
COPY-BACK CACHE ORGANISATION

FOR AN ASYNCHRONOUSMICROPROCESSOR

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy in the

Faculty of Science & Engineering

2002

DARANEE HORMDEE

Department of Computer Science

2

Contents

Contents ...
List of Figures ...6
List of Tables ...8
Abstract ...9
Declaration ..10
Copyright ...10
The Author ..11
Acknowledgements ...12
Dedication ...13

Chapter 1: Introduction ..14
1.1 Thesis organisation ...16
1.2 Research contributions ...18

Chapter 2: Background Material ...19
2.1 Asynchronous design ..19

2.1.1 Claimed advantages ...21
2.1.2 Drawbacks ..22

2.2 Cache and memory hierarchy ...24
2.2.1 Locality of reference ..27
2.2.2 Hit or miss ..28
2.2.3 Cache line fetch ..29
2.2.4 Cache (physical) organisation ..29
2.2.5 Degree of associativity ...30
2.2.6 Cache replacement strategies ...32
2.2.7 Memory burst access ..33
2.2.8 Write policies ...34
2.2.9 Write buffering ...35

2.3 Summary ...36

Chapter 3: Tuning Memory Hierarchy Performance37
3.1 Measuring performance ..37
3.2 Reducing cache hit time ...38
3.3 Reducing cache miss rate ...39

3.3.1 Larger cache size ..39
3.3.2 Longer cache line ...39
3.3.3 Higher degree of associativity ..40
3.3.4 Better replacement strategies ...40
3.3.5 Victim cache ..40

3.4 Reducing cache miss penalty ..41
3.4.1 Giving read misses priority over writes42
3.4.2 Line fetch mechanism ..42
3.4.3 Using multiple levels of cache ...46

3.5 Hiding latency ...49
3.5.1 Prefetching ...50
3.5.2 Pipelining ...51
2

3.6 Reducing memory traffic ..54
3.6.1 Write merging ..54
3.6.2 Copy-back write policy ..54

3.7 Other Notable Techniques ..58
3.7.1 Sub-blocking ..58
3.7.2 Cache lock-down ..58

3.8 Commercial Cache Implementations ..59
3.8.1 The AMD-K6-III cache system ...59
3.8.2 The Intel Pentium 4 cache system ..60
3.8.3 The Intel StrongARM SA-1110 cache system60
3.8.4 The ARM940T cache system ...60
3.8.5 The Sun UltraSPARC III cache system61
3.8.6 The IBM PowerPC 405 cache system ..61

3.9 Discussion ...62
3.10 Summary ...64

Chapter 4: Asynchronous Memories ..65
4.1 Asynchronous processor survey ...65
4.2 Asynchronous cache systems ...71

4.2.1 The ECSTAC cache system ...71
4.2.2 The TITAC-2 cache system ...71
4.2.3 The Caltech MiniMIPS cache system ..72
4.2.4 The Kin memory system ..73

4.3 AMULET memory systems ..73
4.3.1 The AMULET2e cache system ..73
4.3.2 The AMULET3i dual-port RAM system75

4.4 Observations ...80
4.5 Summary ...81

Chapter 5: An Asynchronous Copy-back Cache ..82
5.1 Environment ...82
5.2 Basic architecture ...84
5.3 Pseudo two-level cache structure ...87

5.3.1 ‘Cache hit’ ..87
5.3.2 ‘Cache miss’ ...88

5.4 Line fetch engine ..89
5.5 Line allocation mechanism ...90
5.6 Cache operations ...92

5.6.1 Line-buffer read hit ..92
5.6.2 Line-buffer write hit ...93
5.6.3 Cache RAM read hit ..95
5.6.4 Cache RAM write hit ...96
5.6.5 LFL read hit ...96
5.6.6 LFL write hit ..97
5.6.7 Read miss ...100
5.6.8 Write miss ..101

5.7 Exploiting sequentiality ..102
5.8 Timing in a non-blocking line fetch mechanism103

5.8.1 Hits and misses in a non-blocking scheme104
5.8.2 Handling writes ..105
3

5.9 Resolving ordering problems ..107
5.9.1 Inter-block data ordering ..108
5.9.2 Intra-block data ordering ..109

5.10 Write buffering ...110
5.10.1 Arbitration for the system bus ..113
5.10.2 Read-After-Write hazards ..114

5.11 Summary ...115

Chapter 6: Victim Caches ...116
6.1 Forwarding ..116
6.2 Victim cache processes ...118
6.3 Victim cache implementation ...120
6.4 Victim cache storage ..121
6.5 Victim cache operations ...123
6.6 Victim cache benefits illustrated ..125
6.7 Avoiding deadlock by using a token queue ..126
6.8 Extending the victim cache to reduce write traffic127
6.9 Victim cache distribution ..128

6.9.1 Centralised victim cache ..128
6.9.2 Distributed victim cache ..129

6.10 Summary ...131

Chapter 7: Simulation Methodology ..132
7.1 Synchronous cache evaluation ..132
7.2 Asynchronous cache evaluation ...134
7.3 Choice of modelling language ..135
7.4 Benchmark programs ..138
7.5 Simulation flow ..141
7.6 Simulation base-level parameters ...143
7.7 Simulation parameter variations ...143
7.8 Summary ...147

Chapter 8: Results and Evaluation ...148
8.1 Evaluation of cache features ...149

8.1.1 Cache size and sub-blocking ..149
8.1.2 Cache line size ...151
8.1.3 Set associativity and replacement strategy153
8.1.4 Memory burst-mode access ...156
8.1.5 Copy-back vs. write-through ..158
8.1.6 Write buffering and forwarding ...160
8.1.7 Number of outstanding memory accesses162

8.2 Asynchronous issues ...163
8.2.1 Distribution of cache hit locations ...163
8.2.2 Asynchronous delay characteristics ...165
8.2.3 Line-buffering ..167
8.2.4 Address sequentiality ...169

8.3 Victim cache ...170
8.3.1 Direct-mapped vs set-associative caches171
8.3.2 Victim cache distribution ...173
8.3.3 Efficient use of resource ..173
4

2

8.4 Summary ...173

Chapter 9: Conclusions ..174
9.1 Architecture summary ..174
9.2 Future work ...175
9.3 Summary ...180
9.4 Future prospects ..180

References ...18
5

List of Figures

Figure 2.1 Synchronous design style 19
Figure 2.2 Asynchronous bundled-data design style 20
Figure 2.3 Memory hierarchy 26
Figure 2.4 Code example of locality 27
Figure 2.5 Cache organisations (after [28]) 31
Figure 2.6 A memory array 34
Figure 2.7 Memory access modes 34
Figure 3.1 Jouppi’s victim cache organisation 41
Figure 3.2 Comparison of line fetch schemes 43
Figure 3.3 Non-blocking caches 45
Figure 3.4 Illustration of multi-level cache behaviours 48
Figure 3.5 Line-buffering 49
Figure 3.6 Jouppi’s stream buffer organisation 52
Figure 3.7 Asynchronous vs synchronous cache pipelining 53
Figure 3.8 Basic cache operations 55
Figure 3.9 Cache RAM array sub-blocking 59
Figure 3.10 Combining line-buffering and cache sub-blocking 63
Figure 4.1 The organisation of the AMULET2e chip (after [32]) 73
Figure 4.2 The organisation of the AMULET3i subsystem (after [34]) 75
Figure 4.3 The AMULET3i RAM block organisation (after [34]) 76
Figure 4.4 Controlling ordering with the FIFO 78
Figure 4.5 AMULET3 memory throttling (after [94]) 79
Figure 5.1 AMULET3 cache system 83
Figure 5.2 AMULET3 cache block organisation 85
Figure 5.3 Dual-ported asynchronous cache block 86
Figure 5.4 ‘Nearly’ two-level cache structure 87
Figure 5.5 Cache request steering control logic 89
Figure 5.6 Cache line allocation data flow 90
Figure 5.7 Line fetch engine (after [71]) 91
Figure 5.8 A line-buffer read hit 93
Figure 5.9 A line-buffer write hit 94
Figure 5.10 A cache RAM read/write hit 95
Figure 5.11 An LFL read/write hit 97
Figure 5.12 A cache read miss 101
Figure 5.13 A cache write miss 102
Figure 5.14 Identifying when not to perform sequential optimisation 103
Figure 5.15 Hit timing 104
Figure 5.16 Timing for a sequence of writes 106
Figure 5.17 Order problem due to concurrent activities of different durations 108
Figure 5.18 Managing ordering between L0 and L1 caches 110
Figure 5.19 Control FIFO resolving intra-block data ordering 111
Figure 5.20 Write buffering 112
Figure 5.21 Next memory transfer decision logic 114
Figure 6.1 Write buffer/victim cache position 117
Figure 6.2 ‘Nearly’ two-level cache structure incorporating a victim cache 117
6

Figure 6.3 Data transfer granularity 119
Figure 6.4 Control flow in the victim cache 120
Figure 6.5 Victim cache RAM structure 122
Figure 6.6 Cache forwarding operations 124
Figure 6.7 Cache read request control flow with forwarding 124
Figure 6.8 Illustration of benefits of forwarding 125
Figure 6.9 Illustration of a deadlock situation 127
Figure 6.10 Centralised and shared victim cache 129
Figure 6.11 Distributed and localised victim cache 130
Figure 7.1 An example in LARD 136
Figure 7.2 The simulation process in LARD 138
Figure 7.3 Benchmark memory access details 141
Figure 7.4 Cache model simulation process 142
Figure 8.1 Effects of cache size on miss rate 150
Figure 8.2 Effects of cache size on run time 151
Figure 8.3 Effects of cache sub-blocking on run time 152
Figure 8.4 Effects of cache line size on miss rate 152
Figure 8.5 Effects of cache line size on run time 154
Figure 8.6 Replacement strategy vs associativity 155
Figure 8.7 Effects of associativity on miss rate 156
Figure 8.8 Effects of memory burst-mode access 157
Figure 8.9 Write-through vs. copy-back 158
Figure 8.10 Proportion of writes to dirty lines 159
Figure 8.11 Effects of the victim cache size 162
Figure 8.12 Effect of varying the number of outstanding memory accesses 163
Figure 8.13 Effects of cache size on distribution of cache hit locations 164
Figure 8.14 Effects of sub-blocking on distribution of cache hit locations 165
Figure 8.15 Latency distribution 166
Figure 8.16 Line-buffering and copy-back styles 168
Figure 8.17 Breakdown of exploitable sequential accesses 169
Figure 8.18 Effect of the victim cache 170
Figure 8.19 Distribution of the victim cache 172
Figure 9.1 Cache architecture summary 176
Figure 9.2 Suggested layout organisation of the proposed cache 179
Figure 9.3 Layout organisation of a direct-mapped cache 180
7

8

List of Tables

Table 5.1 Key markings describing cache activities 92
Table 5.2 Stall duration during LFL write 99
Table 6.1 Benefits of distributing the victim cache 130
Table 7.1 Base-level cache parameters 143
Table 7.2 Cache simulation parameter variations 145
Table 7.3 Cache simulation parameter variation for victim cache experiments 146
Table 8.1 Dirtiness of evicted dirty lines 160
Table 8.2 Average cacheable memory access details 160
Table 9.1 Cache cost comparison 179

tive to

ncy

style.

nous

e with

or with

cks.

as

ploys

re.

ent,

nous

3, the

the

ues

d the

itable

ome
Abstract

Over the last decade asynchronous design has re-emerged as a viable alterna

clocked design with mounting evidence of competitive performance, power efficie

and electromagnetic compatibility compared to the more mainstream synchronous

However, although significant effort has been expended in the design of asynchro

processors, the design of asynchronous caches has been relatively neglected.

This thesis presents an asynchronous cache architecture – the logical choice for us

an asynchronous microprocessor. The design presented here provides the process

a unified, dual-ported view of its memory subsystem using multiple interleaved blo

Each block has separate instruction and data line-buffers effectively acting

level-zero (L0) cache, making the cache access time highly variable. The cache em

a copy-back write strategy to support a high-performance embedded processor co

The other key memory system component required for performance improvem

especially when combined with a copy-back cache, is a victim cache; an asynchro

implementation of a victim cache is presented in the second part of this thesis.

Together, the resultant structure forms an asynchronous cache system for AMULET

third generation fully asynchronous implementation of the ARM processor. Although

whole design is optimised for the AMULET3 microprocessor core, the techniq

employed are generally applicable to any asynchronous processor.

The proposed cache architecture is extensively evaluated using simulations, an

effectiveness of various alternative configurations is measured to arrive at a su

trade-off between cost, complexity and performance. The simulations highlight s

unusual aspects of the behaviour of asynchronous memory hierarchies.
9

f an

ther

er in

r

be

rther

not be

esis

trary,

the

take
Declaration

No portion of the work referred to in this thesis has been submitted in support o

application for another degree or qualification of this or any other university or o

institute of learning.

Copyright

(1).Copyright in text of this thesis rests with the Author. Copies (by any process) eith

full, or of extracts, may be madeonly in accordance with instructions given by the Autho

and lodged in the John Rylands University Library of Manchester. Details may

obtained from the Librarian. This page must form part of any such copies made. Fu

copies (by any process) of copies made in accordance with such instructions may

made without the permission (in writing) of the Author.

(2).The ownership of any intellectual property rights which may be described in this th

is vested in the University of Manchester, subject to any prior agreement to the con

and may not be made available for use by third parties without permission of

University, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may

place is available from the Head of the Department of Computer Science.
10

ing a

d for

lysis

p at

e in the
The Author

Daranee Hormdee graduated from Khon Kaen University, Thailand, in 1996, obtain

bachelor’s degree (B.Eng.) in Computer Engineering. From 1996 to 1997, she worke

the university as a junior lecturer.

In 1998 she was awarded an M.Sc. in Computer Science with a project title “An Ana

of Asynchronous Processor Pipelines” which was carried out in the AMULET grou

the department of Computer Science, the University of Manchester, UK.

Since then she has been conducting research on asynchronous cache architectur

AMULET group, work which has culminated in this thesis.
11

and

also

both

Luis

an

faster

t and

me

rainy

ging

epared

r as
Acknowledgements

Firstly, I would like to thank my supervisor Prof. Steve Furber for his valuable advice

guidance throughout the time in which the work in this thesis was carried out. I am

especially grateful to my advisor, Dr. Jim Garside, and to Dr. John Bainbridge who

endured much questioning and provided endless support and advice.

Special thanks to my proof readers: Dr. Andrew Bardsley, Peter Riocreux and Dr.

Plana for proof reading and commenting on the draft of this thesis.

I would like to thank Dr. Viv Woods for his advice in understanding cache design in

asynchronous environment and Lilian Janin, who came to the rescue with a much

LARD simulator when I needed it most.

The research presented in this thesis was funded by the Royal Thai Governmen

Khon Kaen University, Thailand. I gratefully acknowledge this support.

Thanks to my other friends in the AMULET group and in Manchester for keeping

healthy with many enjoyable (indoor) games of badminton and squash during these

years in Manchester.

And last, but no means least, my most heartfelt thanks go to my family for encoura

and supporting my education in every way.

This thesis was prepared using Adobe FrameMaker 5.5. Figures and graphs were pr

using Xfig 3.2 and GNUPLOT 3.7 respectively and were imported into FrameMake

Encapsulated Postscript.
12

Dedication

To my grandad.
13

essor –

tem –

, the

id pace

marily

essors

s time

lving

width

on the

e cache

lead to

mory

many

hy on

igned

the

e all
Chapter 1: Introduction

Computer systems are in essence composed of three principal components; a proc

which does the work, a memory – which stores instructions and data and an I/O sys

which allows interaction with the system’s environment.

With the continued improvements in VLSI technology and processor architecture

performance of general-purpose processors continues to increase at a relatively rap

compared to the memory since the same VLSI technology advances have been pri

used to increase memory capacity. As a result the gap between the speed of proc

and the speed of memory systems is widening. The phenomenon of memory acces

limiting system performance is well known as thememory wall [107].

These trends place increasing importance on the memory hierarchy, typically invo

cache memory, to bridge the memory wall and provide the instruction and data band

required by modern processors. In practice, this means that the caches have to be

same chip as the processor since crossing chip boundaries leads to unacceptabl

access time, but such on-chip caches must necessarily be small. These factors

caches with relatively high miss rates and large miss penalties.

Because of its position as the critical component in bridging the processor-me

performance gap, cache memory has been studied extensively and now uses

sophisticated techniques, some of which can be seen in Smith’s Second Bibliograp

Cache Memories [92]. However, (nearly) all of these developments have been des

around the assumption of a global clock which is used to coordinate activity within

cache systems; yet with a complex memory hierarchy it may be inefficient to coerc

operations into immutable clock periods or multiples thereof.
Chapter 1: Introduction 14

lobal

s get

t all

is the

acing

ol of

appen

n that

etter

onous

tages

ble.

onous

e one

em to

rom the

here in

s are

own,

used

ting a

iring

dent

es in

address

many

onous

cache
Conventional synchronous systems are based on global clocking whereby g

synchronisation signals control the rate at which different units operate. As the clock

faster, the systems bigger and the wires finer, it is increasingly difficult to ensure tha

parts in the system are operating in lockstep with one another. One solution to this

use of asynchronous design, which attacks clock-related timing problems by repl

global clock control with some form of agreement on a mutually acceptable protoc

data transmission and acknowledgement which is not regulated by time. This can h

locally within a unit or globally between subsystems. Recent research has also show

asynchronous microprocessors offer lower power consumption and b

electromagnetic emission profiles [32] than their synchronous equivalents.

It is possible to interface a conventional synchronous cache memory to an asynchr

microprocessor but this would subvert many of the possible asynchronous advan

offered by the core. For full benefit an entirely asynchronous solution is prefera

However, there have been very few attempts to construct the supporting asynchr

memory systems needed to exploit these to the full. Such systems, including th

presented here, display data-dependent behaviour which often allows the syst

approach average-case performance. Here, this means that when a request is sent f

processor to the cache, the cache response time can be different depending on w

the cache system the data currently resides. Although synchronous cache

well-understood, and comparison techniques to aid their development are well-kn

the same is not true of asynchronous caches.

Prior to this work, all asynchronous cache implementations were single-ported and

a write-through strategy. This thesis addresses the added complexity of suppor

Harvard-like processor architecture with a copy-back, unified cache, requ

dual-ported memories capable of handling contention between two indepen

asynchronous ports. In addition, the implications of fetching and returning cache lin

an asynchronous environment are discussed and new mechanisms developed to

the issues which arise.

The primary focus of this work is a cache architecture for embedded processors, but

of the techniques developed are applicable to larger, high-performance asynchr

caches. The goal of this research was to investigate the potential of such a
Chapter 1: Introduction 15

1.1 Thesis organisation

itional

rhead

ied in

n. An

lutions

3, a

the

4]

d as

d an

apts

ipally

ssing

uthor’s

tion to

us and

esign.

sed in

ed to

rmance

s. The

orage
architecture, evaluate its performance and design, and study alternatives. An add

requirement was to seek an architecture that did not have a significant hardware ove

and did not worsen the overall power consumption.

Currently, the most popular way of designing cache systems such as the one stud

this thesis is by the application of decades of experience of synchronous desig

analysis of a few of the differences seen between synchronous techniques and so

in some cases certainly highlight the most important lessons.

The starting points for the design of an asynchronous cache memory for AMULET

third generation asynchronous implementation of the ARM microprocessor, were

memories used on earlier chips incorporating the AMULET2 [32] and AMULET3 [3

processors. The AMULET2e chip included on-chip memory that could be configure

memory-mapped RAM or as a write-through cache; the DRACO chip incorporate

AMULET3 with memory-mapped RAM. The cache memory proposed here ad

features from both of these earlier memories and adds some new features, princ

related to the requirement for a copy-back write strategy to support the high proce

speed of the AMULET3.

1.1 Thesis organisation

This thesis comprises 9 chapters. The remainder of this chapter summarises the a

contributions and a list of publications, based on the work in this thesis.

Chapter 2 makes a case for an asynchronous copy-back cache. It gives an introduc

the asynchronous design describing the fundamental difference between synchrono

asynchronous design styles and highlighting the pros and cons of asynchronous d

The chapter then presents the nomenclature, structure and operation of caches u

synchronous memory hierarchies, all of which is well-known, and can also be us

describe asynchronous caches.

Chapter 3 looks at the use of cache techniques to enhance the cache system perfo

and discusses the trade-offs that are normally considered when designing cache

trade-offs are usually between four competing design requirements: large st
Chapter 1: Introduction 16

1.1 Thesis organisation

. The

ons in

ongst

s logic

phasis

sis

tecture.

ign: the

rder

ache

ystem

letely

se the

guage

t of the

cts of

from

cache.

s and

further
capacity, fast access time, low implementation cost and low power consumption

chapter also presents a number of commercial synchronous cache implementati

order to illustrate cache techniques and trade-offs that are commonly chosen am

these practical, recent cache systems.

Chapter 4 presents a summary of earlier processors in the area of asynchronou

design, together with a survey of a number of asynchronous memories. Special em

is placed on the AMULET2e cache and AMULET3i RAM systems which form the ba

of this work.

Chapter 5 presents the proposed design of an asynchronous copy-back cache archi

This poses a number of interesting issues and problems in asynchronous cache des

line allocation mechanism, write buffering, non-blocking line fetches and out-of-o

accesses.

Chapter 6 describes the justification for, and a possible implementation of, a victim c

and write buffer in a totally asynchronous environment. In an asynchronous cache s

new implementational problems are introduced as the processor may be comp

desynchronised with the bus traffic.

Chapter 7 describes the simulation environments and methodology used to analy

techniques and designs discussed in chapters 5 and 6. The LARD programming lan

used in this work is described at the beginning of this chapter.

Chapter 8 presents the evaluation of the proposed cache architecture in the contex

AMULET3 system. Three aspects of the work presented here are evaluated: the effe

varying the multitude of cache parameters; the variability in access times resulting

the systems’ asynchronous design; and the effects of adding the victim cache to the

Finally, chapter 9 draws conclusions from the research presented in this thesi

considers how the asynchronous cache architecture and implementation could be

improved.
Chapter 1: Introduction 17

1.2 Research contributions

tures

ber of

e first

first

ET3

stem

osed

how

cribe

r;

on

onics,

he

in
1.2 Research contributions

The work described in this thesis combines a number of existing architectural fea

from both synchronous and asynchronous systems and extends them with a num

novel features, particularly an asynchronous copy-back organisation. The result is th

asynchronous dual-ported copy-back cache design. In addition to this, the

asynchronous victim cache is presented, by adapting a technique from the AMUL

reorder buffer to resolve forwarding in an asynchronous environment. The entire sy

is evaluated using behavioural models to demonstrate the feasibility of the prop

architecture for the design of a substantial real-world cache. In particular, it is shown

copy-back cache operations can be achieved in an asynchronous context.

The following papers, which have been published or submitted for publication, des

aspects of the work culminating in this thesis:

• An Asynchronous Copy-Back Cache Architecture[50]: D. Hormdee, J.D. Garside

and S.B. Furber; submitted to Microprocessors and Microsystems Journal.

• An Asynchronous Victim Cache[49]: D. Hormdee, J.D. Garside and S.B. Furbe

will appear in the proceedings of the International Euromicro Symposium

Digital System Design (DSD’2002).

• An Asynchronous Copy-Back Cache Architecture[48]: D. Hormdee and J.D.

Garside; appeared in the proceedings of Postgraduate Research in Electr

Photonics, Communications and Software (PREP 2001).

• AMULET3i Cache Architecture[47]: D. Hormdee and J.D. Garside; appeared in t

proceedings of the International Symposium on Advanced Research

Asynchronous Circuits and Systems (ASYNC’2001).

• An Asynchronous Dual-Ported Copy-Back Cache Architecture[46]: D. Hormdee;

appeared in the proceedings of the 8th UK Asynchronous Forum.

• A Proposed Asynchronous Dual-Ported Cache Architecture[45]: D. Hormdee;

appeared in the proceedings of the 7th UK Asynchronous Forum.
Chapter 1: Introduction 18

mory

ew of

ighting

es of

clature,

obally

ated

e

d

e of

t the
Chapter 2: Background Material

This chapter provides background information on both asynchronous design and me

hierarchies, especially cache memory systems. Section 2.1 starts with an overvi

asynchronous design: it describes both synchronous and asynchronous styles highl

the differences between them. A number of advantages and disadvantag

asynchronous design are also discussed. Section 2.2 introduces the basic nomen

concepts, structures and operation of simple caches.

2.1 Asynchronous design

The conventional synchronous, or clocked, design style used today relies upon a gl

distributed timing signal known as the clock. All data transfer in the system is regul

by the clock as in figure 2.1a, withsenders driving data lines a defined period (th

setup-time) before the clock edge andreceivers having to latch the data within a define

period (thehold-time) after the clock edge as illustrated in figure 2.1b. The advantag

this approach is that the timing constraints for correct operation of the circuit (i.e. tha

setup and hold times are met) are easily checked with static timing analysis tools.

Figure 2.1: Synchronous design style

(a) Connectivity (b) Timing diagram

hold−time

data

clock

setup−time

sender receiver

clock

data
Chapter 2: Background Material 19

2.1 Asynchronous design

gfully

ck.

to act

king

when

rocess,

ally

e

-data

is

es may

data.

ocked

less

and

t in

] and,

e point

n all
Unlike synchronous systems, asynchronous (or as they are widely and more meanin

known,self-timedor clockless) systems operate without the use of a central, global clo

Instead they use a distributed control scheme allowing different parts of the system

independently where there is a lack of interaction between units. A local handsha

protocol is used for communication between these independent modules to indicate

data is available at a sender, and when it has been received for the next module to p

as illustrated in figure 2.2. Data is sent via a group of signal wires, which are norm

unidirectional, collectively known as achannel. The sender module delivers data onto th

channel whilst the receiver module obtains data from the channel. In the bundled

scheme, two signals,requestandacknowledge, are used to indicate when the sender

ready to send and the receiver has accepted the data respectively. Other schem

require only the acknowledge signal since request information can be encoded in the

Over the past half century, the majority of computer developers have chosen the cl

design style for its simple-to-validate timing constraints. However, the idea of clock

processors was not entirely abandoned, being kept alive by both academic

commercial organisations. The list of research groups with a major interes

asynchronous logic design can be found at the Asynchronous Logic Homepage [6

as can be seen there, efforts over the last decade have brought self-timed logic to th

of commercial readiness but with active research still ongoing. Further details o

aspects of asynchronous design are available elsewhere [7].

Figure 2.2: Asynchronous bundled-data design style

sender receiver
acknowledge

data

request

(a) Connectivity (b) Timing diagram

1st transaction 2nd transaction

acknowledge

request

data

is a sender’s action is a receiver’s action
Chapter 2: Background Material 20

2.1 Asynchronous design

ts that

ke it

of

bal

time

tems

antee

m.

obal

the

ing,

the

why

ther to

This

ing

sign

ted

This

nts as

lated,
2.1.1 Claimed advantages

The continued interest in asynchronous design is stimulated by the potential benefi

it may offer compared to the synchronous design style, as described below.

• Clock skew avoidance: Despite the advantages of synchronous design that ma

so popular – simplicity in the design, widely available components, settling

system activities by the time a clock event occurs etc. – maintaining glo

synchrony is becoming increasingly difficult.Clock skewis the term used to

describe the phenomenon whereby there is a slight difference in propagation

between the clock edges reaching various parts of a design [105]. As sys

become larger, an increasing amount of design effort is necessary to guar

minimal skew in the arrival time of the clock signal at different parts of the syste

In an asynchronous circuit, skew in synchronisation signals can be tolerated.

• Power efficiency: Conventional synchronous processors are based on gl

clocking whereby central synchronisation signals control the rate at which

different components of the processor operate. The use of free-runn

high-frequency clocks is a source of power inefficiency, causing all parts of

system to consume power whether or not they are doing useful work. This is

most power-conscious synchronous designs useclock gatingto manage their power

consumption. Units inside an asynchronous system negotiate between each o

transfer data allowing parts of such a system to work at their own paces.

improves power-efficiency since functional units use energy only when do

useful work and this comes as a direct product of the asynchronous de

methodology [33].

• Modularity of design: In an asynchronous framework a design can be construc

from small units within which temporal dependencies are managed locally.

makes the design process more modular, facilitating easy reuse of compone

individual stages are independent of each other and can be designed, simu

evaluated and tested in isolation.
Chapter 2: Background Material 21

2.1 Asynchronous design

t a

evice

to take

high

t-case

m the

where

s and

h finer

s of

ck

ant in

uses

result

the

ous

rence

etic

er of

lex

o wait

se of

cing

cies
• Better than worst-case performance: Whilst a synchronous design operates a

speed dictated by its worst-case timing path, circuits in an asynchronous d

operate as fast as they can; infrequent worst-case operations may be allowed

longer. This increases the overall operating speed of the device, maintaining a

average performance based on typical case operation rather than wors

operation. In a system including a cache, when a memory request is sent fro

processor to the cache, the cache response time can be different depending on

in the cache system the data currently resides. This is true for both synchronou

asynchronous caches, but the asynchronous system can accommodate muc

differences in timing variation because it does not quantise time to multiple

fixed clock periods.

• Electromagnetic compatibility (EMC) : In synchronous systems, the system clo

synchronises all activity, causing switching actions to happen at the same inst

time everywhere in the clock domain and at regular intervals. In turn this ca

sharp spikes in current consumption at each active clock edge. These spikes

in the emission of a large amount of electromagnetic noise, radiated at

harmonics of the global clock frequency. In contrast, activities in an asynchron

system are spread over time and frequency, causing electromagnetic interfe

(EMI) to be distributed at a lower amplitude and across the electromagn

spectrum.

2.1.2 Drawbacks

Despite the benefits that asynchronous design can offer, it also has a numb

disadvantages which can make it harder to use, such as:

• Control logic complexity and the deadlock/livelock risks: Without implicit

global clock control, the control logic in asynchronous design is more comp

since each module of the design needs hardware to perform synchronisation t

for data and to trigger other modules when it has produced its data. The u

explicit communications between modules increases the risk of introdu

deadlock: distributed control through which a circle of unresolvable dependen

causes all activity to cease. There is also an added risk oflivelock, where units get
Chapter 2: Background Material 22

2.1 Asynchronous design

ms

d be

ately,

rge

ensive

olled

ation

the

e

ncies

ften

ry to

. An

ign is

rite

ss

ntly

us

table

e state

larger.

a

must

early

tems

Many

s this

stems
stuck in loops without exits, resulting in incorrect behaviour. These two proble

can be introduced by design errors. Ideally, deadlocks and livelocks shoul

detected and then avoided at a very early stage in the design process. Unfortun

current formal validation techniques (e.g. Rainbow [83]) cannot cope with la

designs such as the study presented in this thesis, hence the use of ext

simulation to give good confidence in the design functionality.

• The loss of implied timing related/temporal knowledge: In a synchronous

processor, the positions of an instruction and its result are deterministic, contr

by the clock. However, in an asynchronous system, once a sequence of inform

is put into a pipeline, there is no way of knowing where in the pipeline

information will be at any later time without explicitly synchronising with th

pipeline. Asynchronous design works well where there are few inter-depende

between blocks, where synchronisation is required a significant penalty is o

incurred. Synchronisation should therefore be limited to where it is necessa

allow other units in the system to operate independently at their own rate

example solution of such a problem in the context of asynchronous cache des

the implementation of a victim cache, providing data forwarding from the w

buffer, presented in chapter 6.

• Design validation difficulties: Design validation is an extremely important proce

in order to detect any defects in the design. Because of the inhere

non-deterministic activities resulting from arbitration [88] in an asynchrono

system, for a particular sequence of inputs there may be various accep

sequences of outputs. Furthermore, asynchronous systems tend to have mor

than comparable synchronous systems and so the set of tests required may be

• The lack of design tools: In order to make asynchronous design competitive in

market dominated by clocked synthesis, EDA tools and design methodologies

be developed. When the recent interest in asynchronous design took off in the

1990s there were very few specific tools available. Most asynchronous sys

have been designed by hand, at the cost of a large amount of time and effort.

research groups and commercial organisations have attempted to addres

problem and a range of tools is now available. These range from synthesis sy
Chapter 2: Background Material 23

2.2 Cache and memory hierarchy

nd

ese

alsa

51

vel

ated

high-

ing

in

gn

less

were

sign

tely

s, not

gs are

e use

onous

ning

hniques

tions

hting

e

for constructing small-scale control modules (such as Petrify [22] a

Minimalist [27]) to silicon compilers (such as Balsa [10] and Tangram [12]). Th

silicon compilers have been used for the creation of entire processors: B

for SPA [80] and Tangram for an asynchronous low-power 80C

microcontroller [33]. They remove a lot of the burden of looking after the low-le

details of the circuit from the designer and allow designer effort to be concentr

more on data processing and algorithmic issues. Furthermore, a number of

level modelling/simulation languages exist for asynchronous circuits includ

LARD [55] (described in more detail in section 7.3), the tool used for modelling

this thesis.

• Unfamiliarity : Unfamiliarity with asynchronous design among the digital desi

community is not a fundamental drawback of the technology but it is neverthe

a factor in preventing its more widespread use since most designers

“brought up” on synchronous techniques. This will only be overcome by the de

community seeing real-life applications coming into use which adequa

demonstrate a technical and commercial advantage.

A positive characteristic of these drawbacks is that they are the designers’ challenge

the users’. The end users of the system need never be aware that its internal workin

self-timed, although they would hopefully appreciate the advantages gained from th

of asynchronous design.

2.2 Cache and memory hierarchy

Although, as discussed in the previous section, asynchronous and synchr

implementation techniques are very different, similar higher-level architectural plan

approaches can be used. For these reasons, this section examines a number of tec

used in the design of synchronous memory subsystems. However, all of the illustra

here are drawn as if they were employed in the asynchronous environment (highlig

required synchronisation), depicting their effects on the asynchronous design.

The performance of a data processing system can be measured in terms of itslatencyand

bandwidth(also known asthroughput). The latency of a memory system is the tim
Chapter 2: Background Material 24

2.2 Cache and memory hierarchy

when

is the

e are,

s the

y;

tly

- see

eed

tively

unt of

peed

mory

ll, fast

the

age

its of

ently

k into

jacent

larger,

space
between the initiation of a memory request from the processor and its completion

the processor receives the result of that request. The bandwidth of a memory system

rate at which the memory system can satisfy requests or produce results. Ther

therefore, four options for increasing memory performance:

• widening the memory bus between processor and memory which increase

bandwidth but does not affect latency;

• making the memory faster which improves both the bandwidth and the latenc

• pipelining the memory which improves bandwidth but usually also sligh

increases the latency;

• exploiting locality of accesses to simplify address decoding and reduce latency

section 5.7.

The cost of memory is proportional to its speed and size. A sufficiently high sp

memory of size equal to the address space of a modern processor will be prohibi

expensive. In order to get around this problem, it is possible to use some small amo

high-speed memory to store a portion of the content of a larger amount of lower-s

main memory in a way that approximates the performance of a large high-speed me

with a reasonable cost. This forms the memory system into a hierarchy. Such a sma

memory in the memory hierarchy is referred to as acache.

The idea of organising memory into a hierarchy (shown in figure 2.3) dates back to

early 1960s. The University of Manchester Atlas Machine’s ‘One-level stor

system’ [61] was the first example of a memory hierarchy in the form ofvirtual memory,

a mechanism expanding the space available for instructions and data beyond the lim

physical main memory. The concept behind this mechanism is to store the most frequ

used data in the high-speed memory, fetching less frequently used data from the dis

the high-speed memory as needed.

