section 4.3.3.

The baseline used for the evaluation operates under the lazy-lazy TM principle,i.e.

conflict detection and version management happens lazily. Since version management

is done lazily, the speculatively modified data is held in L1 cache and the unmodified

data is held either in L2 cache or in main memory. Therefore when an speculatively

modified cache entry needs to be evicted for capacity reasons, special measures are

required to maintain the isolation property of TM. This is addressed in the baseline

by serialising overflows. That is, when a cache entry needs tobe rejected while a

processor is inside a transaction, permission is sought from theoverflow arbiter. Over-

flow permission is also granted based on a least recently granted policy. Once the

overflow permission is granted, the processor flushes the cache line from its L1 cache

and updates the corresponding entry either in the L2 cache orthe main memory. Each

processor has a register calledOverflowStatus, which is set once the overflow per-

mission is granted. Once this flag is set, the processor does not need to seek further

permission. A processor needs to ask for overflow permissiononly if the cache line

is modified during the current transaction. An extra ‘W’ bit isused to mark all the

speculatively modified entries. A dirty bit is not sufficientfor this purpose because the

entry could have been dirty due to a write operation performed outside a transaction.

Therefore the baseline architecture cannot eliminate both‘R’ and ‘W’ bits that were

present in the original TCC. It needs to keep the ‘W’ bit to indicate that this cache line

has been modified during the transaction. If the ‘W’ bit is not set, there is no need to

seek overflow permission. If an overflow request is denied, the processor stalls until

the request is granted.

Even though thecommit-arbiterof the baseline operates on aleast-recently-granted

policy, there is an exception to this for processors who havetransactional cache over-

flows. That is, once the overflow permission is granted to a processor, all the commit

requests from other processors are denied, until the overflowing processor commits.

This is because once a speculatively modified entry is written back to the next level

memory, either L2 cache or main memory, the old value is lost and this is a non-

reversible action. Allowing cache overflows to speculatively modified entries, can be

considered as violating the atomicity and isolation properties of the lazy-lazy trans-

actional memory. This is because the overflowed cache entries can now be read by

other processors before the current transaction commits. In order to maintain the con-

sistency of the system, the current transaction of the overflowing processor, is made

unabortable. This is achieved, as described earlier, by denying all the commit requests

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 144

until the overflowing processor commits. This policy works correct because the pro-

tocol simply follows acommitter-winspolicy, in which the committing transaction

progresses in case of a conflict.

8.1.2 SnCTM Design

This section describes how to extend the baseline architecture, described in Section

8.1.1, to realise the SnCTM concept. As described in Chapter 7 (Section 7.4), the

basic idea of SnCTM is to adaptively change the source of information used to detect

conflicts during the commit phase. Since a processor does notknow in advance which

source can be used to detect conflicts, hardware should have the capability to store read

and write sets in both formats,i.e. ‘R’ and ‘W’ bits in cache lines and signatures. Since

SnCTM does not use any cache coherence protocol, by reusing the the existing entry

for the state field of the coherence protocol to keep ‘R’ and ‘W’ bits, area utilization of

L1 cache can be kept unchanged. A complete SnCTM system is shown in Figure 8.2.

The only addition to the baseline, apart from the control logic, is the ‘R’ bit field in the

cache lines.

Figure 8.2: A complete SnCTM system

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 145

When a processor is executing a transaction, all the read operations set the ‘R’

bit in the cache line and also they set the corresponding bitsin the read signature.

The same applies to the write operations. In this way each processor keeps both the

sources updated and one of them is used during the commit phase. Due to the nature

of the baseline used, at any given time only one processor canbe granted overflow

permission. Also the commit protocol of the baseline prevents any other processors

committing before the overflowing processor. When the commitpermission is gran-

ted, without any communication to other processors, the committing processor itself

can decide whether to use signature or cache lines. This is because if the commit-

ting processor is not the overflowing processor, there cannot be any other processor

in the system which has been granted overflow status. If thereis any other processor

which has been granted overflow permission, then this processor cannot be granted the

commit permission.

Therefore, if the committing processor has been granted overflow status, it broad-

casts its write signature to other processors and they checkit with their read signatures

to detect conflicts. If the committing processor has not beengranted overflow status,

this means the transaction was able to fit in the L1 cache. Therefore it can use the ‘R’

and ‘W’ bit information in the cache line to detect conflicts. In this case, the com-

mitting processor broadcasts its write set to other processors and they check it with

their read set to detect conflicts. In order to adaptively decide which source to use in

the conflict detection mechanism of the receiving processor, the commit message in-

cludes an extra flag calledTypewhich notifies the receiving processor about the type

of information it carries,i.e.signature or cache line.

In order to set theTypeflag of the commit message, the (OverflowStatus) flag of

the baseline is used. If set, the signature is included in thecommit message and the

Typeflag in the message is set. If unset, the cache line bits are used and theTypeflag

of the commit message is kept unset as well. Once the other processors receive this

commit message, thisTypeflag is checked and the corresponding source for detecting

conflicts is determined. Figure 8.3 shows the mechanism usedin a SnCTM processor

when checking conflicts as a response to a commit message.

8.2 Evaluation

The evaluation of SnCTM is presented in this section. After discussing the evaluation

setup in Section 8.2.1, the performance evaluation of SnCTM is presented in Section

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 146

Figure 8.3: Adaptively checking for conflicts in a SnCTM processor

8.2.2. The same section shows that a SnCTM system can outperform an improved ver-

sion of TCC [39], with two commonly used signature configurations. Characterization

of the results of SnCTM is presented in Section 8.2.3. The sensitivity of SnCTM and

the baseline to different signature lengths is shown in Section 8.2.4.

8.2.1 Evaluation Setup

The simulation environment used for evaluating SnCTM is similar to the one used for

evaluating DaCTM, described in Chapter 5, Section 5.3. For thesake of completeness,

a brief description of the system is presented in the remainder of the section, readers

are directed to Chapter 5 for a more elaborative description.

In order to evaluate the SnCTM architecture, a lazy-lazy hardware transactional

memory system is modelled in Simics [70], a full system simulator running Linux

kernel version 2.6.16. The SnCTM system is configured with thecomponents shown

in Table 8.1.

Lee’s routing algorithm [108] and applications from the STAMP [74] benchmark

suite were used to evaluate the SnCTM architecture. For comparison purposes, all

the applications were also executed on the baseline architecture. However, due to the

fact that no cache coherence protocol is implemented in the baseline or SnCTM, most

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 147

Component Feature
Processors 1-16, in-order
L1 Data Cache 2 way assoc, 64 B line, 32 KB size,

2 cycle latency, private per core
Signature 1024, 2048 Bits,

4 Parallel H3 [12] Hash functions
L2 Data Cache 8 way assoc, 64 B line, 4 MB size,

20 cycle latency, shared
Interconnect Split-transaction bus, 4 cycle latency,

64 B data width
Main Memory 100 cycle latency

Table 8.1: Components and features of the SnCTM evaluation environment

of these applications were not able to execute without beingmodified. This is be-

cause, these applications access shared data outside transactions. As the baseline and

SnCTM provide coherence using transactions, some of the applications were modified

by adding extra transactions in places where they access shared data. No modification

was required for Vacation, Labyrinth and Lee as they do not access shared data out-

side transactions. Smaller transactions similar to the already existing ones have been

added to Intruder, Genome and Kmeans. The only significant change has been made

to Ssca2 by adding several large transactions as the majority of the non-transactional

code accesses shared data.

Application Input
Genome -g256 -s16 -n16384
Intruder -a10 -l4 -n2038 -s1
Kmeans-Low -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt
Kmeans-High -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt
Labyrinth -i random-x32-y32-z3-n96.txt
Ssca2 -s13 -i1.0 -u1.0 -l3 -p3
Vacation-Low -n2 -q90 -u98 -r16384 -t4096
Vacation-High -n4 -q60 -u90 -r16384 -t4096
Lee 75x75 Grid, 320 routes
Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

Table 8.2: Benchmark applications and their inputs used for evaluating SnCTM

The input configurations used for each benchmark are shown inTable 8.2. All

the STAMP applications used their standard inputs [74]. Evaluations are made on the

parallel region of the applications.

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 148

8.2.2 Performance

Figure 8.4 shows the performance improvement of SnCTM over the baseline archi-

tecture. In the legend, 1024 refers to the case where the sizeof the signature of both

baseline and SnCTM is 1024 bits and 2048 represents when both systems use signa-

tures of 2048 bits. In all the figures, the X axis represents the number of processors

used for the experiment (2P→2 processors, 4P→4 processors and so on). The first

observation that can be made from the figure is that SnCTM outperforms the baseline

in almost all the cases with an average of 1.51X (1024) and 1.23X (2048). The per-

formance improvement varies from 1X (Ssca2, 2P) to 4.62X (Vacation-High, 16P) for

the signatures of 1024 bit width. In the case of signatures of2048 bit, the perform-

ance improvement varies from 0.99X (Kmeans-High, 16P) to 2.93X (Vacation-High,

16P). The second observation from the figure is that the performance improvement

over baseline increases as the number of processors is increased.

Improvements reported for both Kmeans applications is quite low in comparison

to others. This is because the transactions used in those applications are small, hence

the signature occupancy of the baseline is kept at a lower level as well. This leads

to a reduction in false aborts caused by higher signature occupancy. The rest of the

applications show moderate to higher performance improvements. Also it can be seen

that the relative improvements of some applications is higher for 1024 bit signature

than the 2048 bit signature. This is because when the signature size is smaller, the

percentage occupancy increases. Also it increases the number of mappings that are

destined for the same bit locations. Both these facts increase the number of false

positives, which eventually degrades the performance. However this does not affect

the performance of a SnCTM processor as much as it does for the baseline, due to the

fact that signatures are used in the former only when necessary.

An observation that requires a further explanation in Figure 8.4 is the behaviour of

Ssca2. This application is categorised as one having smaller transactions [74], hence

the signature experiments presented in the literature haveidentified this as one with

less sensitivity to signatures [19], similar to Kmeans. However, in Figure 8.4, the

Ssca2 application has shown comparably significant improvement for the 16 core set

for both signature configurations unlike Kmeans. The reasonis, in the original Ssca2

application, most of the computation is performed outside transactions. In the current

experiment, to ensure cache coherence is maintained for these computations, extra

transactions have been added in those places. These were medium to large scale trans-

actions. This makes Ssca2 exhibit a behaviour different to the ones reported in the

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 149

Figure 8.4: Performance improvement of SnCTM over the baseline

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 150

signature literature [19].

Table 8.3 shows the average performance improvement for each hardware config-

uration. There it can be seen that, as the number of processors increases, the perform-

ance improvement increases. In addition, the baseline performs better with a 2048 bit

signature than with 1024.

Processors 1024 2048
2P 1.16 1.10
4P 1.45 1.13
8P 1.56 1.25
16P 1.87 1.46

Table 8.3: Average performance improvement of SnCTM over baseline

As the number of processors increase, bus contention also increases. This can be

aggravated by introducing false positives to the system. The number of false positives

produced in SnCTM is less than those produced in the baseline.False positives cause

a processor to flush its cache and bring data from the next level memory. Even though

the operations involved in this process are the same for any processor configuration, the

effect on the bus contention increases rapidly as the processor count increases. There-

fore the relative bus contention of the baseline with a higher number of processors is

higher than the that of the baseline with a lower number of processors. Also when the

number of processors increases, the number of live signatures increases as well. This

increases the candidates for producing false positives. All this causes the performance

improvement of SnCTM over the baseline with a higher number ofprocessors to have

a higher value than the improvement shown over a lower numberof processors.

When the size of a signature is increased, the probability of two memory locations

mapping to the same bits decreases. Therefore the accuracy of a signature increases

as the size of it increases. This makes the baseline perform better with a signature of

2048 bit size. However, SnCTM still performs better than the baseline.

8.2.3 Characterization of SnCTM

Since SnCTM is based on the principle of adaptively changing the source used for

detecting conflicts, first the effect of this on the number of transactions being aborted

is analysed. Figure 8.5 shows the number of transactions aborted when a system has

a 1024 bit signature. For comparison purposes the same figurealso has the number of

false positives occurring in both systems. The same description applies to Figure 8.6,

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 151

but those results are from a system with a 2048 bit signature.In all the figures, the X

axis represents the number of processors used for the experiment (2P→2 processors,

4P→4 processors and so on).

From figure 8.5, it can be seen that in most applications SnCTM has encountered

significantly less number of aborts than the baseline. The average lowest reduction in

aborts is reported from Labyrinth, which is 14%. Bayes and Intruder have reported

average reductions of 31% and 32% respectively. Reductions reported in both Kmeans

applications varied significantly for low and high processor counts. The reduction

of aborts in Kmeans-Low for lower processor count is around 20 % whilst that for

higher processor count is around 80%. The same behaviour applies for Kmeans-High,

reporting 10% and 42% reductions for low and high processor configurations. A sim-

ilar behaviour is also reported in Ssca2, which has encountered 0% reduction for a 2

processor configuration, whilst having a 25% reduction for a16 processor configura-

tion. Lee also showed a 52% reduction in aborts compared to the baseline. Finally the

highest number of abort reductions is reported in both versions of Vacation, reporting

an average of 92% (Vacation-Low) and 88% (Vacation-High).

The number of transactions aborted is mainly a characteristic of the application

and also it depends on the the contention management policy used in the TM system.

That said, false transaction aborts which can occur from cache line sharing or false

positives in signatures, can count towards this as well. Again looking at Figure 8.5,

it can be seen that in some applications most of the aborts areencountered from false

positives. The number of false positives occurring in the baseline system is measured

against the number of aborts incurred. In Bayes around 71% of the aborts occur due

to false positives. On average, the 77% of aborts incurred inLee baseline are due false

positives. For Genome this is around 89% and for both Vacation applications the figure

goes to 99%. Moderate percentages are shown in Intruder (46%), Kmeans-Low (42%),

Kmeans-High (24%), Labyrinth (26%) and Ssca2 (58%).

