
Simulation and Visualisation for Debugging

Large Scale Asynchronous Handshake

Circuits

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy in the

Faculty of Science & Engineering

2004

Lilian Janin

Department of Computer Science

2

Contents

Contents ...2
List of Figures ...6
List of Tables ...8
Abstract ...9
Declaration ..10
Copyright ...10
Acknowledgements ...11

Chapter 1: Introduction ..12

1.1 Large Scale Asynchronous Handshake Circuits12
1.2 Automated Circuit Synthesis ..14
1.3 Motivations and Objectives ..15
1.4 Contributions made by this work ..16
1.5 Thesis Overview ...17
1.6 Publications ..18

Chapter 2: Background ...19

2.1 Asynchronous Design ...19
2.1.1 Handshake Signalling Protocols ..21
2.1.2 Delay Models ...22
2.1.3 Data Encodings ..24
2.1.4 Asynchronous Difficulties ...26

2.2 Asynchronous Specification Techniques ..28
2.2.1 Event-Based Specification ...28
2.2.2 State-Based Specification ..30
2.2.3 Communicating Sequential Processes ...30
2.2.4 Macromodules and DI Interconnect ...31

2.3 Balsa ...32
2.3.1 Balsa Framework ...33
2.3.2 Balsa Language ..33
2.3.3 Breeze Handshake Circuit ..36

2.4 Network Graphs ..40

3

Chapter 3: Related Work ..41

3.1 Handshake Circuit Simulation ..41
3.2 Debugging Asynchronous-Specific Problems ..43
3.3 Visualisation Oriented Towards Program Comprehension44

3.3.1 Knowledge Organisation by Merging Multiple Sources45
3.3.2 Dynamic Visualisation ...47
3.3.3 Information Exploration with Coordinated Views50

3.4 Unified IDE for Large Scale Asynchronous Circuits51
3.5 Summary ...52

Chapter 4: Theory of Handshake Circuit Debugging53

4.1 The Handshake Circuit Model ..53
4.1.1 Static Model ...53
4.1.2 Dynamic Model ..54

4.2 Deadlocks ...56
4.2.1 Handshake Circuit Deadlock Detection57
4.2.2 Handshake Circuit Deadlock Analysis ..59

4.3 Non-determinism ..62
4.3.1 Metastability ...63
4.3.2 Modelling Delays With Errors ...64
4.3.3 Exhaustive Simulation ...64

4.4 Activity Pattern Analysis ..65
4.4.1 Visual Analysis ..65
4.4.2 Automated Analysis ...66

4.5 Circuit Optimisation – Profiling ...67
4.6 Summary ...67

Chapter 5: High-Performance Simulation ...68

5.1 Preamble ...69
5.1.1 Choice of the Simulation Level ...69
5.1.2 Choice of the Handshake Protocol ...70
5.1.3 Preliminary Statistics ...71

5.2 Scheduler ..72
5.2.1 A Software Model for Simulating Handshake Circuits72
5.2.2 Standard Event-Driven Scheduler ..74
5.2.3 Out-of-Order Scheduler ...76

4

5.2.4 Reordering Arbitration Inconsistencies83
5.3 Modelling Handshake Circuits for Speed ...84

5.3.1 Channel Data Value Implementation ...84
5.3.2 Premature Channel Data Storage ...85
5.3.3 Data Sharing Between Components ..85

5.4 Test Harnesses ..86
5.5 Summary ...87

Chapter 6: Analysis-Oriented Simulation ...88

6.1 Timing Analysis ...88
6.1.1 Determining and Adjusting Delays ..89
6.1.2 Simulating Delays with Errors ...90
6.1.3 Delays in Test Harnesses ...91

6.2 Power Analysis ...91
6.3 Source Code Position Annotation ...92
6.4 Simulation Tracing for Offline Analysis ..93

6.4.1 Standard Trace ...94
6.4.2 Out-of-Order Trace ..95
6.4.3 Pattern Analysis and Compressed Out-of-Order Trace95

6.5 Summary ...97

Chapter 7: Visualisation ..98

7.1 Information Clustering ...98
7.1.1 Functional Grouping ..99
7.1.2 Control Threads ..102
7.1.3 Data Flow ...104
7.1.4 Test Harnesses ..107

7.2 Multi-Source Graph View ..108
7.2.1 Static Multiscale Structure ...108
7.2.2 Dynamic Colour-Based Animation ..109

7.3 Coordinated/Collaborative Views ..110
7.3.1 Views ...111
7.3.2 Multiple Views: Linking the Different Representations113

7.4 Additional techniques ...116
7.4.1 Dot Layout ...116
7.4.2 Tracking Structural Changes during Design Iterations117

5

7.5 Summary ...119

Chapter 8: Integration ...120

8.1 Balsa Compiler and Breeze Format ..121
8.2 Simulation Trace ...122
8.3 Visualisation Control Links ..122
8.4 Summary ...123

Chapter 9: Results and Discussion ...124

9.1 Simulation: Boosted Compilation and Simulation Speeds125
9.2 Debugging Demonstrator: The Simple Corridor Problem131

9.2.1 Deadlock Handling ..132
9.2.2 Livelock Handling ..134
9.2.3 Non-Determinism Handling ...135
9.2.4 Further Pattern Analysis and Trace Compression136
9.2.5 Discussion ..139

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core139
9.3.1 Merging Sources for Multiscale Graph Visualisation140
9.3.2 Animated Graph ...145
9.3.3 Coordinated/Collaborative Views ..146
9.3.4 Discussion ..148

9.4 Unified Debugging Environment ...149

Chapter 10: Conclusions ..150

10.1 Summary ...150
10.2 Summary of Contributions ...151
10.3 Limitations ..152
10.4 Suggestions for Future Work ..152

Appendix A: Balsa Example Circuits with Statistics154

Appendix B: Breeze Handshake Components ...159

References ..171

6

List of Figures

1.1 Synchronous and asynchronous mechanisms 13
2.1 Push and pull channel notations 20
2.2 Channel signalling protocols 22
2.3 4-phase push data validity schemes 23
2.4 STG notation 29
2.5 STG specification for a 2 input Muller C-element 29
2.6 Balsa design flow 34
2.7 Balsa language features (modulo-10 counter example) 35
2.8 Breeze handshake circuit graph (modulo-10 counter example) 37
2.9 Breeze handshake circuit netlist (modulo-10 counter example) 39
2.10 Network graph 40
4.1 Time model of the execution of a handshake circuit 54
4.2 Simplified time model of the execution of a handshake circuit 55
4.3 Elements involved in a handshake circuit deadlock 59
4.4 Deadlock analysis algorithm 60
5.1 Object-oriented view of handshake component and channel 73
5.2 Object-oriented view of a handshake circuit 75
5.3 Fork component model and scheduler’s event queue 75
5.4 Pseudo handshake circuit for the equation 77
5.5 Execution order of the handshake components in figure 5.4 79
5.6 Arbitrated circuit 81
5.7 Starvation due to out-of-order arbitration 82
5.8 Three stage buffer circuit 86
6.1 Interleaved and sequential traces of threads of events 96
7.1 Abstracted functional grouping 100
7.2 Unoptimised and optimised representations of a sequence of 4 actions 102
7.3 Three control thread sets possible with a Fork component 103
7.4 The data Transferrer component 105
7.5 Pull and push Add (BinaryFunc) and Split components 106
7.6 CaseFetch component 106
7.7 Coordinated/collaborative views 112
7.8 Circuit reconfiguration strategies 118
8.1 New Balsa simulation and visualisation flow 120
9.1 Implementation model for the corridor problem 132
9.2 Deadlock with two lazy_guys in the corridor example 133
9.3 Livelock with two polite_guys in the corridor example 134
9.4 Handshake circuit of the one-place buffer example with its environment 137
9.5 Huge graph layout: SPA - Zoom 100% 141
9.6 Huge graph layout: SPA - Zoom 250% 142
9.7 Huge graph layout: SPA - Zoom 900% 143
9.8 Huge graph layout: SPA - Zoom 4500% 144
9.9 Step by step animation of a 1-place buffer 146

7

9.10 Step by step animation of a hypothetical parallel circuit 146
9.11 High level SPA animation snapshot with bars in groups 147
B.1 Continue and Halt handshake components 160
B.2 Loop handshake component 160
B.3 Sequence, Concur, Fork and WireFork handshake components 160
B.4 While handshake component 161
B.5 Bar handshake component 161
B.6 Fetch handshake component 162
B.7 FalseVariable handshake component 162
B.8 Case handshake component 162
B.9 NullAdapt handshake component 162
B.10 Encode handshake component 163
B.11 Adapt and Slice handshake components 163
B.12 Constant handshake component 164
B.13 Combine and CombineEqual handshake components 164
B.14 CaseFetch handshake component 164
B.15 UnaryFunc, BinaryFunc and BinaryFuncCont handshake components 165
B.16 ContinuePush and HaltPush handshake components 166
B.17 ForkPush handshake component 166
B.18 Call, CallMux and CallDemux handshake components 167
B.19 Passivator and PassivatorPush handshake components 167
B.20 Synch, SynchPull and SynchPush handshake components 168
B.21 DecisionWait handshake component 168
B.22 Split and SplitEqual handshake components 169
B.23 Variable and InitVariable handshake components 169
B.24 Arbiter handshake component 170

8

List of Tables

7.1 Visualised elements per view 114
7.2 Visualised elements per source 114
9.1 Evolution of the compilation speed 127
9.2 Evolution of the simulation speed 128
9.3 Comparison of Breeze and Verilog simulators 130
9.4 Design iteration speedup 130
9.5 Trace compression results 138
A.1 Size of Balsa circuits examples 154

9

Abstract

Recent advances in automated synthesis tools for asynchronous circuits have made

possible the design of large self-timed circuits. However, these new tools are still weak in

their behavioural simulation and debugging capabilities because asynchronous circuits

pose different challenges and opportunities in these areas from conventional clocked

circuits. Balsa is such a tool intended for the synthesis of large asynchronous circuits by

using handshake circuits as an intermediate representation.

This thesis addresses new simulation and visualisation techniques for debugging large

scale asynchronous circuits at the handshake circuit level. It is based on extensive

behavioural simulation and large scale visualisation of handshake circuits.

A set of optimisation techniques applicable to the simulation of handshake circuits leads

to a simulator four orders of magnitude faster than the previous Balsa simulator on large

circuits. A visualisation system targeting program comprehension by efficiently tracking

control flows is presented. It is based on two techniques: First, a graph-based view of the

handshake circuit merges multiple sources of information to generate a graph viewable at

any level of detail, with dynamic simulation results rendered atop it. Then, a collaborative

scheme between multiple views allows the tracking of elements between views for

efficient navigation.

The framework is evaluated on the largest circuit described with Balsa so far, an ARM-

compatible asynchronous microprocessor.

10

Declaration

Most of the figures and descriptions contained in Appendix B were originally described

by Bardsley [5]. They have been reproduced here and updated with the permission of the

author.

No other portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

Copyright

(1) Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by

the Author and lodged in the John Rylands University Library of Manchester.

Details may be obtained from the Librarian. This page must form part of any such

copies made. Further copies (by any process) of copies made in accordance with

such instructions may not be made without the permission (in writing) of the

Author.

(2) The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for use by third parties without

permission of the University, which will prescribe the terms and conditions of any

such agreement.

(3) Further information on the conditions under which disclosures and exploitation may

take place is available from the Head of the Department of Computer Science.

11

Acknowledgements

It is a pleasure to thank the many people who have contributed to my happiness during

these last four years and made this thesis possible.

I would like to thank first my supervisor, Dr. Doug Edwards, for his kindness, for the

freedom he gave me and for always being there at the right time to guide me.

Thanks to Dr. Andrew Bardsley for the many explanations and advice about Balsa, and

thanks to everybody in the APT group for their friendship.

Special thanks to my local proofreaders: Peter Riocreux, Dr. Andrew Bardsley, Dr. John

Bainbridge, Dr. Luis Plana and Sam Taylor for fixing my French style as much as they

possibly could, and also for being such nice colleagues and friends. I could never thank

Andrew enough for reading the whole of my thesis so quickly, nor Peter for reading it

twice even more quickly, saving me from the deadline.

Another set of proofreading thanks goes to my French friends: Fred Lapin Lacombe,

Régis Décamps, Alexandre Klimowicz, Franck Bettinger and Nicolas Gaborit. They have

been extremely helpful.

Thanks to all my friends: Franck, Nicolas, Fabrice, Vivek, Bruno, Racoon, Alexandre,

Régis, Jérôme, Laurent, Arnaud, Aymeric, Nathanaël and all the others for enjoying some

time with me. And a giant thank you to Lapin, who was there for me in critical times.

Finally I’d like to thank Yin Jin, my brothers and sister Florent, Marion and Jean, and my

parents for their love.

Chapter 1: Introduction 12

Chapter 1: Introduction

This thesis is concerned with techniques to support the debugging of large asynchronous

handshake circuits by using extensive simulation and large scale visualisation methods.

These techniques are applied to the Balsa asynchronous circuit synthesis framework.

1.1 Large Scale Asynchronous Handshake Circuits

Very Large Scale Integration (VLSI) is the current level of computer microchip

miniaturisation and refers to electronic circuits on a chip containing more than hundreds

of thousands of transistors. A computer microprocessor is an example of VLSI chip.

VLSI designs can be divided into two major classes: synchronous and asynchronous

circuits. Synchronous circuits use a periodic signal called a clock to synchronise every

part of the circuit. The clock signal is distributed throughout all parts (or modules) of a

system to ensure correct timing and to synchronise the data processing mechanisms.

Asynchronous circuits contain no global clock. The synchronisation required for data

transfers between two modules is controlled by locally generated signals (Figure 1.1).

One major class of asynchronous circuits uses a synchronisation method between

modules called handshaking. Handshaking is used to synchronise two independent

asynchronous modules for data transfer by observing the following scheme:

1. The sender places the data onto the data wires.

2. Thesendernotifiesthereceiverby changingthevalueof a specificwire meaning:

“The data on the data wires is valid, you can read it”.

3. The receiver receives the message and processes the data.

4. Thereceivernotifiesthesenderby changingthevalueof a specificwire meaning:

“I have finished using the data”.

5. The sender receives the message and continues its processing.

1.1 Large Scale Asynchronous Handshake Circuits

Chapter 1: Introduction 13

Unfortunately, the complexity added by the local handshake protocols required in every

asynchronous module makes asynchronous circuits more difficult and expensive to build

in terms of circuit area and power consumption. For this reason, they have stayed a niche

research area restricted to universities for many years, while synchronous methodologies

and tools were developed at a high pace by companies. However, with the development

of million-transistor chips, new difficulties have appeared with synchronous circuits

which are more easily overcome by the asynchronous design style. The most important of

these problems are:

• Clock skew: As the size of a chip and the number of modules increase, the clock

network required to distribute the clock signal all over the chip becomes more

complex. This leads to tiny differences in propagation delay known as clock skew,

which can affect the correct synchronisation of the modules.

• Non-adaptation to environmental conditions: As environmental conditions (such as

temperature, voltage, etc.) change, the propagation delays of the signals inside parts

of the chip can become slower or faster. This further increases the effects of clock

skew problems.

Figure 1.1: Synchronous and asynchronous mechanisms

data communication between modules

a) synchronous circuit b) asynchronous circuit

module

module

module

module

module

module

module

module

synchronisation mechanism

global
clock

synchronisation

local
synchronisation

protocol

1.2 Automated Circuit Synthesis

Chapter 1: Introduction 14

• Electromagnetic interference: In a synchronous circuit, all the modules get

synchronised by the same clock events. This generates peaks of activity at every

clock tick leading to electromagnetic interferences. In an asynchronous circuit,

modules are only synchronised to their close neighbours. This tends to distribute

electromagnetic emissions over time and therefore avoid the interference peaks.

• Power management: When a synchronous circuit has nothing to do, it can either let

its clock circuitry work, thus consuming energy, or it can stop the clock in order to

save this energy. Unfortunately, restarting stopped clock circuitry takes some time

before stabilisation. This makes power management in synchronous chips complex.

In asynchronous chips, when no processing is to be done, no activity happens at all,

and thus no energy is consumed without the need for any special power

management.

Noting the increasingly important qualities of asynchronous technology, a growing

interest from the industry in asynchronous circuits is now stimulating research in design

methodologies and the development of design tools which can be used to develop efficient

asynchronous VLSI designs.

1.2 Automated Circuit Synthesis

Circuit synthesis refers to the process of transforming a problem description (usually in

the form of a program) into a hardware circuit. Each step of the synthesis process can be

made either manually or automated by using Computer Aided Design (CAD) tools. In the

past, asynchronous CAD tools were limited to the design of individual small controllers

[26, 41, 116], and thus were only useful for small portions of the final circuit. Some large

scale asynchronous systems have been designed manually, allowing aggressive, hand-

made optimisations, but at the expense of requiring a cumbersome, slow and error-prone

design process. For example, the Amulet3 processor [46] took 20 man-years to complete

and the Intel asynchronous instruction-length decoder chip [88] took 9 man-years, using

a combination of manual techniques and academic synthesis tools for designing

individual controllers. Synchronous hardware description languages (HDLs) and tools

were able to handle parts of the design process, but could not tackle asynchronous specific

problems such as fine-grained parallelism, deadlocks and non-determinism (see §2.1.4).

1.3 Motivations and Objectives

Chapter 1: Introduction 15

Nowadays, a few all-encompassing design methodologies and CAD tools able to handle

the overall synthesis flow of asynchronous systems have emerged. The most scalable ones

are syntax-directed tools [17] and can be used for VLSI designs. Other asynchronous

complete CAD flows have been developed and used for large circuits such as the Caltech

design methodology [115] and the NCL design flow [95, 109]. The syntax-directed model

starts from a high-level abstraction, such as a concurrent program, and produces a circuit

by translating each individual program construct into a corresponding sub-circuit. The

proprietary Philips’ Tangram tool [82], developed by van Berkel et al., and Balsa [4],

developed at the University of Manchester follow this model. The work in this thesis is

based on the Balsa system.

Balsa and Tangram have proven their ability to synthesise full VLSI circuits [6, 43].

However, these high-level asynchronous CAD tools suffer major deficiencies:

• lack of aggressive automatic optimisations [21, 99]

• lack of debugging capabilities.

The research work presented in this thesis deals with the last point.

1.3 Motivations and Objectives

The long-term aim of this work is to provide the Balsa CAD tool suite with a debugging

system able to handle the peculiarities of asynchronous circuits.

The short-term motivation for this work was to help with the ongoing development of

SPA, a synthesised ARM-compatible processor core designed at the University of

Manchester and intended for use in third generation smartcards [84]. It is described

entirely in Balsa, and the two last years of the SPA project overlapped with the two first

years of this thesis. SPA is currently the largest circuit synthesised with Balsa, and is

composed of about ten thousand asynchronous components, a huge number to deal with.

(Making a comparison with the field of graph manipulations, graphs over a thousand

nodes are considered huge). A part of the work presented here is the result of extending

the capabilities of the Balsa suite with tools which are appropriate for the final validation

1.4 Contributions made by this work

Chapter 1: Introduction 16

of SPA. In return, SPA has been used as a test case to evaluate the different aspects of this

work.

The validation checks that the SPA processor passes all the 76 programs constituting the

ARM architecture validation suite. In the execution of this validation suite, the most

important aspect was simulation speed. The original simulation time of almost two weeks

per test needed to be improved considerably. Moreover, decent simulation speed is the

basis for a good debugging system as debugging information is collected during the

simulation process. A fast simulator also allows repetitive tests on complex designs to be

processed for design iterations and design-space exploration.

The design of a fast simulator led to the need for a tool able to trace back and pinpoint the

causes of incorrect behaviour during simulation. A handshake circuit debugger was thus

developed. The debugger was then extended for fixing not only problems with the

simulator, but also the simulated Balsa descriptions. For this reason, the debugger was

developed to recognise and treat special asynchronous failure modes such as deadlocks

and non-determinism. The simulator was extended to report the information necessary for

this analysis. Finally, as the size of Balsa circuits was becoming larger, a visualisation

system appeared to be useful. It needed to display graphically all the information needed

for the comprehension and debugging of the handshake circuit, linking all the different

aspects of the circuit together: the pre-compilation Balsa code, the post-compilation

handshake circuit, the dynamic simulation events, and the various results of simulation

analysis such as control and data flows.

1.4 Contributions made by this work

This work commenced with the idea of simulating Balsa directly at the handshake circuit

level. Although this idea cannot be considered as a contribution by itself, it led to the

following discoveries and achievements:

• Four orders of magnitude Balsa simulation speedup

• Ideas for debugging asynchronous-specific problems at the handshake circuit level

identifying:

• deadlocks

1.5 Thesis Overview

Chapter 1: Introduction 17

• non-determinism

• Pattern analysis of the out-of-order simulation trace, with direct applications to:

• debugging of livelocks

• compression of simulation traces

• clustering for better visualisation

• Following the execution of a circuit for program comprehension:

• Merging complementary sources of information together to generate a graph

viewable at any level of detail

• Colour-based graph animation to highlight handshake circuit control flows

• Coordinating this graph view and the various views “well-known to the

designer” together for an efficient element tracking and easy navigation

• The first published debugging environment for large scale asynchronous circuits.

1.5 Thesis Overview

Chapter 2 describes the fundamentals of asynchronous design and graph theory used in

the rest of the thesis. Nomenclature and notations are introduced there. Balsa, the

language and framework on which this research is based, is described.

Chapter 3 addresses other research works similar to that presented in this thesis, and

exposes their differences, strengths and weaknesses.

Chapter 4 investigates the theoretical requirements for debugging asynchronous

handshake circuits. Classical asynchronous problems of deadlocks, non-determinism and

metastability are studied and applied to handshake circuits. Problems specific to large

scale debugging are also examined, with some solutions proposed to solve the problem of

the huge amount of data generated by the simulation of such systems.

Chapters 5 and 6 explore the design of a handshake circuit simulator, first by targeting

high performance, then by taking into account the various requirements for gathering data

for off-line analysis, visualisation and circuit debugging.

1.6 Publications

Chapter 1: Introduction 18

Chapter 7 examines the requirements for a visualisation system able to represent

effectively the large amount of data, the fine-grained concurrency and the different steps

of the synthesis process together.

Chapter 8 describes the integration of the debugging, simulation and visualisation aspects

into a unified framework.

Chapter 9 presents an evaluation of the framework developed after the ideas uncovered

by this thesis. It shows how the framework can be successfully employed on real-life

examples.

Finally, Chapter 10 concludes the thesis by summarising the contributions and their

deficiencies. Some guidelines for future possible work are suggested.

1.6 Publications

The following papers have been presented at conferences:

• Debugging Tools for Asynchronous Design [58]

(10th UK Asynchronous Forum, no peer review)

• A Visualisation System for Balsa Simulations [59]

(12th UK Asynchronous Forum, no peer review)

The following journal paper has been published:

• Simulation and Visualisation of Asynchronous Circuits [60]

(International Journal of Simulation: Systems, Science & Technology).

Chapter 2: Background 19

Chapter 2: Background

This chapter provides an introduction to asynchronous design. The information presented

here is intended to set the context for the description of the simulation system developed

in the subsequent chapters.

First, the terminology and the major styles of asynchronous design are introduced. Then,

the difficulties of metastability and deadlocks specific to asynchronous circuits are

presented. The main asynchronous specification techniques are then described,

concluding with a description of Balsa and handshake circuits, which form the basis of

this work. Finally, graphs are introduced as a way to represent and manipulate handshake

circuits.

2.1 Asynchronous Design

In asynchronous circuits, data is passed between modules using groups of wires, known

as channels. These channels are unidirectional, point-to-point connections. Over the

years, a number of different asynchronous channel implementations have been defined.

In such channels, the data typically flows in one direction between two modules:

• The sender is the module that delivers data onto the channel.

• The receiver is the module that accepts data from the channel.

Orthogonal to this classification is the concept of control flow, determined by which end

caused the transfer to occur:

• The initiator is the module that caused the transfer to begin.

• The target is the module that responds to the initiator.

2.1 Asynchronous Design

Chapter 2: Background 20

A channel is connected to a module via a port. A port connected to an initiator is an active

port while a port connected to a target is a passive port. As illustrated in Figure 2.1a and

2.1b, the graphical notation used to represent channels uses the filled and empty circles to

denote the active and the passive partners in the handshake procedure respectively.

The relative direction of the data flow compared to the control flow determines whether

the channel is classified as a push channel (where the sender is the initiator of the

communication) or a pull channel (where the receiver is the initiator of the

communication). These two types of channel are illustrated in figures 2.1c and 2.1d.

Designers often speak of pushing or pulling data, thus implying the protocol used. A

channel which does not transmit any data, and has therefore only a control part, is called

a sync (or nonput) channel.

Which module performs which function on a channel is determined by the protocol and

the transfer direction.

Most of the popular asynchronous handshaking approaches can be classified using the

following three criteria, explained below:

• signalling protocol,

• delay model,

• data encoding.

Figure 2.1: Push and pull channel notations

b) Pull channel notationa) Push channel notation

Initiator
Receiver

Target
Sender

Target
Receiver

Initiator
Sender

c) Push channel d) Pull channel

req
data
ack

req
data
ack

2.1 Asynchronous Design

Chapter 2: Background 21

2.1.1 Handshake Signalling Protocols

The transfer of information between two computation blocks across a channel is

negotiated using a signalling protocol. Every transfer features a request action (req) where

the initiator starts a transfer, and an acknowledge action (ack) allowing the target to

respond. These may occur on dedicated signalling wires, or may be implicit in the data

encoding used (as described below), but in either case, one event indicates data validity,

and the other signals its acceptance and the readiness of the receiver to accept further data.

These control signals carry all the necessary timing information to provide for proper data

communication and can also be used as a mechanism for synchronising two modules

without the explicit transfer of data (e.g. to implement token passing schemes or control

shared resources).

The request and acknowledge may be passed using one of the two popular protocols

described below: either a 2-phase transition signalling protocol (a non return-to-zero

scheme) or a 4-phase level signalling protocol (a return-to-zero scheme). Conversion

between the different protocols is possible [66].

2-phase (transition) signalling

In the 2-phase signalling scheme, transitions on wires are interpreted as signalling events.

The level of the signal is not used and a transition carries information with rising edges

being equivalent to falling edges. A push channel using the 2-phase signalling protocol

thus passes data using a request signal transition, and acknowledges its receipt with an

acknowledge signal transition. Figures 2.2a and 2.2b illustrate the push and pull data

validity schemes for the 2-phase signalling protocol. Arrows indicate causality between

events.

Proponents of the 2-phase design style try to use the lack of a return-to-zero phase to

achieve higher performance and lower power circuits.

4-phase (level) signalling

The 4-phase signalling protocol uses the level of the signalling wires to indicate the

validity of data and its acceptance by the receiver. When this signalling scheme is used to

pass the request and acknowledge timing information on a channel, a return-to-zero phase

2.1 Asynchronous Design

Chapter 2: Background 22

is necessary so that the channel signalling system ends up in the same state after a transfer

as it was in before the transfer. This scheme therefore uses twice as many signalling edges

per transfer than its 2-phase counterpart. Push and pull variants of the 4-phase signalling

protocol are shown in figures 2.2c and 2.2d.

4-phase control circuits are often simpler than those of the equivalent 2-phase system

because the signalling lines can be used to drive level-controlled latches, and the like,

directly.

Data validity in 4-phase handshakes can be signalled in a number of ways, the most

common of which (broad, early and late data validity) are illustrated with push channels

in Figure 2.3.

2.1.2 Delay Models

Delays in digital circuits are associated with wires and gates. The effects of delays on

systems are often characterised using a delay model. Delay models can be divided into

Figure 2.2: Channel signalling protocols

processing period
causality relation

a. 2−phase push protocol

1st handshake 2nd handshake

req

ack

data

c. 4−phase push protocol

req

ack

data

1st handshake

d. 4−phase pull protocol

req

ack

data

b. 2−phase pull protocol

1st handshake 2nd handshake

req

ack

data

1st handshake

2.1 Asynchronous Design

Chapter 2: Background 23

three categories: fixed, bounded and unbounded delay models. In the fixed delay model,

delays are assumed to have fixed values. In the bounded delay model, delays may have

any value in a given interval. In the unbounded delay model, delays can have any finite

value.

The fixed delay model is rarely used for the construction of asynchronous circuits since

small variations in fixed delays could lead to significant differences in switching activity

and break the model. The bounded delay model was commonly used in the early days of

asynchronous design and is still used in some interconnection schemes such as the SCSI

bus [94] where part of the protocol is based upon known, fixed delays allowing small

variations. It is also commonly used for datapath components, where it can lead to smaller

implementations.Delay variations are estimated by considering factors such as data

dependence, statistical process variation, temperature and supply voltage variation.

Current asynchronous VLSI designs and research efforts mostly use the unbounded delay

model for the implementation of state-machines and controllers since it leads to circuits

that will always operate correctly whatever the distribution of delays. This model

separates delay management from the correctness issue, allowing the functionality of the

circuit to be more easily verified.

Within the unbounded delay model, various design styles are commonly used, each with

its own merits and problems. In order of increasing number of timing assumptions the

major ones are:

Figure 2.3: 4-phase push data validity schemes

req

ack

broad push

early push

late push

broad processing

early proc.
late proc.

2.1 Asynchronous Design

Chapter 2: Background 24

Delay-insensitive (DI) circuits

A circuit whose operation is independent of the delays in both circuit elements (gates) and

wires is said to be delay-insensitive. DI circuits require no timing constraints or

assumptions to be preserved for circuit functionality to be guaranteed. Unfortunately, at

the gate level, few interesting circuits conform to the delay-insensitive ideal [69]. For this

reason, delay-insensitivity is most often applied to larger, more coarsely grained units,

constructed using other timing regimes in order to make them easier to compose. This is

the case with the handshake circuits used throughout this thesis.

Quasi delay-insensitive (QDI) circuits

If the difference between signal propagation delays in the branches of a set of

interconnecting wires is negligible compared to the delays of the gates connected to these

branches then the wires are said to form an isochronic fork [10]. Circuits created using the

DI design style, augmented with the isochronic fork assumption, are said to be quasi

delay-insensitive (QDI).

Speed-independent (SI) circuits

If wire delays in a circuit are assumed to be zero (or, in practice, less than the minimum

gate delay), and the circuit exhibits correct operation regardless of the delays in any circuit

elements, then the circuit is said to be speed-independent. The assumption of zero wire

delay is valid for small circuits.

In general, SI circuits and QDI circuits are regarded as equivalent from the modelling

point of view.

2.1.3 Data Encodings

A further dimension in asynchronous design is the choice of encoding scheme used for

data representation where the designer must choose between a single-rail, dual-rail, or

other more complex N-of-M schemes (any other encoding is possible, but these ones are

the most popular ones). These alternatives are discussed in the following paragraphs.

2.1 Asynchronous Design

Chapter 2: Background 25

Single-rail encoding

Single-rail encoding [82] uses one wire for each bit of information. The logical level of

the signal represents either a logic 1 or a logic 0. This encoding is the same as that

conventionally used in synchronous designs. Timing information is passed on separate

request and acknowledge lines which allow the sender to indicate the availability of data

and the receiver to indicate its readiness to accept more new data. This scheme is also

known as the bundled-data approach. All single-rail encoding schemes contain inherent

timing assumptions in that the delay in the signal line indicating data readiness must be

no less than the delay in the corresponding data path.

Single-rail design is popular, mainly because its area requirements are similar to those of

synchronous design, as is the construction of any arithmetic components using this

scheme.

Dual-rail encoding

Dual-rail circuits [81] use two wires to represent each bit of information. Each transfer

involves activity on only one of the two wires for each bit. A dual-rail circuit thus uses

signals to represent n bits of information. Timing information is implicit in the

code, in that it is possible to determine when the entire data word is valid by detecting a

level (for 4-phase signalling) or an event (for 2-phase signalling) on one of the two rails

for every bit in the word. A separate signalling wire to convey data readiness is thus not

necessary. The standard level-sensitive dual-rail data encoding technique uses the

following four states for each bit of information:

• 00 – initial state, data is not valid

• 10 – transmission of a logical zero

• 01 – transmission of a logical one

• 11 – illegal state.

Once the data has been transmitted the wires must be returned to their initial state. And

so, the presence of new data is indicated by a transition on one of the propagation wires.

The illegal state is not used in dual-rail data encoding.

2 n×

2.1 Asynchronous Design

Chapter 2: Background 26

The major disadvantage of using dual-rail data representation compared to single-rail data

encoding, where each wire represents one bit of binary information, is that its

implementation requires twice as many wires and, as a consequence, leads to larger and

more power-hungry circuits. Area overhead also comes from the large fan-in networks

required to detect an event on each pair of wires in order to determine when the word is

complete before being able to begin the next stage of processing.

N-of-M encoding

N-of-M encodings are using groups of M wires to encode data values by considering a

data valid as soon as N wires are activated.

Dual-rail encoding is an example of an N-of-M encoding scheme where N=1 and M=2.

Coded data systems using an N-of-M code operate correctly regardless of the distribution

of delay in the wires or gates, and are thus delay-insensitive [111].

1-of-M codes are mostly used [3]. More complex codes, where N>1, use actions on more

than one wire in a group to indicate one of a set of possible codes. These offer better

utilisation of the available wires (for example a 2-of-7 code can transmit 4-bits of

information over 7 wires in a delay-insensitive manner), but result in larger arithmetic

circuits and conversion between the coded form and a single-rail scheme is more

expensive than for the 1-of-M codes.

2.1.4 Asynchronous Difficulties

Metastability and Arbitration

Some asynchronous modules require their inputs to be mutually exclusive. For this, a

special component is usually designed to provide arbitration between two contending

asynchronous inputs. The basic circuit needed to deal with such situations is a mutual

exclusion element (mutex) with two inputs and two outputs [91]. The role of the mutex is

to pass the signals received on its two inputs to the corresponding outputs in such a way

that at most one output is activated at any given time. If only one of the two inputs is

activated, the mutex activates the corresponding output. If an input gets activated while

the first input is already activated and its output selected, then the second input waits. A

problem arises when both inputs are activated at the same time, or within a small time

2.1 Asynchronous Design

Chapter 2: Background 27

window. The mutex’ internal signals hover for an unbounded amount of time before

reaching a stable state and selecting one of the outputs [27]. This problem is known as

metastability, and the act of determining which event came first is called arbitration.

The condition for a mutex to go metastable is to have its two inputs activated within a

small time window . The size of this time window can be determined by experiments or

simulations, and a representative value for good circuit designs implemented with a

0.25µm fabrication process is [96].

Once the mutex is in a metastable state, the probability of still being metastable at a given

time t is:

where expresses the ability of the mutex to exit the metastable state spontaneously, and

is the probability of being metastable at time t. In the same conditions as for the

time window, a representative value of is .

The notions of non-determinism and race condition can also be defined. Non-determinism

is when the next action of a system is not fully determined by its current state. This

happens when a mutex arbitrarily chooses one of its outputs rather than the other. A race

condition happens when two or more system entities potentially may be competing for

resources (an arbiter component) at some time during execution.

Deadlocks

A set of processes (which will be the handshake components of this thesis) is said to be

deadlocked if each process in the set is waiting for an event that only another process in

the set can cause.

A typical high-level example of an asynchronous processor system deadlock is as follow

[96]:

1. A (non-sequential) data transfer needs access to a particular RAM block.

∆

∆ 30ps=

P mett mett 0=() e

t
τ
--–

=

τ

P mett()

τ τ 25 ps=

2.2 Asynchronous Specification Techniques

Chapter 2: Background 28

2. This is prevented because an instruction fetch is already using the RAM array.

3. The instruction fetch cannot complete because the instruction decoder is still busy.

4. The processor pipeline is full and is blocked by the data fetch.

5. Deadlock.

In contrast with synchronous circuits, working through deadlock problems during the

design of asynchronous systems is very common. Without implicit global clock control,

the control logic in an asynchronous design is more complex than in a synchronous

equivalent design since each module of the design requires hardware to perform

synchronisation, to wait for data, and to trigger other modules when it has produced its

data. The use of explicit communications between modules increases the risk of

introducing deadlocks. This problem can be introduced by design errors. Ideally,

deadlocks should be detected and then avoided at a very early stage in the design process.

Unfortunately, current formal validation techniques [7] cannot cope with large designs.

Instead, designers use extensive simulation to give good confidence in design

functionality.

2.2 Asynchronous Specification Techniques

A number of specification techniques are available to the asynchronous designer. Those

for which an automated synthesis route (automated translation from specification to

hardware) is currently available are summarised here. For small-scale asynchronous

designs, two classes of specification are commonly used: state-based and event-based. As

these techniques do not scale well, they are usually used for the construction of small

modules, which are then assembled together to create larger designs.

2.2.1 Event-Based Specification

Petri nets [83] can be used to describe and study the behaviour of systems in terms of

sequences of events, incorporating the concurrency and causality between the events.

Based upon the foundations laid by Rosenblum and Yakovlev [87], current event-based

asynchronous circuit synthesis methodologies use interpreted Petri nets as the input

specification with the transitions labelled with signal names [26]. These graphs are known

2.2 Asynchronous Specification Techniques

Chapter 2: Background 29

as Signal Transition Graphs (STG). In the STG notation, transitions describe signal

activity and can model a rising signal, a falling signal or a change in level. Dependencies

and causalities are represented in the STG using the notations shown in Figure 2.4. As an

example of the STG specification style, Figure 2.5 shows the specification of a two input

Muller C-element (which is a AND function for events, defined as follow: A transition

will occur on the output only when there has been a transition on both inputs) with inputs

a and b and output o. The dotted arcs show the behaviour of the circuit’s environment, and

the solid arcs show the behaviour of the circuit (the Muller C-element in this case). The

use of Petri nets in circuit design makes it easy to describe systems which are concurrent

at a very fine level. This kind of concurrent operation can be more difficult to express in

state diagrams without drawing multiple diagrams or resorting to expanding the Cartesian

product of the states of all the concurrent portions of a design.

a+ enables b- a+ AND b+

enable c+

b+ AND c+

follow a+

a+ enables

b- OR c-

a+ OR b+

enable c+

Figure 2.4: STG notation

Figure 2.5: STG specification for a 2 input Muller C-element

b-

a+ a+ b+

c+ b+ c+

a+

b- c-

a+ a+ b+

c+

b+a+

o+

b-a-

o-

2.2 Asynchronous Specification Techniques

Chapter 2: Background 30

Petri nets and state graphs also use different semantics of concurrency. The true

concurrency semantics, used in Petri nets and their unfoldings, models concurrency by

partial order of events, avoiding combinatorial explosion. However, the interleaving

approach used in state graphs, models concurrency indirectly, or "sequentially", i.e. by

means of all possible interleavings.

2.2.2 State-Based Specification

Huffman state machines [54] are the classical asynchronous finite state machines. They

follow the fundamental mode assumption in which the environment must wait long

enough for the output data to stabilize on the circuit outputs (a bounded delay model), and

the condition of only one input changing at a time. Burst-mode machines, as introduced

by Stevens [98] and formalised by Nowick [79], and extended burst mode machines are

a relaxation of the single input change. A design approach to building burst-mode finite

state machines was proposed by Nowick et al. [80]. According to this approach:

• Each state transition can occur under a certain set of input changes (so called an

input burst) so that no burst from a particular state can be a subset of another burst

from the same state.

• Any state must be entered with the same set of input values.

The proposed timing mechanism allows the burst-mode finite state machine to be moved

to a new state whenever the output associated with the previous state has changed,

enabling the input signals to be changed. A burst-mode oriented backend for the Balsa

synthesis system using the MINIMALIST tool [41] was proposed by Chelcea et al. [21].

2.2.3 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a model developed by Hoare to describe

concurrency by using parallel composition of processes communicating through channels

[52].

Martin first suggested a synthesis method to manually compile a CSP description into DI

circuits [68], where each process was synthesised as an asynchronous module, and where

communications were following a handshake protocol. This work set the basis for a series

2.2 Asynchronous Specification Techniques

Chapter 2: Background 31

of macromodular synthesis methods, of which Balsa is an example. They are described in

the following section.

2.2.4 Macromodules and DI Interconnect

Macromodular methodologies make use of pre-built modules connected together by

handshaking channels to construct circuits [101]. This allows the use of a delay-

insensitive style of interconnect between the modules, which is difficult to achieve at the

gate level. The modules can have their own internal timing constraints (they can even be

clock-driven modules) without affecting the high-level DI properties of the circuit. Other

non-DI interconnection styles (e.g. single-rail protocols) can also be used in order to

reduce the number of wires, but at the expense of extra-complexity in layout timing

validation to ensure that bundling constraints are met.

Macromodular design styles exist for hand construction of circuits and for automated

circuit synthesis. Macromodules were first developed by Clark at Washington University

[24] during the late 1960s as a system for constructing large digital circuits which were

composed of pre-built blocks of asynchronously communicating functional units: the

macromodules. In his 1988 Turing Award lecture, Ivan Sutherland described an elegant

approach to building elastic asynchronous pipelines called micropipelines [103], where

the control structures were similar to those of macromodules. Micropipelines are an

important design style similar to handshake circuits, but limited to the control part of the

circuits. In 1989, Brunvand introduced his macromodular synthesis system [16, 17],

making use of the channel-based, CSP-like programming language Occam [57, 106] to

describe circuits. Descriptions are automatically synthesised into compositions of control,

variable read/write and datapath macrocells implemented with 2-phase signalling with

bundled data. Following this lead, handshake circuits were introduced by Van Berkel for

use in the Tangram tool developed inside Philips [11]. The same scheme was later used

with Balsa, developed at the University of Manchester by Bardsley [4].

Handshake circuits are macromodular circuits made of handshake components connected

together via point-to-point asynchronous communication channels. Unlike

micropipelines, which are only implementing control components, handshake circuits are

composed of both control and data handshake components. In Balsa, these handshake

2.3 Balsa

Chapter 2: Background 32

components are chosen from a cell library of about 45 predefined components

parameterisable to a limited degree. Handshake circuits and components are described in

the next section with the Balsa framework, and used extensively throughout this thesis.

2.3 Balsa

Balsa refers to both a framework for synthesising asynchronous circuits and the language

for describing such circuits.

The Balsa system uses the handshake circuits macromodule-based design paradigm as an

intermediate representation for synthesising Balsa designs. Handshake circuits are

compiled from specifications in the Balsa language by a syntax-directed compilation

scheme. The advantage of this approach is that of a transparent compilation: There is a

one-to-one mapping between the language constructs in the specification and the

handshake circuits that are produced. It is relatively easy for an experienced user to

deduce the arrangement of the circuit that results from the original description. Moreover,

incremental changes made at the language level result in predictable changes at the circuit

implementation level. This is important if optimisations and design trade-offs are to be

made easily at the source level and contrasts with, for example, a VHDL description in

which small changes in the specification may make radical alterations to the resulting

circuit.

The description of Balsa presented in this section is intended to set the context for the

handshake circuit simulation-visualisation-debugging system developed in the rest of the

thesis. For this reason, this description is mainly focused on the handshake circuits, which

are currently used as an intermediate format in the Balsa synthesis flow. This section starts

with an overview of the complete Balsa framework and design flow, followed by a

presentation of the main characteristics of the Balsa language. Handshake circuits are then

described. The set of macromodules (the handshake components) specific to Balsa, very

useful for a deeper understanding of the contents of this thesis, is described in detail in

Appendix B.

For further information on the other aspects of Balsa, a complete explanation of Balsa

synthesis, including the compilation from specification to handshake circuit and the

2.3 Balsa

Chapter 2: Background 33

transformation from handshake circuit to hardware, can be found in [4, 5]. A more

complete description of the Balsa language can be found in the Balsa User Manual [32].

2.3.1 Balsa Framework

The Balsa framework is a set of tools designed for the synthesis of a Balsa language

description into an asynchronous hardware circuit, with an intermediate representation

using handshake circuits. As shown in Figure 2.6, the Balsa description is first compiled

into a handshake circuit by the Balsa compiler ‘balsa-c’. This handshake circuit can then

be transformed into a gate-level netlist by the ‘balsa-netlist’ tool. The same handshake

circuit can also be used as a source for the ‘breeze2ps’ and ‘breeze-cost’ tools, and for the

simulation system. The two tools generate a PostScript file of the handshake circuit graph

and an area cost estimate of the circuit respectively, which can be seen as a static analysis

of the handshake circuit.