In a hierarchical memory system, data replacements are performed between ad

levels. Upper levels are smaller, faster and closer to the processor. Lower levels are

slower and cheaper per bit. Typically an upper level replicates a part of the memory
Chapter 2: Background Material 25

2.2 Cache and memory hierarchy

mory

emory

mory

n the

vel is

d

stem.

m for

t is

se two

two

the
of the next lower level. The best-case scenario for the operation of such a me

hierarchy is that the processor can always obtain referenced data from the highest m

level allowing memory access to be completed at the maximum speed of the me

system. However, this is obviously impossible to achieve in the general case. Whe

processor cannot find the data at the highest memory level, then the next lower le

searched and so on. When the data is found, aline – comprising the requested data an

possibly some other adjacent data – is copied into the higher levels of the memory sy

Of course, some amount of data from the higher levels must be evicted to make roo

the new data.

Cache was first introduced by IBM in the System 360 Model 85 in 1968 [56]. I

normally situated between the processor and the main memory and decouples the

components. It can be either on-chip or off-chip. Accessing a cache involves

operations:

• address tag look-up: to check whether (and where) the required data is in

cache;

• data access: to read from or write into the cache.

Figure 2.3: Memory hierarchy

registers fastest

speed size cost(/bit)

highestsmallest

lowestbiggestslowestdisc (in virtual memory systems)

main memory

cache level−n

cache level−1

...
Chapter 2: Background Material 26

2.2 Cache and memory hierarchy

k-up

ribed

sed is

to

es the

s: the

e

rties.

patial

gely
By exploiting the sequentiality of memory accesses, the frequency of the tag loo

operations can be reduced. A solution to this is the line-buffering technique, desc

briefly in section 3.4.3 and in greater detail in section 4.3.2.

The cache literature spans a number of decades, however the terminology u

inconsistent in many places. It is not possible to identify a definitive terminology

describe caches. Therefore, for consistency, the remainder of this section describ

basic cache terminology that will be used in the rest of this thesis.

2.2.1 Locality of reference

Memory hierarchy relies on two properties of the access patterns of most program

temporal locality(locality in time) – if something is accessed once, it is likely to b

accessed again soon, and thespatial locality(locality in space) – if one memory location

is accessed then nearby memory locations are also likely to be accessed.

Figure 2.4 shows a fragment of ARM assembly code exhibiting both of these prope

Temporal locality of code occurs here because the loop is executed many times. S

locality of code also occurs from the loop and from the fact that the code is lar

sequential, so after fetching theLDRB instruction theCMP instruction is fetched.

Temporal locality of data access is shown by the operations on the datar1 , stored in a

register here, and data locality is shown by the in-order accesses to the text string.

AREA HelloW, CODE, READONLY

START ADR r1, TEXT ;r1->TEXT

LOOP LDRB r0, [r1], #1 ;r0=mem[r1] then r1++

CMP r0, #0 ;compare r0 with 0

SWINE &0 ;software interrupt (exit) if not equal

BNE LOOP ;branch LOOP if not equal

SWI &11 ;software interrupt (write character)

TEXT = “Hello World”, &0a, &0d, 0

END

temporal locality
in instructions

temporal locality in data

spatial locality
in instructions

spatial locality in data

Figure 2.4: Code example of locality
Chapter 2: Background Material 27

2.2 Cache and memory hierarchy

iven

emory

ece of

on of

ance

ly, a

line.

ndly,

been

dly, a

r line

fully

total

s. Miss

called

the

er of

e start

ate is
2.2.2 Hit or miss

A cachehit results when a memory request can be satisfied from the contents of a g

cache as the required data is present in the cache. A cachemissresults when the required

data is not present in the cache and causes an access to the next level down in the m

hierarchy. In some situations, the cache continually misses because, for a given pi

code or data (e.g. a loop or array), the fetching of required lines is causing the evicti

other required lines. This pathological case of evictions causes serious perform

degradation and is known asthrashing.

There are three kinds of cache miss, also known as the three C’s [41]. First

compulsory missoccurs when the data resides in a previously unreferenced cache

This kind of miss is unavoidable when loading a new program into the cache. Seco

a capacity missoccurs when the required data is amongst the cache lines that have

discarded (because the cache is too small) to make room for new cache lines. Thir

conflict missoccurs whenever a cache must discard a cache line to allocate anothe

on a miss, even if other sets have unused lines. (Hence there is no conflict miss in

associative caches – see section 2.2.5.)

Thehit rate is the fraction of memory accesses found in the cache with respect to the

number of memory accesses whilst themiss rate(1 – hit rate) is the fraction of memory

accesses not found in the cache with respect to the total number of memory accesse

rates that are measured when starting with an empty cache are calledcold-start1 miss

rates. Those that are measured from the time the cache becomes initially full are

warm-startmiss rates. The warm-start miss rate is obviously equal to or lower than

cold-start rate when running the same program. The difference is the numb

compulsory misses, because the warm-start miss rate omits all cache misses at th

when filling the empty cache.

1. Note that this definition is different from Hennessy and Patterson [41] where the cold-start miss r
called the compulsory miss rate.
Chapter 2: Background Material 28

2.2 Cache and memory hierarchy

on that

m the

hing

n as

be

iques

iss,

or. In

e with

ting

ith

day

or a

; this is

ry

ction

mory

tions

to fetch

, in an

e two

trolled.
2.2.3 Cache line fetch

When a cache miss occurs, resulting from an attempt to access a cacheable locati

is not replicated in the cache, a cache line, containing the required data, is copied fro

memory into the cache. This process is called aline fetch.

The simplest line fetch procedure is to halt the processor for the entire period of fetc

the cache line, which starts with the lowest address. This method is know

stall-on-miss[41]. It requires the processor to stall for a period of time which may

considerably longer than is strictly necessary. Other, more efficient, line fetch techn

are presented in section 3.4.2.

The miss penaltyis the additional time required to service the data access for a m

which is the time to access the main memory and forward the value to the process

some designs the miss penalty includes the time taken to replace a line in the cach

the corresponding line from the main memory.

2.2.4 Cache (physical) organisation

In the 1940s, researchers at Harvard University built the ‘Mark’ series of compu

machines [41]. The Mark-III and the Mark-IV were stored-program machines w

separate memories for the instructions and data. The nameHarvard architecturewas then

coined for this type of memory organisation. Whilst this type of architecture is rare to

in conventional microprocessors (though still common in DSPs [25]), it is common f

machine to have a shared main memory but separate instruction and data caches

called amodified Harvard architecture[28]. The alternative, a single, shared memo

system invented around the same time, is named aunified architecture [41].

In a modified Harvard architecture an advantage of separating the data and instru

caches is that it makes it simpler for instructions and data to be fetched from me

simultaneously. In systems in which the processor is pipelined and can fetch instruc

and data simultaneously, it is a great advantage to have separate buses to memory

these items, rather than forcing a stall and fetching them one at a time. Furthermore

asynchronous environment a unified cache would require arbitration between thes

request sources because the timing relationship of the two requests cannot be con
Chapter 2: Background Material 29

2.2 Cache and memory hierarchy

stic

uest

rarer

ts.

am

o it;

ion,

dapt to

een

mory

idth,

vard

t is a

signs

his

he line

mory

ngle

ingle

address

and

each
Although arbitration is not particularly expensive, it is undesirable for determini

behaviour. Shifting the point of arbitration to when the cache cannot satisfy a req

locally and requires access to the lower levels in the memory hierarchy, a much

situation, results in higher average overall performance and fewer arbitration even

With a split cache architecture it is usually impossible to modify the instruction stre

since, typically, the instruction cache is capable of reading memory but not writing t

therefore self-modifying code becomes much more difficult to implement. In addit

since the two caches are physically separate, the cache hierarchy is less able to a

changing conditions by modifying the partitioning of cache resources betw

instructions and data. On the other hand, the benefit of a modified Harvard me

architecture is that it is possible to optimise each cache individually to meet its bandw

locality and power requirements since they need not be identical.

An effective architectural approach that can provide most of the benefits of a Har

architecture combined with those of a unified approach is described in chapter 5. I

form of unified memory system that has been used in a number of cache/memory de

including the AMULET3i macrocell on the DRACO chip [34], and is also used in t

work.

2.2.5 Degree of associativity

Caches are frequently classified by the manner in which the access address to cac

mapping is accomplished. The simplest way to allocate the cache to the system me

is adirect-mapped cache(figure 2.5a) where each main memory address maps to a si

fixed location within the cache. Multiple main memory addresses may map to a s

cache address, since the cache’s address space is smaller than the main memory

space.

At the other extreme afully-associative cache(figure 2.5b) is one where any main

memory address can be stored in any part of the cache. Lastly, theset-associative cache

(figure 2.5c) is a compromise between the two extremes of the direct-mapped

fully-associative styles where, for example, in a 2-way set-associative cache
Chapter 2: Background Material 30

2.2 Cache and memory hierarchy

mined

ed in

ticular

g’ in

ed by
memory address can be stored in either of a set of two locations, the set being deter

by some part of the address.

As seen in all organisations in figure 2.5, information held in each cache line is stor

two parts: the data is held in a data store and its address is held in atag store. In

direct-mapped and set-associative caches, to check whether the content of par

memory locations are held in the cache, the high-order part of the address (the ‘ta

figure 2.5a and figure 2.5c) is compared with the stored tag in the tag RAM, access

Figure 2.5: Cache organisations (after [28])

...

hit

hithit data data

data

sa
m

e
 o

rg
a

n
is

a
tio

n
a

s
d

ir
e

ct
−

m
a

p
p

e
d

...

...

(c) Set−associative (2−way) cache organisation

(b) Fully−associative cache organisation(a) Direct−mapped cache organisation

index offsettag

addressoffsettag index offset

tag RAM

compare compare

CAM

tag RAM

de
co

de
r

tag RAM

de
co

de
r

compare

de
co

de
r

MUX

MUX MUX

data RAM

data RAM data RAM

MUX

data RAM
Chapter 2: Background Material 31

2.2 Cache and memory hierarchy

ache.

uired

using

t all

in the

If all of

ed for

ish,

e

to use

tartup

gies

ed.

e of

A

alue

eam

e

le. In

so the
the relevant address bits (the ‘index’). If they are the same, the information is in the c

The last few low-order bits of the address, the ‘offset’, are used to indicate the req

data from the retrieved cache line.

On the other hand, the tag store in fully-associative caches is designed differently

CAM (Content Addressable Memory), a RAM cell with integrated comparator so tha

tag look-ups can be processed in parallel. If there is a hit, theoffsetcan be used to indicate

the required data from the cache entry as before.

An advantage of a fully-associative cache is that as long as there is a free entry

cache, then there is no need to replace the cache contents with other addresses.

the entries are full and a miss occurs then ideally the line which has not been need

the longest period of time would be evicted. Since this is difficult to accompl

alternative methods,cache replacement strategies(described in the next section), must b

used.

2.2.6 Cache replacement strategies

There are several strategies used to determine which entry in an associative cache

to store a newly fetched line. This can be an important choice because – except at s

– this involves overwriting/replacing an existing cache line. The most common strate

are [41]:

• Cyclic replacement: When a line fetch occurs, the next line in sequence is replac

Upon reaching the last line in a set, the cycle restarts at the first line. This typ

algorithm is also well known as FIFO (First-In-First-Out), round-robin and LR

(Least-Recently-Allocated).

• Random replacement: The decision is based on a random or pseudo-random v

to spread allocation uniformly, hence there is no ‘pathological’ reference str

causing worst-case results.

• Least Recently Used (LRU) replacement: The two algorithms described abov

come at low cost under the assumption that all addresses are equally probab

most applications, however, long address sequences are far from random, and
Chapter 2: Background Material 32

2.2 Cache and memory hierarchy

t [90].

e line.

again

for the

ver,

and

cache

cells

rms the

dress

at the

trieved

trieve

t must

ries

ith the

g can

using

f a

rst

ird

to do

would
history of the address sequence can be used to increase memory throughpu

With the LRU algorithm, the cache keeps a record of accesses to each cach

Temporal locality means that the recently-used cache lines tend to be used

soon, and so the new line is placed into the cache line that has been unused

longest time, which is likely to be the best candidate for disposal. This is, howe

more expensive to implement.

In empirical studies [41] there was little performance difference between the LRU

random replacement strategies and this difference becomes less obvious as the

becomes larger.

2.2.7 Memory burst access

A typical memory, as shown in figure 2.6, is constructed as a dense matrix of storage

whose contents are accessed via a two-stage process. Firstly, part of the address fo

row address used to read a whole row from the matrix. Then the remainder of the ad

forms the column address used to select which part (e.g. word) of the row to deliver

data output pins. If two consecutive accesses address the same row, then the row re

from the matrix for the first access can be reused for the second without having to re

it again. With dynamic memories, this also avoids an additional precharge stage tha

precede the row access.

This is exactly what is done in modern computer systems and is known asburst mode

accessor bursting[81], a rapid data-transfer technique automatically generating a se

of consecutive addresses each time the processor requests a single address w

assumption that the following requests will be sequential to the previous one. Burstin

be applied both to read (from memory) and write (to memory) operations.

In a synchronous system, the timing of burst mode access is generally stated

shorthand:‘x-y-y-y’ referring to the number of clock cycles for each access o

quad-word burst. The first number (x) represents the number of clock cycles to do the fi

access. The other numbers(y) are how many clock cycles are used for the second, th

and fourth accesses. An example would be ‘2-1-1-1’, which means 5 clock cycles

the whole burst. Using conventional random access mode, this access sequence
Chapter 2: Background Material 33

2.2 Cache and memory hierarchy

d by

ining

. In

l as
take 8 clock cycles: ‘2-2-2-2’. Figure 2.7 illustrates how performance can be improve

burst mode memory access. In an asynchronous environment x andy would represent the

delay to complete those tasks.

2.2.8 Write policies

In addition to caching reads from memory there are different types of policies determ

how a cache handles writes:

• Write hit policies : When writing into the cache, there are two possible options

a write-through cache, data is always sent to the external memory as wel

Figure 2.6: A memory array

Figure 2.7: Memory access modes

data

...

address

memory array

......
row address

column address

de
co

de
r

MUX

A0 A1 A2 A3

A0 A1 A2 A3

random access mode

burst mode

improvement

overhead

time taken reading each word
Chapter 2: Background Material 34

2.2 Cache and memory hierarchy

be

y

han a

he

a

ite

se the

rites

l need

the

as just

from

ta can

t

rove

ffer

k can

In a

t the

be
updating the cached copy. All levels of the memory hierarchy are said to

consistent. In acopy-back(also known aswrite-back) cache, data is written only to

the cache. Only modified data, indicated by adirty bit, is sent to update the memor

when the line is reallocated or the cache isflushed(i.e. the main memory is made

consistent with the cache). This type of cache provides better performance t

write-through cache because it reduces write traffic to the memory.

• Write miss policies: Another issue in handling memory writes is what to do in t

event of a write miss. In a cache using thewrite-aroundpolicy (also known as

no-fetch-on-write) no cache allocation is performed for write operations whilst in

write-allocate(or fetch-on-write) cache, cache allocation is performed on a wr

miss and is then followed by a write action into the cache.

Usually, copy-back caches use the write-allocate policy and write-through caches u

write-around policy. This first choice is reasonable since it is hoped that subsequent w

to that line will be captured by the cache. In the second case, subsequent writes stil

to go to the main memory. However, write-through caches may benefit from applying

write-allocate scheme as well under the reasonable assumption that the line which h

been written is likely to be read in the near future.

2.2.9 Write buffering

Writes to main memory or the next cache down can occur because a line is evicted

a copy-back cache or a write into a write-through cache. In both cases the write da

be buffered, in a FIFO structure called awrite buffer[41], so that it does not impede fas

cache operation whilst waiting for the main memory.

Write buffering is desirable in both a write-through and a copy-back cache to imp

performance but for slightly different reasons. In a copy-back cache, a write bu

containing a single slot is desirable so that an evicted line needing to be copied bac

be held temporarily to avoid interfering with the more urgent line fetch process.

write-through cache several slots in a write buffer are normally required so tha

processor does not have to stall for writes (which normally occur in clusters) to
Chapter 2: Background Material 35

2.3 Summary

nce

eded

idle,

e is no

s are

read

asons

ous

eds to

archies

hapter

.

completed. However, a large cluster of writes may still fill the buffer causing performa

to be degraded.

Except when the write buffer is full, or when it contains the most up-to-date data ne

by a read, buffered writes are usually sent out to the next level down when the bus is

so hiding any further memory access penalty. In these two exceptional cases, ther

choice but to drain some writes from the buffer. In most cases therefore, only read

critical, affecting the overall performance when the processor has to stall for a

request.

2.3 Summary

This chapter has introduced the basic principles of asynchronous design and the re

for its gaining popularity. Instead of a single global clock, parts of an asynchron

system can work at their own pace, negotiating with each other whenever data ne

be passed between them. The basic terminology used in caches and memory hier

has also been introduced, with a basic grounding in cache techniques. The next c

extends this by detailing how the memory hierarchy performance can be improved
Chapter 2: Background Material 36

Basic

use of

rt of

in the

s are

d to be

s are

(

mory
Chapter 3: Tuning Memory Hierarchy
Performance

The previous chapter described background material essential for this thesis.

asynchronous design concepts were discussed and arguments for and against the

this design style in the context of a memory hierarchy were introduced. The latter pa

chapter 2 summarised the cache terminology used herein.

This chapter surveys techniques used to improve memory hierarchy performance

mainstream, synchronous design. A number of commercial cache implementation

also described. The chapter concludes by discussing candidate techniques that nee

studied in more detail for use in an asynchronous environment. Those studie

described in later chapters.

3.1 Measuring performance

Memory hierarchy performance, represented by the average memory access timeTavg),

can be calculated as [41]:

Equation 3.1

WhereThit is the cache access (or hit) time,M is the miss rate andTpenalty is the cost

incurred on a miss (the miss penalty).

Improving memory hierarchy performance is all about reducing the average me

access time (Tavg) which can be achieved by:

• reducing the cache access timeThit;

Tavg Thit M Tpenalty×()+=
Chapter 3: Tuning Memory Hierarchy Performance 37

3.2 Reducing cache hit time

the

onus

cing

in the

ssor,

The

e in

nts on

local

iable

ystem

ry

nd so

nd low

s and

reases

sses.

ontrol

h the

ache is
• reducing the cache miss rateM, thus changing the ratio of low-cost (Thit) hits to

expensive (Tpenalty) misses;

• reducing the miss penaltyTpenalty;

• hiding read-write latency, usually through increased concurrency;

• reducing memory traffic, causing less contention for main memory between

processor and other peripherals (e.g. DMA controller) and giving the added b

of reduced power consumption. Clearly the first obvious technique for redu

processor-memory traffic is caching itself.

Both hardware and software approaches can be explored to optimise improvements

above areas. However, the scope of this chapter is restricted to uniproce

non-software-related improvements concerning only the cache memory level.

chapter introduces a number of hardware techniques for improving performanc

general-purpose systems. Some of these techniques deliver dramatic improveme

specific, possibly infrequent, access patterns whilst others provide only small

improvements whose cumulative effect is appreciable. Note that such small or var

improvements can be much better explored by an asynchronous system since s

activity is not quantised in time.

3.2 Reducing cache hit time

Hit time is typically critical to performance since it affects the majority of memo

references and memory latency is often the limiting factor on system performance (a

clock frequency).

An integrated cache on the same die as the processor can support high bandwidth a

latency memory accesses by using a wide interface and eliminating the delay of pad

buses that arises with off-chip accesses. Furthermore, on-chip caching also dec

energy consumption in the memory system due to the reduction in off-chip acce

However, on-chip area is often limited and so the cache has to be small. The less c

involved in a cache’s implementation, the shorter the delay in the critical path throug

hardware. Small and simple caches are ideal in this respect and a direct-mapped c
Chapter 3: Tuning Memory Hierarchy Performance 38

3.3 Reducing cache miss rate

ccess.

imes.

likely

pacity

to an

f miss

es by

djusted

ward

rease

ber of

to be

ed by

g the

a cost,

store

ress

high

uming

red to

patial

could
suggested to reduce hit time, since tag checking can be overlapped with data a

Hill [42] has confirmed this through studies of cache miss rates and access t

However the major disadvantage of small and simple caches is that they are more

to suffer from higher miss rates, i.e.Thit is reduced butM increases.

3.3 Reducing cache miss rate

To reduce the miss rate, some of the misses due to the three C’s (compulsory, ca

and conflict) must be eliminated. Compulsory misses are caused by loading data in

empty cache and are therefore unavoidable. It is possible to change the mixture o

types, for example: compulsory misses can be converted to conflict or capacity miss

changing cache size or other parameters. There are many parameters that can be a

to control the mixture of conflict, capacity and compulsory misses and a rather awk

trade-off must often be made to obtain a comfortable balance.

3.3.1 Larger cache size

The most straightforward approach to reduce the number of capacity misses is to inc

the size of the cache. Nevertheless, changing the cache size also affects the num

conflict misses since references are spread differently possibly allowing misses

moved from capacity to conflict and vice versa. The total cache size can be increas

having more cache lines (of the same size), by enlarging the cache line whilst fixin

number of lines, or by increasing both parameters. However, these changes come at

primarily in silicon area. Furthermore, adding more cache lines results in a larger tag

which slows the look-up process requiring larger tracks on chip and larger add

decoders (increasing the hit time) and increases the power consumption in

associativity caches.

3.3.2 Longer cache line

For a given cache size, using short cache lines can provide a lower miss penalty (ass

that the processor is stalled for the whole line fetch duration) since less data is requi

be fetched into the cache for each line fetch. Longer lines take better advantage of s

locality, decreasing the number of compulsory misses since subsequent requests
Chapter 3: Tuning Memory Hierarchy Performance 39

3.3 Reducing cache miss rate

ight

ewer

ontain

.

rding

ever,

caches.

rther

reject

. The

6. The

O or

t and

only

to

cache

these

can

can

ively,

ache
become hits in the previously fetched, long cache line. However, this technique m

increase other types of misses when references do not follow locality rules. Also, f

cache lines can be stored in such a cache. Larger cache lines are also more likely to c

unwanted items since – for example – branches occur quite frequently in the code

3.3.3 Higher degree of associativity

Direct-mapped caches usually suffer from a large number of conflict misses. Acco

to Hennessy and Patterson’s2:1 cache rule of thumb[41], “a direct-mapped cache of size

N has about the same miss rate as a 2-way set associative cache of sizeN/2”; higher

associativity with the same cache size can improve the cache hit rate. How

set-associative caches have slower tag comparison stages than direct-mapped

Since this stage is in the critical path for a cache access, the hit time is increased.

3.3.4 Better replacement strategies

More effective replacement strategies allow associative caches to obtain fu

reductions in the number of conflict misses. The perfect replacement strategy is to

the line that will be needed furthest forward in time. This cannot usually be achieved

three most common practical replacement strategies are described in section 2.2.

weight of research evidence has found that LRU generally performs better than FIF

random replacement [11,90,93]. Nevertheless, LRU is often expensive to implemen

so the almost as ‘effective’ and much cheaper pseudo-random algorithm is comm

used.

3.3.5 Victim cache

Jouppi [57] proposed thevictim cache, a small fully-associative cache, as a technique

reduce the number of misses in a direct-mapped main cache (figure 3.1). The victim

holds lines ejected from the main cache along with their corresponding addresses;

lines are buffered to be written into memory. On a hit in the victim cache, the hit line

be forwarded directly from the victim cache into the main cache. The required data

also be presented to the processor faster than if reading it from the memory. Alternat

this technique can be thought of as reducing the miss penalty if the hit in the victim c
Chapter 3: Tuning Memory Hierarchy Performance 40

3.4 Reducing cache miss penalty

er, the

ach

ain

he hit

ues to

usually

es can

has a

ory

.

time

archy

1.
is categorised as a cache miss due to its absence in the main cache. Moreov

forwarding mechanism clearly reduces main memory traffic on a line fetch. On e

request in Jouppi’s victim cache, for high performance purposes (low hit time), the m

cache tag look-up and the victim cache tag look-up proceed in parallel.

3.4 Reducing cache miss penalty

A number of approaches to improve the first two parameters from equation 3.1 (cac

time and cache miss rate) have been discussed. This section examines techniq

reduce the last parameter in equation 3.1, the cache miss penalty. Cache misses

occur rather infrequently compared to cache hits and, furthermore, some cache miss

be eliminated by the techniques described earlier. However, the miss penalty still

major effect on memory hierarchy performance as it is directly related to main mem

speed, which is likely to be slow compared to the speed of the cache or processor

For example, with a miss rate of 10% in a 4-word line size cache with 10ns access

connected to a 50ns access time main memory, the average memory hier

performance is according to equation 3.

Tavg is here dominated by the miss penalty as is usually, but not always, the case.

Figure 3.1: Jouppi’s victim cache organisation

=?
=?
=?

tags data

tag a cache line
tag a cache line
tag a cache line

lower level memory

processor

a
d

d
re

ss

d
a

ta
d

a
ta

d
a

ta

w
ri
te

e
vi

ct
e

d d
a

ta

direct-mapped cache

a
d

d
re

ss

head entry

tail entry

MUX

(fully-associative)
victim cache

Tavg 10ns 0.1 50ns 4×()×()+ 30ns= =
Chapter 3: Tuning Memory Hierarchy Performance 41

3.4 Reducing cache miss penalty

rite

this

ad to

main

en

t stale

in a

d in

and

as

for an

is the

red

ique

or still

rite
3.4.1 Giving read misses priority over writes

The first miss penalty reduction technique is to give priority to read misses over w

operations (also known asread-overtake-write) [41]. To implement this technique a write

buffer is required to hold write data whilst reads are allowed to proceed. Although

technique can alleviate the processor stall for the requested data, allowing a re

overtake any write can introduce a data hazard (i.e. fetching the wrong data from the

memory whilst the most up-to-date data is in the write buffer). Obviously wh

implementing this scheme some precautions must be observed to avoid reading tha

data. A detailed discussion of read-overtaking-write techniques, particularly

self-timed implementation environment, is presented in section 5.10.

3.4.2 Line fetch mechanism

The conventional stall-on-miss line fetch scheme shown in figure 3.2a (describe

section 2.2.3) can be improved upon in a number of ways as illustrated in figure 3.2b

figure 3.2c and described below.

Early-restart

Early-restart[41], as in figure 3.2b, allows the processor to obtain the required word

soon as the requested word is fetched. However, the processor still has to wait

appreciable time for the required data – the worst-case is when the required word

last word of the fetched line.

Requested-word-first

With the commonly usedrequested-word-first technique [56] (also known as

critical-word-first or wrapped fetch), that has been in use for over 30 years, the requi

word is retrieved from main memory first followed by the other words in the line.

Although employing the early-restart method with the requested-word-first techn

shown in figure 3.2c shortens the processor stall for the requested data, the process

has to wait until the entire line fetch is completed before continuing with other read/w
Chapter 3: Tuning Memory Hierarchy Performance 42

3.4 Reducing cache miss penalty

In a

line

eme)
operations. Write requests may be special cases for some write hit policies.

write-through cache, writes are ‘fire-and-forget’ operations which are unaffected by

fetches. However, writes in a copy-back cache (often used with the write-allocate sch

and reads with either write hit policy may:

i. cause a cache miss requiring a new line fetch;

ii. be to a word in a line that is still being fetched;

iii. access a line that is already in the cache.

Figure 3.2: Comparison of line fetch schemes

is a processor stall for address X

time

X

or X is a read hit from address X

or X* is a read miss from address X

X

X

data to processor

main cache
line fetch

data to processor
cache

The sequence of address requests: ... A2 B1* B2* C0 C1 D3* ...

cache

data to processor
cache

cache
data to processorprocessor stall for B1 processor stall for D3

B1

D3B2

B2B1 B0

B2

D3

stall for B2 D3

stall for B1

B1

processor stall for D3

data to processor

A2

A2

C1C0

C0 C1 D3

D3

B1

D3

B1

B2

B0 B3

B2

D0 D1 D2

A2

C0 C1

C0 C1 D3

D1 D2

B1

D1D0

D3

D3

B2

B2

B3

A2

B1

B1A2

A2 C1C0

C1C0

D0B3B2

D2

D2D1D0

D3

D3B0B3

B2B1

B2B1A2

A2

C0 C1

C0 C1

B1B0

B0

B1 B2

D3

D3

D1D0 D2

A2

A2 C0 C1

C1C0

B3

(e) Non−blocking:

(d) Early−restart, requested−word−first and streaming:

(c) Early−restart and requested−word−first:

(b) Early−restart:

 (a) Stall−on−miss:

B2

B1 B2 B0
Chapter 3: Tuning Memory Hierarchy Performance 43

3.4 Reducing cache miss penalty

fetch

til the

or the

nger

implest)

es are

to the

ssor

eful in

sor can

quests

tched

ining

n in

quired

is a

data

ues to

n the

aiting

s an
Since there is contention accessing main memory in case (i) either the current line

can be abandoned to start fetching this new line into the cache, or the cache waits un

current line fetch process has completed before proceeding with the new line fetch,

cache could support the concept of partially fetched lines. Although it causes a lo

processor stall for the subsequent memory accesses, the second approach (the s

guarantees that only completely fetched lines are stored in the cache. Two techniqu

described below to reduce the duration of stalls due to subsequent requests falling in

last two cases.

Streaming

Streaming[72] allows concurrency between the current line fetch process and proce

accesses to other words of the same cache line being fetched. This behaviour is us

many cases such as long instruction fetch sequences. In case (ii) above, the proces

obtain the required data as soon as it arrives in the cache. However, subsequent re

may result in case (iii). With this method, accesses to words other than those in the fe

line still have to wait for the line fetch process to complete before proceeding. Comb

the early-restart and requested-word-first approaches with streaming is show

figure 3.2d.

Non-blocking

If, on a cache miss, the cache cannot continue to serve the processor until the re

word was received from the lower-level in the memory hierarchy, then this cache

blocking cache. The blocking cache can be thought of as an in-order cache design;

arrives at the processor in the same order that it was requested.

Kroft’s scheme, first known aslockup-free[67] and also known asnon-blocking[79]

(figure 3.2e) combines the requested-word first, early-restart and streaming techniq

allow the processor to continue concurrently with a line fetch process proceeding i

background. The situation, described in case (iii) above, known ashit-under-miss[41] can

be exploited here where the cache has the ability to work on other hit requests, w

only for memory to supply further misses. A non-blocking cache can be thought of a
Chapter 3: Tuning Memory Hierarchy Performance 44

3.4 Reducing cache miss penalty

re the

etched.

ent,

ee that

d’ bit

bits

s, the

es then

at that

ation

RAM.

two

. This
out-of-order cache design, by analogy with an out-of-order processor design whe

processor does not have to execute instructions in the same order that they were f

When implementing streaming or non-blocking in an asynchronous design environm

processor requests must be synchronised with the incoming fetch data to guarant

the required data is present in the cache. This is simply done by having an extra ‘vali

(in figure 3.3) for each data word. At the start of a line fetch process, all of these valid

are cleared, ready for the fetched data. As soon as a word of the data arrive

corresponding valid bit is set to indicate the presence of data. Subsequent access

check for the presence of the required data with these bits. If the data is not present

time, the processor has to wait. Clearly, implementing this method requires arbitr

between the line fetch process and processor requests for access to the cache

figure 3.3a illustrates this simple implementation of a non-blocking cache. The

shaded arrows represent processes requiring arbitration to access the cache

implementation was used in the TITAC-2 cache system [101].

Figure 3.3: Non-blocking caches

newly fetched line

(b) with a LFL(a) without an extra fetch buffer

MUX

da
ta

ad
dr

es
sbits

valid
data

ad
dr

es
s

da
ta

valid

ad
dr

es
s

processor

tags

bits

lower level memory

data

da
ta

ad
dr

es
s

da
ta

da
ta

tags

tag

da
ta

processor

lower level memory

newly fetched line
Chapter 3: Tuning Memory Hierarchy Performance 45

3.4 Reducing cache miss penalty

line

cache

sed

his

che

esigner

bigger

nough

ain

ion to

stem

esign

power

tag

hronous

cache

d data

dently

nce

he are

. They

are

nding
Alternatively, instead of fetching a new line directly into the cache, the new fetched

can be held in a dedicated line-length set of latches, aLine Fetch Latch (LFL). Situated

outside the cache RAM, the LFL has its own tag and comparator and acts like other

lines, but unlike those in the RAM block, it is easily made to have multiple ports.

The implementation of a non-blocking cache with an LFL, shown in figure 3.3b, was u

in the AMULET2e cache system [35]. With the same ‘valid bits’ technique, t

implementation method needs no arbitration. Both the AMULET2e and TITAC-2 ca

systems are described in more detail in the next chapter.

3.4.3 Using multiple levels of cache

The increasing performance gap between processors and memories leaves the d

with a choice between making the cache faster (to keep pace with the processor) or

(to keep pace with main memory, to reduce miss rate). This gap has become large e

that a single level of cache is often insufficient to overcome the wildly different m

memory and processor speeds. Multiple levels of cache offer a cost-effective solut

providing an improved average memory performance [8]. Furthermore, such a sy

may have a number of potential advantages over a single-level cache including d

independency for each cache level, improvement in cache miss penalty and lower

consumption.

Generally, the first level cache (L1) is small and therefore fast enough (for both

look-up and data access) to be clocked at same speed as the processor in a sync

system or be able to keep up with the processor in an asynchronous system. This L1

often is split into separate instruction and data caches to support the instruction an

fetch bandwidth of processors. This also allows each cache to be designed indepen

to serve its own purposes.

A second (and maybe even third) level (L2, L3, ...) is often included in high-performa

systems to catch accesses that miss in the primary cache. Lower levels of the cac

large enough to intercept many accesses that would otherwise go to main memory

are usually built with lower associativity (or even as direct-mapped caches) and

unified so that cache lines are dynamically chosen to hold instructions or data depe
Chapter 3: Tuning Memory Hierarchy Performance 46

3.4 Reducing cache miss penalty

parate

in the

chy

r the

ively

is

total

mory

level

eping

4.2 is

level

In

he L1

che is

is

e

d as
on the requirements of the program, as opposed to the static partitioning given by se

L1 caches. These lower-level caches reduce the miss penalty when data is not found

L1 cache.

In the case of a multiple-level cache the calculation for the memory hierar

performance from equation 3.1 would be [41]:

Equation 3.2

WhereThitL(1) andML(1) represent the access time and the miss rate respectively fo

first-level of theN-level cache and its miss penalty,TpenaltyL(1), can be derived from [41]:

Equation 3.3

WhereTpenaltyL(i)andThitL(i) represent the miss penalty and the access time respect

for the ith-level cache. TypicallyTpenaltyL(i) is shorter thanTpenaltyL(i+1) and ThitL(i) is

faster thanThitL(i+1). ML(i) is, using Hennessy’s and Patterson’s terminology [41], alocal

miss ratefor the ith-level cache, L(i). A local miss rate of a particular cache level

calculated from the number of misses incurred in this cache alone divided by the

number of incoming memory accesses to this cacheonly, as opposed to aglobal miss rate

of a cache which is the number of misses incurred in the cache as a fraction of all me

accesses made by the processor.

The earlier example from the beginning of section 3.4 is re-evaluated for a multiple-

cache architecture as illustrated in figure 3.4. To keep this example simple, and in ke

with the previous techniques, a non-blocking scheme as described in section 3.

included. Therefore, the average memory hierarchy performance for the single-

cache (figure 3.4a) can be re-calculated as .

figure 3.4b a second-level (L2) cache with 20ns access time connected between t

cache and the main memory, is added to this hierarchy. The miss rate of this L2 ca

and so the miss penalty of the L1 cache

i.e. somewhat reduced from 50ns. Lastly th

average two-level cache memory hierarchy performance can be calculate

.

Tavg ThitL 1() ML 1() TpenaltyL 1()×()+=

TpenaltyL i() TavgL i 1+() ThitL i 1+() ML i 1+() TpenaltyL i 1+()×()+= =

Tavg 10ns 0.1 50ns×()+ 15ns= =

ML2
4
10
------ 0.4= =

TpenaltyL1 20ns 0.4 50× ns()+ 40ns= =

Tavg 10ns 0.1 40ns×()+ 14ns= =
Chapter 3: Tuning Memory Hierarchy Performance 47

3.4 Reducing cache miss penalty

meters

large

an be

the

he L1

and the

n in

tion

-buffers

ey can

ss can

s such
More detailed studies of cache access times and miss rates for various cache para

focusing on multi-level cache organisations can be found elsewhere [58,82].