Similar to Figure 8.5, Figure 8.6 also shows that the number of aborts encountered

in most of the applications is quite low when using SnCTM approach. However the

percentage reduction has changed significantly in comparison to Figure 8.5. The low-

est reduction of aborts is reported in both Kmeans applications, the baseline acquiring

almost the same number of aborts as the SnCTM system. Among theother lower val-

ues, Intruder has 6% reduction whilst Labyrinth, Ssca2 and Bayes have 11%, 12% and

14% reduction of aborts when using SnCTM approach. Similar tothe 1024 signature

scenario, both Vacation applications report the most significant difference between the

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 152

Figure 8.5: Number of aborts and false aborts occurred in both SnCTM and baseline
with a 1024 bit signature

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 153

Figure 8.6: Number of aborts and false aborts occurred in both SnCTM and baseline
with a 2048 bit signature

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 154

number of aborts occurring in baseline and SnCTM system. Vacation-Low reports a

reduction of 89% of aborts when using SnCTM whilst Vacation-High achieves a re-

duction of 84%.

Increasing the signature length increases the accuracy of the conflict detection

mechanism. Therefore when comparing the number of aborts occurring in the baseline

with both signature configurations, as expected, the systemwith 2048 bit signature

performs better. In Bayes, the 2048 signature results in 22% less aborts than the 1024

signature. Intruder (28%), Ssca2 (19%) and Lee (19%) also reported similar values.

The increase of the signature has a moderate effect on Vacation-High (reporting a re-

duction of 52%) and Kmeans-High (reporting a reduction of 41%). Genome, Kmeans-

Low and Vacation-Low have achieved a significant advantage from the increase of the

signature length, by producing 81% 86% and 65% less aborts, respectively. Labyrinth

has shown less sensitivity to the change in the signature length by having an almost

zero reduction in number of aborts.

Having seen the number of aborts and false aborts which occurred in both systems

for both signature configurations, discussion in now focused on analysing the number

of false aborts occurring in both systems for both configurations. Figure 8.7 shows

the number of false positives which occurred in both SnCTM andbaseline systems

for both signature configurations. In addition to 1024 and 2048 signature lengths, a

signature configuration of 8k bits is also used for this experiment. The 8k signature

is considered as a “perfect” signature and the aim is to compare the number of false

positives occurring in both baseline and SnCTM systems with aperfect system. In

the legend1k corresponds to a system with 1024 bit signature and2k corresponds to a

system with 2048 bit signature. As the name suggestsBaselinerepresents the baseline

architecture andSnCTMrepresents the SnCTM architecture. In all the figures, the X

axis represents the number of processors used for the experiment (2P→2 processors,

4P→4 processors and so on).

From Figure 8.7 it can be seen that, both signature configurations of SnCTM re-

port less false positives (except Labyrinth 2P, 1k signature) than their corresponding

baseline systems. It can also be observed that in certain cases the number of false pos-

itives in SnCTM is similar to that of the perfect system. Considering the applications

individually, no false aborts occurred in both Kmeans application for both signature

configurations in the SnCTM architecture and also in the baseline with a perfect sig-

nature. A significant difference of false positives betweenbaseline and SnCTM can be

observed in Intruder. This is because these applications (Kmeans-Low, Kmeans-High

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 155

Figure 8.7: Number of false aborts occurred in both SnCTM and baseline with 1k, 2k
and a perfect (8k) signature

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 156

and Intruder) have shorter transaction length, thus can fit in the L1 cache in most of

the time. Therefore SnCTM can use cache lines to detect conflicts in most of the time,

whereas baseline has to use signatures all the time. In the case of Ssca2, which is also

categorised as an application having shorter transaction length in STAMP suite [74],

does not show the similar behaviour in Figure 8.7. This is because, extra transactions

have been inserted to the Ssca2 application to maintain coherence.

Both SnCTM configurations report higher false positives than the perfect system

(still less than baseline) in Vacation-low, Vacation-highand Genome. All these applic-

ations have medium transaction length and low contention. In these applications not

all the transactions fit in the L1 cache. Therefore SnCTM has touse signatures for

some transactions, which causes it to produce some false aborts. However, SnCTM

manages to keep the number of false positives lower than the baseline by adaptively

changing source used during conflict detection.

In the cases of Lee, Labyrinth and Bayes all of them have longertransaction length.

Therefore SnCTM also has to use signatures for most of its conflict detection, thereby

increasing the false positives. However SnCTM is still able to produce less false pos-

itives than the baseline architecture.

One behaviour that can be observed in Figure 8.7 is that regardless of the underly-

ing architecture, any signature implementation tend to produce more aborts when the

number of processors increase. False positives are mainly caused by signature pol-

lution (higher occupancy) and address aliasing. If the length of a signature is kept

constant, the effect of the pollution will be the same for allthe processor configura-

tions. When the number of processors increases, the distribution of transactions among

processors changes. For example if Transactions T1 and T2 were executed in processor

2, in a 2-core configuration, in a 4-core configuration, T2 will be executed in processor

3 concurrently with the execution of T1 in processor 2. If theaddresses used in T1 and

T2 have the tendency to produce similar hashes, then it is possible to introduce a new

false conflict to the 4-core system which was not available inthe 2-core system. There-

fore it can be seen from Figure 8.7 that the number of false positives have increased

with the increase of the processors in the system.

8.2.4 Sensitivity Analysis

This section presents a sensitivity analysis of the signature length in both baseline and

SnCTM architectures. Signatures of size 64, 128, 256, 512, 1024, 2048 and 4096

bits are used for the experiment and an 8k bit signature is used as the perfect system.

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 157

Figure 8.8: Signature sensitivity of baseline and SnCTM - Part I (execution time is
normalised to the perfect signature)

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 158

Figure 8.9: Signature sensitivity of baseline and SnCTM - Part II (execution time is
normalised to the perfect signature)

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 159

The execution times of both baseline and SnCTM systems, normalized to the perfect

baseline, are shown in Figures 8.8 and 8.9. The figure is divided into two parts in

order to enhance the readability. For each signature configuration, experiments are

carried out with multi-core processors having 2, 4, 8 and 16 cores. The Kmeans-low

application did not successfully complete in a 16 core configuration with 64, 128 and

256 bits as the signature length. As can be seen from Figure 8.9, the application tends

to produce a higher number of aborts, in the 16 core configuration, hence requiring

quite of lot of restarting. The inability to complete the execution could therefore be

due to a limitation in the simulator.

From Figures 8.8 and 8.9 two behaviours can be spotted in all the applications

except Bayes, Labyrinth and Lee. The first behaviour is, in each processor configura-

tion, the normalised execution time increases as the signature size reduces. However,

in SnCTM this increase is either negligible or quite low in comparison to that of the

baseline. The reason is, as the size of the signature decreases, the probability of pro-

ducing false positives increases [95]. However SnCTM only uses signatures for situ-

ations where a cache overflow happens within the transaction. According to Figure

7.1, shown in Chapter 7 (Section 7.2), not many transactions fall into this category.

Therefore the reduction in the signature size does not affect SnCTM as much as it af-

fects the baseline. This means with the SnCTM approach, even asmaller signature can

be used without compromising the performance of the system.

The second behaviour that can be spotted from Figures 8.8 and8.9 is that, for all

the applications except Bayes, Labyrinth and Lee, the normalised execution time of the

baseline increases significantly in comparison to the perfect system, as the number of

processors increases. Several reasons can cause this behaviour. The first is described

in Section 8.2.3. That is, when the number of processor increases, false positives can

be introduced due to a greater number of transactions being distributed. Also when

the number of processors is increased, this increases the number of signatures in the

system. Increasing the number of signatures means increasing candidates for checking

conflicts. In an environment where signatures are perfect this does not and should not

cause problems. However when the size of the signature is reduced, the percentage

occupancy is increased. When the percentage occupancy is increased, the pollution of

the signature is also increased. This leads to more false aborts.

The increased contention could count towards this as well. When the number of

processors in a system increases, the contention for the interconnect increases. When

the contention increases, a processor has to wait longer to get access to the shared

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 160

Figure 8.10: Idle time of SnCTM and baseline normalised to perfect

resources, thus the idle time increases. When processor idletime increases, transaction

length increases. When a transaction takes a longer time to finish, it becomes more

susceptible to abort. Aborted transactions result in flushing all the modified cache

entries and bringing in all the data, once the transaction isrestarted. This also increases

the contention for the interconnect, thus making it a cyclicproblem.

Processor idle time of both SnCTM and the baseline is measuredfor all the pro-

cessor and signature configurations. Figure 8.10 shows the average of processor idle

time for all benchmark applications (except Bayes, Labyrinth and Lee) for each hard-

ware configuration. All the values are normalised to the perfect system. In the legend,

2P represents 2 processor configuration, 4P represents 4 processor configuration and

so on. From Figure 8.10 it can be seen that for lower signaturesizes as the processor

count increases, the idle time of the baseline architectureincreases significantly, where

as in SnCTM it remains closer to the perfect system. Thereforethe execution time of

SnCTM remains comparable to a perfect system even with a smaller signature, whilst

the baseline suffers a significant performance degradation.

In the case of Bayes, Labyrinth and Lee applications, firstly,they have a high con-

tention [74]. This increases the number of aborts produced.Secondly, all these applic-

ations have longer transactions. Therefore it is very likely that they overflow during

atomic execution, requiring the use of signatures to detectconflicts. This makes these

these applications: (1) to have a lower performance improvement as the processor

count increases; (2) to have less sensitivity to the signature length. Therefore they do

not follow the same behaviour as others.

CHAPTER 8. SNCTM IMPLEMENTATION AND EVALUATION 161

8.3 Summary

The first half of the chapter describes how to extend an existing HTM system to support

the SnCTM concept. The second half of the chapter focuses on the evaluation of the

SnCTM concept. First the evaluation is carried out with two commonly used signature

configurations to identify the effect on execution time whenusing the SnCTM ap-

proach. The results are characterised to validate the hypothesis of Part II of the thesis.

Thereafter a sensitivity analysis is performed to evaluatethe effect of signature length

on the execution time in both SnCTM and baseline. There it showed that a SnCTM

system with a smaller signature can perform as well as a perfect signature whilst a

baseline with the same signature size can suffer a significant performance degradation.

Part III

TM EXIT: Exiting a Transaction In

the Context of Hardware

Transactional Memory

162

Chapter 9

TM EXIT: A Case for Exiting a

Transaction

Part III of this thesis makes a case for a functionality that allows a transaction to exit

from a speculative region without committing it and start executing the statement im-

mediately following the atomic block. The discussion is started by clarifying the ambi-

guity of two behaviours expressed for the specification ofAbort Transaction. Section

9.2 shows the need for havingTM RESTART functionality in the TM specification. The

need forTM EXIT functionality in TM is described using some code segments inSec-

tion 9.3. A preliminary experiment made to get an intuition for the need for such

a functionality is described in Section 9.4. The proposed functionality, TM EXIT, is

presented in Section 9.5. The same Section also describes how to transform the code

segments used in Section 9.3, to take the advantage of the proposedTM EXIT function.

Finally Section 9.6 summarises the chapter. Chapter 10 of presents the architectural re-

quirements to supportTM EXIT. It also shows how to extend two baseline architectures

to support the proposedTM EXIT functionality. The advantages of usingTM EXIT in

terms of performance is also presented in the same chapter. Transactional Memory ap-

proaches that could provide a functionality similar toTM EXIT are discussed in Chapter

11.

9.1 Introduction

Transactional Memory(TM) [50] was initially proposed as a direct generalisation of

the load-linked-store-conditionalinstruction, in order to provide atomicity to more

than a single memory location. Since then, several HTM systems have been proposed

163

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 164

with different approaches for versioning and conflict detection (eg:TCC [39], Log-TM

[77]). Several attempts [26, 73, 79, 99] have also been made to standardise the syntax

and semantics of TM. Recently, several chip manufactures have unveiled proposals for

hardware assisted transactional memory (eg: Sun‘s Rock processor [18, 29], Azul [25],

AMD-ASF [1] and Intel’s Haswell [55])).

Despite all these efforts, there is a mismatch in the specification of theAbort Trans-

actionfunction. When used at a time of a transactional conflict, the proposed behaviour

is to discard all the speculative operations and reinstate the processor to the state that

it was in at the beginning of the transaction. All the TM community agree on that.

However when this functionality is invoked from the user code explicitly, two types

of operations have been proposed. One type (eg: Log-TM [77])proposes to discard

all the speculative operations and to restore the state as itwas at the beginning of the

transaction. The majority of the TM proposals follow this approach. The other type

of operation (eg: [79, 99]) proposes to discard all the speculative operations and to

transfer the control to the end of the atomic block. So far, all the proposed hardware

TM systems seem to follow the first specification.

This chapter argues that both functionalities are necessary for a hardware TM. In

order to clarify the discussion, definitions for first and second type of operations need

to be established. The first type of operation is named asTM RESTART and the second

type is named asTM EXIT. The definition follows,

TM RESTART: Discard all the operations performed within the atomic section and

restart the transaction.

TM EXIT: Discard all the operations performed within the atomic section and trans-

fer the control to the end of the atomic region.

The following contributions are made in the Part III of this thesis.

• A successful case is made for supportingTM EXIT functionality in HTM.

• In addition to extending the existing code segments to useTM EXIT, a case has

been presented where the expressiveness can be increased using the proposed

functionality.

• As the third contribution, the feasibility of integratingTM EXIT to two baseline

HTM systems is presented and the proposed implementation isdiscussed.

• As the final contribution, performance evaluations ofTM EXIT on two HTMs are

presented.

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 165

9.2 Motivation for TM RESTART

This section argues the need for havingTM RESTART functionality in TM applications.

In general, programmers place checks (eg:assert in C language) in a program to

ensure that certain operations are performed correctly so that the intended outcome is

produced. Similarly, within an atomic block, a programmer performs certain checks to

ensure that functions invoked within the block provide the intended outcome. For ex-

ample consider the code segment shown in Figure 9.1, taken from the Vacation applic-

ation of the STAMP benchmark suite [74]. There, the functionmanager addCustomer

is supposed to insert thecustomerId, which is passed as an argument to the function,

to a data structure inside themanager t structure. The insert method of this data struc-

ture returnsFALSE if the insertion is not successful. In such a situation a programmer

may want to retry the transaction. Therefore the outcome of the insertion is checked

andTM RESTART is invoked to restart the transaction as shown in Figure 9.1.(Please

note that only a portion of the transaction is shown.)