Three design loops are shown in the design flow. These design loops use behavioural, gate

level (functional) and final layout (timing accurate) simulation tools respectively to allow

simulation to be performed at different points in the design flow. In a typical design, all

three levels of simulation complexity are used as the design approaches its final version.

2.3.2 Balsa Language

The Balsa language was created as a source language for compiling handshake circuits,

with the ambition of satisfying the directness property. Directness is the ability to map

constructs of the input description to modules of the hardware implementation on a one-

to-one basis. It allows the user to deduce the arrangement of the final circuit at the time

of writing the original source description.

The Balsa language (following the Tangram model [9]) was designed as an imperative,

channel-oriented language based on CSP (i.e. with parallel composition and channels). Its

transparent syntax-directed compilation to handshake circuits satisfies directness.

Directness is preserved at every step of the synthesis process, so that the final hardware

circuit has a one-to-one mapping with the original description’s structure. In the Balsa

synthesis flow, the compilation process consists of two stages: A Balsa specification is

2.3 Balsa

Chapter 2: Background 34

compiled into a handshake circuit, which is then transformed into an asynchronous

hardware circuit. This second stage of the synthesis, as described in [4], is direct, as each

macromodule making the handshake circuit is mapped to a specific piece of hardware.

The only threat to directness happens during optimisation of the resulting circuit, but the

Balsa tools also try to preserve directness for this operation by only using keyhole

optimisations [29].

Figure 2.6: Balsa design flow

re
us

e

sy
nt

he
si

s

Design refinement

Commercial Si
or FPGA P&R

Object / File Object / File
‘Balsa tool’ / Automated process

Manual process

Balsa description

Handshake circuit

Gate−level netlist

‘balsa−c’

Gate−level sim.

Layout / bitstream
Layout sim.

‘balsa−netlist’
Simulation
results

Behavioural

Functional

Timing

Key:

Balsa behavioural
simulation system

‘breeze2ps’
‘breeze−cost’

Breeze netlist

2.3 Balsa

Chapter 2: Background 35

The modulo-10 counter example shown in Figure 2.7 illustrates most of the Balsa features

embedded in the language:

1. Pre-compiled module inclusion. In this case [balsa.types.basic] defines some

common types: byte, nibble, etc.

2. Type and constant declarations.

3. Procedure declaration with sync and output ports.

4. Local variables/latches.

5. Infinite repetition with loop ... end. Once activated a loop never terminates.

6. Passive input enclosure using select. The commands inside the select are enclosed

in the handshake on aclk, aclk is effectively the activation for these commands.

7. if ... then ... else ... end statements.

8. Assignment, expressions and type casting.

9. Sequential composition with ‘;’. In the same manner, ‘||’ specifies parallel composition

import [balsa.types.basic] -- 1

type C_size is nibble -- 2

constant max_count = 9

procedure mod10 (sync aclk; output count: C_size) is -- 3

local -- 4

variable count_reg : C_size

variable tmp : C_size

begin

loop -- 5

select aclk then -- 6

if count_reg /= max_count then -- 7

tmp := (count_reg + 1 as C_size) -- 8

else

tmp := 0

end ; -- 9

count <- count_reg ; -- 10

count_reg := tmp

end

end

end

Figure 2.7: Balsa language features (modulo-10 counter example)

2.3 Balsa

Chapter 2: Background 36

at a very fine-grained level.

10. Output synchronising communication. The notation for input communications is the

other way around: channel -> variable.

A few other important features of Balsa not illustrated in this example are:

• Structural iterations: for loop constructs can be used for repeating a block’s

implementation.

• Parameterised procedures: Procedures can be declared with parameters evaluated

during compilation.

• Conditional ports and declarations: Instantiation of procedure ports and

declarations can depend on parameters evaluated during compilation.

• Recursive procedures: Recursive calls to parameterised procedures can be used to

describe scalable circuits.

• Shared procedures: Procedures can be declared to be implemented as a unique

circuit and be treated as a resource shared by callers.

• Nested procedures: Local procedures can be declared inside procedures.

2.3.3 Breeze Handshake Circuit

One of the major contributions of the Tangram project (which Balsa originates from) was

the development of handshake circuits, an intermediate representation which both:

• abstracts low-level technology-specific details, and

• supports an elegant translation to asynchronous hardware.

A handshake circuit is built by composing a set of primitive handshake components to

form a graph. Handshake circuits combine macromodular design style with delay-

insensitive communications to produce a design methodology in which entire designs are

described using macromodules connected together by asynchronous communication

channels. Each handshake circuit instance is taken from a macromodule library cell and

may be parameterised to a limited degree. There are only a small number of such cells

defined in a particular handshake component set.

2.3 Balsa

Chapter 2: Background 37

Balsa is made of a similar set of handshake components to Tangram. Balsa’s handshake

components are called Breeze components, and circuits made of these components are

referred to as Breeze handshake circuits.

A handshake component is the abstraction of an electronic circuit able to perform a

specific computation. Depending on the level of abstraction desired, the component’s

internals can either be shadowed as in a black box or revealed to the user. In this work,

the handshake components’ internals are hidden from the outside world, and only the

behavioural and timing characteristics are exposed.

Important note: See Appendix B for handshake component descriptions.

Handshake Circuit Graph

Figure 2.8 shows (in black) the graph of a simple Breeze handshake circuit composed of

handshake components linked by channels. This handshake circuit was obtained by

compilation of the “modulo-10 counter” example shown in Figure 2.7. Some of the Balsa

features enumerated in the previous section (the red numbers match the numbered

comments in Figure 2.7) and illustrated at the language level are highlighted here on the

graph of the handshake circuit (in red). This illustrates the directness of the compilation.

Figure 2.8: Breeze handshake circuit graph (modulo-10 counter example)

activate

aclk

count

@

"0;1"

1
0

1

0
4

x /= 9
4 count

_reg

→

→ →

→

→

4

4

44

x + 1

14

DW ;

*

44

tmp|
4

4

105

3
2

6 9

7

8

2.3 Balsa

Chapter 2: Background 38

The circuit is first activated by a request signal on the activate channel (implicitely

declared in every Balsa procedure), at the top left of the figure. This signal activates the

Loop component, whose abbreviation on the graph is ‘#’ (see the list of abbreviations at

the end of Appendix B) and whose behaviour is to endlessly activate the next component

it is connected to. Notice that this behaviour corresponds to the loop construct in the

original source program. The next component is a DecisionWait, which corresponds to

the next line in the Balsa source code: waiting for aclk before continuing. The rest of the

circuit continues in the same obvious translation scheme with a Sequence component and

others.

Each handshake component has one or more ports through which it can be connected

point-to-point to a port of another handshake component by a channel. Channels are

following the specification given in §2.1, with requests flowing from the active

component ports (filled circles) towards passive component ports (empty circles).

Acknowledgements flow in the opposite direction to requests in the usual fashion. Where

a channel carries data, the direction of that data is indicated by an arrow on that channel’s

arc. The direction of data may be different from the direction of signalling to support push

and pull ports and channels. The data width in bits is reported on top of the channel’s arc.

Breeze Netlist

Figure 2.9 shows the Breeze netlist description of the handshake circuit presented in

Figure 2.8. It starts with some comments, followed by global declarations for import paths

and type declarations, similar to the ones declared in the original Balsa description. Each

procedure of the Balsa source code is then described in the Breeze netlist as a part with

ports, attributes, and two lists of handshake channels and handshake components. In this

figure, the lists of channels and components have been truncated to show only the

description of the first four components of the circuit (from the top of Figure 2.8).

References to positions in the original Balsa file are available for each channel, and each

component is described with a list of the channels it is connected to.

This description of the Breeze format corresponds to what it was before this work. It has

since been extended, as described later in the thesis.

2.3 Balsa

Chapter 2: Background 39

;;; Breeze intermediate file (list format)
;;; Created: Wed Aug 18 18:52:40 2004
;;; By: janinl@jabez.cs.man.ac.uk (Linux)
;;; With balsa-c version: 3.4
;;; Command: balsa-c -b -I . mod10

;;; Imports
(import "balsa.types.builtin")
(import "balsa.types.synthesis")
(import "balsa.types.basic")
;;; Types
(type "C_size" (numeric-type #f 4))
;;; Constants
(constant "max_count" 9 (numeric-type #f 4))

;;; Parts
(breeze-part "mod10"

(ports
(sync-port "activate" passive (at 6 1 "mod10.balsa" 0))
(sync-port "aclk" passive (at 6 18 "mod10.balsa" 0))
(port "count" active output (numeric-type #f 4) (at 6 41

"mod10.balsa" 0))
)
(attributes

(is-procedure)
(is-permanent)
(at 6 1 "mod10.balsa" 0)

)
(channels

(sync (at 11 2 "mod10.balsa")) ; 1
(sync (at 12 10 "mod10.balsa") (name "aclk")) ; 2
(push 4 (at 18 4 "mod10.balsa") (name "count")) ; 3
(sync (at 19 14 "mod10.balsa")) ; 4
(sync (at 18 10 "mod10.balsa")) ; 5
(sync (at 13 4 "mod10.balsa")) ; 6
(sync (at 17 8 "mod10.balsa")) ; 7
(sync (at 12 3 "mod10.balsa")) ; 8
(pull 4 (at 18 13 "mod10.balsa") (name "count_reg")) ; 9
;;; ... omitting some channel declarations

)
(components

(component "$BrzLoop" () (1 8))
(component "$BrzDecisionWait" (1) (8 (2) (7)))
(component "$BrzSequence" (3) (7 (6 5 4)))
(component "$BrzFetch" (4) (5 9 3))
;;; ... omitting some component declarations

)
)

Figure 2.9: Breeze handshake circuit netlist (modulo-10 counter example)

2.4 Network Graphs

Chapter 2: Background 40

2.4 Network Graphs

Handshake circuits are represented using network graphs. A network graph, as shown in

Figure 2.10, is a collection of points, called vertices, and a collection of arcs, called edges,

connecting these points. Network graphs are usually simply called networks or graphs.

The latter designation is used in this thesis.

Graphs can be extended to control and data flow graphs (CDFG) in order to represent and

manipulate handshake circuits. In the CDFG model, edges are able to convey control

events and data values. Vertices are representing processes able to respond to these events

and manipulate the data values.

Petri nets

Another graph-based model able to describe asynchronous circuits is Petri nets (see

§2.2.1). Although this model is only used to describe small circuits, its graph-based

representation makes it a good candidate for being compared to handshake circuit graphs,

particularly in the next section where related work is explored.

Some extensions to the original model of Petri nets have been developed: The notion of

delays in components can be modelled with timed Petri nets. Coloured Petri nets can be

used to associate complex data structures to the communications [62]. Finally,

Hierarchical Petri nets can model hierarchical systems. Although these extended models

are not used for asynchronous circuit synthesis, their simulation and visualisation have

some similarities with this work.

Figure 2.10: Network graph

Chapter 3: Related Work 41

Chapter 3: Related Work

This chapter reviews the research studies related to the one described in this thesis. This

related work is partitioned into the aspects of handshake circuit simulation, debugging of

asynchronous-specific problems and visualisation oriented towards program

comprehension.

Handshake circuits themselves are very rarely used in the literature. It is therefore rare to

find simulation, debugging and visualisation systems precisely devoted to them. That is

one of the novelties of this thesis. However, the notion of handshake circuits can be

extended to their origins – the CSP style of description – or to equivalent structures such

as control and data flow graphs and hierarchical, timed, and coloured Petri nets. They can

be further extended to other VLSI description systems and their associated hardware

description languages.

3.1 Handshake Circuit Simulation

The simulation of a handshake circuit generated from a Balsa description happens at the

behavioural level. Other HDL simulators can simulate both behavioural and structural

code in VHDL and Verilog [19, 55, 70, 72], and the synthesisable subsets of these

languages (or the whole language in the case of Balsa) can be implemented into detailed

(lower-level) transistor-level and gate-level structures. These can be simulated by

appropriate simulators [71, 90]. The lower the description level, the more precise and

slow the simulation. The lower level simulators are therefore designed for different

purposes than high level simulators. Then it does not make sense to compare a handshake

circuit simulation to a transistor-level simulation. However, VHDL and Verilog

simulations are processed at a close enough level to that of a handshake circuit to be

comparable. This is particularly true for interpreted Verilog simulations. Meyer and

3.1 Handshake Circuit Simulation

Chapter 3: Related Work 42

Vanvick, authors of the Cver Verilog simulator [72], explain that, originally, intermediate

interpreted forms were so close to source that Verilog constructs could be reconstructed

and printed from the interpreted data structure. This process has some similarities with the

one-to-one syntax-directed translation of the Balsa programs into handshake circuits.

However, the structure generated from Verilog requires a complex interpretation, while

handshake circuits benefit from their very simple graph structure.

Other description methods have been created to describe systems at a higher level. A very

interesting example is ARCS, an architectural level communication driven simulator

designed by Nellans et al. [76]. ARCS is based on a CSP style of description and is used

to describe systems at a high level by using the abstraction of communication as the

fundamental unit of simulation. Because communication is essentially asynchronous at

the architectural level, the simulator’s architecture is almost identical to the one described

in this thesis. Indeed, the components described as parts of the system are independent

from each other, running concurrently, and are connected together by point-to-point CSP-

style communication channels, providing local synchronisation. As in Balsa, the timing

model is decoupled from the functional aspect and is made of simple delays associated to

each component, independently of the complexity of the data being processed. A few

differences are however distinguishable. First, although the scheduler seems to rely on a

delay-insensitive behaviour of the system, it is unclear from the paper how ARCS handles

the arbitration problem (as described in §2.1.4). Then, each component is modelled as a

Java thread, implemented as a native Linux process. This transfers the scheduling process

to the operating system’s own scheduler. This is an advantage on multi-processor

computers, where a single simulation can be automatically distributed between processors

and properly load-balanced. However, this technique may create a very high number of

processes, which would be a performance bottleneck in a non-distributed environment.

This restricts scalability and performance, which are the main objectives of the Balsa

simulator’s scheduler described in this thesis.

Petri net (PN) simulators are comparable to handshake circuit (HSC) simulators due to

their similar graph structure. PN and HSC simulators are similar in the way they handle

control flows: Tokens are transmitted from places to transitions in the same way as events

are transmitted between handshake components. However, HSCs can associate complex

3.2 Debugging Asynchronous-Specific Problems

Chapter 3: Related Work 43

data structures to events and can model delays. This is also feasible by using coloured and

timed PN. A coloured PN simulator was originally described by Jensen [62], and recently

optimised by Haagh and Hansen to handle larger descriptions [49]. However, coloured

tokens require some more complex communication strategies such as binding and priority

queues [49] at the simulator level, which are not necessary in the context of HSCs. Event-

driven simulators of timed PN models have been written [118], equivalent to the standard

version of the HSC simulator described in this thesis. Although distributed versions of the

timed PN simulator have been designed [39], no optimisation of the single-threaded

event-driven simulator, equivalent to the optimisations described in this thesis, have been

suggested.

The closest research to this thesis work has been described ten years ago by Sutherland in

[104] as Flashback Simulation. His description was dealing with micropipeline

components, limited to the control part of the circuit. He also described an interesting

analysis for reordering the arbitration inconsistencies. This thesis follows the same ideas

and tries to extend them to handshake circuits and to other reordering methods.

3.2 Debugging Asynchronous-Specific Problems

Debugging problems such as deadlocks and non-determinism are often addressed by

formal verification tools. In this domain, Petri net analysis methods and tools are well

established. Verification tools can check for deadlock freeness and locate specific

deadlock states [86]. However, these tools offer limited help to remove the detected

deadlocks. This is explained by the fact that deadlocks are often easy to understand when

they occur in small circuits: The simulation stops and it is then possible to observe where

each thread was interrupted. However, this is not as easy in larger environments involving

many threads.

Formal analysis methods on Petri nets also handle non-determinism. Small Petri nets can

be analysed through their reachability graph, which contains a node for each possible

state and an arc for each possible state transition. This technique is a very powerful

analysis method, as it covers all the possible states. However, the reachability graph may,

even for small sets, become very large. This is therefore not applicable in the case of large

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 44

circuits. Another technique, branching processes, analyses Petri net unfoldings, where it

is easy to see non-determinism in larger circuits [67].

Non-determinism is also studied for detecting race conditions during the execution or

simulation of distributed applications. An application tracing multiple execution paths in

the case of non-deterministic behaviour, in order to detect race conditions, is described by

Kamada [63]. It applies to fine-grain threads on massively parallel processors, and the

debugging scheme used by this application is based on a replay facility requiring a limited

amount of log information. Neri et al. describe a similar technique for ADA-based

programs [77] for debugging distributed applications by using replay capabilities.

Although not employed directly for every type of analysis, other techniques for reducing

the amount of traced data have been studied [1, 81, 108]. These trace compression

techniques rely on pattern analysis for clustering repeated patterns. In this thesis, a

straightforward technique for pattern analysis of the traced data is presented, with similar

applications.

3.3 Visualisation Oriented Towards Program
Comprehension

A variety of techniques have been suggested to assist programmers in the difficult task of

program comprehension. One of these techniques, reverse engineering, is the process of

extracting and synthesising high-level design information from a specific source (source

code, compiled program, bytecode, etc.). A reverse engineer analyses the source in order

to identify system components and their inter-relationships, and creates representations of

the system in another form, usually at a higher level of abstraction [23]. Tilley et al.

identified three basic sets of activities that are characteristic of the reverse engineering

process [107]:

• Data gathering through static analysis of the source code or through dynamic

analysis of the executing program.

• Knowledge organisation by organising the raw data by creating abstractions for

efficient storage and retrieval.

• Information exploration through navigation, analysis and presentation.

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 45

According to Tilley, the exploration of software information “holds the key to program

understanding”. For this reason, most of the literature found about program

comprehension is focused on this last point, starting from pre-formatted information and

developing methods to visualise it effectively. Fewer studies explain the process of

gathering and formatting the data.

In this thesis, all three steps of the reverse engineering process are treated. Program

comprehension is based on the analysis of three sources of information:

• the source code needing to be reverse engineered,

• the code compiled into a meaningful electronic circuit, and

• the dynamic information contained in the simulation trace.

This information is collected and merged to be visualised as a coherent whole in the form

of a graph.

The static visualisation process is not treated in this thesis, since significant research has

already been done on this subject [8, 40, 50, 102]. We decided to leave this point as a

further work and use a simple layout method already implemented [44].

After the process of knowledge organisation from multiple sources, two techniques are

used to represent the data effectively. First, dynamic visualisation of the execution (or

simulation) of the circuit is applied atop the static graph. Then, a multiple view technique

where views can communicate makes it possible to display various aspects of program

execution simultaneously.

3.3.1 Knowledge Organisation by Merging Multiple Sources

A limited number of studies describe the process they employ for gathering and merging

multiple sources of information for subsequent visualisation.

The most complete studies about data analysis and merging from multiple sources are

those from feature analysis. Eisenbarth et al. [33] define a feature as a realised functional

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 46

requirement. In order to provide an understanding of how a feature is implemented in a

system, they build a mapping between the system’s externally visible behaviour and the

relevant parts of the source code by combining dynamic and static analyses. In another

study [22], conservative static analysis would yield an overestimated search space. By

adding a dynamic analysis of the execution trace of the system, Chen et al. reduce this

search space by considering only parts really used at runtime – though only for a particular

run. Multiple dynamic analyses are used by Wilde and Scully [113] for another method

of feature localisation, by comparing dynamic analyses of test cases which invoke the

feature to test cases which do not. Although very interesting for data organisation, these

techniques have not been applied to visualisation.

Although less complete than the previously reviewed studies for feature analysis, research

on data gathering and knowledge organisation for data clustering and multiscale graph

visualisation is even closer to the subject treated here. Clustering is the process of

discovering groupings or classes in data, based on a chosen semantics. Clustering

techniques have been referred to in the literature as cluster analysis, grouping, clumping,

classification, and unsupervised pattern recognition [36, 74]. Two forms of clustering can

be distinguished: structure-based clustering, which refers to clustering that uses only

structural information about the graph, and content-based clustering, which uses the

semantic data associated with the graph elements to perform clustering. An advantage of

structure-based clustering is that clusters retain the structure of the original graph, which

can be useful for user orientation in the graph itself. However, this class of methods often

leads to the clustering of elements poorly related in their properties. Content-based

clustering can yield groupings which are more appropriate for a particular application by

using application-specific data and knowledge [75, 85].

By far the most common clustering approach in graph visualisation is to find clusters that

are disjoint or mutually exclusive, as opposed to clusters that overlap (found by a process

called clumping). Disjoint clusters are simpler to navigate than overlapping clusters

because a visit of the clusters only visits the members once. It should be noted, however,

that it is not always possible to find disjoint clusters, for instance in the case of language-

oriented or semantic topologies [51]. This is one of the strengths of the techniques

presented here using Balsa.

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 47

If clustering is performed by recursively applying the same clustering process to groups

discovered by a previous clustering operation, the process is referred to as hierarchical

clustering [74]. Hierarchical clustering can be used to induce a hierarchy in a graph

structure that might not otherwise have a hierarchical structure. Michaud et al. have

described Shrimp [73], which gathers various information sources together (source code

artifacts and relationships, architectural abstractions, documentation and history

information, metrics and analysis information) and visualise them together. The

difference between their work and the one presented here is that they limit their study to

static information, while dynamic simulation data is also used here to deduce some

clusters. Hierarchical clustering is applied here to the originally flat handshake circuit.

Studies for VLSI design

Storey [100] defines a visualisation as coherent if the maintainer can construct from the

given visualisation a mental model which corresponds to something in the real world. The

advantage of visualising reverse engineered code of a VLSI design is that the code

describes something concrete, the electronic circuit being built. It is then possible to use

this real-world structure as an underlying base, and either transfer this structure onto the

other structures being visualised, or use the other sources of information to reshape (for

example by clustering) the real-world structure. No studies have been found that exploit

this possibility with graphs. The visualisation system described in this thesis exploits this

idea by using the to-be-built handshake circuit structure as the real-world structure onto

which every other source is mapped.

3.3.2 Dynamic Visualisation

The visualisation system presented in this thesis is unique in the sense that it combines

techniques not usually used together: software visualisation (Balsa is similar to classical

high-level programmation languages), animation on top of a network graph (handshake

circuits are network graphs), and VLSI circuit simulation visualisation (handshake

circuits are an intermediate form towards synthesis). These techniques are usually studied

separately. They are reviewed in this section.

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 48

Software Visualisation

There are two categories of dynamic software visualisation techniques: Algorithm

visualisation techniques and program visualisation techniques. Algorithm visualisations

[14, 15, 97] are usually hand-crafted (some instrumentation code needs to be added to the

original description to drive the visualisation) and require the designer to understand the

code before visualising it, making this technique infeasible for large systems or tasks

involving program discovery. For this reason, such instrumented techniques are avoided

in this thesis. Program visualisation techniques can be non-instrumented. In this case, they

require an automated analysis of the program that deduces the elements needing to be

visualised. These techniques may be scalable and used with large concurrent systems to

show their dynamic execution for debugging, profiling and for understanding runtime

behaviour. Systems classified in this category usually display program control and/or data

structures as figures in order to facilitate the understanding of control flows and changes

in data values. Sometimes, visualisation is restricted to communications between threads.

Several program visualisation techniques have been studied that are not scalable due to

the way they represent elements [65, 97]. The recurring problem is that each item

(process, communication link) takes a fixed amount of space on the screen, and that no

clustering method is used to group these items together and visualise the system at a

higher level. Other scalable visualisation systems are based on graphs, for which many

techniques of clustering and hierarchical visualisation are available.

Visualisation of dynamic information atop a static graph

Dynamic representation of information on graphs is treated in this section. Some dynamic

information explorers are based on dynamic changes of the graph structure, visualised by

animating the transition from one layout to the next [53]. Some others – that we are

interested in – keep the same graph structure and animate the change of state of elements

in the graph. In this case, the computational-intensive layout stage is needed only once.

The preferred method is to represent states of the graph elements with different colours

[12], but other characteristics of the graph’s edges and vertices can also be used to

represent states: thickness of the lines, transparency, symbols, sizes (up to a certain extent,

in order to keep the same graph layout). Colour-coding can be used to represent clusters

either at a static level [2, 18] or for displaying how data evolves in time [78].

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 49

Basic understanding of a program’s execution goes through the control flow of the

program. That’s how people first learn how to program. However, object-oriented and

parallel designs make control flow less obvious and more complex than in sequential

programs. De Pauw et al. [81] tackle this problem by suggesting a method for visualising

the execution patterns of object-oriented programs with time as an x-axis. However, using

the x-axis on a two-dimensional visualisation medium (computer screen) leaves only one

dimension for organising the program elements, leading to some related elements being

shown far from each other. Another method is to use a static graph layout to organise the

program elements in two dimensions, and show the state of these elements at a specified,

modifiable, instant of time [64]. Kraemer explains: “Animated displays are useful for

conveying information regarding concurrency. They employ the very natural mapping of

time to time, rather than the less natural time to space mapping. Events that were

concurrent in the program can be shown as concurrent in the display”. In this thesis,

dynamic information issued from the simulation trace is visualised atop a static graph by

using a colour-based animation to represent events. The visualisation of the control flows

atop the static graph is intended to render efficiently the fine-grained concurrency

happening in the visualised handshake circuit.

Visualisation of asynchronous circuit activity

The first attempt of visualisation of asynchronous circuit activity for Balsa was

implemented on top of LARD (Language for Asynchronous Research and Development)

[34], the language previously used in the simulation route of Balsa. It was possible to draw

asynchronous blocks on a graphical view and change their colours when they are

activated. However, this required some instrumentation code added to the original

description, and it only worked for a very small number of visualised elements.

The most interesting projects are again concerning Petri nets. The MOVIE project [67],

developed at the University of Newcastle, was aimed at improving visualisation support

within the logic synthesis environment based on Petri nets and Signal Transition Graphs

(STGs). This project investigated the development of techniques and tools which could

expose the highly concurrent behavioural patterns to the designer but in such a way that

he would be able to easily grasp the characteristic patterns of circuit behaviour and

manipulate the model more interactively. This required better ways of visualisation of

3.3 Visualisation Oriented Towards Program Comprehension

Chapter 3: Related Work 50

STGs, Petri nets, and others types of graphs. Their first objective was aimed at identifying

a key set of models, based on graphs, to represent the concurrent behaviour in circuits.

State graphs were chosen for this purpose. However, while state-based models play an

important role in logic synthesis of circuits in tools like Petrify, their ability to visualise

asynchronous circuit behaviour is limited, mainly due to the state explosion for highly

concurrent models.

Visual STG Lab [112], a visual environment for use with Petrify, is intended to improve

the overall design flow for people who work with signal transition graphs. VSTGL is a

graphical interface for designing and simulating signal transition graphs able to simulate

the network by running Petrify directly on the graph and dynamically visualising the

simulation events.

Another visualisation project, very similar to the graph-based visualisation of this thesis,

is Rainbow [7]. Rainbow is a prototype hardware design framework based on

Sutherland’s micropipeline design style. Rainbow’s Green tool is based on hierarchical

structural descriptions using the micropipeline primitives and using a dataflow

description style. It has schematic and textual versions, and the schematic version can be

animated to follow the control and data flows inside the circuit.

The drawback of all these visualisation systems is that they are only usable to represent

small asynchronous circuits.

3.3.3 Information Exploration with Coordinated Views

In VLSI design, designers are used to working with raw data: source files opened in a

standard editor, execution results displayed as wave forms, etc. In the literature, some

design environments are built to help designers by keeping these views they are used to

and by gathering them together with, possibly, some extra functionalities.

Favre [37] describes such a collection of views representing the same information in

different manners. In this application, a component-based software is represented by three

techniques: First, by representing the network graph of its components. Then, by

displaying a list structure containing the object-oriented hierarchical structure. And

3.4 Unified IDE for Large Scale Asynchronous Circuits

Chapter 3: Related Work 51

finally, by showing the source code. Other views are also available to display either the

internal representation or the external representation of a selected component. The

drawback of this study is the lack of communication between views, restricted to the

selection of a component.

When dynamic information is visualised and various views are representing the

program’s state for a given timestep, these views need to be synchronised to represent the

same timestep. The Vista architecture [110] is an example of such an organisation where

every view is connected to, and controlled by, a server process (called Visualization

Manager). In this architecture however, views do not send any feedback to the

visualization manager. They therefore do not communicate with each other either.

Software debuggers like DDD [117] or VIPS [92] follow the same idea of sharing the time

variable between views: The source code view indicates the currently executed line, while

another view can show the current value of some data. But DDD goes further by adding

some real communication between views: From the source code view, one can select a

variable and choose to add it in the other view for tracing. The other way around, other

views such as the stack view and the thread view can send some feedback and cause

changes in the source code view.

The best reference about collaborating views is Shrimp [73], presenting some real

similarities with this thesis’s work. Four sources of information are collected and

represented in multiple views, some of them being network graphs representing the

structure of the system. They implement a technique called control integration, which

implies the ability for one tool to control another tool, either by directly activating a

functionality or by event notification. The difference with this work is that Shrimp is

targeted at exploring static information. The execution of the visualised Java program is

not represented.

3.4 Unified IDE for Large Scale Asynchronous Circuits

A list of tools for asynchronous design was compiled by Edwards and Toms for the ACiD

Working Group [30]. Among twenty-nine reported tools oriented towards circuit

3.5 Summary

Chapter 3: Related Work 52

synthesis, only two of them have a graphical interface: the Balsa framework and Visual

STG Lab [112].

Visual STG Lab has already been described in this chapter. It is a visual environment for

design with Petri nets. However, as for all the Petri net applications, it is really applicable

only to small to medium asynchronous circuit design.

It is possible to use any of the twenty nine asynchronous synthesis tools (although only a

few of them are applicable to large designs) to generate gate-level or Verilog netlists.

These netlists can then be used in traditional synchronous CAD tools to simulate and

analyse the asynchronous circuit. However, these tools are not designed to debug

asynchronous-specific problems, and more importantly, when a misbehaviour is detected

at these levels, it is very difficult to trace it back to the original description. Even with

Balsa, which has a direct-mapped syntax-directed compilation scheme, it is not

completely obvious how to link synthesised Verilog netlist elements to Balsa constructs.

3.5 Summary

This chapter has described related work in the areas of handshake circuit simulation,

asynchronous-specific problems debugging and visualisation for program

comprehension. It has positioned this thesis in these contexts.

Chapter 4: Theory of Handshake Circuit Debugging 53

Chapter 4: Theory of Handshake
Circuit Debugging

This chapter reviews the difficulties that can appear during the design of an asynchronous

circuit with Balsa, the ways in which they arise and how they can be handled in a

handshake circuit-oriented design environment.

A model of asynchronous handshake circuits is first introduced to describe the different

situations and algorithms encountered throughout the thesis. Two sections then describe

approaches for treating the problems of deadlocks, non-determinism and metastability,

recurrent in asynchronous circuits. Some techniques are then presented to structure the

large amount of information contained in the simulation trace by using activity pattern

recognition. Finally, the issue of optimising an asynchronous design through profiling

methods is raised.

4.1 The Handshake Circuit Model

4.1.1 Static Model

Previously, a handshake circuit has been defined as a set of handshake components

connected together by asynchronous communication channels.

Let K be the set of handshake components {k1, k2, ..., kn} and C the set of communication

channels {c1, c2, ..., cm}. Any handshake circuit is uniquely identified by a pair (K, C) of

handshake components and communication channels.

The relationship between handshake circuits and graphs is immediate: The handshake

circuit (K, C) can be associated with the graph G = (K, C) where K and C are respectively

4.1 The Handshake Circuit Model

Chapter 4: Theory of Handshake Circuit Debugging 54

the graph’s vertices and edges. Graph properties can therefore be applied easily to

handshake circuits.

4.1.2 Dynamic Model

Activity in a handshake circuit can be modelled as a series of asynchronous events:

changes of state of the communication channels and computations processed by the

handshake components. In the following description, these are referred to as events and

actions respectively.

The exercise of a handshake circuit results in a series of instantaneous events produced by

processes and channels. Each of these events leads to the execution of a piece of program

(usually called callback), referred to as an action. Actions take a certain amount of time

to be carried out before causing new events: As illustrated in Figure 4.1, an event arriving

in a component triggers the execution of an action, which in turn, after predefined delays,

sends new events onto the output channels. When a channel receives an event, the time

taken for the signal to flow across the wire to the next component is modelled as a channel

Figure 4.1: Time model of the execution of a handshake circuit

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

1 2

4

5

3

event

action

action

action

action

Component 1 Channels 2&3

action

t+dt1+dt3+dt5b

t+dt1+dt3+dt5c

t+dt1+dt3+dt5a

t+dt1+dt2

t+dt1+dt3

t+dt1t time

Components 4&5

4.1 The Handshake Circuit Model

Chapter 4: Theory of Handshake Circuit Debugging 55

action taking the corresponding amount of time before generating an event to the

destination component. Channel actions are not used for anything other than delaying the

next event to model the wire’s delay. Events are always instantaneous and generate one

and only one action, whereas actions take some time to be executed and can generate any

number of events (including none). Moreover, channel actions always send a unique event

to the destination component, whereas component actions can generate any number of

events at any time during the execution of the action (see component5’s action in Figure

4.1). The delaying action of the channels can be included inside the components’ actions

for a simplified execution model, as shown in Figure 4.2. The reduced number of events

and callbacks should lead to more efficient implementations and easier debugging, as less

information needs to be analysed.

The timestamp of an event is the sum of the delays in all the actions processed to reach

this event since the beginning of the simulation. A small error in the delays can therefore

make a big difference to the timestamps at the end of the simulation. In the same manner,

during the simulation, as during the execution of the real asynchronous hardware, there is

no clock to keep everything synchronised. This imprecision will be important when the

Figure 4.2: Simplified time model of the execution of a handshake circuit

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

3

1 2

4

5

event
action

action

action

Component 1 Channels 2&3

t+dt1+dt3+dt5b

t+dt1+dt3+dt5c

t+dt1+dt3+dt5a

t time

Components 4&5

t+dt1+dt2

t+dt1+dt3

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 56

problems of non-determinism and metastability are considered. The trace of an execution

(or more likely simulation) of a handshake circuit is defined as being the set of events

associated with their timestamps from the start to the end of the execution.

Finally, in order to comply with Chandy and Misra’s use of processes [20], a process is

defined as the set of actions associated with the receipt of events in a handshake

component. One and only one process is associated with each handshake component.

Chandy’s processes can therefore be seen as being equivalent to the handshake

components in the model discussed previously. On receipt of an event, a process executes

the appropriate action depending on the current state of the process, and updates its state.

A process is said to be stopped if no event has been received (initial state) or all events

have been acknowledged (back to initial state). A process is said to be running if it is

executing an action. A process is said to be waiting if it is not running and is not stopped

(it is then waiting for an event).

4.2 Deadlocks

A set of processes is said to be deadlocked if each process in the set is waiting for an event

that only another process in the set can cause.

The following properties were enunciated by Chandy and Misra as Deadlock conditions

[20]: A set of processes h in a network is said to be (error) deadlocked at some stage of

the computation if and only if

• termination condition: not all the processes in h are stopped and

• executability condition: no process in h is running and

• closure condition: if hi in h is waiting on edge e, and e is incident on hj, then hj is in

h.

In a generic environment (not necessarily asynchronous), where an event is the response

to a process’s request for accessing a critical section or a resource, the conditions for

deadlock are [25]:

• Mutual exclusion: Resources cannot be shared.

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 57

• No preemption: Resources cannot be forcibly taken from processes.

• Hold and wait: Processes request resources incrementally, and hold on to what they

have got.

• Circular wait: Circular chain of waiting, in which each process is waiting for a

resource held by the next process in the chain.

In a handshake circuit environment, the first two conditions for deadlock are always true,

dictated by the structure of the circuit: Handshake components cannot be shared and

cannot be forcibly taken. The other two conditions may happen.

The consequence of any deadlock is the premature end of the circuit execution.

Unfortunately, the end of a circuit execution does not necessarily mean that a deadlock

has occurred. For example, an asynchronous processor executing the Halt instruction [42]

fully stops its execution, yet can still be reactivated at a later time by an external interrupt.

The problem here is to determine whether or not the processor is to be considered fully

stopped: The interrupt may not be received for a very long time, however the circuit is not

really fully stopped as it can resume its execution at the receipt of the interrupt signal. This

kind of false end of the execution will be referred to as a temporary deadlock, and detailed

more extensively later in this section. From this point in the thesis, this false end should

not and will not be considered as a total end in a circuit’s execution.

4.2.1 Handshake Circuit Deadlock Detection

Apart from the false end situation, handshake circuits have only two ways of stopping

their execution: either the acknowledgment of the main control signal or a deadlock. The

former indicates the successful completion of the simulation, and is characterised by the

absence of any pending control signal in the circuit. A real circuit built in hardware and

ending in such a manner would need to be reactivated (reset) before being able to operate

again. The deadlock situation indicates that the activity has been stopped due to a missing

acknowledge/request event. Unfortunately, this does not reveal whether the missing event

is due to a normal or to an erratic behaviour.

Different types of deadlocks can be distinguished, eventually leading to different actions

of the simulator:

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 58

• Valid deadlock. This deadlock arises when a circuit designed to run forever (e.g. a

pipeline circuit) has processed all the available input data. The circuit has correctly

sent a request on its input data port, but never received any answer, leading to the

deadlock situation. This is the normal and only way for the circuit to finish when it

has consumed every test data. The simulator should then stop without indicating an

error.

• Temporary deadlock. Not really a deadlock, this situation arises when the external

environment (test harnesses, or other simulators in the case of a co-simulation) is

taking a very long simulation time to process its data, and thus appears to be dead

from the point of view of the simulator. In this situation, the simulator should wait

until an external event is available. This is not precisely a deadlock, as “temporary”

indicates that the deadlock situation will be solved after an undefined period of

time. This type of deadlock can be avoided if processes are able to indicate a

minimal potential timestamp of their next event, as proposed by Chandy and Misra

[20].

• Error deadlock. This type of deadlock is due to a real error in the high-level

description, and requires the simulator to stop and generate a complete enough

description of the handshake components and channel states for debugging. It

generally occurs before all the test harness data has been consumed, but can also

happen between the moment the last data has been taken and the normal termination

of the simulation.

• Error in co-simulation deadlock. This is a high-level deadlock between two or more

co-simulation systems. The problem is that each simulator has its own local view of

the whole circuit, and thus cannot detect individually such deadlocks. A process

tracking high-level communications is necessary.

The difficulty is to be able to detect the correct type of deadlock in any situation. The

solution proposed here is to specify the expected behaviour of the circuit through its

interface ports, linked to a properly described test harness.

The simplest case is a single simulation without any port other than the activation (reset)

port. In this special situation, a deadlock will be immediately reported as an error

deadlock, as any other type of deadlock requires the presence of other input ports.

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 59

A more interesting and often encountered case is the search for deadlocks through

successive validation tests: The simulation consists of a single process with input ports

linked to fixed-length files and output ports linked to specified-length files (or any other

receiving process providing an immediate acknowledge to any incoming request event, in

order to prevent any temporary deadlock, and which expects a particular, fixed number of

data). In this situation, only the valid and error deadlocks can occur and a quick detection

of an error deadlock can be done by checking for pending inputs or incomplete output

files.

4.2.2 Handshake Circuit Deadlock Analysis

In this section, our interest is focused on error deadlocks that may happen in a handshake

circuit: Which components and channels are involved in the deadlock and what their

states mean for the debugging of the deadlock. The algorithm described here was

originally used for detecting handshake components that were badly implemented in the

simulator. It is now used, unchanged, for tracing deadlocks back to the Balsa description.

In a deadlocked circuit, two sets of involved components and channels can be directly

identified. They are described below and illustrated on an example in Figure 4.3, which

is the representation of a handshake circuit taken from the deadlock resolution example

from the results chapter (Chapter 9).

Figure 4.3: Elements involved in a handshake circuit deadlock

5
4

3

1

2

W.

||

main

posit
ion10
1#1

lazy_guy−2

posit
ion10
1#2

lazy_guy−1

FV

encode

run WriteMessage

String

run WriteMessage

String

FV

;

encode

0

run WriteMessage

String

run WriteMessage

String

;

−>−> −> −>

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 60

The set of deadlocked processes is referring to the set used in the definition of a deadlock.

It is the set of processes such that each process in the set is waiting for an event that only

another process in the set can cause. This set is unique by construction when only one

deadlock is present. In the rare case of more than one deadlock, the union of all the sets

satisfying the definition is itself verifying it and can be used to analyse all the deadlocks

together. In the example shown in Figure 4.3, this set of processes and the channels

linking them together are highlighted in yellow.

Deadlocked channels are those on which a request has been sent by the initiator of the

communication, but has not been processed by the target. They are often the last channels

activated before a simulation stops in a deadlock. They are drawn in red in Figure 4.3.

By starting from one deadlocked channel, four sets of involved components and channels

can be iteratively extracted from the set of deadlocked processes and their channels. The

longer red channel of Figure 4.3 is used in the example as a starting point for the

algorithm.

Figure 4.4 describes the two parts of the deadlock analysis algorithm.

Figure 4.4: Deadlock analysis algorithm

Channel(s) detected in the
last iteration of stage 1deadlocked channel

identify request events to
components able to change

the state of this channel

identify acknowledge events to
components able to change

the state of this channel

end

if any if none

a) Stage 2

identify components involved

if any if none

in last iteration

a) Stage 1

identify channels
carrying these events

identify channels
carrying these events

4.2 Deadlocks

Chapter 4: Theory of Handshake Circuit Debugging 61

The first part of the deadlock analysis algorithm presented here starts from one

deadlocked channel and tries to find its causes. This is a recursive algorithm. It first

identifies which request events would lead to the acknowledgment of the deadlocked

channel. Then, recursively, it identifies which events would lead to the generation of these

required events. The algorithm stops when a detected required event needs to be generated

by a process which is actually waiting for an acknowledge event. In Figure 4.3, the string

of channels corresponding to the required events is drawn in blue.

At the end of this first part of the algorithm, three involved channels or sets thereof

(although in practice each of these sets are often reduced to one element) are detected as

being of most importance, and one involved set of components is used to start the second

part of the algorithm:

• The analysed deadlocked channel itself, which indicates the last action performed

by the handshake circuit (the red channel indicated by a green ‘1’ in Figure 4.3).

• The first channel detected by the algorithm (the first channel of the blue string,

indicated by a green ‘2’ in Figure 4.3), which indicates the closest required action

that has not happened.

• The last channel(s) detected by the algorithm (the blue channel connected to the

blue component, indicated by a green ‘3’ in Figure 4.3), which indicates the earliest

unrealised action(s) that would have been necessary to avoid the deadlock.

• The component(s) supposed to deliver an event onto this last channel(s), but which

was actually busy, waiting for another event (component drawn in blue in the figure,

indicated by a green ‘4’ in Figure 4.3).

The second part of the algorithm is used to determine why this last component was

waiting for another event, and was therefore not in a ready state. For this, the involved

events are again searched recursively, by starting from the event the component was

waiting for and following the path of required events until a deadlocked event is reached.

In the example of Figure 4.3, the deadlocked event is reached at the first iteration of the

algorithm, and corresponds to the red channel connected to the blue component (indicated

by a green ‘5’ in Figure 4.3).

4.3 Non-determinism

Chapter 4: Theory of Handshake Circuit Debugging 62

This last detected channel is believed to indicate the main reason for the deadlock. This

channel and the three other important (sets of) channels detected by the first part of the

algorithm are the most important ones for understanding a deadlock, and are successfully

used in practice. This is illustrated in the results chapter (Chapter 9).

4.3 Non-determinism

A non-deterministic system does not always have a single, uniquely defined next action,

but a choice between several next actions.

An advantage in the analysis and design of a synchronous system is that the state in the

next cycle can be determined entirely from the current state. This may also be true in an

asynchronous system, but the timing freedom means that this is not the only choice of

action. Within a small asynchronous state machine it is possible to achieve the same

behaviour with internal transitions ordered differently (e.g. the inputs to a Muller C-

element can change in any order) and this is also true on a macroscopic level. On the other

hand, because of non-determinism caused by tiny variations and arbitration, repeated

executions of the same asynchronous design for the same inputs may give different

outputs.