Figure 3.4c illustrates another structure of two-level cache. Instead of having a

conventional L2 cache, the fact that most of the code is sequential (spatial locality) c

exploited. A few read-only, line-length latches known asline-buffers or

block-buffers[15,60,62,99], holding recently-read lines, are integrated to reduce

number of accesses to the main L1 cache. Unlike an L2 cache that lies between t

cache and the main memory, these line-buffers are placed between the processor

L1 cache in the manner of an L0 cache. A basic line-buffer internal structure is show

figure 3.5.

The benefits of the line-buffering technique are not only power consumption reduc

and a decreased number of main cache accesses but, because the size of these line

is small, their tag look-up is just a simple, fast address comparison and, because th

be implemented in the same way as the LFL in the previous section, their data acce

be much faster than a normal RAM access. The nature of asynchronous systems i

Figure 3.4: Illustration of multi-level cache behaviours

line-buffer

10ns 10ns 10ns

20ns

60 accesses

5ns

50ns

(a)

50ns

(b)

50ns

(c)

main memory

L2 cache

L1 cache

40 hits

50 hits

10 hits

6 hits

90 hits

10 accesses

4 accesses

100 accesses

10 hits 4 hits

10 accesses10 accesses

100 accesses 100 accesses

90 hits
Chapter 3: Tuning Memory Hierarchy Performance 48

3.5 Hiding latency

ce in

as in

a 60%

en be

hod

C 405

t a

be

essor

gap

does
that a wider variation of delay characteristic can be explored, hence this differen

access time can be exploited.

Figure 3.4c illustrates a two-level cache memory hierarchy with the same L1 cache

the previous example, and a 5ns access time line-buffer acting as the L0 cache with

miss rate. The average memory system performance for this system can th

re-calculated as which

is slightly longer than the ‘proper’ two-level cache structure. This line-buffering met

has been exploited in several architectures such as: the SPUR [43], the IBM PowerP

instruction cache [51] and the AMULET3i memory system (although this is no

cache) [34]. Details of the line-buffering used in the AMULET3i memory system will

discussed in depth in chapter 4.

3.5 Hiding latency

Techniques for coping with memory latency are essential to achieve high proc

utilisation. Such techniques will become increasingly important in the future as the

between processor and memory speeds continues to widen. Although latency hiding

Figure 3.5: Line-buffering

hit

sense amplifier

datatag offsetindex

de
co

de
r

compare

=?

tag RAM

line-bufferbuffer tag

data RAM

MUX

Tavg 5ns 0.4×() 0.6 10ns 0.1 50× ns()+()×()+ 14.5ns= =
Chapter 3: Tuning Memory Hierarchy Performance 49

3.5 Hiding latency

erall

r as

t have

ata.

ffer,

ntage

, but

annot

With a

ed in

ency:

e by

y the

lty, if

done by

s the

not

fetch

that

at this
not (directly) decrease the time taken for a hit or a miss, it potentially increases ov

system throughput.

The latency of writes can be hidden by buffering write accesses with a write buffe

discussed in section 2.2.9. This technique exploits the fact that a processor does no

to wait for a write to complete as long as it observes the effect of future written d

Therefore the processor can perform a write by simply issuing it to the write bu

provided that future reads check the write buffer for matching addresses. The adva

of a write buffer is not only that the processor does not stall when executing a write

also that multiple writes can be overlapped to exploit pipelining.

Buffering read accesses is more difficult because, unlike writes, the processor c

proceed until the read access completes since it needs the data that is being read.

non-blocking cache it is, however, possible to buffer and pipeline reads as discuss

section 3.4.2.

This section discusses two basic hardware techniques for tolerating memory lat

prefetching and pipelining. These techniques complement the non-blocking cach

allowing concurrency, thus reducing average read latency.

3.5.1 Prefetching

Prefetching involves fetching data from the memory before it is actually needed b

processor. This technique hides the line fetch latency, reducing the miss pena

subsequent accesses can be serviced with this prefetched data. Prefetching can be

using either software or hardware approaches. Software prefetching [16,63] use

compiler to transform the code, usually by adding extra explicitfetch instructions to

instruct the hardware which information is to be prefetched. This approach is

considered here.

Hardware-based prefetching, on the other hand, relies on either simple pre

techniques that fetch a fixed pattern of data or more sophisticated techniques

approximate memory access patterns dynamically. Chen and Baer [19] proposed th
Chapter 3: Tuning Memory Hierarchy Performance 50

3.5 Hiding latency

the use

whole

same

osed

che

. This

eficial

ry

uffer

ces the

and it

in the

d its

code;

with

most

m the

tages

on

ficial
approach is more advantageous than software prefetching since it does not require

of explicit fetch instruction and operates dynamically at runtime.

All caches, even the simplest, employ some prefetching in that, on a cache miss, a

line is fetched containing the required data along with some prefetched data in the

line. This can be extended further with a simple sequential prefetch technique prop

by Smith [90], prefetch-on-miss, where the cache fetches the next consecutive ca

line(s) after the requested line in the hope that this will avoid subsequent miss(es)

has a similar effect to using a larger cache line size. Having a larger cache line is ben

for consecutive (often calledunit-stride) code but brings problems of increased memo

traffic as discussed in section 3.3.2.

Both instructions and data can be prefetched either directly into the cache or into a b

outside the cache. This buffer, known by Jouppi as astream buffer[57] (figure 3.6), holds

prefetched data and provides it when a subsequent reference requests it. This redu

miss penalty since accessing the stream buffer is faster than accessing the memory

does not pollute the cache with non-requested (prefetched) data. The data slot

stream buffer will be overwritten if the subsequent reference does not deman

contents. The stream buffer completely hides the read latency for unit-stride access

however it still causes an increase in the total memory traffic and does not help

non-unit-stride access code. With additionalstride detectionhardware, non-unit-stride

code can be better handled.

3.5.2 Pipelining

Pipelining is an implementation technique that exploits parallelism and is one of the

common techniques used to improve the performance of processors. It comes fro

observation that instruction execution can be split into a number of independent s

chained into apipeline, allowing a number of instructions to be operated up

concurrently, one in each different stage of execution. Pipelined processing is bene

when all of the following are true [65]:
Chapter 3: Tuning Memory Hierarchy Performance 51

3.5 Hiding latency

ately

t but

mory

s of a

upport

vard

ory

ves

posed

ncy).
• Each task is relatively independent from the previous one.

• Each task requires approximately the same sequence of stages.

• The durations of time required by each of the different stages are approxim

equal. (For asynchronous pipelining, the time per stage may not be constan

rather a function of both the stage and the data passing through it.)

In the same way that modern processors are pipelined to allow overlapping of me

accesses with instruction execution, thus hiding memory latency, the multiple stage

cache access can be pipelined for similar effect. This requires the processor to s

either multiple outstanding memory accesses or multi-port memory (e.g. a Har

architecture) or both.

Pipelining is actually complementary to other techniques used to improve mem

hierarchy performance, including prefetching and non-blocking operation. It impro

performance by increasing the number of outputs in a given time (throughput), as op

to decreasing the time taken for an individual element to traverse the pipeline (late

Figure 3.6: Jouppi’s stream buffer organisation

=?
=?

=? a cache linetag
a cache line

lower level memory

tag

datatags

a
d

d
re

ss
a

d
d

re
ss

tag

 +1

processor

a cache line valid bits
valid bits
valid bits

d
a

ta
d

a
ta

direct−mapped cache

stream buffer
(FIFO queue)

head entry

tail entry
Chapter 3: Tuning Memory Hierarchy Performance 52

3.5 Hiding latency

tage is

gnal.

tion of

order

y is

the

p) to

ge can

e can

s an

ample
In synchronous systems data is stepped through the pipeline by the clock. Each s

constructed so that its processing is finished within a time slot dictated by the clock si

However, since a memory access is, relatively, much slower than processor execu

an instruction, a memory access is usually designed to use multiple clock cycles in

not to degrade the performance of other parts of the processor.

An example timing diagram of a simple synchronous pipeline in a memory hierarch

shown in figure 3.7a. The clock period of the synchronous pipeline is limited to

minimum time taken by the slowest pipeline stage (RAM read rather than tag look-u

complete its processing.

By contrast, an asynchronous pipeline does not have global clock, hence every sta

take a variable time to finish and can work independently. Therefore the next stag

begin as soon as the previous stage has finished which theoretically allow

asynchronous pipeline to be faster than a synchronous one. Figure 3.7b gives an ex

of how the timing of an asynchronous pipeline may look.

Figure 3.7: Asynchronous vs synchronous cache pipelining

unpipelined

pipelined

time

pipelined

is a memory access

is a RAM access

is a tag lookup

unpipelined
clock cycle

‘no fixed cycle’

(b) Asynchronous:

(a) Synchronous:

(pipelined)
asynchronous saving

(unpipelined)
asynchronous saving
Chapter 3: Tuning Memory Hierarchy Performance 53

3.6 Reducing memory traffic

e by

ated

main

rnal

Two

odern

and

th a

d in

falls

to the

tions

using

. At

is to a

ly to the

ad out

ache

uired

ated:

vel in
3.6 Reducing memory traffic

This section describes techniques for improving memory hierarchy performanc

reducing the total memory traffic. All of the earlier techniques reduce latency rel

stalls but also increase the traffic between main memory and the processor. The

benefit of reducing the traffic is the power saved by not going off-chip to access exte

main memory, but lessening the traffic could also aid in reducing the miss penalty.

common techniques,write merging [41] and copy-back, are discussed in this section.

3.6.1 Write merging

Cache lines are usually larger than the size of any single piece of write data. Many m

write buffers have the ability to merge memory writes to save both write buffer space

memory traffic. This can be done by bringing together a new write operation wi

previous write operation already resident in the write buffer. The new write is place

the same write buffer entry as an existing write when the address of the new store

inside the line address range of the existing entry. By this means two or more writes

same location can be collapsed into one write or two or more writes to sequential loca

in the same cache line can be merged into a single buffer entry and then written out

a high speed memory burst of the type introduced in section 2.2.7.

3.6.2 Copy-back write policy

The fundamental cache activities affecting write policies are reviewed in figure 3.8

the beginning of each access is a comparison to determine whether the request

cacheable location. Uncacheable instruction or data accesses are passed on direct

system bus and the operation (read-write) performed on the main memory.

The least complicated operation is a read hit in the cache when the data is simply re

straight from the cache and sent to the processor. However, in some (multi-level) c

systems, including the one described later in chapter 5, an extra activity might be req

to update the higher level in the cache system. A read miss is slightly more complic

the line fetch process fetches the required data from the main memory (or a lower le

the memory hierarchy) along with data close to it.
Chapter 3: Tuning Memory Hierarchy Performance 54

3.6 Reducing memory traffic

s, and

esign

e with

ound

ons in

ribed

s in

kept

ious

fetch

better

idth
Whilst activities on a read access are fairly simple, there are several issues (policie

techniques) involved in a write, some of which need to be decided at a very early d

stage.

Note here that the cache architecture developed in this thesis is a copy-back cach

write-allocate policy, hence those activities in figure 3.8 shown on a shaded backgr

are not applied to this particular cache. However, for comparison purposes, operati

a simple write-through cache with write-around policy (some in shade) are also desc

here.

In a write-through cache, a write is always performed in the main memory as well a

the cache if it is a hit. This clearly ensures that the data in the main memory is

up-to-date. Whilst any choice of write miss policy could be used here, the obv

(simplest) choice is the write-around policy because this avoids any additional

activities on a write miss (as discussed earlier in section 2.2.8).

Although a write-through cache is less complicated, a copy-back scheme provides

performance, especially for writes. This is principally because memory bandw

Figure 3.8: Basic cache operations

cache write
(mark dirty)

cache write
bus write

line fetch
bus read

line fetch
cache write

bus write

line fetch
cache write
(mark dirty)

write-allocate? write-allocate?

yes no bus read/write

yes

yes no

yes no yes no

requested address

no
cacheable?

yes no

cache read

hit?

write?

copy-back?

hit?hit?

no

bus write

yes yes no

bus write
Chapter 3: Tuning Memory Hierarchy Performance 55

3.6 Reducing memory traffic

ite is

nd the

che.

ore

a line

ration

rviced

m the

ffer.

-back

ite

and

n and

ough

tion

s:

y:
requirements are reduced by avoiding redundant write cycles. On a write hit, the wr

performed into the cache only. To maintain data coherence between the cache a

memory, the dirty data is written into the main memory only when ejected from the ca

Applying the write-allocate policy to the cache makes the design slightly m

complicated because, on a write miss, instead of just writing data into main memory

fetch is also triggered and a whole line is fetched into the cache so that the write ope

can take place locally. Furthermore, subsequent reads and writes can then be se

from the cache. The write-allocate approach also eases the process of forwarding fro

write buffer since there are only complete cacheable valid lines stored in the write bu

A short theoretical analysis shows how dramatic reductions are generated by a copy

policy:

Equation 3.4

WhereTRH, TRM, TWH andTWM are the contributions of cache read hit, read miss, wr

hit and write miss consecutively. The read hit contribution in both write-through

copy-back caches is:

Equation 3.5

WhereRrepresents the fraction of total read accesses over all accesses (for instructio

data) andH represents the hit rate.

Whilst a write hit in a copy-back cache only has to proceed in the cache, in a write-thr

cache a write operation must be performed in the main memory. The write hit contribu

for write-through and copy-back caches can then be derived respectively as follow

Equation 3.6

Equation 3.7

WhereW represents the percentage of total write accesses,TMEMwrite is the time taken to

update the main memory with the assumption thatTMEMwrite >>Thit. Since a line fetch

occurs on a read miss, the read miss contribution in a write-through cache is simpl

Tavg TRH TRM TWH TWM+ + +=

TRH R H Thit××=

TWH write through–() W H TMEMwrite××=

TWH copy back–() W H Thit××=
Chapter 3: Tuning Memory Hierarchy Performance 56

3.6 Reducing memory traffic

ck

fore,

mory

ctly

n is

ith a

iss

of

ache

ry, and

ffer,
Equation 3.8

WhereTRpenaltyis the miss penalty for fetching a line. A line allocation in a copy-ba

cache involves a line eviction (needing to write dirty data back to the memory). There

in the absence of a write buffer (either for decoupling the processor and the main me

or for decoupling copy-back allocation) the read miss contribution is given by:

Equation 3.9

WhereD represents the percentage of dirty data amongst the evicted lines andTWpenalty

is a miss penalty for updating the main memory with a dirty evicted line and is dire

related toTMEMwrite.

In a write-through cache (assuming a write-around policy) a write miss contributio

similar to that of the write hit in the same cache, however, in a copy-back cache (w

write-allocate policy), it is similar to that of the read miss in the same cache. Write m

contributions are thus:

Equation 3.10

Equation 3.11

Simplifying the above formulae gives the memory hierarchy performance

write-through and copy-back caches respectively as:

Equation 3.12

Equation 3.13

For a read:write accesses ratio of 9:1 with a miss rate of 5% in a 4-word line size c

that has a 10ns access time and is connected to a 50ns access time main memo

assuming that 10% of evicted lines are dirty in the copy-back cache, with no write bu

these give:

TRM write through–() R M TRpenalty Thit+()××=

TRM copy back–() R M TRpenalty Thit+() D TWpenalty×()+[]×=

TWM write through–() W M TMEMwrite××=

TWM copy back–() W M TRpenalty Thit+() D TWpenalty×()+[]×=

Tavg write through–() R Thit M TRpenalty×()+[] W TMEMwrite×()+=

Tavg writhe through–() Thit M TRpenalty D TWpenalty×()+[]+=

Tavg write through–() 0.9 10ns 0.05 50ns 4×()×()+[]× 0.1 50× ns() 23ns=+=
Chapter 3: Tuning Memory Hierarchy Performance 57

3.7 Other Notable Techniques

s

ory

to

se has

pecific

ation

ache

access.

portion

ient

ted in

e of a

any

ed in

cache

t from
When a non-blocking scheme is applied,TRpenaltycan be reduced from =200n

to 50ns, a miss penalty only for the required word thus reducing bothTavg(write-through)

and Tavg(copy-back)to 16.25ns and 13.5ns respectively. Furthermore, when a mem

bursting mode (2-1-1-1) is applied,TWpenaltycan also be then reduced from 200ns

(50ns+25ns+25ns+25ns)=125ns. OverallTavg(copy-back)is reduced to 13.1ns with ~20%

improvement over the write-through cache.

3.7 Other Notable Techniques

Two other techniques are commonly encountered in cache systems. Neither of the

a direct impact on a cache’s general-purpose average performance but each offers s

benefits of common interest.

3.7.1 Sub-blocking

An architecturally different cache organisation strategy to reduce cache power dissip

is to break a cache data array into multiple sub-blocks [15,60,99]. Only the c

sub-block where the requested data may be located is addressed for each cache

This technique saves power by making each access across a smaller cache. The pro

of power saved depends on the number of cache sub-blocks.Sub-bankingas it is also

known, is very attractive to computer architects designing energy-effic

microprocessors. A basic structure for cache data array sub-blocking is presen

figure 3.9.

3.7.2 Cache lock-down

Since caches are transparent to user software, predicting the exact performanc

program in a system with a cache is difficult. This is an undesirable effect in m

embedded systems which require real-time response. A technique commonly us

embedded systems to ensure deterministic behaviour is to load critical code into the

under supervisor software control and then, via special hardware support, prevent i

being evicted. This process is known ascache lock-down[4]. Clearly, locking down most

Tavg copy back–() 10ns 0.05 50ns 4×() 0.1 50ns 4×()×()+[]× 21ns=+=

50ns 4×
Chapter 3: Tuning Memory Hierarchy Performance 58

3.8 Commercial Cache Implementations

chine,

sed in

ge of

cache

.

nd

ed as

with

nified

The

L1

e uses
of the cache compromises its ability to accelerate the general performance of the ma

so it is important to have control of the lock-down mechanism at a fine granularity.

3.8 Commercial Cache Implementations

Many of the techniques described in this chapter are not new – they have been u

both high-performance and low-power cache designs in the past. To illustrate a ran

trade-offs that have been made in choosing parameter values and various

techniques, a few recent examples of practical cache systems are described below

3.8.1 The AMD-K6-III cache system

The cache system for the AMD-K6-III [2] is composed of on-chip 64kilobyte L1 a

256kilobyte L2 caches and an optional L3 off-chip cache. The L1 cache is organis

separate 32kilobyte instruction and 32kilobyte dual-ported data caches, each

two-way set associativity. The L2 cache is organised as a 4-way set associative, u

cache. Both the L1 and the L2 caches exploit copy-back with write-allocate policies.

L1 can be filled from either the L2 cache or the external memory. Whilst the

instruction and the L2 caches use the LRU replacement strategy, the L1 data cach

the LRA (Least Recently Allocated), another name for cyclic eviction.

Figure 3.9: Cache RAM array sub-blocking

...

hit data

tag offsetindex

de
co

de
r

tag RAM

=? MUX

da
ta

 R
A

M
 b

lo
ck

#n

da
ta

 R
A

M
 b

lo
ck

#1

da
ta

 R
A

M
 b

lo
ck

#0
Chapter 3: Tuning Memory Hierarchy Performance 59

3.8 Commercial Cache Implementations

che is

oded

th,

s can

ache is

re per

,

re.

. It

ave 32

le. In

m is

. The

r has

uffer,

talls

try to

n size

ord

ough

ta) in

line
3.8.2 The Intel Pentium 4 cache system

The Intel Pentium 4 architecture [52] includes a split L1 cache (a 12kilobyteExecution

Trace Cache and an 8kilobyte data cache) and an on-chip unified L2 cache.

The difference between the execution trace cache and a conventional instruction ca

that instead of storing x86 instruction bytes, the trace cache stores dec

micro-operations (micro-ops)which removes the decoder from the main execution pa

thereby increasing performance (by storing the micro-ops in the cache, cache hit

begin execution sooner because they have already been decoded). The data c

write-through, 4-way set-associative and dual-ported to allow one load and one sto

clock cycle. TheAdvanced Transfer Cacheis Intel’s new name for the 256kilobyte

8-way associative, non-blocking, unified L2 cache used in the Pentium 4 architectu

3.8.3 The Intel StrongARM SA-1110 cache system

The Intel StrongARM SA-1110 processor [53] implements the ARM V4 architecture

contains a 16kilobyte instruction cache and an 8kilobyte data cache. Both caches h

byte lines and provide 32-way set-associativity with a round-robin replacement sty

addition to this, a 16-entry, 2-way set associative mini-cache with the LRU algorith

provided to prevent periodic large data transfers from thrashing the main data cache

processor also provides a write buffer and a separate read buffer. The write buffe

eight entries and allows each entry to contain between 1 to 16bytes. The read b

allowing critical data to be prefetched under software control to prevent pipeline s

from occurring during external memory reads, has four entries and allows each en

contain 1, 4 or 8 words.

3.8.4 The ARM940T cache system

The ARM940T [5] has separate data and instruction caches. Each is four kilobytes i

and comprises four 64-way associative CAM-RAM blocks with 4-word lines. An 8-w

non-merging write buffer is also included. The data cache supports both write-thr

and copy-back modes with the write-around policy. Alock-down mechanismis also

exploited to lock critical or frequently-accessed references (either instruction or da

the cache. This lock-down mechanism has a granularity of a single 128-bit cache
Chapter 3: Tuning Memory Hierarchy Performance 60

3.8 Commercial Cache Implementations

that can

are

fetch

ches

ssor

he is

te. The

loits

lines

MB,

uction

ruction

using

05 to

LRU

ded

he line

eck this

cache
across each of the four cache blocks of the same cache, hence the smallest area

be locked down is 16 words.

3.8.5 The Sun UltraSPARC III cache system

The UltraSPARC III [106] features 100kilobytes of on-chip L1 caches. These

organised as 32kilobyte instruction and 64kilobyte data caches plus two kilobyte pre

and two kilobyte write caches, each with 4-way set associativity. The two latter ca

work in conjunction with memory and register addressing to buffer read-write proce

data within a high-speed, low latency cache memory area. The prefetch cac

independent from the data cache and can load data when this is deemed appropria

write cache acts like a write buffer by deferring writes to the L2 cache and also exp

write merging by evading unnecessary writes of individual bytes until entire cache

have to be updated.

Also integrated on the chip are the tag RAM and controller supporting a 1, 2 or 8

2-way set-associative off-chip L2 cache.

3.8.6 The IBM PowerPC 405 cache system

The PowerPC 405 [51] 32-bit RISC embedded processor implements separate instr

and data caches. Each has configurable size (the PPC405B3 has a 16 kilobyte inst

cache and an 8 kilobyte data cache), is two-way set-associative, and operates

8-word (32 byte) cache lines. The caches are non-blocking to allow the PowerPC 4

overlap instruction execution with reads over the processor local bus. The

replacement policy is used to replace cache lines. An instruction line-buffer is inclu

on the instruction cache access, four instructions are read from the appropriate cac

and placed temporarily here. Subsequent instruction cache accesses can then ch

line-buffer for the requested instruction prior to accessing the cache array. The data

functions in either write-through or copy-back mode with the write-around scheme.
Chapter 3: Tuning Memory Hierarchy Performance 61

3.9 Discussion

here in

hese

arate

of the

.

since

y).

CAM

t for

ceable

-way

ereas

iving

sign

rove

in a

cles.

this

sors

buffer

3.4.3,

matic

ss time

m as a
3.9 Discussion

The above cache systems exemplify the cache architectural techniques presented

synchronous implementations. This section considers the possibility of using t

techniques in the context of an asynchronous framework.

All of the examples in section 3.8 have a number of notable features in common: sep

instruction and data L1 caches, each using set-associativity and (with the exception

AMD K6-III data cache) using the LRU replacement strategy to choose victim lines

The optimal choice of set associativity among the previous examples is undecided

they vary from low (4-way) up to full associativity in each cache block (64-wa

Although the tag check for CAM-tag is expensive because the tag is broadcast to the

in order to find the proper line for the data, high associativity provides good suppor

lock-down mechanisms because locking down cache lines causes a more noti

degradation in performance for low-associativity caches. For example, in a 4

associative cache, locking down one line reduces the associativity by 25% wh

locking down one line in a 64-way associative cache cuts the choice by only 1.5%, g

a much more gradual degradation in performance as lines are locked down.

The idea of multiple levels of cache is attractive in the context of asynchronous de

where a wider variation in access time can be exploited in a manner that would p

expensive and difficult in a synchronous framework. This is because each unit

synchronous system must complete its task in an integer number of clock cy

However, the idea of having multiple-levels of cache on-die is questionable since

study is aimed at small low-power systems, like those built around the ARM proces

where the L1 cache size tends to be small. Alternatively, L0 caches such as the line-

in the IBM PowerPC 405 cache system are more desirable. As covered in section

line-buffering not only reduces the number of L1 cache accesses resulting in dra

power-savings but also, due to the nature of asynchronous design, the fast(er) acce

of the line-buffer equates to an improved average performance of the cache syste

whole.
Chapter 3: Tuning Memory Hierarchy Performance 62

3.9 Discussion

ory

cked

ided

of

thesis.

eaved

cks by

10%

ccess

AM.

with
To combine line-buffering and cache sub-blocking (two of the most common mem

techniques in energy-efficient design) effectively, the cache should be sub-blo

differently from the scheme presented in section 3.7.1, e.g. as in the Multiple-Div

Module (MDM) cache [64] or as shown for two blocks in figure 3.10. This style

sub-blocking is regularly used in embedded systems such as those of interest in this

Each block/bank caches a different region of the address map, often using an interl

mapping allowing consecutive references to be spread over a number of cache blo

using low-order bits to select the block.

Zhang and Asanovic [108] reported that when applying sub-blocking, aside from a

area overhead, there is no significant performance penalty in terms of either the a

latency or the energy efficiency associated with the choice of a tag CAM over a tag R

The favoured choice here is to use a sub-blocked L1 cache architecture

full-associativity in each cache block and a line-buffer as a L0 cache.

Figure 3.10: Combining line-buffering and cache sub-blocking

hit

data

...

...

tag offsetindex

decoder

tag CAMtag CAM

line-bufferline-buffer =?buffer tag=? buffer tag

MUX MUX

MUX

data RAMdata RAM
Chapter 3: Tuning Memory Hierarchy Performance 63

3.10 Summary

sor

cking

cking

,

educe

asy to

ching.

n be

vious

hen

dified

ache

rity)

ely.

gh

offer a

level

roving

sually

ations

ache

ever,

ent

next

5 then

in an
By exploiting general parallelism (e.g. pipelining) or the overlap of proces

computations with data accesses within one process (e.g. write buffering, non-blo

and prefetching), memory latency can be improved. Since prefetching and non-blo

are not mutually exclusive (exploitingpre-miss andpost-miss operations respectively)

Chen and Baer [20] proposed a hybrid design, combining these two approaches to r

the memory latency penalty. The non-blocking technique has become popular and e

build because most caches today have a pipelined structure and use prefet

Furthermore, previous work [35,101] has shown that a non-blocking architecture ca

implemented in an asynchronous design. Chen and Baer [20] also confirmed pre

studies [57] indicating that write buffering can remove a significant miss penalty w

reads are allowed to overtake writes.

In a copy-back cache system, the write buffer (for cacheable references) can be mo

into a victim cache. In a write-through cache system the write buffer and the victim c

must be two separate buffers; for storing write data (usually at a single word granula

to the memory and storing evicted lines for forwarding purpose respectiv

Write-merging is an effective technique for reducing write traffic in a write-throu

cache. However, since a copy-back cache absorbs writes in the cache, and so can

significant reduction in write traffic, write-merging is then less necessary.

3.10 Summary

The literature surveyed in this chapter concentrated mostly on the architectural

hardware-based techniques that use alternative cache organisations for imp

memory hierarchy performance. Improving one aspect of the cache performance u

comes at the expense of others. A number of recent commercial cache implement

were also described in this chapter to give a broader view of current trends in c

design.

Most of these techniques can be easily applied in an asynchronous system. How

non-blocking, read-overtaking-writes, forwarding and write-merging would pres

problems since they all require some degree of undesirable synchronisation. The

chapter describes notable existing self-timed memory systems in depth. Chapter

describes an approach to apply the techniques presented in this chapter

asynchronous framework.
Chapter 3: Tuning Memory Hierarchy Performance 64

oving

ally

nous

r.

stems.

s of

cache

s with

ed in

imary

o offer

frame

ever,

style

rely

ogy
Chapter 4: Asynchronous Memories

The previous chapter contained a survey of relevant hardware techniques for impr

memory hierarchy performance. All of the techniques discussed were origin

introduced in synchronous designs. However, they may all be used in asynchro

designs as well, although the costs, benefits and difficulties encountered may diffe

Asynchronous systems promise a number of advantages over synchronous sy

Efficient asynchronous memory systems are, therefore critical to the succes

asynchronous systems.

Much literature has been published in the past two decades describing synchronous

organisations that exploit a whole range of architectures, strategies and mechanism

varying levels of complexity and development, but very little work has been present

the area of asynchronous caches.

This chapter describes existing previous asynchronous memory systems with the pr

focus on low power embedded systems where asynchronous design would appear t

the most advantages.

4.1 Asynchronous processor survey

Asynchronous design was used in the 60s and 70s in high performance main

systems such as the MU5, constructed at the University of Manchester [74]. How

with the development of integrated circuit techniques the synchronous design

became dominant because of the simple, global timing constraint that it imposes.

Asynchronous design was reborn in the late 80s with the world’s first enti

asynchronous VLSI microprocessor [68] built at the California Institute of Technol
Chapter 4: Asynchronous Memories 65

4.1 Asynchronous processor survey

onous

dustrial

nous

Akella

s can

ctures

was

ential

parate

ssor

idered

g to

ronous

.The

ction

fetch

logy

load/

with
(Caltech) by a team under the leadership of Martin. Since then, a number of asynchr

processors have been proposed or built by other academic research groups and in

laboratories. A detailed description and comparison of some notable asynchro

processors (designed between 1989 and 1996) was published by Werner and

[104]. The widespread nature of this continued research into asynchronous system

be seen in the following sections. Emphasis here is placed on the memory archite

employed which often restrict the core performance.

Caltech asynchronous microprocessor (1989)

This microprocessor [68] has a 16-bit RISC-like instruction set. The processor

constructed using an approach based upon Hoare’s Communicating Sequ

Processes (CSP) [44] with eight processes, each of which can be thought of as a se

pipeline stage. Instruction and data memories are separated.

STRiP: Self-Timed RISC Processor (1992)

STRiP [24], built by Dean at Stanford University, was based on the MIPS-X proce

architecture. Even though the processor has a global clock signal and could be cons

synchronous, it is unusual in that the speed of the global clock is self-adjustin

sequence the pipeline structure. This provides much of the advantage of an asynch

system whilst avoiding the complexity and overhead of fully asynchronous structures

processor was still susceptible to clock skew problems and did not provide any redu

in power dissipation. STRiP incorporates small, separate instruction and data pre

buffers lying between the processor and the separate L1 caches.

FAM: Fully Asynchronous Microprocessor (1992)

FAM [21] was developed by Cho from the Korean Institute of Science and Techno

and Okura and Asada from the Tokyo Institute of Technology. The processor has a

store four-stage (fetch, memory, decode and execution) pipelined RISC architecture
Chapter 4: Asynchronous Memories 66

4.1 Asynchronous processor survey

and

d at

nous

line

ee of

parate

Sun

ture:

eline

result

with

R by

n the

mple,

ence

l. at
unified external cache memory requiring arbitration between instruction fetch

execution stages (for load/store instruction completion) to access the cache.

NSR: Non-Synchronous RISC processor (1993)

A simple 16-bit processor [14] was developed using FPGA technology by Brunvan

the University of Utah. The processor was structured as a collection of asynchro

blocks operating concurrently. In addition to being internally self-timed, the pipe

stages are decoupled through self-timed FIFO queues, allowing a high degr

instruction execution overlap. The memory system was implemented as simple, se

memories for instructions and data.

CFPP: Counter-Flow Pipeline Processor (1994)

An innovative architecture [97] was proposed by Robert Sproull et al. at

Microsystems Labs. The name of the processor came from its fundamental fea

instructions and data results propagate in opposite directions in a bidirectional pip

and interact as they pass. This interesting approach neatly solves the problem of

forwarding in an asynchronous pipeline. The CFPP executes SPARC instructions

separate memory ports for instructions and data.

Fred (1996)

A self-timed decoupled, pipelined computer architecture [85] was extended from NS

Richardson and Brunvand at the University of Utah. It is a 32-bit processor based o

Motorola 88100 RISC instruction set. The memory system was designed as si

separate memories for instructions and data.

MiniMIPS (1997)

An asynchronous microprocessor [69] executing a reduced MIPS instruction set (h

the name) similar in architecture to the MIPS R3000 was developed by Martin et a
Chapter 4: Asynchronous Memories 67

4.1 Asynchronous processor survey

. The

.

of

ased

. All

at the

and

d some

ystem

rther

s a test

sity of

and

-like

sed

igns are
Caltech. The architecture was based on very fine pipelining offering high throughput

system also included an on-chip cache system which is described in Section 4.2.3

TITAC: Tokyo Institute of Technology Asynchronous Chip (1994)

A simple asynchronous 8-bit processor [77] was built at the Tokyo Institute

Technology. The architecture is non-pipelined with a simple accumulator-b

instruction set. TITAC was optimised for delay-insensitivity rather than performance

of its memory requirements were met by using RAM.

ECSTAC (1995)

A simple 8-bit asynchronous (deeply) pipelined microprocessor [75] was designed

University of Adelaide. It has been reported that its variable length instruction format

the mismatch between the datapath width (8-bit) and the address size (24-bit) cause

complex design problems and also reduced the system performance. The s

incorporated an on-chip fully asynchronous cache system [3] which is described fu

in section 4.2.1.

Hades: Hatfield Asynchronous DESign (1995)

The design [26] was proposed as an asynchronous superscalar processor to act a

bed for assessing alternative asynchronous processor organisations at the Univer

Hertfordshire, UK. It was designed with four pipeline stages (fetch, decode, execute

writeback) and a decoupled result forwarding mechanism. It has its own RISC

instruction set and a complex ‘multiple-instruction-issue’ design. The propo

architecture included separate instruction and data caches, however the cache des

not described in the literature.
Chapter 4: Asynchronous Memories 68

4.1 Asynchronous processor survey

ned

000

for

-order

ted to

n-chip

posed

was

r the

fast

and

A high

d high

y of

ntages

is to

rently

ed and

4].
TITAC-2 (1997)

An asynchronous 32-bit microprocessor [101] with the MIPS five-stage pipeli

architecture was developed at the University of Tokyo. It is based on the MIPS R2

instruction set. It included a cache system which is described in section 4.2.2.

ASPRO-216 (1998)

A 16-bit RISC standard-cell asynchronous microprocessor [84] was developed

embedded applications at E.N.S.T. in Bretagne, France. Instructions are issued in

but are allowed to complete out-of-order and a register locking mechanism is adop

solve data dependencies. The processor includes standard synchronous o

48 kilobyte instruction and 64 kilobyte (byte or word addressed) data memories.

Kin (1998)

A high performance asynchronous superscalar processor architecture [66] was pro

by Kol and Ginosar at Technion-Israel Institute of Technology. The architecture

designed at the microarchitectural level to allow for future technologies (predicted fo

year 2012) enabling more than one billion transistors per chip with extremely

processing obtained by aggressively exploiting massive out-of-order execution

parallelism to speed processing and bypass both control and data dependencies.

performance cache memory is required to support such architectures. The propose

performance memory system for Kin is described in section 4.2.4.

