
RUN-TIME OBJECT CODE

COMPILATION TO HARDWARE

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2008

By

Ian Jason

School of Computer Science

Contents

Abstract 11

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 15

1.1 Research goals . 17

1.2 Simulator and benchmark details 18

1.3 Thesis outline . 19

2 Reconfigurable hardware and dynamic compilation 20

2.1 Reconfigurable computing . 20

2.1.1 Field programmable gate arrays 22

2.1.2 Granularity . 22

2.1.3 Coupling with host processor 24

2.1.4 Configuring the hardware 25

2.1.5 Hardware/software partitioning 27

2.2 Dynamic optimisation . 28

2.2.1 Dynamic optimisation in software 29

2.2.2 Hardware dynamic optimisation 30

2.2.3 Detecting hot spots . 33

2

2.3 Summary . 35

3 Hot spot detection 36

3.1 Program behaviour . 36

3.1.1 Dynamic basic blocks . 37

3.1.2 Dynamic analysis of executed basic blocks 39

3.1.3 Hot spots . 40

3.1.4 Phased behaviour . 41

3.2 Chains of basic blocks . 43

3.2.1 Handling unexpected branch decisions 45

3.2.2 Change of branch behaviour 47

3.2.3 Increase in block size . 48

3.3 Profiling . 48

3.3.1 Static profiling . 48

3.3.2 Dynamic profiling . 50

3.4 Operation of hot spot detector . 52

3.4.1 Determining which blocks to compile 53

3.4.2 Sensitivity of the hot spot detector 54

3.4.3 Constructing Block Chains 59

3.5 Block Profile Table . 60

3.5.1 Size of block profile table 62

3.6 Hardware Configuration Table 63

3.6.1 Storage of hardware configuration data 65

3.6.2 Number of entries in hardware configuration table . . . 66

3.7 Summary . 69

4 Block optimisation and compilation 70

4.1 Optimisations on single basic blocks 70

4.1.1 Temporary values . 70

4.1.2 Increasing parallelism . 73

3

4.2 Optimisations on chains of basic blocks 76

4.2.1 Increased number of temporary values 76

4.2.2 Increase parallelism . 78

4.2.3 Memory aliasing . 82

4.2.4 Reducing stack operations 83

4.3 Block compilation process . 85

4.4 Performing the compilation process 93

4.5 Summary . 94

5 Reconfigurable hardware structure 96

5.1 Advantages of executing in reconfigurable hardware 96

5.2 Design aspects of the hardware execution engine 99

5.2.1 Interface with microprocessor 99

5.2.2 Parallelism . 100

5.2.3 Memory and register interface 104

5.2.4 Word size of functional units 109

5.2.5 Size of compiled block definitions 111

5.2.6 Implementation of reconfigurable hardware structure . . 113

5.3 Structure description . 115

5.3.1 Memory interface . 116

5.3.2 Interface with architectural registers 125

5.3.3 Functional units . 126

5.3.4 Immediate operands . 127

5.3.5 Control of block execution 130

5.4 Block mapping algorithm . 133

5.5 Summary . 135

6 System Analysis 137

6.1 Evaluation method . 137

6.2 Performance . 138

4

6.2.1 Amount of code executed in hardware 138

6.2.2 Effect of block breakouts 139

6.2.3 Performance of blocks executed in hardware 140

6.2.4 Performance impact of run-time compilation 143

6.2.5 Performance analysis . 143

6.3 Energy consumption . 144

6.3.1 Parallelising instructions 145

6.3.2 Reduced register bank access 146

6.3.3 Fetch and decode . 149

6.3.4 Hot spot detector and compilation process 150

6.4 Summary . 150

7 Conclusions 151

7.1 Limitations . 155

7.2 Future work . 155

7.2.1 Energy consumption evaluation 156

7.2.2 Looping within compiled blocks 156

7.2.3 Multiple paths through compiled blocks 157

7.2.4 Compilation and scheduling algorithms 157

7.3 Summary . 158

References 159

5

List of Figures

2.1 PipeRench reconfigurable datapath [GSM+99] 23

2.2 SCORE reconfigurable hardware virtualisation. A) Stages in

video processing algorithm. B) Compute pages loaded simulta-

neously into large hardware structure. C) Compute pages time-

multiplexed into smaller hardware structure. [CCH+00] 26

2.3 RePLay frame construction. A) Original basic blocks. B) RePLay

frame, with conditional branches replaced by assertions. [PL01] 32

3.1 Layout of dynamic basic blocks in memory 38

3.2 Cumulative percentage of total basic blocks executed by the

most frequently executed unique basic blocks 40

3.3 Phases during program execution: each horizontal slice shows

the execution frequency of a unique basic block as a percentage

of the total basic blocks executed during each time interval . . . 42

3.4 Distribution of basic blocks in dynamic trace by number of

instructions . 44

3.5 Basic block size vs. chained block size 49

3.6 Number of blocks executed in hardware, number of compila-

tions and estimated cost with static hot spot detector sensitivity 56

3.7 Number of blocks executed in hardware, number of compi-

lations and estimated cost with dynamic hot spot detector

sensitivity . 58

3.8 Block profile table . 61

6

3.9 Influence of Block Profile Table size on number of instructions

executed in hardware . 63

3.10 Hardware Configuration Table 65

3.11 Influence of Hardware Configuration Table size on number of

instructions executed in hardware 68

3.12 Influence of Hardware Configuration Table size on number of

compilations . 68

4.1 Data flow graph of single basic block 74

4.2 Data flow graph of basic block with three-way constrained

parallelism, single load per cycle and a single-cycle load delay . 75

4.3 Data flow graph of chained block with control dependencies

between basic blocks . 79

4.4 Data flow graph of chained block with control dependencies

removed . 80

4.5 Data flow graph of chained block with four-way constrained

parallelism, single load operation per cycle and a single-cycle

load delay . 81

4.6 Data flow graph of example block, with redundant operations

in red . 91

5.1 Average parallelism in executed hardware blocks 101

5.2 Performance of hardware blocks with increasing numbers of

parallel functional units . 102

5.3 Utilisation of hardware structure with multiple parallel func-

tional units . 103

5.4 Relative performance over utilisation of hardware structure

with multiple parallel functional units 103

5.5 Performance of hardware blocks with limited numbers of loads

per execution cycle . 106

7

5.6 Performance of hardware blocks with limited numbers of stores

per execution cycle . 108

5.7 Size of values (position of most significant bit) written by data

instructions . 109

5.8 Hardware structure internal interconnect 116

5.9 Memory interface block diagram 117

5.10 Read-after-write memory alias detection 120

5.11 Number of loads and stores in executed hardware blocks 121

5.12 Write buffer . 123

5.13 Proportion of data processing operation types in executed

hardware blocks . 127

5.14 Number of different immediate values in each executed hard-

ware block . 131

5.15 Number of different immediate values in each executed hard-

ware block, excluding most common values (0, 1, 2, 3, 4, 8, 10

and FF) . 131

5.16 Example mapping of block on page 77 into hardware structure . 134

6.1 Percentage of instructions executed in hardware and software

during benchmark execution . 139

6.2 Percentage of instructions re-executed due to hardware blocks

terminating early (upper bound, assuming all instructions in a

block are executed twice if it terminates early) 140

6.3 Performance improvement of blocks compiled into hardware,

weighted mean based on dynamic frequency of execution . . . 141

6.4 Overall performance improvement of benchmark, excluding

performance penalties due to compilation process 142

6.5 Number of compilations per million instructions executed . . . 144

6.6 Power breakdown of superscalar processors [Val05] 145

6.7 Remaining register bank reads 147

8

6.8 Remaining register bank writes 147

9

List of Tables

3.1 Unique basic blocks and total number of basic blocks executed,

dynamic trace . 39

4.1 Frequency of occurrence of read-after-write memory hazards

that are not statically determinable 83

4.2 Temporary stores to the stack within a block as a proportion of

total stores (in executed hardware blocks) 84

4.3 List of operations in example block, in execution order 87

4.4 List of operations in example block with individual values

labelled and internal control operations removed 90

5.1 Most frequent immediate values, sorted by percentage of total

immediates within hardware blocks 128

5.2 Number of different immediate values in blocks stored in HCT

(maximum at one time) . 129

10

Abstract

Reconfigurable hardware systems offer great potential for improving per-

formance over software through increased parallelism and reduced control

overhead. However, the configuration of the hardware is performed statically,

restricting the system’s ability to adapt to the run-time environment. This the-

sis explores the possibility of compiling from object code into a reconfigurable

hardware structure at run-time to allow the hardware configuration to benefit

from the behaviour of the currently executing code.

A mechanism for detecting hot spots at run-time is presented; this

minimises compilation overheads by only compiling the most frequently

executed sections of code. A dynamic detection threshold allows the hot spot

detector to adapt to radically different code and to react quickly to changes

in program behaviour. A hardware structure suitable for executing these hot

spots is proposed, consisting of a sequenced execution engine containing four

parallel functional units and a configurable interconnect.

11

Declaration

No portion of the work referred to in this thesis

has been submitted in support of an application for

another degree or qualification of this or any other

university or other institution of learning.

12

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions

given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made

in accordance with such instructions may not be made without the permission

(in writing) of the Author.

The ownership of any intellectual property rights which may be described

in this thesis is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and

exploitation may take place is available from the Head of the School of

Computer Science.

13

Acknowledgements

Firstly I would like to thank my supervisor Dr. Jim Garside for his advice,

insight and patience over the last four years.

Thanks must also go to all my friends in the APT group for keeping me sane,

especially Sam (for his inspirational researchmethodology), Andrew andMatt.

Special thanks are due to my parents for their encouragement, support and

tolerance.

Finally, I would like to thank Sonja for inspiring me to finish this thesis.

14

Chapter 1

Introduction

Today’s consumers demand an increasingly diverse set of features in portable

electronic devices. Modern mobile phones, for example, are capable not

only of making and receiving calls but also playing music and video,

taking photographs and browsing the Internet. These features require

considerable computing resources; in the past the significant data processing

tasks performed in such devices, such as voice processing, were executed

in dedicated hardware processors. Dedicated hardware can perform a task

much more quickly and efficiently than a microprocessor executing software

by both increasing parallelism and by reducing the control overhead required

by executing an algorithm in software.

Developing custom hardware has a number of disadvantages however:

systems are expensive and time-consuming to develop, and once such a

system is produced it is not possible to modify it if required, for example in

the event of a defect being discovered or additional features being required.

The increasing diversity in the processing requirements of portable devices

means that it is not feasible to develop custom hardware for them all; instead

a more general purpose processing unit is required.

Reconfigurable hardware provides performance similar to fixed-function

hardware while maintaining flexibility close to that of a microprocessor. Initial

15

Chapter 1. Introduction 16

reconfigurable systems were based on standalone Field Programmable Gate

Arrays (FPGAs) intended as a soft-programmable replacement for fixed-

function hardware; more recent systems are hybrid architectures, consisting

of a microprocessor with a reconfigurable coprocessor. These allow the core

algorithms to be accelerated by the reconfigurable hardware and the less

frequently executed parts of a program to execute in software, reducing the

amount of reconfigurable hardware required.

Selecting the sections of code to compile into the reconfigurable hardware is

typically performed at compile-time using static profile information. However,

a program’s behaviour is not always easily predictable at compile-time: it

may depend, for example, on the data being processed or options selected

by the user. Additionally, during execution a program’s behaviour may not

be constant as it may consist of a number of phases when different sections of

code are executed.

Backward compatibility is an additional disadvantage of reconfigurable

architectures as special programming methods and tools are required to create

configurations for the reconfigurable hardware. Incompatibility with the

existing code base provides a significant barrier to adoption, as evidenced by

the continued prevalence of Intel’s x86 instruction set architecture despite the

development of more efficient alternatives.

One possible solution to these problems is to translate the code at run-

time. This is used in dynamic binary translation systems to allow legacy

code to execute on new architectures. Similar techniques are used in dynamic

optimisation systems, which transform instructions at run-time into a more

efficient internal representation to improve performance.

However, performing the optimisation at run-time is an expensive process

andmay incur significant overheads if performed for an entire program. These

overheads can be reduced by only selecting the most frequently executed

parts of a program for optimisation. This can be achieved by using dynamic

Chapter 1. Introduction 17

profiling mechanisms; these monitor the executing program to locate the most

frequently executed sections of code, or hot spots, which are then optimised.

1.1 Research goals

This thesis explores the feasibility and potential benefits of compiling existing

object code into reconfigurable hardware at run-time. By profiling the

currently executing program, hot spots are detected which are then compiled

into a reconfigurable execution engine. Key contributions include:

• The development of architectural techniques to allow object code to be

compiled at run-time into reconfigurable hardware.

• Analysis of program execution, leading to a proposed mechanism

for detecting program hot spots at run-time, including a method of

dynamically altering the threshold of the hot spot detector to quickly

adapt to variations in program behaviour.

• The use of information gathered dynamically by the hot spot detector to

detect highly biased branches and to use this to speculatively combine

multiple basic blocks into a single atomic entity with a single entry and

exit point. An analysis of optimisations that can be performed within

these blocks is given, and mechanisms for handling incorrect speculation

are proposed.

• The development of a reconfigurable parallel execution engine capable

of processing detected hot spots. Methods for overcoming difficulties

of executing hardware configurations created from object code, such

as supplying immediate operands and detecting memory aliasing, are

explored.

Chapter 1. Introduction 18

• An evaluation of the potential performance improvements that can be

gained by dynamic compilation into hardware using the techniques

described in this thesis.

1.2 Simulator and benchmark details

The system described in this thesis is evaluated by modifying a software

model of an ARM [JS00] microprocessor. The ARM architecture is chosen

as it is commonly used in real-world embedded systems that the techniques

in this thesis are intended for, and tools (such as simulators and compilers)

are widely available. The simulator models the architecture at the instruction

level: detailed simulation of low-level architectural structures such as pipeline

stage interaction is not performed.

Four benchmarks are used to evaluate the system1. These were selected to

give a varied set of different program behaviours:

Blowfish is an encryption algorithm [Sch93]. The input data is a 100KB

file, causing the benchmark to execute 15 million instructions. Blowfish

contains a very small set of basic blocks which make up the majority of

the dynamic trace of the program; this property allows it to perform well

in this system.

Cjpeg is an open-source implementation of the jpeg image compression

standard [cjp]. This benchmark runs for 134 million instructions when

compressing a 1.4MB TGA file using default settings. Like blowfish this

benchmark contains a number of very frequently executed hot spots;

however, unlike blowfish distinct phases of operation are present, causing

a change in the working set of basic blocks about a third of the way

through the program’s execution.

1Contact author at ianjason(at)gmx.at to request input data used with benchmarks.

Chapter 1. Introduction 19

Nasm is an x86 assembler [nas]. 14 million ARM instructions are required

to assemble the 500 line program used as test data. This benchmark is

provided as a contrast to the other benchmarks as it performs a larger,

diverse set of operations on a relatively small input. This program

contains no hot spots that dominate program execution time and so

performs poorly in this system compared to the other benchmarks.

Qsort is a program to sort words in an input text file into alphabetical order.

The input data to be sorted contains 13000 words, and the benchmark

runs for 25 million instructions. Like cjpeg, qsort contains distinct phases

of execution, but program behaviour fluctuates significantly within these

phases.

All benchmarks are compiled with GCC 3.4.3 [gcc] using level two optimisa-

tions.

1.3 Thesis outline

The next chapter outlines developments in reconfigurable computing and

dynamic optimisation systems. Chapter 3 describes the process of monitoring

code and detecting hot spots. Optimisations that can be performed on detected

hot spots are discussed in chapter 4. A suitable reconfigurable execution

engine for processing these hot spots is outlined in chapter 5. Chapter 6

combines the techniques described in the preceding chapters to analyse the

performance of such a system. Finally, chapter 7 draws conclusions on the

work presented in this thesis, identifies limitations and outlines directions for

future work.

Chapter 2

Reconfigurable hardware and

dynamic compilation

This chapter presents an overview of reconfigurable hardware and dynamic

compilation techniques. The concept of reconfigurable hardware is outlined

and compared with fixed-function hardware and general-purpose micropro-

cessors. A description of different types of reconfigurable hardware and

methods of use is given. A number of examples of architectures utilising

reconfigurable hardware are described briefly.

The second part of this chapter deals with dynamic compilation and

optimisation techniques; their use in translation for binary compatibility and

dynamic optimisation to enhance performance is described. A number of

example systems are outlined, both hardware and software based.

2.1 Reconfigurable computing

In traditional computing systems two primary methods are used to execute

algorithms. One is to encode the algorithm into a series of software

instructions which are used to control a microprocessor. Microprocessors

are very flexible: changing the algorithm to be processed merely involves

20

Chapter 2. Reconfigurable hardware and dynamic compilation 21

changing the software. However, this limits performance as the algorithm

is executed sequentially, and decoding the stream of instructions incurs

overheads due to extra instructions other than those used to process data

being required to load data into the hardware and control the execution of

the algorithm.

These overheads can be removed by creating a piece of hardware specif-

ically tailored to process the algorithm required. The algorithm can be

processed in parallel as the requirement for it to be encoded as a sequence of

instructions is removed. No instructions must be fetched and decoded as the

function of the algorithm is encoded into the structure of the hardware itself.

Executing an algorithm in custom hardware can therefore be significantly

faster and more power efficient than the same algorithm executing in a

microprocessor. Custom hardware is therefore used when high performance

or low power consumption is required and the algorithm is inherently parallel;

for example processing video, routing network packets or processing voice

data in a mobile phone. However, a specific custom-designed piece of

hardware can only process one algorithm; should a different algorithm be

required a new hardware design must be produced at significant cost.

Reconfigurable hardware offers a compromise between these twomethods.