In a simulation at the handshake component level, a repeatable behaviour can be enforced

if the following conditions hold:

• Inputs from external environment are the same.

• Initial values for the different components of the system are the same.

• Individual processes are deterministic.

The first two conditions can easily be realised. However, the last one depends on the

structure of the simulation system and is therefore an unavoidable cause of non-

determinism.

In Balsa, the only process which is a source of non-determinism is the handshake

component called Arbiter (the only component which contains a mutex), used to

guarantee the mutual exclusion of two passive input channels’ communications by

4.3 Non-determinism

Chapter 4: Theory of Handshake Circuit Debugging 63

passing a single communication at a time onto one of the two active output channels [4].

Arbiters are explicitly introduced by the Balsa “arbitrate ... end” construct. Designers

always try to minimise the use of arbitration. However, the simulator should be able to

handle the few cases where arbiters are required and non-determinism problems can

occur.

During the execution of the real handshake circuit, non-determinism can also arise due to

some changes in the delays of circuit components and wires (due to thermal effects, cross-

talk between wires, supply voltage noise, process variations, etc.). Correctness in delay-

insensitive circuits is not affected by these changes, and again, with Balsa, the Arbiter is

the only component suffering from its non-DI behaviour. Some other Breeze handshake

components have non-DI internal construction (e.g. the Case component), but the

construction mechanism of the Breeze handshake circuits ensures that all critical inputs

will always arrive one at a time in a correct order.

The simulation of an asynchronous circuit must therefore handle the Arbiter’s non-

determinism in two ways: handle metastability, and handle bounded delays (delays with

allowed small variations).

4.3.1 Metastability

The non-deterministic behaviour of the Arbiter appears when both of its inputs are

activated within a short period of time. When this happens, signals in the Arbiter’s circuit

hover for an unbounded period of time before reaching a stable state. This is metastability

(see §2.1.4).

When metastability is encountered, the delay and the final output choice of the Arbiter are

undefined. However, the simulator has to choose a subsequent set of actions. A random

behaviour, or different deterministic behaviours can be used: always choosing the first

input, or always the second one; starting with the first input and switching; choosing the

same input as the one received last, or alternating; etc.

4.3 Non-determinism

Chapter 4: Theory of Handshake Circuit Debugging 64

Although less important, a delay also has to be chosen. It should be greater or equal to the

normal arbiter delay, but does not influence much the final result. A delay including error

can be used, as developed in the next section.

4.3.2 Modelling Delays With Errors

Timing estimations of the simulation at the handshake circuit level are quite poor and far

from what happens in the real circuit. Two requests arriving at the same time in an Arbiter

during the handshake circuit simulation – leading to a non-deterministic behaviour – may

have arrived quietly one after the other on the real hardware. In the same way, but even

more problematic, two requests arriving at the same time on the real hardware circuit

could arrive at different times in the simulator, avoiding the important detection of the

non-deterministic situation.

In order to detect such cases, two solutions can be used. The first one is to work with time

windows: When a communication is received on one of its inputs, the Arbiter component

waits for a possible request on its other input during a specified amount of time before

being able to decide if its behaviour should be deterministic (one request received during

the lapse of time) or non-deterministic (two received requests). The choice of delay is

critical: Too short a delay would miss the detection of some non-deterministic situations,

whereas too long a delay would lead to false detections of non-deterministic situations.

The second solution consists of modelling delay errors: Actions’ delays may be modelled

as . Of course, the same problem as before happens again: Too small delay

errors would miss the detection of some non-deterministic situations, whereas too large

errors would lead to false detections of non-deterministic situations.

4.3.3 Exhaustive Simulation

When a non-deterministic situation occurs during the execution of a circuit, one next

action is randomly chosen amongst two possible actions. It is impossible for a simulator

to know the issue of the choice in the real circuit execution.

One way to mitigate this is to allow the user to choose the desired behaviour: The current

implementation of the simulator makes a default choice, and eventually a checkpointing

delay error±

4.4 Activity Pattern Analysis

Chapter 4: Theory of Handshake Circuit Debugging 65

system allows the designer to rewind a simulation to the non-deterministic points and

manually define the desired behaviour before restarting the simulation at this point.

However, the only way to fully solve the problem is for the simulator to simulate every

possible action: The solution is to create two branches of the simulation every time a non-

deterministic situation occurs (Breeze arbiter components only have two inputs). This

method requires a way to avoid the creation of 2n simulation branches, which can be done

by exploiting the fact that, most of the time, two branches differ only during a certain

amount of time before merging back to an identical state. This requires a way of analysing

different branches fairly quickly in order to join them back when their execution becomes

identical. These short local variations in behaviour with flows merging back into a

common behaviour are very hard to spot. This last idea has not been implemented,

although it would be a way to reflect every possible behaviour of the VLSI circuit.

4.4 Activity Pattern Analysis

Activity pattern analysis is employed here as a technique for structuring the large amount

of information contained in the simulation of handshake circuits. This clustering

technique is mostly based on simulation trace information. This research is intended to

meet our needs for basic debugging of large designs.

4.4.1 Visual Analysis

The idea is to display the information in such a manner that patterns can be visually

detected. The simulation trace is used as a source of information to display the space and

time dimensions of the channels’ activity information in a single view: time on the x-axis

and space on the y-axis, as illustrated in the lower view (Timeline behaviour view) of

Figure 7.7, page 112. The challenge is to fit the information in the view in such a manner

that specific patterns are made visible. For example, repeating patterns are hoped to be

visually detected easily on this view.

Patterns may include a large number of channels (in the space dimension) and long

intervals (in the time dimension). It is therefore necessary to fit in this view as much

information as possible on each axis. Time is a continuous value, and thus can be zoomed

4.4 Activity Pattern Analysis

Chapter 4: Theory of Handshake Circuit Debugging 66

in or out easily. This is not the case with handshake channels, which are discrete

components. However, zoom in and out actions can find their equivalence with the

various methods of groupings discussed later in §7.1.

After experimentation, it was felt that in order to visualise patterns, the space axis must

be entirely visible at any time (no scrolling must be required to view some channels). The

very efficient method of grouping channels by procedure is a good way to obtain a small

number of groups on the space axis. This method allows every channel to fit together in

the same view. The time axis does not need to be entirely visible at all time as it is more

dependent on the length of the visualised pattern.

4.4.2 Automated Analysis

A feasible automated analysis concerns the detection of debugging templates, situations

that the debugger recognises and can help solve more or less automatically.

A single template is analysed here: the repetition of identical patterns in the simulation

trace file. No debugging action other than reporting the results of the analysis is

envisaged. However, Erbacher shows in [35, §3.1.2] that the same kind of repeating

pattern analysis can lead to other interesting applications:

“Thistlewaite and Johnson [108] describe an environment that attempts to

reduce the number of primitive events in a trace file by deducing compound

events, representing higher level concepts, from the trace file. The

environment also recognizes adjacent repetitions of the same compound

event. This environment greatly reduces the complexity of trace files but is

limited in that it may remove details of importance.”

The automated detection of repetitions of activity patterns can easily be used to report

useful information about livelocks: which activity pattern is repeated and where and when

it started. A simple algorithm can be employed: Starting from the end of the simulation

trace, looking for corresponding repetitions of the channel activity at regular interval of

times in direction of the start of the simulation trace. “Livelock Handling” on page 134

illustrates this result.

4.5 Circuit Optimisation – Profiling

Chapter 4: Theory of Handshake Circuit Debugging 67

The detection of repeating patterns can also be used to compress the simulation trace, as

will be developed later in this thesis.

4.5 Circuit Optimisation – Profiling

At some point in the design process, the circuit is working – i.e. it exhibits the correct

functionality – but a faster and lower energy consuming system would obviously be

welcome. It is time to look for performance bottlenecks and power-hungry modules. This

can be carried out by profiling delays and consumption of the modules in the circuit.

Profiling is performed by associating a value of interest (delay, power consumption, etc.)

to each event of a simulation, and integrating these values over specified areas and

specified periods of time. This statistical method allows the grouping of thousands of

individually insignificant values into a few meaningful high-level values. A strategy

involving tracing the simulation and analysing the obtained traces is usually employed.

This has the advantage of letting the user decide a posteriori which areas and periods of

time he wishes to integrate the profiling values over. The difficulty with this method is

that trace instrumentation always comes at a cost (execution time and storage space). The

trace set therefore needs to be optimised according to the performance profiling problem

being solved in order to minimise the effect of tracing on the system’s performance.

4.6 Summary

An algorithm to detect and analyse deadlocks from a handshake circuit simulation has

been described, in order to identify the involved handshake channels. The Arbiter

component has been identified as being responsible for the other asynchronous-specific

problems of non-determinism and metastability. A couple of methods – modelling delays

with errors and exhaustive simulation – have been suggested for improving the handling

of these two problems. A straightforward method for activity pattern recognition has then

been presented to structure the large amount of information contained in the simulation

trace. Finally, the issue of optimising an asynchronous design through profiling methods

has been raised.

Chapter 5: High-Performance Simulation 68

Chapter 5: High-Performance
Simulation

The two most popular hardware development languages used for synchronous design,

Verilog and VHDL, were originally designed for simulation purposes. This made the

process of synthesising such languages to hardware systems a tricky task, with only a

subset of each of these languages being synthesisable. Balsa, on the other hand, is a

synthesis-oriented language. This has the disadvantage of making the route to simulation

less obvious and perhaps less efficient. This chapter exposes the results of the research for

making Balsa simulation as efficient as possible.

The need for a fast simulation route mainly comes from the iterative style of development

usually associated with Balsa: Design space exploration is performed in Balsa by making

changes to the source Balsa language description and design iteration is used to evaluate

the effects of these changes. For this to be an effective technique, a simulator must be fast

and able to reflect the speed and structure of the real circuit.

The new simulation system for Balsa has been developed around two goals:

• speed: necessary for practical design iteration and validation,

• ease of design analysis: to provide the designer with relevant information for

debugging and optimising his circuit.

This chapter focuses on the performance aspect of the simulator, while the analysis aspect

is described in the next chapter. First, a preamble explains the choice of simulating at the

handshake circuit level and exposes a few properties of the handshake circuits in use here.

Then follows the description of the simulator itself and the solutions adopted to optimise

simulation speed, first with out-of-order processing of scheduled events and then by

5.1 Preamble

Chapter 5: High-Performance Simulation 69

developing a set of techniques specific to handshake circuits. Finally, it is related how test

harness descriptions for Balsa circuits have evolved towards better integration with the

Balsa description for improved performance.

5.1 Preamble

5.1.1 Choice of the Simulation Level

Simulation of a Balsa description can be performed at several distinct levels of abstraction

[4]:

• language level behavioural simulation

• handshake circuit simulation

• gate level simulation

• switch and analogue extracted layout based simulation.

The lower the level of abstraction is, the more precise the simulation will be but more

parameters are required to set it up. In addition to this, a few pros and cons can be

specifically associated with each level of abstraction.

The two lower simulation levels correspond to the simulation of the netlist generated from

the handshake circuit by the synthesis tool at the gate level or later as an extracted layout.

Their main advantage is to provide more precise timing simulations as well as to enable

estimations of effects such as electro-magnetic emissions, but at the cost of some

additional simulation processing time. Gate level and layout simulators are already

available as synchronous tools, and can be used with Balsa-synthesised circuits, although

without any automatic way for the simulator to refer to the Balsa source code for error

reports or flow analysis. Both of these features are important for debugging purposes.

A language level behavioural simulation presents the advantage of providing an easy

access to variable values and structures for inspection and debugging purposes. However,

the complexity of Balsa descriptions (parameterised procedures, structural iterations,

conditional ports, test harnesses, etc.) would be transferred to the simulation process. The

major advantage of a behavioural simulation at the Balsa language level is technology

5.1 Preamble

Chapter 5: High-Performance Simulation 70

independence: Handshake protocol and data encoding (the way the data and the request

and acknowledge signals are encoded on wires) do not have to be chosen prior to the

simulation. Unfortunately, in the context of circuit design and debugging, one aim of the

simulation is to observe the evolution of control and data flows inside the circuit, which

differ according to the technology chosen. A technology-independent simulation would

therefore be of limited use.

At the handshake circuit level, the simplistic flat structure of handshake circuits is a real

advantage: A handshake circuit can be modelled by a simple graph structure of handshake

components where the component set is well defined and does not change for every

modification in the language. Moreover, the syntax-directed compilation process,

ensuring a one-to-one correspondence between Balsa constructs and handshake

components, makes it easy for the simulator to refer back to the Balsa source code for

error reports or flow analysis. It also implies a simpler architecture not only for the

simulator but for the whole simulation framework (simulation, visualisation, debugging).

In summary, simulating at the handshake circuit level provides the following advantages:

• simple simulator (a small set of only 40 to 50 standard handshake components is

used by the Balsa compiler, linked together by easily simulated channels),

• good possibilities of circuit analysis exploiting data and control flows,

• one-to-one correspondence with the Balsa source code.

This is a good compromise between the direct simulation of the high-level Balsa

description and the simulation of the low-level synthesised netlist. However, one may

prefer simulating at a lower level (gates or layout) for the increased precision. As stated

previously, this is still possible through the use of conventional circuit simulation tools.

5.1.2 Choice of the Handshake Protocol

As the simulation of handshake circuits is technology dependent, the handshake protocol

and data encoding have to be defined prior to simulation. The Balsa framework is

constructed in such a way that different back-end technologies and implementation styles

5.1 Preamble

Chapter 5: High-Performance Simulation 71

can be used for synthesis and the simulation framework must therefore take these options

into account where appropriate.

Data encoding defines how request and acknowledge signals are mixed with data to define

the way a handshake channel will be synthesised as a set of wires. The techniques

developed in this chapter are designed for single-rail data encoding because, compared to

dual-rail, single-rail requires fewer events (and therefore leads to a faster simulation) and

these events are more meaningful when visualising or debugging the circuit.

Both the 2-phase and 4-phase single-rail handshake protocols can be implemented as

libraries of handshake components used by the simulator. The former provides a better

speed as half as many events are flowing in the circuit. However, the latter provides more

information about the flow of data thanks to its return-to-zero phase and reflects in a better

way real asynchronous circuits, which often use 4-phase encodings.

Switching from 2-phase to 4-phase is a good means for designers to choose between speed

and fidelity at the simulation level.

5.1.3 Preliminary Statistics

Some preliminary statistics on handshake circuits are necessary to understand the

methods employed to optimise their simulation. These figures are obtained from the

examples used in the results chapter (Chapter 9):

• The average (mean) number of ports per component goes from 2.5 for small circuits

to 3.2 for large ones.

• In large circuits, for components with parameterised port counts, the average

(mean) fan-in/fan-out (i.e. length of input and output arrays (e.g the output array of

a fork component is the list of its outputs)) is 3.0 with:

• Probability(fan=2) = 48%,

• Probability(fan=3) = 42%.

5.2 Scheduler

Chapter 5: High-Performance Simulation 72

5.2 Scheduler

Handshake circuits, as control data flow graphs, can seem very easy to simulate: Events

are generated by components, travel over the graph’s arcs, and activate the next

components to start appropriate actions. And the process is repeated. In fact, an efficient

simulator can be based exactly on this behaviour. However, with handshake circuits,

some interesting optimisations can be applied, in particular by taking advantage of the

delay-insensitive nature of most handshake circuits.

This section first describes a software model for simulating handshake circuits, then

details the basic event-driven scheduler style that can be used to simulate any handshake

circuit, and follows on an out-of-order scheduler optimised for exploiting the delay-

insensivity in handshake circuits.

5.2.1 A Software Model for Simulating Handshake Circuits

At the handshake circuit simulation level, the behaviour of handshake components is very

simple to model and the key is to abstract channel behaviour into two events (request and

acknowledgment) for a 2-phase protocol, or four events for a 4-phase protocol.

Each handshake component is modelled as an object with properties and methods, where

properties define the current simulated state of the component and methods implement the

actions being raised when input ports are activated. This model is illustrated in Figure 5.1.

Channels are the medium of the handshake protocol, and as such they must be able to

transmit protocol events (requests/acknowledgments) in appropriate directions and, in the

case of data channels, hold a value. The interface between components and channels is

modelled by ports. Ports can be implemented either as distinct objects, or partly in both

the component and the channel objects. Reducing the number of objects usually tends to

make for faster designs. The two-parts implementation has therefore been chosen, as

illustrated in the figure: On the component’s side, a port would be implemented as a

reference to the connected channel, while on the channel’s side it would be a reference to

the component object.

Methods in channels implement wire actions, which model signal propagation delays. An

optimised model is used here which bypasses channel actions by letting components call

5.2 Scheduler

Chapter 5: High-Performance Simulation 73

directly the next component’s method. Delay associated to channels can easily be

included in the calling component’s delay. For further optimisation, the value held by a

channel could be stored on the component’s side, removing the need for accessing any

channel structure. This, however, implies a less tidy implementation of the different

structures, where channels are linked to two components being only implemented in one

of them.

Note on software optimisation

Action handlers are extremely often called. They must therefore be stored in a contiguous

memory space to make best use of the instruction cache. Furthermore, handlers can be

sorted by frequency of execution in order to group the most often called ones together.

The handshake circuit is modelled as a set of handshake components, each component

being a structure containing its current state and some pointers to the handlers and

structures of other components that can be called. In the same manner as with the

handlers, the best organisation is to group connected components together and keep the

size of their structure as small as possible to make best use of the data cache.

Figure 5.1: Object-oriented view of handshake component and channel

method1
= port1
activated

method2
= port2
activated

= port3
activated

method3

events on ports activate
actions can send events onto ports

= state storage
property

port2

port1

the associated actions

Channel

Component

+
delay

+
delay

value

ref to channel object

ref to component object

simple port model

ref to channel properties (value&delay)

optimised port model

+
ref to next component’s method

port3

5.2 Scheduler

Chapter 5: High-Performance Simulation 74

5.2.2 Standard Event-Driven Scheduler

The Balsa simulator is based on a standard event-driven scheduler where a single event

queue contains the events waiting to be processed sorted by timestamp. The execution of

the first event of the queue leads to its removal from the queue and the activation of the

method associated to the event’s component and port. This action executes some code

specific to the component’s behaviour and schedules the activation of the component’s

output ports by inserting new events in the scheduler’s queue. An event sent to an active

port is a request to the next component, while an event sent to a passive port is an

acknowledge sent to the previous component.

Figure 5.2 reveals some details of the simulation of the handshake circuit of a 1-place

buffer. Handshake components are represented as oval shapes with their passive and

active ports respectively represented as white and black circles. Rectangles inside

components are representing the actions executed when ports are activated: Incoming

arrows to an action’s rectangle indicate which ports are leading to the execution of this

action, while outgoing arrows indicate which ports may be fired (i.e. events inserted into

the scheduler’s event queue) by this action. Also, dotted lines indicate the internal

causality of events. Finally, the database symbol indicates a property storage specific to

the component, usually to save a state or value. The simulation of the circuit can be

retraced by starting at the top of the figure and by following arrows and channels (Note:

An arrow pointing to a port from inside a component should only be followed to the next

component. Never follow it by other arrows inside the same component).

In this circuit, each action inserts in the queue a unique event, which, as soon as the current

action is finished, is dequeued and executed as the next action. Interesting behaviours are

seen in the Loop component, which never acknowledges its passive port, and in the

Variable component for its use of storage.

In the previous, single-threaded, circuit, the role of the scheduler’s queue is not clear.

Figure 5.3 shows how the multi-threaded Fork component is implemented following the

same scheme: When the input is activated, two events are added to the scheduler’s event

queue, and the acknowledgment of the input only happens when both outputs have

received their own acknowledgment events. A local counter is used inside the component

5.2 Scheduler

Chapter 5: High-Performance Simulation 75

to keep track of how many output events have been received and the resulting event is

inserted into the scheduler’s queue only when the counter reaches two (or reaches the

number of outputs for a more generic n-output fork). Also shown on the figure is the

progress of the scheduler’s event queue during the simulation of the fork.

Figure 5.2: Object-oriented view of a handshake circuit

Figure 5.3: Fork component model and scheduler’s event queue

BrzFetch BrzFetch

store read

BrzVariable

BrzSequence

BrzLoop

component
passive port
active port
action (method)
state (property)
executed event
leading to an action
event scheduled
by an action
channel
channel with data

reset
increment

counter
if =2read scheduler dequeues 1 event & prepare it for execution

Fork method1 gets executed & sends requests to its 2 output ports

component sends request to Fork’s passive port

event queue = {Fork_method1 @ time t }

event queue = { }

Fork’s bottom−left component’s method1 gets dequeued, executed & may schedule future events for execution

event queue = {NextComp2_method1 @ time t+1,
newly scheduled events @ time >t+1 }

Fork’s bottom−right component’s method1 gets dequeued, executed & may schedule future events for execution

event queue = { Events @ time >t+1 }

Execution continues

event queue = {NextComp1_method1 @ time t+1,
NextComp2_method1 @ time t+1 }

5.2 Scheduler

Chapter 5: High-Performance Simulation 76

This example illustrates why the event queue is intensively used during the simulation

process: Each executed action typically comes from an event that has been processed (and

removed) from the event queue only a few time steps earlier. Therefore, each action which

is executed (i.e. each handshake component port that is activated) requires a push and a

pop of an event on/from the event queue. Actions are usually extremely concise and quick

to execute (for example, the n-1 first input requests on a rendez-vous point are only used

to increment a counter and check whether it reaches n; n=2 in the example shown in

Figure 5.3). The event queue manipulations therefore consume a large proportion of

processing time. The next section investigates a way to improve this.

5.2.3 Out-of-Order Scheduler

Asynchronous handshake circuits described in Balsa present the important property of

being delay-insensitive when coupled with a DI protocol. The simulator assumes a single-

rail protocol, which is non-DI in hardware. However, the manner in which it is

implemented can ensure the DI property of the communications: in simulation, the arrival

of data can be event-modelled and ensured to reach the destination component before the

request or acknowledge event it is bundled with. In these conditions the protocol is DI.

The advantage of DI circuits at the scheduler level is their ability to be executed “really

asynchronously”: an activated component can wait as long as it wants before being

processed without changing the behaviour of the circuit. This corresponds to the same

situation as if the component’s activation wire takes a very long time to transmit the event,

which is not a problem in a DI environment.

A simulator for DI circuits can partly ignore the strict order of simulated time. It can “flash

back” to simulate events that in simulated time actually occurred earlier: In simulating any

one of several concurrent paths, the simulator can proceed along the path even if some

other path would, in reality, have acted first. This act of loosening the relationship

between simulation time and simulated time improves the simulator performance by

reducing the number of occasions on which the scheduler must refer to its event queues.

This has been described ten years ago by Sutherland as Flashback Simulation [104]. His

description was dealing with micropipeline components, limited to the control part of the

circuit. This is used here and extended to handshake circuits. He also described a simple

5.2 Scheduler

Chapter 5: High-Performance Simulation 77

method for reordering the arbitration inconsistencies, which is extended in the next

section.

Reusing Sutherland’s terms, simulation time refers to the time at which the simulator

performs an operation, whereas simulated time refers to the time at which the simulated

event would have occurred in the world being simulated. The simulation and simulated

times of an event A are respectively noted s’n(A) and s’d(A).

An example is given in figure 5.4 to calculate the formula . The idea shown

there is that a row-by-row simulation corresponds to the standard scheduler where the

simulation time follows the simulated time, while a column-by-column simulation

corresponds to the out-of-order scheduler. This is a small and obvious example; However,

larger DI circuits are following the same scheme where the simulation time does not

always have to increase monotonically.

In this example, the only timing constraints are given by causality between components:

Component ‘+’ needs to be activated before being able to generate requests to

components ‘*2’ and ‘/2’, leading to the relations and

, and on the way back both acknowledges need to be received

before generating the main acknowledge, meaning and

Figure 5.4: Pseudo handshake circuit for the equation

x 1+()–
2-------------------- 2

x 1–-----------+

+1
4

3

2

9

8

7

6

5

1

x

+
reset

*2

1/

−1

(−)

/2

x 1+()–
2-------------------- 2

x 1–-----------+

s′n req1() s′n req2()<

s′n req1() s′n req6()<

s′n ack2() s′n ack1()<

5.2 Scheduler

Chapter 5: High-Performance Simulation 78

. The same causality relations apply to the other components,

leading to the final constraints

and

The second point is that, in real life, components on the same row would probably be

executed at similar times:

A standard event-driven simulator - where the simulation time follows monotonically the

simulated time - would therefore simulate the handshake components line by line, thus

interleaving the execution of both columns. A better simulator (in the same way as a real

person reading the diagram) would execute the first column, and then the second one, thus

making a better use of data locality (better use of the cache memory) and fewer accesses

to the event queue. This is the idea behind the out-of-order scheduler.

Note that this is different from speculative execution, as no risk is taken: Only events

whose simulation will not affect future events are processed using this method. No roll

back of the system is ever required.

In order to achieve this result, the standard event-driven scheduler can be simplified: The

time queue necessary to execute in timestamp order (and thus line by line) is not useful

s′n ack6() s′n ack1()<

s′n reqk() s′n reqk 1+()<

s′n req5() s′n ack5()<

s′n ackk 1+() s′n ackk()<

1 k 5<≤

s′n req1() s′n req6()<

s′n reqk() s′n reqk 1+()<

s′n req9() s′n ack9()<

s′n ackk 1+() s′n ackk()<

s′n ack6() s′n ack1()<

6 k 9<≤

s′d reqk() s′d reqk 4+()≈

s′d ackk() s′d ackk 4+()≈
2 k 5<≤

5.2 Scheduler

Chapter 5: High-Performance Simulation 79

anymore, and the direct execution without time queue processes the column serially: Each

component requests the data from the next component, and this request is directly

processed in the order shown in figure 5.5.

Due to the extremely simple actions processed by the handshake components, the time

spent in the standard scheduler represents a high proportion of the total simulation time.

The impact of this out-of-order scheduler on the overall simulation speed will be

measured in the results chapter.

Note: Take care not to mix up this out-of-order scheduler with multithread simulation:

Both can execute the handshake circuit column by column and benefit from this, but for

different reasons. In a multithread simulation, the simulated time of each component still

follows monotonically the local simulation time of each thread.

Special Situations

In both the real and the out-of-order simulated circuits, the Add component has to wait for

its two inputs to acknowledge before being able to carry on its work. This rendez-vous

point is one of the most important aspects of DI circuits, as it synchronises paths that

might be arbitrarily delayed, whether it be in the real hardware circuit or in the out-of-

order simulator.

Figure 5.5: Execution order of the handshake components in figure 5.4

ack+
data

req

req req

req ack+
data

ack+
data

ack+
data

req ack+
dataack+

data
req

data
ack+req

+1

(−)

*2/2

−1

1/

+

x

5.2 Scheduler

Chapter 5: High-Performance Simulation 80

Simulating rendez-vous points

When the simulator reaches an input of a rendez-vous element, there are two possibilities.

First, it may not yet have simulated the other paths up to the rendez-vous point. In this

case, the execution of this path must wait until these other paths have completed. The

execution therefore switches to some other task. Second, it may already have simulated

the other paths up to the other inputs of the rendez-vous element. In this case, it may

simulate the output of the rendez-vous element directly, without any reference to the event

queue.

The simulated time of every input must be recorded by the rendez-vous point, and at the

reception of the last input, the latest simulated time of all the inputs corresponds to the

simulated time of the execution of the rendez-vous’s action. Notice, however, that the

simulator may have recorded the simulated times out of order, and needs then to record

the latest timestamp of input arrived.

On the way back, the acknowledge signal received from the output port leads to n

acknowledges being sent onto the input ports. The optimisation described here leads to

store into the event queue only n-1 of these ack events and execute the last one directly

without going through the queue and therefore saving a push/pop cycle.

The improvement from the ordered scheduler to the out-of-order one is caused by the less

intensive use of the event queue: Whereas the former was pushing (and pulling) into this

queue n+1 events (n acks and 1 req), the latter only needs to push n-1 ack events, which

may lead to a considerable increase in performance, as n=2 most of the time in practice.

Simulating arbiters

An arbiter is special because the order of simulated time is important. The simulator may

be written to choose to only compute the output of the arbiter if it has computed all

contending inputs. However, arbiters often respond to a single input, and others may

never arrive. It is therefore improper to wait for them before computing the output.

Two solutions can be employed: The first one is to use the first simulated input to generate

the output, without taking into account the fact that another input may be simulated later

5.2 Scheduler

Chapter 5: High-Performance Simulation 81

and yet have an earlier simulated time. The second solution consists of reordering the

inputs of the arbiter, and is treated in the next section.

Processing the inputs of the arbiter in an out-of-order fashion may seem to lead to a

completely wrong outcome. This is actually not the case, as illustrated by the example in

figure 5.6. The shared read-only memory can be accessed by either of the two processors

in a completely independent manner, and still the final behaviour will be correct. This is

a valid DI behaviour.

The first reaction is of course to see the problem that could arise in the case of a read-write

memory: If proc1 is writing some data that is to be read at a later time by Proc2, an out-

of-order simulation might give the wrong result. The mistake with this situation is not

only in the out-of-order scheduler, but in the way this asynchronous system is designed:

It is built on timing assumptions, and precisely on the assumption that the asynchronous

block Proc1 will fire before Proc2. Such a case of non-DI behaviour will certainly fail the

out-of-order arbitration.

Another obstacle concerns the fairness of the arbitration, i.e. the ability of the arbiter not

to always choose the same input, thus preventing starvation. In fact, the arbiter described

here, using the first simulated input to generate the output, could be absolutely unfair even

in simple situations. Such a situation is illustrated in Figure 5.7 (an equivalent behaviour

would be obtained without the DecisionWait component. The arbiter’s outputs could be

directly connected to the “run” components, whose behaviour is to acknowledge without

Figure 5.6: Arbitrated circuit

A

Proc1 Proc2

ROM

5.2 Scheduler

Chapter 5: High-Performance Simulation 82

delay any incoming request): Both the arbiter’s inputs are continuously requested, and

when the arbiter chooses an input and forwards the signal to the corresponding output, this

signal is directly acknowledged by the rest of the circuit. In the case of an out-of-order

simulation, the cycle Loop-Arbiter-DecisionWait-Continue-DecisionWait-Arbiter-Loop

is uninterrupted and is repeated indefinitely. Only one of the two threads is

uninterruptedly simulated, starving the other.

Yet another problem with this arbitration is that even when global behaviour is correct,

handshake events may happen in a different order than what they would be in a real

execution of the circuit. Although this is not important for circuit validation, in a

debugging context, out-of-order messages prevent the correct analysis of the different

flows of data and control. As a consequence of this, this special scheduler cannot be used

for thorough debugging.

Reordering the inputs of the arbiter component would ensure the correctness of the

timestamps relative to real circuit execution. The next section explores this issue, while

trying not to affect the performance gained by the out-of-order execution of the other (DI)

handshake components.

loop

 arbitrate

 x then continue

 | y then continue

 end

 end

|| loop sync x end

|| loop sync y end

Figure 5.7: Starvation due to out-of-order arbitration

W.

#

DW

Arb

run run

#

5.2 Scheduler

Chapter 5: High-Performance Simulation 83

5.2.4 Reordering Arbitration Inconsistencies

The problem of processing the arbiter’s action in function of the out-of-order input events

is identical to the problem posed by parallel discrete event simulation (PDES), where

events computed on different processors with their own local clock have to be

synchronised when reaching a common execution point.

All the solutions proposed for PDES can be employed to solve the arbitration issue:

Conservative methods will not compute the output of the arbiter before a necessary set of

events with earlier timestamps has completely been processed, whereas optimistic

methods will compute the output immediately and rollback in case of wrong decision.

Conservative Methods

The simulator may correctly compute the output of an arbiter based on only a single input

time. It may do so only if it can prove that it will not, later on in simulation time, compute

an event that would have arrived earlier in simulated time than the event it has already

computed for the single arbiter input. This may require the simulator to work through all

of the events on the event queue that are earlier in simulated time than the arrival time of

an arbiter input before computing the output of the arbiter. Null messages, as proposed by

Chandri and Misra [20] in the case of parallel simulation can also be used to transmit

indications of minimal possible event timestamps on the inputs of the arbiter.

Optimistic Methods

In the optimistic methods, an arbiter handles the arriving events aggressively assuming all

the events are safe. However, when a message arrives, its timestamp may be less than of

some events already executed. It then rollsback by Time Warping [61]. During a rollback

the current state of the whole simulation is modified to return to a correct old state. It is

obvious that this procedure, which involves states and events saving and restoring,

demands a large amount of memory and may be extremely slow if rollbacks are too often

needed.

5.3 Modelling Handshake Circuits for Speed

Chapter 5: High-Performance Simulation 84

Chosen Solution

As arbiters are not extremely frequent in an asynchronous design (in comparison to the

number of other components), the conservative method is chosen for its simplicity. A

timestamp-ordered queue is used for arbiters’ request events. Events of this queue are

processed only when the first (out-of-order, unordered) queue is empty. This ensures that

all earlier events have already been processed.

This solution provides two additional benefits. First, each execution of an event from the

ordered queue provides an indication of minimal timestamp for trace reordering. Then,

the same queue can also be used to print console and file messages in order.

5.3 Modelling Handshake Circuits for Speed

This section describes a set of techniques aimed at optimising handshake circuit

simulation.

5.3.1 Channel Data Value Implementation

In Balsa, data values carried on channels are not limited to a particular maximum number

of bits. Values wider than the maximum integer width supported by the host’s architecture

must therefore be encoded specifically in order to process data copies and operations (e.g.

add, xor, not) efficiently. For this purpose, the GNU MP library [47] has been used to

represent these long data types. The unbounded integer data type defined by this library

is mpz_t and is referred to as mpint. Both long values (larger than the host’s maximum

integer width) and short ones can be encoded as mpints. However, applying operations on

mpints is a lot slower than applying the same operations on hosts’ integers (even when the

mpints are encoding short numbers). For this reason handshake channels are implemented

in such a manner that they can either contain an integer or reference an mpint. Handshake

components must therefore be able to handle data operations on both integers and mpints.

This has led to an unfortunate complication of the handshake component

implementations. Some components such as BinaryFunc not only have to handle integers

and mpints, but all the combinations thereof: int+int, int+mpint, mpint+int and

mpint+mpint). These components do, however, benefit greatly in increased simulation

speed.

5.3 Modelling Handshake Circuits for Speed

Chapter 5: High-Performance Simulation 85

The gain in speed between an all-mpint and a mixed int-mpint implementation varies

from 0% to 30%, depending on the circuit. These figures are obtained from the examples

used in the results chapter (Chapter 9).

5.3.2 Premature Channel Data Storage

In order to pass to the scheduler as short events as possible, the data value defined when

a channel’s data becomes valid does not necessarily need to be passed together with the

data_valid signal. Since no process is supposed to access the data value while it is invalid,

it is correct to set this value in the data channel earlier and keep sending the data_valid

signal at the correct time. In this manner, no data ever needs to be associated to any

scheduled event. Channels’ data values are changed immediately by the components,

while signals dataOn and dataOff are sent at the correct simulation time

5.3.3 Data Sharing Between Components

As a handshake circuit is simulated, some data can be observed being replicated

identically over long threads of data channels, thus consuming resources (memory and

CPU time) for each copy of the data. One way to optimise this behaviour is to change all

these identical copies of the same data to one unique piece of data referenced in each of

the places. This section investigates where and when this optimisation is feasible.

Figure 5.8 shows the handshake circuit for a three stage buffer. Each stage contains two

data channels linked by a transferrer component.

In this example, data enters from the left-hand side of the circuit, follows the horizontal

datapath and exits to the right. It would be nice to avoid copying five times the same data

from channel to channel and replace this by a direct copy from the first channel to the last

one. Unfortunately, this is impossible as the three stages shown in the figure operate in

parallel and each can (and will) carry different data (That actually is the purpose of a three

stage buffer). It is however possible to apply data sharing to each Transferrer component.

This optimises this particular example to require only two data copies instead of five.

5.4 Test Harnesses

Chapter 5: High-Performance Simulation 86

The validity of this optimisation is verified: As the Transferrer does not have any storage

capability, the output data starts being valid only after the input data is valid and always

finishes being valid before the other one.

A few components can benefit from the same optimisation: FalseVariable components

and Constant components. The gain in speed obtained in practice is lower than 1%, thus

negligible. However, this optimisation comes at no cost in the complexity of the

simulator. This is a space rather than a speed optimisation.

5.4 Test Harnesses

Test harnesses generally require access to the computer’s resources (output to screen or

files, input from files), which were not originally part of the Balsa HDL. In previous Balsa

simulation setups, they were described using LARD, the language originally used at the

University of Manchester for modelling the behaviour of asynchronous circuits.

Unfortunately, the synchronisations required to co-simulate LARD and Balsa

descriptions, added to the slow simulation speed of LARD, were increasing the simulation

time considerably. Furthermore, simulations of LARD and Balsa were visualised by

different software tools, making it difficult for the user to observe both of them together.

Figure 5.8: Three stage buffer circuit

stage1 stage3stage2

−> −> −>..

#

5.5 Summary

Chapter 5: High-Performance Simulation 87

Some special test harness components have therefore been designed closer to the Balsa

level, available for simulation without any loss of speed, and provided with a direct

interface in the Balsa visualisation system. These components were originally specially

integrated for the simulation of the SPA processor and provide read and write accesses to

files and a console; a specific memory component simulates a configurable memory.

These components were first linked to the Balsa description of the circuit via a separate

test harness description containing the association of each port of the circuit to a test

harness component. They have then evolved to a more integrated structure where test

harness components can be addressed directly in the Balsa description of the circuit. They

can be described in any programming language, are dynamically loaded for simulation

and ignored for synthesis. They also work in Verilog simulations.

5.5 Summary

High simulation speed is intended to make programming by design iteration possible and

reduces considerably the time necessary for validating a design by using extensive

simulation.

An out-of-order simulator designed for high simulation speed has been described. Further

improvements towards high simulation speed have been suggested through techniques

specific to the simulation of handshake circuits.

Chapter 6: Analysis-Oriented Simulation 88

Chapter 6: Analysis-Oriented
Simulation

The previous chapter dealt with techniques for accelerating the simulation of handshake

circuits, useful for exploring the design space by successive iterations. During this

exploration, the state of the circuit as well as a number of properties and statistics are

necessary for the designer to understand how the circuit is behaving during the simulation

and therefore to detect misbehaviours. This chapter deals with those aspects of simulation

necessary to report any information useful for this kind of analysis.

Usually, designers do not expect a simulation at the handshake circuit level to be very

precise. They are used to taking advantage of high level simulators for their speed, and

relying on lower level simulators for more precise analyses of what is happening in their

design. The simulator designed here follows this idea by favouring speed over analysis

capabilities. The motivation of this chapter is thus to search for methods which increase

the analysis capabilities of the simulator without affecting the simulation speed. It is

explained how timing and power analyses can be implemented at the handshake circuit

level. Then it is described how references to source code positions are important for the

analysis of the simulation results and how they can be specified. Finally, accepting to

trade some simulation performance in favour of analysis benefits, the simulation trace,

medium of the information between the simulation and analysis systems, is described.

6.1 Timing Analysis

Delay estimates at the handshake component level are intended to help detect

performance bottlenecks inherent in an architecture and to provide a basis for circuit

optimisation. Delays in components are used by the simulator to compute timestamps of

events and therefore determine the order and the speed of the different operations being

6.1 Timing Analysis

Chapter 6: Analysis-Oriented Simulation 89

simulated. Because the timestamp of an event is equal to the sum of all the delays

encountered since the beginning of the simulation until this event, errors in delays

accumulate at each step of the simulation. These errors can grow very large, leading to

imprecise timing analysis, and sometimes to non-deterministic simulations following

different paths to what would happen in a real circuit. For this reason, the precision in the

estimation of component delays is crucial.

This section approaches this problem from three different angles. First, a brief view of

getting precise estimations of the delays is presented. Then, modelling delays with errors

is described. Finally, the problem of how to ignore delays beyond the boundaries of the

circuit is tackled.

6.1.1 Determining and Adjusting Delays

The lower the level of simulation, the more precise the timing information. At the

handshake circuit level, delays cannot be as precise as at a lower simulation level due to

the simplified model in use, which uses an average timing value for each type of

handshake components and a fixed delay (if any) for all the channels. During the design

of the simulator, each of these average timing values must be calculated in order to be

used as fixed values during the simulation. Unfortunately, this aspect of the simulator is

not part of the research presented here. It is left as a future work, as complex methods

could be used to achieve a better degree of precision.

On a simple scheme, the computation of delays can be done by synthesising and

simulating each handshake component at a lower level and measuring the delays

obtained. On a more complex and more precise scheme, a co-simulation between the

simulation at the handshake circuit level and a simulation at a lower level could provide

precise measurements of the delay of each component and each wire. These

measurements could be obtained on a small bootstrap simulation and be used for longer

simulations.

6.1 Timing Analysis

Chapter 6: Analysis-Oriented Simulation 90

6.1.2 Simulating Delays with Errors

The model of delays with errors introduced in §4.3.2 can be used in the simulator for

improving the timing analysis of handshake circuits. The implementation consists of

replacing the single time value of each timestamp by a tuple (time, error) or (min_time,

max_time), meaning than the event can occur at any time in the interval [time-error;

time+error] or [min_time; max_time]. The latter of these two notations is preferred

because it requires less computation.

The introduction of this model with errors requires modifications in the behaviour of

some components in order to compute correctly the output timestamps.

When a component is activated by an event, it will execute a handler which may schedule

some new events after certain delays. Such delays are also modelled with an error as

(min_delay, max_delay), and the scheduled event will obtain the new timestamp tuple

(min_time+min_delay, max_time+max_delay).

When a component is waiting for multiple inputs before executing an action, with the

previous model it just has to count the number of inputs received and execute the action

when all the inputs are activated, the timestamp of the ouput being based on the timestamp

of the last input received. With the new model, the component needs to use the timestamp

tuples (min_timei, max_timei) of every input in order to compute the output timestamp

.

When a component is waiting for one input amongst multiple inputs, the situation is more

complicated. Such a situation only happens with the Arbiter component, which only has

two inputs. When an Arbiter component’s input gets activated at timestamp (min_time1,

max_time1), the action associated to this input must not be executed before the simulator

certifies than no other input can get activated with a min_time smaller or equal to

max_time1. A metastability window can also be taken into account, as explained in §4.3.1.

However, once every desired delay has been taken into account, processing the input

events in the correct order is exactly the same problem as the one solved earlier in §5.2.4,

when reordering the arbitration inconsistencies in the out-of-order scheduler.

max i 0= i n mintimei,<(,) max i 0= i n maxtimei,<(,),()

6.2 Power Analysis

Chapter 6: Analysis-Oriented Simulation 91

6.1.3 Delays in Test Harnesses

In the most recent versions of Balsa, test harnesses can be described using the Balsa

language in the same manner as for the main circuit. This poses problems of delays:

Sometimes the environment needs to be infinitely fast in order not to affect the timing

measurements of the main circuit by having to wait for slow inputs; sometimes the

environment needs to be slow to model correctly the delays experienced at the boundaries

of a very fast main circuit.

A non-invasive solution at the description level (i.e. the Balsa description of a circuit and

its environment do not need to be changed) is to automatically detect test harnesses parts

in the easy cases and adopt the “infinitely fast” model, which corresponds to removing

every delay in the handshake components making the test harness circuit. Easy cases for

the detection of test harnesses correspond to all the automatically generated test

harnesses, which always have a structure easily recognisable.

Another solution is to extend the Balsa language with some non-synthesisable timing

constructs. Procedures marked as timeless will have every delay in their handshake

components removed, while a special delay(int) call can be used to add a specific delay

during the simulation of the handshake circuit by the intermediate of a special handshake

component. However, this second modification is outside the scope of this work.

6.2 Power Analysis

Since asynchronous circuits are often oriented towards low power and low electro-

magnetic interferences, being able to analyse such properties is necessary.

Power analysis is done in a similar manner to the timing analysis described above: An

average power value is assigned to each type of handshake component by using the results

of a lower level simulation. The difference with timing analysis is that power analysis can

be done post-simulation, based on the simulation trace. By using the simulation trace, the

power analysis tool can integrate the values assigned to each component over different

periods of time and different sets of components. Moreover, these consumption values

can be changed a posteriori and reflected directly on the power estimates simply by

reprocessing the integration calculus. For timing analysis, the delay values assigned to

6.3 Source Code Position Annotation

Chapter 6: Analysis-Oriented Simulation 92

each component are needed during the simulation to compute the timestamps of events

and their ordering.

