AN ANALYSIS

OF

ASYNCHRONOUS PROCESSOR

PIPELINES

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING
September 1998

By
Daranee Hormdee

Department of Computer Science

Contents

Abstract 11
Declaration 12
Copyright 13
Dedication 14
Acknowledgements 15
Preface 18
1 Introduction 19
1.1 Background, Motivation and Objectives 19
1.2 AMULET Projects i 20
1.3 Organisation of the Thesis 21
1.4 DLX as an Instructional Tool 22
1.5 The LARD Programming Language 23
2 Processor Pipelining 24

2.1 An Overview of Processor Design 24
2.2 Synchronous and Asynchronous Design 26

2.2.1 An overview of synchronous design 27

2.2.2 An overview of asynchronous design 28

2.2.3 Asynchronous handshaking 30
23 Pipelining L e 33
2.4 Synchronous and Asynchronous Pipelines 36
25 Summaryo e 37
The Basic DLX Pipeline 39
3.1 IF: Instruction Fetch 41
3.2 ID: Instruction Decode 42
3.3 EXE: Execution and Address Calculation 43
3.4 MEM: Data Memory Access 44
3.5 WB:WriteBack o 0o 45
3.6 Summary 46
Pipeline Hazards 48
4.1 Structural Hazards oo, 20

4.1.1 Memory Conflict o1

4.1.2 Register File Conflict 92
4.2 DataHazards 0oL, o4

42.1 RAR (read-after-read) Dependency 55

4.2.2 WAW (write-after-write) Dependency 55

42.3 WAR (write-after-read) Dependency 56
424 RAW (read-after-write) Dependency 56
4.2.5 Stall 28
4.2.6 Register Locking oL o8
4.2.7 Forwarding 29
4.3 Control Hazards 63
431 Stall 64
4.3.2 Speculative Execution 65
4.3.3 Moving up the Branch Address Calculation 66
4.3.4 Branch Prediction. 0oL 67
4.4 Summary Lo e 67
Asynchronous Processor Models 68
5.1 Objectives Behind the Initial Models 68
5.2 The Initial Modelso Lo L 70
5.2.1 Asynchronous Non-Pipelining Design 70
5.2.2 Asynchronous Three-stage Pipeline Design 71
5.2.3 Asynchronous Five-stage Pipeline Design 74
5.3 Implementations of Five-stage Pipeline 7
5.3.1 EXE-EXE Forwarding 78
5.3.2 MEM-EXE Forwarding 80
5.3.3 MEM-MEM Forwarding 81

5.4 Timing Informationo oL,
5.5 Implementation using LARD 0.
5.6 Summary e

6 Testing and Evaluation
6.1 Simple Assembly Test Programs
6.1.1 Asm-1: Test Program
6.1.2 Asm-2: Test Program
6.1.3 Asm-3: Test Program
6.2 Simple C Test Programs
6.3 The Dhrystone Program
6.4 Evaluation L Lo
6.5 Summary e e

7 Conclusions
7.1 Assessment of Worko

7.2 Suggestions for Further Work

Bibliography

A The DLX Architecture
A1 Inmtroduction
A2 DLX Overview o i i

A.3 DLX Instruction Format

86

86

87

88

89

92

93

94

96

97

97

98

100

103

A4 DLX Operations e 106

A.4.1 Load and store instructions 106

A42 ALUoperationso 107

A.4.3 Branches and Jumps 0oL 108

A5 DLX Opcodes e 108

B The Dhrystone: Benchmark Program 112
C Detail about Tools 114

List of Tables

6.1

6.2

6.3

Al

A2

A3

A4

AL

B.1

The description of C test programs 92
The comparative results with C test programs 93
The results with the Dhrystone program 93
Examples of load and store instructions on DLX 106
Examples of arithmetic/logical instructions in DLX. 107
Examples of typical control-flow instructions in DLX. 108
All implemented DLX instructions 110
Opcodes of the DLX architecture 111
Numbers of Instructions in Dhrystone 113

List of Figures

21

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3

4.1

4.2

4.3

An example of a processor datapath 26
A simple pipeline oL 30
A bundled data interface o 0L 31
A two phase handshake 32
A four phase handshake 32
The non-pipelined approach 35
The pipelined approach 35
An example of a synchronous pipeline 37
An example of an asynchronous pipeline 37
An implementation of a DLX datapath 40
The pipelined DLX datapath 41
The pipelined DLX o0 47
An example of a 5-stage pipeline structure in DLX 49
An example of a memory conflict 50
A pipeline stalled for memory conflict 50

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

5.1

5.2

9.3

5.4

9.5

2.6

5.7

5.8

2.9

5.10

5.11

An example of a register file conflict 04

Pipeline with separate 1&D memories and half read-write for the

register file. oL 35
An example of a data hazard Y
Stall to prevent data hazard 59
The forwarding technique to avoid the data hazard 60
The impact from only forwarding for Load instructions 62
Combination of forwarding and stalling to prevent data hazard . . 62
Load instruction followed by a store instruction 63
Stall to prevent control hazard 65
The speculative execution for the control hazard 66
The timing diagram of a non-pipelined processor 71
The structure of a 3-stage pipeline 74
The timing diagram of a 3-stage pipeline 74
The structure of a 5-stage pipeline 76
The timing diagram of a 5-stage pipeline 76
The diagram of the simplest data hazard 79
Using EXE-EXE forwarding to resolve data hazard 79
The 5-stage pipeline with EXE-EXE forwarding 79
The diagram of the Load hazard 80
Using MEM-EXE forwarding to resolve a Load hazard 80
The 5-stage pipeline with MEM-EXE forwarding 81

5.12

5.13

5.14

6.1

6.2

6.3

Al

Using MEM-MEM forwarding to solve the Store-Load hazard . . 81

The 5-stage pipeline with MEM-MEM forwarding 82
Time information for the initial models 83
The effect of EXE-EXE forwarding 89
The effect of MEM-EXE forwarding 90
The effect of MEM-MEM forwarding 91
Instruction formats for DLX 105

10

Abstract

This thesis reports on a comparative study of asynchronous processor pipelines.
Three-stage and five-stage pipelined asynchronous implementations of a simple
RISC-like architecture, the DLX, proposed by Hennessy and Patterson, were
modelled and evaluated using LARD (Language for Asynchronous Research and
Design). Mechanisms for solving pipeline hazards - structural, data and control
hazards - that occur in asynchronous pipelined processors owing to data depen-
dencies or resource conflict were investigated. The mechanisms evaluated were
stall, register locking, data forwarding and colour mapping. Simulation was em-
ployed to investigate the relative merits of each of these approaches and to evalu-
ate the benefits of adapting a five-stage pipeline to asynchronous implementation

for a future AMULET design.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

12

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instruc-
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third parties
without the written permission of the University, which will prescribe the terms
and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of Department of Computer Science.

13

Dedication

To my parents, my sisters - Ning and Noot - and my grandma.

14

Acknowledgements

This thesis could not have come about without the help and encouragement from

some very special people.

First of all, I would like to thank my supervisor, Prof Steve B. Furber, for all his

advice and support since I started this project.

My most heartfelt thanks go to the following people in the AMULET research

group which I have worked with:

To Doug Edwards for his reading and commenting on the draft of this thesis.
To “Mr. LARD”, Phil Endecott, who has invented a very useful programming
language for asynchronous design, for his inspiring explanation and help in deal-
ing with LARD. To John Bainbridge, Andrew Bardsley and Peter Riocruex for
their advice. Also the discussions with them on many topics have widely broad-

ened my mind. And also the rest of the group.

15

I am also indebted to Chatchai Jantaraprim for his constant assistance with my
questions and difficulties in many miscellaneous things which were inconvenient to

discuss in non-mother tongue. His devotional friendship is also much appreciated.

I would like to thank Damien Desmicht, my Linux expert. His effort at the instal-

lation of Linux on my computer has tremendously facilitated my work from home.

My special thanks go to Renzo Stheins, who has helped me to proof read this
thesis. My improvement of the English language is partly due to the conversa-

tions I had with him.

My thanks also go to a number of friends in the Chemistry Society at MMU,
loads of French classmates, a few Thai friends and especially my dear friend, Luisa
Quinti, for their company and acquaintance during the year far away from my
home town have brought me cheerfulness and enjoyment dominating my home-

sickness.

I would like to take this opportunity to give special thanks to my beloved parents

who have brought me up the way I am and also my lovely sisters.

I would like to acknowledge to the Royal Thai Government and KhonKaen Uni-

versity for the grant which enabled me to do this MSc.

16

And last, but by no means least, I acknowledge with great pleasure the help
received from many other nice people that have directly or indirectly helped me

in any way at all this year.

17

Preface

The author was born and brought up in KhonKaen, Thailand. She graduated
from KhonKaen University, Thailand, in April 1996, obtaining a bachelor’s de-
gree (BEng) in Computer Engineering. From 1996 to 1997 she worked for the
university as a lecturer. In 1997 she was awarded a grant from the Royal Thai

Government.
An MSc in Advanced Computer Science was started at the University of Manch-

ester in September 1997. This thesis reports on the work undertaken during a

six month project, forming part of that MSc course.

18

Chapter 1

Introduction

1.1 Background, Motivation and Objectives

The majority of current digital design is based on a synchronous approach, where
a central clock signal controls the operation of the system. Since synchronous
design seems to be facing increasing difficulties (as will be discussed in section
2.2.1), it is natural to look at other techniques for VLSI ! design; the use of

asynchronous logic is established here.

The project presented in this thesis took place over a period of 6 months (April-
September 1998) and was part of the ongoing research into asynchronous design

being undertaken by the AMULET group at the University of Manchester.

Very Large Scale Integration

19

CHAPTER 1. INTRODUCTION 20

The aim of this project is to investigate the relative merits of three-stage and
five-stage asynchronous pipelines and to evaluate the benefits of adapting a five-

stage pipeline to asynchronous implementation for a future AMULET design.

1.2 AMULET Projects

The AMULET (Asynchronous Microprocessor Using Low Energy Technology)
group, a part of the Computer Science Department at the University of Manch-
ester, under the direction of Professor Steve B. Furber, was established late in
1990 in order to investigate the claimed advantages and the feasibility of design-
ing large asynchronous systems. The aim of this group is to realize asynchronous
microprocessors with lower power consumption than are currently available using

synchronous design techniques.

In 1994 the group delivered the AMULET1 microprocessor which is the world’s
first implementation of a commercial microprocessor architecture (ARM) using
Sutherland’s micropipeline design style [Sut89]. The instruction throughput was
increased whilst the electrical power consumption was reduced in the AMULET?2
processor, a major redesign of AMULETI1. In 1996 AMULET2e (an embedded
system chip with an AMULET2 core and a self-timed cache), the second genera-

tion asynchronous ARM processor, was delivered.

The first two generations of processors were fundamentally designed as low power

CHAPTER 1. INTRODUCTION 21

processors and performance was a secondary consideration. AMULETS (which is
now under development, the third generation asynchronous ARM processor) will
try to maintain the high power efficiency of the earlier devices while significantly

improving the MIPS ? rate.

Apart from the AMULET microprocessors, there are other projects in the group
concerned with both the reduction of electrical power consumption, and the syn-
thesis ability of asynchronous circuits to allow the simple and quick production

of devices for consumer applications.

1.3 Organisation of the Thesis

This thesis comprises 7 chapters and includes 3 appendices. Chapters 2, 3 and 4
provide a theoretical background to the area related to the subject of the thesis.
Then Chapters 5 and 6 describe the author’s work and evaluation. All the results
presented in Chapter 6 were generated by the author. Chapter 7 summarises the
conclusions drawn from the project presented in the thesis. Further work and
possibilities are also introduced. Appendix A describes the DLX architecture
which was implemented in this project. The main test program for this work,
the Dhrystone benchmark program, is described in Appendix B. Finally details

of the tools which were used in this project are given in Appendix C.

2Million Instructions Per Second

CHAPTER 1. INTRODUCTION 22

1.4 DLX as an Instructional Tool

The DLX architecture is a simplified version of the MIPS R3000 architecture
[Kan89, GM93] introduced in the textbook Computer Architecture : A Quantita-
tive Approach [HP96]. It was chosen as the architecture for this project because its
simplicity makes it easy to work with to demonstrate the principles of pipelining.
This textbook is accompanied by a comprehensive software analysis set, including
a compiler, a simulator, and a group of benchmark programs. As DLX provides
a great package for architectural experiments, those same tools, discussed in the
textbook, have been applied in this project to analyse different kinds of asyn-

chronous pipeline models based on the DLX pipeline.