Figure 9.1:TM RESTART function used in Vacation application

Sometimes TM programmers use certain optimizations to reduce the number of

transaction aborts. The Labyrinth application of the STAMPbenchmark suite can be

taken as an example of such a scenario. The objective of the program is to find paths

from given source nodes to given destination nodes and to mark them in a shared global

grid. In the algorithm proposed by Minhet al. [74], first the global grid is copied to

a local data structure in each thread. Thereafter each thread finds the routes using this

local grid. After the global grid is copied, the cache lines which are related to global

grid are removed from the read set of the transaction using theEarly Release[49, 100]

feature. Using this approach the authors intend to reduce the transaction aborts caused

by read/write accesses to the shared grid by multiple threads.

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 166

In the program, once a path is found it is marked in the global grid. During this

marking, points used for the proposed path in the global gridare checked again to see

whether they are already being marked by another thread. This is required because,

finding the path was done on a local grid which is a snapshot of the global grid taken

at the beginning of the exploration process, hence may not beup to date. Therefore, if

a point in the proposed path is already taken by another thread, then the programmer

may want to retry the transaction because this does not mean that there cannot exist a

path from the given source to destination. This particular situation is shown in Figure

9.2. There, when a path is being added to thegrid t structure in theTMgrid addPath

function, it checks whether the location is empty or not. If the location is already taken,

the transaction is restarted by invokingTM RESTART. (Please note that only a portion

of the transaction is shown.)

Figure 9.2:TM RESTART function used in Labyrinth application

This section showed that theTM RESTART function is required in certain cases.

Most of the hardware and software TM proposals provide this functionality, thereby

allowing a programmer to retry the same transaction.

9.3 Motivation for TM EXIT

This section argues the need for havingTM EXIT functionality. In TM applications, op-

timistic concurrency is maintained, for critical regions marked by programmers. The

marking of critical regions is made either with theatomic{} keyword or with the

TM BEGIN andTM END pair. Once critical regions are marked in an application, the un-

derlying hardware/software/hybrid TM system ensures thatthe Atomicity, Consistency

and Isolation (ACI) properties are maintained for the markedregions. In a lazy-lazy

TM system, all the operations are performed speculatively within the critical section

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 167

and atomically committed at the end. In a hardware TM system,this commit phase

involves writing all the modified cache entries to the next level memory.

However the usefulness of the speculative operations are not considered at the time

of committing. This is because at the hardware level, this usefulness cannot be determ-

ined. The only information available is a set of memory locations and their prospective

values. On the other hand, at the programming language level, the usefulness of a

transaction can easily be extracted. Before continuing the discussion further,useful-

nessof a transaction needs to defined. The definition follows,

if an application contains a set of tasks and committing a transaction helps to

reduce the size of this set, then it is a useful transaction.

Some examples are taken from (a) a benchmark, (b) a micro-benchmark and (c) a

real-life scenario, to emphasise the need forTM EXIT functionality.

9.3.1 Lee-TM [108]

This is a routing algorithm whose objective is to find a path from a given source point

to a given destination point. The TM algorithm proposed by Watsonet al. [108] com-

prises two phases:expand andbacktrack. Theexpand routine starts from a source

point and expands in all directions until it reaches the destination. Once it reaches the

destination, it starts traversing back until it reaches thesource point, thereby finding

the optimal path. The transaction in this algorithm, encompasses both theexpand and

the backtrack methods. If theexpand method was able to reach its destination, it

returns TRUE, else it returns FALSE. The pseudocode of the algorithm is shown in

Figure 9.3.

Figure 9.3: Lee-TM pseudocode

When the above definition ofusefulnessis applied to this scenario, the set of tasks

are to find paths from different source points to different destination points. If a com-

mitting transaction is to be considered useful, it should have found a path from the

given source to destination. Finding a path involves executing expand andbacktrack

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 168

phases and the latter is executed only if the former returns TRUE. It is not guaran-

teed thatexpand always returns TRUE, which in turn prevents thebacktrack phase

from being executed. A transaction cannot be considered useful unless bothexpand

andbacktrack functions have been executed. In such situations, even if a transaction

does not do any useful work, the commit operation still takesplace. The commit phase

involves writing back the modifications made to the local variables and to the local

grid in theexpand phase. Even though such commits are not useful to the overallap-

plication, they still use the interconnect to communicate speculatively modified cached

entries to the next level memory.

9.3.2 Red-Black Tree

The Red-Black tree is a data structure used in computer science. The major opera-

tions associated with it are search, insert and delete. Eventhough this particular data

structure is used for the discussion, the situation can be applied to any application that

interacts with databases. The insert and the delete operations should incorporate some

sort of search facility within them. This is because, beforeinserting an item, it is re-

quired to find whether another item with the same key exists inthe tree. Similarly,

to perform a delete operation the item with the corresponding key needs to be found.

A search operation can be defined to return TRUE, if it finds an item with the given

key. Then the insert and the delete operations can be performed accordingly. In a TM

version of the Red-Black tree, a transaction comprises either, the search and the insert

or the search and the delete. The atomicity between the two methods cannot be broken.

The pseudocode of the algorithm is shown in Figure 9.4.

Along with the definition of usefulness, an insert operationcan be considered as

useful only if it tries to insert an item that does not exist inthe tree. In the case of

delete, it becomes useful only if the item exists in the tree.This discussion applies

to any application that uses a database for storing information. For example, imagine

a customer trying to book a room in a hotel. First they will search the room prices

and availability. If a suitable one is found they will reserve it. In a TM version, both

search andbook have to be within a single transaction and it becomes useful only

if the customer completes the booking stage. However with the current approaches,

regardless of the usefulness of a transaction, a commit operation takes place.

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 169

Figure 9.4: Red-Black Tree TM pseudocode

9.3.3 Java Exceptions

No specific examples are used for this discussion as it can be applied to many scenarios.

Consider a Java program that has a critical section and is susceptible to produce an ex-

ception. In the code, aTM BEGIN instruction can be placed after thetry keyword. In

a hardware TM, any operation performed after this instruction is performed speculat-

ively until theTM END is executed. Therefore ifTM END is placed within thetry-catch

block, it does not get executed if an exception is thrown. Since the objective is to ex-

ecuteTM END regardless of whether an exception happens or not, it is placed within

the finally block. A pseudocode of the discussion is shown in Figure 9.5.In this

scenario, if a transaction is to be considered as useful, it should not produce any ex-

ceptions. However regardless of the usefulness of the commit, the application asks the

underlying TM system to perform it.

Figure 9.5: Java TM code with exceptions

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 170

9.4 Performance Impact

To get an intuition of the usefulness of commits, a preliminary experiment is made with

a lazy-lazy HTM system, similar to TCC [39], using 2-16 cores.Lee-TM [108] and

a TM version of Red-Black tree are used for the experiment. The application code is

instrumented to check the usefulness of a transaction at thecommit time. For example

in Lee-TM, if thebacktrack phase is not executed, it is considered as a non-useful

commit. In Red-Black tree, trying to insert an already existing entry or trying to delete

a non-existing entry are considered as non-useful commits.For Lee-TM, a grid of

75X75 with 320 routes to explore is used as program parameters. For Red-Black tree,

a tree with 20000 entries and transactionally inserting/deleting 16000 items with 50%

probability for each action is used as program parameters. Table 9.1 shows non-useful

commits as a percentage of the total commits.

Processors Lee-TM Red-Black Tree
2 35% 49%
4 35% 49%
8 34% 49%
16 33% 49%

Table 9.1: Non-useful commits

Table 9.1 presents two interesting facts. One is that, within the application pro-

gram itself it is possible to determine whether a commit is useful or not. The other

observation is that quite a number of commits are not useful for the overall program

completion, in the applications used for the study. If the underlying TM is not no-

tified about these non-useful transactions, a commit phase will take place for those

transactions similar to others. In HTM, a commit phase involves communicating the

information about speculative modifications (write-set) to other processors and updat-

ing the next level memory. Both of these operations require touse the interconnect,

which is a shared resource in a multi-core processor. Increased usage of shared re-

sources increases the contention for them. This increased usage could be reduced if

these non-useful commits were avoided. Therefore a functionality is required for a TM

API to notify the underlying TM, that committing the modifications made in current

transaction does not do any useful work, therefore proceed to the instruction following

the atomic block.

TheTM EXIT functionality defined earlier in this chapter fits well for this purpose.

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 171

First of all it increases the programmability of TM programming, allowing a program-

mer to have multiple exit points in an atomic block. Secondlyit may also improve

the performance of a hardware TM system, by not committing the non-useful data.

However this functionality has not yet been integrated to a hardware TM system.

9.5 Defining and Using TM EXIT

From a programmer’s point of view, the purpose of theTM EXIT functionality is to no-

tify the underlying TM mechanism that the current transaction is a non-useful one, and

request an exit from the atomic region. From system’s point of view, this information

can be interpreted as “stop speculation from this point onwards”. However this is not

sufficient for the underlying TM to function properly because to fulfil the requirements

of TM EXIT it needs to transfer the execution flow to the line immediately following the

atomic block. In other words,TM EXIT looks like ajmp instruction which transfer the

execution flow to the line immediately following the atomic block. If used in this man-

ner, the proposed functionality will become unattractive among the TM community,

similar to the obsolete use ofgoto statement in C/C++. However if theTM EXIT func-

tionality is used alongside the definition ofusefulness, such an explicit control transfer

becomes unnecessary. Before analysing why this is the case, the discussion is directed

to show how to use theTM EXIT functionality alongside the definition ofusefulness.

In order to use theTM EXIT using this approach, first a usefulness criterion for a

transaction needs to be established. Then it is necessary tocheck whether there are any

program statements residing outside the usefulness criterion, that affect the usefulness

of the application. If there are no such statements then theTM EXIT function can be

used. The rest of the section describes how to modify the codesegments shown in

Section 9.3, according to these two steps.

9.5.1 Integrating TM EXIT to Existing Applications

In the case of Lee-TM, the usefulness criterion is whether theexpand method is able to

reach the destination. Then it is necessary to consider the effects that can be caused by

any program statements outside the usefulness criterion. Write operations performed

within theexpand method and the write operation performed on theisFound variable

fall in to this category. None of these operations affect theusefulness of the program.

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 172

In this application, only operations that could affect the usefulness are the ones per-

formed within thebacktrack method, which is already encompassed in the usefulness

criterion. This can be seen in Figure 9.6(a). ThereforeTM EXIT functionality can be

used in the Lee-TM application. The application code needs to be modified as shown

in Figure 9.6(b) to use the proposed feature.

Figure 9.6: Modifying Lee-TM pseudocode to useTM EXIT

In the case of theinsert item method of Red-Black Tree, the usefulness criterion

is not finding an entry with the same key as the one which is currently being inserted.

Similarly, for thedelete item method, the usefulness criterion is finding a match-

ing entry with the key that is required to be deleted. Write operations performed on

stack variables in the search method and the write operationperformed on theisFound

variable fall into the category of operations performed outside the usefulness criterion

(shown in Figure 9.7(a)). These operations do not affect theusefulness of the pro-

gram. The only operations that could affect this are the oneswithin theinsert and the

delete methods. Since they are already encompassed within the usefulness criterion,

TM EXIT functionality can be used in this situation as well. The pseudocode of the

modified Red-Black Tree is shown in Figure 9.7(b).

In the case of Java exception code segment (Figure 9.5), neither usefulness criteria

nor the statements affecting the usefulness can be defined asthe code segment is a gen-

eric one. A simple assumption to make here is that, it is very unlikely for a transaction

to be considered useful if it has encountered an exception. If an exception is raised,

it will be caught by the relevantcatch block in the program flow.TM EXIT can be

placed in allcatch blocks allowing the execution to exit from the atomic block.This

is shown in Figure 9.8. In addition to addingTM EXIT, the program is slightly modified

from the one shown in Figure 9.5. SinceTM EXIT is placed within thecatch block, it

is no longer required to place theTM END in thefinally block. As shown in Figure

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 173

Figure 9.7: Modifying Red-Black Tree TM pseudocode to useTM EXIT

9.5, TM END is now placed within thetry-catch block. If no exceptions occur dur-

ing the execution of thetry-catch block,TM END is executed thereby committing all

the speculatively modified data. If an exception has occurred it will be caught by the

relevantcatch block andTM EXIT will be executed, thereby discarding the non-useful

writes.

Figure 9.8: Modified Java code to usedTM EXIT

9.5.2 Implicit Control Transfer with TM EXIT

Having shown the usage ofusefulnesscriteria to modify applications, the discussion is

now focused on describing how the program execution flow is implicitly transferred to

the line following the atomic block. Consider the code segment shown in Figure 9.9,

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 174

which is a numbered version of Lee-TM shown in Figure 9.6(b).For simplicity, assume

each pseudocode is an instruction and the numbers are the memory addresses of those

instructions. In general, theProgram Counter(PC) register stores the address of the

next instruction to be executed. Consider a case in which a path is found. When that is

the case, theexpand returns TRUE, then the program execution jumps to address 04,

which isbacktrack. Whenbacktrack is being executed the PC register is pointing

to address 05 which is theTM END. WhenTM END is being executed the PC register is

pointing to address 09 which is the end of the atomic block.

Figure 9.9: Implicit control transfer in Lee-TM pseudocode

Now consider a case where a path cannot be found, which madeexpand return

FALSE. When this happens, the program execution jumps to address 07, which is the

TM EXIT. When this instruction is being executed, the PC is pointing to the address

09, which is the end of atomic block. Therefore when the execution of TM EXIT is

completed, program execution will automatically be transferred to the line immediately

following the atomic block without any extra effort.

9.5.3 Incorrect Usage of TMEXIT

Figure 9.10: Incorrect usage ofTM EXIT

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 175

The discussion of implicit control transfer raise the question “What happens if there

is an instruction outside the usefulness criterion, but after it ?”. For example consider

the code segment shown in Figure 9.10(a). There, the condition in line 3 could easily

be misunderstood as the usefulness criterion of the transaction. In such a situation the

modified code may look similar to the one shown in Figure 9.10(b). This is clearly an

incorrect usage ofTM EXIT. Recalling the two steps of usingTM EXIT are to, define the

usefulness criterion and to ensure the operations outside the usefulness criterion does

not affect the usefulness of the program. In this situation,the operation at line 8, clearly

affects the usefulness of the application. This is because,regardless of the value of the

condition, line 8 gets executed. Therefore line 8, itself contributesto the usefulness

of the application. In this situation, both theif-condition in line 3 and the statement

in line 8 collectively contribute to the usefulness of the application. Therefore, line 3

alone cannot be considered as the usefulness criterion, hence this application cannot

use theTM EXIT functionality.