AMULET series (1993, 1996, 2000)

The AMULET group, a part of the Computer Science Department at the Universit

Manchester, was established late in 1990 in order to investigate the claimed adva

and the feasibility of designing large asynchronous systems. One aim of this group

realise asynchronous microprocessors with lower power consumption than are cur

available using synchronous design techniques. Since then the group has develop

fabricated three asynchronous RISC processors capable of executing ARM code [
Chapter 4: Asynchronous Memories 69

4.1 Asynchronous processor survey

the

g a

ssor

t. It

he

titive

. The

her

a

ork)

loped

sing

howed

e in

The

red

and

ment

.

ough

made

hen, a

LET

then
The AMULET1 microprocessor [29], the first asynchronous implementation of

commercially popular ARM instruction set, showed the feasibility of implementin

whole system asynchronously. All of the design effort was put into the proce

including the difficult areas of interrupts and exceptions in a self-timed environmen

did not incorporate an on-chip memory system.

The AMULET2e system [32] is anembeddedasynchronous system based on t

AMULET2 processor core. It proved that asynchronous design could achieve compe

performance with good EMC results compared to an equivalent synchronous system

AMULET2e chip included on-chip memory that could be configured as eit

memory-mapped RAM or as a write-through cache.

Recently the DRACO (DECT RAdio Communications Controller) chip [34],

telecommunications controller intended for ISDN (Integrated Services Digital Netw

DECT (Digital European Cordless Telephone) base station applications, was deve

as a commercial collaboration. It comprised the AMULET3i asynchronous proces

subsystem and a synchronous telecommunications peripheral subsystem. This s

that asynchronous technology is becoming commercially viable and is competitiv

terms of performance, area and power efficiency with synchronous design.

AMULET3i incorporated a memory-mapped RAM system that could not be configu

to operate as a cache.

The cache memory proposed in this thesis adapts features from the AMULET2

AMULET3 memories and adds some new features, principally related to the require

for a copy-back write strategy to support the higher processing speed of AMULET3

This long list describing many existing self-timed processor designs provides the r

state of the emergence of this design style. However, only a few attempts have been

to construct efficient, suitable memory systems to support these processors.

The remainder of this chapter describes previous asynchronous memory systems. T

more detailed coverage of the asynchronous memory systems built by the AMU

group for use with AMULET processor series is given in section 4.3. The chapter
Chapter 4: Asynchronous Memories 70

4.2 Asynchronous cache systems

styles

icated,

s are

for the

data

us. An

s from

f the

-byte

is not

e size

d data

o-way

ed for

gned

data

gh

the

s the
concludes by presenting observations regarding noteworthy techniques and design

from these existing asynchronous memory systems.

4.2 Asynchronous cache systems

A number of the above asynchronous processor cores were accompanied by ded

asynchronous cache systems. The two most recent AMULET memory system

covered separately, in greater detail in section 4.3 because being already tailored

ARM architecture, they form a basis of the work in this thesis.

4.2.1 The ECSTAC cache system

The ECSTAC cache system [3] contains separate instruction and write-through

caches. These communicate with the external memory via a synchronous external b

on-chip memory unit is constructed to arbitrate, synchronise and sequence accesse

the on-chip caches to the external memory or I/O devices.

The instruction cache is one of the primary determinants of the performance o

processor as a whole and so it is carefully designed. It is 2 kilobytes in size with a 16

long cache line. The data cache has much lower bandwidth requirements hence it

designed as aggressively as the instruction cache. It is 1 kilobyte with the same lin

(16 bytes). Although the data cache is not pipelined, two stages (tag decode an

access) can be performed concurrently in the instruction cache. Both caches are tw

associative. To reduce stalls due to write operations, a three-deep write buffer is add

the data cache.

4.2.2 The TITAC-2 cache system

The TITAC-2 cache system consists of an 8 kilobyte on-chip instruction cache desi

as a direct-mapped cache with an eight-word line size. A line fetch process reads

from the main memory a word at a time (taking 8 cycles to fill the whole line). Althou

this cache system was described as using early-start with streaming [101], from

remainder of the paper describing its operation it would appear that it also use
Chapter 4: Asynchronous Memories 71

4.2 Asynchronous cache systems

cache

her via

ing to

nd a

four

fetch

rite

ches

eply

ite at

e the

cache.

tion

the

as

here

s, the

refill

affic

ate to
non-blocking scheme since the line fetch process can proceed in parallel with other

accesses. However, unlike the AMULET2e cache system, every cache access (eit

the line fetch process or any other processor request) requires arbitration, lead

undesirable stalls. A data cache was not implemented.

4.2.3 The Caltech MiniMIPS cache system

The MiniMIPS cache system [78] included both a four-kilobyte instruction cache a

separate four-kilobyte direct-mapped data cache. Each cache is divided into

interleaved blocks. The instruction cache has support for branch prediction and pre

whilst the data cache has support for writing using a write-through policy with a w

buffer. Each cache line is one word long (32 bits) with its own tag (16 bits). Cache fet

are carried out with a 128-bit (4-word) line fetch block. The entire cache system is de

pipelined for high throughput which introduces structural hazards as follows.

Assume that a cache read miss causing a line fetch is immediately followed by a wr

the same address. If allowed to run to completion, the write process would updat

cached copy and then sometime later the fetched data would arrive and update the

Ultimately and incorrectly, the cache location would contain the old value. The solu

to this problem used in MiniMIPS was to add the ability to repeat certain operations in

cache, in this case theSTOREis repeated. Although this can resolve the problem, it w

certainly not an energy-efficient approach.

Another problem in this (deeply) pipelined cache is the double line fetch problem w

multiple consecutive reads occur in the same line fetch block. If the first read misse

second is likely to miss as well, unnecessarily causing another line fetch of the same

block. Although there is no harm in this type of problem, it increases both memory tr

and power consumption unnecessarily.

The MiniMIPS cache system is the only known asynchronous cache system to d

include a write buffer which is capable of merging writes.
Chapter 4: Asynchronous Memories 72

4.3 AMULET memory systems

es for

n then

n

e. The

ata

and

2e

ory

he
4.2.4 The Kin memory system

The on-chip cache proposed for the Kin processor comprises separate cach

instructions and data. Instructions are decoded into simple micro-operations and ca

be stored in aDecoded Instruction Cache (DIC)– similar to the Execute Trace Cache i

the Intel architecture described in section 3.8.2 – resulting in a fast cache access tim

DIC is multiported allowing simultaneous multiple fetches. The write policy for the d

cache is unspecified.

4.3 AMULET memory systems

This section describes the on-chip memory systems incorporated in the AMULET2

AMULET3.

4.3.1 The AMULET2e cache system

The organisation of the AMULET2e chip is shown in figure 4.1. The AMULET

contains an AMULET2 processor, four kilobytes of memory and a flexible mem

interface (thefunnel), allowing external devices e.g. DRAM to be connected directly. T

on-chip memory can be configured as either a cache or a fixed RAM area.

Figure 4.1: The organisation of the AMULET2e chip (after [32])

address

data out

data in

data

address

data RAM

LFL

AMULET2
core

control
registers

address
decode

pipeline latches

tag CAM

delay

chip selects

area enables

fu
nn

el
 a

nd
 m

em
or

y
co

nt
ro

l

DRAM control
Chapter 4: Asynchronous Memories 73

4.3 AMULET memory systems

s are:

byte

vity

nism

ry),

r the

any

pied

only

data

L

n

ache

can

the

ated to

. This

nergy

ular,

iding

than a

94].
The key features of the on-chip cache [35] relevant to the work described in this thesi

• The cache (shown shaded) is constructed from four independent one-kilo

(interleaved) blocks, each of which is fully associative, giving 64-way associati

for the whole cache system. It has a pipelined CAM-RAM structure;

• The system includes an arbitration-free, non-blocking cache line fetch mecha

employing a write-through scheme (every write is sent to the main memo

write-around policy (no cache allocation on writes) and random replacement;

• Each cache block includes aLine Fetch Latch(LFL) which is used to hold the new

line fetched on a cache miss. An additional CAM entry holds the address tag fo

LFL and a hit on the LFL (which is loaded addressed-word first) can happen

time from after the first word has been loaded to when the LFL contents are co

into the main cache. The contents of the LFL are copied into the main cache

when the next miss occurs or on a write hit in the LFL;

• A read hit in the LFL can be serviced from the LFL as soon as the required

arrives in the LFL. A write hit in the LFL is slightly more complicated since the LF

is read-only. Writes have to wait until the LFL is full. The required write locatio

(which could be 1, 2 or 4 bytes) is masked out. Then the line is copied into the c

RAM merging with the write data;

• The cache supports a form of hit-under-miss which means that cache hits

continue to be serviced while a line fetch is still in progress, though only after

originally requested data that caused the miss has been supplied;

• Since many memory accesses are sequential, a sequential signal is gener

indicate whether a reference is to the address following the previous address

can be used to make memory accesses more efficient in terms of speed and e

by avoiding some stages of the memory access mechanism. In partic

unnecessary CAM look-up is averted and RAM precharge is postponed, prov

a shorter access time. This variation, which can result in access times shorter

normal ‘cycle’, can be exploited automatically by an asynchronous processor [
Chapter 4: Asynchronous Memories 74

4.3 AMULET memory systems

has

ly of

. The

ort is

oads

m the

rnal

e the

ng the

to the

BLE

port,
4.3.2 The AMULET3i dual-port RAM system

The AMULET3 is a Harvard-like processor architecture as shown in figure 4.2. It

separate instruction and data memory interfaces which provide for the supp

instructions and data to the processor independently from a unified memory system

data port is used for memory accesses by load/store instructions. The instruction p

used for instruction fetches. In addition, the instruction port is also used for all data l

to the program counter.

The consequence of this design is that there are two separate memory buses fro

processor, but both local RAM on the DRACO chip (shaded in figure 4.2) and the exte

ROM are unified. These memory buses are required to ‘merge’ at two places outsid

processor core, one for accessing the local RAM system and the other for accessi

external memory via the MARBLE on-chip bus.

Instruction accesses are read only and are handled by the local RAM or passed

MARBLE bus [9]. Data accesses are read/write and may also be passed to the MAR

bus. The RAM may also be accessed by remote MARBLE masters through the data

so use of the data bus must be arbitrated for AMULET3 and MARBLE accesses.

Figure 4.2: The organisation of the AMULET3i subsystem (after [34])

core
D

at
a

Po
rtr

In
st

 P
or

t

D
at

a
Po

rt

In
st

 P
or

t

AMULET3

Logic Arbiter
Data Decode Logic/Inst Decode

RAM

8 Kbyte
16 Kbyte

ROM

MARBLE

In
st

r
A

dd
r

D
at

a
A

dd
r

W
ri

te
 D

at
a

D
at

a
B

us

Amu Data Addr

Amu Write DataAmu Instr Addr

In
st

r
B

us

RIA

RRI
RWD

RDA

RRD

A
dd

re
ss

D
at

a

Chapter 4: Asynchronous Memories 75

4.3 AMULET memory systems

main

ests;

E or

p is

ata

ight

:

Two decode logic blocks are required to monitor accesses to these two ports. The

functions of the instruction and data decode logic blocks are:

• to detect aborts (memory access exceptions) for the instruction and data requ

• to perform memory management functions;

• to direct instruction and data requests to the required targets (either MARBL

RAM).

The organisation of the memory system used with AMULET3 on the DRACO chi

shown in figure 4.3. It is an 8 kilobyte static RAM satisfying both instruction and d

requests. This is achieved by dual-porting the memory which is divided into e

one-kilobyte blocks, each block being a conventional (single-ported) RAM.

Splitting the RAM into eight separate, interleaved blocks has the following benefits

Figure 4.3: The AMULET3i RAM block organisation (after [34])

arbiterarbiter

1Kbyte RAM1Kbyte RAM1Kbyte RAM

arbiter

...

AMULET3

MARBLE busMARBLE bus

microprocessor

instruction bus

data bus

Ibuffer Dbuffer Dbuffer DbufferIbuffer Ibuffer

Master Master/Slave
Chapter 4: Asynchronous Memories 76

4.3 AMULET memory systems

le

r

line

ter the

the

thout

time.

ther

r.

ion

ssed in

o the

rted

data

tion

ss the

RAM
• reducing the power consumption of the AMULET3i RAM, since only a sing

one-kilobyte RAM block is accessed by an instruction or data reference;

• reducing the probability of clashes between instruction and data accesses.

Each block has twoline-buffers, one holding the line of four words (one word is fou

bytes) containing the last instruction supplied by the block and the other holding the

containing the last data item read by the processor. These line-buffers are placed af

RAM sense amplifiers. Data is read from the RAM a line at a time and latched in

appropriate line-buffer; future accesses can then read data from the line-buffer wi

cycling the RAM. This saves power and decreases the average RAM access

However, there are more sense amplifiers in AMULET3 than in AMULET2e (128 ra

than 32) and so power consumption when the RAM block is accessed will be highe

The benefits of line-buffering include:

• improving the overall performance of the RAM, since the majority of the instruct

references are sequential which allows the address decode phase to be bypa

a sequential cycle;

• reducing the total power consumption by minimising the number of accesses t

RAM itself.

Having separate instruction and data line-buffers in each RAM block in a dual-po

system provides benefits by:

• avoiding a large proportion of the occurrences of contention of instruction and

accesses needing the same RAM block;

• avoiding interrupting the sequentiality of fetches especially in the instruc

stream;

• providing a larger line-buffer level to the memory system.

When a memory access does not find the data it needs in a line-buffer it must acce

RAM. Only when the instruction and data accesses require data from the same
Chapter 4: Asynchronous Memories 77

4.3 AMULET memory systems

rs) is

ake a

on a

olve

ere is

be

e the

r via

) is

the

the

each
block at the same time (in both cases not finding the required data in the line-buffe

there contention that must be resolved. Because there is no clock on which to m

decision, access to the block is controlled through asynchronous arbitration

‘first-come-first-served’ basis. Hence each block has an internal arbiter [88] to res

this contention as shown in figure 4.3.

To maintain coherency, the contents of the line-buffers are invalidated whenever th

a write hit in the buffered line on that memory port. Thus the line-buffers can

considered as a form of limited ‘level-zero’ (L0) split (but coherent) cache.

Although there are two separate locations in the local RAM system that can servic

data, either from the line-buffer or the RAM, all fetched data is sent to the processo

the line-buffer in the RAM block concerned. A FIFO buffer (as shown in figure 4.4

used on each port to hold control information sent from the selector (SEL) to switch

multiplexer (MUX) to the correct path for the returning instruction/data. The depth of

FIFO imposes a maximum limit on the number of outstanding memory accesses on

Figure 4.4: Controlling ordering with the FIFO

Instructions ReadDataDataAddr InstrAddr

...

......

...

..
.

I−MUXI−SEL

F I F O

Instr line−buffer

RAM block

Data line−buffer

Instr line−buffer

RAM block

Data line−buffer

D−SEL D−MUX

F I F O
Chapter 4: Asynchronous Memories 78

4.3 AMULET memory systems

AM

t be

, the

til it is

ntee

rting

y are

ths. If

ssible

etch

set to
memory port. This number of outstanding memory accesses limits the number of R

blocks that can be in use at any instance.

To exploit pipelining in the memory subsystem, the AMULET3 processor core mus

able to issue multiple outstanding memory requests. To avoid causing deadlock

memory system must be designed such that an arbiter input may not be serviced un

known that the service will complete in finite time. One way to achieve this is to guara

that there is space to hold all of the requested values after the critical region by inse

latches. Such latches, forming a FIFO, have to be carefully positioned so that the

after the critical region shared between both the instruction and data access pa

insufficient latches are used, or they are located in the wrong places, then a po

deadlock can occur when the processor fills the critical part of the memory with f

requests and so blocks a data access upon which there is a data-dependency.

Figure 4.5 illustrates this showing where the latches must be placed. For a throttle

giveN outstanding memory accesses,N latches are required.

Figure 4.5: AMULET3 memory throttling (after [94])

Data fetches

in processor

Instruction fetches

critical region

C

throttle FIFO

DbufferIbuffer

RAM block

arbiter

RAM system
Itag Dtag
Chapter 4: Asynchronous Memories 79

4.4 Observations

the

ernal

n this

in

than a

ous

ally

wer

ency.

ation

od,

igh

cost.

in

-going

better

cond

cess
The same sequential optimisation used in AMULET2e was also adopted in

AMULET3 processor to provide a faster subsequent RAM access time from the ext

DRAM, but no use was made of sequential information on-chip.

4.4 Observations

A number of observations can be drawn from the memory organisations described i

chapter. These include:

• Line-buffering can offer a great power consumption reduction. The variation

access time between the line-buffer and normal L1 cache could be much less

whole ‘cycle’ and therefore would require additional design in a synchron

system to gain the benefit from a fast line-buffer whereas it is automatic

exploited in an asynchronous system.

• The combination of line-buffering and sub-blocking not only decreases the po

consumption but also increases the overall performance by exploiting concurr

• A modular approach, based around sub-blocking, allows cache size configur

to be decided later.

• The sequential signal technique, used in the AMULET2 and AMULET3, is a go

cheap approach to reduce the cache power due to CAM comparisons.

• A deeply pipelined structure (like the MiniMIPS cache system) can offer h

system performance, however they come with disproportionately large energy

Another (probably better) solution for both types of problems described

section 4.2.3 is to stall subsequent accesses to the same address as on

accesses. This solution not only removes unnecessary operations, providing

energy-efficiency, but could also improve the overall performance e.g. the se

LOADin the double line fetch problem would become a hit, hence reducing ac

time.
Chapter 4: Asynchronous Memories 80

4.5 Summary

oded

too

be

ity of

to an

ctive

been

Some

s still

s can

ronous

with

in the
• The high performance features like those found in the Kin design (caching dec

instructions and allowing massively out-of-order operations) are usually

expensive to use in small, low-power embedded systems.

• All existing asynchronous caches adopt the write-through policy; it should

possible to improve upon this using a copy-back scheme to reduce the intens

memory write traffic.

The work described in this thesis presents the application of a copy-back policy

asynchronous cache system which also simplifies the implementation of other effe

features such as write-allocation and victim caches.

4.5 Summary

A number of processor design proposals and successfully fabricated chips have

produced by various research groups, some of which were described in this chapter.

of these are now beginning to appear in commercial applications. However, there i

a large knowledge gap to bridge before satisfactory asynchronous memory system

be constructed as is apparent from the observations on notable previous asynch

memory systems presented in this chapter.

The following chapters build upon the existing knowledge base to narrow this gap,

the existing designs used as the basis of an improved asynchronous memory system

form of a cache system for the latest processor in the AMULET series, AMULET3.
Chapter 4: Asynchronous Memories 81

f all of

cribes

d-like

anism,

ples

that

ET3

ugh

ped

will

sible

are:

It

the

With

the

h

s.
Chapter 5: An Asynchronous
Copy-back Cache

Chapter 4 reviewed earlier asynchronous memory systems. One common feature o

these existing cache systems is their use of a write-through policy. This chapter des

the design of an asynchronous, copy-back cache architecture for use with a Harvar

architecture processor core. Issues addressed here include the line allocation mech

write buffering, non-blocking line fetches and out-of-order accesses. Detailed exam

of a variety of cache operations are provided showing the flexible timing behaviour

can be supported by the cache.

5.1 Environment

The cache architecture presented in this thesis is intended to work with the AMUL

microprocessor [34], a third generation asynchronous ARM implementation. Altho

the first AMULET3 system had no cache, it featured eight kilobytes of memory map

RAM, as described in the previous chapter. The organisation of this first system

affect the design of the cache in this thesis. The top-level organisation of a pos

processor and cache subsystem is shown in figure 5.1. The major units in this figure

• an AMULET3 core : this is an implementation of the v4T ARM architecture [4].

is compatible with both the ARM instruction set and its compressed form,

Thumb instruction set whose purpose is to increase the program code density.

its Harvard-like architecture, the closest equivalent synchronous ARM is

ARM9 [87]. AMULET3 has two 32-bit memory ports, the instruction port, whic

is read-only, and the data port, which supports both read and write operation
Chapter 5: An Asynchronous Copy-back Cache 82

5.1 Environment

ion

ccess

sor.

the

ing the

ache

mon
ission
e only

infor-
should
• two MMUs (Memory Management Units): located next to each of the instruct

and data ports, these check whether a memory location is cacheable1. Uncacheable

memory accesses bypass the cache. The MMUs also detect memory a

permission violation and page faults, signalling these to the microproces

(MMUs were not included in the initial AMULET3i system.)

• coprocessors: these are used to extend the ARM architecture and are

mechanism used to support system management tasks such as programm

MMUs, enabling cache features, locking down cache regions and flushing the c

Figure 5.1: AMULET3 cache system

1. Typically, MMUs have a range of functions, not all of which may be used in any given system. Com
functions include: virtual to physical address translation, address alignment checking, access perm
checking to ensure that user mode code cannot modify region of memory restricted to supervisor mod
access etc. The MMUs would normally be configured through a coprocessor in ARM systems with
mation such as the locations in the memory map that correspond to read sensitive peripherals, which
not be cached.

coprocessors

Instruction Port

cache RAM

MARBLE

addr AMULET3
core

MMUMMU

forward

 Data Port

u
n

ca
ch

e
a

b
le

u
n

ca
ch

e
a

b
le

data

addr

data

In
st

r
Li

ne
−

bu
ffe

r

D
at

a
Li

ne
−

bu
ffe

r

write buffer

w
ri
te

s*

write buffer
cache

system
LFL
Chapter 5: An Asynchronous Copy-back Cache 83

5.2 Basic architecture

stem

ache

the

ata at

st the

gh

a

e. The

e the

gns

the

his

ption

h the

s to

onous

lock

ht

will

split

-ported
and write buffers. Many of these operations are not supported in the sy

proposed here.

• MARBLE : an on-chip asynchronous system bus [9] connects the MMUs and c

to other system components and the off-chip memory interface.

• write buffers : a significant penalty is associated with write operations that slow

processor to the speed of the main memory. Write buffers can accept write d

a higher speed than the main memory and allow the processor to continue whil

buffer writes the data back to main memory. Thesystem write buffer[41] in

figure 5.1 buffers uncacheable writes; it would hold all writes in a write-throu

cache system. It is desirable for processor-memory speed decoupling. Thecache

write buffer decouples ‘copy-back’ operations; it is unnecessary with

write-through cache.

5.2 Basic architecture

The processor architecture and its usage place a number of constraints on the cach

cache presented in this thesis is to be unified but dual-ported to accommodat

AMULET3 Harvard-style memory interface. A number of features from earlier desi

can be adapted:

• The cache is divided into (interleaved) blocks as shown in figure 5.2, as were

memory systems of the earlier processors in the AMULET series [32,34]. T

gives dual-port access with the additional benefit of reduced power consum

since only one cache block is active for each memory access. Just as wit

AMULET3 RAM, arbitration is necessary only when both ports request acces

the same block at the same time. This happens transparently in the asynchr

system; no clock gating or wait signals are required. If the cache were a single b

such collisions would be quite frequent; however with (provisionally) eig

independent cache blocks it is unusual for a collision to occur and most cycles

proceed at full speed. This (typically) gives a performance close to that of a

cache but guarantees cache coherence and is much cheaper than a dual

SRAM.
Chapter 5: An Asynchronous Copy-back Cache 84

5.2 Basic architecture

yed

sed

sses.

asons

in

tch

me

ity,

each

one

rom

te

they

ed in
• As can be seen in figure 5.2, the dual (read-only) line-buffering technique emplo

in the AMULET3 RAM system is reused here. One line-buffer for each port is u

to store the last read line which can then be re-read quickly for consecutive acce

This can be considered as an implicit level-0 cache system for reads. The re

for not implementing a write capability in the line-buffers are presented

section 5.6.2.

• Additional techniques are adopted from AMULET2e [32], notably the line fe

latch (LFL) mechanism [72]. This offers the possibility of a non-blocking sche

permitting hit-under-miss operations. To allow high degrees of associativ

combined with adequate speed, a pipelined CAM-RAM structure is used for

cache block (as in the AMULET2e cache). Pipelining allows tag look-up from

port to proceed in parallel with the data access on the other port. Also f

AMULET2e comes a fully-associative CAM-RAM structured block with adequa

pipelining within the block. Fully-associative pipelined structures are used as

provide higher performance and a simple lock-down mechanism as discuss

section 3.9.

Figure 5.2: AMULET3 cache block organisation

1kilobyte

LFL LFL

1kilobyte

arbiter arbiter

1kilobyte

LFL

arbiter

cache RAM cache RAMcache RAM

MARBLE bus

AMULET3 microprocessor (via MMUs)

instruction bus

data bus

DbufferIbufferDbufferIbuffer DbufferIbuffer

...
Chapter 5: An Asynchronous Copy-back Cache 85

5.2 Basic architecture

two

lined

loped.

This

ained

rite

es is

ystem
Figure 5.3 illustrates the structure of an individual cache block bringing together

line-buffers, one each for the instruction and data ports, an arbiter, a pipe

CAM-RAM structure and an LFL.

In addition to combining these elements a number of new features have been deve

The most significant is the design of an asynchronous copy-back mechanism [47].

adds significant complexity because data written to cached memory locations is ret

locally. The cache has to remember that the affected cache line is ‘dirty’ in order to w

it back to memory later, when the line is reallocated. The advantage that this provid

that memory bandwidth requirements are reduced, giving an overall increase in s

performance.

Figure 5.3: Dual-ported asynchronous cache block

Data Line−buffer

Instruction Line−buffer

pipeline latches
R

ea
dD

at
a

In
st

ru
ct

io
ns

D
at

aA
dd

r

M
is

sA
dd

r

W
rit

eD
at

a

Buffer

F
et

ch
ed

D
at

a

In
st

rA
dd

r

Buffertag RAM

tag RAM

memory

LFL

arbiter

data RAM

tag CAM

processor
Chapter 5: An Asynchronous Copy-back Cache 86

5.3 Pseudo two-level cache structure

port

ory

f an

es that

the

es are

which

any

ure.
The other important new feature is the extension of the cache write buffer to sup

forwarding, whereupon it becomes a form of victim cache [57]. In doing so mem

bandwidth is better utilised, giving improved overall performance. The design o

asynchronous victim cache [49] is addressed in depth in the next chapter.

The remainder of this chapter describes in detail the cache operations and techniqu

are adopted in the asynchronous copy-back cache for AMULET3 developed by

author. Throughout this cache description, it is assumed that the evicted cache lin

presented to the memory via the cache write buffer.

5.3 Pseudo two-level cache structure

In this cache architecture there are a number of places in each cache block from

data can be fetched.

5.3.1 ‘Cache hit’

A cache ‘hit’ can be considered to occur when the required data can be retrieved from

of the units shown in the upper half of figure 5.4 resulting in a pseudo two-level struct

Figure 5.4: ‘Nearly’ two-level cache structure

ca
ch

e
hi

ts
ca

ch
e

m
is

se
s

main memory misses

line−buffer

LFL

level−0 cache

level−1 cache

on−chip

hits in main cache

hits in lines newly/being fetched

hits in lines last read (from the cache RAM)

write buffer matches on evicted lines treated as misses

cache RAM
Chapter 5: An Asynchronous Copy-back Cache 87

5.3 Pseudo two-level cache structure

to the

ited

this

g the

have a

own

are

(after

ses

allel

n the

rate

as

tags

l. The

s the

and

of the

int.
Level-0 cache

The term L1 cache is usually used to refer to the smallest, fastest cache closest

processor. However, the line-buffer level is only thought of as L0 because it has lim

functionality and is very small. It buffers the last datareadfrom the cache RAM on each

port. Subsequent reads from the same line can then be satisfied quickly from

line-buffer. Each line-buffer has its own corresponding tag address, checked durin

tag comparison which is performed at the start of each cache access. It does not

write policy; it is simply invalidated on a write miss and the write request is passed d

to the core of the cache system. The activities upon a write hit in the line-buffers

described in depth in section 5.6.2.

Level-1 cache

The true L1 cache is formed by parts shared between both instruction and data ports

the arbiter in figure 5.3):

• the main cache RAM: storing most of the cached data. The tag addres

corresponding to data in the cache RAM are held in a CAM providing a fast par

look-up mechanism which is performed only when the access is not a read hit i

line-buffer.

• the LFL : buffering the most recently fetched data line. Although this is a sepa

latch from the cache RAM (like the line-buffer), the LFL tag address is stored

part of the same CAM used by the main cache data store. Both the cache RAM

and LFL tag are checked in parallel because the cache access time is critica

reason for not counting the LFL as another level in the cache is because it hold

newly fetched lines which are the only copy of the data in the cache system

behave as an extension of the L1 cache.

5.3.2 ‘Cache miss’

The term ‘cache miss’ describes an access to an address for which the only copy

data is in the main memory or in the write buffer. Figure 5.4 also reinforces this po
Chapter 5: An Asynchronous Copy-back Cache 88

5.4 Line fetch engine

y to

ere.

e for

e top

tom

2].

fetch

suing

order;

d in

in

LFL,
The write buffer never generates a cache hit since, without forwarding, the only wa

get data from it is to drain it to the main memory and retrieve the data from th

Obviously, this can cause a significant stall on reads after line rejections. A techniqu

overcoming this, the victim cache, is considered in the next chapter.

5.4 Line fetch engine

Figure 5.5 illustrates the control flow of a cache read request in this architecture. Th

part shows the line-buffering adapted from the AMULET3i memory system. The bot

part shows the line fetch technique adapted from the AMULET2e cache system [7

The line fetch engine in figure 5.5 is a separate unit from the cache. It takes a line

address and interacts with the memory/system bus to fetch the line (for example is

four addresses to retrieve four words of data). These (four) accesses could be in any

the most efficient approach being to fetch the required word first as describe

section 3.4.2. Theword-synchroniser, shown later in figure 5.7 and discussed

section 5.5, ensures that the cache waits for the requested word to be valid in the

allowing any ordering to be used by the fetch engine.

Figure 5.5: Cache request steering control logic

m
er

ge

LF engine

external memory

ad
dr

m
er

ge

se
le

ct

se
le

ct

se
le

ct line−buffer

cache RAM

da
ta

da
ta

LB hit

RAM hit

adapted from AMULET3i memory system
adapted from AMULET2e cache system

ReadReq

ReadAck

LFL hit
da

ta

LFLsync

miss
Chapter 5: An Asynchronous Copy-back Cache 89

5.5 Line allocation mechanism

its

ch is

n the

run

ol of

ows

ment

ered

r,

the

ry
5.5 Line allocation mechanism

The line allocation mechanism is similar to that used in AMULET2e, although

complexity is increased somewhat due to copy-back operation. When a line fet

needed the first activity triggered is a request for a read burst from the next level i

memory hierarchy. The key internal cache activities of the line allocation, which

partially concurrently with the memory access, are shown in figure 5.6. The contr

these operations is illustrated in a 2-phase control style [100] in figure 5.7 which sh

how a non-blocking line fetch engine can be supported in an asynchronous environ

without requiring any arbitration. The activities in the cache line allocation as numb

in figure 5.6 are:

• Activity 1 : Select a victim line and eject it (from the RAM) to the write buffe

regardless of whether that line is dirty or not.

• Activity 2 : Copy the complete, previously fetched line, stored in the LFL, into

RAM, ((2b) in figure 5.7), ‘emptying’ the LFL. This can only happen after eve

Figure 5.6: Cache line allocation data flow

1

2

4

3

write buffer

LFL

line−buffer

MUX

to memory

cache RAM

to processor

MUX

from memory

D

D

I

I

Chapter 5: An Asynchronous Copy-back Cache 90

5.5 Line allocation mechanism

in,

ord

ord

see

is

hich

write

of the

e

ve
word of the previous line fetch has arrived (ensured by a Muller-C element (2a)).

The request also resets the exclusive-OR gates’ outputs (2c), making the

transparent latches (TL) opaque ready for the next line fetch.

• Activity 3 : When the LFL is empty, data from the new line fetch is streamed

each word opening the appropriate latch to indicate its arrival. The same w

synchronisation logic is also used when an LFL hit waits until the requested w

is present.

• Activity 4 : After receiving the ejected line, the cache write buffer tests to

whether it is dirty. If it is not dirty it is marked as ‘written’; otherwise a request

made to the bus to perform the appropriate write(s) ((4) in figure 5.7) which will be

grantedafterthe read burst has completed. The bus interface is a separate unit w

may defer writes if it has more urgent read requests to service. The cache

buffer is described in section 5.10.

There are some resource use conflicts amongst these activities which preclude all

activities running completely in parallel. Activities1 and2 both need to access the cach

RAM whilst processes3 and4 both require the memory bus. Activities in each set ha

Figure 5.7: Line fetch engine (after [71])

se
le

ct

empty LFL

LFL

select

4

2b

1

3a

counter 3b

TL
TL

TL
TL

Cevict a line

‘dirty’ data
write-out

copy−back operations

2a start

2c

increment

wd#

wd#

line fetch engine

word synchroniser

finished

LFLReq

MissReq

FetchReq FetchAck

DataAck

fr
om

 C
A

M

to/from memory

to
 p

ro
ce

ss
or
Chapter 5: An Asynchronous Copy-back Cache 91

5.6 Cache operations

in an

with

n the

in the

ough

s are

ion;

te the

5.1.

ast

essor

is

block
to proceed sequentially. Dependencies such as these have to be considered

asynchronous environment to avoid misoperation and potential deadlocks.

A write-through cache (such as that used in AMULET2e) does not have to deal

evicting possibly dirty data and so performs only steps2 and3 as it is known that the

RAM contents are ‘clean’ and can be overwritten.

5.6 Cache operations

This section describes major activities that may occur for any cache access i

proposed asynchronous cache system. Though these operations are described

context of the copy-back cache, consideration of the requirements for a write-thr

policy are also included for comparison purposes. In this section, all possible activitie

also illustrated in figures with their numbering usually showing the ordering of operat

in cases where concurrency is possible, the numbering is used only to differentia

activities. The key markings used to describe the cache activities are given in table

5.6.1 Line-buffer read hit

A read hit in the line-buffer can be satisfied quickly from the appropriate f

asynchronous line-buffer shown in figure 5.8. The requested word is sent to the proc

without performing a full CAM look-up nor cycling the RAM of the main cache. Th

allows requests from the other port that may need to access the same cache

(including the other line-buffer) to proceed concurrently.

marking activity

R a read operation

W a write operation

wt a write-through cache activity

cb a copy-back cache activity

– write operation performed only when the data is dirty

* a special case specific to the action described

Table 5.1: Key markings describing cache activities
Chapter 5: An Asynchronous Copy-back Cache 92

5.6 Cache operations

and

is

osed

all.

d in

has

cache

he.
5.6.2 Line-buffer write hit

The major difference between dealing with a line-buffer write hit in this architecture

in the AMULET3i RAM system is that a line-buffer write hit in the RAM system

guaranteed also to match a location somewhere in the main RAM, whilst in the prop

cache system a line-buffer write hit could match in any level of the cache or not at

The possible scenarios are matches:

• in both the main memory and the cache RAM – the usual case, describe

Section 5.6.4;

• in both the main memory and the LFL – quite rare but can happen if the line

been evicted from the main cache and then subsequently fetched into the

again;

• only in the main memory – also rare if the line has been evicted from the cac

Figure 5.8: A line-buffer read hit

1 2 3

system bus

WB dataWB tag

arbiter

cache RAMCAM

LFL tag LFL

processor

LB tag LB data
read data from LB

LB tag matches address send data to processor
Chapter 5: An Asynchronous Copy-back Cache 93

5.6 Cache operations

uld

ain

ever,

allow

ld be

d an

ould

ly’ for

n in

mall

words

h the

ht

. This
In a write-through cache, allowing a line-buffer write hit to update the line-buffer wo

be relatively simple to implement, requiring also an update of the buffered line in the m

cache so that all locations holding the referenced information are kept coherent. How

the scenarios described above for a copy-back cache make it much more complex to

updating of the line-buffer in a copy-back cache system. For example: What shou

done if the line-buffer is the only part of the cache containing the data? How woul

updated line-buffer’s contents be evicted later without losing the dirty data? What sh

happen if both line-buffers contain the same line?