This model is not realistic, as power should be calculated based on transition counts and

loading. However, although not as precise as the profiling information obtainable at lower

levels of simulation, the estimations provided by this model can be sufficient for detecting

the major consuming areas in a circuit.

6.3 Source Code Position Annotation

When an error such as a deadlock is detected during simulation, the guilty channel can be

easily pointed out by the simulation trace. The designer/programmer of the circuit is then

usually interested in knowing the position corresponding to this channel in the source

code. This can be obtained by making the compiler annotate each channel with its

corresponding position in the source code. Unfortunately, this “easy” feature does not

fulfil all the requirements: Often, a block (procedure) of Balsa source code is called

multiple times, leading to multiple implemented instances of the corresponding sub-

circuit. In each of them, channels will refer to the same piece of code without distinction.

It is therefore required to include a hierarchy of callers that identify each channel in an

explicit and unique way. As an illustration, lets consider the following pseudo-Balsa

source code:

1 Proc sub_common
2 ... <chan X> ...
3 end proc

4 Proc sub1
5 ...
6 sub_common
7 ...
8 end

9 -- Main Part
10 sub1 |
11 sub_common |
12 sub_common

Channel X in sub_common will be instantiated three times. Whenever a bug is detected

during the simulation, it is insufficient to know that “channel X at line 2” is the cause of

it. A useful description of the channel’s location is needed, including the backtrace of

6.4 Simulation Tracing for Offline Analysis

Chapter 6: Analysis-Oriented Simulation 93

called procedures with their positions in the code, such as: (dot-separated format with

“feature@line_number” items)

• main@10 . sub1@6 . sub_common@2 . X,

• main@11 . sub_common@2 . X, or

• main@12 . sub_common@2 . X.

This is done by including a hierarchy of callers-callees in the description of the circuit.

With the above example, it would lead to any description equivalent to the following one:

#0: main procedure

#1: sub1 is called by #0 at line 10

#2: sub_common is called by #0 at line 11

#3: sub_common is called by #0 at line 12

#4: sub_common is called by #1 at line 6

And the three channels X would be described as:

channel X described at line 2 under context #4

channel X described at line 2 under context #2

channel X described at line 2 under context #3

Such a description is used in the new Breeze handshake circuit netlist description, with

the caller-callee items being referred to as call-contexts.

6.4 Simulation Tracing for Offline Analysis

The simulation trace is used as part of the Balsa design flow to transmit information from

the simulation to the analysis and visualisation tools (called clients).

The aim of a simulation trace is to transmit all the required information while keeping the

overhead as low as possible. The first issue is therefore for the simulator to know what

information is required by the clients. A simulation trace basically consists of a report of

the events occurring during simulation, which correspond to the channel activity inside

the handshake circuit. Therefore, if the clients are able to indicate which channels they are

interested in, the simulator can generate a shorter simulation trace for this subset of

channels.

6.4 Simulation Tracing for Offline Analysis

Chapter 6: Analysis-Oriented Simulation 94

The second issue is to keep the overhead due to tracing as low as possible. Three sources

of overhead can be distinguished: the extra instructions used for gathering the traced data

(the instrumentation points), the process of formatting this data into the desired format

and the process of writing the result to disk. In the simplest case, the events are intercepted

before execution and sent to the trace file with little formatting. The overhead is then

mostly due to the amount of traced data (proportional to the number of events), which

rapidly gets large. This data can be compressed on-the-fly before being written to the file,

but while this reduces the amount of data needed to be transferred, the compression

process takes a significant amount of time to be executed and uncompression processes

are also necessary on the client side.

The third issue concerns the communication medium. The choice of a file instead of a

more direct communication link such as a socket or a pipe presents the following

advantages:

• Multiple clients can read simultaneously, while requiring only one write process.

• Generation and analysis can be decoupled, for delayed/offline analysis.

• The data can be analysed repeatedly off-line to find errors in the program execution.

• If the file is written on a network file system, the simulator and the different clients

can run on different machines, for performance or multiple display benefits.

The disadvantages of using a file as an intermediate medium are a loss of speed due to

writing on a physical medium, made worse by the fact that trace files are generally

extremely large.

6.4.1 Standard Trace

Classical event-driven circuit simulation trace formats (e.g. the Value Change Dump

(VCD) format[56]) consist of:

• a header and definitions section describing the static parts of the simulated circuit

and introducing some convenient abbreviations to reference these parts in the

second section;

• a list of events, reported in increasing timestamp order.

6.4 Simulation Tracing for Offline Analysis

Chapter 6: Analysis-Oriented Simulation 95

The structure of the Breeze simulation trace follows this scheme: The header section lists

all the channels of the circuit with their properties: width, source code position and a

unique identifier (a sequential number). The main section consists of a timestamp-sorted

list of channel activity, which includes the request/acknowledge signal transitions and

changes in the data.

The different clients reading the trace file can easily reconstruct the complete state of the

circuit at any given time from the reported events.

6.4.2 Out-of-Order Trace

When the out-of-order simulation scheduler is used, events in the simulator are not

happening in timestamp order. On the clients’ side, however, it is always necessary to

have a sorted list of events or a way to sort them before being able to process them. The

traced events therefore need to be sorted by timestamp either by the simulator at the time

of writing or by each client at the time of reading. An intermediate program inserted just

after the simulator’s output and before the clients could be also used to sort the trace file.

During the sorting operation, an event can only be written into the output file when it is

certain that no other event with an earlier timestamp will arrive later. The sorting process

must therefore either wait for the end of the whole simulation, or rely on the simulator to

provide some information about a minimal global time of the system.

This minimal global time is already calculated by the simulator when no event other than

non-deterministic choice events (due to Arbiter components) are scheduled (see §5.2.4).

Unfortunately, this can take a long time before obtaining such an information, if at all in

the case of a circuit without Arbiter. Luckily, the computation of the minimal global time

can be forced, for example at regular interval of real time, in order to process the sorting

algorithm and output those events which happened before the current minimal global

time.

6.4.3 Pattern Analysis and Compressed Out-of-Order Trace

Compressing the traced data before writing allows less data to be written in the trace file,

resulting in less writing overhead. In the case of compression of the standard trace,

6.4 Simulation Tracing for Offline Analysis

Chapter 6: Analysis-Oriented Simulation 96

however, the overhead gained in writing less data is lost in having to keep the data in

memory buffers before compression instead of sending it directly to the trace file. In the

case of the out-of-order trace, all the data already needs to be kept inside buffers in order

to be reordered. It is therefore an opportunity for compressing the data at the same time

with little extra-overhead (by choosing an appropriate compression method).

The main motivation for compressing out-of-order traces is that their particular structure

is appropriate for compression: During out-of-order simulation, handshake components

are directly calling their successors, which leads to threads of components being executed

sequentially in the same order every time they are called. When more than one thread of

components are executed in parallel in the real circuit, they are simulated sequentially

with the out-of-order scheduler, while they are interleaved (sorted by timestamp) with the

standard scheduler. This is sketched in Figure 6.1.

Figure 6.1: Interleaved and sequential traces of threads of events

t0 t1 timet2

time:

thread 1

thread 2

t0 t1 timet2

t0 t0 t1 t2

b) Threads of traced events with standard scheduler

a) Threads of events

c) Threads of traced events with out−of−order scheduler

���������������
���������������
������
���
������
���
���������������
������
���
���������������
������
���
	�		�	
	�	

�

�

�

������
���
������
���
������
���������������
������
���
������
���
������
���
������
���
���������������
���������������
������
���
������
���
���������������
������������������
�

�������
�

����� !�!�!!�!�!!�!�!

"�"�""�"�""�"�"
#�##�#
#�#
$�$$�$
$�$
%�%%�%
%�%
&�&&�&
&�&
'�'�''�'�''�'�'
(�((�(
(�(
)�))�)
)�)
*�**�*
�
+�++�+
+�+
,�,,�,
,�,
-�-�--�-�--�-�-
.�.�..�.�..�.�.
/�//�/
/�/
0�00�0
0�0
1�11�1
1�1
2�22�2
2�2
3�3�33�3�33�3�3
4�4�44�4�44�4�4
5�55�5
5�5
6�66�6
6�6
7�77�7
7�7
8�88�8
8�899:
:

;�;;�;<
<

=>?@

A�A�AA�A�AB�B�BB�B�BC�CC�CD�DD�DE�E�EE�E�EF�FF�FG�G�GG�G�GH�HH�HI�II�IJ�JJ�JK�KK�KL�LL�LM�M�MM�M�MN�N�NN�N�NO�OO�OP�PP�PQ�QQ�QR�RR�RS�S�SS�S�ST�T�TT�T�TU�UU�UV�VV�VW�W�WW�W�WX�X�XX�X�XYZ[�[\]�]^_`a�a�aa�a�ab�bb�bc�cc�cd�dd�de�ee�ef�ff�fg�g�gg�g�gh�h�hh�h�hi�ii�ij�jj�jk�kk�kl�ll�lm�m�mm�m�mn�n�nn�n�no�op�pq�qr�r st
u�uu�uv�vv�v

w�w�ww�w�w
x�x�xx�x�xy�yy�yz�zz�z{�{
{�{
|�||�|}�}�}}�}�}
~�~~�~���
���
���������
���
����������������
�������������������������
���
����������������
�������������������������
���
������
����������

���
�

�� � � � � ¡�¡¡�¡¢�¢¢�¢£�££�£¤�¤¤�¤¥�¥¦�¦§�§¨�¨ ©©ªª«�««�«¬�¬¬�¬������
®�®�®®�®�®®�®�®

¯�¯�¯¯�¯�¯°�°°�°±�±±�±²�²²�²³�³³�³´�´´�´µ�µ�µµ�µ�µ¶�¶�¶¶�¶�¶·�··�·¸�¸¸�¸¹�¹¹�¹º�ºº�º»�»¼�¼½�½¾�¾ ¿¿ÀÀ ÁÁÂ
Â

Ã�Ã�ÃÃ�Ã�Ã
Ä�ÄÄ�ÄÅ�Å
Å�Å
Æ�ÆÆ�ÆÇ�Ç
Ç�Ç
È�ÈÈ�ÈÉ�É�ÉÉ�É�É
Ê�Ê�ÊÊ�Ê�ÊË�ËË�ËÌ�ÌÌ�ÌÍ�Í
Í�Í
Î�ÎÎ�Î

Ï�ÏÐ�ÐÑ�ÑÒ�Ò ÓÔ
Õ�ÕÕ�ÕÖ�ÖÖ�Ö×�×�×
×�×�×
Ø�Ø�ØØ�Ø�ØÙ�ÙÙ�ÙÚ�ÚÚ�ÚÛ�Û
Û�Û
Ü�ÜÜ�ÜÝ�Ý�ÝÝ�Ý�Ý
Þ�ÞÞ�Þß�ß
ß�ß
à�àà�àá�á
á�á
â�ââ�âã�ã�ãã�ã�ã
ä�ä�ää�ä�äå�åå�åæ�ææ�æç�ç
ç�ç
è�èè�èé�é�éé�é�é
ê�ê�êê�ê�êë�ëë�ëì�ìì�ìí�í�íí�í�í
î�î�îî�î�îïðñ�ñòó�óôõö ÷�÷�÷÷�÷�÷

ø�øø�øù�ù
ù�ù
ú�úú�úû�û
û�û
ü�üü�üý�ý�ýý�ý�ý
þ�þ�þþ�þ�þÿ�ÿÿ�ÿ���������������������������������� �	

��

�� � � !�!!�!"�""�"#�##�#$%&�&'()*+ ,�,�,,�,�,
-�--�-.�..�./�//�/0�00�01�11�12�2�22�2�23�3�33�3�34�44�45�55�56�66�67�77�78�89�9:�:;�; <=

>�>�>>�>�>>�>�>
?�?�??�?�??�?�?

@�@@�@
@�@
A�AA�A
A�A

B�BB�BC�CC�CD�DD�DE�EE�E

6.5 Summary

Chapter 6: Analysis-Oriented Simulation 97

The fact that threads of events are not interlaced with each other makes them very easy to

be detected and extracted. During a long simulation, the same thread may be frequently

repeated many times identically due to the loops in the circuit description. Very often the

only things that are changing between two occurrences of the same thread are data values.

It is, however, rare that a same thread is repeated many times with the same data. The

pattern analysis/compression algorithm should therefore recognise repeated patterns by

their control flow, and keep data values as secondary information specific to each

occurrence.

6.5 Summary

This chapter presented techniques for increasing the analysis capabilities of the

handshake circuit simulator described in the previous chapter without affecting its

simulation speed. Timing and power analyses, followed by specifications of source code

positions were treated. Finally, the simulation trace has been described, with an emphasis

on the simulation trace generated by the out-of-order scheduler. This out-of-order trace

can easily be used for pattern analysis and compression.

Chapter 7: Visualisation 98

Chapter 7: Visualisation

Chifosky and Cross II give the following definition of reverse engineering [23]: “Reverse

engineering is the process of analyzing a subject system to identify the system’s

components and their interrelationships and create representations of the system in

another form or at a higher level of abstraction”.

In this sense the visualisation system presented in this section is a reverse engineering tool

used for program understanding. It extracts important information from all the available

sources and builds a dynamic and interactive representation of the system in order to help

designers understand the structure and behaviour of the handshake circuit.

Three visualisation techniques are developed in this chapter. First, three sources – the

Balsa source description, the compiled handshake circuit, and the simulation trace – are

analysed and assembled together to construct a graph structure combining the qualities of

each source of information. This structure is intended to be visualisable at any level of

detail. The second technique adds the time dimension to the previously obtained picture.

It animates the static graph using a colour-based representation of the simulation trace

events. Finally, other simpler views are taken from a typical design environment and are

connected together following a collaborative scheme, allowing them to exchange data for

efficient inter-view element tracking and navigation.

7.1 Information Clustering

The simulation of a handshake circuit reveals a huge amount of information. In order to

be understandable by a human user, this information needs to be structured into

meaningful groups. Starting from the raw handshake circuit graph, this section shows how

7.1 Information Clustering

Chapter 7: Visualisation 99

clusters can be formed by using other related sources of information and how they can be

used for understanding and debugging asynchronous circuits.

This section describes a number of different methods for grouping handshake circuit

elements, either by proximity (functional grouping), by threads (control threads and data

flows) or by behavioural properties (test harness isolation).

All these methods correspond to static allocations of the groups: Although they may need

some information taken from the simulation in order to be determined, the groups do not

change dynamically during the simulation.

7.1.1 Functional Grouping

The network of handshake components is derived from the high level description of the

circuit in Balsa, which itself is organised by structural information such as procedures,

functions, instruction blocks and local variables. Given the close relationship (due to

transparent syntax-directed translation) between the Balsa description and the generated

handshake circuit, it is logical to try to transfer this high-level structure onto the lower-

level handshake circuit in order to partition this huge network into more manageable

chunks.

Figure 7.1 shows how functional grouping dramatically improves the visualisation of an

(abstract) set as small as ten components. The representation on the right not only shows

an additional structure, but also suggests a similarity between the three groups (this should

be used cautiously, as the similarity may not be true at the description level). Not shown

on this figure is the recursive aspect of functional grouping: The Balsa description

contains procedures and local sub-procedures inside these procedures (as well as other

local structures such as functions, instruction blocks and local variables), resulting in

nested groups and sub-groups in the graph of the handshake circuit. Experiments on large

circuits (the SPA example, §9.3) show that functional grouping applied to procedures and

functions usually divides a graph of n elements into groups of about elements. A

reasonably large network of ten thousand handshake components would therefore be

divided into groups of about hundred elements. However, this number is an average:

n

7.1 Information Clustering

Chapter 7: Visualisation 100

Many groups will be smaller than a hundred elements, while a few groups could reach

thousand items or more, which is still too large for an efficient visualisation.

When functional grouping is applied to every instruction block (i.e. blocks of instructions

contained between language keywords, such as the division: if <block> then <block> else

<block> end), the original circuit gets divided into small groups of usually less than five

elements. This unfortunately results in a huge, and thus difficult to manage, quantity of

nested groups: The clusters themselves are wasting the entire visualisation area and are as

difficult to organise as the original flat graph. Such clustering can however be applied by

limiting the clustering depth or by setting a minimum number of elements per group.

Clustering Optimisation

The Balsa language is composed of many block structures (see BNF in appendix of the

Balsa manual [32]). Those can be used to cluster channels and components at a very fine

granularity: At the lowest level, groups are made of only a few channels and components.

The structure of the Balsa source code is reported in the Breeze file by an extension of the

Balsa→Breeze compiler: A new section expresses the hierarchical structure of the nested

Balsa blocks/structures with a unique identifier for each of them, these identifiers being

used by the handshake channels and components as a means to indicate their location.

A few optimisations in this structure are useful. They concern structures with undefined

number of elements, such as the sequence and parallel structures, which are recursively

defined in the Balsa language (and parsed as such by the Balsa parser). For instance, the

Balsa block

Figure 7.1: Abstracted functional grouping

7.1 Information Clustering

Chapter 7: Visualisation 101

action1 ; action2 ; action3 ; action 4

would be parsed and internally stored (due to the compiler’s construction) as

action1 ; (action2 ; (action3 ; action 4)).

A direct output would thus look like:

Sequence Block

action1

Sequence Block

action 2

Sequence Block

action3

action4

End Sequence

End Sequence

End Sequence

The following optimisation would generally be considered better:

Sequence Block

action1

action2

action3

action4

End Sequence

Figure 7.2 shows what could be the graphical representations of the unoptimised and

optimised forms of the sequence example. The optimised form provides better readability

by placing every action at a common level and avoids wasting space with unnecessary

block frames.

Variable Groups

Two more functional groupings concern variables.

First comes the case where exactly one Breeze Variable handshake component is

associated to a Balsa variable. Breeze Variable components have, by design, only a single

write port. When the Balsa code contains more than one writer to the same variable, a tree

of CallMux (data merges) and Encode components is used to combine writers from all

7.1 Information Clustering

Chapter 7: Visualisation 102

sources into one. In the visualisation, this tree has no reason to belong to the same group

as one of the writers. It should then appear next to the Variable component, hence the

grouping. The result of this grouping does not have any significant consequence on the

number of groups and the number of components inside groups. However, the

components grouped together by this method have a strong relationship, which improves

greatly the visualisation, as such groups may transparently be reduced to single elements

representing variables with many write ports.

Sometimes, Balsa variables are distributed into more than one Breeze Variable

component. This is for processes needing only a few bits of a variable to avoid reading

the whole variable (and therefore holding this resource). When the whole variable is

required, a tree of Combine components is used to reconstitute the data from its parts. In

the same way as with the writers’ tree, this tree of components may be clustered with the

Variable component.

7.1.2 Control Threads

Considering a handshake circuit, a control thread is a set of contiguous communication

channels in which only one channel is allowed to change state at a time.

The control threads of a handshake circuit can be chosen to form a partition of its set of

communication channels, but this partitioning is not unique: Figure 7.3 shows an obvious

case of three possible choices of control threads for a Fork component. The first solution

makes use of three threads whereas the other two only need two threads to partition this

Figure 7.2: Unoptimised and optimised representations of a sequence of 4 actions

;

;

;

;

7.1 Information Clustering

Chapter 7: Visualisation 103

circuit part. All partitions are thus not equal and can have different numbers of threads,

which raises the questions:

• What makes a thread “good” (or “useful”)?

• Is a thread of maximum size better than any of its sub-threads?

• Is a partition of minimum number of threads best?

Before answering the previous questions, a different view of control threads is necessary:

A control thread as defined previously, also corresponds exactly to the idea of threads of

execution in a high-level language such as Balsa. Using the example of Figure 7.3: The

original source code in Balsa would be a parallel statement such as “statement1 ||

statement2”. When asked to write a lower-level code that simulates this behaviour, three

solutions are obvious:

or

Figure 7.3: Three control thread sets possible with a Fork component

thread t1 = create_thread (statement1)

thread t2 = create_thread (statement2)

wait_for (t1, t2)

thread t1 = create_thread (statement1)

execute (statement2)

wait_for (t1)

Thread 1Thread 1

Thread 0 Thread 0

Thread 2Thread 1

Thread 0

wait

initial thread

st1
st2

initial thread

st1wait
st2

7.1 Information Clustering

Chapter 7: Visualisation 104

or the symmetric

Which solution is best? It depends on many parameters: the architecture on which the

threads will be executed, the habits of the programmer in writing software, his habits and

preferences for the visualisation of threads during debugging, etc.

Is a thread of maximum size better than any of its sub-threads?
Is a partition of minimum number of threads best?

Answering “Yes” to these two questions would lead to favour the two last partitions to the

first one in the Fork example. Yet, one can think of a situation where the first solution with

three threads may be preferred. This is the case when both threads 2 and 3 are doing

exactly the same thing: There is no reason to justify the grouping of only one of them with

thread 1 while leaving the other thread independent.

What makes a thread “good” (or “useful”)?

Threads have been introduced to solve the problem of visualising too many components

simultaneously by grouping them together. They are therefore directly related to the

visualisation theory and to the notion of perception, which implies aspects of beauty and

efficiency such as proportions and symmetry: Processes doing equivalent jobs should

have an equivalent representation. This agrees with the previous idea of preferring a

symmetric distribution of the threads in the case of a Fork component with two equivalent

branches. Therefore, a partition of threads can be qualified as “good” when its

visualisation reflects accurately the behaviour of the different parts of the circuit.

7.1.3 Data Flow

Communication channels are composed of both a control part and a data part. It is

therefore possible to apply the same theory to data flow as used with control threads. The

main difference is that, whereas all channels contain a control part, only some of them are

thread t2 = create_thread (statement2)

execute (statement1)

wait_for (t2)

initial thread

st2wait
st1

7.1 Information Clustering

Chapter 7: Visualisation 105

carrying data. The partition of a circuit by data flows is then incomplete, restricted to data

channels. Yet, one can consider that in a circuit, data channels are the most important

channels as they carry the information. It is therefore interesting to provide a grouping

scheme dedicated to these important elements.

The data Transferrer component (or simply Transferrer), represented in Figure 7.4, is the

simplest and most used handshake component dealing with data channels. It transfers on

demand the data contained on one channel to another. The data flow associated with this

component is obvious, and runs from left to right in a single flow.

Other data processing components are not as simple as the Transferrer: Figure 7.5 shows

two versions of what would be an Add component (the real components having this

functionality are more generic ones called BinaryFunc and BinaryFuncPush components)

and a Split component. The two Add components have identical data flows, with their two

data inputs merging into one output. They differ by their control schemes, the first one

being a control fork and the second one a control merger. On the other hand, the Pull Add

and the Split components share the same control scheme while having opposite data

directions: data merge for the Add component and data fork for the Split component.

More annoying is the CaseFetch component, which does not follow the simple rule “every

data output is connected to every data input”, and therefore requires special handling

during the detection of data flow. Past this difficulty, the data flow inside this component

is of the simplest form, as shown in Figure 7.6.

Figure 7.4: The data Transferrer component

data flow

−>
pull push

7.1 Information Clustering

Chapter 7: Visualisation 106

This analysis of data flow is based on the same model as control threads, resulting in some

kinds of data threads with forks, in the case of Split components, and with merges, in the

case of BinaryFunc components (for example). The data flow of a data channel is defined

as the union of the data threads starting from this channel and connected together tail-to-

head by common components. These data flows can be used for finding the range of

action of a particular data. A backward data flow can also be defined as the union of the

data threads connected together tail-to-head and ending at a specified data channel. This

can be used for finding the causes leading to a particular data.

The main problem with data flow sets is that they can grow to a very large size. This can

be improved by using the simulation trace to follow only paths which are actually taken

during the simulation. This is particularly effective with some components such as the

CaseFetch component. When this component is activated, it requests a value onto its

index channel, and this value is then used to indicate which input needs to be used to fetch

a value which will then be forwarded to the main port. Many inputs can usually be

discarded when the simulation shows that they are not used during the analysed period of

Figure 7.5: Pull and push Add (BinaryFunc) and Split components

Figure 7.6: CaseFetch component

+ +

Split

index

data flow

7.1 Information Clustering

Chapter 7: Visualisation 107

time, thus simplifying the data flows. This optimisation also works, but to a lesser extent,

with other components.

Notes on control and data flows

A distinction can be made between control flow-based threads which always result in

threads having a unique instantiation and data flow-based threads which can have

multiple instances running at the same time. For example, the data flow thread going from

one end of a pipeline to the other end can hold multiple values flowing at the same time

and taking the same route. Each value flow can be seen as a distinct instance of the same

defined thread.

The visualisation of flows of data and of control states is useful for debugging as it allows

the designer to verify that data and threads of execution proceed correctly inside the

circuit. Observing the flow of data and the state of control can also be useful for

optimising the circuit, since the designer can detect if some control flows are not finishing

as early as expected. This happens for example when some control components are

“wasting time” waiting for the return-to-zero phases of other components in a 4-phase

protocol.

Finally, mapping the clustered graph reflecting the structure of the Balsa description onto

the layout of the graph of the handshake circuit is useful as it allows low-level information

such as data flow to be visualised on the high-level Balsa structure.

7.1.4 Test Harnesses

The specific problem of information clustering concerning test harnesses is that they are

supposedly part of the environment but, with the new version of Balsa, they are appearing

in the handshake circuit at the same level as the main circuit. Even Balsa libraries to use

within test harnesses are written with the Balsa language itself. The difficulty is therefore

to detect those tests which are now embedded inside the handshake circuit as normal

Balsa code in order to treat them differently from the main circuit. For example, at the

simulation level, test harnesses are often better simulated as timeless circuits (the

environment delays do not have to influence the tested circuit). At the visualisation level,

7.2 Multi-Source Graph View

Chapter 7: Visualisation 108

tests harnesses connected to inputs and outputs of the main circuit are better visualised by

input/output components with specific interfaces for controlling them.

7.2 Multi-Source Graph View

The clustering techniques exposed in the previous section can be used to visualise

efficiently the information, first as a static graph, and then as an animation atop the static

graph.

7.2.1 Static Multiscale Structure

Combining multiple sources of information offers the following benefits:

• This information can be used to cluster some components from one source by using

the information from another source. Clustering allows the number of elements to

be processed at a time to be reduced by processing them by group instead of

individually.

• Sources usually used to visualise at different scales are combined to make a graph

viewable at any scale.

• More clues are available to reconstitute the designer’s mental image of the circuit.

A static view of the handshake circuit is constructed from the hierarchical graph obtained

after clustering. This graph view enjoys the above-mentioned benefits.

Multiscale visualisation

The clustering techniques exposed in the previous section not only have the beneficial

effect of separating a huge number of handshake elements into fewer manageable groups.

They also have the important consequence of transferring the structure of each analysed

source of information onto the handshake circuit. The resulting hierarchical structure

exhibits the advantages of all the source structures.

One important implication comes from the fact that different sources of information are

usually used to visualise the structure and behaviour of a circuit at different scales (or

level of detail): The hierarchy of Balsa procedures gives a high-level representation of the

7.2 Multi-Source Graph View

Chapter 7: Visualisation 109

description, data and control flows can show an intermediate level, while traced events

happen on handshake channels at a low-level. Therefore, the structure obtained after

clustering can be visualised at any scale and always shows useful information: From the

global view of the circuit to the lowest level, the main components of the circuit can be

distinguished, followed by the (sometimes recursive) high-level implementations of the

modules, and on until the detailed implementation of the modules, precise enough to

visually understand their behaviour. This is illustrated in the results chapter (Chapter 9).

Fitting the user’s mental image

The following references to the designer’s mental image are integrated in the graph view:

• The written Balsa source code.

• The generated handshake circuit – a good designer will be able to anticipate (and

will anticipate) the generated circuit when writing Balsa code.

• The execution trace: During the design of a circuit, the designer always anticipates

the amount of information flowing on the different channels/buses and bases the

circuit’s architecture on this information.

• The visualisation software interface with the user (treated further in this chapter):

Human interaction can be used to designate important regions of the circuit, to

correct software guesses about the architecture, etc.

All the elements coming from the designer’s mind to create the circuit are therefore

gathered together in the graph view, hopefully making for an intelligible representation.

7.2.2 Dynamic Colour-Based Animation

The last section generated a representation of the circuit structure by organising the

components of the circuit in an easily readable way. Based on the simulation trace, the

role of the animation module is to add further information to the static picture in order to

represent the data and control flows, and the changing activity of the components during

the simulation.

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 110

This is achieved by marking the handshake circuit graph with colour annotations: Each

component or channel’s state is represented by a colour, and the circuit is animated as the

simulation system updates the states of the components and channels.

The advantage of such an animation system is its ability to show all the information

available from the Balsa description and from the execution of the simulation of the

system, and then let the user decide what he wants to focus on. Debugging is made easier

through the visualisation of the parallel activity: Every thread of execution of a simulation

can be shown simultaneously, and the observer can focus on one specific thread, observe

its activity, and can easily observe its merging with another thread or its splitting into two

threads. Moreover, every thread is ensured not to overlap with any other in the

visualisation area, whereas they often overlap on a source file description.

This animation system also provides some interesting debugging features for deadlocks

and livelocks. When a deadlock situation arises, the program stops, leaving the guilty

components in a specific colour and the trace of the components before them in another

colour, making it less difficult to debug. In a livelock situation, the colours can be

observed circling in an endless loop, but while this identifies the components involved it

does not indicate the entry condition.

Moreover, the one-to-one correspondence between the Balsa description and the

visualised handshake components makes it easy to link any error located on the visualised

circuit with its corresponding location in the Balsa description.

7.3 Coordinated/Collaborative Views

Until now, the visualisation system was used to visualise multiple sources of information

together in a single view. The benefits of such a view have been presented. However, in

order to be useable and intuitive, a visualisation system must also take into consideration

what the user wants to see. Most of the time, the user/designer wants to continue to use

the same style of design he always used. In the case of asynchronous design with Balsa,

the views usually consist of a text editor containing the source code, and a waveform

viewer to analyse the results of the simulation. In order to make these views even more

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 111

useful, a collaboration scheme is suggested in this section to track the visualised elements

and navigate efficiently from one view to another.

7.3.1 Views

The main view (Figure 7.7, top-left) is accompanied by a number of other views,

representing the designed system at other levels:

Source Code View

The source code view (Figure 7.7, top-right) is a text viewer showing the Balsa source

code. The designer’s preferred text editor can also be used. Although this is the simplest

of all the views when used individually, this is the most difficult to link bi-directionally

to the rest, as simple text viewers are not generally designed to display anything but text

or to forward keyboard/mouse events.

GTKWave

GTKWave [48] (Figure 7.7, middle-left) is an external program used to display

waveforms of the handshake channels. It is directly and bi-directionally linked to the

handshake circuit visualisation system, which provides the user with an interface to select

which channels are to be displayed in GTKWave. In return, GTKWave can be used to

select some channels and periods of time of interest over which some processing actions

can be executed by the visualisation system, such as calculating the power consumption

of a sub-circuit over a certain period of time.

Verilog Description (generated from Balsa)

The Verilog description (Figure 7.7, middle-right) is generated from the Balsa description

and corresponds to a direct translation from handshake circuit to Verilog.

Time Line Behaviour View

The time line behaviour view (Figure 7.7, bottom) shows the activity of clusters of

channels (y-axis) over time (x-axis). This view is intended to help the user detect

repeating patterns visually. The advantage of this method is that patterns do not have to

be exactly identical to look similar. Detecting non-exact pattern repetitions is very hard to

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 112

Figure 7.7: Coordinated/collaborative views

GTKWave Verilog Netlist

Source CodeGraph View

Timeline Behaviour View

Coordinator

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 113

automate. In the Timeline Behaviour View, Figure 7.7, a pattern “non-exactly” repeated

four times can be identified.

Test Harnesses

An interface is provided for visualising the activity of test harness components. Input

from files and output to files and console are displayed together with the channel activity.

The special test harness Memory component gets a more complex interface where it is

possible to visualise and edit the contents of the simulated memory.

7.3.2 Multiple Views: Linking the Different Representations

A number of different views of the design have been described so far. In each of these

views, a subset of the whole information set (source code, handshake circuit, simulation

trace) is represented. This section explains how the different representations of a same

item in different views are linked together. This linking is used for synchronising views

when a component’s properties are changed in one of them. More importantly, it also

allows the user to switch efficiently from one view to another, for instance: going from a

source code statement to the corresponding channel in the handshake circuit view and vice

versa.

Table 7.1 shows what information is exposed in each view. Table 7.2 shows where this

information comes from.

The visualised elements can be categorised into three groups:

• The simple elements originally contained in the Breeze and simulation trace files:

procedures, ports, channels, components, time and events. They are visualised in

most of the views.

• The compiled elements: data and control flows, states. These are generated after

analysis of the simple elements.

• The Balsa statements, present only in the original Balsa source code and visualised

only in the source code view.

The following elements are used as links between views:

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 114

Graph View Element List View Channel Selection List

procedures
ports
channels
components

data&control flows
events, states

procedures
ports
channels
components

channels

Timeline, Menus Timeline Behaviour View GtkWave

time procedures
time
groups of events

time
channels
events, states

Source Code View Verilog Backend

Balsa statements
variables
blocks
structures
procedures

channels
components

Table 7.1: Visualised elements per view

Balsa Source File Breeze File Simulation Trace Verilog

Balsa statements
variables
blocks
structures
procedures

procedures
ports
channels
components

time
events

channels
components

Table 7.2: Visualised elements per source

7.3 Coordinated/Collaborative Views

Chapter 7: Visualisation 115

Source Code Elements

Source code elements (or statements) constitute the special case of this section: They are

not represented directly but are “cross-referenced” by other elements via their position in

the source code files. Balsa source code statements are first referenced in Breeze files as

channel positions. This work extends this to any component that can be associated with a

channel, such as handshake components and simulation events. The source code position

is the invisible medium of the association between Balsa statements and visualised

elements.

Handshake Channels

Handshake channels are first generated in Breeze files. They are directly and fully

visualised in most of the views and are therefore the preferred means for going from one

view to another. They are the most fine-grained components of handshake circuits, and as

such provide efficient ways of manipulating and associating the different views at a low

level of the design. In addition to themselves being the link between different views,

handshake channels contain the source code position of the Balsa statement they have

been compiled from. This allows every view containing channels to report references to

the original source code, necessary for correctly reporting errors to aid the debugging

process.

Handshake Components

Handshake components are the base execution blocks of handshake circuits. They can

usually be logically associated to Balsa operations. The link between a handshake

component and the corresponding source code is implemented by the intermediate of

handshake channels. Components are connected to channels, among which one channel

can always be seen as ‘more special’ than the others: Variable components have a unique

write port, BinaryFunc components have a unique output, most components have a unique

activation port, etc. The association between a component and the source code is made

through this special channel.

7.4 Additional techniques

Chapter 7: Visualisation 116

Procedures

Procedures are described in Balsa and compiled as groups of handshake channels and

components. Their coarse grain allows the user to manipulate large circuits at a high level

before going into the details of handshake channels and components.

Simulation Time

Simulation time is an easy parameter to deal with: A single number allows to specify the

current simulation time in a view and see the correspondence in other views. The only

slight difficulty is due to the asynchronous nature of the circuits being designed, which let

events happen at any time instead of at regular intervals of time as would be the case with

synchronous circuits.

7.4 Additional techniques

This section describes two additional techniques used during the visualisation process: a

technique for laying out the static graph used in §7.2, and a method for tracking structural

changes during design iterations.

7.4.1 Dot Layout

One step missing in this visualisation framework is the static layout of the graph. As much

research has been previously carried out on this subject, this stage has been skipped and

a very simple technique using already available tools has been employed. The Dot tool

from the graphviz package is used here [44, 45].

Dot is a freely available tool developed by AT&T that can layout network graphs on a

plane. It works with nested clustered structures. Its main advantage is its ready

availability, which makes it possible to obtain a first method of layout with little effort.

Unfortunately, Dot suffers some disadvantages. The most problematic one is its inability

to process too large graphs. Other inconveniences in Dot are the slow processing speed

and the poor final shape of the laid out graph, which is almost always overly developed

either in width or in height and almost never nicely square.

7.4 Additional techniques

Chapter 7: Visualisation 117

The only solution has been to keep the graphs fed into Dot below a certain size

(determined by trial and error). Two ways of restraining the size of the graphs present

themselves: Partitioning the flat graph into a set of smaller graphs, or using the nested

clusters’ information to recursively layout the subgraphs by applying dot on each of them.

The first idea quickly appears to break down: The way dot places the interface ports to the

circuit, the connections between partitions are visually very unpleasant.

Recursive Dot Layout

It is possible to apply Dot recursively on the nested clusters of the graph in a bottom-up

fashion. The nested structure is first traversed top-down and Dot is called on the way up

in order to recursively calculate the area occupied by each group at the next (higher) level.

The main advantage of this technique is that identical graphs are laid out in an identical

manner, whereas applying Dot on a nested graph (in one operation, not recursively) leads

to subgraphs laid out differently, in order to accommodate the edges between subgroups.

Identical representations for identical graphs helps recognising repeated instantiations of

the same procedures.

7.4.2 Tracking Structural Changes during Design Iterations

When a Balsa description is modified and recompiled, the generated handshake circuit

reflects those changes. Due to the syntax-directed nature of the compilation, small

modifications in the Balsa description are translated into small changes in the resulting

handshake circuit. This important property makes the visualisation system a very

interesting tool if it manages to show the transformation from one version of the circuit to

the next one: Students can conveniently see the result of source code modifications onto

the handshake circuit and designers can keep their visualisation system and debugging

environment open even as the circuit evolves and is recompiled.

Given two versions of a Balsa source description, the visualisation of one of them with

reference to the other can be considered in two ways: Either the Balsa compiler can

analyse both sources and output the changes in addition to the new handshake circuit

(figure 7.8-left), or both sources can be normally compiled into two handshake circuits

7.4 Additional techniques

Chapter 7: Visualisation 118

which are later compared and sent to the visualisation system (figure 7.8-right). In the

latter case, the differentiation process can be integrated within the visualisation system.

The latter case gathers all the advantages:

• The Balsa source code always has a more complex structure than its handshake

circuit. It is then advantageous to parse it only once. When considering a complete

design process with a series of source code modifications and recompilations, the

first strategy forces parsing of each Balsa file twice: once when compared to the

previous version and once when compared to the next version. The second strategy

can keep the compiled handshake circuit in a file after the first compilation in order

to use it later for comparison with the next version.

• The Balsa compiler is a complex piece of software that is better kept untouched.

The visualisation of the changes requires some additional techniques. Some research [53,

114] successfully employed structural animations from one graph to another, with smooth

transitions in between.

Figure 7.8: Circuit reconfiguration strategies

visualisation

balsa−c (compiler)balsa−c (compiler)

Handshake circuit Handshake circuit

difference

visualisation

Balsa1 Balsa2Balsa1 Balsa2

balsa−c (compiler)

Handshake circuit Difference+

7.5 Summary

Chapter 7: Visualisation 119

Structure tracking has not been implemented in the current framework, and has therefore

not been evaluated in this thesis. It is however believed that it would benefit greatly the

design iteration process, and for this reason has been described here.

7.5 Summary

Three visualisation techniques are developed in this chapter. First, three sources (the

Balsa source description, the compiled handshake circuit and the simulation trace) are

analysed and assembled together to construct a graph structure combining the qualities of

each source of information. The obtained structure is viewable at any level of detail. The

second technique adds the time dimension to the previous picture. It animates the static

graph using a colour-based representation of the simulation trace events. Finally, other

simpler views are taken from a typical design environment and are connected together

following a collaborative scheme, allowing them to exchange data for efficient inter-view

element tracking and navigation.

Chapter 8: Integration 120

Chapter 8: Integration

This chapter covers the integration of the results issued from the previous chapters into a

unified framework.

The main component of this framework is the handshake circuit visualisation system,

designed after the research presented in the previous chapter. As seen previously, the

visualisation is based on multiple sources of information. These sources – contained in the

Breeze and Balsa files and the simulation trace – are therefore provided as inputs to the

visualisation system. The handshake circuit simulator (Chapters 5 and 6) is designed as a

separate process and connected to the rest via a trace file. Finally, the debugging

techniques presented in Chapter 4 are integrated into the visualisation system, as they

require user interaction and visualisation of the results, both available at the visualisation

system level. These new components are added to the Balsa flow as shown in Figure 8.1.

Figure 8.1: New Balsa simulation and visualisation flow

Breeze simulator

TraceGTKWave

Breeze

Synthesis

Verilog

Balsa compiler

Balsa file used by process

process generating file

process control link

Breeze handshake circuit

system
visualisation & debugging

8.1 Balsa Compiler and Breeze Format

Chapter 8: Integration 121

The external application GTKWave is used as a component of the visualisation system

and its integration is effected via a link giving full control of GTKWave to the

visualisation system. In the same way, a control link allows the visualisation system to run

and administrate the simulator process. From the users’ point of view, all the interactions

are thus gathered in one place. The rest of this chapter deals with the necessary additions

to make these elements cohabit efficiently and transparently.

8.1 Balsa Compiler and Breeze Format

The Breeze file, medium of the handshake circuit structure, has been extended in two

ways to accommodate the visualisation requirements. First, some knowledge about the

original Balsa structure has been added to the Breeze structure via the use of call-contexts.

Then, as the Breeze file is now acting as an input for multiple tools, a linking process is

useful to gather descriptions compiled into multiple Breeze files into a single file.

Call-contexts

Call-contexts are used to save in the Breeze file the hierarchical structure of the original

Balsa description. In Balsa, a procedure call to a non-shared procedure means that the

callee’s circuit will be included, after compilation into a handshake circuit, inside the

caller’s circuit. When a Breeze file is flattened, either for optimisation purposes or after

linkage, the callee’s lists of handshake components and channels are concatenated to the

caller’s lists in order to be compatible with the original Breeze format. The knowledge

about caller and callee is therefore lost. To solve this problem, a list of call-contexts is

appended at the end of the flattened procedure’s description in the Breeze file, containing

an identifier, some debugging information about the called procedure, and a pointer to the

callee’s call-context. These call-contexts therefore form a tree representing the

architecture of the circuit at the procedure level. To each handshake channel in the Breeze

file is added a reference to one of these call-contexts by means of their identifiers, in order

to indicate which procedure it was originally described in.

Handshake Circuit Linker

When a circuit is described by multiple Balsa files, each of them is compiled separately

by the Balsa compiler and one Breeze file is generated for each Balsa file. Applications

8.2 Simulation Trace

Chapter 8: Integration 122

needing to exploit the entire circuit, either for synthesis, visualisation or simulation, are

required to regroup the information contained inside all the Breeze files before being able

to carry on with their work. This is called linking. The linking process can either be left

to each application needing to use the handshake circuit, or be done once for all at the end

of compilation. The first solution was previously used when synthesis was the only really

used route from a Breeze file. It avoided the storage of the linked Breeze file. However,

for multiple simulation, visualisation and synthesis, letting every process link the same

Breeze files consumes more resources than it can save. The linking process has therefore

been moved at the end of the compilation stage. It has actually also been rewritten to

process large handshake circuits more efficiently.

8.2 Simulation Trace

As seen previously, the simulation trace is a file used to convey the simulation results

from the simulator to the visualisation system and to the external application GTKWave.

As with most of the simulation traces, the quantity of traced data can get very large. Two

techniques for reducing the amount of traced information are used in this system.

Reducing the amount of traced information

The first idea corresponds to the pattern analysis described in §6.4.3. The amount of

storage required is reduced by exploiting the repetitions of groups of traced events during

the simulation.

The second idea is to reduce the amount of information at its source, by offering the

possibility to the user to select the required traced channels. Letting the user choose which

channels are important works well for designs smaller than a few dozens of channels, or

for small focused parts in large designs.

8.3 Visualisation Control Links

Control links are used by the visualisation system to launch, send commands to, query the

state of and terminate other processes. Via these control links, the user interface of

external processes can be integrated in one place: the visualisation system’s user

interface. The implementation of these links uses UNIX pipes, which are more adapted

8.4 Summary

Chapter 8: Integration 123

than files for point-to-point communications between processes. Two external processes

are linked to the visualisation system: the Breeze simulator and GTKWave.