9.5.4 Increasing Expressiveness With TMEXIT

This section describes a situation where the expressiveness can be increased with

TM EXIT. Following is the problem statement.

A linked list, whose size is unknown, needs to be reversed if thesize of the list is

greater than a certain threshold.

A conventional and a naive way of solving the problem is to count the items in

the list in a first pass and to reverse it in a second pass, if thesize is greater than the

threshold value. This is shown in Figure 9.11.

Figure 9.11: Pseudocode showing the conventional approach

The ability of TM to operate speculatively within an user specified block, integ-

rated with the proposedTM EXIT can be used to provide a better solution for the above

scenario. The intended behaviour ofTM EXIT is to discard all the speculative opera-

tions and to transfer the control to the line immediately following the atomic block.

Therefore thereverse method can be modified to speculatively reverse the list while

counting the elements. When the end of the list is reached, if it is found to have more

items than the given threshold, the transaction is committed. If this is not the case, it

CHAPTER 9. TMEXIT: A CASE FOR EXITING A TRANSACTION 176

exits from the transaction usingTM EXIT, thereby discarding all the operations made

to reverse the list. This is shown in Figure 9.12.

Figure 9.12: Pseudocode of revised reverse method usingTM EXIT

In the naive approach, shown in Figure 9.11, for lists whose length is greater than

the threshold traversing is done twice (one for counting andone for reversing). In the

new approach, shown in Figure 9.12, regardless of the size ofthe list, traversing is

done only once. Therefore the amount of computation required to derive the solution

is also reduced. This meansTM EXIT also has the potential to increase the performance

of an application in certain situations, in addition to increasing the programmability by

having multiple exit points. It can be noted here that, the two steps required to follow

in order to useTM EXIT (described in Section 9.5), have not been followed in this

situation. This is because, hereTM EXIT is not being introduced to an existing atomic

block, instead an atomic block is added together withTM EXIT to a code segment to

increase the expressiveness. Also the use of atomic blocks are not for maintaining

synchronization, but for maintaining the speculative execution.

9.6 Summary

This chapter presented a case for havingTM EXIT functionality in TM programming.

It started the discussion by first clearing the ambiguity of two behaviours expressed for

the Abort Transactionoperation, by defining each type (TM RESTART andTM EXIT).

Thereafter the need for both types of operations in TM, is presented using some known

benchmark applications. The steps required when modifyingexisting applications to

make use ofTM EXIT function is described using the same set of examples used for

making the case forTM EXIT. Finally it shown how to use theTM EXIT function in

order to increase the expressiveness.

Chapter 10

Implementation and Evaluation of

TM EXIT

This chapter describes the architectural support forTM EXIT and the evaluation of it,

in terms of performance. Section 10.1 describes two baseline TM systems and how to

extend them to provideTM EXIT functionality. Even though improving performance

is not a major goal of the proposal, a study is done to evaluatethe effect of adding

TM EXIT functionality to two baseline TM systems. This is presentedin Section 10.2.

Finally Section 10.3 summarises the chapter.

10.1 Architectural support for TM EXIT

This section discusses how to extend two hardware TM systemsto supportTM EXIT

functionality. Two improved versions of Transactional Memory Coherence and Con-

sistency (TCC) [39] are used as baseline architectures. Both baselines are similar to

those described in Chapter 4, Section 4.3. For the sake of completeness, a brief de-

scription of each is given in Sections 10.1.2 and 10.1.3. Thetransactional memory

implementation in the baselines is similar to any other lazy-lazy hardware TM system.

When theTM BEGIN instruction is executed, a flag (IN TX in Figures 4.8 and 4.9) is

set. When this flag is set, all the subsequent operations are performed speculatively

until the TM END instruction is executed. In order to provide an unbounded amount

of transactional data, the baseline uses hardware signatures [95] to maintain the read

and write sets, using parallel bloom filters to increase accuracy. Since the baseline

architectures are based on TCC which does not implement any coherence protocols,

transactions are used to maintain coherence and consistency as well. Therefore at the

177

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 178

end of a transaction, the next level memory copies are updated and local copies which

are read/written are flushed. This is necessary to avoid local caches using stale data

due to the fact that no conventional coherence protocols areused.

When a processor needs to commit a transaction, it first requests commit permis-

sion from a centralisedcommit-arbiter. Commit permission is granted based on a

least recently granted policy. Once the commit permission is granted, the committing

processor broadcasts its write-signature to all the other processors. Upon receiving

this write-signature, each processor performs a bitwise AND operation on their read-

signature. If all the hashes in the resulting signature are non-zero, then it is considered

as a conflict and the processor aborts. After sending the write-signature to all the other

processors, the committing processor updates the next level memory (either level 2

cache or main memory) with all the speculatively modified values. During this com-

mit phase, the communication arbiter denies any request to use the interconnect. Once

the next level memory is updated with all the speculatively modified cache entries, all

these entries need to be flushed and both read and write signatures need to be cleared

as well. The two baseline systems differ from each other, from the way they handle

cache overflows within a transaction.

10.1.1 Requirements for TMEXIT

When invoked from the user code,TM EXIT is supposed to perform two operations.

One is to stop performing speculatively and the other is to transfer the control to the

line immediately following the atomic block. The first objective, that is to stop per-

forming speculatively can be done by clearing theIN TX flag. From the examples

discussed in Chapter 9, Section 9.5.2, it is clear that no explicit operations are required

in order to transfer the control to the line immediately following the atomic block. In

that senseTM EXIT is similar to a commit operation except the latter communicates the

modifications made within the atomic region to the other processors. WhenTM EXIT is

executed, all the speculatively modified cache entries needto be cleared before execut-

ing the next instruction. In that sense,TM EXIT is similar to an abort operation except

the latter restores registers. To summarise, the operations associated withTM EXIT are,

to clear theIN TX flag and to clear all the speculatively modified entries.

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 179

10.1.2 Baseline-1: TM-S

Overflows are serialised in the first baseline (TM-S) when addressing cache overflows

within a transaction. That is, when a cache entry needs to be rejected while a pro-

cessor is inside a transaction, permission is sought from the overflow arbiter. Over-

flow permission is granted based on a least recently granted policy. Once the overflow

permission is granted, the processor flushes the cache line from its L1 cache and up-

dates the corresponding entry either in L2 cache or main memory. A processor needs

to ask for overflow permission only if the cache line is modified during the current

transaction. An extra ‘W’ bit is used to mark all the speculatively modified entries. A

dirty bit is not sufficient for this purpose because the entrycould have been dirty due

to a write operation performed outside a transaction. If the‘W’ bit is not set, there

is no need to seek overflow permission, a processor can flush the entry to its original

location. If an overflow request is denied, the processor stalls until the request is gran-

ted. Even though thecommit-arbiteroperates on aleast-recently-grantedpolicy, in the

TM-S baseline, there is an exception for processors which have been granted overflow

permission. That is, all the commit requests from other processors are denied, until

the overflowing processor commits. Due to this approach, theoverflowing transaction

becomes an unabortable one.

The TM-S baseline needs a mechanism to handle unabortable transactions. Ima-

gine a situation where a processor which has been given overflow permission, invoked

TM EXIT. The associated operations are to discard all the speculative changes and to

continue to the next instruction. In this baseline, the modifications related to the over-

flowed memory locations cannot be discarded as the original memory locations have

been modified. When this is analysed from the perspective of the application code, two

types can be observed. In one type, only the code region encompassed with the use-

fulness criterion modifies the global data. Examples like Lee-TM and Red-Black Tree

(discussed in Chapter 9, Section 9.5.1) fall in to this category. In the other type, those

similar to the Linked-list example (described in Chapter 9, Section 9.5.4), a usefulness

criterion is not used when adding theTM EXIT functionality.

In the first type, if theTM EXIT functionality is not supported, a commit operation

will take place. In the case of Lee-TM, for non-useful transactions, this involves updat-

ing the locations in the local grid. Similarly, for Red-Black tree this involves writing

back local variables which are modified during the search operation. None of the other

threads are interested in the modifications made to these locations. In terms of pro-

cessors, none other than the one who initialised these are interested in these memory

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 180

locations. If a transaction cache overflow happens for thesenon-useful transactions,

some of these memory locations will get modified before the commit phase and the rest

will be updated during the commit phase. If the commit phase did not update the rest

of the local grid, it would not make any difference as the gridis initialised at the be-

ginning of the next transaction. Similarly all the local variables of the Red-Black tree

will be initialised during the next search method. Therefore for the first type, reinstat-

ing the overflowed locations or committing the rest of the write set is not required for

the correctness of the execution. However if a need arises,TM EXIT can be configured

to commit the rest of the speculative entries in case of a transaction cache overflow.

To summarise, whenTM EXIT is invoked from the user code, if no transactional cache

overflows have occurred all the speculatively modified cacheentries are discarded. If

there were transactional cache overflows, the system has theflexibility to either com-

mit or discard the remaining cache entries. For the experiments the latter option is

used, that is to discard the remaining speculative values inthe level 1 cache.

In its current version, the TM-S baseline cannot be used to supportTM EXIT with

applications of type two (like the Linked-List example described in Chapter 9, Sec-

tion 9.5.4). This is because, if a transaction which has a cache overflow, decided to

exit from the atomic block, then it could lead to an erroneousoutput. For example

consider a situation where a cache overflow occurred during the speculative reversing

of the list and this modified the original memory location. However the number of

elements in the list is less than the threshold, therefore the transaction decided to exit

usingTM EXIT. Now the original linked-list is modified even though it should remain

unmodified. Therefore in order to ensure that consistency isnot undermined for all

types of applications, further work is required when integrating theTM EXIT to TM-S

baseline.

10.1.3 Baseline-2: TM-U

In order to support an unbounded amount of transactional data, the second baseline

(TM-U) overflows to a separate uncached area of memory as in Large Transactional

Memory (LTM) [3]. The design and the protocol are similar to those of LTM, except

that TM-U does not stall to check for potential conflicts thatmight arise from over-

flowed locations, since it uses signatures. When a cache line with the dirty bit set is

going to be overflowed, the entire cache line including all the tag, valid, dirty and data

bits are preserved in this uncached area. Each entry is indexed by the hash value of the

overflowed memory location. Each processor has an extra register (OverflowAddress)

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 181

which points to the starting location of this separate area.If more than one memory

location produced the same index, a linked list is formed. Finding an entry involves

first getting the index and then getting the corresponding cache entry or list of cache

entries stored under that index. Then a linear search is performed by comparing the tag

and index of each element in the list. TM-U has an extra bit called ‘O’ per cacheline to

indicate the overflow status. This is set when a cache line is overflowed and is cleared

only when a transaction commits or aborts. Even if an existing cache line is replaced

with new data, this bit does not get changed.

WhenTM EXIT functionality is invoked in TM-U baseline, in order to clearthe

speculatively modified entries it is only necessary to clearthe modified cache entries

and the entries in the overflow area of the memory. Since overflowing does not af-

fect the original memory location, both types of application can be executed in TM-U

baseline.

10.2 Evaluation

The evaluation ofTM EXIT functionality, in terms of performance, is presented in this

section. After discussing the evaluation setup in Section 10.2.1, performance evalu-

ation ofTM EXIT is presented in Section 10.2.2. In that section performanceof TM-S

and TM-U systems that support theTM EXIT functionality is compared against TM-S

and TM-U systems that do not support such a feature. Characterisation of the results

are presented in Section 10.2.3. Section 10.2.4 describes the performance evaluation

of TM EXIT when used to improve the expressiveness.

10.2.1 Evaluation Setup

The simulation environment used for evaluatingTM EXIT is similar to the one used for

evaluating DaCTM, described in Chapter 5, Section 5.3. For thesake of completeness,

a brief description of the system is presented in this section, readers are directed to

Chapter 5 for a more elaborative description.

Since the proposal relies on transactions, a lazy-lazy hardware transactional memory

system is modelled in Simics [70], a full system simulator running Linux (version

2.6.16). The TM system is configured with the components shown in Table 10.1.

In addition to those, the baseline-2 (TM-U) uses a perfect hash function to index its

overflowed memory locations. Lee’s routing algorithm [108]and a TM version of

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 182

the Red-Black tree are used to evaluate theTM EXIT functionality. Both applications

were modified to exit from a transaction if it is found to be a non-useful commit, as

shown in Figures 9.6(b) and 9.7(b). Unmodified versions of both applications were ex-

ecuted for comparison purposes. Lee-TM uses 75X75 grid and 320 routes as the input.

A tree with 20,000 (0↔200,000) nodes and 16000 (0↔200,000) insertions/deletions

with 50% probability for each was used for the Red-Black tree experiment.

Component Feature
Processors 1-16, in-order
L1 Data Cache 2 way assoc, 64 B line, 32 KB size,

2 cycle latency, private per core
Signature 2048 Bits, 4 Parallel H3 [12] Hash functions
L2 Data Cache 8 way assoc, 64 B line, 4 MB size,

20 cycle latency, shared
Interconnect Split-transaction bus, 4 cycle latency,

64 B data width
Main Memory 100 cycle latency

Table 10.1: Components and features of theTM EXIT evaluation environment

10.2.2 Performance

The performance improvement of usingTM EXIT over baseline architectures that do

not support such functionality is shown in Figure 10.1. Withthe TM-S architecture,

usingTM EXIT functionality, a maximum performance improvement of up to 1.35X

has been achieved and with TM-U the maximum improvement wentto 2.28X. From

Figure 10.1, it can be seen that the Lee-TM application has taken more advantage

over the Red-Black tree application by usingTM EXIT functionality to exit from non-

useful transactions. Also it can be observed that, for the Lee-TM application, in the

TM-U system the improvement over the baseline increase significantly as the number

of processors increases. However, this does not apply to theTM-S system. Reasons

causing this behaviour are discussed in Section 10.2.3.

10.2.3 Characterisation of TM EXIT

The results of the performance evaluation are characterised with several parameters in

order to find out the effect of adding theTM EXIT functionality to two existing HTM

systems and what makes the performance improvements vary between both systems

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 183

Figure 10.1: Performance improvement when usingTM EXIT over baseline

and applications. First, the percentage of transactions that executed theTM EXIT in-

struction is measured. Table 10.2 shows how many times theTM EXIT instruction has

been executed as a percentage of the total number of commits.There it can be seen for

the Red-Black tree, the percentage is around 50% in both systems, but for Lee-TM it

is between 10%-12%. Since Red-Black tree has invoked theTM EXIT instruction more

than Lee-TM, one might expect it to show bigger speedup in Figure 10.1, which is not

the case.