To avoid these many complex scenarios, the line-buffers have been made ‘read-on

the processor and are simply invalidated if a line-buffer write hit occurs (as show

figure 5.9). This choice has little effect on performance since the line-buffers are s

and therefore, with sequential access patterns often accessing more than four

consecutively, the line-buffer contents are updated fairly regularly. Note that althoug

instruction port is read-only, if the code is self-modifying the instruction line mig

contain the written location and must therefore be invalidated to maintain coherency

Figure 5.9: A line-buffer write hit

2

4*

3

arbiter

cache RAM

system bus

WB data

LFL

WB tag

processor

LFL tag

LB tag

1*

LB data

CAM

LB tag matches write address

invalidate LB

hit

for example it is a cache write hit

write

ca
rr

y
on

 a
s

th
ou

gh
 it

 is
 a

 m
is

s
fr

om
 L

B

Chapter 5: An Asynchronous Copy-back Cache 94

5.6 Cache operations

(

ns

e the

AM

ivity

also
must only occur when the instruction port is idle, so the data write may have to wait1*).

Apart from invalidating the line-buffer (2 and indicated by the zigzag), the other actio

performed are the same as those when a write misses in the line-buffer. Sinc

arbitration is already done, the write request is then passed straight down for a full C

look-up (3).

5.6.3 Cache RAM read hit

If an access does not hit in the line-buffer it is allowed, via an arbiter to serialise act

from the two ports, to access the ‘main cache’ system. Line-buffer write hits must

follow this path.

Figure 5.10: A cache RAM read/write hit

C
A

M
 m

at
ch

es
 a

dd
re

ss

write

LB tag does not match address

access cache RAM for R/W

bu
ffe

r
W

 in
 w

rit
e

bu
ffe

r

send data to processor

Write Hit: Write−through

Write Hit: Copy−back

Read Hit

2

4Wwt

3

1

4R

5R

WB tag WB datasystem write buffer

processor

system bus

arbiter

LFL

line−bufferLB tag

LFL tag

read data from cache RAM & update LB

cache RAM

hit

in
di

ca
tin

g
da

ta
 in

 c
ac

he
 R

A
M

write it out to memory when bus is free

CAM

5Wwt
Chapter 5: An Asynchronous Copy-back Cache 95

5.6 Cache operations

, are

riate

dual

p has

dress

in

ther

data is

ffer

for

een

ueue

main

e as

the

AM

the

still

e valid
The operations for a cache hit in the main cache RAM, as shown in figure 5.10

very straightforward and much like hit operations in other caches. First, the approp

line-buffer tag look-up has to be performed because of the existence of the

line-buffers. In this case the request is not a line-buffer read hit, so another look-u

to be performed. Hopefully then a tag in the CAM matches the requested ad

indicating a hit in either the main cache RAM or the LFL. (LFL hits are considered

section 5.6.6).

For a cache RAM read hit, the behaviour (annotated on figure 5.10) is similar to o

multi-level cache systems where the cache level closer to the processor is updated;

read from the cache RAM with a whole line being copied into the appropriate line-bu

(4R) and the requested word is sent to the processor (5R).

5.6.4 Cache RAM write hit

In the copy-back cache, whilst performing the write operation in the cache RAM

a write hit (indicated by the grey path, labelledWrite Hit: Copy-back in figure 5.10),

the dirty bit corresponding to the line entry is set to indicate that the line has b

modified.

In the write-through cache, a write request also joins the system write buffer q

(4Wwt) and then, when the bus is idle, the write request (in the queue) updates the

memory (5Wwt). This activity is shown along the grey path, labelledWrite Hit:

Write-through in figure 5.10.

5.6.5 LFL read hit

The operations performed on an LFL hit (shown in figure 5.11) are much the sam

those for a cache RAM hit. However, they are not identical since the LFL buffers

fetched data which arrives a word at a time.

An access again starts with the appropriate line-buffer tag look-up followed by the C

look-up which indicates that there is/will be a copy of the data in the LFL. With

non-blocking line fetch scheme, access to the LFL is possible even if a line fetch is

in progress. However, before any operation can proceed, the data to be read must b
Chapter 5: An Asynchronous Copy-back Cache 96

5.6 Cache operations

ping

ations

ter a
in the LFL, at which point it can be read out directly. This can be considered as a snoo

operation since no cache updating occurs at any other cache level. The oper

performed in an LFL read hit are indicated by the grey loop, labelledRead Hit in

figure 5.11.

5.6.6 LFL write hit

There are a number of different ways an LFL write hit could be handled during or af

fetch has completed:

Figure 5.11: An LFL read/write hit

bu
ffe

r
W

 in
 w

rit
e

bu
ffe

r

Read Hit

Write Hit: Write−through

Write Hit: Copy−back

2

4Wwt

3

4R

1

CAM

system write buffer WB data

LFL

WB tag

LB data

processor

cache RAM

LB tag

system bus

arbiter

write it out to memory when bus is free

LFL tag

5Wwt

write se
nd

 d
at

a
to

 p
ro

ce
ss

or

LB tag does not match address
in

di
ca

tin
g

da
ta

 in
 L

F
L

C
A

M
 m

at
ch

es
 a

dd
re

ss

access LFL for R/W
Chapter 5: An Asynchronous Copy-back Cache 97

5.6 Cache operations

e

e

n the

en

n

ten

write

mpts

f the

t and

ll in

een

ith a

o

• Option 1: wait until the whole line is fetched into the LFL, copy it into the cach

RAM and then overwrite the affected bytes in the cache RAM;

• Option 2: wait until the whole line is fetched into the LFL then combine it with th

affected bytes as the line is written in the cache RAM. This approach is used i

AMULET2e cache system;

• Option 3: wait for the word needing to be modified to be fetched into the LFL th

overwrite the affected bytes in the LFL;

• Option4: wait for the word needing to be modified to arrive at the LFL the

combine it with the affected bytes as the word is written in the LFL;

• Option 5: store the write-data in the LFL, recording which bytes have been writ

so that if those bytes have not yet been fetched, the fetch process will not over

them;

• Option 6: have a separate, parallel latch for the processor to write to. This pree

the LFL at any read attempts and, once written, invalidates that particular part o

LFL.

Table 5.2 summarises the stall duration required for each option on an LFL write hi

a write miss. The first two options both incur an expensive 4 memory-fetch-cycle sta

the worst case (a write miss) and also the RAM overwrite time for option1. Options3

and4 do much better in that they only wait until the word to be overwritten has b

fetched, incurring a stall of between 1 and 4 memory-fetch cycles in duration. W

write-allocate and requested-word-first approach options3 and4 are, of course, much

better on a write miss than options1 and2, only incurring 1 cycle stall as opposed t

4 cycles.
Chapter 5: An Asynchronous Copy-back Cache 98

5.6 Cache operations

t has

ration

uld

is

elled

, the

write

e

As with the difference between options1 and2, option4 saves the ‘overwrite’ time by

merging data on the way into the LFL, but options5 and6 offer the highest potential

performance. Writes only have to wait at most the time required to store a word tha

just been fetched into the LFL before they can themselves be stored for option5. Such

conflicts should be rare since fetches are slow. However, this scheme requires arbit

and a flag for each byte in the LFL to indicate if it contains data from a ‘write’ that sho

not be overwritten by a subsequent fetch. Option6 achieves the same results but

arbitration-free. It does, however, complicate the LFL reading process.

Option4 is used here as it offers a balance between complexity and performance.

Therefore, in the proposed architecture, an LFL write hit (shown in the grey path, lab

Write Hit: Copy-backin figure 5.11) is simply performed in the LFL (3); the dirty bit

corresponding to the line entry is set to indicate that the data has been modified.

As is the trend in this chapter, figure 5.11 also shows, for comparison purposes

additional activity required in a write-through cache (shown by grey path, labelledWrite

Hit: Write-through), including sending all writes into the write buffer (4Wwt) and then

later draining them to the main memory (5Wwt).

stall duration

option write hit in LFL write miss

option 1 upto 4 memory cycles + a cache write 4 memory cycles + a cache

option 2 upto 4 memory cycles 4 memory cycles

option 3 until the word fetched + an LFL write 1 memory cycle + an LFL writ

option 4 until the word fetched 1 memory cycle

option 5 an LFL write an LFL write

option 6 an LFL write (arbitration-free) an LFL write (arbitration-free)

Table 5.2: Stall duration during LFL write
Chapter 5: An Asynchronous Copy-back Cache 99

5.6 Cache operations

cache

w main

th. In

cation

cate

write

tag

e

o the

cost

r the

an

g the

icted

ain

ache

tched

n the

ly, in

r can
5.6.7 Read miss

A cache miss is the most complicated and slowest scenario that can happen in any

system. This is because the request requires access, via the system bus, to the slo

memory. Various policies can be applied on either a read miss, a write miss or bo

this architecture a write-through cache uses a write-around scheme – no cache allo

is performed for write operations – whilst the copy-back cache uses a write-allo

scheme – cache allocation is performed on a write miss and is then followed by a

action into the cache – as discussed in section 2.2.8.

The operations for a cache miss start with the usual (appropriate) line-buffer

look-up (1) followed by the CAM look-up (2). These tag comparisons indicate that th

request requires access to the memory for a line fetch (and writing back dirty data t

memory for a copy-back cache). A cache read miss (shown in figure 5.12) incurs the

of a line fetch. However, prior to starting the line fetch, space must be created fo

previously fetched line from the LFL to be inserted in the main cache; requiring

existing line to be ejected. If the previous line fetch has not yet completed emptyin

LFL process must wait until all the previous data is present in the LFL.

Line eviction is potentially a complicated process in a copy-back cache since the ev

line might have been modified – in which case it needs to be written back into the m

memory. The line eviction approach adopted here is to copy the victim line from the c

RAM into the write buffer regardless of whether the line is dirty or not (3cb). In the

write-through cache, the ejected line is simply discarded.

Then (for both write-through and copy-back caches) the requested cache line is fe

from the memory and latched in the LFL. As soon as the requested word arrives i

LFL it is sent to the processor whilst the remainder of the cache line is fetched. Last

a copy-back cache, when the memory bus is idle any dirty data from the write buffe

be copied out to the main memory (8-) to maintain coherency.
Chapter 5: An Asynchronous Copy-back Cache 100

5.6 Cache operations

vary

is a

est is

ee

nal

d in

tion

e

tain
5.6.8 Write miss

As can be seen from figure 5.13, the operations that occur for a cache write miss

considerably with the choice of write policy. In a write-through cache, a write miss

rather simple operation. Since every write has to update the memory, the write requ

sent to the system write buffer (3wt) and is emptied out when the memory bus is fr

(4wt). In a copy-back cache with write-allocation, a write miss requires a few additio

operations, some of which (those concerning cache allocation) were describe

section 5.5. A line fetch is also performed on a write miss then the write modifica

proceeds as if it were a write hit in the LFL (7cb). Again, when the bus becomes idle th

first dirty data in the cache write buffer queue is copied to the memory to main

coherency (8cb-).

Figure 5.12: A cache read miss

7

64

1

3cb

2

5

8−

arbiter

CAM

LB data

WB data

processor

LB tag

LFL

cache RAM

WB tag

LFL tag

system bus

evicted evicted

LB tag does not match read address

send data to processor

evict a line into write buffer

empty LFL into cache RAM

update memory with dirty dataperform line fetch

fill LFL with fetched data

C
A

M
 d

oe
s

no
t m

at
ch

 a
dd

re
ss
Chapter 5: An Asynchronous Copy-back Cache 101

5.7 Exploiting sequentiality

the

nce in

AM

nnot be

y the

bits

in the

can,

hen
5.7 Exploiting sequentiality

The AMULET2e cache exploited the sequential relationship between many of

memory accesses performed by the core. This improved both power and performa

two ways: by reducing the number of CAM look-ups and by only precharging the R

when necessary for an access.

These improvements are viable since the special cases when such optimisations ca

applied, non-sequential accesses or the first access to a line, are indicated b

processor’s sequential flag and by the ‘all zero’ pattern of the line’s word select

(bits 2-3 here) as shown in figure 5.14.

Using line-buffers as a L0 cache means that most sequential accesses will hit

line-buffer and, therefore, not cause any CAM activity. The sequential optimisation

however, be used to improve performance by avoiding a line-buffer tag check w

Figure 5.13: A cache write miss

bu
ffe

r
W

 in
 w

rit
e

bu
ffe

r

3wt

4wt

1

4cb

3cb

8cb−

2

7cb
5cb

6cb

arbiter

system write buffer

LB tag LB data

CAM cache RAM

WB tag

LFL tag LFL

WB data

processor

system bus

write it out to memory when bus is free

LB tag does not match write address

fill LFL with fetched data

evict a line into write buffer

empty LFL into cache RAM

evicted

C
A

M
 d

oe
s

no
t m

at
ch

 a
dd

re
ss

pe
rf

or
m

 li
ne

 fe
tc

h

evicted

update memory with dirty data

perform W in LFL
Chapter 5: An Asynchronous Copy-back Cache 102

5.8 Timing in a non-blocking line fetch mechanism

AM

ity is

tream

than

ities.

this

on as

ially

. For

ike

es not
detecting sequential line-buffer hits. Furthermore, this technique also allows the C

check to be avoided for sequential LFL accesses, but slight additional complex

required to manage correctly cases where the arbiter within the block interrupts a s

of sequential accesses from one port to service the other port.

5.8 Timing in a non-blocking line fetch mechanism

In asynchronous systems, the timing of individual components is much more flexible

in synchronous systems since there is no global clock signal to control all of the activ

Instead of having to finish in a fixed number of clock cycles, each component in

asynchronous cache system has its own ‘intrinsic’ timing and delivers results as so

it is ready, rather than waiting until the next clock edge to do so.

This section illustrates the timing of the different activities in the cache system, espec

those concerning a non-blocking line fetch mechanism and a copy-back scheme

simplicity only a single memory port is described. AMULET3 has a Harvard-l

architecture and may make parallel or overlapping memory accesses, but this do

affect the fundamental picture given here.

0000 7FF8 ... 1 1 1 1 1 0 0 0

0000 7FFC ... 1 1 1 1 1 1 0 0

0000 8000 ... 0 0 0 0 0 0 0 0

0000 8004 ... 0 0 0 0 0 1 0 0

0000 8008 ... 0 0 0 0 1 0 0 0

0000 800C ... 0 0 0 0 1 1 0 0

0000 8010 ... 0 0 0 1 0 0 0 0

0000 8014 ... 0 0 0 1 0 1 0 0

line boundary

address
LSB
(bit0)

line boundary

Figure 5.14: Identifying when not to perform sequential optimisation
Chapter 5: An Asynchronous Copy-back Cache 103

5.8 Timing in a non-blocking line fetch mechanism

ere a

the

of

stall

che

of the
5.8.1 Hits and misses in a non-blocking scheme

Figure 5.15 depicts a number of activities that can happen in a cache system wh

non-blocking line fetch mechanism is used. The upper part of the figure shows

contents of the cache starting from the left i.e. initially lineX is in the line-buffer, lineY

is in the cache and lineA is in the LFL.

The first operation is a read request from addressA0 which is a hit in the LFL. This can

be serviced directly from the LFL. The next request is another read,B1, which is a cache

miss requiring a line fetch for lineB. The contents of the LFL (A) are copied into the

cache. As soon as the required word,B1, arrives in the LFL, it is sent to the processor.

The next operation is another read,B2, which is in the currently fetched line. Because

the streaming method (part of the non-blocking scheme) the processor only has to

until the word is valid in the LFL. As the line fetch process continues, further ca

requests are also processed in the hope that they will be serviced by other parts

cache (e.g. the line-buffer).

Figure 5.15: Hit timing

time

line−buffer

LFL

memory

cache RAM

The sequence of address requests: ... A0 B1 B2 A0 A1 A2 A3 B3 ‘A0’ A1 A2 ...

data to processor

or

is a write to address X

X

‘X’ is a write to address X in a write−through cache

A2

or

LFL

A1

A3

RAM

LB

‘X’

is a read from address X

A1 A2

B3

B1 B2 B3

A1 A2 A3B1 B2

B1 B2A0

A0

‘A0’

A0

B0

A0 B3

‘A0’

A2

A1

X A

B

A

Y

A B

AA

X A

B

A

B

A

invalidate line A

‘X’

X

Chapter 5: An Asynchronous Copy-back Cache 104

5.8 Timing in a non-blocking line fetch mechanism

words

whole

e

er is

cribed

uses

r.

whole

s, this

andled

licy

line

t

ache

ory

mory
The next request is another read from addressA0 which is now in the main cache RAM.

Since the majority of the memory accesses are sequential, the assumption that “the

subsequent to the current request are usually requested” holds. Therefore, the

line A is read from the RAM and buffered in the line-buffer andA0 is sent to the

processor. Then the following three read requests (A1, A2 andA3) are serviced quickly

from the line-buffer.

The next request is a read from addressB3 which has just arrived in the LFL, and so ther

is no extra stall for the data. The subsequent request is a write to addressA0 which is in

the line-buffer. The request is passed on to the main cache after the line-buff

invalidated to prevent any subsequent requests from reading the wrong data as des

in section 5.6.2. In this case the write can be performed in the main cache and, if this

a write-through policy, the write also proceeds to main memory.

The next request is a read from lineA which has just been invalidated in the line-buffe

Therefore the request has to access the main cache RAM which again retrieves a

line and updates the line-buffer. The last request here is a read fromA2 which now can be

read out directly from the fast asynchronous line-buffer.

5.8.2 Handling writes

Whilst the previous section described the cache activities focusing on read request

section presents cache activities related to write requests and how these writes are h

in different write policies; the choice is between write-through with a write-around po

and copy-back with a write-allocate policy.

Figure 5.16 illustrates the benefit of using a copy-back scheme. The cache containsX

in the line-buffer, lineA in the main cache and lineB in the LFL at start-up. The reques

sequence consists of writes to:A0, B2, B3, C1, C2 and then a read fromC1. The first

operation,A0, is a cache write hit whereas the next two writes,B2 andB3, are LFL write

hits. In a copy-back cache (figure 5.16b) these writes are handled entirely in the c

unlike in a write-through cache (figure 5.16a) where write operations to the main mem

are also required. Clearly using a copy-back scheme reduces write traffic to the me

though there will still be some later write operations needed for dirty evicted data.
Chapter 5: An Asynchronous Copy-back Cache 105

5.8 Timing in a non-blocking line fetch mechanism

to

che

as

this

ally

the
The writesC1 andC2 are cache write misses which are fairly simple write operations

the memory in a write-through cache but in a copy-back (with allocate-on-write) ca

the first writeC1 sets off a line fetch and then the second writeC2 is performed in the

LFL.

The last operation is a read fromC1. It is a reasonable assumption that data that h

been written is likely to be read again in the near future. In a copy-back cache

operation is an LFL read hit, showing how fetching on a write miss can actu

‘increase’ performance by effectively prefetching ahead of subsequent reads from

same line.

Figure 5.16: Timing for a sequence of writes

.....

time

cache

memory

memory

data to processor

cache

data to processor

‘write dirty data’

(b) copy−back cache

(a) write−through cache

The sequence of address requests: ...‘A0’ ‘B2’ ‘B3’ ‘C1’ ‘C2’ C1 ...

B

B

C1

LFL

C0C3C2C1

or

C1

is a write to address X

C1

or is a read from address X

C1

X

C2 C0

C

X X

−

‘X’

LFL

X

C1 C3

B

C

A

RAM

LB

A A

A

B

A

−

X

BB

X

A

XLB

RAM

‘B3’‘B2’‘A0’

‘B2’

‘C1’ ‘C2’

‘C1’ ‘C2’

‘A0’

X

‘X’

‘A0’ ‘B3’‘B2’

‘B3’
Chapter 5: An Asynchronous Copy-back Cache 106

5.9 Resolving ordering problems

al in a

a data

-back

write

at the

e cache

bined

more

okens

2.

hese

her

arly)

ache

ere

n each

uired

ry port

two

tions

only

esult

ugh
As can be seen in figure 5.16, burst mode memory access can be more benefici

copy-back cache than in a write-through cache. This is because both a line fetch and

writeback can (easily) take advantage of a burst-mode memory access in the copy

cache whereas only the line fetch can benefit in a write-through cache unless the

buffer is extended to coalesce individual writes into a burst.

5.9 Resolving ordering problems

To simplify the description of the cache’s basic operation, section 5.8 assumed th

processor issues a request from only one port and the cache system has only a singl

block. The real system is somewhat more complex. This section describes the com

effects of having a dual-ported processor and multiple-cache blocks and allowing

than one outstanding memory accesses per port. In practice, this requires multiple t

in the processor throttle system of the AMULET3 core as described in section 4.3.

Since the cache system is divided into (provisionally, eight) cache blocks, all of t

could provide fast memory accesses concurrently. This would clearly yield hig

throughput and better performance than a single block. Furthermore, with (ne

two-levels of cache in each cache block where each location (line-buffer, main c

RAM and LFL) in the cache has intrinsic timing delay and a pipelined structure, th

could potentially be more than one memory accesses in progress at any one time i

block.

Unfortunately, with the allowance of the multiple-outstanding memory accesses req

to support this, there is a risk of read data being presented to the processor’s memo

in a different order from which it was issued. The following subsections describe

major out-of-order scenarios that could occur in this cache architecture and the solu

that are used to support out-of-order memory completion. This is a comm

encountered problem in asynchronous design with well-known solutions including r

reordering [37], ordered result collection [94] and avoidance of the problem thro

single outstanding activities [9].
Chapter 5: An Asynchronous Copy-back Cache 107

5.9 Resolving ordering problems

cesses

ks as

main

cond

ccess

run

of the

ation

l FIFO

its

LET3

such

same
5.9.1 Inter-block data ordering

The first scenario where ordering problems can occur is when consecutive cache ac

are handled by different cache blocks by virtue of the interleaving of the cache bloc

described in section 5.2. In this situation if, for example, the first access hits in the

cache-RAM and the second access hits a line-buffer (of a different block) then the se

requested data may be ready before the first. A similar situation arises with any fast a

immediately following a slow access (e.g. a miss) as can be seen in figure 5.17.

This type of situation, where ordered activities of different durations are allowed to

concurrently, can be accommodated either by enforcing order by delaying the start

second activity or by reordering the returned data so that it arrives at its final destin

in the expected sequence or by collecting the results in the correct order.

Here the last approach is used – the problem is managed through the use of a contro

at each memory port to control the collection of data from different blocks prior to

presentation to the processor. This is the same approach as was used with the AMU

RAM (described in section 4.3.2), and is only viable if the blocks are constructed

that within each block, requests and their corresponding data enter and leave in the

order.

Figure 5.17: Order problem due to concurrent activities of different durations

time

B0A3

B0A3

A3

X is a read from address X

B0 waits

data to processor

requested addresses

cache block 1

cache block 2 B0

cache block 1

cache block 2

Addr ReadData

A3

B0

A3

B0

SE
L

M
U

X

Chapter 5: An Asynchronous Copy-back Cache 108

5.9 Resolving ordering problems

cutive

o such

access

ccess

each

d hit

arbiter

fore

ontrol

llect

r each

ever,

imple

the

latch

.19,

hilst

n a

ceding

ove.
5.9.2 Intra-block data ordering

The second scenario where data ordering may pose a problem is when conse

requests are handled via different paths within the same cache block. There are tw

cases where this could happen: a fast line-buffer access racing against a full cache

involving arbitration, and a cache access racing against a preceding miss.

Ordering across the arbiter

For improved performance, each cache block is pipelined, allowing the tag of one a

to be compared whilst the data for the previous access is retrieved. Additionally,

level of the cache is separately pipelined internally, therefore when a line-buffer rea

occurs after an access that does not hit in the line-buffer and has to pass through the

to the L1 cache or main memory, the line-buffer hit is likely to produce its result be

the preceding access. Again this ordering is enforced through the use of another c

FIFO (similar to the one used to solve inter-block data ordering in section 5.9.1) to co

accessed words from the right place. In fact, two separate FIFOs are used, one fo

port, as shown in figure 5.18.

Ordering after the arbiter

The structure of the L1 cache proposed here is similar to the AMULET2e cache, how

the pipelined stages are now shared between ports using an arbiter. With the s

AMULET2e pipelining, a stall on one port due to a miss would unnecessarily block

other port to access the main cache as well. To avoid this problem, the pipeline

between the main cache RAM and the LFL is split, along the zigzag in figure 5

allowing LFL access to be sidelined so that the main cache RAM is still accessible w

a line fetch is performed.

Unfortunately, in allowing this another potential race situation is introduced: whe

cache access occurs after a miss, the hit is likely to produce its results before the pre

miss. As before, this ordering is managed through the control FIFOs, described ab
Chapter 5: An Asynchronous Copy-back Cache 109

5.10 Write buffering

ibed

when

ake

rent

process

nt
5.10 Write buffering

Although there are two write buffers, each of which buffers different things as descr

in section 5.1, this section discusses only buffering in the cache write buffer.

Apart from a cache flush, a copy-back cache only writes data to the main memory

a cache miss occurs, which requires a (possibly dirty) line to be emptied in order to m

room for the newly fetched data. A cache miss can then trigger (up to) two diffe

processes which require access to the memory bus: a line fetch (R) to retrieve the required

data and, possibly, the writing back of the dirty evicted line (W). Figure 5.20 illustrates

three sequences of memory bus activity possible when two misses (A2 andB1) occur in

close succession. Each of these misses causes both a line fetch and a write back

where the first line missA evicts lineB which is required for the immediately subseque

miss (B1). Markings are used to indicate either the first miss (-1) or the second miss(-2).

Without buffering the order of bus accesses isW-1 R-1 W-2 R-2 . This is shown in

figure 5.20a.

Figure 5.18: Managing ordering between L0 and L1 caches

Data L0 cache

Shared L1 cache

data ordering control FIFO on data port

Instruction L0 cache

data ordering control FIFO on instruction port

���
���
���

���
���
���

ReadData

ar
bi

te
r

D−SEL

Instructions

DataAddr

InstrAddr I−LB tag

F I F O

L1 tag

I−SEL

D−LB tag

F I F O I−MUX

L1 RAM

I−LB

D−LB

D−MUX
Chapter 5: An Asynchronous Copy-back Cache 110

5.10 Write buffering

read

. This

nism

hich

wly

ne to

ially as

er, in

iss a

nnot be
For obvious performance reasons, the write should be performed after the

corresponding to the same miss since the processor is waiting for the new data

requires additional storage to hold the dirty data in the meantime. The mecha

described above introduces a write buffer [41] (the cache write buffer) as a place to w

to move out a potentially dirty line from the cache RAM in order to make space for ne

fetched data to allow the read (which is urgent) to precede the write of the evicted li

memory.

In general, reordering state-changing operations is liable to cause hazards, espec

in this case data may be read before it has been altered by an earlier write. Howev

the case of reordering the data read and evicted line write for only a ‘single’ cache m

hazard cannot arise because the line being fetched caused a cache miss and so ca

aliased to the rejected line.

Figure 5.19: Control FIFO resolving intra-block data ordering

data ordering control FIFO on instruction port

data ordering control FIFO on data port

���
���
���

���
���
���

���
���
���

���
���
���

LFL tag

InstrAddr

Instructions

ReadData

LFL

I−SEL

DataAddr

I−LB tag

D−LB tag

F I F O

D−SEL

CAM

I−LB

I−MUX

ar
bi

te
r cache RAM

D−LB

D−MUXF I F O
Chapter 5: An Asynchronous Copy-back Cache 111

5.10 Write buffering

y one

has

whilst

ly

then

e

ed in

ads are

could

wn

s

The simplest write buffer scheme has sufficient storage for a single cache line. Onl

slot in the write buffer is required for the write to be deferred until after the read

completed, as in figure 5.20b. Each time there is a cache miss the buffer is updated

a new line is fetched; it is subsequently emptied into memory if it is ‘dirty’ or simp

marked as empty if the write would be superfluous. If a second line fetch is required

that must wait until the write buffer is empty before it can begin, giving the orderingR-1

W-1 R-2 W-2. If W-1 is a true write (from a dirty line), this could delay th

performance-criticalR-2 operation.

In order to reduce processor stalls further when two or more line fetches are requir

close succession, memory accesses can be reordered so that all outstanding re

performed before the writes begin (aread-overtake-writescheme). For the above

example, two line fetches which both cause write operations, the memory accesses

be performed in the orderR-1 R-2 W-1 W-2 , resulting in a significant latency

reduction forR-2 . Clearly this requires more than one slot in the write buffer as sho

in figure 5.20c.

Figure 5.20: Write buffering

time

data to processor

memory

data to processor
memory

data to processor

memory
B1

B1B0 B3B2A1 B1 B2A3 C1A0 C3B3

B3B2

A2

B0

B1

B2

C0

B0

C2

C3C2

B0

C1B3

C3C2C1C0

B0B3B2B1

A0A3 A1

B1 C0A0A3 A1

B1A2

X

The sequence of address requests: ... A2 B1 ... (each causes a line fetch)

(c) with a multi−slot write buffer
and reads overtaking writes

(b) with a single slot write buffer

(a) without any write buffer

X

R−1 and represent read processes from the memory for the first and second line fetcheR−2

W−1 W−2and represent write (dirty lines) processes to the memory for those line fetches

shows a data dependency whereas shows a RAW hazard

Xor X is a read from address X, is a write to address , is a requested word

A2 B1

A2

A2

R−1 W−1 R−2 W−2

B1B0 B3B2

W−1 R−1 W−2 R−2

RAW hazard

A2

R−1 R−2 W−1 W−2
Chapter 5: An Asynchronous Copy-back Cache 112

5.10 Write buffering

lems

ead

ck of

write

ake the

ing to

ad to

be

ed to

ld be

ort,

hed.

nding

nt the

write

rved’

rant

, is

this

a fetch

the

ite’,

omes

G2 is

r ‘do

tex),
Whilst fairly straightforward in the synchronous domain, overtaking can cause prob

in an asynchronous implementation where it can be difficult to determine if a r

operation has been requested before a write burst begins because of the la

synchronisation between the input and output units of the write buffer. Because the

and a subsequently requested read are asynchronous, arbitration is required to m

decision between the line-fetch process and the write buffer write-out process, lead

non-deterministic behaviour. As shown in figure 5.20c this mechanism can also le

Read-After-Write (RAW) hazards [41], which must be resolved for correct operation.

5.10.1 Arbitration for the system bus

If a line fetch has evicted a dirty line there will be data in the write buffer waiting to

written into main memory. In a simple system the write out operation could be queu

be the next main memory bus transaction after the line fetch and the system wou

wholly deterministic (i.e. arbitration free). However, with hit-under-miss system supp

it is plausible that a second cache miss could occur before the first line fetch is finis

In these circumstances it is desirable for the second line fetch to overtake the pe

write to reduce read latency.

In an asynchronous system, it is possible for the second fetch to arrive at the insta

previous fetch completes, requiring an arbiter to decide whether it preempted the

starting. Because most standard asynchronous arbiters work on a ‘first-come-first-se

basis, and the write is likely to arrive first, this circuit needs to be specially biased to g

a read if at all possible i.e. if the write buffer is not full.

A suitable circuit for this, similar to the one used to sample interrupts in AMULET3

shown in figure 5.21. This arbiter is the only point of non-determinism introduced in

scheme. Its behaviour is such that: when the system bus is not busy, and there is

pending or the write buffer is not empty, the mutex [88] R2 input is asserted. When

arbitration is won by the R2 input, G2 is asserted activating either ‘do read’ or ‘do wr

depending on the value held in the latch (TL). When the transfer begins, the bus bec

busy and a return-to-zero sequence of events releases the mutex R2 input, and

deasserted. The value held in the latch, which determines whether to ‘do read’ o

write’ can only change when R1 is asserted and wins the arbitration (within the mu
Chapter 5: An Asynchronous Copy-back Cache 113

5.10 Write buffering

latch

losing

ffer is

uces

ith a

line

this

ore

This

is

e of

o a
which guarantees a new transfer will not start whilst the latch is open. When the

input and output are the same, the XOR gate drives low, releasing the mutex and c

the latch. Thus a read is selected whenever a fetch is required, unless the write bu

already full.

5.10.2 Read-After-Write hazards

Allowing a read to overtake writes – other than a corresponding evicted line – introd

potential memory coherency hazards, i.e. RAW hazards. This is not a problem w

single evicted line because, by definition, the outgoing line cannot conflict with the

being fetched to replace it, but if more than one entry is allowed in the write buffer

protection is no longer assured and must be provided explicitly. A write buffer with m

than one entry could lead to a situation whereR-2 clashes withW-1 as in figure 5.20c.

Solutions to this problem include:

• Do not reorder. The write buffer must be drained before a read is performed.

would not allow the advantage of read-overtake-write.

• Forward the required data to the processor directly from the write buffer if it

fetched again. Forwarding not only solves the coherency problem but, by virtu

storing and returning recently ejected lines locally, turns the write buffer int

victim cache [57].

Figure 5.21: Next memory transfer decision logic

TL
outin

en

G1R1

select read

mutex

use memory
G2R2

se
le

ct do read

do write

WB full

 fetch pending
WB empty

system bus busy
Chapter 5: An Asynchronous Copy-back Cache 114

5.11 Summary

vided

the

bined

ower

eed

t) L0

to

for

alysed

e that

ffer.
Clearly the second option is preferable if some mechanism of forwarding can be pro

without introducing hazards in the asynchronous environment. Implementing

forwarding mechanism and victim cache is the subject of chapter 6.

5.11 Summary

This chapter has detailed how a number of novel and existing techniques can be com

to create an asynchronous copy-back cache for the AMULET3 microprocessor.

The major techniques used here include:

• dividing the cache into a number of independent blocks in order to reduce the p

consumption and the probability of clashes between instructions and data;

• internal pipelining in each block allowing tag look-up and data access to proc

concurrently;

• separate instruction and data line-buffers which effectively behave as a (fas

split cache;

• a writable line fetch latch (LFL) with a non-blocking line fetch mechanism

reduce processor stalls on a write miss and support hit-under-miss;

• a copy-back write policy to reduce memory bandwidth;

• a write buffer with read-overtake-write support to reduce processor stall during

requested data.

The benefits of these techniques in a model of the fully asynchronous cache are an

in chapter 8. However, prior to this, chapter 6 describes an asynchronous victim cach

can be used with the cache described here to resolve RAW hazards in the write bu
Chapter 5: An Asynchronous Copy-back Cache 115

rk with

asic

ata

a

the

ied in

in an

ta to be

.

d by

g and

me it

This

uffer

er of

match

e still

stem.
Chapter 6: Victim Caches

Chapter 5 presented an asynchronous copy-back cache architecture designed to wo

the AMULET3 processor. That chapter ended with the problem of a RAW hazard in b

write buffering1 using the read-overtake-write technique where the line fetch d

conflicts with the buffered writes in the write buffer. This could also happen in

synchronous environment, where one well known solution is to forward directly from

write buffer. There is no obvious reason why the same technique should not be appl

an asynchronous environment although implementing a forwarding mechanism

asynchronous system, as addressed in this chapter, is more difficult because the da

forwarded is flowing in an unsynchronised manner to the process which requires it

6.1 Forwarding

A possible solution to forwarding in an asynchronous environment was introduce

Gilbert [37], an asynchronous implementation of areorder bufferintended for use in a

processor register bank. The reorder buffer accepts input data with arbitrary orderin

outputs them in a pre-assigned order. Forwarding of any entry is allowed from the ti

is written until it is overwritten by new data. A similar technique can be used here.

allows memory writeback to proceed unimpeded, but leaves valid data in the write b

until it is overwritten.

Forwarding not only solves the coherency problem, but can also reduce the numb

memory cycles by intercepting line fetches to recently ejected addresses (due to mis

between system behaviour and the replacement algorithm). Evicted lines which ar

required will then be returned to the main cache before they are lost from the local sy

1. a cache write buffer in the previous chapter
Chapter 6: Victim Caches 116

6.1 Forwarding

-up

miss

ache

in the
In this situation the write buffer is now performing the function of avictim cache. The

position in a memory system of a write buffer/victim cache is shown in figure 6.1.