The structure of a reconfigurable hardware system is not fixed: it can be soft-

configured to process different algorithms. Once configured, reconfigurable

hardware can be used to process an algorithm in a similar way to custom

hardware, with no need to continually fetch and decode instructions. Data

can pass directly between execution units, and any inherent parallelism in the

algorithm can be more easily exploited as there is no need to follow a linear

sequence of instructions.

These factors should allow reconfigurable hardware to achieve signifi-

cantly higher performance than a microprocessor while maintaining greater

flexibility than hardware.

Chapter 2. Reconfigurable hardware and dynamic compilation 22

2.1.1 Field programmable gate arrays

Field programmable gate arrays (FPGAs) [BR96] are an example of a recon-

figurable hardware structure. FPGAs consist of a grid of logic blocks and a

two-dimensional programmable interconnect. Logic blocks typically consist

of look-up tables (LUTs), which can produce any function of a number of

inputs allowing general logic functions to be computed. Fixed-function logic

blocks containing commonly used structures, such as adders, can be included

to improve performance at the cost of some flexibility. The interconnect

provides much of the flexibility of an FPGA as it consists of a hierarchical grid

of horizontal and vertical connections allowing signals to be routed almost

anywhere in the array.

FPGAs were originally intended for low product volumes where produc-

ing custom hardware would be uneconomical, or for rapidly prototyping

hardware designs. However, it has been shown that FPGAs can be used

as an alternative computing paradigm and have been demonstrated to

show significantly improved performance in some applications traditionally

employing software [Gos96][EP00][GHK+91].

Reconfigurable hardware is not limited to FPGAs however. Different logic

block sizes and interconnect structures can be used to tailor the reconfigurable

fabric for the intended application. Many systems have demonstrated

the effectiveness of combining reconfigurable structures with a traditional

microprocessor (see section 2.1.3).

2.1.2 Granularity

The granularity of a reconfigurable hardware structure refers to the size of

configurable logic blocks in the structure. A fine-grained structure contains

small logic blocks that are configurable at the bit-level, usually consisting of

small look-up tables. These have a very high flexibility and are suited to

Chapter 2. Reconfigurable hardware and dynamic compilation 23

Muxes/
shifters

ALU

file
Reg

PE14

PE14PE15

PE15

Stage n−1
Stage n

Stage n+1
Interconnect Network

Interconnect Network

PE0

PE0

Figure 2.1: PipeRench reconfigurable datapath [GSM+99]

algorithms that manipulate individual bits, such as encryption. The hardware

can also be easily tailored to match the width of the data being processed.

In addition, fine granularity is required for random logic and state machines,

hence the use of fine-grained reconfigurable structures such as FPGAs for

prototyping hardware designs.

Coarse-grained reconfigurable hardware contains larger, fixed-function logic

blocks such as adders, shifters and multipliers [Har01]. These are less

flexible than fine-grained architectures as individual bits cannot be configured.

However, a large fixed function logic block is faster and more power efficient

than a series of interconnected look-up tables and so performance is greater

when executing algorithms that process fixed word-size data using the

functions available in the logic blocks. The Pleiades architecture [ZPG+00]

is very coarse-grained, consisting of a number of heterogeneous processing

units optimised for different tasks in a reconfigurable interconnect structure.

PipeRench [GSM+99] is a coarse-grained reconfigurable pipeline architecture;

each pipeline stage consists of sixteen configurable 8-bit ALUs, or Processing

Elements (PEs), and a reconfigurable interconnect (see figure 2.1).

Chapter 2. Reconfigurable hardware and dynamic compilation 24

The amount of configuration data in a coarse-grained structure is less

than an equivalent fine-grained structure. This is due to commonality in

the operations performed, requiring the configuration of fewer, larger logic

blocks. This commonality is extended to the interconnect, which routes data

in bundles as opposed to individual bits.

The granularity of a reconfigurable hardware structure is therefore a

trade-off between performance, flexibility and configuration effort. The

reconfigurable architecture proposed in chapter 5 of this thesis is coarse

grained, consisting of word-width functional units within a reconfigurable

interconnect.

2.1.3 Coupling with host processor

Reconfigurable hardware can stand alone without a microprocessor; this is

usually the case if the reconfigurable hardware is replacing a custom hardware

unit in a system. Many algorithms that are designed to run in software

cannot be mapped entirely into a block of reconfigurable hardware due to

limited space. A solution to this is to map the frequently executed core parts

of an algorithm into the reconfigurable hardware and have the remaining

infrequently executed code execute in software.

Reconfigurable coprocessors

One way to achieve this is to have a microprocessor with a reconfigurable

coprocessor. This provides a trade off between accelerating the performance

of a program and keeping the size of the required reconfigurable fabric low.

Garp [HW97] is an example of this type of architecture. Garp incorporates an

FPGA-like reconfigurable structure with a MIPS processor. The reconfigurable

hardware is loaded with configurations for executing the core algorithms of

an application and acts as a coprocessor to the MIPS core, which executes the

remaining parts of the code. Configuration of the Garp array is done statically:

Chapter 2. Reconfigurable hardware and dynamic compilation 25

configurations are created at compile time and then are loaded at run-time

under microprocessor control. Only one configuration can be active at any one

time; rapid switching between configurations is facilitated by cachingmultiple

sets of configuration data. Many other examples of reconfigurable coprocessor

architectures exist [Pag94][MO99][RLG+98][SLL+00].

Reconfigurable functional units

Another method is to use reconfigurable functional units within the mi-

croprocessor core itself [RS94][HFHK97][WH95][WC96]. Reconfigurable

functional units are either used to provide custom complex instructions to

accelerate a frequent sequence of operations within an application, or used

to alter the number of parallel functional units of a certain type within a

superscalar processor to match the distribution of operations in the executing

program [NZ04].

2.1.4 Configuring the hardware

A significant drawback of FPGAs is that configuration data are only com-

patible with a specific device. This means configurations created for one

generation of FPGAs will need to be recreated to work on the next generation

of larger, faster devices. A number of architectures have attempted to solve

this problem by virtualising the physical hardware.

PipeRench [GSM+99] divides a configuration up into virtual pipeline

stages; these are then mapped into a physical reconfigurable hardware

pipeline. If insufficient physical stages are available multiple configurations

can be swapped in and out, effectively allowing an unlimited number of

virtual stages. Performance is improved by having a greater number of

physical stages, allowing it to scale with improvements in technology.

SCORE [CCH+00] uses a similar method of virtualisation. A hardware

representation of an algorithm is divided up into virtual compute pages which

Chapter 2. Reconfigurable hardware and dynamic compilation 26

Figure 2.2: SCORE reconfigurable hardware virtualisation. A) Stages in video
processing algorithm. B) Compute pages loaded simultaneously into large
hardware structure. C) Compute pages time-multiplexed into smaller hardware
structure. [CCH+00]

interface in a data flow manner. These are mapped onto physical FPGA-

like compute pages; if there are insufficient physical pages they can be time-

multiplexed by swapping configurations in and out of the hardware (see figure

2.2). Data is buffered in on-chip memories between compute pages.

SCORE and PipeRench are both heavily pipelined and need to be supplied

with a constant stream of data to perform well. They are therefore targeted

towards algorithms that access data in predictable patterns such as those

found in streaming media applications and DSPs, limiting their use. They

Chapter 2. Reconfigurable hardware and dynamic compilation 27

also require special programming methods and tools to create the hardware

configurations.

This thesis proposes a reconfigurable architecture configured by translating

native code at run-time into hardware configurations; these are then stored on-

chip and loaded on demand into the reconfigurable hardware.

2.1.5 Hardware/software partitioning

In systems that contain both a microprocessor and a reconfigurable structure

the application must be partitioned into software and hardware sections.

Selecting the procedures or loops to be executed in hardware is usually

performed manually by the programmer. Static profiling can be used to

help select the appropriate sections of code. However, this requires program

behaviour at run-time to match that at the time of simulation, which may not

be the case with different input data or user options.

Creating the hardware configurations typically requires special design

processes and tools, and requires a different programming model for the

hardware and software sections of the program. The executable is divided

into two parts: one contains the software instructions that execute on the

microprocessor and the other contains configuration data for the hardware.

These data are loaded into the reconfigurable hardware by special instructions

in the software.

HASTE [Lev05] differs by using a single programming model and exe-

cutable for both the sequential processor and the reconfigurable hardware.

The instruction set architecture is designed to be easily translatable to

reconfigurable hardware while remaining efficiently executable in a micro-

processor. During execution, core loops of a program are translated into the

reconfigurable fabric by a dedicated hardware unit while the first iteration of

the loop is executed on the sequential processor. The remaining iterations of

Chapter 2. Reconfigurable hardware and dynamic compilation 28

the loop are then executed in the reconfigurable hardware. However, these

core loops must be selected statically at compile time.

Reconfigurable systems have been shown to achieve significant benefits over

traditional microprocessors [CH02]. The core algorithms that are compiled

into the hardware are selected manually or using static profiling techniques;

if program behaviour differs at run-time from during profiling, for example if

it is dependent on input data, then the compiled hot spots may not match the

hot spots executed at run-time. Additionally, different programming models

are required to create hardware configurations and so these systems are not

compatible with existing object code or tool-chains.

The system proposed in this thesis attempts to use reconfigurable hardware

to improve performance by using dynamic optimisation to translate frequently

executed sections of the code into a reconfigurable hardware structure at run-

time. This requires additional hardware to detect hot spots at run-time, but

means that only sections of code which are frequently executed during the

current invocation of the program will be translated. This also allows the use

of existing compiled code, removing the requirement for new programming

methods and tools andmaintaining backwards compatibility with legacy code.

2.2 Dynamic optimisation

Dynamic optimisation is the process of monitoring code behaviour as it

executes and then using this information to perform optimisations on the

executing program. Optimising at run-time can bring a number of benefits

over performing optimisations at compile-time. Profile information can be

used to target optimisations at regions of code that can gain the greatest

improvement. This can include optimisations that may only give benefits in

certain circumstances, such as loop unrolling and data prefetching.

Chapter 2. Reconfigurable hardware and dynamic compilation 29

Profiling and optimising at run-time incurs an overhead; this must be

overcome by the optimisations performed. The profile information can be used

to direct optimisations towards code sections that execute most frequently;

these are known as hot spots. Code sections that execute infrequently can be

left unoptimised, thus reducing the overhead of the optimisation process.

Dynamic optimisation can also be used in conjunction with a binary

translator to allow executables compiled for one instruction set to be executed

transparently on an incompatible microprocessor. Optimisations are per-

formed on translated sequences of instructions to ameliorate the performance

overheads of translation. Dynamic translation is typically used to allow

incompatible legacy code to run on current microprocessors; however, it can

also be used to improve performance of existing binaries by allowing them to

execute on a more efficient microprocessor architecture [DGB+03][EA97].

2.2.1 Dynamic optimisation in software

Dynamic optimisation may be performed by software, hardware or a combi-

nation of the two. Dynamo [BDB00] is an example of a software-only dynamic

optimisation system. Initially code is interpreted and likely hot spot start

points such as backward branch targets (which are likely to be loop entry

points) are monitored. Once a monitored point’s execution count exceeds a

threshold value, a trace is recorded as the instructions executed after this point

are interpreted. Trace construction ends when a backward branch or a branch

into an already constructed trace is encountered. Optimisations that can not

be, or are not usually, performed statically, such as loop unrolling and function

inlining from dynamically linked libraries, are then performed on the trace.

Optimised fragments of code are then stored in a software fragment cache and

executed natively on the processor (instead of being interpreted) the next time

they are reached.

Chapter 2. Reconfigurable hardware and dynamic compilation 30

Dynamo operates on native code: no translation is performed. However,

similar techniques are used in dynamic translation systems. Some interpret

and monitor code until hot spots are detected and only translate frequently

executed sections to native instructions [CH97]; others, such as DAISY [EA97]

and Transmeta’s Crusoe [Kla00] architecture translate code as it is encountered

and cache translated traces for future re-use [HKZ+06][DGB+03][EA97].

Dynamic optimisation is also used to improve the performance of Java virtual

machines [BH03][AFG+00].

These systems must either interpret the code in software or translate all of

the code to native instructions: this impacts on performance as interpretation

is slow, and translating is a time consuming process which, if performed on

large sections of code that execute infrequently, will have a large performance

overhead. The dynamic optimisation system proposed in this thesis differs

from these software-based dynamic optimisation systems by adding hardware

to perform profiling. This allows the unoptimised code to execute in the

microprocessor as opposed to being interpreted while still providing profiling

support, so that only frequently executed sections of code are optimised.

2.2.2 Hardware dynamic optimisation

Many hardware based dynamic optimisation techniques work by optimising

instructions in a trace cache. A trace cache is an instruction cache that stores

traces of instructions that represent the order in which they are executed

dynamically as opposed to how they are arranged in memory [RBS96]. Trace

caches, when combined with branch prediction techniques, allow multiple

basic blocks to be fetched simultaneously thereby improving fetch bandwidth

for superscalar microprocessors. Traces are constructed by a hardware unit

which, in its simplest form, is a buffer that accumulates a trace of instructions

as they complete and then writes this trace into the cache. Traces do not need

to match the representation of instructions in memory, allowing optimisations

Chapter 2. Reconfigurable hardware and dynamic compilation 31

to be performed. For example, Intel’s NetBurst architecture [HSU+01] does not

store the original x86 CISC instructions in the trace cache; instead, instructions

are partially decoded into a RISC-like representation before being cached.

This allows the execution core to be a fast, simple RISC processor, allowing

improved performance.

Trace cache fill units can be used as an alternative to a superscalar

engine as a method of extracting parallelism from a stream of sequential

instructions [FS94]. The DIF machine [NH97] translates traces of instructions

to execute in an internal VLIW parallel processor. The first time a trace

is encountered it is executed in a scalar microprocessor and simultaneously

scheduled and translated into a VLIW representation. Scheduled traces are

then cached for future execution, removing the need to determine parallelism

each time they are executed as in a superscalar microprocessor.

RePLay [PL01] extends the trace cache model by constructing regions

of code containing no control instructions, called frames. The increased

predictability gained from reducing the number of control instructions

increases the efficiency of the fetch unit and reduces the need for fast branch

predictor units. Frames are constructed by building long single-entry single-

exit instruction streams consisting of many basic blocks, linked by highly

biased branches. Initially code is executed as normal, and retired instructions

are sent to the frame constructor. The frame constructor looks at the recent

history of branches; once a branch has targeted the same address consecutively

a certain number of times it is promoted to an assertion instruction. The basic

blocks linked by this assertion are chained together into an instruction trace.

Once this trace reaches a given size it is optimised and built into a frame. The

created assertion instructions replace the conditional branches in the original

instruction stream. Assertions check the conditions of the original branch, and

fire if the expected conditions are not true. If an assertion fires, architectural

Chapter 2. Reconfigurable hardware and dynamic compilation 32

A A

B

C

D

E

Constructed Frame

"Assertion" fires

A

B

C

E

D

Not taken Taken

Original basic blocks

A) B)

Figure 2.3: RePLay frame construction. A) Original basic blocks. B) RePLay
frame, with conditional branches replaced by assertions. [PL01]

state is rolled back and control returns to the original, unoptimised basic block

at the start of the frame (see figure 2.3).

Other systems perform more complex optimisations on the instructions

in the trace cache. An Instruction Path Coprocessor (I-COP) [CS00] is an

on-chip coprocessor that can be programmed to perform optimisations on

instructions as they are added to the trace cache. The advantage of the I-

COP is its programmability: a single simple piece of hardware can perform

many different types of optimisation, and the optimisations performed can be

customised for different applications.

Dynamic profiling can also be used to adapt the hardware for more efficient

execution of the current program. By monitoring the relative frequency

Chapter 2. Reconfigurable hardware and dynamic compilation 33

of operations in the trace cache, reconfigurable functional units within a

superscalar processor can be adapted to provide more functional units able

to execute the most frequent operations [NZ04].

Many of the above systems optimise or translate all code as it is

encountered. Optimised sequences are stored, for example in a trace cache,

for future re-use; any overheads due to performing optimisations will usually

be overcome by repeated re-execution of optimised code. However, in many

programs only a small portion of code is executed very frequently; typically

90% of instructions executed dynamically come from 5-10% of the code [HP].

Many sequences are only executed infrequently; therefore optimising these se-

quences may incur a greater overhead than the optimisations gain. The system

proposed in this thesis reduces the optimisation overhead by performing hot

spot detection in hardware to detect the most frequently executing sections of

code and only optimise those, leaving the infrequently executed remainder of

the code unoptimised.

2.2.3 Detecting hot spots

By monitoring a program as it executes a profile can be constructed; this

can be used to determine which sections of code are worth optimising.

Many profiling systems work by monitoring each branch in an executing

program to give an accurate picture of how frequently sections of code

have executed [CPMC96][CMH96][CLCG00]. The problem with this, from a

dynamic optimisation viewpoint, is that it does not take into account how

recently sections of code have executed; it merely gives an average of execution

patterns in the program so far. This may cause changes in a program’s

behaviour to go undetected for a significant length of time. Code sections that

execute very frequently for a short period of time may not be detected and

optimised.

Chapter 2. Reconfigurable hardware and dynamic compilation 34

An effective hot spot detector must be able to react quickly to changes

in program behaviour and predict which sections of code will be executed

frequently. An accurate profile of the entire program’s execution is not

required as execution in the near future is likely to follow recent program

behaviour. In addition, only frequently executed branches need to be

profiled to detect hot spots. Duesterwald et.al. demonstrate that gathering

accurate dynamic profile information is not necessary to effectively predict hot

paths [DB00].

One method proposed by the IMPACT group is to use a modified branch

target buffer (BTB) to monitor execution frequencies of branches [MTG+99].