Processors TM-S TM-U
Lee-TM RB Tree Lee-TM RB Tree

2 11.40% 50.11% 12.02% 49.97%
4 11.48% 49.84% 12.00% 49.77%
8 11.33% 50.24% 11.84% 49.73%
16 12.46% 49.58% 10.83% 49.84%

Table 10.2: Usage ofTM EXIT as a percentage of total commits

If the size of the write set is small, the amount of time spent committing may not

make a significant difference to the overall execution time.Therefore the amount of

speculative data committed in both applications is analysed in order to see the effect

of removing non-useful commits towards the overall execution time. Table 10.3 shows

the number of bytes committed per transaction in both applications in both systems.

From Table 10.3 it can be seen that Lee-TM has a significantly bigger write set size in

comparison to that of the Red-Black tree. Therefore exiting from a transaction without

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 184

committing it, gives a bigger advantage to Lee-TM than it does to Red-Black tree. This

makes Lee-TM show better improvements than Red-Black tree.

It can also be seen in Table 10.3 that the number of bytes committed per transac-

tion increases in Lee-TM for both architectures. Accordingto Table 9.1, for Lee-TM,

non-useful commits have reduced as the number of cores are increased. This means

more transactions have committed successfully, thereby increasing the number of bytes

committed per transaction.

Processors TM-S TM-U
Lee-TM RB Tree Lee-TM RB Tree

2 9519.15 518.38 9742.59 580.00
4 9941.44 529.47 9704.24 588.78
8 11864.72 534.09 9929.95 592.80
16 15961.10 534.14 10148.61 591.32

Table 10.3: Bytes committed per transaction

Not using the interconnect for non-useful commits reduces the contention for it. In

other words, one of the overheads incurred by unnecessary commits is the bus conten-

tion. In both TM systems the communication arbiter is designed to give the highest

precedence to commit requests. Since a commit phase takes time to complete, all the

bus requests are denied during this time. This increases thebus contention. Figure

10.2 shows the bus contention presented in both TM systems. In the legend, TM-S-

Baseline means that the architecture is TM-S (Section 10.1.2) and it does not support

the TM EXIT functionality. Similarly TM-S-TMEXIT means that the architecture is

TM-S (Section 10.1.2) and it supports theTM EXIT functionality. The same applies for

TM-U-Baseline and TM-U-TMEXIT.

It can be seen in Figure 10.2, as expected according to the above discussion, that

both applications show less bus contention whenTM EXIT functionality is used. This

is mainly because of the reduction of commits that are not useful to the completion of

the program. Even though both applications show a reductionin bus contention, Lee-

TM shows a significant performance improvement in Baseline-2(TM-U). The reason

behind this is, that the transactions in Lee-TM have quite a lot of speculative data that

cannot be held in the level 1 cache. Therefore they overflow during the execution of

the atomic block. When a transaction becomes longer, more addresses are inserted to

the signature. When more addresses are inserted to the signature, it increases the prob-

ability of producing false positives. Despite its disadvantage of serializing commits,

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 185

Figure 10.2: Effect on bus contention when usingTM EXIT

TM-S has the advantage of having only one large transaction at any given time. This

is because, TM-S only allows one transaction to overflow and all others have to wait

until this commits. Because of this, the number of false positives are reduced in TM-S.

In the case of TM-U, there can be any number of large transactions running at a given

time. Therefore this could increase the probability of false positives produced in the

system.

Figure 10.3: Number of false positives occurred in Lee-TM for both baselines and
architectures supportingTM EXIT

The number of false positives occurred in Lee-TM for both baselines and for both

architectures supportingTM EXIT is shown in Figure 10.3. In the legend, TM-S-

Baseline means that the architecture is TM-S (Section 10.1.2) and it does not support

the TM EXIT functionality. Similarly TM-S-TMEXIT means that the architecture is

TM-S (Section 10.1.2) and it supports theTM EXIT functionality. The same applies

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 186

for TM-U-Baseline and TM-U-TMEXIT. It can be seen from the figure that, by not

invoking a commit phase for non-useful commits, Lee-TM is able to reduce the num-

ber of false positives in both architectures which supportstheTM EXIT functionality.

It can also be seen than TM-U-Baseline has more false abort than the TM-S-Baseline.

Even though bothTM EXIT architectures are able to reduce the number of false aborts,

the reduction is higher in TM-U than that of the TM-S. Therefore the performance im-

provement of TM-U-TMEXIT over TM-U-Baseline is higher than that of the TM-S.

10.2.4 Performance Evaluation of Increased Expressiveness

Section 10.2.2 showed the performance improvement when theTM EXIT functionality

is integrated to existing TM applications. This section focuses on the effect of using

TM EXIT to increase the expressiveness. The Linked-list example, described in Chapter

9, Section 9.5.4, is used for this experiment. The objectiveof the application is to

reverse the linked list, if it has more elements than a threshold value. As shown in

Figure 9.12, transactions have been added to the reverse method. If the length of the

list is found to be less than the threshold, speculative changes are abandoned and the

control is transferred to the end of the atomic block usingTM EXIT. For comparison

purposes a naive implementation of the code, shown in Figure9.11, is also executed.

As described in Section 10.1.2, the TM-S baseline cannot be used for this experiment.

Therefore experiments are carried out using the TM-U baseline. Experiments are made

in a system with a single processor.

For this experiment, 200 linked-lists with each having a length less than 10000 are

used. Three threshold values are used for the evaluation. Inthe first configuration

the threshold is set to 100, so that more lists needs to be reversed. In the second

configuration, the threshold is set to 9000, in order reduce the number of lists that

needs to be reversed. In the final configuration, for each list, the threshold is determined

randomly. Threshold configurations are summarised in Table10.4.

Configuration Threshold
a 100
b 9000
c random value

Table 10.4: Threshold configurations for Linked-list

Figure 10.4 shows the execution time of the modified linked-list (that usesTM EXIT)

normalised to that of the unmodified code. On the X-axisa, b, c stands for the

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 187

threshold configurations shown in Table 10.4. From the figure, it can be seen that the

modified application outperforms the unmodified one in configurationsa andc. In the

case of configurationb, the modified application takes more time than the unmodified

one.

Figure 10.4: Execution time of modified Linked-list normalised to the original

In the case of configurationa, since the threshold is a low value, a larger number

of lists (196) need to be reversed. Therefore the unmodified application has to traverse

196 lists twice (one to count and one to reverse) whereas the modified application only

makes a single traverse for all 200 lists. Therefore in configurationa, the application

using TM EXIT has an advantage of a reduced number of traverses. In the caseof

configurationb, only 17 lists need to be reversed as the threshold is kept at ahigher

value. In this case, the unmodified application has only 17 lists to traverse twice.

However one could still argue that modified application onlydoes 200 traverses in total

whereas, in this case, the unmodified one does 217 traverses in total. Therefore the

execution time of the unmodified application should still behigher than the modified

one, which is not the case. An explanation for this behaviouris presented later in this

section. Finally in configurationc, 92 lists were required to be reversed. Since this is

less than the requirement in configurationa, configurationc reports a slightly higher

execution time than the former.

The fact that unmodified application has to traverse certainlists two times (one

for counting and one for reversing), explains it having a higher execution time than

the modified application in configurationsa andc. However this trend has not been

presented in configurationb. The reason for this behaviour is the increased number of

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 188

main memory accesses present in the TM-U architecture.

Figure 10.5: Memory accesses of both modified and unmodified Linked-list applica-
tions

Figure 10.5 shows total number of main memory accesses reported in both applic-

ations. In the legend, Unmodified refers to the memory accesses occurred in the ori-

ginal linked-list and TMEXIT refers to the memory accesses occurred in the modified

linked-list. There, it can be seen that for all the configurations the modified applica-

tion has a higher number of memory accesses than the unmodified one. In the TM-U

baseline, when a transactionally modified entry is evicted before a commit operation

happens, it is stored in the uncached area and theOverflowbit (‘O’) in that cache line

is set. Thereafter, when a cache miss is occurred for a cache line with the ‘O’ bit set,

it is directed to this overflow area, which is searched for a matching entry. A miss in

the uncached area, is treated as a normal cache miss, hence fetched from the original

memory location. Since the most of the linked lists used in the experiment are longer,

they cannot be held in the L1 cache during the execution of an atomic block. There-

fore when a transactional cache overflow happens, the modified cache line is stored in

the uncached area of the memory and the ‘O’ bit in the cache line is set. All the sub-

sequent cache misses whose index bits are similar to this memory location’s index go

through the uncached area of the memory. Therefore the number of memory accesses

present in the modified application increases. This does notapply to the unmodified

application as no speculative operations are performed in that case.

Table 10.5 shows the number of times the overflow area is accessed in the modified

CHAPTER 10. IMPLEMENTATION AND EVALUATION OF TM EXIT 189

Configuration Overflow Accessed
a 18906
b 18906
c 18907

Table 10.5: Number of times the overflow area is accessed in the Linked-list applica-
tion that usesTM EXIT

application. When the overflow area is accessed, a processor is stalled a minimum of

100 cycles, which is the latency of main memory. The situation becomes worse, if the

location is not found in the overflow area. In this experimentnone of these overflow

accesses resulted in a success, which means all of these accesses had to be treated as

normal cache misses after receiving the response from the main memory. This adds a

performance penalty which is not present for the unmodified application. However this

penalty is masked in configurationsa andc as the total number of traverses required

for the unmodified application is significantly higher than the modified one. Since the

same condition does not apply for configurationb, the execution time of the unmodified

application is lower than the modified one.

10.3 Summary

When extending to supportTM EXIT, the architectural requirements of two baseline

TM systems are discussed in this chapter. Proposed implementation of two TM sys-

tems and their applicability on different programming situations is also described. Fur-

ther it is concluded that one baseline architecture, TM-S cannot be used in certain situ-

ations. Even though increasing performance is not a prime objective of the proposal,

an experiment made to evaluate the effects of addingTM EXIT to existing HTM sys-

tems is also presented in the chapter. The chapter also characterises the results of these

performance evaluations in order to analyse the effect ofTM EXIT on various paramet-

ers such as bus contention, false transaction aborts and so on. Finally it also shows the

performance effects of usingTM EXIT to improve expressiveness.

Chapter 11

Related Work on TM EXIT

This chapter summarises the related work onTM EXIT. Section 11.1 summarises the

proposals made in the context of Software Transactional Memory (STM), that are re-

lated to the proposedTM EXIT functionality. Several Hardware Transactional Memory

(HTM) approaches and their ability to supportTM EXIT are discussed in Section 11.2.

Section 11.3 focuses on the applicability ofTM EXIT to eager versioning HTM systems.

Finally Section 11.4 summarises the chapter.

11.1 Software Approaches

Early release [49, 100] has been proposed as a way of reducingcontention in both

hardware and software TM systems. The objective is that a programmer can remove

an entry from the read set of its current transaction. Thereafter any write operation to

this location by other transactions will not cause conflictswith the current transaction.

If this feature is to be used to provide the same functionality asTM EXIT, then a pro-

grammer has to modify the entire application to remove all the memory locations that

are read and written during the current transaction from theread and write sets, if the

current transaction is found to be non-useful. First of all this requires a programmer to

keep track of all the memory locations that are read and written before the usefulness

condition of a transaction. Secondly, this may be possible with STMs and also with

some HTMs, but most recent HTMs use signatures to keep track of read and write sets.

Signatures are implemented as a fixed width bit representation, in which certain bits

are set according to the address being considered. One of thefeatures of signatures

is that an element can be added to it, but cannot be removed. Therefore early release

cannot be used to provide the same functionality asTM EXIT.

190

CHAPTER 11. RELATED WORK ON TMEXIT 191

The TM constructorElse[43] is used to execute a second transaction if the first one

retries. Therefore by adding a “dummy” transaction as the second one and associating

theusefulnesscriterion as the retry condition, a programmer may be able toachieve the

objective ofTM EXIT with orElse. For example in the case of Lee-TM failure to reach

the destination inexpandcan be defined as the “retry” condition. In such situations, the

dummy transaction would commit, thereby delivering the same performance impact as

TM EXIT. However this is achieved at the cost of losing clear and concise code in a

program.

Crowl et al. proposed to integrate TM semantics in to C++ [26]. There, the au-

thors discuss different ways to exit from a transaction. According to the authors, the

“normal” way to end a transaction is to commit it. They also suggest committing

a transaction even if it is exited with typical C language keywords likereturn, break,

continueandgoto. In their specification another way to end a transaction is toexit with

longjmp. The idea is to abandon the speculative operation without finishing it. There-

after the environment is restored with the one saved bysetjmp. This is similar to an

abort operation requiring the transaction to be restarted.In the case of Lee-TM, if used

when theexpandreturns False, this will lead to a live lock. Consider the casewhere

expandcannot reach its destination because all the possible pathshave been blocked,

hence returns false. The same transaction will continue to retry until it succeeds, but

as no route exists this will never happen.

TM constructs tm abort [79] anduser-level aborts[99] have the same objective

as the proposedTM EXIT. The behaviour is, once executed within a critical section,to

discard all the speculative modifications and to transfer the control to the statement im-

mediately following the critical section. However in thesesemantics, the programmer

loses the ability to explicitlyabort andrestart transactions, they can only abort.

The Xfork [90] framework allows programmers to define logical relationships betw-

een sibling transactions. The basic idea is to define nested transactions as AND, OR,

or X-OR. When declared as AND all the sibling transactions should be completed in

order to commit a transaction, when declared as X-OR only onesuccessful transaction

should be committed, and for transactions declared as OR each sibling transaction can

fail or succeed independently. If this approach is used in the Lee-TM example, both

expandandbacktrackmethods can be defined as AND sibling transactions ensuring

that the execution of the latter is delayed until the former completes due to data de-

pendencies. The Xfork API for AND guarantees that, if any of the siblings returns

false, no transaction will commit and the transactions willretry. Once again in the case

CHAPTER 11. RELATED WORK ON TMEXIT 192

of Lee-TM this can cause a live lock.