Visualisation-Simulation Link

The control interface of the simulator can be divided into two parts: simulation time

control and debugging actions.

Current simulation time can be set, stepped forward/back in time, stepped to the next

visible event or automatically increased at adjustable speed.

Traced channels can be changed at any time during a simulation. Channel-based

breakpoints can be set and removed.

Visualisation-GTKWave Link

The role of GTKWave is to display the activity of a handshake circuit on a channel basis.

Each visualised channel is displayed horizontally with the state of the channels visualised

from left to right as shown in Figure 7.7, page 112. Such a method is very useful because

it is well-known to designers. However, its disadvantage is the overwhelming amount of

information likely to be displayed in the case of large designs.

The control link allows the designer to choose which channels are to be displayed in

GTKWave via the visualisation system’s interface. They can therefore select/unselect

channels in any convenient view, such as the handshake circuit graph view or the Balsa

source code view.

8.4 Summary

The simulation, visualisation and debugging techniques developed in this thesis are

integrated into a unified framework. The visualisation system is established as the main

element of the framework, and other processes are controlled by the visualisation process

via control pipes. All the functionalities of the various processes are gathered under the

visualisation system’s user interface.

Chapter 9: Results and Discussion 124

Chapter 9: Results and Discussion

The aim of this chapter is to present the results of this research work in the form of

contributions, and to evaluate them on real-life examples as a proof of adequacy and a

base for discussion. Each contribution is associated with an evaluation method, which

intends to measure the validity of the contribution.

Simulation:

Four orders of magnitude Balsa simulation speedup

The new handshake circuit simulator is compared to the previous Balsa simulator on a set

of circuits of different sizes. It is also evaluated against Verilog simulators, which were

previously the most efficient simulation route for design iterations with Balsa. The

evaluation reflects the speedup observed by the designers of SPA [84] in the course of

their work.

Debugging:

Ideas for debugging asynchronous-specific problems at handshake circuit level

Ideas for debugging the asynchronous-specific problems of deadlocks and non-

determinism at the handshake circuit level are validated on a case-study example.

Easy pattern analysis of the out-of-order simulation trace

The same case-study example is used to illustrate the readiness of the out-of-order

simulation trace for easy pattern analysis and extraction, and shows its successful

application to livelock debugging and simulation trace compression.

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 125

Visualisation:

Following the execution of a circuit for program comprehension

Program comprehension is evaluated on SPA, the largest circuit designed with Balsa. The

evaluation is done at the three stages studied in this thesis:

• Merging complementary sources of information together to generate a graph

viewable at any level of detail;

• Colour-based graph animation to highlight handshake circuit control flows;

• Coordinating this graph view and the various views “well-known to the designer”

together for efficient element tracking and easy navigation.

For each stage, specific examples are illustrating the functional correctness of the

visualisation system. Designers feedback is reported when available.

Simulation and visualisation for debugging large scale asynchronous handshake
circuits:

First debugging environment for large scale asynchronous circuits

The unification of the tools developed after the above mentioned contributions led to the

first debugging environment for large scale asynchronous circuits.

9.1 Simulation: Boosted Compilation and Simulation
Speeds

The most important and useful result coming out of this research is the formidable

speedup of the compilation and simulation processes. This was originally the main aim of

this work in order to help with the parallel development of SPA, and it led to achievements

beyond expectations.

Balsa was always aimed at synthesising large asynchronous circuits. Unfortunately the

route to simulation (i.e. the compilation of the Balsa description into the structure being

simulated) for large designs was originally long and the simulator very slow. The results

presented here show the speed up obtained for the compilation and simulation of different

sizes of circuits, but it must be kept in mind that the largest of these circuits were primarily

targeted. In short, a typical large Balsa design whose compilation and simulation were

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 126

previously taking respectively 2 hours 18 minutes and 12 days 22 hours 15 minutes is now

compiled in 3.8 seconds and simulated in 56.9 seconds.

This section shows the evolution of the compilation and simulation speeds on a few

selected examples. The Balsa descriptions of some of these examples and their sizes in

terms of handshake channels and components are given in Appendix A. SPA being an

ARM-compatible processor core, the ARM architecture validation suite comprising 76

programs was used during the development of SPA. After simulation of the complete

validation suite, one of these validation programs called “undefs_v5” was observed to

represent the average case, based on simulation time. It is used here as a representative of

the whole test suite. Another short ARM program, called “hello world” (not part of the

validation suite) is used to represent short simulations of a large design.

One difficulty was to find two versions of the Balsa toolkit able to compile and simulate

identical circuit descriptions, regardless of the changes which have happened to the Balsa

language in the last four years. It was even more of a challenge to find a usable description

of SPA recent enough to reach an interesting size and a working condition, and still not

using too recent Balsa features such as new language constructs or builtin types, in order

to be compiled with the older version of Balsa. The CVS version of SPA from the 1st

February 20021 satisfied these criteria, and was able to be compiled both by the Balsa

toolkit from the 12th March 2002 and by the most recent toolkit from the 1st September

2004. From this recent framework, the three versions of the simulator described in §5.2.2,

§5.2.3 and §5.2.4 are evaluated.

Two computers have been used for this evaluation. The first one is an AMD Athlon 900

MHz with 512 MB of RAM running Linux. The second one is an Ultra Sparc II, 500 MHz

with 2 GB of RAM running Solaris.

Compilation

The compilation speedup obtained here is not due to any work or research, but only to the

idea of simulating Balsa directly at the handshake level. The original simulation route

required a 3-stage compilation: Balsa was first compiled into a handshake circuit, which

1. SPA 1st February 2002 patched with multiply.balsa 1st June 2002

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 127

was in turn transformed into a behavioural language (LARD [34]) description, finally

compiled into bytecode ready to be simulated. The new simulation system takes the

handshake circuit directly as its input, thus needing only the first stage of compilation

from the old route. The only new requirement concerns descriptions distributed in

multiple files, for which linking all the handshake sub-circuits together is required either

at the end of the compilation or at the beginning of the simulation. It is included here in

the compilation timings.

Tables 9.1 shows how the large circuit of SPA gets compiled two thousand times faster,

while smaller circuits only get a speedup of about four. This is explained by an

initialisation process taking between half a second and a second in the new test-harness

generator, which consumes a significant proportion of the total time in small examples but

is insignificant in large ones.

In addition to these timing results, the memory used by compilers peaks at 200 MBytes

with the LARD compiler versus 25 MBytes with the Balsa compiler. This is however an

unimportant issue, as most computers already had more than 200 MBytes of memory in

the early days of Balsa.

Another aspect worth considering is that the figures reported here correspond to the

compilation of the entire circuit, which rarely happens: In the case of SPA, most of the

time during the design process, only one file amongst the 23 source files is modified and

only this file and those depending on it need to be recompiled. Still, the improved

compilation speed has been welcomed as it reduced the compilation of a single file from

Old
compiler a

a. Balsa & LARD compilers 12th March 2002

New
compiler b

b. Balsa compiler 10th June 2004

Compilation
speedup

1-place buffer 3.4s 0.85s 4

Corridor 4.1s 0.9s 4.5

SPA 2h 18min 3.8s 2179

SPA on Solaris 4h 20min 22s 709

Table 9.1: Evolution of the compilation speed

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 128

six minutes in average to less than a second. This was very useful as it immediately

permitted iterative design experiments by trial and error.

The last row of the table shows that comparable results are obtained when compiling SPA

on a Sparc Solaris machine. The smaller speedup is explained by slower hard drive

accesses on this machine: Many large files are read and written during the compilation,

leading to a negligible proportion of slow hard drive accesses compared to 4h20min, but

important compared to 22s.

Simulation

Simulation results (Table 9.2) follow the same scheme as those reported for compilation,

with even better speedups: Small circuits are now simulated one to two orders of

magnitude faster, while large ones get accelerated by more than four orders of magnitude.

LARD
simulatora

a. LARD simulator 12th March 2002

Breeze
simulatorb

(speedup)

b. Breeze standard event-driven simulator 1st September 2004

Out-of-
order

simulatorc

(speedup)

c. Breeze out-of-order and reordered out-of-order simulators 1st September 2004

Reordered
simulatorc

(speedup)

1-place buffer with test-harness,
10000 data

19s 1.15s
(17)

0.445s
(43)

0.450s
(42)

1-place buffer without I/O, 10000
loops

1min 23s 0.55s
(151)

0.094s
(883)

0.094s
(883)

SPA running Hello World 1h 21min
12s

1.06s
(4596)

0.64s
(7612)

0.62s
(7858)

SPA running Big Hello World
(modified hw with 253 characters)

14h 7.5s
(6720)

2.95s
(17085)

2.74s
(18394)

SPA running undefs_v5 12days
22h

15min

2min 44s
(6810)

55.0s
(20307)

56.9s
(19629)

SPA undefs_v5 on Solaris 91days
10h

40mind

d. Estimated total time based on a two days execution

16min 30s
(7981)

6min 0s
(21947)

6min 15s
(21069)

Table 9.2: Evolution of the simulation speed

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 129

This is explained by the fact that LARD, the language used in the previous simulation

system, was based on a time-driven scheduler whose CPU consumption was proportional

to the total number of handshake components in the design (at each timestep the scheduler

was checking for any change in the inputs of most components). The simulation speed

was therefore reasonable for small designs but was reduced dramatically for medium to

large designs.

The most remarkable figure in this table is the speedup obtained by the reordered out-of-

order simulator when simulating the SPA microprocessor with the typical-sized ARM

validation test “undef_v5”. The speedup of more than four orders of magnitude is the one

which has been observed in general during the development of SPA.

This significant improvement had a direct influence on the development style used with

Balsa. Associated with the faster compilation, multiple design iterations were then

possible in a short period of time.

This speedup also changed the simulation route used with Balsa: Prior to this, it was more

advantageous to synthesise Balsa circuits to Verilog netlists and simulate these. Now, the

direct simulation at the handshake circuit level is one to two orders of magnitude faster

than the Verilog simulation route, making it worth using (even without considering the

better debugging capabilities available at the handshake circuit level, which cannot be

provided at the Verilog level). Table 9.3 reports and compares timings when simulating

the SPA undefs_v5 test with the following simulators: the old LARD simulator (to show

that it was not worth being used), the new Breeze handshake circuit simulator and the two

most popular non-commercial Verilog simulators: Icarus Verilog which compiles the

Verilog description, and Cver which reads the Verilog description at the beginning of the

simulation process for interpretation. Most popular commercial Verilog simulators are

licensed with prohibition against benchmarking, and for that matter prohibit disclosure of

any information. They are therefore not included in these results.

9.1 Simulation: Boosted Compilation and Simulation Speeds

Chapter 9: Results and Discussion 130

Design iteration

Table 9.4 reports some delays more representative of a real life situation during the design

of SPA using design iterations. It is considered here that only 10% of the files need

recompiling, and that the simulation will stop (usually as it detected a bug) at 1% of its

total execution time.

compilation linking &
initialisation simulation Total

Old LARD simulator
(reminder)

2h 18min 6min 40s 12days
22h 8min

13days
32min...

Breeze simulator a

a. Breeze handshake circuit simulator, with reordered out-of-order scheduler

3.8s 1.7s 55.2s 1min 0.9s

Icarus Verilog Simulator b

b. Icarus Verilog Simulator (compilation = Balsa->netlist + netlist->internal format)

3min 9s 3min 30s 12min 25s 19min 4s

Cver Verilog simulator c

c. Cver Verilog simulator (compilation = Balsa->netlist + netlist->internal format)

3min 9s 1min 20s 3h 2min
17s

3h 6min
46s

Speed ratio Breeze/Icarus 50 124 13 19

Speed ratio Breeze/Cver 50 47 198 184

Table 9.3: Comparison of Breeze and Verilog simulators d

d. Simulations of SPA running the undefs_v5 ARM validation test

compilation linking/
initialisation simulation Total

Old LARD simulator
(reminder)

13min 48s 6min 40s 1day 7h
0min 48s

1day 7h
21min...

Breeze simulator 0.4s 1.7s 0.55s 2.65s

Icarus Verilog Simulator 18.9s 3min 30s 7.5s 3min
56.4s

Cver Verilog simulator 18.9s 1min 20s 1min 49s 3min
27.9s

Speed ratio Breeze/Icarus 89

Speed ratio Breeze/Cver 78

Table 9.4: Design iteration speedup

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 131

9.2 Debugging Demonstrator: The Simple Corridor
Problem

In order to demonstrate the resolution of deadlocks, livelocks and non-determinism, and

prove the ability of these techniques to link the problems back to their source code, an

interesting and amusing problem has been implemented in Balsa: the behaviour of two

people meeting face to face in a narrow (two lanes) corridor and wanting to go pass each

other.

Depending on the behaviour of each person, these three problematic cases of

asynchronous systems are illustrated:

• Livelock: Each moves aside to let the other pass, but they end up swaying from side

to side without making any progress because they always move the same way at the

same time.

• Deadlock: Each waits for the other to move aside.

• Non-determinism: During precise simulation of the livelock case, if no special

synchronisation is made, the two processes will not stay synchronised infinitely

because of delay changes due to external factors (temperature, etc.). They will

eventually get out of the livelock.

In the following, the two individual behaviours are called “lazy_guy” and “polite_guy”.

The lazy_guy always stops when somebody arrives in front of him and waits until he

leaves. The polite_guy always moves: If somebody arrives in front of him, he tries to let

him pass by “changing lane”. The two-lanes corridor is modelled as four positions as

shown in figure 9.1.

The full source code for this example is available in Appendix A.3. The interesting part

of the implementation of lazy_guy are described here, to serve as a reference when used

in this section:

1 procedure lazy_guy (parameter name:String; output my_pos : bit;

sync waitfor_pos_in_front_empty) is

2 begin

3 my_pos <- 1;

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 132

4 print "lazy guy ", name, ": Somebody in front of me... I’ll wait that

he moves aside...";

5 sync waitfor_pos_in_front_empty;

6 print "ok I can go";

7 my_pos <- 0

8 end

9.2.1 Deadlock Handling

Let’s put two lazy_guys in the same lane and run the simulation of the circuit:

lazy guy A: Somebody in front of me... I’ll wait that he moves aside...

lazy guy B: Somebody in front of me... I’ll wait that he moves aside...

Deadlock.

It is obvious what is happening: Both processes are waiting for the other process to free

its position. The interesting part is how the deadlock is detected, signalled and explained

by the simulation and visualisation system: Would this help to solve real-life situations

where the user does not have a clue why the circuit deadlocked?

The deadlock is detected by the absence of events to be processed by the simulator. Figure

9.2 shows the last state of the simulation: Pink channels represent the (uninteresting)

activation tree while red channels show the (interesting) last events which happened in the

visualised circuit. These blocked channels are therefore causing the deadlock. The

interface graph-source code viewer reveals that they both point to the same source code

statement: line 5 of the source code, the “sync waitfor_pos_in_front_empty” statement.

Figure 9.1: Implementation model for the corridor problem

lane 2 pos 2

pos 1lane 1 pos 4

pos 3

guy 1 guy 2

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 133

The algorithm described in §4.2.2 has been implemented for finding the causes of only

one deadlocked channel. However, this does not reduce the effectiveness of the process,

which can be repeated for as many deadlocked channels as necessary, the union of the

results being the equal to the result which would have been obtained by analysing the

whole set of deadlocked channels at once. By applying this algorithm to the left-most

blocked channel, the string of blue blocking channels is highlighted. This shows that an

event to the write port of the position module would solve the deadlock. This further

shows that this event should have been generated by the blue Sequence ‘;’ component,

itself blocked by the second red blocked channel. Unsurprisingly, the first blue channel

required to solve the deadlock points to the source code position at line 7: “my_pos <- 0”.

The analysis of the second red blocked channel with the same algorithm results in a

symmetric result, proving that the two red channels are deadlocked together, and that each

of them, executing code at line 5, prevents the other one from writing the required value

onto the position component – at line 7.

It has been illustrated that the algorithm suggested in this thesis can help discover

important channels for the understanding of deadlocks.

Figure 9.2: Deadlock with two lazy_guys in the corridor example

W.

||

main

posit
ion10
1#1

lazy_guy−2

posit
ion10
1#2

lazy_guy−1

FV

encode

run WriteMessage

String

run WriteMessage

String

FV

;

encode

run WriteMessage

String

run WriteMessage

String

;

−> −>−> −>
write write

read read

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 134

9.2.2 Livelock Handling

Livelocks are not usually targeted in debugging environments because they do not happen

frequently and are not hard to debug by hand. This research did not focus on debugging

these problems. However, the following discussion is useful for introducing the next

section about non-determinism handling.

Let’s put two polite_guys in the same lane and run the simulation of the circuit:

polite guy B: Somebody in front of me! Let’s move aside to let him pass

polite guy A: Somebody in front of me! Let’s move aside to let him pass

polite guy A: Still somebody in front of me! let’s move back then

polite guy B: Still somebody in front of me! let’s move back then

polite guy B: Somebody in front of me! Let’s move aside to let him pass

polite guy A: Somebody in front of me! Let’s move aside to let him pass

... <Livelock>

We notice an infinite repetition of the same output messages, suggesting a livelock. The

simulator is unfortunately not detecting livelocks automatically: It would be too

expensive to check for state repetitions continuously during the simulation. On the other

hand, livelock detection can be made by the analysis/visualisation system: In the same

way as humans detect livelocks by observing repetitions in the outputs of the circuit, the

pattern analysis tool is able to detect repetitions of patterns in the handshake circuit’s

activity trace. Figure 9.3 shows the high-level behaviour view obtained with this circuit’s

trace. A pattern repeated three times can be clearly seen. The analysis tool also detects this

pattern and indicates that a pattern of length 60100 is repeated from time 14801 to the end

of the trace - “Pattern Start = 18201, Length = 60100, 17 repetitions; Split pattern can be

followed back until time 14801/14901”. The start and end points of the first occurrence

Figure 9.3: Livelock with two polite_guys in the corridor example

<root>
balsa

main2
position110#4
position110#1
polite_guy−17
position110#3
position110#2
polite_guy−31

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 135

of the pattern are represented by two blue lines on the figure. The source code view shows

that this pattern corresponds exactly to the bodies of the two polite_guys’ main loops.

The limitation of this example is that except for the initialisation tree and the few

initialisation assignments, all the channels in the circuit are detected as being part of the

livelock, which does not help at all for the debugging. However, on larger designs, this

method is able to detect sub-circuits containing the involved channels. Manual analysis

can then be performed on these smaller domains.

9.2.3 Non-Determinism Handling

The previous livelock example was based on the assumption that both polite_guys take

exactly the same amount of time to perform their identical actions. However, this

assumption may not be true when the circuit is implemented in hardware: Process and

temperature variations, at the very least, can make delays vary, and parts of the circuit

synthesised from the same high-level description eventually show different delays.

Without any delay variations, the simulation of the previous circuit was deterministically

running forever in a simple livelock: The possible sources of non-determinism, the

Arbiter components, were always called in turn at distinct timestamps. When delay

variations are taken into account, a more complex behaviour emerges: In the same way as

a difference of speed of the human polite guys in a real corridor would eventually get them

out of synchronisation and solve their problem, different delays in the handshake circuit,

modelled here by delays with errors, show that a possible resolution of the livelock could

eventually happen.

With the handshake component delays defined as before and with an error set to 1% of

each delay, the simulation shows that in the best-case situation the livelock situation

would be lost during the sixth loop of the repeating pattern: This happens when every

delay happening on the first polite_guy’s path is 1% slower than its definition, while every

delay happening on the second polite guy’s path is 1% faster than its definition. The non-

deterministic situation corresponds to when the Arbiter defined in the Position component

has a choice between which of these two operations is to be executed first: either write the

position of the polite_guy in front to its new position or read if the position in front of the

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 136

current polite_guy is occupied or not. The former will terminate the livelock, while the

latter will let it continue until the next non-deterministic write/read choice.

The interesting thing to notice in this example is that the non-deterministic situation is

desirable to get out of the livelock problem, whereas non-determinism is usually an

unexpected behaviour leading to bugs. In all cases its early detection benefits the designer.

9.2.4 Further Pattern Analysis and Trace Compression

This section intends to show that the out-of-order simulation is particularly suited for

subsequent pattern analysis of the simulated events.

The very small one-place buffer example already used in §9.1 is used here again because

it is small enough to be able to reproduce a meaningful part of its simulation trace. The

source code of this example is available in Appendix A.2 and the corresponding

handshake circuit is reproduced in Figure 9.4. The buffer circuit with environment is used

here. It contains three threads: the buffer itself, an input thread and an output thread.

The out-of-order simulation of this circuit generates the trace file available in Appendix

A.4. In this trace, the “XXX” keyword ending each line indicates that the out-of-order

scheduler had to obtain the next event from the event queue instead of having it directly

indicated by the previously simulated component. What is called "Easy pattern analysis/

extraction" in this thesis is the ability to use these threads of events directly as patterns

and observe their repetitions.

In the present example, the following patterns are directly extracted by this method:

Pattern 1: 2-requp 31-requp 32-requp 3-requp 23-requp 24-requp 25-

requp 26-requp 27-requp 26-ackup 25-ackup 27-ackup 27-

reqdown 25-reqdown 24-ackup 24-1 26-reqdown 26-ackdown 25-

ackdown 27-ackdown 27-requp 25-requp 24-ackdown 24-requp

26-requp 1-requp

Pattern 2: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-

ackdown 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-

ackup 20-ackup 20-reqdown 21-reqdown 21-ackdown 20-ackdown

20-requp 21-requp 22-requp

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 137

Pattern 3: 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup

20-ackup 20-reqdown 21-reqdown 21-ackdown 20-ackdown 20-

requp 21-requp 19-ackup 19-reqdown 19-ackdown 13-ackup 11-

ackup 27-ackup 27-reqdown 11-reqdown 15-ackup 15-1 13-

reqdown 13-ackdown 11-ackdown 27-ackdown 27-requp 11-requp

15-ackdown 15-requp 13-requp 12-ackup 14-ackup 14-1 10-

ackup 9-ackup 9-reqdown 10-reqdown 12-reqdown 12-ackdown

14-ackdown 14-requp 10-ackdown 9-ackdown 9-requp 10-requp

12-0 18-ackup 17-ackup 2-reqdown 31-reqdown 31-ackdown 30-

ackdown 30-requp 2-ackdown

Pattern 4: 6-requp 4-requp 28-ackdown 28-requp 29-requp 31-ackup 30-

ackup 30-reqdown 2-ackup

Pattern 5: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-

ackdown 4-ackdown 6-ackdown 5-ackdown 5-requp 7-requp 8-

requp

Pattern 6: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-

ackdown 2-requp 31-requp 32-requp 32-ackup 32-reqdown 32-2

29-ackup 4-ackup 6-ackup 5-ackup 5-reqdown 7-reqdown 7-

ackdown

Figure 9.4: Handshake circuit of the one-place buffer example with its environment

env

main

x[0..7]

#

;

-> ->

i[0..25]

|

;

->

10000

.

||

do

!=_#

;

->

1

-> ->

aux:i-_#

#

DW

NA

run

9.2 Debugging Demonstrator: The Simple Corridor Problem

Chapter 9: Results and Discussion 138

Pattern 7: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-

ackdown 4-ackdown 6-ackdown 5-ackdown 5-requp 7-requp 7-

ackup

The following trace of patterns is obtained:

1@1 2@32 3@62 4@70 5@32 6@40 7@62 3@70 4@47 7@55 6@77 3@85 4@62 7@70

6@92 3@100 4@77 7@85 6@107 3@115 ...

where "x@y" means pattern x started at time y.

The livelock is visible in the pattern trace as the succession of threads 7-6-3-4, with a time

period of 15. Something interesting to notice is that during the first iterations, the threads

have not been simulated in the same order as in the rest: the succession of threads 6-7-3-4

appears at time 62.

Trace compression results

The simulation of the livelock, which is allowed to run for 10 000 iterations, led to the

generation of 7 patterns. The average length of a pattern is 24 events, and a manual

analysis of these patterns reveals that the repeating block forming the livelock consists of

exactly 4 patterns. These 4 successive patterns are repeated in the exact same order 9 999

times.

This manual analysis of a trace file representing almost a million events, reduced by such

a simple pattern analysis process, demonstrates the potential for analysis offered by these

extracted patterns.

Table 9.5 shows the sizes of the traces obtained by the different versions of the Breeze

simulator. it should be noted that none of the files make use of size-optimised notations.

The resulting compression rate is thus only a rough estimation intended to show the

applicability of the idea.

of reported items Trace size
(in bytes)

Uncompressed standard ordered trace 960 036 events 29 684 798

Table 9.5: Trace compression results

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 139

9.2.5 Discussion

The ideas and algorithms suggested in this thesis to debug deadlocks and non-

deterministic situations in a handshake circuit have been implemented and applied on a

small example. This small-scale application proved the ability of these techniques to link

the problems back to the source code. Although this experiment was applied here on a

small example, this does not mean that the illustrated results are only working on small

scale problems. Deadlock debugging has been successfully used with the large SPA

example by the author for detecting bad implementations of handshake components.

However, the amount of information and the number of steps become too large to be

clearly represented here.

Similarly, the adequacy of the out-of-order simulation trace for detecting patterns has

been exposed on a very small example, but is scalable and its direct application, the

simulation trace compression, is able to process large simulation traces such as SPA’s.

9.3 Visualisation Demonstrator: The Huge SPA
Microprocessor Core

SPA is an asynchronous ARM-compatible microprocessor core entirely described in

Balsa. As stated previously, it is the largest circuit synthesised with Balsa so far, and the

SPA description is compiled into a handshake circuit comprising around ten thousand

elements. This figure can be related to the field of graph manipulations, where graphs over

a thousand nodes are considered huge.

This section illustrates the contributions concerning the visualisation of large handshake

circuits. As said earlier, this visualisation system is oriented towards program

Uncompressed out-of-order trace 960 036 events 40 902 323

Compressed trace, file 1: pattern descriptions 7 patterns 1 208

Compressed trace, file 2: pattern trace 40 002 patterns 400 020

Compression ratio 1:75 ~ 1:100

of reported items Trace size
(in bytes)

Table 9.5: Trace compression results

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 140

comprehension, by aiming at helping the user “follow the execution of the circuit”. For

this purpose, a strategy featuring three stages has been studied:

• Merging complementary sources of information together to generate a graph

viewable at any level of detail.

• Animating the graph to highlight the control and data flows present in the circuit.

• Coordinating this graph and the various views “well-known to the designer”

together for efficient element tracking and easy navigation.

9.3.1 Merging Sources for Multiscale Graph Visualisation

The aim of this section is to show that the graph structure obtained by the merging

algorithms developed by this research is suitable for multiscale visualisation. However,

printing the structure requires the use of a layout algorithm, whose quality will impact on

the result. Fortunately, an extremely simple layout algorithm is used here. Obtaining a

good picture at different levels of detail in these conditions would therefore prove that the

visualised structure was appropriately organised. This would attest to the quality of the

merging algorithms.

The version of SPA visualised here is made of 8 118 handshake components and 13 268

handshake channels. Studies show that graphs of this size are difficult to layout [53].

Figure 9.5 shows the layout obtained after functional grouping (§7.1.1) and recursive

layout (§7.4.1). The operation of functional grouping generated 118 nested groups,

represented in the graph by rectangles, while handshake components and channels are

respectively represented by ellipses and lines. This first picture is pleasant.

Technical features are available for the manipulation of the static graph: zooming and

panning, moving components and filtering. Filtering can be observed in this figure where

long arcs are more transparent than short ones. Multiscale visualisation of the same graph

is illustrated in the series of Figures 9.5, 9.6, 9.7 and 9.8. Each level of zoom properly

shows different characteristics of the circuit. Figure 9.5 shows the global view of the

circuit, and its main components can be distinguished. Figure 9.6 shows the recursive

implementations of two modules: shift and clz (count leading zeroes). Figure 9.7 shows a

more detailed view of the decodeUnroll module and its submodules. And Figure 9.8

9.3 V
isualisation D

em
onstrator: The H

uge SPA
 M

icroprocessor Core

Chapter 9: Results and D
iscussion

141

Figure 9.5: H
uge graph layout: SPA

 - Zoom
 100%

||....

x[0..9]

#

;

-> ->

x[0..27]

#

;

-> ->

$BrzBuiltinVariable

;

||

->

.

.

W.

#

DW

.

FV

FV

FV

FV

FV

@

->

||

->

runFileWrite

StringAppend

ToStringString

@

->

&

==_#unary||

->

runFileWrite

StringAppend

ToStringString

@

->

|

inst[0..7] inst[8..11]

inst[12..21] inst[22..22] inst[23..27]

;

->||

@

->

@

->

@

->

->

inst[0..27]

;

->||

->

inst[0..27]

;

->||

->

||

->

runFileWrite

StringAppend

ToStringString

reg[0..31]reg[32..63]reg[64..95]reg[96..127] reg[128..159]reg[160..191] reg[192..223]reg[224..255]reg[256..287] reg[288..319]reg[320..351] reg[352..383]reg[384..415] reg[416..447] reg[448..479]reg[480..511]

|||| || ||| || || | ||

;

||

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

#

.

.

FV

FVFV

FV

FV

FVFVFV FV FV

FV

@

->

unary

->

runFileWrite

String

|

;

->

runFileWrite

String

@

->

|| || run

@

->

sz[0..3]

|

aborted[0..0]

|

base[0..3]

|

;

||

->

0

->

0 @

->

==_#

-> ->

do

<

;

||

@

->

unary

||

->

@

+

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringToString

+

String

ToString

StringToString

@

+

String

;

->

@

->

FV

-> ->->-> ->-> ->-> -> ->-> ->-> -> -> ->

+

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringToString

+

String

ToString

StringToString

@

+

String

@

->

==_#

FVrun

>><<

->

->

@

->

->

;

->->

aux:sz +_#

;

@

->

@

->

!=_#

@

||

->

@

run

@

->

;

->

run FileWrite

String

stop

;

->

run FileWrite

String

stop@

->

;

||

@

->

FV

-> ->->-> ->-> ->-> -> ->-> ->-> -> -> ->

->

run

FileWrite

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

|| ||

->

@

||

->

@

run ->

run FileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

String

ToString

String

ToString

String

;

->

runFileWrite

StringAppend

StringToString

stop

cycleCount[0..31]

|

fiqCount[0..31]

|

irqCount[0..31]

| pendingFiq[0..0]pendingIrq[0..0]

||

@

;

-> ->

guard &

>= ||

->

run FileWrite

String

@

;

-> ->

guard

&

>=

||

->

run FileWrite

String

;

||

->

0

->

0

->

0

#

DW

FV

|

@

->

;

->

->

run FileWrite

StringAppend

StringAppend

StringToString

String

|

;

->

->

run FileWrite

StringAppend

StringAppend

String ToString

String

;

FV

->

;

->->

aux:cycleCount +

->

run FileWrite

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

String

ToString

String

FV

->

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

->

+

FV

->

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

->

+

||

->

run FileWrite

String

||

->

run FileWrite

String

run ;

->->

aux:cycleCount+_#

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>><<

>><<

>>=<<

<<>>

<<>> <<>>

<<=>>

>><<

>><<>><<

>><<

<<>>

<<>><<>>

<<>>

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

.

.

.Enc EncEncEnc

Enc

Enc Enc

x[0..2]

#

;

->

.

x[0..31]

#

;

-> ->

x[0..0]

#

;

->

.

x[0..1]

#

;

-> ->

$BrzBuiltinVariable

;

->#

.

.

FV

->

FV

->

@

->

->

BalsaMemoryRead

FV

->

run

BalsaMemoryWrite

.

$BrzBuiltinVariable

run

;

||

->->

0

.

.

W.

#

||

DW

.

FVFV

runFV

||

->

-> ->

@

->

unary

DW

FV

->

DW

.

FV

FV

<<>>>><<

||

->

@

->

@

->

unary

|

DW

FV

->

->

0

d[0..7]d[8..15]d[16..23]d[24..31]

| | | |

#

DW

.

FVFV

FV

<<>><<>>

FV

FV

;

|

||

->

||

->

<<>>

0

@

->

;

@

->

run

@

->

;

-> ->

aux:d

42405

;

-> ->

aux:d

42405

@

->

;

-> ->

aux:d

165

42405

;

-> ->

aux:d

42405

165

;

->->

aux:d <<>>

10855845

;

-> ->

aux:d<<>>

10855845

->

runWriteMessage

String

->

DW

.

FV FV FV FV

;

@

->

->

@

->

;

->->

aux:d

;

->->

aux:d

@

->

;

->->

aux:d

;

->->

aux:d

;

-> ->

aux:d

;

->->

aux:d

||

->

run WriteMessage

String

->

||

->

->

>>=<<<<=>> <<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>>=<<>>=<<>>=<< >>=<< >>=<< >>=<<>>=<< >>=<<>>=<< >>=<< >>=<<>>=<<>>=<< >>=<< >>=<<<<>>

<<=>>

<<>>

<<=>> <<=>> <<=>> <<=>><<=>><<=>><<=>> <<=>><<=>>

>><<

>><<

.

Enc

x[0..36]

#

;

->

.

x[0..1]

#

;

->

.

adrLo[0..31]

|

adrHi[0..31]

|

cycles[0..31]

|

fiqTarget[0..31]

|

irqTarget[0..31]

| fiqPending[0..0]irqPending[0..0]$BrzBuiltinVariable

$BrzBuiltinVariable

$BrzBuiltinVariable

$BrzBuiltinVariable

abtType[0..0]

abtType[1..1]

| |

>><< >><< routeNum[0..7]

|

r[0..2]

|

;

||

->

0

->

0

->

0

->

0

->

0

->

0

FV

->

||

->

run WriteMessage

StringAppend

String

->

FileOpen

1

FV

->

||

->

runFileWrite

StringAppend

StringAppend

String

String

->

FileOpen

2

FV

->

$BrzBuiltinVariable$BrzBuiltinVariabled[0..31]

a[0..29]

|

;

->

0

->

BalsaMemoryNew

->

FileOpen

0

do

unary

FileEOF

;

->

FileReadLine

->

NumberFromString

16

->

run BalsaMemoryWrite

->->

aux:a +_#

->

run FileClose

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

-_#

String

String

FV

->

$BrzBuiltinVariable

$BrzBuiltinVariable

r[0..2]

r[3..34]

r[35..66]

;

->

runFileWrite

StringAppend

StringAppend

String

String

->

BalsaMemoryNew

->

FileOpen

0

do

unary

FileEOF

;

->

FileReadLine

->

FromString

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

String NumberToString

160 1

String

NumberToString

160 1

String

ToString

String

ToString

String

String

->

run BalsaMemoryWrite

-> ->

aux:routeNum+_#

->

run BalsaMemoryWrite

<<>>

147573952555316674561

->

run FileClose

->

runFileWrite

String

||

->

.

.

.

W.

#

DW

.

FV FV

FV

FV

.

run

FV

run FV

;

||

->

0

do

==_# ;

->

BalsaMemoryRead

.

runFV

FV FV

@

->

&

>= <=

@

->

|

|

!=_#&

&

unary

->

-> ->

aux:routeNum+_#

->

||

.

@

->

|

||

->

8<

unary

->

&_#-_#

&_#

->

-_#

FV

->

->

runBalsaMemoryWrite

#

.

.

FV

->

FV

->

FV

FV

FV

FV

FV

<<>> <<>>

->

;

->->

aux:cycles +_#

||

@

;

-> ->

guard

&

>=

||

->

runFileWrite

String

@

;

-> ->

guard

&

>=

||

->

runFileWrite

String

||

->

FV

;

||

@

->

unary

->-> ->

->

@

->

|

|

|

|

|

||

->

<<>>

0

->

<<>>

0

@

->

||

FV

->

||

->

@

->

||

->

runFileWrite

String

||

->

run FileWrite

String

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

String ToString

String

->

+

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

String ToString

String

->

+

->

runFileWrite

StringAppend

StringAppend

String NumberToString

16 0 1

String

||

->

<<>>

0

->

<<>>

0

@

->

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

-> ->

||

->

runFileWrite

String

NA

->

run

||

->

<<>>

0

->

<<>>

0

@

->

||

FV

->

||

->

@

->

|

||

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringNumberToString

16 0 1

String

NumberToString

16 01

String

->->

1537

||

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringNumberToString

16 0 1

String

NumberToString

16 01

String

->->

1537

||

->

runFileWrite

StringAppend

StringAppend

String NumberToString

160 1

String

->

1536

+_#

->

runFileWrite

StringAppend

StringAppend

StringNumberToString

16 01

String

@

->

unary

.

FV

FV

<<>>

>><<

->

||

->

@

->

||

->

runFileWrite

StringAppend

StringAppend

StringToString

String

->

<<>>

1

->

<<>>

1

@

->

|

==_#==_#;

->

run FileWrite

String

stop

||

$BrzBuiltinVariable

|

;

@

->

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

Chr

->

runFileWrite

StringAppend

StringAppend

String

String

->

run FileWrite

Chr

->

<<>>

0

->

<<>>

0

||

->

runFileWrite

StringAppend

StringAppend

StringToString

String

->

<<>>

1

->

<<>>

1

||

->

run FileWrite

String

->

<<>>

1

->

<<>>

1

||

->

run FileWrite

StringAppend

StringAppend

StringNumberToString

16 0 1

String ->

<<>>

1

->

<<>>

1

@

->

||

FV

->

->

@

->

||

->

FV

||

->->

@

->

FV

->

||

->->

FV

->

||

->->||

->

run FileWrite

String

->

<<>>

1

->

<<>>

1

@

->

||

FV

->

->

->

runFileWrite

StringAppend

StringAppend

StringToString

String

.

.

NA NA NANA NA NA

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

<<>>

<<>><<=>>

>><<

>><<

>>=<<

>><<

>><<>><<

>><<

>><<

>>=<<

>><<

<<>>

<<>>

<<=>>

>><<

>>=<<

.

.

.

Enc Enc

EncEnc

Enc

Enc Enc

s[0..0] s[1..1]

||

;

||

->

0

->

0

#

DW

Arb

FV

FV

|

@

;

-> ->

guard!=

||

->

@

->

unary->

@

;

->->

guard

!=

||

->

@

->

unary

-> s[0..0] s[1..1]

||

;

||

->

0

->

0

#

DW

Arb

FV

FV

|

@

;

-> ->

guard!=

||

->

@

->

unary->

@

;

->->

guard

!=

||

->

@

->

unary

->

locked[0..0]

side[0..0]

pendingFlag[0..0]

pendingAccess[0..1]

pendingAccess[2..2]pendingAccess[3..3]run

pendingAccess[5..36]$BrzBuiltinVariable

;

||

->

#

DW

Arb

.

FV

FVFV

FV

FV

.

FV

FV

FV

FV

FV |

|

|| |

|

|

;

||

;

->

&

@

->

unary ->->

->

.

FV

FV

<<>>

>><<

->

||

@

;

-> ->

guard

|

&

&

unary

unary

&

|

unary

->

@

->->

guard

&

unary

||

->

0

@

->

->

->->

@

->

||

->

run FileWrite

String

->

||

;

->

&

unary

@

->

->

->->

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

<<>>

<<>>

<<=>>

>><<

>><<

>>=<<

Enc EncEnc

Enc

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

| |||FV

->

||

-> ->

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

|||

|

|||

|

.

FV

FV

FV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

< ;

||

@

->

->->

@

->

==_#

.

FVFV

<<>> >><<

->

||

->

->

@

->

->

;

-> ->

aux:sz+_#

run

run

>><<

>><<

>><<

>>=<<

<<>>

<<>><<>>

<<=>>

||

NA

->

run

->

128

#

FV@

->

|

#

FV@

->

run run run runrunrun run

. .

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

shouldFiq[0..0]

|

shouldIrq[0..0]

|

shouldBranch[0..0]

halted[0..0]

|

waiting[0..0]

Pc[0..31]

|

Colour[0..0]

|

Mode[0..6]

Mode[7..7]Mode[8..8]

| |

|

newMode[0..8]

|

;

||

->

0

->

0

->

403

->

0

->

1

W.

#

DW

Arb

FV FV

|

->

<<>>

2

->

<<>>

3

#

DW

Arb

FV

FV

|

->

->

<<>>

1

#

;

DW

Arb

.

FV

FV

>><<

@

->

-> ->

||

->

-> ->

->

unary

@

-> ->

guard

&

|

|

unary

||

@

;

-> ->

guard

|

||

;

||

->

1

18

->

1

18

->

;

||

->

401

->

401

->

||

@

->

|

|

-> ->->

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<<<>>

<<=>>

Enc

Enc

Enc

Enc

Enc

Pc[0..1]Pc[2..31]

<<>>| |

>><<>><<

nextPc[0..31]

| Colour[0..0]

Mode[0..4]Mode[5..6]Mode[7..7]Mode[8..8]

| || |nextMode[0..6]

nextMode[7..7]nextMode[8..8]

| |

|

Instr[0..31]

|

Seq[0..0]

|

nextSeq[0..0]exception[0..0]

fT[0..2]

W.

.

.

.

.

#

;

||

FV

->

||

->

@

->

->run

@

->

||

->->

0

run

@

->

|

->-> run

@

->

||

->

@

->

==_#

||

->

<<>>

1 !=_#

->

6

FVrun

>><<

->

@

->

|

||

->

1

23

->

12NA

->

run

FV

->

||

->

-> ->

+_#

<<>>

0

run

||

->

@

->

!=_#

||

->->;

@

->

|

->

1

8

->

->

;

->

->

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<< <<>>

<<=>>

>><<

>><< >>=<<

>><<

>><< >>=<<<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>> <<>>

Enc EncEnc

#

DW

.

FVFV

->

+

#

||

DW

FV

->

DW

FV

->

DW

.

FV FV FV

@

->

!=_#

|

|

|

|

|

|

| ||

||

-> ->->

->->

instr[0..3] instr[4..7]instr[8..11] instr[12..15]instr[16..19]

instr[20..27]

instr[28..28] instr[29..31]

<<>> <<>> <<>>

;

FV

->

->

||

NA

->

run

NA

->

run

NA

->

run

->

->

8

->

==_#==_#

==_#

->

->

==_#

DW

FV

->

DW

.

FV

FV

||

.

@

->

||

->

@

->

DW

FV

->

A

!=_#

.

FV FV

<<>> >><<

->

@

->

|

||

@

->

->

->

||

->

26

->

@

->

FV

->

@

->

&

==_# ==_#

DW

FV

@

->

|

@

->

->

@

->

==_#

->

->

#

inst[0..14]

;

DW

FV

->@

->

<<>>

<<>>

<<>>

<<>>

<<=>>

>><<

>><<

>><<

>>=<< <<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

>>=<<

<<>>

<<=>>

<<>>

<<=>>Enc

Enc Enc

Enc

Enc

1

2

0

0

unary

|

unaryunary

<<>><<>> <<>>

<<=>>

4608 7

<<>>

<<>> <<>>

2878 0

0<<>>

<<>> <<>>

.

Enc

50331648

163

2 15unary

<<>><<>> <<>> 020

0

<<>><<>>

5

A

<<>>

<<>>

<<=>>

46

00

0

<<>>

<<>> <<>>

864

0 0

2

<<>>

<<>> <<>>

<<=>>

34

0

0

unary

&

@

<<>>

<<>> <<>>

<<=>>

15

000

0

<<>>

<<>> <<>>

864 0

<<>>

<<>> <<>>

2 7102

unary

<<>>

<<>> <<>>

<<=>>

9727 0

1

unary

<<>>

<<>> <<>>

<<=>>

10494

<<>>

14000

11

0

<<>><<>>

<<=>>

78

00<<>> 5

A

<<>>

<<>>

<<=>>

12

0 01

2|

unary

|

|<<>>

<<>> <<>>

<<>><<=>>

0

0

2

0

0

unary

<<>><<>> <<>>

<<=>>

4 1 13 0

&

unary

& unary

<<>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

<<=>><<=>>

0 0

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

unary |

<<>>

<<>> <<>>

<<=>>

20988

<<>>

44

26

00<<>><<>>

20

18

<<>><<>>

983040

<<>>

44

0 0

0

0<<>>

<<>> <<>>

#

inst[0..0]inst[1..5]

inst[6..7]

inst[8..11] inst[12..12] inst[13..15]

;

DW

FV

->||

->

!=_#

->->

DW

.

FV

FV

->

<<>>

#

DW

.