When a branch execute count exceeds a threshold a candidate bit is set. This

table is cleared periodically of non-candidate branches leaving only branches

which have executed frequently in that period. Candidate branches are then

monitored; if a high enough proportion of the set of recently executed branches

are candidate branches then the set of candidate branches is determined to

be a hot spot. This hot spot is then laid out in the most frequently executed

order in a region of memory called a code cache, and loop unrolling and other

optimisations are performed [MTN+00]. The traces generated are longer than

in a standard trace cache and contain sequences of instructions that are more

frequently executed in sequence as they have been ordered according to profile

information, providing better performance.

The system described in this thesis proposes a hot spot detection mech-

anism, described in Chapter 3, based on monitoring the execution of basic

blocks. A dynamic hot spot detection threshold, based on the number of

currently active previously detected and optimised hot spots, allows the hot

spot detector to vary its sensitivity based on the current behaviour of the

program and react quickly to changes in that behaviour. The detector also

monitors branch bias to allow the hot spots produced to consist of a chain of

basic blocks linked with highly biased branches that has a single entry and

Chapter 2. Reconfigurable hardware and dynamic compilation 35

exit point. This produces smaller hot spots than other systems such as the

IMPACT system, but effectively removes control information from the hot

spot, increasing the scope over which optimisations can be performed (see

section 4.2). Detected hot spots are optimised and translated to execute in a

parallel hardware execution engine.

2.3 Summary

Significant performance improvements can be gained by executing core

algorithms of a program in reconfigurable hardware. These core algorithms

are typically selected manually or by static profiling. As program behaviour

may differ with different inputs these statically selected core algorithms may

not match the most frequently executed code sections at run-time. Dynamic

profiling techniques allow hot spots to be detected at run-time and therefore

match the current program behaviour. This thesis explores the possibility of

configuring hardware at run-time from object code by using dynamic profiling

to select program hot spots.

Chapter 3

Hot spot detection

The architecture described in this thesis contains a reconfigurable hardware

execution engine as part of a standard microprocessor. The most frequently

executed sections of code, or hot spots, are executed in the reconfigurable

hardware and the remainder of the code is executed by the microprocessor.

This chapter describes the process of profiling the code to detect these hot

spots.

3.1 Program behaviour

To justify attempting to exploit hot spots to improve performance it is

first essential to analyse the run-time behaviour of example programs and

determine the properties of any contained hot spots. Such properties include

the number of hot spots, their size, how frequently they execute, what

proportion of the program is executed within each and the lifetime of a hot

spot within the duration of a program’s execution. This can be performed

by analysing a dynamic trace of a benchmark program. A dynamic trace is a

listing of the order in which instructions are executed during the execution

of a program. It differs from a static listing of a program in that instructions

36

Chapter 3. Hot spot detection 37

are listed each time they are executed and so instructions can appear multiple

times; instructions that are never executed do not appear in the dynamic trace.

A dynamic trace is useful for analysing program behaviour as it contains

information on how frequently sections of code are used and at what points

during a program they are executed. This analysis can be simplified by looking

at logical blocks of code instead of individual instructions; a suitable block of

code is the dynamic basic block.

3.1.1 Dynamic basic blocks

A dynamic basic block is defined in this thesis as a maximal linear section of code

with single entry and exit points and no internal control flow instructions such

as branches or subroutine returns. They are dynamic entities: each instruction

fetched immediately following a control flow instructionmarks the entry point

of a dynamic basic block; the exit point will be the next control flow instruction

fetched. Dynamic basic blocks may overlap; overlapping dynamic basic blocks

may have different entry points but will all end at the same control flow

instruction. This can occur when a branch targets an instruction contained

within an existing dynamic basic block: a second dynamic basic block exists at

this entry point which overlaps the dynamic basic block containing the entry

point (see figure 3.1). Note that using the standard static definition of a basic

block here would result in two non-overlapping basic blocks divided at the

point of the entering branch target. Using dynamic basic blocks simplifies run-

time detection of entry and exit points because dynamically it is difficult to

determine whether an instruction is targeted by a branch. For the remainder

of this thesis dynamic basic blocks will be referred to simply as basic blocks for

brevity.

Basic blocks are attractive from a code analysis and optimisation point of

view for a number of reasons:

Chapter 3. Hot spot detection 38

Branch Instruction

Branch Instruction
End of Basic Block 1

Start of Basic Block 2

Start of Basic Block 3

Start of Basic Block 4

1 2 43

Basic Block Duration

End of Basic Blocks 2 and 3

Figure 3.1: Layout of dynamic basic blocks in memory

Atomic nature As a basic block contains no control flow instructions each

instruction within is executed precisely once each time the block is

executed (ignoring conditional execution of instructions found in some

instruction sets, for example ARM); the reverse is not true as an

instruction can be contained in more than one overlapping basic block.

This simplifies analysis of code execution as fewer points need to be

monitored to obtain an accurate dynamic trace of a program.

Simple dynamic detection Basic block entries are straightforward to deter-

mine dynamically as a basic block entry point always follows the

execution of a control flow instruction. A list of all targets of control

flow instructions is equal to a list of all basic blocks.

Linear control flow The linear flow of instruction execution through the block

enables simple determination of data dependencies when code is being

Chapter 3. Hot spot detection 39

Benchmark blowfish cjpeg nasm qsort
Unique Basic Blocks 344 1155 2620 488

Total Basic Blocks Executed 1922283 12946104 3340064 4967372
Mean Executions per Unique Block 5588 11209 1275 10179

Table 3.1: Unique basic blocks and total number of basic blocks executed,
dynamic trace

optimised. The operations performed by a basic block can be described

by a linear data flow graph which can be used to optimise or parallelise

the code within the basic block.

3.1.2 Dynamic analysis of executed basic blocks

A program contains many basic blocks; some of these will execute only once

during the lifetime of the program whereas some will execute many times. A

unique basic block is defined here as a basic block at a particular address that

is executed at least once. The number of unique basic blocks and the total

number of blocks executed during a run of some benchmarks is shown in table

3.1.

The size of the set of unique basic blocks varies considerably between

benchmarks: during the execution of blowfish and qsort under 500 unique basic

blocks execute whereas nasm has over 5 times this number. This corresponds

to the algorithms involved: blowfish and qsort are performing a repeated small

set of operations whereas nasm, an x86 assembler, performs a much wider

variety of operations. The total number of basic blocks executed, and therefore

the mean executions per block, also vary widely between the benchmarks,

however these values depend on the size of the input. A larger volume of

input will cause the number of basic blocks executed in these benchmarks

to increase, with little or no increase in the number of unique basic blocks

executed.

Chapter 3. Hot spot detection 40

Figure 3.2: Cumulative percentage of total basic blocks executed by the most
frequently executed unique basic blocks

3.1.3 Hot spots

A hot spot is a section of code that executes frequently enough to take up a

significant proportion of the total execution time. To determine whether hot

spots exist, the number of times each unique basic block executes in a dynamic

trace must be counted. The proportion of the blocks executed that is accounted

for by the most frequently executed unique basic blocks can be used to show

the presence of hot spots, as is shown in figure 3.2.

From this it can be seen that a small number of unique basic blocks accounts

for a large proportion of the total dynamically executed blocks. The most

frequent 16 blocks in blowfish account for 95% of the total blocks executed.

Blowfish is an encryption algorithm and so performs a relatively small linear

set of operations repeatedly on an input file, accounting for the small working

set of basic blocks. Compared to blowfish the most frequent blocks in cjpeg

and qsort account for a smaller percentage of the total blocks. This is partly

Chapter 3. Hot spot detection 41

due to the more complex algorithms involved (requiring more basic blocks

within the main program loops) and partly because these programs exhibit

phased behaviour (see next section). Nasm, an x86 assembler, performs very

differently having a large working set of basic blocks, few of which execute

very frequently. Over 60 of the most frequent blocks are required to account

for 50% of the total blocks executed. This is because an assembler performs a

large variety of operations on a relatively small set of input data. These results

confirm awell known observation that often a large proportion of the executed

time is spent within a small portion of the code [HP].

3.1.4 Phased behaviour

Many programs go through a number of stages, or phases, during execution.

These phases correspond to different stages in the program. For example

a program to encrypt a file first goes through an initialisation phase where

memory is allocated, command line arguments are processed and files are

opened, then enters a phase to generate the keys to be used to encrypt the file

and finally, performs the encryption of the file itself. These phases typically

involve differing program behaviour and each will require a different set of

basic blocks containing different hot spots. The initialisation phase in the

encryption program will likely be short and perform a variety of tasks, so will

therefore contain few significant hot spots. The file encryption stage, however,

will perform a very repetitive set of operations and therefore will contain a

small set of very frequently executed basic blocks.

This behaviour can be seen in figure 3.3. The frequency for each unique

basic block is shown, recorded for each 100000 basic blocks executed. Each

horizontal slice represents a unique basic block. Different phases of execution

are clearly visible in cjpeg and qsort. The working set of frequent blocks can

be seen to change about two fifths of the way through the execution of cjpeg.

Almost 60% of the total basic block executions in the first phases are from two

Chapter 3. Hot spot detection 42

Figure 3.3: Phases during program execution: each horizontal slice shows the
execution frequency of a unique basic block as a percentage of the total basic
blocks executed during each time interval

Chapter 3. Hot spot detection 43

basic blocks; most of the remaining 40% are from only four more. These blocks

make up a significant hot spot in this first phase. Qsort has three phases:

reading in the unsorted file, performing the sort itself and then outputting

the sorted data. Unlike these two benchmarks, nasm does not show distinct

phase changes, although there are slight changes in behaviour about half way

through and towards the end of the program. No horizontal slice on this graph

is significantly thicker than the rest, indicating that there are no significant hot

spots in this benchmark. The working set of basic blocks in this benchmark is

much larger than in the other benchmarks; the grey area at the top of the graph

represents unique basic blocks that are too infrequent to show (unique blocks

that make up less than 0.2% of the total blocks during an interval).

The presence of phased behaviour suggests that for this system to take full

advantage of the hardware execution engine it should be able to adapt to the

current program behaviour. This requires the currently running program to be

monitored at run-time to determine the current hot spots and to detect when

these hot spots change. Section 3.4 proposes a mechanism to achieve this.

3.2 Chains of basic blocks

So far it has been assumed that hot spots would consist of single basic blocks.

However basic blocks are typically small, averaging about seven instructions

in length (see figure 3.4). Compiling these into hardware does not give

much scope for optimisation and parallelism within the blocks and the short

length of blocks will increase the frequency and therefore the cost of switching

between hardware and software.

Blocks to be compiled into hardware can be increased in size by chaining

together several that are usually executed in sequence. If the branch (or other

control flow instruction) at the end of a basic block is taken in the same

direction a high proportion of the time then it is determined to be a highly

Chapter 3. Hot spot detection 44

Figure 3.4: Distribution of basic blocks in dynamic trace by number of
instructions

biased branch. Basic blocks linked by highly biased branches can be linked

together to form a larger block of instructions or block chain. Block chains can

be constructed by repeating this process until a block is found with a branch

that is not highly biased, a branch is found that loops back into the chain or

the chain becomes too large. Similar methods are used in the DIF [NH97] and

RePLay [PL01] mechanisms to improve optimisation scope.

The chain of blocks can be treated as a single basic block as it is compiled:

all contained branches are removed and the basic blocks become a single linear

block of instructions containing no control flow. During execution the situation

may arise where a highly biased branch is taken against its bias; this is treated

as a special case and is discussed in section 3.2.1.

Increasing the size of the compiled blocks brings a number of benefits:

Improved optimisation scope. A greater number of instructions within the

chain increases the scope for optimisations to be applied. Removing

branches between the blocks removes control dependencies, increasing

Chapter 3. Hot spot detection 45

the number of independent operations and therefore increasing available

parallelism. Some operations may be redundant due to not-taken

branches and can be removed, and some operations for control flow (for

example branch calculations and procedure call stack operations) can

also be removed from the block. Section 4.2 discusses these advantages

in more detail.

Reduced switching between hardware and software. Larger blocks will run

for a longer period of time and, as there are fewer of them to cover a given

amount of code, they are less frequently entered reducing any overhead

from switching between hardware and software execution. In addition

the number of temporary values within the block will be increased thus

reducing register bank accesses (see section 4.1.1).

Reduced number of hardware compilations. Fewer individual compilations

will reduce the number of compiled block definitions that must be

cached and reduces the overhead of maintaining this cache (for example

deciding which compilation to reject upon a new entry being added).

The number of compilations performed will be reduced, although the

compilation time will increase with larger, more complex blocks.

3.2.1 Handling unexpected branch decisions

When block chains are executed in hardware they are treated as a linear block

of instructions containing no internal branches. Chaining together blocks

linked by unconditional and deterministic branches is straightforward: the

branch will always be taken and so it can simply be removed. If, however, the

branch is conditional the conditionmust be tested. The majority of the time the

result of the condition test will match that observed during profiling and the

block chain will complete as expected although the case may arise when the

test would cause a branch out of the chain of blocks. This case must be handled

Chapter 3. Hot spot detection 46

to ensure the program executes correctly. It is expected that these breakouts are

infrequent due to the highly biased nature of the branches and so handling

them can be slow without significantly affecting the overall performance of

the system. Chain breakouts could be handled in the following ways:

Continue executing in software from breakout point. Upon detecting that a

breakout has occurred the hardware structure transfers results generated

before the breakout point to the microprocessor and execution continues

in software. This requires the hardware structure to be able to hand

control back to the software after each basic block, requiring values

in each architectural register to be synchronised at the end of each

basic block in the chain. This reduces the ability for operations to be

scheduled independently of their original basic block, reducing the scope

for parallelisation. Alternatively, register values can be preserved for

each possible breakout point using register renaming [NH97], increasing

the number of registers required, and operations in basic blocks before a

possible exit point must be executed before the breakout can occur.

Restore state to before chain began executing. If a chain must be broken out

of, all results generated in the reconfigurable hardware are discarded

and architectural state is restored to the point before the chain began

executing. Control is handed to the microprocessor and the chain

executes from the start in software. This requires the state before the

chain began executing to be preserved until it is known that the block

will complete. Values can only be committed to memory and registers

after it is known no breakout can occur.

The latter is expensive when a breakout occurs as results generated so

far have to be discarded, but this is very infrequent (see section 6.2.2) and

so overall this cost is expected to be small. Therefore, this method is

used, as control dependencies between operations in different basic blocks

Chapter 3. Hot spot detection 47

can be removed, allowing them to be scheduled in parallel if no data

dependencies exist (see section 4.2.2). Additional hardware is required to

preserve architectural state while the chain executes. Values in registers can

be preserved by, for example, using register renaming [Kel75]: two copies of

each architectural register exist, one which preserves the value at the start of

the chain and one which is written to by the hardware structure. These are

switched to the original values if the chain is broken out of; if it completes

fully the values written by the block executing in hardware are used. A

similar mechanism exists in Transmeta’s Crusoe microprocessor [DGB+03]:

speculatively executed operations write to a working copy of a register

whilst the original value in the register is shadowed in an additional register.

These shadow values can be copied into the working registers if one of the

assumptions speculated upon proves to be incorrect, restoring the original

state.

A write buffer [MTL95] can be used to hold stores to memory while the

block is executing; this can be flushed back to memory once it is known that

the block will complete. Section 5.3.1 describes this hardware support in more

detail.

3.2.2 Change of branch behaviour

The situation may arise when the behaviour of a branch changes during the

course of a program’s execution. A branch that was previously highly biased

may lose this bias or it may be reversed. If this branch has been compiled

into a block chain this will cause the chain to break out frequently, adversely

affecting performance. This is resolved by counting the number of times a

chain is broken out of; if this count exceeds a threshold then the compiled

chain can be discarded, possibly allowing the hot spot detector to re-detect

and recompile it with the new branch biases. Section 3.6 details how branch

bias change is detected.

Chapter 3. Hot spot detection 48

3.2.3 Increase in block size

Figure 3.5 shows the proportion of instructions (in a dynamic trace) contained

within different block sizes and compares basic blocks and chained blocks for

blowfish and nasm. Blocks were chained together if the branch bias was ≥99%

in one direction. In blowfish the block chaining process more than doubles the

size of the blocks in hot spots. The increase in nasm is less significant, although

chaining does reduce the number of instructions that execute in blocks fewer

than 5 instructions in size by about a third. This suggests that there are

few highly-biased branches in nasm compared to blowfish; this supports other

observations made that indicate the behaviour of nasm is not as predictable as

the other benchmarks.

3.3 Profiling

For frequently executed basic blocks to be compiled into hardware they must

be detected to be part of a hot spot. To detect hot spots the codemust be profiled.

Profiling is either static, when it is performed in advance, or dynamic when it

occurs at run-time.

3.3.1 Static profiling

Static profiling is performed in advance of the program being executed,

usually during the compilation process of the program. The program is

executed in a simulator with a sample set of data and a trace is produced. This

trace is used to determine the most frequently executed code sections within

the program which are then optimised and compiled into reconfigurable

hardware configurations. These configurations are then distributed with the

software binary, where they are loaded into the reconfigurable hardware at the

appropriate time.

Chapter 3. Hot spot detection 49

Figure 3.5: Basic block size vs. chained block size

Chapter 3. Hot spot detection 50

The primary advantage of static profiling is that all the processing involved

with profiling, optimisation and compilation is performed at compile-time and

so there is no overhead at run-time.

However static profiling has significant disadvantages: the sample set of

data used to generate the profile can differ from the data used at run-time. This

can cause the program to behave differently from the static profile. Different

options or program environments can also change its behaviour. This can

change the hot spots in the program causing the hardware configurations

generated by the static profile to no longer be valid.

With a static profile, configurations can either be loaded at the start of

the program or swapped in and out of the hardware by specially inserted

instructions. The latter requires phase changes to correspond to a particular

point in the code. This may not be the case if behaviour changes are caused by

changes in the data being processed, and so configurations must be available

throughout the program even if they are not currently in use. This increases

the storage required to hold configurations, possibly limiting the number of

hot spots that can be compiled.