Finally, programming language extensions likeabox [41] have been proposed in

order to handle exceptions raised within critical sections. However no direct hardware

support is provided for this andTM EXIT fits the required purposes well.

11.2 Hardware Approaches

McDonaldet al. [73] propose the first Instruction Set Architecture (ISA) for HTM.

Along with the functionalities expressed by previously proposed HTMs, the authors

suggest three major operations to manage transactions:xbegin, xcommit, xabort. As

with theabort transactionfunction in Log-TM [77], thexabort instruction executes a

code that is registered with the abort handler. The purpose is to allow a programmer

to explicitly abort a transaction. If this feature is used toachieve the objective of

TM EXIT, a dummyfunction which can explicitly transfer the control to the end of

the atomic block needs to be constructed. Such a function would just contain agoto

statement to move the execution to the end of the block. Thereafter this function needs

to be registered with the abort handler. Now, when thexabort is invoked, control can

be transferred to the end of the atomic block. However, it is still required to notify

the hardware not to restart the transaction once the abort function completes because

the default behaviour ofxabort is to do so. Since such a facility is not provided, the

proposed ISA cannot support a functionality similar toTM EXIT.

Notary [111] is a TM system which proposes to separate private and shared data

and to exclude private data from the read and write sets of a transaction. Their ap-

proach relies on using separate virtual pages for shared andprivate memory locations.

If their approach is to be considered, first compiler and/or programming language sup-

port is needed to allocate all the private data, including stack, in those private pages. In

addition to that, a programmer is required to categorise data into those types. Then for

the Lee-TM application, a write set of zero size can be produced, when thebacktrack

phase is not executed. However, excluding local variables from the write set may pose

consistency violations in TM. Sanyalet al. [96] propose an undo buffer to overcome

this problem, but this approach requires extra hardware whose size cannot be determ-

ined in advance and also requires modifications to the memorymanagement and to the

run time systems.

Hardware support for TM has already been incorporated within Azul chips [25].

CHAPTER 11. RELATED WORK ON TMEXIT 193

Their API also provides anAbort instruction which marks all the speculatively mod-

ified cache lines as invalid. However, it is not well defined whether the control is

transferred to the beginning of the critical section [73] orto the end [99].

Sun’s Rock processor [18, 29] also provides TM support. Theirdesign comes with

only two extra instructions:chkptandcommit. When a transaction is started by ach-

kpt instruction, a pc-relative fail address can be registered with the transaction itself.

Control is then transferred to this address in case of an abort. They also provide an

unconditional trap instruction which provides the facility to cause explicit aborts from

software. This fail address feature is not able to provide the functionality ofTM EXIT

because it has to be registered at the beginning of the transaction. A programmer can-

not determine at that time whether a particular transactionis going to be useful or

not. Certain modifications are required to extend this fail-address feature to provide

theTM EXIT functionality. The first modification is to register two pc-relative fail ad-

dresses one pointing to the beginning of the transaction andthe other pointing to the

end of it. Later when an explicit abort is invoked from the usecode, an indication

needs to be made stating whether to retry or to exit the transaction. Then depending on

this indication, the abort mechanism will decide which operation to perform.

The Advanced Synchronization Facility(ASF) [1] is a proposal for extending hard-

ware support for lock free data structures. They introduce 7new instructions including

ABORT. Like with the ISA proposed by McDonaldet al. [73], theABORT instruc-

tion rolls back the speculative region and the state is restored using the snapshot taken

when theSPECULATEinstruction was executed. The control is then transferred to the

instruction preceding theSPECULATEinstruction. This instruction is aJNZ instruc-

tion which will jump to a handler, as theABORThas set the zero flag. This handler

can then decide based on the flags set by theABORTwhat it should do next. Jumping

to the end of the transaction is an option, but there are no flags to indicate this in the

current version of ASF. As a result, while the required changes are small, currently

ASF cannot support a functionality similar toTM EXIT.

TheXABORTinstruction in Intel’s Haswell [55] allows a programmer to explicitly

abort the transaction from the user code. The cause of the abort is communicated to

the software using the EAX register. When an abort happens, the execution is resumed

at the fallback address registered when theXBEGIN instruction is executed. This is

conceptually similar to the fail-address of the Rock processor. Modifications required

for Haswell in order to support the objective ofTM EXIT, are similar to those required

for ASF and Rock.

CHAPTER 11. RELATED WORK ON TMEXIT 194

IBM recently presented speculation support in their Blue Gene/Q chip [80]. Neither

the ISA additions nor the API is available to discuss how to achieve the objective of

TM EXIT in the proposed system.

11.3 Applicability of TM EXIT on other TM Systems

The motivation and evaluation ofTM EXIT only focused on HTM systems that sup-

port lazy versioning. This section considers the applicability of the TM EXIT proposal

to eager versioning HTM systems. In an eager system all modifications are made

in-place, thereby reducing the commit overhead. In such a system whenTM EXIT is

invoked it has to discard all the speculatively written entries as in a lazy versioning

system. If the transaction fits in the L1 cache the cost of thisprocess is the same for

both eager versioning and lazy versioning HTMs. If a transaction has overflowed the

cache, for eager versioning HTMs this involves reading the original value from a sep-

arate log and replacing the modified entry with this value. For lazy versioning HTMs

this depends on how the overflows are handled. For example in the TM-S baseline it

is not possible to restore such memory locations as the original value is not recorded.

In the case of the TM-U baseline, this involves only clearingthe overflow area of the

memory. This means that for lazy versioning HTMs like TM-U, there is an advantage

over the eager ones when a transaction does not fit in the L1 cache. However, this

costly step is only required if the operations performed outside the usefulness criteria

are accessible by other threads. This is not the case for benchmarks like Lee-TM and

Red-Black tree. However for applications like the Linked-list example, restoration of

overflowed memory locations is required for correctness purposes.

Avoiding the commit phase for non-useful transactions reduces the bus conten-

tion which counts for a certain fraction of the reported speedups. In the case of eager

versioning HTMs this will not result in a direct advantage asit does for lazy ones.

However even eager versioning HTMs will get some benefit if the TM EXIT function-

ality is incorporated. For example, consider a situation where a transaction fits in the

L1 cache of an eager HTM system. Even though the transaction is not useful, a com-

mit operation is performed. Since the transaction fits in thecache, no communication

is done at the commit phase. For simplicity, assume the cacheis filled with trans-

actionally modified entries. Later when a cache miss is encountered space has to be

allocated in the current cache by writing back an existing entry. Even though this entry

is modified, the value has no use as it belongs to a non-useful transaction. IfTM EXIT

CHAPTER 11. RELATED WORK ON TMEXIT 195

functionality is provided, it could have cleared all these entries thereby avoiding this

communication. A similar situation whereTM EXIT can be useful to eager HTMs is

when a context switch happens after the commit phase of a non-useful transaction. In

such situations all the dirty cache entries need to be saved before allocating space for

cache requests of the new process. This saving of state requires communication, if

TM EXIT functionality is provided this communication can be avoided by clearing the

dirty cache entries of non-useful transactions.

11.4 Summary

From the survey presented in this chapter, it can be seen thatthere is no direct hardware

proposal to avoid committing non-useful transactions. Even though a proposal for such

a semantic has been proposed at the programming language level [79, 99], it has not

been incorporated within hardware TM proposals. It is worthnoting that such a feature

is more valuable in HTM than in STM, because STM systems can produce a write set

of zero size for Lee-TM when thebacktrackphase is not executed. This is because

when using STM, the application code is instrumented in a waythat shared data is

accessed using special read/write operations as in ASF [1].In the case of Lee-TM all

the operations on shared data is performed within thebacktrackmethod, hence STMs

are able to produce a write set of zero size when it is not executed. This is not the case

with most of the hardware TM systems.

Chapter 12

Conclusions and Future Work

The major contributions of this thesis are centred around Hardware Transactional Memory

(HTM). Contributions are grouped into three categories which are orthogonal. These

three categories were presented as three separate parts in the thesis. Part I presented

the concept, design and evaluation of Data Centric Transactional Memory (DaCTM).

The conclusions and the possible future research directions of DaCTM are presented

in Section 12.1. Part II of the thesis presented the concept,design and evaluation

of SnCTM, a novel way of reducing false aborts in hardware signatures. Section 12.2

presents the conclusions and future research directions ofSnCTM. Part III of the thesis

makes a case for having a functionality (TM EXIT) to exit form a transaction without

committing it, in the context of HTM. The conclusions and thepossible future research

directions of this functionality are discussed in Section 12.3.

12.1 Data Centric Transactional Memory

Part I of the thesis presented the concept and the design of DaCTM, a novel architecture

that associates the required levels of coherence, consistency and synchronization of

each memory location with its access pattern. The idea is to group sets of memory

locations having similar characteristics and to allocate them in a suitable region of

memory so that the underlying hardware can select differentoperations based on the

region of each location. Even though the current version supports only four memory

regions (LO, RO, WNRL, CRW), if a need arises, more regions can be introduced. In

DaCTM the data centric approach is coupled with transactional memory.

The thesis evaluated how an architecture can benefit if this region information is

communicated to the hardware. As the compiler support is yetto be developed, for

196

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 197

the evaluation, associating atypewith each memory location was done manually. The

output produced by the benchmarks withtype information associated, is the same as

the one produced by unmodified benchmarks. The evaluation showed that DaCTM

scaled better and delivered better speed-ups (upto 4.52X) over an optimized lazy-lazy

TM system (see Figure 5.2). The thesis experimentally validated the hypothesis of as-

sociating the access pattern of a memory location with its required level of coherence,

consistency and synchronization to derive a next generation computing model.

The following contributions were made in the Part I of the thesis:

• A mechanism to maintain coherence and consistency based on memory regions

is introduced. In this approach the address space of a program can be viewed

as a collection of non-overlapping memory regions, each having a predefined

level of coherence and consistency. The union of all the regions is equal to the

available address space.

• An application programming interface (API) to manage the memory regions, is

also introduced. In this way the programmer is relieved frommanually managing

different memory spaces.

• As the third contribution, a proposal is made to attach scratch-pad memories

(SPMs) to each processor to implement one type of memory region (LO). This

removes the need to use the interconnect for memory accessesrelated to this

region, thereby reducing the contention.

• Overall design of the architecture to support the above mentioned region-based

coherence and consistency, is presented as the last contribution. The evaluation

of DaCTM shows that with the proposed approach, bus utilization and con-

tention, processor idle time and false transaction aborts can be greatly reduced

thereby aiding scalability. The performance evaluation presents improvements

of up to 4.52 times speed-up over an optimized baseline TM system that uses

lazy versioning and lazy conflict detection (an improved TCC [39]).

Most of the applications used for the evaluation, scaled upto 16 processors (see

Figure 5.1). Also it outperformed both CS and U versions of thebaseline, even if the

latter had a bigger cache (see Figure 5.2). The hypothesis ofDaCTM is based on the

fact that the access pattern of a memory location representsthe required level of Syn-

chronization, Coherence and Consistency for that location, hence maintaining a global

view of the whole shared memory is not required. Figure 5.3 shows the experimental

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 198

validation of this. Finally, the speedups of DaCTM over the baseline comes collect-

ively from reduced processor idle time (see Figure 5.4), reduced bus usage (see Figure

5.6) and contention (see Figure 5.5) and reduction of signature insertions (see Figures

5.8 and 5.9) which ultimately resulted in producing less false positives (see Figures

5.10 and 5.11).

The whole concept of DaCTM goes from the high level programming language to

the low level system architecture. Even though the concept of DaCTM is discussed

using programming language examples, the thesis only considered the architectural

aspects of it. The experiments has shown that DaCTM has the potential to solve the

scalability issues imposed in multi-core processors when maintaining a global view of

the shared memory using conventional cache coherence protocols. Benchmarks had to

be manually modified to be able to work with DaCTM architecture. Therefore imple-

menting programming language extensions to support different types of memories or

developing escape analysis techniques to extract this information at the compile time

are strong candidates for possible future directions of DaCTM.

In the current version of DaCTM, once a type (LO, RO, WNRL, CRW) is associ-

ated with a memory location it remains fixed throughout the lifetime of that memory

location. Therefore if a memory location is accessed several times, it will be declared

as CRW even if only one of these accesses are concurrent. Therefore a future version

of DaCTM should have the capability to change the type of a memory location ac-

cording to the changing access pattern of it. This way coherence and consistency can

be maintained for each memory location only when the location requires it and to the

degree which it is required.

12.2 Adaptive Sources for Conflict Detection

Part II of the thesis presented the concept and the design of SnCTM, a novel way

of reducing false aborts by adaptively changing the source used during the conflict

detection stage. The idea is to decide at the time of committing which source to use,

i.e.cache line or signature. This way the use of signatures is limited to situations where

speculative data cannot be held in the local cache.

Part II of this thesis made following contributions:

• The concept of adaptively changing the source of information used to detect

conflicts in a hardware TM system, is introduced. It also shows how an existing

TM architecture can be extended to support the SnCTM concept.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 199

• The performance evaluation of SnCTM shows improvements of upto 4.62 and

2.93 times speed-up over a baseline TM using lazy versioningand lazy conflict

detection (an improved TCC [39]) with two commonly used signature configur-

ations.

• SnCTM gives the opportunity to reduce the size of a signature without com-

promising the performance. A sensitivity analysis shows that SnCTM with a 64

bit signature can deliver performance comparable to a perfect signature of 8k

bits.

The SnCTM concept is evaluated using the STAMP benchmark suite and Lee-TM.

The evaluation showed that the SnCTM proposal delivers better speed-ups (up to 4.62

and 2.93) over an optimized lazy-lazy TM system with two commonly used signature

configurations (see Figure 8.4). The number of transactional aborts is reduced by using

the SnCTM approach, by means of reducing false aborts (see Figures 8.5 and 8.6). For

some applications, the number of false positives occurringin SnCTM is similar to a

system with a perfect (8k) signature (see Figure 8.7).

In addition to measuring the effect of SnCTM on the execution time, a sensitivity

analysis of the signature length is performed. The results of both baseline and SnCTM

is compared against a perfect signature. There it shows thateven with a smaller signa-

ture (64 bit) SnCTM was able to deliver performance comparable to a perfect system

whereas the baseline suffers huge performance degradation(see Figures 8.8 and 8.9).