FV

FV

||

@

->

@

->

@

->

@

->

#

DW

FV

@

->

#

inst[0..3]

;

DW

FV

->

DW

FV@

->

|

->

#

inst[0..11]

;

DW

FV

->

@

->

#

inst[0..0] inst[1..1]inst[2..2]inst[3..3] inst[4..4]inst[5..5] inst[6..6] inst[7..7] inst[8..8] inst[9..9]inst[10..10]inst[11..11] inst[12..12]

;

DW

FV

->

DW

FV

@

->

|

-> ->->->-> ->-> ->->->-> -> ->-> -> -> ->->-> ->->-> ->-> ->-> ->

>>=<< <<=>> <<=>><<=>>

<<=>>

<<=>> <<=>><<=>> <<=>><<=>>

<<>>

<<>>

<<=>><<=>>

<<>>

<<>>

<<>><<>>

<<=>><<=>>

<<>>

<<>>

<<>><<=>>

<<=>>

<<=>>

<<=>>

<<>><<=>>

<<=>>

<<>>

<<=>>

<<=>>

<<=>>

<<=>>

<<>>

<<=>><<=>><<=>> <<=>>

<<>>

<<>>

<<>>

<<=>>

<<=>>

<<=>>

<<>>

<<>> <<>>

<<=>> <<=>><<=>>

<<>>

<<=>> <<=>>

<<>> <<>>

<<=>><<=>>

<<>><<>>

<<=>>

<<=>><<=>><<=>>

>><<

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>><<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

Enc

Enc

Enc Enc

. .. .

#

DW

.

FV

FV FV

@

->

!=_#

| ||

|| | |

| | |

||

->

26

->

0

->

0

->

->

->->

.

.

FV

->

FV FV

FV <<>><<>>

->

FV

FV

>><<

->

||

;

||

@

->

unary

||

->-> ->->->

||

-> ->

|_# ->

|_#

->

->

;

| || |

@

->

unary

||

FV

->

->

FV

->

->

FV

->

->

FV

->

->

||

FV

->

->

FV

->

->

FV

->

->

FV

->

->

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>> >>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..0]tmp[1..15]

<<>> | |

>><< >><<_tmp[0..15]

count[0..5]

|_count[0..5]

;

||

->

0

->

do

!=_# ;

||

->

A

->

+_# @

-> ->

A

||

-> ->

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->.

.

FVFV FV FV

FV

FV

FV

->

A|

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..9]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->. x[0..2]

#

;

->

.

#

V[0..2]

DW

->.

x[0..3]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3] tmp[4..7]

>><<

;

. .

||

-> ->

.

.

FV

->

FV

->

->

+

.

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]tmp[4..7]

>><<

;

..

||

->->

.

.

FV

->

FV

->

->

+

.

tmp[0..7]tmp[8..15]

>><<

;

->||

->->

.

.

FV FV

->

+

..

.

. .

.

#

#

#

Type[0..4]

RegUse[0..4]

Registers[0..4]

Registers[5..9]Registers[10..14]Registers[15..19]

Registers[20..24]

Registers[25..29]||

| |

Extras[0..2]

Extras[3..3]Extras[4..4]

Extras[5..5] Extras[6..6]

run

Extras[22..22] Extras[23..23]

Extras[24..24]

Extras[25..25]Extras[26..26]Extras[27..31]

Extras[32..32]Instr[0..3]Instr[4..4]

Instr[5..9]

Instr[10..13]Instr[14..17]

Instr[18..25] Instr[26..29]

Instr[30..30]Instr[31..31]

Instr[32..33]

Instr[34..34] Instr[35..35]

Instr[36..38]

Instr[39..39]Instr[40..40] Instr[41..41]

Instr[42..43]

Instr[44..46]

Instr[47..47]

Instr[48..51] Instr[52..83]| |||

|

|

||

|

|

|

||

->

1

->

<<>>

->

<<>>

->

<<>>

->

<<>> ->

<<>>

->

<<>>

||

->

->

<<>>

;

||

DW

FV

||

->

@

->

DW

.

run FV FVrun FV

||

->

@

->

==_#

->

run

@

->

DW

.

FV FV

FV

||

->

@

->

==_#

->

run

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

@

->

|

|

| |

numRegs[0..4]

|

_numRegs[0..4]

inc[0..4]

|

_inc[0..4]

|

rE[0..4]

loadUsedTemp[0..0]

FV

;

||

@

->

&

!=_#

;

->

A

||

->

@

->

<<>>

-> ->

-_#

||

do

!=_#;

||

->

-_#

@

->

->

+_#

->

-_#

->

A

@

;

->->

guard

|

&

&

&

&

==

!=_#

!=_#

unary

&

|

&

==_#

&

&

!=_#!=_#

|

==_#==_#

|| unary

->->

||

-> ->;

@

->

==_#

||

@

->

&

@

;

->->

guard

|

run->

1

->

@

->

&

!=_#

|

||

Remaining[0..4]

|

_Remaining[0..4]

WBWs[0..4]->

22

|

;

||

->

0

->

FV

do

<

A

;

||

->

+_#

||

->

4

->

A@

-> ->

1

->

@

->

;

||

->

0

-> ->

30

||

;

||

||

->

0

->

0

->

|| ||

>><<

<<>>

<<>>

<<>>

<<=>>>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><< >><<

>><<

>><<

>><< >><< >><<

>><< >><<>>=<< >>=<<>>=<<

>>=<<

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<=>> <<=>><<=>>

<<=>>

>><<

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

. .

.

Enc

Enc

EncEnc

Enc

Enc

Enc

<<>>

A

A

1

<<>>

<<=>>

unary

<<>>

A

@ <<>>

0<<>>

unary

A

A

<<>>

<<=>>

<<=>>

|

unary

A

<<>>

@ <<>>

<<>>

A

<<>>

<<=>>

&

unary

<<>>

&

unary

&

&

unary

&

A

<<>>

@ <<>> <<=>>

<<>>

A

A

<<>>

==_#

A

<<>>

A

@ <<>>

AA @A

<<>><<>> <<>>

<<>>

&

unary

A

<<>>

<<>> @

A

<<>> <<>>

AA

#

DW

.

FV

FV

FV

FV

FV

FV FV FVFV FV FV

FV FV

FV

FV FV

FV FVFV FV FV

FV

FV

FV

||

->

|

@

->

@

->

==_#

-> |

@

->

&

==_#

->

|

@

->

|

@

->

->

|

@

->

@

->

->

|

->

18

@

->

->

|

->

@

->

||

@

->

|

@

->

@

->

->

|

->

@

->

| |

@

->

@

->

|

@

->

@

->

|

-> ->

@

->

||

@

->

|

@

->

@

->

@

->

|

@

->

==_#@

->

@

->

couldChange[0..2]

;

@

->

| | ||

->->

|

-> -> ->

->

@

->

FV

->

run

@

->

-> run

Cond[0..3]Mode[0..8]

Type[0..3]

ShiftDist[0..4]

|

ShiftSrc[0..0]

ShiftCls[0..1]

|

AluOp[0..3]

|

Clz[0..0]FetchUsed[0..0] AdrPostPre[0..0]

|

RorW[0..0]

|

Size[0..1]

Lock[0..0] Seq[0..0]Rotate[0..0] Extend[0..0]

|

MemMode[0..0]

run

Xchange[0..1]

MultSigned[0..0] MultLength[0..0]SetFlags[0..0]

| PsrMask[0..3]

Imm[0..31]

|

->

-> ->

->

->

0

->

0

;

.

..

||

@

->

|

@

->

==_#

-> ->

@

->

||

||

->

0

->

1

||

->-> .

.

FV

->

FV

->

FV

->

->

-> ->

0

@

->

->

@

->

->-> ->

1

@

->

@

->

| |

@

->

|

@

->

==_# @

->

==_#

->->

@

->

@

->

->

@

->

->

@

->

|

@

->

@

->

@

->

@

->

|

@

->

@

->

| |

@

->

-> ->

0

@

->

@

->

==_#

@

->

|

@

->

@

->

@

->

-> -> -> ->

@

->

->

||

@

->

==_#

|

->

0

->

DW

FV

->

A

0

@

->

|

@

->

==_#

->

->

11

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<=>><<=>> <<=>>

<<>>

<<>>

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>>=<<>>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<>> <<>>

<<=>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

<<>> <<>>

<<>>

<<>>

<<>><<>>

<<>>

<<>><<>>

<<>> <<=>><<=>>

<<=>>

<<>><<>>

<<=>>

<<>><<>>

<<=>>

<<>>

<<>><<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

>><<

>>=<<

.

Enc

Enc

Enc

EncEnc

Enc

Enc

EncEnc Enc

EncEnc

Enc

Enc

Enc

Enc

EncEncEnc

Enc

Enc

Enc

.

LR[0..31]

.

#

DW

FV

;

|

| |

||

-> DW

FV

-> FV

->

->

||

->DW

FV

->

->

FV

-> -> >><<>><<

>><<>><<

>><<

x[0..0]

#

;

-> .

x[0..0]

#

;

-> ->

mode[0..4]

mode[5..6] mode[7..8]

run

target[1..1]

target[2..31]

#

;

||

->

||

-> ->

0 &

|

==_# ==_#

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

<<>>

<<=>>

.

spsrData[0..12]spsrData[13..25] spsrData[26..38]spsrData[39..51]spsrData[52..64]spsrData[65..77] spsrData[78..90]spsrData[91..103]spsrData[104..116] spsrData[117..129]spsrData[130..142]spsrData[143..155] spsrData[156..168]spsrData[169..181]spsrData[182..194]spsrData[195..207]

|| |||| ||| ||| ||||

Go[0..0]

;

||

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

#

;

||

FV

->

->

@

A ->@

->

FV

->

->

@

->

FV

-> -> -> ->-> -> ->-> -> ->-> -> ->

->

-> ->

A

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

data[0..31] data[32..63]data[64..95] data[96..127] data[128..159]data[160..191]data[192..223]data[224..255]data[256..287] data[288..319] data[320..351]data[352..383]data[384..415]data[416..447]data[448..479] data[480..511]data[512..543]data[544..575] data[576..607]data[608..639] data[640..671] data[672..703]data[704..735]data[736..767]data[768..799] data[800..831]data[832..863]data[864..895]data[896..927]data[928..959]data[960..991]

data[992..1023]

| || | ||||| | ||||| ||| || | |||| |||||||

Go[0..0]

;

||

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

W.

#

;

->||

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

@

->

;

FV

@

->

FV

->

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> -> ->->

->

->->

A

run

FV

@

->

FV

->

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> -> ->

->

-> ->->

A

run

FV

@

->

;

-> ->

aux

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> ->

->

->-> ->->

A

run . .

....

. ..

unaryunary

C[0..0]

|

F[0..0] F[1..1] F[2..2]F[3..3]

| |||

M[0..8]

|

B[0..0] B[1..1] B[2..2]

lastPassed[0..0]

|

;

||

->

1

->

403

->

0

#

;

||

->

->

->

->

.

FV

FV

FV

->

@

->

==

||

.

@

->

|

->

1

->

&

unary==

->

==

->

&

unary

-> -> -> ->

FV

->

->

^

->

0

||

->

@

->

||

@

->

->

@

->

->

@

->

->

>><<

>><<

>>=<<

>>=<< >>=<<

<<=>>

x[0..9]

#

;

->

.

x[0..0]

#

;

-> ->

x[0..3]

#

;

->

.

8<

8<8< 8<

8<

8<0

0

==_#

==_#

8<

8<8< 8<

8<

8< 0

0

==_#

==_#

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

x[0..9]

#

;

-> ->

$BrzBuiltinVariable

;

->

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.. . .

.

. ..

.

..

.

.

.. ..

W.

#

flags[0..0] flags[1..1]

flags[2..3]

colour[0..0]

oldMode[0..8] currentSpsr[0..12]

execPasses[0..0]

PcA[0..31]

LrA[0..31]

runInstr[5..13]Instr[14..17]Instr[18..22]

Instr[23..23] Instr[24..25]

Instr[26..29]

Instr[30..30]Instr[31..31]

Instr[32..38]

Instr[39..39]Instr[40..40] Instr[41..41]

Instr[42..43]

Instr[44..44]Instr[45..45]Instr[46..46]Instr[47..47]

Instr[48..51]

Instr[52..83]

Registers[0..5]Registers[6..11]

Registers[12..17] Registers[18..23]

Registers[24..29]Registers[30..35]Changability[0..2]

;

.

||

DW

FV

->

DW

FV

->

->-> -> ->->->

->

->

->

->

->->

.

runFV run

FV

run

FV

runFV

run

->

||

->

FV

->

||

->

@

->

==_#

|

->

0

->

@

->

&

|

|

==_#==_#

==_#

||

.

@

->

run

.

.

FV

FV

FV

FV

->

||

->

@

->

|

->

1

->

0

0

0

||

$BrzBuiltinVariable

|

;

@

->

==_#

@

->

unary

->

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

->

String

@

->

unary

->

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

->

String

-> ->

aux:strStringAppend

StringAppend

StringAppend

String

ToString

String

->

runFileWrite

@

->

&

!=_#

||

->

!=_#

@

->

!=_#

->

->->->

->

->

->

-> ->

->

-> ->

-> ->

->

->

-> ->-> ->->

-> ->

->->

#

newFlags[0..1]

newFlags[2..2] newFlags[3..3]

||

|

;

.

.

FVrun

>><<

->

FV

FV FV

->

run

FV

>><<

->

run

FV

>><<

->

FV

run

>><<

->

run

FV

>><<

->

FV

->

FV

->

FV

->

run

FV

>><<

->

FV

->

FV

->

FV

->

;

->

@

->

->

@

->

@

->

@

->

->

run

@

->

&

==_# unary

@

->

@

->

unary

|

==_#==_#

->

@

;

->->

guard

|

@

->

||

->->

->run

==_#

@

->

@

->

unary

|

==_# ==_#

->

@

->

==_#

->

run

FVrun

>><<

->

@

->

->

#

newColour[0..0]

|

->

16

|

->

1|

;

.

.

FV

run

>><<

->

FV

->

FVFV

<<>>>><<

->

FV

run

>><<

->

FV

FV

->

FV

run

>><<

->

FV

->

FV FV

->

FV

->

FV

->

->

->

<<>>

0

->

->->

||

->

->

;

->

@

->

||

||

@

->

|

@

->

@

->

&

!=_#

||

@

;

-> ->

guard

|

==_#|| &

==_#unary

||

@

->

==_#

|||| ||

runFV

>><<

->

@

->

->

#

newMode[0..4] newMode[5..6]newMode[7..7]newMode[8..8]

| | ||

;

.

.

FV

run

>><<

->

FV

run

>><<

->

FVFV

FV FVFV

run

<<>>

->

FV

->

FVFV FVFV

->

FV

run

>><<

->

FV

->

FV

->

FV

FV

run

>><<

->

FV

->

FV

->

FV

->run

FV

>><<

->

;

->

@

->

->

1

23

@

->

@

->

@

->

&

!=_#||

->->

->

@

->

run

@

;

->->

guard

|

==_#

->

&

==_# unary@

->

@

->

unary

|

==_# ==_#

->

@

->

->

1

->

0

@

->

->

1

->

0

@

->

==_#

@

->

&

unary

|

==_# ==_#

->

->

@

->

|

|

&

==_#==_#

&

&

==_#

unary

==_#

&

&

==_# unary

->

1

->

0

->

run run

||

runFV run

->

@

->

->

FV

@

->

->

#

.

.

FV

-> FV

->

FV

->

FV

FV

->

FV

->

@

->

|

-> ->

.

->

.

<<>>

->

FV

->

->

->

0

#

.

.

FV

FV

->

FV

@

->

|

->

FV

->

->

->

A

#

.

.

FV

->

FV

->

@

->

|

->

FV

->

->

->

0

#

.

.

FV

->

FV

->

FV

@

->

|

-> ->->

FV

->

->

->

0

#

.

.

FV

->

FV

-> @

->

==_#

->

#

.

.

FV

->

FV

FV

->

@

->

&

==_#->

#

.

.

FV

run

>><<

->

FV

->

FV

->

FV

->

FV

->

FV

->

FV

->

|

||

->->

|

||

->

@

->

@

->

||

@

->

@

->

&

!=_#

#

.

.

FV

run

>><<

->

FV

->

FV

->

->

62|

||

-> ->

@

->

|

@

->

#

.

.

FV run

>><<

->

FV

->

FV

->

FV

->

FV

->

->

62 |

->

@

->

|

@

->

@

->

@

->

&

==_# unary

#

.

.

FV

run

>><<

->

FV

FV

FVFV

run FV

->

FV

->

FV

FV

>><<

->

FVFV

>><<

->

FV

->

FV runFV

->

FV

->

FV

->

->

<<>> |

->

|

||

|

@

->

||

->

@

->

|

|

@

->

tempPsr[0..8]

tempPsr[9..12]

<<>> |

;

||

.

@

->

|

->

@

->

->

1

->

0

.

FV

FV

FVFV

->

->

FV

->

@

->

->->

||

->

||

<<>>

<<>><<=>>

>><<

>><<

>>=<<

<<>>

<<>><<=>>

<<>>

<<>><<=>>

>><<

>><<

<<>>

<<=>>

>><<

>><<>><<

>>=<<

>>=<<

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<=>>

>><<

>><< >>=<<

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

>><<

>><<

>><<

>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<< <<>>

<<>><<=>>

<<>>

<<>><<=>>

>><<

>>=<<

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<<<>>

<<=>>

<<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<=>>

>><<

>>=<<

>><<

>><<

>><<

>><<

>><< >><<

>>=<<>>=<<

>><<

>><<

>><<

>><<

>><<

>><<>><<

>><<

>><<

>><<

>><<

>><< >><<

>>=<<

>>=<<>>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>> <<=>>

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

....

Enc

Enc

Enc

Enc

Enc

.

.

FV FVFV

||

->

^

^

->

|

|

& &&

. ..

a[0..0]a[1..31]

<<>>| |

>><<>><< b[0..31]

nZero[0..0]

|

;

||

->

0

#

DW

FV

||

->

;

->

unary

||

;

->

<<>>

->

;

-> ->

aux:nZero

|

Enc

a[0..0]a[1..30]

| |

>><< >><<

b[0..30] t[0..0]

#

DW

FV

;

||

->->

<<>>

0

->

->

->

a[0..0]a[1..31]

| |

>><< >><<

b[0..31] t[0..0]

#

DW

FV

;

||

->->

<<>>

0

->

->

->

first[0..0] last[0..0]

ki[0..4] ko[0..4]

|

->

->

==_#

->

==_#

s[0..32]

|

_s[0..32]

c[0..32]

|_c[0..32]

A[0..31]

;

||

->

0

->

31

||

|

| |

;

|

W.

#

.

FV

FV

FV

->

@

->

| |

| | | | ||

||

-> ->->

FV

->

->

A

->

1

||

;

||

->

->

.

.

FV

FV

>><<

->

FV

FV

>><<

->

||

->

|

&&

unary

@

->

|

-> ->

A

do

|

!=_#

||

;

||

->

.

.

FV

FV

FV

>><<

||

->

<<>>

->

->

;

||

->

->

;

||

->

-_#

FV

->

<<>>

^

&

A

<<>>

A

& &

unary

&

|

||

@

;

-> ->

guard!=_#

||

;

||

->

A

->

A

.

FV FV

<<>>>><<

FV

||

-> ->

0

<<=>>

<<>>

<<=>>

>>=<<

.

.

.

.

.

.

#

DW

FVFV |

-> ->

#

DW

.

FV

FVFV

.

.

.

.

||

FV

->

@

->

|

->

unary

->

FV

->

@

->

|

->

unary

->

FV

->

@

->

|

->->

.

.

FV

FV

<<>><<>> <<>>

>><<

->

FVFV

<<>><<>> <<>>>><<

->

FV

->

||

@

->

|

->

0 &

->

0 |

->

0 ^

->

0

->

+

->

<<>>

.

.

run FV FV FV

<<>> <<>>

-> FV

FV

>><<

.

||

->

@

->

|

->

^

^

^

->

FV

->

->

==_#

<<=>>

>><<

>><< >>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<>><<=>>

<<>>

<<>>

<<>>

<<>>

>>=<<

.

Enc

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

DW

.

FV FV FV

FV

FV FVFV FVFV FVFV

<<>> | || |

||

@

->

unary

->

->

->

->

<<>>

@

->

unary

||

->

@

->

unary

|| ||

@

->

unary||

||

->

0

->

0

->

4

->

3

<<>>

<<>>

>><<

>><< >><<

>><< >>=<<>>=<<

<<>>

<<=>>

Enc Enc

Enc

#

.

.

FV

->

FV

FV

>><<

->

->

|

@

->

|

|

||

->

<<>>

0.

FV

FV

<<>>

>><<

->

||

->

@

->

&

unary

->

#

.

.

FV

FV

FVFV

FV

FV

FV FV

->

FV

FV

>><<

->

||

.

@

->

&

==_#

|

->

0

->

FV

->

->

->

<<>>@

->

unary

.

FV FV

FV

->

@

->

|

-> ->->

.

FV

FV

<<>>

>><<

->

||

->

@

->

.

FV

FVFVFV

->

@

->

run

@

->

|

&

&

==_#

!=_#

!=_#

|

||

.

@

->

|

->-> -> ->

.

FVFV

FV

FV

FV

->

@

->

@

->

&

->

16777215

->

0

@

->

&

->

65535

->

0

->

->

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<>>

<<>>

>>=<<

<<=>><<=>> <<=>> <<=>><<=>>

<<=>>

>><<

>>=<<<<=>>

<<>>

<<=>>

<<>>

<<>> <<>>

<<=>>

>><<

>><<

>>=<<

#

.

.

FV

FV FV FV

->

FV FVFVFV

->

@

;

-> ->

guard

|

|

&

unary unary

-> ->

->

&

<<=>>

<<=>> >>=<<

>>=<<

<<=>>

.

.

FV

->

FV FV FV

->

FV

->

FV

->

FV

||

@

;

->->

guard

|

==_#

->

unary ->

->

@

->

unary

->

@

->

-> ->->

>><<

>><<

<<>>

<<>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

. .

.

.

FV

->

FVFV

FV

FVFV

->

FV

->

FV

->

FV

||

@

;

->->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>>=<<>>=<<

<<>>

<<>>

<<=>><<=>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

.

. .

.

.

FV

->

FV

FVFV

FV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

.

. .

.

.

FV

->

FV

FVFV

FV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

.

||

. .

. .

.

.

FV

->

FV

FVFV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->@

->

->->

A

->

A

>><<

>><<

>>=<<

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

.

FV

->

->

unary

.

FV

FV

>><<

->

->

unary FV

||

.

@

->

|

->

->

FV

->

<<>>

&

unary

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

#

DW

.

FV FV FVFV FV

FV

FV

|

|

|

|

||

FV

->

A->

@

->

.. . -> -> ->-> ->

->

runFV

>><<

->

@

->

|

-> ->

0

||

->->

.

.

FV

->

FVFVFV

->

||

@

->

->->->

A

->

0

run

@

->

-> ->

0

->run

>><<

>><<

<<>>

<<>>

<<>>

<<=>>

>><<

>>=<<

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

.

.

. .

..

.

.

. .

.

. .

W.

>><<>><<

$BrzBuiltinVariable

;

->

..

.

W.

.

>><<

$BrzBuiltinVariable

;

->W.

..

>><<

.

W.

...

>><<>><<

.

.. .. .

.

||

.

Arb>><<

spaValidation

validationCopro

chain

spaMemory

BalsaMemory

memIntArb

cpSteer

spaHarvard

fetch
fetchSourceArb

decode

adder

decodeClassify

decodeDecompressThumbInner

decodeUnroll

decodeUnravel

execute

branchBufferregisters

execControl

multiply

alu

shift

9.3 V
isualisation D

em
onstrator: The H

uge SPA
 M

icroprocessor Core

Chapter 9: Results and D
iscussion

142

Figure 9.6: H
uge graph layout: SPA

 - Zoom
 250%

||....

x[0..9]

#

;

-> ->

x[0..27]

#

;

-> ->

$BrzBuiltinVariable

;

||

->

.

.

W.

#

DW

.

FV

FV

FV

FV

FV

@

->

||

->

runFileWrite

StringAppend

ToStringString

@

->

&

==_#unary||

->

runFileWrite

StringAppend

ToStringString

@

->

|

inst[0..7] inst[8..11]

inst[12..21] inst[22..22] inst[23..27]

;

->||

@

->

@

->

@

->

->

inst[0..27]

;

->||

->

inst[0..27]

;

->||

->

||

->

runFileWrite

StringAppend

ToStringString

reg[0..31]reg[32..63]reg[64..95]reg[96..127] reg[128..159]reg[160..191] reg[192..223]reg[224..255]reg[256..287] reg[288..319]reg[320..351] reg[352..383]reg[384..415] reg[416..447] reg[448..479]reg[480..511]

|||| || ||| || || | ||

;

||

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

#

.

.

FV

FVFV

FV

FV

FVFVFV FV FV

FV

@

->

unary

->

runFileWrite

String

|

;

->

runFileWrite

String

@

->

|| || run

@

->

sz[0..3]

|

aborted[0..0]

|

base[0..3]

|

;

||

->

0

->

0 @

->

==_#

-> ->

do

<

;

||

@

->

unary

||

->

@

+

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringToString

+

String

ToString

StringToString

@

+

String

;

->

@

->

FV

-> ->->-> ->-> ->-> -> ->-> ->-> -> -> ->

+

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringToString

+

String

ToString

StringToString

@

+

String

@

->

==_#

FVrun

>><<

->

->

@

->

->

;

->->

aux:sz +_#

;

@

->

@

->

!=_#

@

||

->

@

run

@

->

;

->

run FileWrite

String

stop

;

->

run FileWrite

String

stop@

->

;

||

@

->

FV

-> ->->-> ->-> ->-> -> ->-> ->-> -> -> ->

->

run

FileWrite

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

|| ||

->

@

||

->

@

run ->

run FileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

String

ToString

String

ToString

String

;

->

runFileWrite

StringAppend

StringToString

stop

cycleCount[0..31]

|

fiqCount[0..31]

|

irqCount[0..31]

| pendingFiq[0..0]pendingIrq[0..0]

||

@

;

-> ->

guard &

>= ||

->

run FileWrite

String

@

;

-> ->

guard

&

>=

||

->

run FileWrite

String

;

||

->

0

->

0

->

0

#

DW

FV

|

@

->

;

->

->

run FileWrite

StringAppend

StringAppend

StringToString

String

|

;

->

->

run FileWrite

StringAppend

StringAppend

String ToString

String

;

FV

->

;

->->

aux:cycleCount +

->

run FileWrite

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

String

ToString

String

FV

->

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

->

+

FV

->

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

->

+

||

->

run FileWrite

String

||

->

run FileWrite

String

run ;

->->

aux:cycleCount+_#

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>><<

>><<

>>=<<

<<>>

<<>> <<>>

<<=>>

>><<

>><<>><<

>><<

<<>>

<<>><<>>

<<>>

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

.

.

.Enc EncEncEnc

Enc

Enc Enc

x[0..2]

#

;

->

.

x[0..31]

#

;

-> ->

x[0..0]

#

;

->

.

x[0..1]

#

;

-> ->

$BrzBuiltinVariable

;

->#

.

.

FV

->

FV

->

@

->

->

BalsaMemoryRead

FV

->

run

BalsaMemoryWrite

.

$BrzBuiltinVariable

run

;

||

->->

0

.

.

W.

#

||

DW

.

FVFV

runFV

||

->

-> ->

@

->

unary

DW

FV

->

DW

.

FV

FV

<<>>>><<

||

->

@

->

@

->

unary

|

DW

FV

->

->

0

d[0..7]d[8..15]d[16..23]d[24..31]

| | | |

#

DW

.

FVFV

FV

<<>><<>>

FV

FV

;

|

||

->

||

->

<<>>

0

@

->

;

@

->

run

@

->

;

-> ->

aux:d

42405

;

-> ->

aux:d

42405

@

->

;

-> ->

aux:d

165

42405

;

-> ->

aux:d

42405

165

;

->->

aux:d <<>>

10855845

;

-> ->

aux:d<<>>

10855845

->

runWriteMessage

String

->

DW

.

FV FV FV FV

;

@

->

->

@

->

;

->->

aux:d

;

->->

aux:d

@

->

;

->->

aux:d

;

->->

aux:d

;

-> ->

aux:d

;

->->

aux:d

||

->

run WriteMessage

String

->

||

->

->

>>=<<<<=>> <<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>>=<<>>=<<>>=<< >>=<< >>=<< >>=<<>>=<< >>=<<>>=<< >>=<< >>=<<>>=<<>>=<< >>=<< >>=<<<<>>

<<=>>

<<>>

<<=>> <<=>> <<=>> <<=>><<=>><<=>><<=>> <<=>><<=>>

>><<

>><<

.

Enc

x[0..36]

#

;

->

.

x[0..1]

#

;

->

.

adrLo[0..31]

|

adrHi[0..31]

|

cycles[0..31]

|

fiqTarget[0..31]

|

irqTarget[0..31]

| fiqPending[0..0]irqPending[0..0]$BrzBuiltinVariable

$BrzBuiltinVariable

$BrzBuiltinVariable

$BrzBuiltinVariable

abtType[0..0]

abtType[1..1]

| |

>><< >><< routeNum[0..7]

|

r[0..2]

|

;

||

->

0

->

0

->

0

->

0

->

0

->

0

FV

->

||

->

run WriteMessage

StringAppend

String

->

FileOpen

1

FV

->

||

->

runFileWrite

StringAppend

StringAppend

String

String

->

FileOpen

2

FV

->

$BrzBuiltinVariable$BrzBuiltinVariabled[0..31]

a[0..29]

|

;

->

0

->

BalsaMemoryNew

->

FileOpen

0

do

unary

FileEOF

;

->

FileReadLine

->

NumberFromString

16

->

run BalsaMemoryWrite

->->

aux:a +_#

->

run FileClose

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

String ToString

-_#

String

String

FV

->

$BrzBuiltinVariable

$BrzBuiltinVariable

r[0..2]

r[3..34]

r[35..66]

;

->

runFileWrite

StringAppend

StringAppend

String

String

->

BalsaMemoryNew

->

FileOpen

0

do

unary

FileEOF

;

->

FileReadLine

->

FromString

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

StringAppend

String NumberToString

160 1

String

NumberToString

160 1

String

ToString

String

ToString

String

String

->

run BalsaMemoryWrite

-> ->

aux:routeNum+_#

->

run BalsaMemoryWrite

<<>>

147573952555316674561

->

run FileClose

->

runFileWrite

String

||

->

.

.

.

W.

#

DW

.

FV FV

FV

FV

.

run

FV

run FV

;

||

->

0

do

==_# ;

->

BalsaMemoryRead

.

runFV

FV FV

@

->

&

>= <=

@

->

|

|

!=_#&

&

unary

->

-> ->

aux:routeNum+_#

->

||

.

@

->

|

||

->

8<

unary

->

&_#-_#

&_#

->

-_#

FV

->

->

runBalsaMemoryWrite

#

.

.

FV

->

FV

->

FV

FV

FV

FV

FV

<<>> <<>>

->

;

->->

aux:cycles +_#

||

@

;

-> ->

guard

&

>=

||

->

runFileWrite

String

@

;

-> ->

guard

&

>=

||

->

runFileWrite

String

||

->

FV

;

||

@

->

unary

->-> ->

->

@

->

|

|

|

|

|

||

->

<<>>

0

->

<<>>

0

@

->

||

FV

->

||

->

@

->

||

->

runFileWrite

String

||

->

run FileWrite

String

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

String ToString

String

->

+

@

->

==_#

||

->

run FileWrite

String

||

->

run FileWrite

StringAppend

StringAppend

String ToString

String

->

+

->

runFileWrite

StringAppend

StringAppend

String NumberToString

16 0 1

String

||

->

<<>>

0

->

<<>>

0

@

->

||

->

run FileWrite

StringAppend

StringAppend

StringToString

String

-> ->

||

->

runFileWrite

String

NA

->

run

||

->

<<>>

0

->

<<>>

0

@

->

||

FV

->

||

->

@

->

|

||

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringNumberToString

16 0 1

String

NumberToString

16 01

String

->->

1537

||

->

runFileWrite

StringAppend

StringAppend

StringAppend

StringAppend

StringNumberToString

16 0 1

String

NumberToString

16 01

String

->->

1537

||

->

runFileWrite

StringAppend

StringAppend

String NumberToString

160 1

String

->

1536

+_#

->

runFileWrite

StringAppend

StringAppend

StringNumberToString

16 01

String

@

->

unary

.

FV

FV

<<>>

>><<

->

||

->

@

->

||

->

runFileWrite

StringAppend

StringAppend

StringToString

String

->

<<>>

1

->

<<>>

1

@

->

|

==_#==_#;

->

run FileWrite

String

stop

||

$BrzBuiltinVariable

|

;

@

->

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

String

->

Chr

->

runFileWrite

StringAppend

StringAppend

String

String

->

run FileWrite

Chr

->

<<>>

0

->

<<>>

0

||

->

runFileWrite

StringAppend

StringAppend

StringToString

String

->

<<>>

1

->

<<>>

1

||

->

run FileWrite

String

->

<<>>

1

->

<<>>

1

||

->

run FileWrite

StringAppend

StringAppend

StringNumberToString

16 0 1

String ->

<<>>

1

->

<<>>

1

@

->

||

FV

->

->

@

->

||

->

FV

||

->->

@

->

FV

->

||

->->

FV

->

||

->->||

->

run FileWrite

String

->

<<>>

1

->

<<>>

1

@

->

||

FV

->

->

->

runFileWrite

StringAppend

StringAppend

StringToString

String

.

.

NA NA NANA NA NA

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

<<>>

<<>><<=>>

>><<

>><<

>>=<<

>><<

>><<>><<

>><<

>><<

>>=<<

>><<

<<>>

<<>>

<<=>>

>><<

>>=<<

.

.

.

Enc Enc

EncEnc

Enc

Enc Enc

s[0..0] s[1..1]

||

;

||

->

0

->

0

#

DW

Arb

FV

FV

|

@

;

-> ->

guard!=

||

->

@

->

unary->

@

;

->->

guard

!=

||

->

@

->

unary

-> s[0..0] s[1..1]

||

;

||

->

0

->

0

#

DW

Arb

FV

FV

|

@

;

-> ->

guard!=

||

->

@

->

unary->

@

;

->->

guard

!=

||

->

@

->

unary

->

locked[0..0]

side[0..0]

pendingFlag[0..0]

pendingAccess[0..1]

pendingAccess[2..2]pendingAccess[3..3]run

pendingAccess[5..36]$BrzBuiltinVariable

;

||

->

#

DW

Arb

.

FV

FVFV

FV

FV

.

FV

FV

FV

FV

FV |

|

|| |

|

|

;

||

;

->

&

@

->

unary ->->

->

.

FV

FV

<<>>

>><<

->

||

@

;

-> ->

guard

|

&

&

unary

unary

&

|

unary

->

@

->->

guard

&

unary

||

->

0

@

->

->

->->

@

->

||

->

run FileWrite

String

->

||

;

->

&

unary

@

->

->

->->

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

<<>>

<<>>

<<=>>

>><<

>><<

>>=<<

Enc EncEnc

Enc

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

| |||FV

->

||

-> ->

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

.

FV

FVFV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

<

;

||

@

->

->->

@

->

==_#

.

FV

FV

<<>>

>><<

->

||

->->

@

->

-> ;

->->

aux:sz +_#

run

run

>><<

>><<>><<

>>=<<

<<>>

<<>><<>>

<<=>>

FV

->

||

-> ->

|||

|

|||

|

.

FV

FV

FV

FV

FV

->

||

->

@

->

@

->

sz[0..3]

|

aborted[0..0]

|

;

||

->

0

->

0

do

< ;

||

@

->

->->

@

->

==_#

.

FVFV

<<>> >><<

->

||

->

->

@

->

->

;

-> ->

aux:sz+_#

run

run

>><<

>><<

>><<

>>=<<

<<>>

<<>><<>>

<<=>>

||

NA

->

run

->

128

#

FV@

->

|

#

FV@

->

run run run runrunrun run

. .

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

shouldFiq[0..0]

|

shouldIrq[0..0]

|

shouldBranch[0..0]

halted[0..0]

|

waiting[0..0]

Pc[0..31]

|

Colour[0..0]

|

Mode[0..6]

Mode[7..7]Mode[8..8]

| |

|

newMode[0..8]

|

;

||

->

0

->

0

->

403

->

0

->

1

W.

#

DW

Arb

FV FV

|

->

<<>>

2

->

<<>>

3

#

DW

Arb

FV

FV

|

->

->

<<>>

1

#

;

DW

Arb

.

FV

FV

>><<

@

->

-> ->

||

->

-> ->

->

unary

@

-> ->

guard

&

|

|

unary

||

@

;

-> ->

guard

|

||

;

||

->

1

18

->

1

18

->

;

||

->

401

->

401

->

||

@

->

|

|

-> ->->

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<<<>>

<<=>>

Enc

Enc

Enc

Enc

Enc

Pc[0..1]Pc[2..31]

<<>>| |

>><<>><<

nextPc[0..31]

| Colour[0..0]

Mode[0..4]Mode[5..6]Mode[7..7]Mode[8..8]

| || |nextMode[0..6]

nextMode[7..7]nextMode[8..8]

| |

|

Instr[0..31]

|

Seq[0..0]

|

nextSeq[0..0]exception[0..0]

fT[0..2]

W.

.

.

.

.

#

;

||

FV

->

||

->

@

->

->run

@

->

||

->->

0

run

@

->

|

->-> run

@

->

||

->

@

->

==_#

||

->

<<>>

1 !=_#

->

6

FVrun

>><<

->

@

->

|

||

->

1

23

->

12NA

->

run

FV

->

||

->

-> ->

+_#

<<>>

0

run

||

->

@

->

!=_#

||

->->;

@

->

|

->

1

8

->

->

;

->

->

<<>>

<<=>>

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<< <<>>

<<=>>

>><<

>><< >>=<<

>><<

>><< >>=<<<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>> <<>>

Enc EncEnc

#

DW

.

FVFV

->

+

#

||

DW

FV

->

DW

FV

->

DW

.

FV FV FV

@

->

!=_#

|

|

|

|

|

|

| ||

||

-> ->->

->->

instr[0..3] instr[4..7]instr[8..11] instr[12..15]instr[16..19]

instr[20..27]

instr[28..28] instr[29..31]

<<>> <<>> <<>>

;

FV

->

->

||

NA

->

run

NA

->

run

NA

->

run

->

->

8

->

==_#==_#

==_#

->

->

==_#

DW

FV

->

DW

.

FV

FV

||

.

@

->

||

->

@

->

DW

FV

->

A

!=_#

.

FV FV

<<>> >><<

->

@

->

|

||

@

->

->

->

||

->

26

->

@

->

FV

->

@

->

&

==_# ==_#

DW

FV

@

->

|

@

->

->

@

->

==_#

->

->

#

inst[0..14]

;

DW

FV

->@

->

<<>>

<<>>

<<>>

<<>>

<<=>>

>><<

>><<

>><<

>>=<< <<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

>>=<<

<<>>

<<=>>

<<>>

<<=>>Enc

Enc Enc

Enc

Enc

1

2

0

0

unary

|

unaryunary

<<>><<>> <<>>

<<=>>

4608 7

<<>>

<<>> <<>>

2878 0

0<<>>

<<>> <<>>

.

Enc

50331648

163

2 15unary

<<>><<>> <<>> 020

0

<<>><<>>

5

A

<<>>

<<>>

<<=>>

46

00

0

<<>>

<<>> <<>>

864

0 0

2

<<>>

<<>> <<>>

<<=>>

34

0

0

unary

&

@

<<>>

<<>> <<>>

<<=>>

15

000

0

<<>>

<<>> <<>>

864 0

<<>>

<<>> <<>>

2 7102

unary

<<>>

<<>> <<>>

<<=>>

9727 0

1

unary

<<>>

<<>> <<>>

<<=>>

10494

<<>>

14000

11

0

<<>><<>>

<<=>>

78

00<<>> 5

A

<<>>

<<>>

<<=>>

12

0 01

2|

unary

|

|<<>>

<<>> <<>>

<<>><<=>>

0

0

2

0

0

unary

<<>><<>> <<>>

<<=>>

4 1 13 0

&

unary

& unary

<<>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

<<=>><<=>>

0 0

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

&

unary

unary |

<<>>

<<>> <<>>

<<=>>

20988

<<>>

44

26

00<<>><<>>

20

18

<<>><<>>

983040

<<>>

44

0 0

0

0<<>>

<<>> <<>>

#

inst[0..0]inst[1..5]

inst[6..7]

inst[8..11] inst[12..12] inst[13..15]

;

DW

FV

->||

->

!=_#

->->

DW

.

FV

FV

->

<<>>

#

DW

.

FV

FV

||

@

->

@

->

@

->

@

->

#

DW

FV

@

->

#

inst[0..3]

;

DW

FV

->

DW

FV@

->

|

->

#

inst[0..11]

;

DW

FV

->

@

->

#

inst[0..0] inst[1..1]inst[2..2]inst[3..3] inst[4..4]inst[5..5] inst[6..6] inst[7..7] inst[8..8] inst[9..9]inst[10..10]inst[11..11] inst[12..12]

;

DW

FV

->

DW

FV

@

->

|

-> ->->->-> ->-> ->->->-> -> ->-> -> -> ->->-> ->->-> ->-> ->-> ->

>>=<< <<=>> <<=>><<=>>

<<=>>

<<=>> <<=>><<=>> <<=>><<=>>

<<>>

<<>>

<<=>><<=>>

<<>>

<<>>

<<>><<>>

<<=>><<=>>

<<>>

<<>>

<<>><<=>>

<<=>>

<<=>>

<<=>>

<<>><<=>>

<<=>>

<<>>

<<=>>

<<=>>

<<=>>

<<=>>

<<>>

<<=>><<=>><<=>> <<=>>

<<>>

<<>>

<<>>

<<=>>

<<=>>

<<=>>

<<>>

<<>> <<>>

<<=>> <<=>><<=>>

<<>>

<<=>> <<=>>

<<>> <<>>

<<=>><<=>>

<<>><<>>

<<=>>

<<=>><<=>><<=>>

>><<

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>><<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

Enc

Enc

Enc Enc

. .. .

#

DW

.

FV

FV FV

@

->

!=_#

| ||

|| | |

| | |

||

->

26

->

0

->

0

->

->

->->

.

.

FV

->

FV FV

FV <<>><<>>

->

FV

FV

>><<

->

||

;

||

@

->

unary

||

->-> ->->->

||

-> ->

|_# ->

|_#

->

->

;

| || |

@

->

unary

||

FV

->

->

FV

->

->

FV

->

->

FV

->

->

||

FV

->

->

FV

->

->

FV

->

->

FV

->

->

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>> >>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..0]tmp[1..15]

<<>> | |

>><< >><<_tmp[0..15]

count[0..5]

|_count[0..5]

;

||

->

0

->

do

!=_# ;

||

->

A

->

+_# @

-> ->

A

||

-> ->

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->.

.

FVFV FV FV

FV

FV

FV

->

A|

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..9]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->.
x[0..2]

#

;

->

.

#

V[0..2]

DW

->.

x[0..3]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3] tmp[4..7]

>><<

;

. .

||

-> ->

.

.

FV

->

FV

->

->

+

.

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]tmp[4..7]

>><<

;

..

||

->->

.

.

FV

->

FV

->

->

+

.

tmp[0..7]tmp[8..15]

>><<

;

->||

->->

.

.

FV FV

->

+

..

.

. .

.

#

#

#

Type[0..4]

RegUse[0..4]

Registers[0..4]

Registers[5..9]Registers[10..14]Registers[15..19]

Registers[20..24]

Registers[25..29]||

| |

Extras[0..2]

Extras[3..3]Extras[4..4]

Extras[5..5] Extras[6..6]

run

Extras[22..22] Extras[23..23]

Extras[24..24]

Extras[25..25]Extras[26..26]Extras[27..31]

Extras[32..32]Instr[0..3]Instr[4..4]

Instr[5..9]

Instr[10..13]Instr[14..17]

Instr[18..25] Instr[26..29]

Instr[30..30]Instr[31..31]

Instr[32..33]

Instr[34..34] Instr[35..35]

Instr[36..38]

Instr[39..39]Instr[40..40] Instr[41..41]

Instr[42..43]

Instr[44..46]

Instr[47..47]

Instr[48..51] Instr[52..83]| |||

|

|

||

|

|

|

||

->

1

->

<<>>

->

<<>>

->

<<>>

->

<<>> ->

<<>>

->

<<>>

||

->

->

<<>>

;

||

DW

FV

||

->

@

->

DW

.

run FV FVrun FV

||

->

@

->

==_#

->

run

@

->

DW

.