Another disadvantage of static profiling is that compilations must be

distributed along with the program binary; this is not a problem for new code

but legacy binaries must be profiled if they are to gain any benefit from the

reconfigurable hardware.

3.3.2 Dynamic profiling

Dynamic profiling is performed at run-time: the code is monitored as it

executes and sections that execute frequently enough to pass a threshold are

compiled into hardware. Dynamic profiling looks at the currently executing

instance of the program, therefore detected hot spots are correct for the current

input data and program options. Changes in program behaviour during run-

time (such as entering a new phase of execution) will be detected by the

Chapter 3. Hot spot detection 51

dynamic profiler and a new set of hardware configurations will be generated.

The set of compiled hot spots can adapt to the current program behaviour, so

the need to have configurations for hot spots in all phases to be available at

all times is removed. This reduces the space required to store configurations,

reducing the size of the hardware or allowing a greater number of currently

active hot spots to execute in hardware.

To perform dynamic profiling a method of monitoring a program at run-

time is required. One of the following methods can be used:

Use a software interpreter. The program is interpreted and profiled until

hot spots are detected. Once detected, hot spots are executed in

hardware and the remainder of the program continues to be interpreted.

This requires no modifications to the code or the hardware; however,

interpreting code is much slower than executing it on a microprocessor

so any improvements from optimisation will have to overcome this

overhead for a resulting net gain.

Inserting monitoring instructions. The program can be run on a standard

microprocessor with no additional hardware. Code modifications to

insert monitoring instructions to update a counter table in memory are

performed before the program executes. These additional instructions,

plus the need to periodically break out of the program to look for hot

spots, will add delay to the executing program. Instructions must be

added to each basic block to construct an accurate profile. If only an

estimated profile is required then the number of added instructions can

be reduced by only instrumenting blocks in strategic places (for example

loop or procedure call entry points); however, the ability to profile

individual branch bias would be lost.

This method requires altering the program binary before execution

begins by inserting instructions and altering internal addresses such as

branch offsets or instructions that load constants from the code space.

Chapter 3. Hot spot detection 52

This method is difficult with dynamically linked libraries: they would

either need to be altered in a similar fashion (requiring a copy to be

created if a loaded library is shared between multiple programs) or

ignored and not profiled.

Performing monitoring in hardware. No change to software is needed. Ad-

ditional hardware is required to maintain a table of monitored points.

This allows monitoring to be performed in parallel with the executing

program thereby not adversely affecting performance.

As the system proposed in this thesis already requires new hardware to

support the reconfigurable execution engine, the main disadvantage of the

third method is removed. Therefore this option is used in this system as it

incurs no performance penalty and requires no software modification.

3.4 Operation of hot spot detector

The hot spot detector hardware must maintain a table of how frequently each

section of code, in this case each basic block, is executed over a period of time.

This table could be be stored in main memory, which would allow it to be very

large but would require a memory cycle each time it is updated or monitored,

reducing performance. Storing it in a small on-chip memory would not affect

performance but would limit the number of basic blocks that can bemonitored.

However, as only frequently accessed blocks need to be monitored, the table is

maintained as a cache with a replacement policy that discards the least “hot”

blocks, reducing the amount of storage required to produce a useful profile of

the most frequently executed blocks.

In the system described in this thesis a table of recently executed basic

blocks is maintained on chip in a block profile table (BPT). Each basic block entry

in the BPT contains a counter which records the number of times the basic

block has executed in the recent past, or how “hot” the block is. If a counter

Chapter 3. Hot spot detection 53

exceeds a threshold the compiler is invoked to create a hardware configuration

for that block. The structure and operation of the BPT is detailed in section 3.5.

Once the detected hot spots have been compiled (see section 4.3), the

hardware configuration information is stored in a hardware configuration table

(HCT) where it can be loaded on demand into the reconfigurable hardware

structure. The basic blocks contained in the compiled chain are removed from

the BPT. Only basic blocks that execute in software are monitored by the BPT

to prevent already compiled blocks from being detected and compiled again.

The HCT is described in more detail in section 3.6

3.4.1 Determining which blocks to compile

For a block to be worth compiling into hardware it must be expected to execute

frequently in the future. This can be estimated by looking at the block’s history:

if a block has executed frequently in the recent past it is likely to continue

doing so. Blocks that execute very frequently in a short period of time are

probably part of an inner loop that iterates many times: these blocks should be

compiled as soon as possible to allow the remainder of the loop iterations to

execute in hardware. If a block has executed regularly for a long period of time

then it is likely to continue doing so and should also be compiled. However

if a block has executed frequently but not for a long period of time then it is

unlikely to execute again and so should not be compiled. Blocks that only

execute occasionally should also not be detected as hot spots.

For the hot spot detection mechanism to perform in this way it must apply

a higher weighting to recent executions of a block than older executions. This

can be achieved by periodically decrementing all the counters in the table

to age them. This has the effect of increasing the effect of recent counter

increments relative to older ones, thereby increasing the importance of recent

block executions in determining hot spots. Counters for blocks that begin

executing very frequently will increase rapidly, allowing quick detection and

Chapter 3. Hot spot detection 54

compilation. Any block entry that does not execute for a long period of

time will have its counter gradually decreased until the cache replacement

policy rejects it from the profile table. Counters for blocks that do not execute

frequently enough will not break the threshold and be detected as hot spots.

The mechanism to achieve this is described in setion 3.5.

3.4.2 Sensitivity of the hot spot detector

The setting of the increment size, hot spot detection threshold and rate

of ageing affects the sensitivity of the hot spot detector. This sensitivity

determines how frequently a block must execute during a given time period

to be detected as a hot spot and be compiled. Ideally, the sensitivity should be

set to keep the HCT full with configurations for the current most frequently

executed hot spots. A high sensitivity (with a high increment rate, low

threshold and low rate of ageing) will decrease the delay between a block

becoming hot and the block being detected as a hot spot, ensuring the HCT

is filled quickly at the start of a program or upon a program phase change.

However, this will also increase the number of block compilations, each of

which must replace an existing compiled block in the HCT. This is undesirable

as a cost is associated with performing a compilation and so compiled blocks

should be kept for as long as they remain in use, unless new very frequently

executed blocks are detected. A sensitivity set too high may also lead to

thrashing in the HCT if rejected blocks are quickly re-detected and recompiled.

Conversely a sensitivity set too low will cause few blocks to be detected,

causing the reconfigurable hardware to be under-utilised.

The setting of the hot spot detector sensitivity is further complicated by

variations in the number and frequency of hot spots in different programs.

Some programs contain more simultaneously active hot spots than available

locations in the HCT, leading to thrashing if the sensitivity is too high. Other

programs may contain a large number of blocks, none of which is executed

Chapter 3. Hot spot detection 55

frequently enough to exceed the threshold unless a high sensitivity is used,

causing the reconfigurable hardware to remain idle. Furthermore behaviour

may change during a program as different phases are entered. The choice of

sensitivity setting is therefore dependent on the current program behaviour.

This variability means a fixed, pre-set sensitivity is unlikely to provide

optimal performance in many cases. Figure 3.6 demonstrates this. These

results were generated using a software model of the hot spot detector, with

both the BPT andHCT having 64 entries (BPT andHCT size are discussed later

in this chapter). The first graph shows the percentage of blocks detected as hot

spots and executed in hardware with different sensitivities. The sensitivity

is varied by altering the amount the recent execution counter in the BPT

is incremented when a basic block is executed; the rate of ageing and the

threshold remain constant. The proportion of blocks executed in hardware

is highest with a sensitivity of around 256-512 in all benchmarks except

for nasm which peaks at 128 and then drops as the sensitivity is increased

further. The second graph shows the number of compilations during each

benchmark’s execution. This increases at a different point for each benchmark

as the sensitivity increases. Nasm and cjpeg show sharp increases with no

corresponding increase in the percentage of blocks executed in hardware,

indicating that thrashing in the HCT is occurring. The third figure shows an

estimated cost function as a percentage of executing entirely in software (this

is based on a block executing in hardware costing 40% of executing in software

and a compilation cost of executing 1000 software basic blocks). The minimum

cost is at a different sensitivity for each benchmark, showing that having a

fixed, pre-determined sensitivity would not give optimal performance in all

cases.

A solution to this is to vary the sensitivity depending on the current number

of active compiled hot spots. A recently used flag is added to each loaded block

configuration in the HCT. This is set when a block is executed (or has just

Chapter 3. Hot spot detection 56

Figure 3.6: Number of blocks executed in hardware, number of compilations
and estimated cost with static hot spot detector sensitivity

Chapter 3. Hot spot detection 57

been compiled) and is cleared if a block does not execute for a predetermined

period of time (see section 3.6). This information can be used to increase the

sensitivity of the hot spot detector as the number of inactive locations in the

HCT increases. When all the blocks in the HCT have been used recently the

hot spot detector sensitivity will be very low, requiring any new basic blocks to

execute very frequently to be detected as hot spots, preventing blocks currently

in use from being replaced. If theHCT is empty, as it is at the start of a program,

then the sensitivity is set very high to fill the table as quickly as possible and

begin utilising the reconfigurable hardware. Upon a program phase change

the previously compiled blocks will become inactive, increasing the sensitivity

of the hot spot detector and allowing hot blocks in the new program phase to

be detected and compiled quickly.

Figure 3.7 shows a similar graph to figure 3.6 with a sensitivity that

changes with the number of slots in the HCT that do not contain an active

block configuration. The numbers on the x-axis are the base sensitivity:

this is a multiplier of the number of inactive locations in the HCT to give

the current hot spot detector sensitivity. The number of blocks executed in

hardware remains approximately constant over a wider range of values than

the static sensitivity. The number of compilations remains low even as the

base sensitivity increases; this is in contrast to a static sensitivity where the

number of compilations increases rapidly as the sensitivity increases. This

shows that the dynamic sensitivity is effective at preventing thrashing. The

third graph combines the proportion executed in hardware and the number

of compilations using the same cost function as in the static sensitivity cost

figure. This shows a shallow bathtub curve, with the minimum point in each

benchmark aligning at a base sensitivity of between four and eight. This is

a significant improvement over the cost graph with static sensitivity where

minimum points are narrower and do not align between the benchmarks.

Chapter 3. Hot spot detection 58

Figure 3.7: Number of blocks executed in hardware, number of compilations
and estimated cost with dynamic hot spot detector sensitivity

Chapter 3. Hot spot detection 59

These results show that a dynamic sensitivity based on the number of active

compiled blocks can provide an effective method of automatically regulating

the hot spot detector, and the wider, flatter curves in the cost graph show

dynamic sensitivity requires less fine-tuning of settings than static sensitivity.

This mechanism allows the hot spot detector to adapt to radically different

code and to quickly detect changes in program behaviour.

3.4.3 Constructing Block Chains

To perform block chaining the bias of the branch at the end of a basic block

must be monitored. Each entry in the BPT contains two counters: one records

the number of times the block has executed, and the other counts the number

of times the branch at the end of the block is taken. These are used by the

compiler to determine whether the branch is highly biased. If so, the block

branched to is added to the end of the original basic block to construct a chain

of basic blocks. The branched-to block will also have been frequently executed

in the recent past, and so is also likely to contain an entry in the BPT which

contains branch bias information for the end of the block, which can be used

to extend the chain further. This continues until either a non-biased branch

is found, a block is branched to that is not in the BPT or the chain exceeds a

maximum size, at which point chain construction is terminated and the chain

is compiled into a hardware block and stored in the HCT. Section 4.3 describes

the compilation mechanism in more detail.

Indirect branches such as returns cannot be accurately profiled with a

binary taken or not-taken decision as the relative frequency of targeted

addresses is not monitored. However, an approximation is made with returns:

they are only permitted to be included in a chain if the matching call is

also part of the chain, allowing the return address to be determined. This

approximation fails if the return’s taken or not-taken bias is different when

the subroutine is called from different locations. However, this situation is

Chapter 3. Hot spot detection 60

likely to be infrequent and permits a significant simplification of the profiling

mechanism. Chaining across returns is performed by matching link pointer

values on the stack within the chain as the block is compiled: if the link value

being restored to the program counter was added earlier in the chain then the

call is entirely contained within the chain and so can be inlined. Chains are not

constructed around indirect branches that are not determined to be returns for

calls contained in the chain.

3.5 Block Profile Table

The Block Profile Table (figure 3.8) is responsible for monitoring basic blocks

that execute in software. It constructs a simple profile of recently active basic

blocks and an estimate of the branch bias at the end of each of those blocks. The

table is structured as a fully associative cache indexed by the block address and

with a replacement policy based on rejecting the least hot block when a new

block is encountered. The table contains the following fields:

Block address This is the entry point of the basic block being monitored.

Due to the way basic blocks are defined in this system (see section

3.1.1) this can be used to identify when the basic block has been

entered bymonitoring the next instruction fetched after each control flow

instruction.

Aged block counter This provides a measure of how hot the block has been in

the recent past. This value is increased each time the block is executed

and is gradually decreased: this is done by periodically decrementing

all block entries in the table. The size of the increase varies depending

on the number of active compiled blocks in the HCT, as described in

section 3.4.2. If the value in this field exceeds the compilation threshold

the block is compiled and removed from the BPT. This field is also used

to determine which block in the BPT to replace when a basic block not in

Chapter 3. Hot spot detection 61

Block Address End Branch Taken CountTotal Execute CountAged Block Counter

Figure 3.8: Block profile table

the table is executed. Results were generated by decrementing all entries

by 1024 every 1024 software basic blocks: this reduces the number of

subtract operations that must be performed. The value used for the block

detection threshold when generating results was 8192.

Total execute count This is a simple counter that is incremented each time the

block executes; it is not aged. This is used along with the end branch taken

count field to determine the branch bias when the block is compiled.

End branch taken count This counter is incremented when the block is

executed and the branch at the end is taken. When a block is entered a

reference to the block’s location in the BPT is maintained until the block

exits, at which point the end branch taken count is updated according to

whether the control flow instruction at the end was taken. This is used

along with the total execute count field to determine the branch bias when

the block is compiled. A branch with a bias ≥99% in one direction is

determined to be highly biased and the basic blocks linked by the branch

are chained together.

Blocks are removed from the table when a chain containing them is

compiled. If the table is full and a new block is detected then the least ’hot’

block is rejected.

Chapter 3. Hot spot detection 62

3.5.1 Size of block profile table

The size of the block profile table determines how many basic blocks can be

profiled simultaneously. This has an effect on which blocks are detected as hot

spots. Figure 3.9 shows the percentage of instructions executed with different

BPT sizes (with the HCT size fixed at 64 entries). Very few instructions execute

in hardware with a single entry: this is expected, as the entry in the BPT

would be replaced on each new basic block executing, meaning that only

blocks that looped back to themselves would be able to break the hot spot

detector threshold. Performance improves as the number of monitored basic

blocks increases: maximum performance is achieved in blowfish and cjpegwith

16 entries in the BPT. This is due not only to the relatively small working set of

basic blocks in these benchmarks, but also because the set of blocks in use does

not change frequently. Performance in qsort continues increasing until the table

size reaches 64 entries. This benchmark contains a larger working set of basic

blocks that fluctuates frequently (see figure 3.3) requiring a larger number of

basic blocks to be monitored to detect hot spots accurately. Execution time

in Nasm is not dominated by a small number of hot spots like in the other

benchmarks; its performance here is constrained by the HCT size of 64. This

limits the percentage of executed instructions that can be covered by loaded

configurations to about 30% (see figure 3.11); this value is reached at a BPT

size of 64 and no further increases can be gained by increasing the size of the

BPT further.

A relatively small table size of 16 is sufficient for programs that contain

small, constant hot spots such as those that process data in a streaming, linear

fashion. Programs that have less predictable execution patterns perform better

with a larger table size of 64 entries. Increasing the BPT above this size has little

effect with a limitedHCT size. Therefore a BPT size of 32 or 64 is recommended

for these benchmarks.

Chapter 3. Hot spot detection 63

Figure 3.9: Influence of Block Profile Table size on number of instructions
executed in hardware

3.6 Hardware Configuration Table

The Hardware Configuration Table (figure 3.10) stores data about the blocks

currently compiled into hardware configuration, and is used to determine

how many blocks are currently active. Like the BPT it is structured as a

fully associative cache, indexed by block entry point address. It contains the

following fields:

Block entry point address This is the address of the entry point into the

hardware block. If the address of the instruction fetched after a

control flow instruction (including after the exit of another hardware

block) matches one of these the corresponding block is loaded into the

reconfigurable hardware structure and executed.

Executed recently field This field records whether the block has been exe-

cuted recently. When the block is executed the top bit in this field is set.

Chapter 3. Hot spot detection 64

Bits are periodically shifted right which will cause the field to be cleared

if the block is not executed for a period of time. The number of entries

in the HCT for which this field is zero affects the amount the aged block

counter in the BPT for a software block is incremented when executed.

This field also provides a simple estimate of how regularly the hardware

block has executed in the recent past by counting the number of bits set,

and so is used to select a block configuration to reject when compiling a

new block into a full HCT.

Breakout and breakout reset period counters The breakout counter monitors

the number of times the block has broken out of early, due to a chained

branch being taken against its measured bias or another exception during

block execution. This is an expensive operation as it requires execution

progress in the block so far to be discarded and re-executed in software

(see section 3.2.1) and so needs to be detected and handled if it occurs

too frequently. This counter is incremented when the block is broken

out of. The value is cleared periodically; if it exceeds a threshold limit

before this the block is deemed to have changed behaviour since it was

compiled and so is rejected from the table. If the block is still sufficiently

active it will be detected again by the BPT. The threshold used for

the generation of results in this thesis is 64 breakouts per 1024 block

executions. Increasing the threshold (or decreasing the reset period)

will allow more breakouts to occur before a block is rejected. This has

the effect of increasing the tolerance for blocks that occasionally break

out, and so the number of breakouts will increase as fewer of these

blocks will be rejected; conversely this is likely to increase the number of

compilations as these blocks are likely to be detected as hot spots again

after they are rejected. The setting of these threshold values is therefore a

trade-off between the expected cost of a block breakout and the expected

Chapter 3. Hot spot detection 65

Address Executed Recently Breakout Counter Hardware ConfigurationReset Period Counter

Figure 3.10: Hardware Configuration Table

cost of a recompilation, including the time taken for the BPT to re-detect

the hot spot and determine the new branch biases.