The first model, using a five-stage pipeline, was similar to the five-stage pipeline
DLX exploys. For comparison, another model was developed with only three pipe

stages.

In addition, to simplify the models the DLX floating-point instructions were not
included; adding them does not involve new concepts, it merely increases the com-
plexity. Appendix A gives full details of the DLX architecture as implemented in

this project.

CHAPTER 1. INTRODUCTION 23
1.5 The LARD Programming Language

LARD 32, developed at the AMULET group, is an asynchronous hardware descrip-
tion language which uses CSP-like * channel communication [Hoa78] to describe
the behaviour of asynchronous VLSI systems. This communication abstraction
makes LARD a much more productive language for this type of modelling than

conventional languages such as VHDL.

3The Language for Asynchronous Research and Development. More details are presented in
Appendix C
4Communicating Sequential Processes

Chapter 2

Processor Pipelining

A major concept that has received considerable attention in the design of high-
speed computers is pipelining. The purpose of this chapter is to provide a brief
overview of processor pipelining. Section 2.1 describes the basic tasks of a pro-
cessor, then an overview of synchronous and asynchronous design is presented.
Section 2.3 describes a method for improving processor speeds, i.e. pipelining.
Finally, the differences between synchronous and asynchronous pipelines are dis-

cussed emphasising the different control principles involved in their construction.

2.1 An Overview of Processor Design

The general task of a processor is to execute a series of instructions. The three
main processor functions are arithmetic operations, logical operations, and data

accessing.

24

CHAPTER 2. PROCESSOR PIPELINING 25

In order to execute each instruction, the processor must first fetch it from mem-
ory, then it must decode it and obtain the necessary operands. Finally, it must

execute that instruction and write any results to their appropriate destination.

The basic elements of a processor are an instruction register (IR), data regis-

ters, an arithmetic and logic unit (ALU) and the system control logic.

The processor controls the transfer of data between the basic elements, executes
the commands that modify the data or control program execution, maintains

system status, and controls the sequence and timing of instruction execution.

A diagram which illustrates an example of the processor datapath for the DLX
architecture is shown in Figure 2.1. Instructions and data generally move from
left to right through this datapath as they complete execution. However, there

are three exceptions to this left-to-right flow of data and instructions:

1. The write-back scheme, which places the result back into the data register

file.

2. Writing a branch target address to the program counter (PC) instead of

incrementing the PC by 4.

3. Incrementing the PC

CHAPTER 2. PROCESSOR PIPELINING 26

—| IR System Control
M
u
X
Registers ALU 1 m
@ x
M
4 M u
u PC X
q X
Address Data
@ Memory

Figure 2.1: An example of a processor datapath

The movement of data from right to left does not affect the execution of the
instruction which produces the right-to-left value , only following instructions in
the pipeline are effected by these data flows. The details of this simple datapath

can vary depending on the instruction set architecture [Dev94, PH97].

2.2 Synchronous and Asynchronous Design

This section discusses the comparative advantages and disadvantages of both
synchronous and asynchronous design. At the end of this section the mechanisms
used in asynchronous systems for transferring data between logic blocks will be

discussed.

CHAPTER 2. PROCESSOR PIPELINING 27

2.2.1 An overview of synchronous design

Synchronous design styles rely on distributed clock edges reaching all of the design

concurrently. Each time the clock issues an active edge, a data transfer occurs.

The clocked-logic concept is widely used because [Sut89]:

o It offers a simple way to design.
e It is widely taught and understood.
e Parts that operate with a clock are widely available.

e System noise has gone away by the time a clock event occurs.

Despite these advantages there are a number of disadvantages to synchronous

design which could potentially be resolved by using a different approach:

e The ideal concept for synchronous design is to synchronise all parts to work
simultaneously. However, in practice propagation delays make this concept
impossible. There is a difference in time between the clock reaching various
parts of a design, called clock skew. This skew restricts the operating speed

of a synchronous system.

e Synchronous circuits must wait until all possible computations have finished

before latching the results. This yields worst-case performance.

e In the synchronous world, all sections of the design are clocked simultane-

ously, including those which are not active in every cycle. This causes many

CHAPTER 2. PROCESSOR PIPELINING 28

nodes to change voltage level thereby toggling them unnecessarily.

e In a pipelined microprocessor, each stage of the pipeline may take a different
time to finish its work. The clock period of the synchronous pipeline is
limited by the slowest pipeline stage to finish. Synchronous pipelining will

be discussed in more detail later on in this chapter.

2.2.2 An overview of asynchronous design

Asynchronous systems perform their calculations without being clocked globally.
There is no clock in this style so another mechanism is needed to indicate when
data is available for the next block to process. These systems act independently

whenever local events permit [Hau93].

There are some benefits claimed for asynchronous design:

e Since by definition asynchronous systems have no globally distributed clock,

clock skew is eliminated.

e Unlike synchronous systems, which yield worst-case performance as noted
above, asynchronous systems exhibit average-case performance because they

can sense when a computation has completed.

e In an asynchronous system, transitions occur only when a block is being

used, thereby reducing the power consumption.

CHAPTER 2. PROCESSOR PIPELINING 29

e In asynchronous systems, every pipeline stage is independent and can take

a variable time to complete.

Whilst asynchronous design has a few possible advantages, it also has a number

of disadvantages which can make it harder to design, such as [Gil97]:

e (Control logic complexity: The control logic is more complex since each block
of the design needs hardware to perform synchronisation to wait for data

and to trigger other blocks when it has produced its data.

e The risk of deadlock: The use of explicit communications between blocks
increases the risk of deadlock which can introduce design errors in asyn-

chronous systems.

o The loss of implied knowledge: The clock system in a synchronous design
can be thought as both local and global synchronisation. The use of a
local synchronisation mechanism, i.e. between adjacent pipe stages in a
pipeline, is quite simply replaced by the handshaking in an asynchronous
design (which will be described in the following section). However, global
synchronisation is more complicated to replace. Figure 2.2 shows a model
of a simple pipeline with result forwarding (which will be discussed later in
Chapter 4). In a synchronous system, the positions of an instruction and
its result are deterministic, so that in a particular system an instruction
issued in the previous clock cycle will be at the output of the next block

in the next clock cycle. Thereby if block B wishes to use the result of

CHAPTER 2. PROCESSOR PIPELINING 30

Result-forwarding

Figure 2.2: A simple pipeline

the preceding instruction (from block C) it must wait for only one clock
cycle. In an asynchronous system, once a series of instructions is put into
the beginning of a section of pipeline there is no way of knowing where
each instruction will be at any time later. To be able to reuse a result
later in the pipeline explicit synchronisation is needed. However, always
being synchronised in an asynchronous system causes lockstep operation
which leads to the pipeline operating at the speed of the slowest block. To

synchronise only when the result is needed is a better solution.

2.2.3 Asynchronous handshaking

This section explains two handshaking mechanisms [Fur96] which have been used
in asynchronous designs. These are the two-phase and four-phase handshake.
When a sender and a receiver communicate, no matter which handshake is being

used to control the flow of data, there will be two control wires, request and

CHAPTER 2. PROCESSOR PIPELINING 31

Request

Acknowledge
SENDER RECEIVER

Data
EEEEE—

Figure 2.3: A bundled data interface

acknowledge, and some data wires between them, as illustrated in Figure 2.3.

Two-phase handshaking

Handshakes can be used on their own to synchronise a pair of blocks. In a two-
phase handshake when the data is ready to be sent to the receiver, the sender
informs the receiver that it has data to transmit by inverting the state of the
request control wire. In some cycles the request event will be a rising transition
and in some it will be a falling transition. Any transition event, either rising or
falling, has the same meaning in the two-phase handshake. The receiver accepts
the data and then produces an event on the acknowledge control wire to indicate
that the data has been accepted. Figure 2.4 shows the bundled data interface
with a two-phase handshake which is sometimes called a transition signalling

protocol.

Four-phase handshaking

The four-phase handshake, sometimes called a level signalling protocol, is shown

in Figure 2.5. Here, when data is available to be sent the sender produces a

CHAPTER 2. PROCESSOR PIPELINING 32

Data

Request

Acknowledge

Figure 2.4: A two phase handshake

Data

Request

Acknowledge

Figure 2.5: A four phase handshake

rising request signal. The receiver acknowledges by producing a rising signal on
the acknowledge control wire. The sender then lowers the request signal which is
acknowledged by the receiver by a falling signal on the acknowledge wire. With
this kind of handshake, there are more transitions causing it to consume more

energy.

CHAPTER 2. PROCESSOR PIPELINING 33
2.3 Pipelining

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream, and is used to improve the per-
formance of processors. It comes from the observation that instruction execution
can be split into a number of independent stages (pipe stages or pipe segments),
allowing a number of instructions to be concurrent, each in a different stage of

execution.

Pipelined processing is beneficial when all of the following are true [Kog81]:

Each task is relatively independent of the previous one.

Each task requires approximately the same sequence of stages.

Those stages are closely related.

The lengths of time to compute different stages are approximately equal.
(For asynchronous pipelining, the time per stage is not necessarily constant

but rather a function of both the stage and the data passing through it.)

For instance, assume there are fours tasks, A, B, C, and D. Each task can be split
into four similar small jobs with subscripts 1 to 4. The non-pipelined approach
has each task proceed sequentially as shown in Figure 2.6. When the first task, 4,
is done, the next task, B, starts, and so on. If each small job takes one unit of time

to finish, the sequential approach takes 16 units of time for the four tasks in total.

CHAPTER 2. PROCESSOR PIPELINING 34

The pipelined approach takes much less time. According to Figure 2.7 as soon
as the first small job, A1, has finished and the second job, A2, has started, the
first small job of the next task, B1, can begin. Then (7 can begin when A2 and
B1 have finished, and continue with A% and B2. At this point, all stages in the
pipeline are operating concurrently, assuming the pipeline has separate resources
for each stage. Since the real pipeline generally does not have totally separate
resources for each stage, there are some situations which reduce the performance
from the ideal speedup theoretically gained by pipelining. These situations are

discussed later on in Chapter 4.

Pipelining improves performance by increasing the number of data values pro-
cessed in a given time (the instruction throughput), as opposed to decreasing the
time taken for an individual element to traverse the pipeline (the latency), but
instruction throughput is the important metric because real programs execute

billions of instructions.

Under normal conditions, if instruction execution could be split into n perfectly
balanced stages, then an n stage pipeline would give n times the throughput of
a non-pipelined version. Usually, however, the stages will not be perfectly equal.
Furthermore, pipelining does involve some overhead. This is due to the starting

and finishing of the parallel execution of tasks, as can be seen in Figure 2.7, where

35

CHAPTER 2. PROCESSOR PIPELINING

Time (in units)

Figure 2.6: The non-pipelined approach

Time (in units)

2
\\\\\\\\\\\\\ 3 ®
\\\\\\\\ 3 © B
2®BF 8
| @E B
\\\\\ 968
\\\\\ g

Figure 2.7: The pipelined approach

only at time interval 4 do the four tasks run simultaneously, yielding optimum

performance.

In a computer pipeline, each pipe step completes a part of an instruction. Like

an assembly line, different steps are completing different parts of different in-

structions in parallel. The stages are connected one to the next to form a pipe.

Instructions enter at one end, progress through the stages, and exit at the other

end.

CHAPTER 2. PROCESSOR PIPELINING 36
2.4 Synchronous and Asynchronous Pipelines

This section takes a brief look at the differences between synchronous and asyn-

chronous pipelines.