A further investigation shows that SnCTM achieves this by reduction of processor idle

time (see Figure 8.10). Another important aspect of the SnCTMproposal is that it is

independent of the underlying signature implementation. Therefore all the proposed

techniques [19, 20, 61, 84, 85, 86, 111] to improve the efficiency of a signatures can

be used in SnCTM as well.

SnCTM uses the H3 [12] class of hash functions as its signatureimplementation.

Several approaches can be found in the HTM literature proposing different signature

implementations that can reduce the number of false positives. It would be an in-

teresting experiment to see how much benefit can be gained from integrating those

approaches with the signature implementation of SnCTM. Further, SnCTM requires

additional area for having both read and write sets and signatures. It also requires some

control logic to decide which source to use for detecting conflicts. Another possible

experiment is to conduct a cost (area)-benefit (performance) analysis of the SnCTM

approach. The same experiment can later be extended by including a third parameter

(signature length) to the equation.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 200

12.3 Exiting a Transaction without Committing

Part III has presented a case for theTM EXIT function to be added to hardware TM sys-

tems. The objective of the functionality is to exit from a transaction without commit-

ting it. Once invoked within a transaction, all the speculative changes are abandoned

and the control is transferred to the line immediately following the atomic block. Un-

necessary commits can be avoided in this manner, thereby resulting in less interconnect

usage. In addition to making the case, it also discussed the feasibility of integrating

this functionality with two HTM systems.

The following contributions were made in Part III of the thesis.

• A successful case is made for supportingTM EXIT functionality in HTM.

• In addition to extending the existing code segments to useTM EXIT, a case has

been presented where the expressiveness can be increased using the proposed

functionality.

• As the third contribution, the feasibility of integratingTM EXIT with two baseline

HTM systems is presented and the proposed implementation isdiscussed.

• As the final contribution, performance evaluations ofTM EXIT on two HTMs are

presented.

The performance impact ofTM EXIT is measured using Lee-TM and a transactional

version of the Red-Black tree with two hardware TM systems. Theresults showed that

with hardware support forTM EXIT, a speedup of up to 2.28X can be achieved for

the applications tested (see Figure 10.1). This speedup is gained from a combination

of lower false positives (see Figure 10.3) and lower bus contention (see Figure 10.2)

which ultimately results in less wasted time.

The effect of increased expressiveness is also measured with a contrived example

using a linked-list. Depending on the input configuration ofthe linked-list, the speedup

varied from 0.75X to 1.31X (see Figure 10.4). The reduction of the speedup is due to

the HTM (similar to LTM [3]) having to access the uncached area of memory when

the cache line has the ‘overflow’ bit set (see Figure 10.5 and Table 10.5).

It would be an interesting study to analyse the available TM benchmarks to identify

places whereTM EXIT can be useful. Similarly, analysing some parallel benchmarks

(TM and non-TM) with the intention of increasing the expressiveness usingTM EXIT

would also be an interesting topic. The evaluation presented in the thesis used two vari-

ations of a lazy-lazy HTM system. Therefore implementing and evaluatingTM EXIT

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 201

in other types of research (eg: LogTM [77]) and industrial (AMD-ASF [21], In-

tel Haswell [55]) HTMs, is also a strong candidate for futureresearch directions of

TM EXIT.

Bibliography

[1] Advanced Micro Devices. AMD Advanced Synchronization Facility Proposal.

http://developer.amd.com/tools/ASF/Pages/default.aspx, 2009.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Mod-

els: A Tutorial.Computer, 29:66–76, December 1996.

[3] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded Transactional Memory.IEEE Micro, 26:59–69, 2006.

[4] Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. SharC: Checking

Data Sharing Strategies for Multithreaded C. InProceedings of the 2008 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’08, pages 149–158, New York, NY, USA, 2008. ACM.

[5] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter

Marwedel. Scratchpad Memory: Design Alternative for Cache on-chip Memory

in Embedded Systems. InCODES ’02: Proceedings of the 10th International

Symposium on Hardware/Software Codesign, pages 73–78, New York, NY,

USA, 2002. ACM.

[6] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, andPaul R.

Wilson. Hoard: a Scalable Memory Allocator for Multithreaded Applications.

SIGPLAN Not., 35:117–128, November 2000.

[7] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Er-

rors. Commun. ACM, 13(7):422–426, July 1970.

[8] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,

and Keith H. Randall. Dag-Consistent Distributed Shared Memory. In Proceed-

ings of the 10th International Parallel Processing Symposium, IPPS ’96, pages

132–141, Washington, DC, USA, 1996. IEEE Computer Society.

202

BIBLIOGRAPHY 203

[9] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin.

Making the Fast Case Common and the Uncommon Case Simple in Unboun-

ded Transactional Memory. InProceedings of the 34th Annual International

Symposium on Computer Architecture, ISCA ’07, pages 24–34, New York, NY,

USA, 2007. ACM.

[10] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A.

Wood. TokenTM: Efficient Execution of Large Transactions with Hardware

Transactional Memory. InProceedings of the 35th Annual International Sym-

posium on Computer Architecture, ISCA ’08, pages 127–138, Washington, DC,

USA, 2008. IEEE Computer Society.

[11] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving Multipro-

cessor Performance with Coarse-Grain Coherence Tracking. InProceedings

of the 32nd Annual International Symposium on Computer Architecture, ISCA

’05, pages 246–257, Washington, DC, USA, 2005. IEEE Computer Society.

[12] J. Lawrence Carter and Mark N. Wegman. Universal Classes of Hash Functions

(Extended Abstract). InProceedings of the 9th Annual ACM Symposium on

Theory of Computing, STOC ’77, pages 106–112, New York, NY, USA, 1977.

ACM.

[13] Luis Ceze, Pablo Montesinos, Christoph von Praun, and Josep Torrellas. Col-

orama: Architectural Support for Data-Centric Synchronization. InProceedings

of the 13th IEEE International Symposium on High Performance Computer Ar-

chitecture, pages 133–144, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

[14] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: Bulk

Enforcement of Sequential Consistency. InProceedings of the 34th Annual

International Symposium on Computer Architecture, ISCA ’07, pages 278–289,

New York, NY, USA, 2007. ACM.

[15] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Disambig-

uation of Speculative Threads in Multiprocessors. InProceedings of the 33rd

Annual International Symposium on Computer Architecture, ISCA ’06, pages

227–238, Washington, DC, USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 204

[16] Luis Ceze, Christoph von Praun, Călin Caşcaval, Pablo Montesinos, and Josep

Torrellas. Concurrency Control with Data Coloring. InProceedings of the 2008

ACM SIGPLAN Workshop on Memory Systems Performance and Correctness:

held in conjunction with the 13th International Conference onArchitectural

Support for Programming Languages and Operating Systems (ASPLOS ’08),

MSPC ’08, pages 6–10, New York, NY, USA, 2008. ACM.

[17] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi Cao

Minh, Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. AScalable,

Non-blocking Approach to Transactional Memory. InProceedings of the 13th

IEEE International Symposium on High Performance Computer Architecture,

HPCA ’07, pages 97–108, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

[18] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S.Yip, H. Zeffer,

and M. Tremblay. Rock: A High-Performance Sparc CMT Processor. Micro,

IEEE, 29(2):6 –16, March-April 2009.

[19] Woojin Choi and Jeff Draper. Locality-aware Adaptive Grain Signatures for

Transactional Memories. InProceedings of the 24th International Parallel and

Distributed Processing Symposium, pages 1–10, Los Alamitos, CA, USA, 2010.

IEEE Computer Society.

[20] Woojin Choi and Jeff Draper. Unified Signatures for Improving Performance in

Transactional Memory. InProceedings of the 2011 IEEE International Parallel

& Distributed Processing Symposium, IPDPS ’11, pages 817–827, Washington,

DC, USA, 2011. IEEE Computer Society.

[21] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth,

Martin Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Fel-

ber, Patrick Marlier, and Etienne Rivière. Evaluation of AMD’s Advanced Syn-

chronization Facility Within a Complete Transactional Memory Stack. InPro-

ceedings of the 5th European Conference on Computer Systems, EuroSys ’10,

pages 27–40, New York, NY, USA, 2010. ACM.

[22] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh,Jack Sampson, Mi-

chael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Un-

bounded Page-based Transactional Memory. InProceedings of the 12th Inter-

national Conference on Architectural Support for Programming Languages and

BIBLIOGRAPHY 205

Operating Systems, ASPLOS-XII, pages 347–358, New York, NY, USA, 2006.

ACM.

[23] Jaewoong Chung, David Christie, Martin Pohlack, StephanDiestelhorst, Mi-

chael Hohmuth, and Luke Yen. Compilation of Thoughts about AMD Advanced

Synchronization Facility and First-Generation Hardware Transactional Memory

Support. InTRANSACT ’10: 5th ACM SIGPLAN Workshop on Transactional

Computing, April 2010.

[24] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, MartinPohlack, Michael

Hohmuth, David Christie, and Dan Grossman. ASF: AMD64 Extension for

Lock-Free Data Structures and Transactional Memory. InProceedings of the

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO ’43, pages 39–50, Washington, DC, USA, 2010. IEEE Computer Soci-

ety.

[25] Cliff Click. HTM Will Not Save the World.Presentation at TMW10 Workshop,

May 2010.

[26] Lawrence Crowl, Yossi Lev, Victor Luchangco, Mark Moir,and Dan Nussbaum.

Integrating Transactional Memory into C++. InTRANSACT ’07: 2nd ACM

SIGPLAN Workshop on Transactional Computing, August 2007.

[27] Blas A. Cuesta, Alberto Ros, Marı́a E. Ǵomez, Antonio Robles, and José F.

Duato. Increasing the Effectiveness of Directory Caches by Deactivating Co-

herence for Private Memory Blocks. InProceedings of the 38th Annual Inter-

national Symposium on Computer Architecture, ISCA ’11, pages 93–104, New

York, NY, USA, 2011. ACM.

[28] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir,

and Daniel Nussbaum. Hybrid Transactional Memory. InProceedings of the

12th International Conference on Architectural Support forProgramming Lan-

guages and Operating Systems, ASPLOS-XII, pages 336–346, New York, NY,

USA, 2006. ACM.

[29] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early Experience with

a Commercial Hardware Transactional Memory Implementation. In Proceeding

of the 14th International Conference on Architectural Support for Programming

BIBLIOGRAPHY 206

Languages and Operating Systems, ASPLOS ’09, pages 157–168, New York,

NY, USA, 2009. ACM.

[30] Laura Effinger-Dean and Dan Grossman. Region-Based Dynamic Separation

for STM Haskell. InTRANSACT ’11: 6th ACM SIGPLAN Workshop on Trans-

actional Computing, June 2011.

[31] Magnus Ekman, Per Stenström, and Fredrik Dahlgren. TLB and Snoop Energy-

Reduction using Virtual Caches in Low-Power Chip-Multiprocessors. InPro-

ceedings of the 2002 International Symposium on Low Power Electronics and

Design, ISLPED ’02, pages 243–246, New York, NY, USA, 2002. ACM.

[32] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.The Implementa-

tion of the Cilk-5 Multithreaded Language. InProceedings of the 1998 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’98, pages 212–223, New York, NY, USA, 1998. ACM.

[33] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and

Wen-mei W. Hwu. An Asymmetric Distributed Shared Memory Model for Het-

erogeneous Parallel Systems. InProceedings of the 15th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’10, pages 347–358, New York, NY, USA, 2010. ACM.

[34] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy.Two Techniques

to Enhance the Performance of Memory Consistency Models. InProceedings

of the 1991 International Conference on Parallel Processing, pages 355–364,

1991.

[35] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop

Gupta, and John Hennessy. Memory Consistency and Event Ordering in

Scalable Shared-Memory Multiprocessors.SIGARCH Comput. Archit. News,

18(3a):15–26, 1990.

[36] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? InPro-

ceedings of the 26th Annual International Symposium on Computer Architec-

ture, ISCA ’99, pages 162–171, Washington, DC, USA, 1999. IEEE Computer

Society.

BIBLIOGRAPHY 207

[37] Jim Gray. The Transaction Concept: Virtues and Limitations (Invited Paper).

In Proceedings of the 7th International Conference on Very Large Data Bases -

Volume 7, VLDB ’1981, pages 144–154. VLDB Endowment, 1981.

[38] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen,

Christos Kozyrakis, and Kunle Olukotun. Programming with Transactional Co-

herence and Consistency (TCC). InProceedings of the 11th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS-XI, pages 1–13, New York, NY, USA, 2004. ACM.

[39] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,

Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and

Kunle Olukotun. Transactional Memory Coherence and Consistency. In Pro-

ceedings of the 31st Annual International Symposium on Computer Architec-

ture, ISCA ’04, pages 102–113, Washington, DC, USA, 2004. IEEE Computer

Society.

[40] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.

Reactive NUCA: Near-Optimal Block Placement and Replication inDistrib-

uted Caches. InProceedings of the 36th Annual International Symposium on

Computer Architecture, ISCA ’09, pages 184–195, New York, NY, USA, 2009.

ACM.

[41] Derin Harmanci, Vincent Gramoli, and Pascal Felber. Atomic Boxes: Co-

ordinated Exception Handling with Transactional Memory. In Proceedings of

the 25th European Conference on Object Oriented Programming, ECOOP’11,

pages 634–657, Berlin, Heidelberg, 2011. Springer-Verlag.

[42] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition.

Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

[43] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-

posable Memory Transactions. InProceedings of the 10th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’05, pages

48–60, New York, NY, USA, 2005. ACM.

[44] Isuru Herath, Demian Rosas-Ham, Daniel Goodman, Mikel Luján, and Ian Wat-

son. A case for Exiting a Transaction in the Context of Hardware Transactional

BIBLIOGRAPHY 208

Memory. InTRANSACT ’12: 7th ACM SIGPLAN Workshop on Transactional

Computing, February 2012.

[45] Isuru Herath, Demian Rosas-Ham, Mikel Luján, and Ian Watson. SnCTM: Re-

ducing False Transaction Aborts by Adaptively Changing the Source of Conflict

Detection. InProceedings of the 9th Conference on Computing Frontiers, CF

’12, pages 65–74, New York, NY, USA, 2012. ACM.

[46] Maurice Herlihy. Wait-Free Synchronization.ACM Trans. Program. Lang.

Syst., 13(1):124–149, 1991.

[47] Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data

Objects.ACM Trans. Program. Lang. Syst., 15(5):745–770, 1993.