Hardware data This contains the location of the hardware configuration data

in the configuration storage, for loading into the hardware execution

engine when the block is entered.

3.6.1 Storage of hardware configuration data

The hardware structure described in section 5.3 is configured usingmicrocode-

like configuration data stored in an on-chipmemory. All the configuration data

for one execution cycle of the hardware structure must be loaded in parallel

from this memory and used to configure the hardware structure for the cycle

of execution. The width of this memory should therefore match the size of the

configuration data for each cycle of execution (see section 5.2.5).

This configuration memory could be structured in a number of ways. The

simplest would be to have a fixed-size block of memory for each entry in the

HCT, each large enough to store configuration data for the largest possible

compiled block. However, this results in an inefficient use of available memory

when smaller blocks are compiled. A more complex method would be to have

an additional memory structure separate from the HCT and allocate a block

of memory for each cycle of configuration data in a compiled block. Each

cycle’s data would also contain a pointer to the configuration data for the next

Chapter 3. Hot spot detection 66

cycle in the currently executing block, allowing a chain of configuration data to

be loaded as the block executes. This would require additional management

of the available memory resources to monitor which locations contain valid

configuration data for blocks loaded in the HCT, and to invalidate these when

a block is rejected from the HCT. Such a memory management unit has not

been developed as part of this thesis, and so the first method is used.

3.6.2 Number of entries in hardware configuration table

The HCT stores configuration information for compiled hot spots. This is

used to configure the hardware execution engine when a compiled hot spot

is executed. The size of the table determines how many of these compiled

blocks can be stored simultaneously; once the table is full any newly detected

and compiled hot spots must displace an existing configuration in the table.

This is undesirable if it causes a hot spot to be compiled again, as a significant

cost is associated with performing the compilation process. This table should

therefore be large enough to hold configurations for all hot spots that are active

in the same part of a program.

Figure 3.11 shows the effect of the HCT size on the percentage of

instructions executed in hardware. Most of the benchmarks reach a maximum

performance with a HCT size of 32 or 64 before levelling off; at this point all

significant hot spots can be contained within the HCT so further increases

in the size of this table have little effect. Again nasm performs differently,

requiring a much larger table size to reach a high proportion of instructions

executed in hardware as execution is spread dynamically over a large number

of basic blocks and is not limited to a small number of hot spots. Blowfish

performs well even with a very small HCT, demonstrating that a large

proportion of dynamically executed instructions are contained within one or

two very frequently executed regions of code.

Chapter 3. Hot spot detection 67

These results have been generated using a hot spot detection mechanism

with a dynamic sensitivity as was described in section 3.4.2. This mechanism

will attempt to keep the HCT filled with active blocks at all times. A larger

HCTwill have a greater number of unused slots than a smaller HCT containing

the same compiled blocks, increasing the hot spot detector sensitivity and

encouraging less frequently executed hot spots to be compiled to fill the

table. This can be seen in figure 3.11; note that the HCT size axis scale is

logarithmic: each doubling of the HCT size only results in an approximately

linear improvement in the number of instructions executed in hardware. These

diminishing returns are caused by additional space in larger HCTs being filled

with less frequently executed hot spots. The levelling off of the graphs for

some of the benchmarks occurs when all repeatedly executed blocks have

been compiled. The remaining small percentage of instructions that execute

in software are either contained within blocks that execute too infrequently to

be detected as hot spots even with an extremely high sensitivity (for example

blocks that execute only once) or contained within the first few executions of a

block that cause it to be detected as a hot spot.

Figure 3.12 shows the number of compilations that take place during

the execution of the benchmark with different HCT sizes. The number of

compilations generally increases as the HCT size increases, as more blocks are

compiled to fill the larger table. In some cases a larger HCT decreases the

number of compilations; this occurs when the smaller HCT causes compiled

blocks to be displaced (and later re-compiled) as the table is not large enough to

hold all currently active blocks. However, the dynamic sensitivity mechanism

in the hot spot detector successfully prevents excessive thrashing, keeping the

number of compilations with small HCT sizes low.

These results suggest a hardware configuration table size of 32 or 64

provides an acceptable trade-off between the proportion of the program

Chapter 3. Hot spot detection 68

Figure 3.11: Influence of Hardware Configuration Table size on number of
instructions executed in hardware

Figure 3.12: Influence of Hardware Configuration Table size on number of
compilations

Chapter 3. Hot spot detection 69

executed in hardware, the number of compilations performed and the size of

the HCT itself for the benchmarks used in this analysis.

3.7 Summary

This chapter described methods of profiling code to detect hot spots to be

compiled into hardware. The advantages of dynamic profiling over static

profiling were discussed and a mechanism to perform dynamic hot spot

detection was described. This mechanism consists of a Block Profile Table

which monitors the most frequent basic blocks in the currently executing

code. Once hot spots are detected they are compiled and stored in a

Hardware Configuration Table, from where they can be loaded into the

hardware execution engine as required. A table containing 32-64 entries was

determined to be a suitable size for both the BPT and the HCT for all of the

benchmarks except nasm: with this benchmark performance and compilation

cost continued to increase with larger HCT sizes. A method of dynamically

controlling the sensitivity of the hot spot detector based upon the number of

active compiled hot spots was described and analysed; this allows the hot spot

detector to adapt to the current program behaviour.

The next chapter outlines optimisations that can be performed on detected

hot spots and describes the process of compilation.

Chapter 4

Block optimisation and

compilation

This chapter describes the optimisations that can be performed when com-

piling blocks into reconfigurable hardware. Examples of these optimisations

are demonstrated first on single basic blocks and then on chains of blocks

to demonstrate advantages of compiling chains into hardware. Section 4.3

describes the process of compilation in more detail.

4.1 Optimisations on single basic blocks

This section describes optimisations that can be performed when compiling

single basic blocks.

4.1.1 Temporary values

One type of optimisation that can be performed when compiling a block

to execute in reconfigurable hardware is the removal of the need to write

temporary values into the register bank. The following basic block is a detected

hot block from the cjpeg benchmark.

70

Chapter 4. Block optimisation and compilation 71

1 00011158 MOV R2, R5 ASR #10
2 0001115C LDR R3, [R8]
3 00011160 AND R6, R2, #FF
4 00011164 STRB R6, [R3], +#1
5 00011168 LDR R2, [R8, +#4]
6 0001116C SUB R2, R2, #1
7 00011170 CMP R2, #0
8 00011174 MOV R0, R8
9 00011178 SUB R4, R4, #8
10 0001117C MOV R5, R5 LSL #8
11 00011180 STR R3, [R8]
12 00011184 STR R2, [R8, +#4]
13 00011188 BEQ 000113F0

This sequence of instructions requires 24 register bank accesses (15 reads

and 9 writes), excluding the program counter. Some values are temporary

as they are generated and then later overwritten within the basic block. For

example the first instruction writes to R2 which is later overwritten by a load

(instruction 5). The value generated by the first instruction is therefore local to

this block.

In a load-store architecture such as ARM these temporary values between

operations are stored in the register bank. In a reconfigurable architecture these

values can be passed directly from the result of one operation to the input

of another (via an intermediate buffer). This allows multiple operations to

execute in parallel without the need for a complex multi-ported register bank.

This can also reduce power consumption: reading from andwriting to a simple

buffer requires less energy than accessing a large register bank as less or no

address decoding is required and the wires can be shorter [HM00].

Only certain hot blocks within a programwill be executed in reconfigurable

hardware due to compilation overhead and limited hardware resources; the

rest will still be executed in software. Values valid at the start and end of the

block need to be transferred between the register bank and the reconfigurable

hardware. The compilation process needs to identify the registers that are

Chapter 4. Block optimisation and compilation 72

required at the start of the block and ensure their values are passed from

registers to the reconfigurable hardware. The registers that are written to

during the block need to have their final values updated in the register bank.

Other values are temporary within the block: for example a register that is

written to before it is read does not need to have its value read from the

register bank as it will be overwritten. The following example demonstrates

the temporary values within the block:

1 00011158 MOV R21, R51 ASR #10
2 0001115C LDR R31, [R81]
3 00011160 AND R61, R21, #FF
4 00011164 STRB R61, [R31 -> R32

1], #1
5 00011168 LDR R22, [R81, #4]
6 0001116C SUB R23, R22, #1
7 00011170 CMP R23, #0
8 00011174 MOV R01, R81

9 00011178 SUB R42, R41, #8
10 0001117C MOV R52, R51 LSL #8
11 00011180 STR R32, [R81]
12 00011184 STR R23, [R81, #4]
13 00011188 BEQ 000113F0

Values R41, R51 and R81 are valid at the start of the block; therefore, only

the values in registers R4, R5 and R8 need to be passed to the reconfigurable

hardware at the start of the block. Values R01, R23, R32, R42, R52 and R61 are

valid at the end of the block causing R0, R2, R3, R4, R5 and R6 to require

updating in the register bank. Values R21, R22 and R31 are temporary values

within the block and can be passed directly from the output of the generating

operation to the inputs of the operations that require them, bypassing the

register bank. The total number of register bank accesses required to execute

the block is reduced to nine: three reads and six writes.

1The value in R3 changes at this point as this is a post-indexing instruction which
increments the base register by 1

Chapter 4. Block optimisation and compilation 73

A possible method of reducing the register writes further would be to

search all possible control paths following the block to determine which values

are required by future instructions and which are stored in registers that are

overwritten. If a value is required by any possible code path it must be

written back; if it is overwritten in all paths then it may be discarded at the

end of the block. Tracing all possible paths following a basic block may be

impractical as the number of possible paths can increase rapidly; additionally

indirect branches may not be statically determinable making tracing further

paths impossible. If this occurred the search would have to be abandoned and

any registers not yet determined must be assumed to be live.

This search would be performed at compile-time, increasing the amount

of work performed when compiling a block. In particular, many more instruc-

tions must be fetched and decoded during each compilation. Instructions from

paths that may never be executed would have to be fetched, possibly polluting

the instruction cache. Therefore, this particular optimisation is not performed.

4.1.2 Increasing parallelism

One of the main benefits of compiling to reconfigurable hardware is the

ability to increase parallelism over a sequential microprocessor. A data flow

graph (DFG) from the example block in section 4.1.1 is shown in Figure

4.1. This shows the maximum parallelism available assuming unlimited

execution width in the reconfigurable execution engine, an unlimited number

of simultaneous memory and register accesses and a memory load latency

of a single cycle. In this case this block of thirteen ARM instructions could

be completed in five execution cycles, which is the length of the critical path

through the block from the address calculation R8 + #4 to the branch condition

test. The maximum number of operations that can execute in parallel is five

in the first cycle, but this decreases as the block progresses. By scheduling the

Chapter 4. Block optimisation and compilation 74

Read R4

R41

Read R5

R51

Read R8

R81

SUB ASRLSL LOAD ADD

STORE

Write R0

#10

#FF

AND

#1

ADD

SUB

#4

#0

SUB

#8

R21 R31

R61

STOREWrite R6

R32

Write R3

Temp Address

LOAD

STORE

R22

R23

Write R2

CC1

Branch Decision

R42

Write R4

R52

Write R5

PC1

Write PC

Figure 4.1: Data flow graph of single basic block

subtract and shift operations that write to R4 and R5 respectively to execute

later in the block the maximum parallelism required for the block to still

complete in five cycles can be reduced to three.

Figure 4.2 shows a DFG for the same block with some constraints imposed.

Only a single memory operation is permitted per cycle and a delay of one

cycle is introduced following a load to allow for cache latency. The block now

completes in six cycles: the additional load delay increases the length of the

critical path. The optimum execution parallelism required to complete in this

time is three. Reducing the number of operations that can execute in parallel

Chapter 4. Block optimisation and compilation 75

Read R4

R41

Read R5

R51

Read R8

R81

SUB

ASR

LSL

LOAD ADD

STORE

Write R0

#10

#FF

AND

#1

ADD

SUB

#4

#0

SUB

#8 R21

Load Delay

R31R61

STORE

Write R6

R32

Write R3

Temp Address

LOAD

STORE

Load Delay

R22

R23

Write R2

CC1

Branch Decision

R42

Write R4

R52

Write R5

PC1

Write PC

Figure 4.2: Data flow graph of basic block with three-way constrained
parallelism, single load per cycle and a single-cycle load delay

Chapter 4. Block optimisation and compilation 76

to two would increase execution time to seven cycles; increasing parallelism

to four will give no additional benefit as the completion time is limited to six

cycles by the critical path.

4.2 Optimisations on chains of basic blocks

Section 3.2 discussed how basic blocks linked by highly biased branches can

be linked together to form a chain of basic blocks, removing internal control

instructions and producing a linear stream of instructions. The fragments of

code passed from the hot spot detector to the block compiler are therefore

larger than single basic blocks. A key advantage of this is to increase the

window upon which the optimisations in section 4.1 are performed. The

example on page 77 is the basic block from section 4.1.1 combined into a chain

with following basic blocks that are linked with highly biased branches. This

chain is taken from the cjpeg benchmark and produced using the chaining

process described in the previous chapter.

This chain is constructed from five basic blocks; these are shown with

different coloured instruction numbers. The conditional branches at the end

of each of the first four basic blocks have been determined to be highly biased

by the chain builder mechanism discussed in section 3.2. Due to this highly

biased nature these branches can be removed and replaced with operations

that trigger an exception if the branch causes the chain to exit. This allows the

chained basic blocks to become a single large block of instructions with one

entry point, one exit point and a linear flow of control.

4.2.1 Increased number of temporary values

The increase in the size of blocks caused by chaining them together increases

the number of temporary variables that need not be written into the register

bank. In the example in section 4.1.1 three registers were read at the start of

Chapter 4. Block optimisation and compilation 77

1 00011158 MOV R21, R51 ASR #10
2 0001115C LDR R31, [R81]
3 00011160 AND R61, R21, #FF
4 00011164 STRB R61, [R31 -> R32], +#1
5 00011168 LDR R22, [R81, +#4]
6 0001116C SUB R23, R22, #1
7 00011170 CMP R23, #0
8 00011174 MOV R01, R81

9 00011178 SUB R41, #8
10 0001117C MOV R52, R51 LSL #8
11 00011180 STR R32, [R81]
12 00011184 STR R23, [R81, +#4]
13 00011188 BEQ 000113F0
14 0001118C CMP R61, #FF
15 00011190 BEQ 000113B4
16 00011194 CMP R42, #7
17 00011198 BGT 00011158
18 0001119C CMP R101, #0
19 000111A0 STR R52, [R81, +#8]
20 000111A4 STR R42, [R81, +#C]
21 000111A8 LDR R53, [R111, -#68]
22 000111AC MOV R62, #1
23 000111B0 BEQ 0001147C
24 000111B4 MOV R33, R62 LSL R101

25 000111B8 ADD R43, R42, R101

26 000111BC SUB R34, R33, #1
27 000111C0 LDR R24, [R81, +#8]
28 000111C4 AND R54, R53, R34

29 000111C8 CMP R43, #7
30 000111CC RSB R35, R43, #18
31 000111D0 ORR R55, R24, R54 LSL R35

32 000111D4 BLE 0001121C

Chapter 4. Block optimisation and compilation 78

the block and six needed to be written at the end of the block, reducing the

number of register bank accesses from 24 to 9. By chaining blocks together the

values at the end of a block may be overwritten by the following block due to

register re-use, removing the need to write those values back into the register

bank. In this example four values (R23, R32, R42 and R52) that were valid at

the end of the single basic block in section 4.1.1 are overwritten by instructions

in subsequent blocks. Registers R10 and R11 are read by these added blocks;

however, no additional registers are written. Therefore, five registers must be

passed to the reconfigurable hardware and six must be written back, giving a

total of eleven register bank accesses. This is a significant reduction over the

53 register accesses that occur when the instructions in the chain of blocks are

executed in the microprocessor pipeline.

4.2.2 Increase parallelism

Figures 4.3 and 4.4 show data flow graphs for the chained basic blocks on page

77. Nodes labelled as breakout points on the DFG correspond to the conditional

branches at the end of the basic blocks in the chain. Each of these follows an

operation that generates a condition (corresponding to a compare instruction

in each of these cases). If the condition is set in a way that would cause the

chain to be branched out of then the block must be terminated at this point.

Therefore, the Breakout Points on the DFG represent the points at which the

block may be terminated.