A conventional computer pipeline is a synchronous pipeline which is controlled
by a global clock signal. In synchronous systems each operation of an arithmetic
or logic unit has to be finished within a time slot given by the overall clock signal.
Data signals have to be stable at latching time (at the edge of the control signals).
The clock period of the synchronous pipeline is limited to a minimum of the time
taken for the slowest pipeline stage to complete its processing. An example of a

synchronous pipeline is shown in Figure 2.8

By contrast an asynchronous pipeline does not have any global clock, hence every
stage can take a variable time to finish and can work independently. Therefore
the next stage can begin after the previous stage has finished which theoreti-
cally makes an asynchronous pipeline faster than a synchronous pipeline. Since
an asynchronous pipeline uses an asynchronous implementation approach, it also
gets the benefits inherent in asynchronous circuits such as lower power and im-
proved modularity. Figure 2.9 gives an example of how the timing of an asyn-

chronous pipeline may look.

There are several hazards connected to pipelining which can result in a reduced

CHAPTER 2. PROCESSOR PIPELINING 37

i [Als el e]
we | [alelclole]
e alelelole]
s alelelole]

Figure 2.8: An example of a synchronous pipeline

i [A T8 ¢ [ole

Task 2 | Al B|| c|p|E]

Task 3 Al B |c|[p[e

Task 4 A | [Blc [ple]
Time -

Figure 2.9: An example of an asynchronous pipeline

performance. The basic concepts for avoiding their occurrence are similar for
both synchronous and asynchronous pipelines, although they are more complex
for the asynchronous type. The various hazards and the techniques for avoiding

them will be discussed in Chapter 4.

2.5 Summary

Pipelining is an approach to the way a processor deals with its tasks in which these

are dealt with in a parallel fashion rather than using a simple sequential approach.

CHAPTER 2. PROCESSOR PIPELINING 38

This improves processor performance since less time is needed to finish off a cer-
tain number of tasks. Furthermore, pipelining can be done either synchronously
or asynchronously. The former relies on the classic external clock to synchro-
nise its operation whereas the latter relies on a handshaking system. The asyn-
chronous pipeline has some advantages over the synchronous version which make

it attractive for implementing the DLX architecture.

Chapter 3

The Basic DLX Pipeline

An initial pipeline structure can be made by splitting the datapath into a number
of independent stages which should take similar lengths of time to execute. Ex-
actly how many pipeline stages are needed depends on what the costs of various

pipeline depths are for the architecture being implemented.

A typical instruction can be split into several phases. For instance in DLX,
as shown in Figure 3.1, the implementation of the DLX datapath allows every
instruction to be executed in four or five clock cycles. In this implementation,
branch instructions need four clock cycles to finish and all other instructions need
five. That means up to five instructions will be in execution during any single
clock cycle. To implement this datapath as a pipeline, each cycle refers to a stage

of the pipeline. This may be called a five-stage pipeline.

39

CHAPTER 3. THE BASIC DLX PIPELINE 40

Instruction Fetch | Instruction Decode | Execution/ | Memory Acccess 1 Write Back
' Address Calculation !

e} ‘ : :
4 *’ : : Add : :
| read real | | |
i read riZ read datal ’ i i
‘ Register ALU || LMD L,
‘> addr = read data2 <> fom(M output [i9| 2 readl data > output | | L’\j
Instruction | o write data o ! Data !
| X I

X
memory ! memory !
32 | i i
sign i write data i
et |
i i
j j
i
|

Figure 3.1: An implementation of a DLX datapath

To separate the datapath into five sections, each section has the name corre-

sponding to a stage of the instruction execution:

IF : Instruction fetch from memory.

ID : Instruction decode and register read from the register file.

e EXE : Execution of the operation or address calculation.

e MEM : Data memory access for loading and storing instructions.

e WB : Write the result back into the register file (if needed).

When a DLX datapath is pipelined a set of pipeline registers is added. The result
of pipelining the simple DLX datapath from Figure 3.1 is shown in Figure 3.2.
The pipeline registers (shown as gray blocks) are used to separate the stages.

They are labelled by the stages they separate (IF/ID, ID/EXE, EXE/MEM,

CHAPTER 3. THE BASIC DLX PIPELINE 41
—L
r» : IF/ID ID/EXE EXE/MEM MEM/WB
4 > Add
7 Nrc
™| read regl
o> read reg2 read datal | .| [
l " Register addr read data [~
— PC . read data2 | .| M
Instruction [writedata v Data
memory X memory
write data
16 sign 32
ot

Figure 3.2: The pipelined DLX datapath

MEM/WB).

The rest of this chapter explains the basic pipeline for DLX in detail for each

cycle.

3.1 IF: Instruction Fetch

IR + Mem[PC]

NPC «<— PC + 4

The instruction is read from the instruction memory into the instruction register

(IR) using the address in the PC and then placed in the IF/ID pipeline register.

The PC address is generally incremented by 4 to address the next sequential

instruction and is then written back into the PC ready to be used in the next

CHAPTER 3. THE BASIC DLX PIPELINE 42

data cycle. The IR, which is effectively part of the IF/ID register, is used to hold
the instruction which will be needed in the next clock cycle. The incremented PC
is saved as NPC in an IF/ID pipeline register as well, in case it is needed later
as an operand (for example in a branch instruction). The IF stage occurs before
the type of the instruction is identified. Hence it is the same for any instruction,
apart from an earlier branch instruction which may cause a change in the PC to

another target address.

e Branch instruction:

if (BranchCondition)
then PC < ALUoutput

else PC < NPC

If the previous instruction is a branch instruction and the condition of that branch
instruction is true then the PC is replaced by the branch destination address in
the register ALUoutput, computed in the execution cycle of the previous branch

instruction, otherwise it is replaced by the incremented PC in the register NPC.

3.2 1ID: Instruction Decode

A Regs [IRG__l()]
B < Regs[IRy;. 15]

Imm < ((IR 16) O##IRg 31)

CHAPTER 3. THE BASIC DLX PIPELINE 43

This stage is also executed by all instructions, since it is still too early to identify
the type of instruction. The instruction in the IF/ID pipeline register is decoded
to generate the necessary data, such as the 16-bit immediate field which is sign-
extended to 32-bits (Imm) and the register numbers (A, B) for the next stage. Apart
from decoding, using the register numbers (A, B) as indices to access the register
file to obtain register values occurs in this stage. These values are all stored in the
ID/EXE pipeline register, along with the incremented PC address. In case any of
these values are needed by the instruction further down the pipeline, everything

is transferred.

3.3 EXE: Execution and Address Calculation

This stage changes depending on the type of DLX instruction. The ALU operates
on the operands prepared in the previous cycle, performing one of the following

four functions.

e Memory reference (loads and stores):

ALUoutput < A + Imm

To form the effective address, the ALU adds the value in register A and the sign-
extended immediate value in register Imm. Then the result is placed into the

temporary register ALUoutput (which is part of EXE/MEM register).

e Register-register ALU instruction:

CHAPTER 3. THE BASIC DLX PIPELINE 44

ALUoutput <— A op B

The ALU performs the function defined by the opcode op, on the value in register
A and on the value in register B. Then the result is placed into the register

ALUoutput.

e Register-immediate ALU instruction:
ALUoutput <— A op Imm

Similar to the register-register ALU instruction, but the second operand is the

value in register Imm instead of register B.

e Branch instruction:

ALUoutput < NPC + Imm

BranchCondition <— A op O

The branch target address can be computed by adding the values in register NPC
and register Imm. Register A is used to determine whether the branch is taken.
The comparison operation instruction op is determined by the branch opcode.

Y

For instance, op is ==’ for the instruction BEQZ and is '!=’" for the instruction

BNEZ. The various forms of jump instructions are similar to branches.

3.4 MEM: Data Memory Access

This stage is executed only by the instructions which need to access the memory,

load and store instructions, and branch instructions in order to forward the branch

CHAPTER 3. THE BASIC DLX PIPELINE 45

target address back to the fetch stage. For all other instructions, the data from

the EXE stage is passed directly to the WB stage.

e Load instruction:

LMDoutput < Mem[ALUoutput]

If the instruction is a load, the data returns from memory, addressed by the
ALUoutput register which is calculated in the prior cycle, and is placed in the

LMDoutput (load memory data) register.

e Store instruction:

Mem[ALUoutput] < B

If the instruction is a store, then the data from B is written into the memory

addressed by the value in the ALUoutput register from the previous cycle.

3.5 WRB: Write Back

This stage is used for reading the data from the MEM/WB pipeline register and
writing it into the register file if necessary. Although some instructions such as
the store instructions have no active function in this stage, it is more complicated
to speed-up those instructions by using only four clock cycles to execute them. To
keep the implementation simple, an instruction will pass through the write-back

stage even if there is nothing to be written back.

CHAPTER 3. THE BASIC DLX PIPELINE 46
o Register-register ALU instruction:
Regs[IR.20] < ALUoutput
o Register-immediate ALU instruction:
Regs[IRy; 151 < ALUoutput
e Load instruction:
Regs[IRy; 15] < LMDoutput

The operation of this stage is to write the result into the register file, whether
it comes from the memory system, which is LMDoutput, or from the ALU, which
is ALUoutput. The register destination field depends on the opcode. Figure 3.3
shows a simplified version of the DLX datapath, drawn in pipeline style, which

allows every instruction to be executed in five stages.

3.6 Summary

A pipelined implementation of the DLX architecture has been presented. This
was done by splitting the datapath into the five distinct stages of the execution of
an instruction and inserting four pipeline registers. Each stage and its principle

of operation has been discussed in detail.

CHAPTER 3. THE BASIC DLX PIPELINE 47

cc1 CC4 CC5 CC6 CcC7

Program execution order

(ininstructions)

e —
<
m
<
=
o

Time (in clock cycles)

Figure 3.3: The pipelined DLX

Chapter 4

Pipeline Hazards

The last two chapters show the power of pipelined execution. This chapter

presents what happens to pipelining with real programs.

Figure 4.1 shows how consecutive instructions would overlap in this pipeline.
If each of the pipe stages was completely independent and took an identical time,

then this diagram would show exactly how consecutive instructions complete.

However, since these pipe stages are not completely independent, there are a
number of events, known as pipeline hazards or pipeline dependencies, which de-
celerate the speed of a pipeline when the next instruction cannot execute in the
following clock cycle. A hazard in a pipeline is basically an aspect of its design
or use that prevents new data from continually entering at the maximum pos-

sible rate. Hazard must be resolved to create a normal working pipeline structure.

48

CHAPTER 4. PIPELINE HAZARDS 49

Instruction1 | IF | 1D | EXE|[MEM | wB |

Instruction 2 | IF | D | Exe|mEM | wB |

Instruction 3 | F | 0 | exe[mEm | wB |

Instruction 4 | iF | i | exe|mEm | ws |

Instruction 5 [F [o [exe[mEm] ws]
Time -

Figure 4.1: An example of a 5-stage pipeline structure in DLX

There are three classes of pipeline hazards:

e Structural hazards arise from resource conflicts which occur when the ma-
chine cannot support all possible combinations of instructions in concurrent

overlapped execution.

e A data hazard is a situation in which the later instruction is supposed to

use the results from an earlier instructions in its calculation.

e Control hazard arises from the modification of the PC, mainly by branch /jump

instructions and other instructions.

The following discussion on resolving pipeline hazards assumes each pipeline stage
takes an identical time to complete, based on the five-stage pipeline for DLX as

discussed in the previous chapter. Whilst this may be true for a synchronous

a0

CHAPTER 4. PIPELINE HAZARDS
Instruction1 | IF | D | EXEm;;nor;ﬁ W8 |
52 S
S5 | Instruction2 | iF | D] exE|mEM | wB |
2 |
8 | Insuction3 | iF | D [Eexe|meEm]| wB |
3 ‘ |
£ 3 P |
S Y Ingruction4 \memony! 1D | EXE |MEM | wB |
Time -
Figure 4.2: An example of a memory conflict
Instruction1 | IF | 1D | Exe [MEM | wB |
Instruction 2 ‘ IF ‘ ID ‘ EXE [MEM' WB ‘
Instruction 3 | iF | o | exe [mEM] ws |
Instruction 4 IF | 10 | Exe [mem | ws |
Time -

Figure 4.3: A pipeline stalled for memory conflict

implementation, it is unlikely to be true for an asynchronous system. However

the general arguments remain true with both implementation approaches.

4.1 Structural Hazards

When a machine is pipelined, if some combination of instructions cannot be pro-

cessed because of resource conflicts between instructions (which occur whenever

more than one pipeline stage wishes to use the same resource at the same time)

this will generate a structural hazard.