FV FV

FV

||

->

@

->

==_#

->

run

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

@

->

|

|

| |

numRegs[0..4]

|

_numRegs[0..4]

inc[0..4]

|

_inc[0..4]

|

rE[0..4]

loadUsedTemp[0..0]

FV

;

||

@

->

&

!=_#

;

->

A

||

->

@

->

<<>>

-> ->

-_#

||

do

!=_#;

||

->

-_#

@

->

->

+_#

->

-_#

->

A

@

;

->->

guard

|

&

&

&

&

==

!=_#

!=_#

unary

&

|

&

==_#

&

&

!=_#!=_#

|

==_#==_#

|| unary

->->

||

-> ->;

@

->

==_#

||

@

->

&

@

;

->->

guard

|

run->

1

->

@

->

&

!=_#

|

||

Remaining[0..4]

|

_Remaining[0..4]

WBWs[0..4]->

22

|

;

||

->

0

->

FV

do

<

A

;

||

->

+_#

||

->

4

->

A@

-> ->

1

->

@

->

;

||

->

0

-> ->

30

||

;

||

||

->

0

->

0

->

|| ||

>><<

<<>>

<<>>

<<>>

<<=>>>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><< >><<

>><<

>><<

>><< >><< >><<

>><< >><<>>=<< >>=<<>>=<<

>>=<<

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<=>> <<=>><<=>>

<<=>>

>><<

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

. .

.

Enc

Enc

EncEnc

Enc

Enc

Enc

<<>>

A

A

1

<<>>

<<=>>

unary

<<>>

A

@ <<>>

0<<>>

unary

A

A

<<>>

<<=>>

<<=>>

|

unary

A

<<>>

@ <<>>

<<>>

A

<<>>

<<=>>

&

unary

<<>>

&

unary

&

&

unary

&

A

<<>>

@ <<>> <<=>>

<<>>

A

A

<<>>

==_#

A

<<>>

A

@ <<>>

AA @A

<<>><<>> <<>>

<<>>

&

unary

A

<<>>

<<>> @

A

<<>> <<>>

AA

#

DW

.

FV

FV

FV

FV

FV

FV FV FVFV FV FV

FV FV

FV

FV FV

FV FVFV FV FV

FV

FV

FV

||

->

|

@

->

@

->

==_#

-> |

@

->

&

==_#

->

|

@

->

|

@

->

->

|

@

->

@

->

->

|

->

18

@

->

->

|

->

@

->

||

@

->

|

@

->

@

->

->

|

->

@

->

| |

@

->

@

->

|

@

->

@

->

|

-> ->

@

->

||

@

->

|

@

->

@

->

@

->

|

@

->

==_#@

->

@

->

couldChange[0..2]

;

@

->

| | ||

->->

|

-> -> ->

->

@

->

FV

->

run

@

->

-> run

Cond[0..3]Mode[0..8]

Type[0..3]

ShiftDist[0..4]

|

ShiftSrc[0..0]

ShiftCls[0..1]

|

AluOp[0..3]

|

Clz[0..0]FetchUsed[0..0] AdrPostPre[0..0]

|

RorW[0..0]

|

Size[0..1]

Lock[0..0] Seq[0..0]Rotate[0..0] Extend[0..0]

|

MemMode[0..0]

run

Xchange[0..1]

MultSigned[0..0] MultLength[0..0]SetFlags[0..0]

| PsrMask[0..3]

Imm[0..31]

|

->

-> ->

->

->

0

->

0

;

.

..

||

@

->

|

@

->

==_#

-> ->

@

->

||

||

->

0

->

1

||

->-> .

.

FV

->

FV

->

FV

->

->

-> ->

0

@

->

->

@

->

->-> ->

1

@

->

@

->

| |

@

->

|

@

->

==_# @

->

==_#

->->

@

->

@

->

->

@

->

->

@

->

|

@

->

@

->

@

->

@

->

|

@

->

@

->

| |

@

->

-> ->

0

@

->

@

->

==_#

@

->

|

@

->

@

->

@

->

-> -> -> ->

@

->

->

||

@

->

==_#

|

->

0

->

DW

FV

->

A

0

@

->

|

@

->

==_#

->

->

11

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<=>><<=>> <<=>>

<<>>

<<>>

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>>=<<>>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<>> <<>>

<<=>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

<<>> <<>>

<<>>

<<>>

<<>><<>>

<<>>

<<>><<>>

<<>> <<=>><<=>>

<<=>>

<<>><<>>

<<=>>

<<>><<>>

<<=>>

<<>>

<<>><<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>><<=>>

>><<

>>=<<

.

Enc

Enc

Enc

EncEnc

Enc

Enc

EncEnc Enc

EncEnc

Enc

Enc

Enc

Enc

EncEncEnc

Enc

Enc

Enc

.

LR[0..31]

.

#

DW

FV

;

|

| |

||

-> DW

FV

-> FV

->

->

||

->DW

FV

->

->

FV

-> -> >><<>><<

>><<>><<

>><<

x[0..0]

#

;

-> .

x[0..0]

#

;

-> ->

mode[0..4]

mode[5..6] mode[7..8]

run

target[1..1]

target[2..31]

#

;

||

->

||

-> ->

0 &

|

==_# ==_#

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

<<>>

<<=>>

.

spsrData[0..12]spsrData[13..25] spsrData[26..38]spsrData[39..51]spsrData[52..64]spsrData[65..77] spsrData[78..90]spsrData[91..103]spsrData[104..116] spsrData[117..129]spsrData[130..142]spsrData[143..155] spsrData[156..168]spsrData[169..181]spsrData[182..194]spsrData[195..207]

|| |||| ||| ||| ||||

Go[0..0]

;

||

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

->

403

#

;

||

FV

->

->

@

A ->@

->

FV

->

->

@

->

FV

-> -> -> ->-> -> ->-> -> ->-> -> ->

->

-> ->

A

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

x[0..5]

#

;

-> ->

x[0..31]

#

;

-> ->

x[0..31]

#

;

-> .

x[0..5]

#

;

-> ->

data[0..31] data[32..63]data[64..95] data[96..127] data[128..159]data[160..191]data[192..223]data[224..255]data[256..287] data[288..319] data[320..351]data[352..383]data[384..415]data[416..447]data[448..479] data[480..511]data[512..543]data[544..575] data[576..607]data[608..639] data[640..671] data[672..703]data[704..735]data[736..767]data[768..799] data[800..831]data[832..863]data[864..895]data[896..927]data[928..959]data[960..991]

data[992..1023]

| || | ||||| | ||||| ||| || | |||| |||||||

Go[0..0]

;

||

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

->

0

W.

#

;

->||

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

FV

@

->

@

->

->

@

A

run

@

->

;

FV

@

->

FV

->

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> -> ->->

->

->->

A

run

FV

@

->

FV

->

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> -> ->

->

-> ->->

A

run

FV

@

->

;

-> ->

aux

@

->

FV

-> -> -> -> -> -> ->-> -> -> ->->-> ->-> -> ->-> -> -> -> ->->-> -> -> ->

->

->-> ->->

A

run . .

....

. ..

unaryunary

C[0..0]

|

F[0..0] F[1..1] F[2..2]F[3..3]

| |||

M[0..8]

|

B[0..0] B[1..1] B[2..2]

lastPassed[0..0]

|

;

||

->

1

->

403

->

0

#

;

||

->

->

->

->

.

FV

FV

FV

->

@

->

==

||

.

@

->

|

->

1

->

&

unary==

->

==

->

&

unary

-> -> -> ->

FV

->

->

^

->

0

||

->

@

->

||

@

->

->

@

->

->

@

->

->

>><<

>><<

>>=<<

>>=<< >>=<<

<<=>>

x[0..9]

#

;

->

.

x[0..0]

#

;

-> ->

x[0..3]

#

;

->

.

8<

8<8< 8<

8<

8<0

0

==_#

==_#

8<

8<8< 8<

8<

8< 0

0

==_#

==_#

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>>

x[0..9]

#

;

-> ->

$BrzBuiltinVariable

;

->

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.. . .

.

. ..

.

..

.

.

.. ..

W.

#

flags[0..0] flags[1..1]

flags[2..3]

colour[0..0]

oldMode[0..8] currentSpsr[0..12]

execPasses[0..0]

PcA[0..31]

LrA[0..31]

runInstr[5..13]Instr[14..17]Instr[18..22]

Instr[23..23] Instr[24..25]

Instr[26..29]

Instr[30..30]Instr[31..31]

Instr[32..38]

Instr[39..39]Instr[40..40] Instr[41..41]

Instr[42..43]

Instr[44..44]Instr[45..45]Instr[46..46]Instr[47..47]

Instr[48..51]

Instr[52..83]

Registers[0..5]Registers[6..11]

Registers[12..17] Registers[18..23]

Registers[24..29]Registers[30..35]Changability[0..2]

;

.

||

DW

FV

->

DW

FV

->

->-> -> ->->->

->

->

->

->

->->

.

runFV run

FV

run

FV

runFV

run

->

||

->

FV

->

||

->

@

->

==_#

|

->

0

->

@

->

&

|

|

==_#==_#

==_#

||

.

@

->

run

.

.

FV

FV

FV

FV

->

||

->

@

->

|

->

1

->

0

0

0

||

$BrzBuiltinVariable

|

;

@

->

==_#

@

->

unary

->

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

->

String

@

->

unary

->

StringAppend

StringAppend

StringAppend

StringToString

String

ToString

->

String

-> ->

aux:strStringAppend

StringAppend

StringAppend

String

ToString

String

->

runFileWrite

@

->

&

!=_#

||

->

!=_#

@

->

!=_#

->

->->->

->

->

->

-> ->

->

-> ->

-> ->

->

->

-> ->-> ->->

-> ->

->->

#

newFlags[0..1]

newFlags[2..2] newFlags[3..3]

||

|

;

.

.

FVrun

>><<

->

FV

FV FV

->

run

FV

>><<

->

run

FV

>><<

->

FV

run

>><<

->

run

FV

>><<

->

FV

->

FV

->

FV

->

run

FV

>><<

->

FV

->

FV

->

FV

->

;

->

@

->

->

@

->

@

->

@

->

->

run

@

->

&

==_# unary

@

->

@

->

unary

|

==_#==_#

->

@

;

->->

guard

|

@

->

||

->->

->run

==_#

@

->

@

->

unary

|

==_# ==_#

->

@

->

==_#

->

run

FVrun

>><<

->

@

->

->

#

newColour[0..0]

|

->

16

|

->

1|

;

.

.

FV

run

>><<

->

FV

->

FVFV

<<>>>><<

->

FV

run

>><<

->

FV

FV

->

FV

run

>><<

->

FV

->

FV FV

->

FV

->

FV

->

->

->

<<>>

0

->

->->

||

->

->

;

->

@

->

||

||

@

->

|

@

->

@

->

&

!=_#

||

@

;

-> ->

guard

|

==_#|| &

==_#unary

||

@

->

==_#

|||| ||

runFV

>><<

->

@

->

->

#

newMode[0..4] newMode[5..6]newMode[7..7]newMode[8..8]

| | ||

;

.

.

FV

run

>><<

->

FV

run

>><<

->

FVFV

FV FVFV

run

<<>>

->

FV

->

FVFV FVFV

->

FV

run

>><<

->

FV

->

FV

->

FV

FV

run

>><<

->

FV

->

FV

->

FV

->run

FV

>><<

->

;

->

@

->

->

1

23

@

->

@

->

@

->

&

!=_#||

->->

->

@

->

run

@

;

->->

guard

|

==_#

->

&

==_# unary@

->

@

->

unary

|

==_# ==_#

->

@

->

->

1

->

0

@

->

->

1

->

0

@

->

==_#

@

->

&

unary

|

==_# ==_#

->

->

@

->

|

|

&

==_#==_#

&

&

==_#

unary

==_#

&

&

==_# unary

->

1

->

0

->

run run

||

runFV run

->

@

->

->

FV

@

->

->

#

.

.

FV

-> FV

->

FV

->

FV

FV

->

FV

->

@

->

|

-> ->

.

->

.

<<>>

->

FV

->

->

->

0

#

.

.

FV

FV

->

FV

@

->

|

->

FV

->

->

->

A

#

.

.

FV

->

FV

->

@

->

|

->

FV

->

->

->

0

#

.

.

FV

->

FV

->

FV

@

->

|

-> ->->

FV

->

->

->

0

#

.

.

FV

->

FV

-> @

->

==_#

->

#

.

.

FV

->

FV

FV

->

@

->

&

==_#->

#

.

.

FV

run

>><<

->

FV

->

FV

->

FV

->

FV

->

FV

->

FV

->

|

||

->->

|

||

->

@

->

@

->

||

@

->

@

->

&

!=_#

#

.

.

FV

run

>><<

->

FV

->

FV

->

->

62|

||

-> ->

@

->

|

@

->

#

.

.

FV run

>><<

->

FV

->

FV

->

FV

->

FV

->

->

62 |

->

@

->

|

@

->

@

->

@

->

&

==_# unary

#

.

.

FV

run

>><<

->

FV

FV

FVFV

run FV

->

FV

->

FV

FV

>><<

->

FVFV

>><<

->

FV

->

FV runFV

->

FV

->

FV

->

->

<<>> |

->

|

||

|

@

->

||

->

@

->

|

|

@

->

tempPsr[0..8]

tempPsr[9..12]

<<>> |

;

||

.

@

->

|

->

@

->

->

1

->

0

.

FV

FV

FVFV

->

->

FV

->

@

->

->->

||

->

||

<<>>

<<>><<=>>

>><<

>><<

>>=<<

<<>>

<<>><<=>>

<<>>

<<>><<=>>

>><<

>><<

<<>>

<<=>>

>><<

>><<>><<

>>=<<

>>=<<

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<>><<=>>

<<>>

<<=>>

>><<

>><< >>=<<

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

>><<

>><<

>><<

>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<<

>><<

>><<>>=<< <<>>

<<>><<=>>

<<>>

<<>><<=>>

>><<

>>=<<

<<>>

<<=>>

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<

>><<

>>=<<<<>>

<<=>>

<<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<=>>

>><<

>>=<<

>><<

>><<

>><<

>><<

>><< >><<

>>=<<>>=<<

>><<

>><<

>><<

>><<

>><<

>><<>><<

>><<

>><<

>><<

>><<

>><< >><<

>>=<<

>>=<<>>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<=>> <<=>>

>><<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

....

Enc

Enc

Enc

Enc

Enc

.

.

FV FVFV

||

->

^

^

->

|

|

& &&

. ..

a[0..0]a[1..31]

<<>>| |

>><<>><< b[0..31]

nZero[0..0]

|

;

||

->

0

#

DW

FV

||

->

;

->

unary

||

;

->

<<>>

->

;

-> ->

aux:nZero

|

Enc

a[0..0]a[1..30]

| |

>><< >><<

b[0..30] t[0..0]

#

DW

FV

;

||

->->

<<>>

0

->

->

->

a[0..0]a[1..31]

| |

>><< >><<

b[0..31] t[0..0]

#

DW

FV

;

||

->->

<<>>

0

->

->

->

first[0..0] last[0..0]

ki[0..4] ko[0..4]

|

->

->

==_#

->

==_#

s[0..32]

|

_s[0..32]

c[0..32]

|_c[0..32]

A[0..31]

;

||

->

0

->

31

||

|

| |

;

|

W.

#

.

FV

FV

FV

->

@

->

| |

| | | | ||

||

-> ->->

FV

->

->

A

->

1

||

;

||

->

->

.

.

FV

FV

>><<

->

FV

FV

>><<

->

||

->

|

&&

unary

@

->

|

-> ->

A

do

|

!=_#

||

;

||

->

.

.

FV

FV

FV

>><<

||

->

<<>>

->

->

;

||

->

->

;

||

->

-_#

FV

->

<<>>

^

&

A

<<>>

A

& &

unary

&

|

||

@

;

-> ->

guard!=_#

||

;

||

->

A

->

A

.

FV FV

<<>>>><<

FV

||

-> ->

0

<<=>>

<<>>

<<=>>

>>=<<

.

.

.

.

.

.

#

DW

FVFV |

-> ->

#

DW

.

FV

FVFV

.

.

.

.

||

FV

->

@

->

|

->

unary

->

FV

->

@

->

|

->

unary

->

FV

->

@

->

|

->->

.

.

FV

FV

<<>><<>> <<>>

>><<

->

FVFV

<<>><<>> <<>>>><<

->

FV

->

||

@

->

|

->

0 &

->

0 |

->

0 ^

->

0

->

+

->

<<>>

.

.

run FV FV FV

<<>> <<>>

-> FV

FV

>><<

.

||

->

@

->

|

->

^

^

^

->

FV

->

->

==_#

<<=>>

>><<

>><< >>=<<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<>><<=>>

<<>>

<<>>

<<>>

<<>>

>>=<<

.

Enc

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

.

.

FV

->

FV

->

||

->

@

->

unary

->

#

DW

.

FV FV FV

FV

FV FVFV FVFV FVFV

<<>> | || |

||

@

->

unary

->

->

->

->

<<>>

@

->

unary

||

->

@

->

unary

|| ||

@

->

unary||

||

->

0

->

0

->

4

->

3

<<>>

<<>>

>><<

>><< >><<

>><< >>=<<>>=<<

<<>>

<<=>>

Enc Enc

Enc

#

.

.

FV

->

FV

FV

>><<

->

->

|

@

->

|

|

||

->

<<>>

0.

FV

FV

<<>>

>><<

->

||

->

@

->

&

unary

->

#

.

.

FV

FV

FVFV

FV

FV

FV FV

->

FV

FV

>><<

->

||

.

@

->

&

==_#

|

->

0

->

FV

->

->

->

<<>>@

->

unary

.

FV FV

FV

->

@

->

|

-> ->->

.

FV

FV

<<>>

>><<

->

||

->

@

->

.

FV

FVFVFV

->

@

->

run

@

->

|

&

&

==_#

!=_#

!=_#

|

||

.

@

->

|

->-> -> ->

.

FVFV

FV

FV

FV

->

@

->

@

->

&

->

16777215

->

0

@

->

&

->

65535

->

0

->

->

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<>>

<<>>

>>=<<

<<=>><<=>> <<=>> <<=>><<=>>

<<=>>

>><<

>>=<<<<=>>

<<>>

<<=>>

<<>>

<<>> <<>>

<<=>>

>><<

>><<

>>=<<

#

.

.

FV

FV FV FV

->

FV FVFVFV

->

@

;

-> ->

guard

|

|

&

unary unary

-> ->

->

&

<<=>>

<<=>> >>=<<

>>=<<

<<=>>

.

.

FV

->

FV FV FV

->

FV

->

FV

->

FV

||

@

;

->->

guard

|

==_#

->

unary ->

->

@

->

unary

->

@

->

-> ->->

>><<

>><<

<<>>

<<>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

.

. .

.

.

FV

->

FVFV

FV

FVFV

->

FV

->

FV

->

FV

||

@

;

->->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>>=<<>>=<<

<<>>

<<>>

<<=>><<=>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

.

. .

.

.

FV

->

FV

FVFV

FV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

.

. .

.

.

FV

->

FV

FVFV

FV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->

@

->

->->

A

->

A

>><<

>><<

>><<

>><<

<<>>

<<>>

<<>>

<<>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

.

||

. .

. .

.

.

FV

->

FV

FVFV

FV

->

FV

->

FV

->

FV

||

@

;

-> ->

guard

|

|

==_# ->unary ->->

@

->

unary

|

->@

->

->->

A

->

A

>><<

>><<

>>=<<

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<>>

<<>>

.

FV

->

->

unary

.

FV

FV

>><<

->

->

unary FV

||

.

@

->

|

->

->

FV

->

<<>>

&

unary

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

.

FV

FV

>><<

->

->

==_# FV

||

.

@

->

|

->

->

.

FVFV

>><<

->

&

unary

<<>>

<<=>>

.

#

DW

.

FV FV FVFV FV

FV

FV

|

|

|

|

||

FV

->

A->

@

->

.. . -> -> ->-> ->

->

runFV

>><<

->

@

->

|

-> ->

0

||

->->

.

.

FV

->

FVFVFV

->

||

@

->

->->->

A

->

0

run

@

->

-> ->

0

->run

>><<

>><<

<<>>

<<>>

<<>>

<<=>>

>><<

>>=<<

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

<<>>

<<>>

<<=>>

.

.

. .

..

.

.

. .

.

. .

W.

>><<>><<

$BrzBuiltinVariable

;

->

..

.

W.

.

>><<

$BrzBuiltinVariable

;

->W.

..

>><<

.

W.

...

>><<>><<

.

.. .. .

.

||

.

Arb>><<

spaValidation

validationCopro

chain

spaMemory

BalsaMemory

memIntArb

cpSteer

spaHarvard

fetch

fetchSourceArb

decode

adder

decodeClassify

decodeDecompressThumbInner

decodeUnroll

decodeUnravel

execute

branchBufferregisters

execControl

multiply

alu

shift

shiftGuts-1shiftGuts-2

shiftGuts-3

shiftGuts-4

shiftGuts-5

_clz-1

_clz-2

_clz-3

_clz-4

_clz-5

_clz-6

9.3 V
isualisation D

em
onstrator: The H

uge SPA
 M

icroprocessor Core

Chapter 9: Results and D
iscussion

143

Figure 9.7: H
uge graph layout: SPA

 - Zoom
 900%

>><<>><<

>><<

-> |
|

|

|

||
|

>><<

.

.

.

W.W.W.

.

W.

.

W.

;

->

W.

->

FV

W.

||

->

W.

->

.

x[0..9]

..

W.

.

.

FV

W.

FV

->

W.

->

.

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..0]tmp[1..15]

<<>> | |

>><< >><<_tmp[0..15]

count[0..5]

|_count[0..5]

;

||

->

0

->

do

!=_# ;

||

->

A

->

+_# @

-> ->

A

||

-> ->

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->.

.

FVFV FV FV

FV

FV

FV

->

A|

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..9]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

x[0..31]

#

;

->

.

#

V[0..31]

DW

->.
x[0..2]

#

;

->

.

#

V[0..2]

DW

->.

x[0..3]

#

;

->

.

.

FVFV FV FV

FV

FV

FV

->

A |

->

A

->

A

<<>>

11

->

A

2

->

2

->

3

@

->

||

@

->

@

->

<<>>

<<=>>

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>><<>>

<<=>>

<<>>

<<>> <<=>>

<<>>

<<>> <<=>>

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3] tmp[4..7]

>><<

;

. .

||

-> ->

.

.

FV

->

FV

->

->

+

.

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]tmp[4..7]

>><<

;

..

||

->->

.

.

FV

->

FV

->

->

+

.

tmp[0..7]tmp[8..15]

>><<

;

->||

->->

.

.

FV FV

->

+

..

.

. .

.

#

#

#

Type[0..4]

RegUse[0..4]

Registers[0..4]

Registers[5..9]Registers[10..14]Registers[15..19]

Registers[20..24]

Registers[25..29]||

| |

Extras[0..2]

Extras[3..3]Extras[4..4]

Extras[5..5] Extras[6..6]

run

Extras[22..22] Extras[23..23]

Extras[24..24]

Extras[25..25]Extras[26..26]Extras[27..31]

Extras[32..32]Instr[0..3]Instr[4..4]

Instr[5..9]

Instr[10..13]Instr[14..17]

Instr[18..25] Instr[26..29]

Instr[30..30]Instr[31..31]

Instr[32..33]

Instr[34..34] Instr[35..35]

Instr[36..38]

Instr[39..39]Instr[40..40] Instr[41..41]

Instr[42..43]

Instr[44..46]

Instr[47..47]

Instr[48..51] Instr[52..83]| |||

|

|

||

|

|

|

||

->

1

->

<<>>

->

<<>>

->

<<>>

->

<<>> ->

<<>>

->

<<>>

||

->

->

<<>>

;

||

DW

FV

||

->

@

->

DW

.

run FV FVrun FV

||

->

@

->

==_#

->

run

@

->

DW

.

FV FV

FV

||

->

@

->

==_#

->

run

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

DW

FV

->

@

->

|

|

| |

numRegs[0..4]

|

_numRegs[0..4]

inc[0..4]

|

_inc[0..4]

|

rE[0..4]

loadUsedTemp[0..0]

FV

;

||

@

->

&

!=_#

;

->

A

||

->

@

->

<<>>

-> ->

-_#

||

do

!=_#;

||

->

-_#

@

->

->

+_#

->

-_#

->

A

@

;

->->

guard

|

&

&

&

&

==

!=_#

!=_#

unary

&

|

&

==_#

&

&

!=_#!=_#

|

==_#==_#

|| unary

->->

||

-> ->;

@

->

==_#

||

@

->

&

@

;

->->

guard

|

run->

1

->

@

->

&

!=_#

|

||

Remaining[0..4]

|

_Remaining[0..4]

WBWs[0..4]->

22

|

;

||

->

0

->

FV

do

<

A

;

||

->

+_#

||

->

4

->

A@

-> ->

1

->

@

->

;

||

->

0

-> ->

30

||

;

||

||

->

0

->

0

->

|| ||

>><<

<<>>

<<>>

<<>>

<<=>>>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><<

>><< >><<

>><<

>><<

>><< >><< >><<

>><< >><<>>=<< >>=<<>>=<<

>>=<<

<<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>> <<>>

<<>>

<<>>

<<>>

<<=>> <<=>><<=>>

<<=>>

>><<

>><<

>><<

>><<

>><<

>>=<<

>>=<<

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

<<>>

<<=>>

. .

.

Enc

Enc

EncEnc

Enc

Enc

Enc

decodeUnroll

regTranslate-5

EnumerateRegisters

regTranslate-1

regTranslate-2regTranslate-3

regTranslate-4 regTranslate-6

CountRegisters-1

CountRegisters-2CountRegisters-5

9.3 V
isualisation D

em
onstrator: The H

uge SPA
 M

icroprocessor Core

Chapter 9: Results and D
iscussion

144

Figure 9.8: H
uge graph layout: SPA

 - Zoom
 4500%

FV

..

.#

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3] tmp[4..7]

>><<

;

. .

||

-> ->

.

.

FV

->

FV

->

->

+

.

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]

;

@

-> .

Enc

tmp[0..3]tmp[4..7]

>><<

;

..

||

->->

.

.

FV

->

FV

->

->

+

.

tmp[0..7]tmp[8..15]

>><<

;

->||

->->

.

.

FV FV

->

+

..

CountRegisters-1

CountRegisters-2

CountRegisters-3CountRegisters-4

CountRegisters-5

CountRegisters-6CountRegisters-7

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 145

shows the detailed implementation of a few modules, intelligible enough for an

experienced reader to understand their behaviour.

The appropriate visualisation of characteristics of the circuit at different levels of detail

attests to the quality of the graph structure.

9.3.2 Animated Graph

This stage is of most importance for helping the user follow the execution of the circuit.

Control flows are animated by highlighting the corresponding graph edges according to

the events reported in the simulation trace.

Figure 9.9 shows a step-by-step animation of the activity present in a very small part of

the SPA processor: a 1-place buffer used to store a value in a buffer and transmit it to the

next processing stage. The associations between handshake channels and pseudo-source

code are represented, thus indicating the meaning of each coloured event. In this

animation, a 2-phase protocol is used where requests are represented by a thick red

highlighting scheme and acknowledgments by a thick blue one. Thin red channels

represent channels which have been activated at a previous timestep and have not been

acknowledged yet.

By following the same scheme, concurrent flows and their interactions can be easily

observed. For example, Figure 9.10 shows the same circuit as above, but where the

Sequence component has been replaced by a Fork component. It should be noted that the

Balsa compiler would not generate such a circuit unless forced (by the user) to do so: the

concurrent read and write accesses to the variable are non-deterministic.

For visualising activity in large scale handshake circuits, the animation must be ported to

a higher level than handshake components. The method used is to visualise activity in

groups of components (i.e. modules, like those represented by rectangles in Figures 9.5-

9.8) by a coloured activity bar whose height is proportional to the number of events

happening inside the group. Unfortunately, the results only give an imprecise idea that

some activity is happening in the group. More research on this matter is planned as future

work. A snapshot of the execution unit during a simulation of SPA can be seen in Figure

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 146

9.11. Activity in the memory, fetch, selectiveDup and alu sub-modules is represented by

vertical red bars.

9.3.3 Coordinated/Collaborative Views

Until now, the visualisation system was used to visualise multiple sources of information

together in a single view. The benefits of such a view have been presented. However, in

order to be useable and intuitive, the visualisation system also takes into consideration

what the user wants to see. Most of the time, the user/designer wants to continue to use

the same style of design previously used. In the case of asynchronous design with Balsa,

Figure 9.9: Step by step animation of a 1-place buffer

Figure 9.10: Step by step animation of a hypothetical parallel circuit

1

7

5

6

4
2 3

4

2

1 3

57

6

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp out
x

−> −>

;

inp
x

−> −>

;

inp out
x

−> −>

;

 out <− x

procedure main (input inp:byte; output out:byte) is

end

 inp −> x ;

time 1 time 2 time 3 time 4 time 5 time 6

time 13time 12time 11time 10time 9time 8 time 14

time 7

out

begin
variable x : byte

inp out
x

−> −>

|

inp out
x

−> −>

inp out
x

−> −>

inp out
x

−> −>

inp out
x

−> −>

inp out
x

−> −>

inp out
x

−> −>

inp out
x

−> −>

| | | | |||

time 1 time 2 time 3 time 4 time 5 time 6 time 7 time 8

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 147

these views usually consist of a text editor containing the source code, and a waveform

viewer to analyse the results of the simulation. In order to make these views even more

useful, they are collaborating to track visualised elements from one view to another. This

has been illustrated in Figure 7.7, page 112: An element (handshake component, channel,

procedure, etc.) chosen in one view can be used to navigate to another view at the

element’s position.

This collaborating scheme had been long awaited for three particular applications:

1. Balsa source code ↔ Handshake circuit view

This link is useful to understand how a particular source code is translated into a

handshake circuit, and the other way around to find out which source code element

corresponds to a particular handshake channel (useful, for example, when a channel is

highlighted by the simulation after a deadlock). Before collaborative views were

available, the designer’s knowledge of the handshake circuit compilation process guided

this task. It was also possible to read the channel’s number on the handshake circuit’s

graph, look it up in the Breeze file, where the source code position is written. However,

this was tedious and only practical for small circuits (this was the process with the DMA

controller of the AMULET3 processor [6]).

Figure 9.11: High level SPA animation snapshot with bars in groups

9.3 Visualisation Demonstrator: The Huge SPA Microprocessor Core

Chapter 9: Results and Discussion 148

This situation has been successfully used by designers studying the Balsa compiler. They

were able to understand which handshake channels and components resulted from the

compilation of various Balsa constructs.

2. Handshake circuit view ↔ Waveform viewer

Displaying the waveform associated to a specific channel was previously almost

impossible. The channel to be viewed in the waveform viewer had to be practically

guessed. In the same manner as above, the channel number could have been used as an

intermediate for going from one view to the other. However, it was tedious to look for the

correct channel in the middle of hundreds of generated channels. This was only acceptable

for very small designs, and guessing the channels by looking at their waveform activity

was easier than searching for specific channels. This task is now scalable to thousands of

channels.

3. Balsa source code ↔ Handshake channels at the Verilog level.

This association was requested by the designers of SPA needing to pursue their debugging

at the Verilog level. This feature has been very useful and has received excellent

feedback. Designers never went back to use their previous method where they were hand-

drawing the handshake circuits and annotating the channel numbers to look for in the

Verilog file.

9.3.4 Discussion

This section has evaluated the ability of the visualisation system to handle very large

designs and to represent the information in a comprehensible way. The large Balsa

description, handshake circuit and simulation trace have been merged to generate a graph

structure viewable at different levels, while still showing useful information. The colour-

based animation, although imprecise at a high level, is able to display simulation events

either at a high level or at a very fine level, showing precisely the concurrency in the

circuit. Finally, the coordinated/collaborative views scheme has been used by the original

designers of SPA for a month and received excellent feedback.

9.4 Unified Debugging Environment

Chapter 9: Results and Discussion 149

9.4 Unified Debugging Environment

The contributions evaluated above are brought together into a unified environment for

debugging large asynchronous handshake circuits by using extensive simulation and large

scale visualisation methods.

This is the first integrated environment for debugging large-scale asynchronous circuits.

Previously, the only existing environments were either to debug small-scale

asynchronous circuits or large-scale synchronous ones. An integrated environment

around Balsa allows the first stages of the large asynchronous circuit design not to require

the use of synchronous tools. Behavioural simulation and debugging can be done at the

handshake circuit level, leading to better error reports, easier debugging and more

efficient design space exploration.

Educational Tool

Educational qualities have been observed, mainly due to the visualisation of handshake

circuits, oriented towards program comprehension.

Depending on the level of capabilities of the student, the toolkit developed here can help

teach and learn different aspects of asynchronous circuits:

• Asynchronous circuit bases can be introduced easily to students by visualising step

by step simulations of simple circuits (as in Figure 9.9).

• Newcomers to Balsa can get a good understanding of the syntax-directed

compilation process, which is useful to start describing asynchronous circuits with

Balsa, by visualising the handshake circuits corresponding to different Balsa

constructs and using the interface to see associations between handshake channels

and source code. In the same way, more experienced Balsa designers can perfect

their understanding of the compilation and optimisation tasks, which is a

requirement to describe efficient circuits.

• The scalable visualisation system can be used for presenting the architecture of an

asynchronous system in front of groups of people.

Chapter 10: Conclusions 150

Chapter 10: Conclusions

10.1 Summary

This thesis is concerned with techniques to support the debugging of large asynchronous

handshake circuits by using extensive simulation and large-scale visualisation methods.

These methods are applied to the Balsa asynchronous circuit synthesis framework.

A set of optimisation techniques applicable to the simulation of handshake circuits leads

to a simulator four orders of magnitude faster than the previous Balsa simulator on large

circuits. This makes programming by design iteration possible and reduces considerably

the time necessary for validating designs at the behavioural level by using extensive

simulation.

A visualisation system oriented towards program comprehension is presented. It is able

to merge and represent in a single view different sources of information related to

handshake circuits: the original Balsa source code, the compiled static handshake circuit

and the dynamic simulation trace. This results in a very useful graph structure, viewable

at any level of detail and showing the evolution of the control flows present in the circuit

during the simulation. The visualisation system is also based on a structure of

coordinated/collaborative views. In order to provide a familiar environment to the

designer, the usual source code, wave form and post-synthesis Verilog views are

integrated in the environment. Their usefulness is improved by a collaboration scheme

allowing the user to track elements from one view to another. The navigation between the

various sources of information is considerably enhanced. This enables, in particular, an

efficient tracking of the control flows from the simulation trace to the source code or to

the post-synthesis Verilog structure, leading to an easy and precise comprehension of the

handshake circuit’s structure.

10.2 Summary of Contributions

Chapter 10: Conclusions 151

Between the simulation and visualisation processes, a thin layer of analysis is presented.

Based on both the static and the dynamic structures of the handshake circuit, some ideas

for debugging the asynchronous-specific problems of deadlocks, livelocks and non-

determinism are suggested. The problems are correctly analysed and their causes are

identified, giving the user the opportunity to relate the misbehaviours to their precise

locations in the original source code.

During the analysis of the simulation trace, it is discovered that the out-of-order structure

of the trace makes it an excellent candidate for pattern analysis. From this observation, a

simple application of trace compression is presented.

The unification of the above-mentioned techniques leads to the first debugging

environment for large scale asynchronous circuits. This framework is based on handshake

circuits and is integrated into the existing Balsa framework.

10.2 Summary of Contributions

Simulation:

• Four orders of magnitude Balsa simulation speedup

Debugging:

• Ideas for debugging asynchronous-specific problems at handshake circuit level

• Easy pattern analysis of the out-of-order simulation trace

Visualisation:

• Following the execution of a circuit for program comprehension

• Merging complementary sources of information together to generate a graph

viewable at any level of detail

• Colour-based graph animation to highlight handshake circuit control flows

• Coordinating this graph view and the various views “well-known to the

designer” together for an efficient element tracking and an easy navigation

Simulation and visualisation for debugging large scale asynchronous handshake
circuits:

• First published debugging environment for large scale asynchronous circuits

10.3 Limitations

Chapter 10: Conclusions 152

10.3 Limitations

The major limitations of the final framework concern areas in which the research work

undertaken does not address a problem. These cases are clearly identified in this thesis.

First, timing and power analyses at the handshake circuit level are quasi worthless as they

are now. The reason is that the delay and consumption values assigned to each handshake

component have been chosen arbitrarily. In order to be useful, these delays must be

determined by a precise method, possibly based on measurements made a a lower level of

simulation.

Then, the graph layout process is quite slow. This is emphasised by the necessity to

recompute the layout of the visualised graph every time a group is developed or shrunk.

Finally, although the concurrent activity is well rendered in the handshake circuit graph

view, no particular method has been found for representing efficiently the same

information in the source code view. This therefore limits source code debugging to a

single thread at a time. Moreover, even a single thread is not displayed very efficiently in

the source code view.

10.4 Suggestions for Future Work

Some research work arising from the research presented in this thesis has already been

started:

• Distributed simulation: A distributed version of the handshake circuit simulator is

currently being undertaken by Theodoropoulos and Tsirogiannis at the University

of Birmingham [31].

Future work could address the limitations mentioned in the previous section:

• More precise timing and power analyses: Delay and power consumption values of

each handshake component should be better estimated. A possible solution is to

simulate them at a lower level of simulation and extract the required values, as has

been suggested in §6.1.1.

10.4 Suggestions for Future Work

Chapter 10: Conclusions 153

• Better and faster layout: Force-directed placement [28] has the advantage of a

compact representation. However, it usually is a slow method not representing

identical subgraphs in an identical manner. Other layout methods could be

investigated [38]. They could be coupled with the “tracking structural changes”

technique suggested below.

• Visualisation of multiple threads on top of the source code.

Extensions to the actual framework are also possible:

• Tracking structural changes: Tracking structural changes between two handshake

circuits could help visualise the effect of changes in a Balsa description during

design iterations. This idea has been described in §7.4.2. This could also be used to

obtain a faster layout, by having to place only the new components after changes to

a Balsa description.

• Co-simulation: A basic interface is already in place for the (deprecated)

co-simulation of Balsa with the LARD asynchronous behavioural language.

Co-simulation of the handshake circuit with a simulation at a lower, more precise

level could be used for dynamic correction of the handshake components’ delay and

power consumption estimations.

• Simulation trace patterns: The patterns obtained from the out-of-order simulation

trace offer new opportunities for organising data for debugging and visualisation

applications.

• Checkpointing: The state of a simulation process could be saved at regular intervals.

This would allow the simulation to run without generating a simulation trace, and

later generate the simulation trace on demand for any specified time interval for

debugging purposes.

• Search features: A collection of search methods is necessary for efficient navigation

among large amounts of information, as demonstrated by some program

comprehension studies [13].

• Asynchronous design teaching tool: The educational qualities of the current

framework, although undeniable (see §9.4), have not been evaluated per se. A

complete work of evaluation on real classes could be considered.