This speculation that the chain of blocks will complete fully allows the

control dependencies between the basic blocks to be removed. Figure 4.3

shows the data flow graph for the chained block with control dependencies

between each basic block: operations from a later basic block in the chain do

not begin executing until the breakout point for the previous basic block has

been reached (the colours represent the basic block that each operation is taken

Chapter 4. Block optimisation and compilation 79

R4 source

R41

R5 source

R51

R8 source

R81

R10 source

R101

R11 source

R111

SUB

ASR

LSL

LOADADD

STORE

ADD ADD

R0 final

SUB

LSLADD

SUB

#10

#FF

AND

SUB

#1

ADDSUB

SUB

R6 final

#4

#0

SUB

#8

#7

SUB

SUB

#C#68

#18

SUB

R21

R31

R61

STORE

R32

Temp address 1

LOAD

STORE

R22

R23

CC1

Breakout Point 1

R42

STORE

R52

STORE

OR

R2 final

CC2

Breakout Point 2

CC3

Breakout Point 3

CC4

Breakout Point 4

Temp address 2 Temp address 3Temp address 4

LOAD

R53

AND

R33R43

R4 final

R34

R54

LSL

CC final

Branch Calculation

R35

R3 final

Temp shift

R55

R5 final

PC final

Figure 4.3: Data flow graph of chained block with control dependencies
between basic blocks

Chapter 4. Block optimisation and compilation 80

R4 source

R41

R5 source

R51

R8 source

R81

R10 source

R101

R11 source

R111

SUB ASRLSL LOAD ADD

STORE

ADD ADD R0 finalSUBLSL

ADD

SUB

#10

#FF

AND

SUB

#1

ADD

SUB

SUB

R6 final

#4#0

SUB

#8

#7

SUB

SUB

#C#68

#18

SUB

R21 R31

R61

STORE

R32

Temp address 1

LOAD

STORE

R22

R23

CC1

Breakout Point 1

R42

STORE

R52

STORE

OR

R2 final

CC2

Breakout Point 2

CC3

Breakout Point 3

CC4

Breakout Point 4

Temp address 2 Temp address 3Temp address 4

LOAD

R53

AND

R33

R43

R4 final

R34

R54

LSL

CC final

Branch Calculation

R35

R3 final

Temp shift

R55

R5 final

PC final

Figure 4.4: Data flow graph of chained block with control dependencies
removed

from and correspond to the colours on page 77). In contrast, figure 4.4 shows

the same chained block with these control dependencies removed, where

operations in later basic blocks may begin executing before the conditional

test in the preceding block has completed. This allows parallelism within the

chained block to increase significantly. The DFG with control dependencies

completes in twelve execution cycles; removing the control dependencies

allows the block to complete in five cycles, more than doubling performance,

although this assumes an ideal situation with unlimited execution units,

unlimited memory bandwidth and single cycle memory latency.

A scheduling of this DFG with a restriction of four parallel operations per

cycle is shown in figure 4.5. The scheduling of operations in this DFG is also

restricted by only allowing a single load operation per cycle and by adding a

single cycle load delay. Here the block can complete in eight execution cycles.

Chapter 4. Block optimisation and compilation 81

Load Delay

R31

Load Delay

R22

Load Delay

R53

R4 source

R41

R5 source

R51

R8 source

R81

R10 source

R101

R11 source

R111

SUB

ASR

LSL

LOADADD

STORE

ADD

ADD

R0 final

SUB

LSL

ADD

SUB

#10

#FF

AND

SUB

#1

ADD

SUBSUB

R6 final

#4

#0

SUB

#8

#7

SUB

SUB

#C

#68

#18

SUB

R21

R61

STORE

R32

Temp address 1

LOAD

STORE

R23

CC1

Breakout Point 1

R42

STORE

R52

STOREOR R2 final

CC2

Breakout Point 2

CC3

Breakout Point 3

CC4

Breakout Point 4

Temp address 2

Temp address 3

Temp address 4

LOAD

AND

R33

R43

R4 final

R34

R54

LSL

CC final

Branch Calculation

R35

R3 final

Temp shift

R55

R5 final

PC final

Figure 4.5: Data flow graph of chained block with four-way constrained
parallelism, single load operation per cycle and a single-cycle load delay

Chapter 4. Block optimisation and compilation 82

4.2.3 Memory aliasing

In the above example operations can be scheduled in a different order to how

they appear in the instruction stream, according to data dependencies via

registers. Loads and stores are scheduled in order only if it can be determined

at block compile time that a load uses an address that was previously stored

to. In this case the load need not occur as the value to be stored can be passed

directly to the operations that require the loaded value. The store must still

take place as the value in memory may be required by later instructions after

the chain of blocks has exited.

All other loads and stores are permitted to execute out of order. This can

cause memory hazards if instructions that alias to the same memory address

are moved out of order. If this occurs it must be detected at run-time. By

assigning each memory operation a sequence number, corresponding to the

order of operations in the original code, hardware can be added to detect

and handle memory aliasing. A write buffer [MTL95] is used to ensure stores

are written to memory in the correct order. This is also used to detect write-

after-read hazards caused by a load being moved after a store to the same

address; if this occurs the load must fetch the earlier value from memory (or

from an earlier store to the write buffer) instead of the later store to the write

buffer. Read-after-write hazards can also occur if a load is moved before an

aliasing store. In this case the loaded value will be incorrect as the stored value

should have been loaded. This is detected by maintaining a table of completed

loads (with their sequence numbers). If a write occurs to an address that has

been loaded previously from a load with a later sequence number than the

write, then a read-after-write hazard has occurred; at this point the block is

terminated and re-executed in software. This incurs a cost, but this is deemed

acceptable as aliasing loads and stores are very infrequent, as shown in table

4.1. The write buffer and load table are described further in section 5.3.1.

Chapter 4. Block optimisation and compilation 83

Benchmark blowfish cjpeg nasm qsort
Chain executions in hardware 833977 9660691 945700 2868825

Block breakouts due to aliasing 0 0 76 0

Table 4.1: Frequency of occurrence of read-after-write memory hazards that
are not statically determinable

4.2.4 Reducing stack operations

The ARM Procedure Call Standard (APCS) [Ear03] defines which registers a

procedure call must preserve and which may be corrupted. If the procedure

requires the use of registers that must be preserved then these registers are

pushed onto the stack at the start of the procedure and restored at the end.

The following is an example of the typical structure of the stack operations

surrounding a procedure call:

BL ADDR
STMDB R13!, {R4-R7, R14}
...
LDMIA R13!, {R4-R7, R15}

A compiled block containing multiple basic blocks may entirely contain a

procedure call and return and this procedure will be effectively inlined into

the block. Blocks executing in hardware do not use the architectural registers

for holding temporary values within the block; architectural registers are only

written to with the final values at the end of the block. Therefore, in cases

where a procedure is entirely contained within a block, stack operations to

preserve register values are no longer required. This reduces the number of

memory operations required to execute the block, improving performance and

also potentially reducing power consumption. Table 4.2 shows the proportion

of executed hardware blocks containing procedures with stack push/pop

operations, and the proportion of stores within executed blocks that are pushes

to the stack. This varies significantly between benchmarks: blowfish contains

Chapter 4. Block optimisation and compilation 84

Benchmark blowfish cjpeg nasm qsort
% of blocks containing procedures 64.3 5.4 1.0 1.8

% of stores procedure call stack pushes 58.0 18.2 5.6 5.6

Table 4.2: Temporary stores to the stack within a block as a proportion of total
stores (in executed hardware blocks)

small, frequently executed procedures that can be containedwithin a hardware

block; these are less frequent in nasm and qsort where frequently executed

procedures are not completely contained within hardware blocks due to less-

biased paths within the procedure, causing them to not be compiled as single

block chains.

However, by removing the stack push operations the external effects of

executing in hardware will not be the same as the effects of executing the

original software: the stores to the stack that occur when the block is executed

in software will not occur when the block is executed in hardware. This

may not be a problem as these stores are above the top of the stack after

the procedure completes, so in a conventional stack model they are in an

undefined area of memory. Programs that use the stack in a conventional

fashion and never access memory above the stack pointer will continue to

work as expected, however any programs that perform unorthodox stack

accesses above the stack pointer may fail if this technique is used.

In addition this method determines which stores can be removed by

assuming a standard stack model is being used: for example in the APCS

R13 is used as the stack pointer and so the optimisation process would look

for stack-like operations using R13 as the base register and remove them if a

matching pair was found. However, the registers in the ARM microprocessor

are all general purpose and so any register could be used as the stack pointer

if the APCS were not adhered to. This could produce incorrect results if R13

was not being used as a stack pointer but appeared, to the block compiler, to

be performing stack-like operations within a compiled block.

Chapter 4. Block optimisation and compilation 85

Not carrying out the pop operations in procedure returns is safe, as the load

operation causes no external state change.

The use of this optimisation is potentially dangerous: it should only be

used if it is known that a program strictly adheres to procedure call standards

and stack models. This optimisation could be optional: it would be disabled

by default, but could be enabled by passing an option to the compiler if the

executing program is known to behave in a compliant fashion.

4.3 Block compilation process

The block compilation process must transform the instructions output by the

hot spot detector into a configuration bitfile usable by the reconfigurable

hardware structure. This involves decoding the instructions, building a

data flow graph and scheduling operations into a hardware structure with

limited parallelism. These are described below using the following sequence

of instructions as an example block. Profiling indicates that the return is

frequently taken, creating a chain containing two basic blocks.

1 00013CA0 MOV R12, R13
2 00013CA4 STMDB R13!, {R11, R14}
3 00013CA8 LDR R3, [R0, #4]
4 00013CAC SUB R3, R3, #1
5 00013CB0 CMP R3, #0
6 00013CB4 STR R3, [R0, #4]
7 00013CB8 LDRGE R3, [R0]
8 00013CBC MOV R2, R0
9 00013CC0 LDRGEB R0, [R3], #1
10 00013CC4 SUB R11, R12, #4
11 00013CC8 STRGE R3, [R2]
12 00013CCC LDMGEIA R13!, {R11, R15}
13 00009E64 MOV R2, R0
14 00009E68 CMP R2, #0
15 00009E6C BNE

Chapter 4. Block optimisation and compilation 86

Decode instructions into operations

Firstly each instruction opcode must be decoded into a specification for the

operations contained in the instruction. Operations are the constituent parts of

an instruction, taking one or two operands and performing a single, simple

calculation or process (such as a load). Some instructions contain multiple

operations: for example a load instruction can contain an address calculation

and the load operation itself, ARM data processing instructions may contain

a shift operation in addition to the main data processing operation, and ARM

store and load multiple instructions consist of many load or store operations.

Each operation is decoded into a specification, which contains the type

of operation performed (for example addition, shift, load), location of input

operands (register number or immediate value), location to write any result to

and whether the operation is conditional. Table 4.3 lists the operations in the

example block in execution order.

Remove control operations

Internal control operations (in the form of branches, returns or other instruc-

tions that write to the program counter) are removed from the compiled block

as it is treated as a single linear block of operations. If a control operation is

conditional a breakout test operation must be inserted in its place, which causes

the block to be terminated if the correct condition is not met.

Non-branching conditional operations generally remain unaltered: the

reconfigurable hardware is designed to execute operations conditionally.

However, in some cases the condition of an operation will match that of

a removed branch. The result of the conditional test is effectively known

at compile-time; therefore, the condition on these operations can be set to

’always’ or ’never’ depending on whether the matching branch is taken or not.

Chapter 4. Block optimisation and compilation 87

Instr Operation Dest Operand 1 Operand 2 Write CC Condition

1 Move R12 R13

2 Subtract R13 R13 #4

Store R13 R14

Subtract R13 R13 #4

Store R13 R11

3 Add Temp 1 R0 #4

Load R3 Temp 1

4 Subtract R3 R3 #1

5 Subtract R3 #0 CC

6 Add Temp 2 R0 #4

Store Temp 2 R3

7 Load R3 R0 GE

8 Move R2 R0

9 Add R3 R3 #1 GE

Load R0 R3 GE

10 Subtract R11 R12 #4

11 Store R3 R2 GE

12 Add R13 R13 #4 GE

Load R11 R13 GE

Add R13 R13 #4 GE

Load R15 R13 GE

13 Move R2 R0

14 Subtract R2 #0 CC

15 Branch GE

Table 4.3: List of operations in example block, in execution order

Chapter 4. Block optimisation and compilation 88

Operations set to ’never’ are removed from the block and operations set to

’always’ are executed unconditionally. The conditional test is still performed

for the breakout test of thematching removed branch: if the expected condition

is not met the block will be terminated and all results discarded.

In the example block the return in instruction 12 is dependent on a GE

(signed greater than or equal) condition being generated by the compare,

instruction 5. Instructions 7, 9 and 11 also depend on a GE condition generated

by the same instruction. The profiling performed by the hot spot detector

indicates that the conditional return is taken, therefore the GE condition is

met and so the other instructions with this condition will also execute. The

conditional execution can be removed, removing the dependency between the

compare and these instructions, increasing parallelism within the block. If,

alternatively, the profiling had indicated that the return is not taken then the

GE condition will return false and so the operations can be removed.

Identify values and remove duplicate operations

Once a list of operations has been generated the values within the block must

be determined. Values correspond to single assignments to registers; each new

write to a register results in a new value being created. Each value generated

or read during the block is given a unique value identifier. Table 4.4 shows

the operations with individual values labelled with the same notation as the

example on page 72. In addition to values in registers, value identifiers are

assigned to each unique immediate value used (in this example 4, 1 and 0)

and for temporary values not stored in a register in the original code, such as

calculated addresses within load or store operations.

Move operations merely duplicate values and so can be removed, with the

value identifier of the move destination value renamed to that of the source

value. In the example the first instruction moves R13 to R12; subsequent uses

Chapter 4. Block optimisation and compilation 89

of R12 (in this case the subtract in instruction 10) are renamed to the initial

value in R13, R131.

Operations that have the same operand value identifiers, the same

operation type and the same condition are duplicates and can be removed.

In the example the address calculation for the load and store in instructions

3 and 6 both add R0 to #4. R0 does not change between these operations

therefore they are duplicates. Subsequent uses of the result from the second

of these address calculations (Temp 2) are renamed to take the value from the

first (Temp 1) and this second operation is removed from the list.

Assigning unique identifiers to each value makes dependencies between

operations explicit rather than implied by instruction order and storage

location. This allows a dependency graph to be constructed.

Identify memory aliases

It may be possible at compile-time to determine that two memory operations

access the same location in memory. Memory accesses that use the same value

will point to the same memory address. This information is used to prevent

statically determinable read-after-write memory hazards by ensuring loads

with addresses that match earlier stores are not scheduled out of order. It can

also be used to remove loads that follow a store to the same address: the value

can simply be forwarded directly.

In this example both a load and store operation take place at the address

in Temp 1, however this is a store following a load and so the load cannot be

removed. A write-after-read memory hazard will not occur in this case as the

store depends on the load and so they will not be scheduled out of order.

Furthermore, there is a matching pair of push and pop operations to the

stack. If a conventional stack model is assumed these operations can be

removed, as was described in section 4.2.4.

Chapter 4. Block optimisation and compilation 90

Operation Dest Operand 1 Operand 2 Write CC Condition

Subtract R132 R131 Imm 1

Store R132 R141

Subtract R133 R132 Imm 1

Store R133 R111

Add Temp 1 R01 Imm 1

Load R31 Temp 1

Subtract R32 R31 Imm 2

Subtract R32 Imm 3 CC1

Breakout CC1

Store Temp 1 R32

Load R33 R01

Add R34 R33 Imm 2

Load R02 R34

Subtract R112 R131 Imm 1

Store R34 R01

Add R132 R133 Imm 1

Load R111 R132

Add R131 R132 Imm 1

Subtract R02 Imm 3 CC2

Branch CC2

Table 4.4: List of operations in example block with individual values labelled
and internal control operations removed

Build dependency graph and remove redundant operations

Once individual values have been identified, a data flow graph of the block can

be constructed. The DFG for the example block is shown in figure 4.6. Marked

in red on this diagram are operations that do not write a result back to registers

or memory, do not generate a condition used by a breakout test and do not

have any dependencies that perform either of these. In the example code R11

is written to by a subtract operation which is later overwritten by the stack pop

operation in instruction 12. The value written to R11 is therefore never used

and so need not be generated, allowing this operation to be removed from the

block.

Chapter 4. Block optimisation and compilation 91

Read R0

R01

Read R13

R131

#4

Imm 1

#1

Imm 2

#0

Imm 3

ADDLOAD

STORE

SUB Write R12

SUB

ADD

SUBSUB

Temp 1

LOAD

STORE

R31

R32

CC1

Breakout Test

R33

R34

LOAD Write R3

R02

Write R0Write R2

CC2

Branch DecisionWrite CC

R112

Figure 4.6: Data flow graph of example block, with redundant operations in red

Chapter 4. Block optimisation and compilation 92

Prioritise operations for scheduling

Once a data flow graph has been constructed, operations must be scheduled

within the reconfigurable execution engine.

Many blocks contain a large number of operations that are not dependent

on others and so could execute in the first cycle (in a system with unlimited

parallelism). The remaining operations depend on one or more of these

operations. Some of these operations will have a long chain of dependent

operations, others will have no dependencies. This typically leads to a

triangular DFG, with many operations that have no or few dependencies and

a tail of operations that make up the critical path. This can be seen in figure 4.4:

ten operations are not dependent on any others and can execute immediately

in the first stage; this decreases in each successive stage until the final stage

only contains a single operation.

The hardware execution engine has a limited number of functional units,

giving a fixed parallelism in each execution cycle. This may be less than

the available parallelism at the start of the block, but greater towards the

end. Some operations from the first cycle may therefore be moved to later

cycles to allow the block to fit within the hardware. To ensure the block

completes within the minimum number of execution cycles, operations with

a long path of dependencies or large number of dependent operations should

be scheduled as early as possible within the block. Operations with few or no

dependent operations can be moved to available slots towards the end of the

block.

Additional constraints on scheduling are imposed by the design of the

reconfigurable hardware structure proposed in chapter 5. The memory

interface is one example: this has a limited bandwidth of one load per cycle.

In addition, the latency of the memory interface means that loaded values are

not available in the next execution cycle. Load operations are likely to have a

number of dependencies within the block, and so they should be prioritised

Chapter 4. Block optimisation and compilation 93

and scheduled as early as possible. Additional detail on the scheduling of

operations into the proposed hardware structure is given in section 5.4.