CHAPTER 4. PIPELINE HAZARDS o1

4.1.1 Memory Conflict

Some pipelined machines have a shared single-memory pipeline for data and in-
structions. As a result, a memory conflict can occur when two stages attempt
to access the memory simultaneously. Figure 4.2 shows an example of this type
of conflict. Here a memory stage (MEM) needs to be loaded with data from the
memory in the first instruction, whilst at the same time an instruction fetch stage

(IF) in the fourth instruction needs to fetch an instruction from memory.

Memory Conflict and Stalling

When a sequence of instructions encounters this hazard the simple method for re-
solving it is to stall one of the instructions until the required resource is available.
A stall, since it floats through the pipeline taking space but carrying no useful
work, is commonly called a pipeline bubble or just bubble. It causes the pipeline
performance to degrade from the ideal performance by increasing the CPI ! from
its usual ideal value of 1. Figure 4.3 illustrates a pipeline stalled for a structural

hazard in the case of a memory conflict.

Memory Conflict and Separating Memory

An alternative solution to this structural hazard would be to separate memory
access for instructions and data, either by splitting the cache into separate in-

struction and data caches, or by using a set of buffers, generally called instruction

IClocks Per Instruction

CHAPTER 4. PIPELINE HAZARDS 92

buffers, to hold instructions. The use of split caches eliminates the conflict for
a single memory that would arise between the instruction fetch (IF) and data

memory access (MEM).

4.1.2 Register File Conflict

The register file is used in two stages: for reading in the instruction decode
stage (ID) and for writing in the write-back stage (WB). When considering the
five-stage pipeline for DLX from the previous chapter, the following observations

regarding register file read and write should be noted:

e Read : The DLX integer pipeline always does register fetches in the instruc-

tion decode stage.

e Write : The DLX integer pipeline does register write in the write-back

stage.

e The write-back stage comes further down the pipeline than the instruction

decode stage.

Accordingly neither two writes nor two reads can occur simultaneously. Hence a
register file conflict can only arise from the need for one instruction to write and

another instruction to read at the same time.

For example, whilst in the instruction decode stage (ID), the processor normally

needs to read the required data from the register file. At the same time there is

CHAPTER 4. PIPELINE HAZARDS 93

another stage, the write-back stage (WB) as shown in Figure 4.4, which wishes
to write a result back to the register file. In this case the system is said to have

a structural hazard as well.

Register File Conflict and Stall

In a similar way to stalling for a memory conflict, this hazard can be removed by
stalling one of the instructions that produces the conflict in the pipeline, when

the register access occurs, until the resource is free.

Register File Conflict and Half Read-write

There is another simple implementation technique used to avoid register file con-
flicts. This technique is to perform the register file writes in the first half of the
cycle and the register file reads in the second half. Then data hazards caused by
register conflict will be eliminated since the two kinds of access, read and write,

do not occur at the same time.

Figure 4.5 shows the overlap among the parts of the datapath. Since the register
file is used as a source in the ID stage and as a destination in the WB stage,
it appears twice. This figure shows that it is read in one stage and written in
another by using a solid line, on the left or right, respectively, and a dashed line
on the other side. Memory is split into instruction memory (IMEM) and data

memory (DMEM).

CHAPTER 4. PIPELINE HAZARDS o4

Instruction1 | IF | 1D | EXE‘MEM;:Reg!
|
Instruction 2 | F | D | EXEHMEM ['ws |
|
Instruction 3 R ‘\ EXE”\AEM\ WB |
‘ ‘
Instruction 4 | 1F || Reg|iexe [mEm [we |
Time -

Figure 4.4: An example of a register file conflict

In general, the choice of the solution used to resolve a structural hazard would
depend on how often the resource clash is likely to occur, and what the cost of

using each solution would be.

4.2 Data Hazards

This hazard arises from data dependencies which are the most common type of
dependencies. It occurs when an instruction depends on the result of a previous
instruction in a way that is exposed by the overlap of instructions in the pipeline.
It is the main reason that high-performance pipelines are hard to design. Correct
operation in a pipelined processor requires that data hazards between instruc-

tions are resolved.

These hazards may be classified into four types according to the order of read

CHAPTER 4. PIPELINE HAZARDS %)

clockcyclel clockcyclez cIockcycIeS clockcycle4 clockcycle5 cIockcycIeG clockcycle7 clock cycle 8

) R
Intruction 1 || vEM 4:£ REG
i

d i - : DMEM REG @

N < { | L i

I I

I I

I !

I

S ‘
I | I

Instruction 2 | IMEM L REG DMEM L L
I [!

|
|
| |
| |
| |
| | |
| | |
| | | ’\
. | | - =) |
Instruction 3 ! ! IMEM —:L REG 2(DMEM —7
| | [i (\
| |
| |
|
|

| | | e : m |
Instruction 4 ! ! V| imem L rec | 2|—— DMEM

| | | \

] 1 I I H.

Program execution order

ﬁ
(o] i

et

G |

Tﬁ

7

G .

Time

Figure 4.5: Pipeline with separate I&D memories and half read-write for the
register file

and write accesses in the instructions.

4.2.1 RAR (read-after-read) Dependency

For a RAR hazard, since there is no modification of any object and reads all
happen in the same stage in a DLX pipeline, they must occur in the order of

instruction executions, thus there are no hazards of this type in the DLX pipeline.

4.2.2 WAW (write-after-write) Dependency

A WAW hazard exists when both instructions 7 and j (j assumed to logically
follow @) attempt to update the same register or memory location, but #’s work

can finish after j’s. The result is that after both instructions have completed, the

CHAPTER 4. PIPELINE HAZARDS o6

object may be left with an intermediate value (from 7) and not the final value

(from j).

Fortunately, since the DLX integer pipeline writes registers in the same stage
(WB) and does the memory stores only in the memory stage (MEM), WAW

hazards do not occur.

4.2.3 WAR (write-after-read) Dependency

A WAR hazard exists when instruction j (logically following) wishes to modify
some object that is read by . If 7 modifies the object before ¢ has accessed it, ¢

will get the wrong value, although now the value is too new rather than too old.

According to the DLX integer pipeline, register reads occurring in the instruction
decode stage (ID) are always before register writes in the write-back stage (WB),

thus there is no problem with WAR hazards either.

4.2.4 RAW (read-after-write) Dependency

This hazard occurs when an instruction needs to read a register but the result of
an earlier instruction has not yet been written back. Therefore that register will

contain the wrong value. This is the most common type of hazard.

Consider the following sequence of instructions with some dependencies, shown

CHAPTER 4. PIPELINE HAZARDS o7

CC1

Program execution order
(in instructions)

Time (in clock cycles)

Figure 4.6: An example of a data hazard

in blocks:

ADD [rl], r2, r3
AND r4, 15,
OR 16, [rl], r7
SUB r8, [rl], R1
XOR r10, [r1], r9

The last four instructions are all dependent on the result in register r1 from the
first instruction. Figure 4.6 shows the data hazard arising from the use of the
result of the first instruction in the next three instructions, since register r1 is not

written until the write-back pipe stage at the end of clock cycle 5, which is after

CHAPTER 4. PIPELINE HAZARDS 28

those instructions read it. The AND instruction reads the register during clock
cycle 3. Similarly the OR instruction tries to read the register during clock cycle
4. Unless precautions are taken, those two instructions will read the wrong value
and use it. By using the technique that splits reads and writes to the register
file into different halves of the cycle, the SUB and XOR instructions can operate
without incurring any data hazard. The fifth instruction has no hazard since rl
is already written back in the previous stage, just before the fourth instruction

reads that data.

4.2.5 Stall

The most straightforward approach to solve data hazards in hardware is to pre-
vent a new instruction issue (when a hazard arises), through the use of stalls,
until the results of the previous instructions have been written back. This has a
consequential performance degradation. Figure 4.7 shows the stalling approach

to resolving a data hazard.

4.2.6 Register Locking

There is a process termed locking [PDF*92], which may be used to make sure
that a location with a pending modification cannot be accessed until the write
operation has completed. The stall frequency can be reduced with the addition of
a lock to each register so that the pipeline only stalls if an instruction attempts

to read a locked register. According to Figure 4.7, this stall will happen only

CHAPTER 4. PIPELINE HAZARDS 29

CC1 CC4 CC5 CCo6 CcCc7

MEM WB |

STALL

Program execution order
(in instructions)

MEM

Time (in clock cycles) -

Figure 4.7: Stall to prevent data hazard

when the second instruction requires the result from the first instruction.

4.2.7 Forwarding

Instead of stalling instructions waiting for the result to be written back from the
write-back stage (WB), which takes time, there is a technique called forwarding
or bypassing which uses temporary results. As illustrated in Figure 4.8, for ALU
instructions the result from the first instruction is valid at the end of the execu-
tion stage (EXE) whilst the second instruction needs the data in that register in
its execution stage (EXE). Forwarding the temporary result could be done here
from the end of the execution stage (EXE) in the first instruction to the beginning

of the execution stage (EXE) in the second instruction. Similarly for the third

CHAPTER 4. PIPELINE HAZARDS 60

- CC1 CC7

S~

sg

52

53 IF

SR

5 <

ES

5

[e)

o
wB
MEM

Time (in clock cycles)

Figure 4.8: The forwarding technique to avoid the data hazard

instruction, which also requires the result from the first one, the temporary result
can be forwarded from the memory stage (MEM) to where it is really needed, in
the execution stage (EXE). Since the register read and write are split into two
halves, in the fourth instruction there is no hazard as the result from the first
instruction is written in the first half of the clock cycle and the instruction decode
stage (ID) in the fourth instruction reads the required registers in the second half

of that same clock cycle [GG9I7].

Unfortunately, not all data hazards can be handled just by forwarding. Con-
sider the following sequence of instructions with some dependencies, shown in

blocks:

LW [rl], 0(z0)

CHAPTER 4. PIPELINE HAZARDS 61

AND r2, [r1], r3
SUB r5, r4,
ADD 17, [rl], r8

The pipeline datapath with forwarding for this example is shown in Figure 4.9.
Since load instructions provide the result after the memory stage (MEM), for-
warding the result backward in time to the earlier clock cycle as shown in the
figure is impossible. The data hazard in this case cannot be eliminated by just
simple forwarding as used in the previous example. Stalling for at least one clock
cycle is needed to make the AND instruction wait until the result from LW is valid
which is at the end of the fourth clock cycle. Figure 4.10 illustrates how to handle

data hazards caused by load instructions.

Since store data is needed only in the memory stage (MEM), it is not neces-
sary to get the required register data before that stage. Hence in this case, it
is more straightforward than a normal ALU instruction. Figure 4.11 shows that
a store instruction executed after the load instruction can proceed without any

stall if the appropriate forwarding path is available.

In synchronous systems, each stage works synchronously. Hence it is predictable
how many instructions will be affected in a data hazard. Without synchronisation
however, it is hard to solve data hazards by exploiting these techniques without

additional mechanisms.

CHAPTER 4. PIPELINE HAZARDS

o] CC1
o
5)
Sg
53 LW R1,0(R0) IF
S g
& c
oD
o
T AND R2,R1,R3
SUB R5,R4,R1
ADD R7,R1,R8

Time (in clock cycles)

Figure 4.9: The impact from only forwarding for Load instructions

LW R1,0(R0) IF

Program execution order
(in instructions)

AND R2,R1,R3

SUB R5,R4,R1

ADD R7,R1,R8

Time (in clock cycles)

IF

MEM

STALL

CC6

STALL

MEM j

STALL

DB E

62

Figure 4.10: Combination of forwarding and stalling to prevent data hazard

CHAPTER 4. PIPELINE HAZARDS 63

CC1 cc2 CC3 Ccc4 CC5 CCé6 CcC7

ADDR1R2R3 | IF 1D

Program execution order
(in instructions)

LW R4,0(R1) IF

SW 10(R5),R4

Time (in clock cycles)

Figure 4.11: Load instruction followed by a store instruction

4.3 Control Hazards

A control hazard affects how branch instructions are handled, and arises from
the need to decide the address of the subsequent instruction to fetch, determined
from the results of the branch instruction, whilst other instructions are executing.
When a branch is executed, it may or may not change the PC to something other
than its normal next value. But the branch target address may not be calculated
until the end of the memory stage. Meanwhile, an instruction must be fetched
at every clock cycle to sustain the pipeline. Hence, there will be a number of

instructions already in the pipeline which may not be needed.