Unlike the victim cache first proposed by Jouppi [57], where the victim cache tag look

was performed in parallel with the main cache tag check, thereby reducing the

penalty, in this architecture, the victim cache tag look-up is triggered only on a c

miss. This gives better power efficiency since most of the accesses can be satisfied

main cache.

Figure 6.1: Write buffer/victim cache position

Figure 6.2: ‘Nearly’ two-level cache structure incorporating a victim cache

da
ta

write buffer/victim cache

main cache

fe
tc

h
ad

dr
es

s
main memory

ad
dr

es
s

w
rit

e fe
tc

h
da

ta

processor

forward

ev
ic

tio
n

look−up

ca
ch

e
m

is
se

s
ca

ch
e

hi
ts

missesmain memory

level−0 cache

level−1 cache

on−chip

hits in main cache

hits in evicted lines

hits in lines newly/being fetched

hits in lines last read (from the cache RAM)line−buffer

cache RAM

LFL

victim cache
Chapter 6: Victim Caches 117

6.2 Victim cache processes

her

nes.

quest

e main

not be

ntain

d the

ay be

stem

ways

rious

All

time.

tent)

posed

n in

ct of

cache

of a

nalty
Referring back to figure 5.4, the inclusion of a victim cache provides a furt

‘hit scenario’, as clarified in figure 6.2, since the victim cache holds recently evicted li

This has its own address tags which are checked in a cache look-up after the re

misses in all of the above locations but before the request can trigger an access to th

memory.

When a cache miss occurs, the line which is being ejected to the victim cache need

considered in the address comparison for forwarding purposes since it will never co

the required line. It must be excluded because the fetch (and, possibly, forward) an

write buffer insertion processes are asynchronous so the contents of this location m

changing during the comparison process. Therefore the victim cache holdsone fewer lines

than it has storage locations in the write buffer.

Figure 6.3 illustrates the different sizes of data transfer from/to the cache sy

presented here. Whilst cache communications with the main memory are al

word-transfers (32 bits), communication with the processor can be done at va

granularities up to a word long (indicated using ‘*’); i.e. a byte, half-word or a word.

internal communications within the cache system transfer a whole cache line at a

The transfer with ‘#’ indicates the forwarding path (for both the line address and con

from the victim cache. Because the victim cache contains only complete lines, as op

to a mixture of bytes, half-words and words as in the system write buffer show

figure 5.1, forwarding is a viable option in a copy-back cache.

6.2 Victim cache processes

The victim cache was proposed by Jouppi [57] as a method to reduce the impa

conflict misses in direct-mapped cache structures, but is easy to generalise to any

architecture. It is loaded only with items ejected from the main cache. In the case

cache miss that hits in the victim cache the LFL can therefore be filled without the pe

of a memory read burst.
Chapter 6: Victim Caches 118

6.2 Victim cache processes

che

a tag

ver,

erent

n it:

is

can.

ith

the

to

in

se.
Figure 6.4 illustrates the control flow of the victim cache operation. The victim ca

itself is a fully associative cache composed of two main parts. Addresses are held in

store (CAM) and their corresponding data is held in the data store (RAM). Howe

operationally, the victim cache can be considered as a memory with three diff

functions indicated by the grey loops (clockwise starting from the top left) acting upo

• Line-fetch and forwarding : A main cache miss occurs so the miss address

passed to the victim cache, which must supply (forward) the requested line if it

Again a Muller-C element ensures that the LFL is emptied before refilling it w

newly fetched data.

• Cache eviction: A cache miss occurs and the main cache empties a line into

victim cache (shown in figure 6.4 labelled ‘fill VC’). The victim cache has

provide an empty storage location for the line at this time.

• Buffered writes: The victim cache autonomously copies ‘dirty’ lines into the ma

system memory (shown in figure 6.4 labelled ‘drain VC’), freeing space for re-u

Figure 6.3: Data transfer granularity

processor bus

memory bus

victim cache

LFL

cache RAM

line−buffer

word* transfer

word transfer

word* transfer

word transfer

line transfer

line transfer

line transfer #

line transfer
Chapter 6: Victim Caches 119

6.3 Victim cache implementation

ivities:

e a

on is

ised

ich

s are

te

ies

thin
However, there are only two independent, concurrent processes among these act

filling (the first two functions) and draining the victim cache (the last function), sinc

line fetch causes a cache eviction. The difficulty in an asynchronous implementati

that the data flowing into/out of the victim cache is entering/leaving in an unsynchron

manner from the line-fetch/forwarding process that may require it.

6.3 Victim cache implementation

A similar approach to the one used in the reorder buffer in AMULET3 [37] wh

forwards register values is used here, with the simplification that inputs and output

always in the same order.

The write buffer is a ‘circular buffer’ (which is a way of implementing a FIFO). Wri

operations are made to thein pointer of the buffer and the write process strips entr

from theout pointer whenever the bus goes idle. (Thein andout pointers are shown

later in figure 6.5.) A useful property of circular buffers is that data does not move wi

Figure 6.4: Control flow in the victim cache

write buffer

C

BUS

occupancy

fetch arbiter

throttle

write buffer
fill VC

line fetch/forward cache eviction

dirty?

iterate

forward

no

release bus

hit

yes

miss

victim cache

C

RAM

empty LFL

request bus

refill LFL line fetch request

CAM

complete

previous
line fetch

dr
ai

n
V

C

Chapter 6: Victim Caches 120

6.4 Victim cache storage

ct that

me of

ely

es in

in

from

ected

ffer is

esses

be run

en the

rency

ause

that,

tions.

held

r of

he

wn in

n to
the buffers’ storage elements and so can be read and forwarded despite the fa

another asynchronous process may be writing the other data concurrently. The lifeti

the ‘forwardable’ data is fixed by the number of write buffer entries and is entir

independent of the copy-back process.

Although the mechanism used here is similar to Gilbert’s, there are some differenc

the details. In particular, the possibility of forwarding is determined by a CAM look-up

both cases. In the original this was maintained by the instruction decoder, remote

read-out process and in a different timing domain, but here the CAM contains the ej

lines’ addresses and therefore must be local. This is feasible because the write bu

only modified when a line fetch is needed and thus the write and the forwarding proc

are inherently synchronised.

In practice even this synchronisation is not necessary and the two processes may

in parallel. This is because, as observed earlier, there cannot be a match betwe

requested and evicted lines. If the implementor desires to exploit this extra concur

thein pointer of the queue must be excluded from the CAM look-up comparison bec

the contents of this location may be changing during the comparison process. Note

in either case, the victim cache holds one fewer valid lines than it has storage loca

6.4 Victim cache storage

Three types of information are stored in each line of the victim cache: the address –

in a tag CAM allowing fast parallel look-up; the data – held in RAM; and a numbe

additional control markers must also be kept. There are also globalin andout pointers

(as in figure 6.5) steering the writing into and emptying out from the victim cac

respectively. Three extra bits for each data entry describe the data held (also sho

figure 6.5):

• full – the entry has been filled but not copied-out;

• dirty – the entry should be copied into the memory since it has been writte

whilst in the main cache;

• valid – the entry may be considered for forwarding.
Chapter 6: Victim Caches 121

6.4 Victim cache storage

t as

n

et of

rrent,

re

fined.

nts

time,

es the

line

s can

tly
When a line of data, along with its ‘dirtiness’, arrives it is stored in the next empty slo

indicated by thein pointer and thevalid and full bits for the entry are set. The

dirty bit for the entry is also setif the entry is dirty. Thein pointer then moves forward

to the next slot.

The concurrent process pointed to by theout pointer waits for an entry to be full and the

checks its ‘dirtiness’. If it is dirty, the process competes for the bus and performs a s

writes to the memory, otherwise these writes can be skipped. Lastly, thefull bit is

cleared to indicate that the write phase is complete and theout pointer moves forward to

the next entry. Note that this process proceeds regardless of any, possibly concu

forwarding activity.

The function of thevalid bits is to prevent the wrong data being forwarded. They a

cleared at start-up when the victim cache is empty and the tag fields are unde

However, thevalid bit for a line is also cleared when the line is forwarded; this preve

different versions of the same cache line being valid in the victim cache at the same

so that there can be at most one forwardable line matching any address. This remov

need for prioritisation logic to guard against the (unlikely, but possible) chance that a

is evicted, forwarded and evicted again in close succession. The forwarding proces

safely clear thevalid bit because forwarding is not possible from the entry curren

used for eviction (when thevalid bit is set).

Figure 6.5: Victim cache RAM structure

accessed & modified on copying out (pointed by to ’out’)

accessed & modified on forwarding

accessed on copying out (pointed to by ’out’)
modified on cache eviction (pointed to by ’in’)

modified on cache eviction (pointed to by ’in’)

modified on cache eviction (pointed to by ’in’)

X
X

X
XX

X

X data
data

full

valid

out

in Xdata

X

dirty
Chapter 6: Victim Caches 122

6.5 Victim cache operations

and

been

tional

er

though

e

sses

cess

ay

n the

r will

5.5

lexity

ired
This approach still retains the independence between forwarding (accessing

modifying thevalid bit) and copying data out (accessing and modifying only thefull

bit). This means the forwarding scheme always returnscleandata to the cache whilst the

copying out process has to be performed regardless of whether the data has

forwarded (depending on thedirty bit).

There is an important difference between this forwarding scheme and a conven

register forwarding scheme. In the victim cache forwardingmovesthe data back to the

cache rather thancopyingit, thus forwarding can occur only once per entry. A regist

forwarding scheme may duplicate the data an unlimited number of times.

The eviction and copy back processes are independent and largely decoupled, al

the in pointer must notlap theout pointer. In practice, the constraint is slightly mor

strict as is illustrated in section 6.7.

6.5 Victim cache operations

The cache operations involved in forwarding are illustrated in figure 6.6. Addre

(VC tag) are held in the victim cache along with their data (VC data). Before reading

external memory, a line fetch address can be compared with these address tags (5*) and,

if a match occurs, the data can be ‘forwarded’ directly from the victim cache (6*) instead

of fetching the line from memory. This does not interfere with the (asynchronous) pro

of writing to the memory (8-) which may not yet have started, may be in progress, or m

have completed at this time. In the cache, the forwarded line is marked as ‘clean’ i

process of being forwarded as it is already coherent with that in the main memory o

be so after it is drained from the victim cache.

With this forwarding mechanism, the control flow for a cache read request from figure

can be extended as illustrated with the shaded region in figure 6.7. The extra comp

only has an effect on a cache miss where it will hopefully be able to forward the requ

data directly from the victim cache into the main cache avoiding a full line fetch.
Chapter 6: Victim Caches 123

6.5 Victim cache operations
Figure 6.6: Cache forwarding operations

Figure 6.7: Cache read request control flow with forwarding

victim cache

5*

7R

7W

6*

3

2

1

4

8−

arbiter

LB tag

VC tag

processor

LB data

VC data

CAM

system bus

cache RAM

LFLLFL tag

se
nd

 d
at

a
to

 p
ro

ce
ss

or

VC tag matches address

LB tag does not match address

evicted

perform write in LFL

forward data from VC to LFL

empty LFL into cache RAM

evicted
evict a line into write buffer

C
A

M
 d

oe
s

no
t m

at
ch

 a
dd

re
ss

update memory with dirty data

m
er

ge

m
er

ge

se
le

ct

se
le

ct

se
le

ct line−buffer

cache RAM

LFL

RAM hit

sync

da
ta

da
ta

"hit"

"miss"

LB hit

ReadReq

ReadAck

LFL hit

da
ta

se
le

ct

da
ta

victim cacheforward

LF engine

ad
dr

external memory

miss
Chapter 6: Victim Caches 124

6.6 Victim cache benefits illustrated

the

he

data

ed in

in the

y are
6.6 Victim cache benefits illustrated

Figure 6.8 illustrates the benefit of the forwarding mechanism. In this example,

system’s state is that two lines (A andB) have been recently rejected from the main cac

into the write buffer and the main memory has been updated with lineB. Then these are

required again with the sequence of address requestsA2 followed byB1 each of which is

a cache miss (and would originally require a line fetch). In this architecture line fetch

retrieved from the main memory enters the main cache RAM via the LFL as describ

chapter 5.

The victim lines that are ejected from the cache on these line fetches are not shown

figure since they are not directly involved in this example but it is assumed that the

all buffered in the write buffer.

Figure 6.8: Illustration of benefits of forwarding

time

LFL

victim cache
memory

data to processor

A3

LFL
memory

A2

A2 B1

data to processor
B2

B

B1A2

A

 (a) without forwarding mechanism

The sequence of address requests: ...A2 B1... (each causes a line fetch)

(b) with forwarding mechanism

B1

A2

A2

B1

B1A1A0 B0B3

orX

‘X’

LFL

(X) already wrote to address X

LFL

is a read from address X

*

RAW dependency

is a write to address Xor

(A)

(B)

B

(A)A

Z

A

(B)

(B)

B

(B)

(B)(B)

A

B

A

(B)

A

(A)

A

Z

WB

VC

‘X’

X

‘A1’‘A0’ ‘A3’‘A2’

‘A1’‘A0’ ‘A2’ ‘A3’
Chapter 6: Victim Caches 125

6.7 Avoiding deadlock by using a token queue

ding

e the

ng

ine

four,

y.

een

fetch

the

y in

ache

is is

, the

fore

e in

can

ry,
Figure 6.8a illustrates the activities of this request sequence without a forwar

mechanism. To solve the RAW problem, the first request (A2) must wait for the

up-to-date value of lineA to be written into the main memory. Then the whole of lineA

can be fetched from the memory into the cache system and the required wordA2 can be

sent to the processor. The second request (B1) can invoke the line fetch process for lineB

directly since the copy in the write buffer is already updated into the main memory.

With the forwarding mechanism as shown in figure 6.8b, instead of stalling to resolv

dependency,A2 can be forwarded directly from the write buffer even if that line is bei

written into the main memory or is waiting in the writing out queue. In this model the l

fetch process is ‘short circuited’ and can occur in a single, on-chip cycle rather than

slow bus cycles. This leads to an asynchronous process with a highly variable dela

Furthermore,B1 can also be forwarded from the write buffer even though it has b

written into the memory. This is because the writing out processleavesacopyof B in the

write buffer.

In this approach, forwarding reduces the processor stall period and avoids a full line

from the memory but does not reduce the write traffic. It is possible to cancel

copy-back process if a victim cache line is salvaged; this is discussed briefl

section 6.8.

6.7 Avoiding deadlock by using a token queue

If reads are allowed to overtake writes, there is a potential for deadlock during the c

line allocation process in a copy-back cache if the victim cache become full. Th

illustrated in figure 6.9. When the line fetch engine asks for data from the memory

memory tries to send the data to the LFL (1). However, the LFL must be emptied be

it can store the newly fetched line (2). To empty the LFL requires allocation of a lin

the cache RAM which must first be emptied into the victim cache (3), before the LFL

be read. If the victim cache is full, a line must be written from it into the main memo
Chapter 6: Victim Caches 126

6.8 Extending the victim cache to reduce write traffic

ing

n an

token

lated

kens

ictim

iding

affic.

ribed,

o the

ss of

This

e out
(4), requiring the memory bus. This results in deadlock if the memory is busy perform

the read (and cannot service the memory writes).

The solution to this problem is to keep at least one slot in the victim cache empty. I

asynchronous environment, a standard way to implement this solution is to use a

queue [37] where tokens corresponding to the victim cache locations are circu

(figure 6.4). Initially, the allowed number of tokens are placed in a pool (write buffer

throttle in figure 6.4) and then one is claimed before each eviction can begin. The to

then reside in the victim cache (inwrite buffer occupancyin figure 6.4) until the copy out

process returns them to the write buffer throttle. As there is one fewer token than v

cache locations, eviction will always stall before the last victim cache entry is filled.

6.8 Extending the victim cache to reduce write traffic

Figure 6.8 showed that forwarding can both reduce the processor stall period by avo

a full line fetch from the external memory and (as a by-product) reduce the read tr

However, the write traffic remains unaffected. This is because, in the approach desc

the forwarding mechanism does not interact with the process copying data out t

memory. Therefore all dirty data must be written back to the main memory regardle

whether it has been forwarded.

It is possible to avoid the data copying out process if a victim cache line is salvaged.

can be achieved by detecting that forwarding has been performed before a writ

Figure 6.9: Illustration of a deadlock situation

cache RAM

main memory

w
ri

te

fe
tc

h

write buffer
LFL

victim line evict

em
pt

y
L

FL (3)

(4)

(2)

(1)
Chapter 6: Victim Caches 127

6.9 Victim cache distribution

stead

her,

inly

efore

in a

) is

ughly

nly a

re two

ongst

of each

that

ache

d to

for

by

ch a
(copy-back) has begun. In this case it would be possible to abort the write and in

return a (possibly dirty) line to the cache. This could reduce the bus traffic a little furt

but the cost in added complexity is considerable. The additional complexity ma

involves some form of synchronisation of the forwarding and copy-back processes b

forwarding is performed for any data. Unfortunately, this synchronisation may result

long stall duration if a write out (which may possibly be irrelevant to the forwarding

under way. The exact benefits such a scheme would offer have not been thoro

investigated because the extra cost involved is unlikely to be justifiable.

6.9 Victim cache distribution

As described in chapter 5, the cache is partitioned into blocks although there is o

single memory bus upon which evicted data can be written. This means that there a

alternative positions for the victim cache: centralised and shared, or distributed am

the blocks. The following subsections discuss the advantages and disadvantages

of these two styles of victim cache for a cache system divided intoN cache blocks with

total victim cache size ofV entries.

6.9.1 Centralised victim cache

Having a centralised and shared victim cache for the whole cache system meansV

can be any size, with a minimum of 1 line. However, for forwardingV must be at least

2 lines. This is because, as described earlier, there will be one entry in the victim c

that must not be considered for forwarding, leavingV–1 forwardable entries.

In this style of victim cache, stalls due to filling up the victim cache are rare compare

the distributed scheme as the victim cache is less likely to be full of entries waiting

copying to the main memory. Moreover, this stalling can be easily recovered from

writing out a data entry from the victim cache. This is because the multiplexers in su

system, one required to multiplex write-out data from theN cache blocks and the other
Chapter 6: Victim Caches 128

6.9 Victim cache distribution

e

he’s

also

wide

he

rison

).

d in

eme.

g

required for distributing forwarded data back to theN cache blocks, are placed before th

victim cache, which is actually the critical path from the processor’s and the main cac

perspective.

Figure 6.10 illustrates the organisation of a centralised victim cache scheme. It

depicts the wiring problem that this organisation causes due to the cost of large,

buses (128 bits) connecting the cache blocks to the shared victim cache.

6.9.2 Distributed victim cache

For a cache system divided intoN blocks, to provide the same total storage as t

centralised scheme, each cache block has a local victim cache ofV/N lines. To allow

forwarding,V must be an integer multiple () ofN where the same rule of forwarding

ability is applied as for the centralised scheme.

However, since the size of each distributed victim cache is small(er), the tag compa

is either faster (for tag RAM) or cheaper in power consumption (for tag CAM

Furthermore, having a victim cache locally by each cache block, as illustrate

figure 6.11, offers two further advantages over the centralised victim cache sch

The first is cheap wiring using short, narrow (32 bit) local copy-back and forwardin

Figure 6.10: Centralised and shared victim cache

128

128 128

32

...
128

128

128
128 128

cache blockcache block

victim cache

cache block

MUX MUX

BUS

2≥
Chapter 6: Victim Caches 129

6.9 Victim cache distribution

ance.

tim

dirty

both

rised in
paths. The second is that the multiplexing process becomes non-critical to perform

However, with small local victim caches, long duration stalls due to filling up a vic

cache are more likely to occur as the main memory arbiter may be in use draining

data from a different (non-critical) victim cache.

The choice of which victim cache implementation is best is not an obvious one;

schemes have advantages (unshaded) and disadvantages (shaded) summa

table 6.1, some of which will only be quantifiable when layout is produced.

Figure 6.11: Distributed and localised victim cache

Centralised victim cache Distributed victim cache

tag comparison bigger, hence slower tag array faster

restriction onV any size, minimum of 2 lines integer multiple () ofN

wiring cost expensive 128-bit buses connecting blocks to
victim cache

much cheaper short local forwarding
paths

forwarding ability (V -1) lines can be considered for forwarding(V - N) lines

stalls due to filling
victim cache

very rare as victim cache unlikely to be full
of entries waiting for copying to main
memory, and easily recovered.

likely, and possibly of long duration
as the main memory arbiter may be
servicing a different block’s
(non-critical) victim cache drain

multiplexing in critical path everything is local

Table 6.1: Benefits of distributing the victim cache

32

32 32 32

128 128 128
128

...
128 128

victim cachevictim cache

MUX

BUS

victim cache

cache blockcache block cache block

2≥
Chapter 6: Victim Caches 130

6.10 Summary

uffer

ines

stall

the

nous

at the

ddress

rder

ture

for each

and the
6.10 Summary

Forwarding not only solves the coherency problem introduced by using a write b

(with read-overtake-write) but, by virtue of storing and returning recently ejected l

locally, turns the write buffer into a victim cache providing a reduced processor

period and avoiding a full line fetch from the memory. However, it does not reduce

write traffic since this seems to require unjustifiable additional cost.

This chapter not only described how to implement a victim cache in an asynchro

framework, it also provided a suitable victim cache storage structure to guarantee th

correct data is forwarded even in the presence of multiple entries at the same line a

in the victim cache. Furthermore, the token queue technique from the AMULET3 reo

buffer is reused to avoid deadlock in the copy-back process.

Finally, two schemes for implementing a victim cache for the cache architec

described in chapter 5 have been proposed and the advantages and disadvantages

scheme have been discussed in depth. Results and evaluations of the victim cache

alternative implementations discussed here are presented in section 8.3.
Chapter 6: Victim Caches 131

were

e the

bes the

cache

luated.

stems

] and

sign,

The

tion

ches.

that

for a

vary

els

ding

more

icable
Chapter 7: Simulation Methodology

Models of the cache architecture and the victim cache described in chapters 5 and 6

created and extensively simulated in order to verify the architectural design, validat

design decisions and evaluate the benefits of the new features. This chapter descri

simulation environment and the tools used, benchmark programs, reference

parameters and the choices of configuration and parameter values which were eva

The results of these simulations are presented in chapter 8.

7.1 Synchronous cache evaluation

The three most often used methods for the study and evaluation of cache memory sy

in a synchronous environment are: hardware measurement, analytical models [1

simulation. Obviously the first technique is of no use in the early stages of cache de

but using it on existing designs allows calibration of the latter two approaches.

principal advantage of models and simulations is their flexibility which allows evalua

of a range of cache parameters in a short time and without having to build any real ca

Analytical models can be rapidly constructed by representing only the key factors

affect cache performance, providing a quick, rough estimate of cache performance

wide range of programs and cache configurations. Models found in the literature

greatly in their complexity and applicability from straightforward, probabilistic mod

using only a few metrics and parameters to more sophisticated models inclu

measured and calculated parameter values to corroborate results. Usually the

complex the metrics and equations involved, the more accurate, reliable and appl

the result.
Chapter 7: Simulation Methodology 132

7.1 Synchronous cache evaluation

lator;

ven

tion

ient

ify a

lling

mory

tion,

e

y one of

real

space

es are

obtain

tion.

ime to

ches.

ture of

these

of a

uts to

ives
There are a number of approaches for generating inputs to drive a cache simu

probability distribution-driven, trace-driven, execution-driven and application dri

simulations.

Probability distribution-driven simulation is a good choice when detailed informa

about the workload (program behaviour) is not available. This is the most effic

method of generating simulation inputs. However, because the need to spec

distribution, this method suffers from the same drawback as the analytical mode

discussed above.

Smith’s survey [90] shows that trace-driven simulation has been used to evaluate me

systems in a synchronous framework for decades. It is a form of event-driven simula

in which the events are supplied from atrace, collected from a real system. For cach

memory studies, traces consist of lengthy address-reference sequences gathered b

a variety of hardware or software methods, e.g. collecting from actual hardware in

time or capturing from simulations. The drawbacks of this technique are the storage

required to record the traces and the simulation time requirements. As cache siz

growing, these problems are getting worse because very large traces are required to

accurate estimates of cache performance.

A solution to this is to select only a subset, or sample, of the complete data popula

This technique, known as trace sampling, either samples in address space or in t

reduce both disk space and simulation time requirements for simulating large ca

When properly constructed, a sample can be used to derive estimates for some fea

interest without having to process the entire data set. Chen [18] reported that

sampling techniques can be very effective in reducing simulation time at the cost

small amount of errors.

Execution-driven simulation avoids the need to store the trace by generating the inp

the simulation on-the-fly by running program code on a real processor. This g

real-world inputs, and fast simulations but it difficult to implement.
Chapter 7: Simulation Methodology 133

7.2 Asynchronous cache evaluation

en

cache

for

es they

ortant

it is

rate

the

iming

med

ign.

couple

e early

ns of

units.

T3

not

s e.g.

etailed
Application-driven simulation overcomes the difficulties of the execution driv

approach by extending the simulation to couple a model of the processor to the

model. This however increases the simulation complexity and time.

7.2 Asynchronous cache evaluation

Both trace-driven and probability distribution-driven simulations are difficult to use

evalutating asynchronous caches because, in addition to representing the data-valu

also have to represent the variable time between address requests. This is imp

because: firstly, the processor’s behaviour varies depending on what action

performing and, secondly, conflicts will not be properly represented without accu

fine-grained timing. Incorrectly modelling such conflicts gives poor results because

non-determinism of asynchronous systems means that their behaviour is closely t

dependent.

Execution-driven simulation was not possible at the time this work was perfor

because the only available AMULET3 processosr was embedded in a full SoC des

As discussed above the next best method for generating addresses to the cache is to

a model of the cache to a model of a real processor. This can then be used to evaluat

decisions in cache design. Such a model normally consists of behavioural descriptio

each unit in the design and a structural description of the interconnection between

This type of model was used in conjunction with the already available AMULE

behavioural models to verify the behaviour of the proposed cache architecture.

Ideally, all real timing information should be included in such a model but it is often

feasible to do so. The main purpose of the model is to study architectural trade-off

to compare central versus local victim cache designs. For these reasons, a very d

model with a large number of parameters may be unnecessary.
Chapter 7: Simulation Methodology 134

7.3 Choice of modelling language

) for

uch as

uch

rain

ry to

icated

ts

ool.

tional

[55].

e is

en as a

es is

ly be

ither

seen

ased

act
7.3 Choice of modelling language

The significant advantage of conventional hardware description languages (HDLs

modelling an asynchronous system over a conventional programming language (s

C) is concurrent programming capability. The model of concurrency used in HDLs s

as VHDL is not, however, good enough to allow a simple description of the fine g

parallelism (in particular, the mixture of parallel and sequential operations) necessa

model asynchronous channel communications, resulting in a cumbersome, compl

model [36]. Frankild’s VHDL++ [102] extends VHDL with new language construc

supporting the design of asynchronous circuits; however it is not yet a fully mature t

Different caching strategies and designs were modelled and simulated using a func

model written in LARD (Language for Asynchronous Research and Development)

LARD is an HDL developed for describing asynchronous systems although littl

specific to that purpose and it can be used to describe synchronous systems or ev

general-purpose programming language.

The key difference between LARD and conventional hardware description languag

its provision of CSP-like [44] channels whereby abstract communication can easi

modelled using the notations ‘!’ and ‘?’ for sending and receiving respectively. In

addition, LARD has fine-grained concurrency with statements composed e

sequentially (using ‘;’) or concurrently (using ‘|’). An example LARD program

illustrating this channel communication and a diagram showing its ‘structure’ can be

in figure 7.1a and figure 7.1b respectively.

Balsa [10] was considered for this work because it, too, uses channel-b

communication but it is primarily a synthesis system with limited ability for abstr

behavioural modelling. Balsa in fact uses LARD as its simulation engine.

A final point in favour of using LARD was the existence of an AMULET3 LARD

behavioural model.
Chapter 7: Simulation Methodology 135

7.3 Choice of modelling language
C channelA B

Figure 7.1: An example in LARD

(b) Block diagram

(a) LARD code

use(io).

use(channels).

C_chan : var(chan(int)).

A(C : var(chan(int))):expr(void)=(

i : var(int).

i := 0;

forever(

wait_for(50);

i := i+1;

C!i

)

).

B(C : var(chan(int)))

:expr(void)=(

forever(

wait_for(30);

C?(wait_for(100))

)

).

init_chan(C_chan,"C_channel");

A(C_chan) | B(C_chan)

sending

receiving

sequencing

concurrency

time delay

behavioural description

structural composition

sender’s complete activity

receiver’s complete activity

sender’s pending activity

receiver’s pending activity

data value

(c) Screenshot of Channel time viewer windows
Chapter 7: Simulation Methodology 136

7.3 Choice of modelling language

box

nnel

the

visual

in the

g are

been

ite.

ugs/

ed. For

ome

th the
An example of the use of Endecott’s original LARD tool suite is shown in the upper

in figure 7.2. The output of the simulation can be either textual or graphical. The Cha

Time Viewer, shown in figure 7.1c, is a graphical interface in LARD which displays

sender and receiver’s activities and data values associated with channels allowing

inspection of the causes of bottlenecks, conflicts and deadlocks as they occur

simulation. Standard debugging facilities such as breakpoints and single-steppin

provided in Source View, the LARD source debugger, a screenshot of which can

seen in figure 7.1d.

Around 80% of the cache model verification was performed using this LARD tool su

With LARD debugging tools (source debugging and the channel activity display) b

errors (e.g. deadlock conditions) that are encountered can be traced and diagnos

example, a deadlock situation will cause the simulation to terminate with s

indications of pending communications where no more progress was possible in bo

Source View and the Channel Time Viewer.

(d) Screenshot of Source view window

breakpoint

executing code

Figure 7.1: An example in LARD (cont.)
Chapter 7: Simulation Methodology 137

7.4 Benchmark programs

hen

with

ed a

, the

any

rd2C

inal

ing

ning

.2.

arge

owing
The major drawback of this LARD tool suit is its low simulation speed especially w

running in graphical mode, therefore running a very long program a number of times

varying configurations is unacceptably slow. Recently, however, Janin introduc

replacement LARD simulation framework,Lard2C [54], which compiles LARD code

into C code. By simply running an executable file instead of interpreting the bytecode

simulation is much faster than the original LARD, a significant advantage when m

different cache configurations are to be analysed by simulation. Development of La

is on-going having moved from 10x to 60x performance improvement over the orig

LARD in the time taken to write this thesis. However, without any graphical or debugg

tools, lard2C is only useful for running models in textual mode once they are functio

correctly. Lard2C hooks into the design flow as shown in the bottom box in figure 7

7.4 Benchmark programs

Given the limited execution speed of the simulator even when using Lard2C, l

benchmarks such as the current SPEC suites [96] were not suitable. Instead the foll

nine benchmark programs were used:

Figure 7.2: The simulation process in LARD

C
compiler results

textual

results

LARD code

LARD
compiler

C code

LARD
interpreter textual

channel viewer

source debugger

executable fileLard2C
compiler

Lard2C libraries

bytecode file

Lard2C tool flow

Original LARD tool flow
Chapter 7: Simulation Methodology 138

7.4 Benchmark programs

be

the

el

and

he

s

ming

dom

ap,

hm

and

e of

.

the

of

ons

run
• Dhrystone 2.1 [103]: a short, synthetic C benchmark program intended to

representative of processor/compiler integer performance. Ten loops of

benchmark itself are executed.

• Espresso [95]: a logic minimisation program that takes as input a two-lev

representation of a two-valued (or a multiple-valued) Boolean function,

produces a minimal equivalent representation.

• ST compiler [86]: a freely-distributable C compiler released by Sozobon Ltd. T

program here compiles the small ‘subs_c.c’ program.

• Sim [89]: an integer program that finds thek best non-intersecting alignment

between two sequences or within one sequence. Using dynamic program

techniques, SIM is guaranteed to find optimal alignments.

• Da [40]: an integer program which uses the ‘heap sort’ method of sorting a ran

array of long integers up to 2MBytes in size. Each type of heap (Binary he

Fibonacci heap and 2-3 heap) has been implemented using Dijkstra’s algorit1.

The number of samples used in this work is 100.

• DES: a fast and portable DES (Data Encryption Standard) encryption

decryption program written by How.

• Blackjack [13]: a program to evaluate playing and betting strategies in the gam

Blackjack. A single deck is used in this work instead of the default number, 4

• Whetstone 1.2[17]: a C converted Whetstone double-precision benchmark,

first major synthetic benchmark program, intended to be representative

numerical (floating-point intensive) programs. One million Whetstone instructi

are executed in each major loop of which 10 are usually run, but only a single

is used in this evaluation.

1. an efficient algorithm for finding shortest paths in graphs
Chapter 7: Simulation Methodology 139

7.4 Benchmark programs

.

ime

into

asons

M

ot too

howing

n the

n this

rom

not be

re thus

ted in
• MM [70]: a collection of nine different algorithms for doing matrix multiplication

The standard size of the matrix is , however due to the simulation t

required a smaller array of is used in this work.

These programs are all written in the C programming language. They were compiled

ARM code to use as trace file input to the model as described in section 7.5. The re

why these programs were chosen were:

• they are fairly simple programs that can easily be compiled with existing AR

libraries;

• they are small enough to be representative of embedded applications (and n

big for use in LARD simulations);

• they illustrate a range of cache behaviours and miss rates.

Figure 7.3 shows a breakdown by access type of the cacheable memory accesses, s

how the number of cache misses due to writes varies dramatically depending o

benchmark used.

Though it may not meet all these criteria, the Dhrystone program was also used i

work because, with its small size, it could be used to test the model swiftly. Apart f

Dhrystone, all of the benchmarks shown perform accesses to locations that must

cached as they correspond to memory-mapped I/O ports. These accesses a

excluded from the results shown here. The number of such accesses is also indica

figure 7.3.

500 500×()

24 24×()
Chapter 7: Simulation Methodology 140

7.5 Simulation flow

ted in

ss:

Hz

ent

an
7.5 Simulation flow

The simulation flow used for the analysis of the techniques and architecture presen

this thesis is shown in figure 7.4. There are multiple stages to the simulation proce

• Step 1: The benchmark C source code is compiled using version 3.0.2 of theGNU

C compiler and executed on a Sun Ultra 5 workstation with a 333M

Ultra-SPARC IIi processor, its output being captured to file.

• Step 2: The benchmark C source code is compiled using the ARM developm

toolkit version 2.11 with the ARM ‘Demon’ library and executed on ARMulator,

ARM emulator. The captured output is checked against the output of step1 to check

Figure 7.3: Benchmark memory access details

data read

instruction fetch

data write

100

Whetstone

+
 1

 4
93

 u
nc

ac
he

ab
le

+
 2

 1
62

 u
nc

ac
he

ab
le

+
 2

 0
95

 u
nc

ac
he

ab
le

+
 2

 3
59

 u
nc

ac
he

ab
le

+
 3

 6
13

 u
nc

ac
he

ab
le

+
 3

 0
24

 u
nc

ac
he

ab
le

+
 1

2
34

5
un

ca
ch

eb
le

+
 4

 0
91

 u
nc

ac
he

ab
le

+
 0

 u
nc

ac
he

ab
le

to
ta

l c
ac

he
ab

le
=

3
20

0
05

4

to
ta

l c
ac

he
ab

le
=

3
03

7
51

7

to
ta

l c
ac

he
ab

le
=

2
17

3
74

1

to
ta

l c
ac

he
ab

le
=

1
43

3
57

1

to
ta

l c
ac

he
ab

le
=

91
2

14
5

to
ta

l c
ac

he
ab

le
=

61
0

65
3

to
ta

l c
ac

he
ab

le
=

30
7

86
6

to
ta

l c
ac

he
ab

le
=

22
7

15
0

to
ta

l c
ac

he
ab

le
=

18
 3

27

90 10.8%

82.0%

12.5%

11.5%

9.1%15.2% 8.7% 11.6% 5.8% 7.2% 9.0%

80
19.9% 14.7%

28.5% 16.5%
29.5%

MM

10.8%

79.4%80.2%

64.7%

71.9%70.1%67.6%
62.8%

C
ac

he
ab

le
 r

ef
er

en
ce

s
(%

)

30

70

Blackjack
DesDASimStCompiler

Espresso
Dhrystone

40

Benchmark programs

10

20

80

50

60

70

90

100

10

20

30

40

50

60

80.4%

9.5%

10.1%
Chapter 7: Simulation Methodology 141

7.5 Simulation flow

of

as

che.

ox in

ns

path
that the cross-compiled binary functions correctly. A run-time disassembly

executed instructions is also captured.