4.4 Performing the compilation process

The processes described in the previous section must be performed at run-

time. This could be done in software; however, this would require the

currently executing program to be stalled, impacting performance. Another

method is to use a dedicated piece of hardware; this would not affect

performance as it could run simultaneously with the currently executing

program. However, the additional hardware required would increase the area

and static power consumption of the system. As the number of compilations

is low this hardware would be infrequently utilised, sitting idle once hot spots

had been compiled, and would therefore be an inefficient use of resources.

Alternatively, a compilation program could execute within the recon-

figurable hardware instead of the microprocessor. This would effectively

utilise the reconfigurable hardware as a type of Instruction Path Coprocessor

(I-COP) [CS00]. An I-COP is a programmable piece of hardware that can

be used to transform traces of instructions at run-time, for example to

decode CISC instructions into sequences of RISC-like operations, allowing

them to be executed by a simple, efficient processor. I-COP programs can

also be used to perform optimisations on traces of instructions in a trace

cache. I-COP programs have been shown to contain high instruction-level

parallelism and perform well in VLIW [CS00] and reconfigurable pipeline

architectures [CPSS00].

To allow the reconfigurable hardware to perform the compilation process

the execution of hot spots in hardware could be temporarily disabled;

execution of the program could continue in software during the compilation

Chapter 4. Block optimisation and compilation 94

process. This would improve performance compared to stalling the entire

system and compiling in software. However, the compiler program would

contain loops and other control structures and therefore be more complex than

the simple sequences of operations normally processed. This would require

an increase in the complexity of the sequencer that controls the reconfigurable

hardware; however, the additional hardware required would be less than that

for a dedicated hardware compiler.

The compilation process must be supplied with a trace of instructions

contained within the hot spot. If the compilation process is performed in

software these can be fetched directly from memory (the hot spot detector

needs only to supply the compiler with a list of the basic blocks in the hot

spot). If the compilation process is performed in dedicated hardware or the

reconfigurable hardware structure the software will continue to execute in the

microprocessor and is likely to execute the hot spot to be compiled in the near

future. When this occurs the instruction opcodes fetched in the hot spot can be

buffered and forwarded to the compiler, removing the need for the compiler

to fetch the instructions itself and so reducing the number of memory cycles

required.

Performing the compilation process in the reconfigurable hardware struc-

ture itself provides a compromise between performance, hardware utilisation

and added hardware complexity.

The mapping of data flow graphs into the reconfigurable hardware

structure is described in section 5.4.

4.5 Summary

This chapter describes the optimisations that can be performed by compiling

blocks of instructions into hardware. It outlines the process of applying these

Chapter 4. Block optimisation and compilation 95

optimisations to a sequence of code, generated by the hot spot detector, to

construct a data flow graph to be used in configuring the hardware.

The improvement to these optimisations gained by constructing larger

blocks from chains of basic blocks is also discussed. These include increasing

parallelism, reducing register bank and stack accesses, and removing opera-

tions no longer required due to a fixed control path being taken through the

block.

The next chapter discusses a suitable hardware structure for executing

detected hot spots.

Chapter 5

Reconfigurable hardware structure

The previous two chapters described the processes of hot spot detection and

block compilation. For each detected hot spot these processes produce a data

flow graph with control information (in the form of infrequently executed

branches between basic blocks) removed. The intention is for these data flow

graphs to be executed by a hardware execution engine that is more energy-

efficient than the standard microprocessor execution pipeline. This chapter

discusses possible options for this hardware structure and describes a suitable

architecture.

5.1 Advantages of executing in reconfigurable

hardware

A number of methods can be used in the design of the execution engine to

improve performance or energy efficiency compared to a standard micropro-

cessor pipeline.

96

Chapter 5. Reconfigurable hardware structure 97

Increased parallelism

Superscalar microprocessors increase performance over scalar microproces-

sors by determining dependencies at run-time and allowing independent

operations to execute in parallel functional units. However, dependencies

must be detected each time instructions are executed, increasing hardware

complexity and power consumption significantly.

Very Long Instruction Word (VLIW) architectures [Fis83] execute large in-

structions that contain multiple parallel operations. Dependency checking and

parallelising of operations is performed statically, removing the overhead of

performing it at run-time. However, one disadvantage of VLIW architectures

is that the number of functional units is fixed in the instruction set: binaries

compiled for one generation of processors will not perform better on newer

hardware versions where improved technology allows for greater numbers of

functional units.

Explicitly Parallel Instruction Computing (EPIC) processors [SR00] provide

one solution to this problem. Like VLIW architectures, instructions that can

execute in parallel are determined at compile-time; however, unlike VLIW, the

scheduling is performed by the processor at run-time. The compiler does not

need to know the internal structure of the hardware, therefore allowing greater

code compatibility between different generations of hardware.

An alternative is to translate instructions into a parallel representation the

first time they are executed. This reduces run-time parallelisation overheads

as dependency checking is only performed once for each section of code,

but maintains compatibility with existing software. Transmeta’s Crusoe

architecture is an example, translating x86 instructions at run-time to execute

in a VLIW machine [Kla00].

This last method is used in this system to extract parallelism at run-time.

Dependencies in detected hot spots are determined at block compile time and

Chapter 5. Reconfigurable hardware structure 98

operations are scheduled to execute in parallel in the reconfigurable hardware

structure.

Reduced register bank accesses

In a standard microprocessor, values are stored in a register bank between

instructions. A reconfigurable hardware structure allows temporary values

to be forwarded directly between operations via a local register as opposed

to a large multi-ported register bank. This allows for increased parallelism by

bypassing the register bank, which can be a significant performance bottleneck

in high performance microprocessors. Additionally, this may reduce power

consumption as writing and reading simple buffer registers requires less

energy than accessing a register bank. Register values still need to be

transferred between the architectural registers and the hardware structure,

however this can be reduced to one read and write for each used and written

architectural register respectively, at the start and end of the block. This was

discussed in section 4.1.1.

Reduced control overhead

Section 3.2 described the chaining of basic blocks together based on highly

biased branches. This allows these branches to be removed (though the branch

test must still take place) which removes the need to perform the branch

calculation and allows many optimisations to be performed. These include

removal of operations whose results are overwritten, reduction in temporary

values written to the register bank and increased parallelism due to larger

block size and reduced control dependencies. These were described in section

4.1.

However, removing internal branches from the block also has a number

of disadvantages. The profiling hardware must monitor branch bias to

determine whether the branch can be removed, and as loads and stores may be

Chapter 5. Reconfigurable hardware structure 99

speculatively re-ordered hardware must be added to detect memory hazards

(see section 5.3.1).

5.2 Design aspects of the hardware execution

engine

This section discusses aspects that must be considered in the design of

the hardware execution engine and discusses possible options. Section 5.3

proposes a suitable structure.

5.2.1 Interface with microprocessor

Reconfigurable execution engines can be sited in different locations within a

computer system. These can vary from very tightly coupled functional units

within a microprocessor pipeline down to units completely independent of a

microprocessor. The coupling of these hardware structures depends on the

type of reconfigurable structure and the algorithms being processed. For

example streaming algorithms fetch data from memory in very predictable

patterns and are highly repetitive; this data can be supplied to a reconfigurable

streaming engine by a DMAunit, therefore the interface between the processor

and the reconfigurable hardware needs only to be for control purposes. The

processor will initialise the hardware (for example with a memory pointer

to the start of the data to be processed) and allow it to run. The interaction

between the processor and the reconfigurable engine is small and infrequent,

so a low latency high bandwidth interface between the two is not important

for high performance. Therefore, they can be loosely coupled: for example the

reconfigurable hardware could be located off-chip and interface with the main

processor via the main system memory.

Chapter 5. Reconfigurable hardware structure 100

A reconfigurable engine that provides additional, configurable instructions

in a processor requires more frequent interfacing than the streaming processor

in the previous example as the instructions will be more frequent and run

for a shorter period of time. This is likely to require a low latency interface.

Therefore, the reconfigurable hardware will need to be more tightly coupled

with the processor than in the streaming processor example. This could be in

the form of an on-chip coprocessor or configurable functional units within the

processor datapath.

The system presented here is required to execute data flow graphs with a

linear flow of control and a size corresponding to a small number of basic

blocks of equivalent microprocessor instructions. These blocks execute for

a shorter period of time than streaming algorithms, but for longer than

single instructions: essentially they can be thought of as very complex

customised instructions. As the blocks represent only small portions of the

program, they are called very frequently. The compiled blocks use data in

architectural registers, therefore values must be able to be transferred between

the reconfigurable hardware and the microprocessor’s register bank. The short

execution time, frequent switching between processor and reconfigurable

hardware control and the desire to access architectural registers directly

suggests that optimal performance will be achieved with a low-latency, tight

coupling between the hardware structure and the processor.

5.2.2 Parallelism

The number of parallel functional units should reflect the available parallelism

in the data flow graphs. Reducing the number of functional units will result

in a smaller, simpler hardware structure but may limit performance if the

available parallelism is greater. Having a greater number of functional units

than the available parallelism will give no performance improvement and

Chapter 5. Reconfigurable hardware structure 101

Figure 5.1: Average parallelism in executed hardware blocks

result in functional units being under-utilised. Increasing the number of

functional units will increase the size of the hardware engine, increasing its

area and static power consumption. Additionally, more configuration data

will be required to configure the functional units and the more complex

interconnect required, increasing the on-chip storage required. Therefore it is

advantageous to have the smallest number of functional units for the available

parallelism in the data flow graph to be processed.

Figure 5.1 shows the theoretical maximum average parallelism of detected

and compiled hot blocks executed in the hardware structure. The relative

execution frequencies of blocks with different parallelism ratios, calculated by

dividing the total number of operations in the block by the critical path length,

are shown. This approximates to the maximum average parallelism which

could ever be exploited in each block. This figure shows that around 65-80%

of blocks in the cjpeg, blowfish and nasm benchmarks have a maximum average

parallelism of between one and three; however, during the execution of qsort

Chapter 5. Reconfigurable hardware structure 102

Figure 5.2: Performance of hardware blocks with increasing numbers of
parallel functional units

70% of blocks have a parallelism of between three and four, showing a greater

potential parallelism available in this benchmark. Few blocks (<20%) in any

benchmark have an available parallelism over four. These results suggest that

increasing the number of parallel functional units in the hardware structure

over four would have little improvement on performance, yet would increase

area and static power consumption.

Figure 5.2 shows the total number of cycles required during the benchmark

run to execute the detected hot blocks in hardware with different numbers

of parallel functional units, as a percentage of the number of cycles required

with a single functional unit. Two functional units increases performance

significantly over one in all benchmarks, increasing to between 150% and

180%. Further increases in the number of functional units provide smaller

improvements, with performance levelling out between 210-290% of the

performance of a single functional unit, depending on the benchmark.

Chapter 5. Reconfigurable hardware structure 103

Figure 5.3: Utilisation of hardware structure with multiple parallel functional
units

Figure 5.4: Relative performance over utilisation of hardware structure with
multiple parallel functional units

Chapter 5. Reconfigurable hardware structure 104

The utilisation of functional units with different numbers of parallel units

is shown in figure 5.3. This gives an approximation of the efficiency of

the system: in an ideal situation with unlimited parallelism in the code

the utilisation would remain at 100%. However, figure 5.2 shows that the

functional units can not be fully utilised due to limitations in the available

parallelism in compiled blocks. Therefore a trade-off must be made between

performance increases and decreases in utilisation and its effects on static

power consumption and area when determining a suitable number of parallel

functional units.

Performance over utilisation is shown in figure 5.4. This gives a bias to

performance while taking into account the estimated decrease in utilisation

from increasing the number of functional units. Three functional units

gives the highest performance/utilisation ratio in blowfish and qsort as these

benchmarks gain a greater performance increase from two to three functional

units than nasm and cjpeg, which have the greatest performance/utilisation

with two functional units.

The results assume that configurations can be scheduled efficiently into the

available functional units: they do not take into account restrictions due to data

routing, transfers to or from memory and registers, or specialised functional

units. Increasing the number of functional units improves the flexibility of the

hardware structure allowing data flow graphs to be scheduledmore easily into

it, reducing the complexity of the interconnect required and simplifying the

compilation process. More functional units than suggested here may therefore

be beneficial.

5.2.3 Memory and register interface

Although the hardware structure operates on values held in its internal

registers, it must read values from the architectural registers at the start of

the block and write values back into the bank once the block has completed.

Chapter 5. Reconfigurable hardware structure 105

In addition, values may be read from or written to memory. Restricting the

maximum number of possible parallel memory or register reads and writes

reduces the complexity of the system, but may impede performance.

Memory reads

The performance scaling with parallel functional units shown in figure 5.2

assumed an unlimited number of memory reads per cycle. This is not practical

in a real implementation as there is a limit on the bandwidth of the memory

bus and the number of memory reads at different addresses that can be

performed in each cycle. Improved memory bandwidth can be achieved by

increasing the width of the memory data bus, but this is only effective if the

values to be fetched are in contiguous blocks of addresses in the memory.

Increasing the number of simultaneous memory reads at non-contiguous

addresses requires multiple read ports in the data cache (or faster memory);

this increases hardware complexity and power consumption.

Figure 5.5 shows that a restriction of a single load per cycle does not affect

performance significantly. The results were gathered with the assumption

that the hardware engine contains four parallel functional units, and used the

scheduler described in section 5.4 (with a modified load limit per cycle). This

figure shows the increase in the number of hardware execution cycles during

the benchmark when the number of loads is limited to one or two per cycle. A

limit of two loads per cycle shows no significant performance decrease when

compared to an unlimited load bandwidth. When the number of simultaneous

loads is limited to one the number of cycles in qsort increased by 20% over

an unlimited load bandwidth; in the other three benchmarks it increased

by 5-8%. As qsort is a sorting algorithm it performs fewer data processing

operations for each value loaded, explaining why this benchmark requires

a larger number of loads per cycle than other benchmarks (that perform

more complex data processing) such as cjpeg. This decrease in performance

Chapter 5. Reconfigurable hardware structure 106

Figure 5.5: Performance of hardware blocks with limited numbers of loads per
execution cycle

is deemed acceptable in this case to retain the simplicity and lower power

consumption of a standard, single-width memory interface.

Register reads

Register reads are relatively straightforward: the hardware and software

execution engines will not be in use simultaneously, so the same register read

ports can be used for both. The number of register reads within a block is

relatively small as, normally, a register will only have to be read once. After

it has been read its value can usually be stored within the hardware structure

if it is to be reused (in some cases it may be beneficial to read a value twice to

free storage within the hardware: for example where a register value is only

used at the start and end of a block). Although the number of registers read

throughout a block is low, each functional unit will need to read a value from

registers in the first execution cycle of the block.

Chapter 5. Reconfigurable hardware structure 107

Memory writes

The chaining together of basic blocks by removing highly biased branches

increases the potential for performing optimisations as described in section 3.2.

However this means that a hardware block may not complete if the condition

test for a removed branch does not return the expected value. At this point

the block is abandoned and control returns to the start of the block, with

the microprocessor re-executing the block in software. It must therefore be

possible to restore architectural and memory state to what it was at the start

of the block until it is known that the block will complete fully (once the last

point the block can break out from has been passed).

Store operations therefore must not be committed to memory until this

point has been reached. The solution to this is to use a write buffer. This

temporarily holds stored values until after the block completion point, at

which point the values in the buffer can be committed to memory. The buffer

must be checked during a load operation for matching addresses as a value yet

to be stored at that location may be held in the store buffer.

An additional advantage of using a write buffer is that writes from the

reconfigurable hardware are not limited by memory bandwidth. Values in the

write buffer can be committed to memory when free memory cycles become

available (only if the buffer fills up will the processor have to be stalled to free

the memory bus allowing it to empty). Allowing multiple simultaneous stores

to a write buffer requires significantly less additional hardware complexity

thanmodifying amemory interface to support multiple simultaneousmemory

accesses. In addition, a write buffer can be written to in parallel with a

memory load. Figure 5.6 shows how limiting the number of stores in each

cycle affects performance. As with limiting the number of loads, qsort is the

most significantly affected of the four benchmarkswhen the number of parallel

stores is limited, experiencing an 18% increase in the number of hardware

execution cycles. The effect is smaller than that observed by limiting loads

Chapter 5. Reconfigurable hardware structure 108

Figure 5.6: Performance of hardware blocks with limited numbers of stores per
execution cycle

as many operations can depend on the result of a load, whereas a store has no

dependent operations and so can be scheduled at any time, for example in free

slots towards the end of a block with a long critical path.

Register writes

Register writes must be handled in a similar fashion to memory stores: they

cannot be committed until it is known that the block executing in hardware

will complete. One solution would be to use a write buffer similar to the

one used for memory stores. Upon block completion the contents of this

buffer would have to be written into the register bank. The processor would

either have to be stalled during this time, incurring a performance penalty,

or the buffer would have to be checked for unwritten register values on each

register read, which would require additional hardware and increase power

consumption when reading registers.

Chapter 5. Reconfigurable hardware structure 109

Figure 5.7: Size of values (position of most significant bit) written by data
instructions

Another solution is to have two locations for each architectural register and

use register renaming to select the one to be used. One locationwould preserve

the original value of the register (at the start of the block); the other would be

written to by the block executing in hardware. The register holding the correct

value at the end of the block (depending on whether the block completed

successfully or was broken out of) would be renamed to the appropriate

architectural register andwould be used for subsequent execution. This would

allow execution to continue immediately at the end of a block.

5.2.4 Word size of functional units

One advantage of reconfigurable hardware over a microprocessor pipeline is

its potential to configure functional units to fit the data sizes to be processed.

For example, if an algorithm processes 8-bit values a reconfigurable system

can be configured with 8-bit functional units, whereas a microprocessor would

Chapter 5. Reconfigurable hardware structure 110

have to use its fixed width ALU, which may be 32 bits or larger. This improves

hardware utilisation and power efficiency. Figure 5.7 shows the size of values

during a dynamic trace. These results are only estimates determined by

the position of the most significant bit in values written by data processing

instructions (such as additions or logical operations). Many values are fewer

than eight bits in size, particularly for qsort due to this benchmark sorting

byte-sized values. A further peak occurs at 16-23 for all benchmarks. This

is attributable to the size of addresses in these benchmarks typically falling

within this range.