If a branch is in the pipeline, that part of pipeline behind the branch must be
flushed and refilled with the appropriate instructions. In this case, time is wasted
processing the wrong sequence of instructions. Worse yet, any instruction after

the branch which should not have been executed can alter data that is still needed.

CHAPTER 4. PIPELINE HAZARDS 64

Although control hazards are comparatively less complicated to understand and
occur much less frequently than data hazards, they can potentially cause a larger
loss of performance than other hazards do. Since writing back incorrect results

is harmful, this error must be prevented.

4.3.1 Stall

There are several things that can be done with the instructions sequentially fol-
lowing the branch. Since the branch target address will not be calculated before
the memory stage (MEM), one of these solutions is to stall the next instruction
after a branch instruction until the target address is calculated. This means that
after a branch instruction is taken, the pipeline will not fetch any instructions
until the branch target address is sent to the PC. Then the pipeline executes
the instruction at that target address in the PC. This solution is quite simple to
implement. But this makes the pipeline take much longer to finish, whether the
branch is taken or not. Figure 4.12 illustrates this stall technique which is used

to delay prefetching until the branch target address has been calculated.

To implement this approach, in fact it is impossible to recognise a branch until
the end of the ID stage, so the pipeline cannot prevent at least one instruction
fetch after the branch. These prefetched instructions must not be executed. Then
the pipeline must be stalled until the branch target address is valid. The next

executed instruction is the new instruction at that target address.

CHAPTER 4. PIPELINE HAZARDS 65

CC1 cc2 CC3 CC4 CCs CC6 Ccc7 CCs CC9

Program execution order
(in instructions)

STALL
for branch target address calculation

Time (in clock cycles)

Figure 4.12: Stall to prevent control hazard

4.3.2 Speculative Execution

The other possible solution is always to execute the instructions following the
branch speculatively, on the assumption that their execution will be useful, but
prevent any state from being changed until the branch target address and con-
dition have been calculated and it is known that they should be executed. This
technique is known as speculative ezxecution [Eng96]. If some speculatively ex-
ecuted instructions should not have been processed then they must be flushed,
discarding any result that they created. Then the pipeline continues at the ad-
dress of the branch target. If branches are not taken half of the time, and if it
costs little to throw the instructions away, this technique could halve the cost of

control hazards.

The dashed block in Figure 4.13 is a speculative execution which is processed
regardless of whether or not the branch in the first instruction is taken. But

writing results back from this speculative execution is prevented if the branch

CHAPTER 4. PIPELINE HAZARDS 66

Ccc1 Cc2 CC3 CC4 CC5 CC6 ccr Cc8 CC9

Program execution order
(in unstructions)

E

| ©
I

f E

<

m

<

=

W

=~
[} MEM wB

%
[
o
I

Time (in clock cycles)

Figure 4.13: The speculative execution for the control hazard

instruction is not taken.

4.3.3 Moving up the Branch Address Calculation

If the branch execution is moved to an earlier stage in the pipeline, then fewer
instructions need to be flushed when the branch is taken. So far, the branch
address calculation has been done in the memory stage (MEM). It could be
possible to save one or more clock cycles of penalty by moving up the branch
address calculation to the end of the execution stage (EXE) instead, or even at
an earlier stage in the pipeline such as in the instruction decode stage (ID). This
can be implemented by simply moving the branch adder from the memory stage

(MEM) to the earlier stage [PH97]. This will reduce the cost of the taken branch.

CHAPTER 4. PIPELINE HAZARDS 67

4.3.4 Branch Prediction

Another solution is to have a mechanism which attempts to predict the correct
path of instructions based on past behaviour. For instance, some machines pro-
vide a branch history table or branch prediction buffer, a small amount of memory
which maintains a record of previous decisions for each of several branch instruc-
tions that have been used in the program to guide the prediction. However,
prediction is just a hint that is assumed to be correct. Hence, of course, when
any branch prediction is taken incorrectly, there is time consumed to flush and
refill the pipeline. Branch prediction mechanisms have proven to be effective,

though they are often complex.

4.4 Summary

A classification has been offered for the various pipeline hazards into structural,
data and control hazards. Each type of hazard has been extensively investigated
as to their effect on processor performance, and ways of resolving them have been

discussed.

However, caution should be taken when examining the methods for resolving
these pipeline hazards, since they only apply to synchronous systems. When
dealing with asynchronous pipelines, different measures are required in order to

eliminate pipeline hazards.

Chapter 5

Asynchronous Processor Models

This chapter describes the asynchronous processor non-pipelined and pipelined
models (three-stage and five-stage pipelines) of the DLX processor that were
created for this project. First the objectives behind the models are given, followed
by an introduction to the initial models, non-pipelining version and pipelining
versions (both three-stage and five-stage). Finally, the development of five-stage

pipelining models will be discussed.

5.1 Objectives Behind the Initial Models

When developing a new design, it is important to define the limits of possible
design decisions by indicating the objectives of the design, what criteria are used
and what hypotheses can be made. Here the first and most important objective
is to create two initial asynchronous pipeline models of the same processor archi-

tecture using two different kinds of design styles, a three-stage and a five-stage

68

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 69

pipeline. The following standards and assumptions were applied to guide the

design decisions:

The designs implement the DLX architecture.

The designs issue only one instruction per time cycle. (Note: Super-scalar

pipelining was not considered)

The environment for the initial models is the same. (The criteria of timing

characteristics is the same.)

Timing information for the various components of each initial model can

be comparable.

The initial models of the asynchronous non-pipelined design and the pipelined
designs had slightly different objectives. For the asynchronous non-pipelined and
three-stage pipeline design, the aim was to attempt to design the final models
straight away. These resultant models were not expected to be optimal. They
were intended to provide the reference designs to be compared against each other

and against the asynchronous five-stage pipeline version.

The primary aim of the initial five-stage pipeline model was to design it with
an emphasis on simplicity. Consequently the design could be analysed easily and

improved in order to provide better performance.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 70

5.2 The Initial Models

There are three initial models: asynchronous non-pipelined, asynchronous three-

stage pipeline and asynchronous five-stage pipeline models.

5.2.1 Asynchronous Non-Pipelining Design

The simple processor datapath discussed in Section 2.1 was modelled here using
a self-timed logic design style instead of a global clock system as used in a syn-

chronous design.

In this design the processor executes only one instruction at a time. Each in-
struction is fetched from the memory, decoded and executed. Then, after finish-
ing the whole execution process of an instruction, the next instruction is fetched
and processed by the processor. Hence there are no hazards in this design. The
memory does not need to be split into separate instruction and data memories
since memory conflicts will not occur. Similarly, it is unnecessary to have differ-
ent cycle-halves to read from and write to the register file. Because there is no
difficulty in dealing with any conflict, an asynchronous design is quite simple to

implement.

The result from this model should be faster than a synchronous non-pipelined
model since each instruction can be processed after the previous one has finished.

It is not necessary to wait for the next clock tick as in a synchronous design.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 71

Instruction1 | IF | ID| EXE |

Instruction 2 | IF| ID| EXE |

Instruction 3 | IF| ID] EXE

Y

Time

Figure 5.1: The timing diagram of a non-pipelined processor

However, the time needed to execute instructions in a non-pipelined model for
an asynchronous processor, as illustrated in Figure 5.1, could be cut by using

pipelining which will be discussed in the following sections.

5.2.2 Asynchronous Three-stage Pipeline Design

To allow higher execution rates pipelining techniques were implemented in the
processor. In order to create a pipeline structure, each instruction needs to be
split into subtasks for the asynchronous processor to handle. By using three sep-
arate subtasks - fetching, decoding and executing - the three-stage pipeline was
created with three different stages: instruction fetch (IF), instruction decode (ID)

and execution (EXE).

Whilst the non-pipelined processor deals with each instruction sequentially, the
three-stage pipeline allows up to three different stages to be processing simulta-
neously. Hence, the three-stage pipeline approach should take less time than the

non-pipelined approach to execute a given instruction sequence.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 72

Whereas it can be assumed that there is only one simple block in the asyn-
chronous non-pipelined model, some mechanisms have to be added in an asyn-
chronous three-stage pipeline in order to be able to perform the same functions.
These mechanisms handle PC-updating and write-back. Figure 5.2 shows the
structure of a three-stage pipelining model. The PC-updating mechanism is used
for updating the value of the PC, and comes into play when dealing with branch
target addresses. The write-back mechanism is used for writing the result to the
proper register in the register file. A timing diagram of the three-stage pipeline

model is displayed in Figure 5.3.

As a result of dependencies between the various pipeline stages, several hazards
will inevitably arise in the model, which do not arise in non-pipelined models.

Mechanisms to solve these hazards will now be discussed.

Separate 1&D Memories

There are two stages (IF and EXE) which need to access the memory, and usually
they need to access it at the same time. This model uses the separate memory
technique by splitting the memory into instruction and data memories (as dis-
cussed in Section 4.1.1) to resolve this conflict. Consequently both stages can
access their dedicated memory without any delay, thus improving the operating

speed and avoiding any memory conflicts.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 73

Register Locking and Stalling

Similar to the memory dependency, register dependencies between consecutive
instructions cause the pipeline to stall. Register locking is used to indicate which

register is being updated and to prevent an out-of-date register from being read.

Colour Mapping

Due to the fact that a pipelined design executes instructions in parallel, the pro-
cessor is required to prefetch the next instructions while executing the present
ones. This is called a prefetch system. It is impossible, however, to predict the
number of instructions that have been prefetched at any given moment. When a
branch instruction is taken, the prefetched instructions will most likely be invalid.
Consequently a system will be needed to keep track of the prefetched instructions

since they will have to be flushed when they become invalid.

The addition of a very useful technique in asynchronous logic design, ’colour
mapping’ is used in this model. This removes unnecessary prefetched instruc-
tions after any branch instruction is taken. The colour remains the same until
there is a branch request. When it outputs the first address of the new instruction
stream, the colour bit is inverted. Each instruction is prefetched with its ’colour’,
and arrives at the first stage of the pipeline for execution. The colour information
indicates whether the instruction was from the original stream (to be flushed) or

from the new stream (to be executed). After discarding those instructions which

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 74

PC updating D

Write-back

Figure 5.2: The structure of a 3-stage pipeline

Insruction | F | o [Eexe |

Instruction 2 | F| o | EXE |

Instruction 3 | F| o | EXE |
Time -

Figure 5.3: The timing diagram of a 3-stage pipeline

have a different colour from the new reference colour, the following instructions
in the new stream are executed. The best position for colour checking is at the
EXE stage which is the earliest stage at which it is known whether or not the

branch will be taken. [Pav94]

5.2.3 Asynchronous Five-stage Pipeline Design

The next model was implemented as an asynchronous five-stage pipeline design

which came from the observation that since the last stage in the three-stage

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 75

pipeline has much more work to process, it obviously takes much longer to finish.
It could be practically possible to split this stage into three independent pipe
stages; execution (EXE), memory access (MEM), and write-back (WB). (Note:

the EXE stages in three-stage and five-stage pipelines have different meanings.)

Moving up Branch Address Calculation

Unlike the five-stage pipeline for the DLX architecture discussed in Chapter 3,
this initial model was implemented to reduce the branch penalty by moving up
the branch target address calculation to the end of the EXE stage (from the
dashed line to normal line in Figure 5.4). The structure of the five-stage pipeline
model is illustrated in Figure 5.4. Figure 5.5 shows a rough example of the timing

diagram of this model.