• Step 3: The ARM binary from step2 is used as input for a LARD model (in the

dashed box in figure 7.4) containing the AMULET3 core and memory system

were assembled for modelling the AMULET3i system, i.e. not containing a ca

The behaviour was validated against the output and disassembly from step2.

• Step 4: The ARM binary from step2 is used as input to a LARD model of the

AMULET3 core and the proposed cache system, as shown in the shaded b

figure 7.4. Correct behaviour is validated against step3 with logs of instruction and

data accesses from the AMULET3 core in step3 used to aid debugging where

necessary.

For each benchmark, step4 was repeated many times for differing cache configuratio

for both the write-through and copy-back variants of the cache. The main simulation

is shown by the grey curve in figure 7.4.

Figure 7.4: Cache model simulation process

machine
run on Sun

3

4

21

code
disassembly

ARMulator

AMULET3i

on−chip RAM
model

on−chip cache
model

AMULET3i system

bin/hex file

C program ARM toolkit

core model
memory

model

output

output

request reference
returned data

disassembly
code

request reference
returned data

disassembly
code

exec file

C compiler

output
output

main path
Chapter 7: Simulation Methodology 142

7.6 Simulation base-level parameters

d upon

ate the

f this

GHz

an

all

ere

s the

er of

total
7.6 Simulation base-level parameters

The initial cache parameters used as the starting point for the simulations were base

reasonable assumptions and are summarised in table 7.1. Simulation runs investig

effects of changing various parameters individually and in groups.

7.7 Simulation parameter variations

Even with the Lard2C simulation method that became available toward the end o

work, some of the cache simulations can take upto 6 hours of CPU time on a 1.4

AMD Athlon machine or around 2.5 times longer on a Sun Blade 100 with

Ultra-SPARC IIe processor. Simulating all cache metric combinations for

9 benchmarks is obviously impractical. A number of selective groups of simulations w

therefore performed to understand how the underlying cache operation influence

performance of the system and the effects of changing the cache parameters.

Table 7.2 lists the simulation parameter variations used in these experiments. TheSIZE

groups of simulations, the only group that varies the cache size, varies the numb

1kilobyte cache blocks from 1 to 32, also changing the total cache size and the

parameter value

cache size 8kilobytes

number of cache blocks 8

cache line size 4words (16 bytes)

associativity 64-way (fully-associative in each cache block)

replacement strategy random

write policy copy-back with write-allocate

dirty bits 1 per line

line-buffers 2 per block (1 for instruction and 1 for data)

line-fetch latches 1 per block

write buffers 2lines per block

outstanding memory accesses 1

memory random access time 100ns

memory sequential access time 50ns

cache access time 10ns

Table 7.1: Base-level cache parameters
Chapter 7: Simulation Methodology 143

7.7 Simulation parameter variations

r of

e size

ct-

e

ffer:

ied

out

of
number of line-buffers and LFLs. TheBLOCKgroup divides a fixed-size (8kilobyte)

cache into various numbers of blocks (from 1 to 32). This changes the numbe

line-buffers and LFLs and also changes the set associativity whilst holding the cach

constant. TheASSOCgroup varies the associativity in each cache block from dire

mapped to fully associative (64-way). TheLINE group varies the size of the cache lin

from 1 to 16 words. This also affects the size of the line-buffer and the LFL.

Various groups of simulations were performed to explore the effects of the line-bu

theLB group varies the number of lines held in the line-buffer from 1 to 3, theWTnoLB

group models write-through caches without line-buffers. TheCPparLB groups model a

copy-back cache with parallel line-buffer tag and main CAM look up.

Four BURSTINGgroups of simulations:WTnoBURST, WTwithBURST, CBnoBURST

andCBwithBURST, were performed with the cache to main memory delay ratio var

from 2 to 20 to investigate the effects of write-through vs copy-back with and with

memory bursting.

Finally, theDPWgroup uses a dirty bit per word (potentially) to reduce the number

writes performed.
Chapter 7: Simulation Methodology 144

7.7 S
im

ulation param
eter variations

C
hapter 7: S

im
ulation M

ethodology
145

C
B

noB
U

R
S

T

C
B

parLB

D
P

W

F
W

ks

s

lines in each block varies depending on the changing

ach block

ch block(64-way)

random

copy-back with write-allocate

4 bits 1 dirty bit

r entry on each instruction and data port

parallel sequential

utstanding memory access

100 ns.

20-200 ns. 50 ns.

 cache block) 1-5 lines for each block

ions
S
IZ

E

B
LO

C
K

LIN
E

A
S

S
O

C
_R

A
N

A
S

S
O

C
_LR

U

A
S

S
O

C
_C

Y
C

LIC

M
E

M

LB

W
T

noLB

W
T

noB
U

R
S

T

W
T

w
ithB

U
R

S
T

C
B

w
ithB

U
R

S
T

cache size 1-32 8 kilobytes

cache blocks 1-32 1-32 8 cache bloc

cache line size 4 words 1-16 4 word

cache lines 64 #a

a. Since they can be calculated from the block size and the cache line size, the number of cache
block sizes.

#b

b. Similarly, they vary depending on the changing cache line sizes.

64 cache lines in e

associativity fully each block 1-64 way fully ea

replacement strategy random LRU cyclic

write policy copy-back with write-allocate write-through

dirty bits per line 1 dirty bit per cache line

 line-buffers 1 line-buffer entry on each port 1-3 none 1 line-buffe

tag comparison sequentially line-buffer tag and CAM comparison

memory accesses 1 outstanding memory access 1-5 1 o

Tmem random access 100 ns. 20-200 ns.

Tmem sequential access 50 ns. 20-200 ns. 10-100 ns.

write buffer local write buffer/victim cache scheme (2 lines for each

Table 7.2: Cache simulation parameter variat

parameter

groups of simulations

7.7 Simulation parameter variations

e the

ped

ries.

16,

2 or

ightly

he

e are

s

)

Similarly, table 7.3 summarises the simulation parameter variations used to analys

victim cache. The details of each victim cache simulation are as follows:

TheVC_Assoc groups are used to explore the associativity with either a direct-map

(Assoc_1), an 8-way associative (Assoc_8) or a 64-way associative (Assoc_64)

cache system, for both central (Central) and distributed (Local) victim caches. The

Central group was performed with a central victim cache of 8, 16, 24, 32 or 40 ent

TheLocal group was performed with the total size of distributed victim cache as 8,

24, 32 or 40 lines, which is equivalent to 1 to 5 entries in each local victim cache.

The twoVC_Extra groups are for cache systems with extra storage of 8, 16, 24, 3

40 lines distributed evenly between the cache blocks making each cache block sl

bigger. Whilst theVC_Extra_Direct group is with a direct-mapped cache system, t

VC_Extra_Fully group uses full associativity in each cache block.

Important observations from the results obtained from the simulations listed abov

described in chapter 8.

ex
pe

rim
en

t

V
C

_C
en

tr
al

A
ss

oc
_1

V
C

_C
en

tr
al

A
ss

oc
_8

V
C

_C
en

tr
al

A
ss

oc
_6

4

V
C

_E
xt

ra
_D

ire
ct

V
C

_E
xt

ra
_F

ul
ly

V
C

_L
oc

al
A

ss
oc

_1

V
C

_L
oc

al
A

ss
oc

_8

V
C

_L
oc

al
A

ss
oc

_6
4

cache size 8 kilobytes 8 kilobytes+(1-5 line in each block) 8 kilobytes

cache lines 64 lines #a

a. The number of cache lines depends on the total cache size. In this case there are 65-69 line
in each cache block.

64 lines

associativity 1 8 64 direct-mapped 65-69b

b. Fully-associative in each cache block

1 8 64

victim cache central (8-40 lines) none none local (1-5 lines for each block

Table 7.3: Cache simulation parameter variation for victim cache experiments
Chapter 7: Simulation Methodology 146

7.8 Summary

ory

th an

the

lation

el.

been

nd the

d in
7.8 Summary

Trace simulation is an effective method for evaluating the behaviour of a mem

hierarchy in a synchronous environment, but unfortunately is not suitable for use wi

asynchronous system. Probability distribution-driven simulation is unsuitable for

same reasons and no processor was available to drive an execution-driven simu

therefore an application driven simulation was performed using an AMULET3 mod

A plan of suitable parameter values for a meaningful series of simulations has

presented. These simulations were executed on a LARD model of both the cache a

AMULET3 processor running ‘typical’ benchmark programs; the result are presente

the next chapter.
Chapter 7: Simulation Methodology 147

cache

ssible

uch a

l and

ance

nted in

ss rate.

s time

into

uld be

is (and

loads

eable

ce the

erent

eature

ect

d in

. First,

e size,
Chapter 8: Results and Evaluation

This thesis has presented a dual-ported asynchronous block-based copy-back

architecture. Theoretical analysis of an asynchronous cache is practically impo

because of the many different delays in the system. Even calibrating a model of s

system is difficult since one has to choose the level of granularity at which to mode

calibrate the system. However, whilst this makes it hard to give realistic perform

estimates, a model is adequate for the analysis of different architectures as prese

this chapter.

There are two aspects to the performance of a cache memory: access time and mi

Both of these metrics are difficult to use; the exact effect of design changes on acces

is hard to specify without involving a circuit technology, and translating the miss rate

a measurement of speed is tricky and depends on implementation details. This sho

borne in mind when examining the experimental cache results presented in this thes

in other model based cache studies).

Throughout this chapter, miss rates are given in terms of both read requests (data

and instruction fetches) and write requests (data stores) without including uncach

requests. Combining read and write requests can lead to confusing results sin

mechanisms by which reads and writes affect the overall performance are quite diff

and the boundaries of both mechanisms are not obvious. For example, one major f

evaluated here is for a copy-back write policy with write-allocation which would aff

both read and write miss rates.

The results presented in this chapter, derived from the simulations describe

section 7.7, are subdivided into three categories, each addressing a different issue

section 8.1 evaluates the basic cache features. These features include the cach
Chapter 8: Results and Evaluation 148

8.1 Evaluation of cache features

gies.

luding

d the

e is

also a

th and

ween

ying

uld be

ot the

n the

first

ecture

size

tion

the

each

ere.

large

rates,

high

che for
sub-blocking, write policies, forwarding, set associativity and replacement strate

Then section 8.2 describes asynchronous issues in designing a cache system inc

observations on the distribution of cache hit locations, delay characteristics an

asynchronous line-buffer (a L0 cache). Lastly, the behaviour of the victim cach

analysed in section 8.3.

8.1 Evaluation of cache features

In order to design a cache, several architectural decisions must be made. There are

number of adjustable parameters including the dimensions of the cache (width, dep

size), organisation of the cache, write behaviour and the method of interaction bet

different memory levels. The evaluation begins with an analysis of the effects of var

a few of the basic cache parameters. These results are similar to those that wo

expected from a synchronous cache system of similar architecture [41].

8.1.1 Cache size and sub-blocking

The parameter most fundamental to the performance of a cache is its size. This is n

most essential issue in this work since the cache size is heavily dependent o

application, especially in an embedded system. However, it still remains one of the

parameters that must be fixed in any cache design. Using a block-based archit

allows the cache size to be varied in a number of ways including changing the block

or changing the number of blocks of a fixed size. Figure 8.1 (obtained using simula

setSIZE) shows the effect on the miss rate of varying the cache size by changing

number of 1 kilobyte blocks.

The slope of each line in figure 8.1 depends on the individual characteristics of

benchmark and, as expected, larger caches provide lowercapacitymiss rates, up to a

point. ST Compiler confirms this expectation, although it does not reach this point h

The program has the largest binary in the benchmark suite used here, requiring a

cache (8kilobytes) to obtain a reasonable hit rate (>93%). The reason for the low hit

particularly in the data stream, is a very large binary and data set resulting in very

compulsory misses. Blackjack’s anomalous results are because it thrashes the ca

sizes below 4kilobytes.
Chapter 8: Results and Evaluation 149

8.1 Evaluation of cache features

ytes

e has

verall

rate

where

nflict

y from

ined

rying

atest

hich
However, the majority of these benchmarks show that going beyond 8 or 16 kilob

gives diminishing returns. Therefore, for the subsequent simulations the cache siz

been fixed at 8 kilobytes, a reasonable size for embedded systems.

Figure 8.2, obtained from the same set of simulations, shows how the normalised o

run time improves with a larger cache. This is not merely because of the lower miss

of the bigger cache, but also because of the structure of the multiple cache blocks

more blocks means more (fast) dual line-buffers, more LFLs, and reduced co

between instruction and data accesses. Blackjack’s behaviour changes dramaticall

2 to 4 kilobytes for reasons described later in section 8.2.1.

All of these benchmarks give better performance as illustrated in figure 8.3, obta

from setBLOCK, which shows the effects on the average system access time of va

the number of blocks whilst keeping the cache size constant (8 kilobytes). The gre

improvement is provided in programs with the highest proportion of data accesses w

allow greater parallelism.

Figure 8.1: Effects of cache size on miss rate

0

5

10

15

20

25

1 2 4 8 16 32

M
is

s
R

at
e

(%
)

Cache Size (KB)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 150

8.1 Evaluation of cache features

more

d, on a

cache

FLs.

atterns,

eing

s are

ts of
Sub-blocking into more blocks also gives a reduction in power consumption since

accesses can then be satisfied by the line-buffers, avoiding full cache accesses an

line-buffer miss, a smaller cache block is active.

8.1.2 Cache line size

Increasing the cache line size means increasing the number of words fetched on a

miss and, with this architecture, longer cache lines result in larger line-buffers and L

The number of hits in these locations increases because of sequential access p

giving the reductions in miss rate shown in figure 8.4 (obtained from setLINE).

The advantages of small line size are:

• reduced stall duration on a miss that occurs whilst a previous miss is still b

fetched;

• lower probability of the line containing unnecessary data. Only a few extra byte

transferred along with the actually required data, reducing the overhead cos

fetching useful data.

Figure 8.2: Effects of cache size on run time

0

20

40

60

80

100

1 2 4 8 16 32

N
or

m
al

is
ed

 R
un

 T
im

e

Cache Size (KB)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 151

8.1 Evaluation of cache features
Figure 8.3: Effects of cache sub-blocking on run time

Figure 8.4: Effects of cache line size on miss rate

0

20

40

60

80

100

1 2 4 8 16 32

N
or

m
al

is
ed

 R
un

 T
im

e

Cache Block (blocks)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16

M
is

s
R

at
e

(%
)

Cache Line Size (words)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 152

8.1 Evaluation of cache features

gic is

tatus.

miss

f each

d no

urther

[91].

be

the

this is

s) of

o

This

this

ds as

d to

LRU,

n in

hilst

LRU

iativity.

the

ply
However, large lines also have advantages in that they:

• are more effective if most of the data in a line is actually used;

• require fewer lines for the same cache size, hence the tag comparison lo

smaller and fewer storage bits are needed to hold the tag and replacement s

The line size also affects the miss rate. However, judging the best line size from the

rate alone gives an incomplete view since this also depends on the behaviour o

benchmark.The relationship between line size and performance is complex an

definitive optimum value has been found [98].

All of the above discussion about line sizes is generally true for any cache system. F

detailed analysis of the effect of varying the cache line size can be found elsewhere

Typically, the effects of varying the line size on the normalised run time would

expected to give a ‘V-shaped’ graph turning at the optimal line size, above which

increase in miss cost is greater than the reduction in miss rate. In these simulations,

clearly visible in the top two lines (from the ST Compiler and Espresso benchmark

figure 8.5 which is obtained from setLINE . However, most of the benchmarks d

continue to show a very small benefit from enlarging the line size beyond 4 words.

is because those programs can still benefit from a ‘long’ dual-port line-buffer in

architecture. Overall, the results show that the most cost-effective line size is 4 wor

the benefits of longer lines are small at best and the cost is not insignificant.

8.1.3 Set associativity and replacement strategy

In the ASSOCsimulation sets, the cache associativity is varied from direct-mappe

fully associative within each block. Three replacement strategies were tested –

cyclic and random – but there was very little difference in their performance as show

figure 8.6 (LRU was the best and random the worst overall, but by small margins). W

the random and the cyclic replacement algorithms are fairly easy to implement, the

strategy can be expensive, especially for large caches and/or high degrees of assoc

Typically the cyclic scheme would be expected to perform noticeably worse than

others. However, here the cyclic strategy is proving to be quite competitive. This is sim
Chapter 8: Results and Evaluation 153

8.1 Evaluation of cache features

th the

the

full

eful

vides

es

ocks.
because, with the chosen parameters, none of these programs coincides wi

pathological case for the cyclic replacement. But in order to avoid this possibility,

random replacement strategy remains the favourite choice here.

Although the graph in figure 8.7, obtained from setASSOC_RAN, confirms that going

beyond 4- or 8-way associativity [41] gives negligible benefit in terms of miss rate,

associativity (within each cache block) is still favourable on two counts: with car

design it can be more power-efficient than a 4-way set-associative cache, and it pro

better support forlock-downmechanisms. This is because locking-down cache lin

causes a more noticeable degradation in performance for low-associativity cache bl

Figure 8.5: Effects of cache line size on run time

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

N
or

m
al

is
ed

 R
un

 T
im

e

Cache Line Size (words)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 154

8.1 Evaluation of cache features
(a) Espresso (b) ST Compiler

(c) Sim (d) DA

(e) DES (f) Blackjack

(g) Whetstone (h) MM

Figure 8.6: Replacement strategy vs associativity

NB. vertical axis scales not identical

1

2

3

4

5

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

1

2

3

4

5

6

7

8

9

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

1

2

3

4

5

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

0.25

0.5

0.75

1

1.25

1.5

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

0.25

0.5

0.75

1

1.25

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

0.5

1

1.5

2

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy

0.25

0.5

0.75

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Random Replacement Strategy
LRU Replacement Strategy

Cyclic Replacement Strategy
Chapter 8: Results and Evaluation 155

8.1 Evaluation of cache features

cutive

faster.

utive

ode

tches

nce

d with
8.1.4 Memory burst-mode access

Most memories support a burst-mode access where the first access in a conse

sequence is slow but subsequent accesses in the sequence can occur much

Figure 8.8 illustrates the benefits of supporting burst-mode when performing consec

memory accesses with both write-through (obtained from setsWTnoBURSTand

WTwithBURST) and copy-back (obtained from setsCBnoBURSTandCBwithBURST)

caching styles. Unfortunately, the write-through caches can only benefit from burst-m

access for line fetches. In contrast, the copy-back caches can benefit both for line fe

and for writing dirty lines back to the main memory. This further widens the performa

gap between write-through and copy-back as is apparent in section 8.1.5.

For this reason, the copy-back scheme is the better choice, especially when it is use

burst-mode memory.

Figure 8.7: Effects of associativity on miss rate

1

2

3

4

5

6

7

8

9

1-way 2-way 4-way 8-way 16-way 32-way 64-way

M
is

s
R

at
e

(%
)

Associativity

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 156

8.1 Evaluation of cache features
(a) Espresso (b) ST Compiler

(c) Sim (d) DA

(e) DES (f) Blackjack

(g) Whetstone (h) MM

Figure 8.8: Effects of memory burst-mode access

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

50

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through without Memory Burst Mode Ratio
Write-through with Memory Burst Mode Ratio = 2

Copy-back without Memory Burst Mode Ratio
Copy-back with Memory Burst Mode = 2
Chapter 8: Results and Evaluation 157

NB. vertical axis scales not identical

8.1 Evaluation of cache features

d the

es the

his is

as the

th will

each

trate

a line

rite

nism

lete
8.1.5 Copy-back vs. write-through

Figure 8.9 illustrates the effect of the disparity between the external memory an

cache access times (averaged amongst the benchmarks). As this ratio increas

performance gap between the write-through and the copy-back cache widens. T

because the write-through cache sends each data write to the main memory so,

memory becomes slower compared to the cache (and processor), its write bandwid

eventually become saturated. The effect of write-through and copy-back caching on

individual benchmark program can also be seen in figure 8.8 which is used to illus

the effect of memory bursting.

A write-allocate strategy assumes that in the near future the processor will access

that has been recently written; normally a reasonable assumption. Applying w

allocation in a copy-back cache also simplifies the victim-cache forwarding mecha

requiring less control logic to check whether the lines in the victim cache is a comp

valid line (a write from the processor will not be a completeline of data).

Figure 8.9: Write-through vs. copy-back

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 R
un

 T
im

e

Cache:Memory Access Time Ratio

Write-through
Copy-back
Chapter 8: Results and Evaluation 158

8.1 Evaluation of cache features

s

back

ts an

these

f the

es.

ed,

itten

the
Figure 8.10 (obtained from setLINE) shows the proportion of writes to already dirty line

with increasing cache line size. This obviously decreases write traffic in the copy-

cache since there are fewer write operations from the main cache; if a write affec

already dirty line this means that a memory write operation has been averted. All of

programs experience a 75% or greater reduction in write traffic through the use o

copy-back cache.

Simulation setDPWwas used to investigate the dirtiness granularity of the dirty lin

Having a dirty bit per word means only the minimum necessary writes are perform

however they will likely be performed in non-sequential order.

Table 8.1 shows that over 80% of dirty evicted lines require the entire line to be wr

back to the memory. A single dirty bit per line therefore remains the choice for

architecture, and it also allows exploitation of memory burst-modes.

Figure 8.10: Proportion of writes to dirty lines

60

70

80

90

100

1 2 4 8 16

P
er

ce
nt

ag
e

of
 W

rit
es

 to
 a

lre
ad

y
D

irt
y

Li
ne

s(
%

)

Cache Line Size (words)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 159

8.1 Evaluation of cache features

back

mory

shown

ificant

would

f the

nce

ites,

ed to

sted
As with conventional clocked caches [59], these results again confirm that a copy-

cache provides better overall performance due to the significant reduction in me

traffic. For the results presented here, the average breakdown of the access types is

in table 8.2. Here only 9.9% of cacheable accesses were data writes and sign

improvements with copy-back caching can already be seen. These improvements

be even greater if the mix contained a higher percentage of writes.

8.1.6 Write buffering and forwarding

Another issue in the comparison of copy-back and write-through caching is the size o

write buffers. Both write-through and copy-back caches gain significant performa

from a write buffer, and a copy-back cacheneedsat least one buffer entry to hold an

evicted line.

The required depth of the write buffer is directly related to the number of pending wr

which in turn depends on the clustering of write operations and the processor spe

memory speed ratio. It is likely to be fairly small; 2-4 write buffer entries were sugge

instruction fetches data reads data writes

73.2% 16.9% 9.9%

Table 8.2: Average cacheable memory access details

program 1 word 2 words 3 words 4 words

Espresso 15.95% 10.06% 16.07% 57.92%

STcompiler 13.33% 8.25% 4.32% 74.21%

Sim 10.75% 5.81% 4.09% 79.35%

Da 6.11% 4.17% 6.03% 83.68%

DES 0.15% 0.01% 0.16% 99.68%

Blackjack 2.71% 1.74% 2.11% 93.44%

Whetstone 5.08% 14.58% 21.19% 59.15%

MM 0.46% 0.33% 0.46% 98.75%

average 6.82% 5.62% 6.80% 80.76%

Table 8.1: Dirtiness of evicted dirty lines
Chapter 8: Results and Evaluation 160

8.1 Evaluation of cache features

ache

d not

e is

block

t the

delay

be

ould

ck,

.

here

ictim

ilicon

over

che

case

le) –

eded.

dered

es

tained
in a study of a (synchronous) write-through cache [41]. Statistically a copy-back c

will produce less clustered write operations than a write-through cache, so it shoul

need as large a write buffer. In this architecture, the write buffer/victim cach

implemented as part of each cache block. The main reason for having it local to the

is to reduce wiring. Furthermore, arbitration can then occur in a non-critical path, a

interface between the write buffer and the external bus, rather than introducing

between the cache and the write buffer.

With only a single line buffer in each block, forwarding from the write buffer cannot

applied. Moreover, a write buffer with more than one entry with a copy-back cache w

be useful where multiple misses with dirty victim lines occur in series in each blo

hence a dual-line write buffer which now acts as victim cache is used in each block

Further increasing the size of the victim cache is likely to be beneficial. However, t

is a trade-off (hardware resource vs. performance) here since more lines in the v

cache allow more data to be forwarded back to the cache, the main cost being in s

area.

Although having the victim cache locally potentially provides significant advantages

having it centrally, the drawback is the larger minimal requirement on the victim ca

size. For example, instead of only 2-entries – one for the evicted line and the other in

of serial line fetches and for forwarding purposes (50% of those lines are forwardab

to perform the same functions with an 8-block cache system, sixteen entries are ne

Even though this gives an increase in silicon area, having a few more buffers is consi

inexpensive for the forwarding benefits that can be gained here.

Figure 8.11 (obtained from setFW) illustrates the effects of varying the number of entri

in the victim cache in each block on the selected benchmarks. These results were ob

after awarm start.

Further investigation of the victim cache is described later in section 8.3.
Chapter 8: Results and Evaluation 161

8.1 Evaluation of cache features

ed so

The

ctions

e

s (and

time.

ficant

rently.

cause
8.1.7 Number of outstanding memory accesses

The cache architecture has been designed to allow its different stages to be pipelin

that there is the potential for multiple cache accesses to proceed in parallel.

occupancy of the pipeline is regulated by the number of outstanding memory transa

that the processor can perform and affects the performance, as investigated using thMEM

simulation set.

Figure 8.12 illustrates how increasing the number of outstanding memory accesse

hence the pipeline occupancy/parallelism) gives a reduction in the normalised run

Increasing the number of outstanding memory accesses to two gives a signi

reduction because both pipeline stages in this memory system can proceed concur

Increasing further, in some cases gives a slight performance improvement be

parallelism between blocks is still allowed.

Figure 8.11: Effects of the victim cache size

1 2 3 4 5
0

5

10

15

20

25

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Write Buffer/Victim Cache Size per Cache Block (lines)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 162

8.2 Asynchronous issues

ased

to set

d its

FL.

ccess

in

s

high

ccurs
8.2 Asynchronous issues

The previous section showed the feasibility of a dual-ported asynchronous block-b

copy-back cache architecture, and explored the basic parameters of such a system

the ‘ground level’ for further study of the unique aspects of the architecture an

asynchronous advantages. These are described below.

8.2.1 Distribution of cache hit locations

In this system, a cache hit could occur in the line-buffer, the main cache RAM or the L

Since these all have different speeds, the unit in which the hit occurs affects the a

time.

Generally the distribution of hits is roughly 9:7:3 (LB:RAM:LFL) as can be seen

figure 8.13 (obtained from setSIZE). A few of the benchmarks deviate from thi

distribution with small caches; the Blackjack program is a good example, with very

LFL hit rates (over 50%) for caches smaller than 2 kilobytes. This is because a miss o

Figure 8.12: Effect of varying the number of outstanding memory accesses

80

85

90

95

100

1 2 3 4 5

N
or

m
al

is
ed

 R
un

 ti
m

e

Outstanding Memory Access (accesses)

Espresso
ST Compiler

Sim
DA

DES
Blackjack

Whetstone
MM
Chapter 8: Results and Evaluation 163

8.2 Asynchronous issues

(from

ains

ce to

n be

all)

of

vely

AM

en the

tone,

does

the

g the

to
causing a line fetch, and then the words in that line are accessed shortly thereafter

the LFL). Because the cache is small, resulting in cache thrashing, the line only rem

in the main cache RAM for a short time before being evicted and so it has little chan

get into the fast line-buffers. This also results in poor overall run time.

Interestingly, increasing the size of the cache (with the current architecture) ca

counter-productive in some situations. This is illustrated in figure 8.13 by the (sm

Dhrystone program which fits entirely in a few kilobytes of cache. A cache size

4kilobytes is sufficient to ensure a hit rate of nearly 99%. When line fetches effecti

cease, the last data fetched is left in the LFLs, access to which requires a full C

look-up. Because accessing the LFL requires passing through the arbiter betwe

instruction and data ports it results in an increased access time. However, Dhrys

while quick to run, is a fairly poor benchmark for cache performance and although it

highlight a situation that could arise with any program small enough to fit entirely in

cache, the adverse effect is fortunately small. This problem could be cured by copyin

LFL to the line-buffer but, unfortunately this would require extra synchronisation

check if the line fetch was complete.

Figure 8.13: Effects of cache size on distribution of cache hit locations

MMWhetstone
Blackjack

DesDASimStCompiler
Espresso

Dhrystone
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

LFL
RAM

100

90

80

70

60

50

40

30

20

10

H
it

R
at

e
(%

)

Line Buffer

Benchmarks with various Cache Sizes (from 1 to 32 KB)
Chapter 8: Results and Evaluation 164

8.2 Asynchronous issues

more

s also

more

seen

ferred

n be

to the

f the

line

, ideal

ed in

e and

st is
Figure 8.14 shows the hit distribution obtained from theBLOCKsimulation set. The

majority of the benchmark programs demonstrate what would have been expected –

blocks means more accesses hit in the fast line-buffers and LFLs. However, there i

a cross-effect between the hit locations. With a fixed cache size, more LFLs cause

LFL hits since they contain the most recently fetched memory locations. This can be

clearly in most of the cases presented here, especially Dhrystone.

To improve the overall performance, accessing asynchronous fast line-buffers is pre

to accessing LFLs (and main RAMs). In some cases increased line-buffer hits ca

achieved by reducing the number of LFLs since data in the LFLs cannot be moved

main RAM, hence nor to the line-buffer. A better scheme for emptying the contents o

LFLs into the RAM would improve this aspect of performance. However, the basic

fetch mechanism is still favoured here because it results in no unnecessary activity

behaviour for a low power system.

8.2.2 Asynchronous delay characteristics

Figure 8.15 (obtained from simulations with the base-level parameters describ

section 7.6) shows a histogram of both instruction and data (combined cacheabl

uncacheable) request latencies. Latency is timed from the point at which the reque

Figure 8.14: Effects of sub-blocking on distribution of cache hit locations

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Benchmarks with various Cache Blocks (from 1 to 32 blocks)

MMWhetstone
Blackjack

Des
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

100

90

80

70

60

40

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

30

20

10

50H
it

R
at

e
(%

)

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Line Buffer

LFL
RAM

Dhrystone
Espresso

StCompiler

����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Sim
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

DA
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Chapter 8: Results and Evaluation 165

8.2 Asynchronous issues

e seen

be

f the

nous

ts, a

sets

ue to

re the

maller

on and
presented to the memory system to the time the data emerges at the output. It can b

that there is a wide distribution in latencies, the handling of which can easily

accommodated in an asynchronous design.

The two dominant sets of peaks (at ~6ns and ~28ns) coincide with the majority o

memory requests: line-buffer hits (which are serviced quickly from the fast asynchro

line-buffers) and main cache RAM hits. Amongst the peaks representing RAM hi

small peak at ~40ns is from the operations forwarded from the victim cache. The two

of peaks at ~17ns and 52ns both coincide with LFL hits. Whereas the 52ns set is d

‘hits’ on words that have not yet been fetched, the faster 17ns set are for hits whe

words requested are already there in the LFL, hence there is no extra stall. The s

spikes around these dominant sets occur when there are conflicts between instructi

data accesses to the same cache block.

Figure 8.15: Latency distribution

Latency (ns.)

P
os

si
bi

lit
y

(%
)

victim cache hits (~40ns.)

line−buffer hits (~6ns.)

subsequent misses

cache misses − first or uncacheable (~120ns.)

LFL hits − immediate after misses (~52ns.)

LFL hits (~14ns., ~21ns., ...)

RAM hits (~28ns., ...)

50

60

20

40

30

0

1

1.5

2

150

0.5

50 1000 200 250 300
Chapter 8: Results and Evaluation 166

8.2 Asynchronous issues

heable

the far

ts have

to

ction

data

single)

uction

re

sen

t line

dered

of as

m of

as a

flicts.

cesses

ince

The

and

ther

(set

e the
Further to the right, the peak at ~120 ns coincides with either cache misses or uncac

accesses which then cause slow external memory activities. The shaded area at

right indicates misses that are queued behind other misses. These memory reques

to wait until the entire previous cache line is fetched from the memory.

8.2.3 Line-buffering

Without line-buffers there will be a full CAM look-up for every cache access, leading

high power consumption. If there were not separate line-buffers between the instru

and data ports this would also mean increased arbitrations for instruction and

accesses to the same block, leading to performance reduction. Furthermore, the (

line-buffer contents would get changed when a data access comes between instr

accesses (orvice versa). This would then lead to fewer line-buffer hits and mo

line-buffer updating.

Figure 8.16 (obtained from theWTnoLBset and partly from setsWTwithBURST and

CBwithBURST) shows a comparison of the (normalised) total run times of the cho

benchmarks using a copy-back cache and a write-through cache with and withou

buffers. The top regions in the histogram came from experiments which can be consi

as an 8 kilobyte AMULET2e cache system. The middle regions can be thought

combining techniques from the previous AMULET memory systems and the botto

each bar represents the results from the proposed cache architecture.

The major effect which can be seen is the impact of the line-buffer which both acts

fast ‘level-0’ cache and helps alleviate the problems of data and instruction fetch con

These simulations suggest that dual line-buffers should reduce the frequency of ac

to the cache RAM and LFL by around 40%, with a resulting decrease in power – s

this also prevents a full CAM look-up – when compared to having no line-buffers.

graph also shows the (5-15%) difference in the performance of the write-through

copy-back caches.

The line-buffer tag comparison and the CAM look-up could be performed ei

sequentially – as assumed previously – or in parallel. Doing them in parallel

CBparLB) would seem to provide higher performance but, in fact, it does not becaus
Chapter 8: Results and Evaluation 167

8.2 Asynchronous issues

rates

tly

d save

nse in

tags

ble

pose

lock

ry fast

his is

words

ts are

be
CAM look-up process follows the arbitration of the two cache buses, and as the hit

on the line-buffers are relatively high the arbitration and CAM look-up is frequen

unnecessary. Omitting these operations can therefore enhance performance an

considerable power. Therefore whilst parallelising these operations would make se

a single-ported cache, in this ‘dual-ported’ architecture checking the line-buffer

before activating the CAM is noticeably beneficial. This leads to a very varia

association time for the cache. In an asynchronous implementation this does not im

much performance penalty; in a synchronous implementation it could impose a c

cycle overhead.

Since the line-buffers are heavily used (by over 40% of accesses) and have a ve

access time, further investigation was performed (setLB) to verify that larger line-buffers

(e.g. double or three times the size) give only a marginal performance increase. T

because most of the benefit of the line-buffer is due to the sequential accesses to the

it contains, not because it is holding its contents for later reuse. In fact the conten

typically evicted from the buffer by another block access long before they would

reused.

Figure 8.16: Line-buffering and copy-back styles

MMWhetstone
Blackjack

Des
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

DASimStCompiler

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Espresso

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

70

80

90

100
N

or
m

al
is

ed
 R

un
 T

im
e

0

60

Write−through with Line Buffer
Write−through without Line Buffer

Copy−back with Line Buffer

Benchmarks
Chapter 8: Results and Evaluation 168

8.2 Asynchronous issues

uced

le in

which

cessor
8.2.4 Address sequentiality

As expected, sequential optimisation provides significant benefit in terms of a red

number of line-buffer tag look-ups and CAM look-ups. The effects are less noticeab

data accesses as implied by figure 8.17, which shows the proportion of accesses for

sequential optimisation can be exploited, i.e. accesses marked sequential by the pro

which are not the first access to a line.