Appendix A: Balsa Example Circuits with Statistics 154

Appendix A: Balsa Example Circuits
with Statistics

A.1 Sizes

A.2 Source Code for the 1-Place Buffer Example
import [balsa.types.basic]

-- main procedure used with I/O test-harness
procedure main (input inp:byte; output out:byte) is
 variable x : byte
begin

loop
inp -> x;
out <- x

end
end

-- environment used in the "without I/O" case
procedure env is
 variable i : 26 bits
 channel x,y : byte
begin
 i := 10000;

channels # components

1-place buffer + test-harness,
10000 data

8 + 37 = 45 5 + 26 = 31

1-place buffer without I/O + environment,
10000 loops

8 + 24 = 32 5 + 20 = 25

Corridor 276 192

SPA 1st february 2002 7453 4653

SPA 2004 13268 8118

Table A.1: Size of Balsa circuits examples

Appendix A: Balsa Example Circuits with Statistics 155

 loop while i /= 0 then
 x <- 1;
 i := ((i-1) as 26 bits)
 end ||
 loop
 select y then continue end
 end ||
 main (x,y)
end

A.3 Source Code for the Corridor Example
import [balsa.types.basic]

procedure delay_move is
variable x:byte

begin
x := 0

end

type op1 is enumeration OP_read, OP_set_wfz end

procedure position (input write:bit; output read:bit;
input op:op1; sync wait_for_zero) is

 variable value : bit
 variable flagb, flagb2 : bit
 variable value2 : bit

 variable flag, flag2 : bit
 sync c2
begin
 begin
 value := 0;
 flagb := 0;
 loop

 arbitrate write then
 value := write

 | op then
 case op of

 OP_read then flagb := 1
 | OP_set_wfz then flagb2 := 1
end

end;
if flagb then

read <- value;
flagb := 0

else
if value = 0 and flagb2 = 1 then

sync c2;
flagb2 := 0

end
end

end
end ||!

 loop
 select wait_for_zero then
 if value = 1 then
 flagb2 := 1;
 sync c2
 end
 end

Appendix A: Balsa Example Circuits with Statistics 156

 end
end

procedure real_lazy_guy (parameter name:String; output my_pos : bit;
sync waitfor_pos_in_front_empty) is

begin
 my_pos <- 1;
print "lazy guy ", name, ": Somebody in front of me... I’ll wait that he moves

aside...";
 sync waitfor_pos_in_front_empty;
 print "ok I can go";
 my_pos <- 0
end

procedure lazy_guy (parameter name:String; sync chan4wfz, chan5wfz;
output chan4op, chan5op : op1; output chan1w, chan2w : bit;
input chan4r, chan5r : bit) is

variable flag : bit
begin
 flag := 0;
 if flag then
 sync chan4wfz;
 chan4op <- OP_set_wfz;
 chan5op <- OP_set_wfz;
 chan2w <- 0;
 chan4r -> flag;
 chan5r -> flag
 end;
 real_lazy_guy (name, chan1w, chan5wfz)
end

procedure polite_guy (parameter name:String; sync chan4wfz, chan5wfz;
output chan4op, chan5op : op1; output chan1w, chan2w : bit;
input chan4r, chan5r : bit) is

variable pos4, pos5, flag : bit
begin
 flag := 0;
 if flag then
 chan1w <- 0 ; sync chan4wfz;
 chan2w <- 0 ; sync chan5wfz
 end;
 loop
 chan1w <- 1;
 chan5op<-OP_read; chan5r->pos5;
 if pos5 = 1 then

print "polite guy ", name, ": Somebody in front of me! Let’s move aside to
let him pass"
 else
 print "a: got him!";
 chan1w <- 0;
 halt
 end;
 chan2w <- 1;
 chan1w <- 0;
 chan4op<-OP_read; chan4r->pos4;
 if pos4 = 1 then
 print "polite guy ", name, ": Still somebody in front of me! let’s move
back then"
 else
 print "b: got him!";
 chan2w <- 0;
 halt

Appendix A: Balsa Example Circuits with Statistics 157

 end;
 chan1w <- 1;
 chan2w <- 0
 end
end

procedure main2 is
 variable pos1,pos2,pos3,pos4,pos5 : bit
 channel chan1w, chan1r : bit
 channel chan2w, chan2r : bit
 channel chan4w, chan4r : bit
 channel chan5w, chan5r : bit
 channel chan1op : op1
 channel chan2op : op1
 channel chan4op : op1
 channel chan5op : op1
 sync chan1wfz
 sync chan2wfz
 sync chan4wfz
 sync chan5wfz
begin
-- polite_guy (pos2, pos4) ||
-- polite_guy (pos4, pos2)

 position (chan1w, chan1r, chan1op, chan1wfz) ||
 position (chan2w, chan2r, chan2op, chan2wfz) ||
 position (chan4w, chan4r, chan4op, chan4wfz) ||
 position (chan5w, chan5r, chan5op, chan5wfz) ||

 lazy_guy ("A", chan4wfz, chan5wfz, chan4op, chan5op,
chan1w, chan2w, chan4r, chan5r)

 ||
 lazy_guy ("B", chan2wfz, chan1wfz, chan2op, chan1op,

chan5w, chan4w, chan2r, chan1r)

end -- procedure main

A.4 Out-of-Order Livelock Simulation Trace

This is the simulation trace generated by the out-of-order scheduler with the one-place

buffer and its environment (source code in §A.2):

@1: 2-requp 31-requp 32-requp 3-requp 23-requp 24-requp 25-requp 26-requp
27-requp 26-ackup 25-ackup 27-ackup 27-reqdown 25-reqdown 24-ackup 24-
reqdown 26-reqdown 26-ackdown 25-ackdown 27-ackdown 27-requp 25-requp
24-ackdown 24-requp 26-requp 1-requp 0-requp XXX

@32: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-ackdown 17-
requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup 20-ackup 20-
reqdown 21-reqdown 21-ackdown 20-ackdown 20-requp 21-requp 22-requp 0-
requp XXX

@62: 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup 20-ackup 20-
reqdown 21-reqdown 21-ackdown 20-ackdown 20-requp 21-requp 19-ackup
19-reqdown 19-ackdown 13-ackup 11-ackup 27-ackup 27-reqdown 11-reqdown
15-ackup 15-reqdown 13-reqdown 13-ackdown 11-ackdown 27-ackdown 27-
requp 11-requp 15-ackdown 15-requp 13-requp 12-ackup 14-ackup 14-

Appendix A: Balsa Example Circuits with Statistics 158

reqdown 10-ackup 9-ackup 9-reqdown 10-reqdown 12-reqdown 12-ackdown
14-ackdown 14-requp 10-ackdown 9-ackdown 9-requp 10-requp 12-requp 18-
ackup 17-ackup 2-reqdown 31-reqdown 31-ackdown 30-ackdown 30-requp 2-
ackdown 0-requp XXX

@32: 6-requp 4-requp 28-ackdown 28-requp 29-requp 31-ackup 30-ackup 30-
reqdown 2-ackup 0-requp XXX

@40: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-ackdown 4-
ackdown 6-ackdown 5-ackdown 5-requp 7-requp 8-requp 0-requp XXX

@62: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-ackdown 2-
requp 31-requp 32-requp 32-ackup 32-reqdown 32-ackdown 29-ackup 4-
ackup 6-ackup 5-ackup 5-reqdown 7-reqdown 7-ackdown 0-requp XXX

@70: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-ackdown 4-
ackdown 6-ackdown 5-ackdown 5-requp 7-requp 7-ackup 0-requp XXX

@47: 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup 20-ackup 20-
reqdown 21-reqdown 21-ackdown 20-ackdown 20-requp 21-requp 19-ackup
19-reqdown 19-ackdown 13-ackup 11-ackup 27-ackup 27-reqdown 11-reqdown
15-ackup 15-reqdown 13-reqdown 13-ackdown 11-ackdown 27-ackdown 27-
requp 11-requp 15-ackdown 15-requp 13-requp 12-ackup 14-ackup 14-
reqdown 10-ackup 9-ackup 9-reqdown 10-reqdown 12-reqdown 12-ackdown
14-ackdown 14-requp 10-ackdown 9-ackdown 9-requp 10-requp 12-requp 18-
ackup 17-ackup 2-reqdown 31-reqdown 31-ackdown 30-ackdown 30-requp 2-
ackdown 0-requp XXX

@55: 6-requp 4-requp 28-ackdown 28-requp 29-requp 31-ackup 30-ackup 30-
reqdown 2-ackup 0-requp XXX

@77: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-ackdown 4-
ackdown 6-ackdown 5-ackdown 5-requp 7-requp 7-ackup 0-requp XXX

@85: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-ackdown 2-
requp 31-requp 32-requp 32-ackup 32-reqdown 32-ackdown 29-ackup 4-
ackup 6-ackup 5-ackup 5-reqdown 7-reqdown 7-ackdown 0-requp XXX

@62: 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup 20-ackup 20-
reqdown 21-reqdown 21-ackdown 20-ackdown 20-requp 21-requp 19-ackup
19-reqdown 19-ackdown 13-ackup 11-ackup 27-ackup 27-reqdown 11-reqdown
15-ackup 15-reqdown 13-reqdown 13-ackdown 11-ackdown 27-ackdown 27-
requp 11-requp 15-ackdown 15-requp 13-requp 12-ackup 14-ackup 14-
reqdown 10-ackup 9-ackup 9-reqdown 10-reqdown 12-reqdown 12-ackdown
14-ackdown 14-requp 10-ackdown 9-ackdown 9-requp 10-requp 12-requp 18-
ackup 17-ackup 2-reqdown 31-reqdown 31-ackdown 30-ackdown 30-requp 2-
ackdown 0-requp XXX

@70: 6-requp 4-requp 28-ackdown 28-requp 29-requp 31-ackup 30-ackup 30-
reqdown 2-ackup 0-requp XXX

@92: 6-reqdown 4-reqdown 28-ackup 28-reqdown 29-reqdown 29-ackdown 4-
ackdown 6-ackdown 5-ackdown 5-requp 7-requp 7-ackup 0-requp XXX

@100: 17-reqdown 16-ackup 16-reqdown 18-reqdown 18-ackdown 17-ackdown 2-
requp 31-requp 32-requp 32-ackup 32-reqdown 32-ackdown 29-ackup 4-
ackup 6-ackup 5-ackup 5-reqdown 7-reqdown 7-ackdown 0-requp XXX

@77: 17-requp 16-ackdown 16-requp 18-requp 19-requp 21-ackup 20-ackup 20-
reqdown 21-reqdown 21-ackdown 20-ackdown 20-requp 21-requp 19-ackup
19-reqdown 19-ackdown 13-ackup 11-ackup 27-ackup 27-reqdown 11-reqdown
15-ackup 15-reqdown 13-reqdown 13-ackdown 11-ackdown 27-ackdown 27-
requp 11-requp 15-ackdown 15-requp 13-requp 12-ackup 14-ackup 14-
reqdown 10-ackup 9-ackup 9-reqdown 10-reqdown 12-reqdown 12-ackdown
14-ackdown 14-requp 10-ackdown 9-ackdown 9-requp 10-requp 12-requp 18-
ackup 17-ackup 2-reqdown 31-reqdown 31-ackdown 30-ackdown 30-requp 2-
ackdown 0-requp XXX

...

The four last blocks (blocks are going from one XXX to the next) are repeated until the

end of the program (This example is not a real livelock: A loop counter stops the

simulation after 1000 iterations).

Appendix B: Breeze Handshake Components 159

Appendix B: Breeze Handshake
Components

The material contained in this appendix (notations, figures and descriptions) were

originally described in chapter 3 of Bardsley’s Ph.D. Thesis [5]. They have been

reproduced here and updated with the permission of the author.

B.1 Notation

Each of the handshake components described in this section is accompanied by a

description of that component’s behaviour. This behaviour is expressed in a notation

invented by Bardsley [5], which is a modified form of van Berkel’s handshake circuit

calculus [11].

B.2 Activation driven control components

The control components provide the events used by other components to sequence their

activities. Each control component has a passive sync activation port and optionally a

number of active sync output activation ports. Connecting the output activation port of a

component to the activation port of another allows control trees to be constructed in which

activity at the leaf ports is controlled by a single collective activation port on the root

component. Activity on the output activations is enclosed within handshakes on the

activation port and so leaf activity is enclosed within handshakes on the root component’s

activation. These components are used primarily to implement command composition in

handshake circuit HDLs through activation triggered sub circuits connected to control

components’ output activation channels. The Balsa control components are: Continue,

Halt, Loop, Sequence, Concur, Fork and WireFork.

Appendix B: Breeze Handshake Components 160

Continue / Halt
(passive sync inp)

Continue: #[inp]

Halt: stop

Figure B.1: Continue and Halt handshake components

Loop
(passive sync activate;

active sync activateOut)

activate : #[activateOut]

Figure B.2: Loop handshake component

Sequence / Concur
(parameter outputCount : cardinal;

passive sync activate;
array outputCount of active sync activateOut

)

Sequence: # [activate : [activateOut0 ; ... ; activateOutoutputCount-1]]

Concur: # [activate : [activateOut0 || ... || activateOutoutputCount-1]]

Fork / WireFork
(parameter outputCount : cardinal;

passive sync activate;
array outputCount of active sync out)

#[activate : [out0 , ... , outoutputCount-1]]

Figure B.3: Sequence, Concur, Fork and WireFork handshake components

run /
stop inp

activateOutactivate #

; / || activateOut[]activate

#outputCount

* 0

out[]inp

#outputCount

Appendix B: Breeze Handshake Components 161

B.3 Control to datapath interface components

A small number of components allow control sync channels to interact with data

transactions. The transferrer is the most common of these components, it controls the

transfer of data from an active input port to an active output port under the control (and

enclosure) of a passive activation port. Components with activations implementing

looping and condition control operations as well as the Case component (which translates

data values on a passive input activation port into activity on one of a number of active

sync ports) also fall in this component class. The complete set of components is: While,

Bar, Fetch, FalseVariable, Case, NullAdapt, Encode.

B.4 Pull datapath components

Compiled data operations (+, -, ...) in Balsa consist of a sync channel meeting a transferrer

causing a result to be requested from a tree of pull datapath components implementing the

While
(passive sync activate;

active input guard : 1 bits;
active sync activateOut)

#[activate : [guard ?• g ; [g -> activateOut]]]

Figure B.4: While handshake component

Bar
(parameter guardCount : cardinal;

passive output guard : 1 bits;
passive sync activate;
array guardCount of active input guardInput
: 1 bits;
array guardCount of active sync activateOut)

#[guard !° (c := [guardInput0 ?• ... ?• guardInputguardCount-1 ?•

choose(guardInput0, ..., guardInputguardCount-1)]) != -1)] ||

#[activate : activateOutc]

Figure B.5: Bar handshake component

activate

1

guard activateOutdo

1
guardInput[]

#guardCount

#guardCount

1
guard

activate

[]
activateOut[]

Appendix B: Breeze Handshake Components 162

Fetch
(parameter width : cardinal;
passive sync activate;
active input inp : width bits;
active output out : width bits)

#[activate : out !• inp ?• inp]

Figure B.6: Fetch handshake component

FalseVariable
(parameter width : cardinal;

parameter readPortCount : cardinal;
passive input write : width bits;
active sync signal;
array readPortCount of passive output read)

#[write ?° [v := write ; signal]] || #[read0 !° v] || ... || #[readreadPortCount-1 !° v]

Figure B.7: FalseVariable handshake component

Case
(parameter inputWidth : cardinal;

parameter outputCount : cardinal;
parameter specification : string;
passive input inp : inputWidth bits;
array outputCount of active sync activateOut

)

#[inp ?° [decode(outputCount, specification, inp) != - 1 ->

activateOutdecode(outputCount, specification, inp) != - 1]]

Figure B.8: Case handshake component

NullAdapt
(parameter inputWidth : cardinal;

passive sync out;
active input inp : inputWidth bits)

#[inp : out]

Figure B.9: NullAdapt handshake component

→ outinp
width width

activate

width

#readPortCount

read[]width
write

signal

FV

activateOut[]

#outputCount

inp

inputWidth

specification

@

inp
inputWidth

NA out

Appendix B: Breeze Handshake Components 163

required function and pushing that result onto an output channel or into a variable

(variables are the components which implement HDL level variables as latches). The pull

datapath components form an activation driven tree in the same way as control

components but with variables or input channels at the leaves. The activations of these

components are pull ports with the incoming request flowing (and forking) towards the

leaves of the tree with the result flowing (and joining) back to the root forming the result

acknowledgement. The datapath components are: Adapt, Slice, Constant, Combine,

CombineEqual, CaseFetch, UnaryFunc, BinaryFunc and BinaryFuncConstR.

Encode
(parameter outputWidth : cardinal;

parameter inputCount : cardinal;
parameter specification : string;
array inputCount of passive sync inp;
active output out : outputWidth bits)

#[[inp0 : out !• encode(outputWidth, inputCount, specification, 0) | ... |

inpinputCount-1 : out !• encode(outputWidth, inputCount, specification,

inputCount)]]

Figure B.10: Encode handshake component

Adapt
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter outputIsSigned, inputIsSigned :
boolean;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?• adapt(outputWidth, inputWidth, outputIsSigned, inputIsSigned,

inp)]

Slice
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter lowIndex : cardinal;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?• slice(outputWidth, lowIndex, inp)]

Figure B.11: Adapt and Slice handshake components

#inputCount

inp[] Enc out
outputWidth

outinp
inputWidth outputWidth
inputIsSigned outputIsSigned

A

inp out
inputWidth outputWidth

lowIndex

8<

Appendix B: Breeze Handshake Components 164

Constant
(parameter width : cardinal;

parameter value : width bits;
passive output out : width bits)

#[out !° value]

Figure B.12: Constant handshake component

Combine
(parameter outputWidth : cardinal;

parameter LSInputWidth : cardinal;
parameter MSInputWidth : cardinal;
passive output out : outputWidth bits;
active input LSInp : LSInputWidth bits;
active input MSInp : MSInputWidth bits)

#[out !° LSInp ?• MSInp ?• combine(LSInp, MSInp)]

CombineEqual
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter inputCount : cardinal;
passive output out : outputWidth bits;
array inputCount of active input inp : inputWidth
bits)

#[out !° inp0 ?• ... ?• inpinputCount-1 ?• combineEqual(inp0, ..., inpinputCount-1)]

Figure B.13: Combine and CombineEqual handshake components

CaseFetch
(parameter width, indexWidth : cardinal;

parameter inputCount : cardinal;
parameter specification : string;
passive output out : width bits;
active input index : indexWidth bits;
array inputCount of active input inp : width bits)

#[out !° index ?• inpindex ?• inpindex]

Figure B.14: CaseFetch handshake component

value
width

out

out
outputWidth

LSInputWidth

MSInputWidth
MSInp

LSInp

out
outputWidth

inputWidth

inp[]

#inputCount

width

inp[]
width

index

out

indexWidth

#inputCount

@−>

Appendix B: Breeze Handshake Components 165

B.5 Connection components

This class includes components used to connect together channels of the same sense,

provide synchronisation between multiple channels and combine the activity of a number

of channels to allow multiplexing and resource sharing. This class also includes variables

as they occupy the same positions in a handshake circuit as other types of channel

UnaryFunc
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter op : UnaryOperator;
parameter inputIsSigned : boolean;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?• op(outputWidth, inputIsSigned, op, inp)]

BinaryFunc
(parameter outputWidth : cardinal;

parameter inputAWidth : cardinal;
parameter inputBWidth : cardinal;
parameter op : BinaryOperator;
parameter outputIsSigned : boolean;
parameter inputAIsSigned : boolean;
parameter inputBIsSigned : boolean;
passive output out : outputWidth bits;
active input inpA : inputAWidth bits;
active input inpB : inputBWidth bits)

#[out !° inpA ?• inpB ?• op(outputWidth, outputIsSigned, inputAIsSigned,

inputBIsSigned, op, inpA, inpB)]

BinaryFuncConstR
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter constWidth : cardinal;
parameter op : BinaryOperator;
parameter outputIsSigned : boolean;
parameter inputIsSigned : boolean;
parameter constIsSigned : boolean;
parameter constant : constWidth bits;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?• op(outputWidth, outputIsSigned, inputIsSigned,

constIsSigned, op, constant, inp)]

Figure B.15: UnaryFunc, BinaryFunc and BinaryFuncCont handshake components

op outinp
inputWidth outputWidth
inputIsSigned

op out
outputWidth

inputAWidth
inputAIsSigned

inputBWidth
inputBIsSigned

inpB

inpA
outputIsSigned

op outinp
inputWidth outputWidth
inputIsSigned

constant

constIsSigned
constWidth

Appendix B: Breeze Handshake Components 166

connection component. Other than variables, the connection components in a handshake

circuit are the only components whose presence isn’t explicitly described in the HDL

source for that handshake circuit. This is because they are usually present as glue to

implement HDL level channels and in particular, the multicast nature of Balsa channels.

The greater part of connection components implementations consist of just port-to-port

wire connections. For this reason, optimising and combining connection components

gives us better control of the location of troublesome wire forks which can cause wire load

and drive strength management problems in implementation.

The collection of synchronising and resource sharing connection components is mostly

borrowed from the Tangram component set with the addition of parameterised arrayed

ports. The connection components are: ContinuePush, HaltPush, ForkPush, Call,

CallMux, CallDemux, Passivator, PassivatorPush, Synch, SynchPull, SynchPush,

DecisionWait, Split, Arbiter and Variable.

ContinuePush / HaltPush
(parameter width cardinal;

passive input inp : width bits)

ContinuePush: #[inp]

HaltPush: stop

Figure B.16: ContinuePush and HaltPush handshake components

ForkPush
(parameter width, outputCount : cardinal;

passive input inp : width bits;
array outputCount of active output out :
width bits)

#[inp ?° [out0 !• inp , ... , outoutputCount-1 !• inp]]

Figure B.17: ForkPush handshake component

run /
stop inp

width

width

out[]

#outputCount

inp
width

Appendix B: Breeze Handshake Components 167

Call
(parameter inputCount : cardinal;

array inputCount of passive sync inp;
active sync out)

#[[inp0 : out | ... | inpinputCount-1 : out]]

CallMux
(parameter width : cardinal;

parameter inputCount : cardinal;
array inputCount of passive input inp : width
bits;
active output out : width bits)

#[[out !• inp0 | ... | out !• inpinputCount-1]]

CallDemux
(parameter width : cardinal;

parameter outputCount : cardinal;
array outputCount of passive output out :
width bits;
active input inp : width bits)

#[[out0 !° inp ?• inp | ... | outoutputCount-1 !° inp ?• inp]]

Figure B.18: Call, CallMux and CallDemux handshake components

Passivator
(parameter count : cardinal;

array count of passive sync inp)

#[inp0 : ... : inpcount-1]

PassivatorPush
(parameter width, outputCount : cardinal;

array outputCount of passive output out :
width bits;

passive input inp : width bits)

#[out0 !° ... !° outoutputCount-1 !° inp ?° inp]

Figure B.19: Passivator and PassivatorPush handshake components

#inputCount

inp[] out|

inp[] |
width

out
width

#inputCount

out[] |

#outputCount

width

width
inp

#count

inp[]

width

#outputCount

out[]
width

inp

Appendix B: Breeze Handshake Components 168

Synch
(parameter inputCount : cardinal;

array inputCount of passive sync inp;
active sync out)

#[inp0 : ... : inpinputCount-1 : out]

SynchPull
(parameter width, outputCount : cardinal;

array outputCount of passive output pout :
width bits;
active input inp : width bits)

#[pout0 !° ... !° poutoutputCount-1 !° inp ?• inp]

SynchPush
(parameter width, outputCount : cardinal;

passive input inp : width bits;
array outputCount of passive output pout :
width bits;
active output aout : width bits)

#[pout0 !° ... !° poutoutputCount-1 !° inp ?° aout !• inp]

Figure B.20: Synch, SynchPull and SynchPush handshake components

DecisionWait
(parameter portCount : cardinal;

passive sync activate;
array portCount of passive sync inp;
array portCount of active sync out)

#[activate : [inp0 : out0 | ... | inpportCount-1 : outportCount-1]]

Figure B.21: DecisionWait handshake component

#inputCount

inp[] out

#outputCount

width

width
pout[] inp

pout[]

width
width

width

#outputCount

inp

aout

out[]inp[] DW

activate

#portCount #portCount

Appendix B: Breeze Handshake Components 169

Split
(parameter inputWidth : cardinal;

parameter LSOutputWidth : cardinal;
parameter MSOutputWidth : cardinal;
passive input inp : inputWidth bits;
active output LSOut : LSOutputWidth bits;
active output MSOut : MSOutputWidth bits)

#[inp ?° [LSOut !• bitfield(0, LSOutputWidth-1, inp) ||

MSOut !• bitfield(LSOutputWidth, inputWidth-1, inp)]]

SplitEqual
(parameter inputWidth : cardinal;

parameter outputWidth : cardinal;
parameter outputCount : cardinal;
passive input inp : inputWidth bits;
array outputCount of active output out :
outputWidth bits)

#[inp ?° [out0 !• bitfield(0, outputWidth-1, inp) || ... ||

outoutputCount-1 !• bitfield(inputWidth-outputWidth, inputWidth-1, inp)]]

Figure B.22: Split and SplitEqual handshake components

Variable
(parameter width, readPortCount : cardinal;

parameter name : string;
passive input write : width bits;
array readPortCount of output read : width
bits)

#[write ?° v := write] ||

#[read0 ! v] || ... || #[readreadPortCount-1 !° v]

InitVariable
(parameter width, readPortCount : cardinal;

parameter name : string;
parameter initValue: width bits;
passive input write : width bits;
array readPortCount of output read : width
bits)

v := initValue ;

#[write ?° v := write] ||

#[read0 ! v] || ... || #[readreadPortCount-1 !° v]

Figure B.23: Variable and InitVariable handshake components

inp
inputWidth

LSOutputWidth

MSOutputWidth
MSOut

LSOut

outputWidth

out[]

#outputCount

inp
inputWidth

width

read[]width

#readPortCount

namewrite

width

read[]width

#readPortCount

namewrite

initValue

Appendix B: Breeze Handshake Components 170

B.6 Breeze handshake components indexed by name

Arbiter
(sync inpA, inpB, outA, outB)

#[[inpA : inpB | inpB : outB]]

Figure B.24: Arbiter handshake component

inpA

inpB outB

outA

Arb

Component Name -Abbreviation - Page

Adapt A 163
Arbiter Arb 170
Bar [] 161
BinaryFunc...................... <op> 165
BinaryFuncConstR.......... <op> 165
Call | 167
CallDemux | 167
CallMux............................... | 167
Case@.......... 162
CaseFetch@->........ 164
Combine « » 164
CombineEqual.................. «=» 164
Concur||........... 160
Constant.........................<value>..... 164
Continue run......... 160
ContinuePush run......... 166
DecisionWait.................... DW 168
Encode.............................. Enc 163
FalseVariable.....................FV......... 162
Fetch...................................->.......... 162

Component Name -Abbreviation -Page

Fork •............160
ForkPush •............166
Halt....................................halt160
HaltPush............................halt166
InitVariable <var.name>...169
Loop#160
NullAdapt..........................NA162
Passivator •............167
PassivatorPush •............167
Sequence ;............160
Slice....................................8<163
Split » «..........169
SplitEqual..........................»=«169
Synch................................... •............168
SynchPull •............168
SynchPush........................... •............168
UnaryFunc........................<op>165
Variable...................... <var.name>...169
While..................................do161
WireFork........................... W...........160

 References 171

References

[1] Antoniol, G., di Penta, M., A Distributed Architecture for Dynamic Analyses on

User-Profile Data. 8th Euromicro Working Conference on Software Maintenance and

Reengineering (CSMR’04), March 2004.

[2] Ball, T., Eick, S., Software Visualization in the Large. IEEE Computer, Vol.

29(4), pp. 34-43, April 1996.

[3] Bainbridge W.J., Furber S., Delay Insensitive System-on-Chip Interconnect

Using 1-of-4 Data Encoding. Proceedings Async 2001, pp. 118-126, IEEE Computer

Society Press (ISSN 1522-8681 ISBN 0-7695-1034-4), March 2001.

[4] Bardsley, A., Balsa: An Asynchronous Circuit Synthesis System. Master Thesis,

Department of Computer Science, The University of Manchester, 1998.

[5] Bardsley A., Implementing Balsa Handshake Circuits. Ph.D. Thesis, Department

of Computer Science, The University of Manchester, 2000.

[6] Bardsley, A., Edwards D.A., Synthesising an Asynchronous DMA Controller

with Balsa. Journal of Systems Architecture 46, pp. 1309-1319, 2000.

[7] Barringer, H., Fellows, D., Gough, G.D., Jinks, P., Marsden, B. and Williams,

A., Design and Simulation in Rainbow: A Framework for Asynchronous Micropipeline

Circuits. Proceeding of the European Simulation Symposium, Genoa, Italy, 1996.

[8] di Battista, G., Eades, P., Tamassia, R., Tollis, I.G., Graph Drawing: Algorithms

for the Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, 1999.

[9] van Berkel, K., et al., The VLSI-Programming Language Tangram and its

Translation into Handshake Circuits. Proceedings of the conference on European design

automation, pp. 384-389, 1991.

 References 172

[10] van Berkel, K., Beware the Isochronic Fork. Integration 13(2), pp. 103-128 ,

June 1992.

[11] van Berkel, K., Handshake Circuits - An Asynchronous Architecture for VLSI

Programming. Cambridge International Series on Parallel Computers, Cambridge

University Press, Cambridge, 1993.

[12] Brandes, U., Corman, S.R., Visual Unrolling of Network Evolution and the

Analysis of Dynamic Discourse. Information Visualization 2(1), pp. 40-50, 2003.

[13] Brooks, R., Towards a Theory of the Comprehension of Computer Programs.

International Journal of Man-Machine Studies, 18, pp. 543-554, 1983.

[14] Brown, M.H., Exploring Algorithms Using Balsa-II. IEEE Computer, Vol.

21(5), pp. 14-36, May 1988.

[15] Brown, M.H., Zeus: A System for Algorithm Animation and Multi-View

Editing. Proc. IEEE Workshop on Visual Languages, pp. 4-9, October 1991.

[16] Brunvand, E., Sproull, R.F., Translating Concurrent Programs into Delay-

Insensitive Circuits. Proc. ICCAD, IEEE Computer Society Press, pp. 262-265,

November 1989.

[17] Brunvand, E., Translating Concurrent Communicating Programs into

Asynchronous Circuits. Ph.D. Thesis, Carnegie Mellon University, 1991.

[18] Burd, E., Chan, P., Duncan, I., Munro, M., Young, P., Improving Visual

Representations of Code. University of Durham, Computer Science Technical Report,

1996.

[19] Cadence Design Systems, Verilog-XL Reference Manual. December 1994.

[20] Chandy, K.M., Misra, J., Deadlock Absence Proof for Networks of

Communicating Processes. Information Processing Letters, 9, 4, pp. 185-189, November

1979.

[21] Chelcea, T., Bardsley, A., Edwards, D.A., Nowick, S.M., A Burst-Mode

Oriented Back-End for the Balsa Synthesis System. Design, Automation and Test in

Europe Conference and Exhibition, March 2002.

[22] Chen, K., Rajlich, V., Case Study of Feature Location Using Dependance Graph.

Proc. Int. of the 8th int. workshop on Program Comprehension, pp. 241-249, June 2000.

 References 173

[23] Chifosky, E.J., Cross, J.H., II, Reverse Engineering and Design Recovery: A

Taxonomy. IEEE software, pp.13-17, January 1990.

[24] Clark, W.A., Macromodular Computer Systems. AFIPS Conference

Proceedings: Spring Joint Computer Conference, 1967.

[25] Coffman, E.G., Elphick, M.J., Shoshani, A., System Deadlocks. ACM

Computing Surveys, Vol. 3(2), pp. 67-78, June 1971.

[26] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.,

Petrify: A Tool for Manipulating Concurrent Specifications and Synthesis of

Asynchronous Controllers. IEICE Transactions on Informations and Systems, pp. 315-

325, March 1997.

[27] Couranz, G.R, Wann, D.F., Theoretical and Experimental Behaviour of

Synchronizers Operating in the Metastable Region. IEEE Transactions on Computers

24(6), pp. 604-616, June 1975.

[28] Eades, P., Huang, M.L., Navigating Clustered Graphs using Force-Directed

Methods. Journal of Graph Algorithms and Applications: Special Issue on Selected

Papers from 1998 Symp. Graph Drawing, Vol. 4(3), pp. 157-181, 2000.

[29] Edwards, D.A., Bardsley, A., Balsa: An Asynchronous Hardware Synthesis

Language. The Computer Journal, Vol. 45(1), pp. 12-18, 2002.

[30] Edwards, D.A., Toms, W.B., Design, Automation and Test for Asynchronous

Circuits and Systems. Information Society Technologies (IST) Programme, Concerted

Action Thematic Network Contract, IST-1999-29119, 2nd Edition, Feb 2003.

[31] Edwards, D.A., Theodoropoulos, G., Kwiatkowska, M., An Integrated

Framework for Formal Verification and Distributed Simulation of Asynchronous

Hardware Case for Support. Research Project Proposal, 2003.

[32] Edwards, D.A., Bardsley, A., Janin, L., Toms, W., Balsa: A Tutorial Guide.

version 3.4.1, Department of Computer Science, The University of Manchester, May

2004.

[33] Eisenbarth, T., Koschke, R., Simon, D., Aiding Program Comprehension by

Static and Dynamic Feature Analysis. Proceedings of the IEEE International Conference

on Software Maintenance, 2001.

 References 174

[34] Endecott P.B., Furber, S.B., Modelling and Simulation of Asynchronous

Systems using the LARD Hardware Description Language. Proceedings of the 12th

European Simulation Multiconference, Manchester, pp. 39-43, June 1998.

[35] Erbacher, R.F., Visual Assistance for Concurrent Processing, Ph.D. Thesis,

Institute for Visualization and Perception Research, University of Massachusetts, 1998.

[36] Everitt, B., Cluster Analysis, First edition, Heinemann Educational Books Ltd,

1974. Fourth edition, ISBN 0340761199, 2001.

[37] Favre, J.-M., Cervantes, H., Visualization of Component-based Software.

Laboratoire LSR-IMAG, University of Grenoble, France, 2002.

[38] Feng, Q., Algorithms for drawing clustered graphs. Ph.D. Thesis, Department of

Computer Science and Software Engineering, The University of Newcastle, Australia,

1997.

[39] Ferscha, A., Adaptive Time Warp Simulation of Timed Petri Nets. IEEE

Transactions on Software Engineering, Vol. 25(2), March/April 1999.

[40] Fruchterman, T.M.J., Reingold, E.M., Graph Drawing by Force-Directed

Placement. Software - Practice and Experience, Vol. 21(11), pp. 1129-1164, 1991.

[41] Fuhrer, R., Nowick, S., Theobald, M., Jha, N., Plana, L., MINIMALIST: An

Environment for the Synthesis and Verification of Burst-Mode Asynchronous Machines.

Technical Report CUCS-020-99, Columbia University, 1999.

[42] Furber, S.B., Garside, J.D., Riocreux, P., Temple, S., Day, P., Liu, J., Paver,

N.C., AMULET2e: An Asynchronous Embedded Controller. Proceedings of the IEEE,

volume 87, number 2, pp. 243-256, February 1999.

[43] van Gageldonk, H., Baumann, D., van Berkel, K., Gloor, D., Peeters, A.,

Stegmann, G., An Asynchronous Low-Power 80C51 Microcontroller. Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 96-107,

1998.

[44] Gansner, E.R., North, S.C., An Open Graph Visualization System and its

Applications to Software Engineering.Software Practice and Experience, 1999.

[45] Gansner, E.R., Koutsofios, E., North, S.C., Dot User’s Manual. AT&T Labs,

February 2002.

 References 175

[46] Garside, J.D., Bainbridge, W.J., Bardsley, A., Clark, D.M., Edwards, D.A.,

Furber, S.B., Liu, J., Lloyd, D.W., Mohammadi, S., Pepper, J.S., Petlin, O., Temple, S.,

Woods, J.V., AMULET3i - An Asynchronous System-on-Chip. Proceedings of

Async’2000, IEEE Computer Society Press, pp. 162-175, April 2000.

[47] Granlund, T., GNU MP: The GNU Multiple Precision Arithmetic Library.

Refrence manual, Free Software Foundation, Inc., 1991.

[48] GTKWave Electronic Waveform Viewer.

URL: http://www.cs.man.ac.uk/apt/tools/gtkwave/

[49] Haagh, T.B., Hansen, T.R., Optimising a Coloured Petri Net Simulator. Master

Thesis, University of Aarhus, Department of Computer Science, December 1994.

[50] Harel, D., Koren, Y., A Fast Multi-Scale Method for Drawing Large Graphs.

Graph Drawing: 8th International Symposium (GD’00), pp. 183-196, 2000.

[51] Herman, I., Melançon, G., Marshall, M.S., Graph Visualization and Navigation

in Information Visualization: A Survey. IEEE Transactions on Visualization and

Computer Graphics, Vol. 6(1), pp. 24-43, 2000.

[52] Hoare, C.A.R., Communicating Sequential Processes. Communications of the

ACM 21 (8), pp. 666-677, 1978.

[53] Huang, M.L., Eades, P., Wang, J., On-Line Animated Visualization of Huge

Graphs Using a Modified Spring Algorithm. Journal of Visual Languages and

Computing, 9, pp. 623-645, 1998.

[54] Huffman, D.A., The Synthesis of Sequential Switching Circuits. J. Franklin

Institute, March/April 1954.

[55] Icarus Verilog.

URL: http://www.icarus.com/eda/verilog/

[56] IEEE Std 1364-1995, IEEE Standard Hardware Description Language Based on

the Verilog Hardware Description Language - Description, 1995.

[57] INMOS Ltd., Occam 2 Programming Manual. Series in Computer Science,

Prentice-Hall International, 1989.

[58] Janin, L., Edwards, D.A., Debugging Tools for Asynchronous Design. 10th UK

Asynchronous Forum, July 2001.

 References 176

[59] Janin, L., A Visualisation System for Balsa Simulations. 12th UK Asynchronous

Forum, June 2002.

[60] Janin, L., Bardsley, A., Edwards, D.A., Simulation and Visualisation of

Asynchronous Circuits. International Journal of Simulation: Systems, Science &

Technology, September 2003.

[61] Jefferson, D.R., Virtual Time. ACM Transactions on Programming Languages

and Systems, 7(3), pp. 404-425, July 1985.

[62] Jensen, K., Coloured Petri Nets : Basic Concepts, Analysis Methods, and

Practical Use. 2nd ed., Vol.1, Berlin : Springer, ISBN 3540609431, 1996.

[63] Kamada, T., Yonezawa, A., A Debugging Scheme for Fine-Grain Threads on

Massively Parallel Processors with a Small Amount of Log Information - Replay and

Race Detection. PSLS, pp. 108-127, 1995.

[64] Kraemer, E., Stasko, J.T., Issues in Visualization for the Comprehension of

Parallel Programs. Third Workshop on Program Comprehension, IEEE Computer Society

Press, pp. 116-127, 1994.

[65] Kusalik, A.J., Prestwich, S.D., Visualizing Parallel Logic Program Execution for

Performance Tuning. JICSLP, 1996.

[66] Liu, J., Arithmetic and Control Components for an Asynchronous System. Ph.D.

Thesis, Department of Computer Science, The University of Manchester, 1997.

[67] Madalinski, A., Bystrov, A., Khomenko, V., Yakovlev, A., Visualization and

resolution of coding conflicts in asynchronous circuit design. Proc. Design, Automation

and Test in Europe (DATE), IEEE Computer Society Press, March 2003.

[68] Martin, A.J., Compiling Communicating Processes into Delay-Insensitive VLSI

Circuits. Distributed Computing, 1(4), pp. 226-234, 1986.

[69] Martin, A.J., The Limitations to Delay-Insensitivity in Asynchronous Circuits.

6th MIT Conference on Advanced Research in VLSI, pp. 263-278, MIT Press, 1990.

[70] Mentor Graphics, Modelsim SE User’s Manual. 2001.

[71] Meta-Software Inc., Hspice User’s Manual. June 1987.

[72] Meyer, S., Vanvick, A., A Verilog HDL Virtual Machine. Internal paper,

Pragmatic C Software.

 References 177

[73] Michaud, J., Storey, M.-A., Müller, H., Integrating Information Sources for

Visualizing Java Programs. Proc. International Conference on Software Maintenance,

IEEE, pp. 250-259, 2001.

[74] Mirkin, B., Mathematical Classification and Clustering. Kluwer Academic

Publishers, 1996.

[75] Mukherjea, S., Foley, J.D., Hudson, S., Visualizing Complex Hypermedia

Networks through Multiple Hierarchical Views. Human Factors in Computing Systems,

CHI’95 Conference Proceedings, ACM Press, pp. 331-337, 1995.

[76] Nellans, D., Kadaru, V.K., Brunvand, E., ARCS - An Architectural Level

Communication Driven Simulator. Proceedins of the 14th ACM Great Lakes symposium

on VLSI, pp. 73-77, April 2004.

[77] Neri, D., Pautet, L., Tardieu, S., Debugging Distributed Applications with

Replay Capabilities. TRI-Ada, pp. 189-195, 1997.

[78] Neufeld, E., Kusalik, A.J., Dobrohoczki, M., Visual Metaphors for

Understanding Logic Program Execution. Graphics Interface ’97, pp. 114-120, 1997.

[79] Nowick, S.M., Automatic Synthesis of Burst-Mode Asynchronous Controllers.

Ph.D. Thesis, Stanford University, 1993.

[80] Nowick, S.M., et al, MINIMALIST: An Environment for the Synthesis,

Verification and Testability of Burst-Mode Asynchronous Machines. Tech. Report

CUCS-020-99, Columbia University Computer Science Dept., July 1999.

[81] de Pauw, W., Lorenz, D., Vlissides, J., Wegman, M., Execution Patterns in

Object-Oriented Visualization. Proceedings Conference on Object-Oriented

Technologies and Systems, pp. 219-234, 1998.

[82] Peeters, A.M.G., Single-Rail Handshake Circuits. Ph.D. Thesis, Eindhoven

University of Technology, June 1996.

[83] Petri, C.A., Fundamentals of a Theory of Asynchronous Information Flow. Proc.

of IFIP Congress 62, pp. 386-390, 1963.

[84] Plana, L.A., Riocreux, P.A., Bainbridge, W.J., Bardsley, A., Garside, J.D.,

Temple, S., SPA - A Synthesisable Amulet Core for Smartcard Applications. Proceedings

of Async'2002, Manchester, pp. 201-210, April 2002.

 References 178

[85] Risch, J.S., Rex, D.B., Dowson, S.T., Walters, T.B., May, R.A., Moon, B.D.,

The STARLIGHT Information Visualization System. Proceedings of the IEEE

Conference on Information Visualization, IEEE CS Press, pp. 42-49, 1997.

[86] Roig, O., Cortadella, J., Pastor, E., Verification of Asynchronous Circuits by

BDD-Based Model Checking of Petri Nets. Proceeding of the 16th International

Conference on Application and Theory of Petri Nets, pp. 274-391, Turin, June 1995.

[87] Rosenblum, L. Ya., Yakovlev, A.V., Signal graphs: from self-timed to timed

ones. Proc. of the Int. Workshop on Timed Petri Nets, IEEE Computer Society Press, pp.

199-207, Turin, July 1985.

[88] Rotem, S., Stevens, K., Ginosar, R., et al., RAPPID: An Asynchronous

Instruction Length Decoder. Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems, pp.60-70, 1999.

[89] Rugaber, S., Program Comprehension for Reverse Engineering. AAAI

Workshop on AI and Automated Program Understanding, pp. 106-110, July 1992.

[90] Salz, A., Horowitz, M., IRSIM: An Incremental MOS Switch-Level Simulator.

Proceedings of the 26th ACM/IEEE conference on Design automation, pp.173-178, June

1989.

[91] Seitz, C., System Timing , Chapter 7 of Introduction to VLSI Systems by Mead,

C, Conway, L., Addison Wesley, Second Edition, 1980.

[92] Shimomura, T., Isoda, S., VIPS: A Visual Debugger for List Structures. Proc.

Computer Software and Applications Software, pp. 530-537, 1990.

[93] Sloot, P.M.A., Modelling and Simulation, Proceedings of the 1994 CERN

School of Computing, CERN, 1994.

[94] Small Computer System Interface (SCSI), American National Standards

Institute, 1986.

[95] Smith, R., Ligthart, M., High-Level Design for Asynchronous Logic. ASP-DAC,

February 2001.

[96] Sparsø, J., Furber, S., Principles of Asynchronous Circuit Design: A Systems

Perspective. Kluwer Academic Publishers, 2001.

 References 179

[97] Stasko, J.T., Tango: A Framework and System for Algorithm Animation. IEEE

Computer, Vol. 23(9), pp. 27-39, September 1990.

[98] Stevens, K.S., Practical Verification and Synthesis of Low Latency

Asynchronous Systems. Ph.D. Thesis, University of Calgary, Alberta, Canada,

September 1994.

[99] Stevens, K., et al., An Asynchronous Instruction Length Decoder. IEEE Journal

of Solid-State Circuits, 2001.

[100] Storey, M.-A., A Cognitive Framework For Describing and Evaluating Software

Exploration Tools. PhD Thesis, Computing Science, Simon Fraser University, Canada,

1998.

[101] Stucki, M.J., Ornstein, S.M., Clark, W.A., Logical Design of Macromodules.

AFIPS Spring Joint Computer Conference, pp. 357-364, 1967.

[102] Sugiyama, K., Tagawa, S., Toda, M., Methods for Visual Understanding of

Hierarchical System Structures. IEEE Trans. Syst. Man Cybern., 11(2), pp. 109-125,

1981.

[103] Sutherland, I. E., Micropipelines. Communications of the ACM 32(6), pp. 720-

738, June 1989.

[104] Sutherland, I.E., Flashback Simulation. Research Report SunLab 93:0285, Sun

Microsystems Laboratories, Inc., August 1993.

[105] Theobald, M., Nowick, S.M., Transformations for the Synthesis and

Optimization of Asynchronous Distributed Control. Proceedings of the 38th conference

on Design automation, 2001.

[106] Theodoropoulos, G.K., Tsakogiannis, G.K., Woods, J.V., Occam: An

Asynchronous Hardware Description Language. 23rd EUROMICRO Conference, 1997.

[107] Tilley, S.R., Paul, S., Smith, D.B., Towards a Framework for Program

Understanding. WPC’96: 4th workshop on program comprehension, Berlin, Germany,

pp.19-28, march 1996.

[108] Thistlewaite, P., Johnson, C., Towards Debugging and Analysis Tools for Kilo-

Processor Computers. Fujitsu Scientific and Technical Journal, Vol. 29(1), pp. 32-40,

1993.

 References 180

[109] Theseus Logic Inc.

URL: http://www.theseus.com

[110] Tuchman, A., Jablonowski, D., Cybenko, G., Run-Time Visualization of

Program Data. Proc. IEEE Conference on Visualization, pp. 255-261, October 1991.

[111] Verhoeff, T., Encyclopedia of Delay-Insensitive Systems. Eindhoven University

of Technology, The Netherlands, 1995-1998.

URL: http://edis.win.tue.nl/edis.html

[112] Visual STG Lab.

URL: http://vstgl.sourceforge.net/

[113] Wilde, N., Scully, M.C., Software Reconnaissance: Mapping Program Features

to Code. Software maintenance: Research and Practice, Vol. 7, pp. 49-62, 1995.

[114] Wittenburg, K., Sigman, E., Visual Focusing and Transition Techniques in a

Treeviewer for Web Information Access. Proc. Visual Languages ’97, Capri, Italy, pp.

20-27, Sept 1997.

[115] Wong, C.G., Martin, A.J., High-Level Synthesis of Asynchronous Systems by

Data-Driven Decomposition. Proc. 40th Design Automation Conference (DAC), June

2003.

[116] Yun, K., Dill, D., Automatic Synthesis of 3D Asynchronous Finite-State

Machines. ICCAD, 1992.

[117] Zeller, A., Lutkehaus, D., DDD - A Free Graphical Front-End for UNIX

Debuggers. SIGPLAN Notices, Vol. 31(1), pp. 22-27, 1996.

[118] Zuberek, W.R., Event-Driven Simulation of Timed Petri Net Models. 33rd

Annual Simulation Symposium, pp. 91-98, April 2000.

	Contents
	List of Figures
	List of Tables
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Related Work
	Chapter 4: Theory of Handshake Circuit Debugging
	Chapter 5: High-Performance Simulation
	Chapter 6: Analysis-Oriented Simulation
	Chapter 7: Visualisation
	Chapter 8: Integration
	Chapter 9: Results and Discussion
	Chapter 10: Conclusions
	Appendix A: Balsa Example Circuits with Statistics
	Appendix B: Breeze Handshake Components
	References