Details on the Added Pipe Stages

Without adding any complex channels, each instruction has to pass through the
same five stages. Although some instructions (i.e. ALU and Branches) do not
need to access memory, they still need to pass through the channel between the
EXE and MEM stage to reach the WB stage. Furthermore, even though it is not
necessary to write back a result, the WB stage is processed for each instruction
in order to update validated results and / or unlock the register. Because of this,

the five-stage pipeline has to waste time in order to keep the pipeline simple.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS

PC updating

A Write-back

Figure 5.4: The structure of a 5-stage pipeline

Instruction1 | 1F | 10 | Exe | mem|ws|

Instruction 2 | F | i | exe| vem| ws]

Instruction 3 | F | o | exe | Mem|ws]|
Time -

Figure 5.5: The timing diagram of a 5-stage pipeline

76

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 77
5.3 Implementations of Five-stage Pipeline

The aim of the five-stage pipeline design is to analyse and improve the initial
five-stage pipeline model. This section deals with the actual five-stage pipeline
models as they were implemented. They mainly differ from the initial design in
the way the ID-stage reads the data from the register file. As will be discussed
in Section 5.4, the ID-stage takes 8 units of time to finish. The first three units
of time are used to decode the instruction type, while the rest of the time is used
for reading values from the register file and assigning them to the relevant pa-
rameters. In the initial pipeline model the start of the ID-stage was stalled until
the previous instruction produced a result (i.e. after the WB-stage has finished).
Alternatively, the implemented five-stage pipeline models stall for a shorter time
and start with the ID-stage prematurely so that the instruction-type may be
decoded. Meanwhile the previous instruction has produced its result and the
ID-stage can continue. This improves execution time for the implemented model

compared to the initial model.

Three kinds of forwarding path (EXE-EXE, MEM-EXE and MEM-MEM for-
warding) are described in the following sections. To implement a forwarding
mechanism in an asynchronous design is trickier than in a synchronous design.
Each pipeline stage can start at a different time and can finish independently, so
without a buffer the stage at the beginning of the forwarding path has to wait

until the stage at the end of the forwarding path is ready to receive the data. This

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 78

will reduce the performance of the asynchronous pipelined model by introducing
additional synchronisation points. The solution is to store the forwarded data
into a buffer and let the stage at the beginning of the forwarding path continue
its work. In this project the pipeline always forwards the data as it is impossible
to predict whether the later instructions need the forwarded data or not. There-
fore the instruction in the stage at the end of the forwarding path has to throw

the unnecessary forwarded data away if it does not need it.

5.3.1 EXE-EXE Forwarding

As shown in Figure 5.6, the ADD instruction could use the result from the pre-
vious instruction (SUB) when it really needs it (at the beginning of the EXE
stage) right away after that data is valid which is at the end of the EXE stage of
the previous instruction. Hence the simplest type of forwarding was implemented
here, which is forwarding the valid result of the earlier instruction to where that
result is needed. Figure 5.7 illustrates the effect of using EXE-EXE forwarding to
resolve the data hazard. The EXE-EXE forwarding is shown in Figure 5.8 as an
arc-arrow within the box because it was implemented by using a local variable.
As this path is contained within a single pipeline stage it can be implemented

without any synchronisation overhead.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS

SUB r1,r3r4 ’ IF | 1D | EXE |MEM |WI4

)
-

ADD r2,r1,r0 ’ IF [STALL j iID | EXE |MEM |W#

Figure 5.6: The diagram of the simplest data hazard

SUB r1,r3,r4

IF | 1D | EXE |MEM |WI%

B

-

ADD r2,r1,r0 ’ IF | ID | EXE |MEM |WE4

Figure 5.7: Using EXE-EXE forwarding to resolve data hazard

PC updating D

Y Write-back

Figure 5.8: The 5-stage pipeline with EXE-EXE forwarding

79

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS

LW r12000) | 1F | 10 | exe [mem [wg

ADD r2,r1,r0 [F [stail | 1D | Exe |mem |wd
|

Figure 5.9: The diagram of the Load hazard

LW r1,20(r0)] IF | ID | EXE |MEM |WE4

N
/'/‘

ADD 2,10 | F | 0 [staLl] Exe [mEm |we
{SW 21(r0),r1}

Figure 5.10: Using MEM-EXE forwarding to resolve a Load hazard

5.3.2 MEM-EXE Forwarding

80

Unfortunately not all instructions can take advantage of the EXE-EXE forward-

ing, since the result from Loads is valid at the end of the MEM stage as shown in

Figure 5.9. Another forwarding path (MEM-EXE) has to be implemented, with

stalling, to speed up the pipeline by forwarding the valid result of Loads from the

MEM stage to the EXE stage where the next instruction may need that data.

Figure 5.10 illustrates how to reduce Load hazards using MEM-EXE forwarding.

The structure of the model with MEM-EXE forwarding is shown in Figure 5.11.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 81

PC updating D

. ' Load forwarding | Write-back

‘ | S

Figure 5.11: The 5-stage pipeline with MEM-EXE forwarding

Lw r1,2000) | 1F | 10 | Exe [MEM |wg

N

-

SW 21(0)r1 | F| 0 | exe | Mem |wd

Figure 5.12: Using MEM-MEM forwarding to solve the Store-Load hazard

5.3.3 MEM-MEM Forwarding

However, according to Figure 5.12, when a Load instruction is followed by a Store
instruction, it is not necessary to stall the Store since Store instructions need the
result from the Load at the beginning of the MEM stage. Finally, Figure 5.13
illustrates the structure of the five-stage pipeline with MEM-MEM forwarding.
Similar to EXE-EXE forwarding, MEM-MEM forwarding is shown as an arc-

arrow within the box because it was implemented by using a local variable.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 82

PC updating ID

Write-back

Y Load forwarding

Figure 5.13: The 5-stage pipeline with MEM-MEM forwarding

5.4 Timing Information

These models were all designed subject to the same timing criteria as follows:
e Prefetching each instruction takes 8 time units in the LARD language.
e Decoding the instruction takes 8 time units.

e To execute (excluding memory access and write-back) the validated instruc-

tion takes 8 units.
e To Access memory for Loads and Stores takes 8 time units.

e Writing back to update the register file (which happens for every prefetched
instruction in the pipelined models, or only for instructions that need to

write the result back in the non-pipelined model) takes 1 time unit.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 83

Non-pipeline model 3-stage pipeline model 5-stage pipeline model

DEC 8 2 2

EXE 8 DEC 8 DEC 8

MEM 8 2 2

WB 1 EXE 8 EXE 8
MEM

MEM

=

©
INII\J

00)

WB 1

Figure 5.14: Time information for the initial models

e Each channel between two different stages takes 2 time units.

Figure 5.14 illustrates the timing information for the initial models in this project.
According to this, the cycle time in the non-pipelined model is around 25 (with-
out memory access) to 33 (with memory access) time units. The cycle time in
the three-stage pipeline model is approximately 10 time units + extra time for
memory access. In the five-stage pipeline model the cycle time is around 10 time

units with no extra cycles for memory access.

5.5 Implementation using LARD

The models outlined above were described using the LARD language. Fach box
(IF, ID, EXE, MEM, WB) was modelled as a LARD process, with data passing

between boxes through a LARD communication channel.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 84

In LARD channel communication values are sent to a channel using the ! op-

erator. The syntax for sending is channel ! value, which means:

o Wait until the receiver is ready to accept a communication.

e Send the value to the receiver.

e Wait until the receiver has finished with the value.

Values are received using the ? operator. The syntax for receiving is

channel ? expression, which means:

e Wait until the sender is ready to initiate a communication.

e Evaluate the body expression.

e Indicate to the sender that the value is finished with.

Within the body expression the received value can be read using the expression

? channel.

The effective pipeline depth of the model can be modified by changing the ’Ac-

knowledge’ phase of the communication:

e If the block processing and output communication is enclosed within the
input channel communication, the block operates within the same pipeline

stage as its predecessor.

CHAPTER 5. ASYNCHRONOUS PROCESSOR MODELS 85

e [If the block copies the input value and acknowledges immediately, the block

operates as a separate pipeline stage from its predecessor.

Hence a single LARD program can, with relatively little modification, model the

behaviour of the different pipeline structures described above.

5.6 Summary

Processor designs have been developed based on the theory presented in the earlier
chapters. Three models were created in order to compare their performance. All
of the designs are asynchronous and two of them use pipeline structures. This
is especially important for proving the pipeline to be superior to a non-pipelined
design. Furthermore, both a three-stage and a five-stage pipeline were created to
test the notion that the five-stage pipeline is better balanced in terms of block
processing time and would therefore be superior to the three-stage design. The

tests and their results will be discussed in the next chapter.

Chapter 6

Testing and Evaluation

The testing procedure was divided into three sections written in a different pro-
gramming language. The first test used three very simple assembly programs to
understand each model and to attempt to improve the performance of the five-
stage pipeline. The second test used small programs written in the high-level
programming language, C. The third test used the Dhrystone benchmark C pro-
gram. Then Section 6.4 evaluates and compares the results from the different

models.

6.1 Simple Assembly Test Programs

It is obvious that a pipelined model should be faster than non-pipelined model
since it can operate in parallel. Since there are more pipe stages in a five-stage
pipeline, and most of the pipe stages take a similar time, a five-stage model is

expected to be faster than a three-stage pipeline. The latter has one stage - the

86

CHAPTER 6. TESTING AND EVALUATION 87

EXE-stage - which takes much longer than the other two, causing following in-
structions to be stalled. This line of reasoning will hold most of the time, although
in some cases a three-stage pipeline is faster due to the extra time needed for the

added stages to communicate in a five-stage pipeline (EXE-MEM, MEM-WB).

For the implementation of the five-stage pipeline, very simple programs were
written in Assembly Programming Language with different kinds of data depen-

dencies, in order to compare each model specifically.

6.1.1 Asm-1: Test Program

With the Assembly code for the DLX architecture shown below, this test gives
the performance obtained from the initial five-stage pipeline and the one with

EXE-EXE forwarding.

SUB rl], r2, r3

ADD r4, [r1], r5

From the code, the ADD needs the result , r1, from the SUB. In both initial three-
stage and five-stage pipelines, the ADD has to stall and wait until the result from
the SUB is written back. By incorporating the EXE-EXE forwarding in the latter
model, the ADD can get that value immediately after it is written in the EXE
stage. This reduces the cost. Figure 6.1 shows the time views supplied by the

LARD simulation system.

CHAPTER 6. TESTING AND EVALUATION 88
Note: The traces in LARD time view can be interpreted as follows:

e The upper half bars of the trace represent the sender’s activity. The start
of the bar indicates the point where the sender was ready to start a commu-

nication. The end of the bar indicates where the communication finished.

e The lower half bars of the trace represent the receiver’s activity. The start
of the bar indicates the point where the receiver became ready to accept

a communication. The end of the bar indicates where the communication

finished.

In case of a trace containing a lot of upper bars, it indicates a system where a
sender is blocked by a relatively slow receiver. On the other hand, a trace con-
taining a lot of lower bars indicates a system where a receiver is waiting for a

relatively slow sender.

When observing these time views, the model with the EXE-EXE forwarding
is faster than the normal one because it saves the time required to pass the result

through the MEM stage and write back the result to the register file.

6.1.2 Asm-2: Test Program

LW , 0(r3)
ADD r4, [rl], r5

CHAPTER 6. TESTING AND EVALUATION 89

] 10 20 30 40 S0 60
ExePc |
P Imem i 1 i 1
D
R —— =] =
HbReg | -I -I
i %-\
RegEne — —— -
i i [

e ﬁ S
FEiihis —- —-
=time saving=
|III\IIIII|III\IIIII|III\IIIII|II‘I\IIIII|III\\‘IIII|II
10 20 30 | 40 50

]
Exebc |

|
‘
PcIfmem i] o |
‘
m] =]
G| —
- = =
WhReg | P 1

EgEe E — = —
EED g‘—-

el —- —

Figure 6.1: The effect of EXE-EXE forwarding

Since the instruction following the Load instruction needs the result from the
Load, a data hazard has been introduced in this code. Unlike the Asm-1 pro-
gram, the dependency occurs in the MEM stage in which the result from LW is
produced. In order to get the result right away, thereby reducing stall time, an-
other forwarding technique was applied here. Figure 6.2 illustrates the reduced

stall time after applying the MEM-EXE forwarding to pass the result.

6.1.3 Asm-3: Test Program

LW [r1], 0(x3)
SW 40(r2),

CHAPTER 6. TESTING AND EVALUATION 90

] 1o 20 30 40 a0 B0 70

ExePc |

beTmam ?II
MmemReg

hReq 1 >- i
ReqExe —- —‘ =
ExeMem —- —‘ —

i E —

<—time saving—!