[48] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Syn-

chronization: Double-Ended Queues as an Example. InProceedings of the 23rd

International Conference on Distributed Computing Systems, ICDCS ’03, pages

522–, Washington, DC, USA, 2003. IEEE Computer Society.

[49] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.

Software Transactional Memory for Dynamic-Sized Data Structures. InPro-

ceedings of the 22nd Annual Symposium on Principles of Distributed Comput-

ing, PODC ’03, pages 92–101, New York, NY, USA, 2003. ACM.

[50] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural

Support for Lock-free Data Structures. InProceedings of the 20th Annual In-

ternational Symposium on Computer Architecture, ISCA ’93, pages 289–300,

New York, NY, USA, 1993. ACM.

[51] Mark D. Hill. Multiprocessors Should Support Simple Memory-Consistency

Models.Computer, 31:28–34, August 1998.

[52] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era.Com-

puter, 41(7):33–38, July 2008.

[53] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C.

Hertzberg. McRT-Malloc: a Scalable Transactional Memory Allocator. In

ISMM ’06: Proceedings of the 5th International Symposium onMemory Man-

agement, pages 74–83, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 209

[54] The IEEE and The Open Group. The Open Group Base Specifications Issue 6,

IEEE Std 1003.1, 2004 Edition.http://www.opengroup.org/onlinepubs/

000095399/basedefs/pthread.h.html, 2001-2004.

[55] Intel Corporation. Intel Architecture Instruction SetExtensions Programming

Reference.http://software.intel.com/file/41417, 2012.

[56] Daehoon Kim, Jeongseob Ahn, Jaehong Kim, and Jaehyuk Huh. Subspace

Snooping: Filtering Snoops with Operating System Support.In Proceedings

of the 19th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’10, pages 111–122, New York, NY, USA, 2010. ACM.

[57] Tom Knight. An Architecture for Mostly Functional Languages. InProceedings

of the 1986 ACM Conference on LISP and Functional Programming, LFP ’86,

pages 105–112, New York, NY, USA, 1986. ACM.

[58] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob Van Der Wijngaart.

The Case for Message Passing on Many-Core Chips. Technical Report UILU-

ENG-10-2203 (CRHC-10-01), University of Illinois Urbana-Champaign, 2010.

[59] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and An-

thony Nguyen. Hybrid Transactional Memory. InProceedings of the 11th

ACM SIGPLAN Symposium on Principles and Practice of ParallelProgram-

ming, PPoPP ’06, pages 209–220, New York, NY, USA, 2006. ACM.

[60] Bradley C. Kuszmaul and Charles E. Leiserson. Transactions Every-

where. Technical report, MIT Laboratory for Computer Science, 2003.

http://hdl.handle.net/1721.1/3692.

[61] Martin Labrecque, Mark C. Jeffrey, and J. Gregory Steffan. Application-

Specific Signatures for Transactional Memory in Soft Processors. In6th In-

ternational Symposium on Applied Reconfigurable Computing (ARC’10), pages

42–54, 2010.

[62] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Ex-

ecutes Multiprocess Programs.IEEE Trans. Comput., 28(9):690–691, 1979.

[63] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD

thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,

Urbana, IL, May 2005.Seehttp://llvm.cs.uiuc.edu.

BIBLIOGRAPHY 210

[64] Chris Lattner and Vikram Adve. Automatic Pool Allocation: Improving Per-

formance by Controlling Data Structure Layout in the Heap. InPLDI ’05: Pro-

ceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 129–142, New York, NY, USA, 2005. ACM.

[65] Kyungwoo Lee, Xing Fang, and Samuel P. Midkiff. Practical Escape Analyses:

How Good are They? InProceedings of the 3rd International Conference

on Virtual Execution Environments, VEE ’07, pages 180–190, New York, NY,

USA, 2007. ACM.

[66] Kyungwoo Lee and Samuel P. Midkiff. A Two-Phase Escape Analysis for Par-

allel Java Programs. InProceedings of the 15th International Conference on

Parallel Architectures and Compilation Techniques, PACT ’06, pages 53–62,

New York, NY, USA, 2006. ACM.

[67] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased Transactional

Memory. InTRANSACT ’07: 2nd ACM SIGPLAN Workshop on Transactional

Computing, August 2007.

[68] David J. Lilja. Cache Coherence in Large-Scale Shared-Memory Multipro-

cessors: Issues and Comparisons.ACM Comput. Surv., 25:303–338, September

1993.

[69] David B. Lomet. Process Structuring, Synchronization,and Recovery using

Atomic Actions. InProceedings of an ACM conference on Language Design

for Reliable Software, pages 128–137, New York, NY, USA, 1977. ACM.

[70] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav H̊allberg, Johan Ḧogberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. Simics: A Full System Simulation Platform.Computer,

35(2):50–58, February 2002.

[71] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token Coherence:

Decoupling Performance and Correctness. InProceedings of the 30th Annual

International Symposium on Computer Architecture, ISCA ’03, pages 182–193,

New York, NY, USA, 2003. ACM.

[72] Alex Matveev, Ori Shalev, and Nir Shavit. Dynamic Identification of Transac-

tional Memory Locations. Unpublished Manuscript, Tel-Aviv University, 2007.

BIBLIOGRAPHY 211

[73] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi CaoMinh, Has-

san Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural Semantics

for Practical Transactional Memory. InProceedings of the 33rd Annual Inter-

national Symposium on Computer Architecture, ISCA ’06, pages 53–65, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

[74] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun.STAMP:

Stanford Transactional Applications for Multi-Processing. InProceedings of the

IEEE International Symposium on Workload Characterization, IISWC 2008,

pages 35–46, September 2008.

[75] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,

Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An

Effective Hybrid Transactional Memory System with Strong Isolation Guaran-

tees. InProceedings of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, pages 69–80, New York, NY, USA, 2007. ACM.

[76] Gordon E. Moore. Cramming More Components Onto Integrated Circuits.Pro-

ceedings of the IEEE, 86(1):82 –85, jan. 1998.

[77] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, MarkD. Hill, and

David A. Wood. LogTM: Log-based Transactional Memory. InProceedings

of the 12th International Symposium on High-Performance Computer Architec-

ture, HPCA, pages 254 – 265. IEEE Computer Society, February 2006.

[78] Andreas Moshovos. RegionScout: Exploiting Coarse GrainSharing in Snoop-

Based Coherence. InProceedings of the 32nd Annual International Symposium

on Computer Architecture, ISCA ’05, pages 234–245, Washington, DC, USA,

2005. IEEE Computer Society.

[79] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits,

James Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy, Jeffrey

Olivier, Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and

Implementation of Transactional Constructs for C/C++. InProceedings of the

23rd ACM SIGPLAN Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’08, pages 195–212, New York, NY,

USA, 2008. ACM.

BIBLIOGRAPHY 212

[80] Martin Ohmacht. Hardware Support for Transactional Memory and Thread-

Level Speculation in the IBM Blue Gene/Q System.Presentation at Wild and

Sane Ideas in Speculation and Transactions Workshop, October 2011.

[81] Kunle Olukotun and Lance Hammond. The Future of Microprocessors.Queue,

3(7):26–29, September 2005.

[82] OpenMP Architecture Review Board. OpenMP.org.http://openmp.org/wp/,

2009.

[83] Oracle. Java SE Technical Documentation.http://download.oracle.com/

javase/, 2011.

[84] Lois Orosa, Elisardo Antelo, and Javier D. Bruguera. FlexSig: Implementing

Flexible Hardware Signatures.ACM Trans. Archit. Code Optim., 8(4):30:1–

30:20, January 2012.

[85] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Improv-

ing Signatures by Locality Exploitation for TransactionalMemory. InProceed-

ings of the 2009 18th International Conference on Parallel Architectures and

Compilation Techniques, pages 303–312, Washington, DC, USA, 2009. IEEE

Computer Society.

[86] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Multiset

Signatures for Transactional Memory. InProceedings of the International Con-

ference on Supercomputing, ICS ’11, pages 43–52, New York, NY, USA, 2011.

ACM.

[87] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling

Highly Concurrent Multithreaded Execution. InProceedings of the 34th an-

nual ACM/IEEE International Symposium on Microarchitecture, MICRO 34,

pages 294–305, Washington, DC, USA, 2001. IEEE Computer Society.

[88] Ravi Rajwar and James R. Goodman. Transactional Lock-FreeExecution of

Lock-Based Programs. InProceedings of the 10th International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS-X, pages 5–17, New York, NY, USA, 2002. ACM.

BIBLIOGRAPHY 213

[89] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional

Memory. InProceedings of the 32nd Annual International Symposium on Com-

puter Architecture, ISCA ’05, pages 494–505, Washington, DC, USA, 2005.

IEEE Computer Society.

[90] Hany Ramadan and Emmett Witchel. The Xfork in the Road to Coordinated

Sibling Transactions. InTRANSACT ’09: 4th ACM SIGPLAN Workshop on

Transactional Computing, February 2009.

[91] Torvald Riegel, Christof Fetzer, and Pascal Felber. Automatic Data Partitioning

in Software Transactional Memories. InSPAA ’08: Proceedings of the 20th

Annual Symposium on Parallelism in Algorithms and Architectures, pages 152–

159, New York, NY, USA, 2008. ACM.

[92] Peter Rundberg and Per Stenström. Speculative Lock Reordering: Optimistic

Out-of-Order Execution of Critical Sections. InProceedings of the 17th Inter-

national Symposium on Parallel and Distributed Processing, IPDPS ’03, pages

11.1–, Washington, DC, USA, 2003. IEEE Computer Society.

[93] Yair Sade, Mooly Sagiv, and Ran Shaham. Optimizing C Multithreaded

Memory Management Using Thread-Local Storage. InProceedings of the 14th

International Conference on Compiler Construction, CC’05, pages 137–155,

Berlin, Heidelberg, 2005. Springer-Verlag.

[94] Alexandru Salcianu and Martin Rinard. Pointer and Escape Analysis for Mul-

tithreaded Programs. InProceedings of the 8th ACM SIGPLAN Symposium on

Principles and Practices of Parallel Programming, PPoPP ’01, pages 12–23,

New York, NY, USA, 2001. ACM.

[95] Daniel Sanchez, Luke Yen, Mark D. Hill, and KarthikeyanSankaralingam. Im-

plementing Signatures for Transactional Memory. InProceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40,

pages 123–133, Washington, DC, USA, 2007. IEEE Computer Society.

[96] Sutirtha Sanyal, Sourav Roy, Adrian Cristal, Osman S. Unsal, and Mateo Valero.

Dynamically Filtering Thread-Local Variables in Lazy-Lazy Hardware Transac-

tional Memory. InHPCC ’09: Proceedings of the 2009 11th IEEE International

Conference on High Performance Computing and Communications, pages 171–

179, Washington, DC, USA, 2009. IEEE Computer Society.

BIBLIOGRAPHY 214

[97] William N. Scherer, III and Michael L. Scott. Advanced Contention Manage-

ment for Dynamic Software Transactional Memory. InProceedings of the 24th

Annual ACM Symposium on Principles of Distributed Computing, PODC ’05,

pages 240–248, New York, NY, USA, 2005. ACM.

[98] Nir Shavit and Dan Touitou. Software Transactional Memory. In Proceedings

of the 14th Annual ACM Symposium on Principles of DistributedComputing,

PODC ’95, pages 204–213, New York, NY, USA, 1995. ACM.

[99] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert Geva, Yang Ni, and Adam

Welc. Towards Transactional Memory Semantics for C++. InProceedings of the

21st Annual Symposium on Parallelism in Algorithms and Architectures, SPAA

’09, pages 49–58, New York, NY, USA, 2009. ACM.

[100] Travis Skare and Christos Kozyrakis. Early Release: Friend or Foe? InTRANS-

ACT ’06: 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hard-

ware Support for Transactional Computing, June 2006.

[101] Daniel J. Sorin, Mark D. Hill, and David A. Wood.A Primer on Memory Con-

sistency and Cache Coherence. Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2011.

[102] Bjarne Steensgaard. Thread-Specific Heaps for Multi-Threaded Programs. In

Proceedings of the 2nd International Symposium on Memory Management,

ISMM ’00, pages 18–24, New York, NY, USA, 2000. ACM.

[103] Per Stenstr̈om. A Survey of Cache Coherence Schemes for Multiprocessors.

Computer, 23:12–24, June 1990.

[104] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Mul-

tiple Reservations and the Oklahoma Update.IEEE Parallel Distrib. Technol.,

1(4):58–71, November 1993.

[105] Sǎsa Tomíc, Cristian Perfumo, Chinmay Kulkarni, Adrià Armejach, Adrían

Cristal, Osman Unsal, Tim Harris, and Mateo Valero. EazyHTM:Eager-

Lazy Hardware Transactional Memory. InProceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages

145–155, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 215

[106] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating Synchronization

Constraints with Data in an Object Oriented Language. InProceedings of the

33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’06, pages 334–345, New York, NY, USA, 2006. ACM.

[107] David W. Wall. Limits of Instruction-Level Parallelism. InProceedings of the

4th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS-IV, pages 176–188, New York, NY,

USA, 1991. ACM.

[108] Ian Watson, Chris Kirkham, and Mikel Luján. A Study of a Transactional Paral-

lel Routing Algorithm. InProceedings of the 16th International Conference on

Parallel Architecture and Compilation Techniques, PACT ’07, pages 388–398,

Washington, DC, USA, 2007. IEEE Computer Society.

[109] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological

Considerations. InProceedings of the 22nd Annual International Symposium

on Computer Architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995.

ACM.

[110] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos,

Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoup-

ling Hardware Transactional Memory from Caches. InProceedings of the 2007

IEEE 13th International Symposium on High Performance Computer Architec-

ture, pages 261–272, Washington, DC, USA, 2007. IEEE Computer Society.

[111] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware Techniques to

Enhance Signatures. InMICRO ’08: Proceedings of the 2008 41st IEEE/ACM

International Symposium on Microarchitecture, pages 234–245, Washington,

DC, USA, 2008. IEEE Computer Society.

[112] Jason Zebchuk, Elham Safi, and Andreas Moshovos. A Framework for Coarse-

Grain Optimizations in the On-Chip Memory Hierarchy. InProceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, MI-

CRO 40, pages 314–327, Washington, DC, USA, 2007. IEEE ComputerSoci-

ety.