(a) Instruction Hits in Line-buffer (b) Instruction Hits in LFL

(c) Data Hits in Line-buffer (d) Data Hits in LFL

Espresso

StCom
piler

Sim
DA Des

Blackjack

Dhrystone

M
M

W
hetstone

60

50

40

30

20

10

0

Benchmarks

60

H
it

R
at

e
in

 L
in

e−
bu

ffe
r(

%
)

Exploited Sequential Accesses
Other Accesses

M
M

W
hetstone

Blackjack

Des
DASim

StCompiler

Espresso

Dhrystone

H
it

R
at

e
in

 L
FL

(%
)

0

2

4

6

10

8

12

14

16

18

Benchmarks

Other Accesses
Exploited Sequential Accesses

Benchmarks

20

15

10

0

5

H
it

R
at

e
in

 L
in

e−
bu

ffe
r(

%
)

Dhrystone

Espresso

StCom
piler

Sim
DA Des

Blackjack

W
hetstone

M
M

20
Other Accesses

Exploited Sequential Accesses

M
M

W
hetstone

Des
Blackjack

DASim
StCompiler

Espresso

Dhrystone

3.5

4
Exploited Sequential Accesses

Other Accesses

H
it

R
at

e
in

 L
FL

(%
)

Benchmarks

0

0.5

1

1.5

2

3

2.5

Figure 8.17: Breakdown of exploitable sequential accesses

NB. vertical axis scales not identical
Chapter 8: Results and Evaluation 169

8.3 Victim cache

main

f the

size,

ed at

of this

the

The

ing a

ks to

nd of
8.3 Victim cache

The advantages of having a victim cache depend on several issues including the

cache miss rate, the organisation of the victim cache itself and the behaviour o

application programs. Moreover, the miss rate depends on the main cache

organisation and replacement strategy. Since the total cache size here is fix

8kilobytes as described earlier, and a range of programs are to be run, the focus

section is on how the effects of the victim cache vary with different set associativity in

main cache and on the effects of distributing the victim cache.

Figure 8.18 contains five sets of results for a variety of total victim cache sizes.

leftmost and the rightmost bars in each set illustrate the behaviour if instead of hav

victim cache, the storage it would have used is distributed evenly between the bloc

make each block slightly larger. They show the miss rate of a direct-mapped cache a

the fully-associative (in each block) cache respectively.

Figure 8.18: Effect of the victim cache

Larger fully−associative (in each block) cache

0
40−line32−line24−line16−line8−line

1

Total victim cache size

2

7% reduction in miss rate

5% reduction in miss rate

2% reduction in miss rate

1

0

5

4

3

2

M
is

s
R

at
e

(%
)

Larger direct−mapped cache

Miss rate

Miss rate with forwarding

3

4

5

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���
Chapter 8: Results and Evaluation 170

8.3 Victim cache

ing

of the

ement

rate

fewer

on

s more

che is

bined

based
The middle six bars in each set show (from left to right) the results for the follow

formats:

• direct-mapped cache with central victim cache

• direct-mapped cache with local victim caches

• 8-way cache with a central victim cache

• 8-way cache with local victim caches

• 64-way cache1 with a central victim cache

• 64-way cache1 with local victim caches.

Each bar shows the miss rate of the bare cache, and the overall miss rate

combination of the cache and the victim cache.

All of the set-associative caches in these simulations use a pseudo-random replac

strategy to choose victim lines.

8.3.1 Direct-mapped vs set-associative caches

It is obvious that high associativity caches provide a much better (original) miss

compared to direct-mapped caches with the same victim cache style since there are

conflict misses, however, the effect of having a victim cache is more dramatic

direct-mapped caches where ejection of lines that are subsequently required again i

of a problem. Nonetheless, as shown in figure 8.18, the advantage of the victim ca

that it also improves the miss rate of the 64-way caches by up to 0.25%. This, com

with the additional simplicity of implementing cachelock-down(where critical code is

loaded into the cache and prevented from being rejected), makes the block-

associative cache the preferred choice.

1. 64-way cache comprised of 8 memory interleaved fully-associative 64-line blocks
Chapter 8: Results and Evaluation 171

8.3 Victim cache
(a) Espresso (b) ST Compiler

(c) Sim (d) DA

(e) DES (f) Blackjack

(g) Whetstone (h) MM

Figure 8.19: Distribution of the victim cache

NB. vertical axis scales not identical

0

5

10

15

20

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

2

4

6

8

10

12

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

2

4

6

8

10

12

14

16

18

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

5

10

15

20

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

2

4

6

8

10

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

2

4

6

8

10

12

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

5

10

15

20

25

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache

0

2

4

6

8

10

12

14

16

8 16 24 32 40

P
er

ce
nt

ag
e

of
 F

or
w

ar
de

d
Li

ne
 F

et
ch

es
 (

%
)

The Total Victim Cache Size (lines)

Central victim cache
Local victim cache
Chapter 8: Results and Evaluation 172

8.4 Summary

only

can

at its

rate

inally

nst the

wer

ent.

enefit

all the

rate

ding

easing

tion of

d data

m

ction

ating

cess
8.3.2 Victim cache distribution

The results in figure 8.19 show what would have been expected from table 6.1. With

a single-line victim cache in each block (8-line local victim cache), no forwarding

occur, hence the benefit of having the central victim cache over local victim cache is

maximum at this size. Away from this extreme situation, a small difference in miss

between these two styles is observed, with the local victim cache scheme marg

lagging (in performance terms) the centralised approach. This should be traded agai

performance benefit of using short, localised forwarding paths giving a faster (lo

latency) forwarding route, which can be fully exploited in an asynchronous environm

8.3.3 Efficient use of resource

In fully-associative caches, using a few extra lines as a victim cache gives more b

than extending the cache by the same amount. Although the difference appears sm

effect of the victim cache is magnified when considered as a proportion of the miss

(inset, figure 8.18). Using a few extra lines of store as a victim cache rather than ad

them to the main cache can reduce the miss rate by an extra ~5%, the benefit incr

as the victim cache size increases.

8.4 Summary

The proposed cache organisation has been extensively simulated, and the distribu

cache access times shows considerable variability depending on whether the require

is located in the line-buffer, cache RAM or the LFL, with further variability resulting fro

non-deterministic arbitration delays when contention between the data and instru

ports arises. An asynchronous processor such as AMULET3 has no difficulty in oper

in this environment, however, and can benefit from any small improvement in ac

times that the cache can yield.
Chapter 8: Results and Evaluation 173

design

nous

re.

mory

onous

and

fetch

ased

ne of

rite

tim

ding

n a

ere

risons

data

erefore
Chapter 9: Conclusions

This thesis has presented the first asynchronous copy-back cache architecture. The

was developed to provide cache support for a third generation asynchro

microprocessor, AMULET3, which implements the ARM instruction set architectu

The processor is a Harvard-like architecture requiring a dual-ported but unified me

system that is capable of handling contention between two independent asynchr

ports. The original, existing AMULET3 system used only memory-mapped RAM.

This chapter summarises the work described in this thesis, draws conclusions

suggests possible directions for future work.

9.1 Architecture summary

The cache inherits techniques used in earlier AMULET systems, such as a line

mechanism, interleaved, fully associative sub-blocking and the dual-port memory b

upon block-level arbitration and separate instruction and data line-buffers, a single li

each being sufficient. Major new features include the support of a copy-back w

strategy with a write-allocate policy and a write buffer that implements a form of vic

cache distributed between the blocks, with 2 lines per block, the minimum for forwar

being sufficient for satisfactory performance. To reduce the stall duration whe

write-allocation occurs, and for good performance on a LFL write hit, the LFL used h

allows individual words to be written by the processor.

As the majority of accesses are sequential, most of the necessary tag or CAM compa

can be replaced by a simple circuit which detects if the new program counter or

access value maps to the same line as the previous one. Such comparisons will th
Chapter 9: Conclusions 174

9.2 Future work

cess a

ion of

ata is

es

and

culty

ent

d such

RAM

le to

onous

that

ould

nous

tems.

-like

design

in the

further

tives,
be necessary only when accessing a different line or swapping the port used to ac

block. Occurrences of this are simple to detect.

The resulting cache organisation has been extensively simulated, and the distribut

cache access times shows considerable variability depending on whether the d

located in the line-buffer, cache RAM, LFL or victim cache. Further variability aris

from non-deterministic arbitration delays when contention between the data

instruction ports arises. An asynchronous processor such as AMULET3 has no diffi

in operating in this environment, however, and can benefit from any small improvem

in access times that the cache can yield. The contents of each block are combine

that any cache access may pass through 1, 2 or all 3 stages (the line-buffers, cache

or LFL and the victim cache) depending on where (if at all) a cache hit occurs.

This cache design shows that the benefits of copy-back operation are availab

asynchronous as well as clocked processors and, in addition, the asynchr

environment allows the straightforward inclusion of features such as line-buffers

offer significant performance and power benefits which, in a clocked system, w

create difficulties due to their non-deterministic temporal properties.

The summary of the proposed cache architecture is depicted in figure 9.1.

9.2 Future work

The goal of the work presented in this thesis was to propose an entirely asynchro

cache system to work with a dual-ported microprocessor aiming for embedded sys

However, although the cache design has been optimised for the AMULET3 Harvard

core, the techniques presented in this thesis are applicable to any other processor

(whether ARM compatible or not).

There are several areas in which the proposed cache architecture could be used

future, as well as many possible expansions. This section describes suggested

work to improve the cache, categorised into 4 parts: architectural design alterna

additional features, formal validation and VLSI implementation.
Chapter 9: Conclusions 175

9.2 Future work
Figure 9.1: Cache architecture summary

sequentiality checksequentiality check

cache system

− (nearly) two−level structure
− pipelined
− eight* 1*KByte cache blocks

− tag checking is after CAM look−up
− FIFO queue

interface to rest of memory system

− 2* cache lines
− read−overtaking−writes

victim cache

sequentiality override

cache RAM

− a single cache line
− read/writeable
− tag checking is part of CAM
− non−blocking

line−fetch−latch (LFL)

− read−only

− a single cache line
− fast access
− updated on a cache RAM read hit

arbiter

* means configurable

− invalidated on a write hit

instruction line−buffer data line−buffer

identical to instruction line−buffer

− copy−back policy

− requiring unified memory system

processor core

− dual−ported

− 2 outstanding memory accesses*

− fully−associative

− unified
− CAM look−up after line−buffer tag checking
− updated with content of LFL

− 64* cache lines

− write−allocate scheme

forwarding

requested address

returned data

fetched line

dirty data

evicted line
Chapter 9: Conclusions 176

9.2 Future work

rther

y times

t of a

ked

be

ccur,

ould

tional

ore,

the

ion

eed

for

for

this

ssor

s. One

the

e,
Architectural design alternatives

There are 3 architectural issues described in this thesis that may warrant fu

investigation.

First, because the LFL is only emptied on a cache miss, a line may be accessed man

whilst stored in the LFL. Every such access incurs the additional performance cos

line-buffer tag look-up and an arbitration, and burns power in the CAM which is chec

concurrently with the LFL tag. Ideally, the content (complete line) in the LFL should

promoted to the cache RAM and line-buffer where any further accesses to it would o

in the same manner as a hit in the RAM updates the line-buffer. This promotion sh

occur when it would not interfere with other cache accesses but this requires addi

timing information that is not easily available in an asynchronous design. Furtherm

this promotion also requires an additional arbitration for updating the line-buffer.

Similarly, the forwarded data from the victim cache should be promoted directly to

line-buffer (as well as copying it into the main cache RAM via the LFL). This operat

is simpler than the LFL promotion since the ‘complete’ line for forwarding is guarant

in the victim cache hence the only requirement for this promotion is an arbitration

updating the line-buffer.

Lastly, updating the processor’s write-data into the LFL requires synchronisation

merging the fetched word and the write-data. An alternative approach to improve

includes option6 described in section 5.6.6 which uses a shadow LFL to avoid proce

stall in an arbitration-free manner.

Additional features

The cache presented includes the majority of features required by embedded system

notable exception, however, is support for locking down regions of the cache. With

fully associative CAM-RAM structure, this would be fairly straightforward to includ

requiring modification of the method used to choose which line to evict.
Chapter 9: Conclusions 177

9.2 Future work

n why

MESI

sor

RM

ormal

ighly

e.g.

che

e used

easily

Again

ss the

osed

cost

main

with a

e is a

AM,
Although this work has focused on uniprocessor support, there is no obvious reaso

the cache could not be extended to support a cache coherency protocol such as the

protocol (Modified, Exclusive, Shared, and Invalid) [39], allowing use in multiproces

systems.

Formal validation

Although a large number of simulations have been executed on a number of A

programs, leading to high confidence that the design is correct and deadlock-free, f

proof of its correct behaviour and accurate performance analysis would be h

desirable. Unfortunately, current asynchronous formal validation tools,

Rainbow [83], cannot handle designs of this complexity.

VLSI implementation

The ultimate aim would be to develop a VLSI implementation of the proposed ca

architecture and analyse its cost and performance. The finished cache system can b

in either a single-ported or dual-ported general-purpose embedded system, or could

be included in a multiprocessor system acting as a shared cache memory.

arbitration would be performed only when more than one request attempts to acce

same cache block at the same time.

Figure 9.2 illustrates a suggested layout organisation for a single block of the prop

cache system showing approximate dimensions for the major components. The

estimates are all relative to a 6-transistor single-ported SRAM cell as used in the

cache RAM.

Using the same approach allows the cost of the proposed cache to be compared

range of other caches (of the same size) as in table 9.1. The simplest of thes

direct-mapped cache (shown in figure 9.3) which has only a data RAM, a tag R

sense-amplifiers and a data latch for power reasons [94].
Chapter 9: Conclusions 178

9.2 Future work

r in

ame

M and

econd
The AMULET2e cache and the AMULET3i RAM structures are described earlie

section 4.3. The final comparison is against a dual-ported cache built with the s

components as in the direct-mapped case accept for the use of the dual-ported SRA

the replications of tag store, sense amplifiers and data latch required to support the s

port.

Figure 9.2: Suggested layout organisation of the proposed cache

memory systems cost relative to a simple

direct-mapped cache

direct-mapped single-ported cache system 100%

AMULET2e cache system 123%

AMULET3i RAM system 88%

dual-ported cache system 160%

proposed cache system 130%

Table 9.1: Cache cost comparison

SRAM

Instruction line buffer (latch)

Data line buffer (latch)

LFL (latch)

victim cache (latch)VC CAM

LFL CAM

D−LB tag

I−LB tag

CAM

128 bits

64 lines

2x cost
28 bits

1 line
3x cost

1 line
3x cost

1 line
3x cost

2 lines
3x cost

sense amplifiers 4x cost
Chapter 9: Conclusions 179

9.3 Summary

mory

tween

ow no

er step

n the

ronous

how

now be

efits to

tems

nous

ally

or the

n this
9.3 Summary

The work described in this thesis shows that it is possible to adapt synchronous me

hierarchy techniques for use in asynchronous framework. The performance gap be

the current range of asynchronous processors and main memory is therefore n

longer a hurdle to the widespread use of asynchronous processors. This is yet anoth

in bringing asynchronous processing into parity with the synchronous world.

9.4 Future prospects

Although a paradigm shift from synchronous to asynchronous is unlikely to happen i

digital electronics business in the near future, there are niche areas where asynch

solutions are used today, and demonstrators such as the DRACO chip, show

asynchronous techniques can be applied to whole systems. These systems can

more general through the use of asynchronous caches allowing asynchronous ben

be applied to a much wider range of applications.

However, given the current dominance of synchronous design, hybrid sys

comprising both design styles are the most likely route to market for asynchro

techniques. One philosophy based upon this method is the GALS (Glob

Asynchronous Locally Synchronous) approach which uses asynchronous design f

interconnection of synchronous modules from different timing domains. Research o

is ongoing at a number of sites [73,76].

Figure 9.3: Layout organisation of a direct-mapped cache

SRAM

128 bits

64 lines

1 line
3x cost

TAG

sense amplifiers

latch

28 bits

4x cost
Chapter 9: Conclusions 180

9.4 Future prospects

n a

cessor

n for
Within a GALS framework it is easy then to replace individual clocked modules o

case-by-case basis with asynchronous equivalents, and an asynchronous pro

coupled with the cache described in this thesis would be a promising early optio

substitution.
Chapter 9: Conclusions 181

us

/

/

ns,

e

Its
References

[1] A. Agarwal, M. Horowitz and J. Hennessy, “An Analytical Cache Model”,ACM
Transactions on Computer Systems, 7(2), pp. 184-215, May 1989.

[2] “AMD-K6-III processor datasheet”, Advance Micro Devices Inc., 1999.

[3] S.S. Appleton, S.V. Morton and M.J. Liebelt, “Cache Design for Asynchrono
VLSI RISC processor”, inProc. Australian Microelectronics Conference, pp. 91-
95, July 1995.

[4] “ARM Architecture Reference Manual” ARM Limited, ARM DDI 0100D 2000.

[5] “ARM940T Technical Reference Manual”, ARM Limited, 1999.

[6] “The Asynchronous Logic Home Page”, URLhttp:// www.cs.man.ac.uk/async
index.html.

[7] “The Asynchronous Bibliography”, URLhttp://www.win.tue.nl/~wsinap/doc
async.html.

[8] J.-L. Baer and W.-H. Wang, “Multi-level Cache Hierarchies: Organisatio
Protocols and Performance”, inJournal of Parallel and Distributed Computing,
6(3), pp. 451-476, 1989.

[9] W.J. Bainbridge, “Asynchronous System-on-Chip Interconnect”,Ph.D. Thesis,
Department of Computer Science, The University of Manchester, UK, 2000.

[10] A. Bardsley, “Implementing Balsa Handshaking Circuits”,Ph.D. Thesis,
Department of Computer Science, The University of Manchester, UK, 2000.

[11] L.A. Belady, “A Study of Replacement Algorithms for a Virtual-storag
Computer”, inIBM Systems Journal, 5(2) pp. 78-101, 1966.

[12] K. van Berkel et al., “The VLSI-Programming Language Tangram and
Translation into Handshake Circuits”, inProc. European Conf. on Design
Automation, pp. 384-389, 1991.

[13] “Blackjack version 1.0”, URLhttp://gd.tuwien.ac.at/perf/benchmark/aburto/bj/.
182

tch

ing

igh

nd

us
s

and

ed
s

calar

nd
[14] E. Brunvand, “The NSR Processor”, inProc. Annual Hawaii Int. Conf. System
Sciences, pp. 428-435, 1993.

[15] J. Bunda, D. Fussel and W.C. Athas, “Increasing Instruction Fe
Energy-Efficiency of a VLSI Microprocessor”,Technical Report CS-TR-92-40,
The University of Texas at Austin, 1992.

[16] D. Callahan, K. Kennedy and A. Porterfield, “Software Prefetching”, inProc. Int.
Conf. on Architectural Support for Programming Languages and Operat
Systems, pp. 40-52, April 1991.

[17] “C Converted Whetstone Double Precision Benchmark version 1.2”, URLhttp://
www.netlib.org/benchmark/whetstone.c.

[18] T.-F. Chen, “Techniques for the Efficient Analysis of Cache Performance”,Journal
of Information Science and Engineering, 12(4), pp.483-509, December 1996.

[19] T.-F. Chen and J.-L. Baer, “Effective Hardware-Based Data Prefetching for H
Performance Processors”, inIEEE Transactions on Computers, 44(5), pp. 609-623,
May 1995.

[20] T.-F. Chen and J.-L. Baer, “Reducing Memory Latency via Non-blocking a
Prefetching Caches”, inSIGPLAN Notices, 27(9), pp. 51-61, 1992.

[21] K.-R. Cho, K. Okura and K. Asada, “Design of a 32-bit Fully Asynchrono
Microprocessor (FAM)”, in Proc. Midwest Symp. Circuits and System,
pp. 1500-1503, August 1992.

[22] J. Cortadella et al., “Petrify: a tool for manipulating concurrent specifications
synthesis of asynchronous controllers”, inProc. IEICE Transactions on
Information and Systems, E80-D(3), pp. 315-325, March 1997.

[23] I. David, R. Ginosar and M. Yoeli, “Self-Timed Architecture of a Reduc
Instruction Set Computer”, inProc. Asynchronous Design Methodologie,
pp. 29-43, 1993.

[24] M. E. Dean, “STRiP: A Self-Timed RISC Processor”,Ph.D. Thesis,Department of
Electrical Engineering, Stanford University, USA, 1992.

[25] DSP56000/DSP56001 Digital Signal Processor User’s Manual.

[26] C.J. Elston et al., “Hades: Towards the Design of an Asynchronous Supers
Processor”, inProc. Asynchronous Design Methodologies, pp. 200-209, May 1995.

[27] R. M. Fuhrer et al., “Minimalist: An environment for the synthesis, verification a
testability of burst-mode asynchronous machines”,Technical Report
TR CUCS-020-99, Columbia University, New York, 1999.
183

n,

in
tems

ce

in

2000)

c’96)

us
ity

ous
us

ril

”, in

8.

tive
[28] S.B. Furber, “ARM System-on-Chip Architecture”, Addison Wesley Longma
Second Edition, 2000.

[29] S.B. Furber et al., “AMULET1: A micropipelined ARM”, inProc. IEEE Computer
Conference, pp. 476-485, March 1994.

[30] S.B. Furber et al., “AMULET2e: An Asynchronous Embedded Controller”,
Proc. Int. Symp. Advanced Research in Asynchronous Circuits and Sys
(Async’97), pp. 290-299, IEEE Computer Society Press, April 1997.

[31] S.B. Furber, J.D. Garside and D.A. Gilbert, “AMULET3: A High-Performan
Self-Timed ARM Microprocessor”, inProc. Int. Conf. Computer Design
(ICCD’98), October 1998.

[32] S.B. Furber et al., “AMULET2e: An Asynchronous Embedded Controller”,
Proc. of the IEEE, 87(2), pp. 243-256, February 1999.

[33] H. van Gageldonk, “An Asynchronous Low-Power 80C51 Microcontroller”,Ph.D.
Thesis, Eindhoven University of Technology, The Netherlands, 1998.

[34] J.D. Garside et al., “AMULET3i - an Asynchronous System-on-Chip”, inProc. Int.
Symp. Advanced Research in Asynchronous Circuits and Systems (Async’,
pp. 162-175, IEEE Computer Society Press, April 2000.

[35] J.D. Garside, S. Temple and R. Mehra, “The AMULET2e Cache System”, inProc.
Int. Symp. Advanced Research in Asynchronous Circuits and Systems (Asyn,
pp. 208-217, IEEE Computer Society Press, March 1996.

[36] D.A. Gilbert, “Dependency and Exception Hanlding in an Asynchrono
Microprocessor”,Ph.D. Thesis, Department of Computer Science, The Univers
of Manchester, UK, 1997.

[37] D.A. Gilbert and J.D. Garside “A Result Forwarding Mechanism for Asynchron
Pipelined Systems”, inProc. Int. Symp. Advanced Research in Asynchrono
Circuits and Systems (Async’97), pp. 2-11, IEEE Computer Society Press, Ap
1997.

[38] J.R. Goodman, “Using Cache Memory to Reduce Processor-Memory Traffic
Proc. Int. Symp. Computer Architecture (ISCA’83), 1983.

[39] J. Handy, “The Cache Memory Book”, Academic Press, Second Edition, 199

[40] “Heaps”, URLhttp://www.cosc.canterbury.ac.nz/~tad/alg/heaps/heaps.html.

[41] J.L. Hennessy and D.A. Patterson, “Computer Architecture: A Quantita
Approach”, Morgan Kaufmann, Second Edition, 1996.
184

, in

, in

2001)

re”,
and

”, in

che

1.70,

n,

/

he”,
[42] M.D. Hill, “A Case for Direct-Mapped Caches”, inIEEE Computer, 21(12),
pp. 25-40, December 1988.

[43] M.D. Hill et al., “Design Decisions for SPUR”, inIEEE Computer, 19(11),
pp. 8-22, November 1986.

[44] C.A.R. Hoare, “Communicating Sequential Processes”, inCommunications of the
ACM, 21(8), pp. 666-677, 1978.

[45] D. Hormdee, “A Proposed Asynchronous Dual-Ported Cache Architecture”
Proc.7th UK Asynchronous Forum, Newcastle upon Tyne, Decemeber 1999.

[46] D. Hormdee, “An Asynchronous Dual-Ported Copy-Back Cache Architecture”
Proc.8th UK Asynchronous Forum, London, June 2000.

[47] D. Hormdee and J.D. Garside, “AMULET3i Cache Architecture”, inProc. Int.
Symp. Advanced Research in Asynchronous Circuits and Systems (Async’,
pp. 152-161 IEEE Computer Society Press, March 2001.

[48] D. Hormdee and J.D. Garside, “An Asynchronous Copy-Back Cache Architectu
in Proc. Postgraduate Research in Electronics, Photonics, Communications
Software (PREP 2001), April 2001.

[49] D. Hormdee, J.D. Garside and S.B. Furber, “An Asynchronous Victim Cache
Proc. Int. Euromicro Symp. Digital System Design (DSD’2002),September 2002.

[50] D. Hormdee, J.D. Garside and S.B. Furber, “An Asynchronous Copy-Back Ca
Architecture”, submitted toMicroprocessors and Microsystems Journal.

[51] “IBM PowerPC 405 Processor Core User’s Manual”, IBM Coperation, 2001.

[52] “Intel Pentium 4 Processor in the 423-pin Package at 1.30, 1.40, 1.50, 1.60,
1.80, 1.90 and 2GHz Datasheet”, Intel Corporation, 2001.

[53] “Intel StrongARM SA-1110 Microprocessor Brief Datasheet”, Intel Corporatio
2000.

[54] L. Janin and D.A. Edwards, “Debugging Tools for Asynchronous Design”, inProc.
10th UK Asynchronous Forum, July 2001.

[55] “LARD Documentation Home Page”, URLhttp:// www.cs.man.ac.uk/amulet
projects/lard/index.html.

[56] J.S. Liptay, “Structural Asspects of the System/360 Model 85 Part II: The Cac
in IBM System Journal, 7(1), pp. 15-21, 1968.
185

f a

in

er

gy

ta

el

ing

sor

or”,
[57] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition o
Small Fully-Associative Cache and Prefetch Buffers”, inProc. Int. Symp. on
Computer Architecture (ISCA’90), pp. 364-373, 1990.

[58] N.P. Jouppi and S.J.E. Wilton, “Trade-offs in Two-Level On-chip Caching”,
Proc. Int. Symp. Computer Architecture (ISCA’94), pp. 34-45, April 1994.

[59] N. Jouppi, “Cache Write Policies and Performance”, inProc. Int. Symp. Computer
Architecture (ISCA’93), pp. 191-201, 1993.

[60] M.B. Kamble and K. Ghose, “Analytical Energy Disspation Models For Low Pow
Caches”, inProc. Int. Symp. Low Power Design (ISLPD’97), August 1997.

[61] T. Kilburn et al., “One-Level Storage System”, inIRE Transactions on Electronic
Computers, Vol.EC-11, No. 2, pp. 223-236, April 1962.

[62] J. Kin, M. Gupta and W.H. Mangione-Smith, “The Filter Cache: An Ener
Efficient Memory Structure”, in Int. Symp. Microarchitecture (MICRO’30),
pp. 184-193, 1997.

[63] A. C. Klaiber and H. M. Levy, “Architecture for software controlled da
prefetching”, inProc. Int. Symp. Computer Architecture (ISCA’91), pp. 43-63, May
1991.

[64] U. Ko, P.T. Balsara and A. K. Nanda, “Energy Optimisation of Multi-Lev
Processor Cache Architectures”, inProc. Int. Symp. Low Power Design
(ISLPD’95), 1995.

[65] P.M. Kogge, “The Architecture of Pipelined Computers”, Hemisphere Publish
Corporation, 1981.

[66] R. Kol and R. Ginosar, “Kin: A High Performance Asynchronous Proces
Architecture”, inProc. Int. Conf. Supercomputing (ICS’98), July 1998.

[67] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization”, inProc. Int.
Symp. Computer Architecture (ISCA’81), pp. 81-85, 1981.

[68] A.J. Martin et al., “The Design of an Asynchronous Microprocessor”, inProc.
Advanced Research in VLSI, MIT Press, pp. 351-373, 1989.

[69] A.J. Martin et al., “The Design of an Asynchronous MIPS R3000 Microprocess
in Proc. Advanced Research in VLSI, MIT Press, pp. 164-181, September 1997.

[70] “Matrix multiply tests – C language, version 1.0”, URLhttp://gd.tuwien.ac.at/perf/
benchmark/aburto/mm/.
186

ous
ity

d
r

ss,

us

of

000)

r”,

e of

rd
uits
2.

ed

of

s/
[71] R. Mehra, “Micropipelined Cache Design Strategies for an Asynchron
Microprocessor”,M.Sc. Thesis, Department of Computer Science, The Univers
of Manchester, UK, 1992.

[72] R. Mehra and J.D. Garside, “A Cache Line Fill Circuit for a Micropipeline
Asynchronous Microprocessor”, inIEEE Technical Committee on Compute
Architecture Newsletter, October 1995.

[73] S. Moore et al., “Point to point GALS interconnect”, inProc. Int. Symp. Advanced
Research in Asynchronous Circuits and Systems (Async’2002), pp. 69-75, IEEE
Computer Society Press, April 2002.

[74] D. Morris and R.N. Ibbett, “The MU5 Computer System”, The Macmillan Pre
1979.

[75] S.V. Morton, S.S. Appleton and M.J. Liebelt, “ECSTAC: A Fast Asynchrono
Microprocessor”, inProc. Asynchronous Design Methodologies, pp. 180-189, May
1995.

[76] J. Muttersbach, T. Villiger and W. Fichtner, “Practical Design
Globally-Asynchronous Locally-Synchronous Systems”, inProc. Int. Symp.
Advanced Research in Asynchronous Circuits and Systems (Async’2,
pp. 52-59, IEEE Computer Society Press, April 2000.

[77] T. Nanya et al., “TITAC: Design of a Quasi-Delay-Insensitive Microprocesso
11(2), inProc. IEEE Design and Test of Computers, pp. 50-63, 1994.

[78] M. Nyström, “Pipelined Asynchronous Cache Design”,M.Sc. Thesis, California
Institute of Technology, USA, 1997.

[79] K. Öner and M. Dubois, “Effects of Main Memory Latencies on the Performanc
Non-blocking Caches”,Technical Report #CENG-92-34, University of Southern
California, 1992.

[80] L.A. Plana et al., “SPA - A Synthesisable Amulet Core for Smartca
Applications”, in Proc. Int. Symp. Advanced Research in Asynchronous Circ
and Systems (Async’2002), pp. 201-210, IEEE Computer Society Press, April 200

[81] B. Prince, “High Performance Memories”, John Wiley & Sons Ltd., Revis
Edition, 1999.

[82] S. Przybylski, M. Horowitz and J. Hennessy, “Characteristics
Performance-Optimal Multi-level Cache Hierarchies”, inProc. Int. Symp.
Computer Architecture (ISCA’89), pp. 114-121, May 1989.

[83] “The Rainbow Project”, URL http://www.cs.man.ac.uk/fmethods/project
AHV-PROJECT/ahv-project.html.
187

-bit
in

ed
us

the

ded

and

tem

sor

ce”,
[84] M. Renaudin, P. Vivet and F. Robin, “ASPRO-216: a Standard-Cell QDI 16
RISC Asynchronous Microprocessor”, inProc. Int. Symp. Advanced Research
Asynchronous Circuits and Systems (Async’98), pp. 22-31, IEEE Computer Society
Press, March 1998.

[85] W.F. Richardson and E. Brunvand, “Fred: An Architecture for a Self-Tim
Decoupled Computer”, inProc. Int. Symp. Advanced Research in Asynchrono
Circuits and Systems (Async’96), IEEE Computer Society Press, March 1996.

[86] J. Ruegg, Sozobon Limited, 1991. Public domain software available from
author: hans@wldrdg.uucp.

[87] S. Segars, “The ARM9 Family: High Performance Microprocessors for Embed
Applications”, in Proc. Int. Conf. Computer Design (ICCD’98),pp. 230-235,
October 1998.

[88] C. Seitz, “System Timing”, Chapter 7 ofIntroduction to VLSI Systemsby C. Mead
and L. Comway, Addison Wesley, Second Edition, 1980.

[89] “Sim”, URL http://gd.tuwien.ac.at/perf/benchmark/aburto/sim/.

[90] A.J. Smith, “Cache Memories”,ACM Computing Surveys, September, 1982.

[91] A.J. Smith, “Line (Block) Size Choice for CPU Caches”, inIEEE Transactions on
Computers,36(9), pp. 1063-1075, 1987.

[92] A.J. Smith, “Second Bibliography on Cache Memories”, inComputer Architecture
News, 19(4), pp. 154-182, June 1991.

[93] J.E. Smith and J.R. Goodman, “Instruction Cache Replacement Policies
Organisations”, inIEEE Transactions on Computers, 34(3), pp. 234-241, March
1985.

[94] J Sparsø and S.B. Furber, “Principles of Asynchronous Circuit Design - A Sys
Perspective”, Kluwer Academic Publishers, 2001.

[95] “SPEC Benchmark Suite Release 1.0”, October 1989.

[96] “SPEC CPU2000 V1.2”, URLhttp://www.spec.org/osg/cpu2000/.

[97] R.F. Sproull, I.E. Sutherland and C.E. Molnar, “Counterflow Pipeline Proces
Architecture”, inIEEE Design and Test of Computers, 11(3), pp. 48-59, 1994.

[98] W. Stallings, “Computer Organization and Architecture: Design for Performan
Prentice-Hall International, Fourth Edition, 1996.
188

ance
)

on

rk”,

ms

er
)

[99] C. Su and A. Despain, “Cache Design Tradeoffs for Power and Perform
Optimisation: A Case Study”, inProc. Int. Symp. Low Power Design (ISLPD’95,
1995.

[100] I. Sutherland, “Micropipelines”,Communication of the ACM, 22(6), pp.720-734,
June 1989.

[101] A. Takamura et al., “TITAC-2: A 32-bit Asynchronous Microprocessor based
Scalable-Delay-Insensitive Model”, inProc. Int. Conf. Computer Design
(ICCD’97), pp. 288-294, October 1997.

[102] “VHDL++”, URL http://www.it.dtu.dk/~asytools/.

[103] R.P. Weicker, “Dhrystone: A Synthetic Systems Programming Benchma
Communications of the ACM, 27(10), pp. 1013-1030, October 1984.

[104] T. Werner and V. Akella, “Asynchronous Processor Survey”, inIEEE Computer,
30(11), pp.67-76, December 1997.

[105] N.H.E. Weste and K. Eshraghian,, “Principles of CMOS VLSI Design: A Syste
Perspective”, Addison Wesley, Second Edition, 1993.

[106] “UltraSPARC III Cu User’s Manual”, Sun Microsystems, May 2002.

[107] Wm.A. Wulf and S.A. McKee, “Hitting the Memory wall: Implications of the
Obvious”, inComputer Architecture News, 23(1), pp. 20-24, March 1995.

[108] M. Zhang and K. Asanivic, “Highly-Associative Caches for Low-Pow
Processors”, inKool Chips Workshop, Int. Symp. Microarchitecture (MICRO’33,
December 2000.
189

	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration
	Copyright
	The Author
	Acknowledgements
	Dedication
	Chapter 1: Introduction
	Chapter 2: Background Material
	Chapter 3: Tuning Memory Hierarchy Performance
	Chapter 4: Asynchronous Memories
	Chapter 5: An Asynchronous Copy�back Cache
	Chapter 6: Victim Caches
	Chapter 7: Simulation Methodology
	Chapter 8: Results and Evaluation
	Chapter 9: Conclusions
	References