L L L s L L e
10 jali} et} 40 50 a1}

]
ExePc |

PcImem]
I
T | —_— = - m

-
WhReg | >-3 -l
RegExe —- [-
FxaHam E —— —

Loadout |

|

I
]

]
ot | ——

| [
ey E —— —

Figure 6.2: The effect of MEM-EXE forwarding

This is a special case, similar to the previous example, which occurs when the
following instruction after Load is a Store which needs the result from the Load
at the beginning of the MEM stage. By adding MEM-MEM forwarding, the stall
time in the earlier model can be eliminated (or at least reduced). Figure 6.3

shows the effect of this forwarding.

In all of these models forwarding saves time overall even though generally for-
warding itself takes time as well. (Although, in fact EXE-EXE and MEM-MEM
forwarding do not consume any extra time since these are internal operations

within the EXE-block and MEM-block consecutively.) Since it is impossible to

CHAPTER 6. TESTING AND EVALUATION

|||||\|||||||||||||||I\IIIIIII|I\III|||||||||||II\|IIIIIIII\|
] 10 20 30 40 50 B0
ExePc |
P Trnam I 1 I 1
m . . —
PSS h]] |
bReg | -I
]]]
e 5 —]]
Bl ﬁ —-
Loadout | I
m =_
Ly B —— ;
e E ——— _-
time saving ~
|\||||||\|||IIIIII\I|IIIIIIIII|IIII\IIII|IIII\IIII|I|||||| 1
] 10 z0 30 40 50
ExePc |
PcItem]]] '
m e] D
U h]] =
#bReg | -I -I
m o]
g E —] —
e E —— —
Loadout | I
LoadIn | -I
ot B ——— 3

Figure 6.3: The effect of MEM-MEM forwarding

91

CHAPTER 6. TESTING AND EVALUATION 92

Program Assembly Description
Name Inst Count
Bubble.c 2958 Bubble sorts for 10 items from minimum
to maximum.
Fibonacci.c 3565 Calculates the 10" Fibonacci number.
StrRev.c 1731 Convert a string “Test Reverse String Function”
into reverse word order and print it out.

Table 6.1: The description of C test programs

predict whether the following instruction needs the result of the preceding in-
struction or not, the forwarding schemes in each model always pass the result of

the current instruction.

6.2 Simple C Test Programs

A number of C test programs were used to measure the performance of each
model. These programs were compiled with GCC ! and assembled with a DLX
assembler. Details about the GCC and the assembler can be found in Appendix
C. Due to the incompatibility between the GCC compiler and DLX assembler, it

was very difficult to compile the test programs from C programs.

A brief description of the test models is given in Table 6.1. Table 6.2 shows
the results for each model of the C test programs. The time of operation was
normalised by setting the three-stage model to unity. As can be seen, the use of

any forwarding technique improves the operating speed greatly (13.5% to 20.8%).

1A C compiler

CHAPTER 6. TESTING AND EVALUATION 93

Model Name Normalised Time
Bubble Fibonacci StrRev
Initial Models
Non-pipelined Model 1.60 1.59 1.54
3-stage Pipeline Model 1.00 1.00 1.00
5-stage Pipeline Model 0.99 0.87 1.03
Modified Models of 5-stage Pipeline
a) with EXE-EXE Forwarding 0.84 0.78 0.87
b) a plus MEM-EXE Forwarding 0.75 0.75 0.81
c¢) b plus MEM-MEM Forwarding 0.73 0.75 0.81

Table 6.2: The comparative results with C test programs

Model Name Loop Time | Normalised Time
(time units)
Initial Models
Non-pipelined Model 59447 1.53
3-stage Pipeline Model 38746 1.00
5-stage Pipeline Model 36875 0.95
Modified Models of 5-stage Pipeline
a) with EXE-EXE Forwarding 31803 0.82
b) a plus MEM-EXE Forwarding 30119 0.78
¢) b plus MEM-MEM Forwarding 29891 0.77

Table 6.3: The results with the Dhrystone program

6.3 The Dhrystone Program

As well as testing the models in this project with small Assembly and C Pro-
gramming Languages, the "/DHRYSTONE” Benchmark Program (more details
are given in Appendix B) was used to evaluate the performance of each model.
Dhrystone is probably the smallest program that can reasonable be claimed to
reflect the performance of large C applications realistically. The results are pre-
sented in Table 6.3. Here, as before, the modified models which made use of

forwarding prove to be superior to the initial model.

CHAPTER 6. TESTING AND EVALUATION 94
6.4 Evaluation

According to Section 5.4, the cycle time for the non-pipelined, the three-stage
pipeline and the five-stage pipeline models are 25 to 33, 10 + extra time for
memory access and 10 time units respectively. The CPI of the non-pipelined
model equals to 1. For the three-stage pipeline model the CPI can be calculated

comparative to the CPI of the non-pipelined model as below:

(25 to 33)

PI =
¢ 10 % 1.55

=16 to 2

This CPI number (excluding the extra time for memory access) is similar to the
2 clocks per instruction of ARM7 [ARM98a], a synchronous three-stage pipeline
microprocessor. Similarly, the CPI of the five-stage pipeline model can be calcu-

lated as follows:

(25 to 33)

Pl =
¢ 10 % 2

=125 to 1.65

The CPI number is close to the 1.5 value of ARM9 [ARMO98b], which is a syn-

chronous five-stage pipeline microprocessor.

The asynchronous pipelined design is much faster than the non-pipelined ver-
sion which operates sequentially. To take advantage of the pipeline design, it is
important to ensure that each pipe stage is balanced. This makes the five-stage
pipeline faster than the three-stage pipeline. A little overhead can be attributed

to the five-stage pipeline limiting the maximum throughput, since in some cases

CHAPTER 6. TESTING AND EVALUATION 95

this pipeline has to waste time to pass data from the EXE stage through the
MEM stage in order to keep the pipeline simple to design. This can be seen when
comparing the results of the three-stage and five-stage pipelining models for the
StrRev.c program. A higher performance pipeline design would be able to reduce

these times.

To improve the performance of the five-stage pipeline, some modified models
were implemented to reduce the pipe hazards by adding some mechanisms to
support forwarding. There are several kinds of forwarding. Each of these resolves

a different kind of data dependency and has a different cost to implement.

The results show that the EXE-EXE forwarding path is the most cost-effective
because it is simple to implement and is applicable to the most frequently encoun-
tered data dependencies. The second most cost-effective forwarding mechanism
is the MEM-EXE forwarding. MEM-MEM forwarding is used infrequently and

provides little performance improvement when used.

However, even if in some cases the forwarding seems to be useless (when the
forwarded results are not used by any instruction), it could be assumed from the
test results that the forwarding mechanism is very useful to incorporate in the
design. If unnecessary forwarding could be eliminated or at least reduced, then

the pipelined model with forwarding schemes would become more competitive

CHAPTER 6. TESTING AND EVALUATION 96

than the others. To obtain the optimal performance, the modeller must trade-off

which mechanisms are most cost-effective in the target application.

In summary, although one of the results from this project shows the asynchronous
five-stage pipeline design to be slower than the three-stage approach, improve-
ments to this design are likely to reduce this gap. Together, these suggest that
future asynchronous five-stage implementations could be competitive with three-
stage designs, although they are slightly more complicated to implement. How-
ever, performance is not the only issue which determines the value of a design
style. Another issue is the ease of design. Although it is currently hard to predict
the performance of each forwarding design because it depends on the 'hazard
density’ (i.e. the average number of times a hazard is likely to occur), omitting
forwarding altogether seems to yield a much worse performance. The decision of

choosing or rejecting any particular mechanism rests with the designer.

6.5 Summary

Several different pipelined processor designs have been tested. In order to gain
a better insight into their operation, the designs were first tested with simple
programs write in assembly language. After modification, they were tested with
programs written in C which would be more relevant to their future use. The
modified designs make use of forwarding techniques which have proven to be

beneficial for the operating speeds.

Chapter 7

Conclusions

Even though asynchronous logic design has been resurrected only a few years ago,
it can potentially perform its task as well as or even better than synchronous sys-

tems, and it is continually moving forward.

This project has shown how an asynchronous pipelined processor can be im-
plemented in both three-stage and five-stage pipelines. An analysis of the perfor-
mance of several different designs has been presented, and an attempt made to

improve the throughput for the asynchronous five-stage pipelined approach.

7.1 Assessment of Work

Due to the simplicity of the DLX architecture, both asynchronous non-pipelined

and pipelined (three-stage and five-stage) designs were successfully implemented

97

CHAPTER 7. CONCLUSIONS 98

and analysed. This simplicity contributed to the work by restricting the com-
plexity of the instructions, and should ease further attempts to improve the per-

formance of the design.

Having channel communication and high-level programming features, LARD was
found to be a suitable language for modelling both the asynchronous non-pipelined
design and even more so for the asynchronous pipelined design at an abstract
level. It is not necessary to model the request and acknowledge signals used in
inter-block communication explicitly as it is in other programming languages.
Although LARD is harder to debug than, for example, C or VHDL owing to
the channel communication, it offers excellent tools for maintenance and viewing

results.

In conclusion, the results certainly suggest that the improvement of a simple asyn-
chronous five-stage pipeline design is not only practical, but also positively bene-
ficial to performance. It points to possibilities for future asynchronous pipelining

processor design.

7.2 Suggestions for Further Work

Four issues remain to be resolved to make these models more realistic and to

improve the performance of an asynchronous five-stage pipeline approach.

CHAPTER 7. CONCLUSIONS 99

e First of all, more realistic time information should be applied to obtain

more accurate result.

e Secondly for future improvement to these models of the DLX architecture,
compatible tools (at least the standard version according to [HP96] of DLX
assembler) are required in order to avoid tedious work in adjusting the
output code of the compiler to suit the DLX assembler. Otherwise another
well-supported architecture should be considered. The MIPS architecture,
which is similar to DLX, is another choice for implementation because many

practical tools for MIPS already exist.

e Implementation of the floating-point instruction set should be included to

make these models more complete.

e Last, but not least, other mechanisms should be identified to solve pipeline
dependencies in order to allow the pipeline to achieve optimal performance.
These could include other kinds of forwarding and branch prediction as

discussed in Chapter 4.

Bibliography

[ARM98a]

[ARMO98D]

[Dev94]

[Eng96]

[Fur96]

[GGYT]

Arm7tdmi-s datasheet. (ARM DDI 0084C), July 1998. Advanced

RISC Machines Ltd (ARM).

Arm9tdmi datasheet. (ARM DDI 0091A-02), January 1998. Ad-

vanced RISC Machines Ltd (ARM).

Tan V. Devereux. Synchronous and asynchronous processor design -a
comparative study-. Master’s thesis, Computer Science Dept. The

University of Manchester, 1994.

I. Englander. The Architecture of ComputerHardware Systems Soft-
ware: An Information Technology Approach. John Wiley & Sons,

Inc., 1996.

S. B. Furber. Asynchronous logic. IberChip, Sao Paulo, Brazil, Febru-

ary 1996.

D. A. Gilbert and J. D. Garside. A result forwarding mechanism for
asynchronous pipelined systems. In IEEE Computer Society Press,
pages 2-11, April 1997.

100

BIBLIOGRAPHY 101

[Gi197]

[GM93]

[Hau93]

[HoaT78]

[HPY6]

[Kang9)

[Kog81]

[Pav94]

D.A. Gilbert. Dependency And FException Handling In An Asyn-
chronous Microprocessor. PhD thesis, Computer Science Dept. The

University of Manchester, 1997.

J. Goodman and K. Miller. A Programmer’s View of Computer Ar-
chitecture: with assembly language examples from the MIPS RISC

architecture. Sauders College Publishing Inc., 1993.

S. Hauck. Asynchronous design methodologies: An overview. (UW-

CSE-93-05-07), April 1993.

C.A.R. Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666—677, August 1978.

J.L. Hennessy and D.A Patterson. Computer Architecture: A Quan-

tative Approach. Morgan Kaufmann, 1996.

G. Kane. MIPS RISC Architecture. Prentice Hall, 1989.

P.M. Kogge. The Architecture of Pipelined Computers. Hemisphere

Publishing Corporation, 1981.

N.C. Paver. The Design and Implementation of an Asynchronous
Microprocessor. PhD thesis, Computer Science Dept. The University

of Manchester, 1994.

BIBLIOGRAPHY 102

[PDF*92] N.C. Paver, P. Day, S.B. Furber, J.D. Garside, and J.V. Woods. Reg-
ister locking in an asynchronous microprocessor. In 1992 IEEE In-
ternational Conference on Computer Design: VLSI in Computers &

Processors, October 1992.

[PHI7] D.A. Patterson and J.L. Hennessy. Computer Organization € Design.:

The Hardware/Software Interface. Morgan Kaufmann, 1997.

[Sut89] I.E. Sutherland. Micropipelines. Communications of the ACM,

32(6):720-738, June 1989.

Appendix A

The DLX Architecture

A.1 Introduction

The DLX (pronounced ”deluxe”) architecture is a simplified version of the MIPS
R3000 processor, as described in the text book Computer Architecture, A Quan-
titative Approach by Hennessy and Patterson as an instruction tool. The archi-
tecture of DLX was chosen based on observations of frequently used instructions
from compiled programs. DLX provides a good architectural model for study, not
only because of the recent popularity of this type of machine, but also because it

is easy to understand.

DLX emphasises a simple load-store instruction set, design for pipelining effi-
ciency, an easily decoded instruction set and efficiency as a compiler target. The

complete version of the DLX architecture includes a floating-point instruction set.

103

APPENDIX A. THE DLX ARCHITECTURE 104

However, in order to simplify the model the floating point was omitted in this

project. This appendix describes the DLX architecture as it was implemented.

A.2 DLX Overview

The DLX architecture, which is used in this implementation, has thirty-two 32-
bit general-purpose registers (GPRs), named R0 through R31. The value of RO

is always equal to zero.

The data types are 8-bit bytes, 16-bit half words and 32-bit words for integer
data. The DLX operations work on 32-bit integers. Bytes and half words are
loaded into registers with either zeros or the sign bit replicated to fill the 32
bits of the registers, depending on the opcode. Once loaded, they are operated
on with the 32-bit integer operations. The only data addressing modes are im-
mediate and displacement, both with 16-bit fields. The DLX memory is byte
addressable in Big Endian mode with a 32-bit address. As it is a load-store ar-
chitecture, all memory references are through loads or stores between memory
and the GPRs. Supporting the data types mentioned above, memory accesses
involving the GPRs can be to a byte, to a half word or to a word. All memory

accesses must be aligned.

APPENDIX A. THE DLX ARCHITECTURE 105

I-typeinstruction R-typeinstruction
6 5 5 16 6 5 5 5 16
Opcode | rsl rd immediate Opcode | rsl rs2 rd func

Encodes: Loads and stores of bytes, words, half words Register-register ALU operations: rd <- rsl func rs2
All immediate (rd <- rs1 op immediate) Function encodes the data path operations: Add, Sub,...

Read/ write ial registers and moves
Conditional branch instructions (rsl is register, rd unused) write special reg! v

Jump register, jump and link register
(rd = 0O, rsl = destination, immediate = 0)

J-typeinstruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

Figure A.1: Instruction formats for DLX

A.3 DLX Instruction Format

To meet the requirements for making the machine easy to pipeline and decode,
all instructions are 32 bits with a 6-bit primary opcode. Figure A.1 shows the
instruction layout. All instructions are encoded in one of three formats, the I,
J or R-type instruction format. These formats are simple while providing 16-bit
fields for displacement addressing, immediate constants or PC-relative branch

addresses.

APPENDIX A. THE DLX ARCHITECTURE 106

| Instruction | Instruction name | Meaning
LW R1, 30(R2) | Load word Regs[R1] <32 Mem[30+Regs[R2]]
LB R1, 30(R2) | Load byte Regs|[R1] <3, (Mem|[30+Regs[R2]]y)**

Mem[30-+Regs[R2]]

LBU R1, 30(R2) | Load byte unsigned | Regs[R1] 32 0?* ## Mem[30+Regs[R2]]
LH R1, 30(R2) | Load half word Regs[R1] <32 (Mem[30+Regs[R2]]0)16
Mem[30-+Regs[R2]]

Mem[31+Regs[R2]]

SW R3, 500(R4) | Store word Mem[500+Regs[R4]] +—32 Regs[R3]
SB R3, 500(R4) | Store byte Mem[500+Regs[R4]] <16 Regs[R3]16.31
SH R3, 500(R4) | Store half word Mem[500+Regs[R4]] <—s Regs[R3]24.31

Table A.1: Examples of load and store instructions on DLX

A.4 DLX Operations

Apart from floating-point operations, there are three other broad classes of in-

structions: loads and stores, ALU operations and branches and jumps.

A.4.1 Load and store instructions

Any of the GPRs may be loaded or stored except that loading R0 has no effect. All
load-store instructions use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all data types
shown. Table A.1 gives some examples of the load and store instructions.

Note :
e The statement <, means transfer an n-bit quantity.
e A subscript is used to indicate selection of a bit or subrange from a field. Bits
are labelled from the most significant bit starting at 0.
e Superscript is used to replicate a field.

e The statement #+ is used to concatenate two fields.

APPENDIX A. THE DLX ARCHITECTURE 107

| Instruction | Instruction name | Meaning
ADD R1,R2,R3 | Add Regs[R1]«Regs[R2]+Reg[R3]
ADD RI1,R2,#3 | Add immediate Regs[R1]+—Regs[R2]+3
LHI R1,#42 Load high immediate Regs|[R1]«+424#+40'6
SLLI R1,R2,#5 | Shift left logical immediate | Regs[R1]«—Regs[R2]<<5
SLT R1,R2,R3 | Set less than if (Regs[R2]<Reg[R3])
then Regs[R1]«1 else Regs[R1]«+-0

Table A.2: Examples of arithmetic/logical instructions in DLX.

A.4.2 ALU operations

All ALU operations are register-register instructions. The operations include
simple arithmetic operations (ADD and SUB) and logical operations (AND, OR,
XOR and shifts). Immediate forms for all these instructions, with a 16-bit sign-
extended immediate, are provided. The operation LHI (load high immediate)
loads the top half of a register, while setting the lower half to zero. There are
compare instructions, which compare two registers (=,!=,<,>,<=,>=). If the
condition is true, these instructions place a 1 (true) in the destination register;
otherwise they place the value 0 (false). There are also immediate forms of these

compares.

Table A.2 gives some examples of arithmetic/logical instructions with and with-

out immediate values.

APPENDIX A. THE DLX ARCHITECTURE 108

| Instruction | Instruction name | Meaning
J name Jump PC«+(PC+4) + name
JAL name Jump and link Regs[R31]|«—PC+4 ;
PC+(PC+4) + name
JR R5 Jump register PC+Regs[R5]
JALR R5 Jump and link register | Regs[R31]«-PC+4 ; PC+Regs[R5]
BEQZ R4, name | Branch equal zero if (Regs[R4] == 0)
then PC+(PC+4) + name
Bnez R4, name | Branch not equal zero | if (Regs[R4]!= 0)
then PC+(PC+4) + name

Table A.3: Examples of typical control-flow instructions in DLX.

A.4.3 Branches and Jumps

The four jump instructions are differentiated in the way they specify the desti-
nation address and by whether or not a link, used for procedure calls, is made.
All branches are conditional. The condition is specified by the instruction, which
may test the register source for zero or non-zero. All control instructions, except
jumps to an address in a register, are PC-relative. Table A.3 gives examples of
typical control-flow instructions in DLX. Table A.4 contains a list of all DLX
operations and their meanings that were implemented into the models of this

project.

A.5 DLX Opcodes

These opcodes were taken from the DLXsim . Table A.5 shows the opcode num-
bers used for the DLX instructions. Register-register instructions have the special

opcode, and the instruction is specified in the lower six bits of the instruction

LA simulator for DLX. More detail in Appendix C

APPENDIX A. THE DLX ARCHITECTURE 109

word. (Similarly, floating point instructions have the FPARITH opcode).

APPENDIX A. THE DLX ARCHITECTURE 110

Instruction type/opcode ‘ Instruction meaning

Data transfers

Move data between registers and memory;
only memory address mode is 16-bit
displacement + contents of a GPR

LB, LBU ,SB Load byte, load byte unsigned ,store byte

LH, LHU, SH Load half word, load half word unsigned ,
store half word

LW, SW Load word, load word unsigned ,store word

Arithmetic/logical Operations on integer or logical data in

ADD, ADDI, ADDU, ADDUI
SUB, SUBI, SUBU, SUBUI
AND, ANDI

OR, ORI, XOR, XORI

LHI

SLL, SRL, SRA, SLLI,

GPRs; signed arithmetic trap on overflow
Add, add immediate (all immediates are 16 bits);
signed and unsigned

Subtract, subtract immediate; signed and unsigned
And, and immediate

Or, or immediate, exclusive or, exclusive or
immediate

Load high immediate - load upper half of register
with immediate

Shift both immediate (S--I) and variable form
(8---);

SRLI, SRAI shifts are shift left logical, right logical, right
arithmetic

S--, S--1I Set conditional: “--’’ may be LT, GT, LE, GE,
EQ, NE

Control Conditional branches and jumps; PC-relative
or through register

BEQZ, BNEZ Branch GPR equal/not equal to zero; 16-bit offset
from PC+4

J, JR Jumps; 26-bit offset from PC+4 (J) or target in
register (JR)

JAL, JALR Jump and link; save PC+4 in R31, target is

PC-relative (JAL) or a register (JALR)

Table A.4: All implemented DLX instructions

APPENDIX A. THE DLX ARCHITECTURE 111

| MainOp | $00 | $01 | $02 | $03 | $04 [$05 | $06 | $07 |
$00 SPECTAL | FPARITH | J JAL BEQZ BNEZ | bfpt | bfpf
$08 ADDI ADDUT | SUBT | SUBUI | ANDI ORI XORI | LHI
$10 rfe TRAP JR | JALR SLLI SRLI | SRAI
$18 SEQI SNEI | SLTI | SGTI SLEI SGEI
$20 LB LH LW LBU LHU 1f 1d
$28 SB SH SwW sf sd
|SPECIAL | $00 | $01 | $02 | $03 | $04 [$05 | $06 | $07 |
$00 SLL SRL | SRA
$08 TRAP
$10
$18
$20 ADD ADDU | SUB | SUBU AND OR XOR
$28 SEQ SNE SLT | SGT SLE SGE
$30 movi2s | movs2i | movf | movd | movfp2i | movi2fp

Table A.5: Opcodes of the DLX architecture

Appendix B

The Dhrystone: Benchmark

Program

In general, the ”’DHRYSTONE” Benchmark Program is used to measure the per-
formance of a processor. The Dhrystone that was used in this project is version
2.1 (May 25, 1988), implemented by Reinhold P. Weicker. This benchmark pro-
gram is the smallest reasonable program used for testing the performance of a
processor. Table B.1 presents the structure of the dynamic Assembly instructions

for one execution of the Dhrystone loop.

112

APPENDIX B. THE DHRYSTONE: BENCHMARK PROGRAM 113

| Instruction | Number |
ALU Instruction 1207
OR 1
SLEI 2
SLT 2
SGTI 3
SNE 3
SEQI 5
SLE 8
SUB 10
TRAP 17
SLLI 18
SUBUI 20
SEQ 22
ADDUI 44
SNEI 118
ANDI 155
ADDI 251
ADD 528
Memory Instruction 1061
LBU 20
LHI 44
SB 111
LB 141
SW 294
LW 451
Branch Instruction 351
BEQZ 11
JAL 26
JR 26
J 138
BNEZ 150
Total 2619

Table B.1: Numbers of Instructions in Dhrystone

Appendix C

Detail about Tools

LARD was developed by Phil B. Endecott of the AMULET group. Its documenta-

tion home page is available at: http://www.cs.man.ac.uk/amulet/projects/lard/.

GCC compiler, GNU C compiler, version 2.7.x, developed at the University
of Minnesota, which is used in this project, forms an ANSI C compiler for
the DLX architecture. It is available by FTP to go with [HP96]; http://www-

mount.ee.umn.edu/mcerqg/software.html

The assembler for the DLX architecture used in this project is available by FTP

from

ftp.lip6.fr/lip6.softs/alliance.

DLXsim was developed at the University of Illinois. It is available by FTP to go

114

APPENDIX C. DETAIL ABOUT TOOLS 115

with [HP96]; http://galileo.dpi.inpe.br/pub/dlzvsim