To create a reconfigurable hardware configuration with functional units

tailored to the size of the data in the algorithm the size of these values must

be known at the time the configuration is created. This is possible when

the reconfigurable hardware is programmed by hand, or the configuration is

created by a compiler using a programming model that allows the size of data

values to be specified.

In the system proposed in this thesis the configuration for the hardware

is determined from a compiled binary by performing dynamic profiling.

Although it would be possible to profile the size of data values this would

increase the cost of profiling significantly. Currently only branch instructions

are monitored to generate a profile of executed basic blocks; profiling data

sizes requires monitoring the size of values generated by data processing

instructions or gathering snapshots of the size of values stored in the register

bank at strategic points within the code.

In addition the size of a value can only be estimated by profiling it

dynamically; there is a possibility that values that exceed this estimated size

could arise later in the execution of the program. Contingency would have

to be built in to the reconfigurable hardware structure to handle these cases.

One possibility could be to perform this in a similar fashion to the unexpected

Chapter 5. Reconfigurable hardware structure 111

branch decision handling: the block terminates, restores state to what it was at

the start of the block and continues executing from that point in software.

Without this extra profile information the functional units in the reconfig-

urable hardware must use the same data size as the microprocessor: in the

case of ARM this is 32 bits. If smaller values than the maximumword size will

not be detected then it would be pointless to provide a capability for smaller

functional units within the reconfigurable hardware structure. All values will

be assumed to be 32-bit; a single 32-bit functional unit will be faster and more

power efficient than four connected 8-bit functional units when processing

these values. In addition a small number of large functional units require less

configuration than many small units, reducing configuration size.

5.2.5 Size of compiled block definitions

The compiler generates a block configuration, which contains information to

configure the functional units and interconnect in each cycle of execution.

As hardware blocks are called frequently the hardware must be configured

with minimal delay to minimise execution time. To facilitate this, the

block configurations need to be stored on-chip, which limits the amount of

storage available. Reducing the size of the compiled block configurations

will allow more of them to be stored, therefore it would be beneficial for the

configurations to take up as little memory as possible. This depends on a

number of factors:

Number of functional units Increasing the number of parallel functional

units increases the configuration information required for each cycle;

however it can reduce the number of cycles required. Therefore the

utilisation of the functional units influences the overall amount of

configuration data to process a data flow graph.

Chapter 5. Reconfigurable hardware structure 112

Flexibility of functional units The number of functional units that can per-

form a given function should match that operation’s frequency in

the original object code. By matching the available functions in the

hardware to the ones found in the object code the flexibility of the

functional units can be reduced to what is most commonly performed.

For example, additions are frequently performed and so all functional

units should contain an adder to maximise performance. Less frequent

operations, such as multiplications, can be restricted to certain functional

units. This not only reduces hardware complexity but also requires less

configuration information, as the choice of functional unit inherently

carries some information on which operations can, and can not, be

performed.

Flexibility of interconnect An interconnect that can route data from any

location to any other will be very flexible but will require more

configuration information than a more restrictive interconnect. Too

restrictive an interconnect may adversely affect the ability of data flow

graphs to easily fit into the hardware structure, increasing the number of

no-op cycles required and decreasing performance.

The structure proposed in figure 5.8 requires 87 bits to configure it for

a single cycle1. This assumes no data compression techniques are used on

the configuration information. These could be used to reduce the size of

the configurations: for example if a functional unit is processing a no-op

then no further configuration data is required to configure the inputs and

outputs to the block, or if no register bank transfers occur during a cycle then

the register bank addresses are not required. However, the unit controlling

the hardware would have to decompress the information and configure the

1ALU operations: 20 bits; Read multiplexers: 20 bits; Register write multiplexers: 7 bits;
Register bank write select multiplexers: 2 bits; Register write enables: 8 bits; Register bank
write address and enables: 10 bits; Register bank read addresses: 12 bits; Immediate pool
address: 8 bits

Chapter 5. Reconfigurable hardware structure 113

hardware appropriately, increasing the complexity and power consumption of

this control unit.

5.2.6 Implementation of reconfigurable hardware structure

Reconfigurable hardware structures consist of a number of interconnected

functional units. The choice of interconnect structure and type of functional

units should reflect the structure of the algorithm to be processed and the

operations performed. In this system the blocks to be executed consist of

data flow graphs created from software instructions. These data flow graphs

contain a linear flow of control with no internal loops or branches. The

operations performed are restricted to the operations in the original instruction

set, such as additions, shifts and logical operations on word-sized data.

An FPGA is therefore unsuitable for the implementation of the reconfig-

urable architecture for a number of reasons. Firstly, the functional units in

FPGAs are typically small look-up tables capable of performing any function

on a 4- or 5-bit input, but this level of flexibility is not required in this system

due to the limited set of operations that need to be performed and the fixed

data width. Large functional units will be faster and more energy efficient

than connecting multiple small functional units. Secondly, FPGAs contain a

very flexible interconnect that can route data in any direction. As the data

flow graphs to be processed are linear the interconnect only needs to be able to

route data from the result of one stage to the input of the next. Data does not

need to be passed back to previous stages. This allows a simpler, more efficient

interconnect than found in FPGAs to be used.

An alternative implementation is to use a reconfigurable pipeline. These

consist of a number of stages containing parallel functional units. An

interconnect forwards data from one stage to the next. Each pipeline stage

is configured with a different stage of the algorithm. This architecture is

most efficient if the pipeline is kept full and is therefore suited to streaming

Chapter 5. Reconfigurable hardware structure 114

algorithms such as audio and video compression, encryption and DSP

applications.

The data flow graphs processed in this system only execute a single

time each time they are invoked: they do not contain loop structures. A

reconfigurable pipeline set up to execute such a block will be heavily under-

utilised: only one stage in the pipeline will be in use at any point during

the execution of the block. This is highly inefficient in terms of hardware

utilisation as most of it will be idle the majority of the time. The ADRES

architecture [MVV+03] presents a possible solution to this by tightly coupling

reconfigurable hardware with a VLIW processor allowing substantial resource

sharing.

Sequenced execution engine

An alternative to the above is to take a single stage of the pipeline and

reconfigure it for each stage of execution. The results from one stage of

execution are stored in local registers, the hardware is configured for the next

stage of execution and the results are fed back in, reusing the same functional

units for each stage. The hardware is controlled by a sequencer which is used

to configure the hardware structure for each stage of execution.

This structure has a number of advantages over FPGAs and reconfigurable

pipelines for this application. The structure more closely matches the structure

of the incoming data flow graphs derived from sequential instructions. Larger,

faster, more power efficient functional units such as adders and multipliers

can be used instead of the relatively small Configurable Logic Blocks (CLBs) of

FPGAs. This, in turn, reduces configuration data as there are fewer functional

units and a simpler interconnect as there are fewer locations to route data

between. Reusing the same functional units for each stage greatly reduces

Chapter 5. Reconfigurable hardware structure 115

the hardware requirement, improving hardware utilisation and reducing static

power consumption.

This architecture bears some similarities to a VLIW architecture; however,

there are a number of differences. VLIW architectures require large multi-

ported register banks to support multiple parallel functional units, and

complex forwarding mechanisms are required to support high performance.

This can be partially resolved by partitioning the register file into multiple

register banks [CDN94]. In the system proposed in this thesis data values are

explicitly forwarded between functional units by a reconfigurable interconnect

and held in simple buffers between operations. In addition the configuration

data requires little decoding, which reduces decode overhead compared to

decoding a stream of instructions.

5.3 Structure description

This section describes a proposed hardware structure for efficient execution

of the data flow graphs generated by the hot spot detection and optimisation

processes. The structure proposed is based on the design aspects discussed in

the first half of this chapter.

Figure 5.8 shows the basic structure of the proposed execution engine. A

sequenced execution engine is used, as the flexibility of an FPGA is not

required and would be inefficient, and a reconfigurable pipeline structure

would be heavily under-utilised. Four functional units are arranged in parallel

within an interconnection structure. Each functional unit has two registers in

the same column; the result from the functional unit can be written into one,

both or neither of these registers. Having two registers per column allows

results to be written into onewhilst the other preserves a value from a previous

calculation. Each input port of the functional unit can read a value from either

Chapter 5. Reconfigurable hardware structure 116

operand
inputs

Immediate

FU1 FU2 FU3 FU4
Address A

Address B

Data out B

Data out A

Data In

Register bank write ports

Register bank read ports

Figure 5.8: Hardware structure internal interconnect

of the two registers in the same column or the adjacent register from either of

the neighbouring columns.

A sequencer controls the structure. This sequencer reads the block defini-

tion from the Hardware Configuration Table and configures the hardware for

each execute cycle. The block configuration data specifies how the interconnect

should be configured and which functions should be performed by each

functional unit. This operates in a similar method to microcode.

5.3.1 Memory interface

Only a single load may be performed in each execution cycle; this reduces the

need for a high-bandwidth interface to memory. Loads can only be performed

by one of the functional units, FU4. Loads may take a number of cycles, due to

cache and memory latency. Loaded values enter a queue and are transferred

into the result register of FU4 under the control of the sequencer. This allows

loads to be interleaved. Load requests are scheduled as early as possible

Chapter 5. Reconfigurable hardware structure 117

Address B

Address A

Data Out B

Data Out A

Data In

Store Address

Store Data

Load Address

Load Data

Load Table

Reconfigurable Hardware

Write Buffer

M
em

ory Interface

FIFO
Load

Figure 5.9: Memory interface block diagram

within the block and operations that use these loaded values are scheduled

as late as possible, to allow for cache latency. If a load latency is longer than

expected (for example on a cache miss) then the hardware structure can be

stalled until the load completes. Figure 5.9 shows a block diagram for the

memory interface.

Write buffer

Stored values are transferred to a write buffer instead of being stored directly

to memory. This allows memory state to be kept unaltered until the

block completes, allowing state to be easily restored if the block terminates

unexpectedly. Upon successful block completion the values in the store buffer

are written back to memory. The write buffer also allows multiple store

operations in the reconfigurable hardware to be performed per cycle without

Chapter 5. Reconfigurable hardware structure 118

the need for a multi-ported memory interface. The write buffer can accept two

stored values per cycle from the reconfigurable hardware; these are written

back to memory one at a time during spare memory cycles after the block

completes. This allows improved performance (see figure 5.6) and increases

the flexibility of the structure to ease scheduling. The functional units that

can perform stores are restricted (to FU2 and FU4, see figure 5.8) to reduce the

complexity of the interconnect within the hardware structure. The write buffer

is described in more detail on page 123

Detecting memory aliasing and preventing hazards

The use of a write buffer means that multiple copies of a memory location may

exist simultaneously. Load operations must check the write buffer for values

due to be written to the location being loaded from: if the address being loaded

from is present in the write buffer the load should use the value in the write

buffer instead of the value in memory as it is more recent. This applies to both

loads from the reconfigurable hardware and from the microprocessor, as the

write buffer is not flushed back to memory immediately on block completion.

In addition the scheduling of operations during hardware execution means

that loads and stores may be executed out of their original order. Instructions

that can be determined to alias by the compiler will be scheduled in order.

Otherwise, the compiler will assume that there is no dependency between the

reordered transfers, so a load may become speculative. The hardware must

check for aliasing at run-time to determine whether this speculation is correct.

This is achieved by having a sequence number for each memory operation in the

block; this is assigned by the compiler and corresponds to the order in which

the operations appeared in the original code. Three possible types of memory

hazard can occur:

Write-after-write The write buffer contains the sequence number for each

store operation. Multiple values at the same address may be kept

Chapter 5. Reconfigurable hardware structure 119

in the write buffer with different sequence numbers: only the last

numbered value is written back to memory after the block completes.

This ensures only the most recent value at each address is written back

to memory, preventing write-after-write hazards caused by out of order

store operations.

Write-after-read If a load-store sequence occurs and the store is scheduled

before the load, then the load may read the value from the later store

operation. A load should therefore ignore any values in the write buffer

with a sequence number higher than its own. A load which matches an

address in the write buffer will load the store with the latest sequence

number before its own sequence number. This ensures the load will not

read values from the write buffer from later sequenced stores that have

executed before the load.

Read-after-write These occur when a load is moved before a store to the

same address. As the value has not yet been stored, a previous value

will be loaded. To detect this a load table (see page 124) is kept of the

address and latest sequence number of load operations executed within

the block so far. During a store operation the load table is checked

for matching addresses. If a store to a loaded address occurs with an

earlier sequence number then a read-after-write hazard has occurred.

This occurs infrequently, so at this point the block is broken out of in the

sameway as if an unexpected branch decision had occurred. An example

is shown in figure 5.10.

Alternatively, the hardware could check whether a silent store was

performed. Silent stores overwrite a memory location with the value

already present. These occur frequently [LL00] and would allow the

block to continue executing.

Chapter 5. Reconfigurable hardware structure 120

Write Buffer
Address Sequence no.Data

Load performed
Address added to
load table

Store performed
Address and data added to
write buffer

Load 0x001F

0x001FStore

2

1

Compiled block execute order:

Sequence no.Operation Address

Load Table
Sequence no.Address

0x001F 2

0x001F 1

Matching addresses
out of sequence order:
RAW hazard detected

Original code:

1 STR R8, [R1]
2 LDR R7, [R2]

R1 = 0x001F
R2 = 0x001F

Figure 5.10: Read-after-write memory alias detection

Handling memory hazards from a compiler perspective was discussed in

section 4.2.3.

Size of write buffer and load table

The number of loads and stores in each block is known at compile-time; any

that contain more loads or stores than available locations in the load table

or write buffer can be divided into multiple blocks by the compiler. These

would then be treated individually by the hardware, with results being written

back to registers and memory at the end of each section of the block. This

incurs a performance penalty however: operations will be constrained to one

section of the block, reducing parallelism. In addition power consumption

will be increased due to the need to write results back to registers and memory

between blocks. Therefore, it is advantageous to have a load table and write

buffer large enough to allow the majority of detected hot spots to be compiled

into a single hardware block. Figure 5.11 shows the distribution of the number

of loads and stores in executed hardware blocks. The number of loads in each

block is lower than nine in over 90% of all benchmarks except cjpeg where

about 15% of blocks contain between nine and fifteen loads. The number of

stores per block is generally lower than the number of loads, 85% of blocks in

Chapter 5. Reconfigurable hardware structure 121

Figure 5.11: Number of loads and stores in executed hardware blocks

Chapter 5. Reconfigurable hardware structure 122

all benchmarks except blowfish have fewer than three stores per block. These

results suggest that the load table and write buffer can be kept small, for

example sixteen locations in each, while still allowing most hot spots to be

compiled as a single block.

Upon commencing execution of a hardware block the write buffer may

not be empty: stores from a previous hardware block may not yet have been

flushed to memory. This could be handled by stalling the hardware structure

until the contents of the write buffer can be flushed to memory but this would

incur a performance penalty. An alternative method is for the block to begin

executing and write values to the write buffer as the values from the previous

block are being stored, meaning stores from multiple blocks would be present

in the write buffer simultaneously. The write buffer hardware must keep

track of which stores are in the current block to allow the correct stores to

be discarded if the block is terminated, to allow the write buffer to be checked

for hazards within the currently executing block and to ensure that results are

written back to memory in the correct order.

This is achieved by adding a completed block flag to each location in the

write buffer: this is set for stores from blocks that have completed. Upon

block completion any values from previous blocks to be stored to addresses

overwritten by the current block are removed from the buffer and all the

completed block flags are set. This marks all values in the write buffer as from

a completed block, allowing them to be written to memory. If at any point

during block execution there are no free locations in the write buffer then the

currently executing block is stalled to allow values from completed previous

blocks to be flushed to memory. Note that while the buffer is not empty

subsequent memory accesses from code executing in the microprocessor must

also check the write buffer to ensure consistency: loads must use not-yet-

committed values in the write buffer and stores must invalidate matching

addresses.

Chapter 5. Reconfigurable hardware structure 123

Sequence Number Stored DataStore Address CompletedValid Size

Figure 5.12: Write buffer

Write buffer

The write buffer (figure 5.12) operates as a fully associative table indexed by

the address of stores that have occurred. Each entry contains the size of the

store, the data stored, the sequence number of the store, a flag to mark whether

the store is from a completed block and a valid flag. Stores are buffered until

the block completes to prevent memory hazards as described on page 118. The

size information is required to allow partial stores to be correctly stored in the

write buffer and merged with any matching loads that occur. The operation of

the write buffer during events that affect it is described below:

Store: When a store occurs an entry with the sequence number and the data to

be stored is added to the write buffer tagged by the address to be written.

The entry is marked as in the current block.

Load: During a load address tags in the write buffer are checked for matching

addresses. Sequence numbers of any matches are checked against the

sequence number of the load. If an entry exists with an earlier sequence

number than the load’s sequence number then the data value stored is

returned as the loaded value (If there are multiple matches the highest

sequence number not greater than the load’s sequence number is used).

If there are no matches with earlier sequence numbers then the value is

loaded from memory.

Chapter 5. Reconfigurable hardware structure 124

Block completion: All entries are marked as from completed blocks when a

block completes. Any writes from previous blocks to addresses written

to by the completing block are marked invalid to reduce unnecessary

memory writes when flushing values.

Block breakout: If a block is broken out of before completing then all entries

not already marked as from completed blocks are marked invalid.

Writeback: Values marked as from completed blocks are cleared from the

buffer and written back to memory during cycles when the memory bus

is free. The buffer is checked for matching address tags. If duplicate

writes from completed blocks to the same address are found then only

the value with the latest sequence number is written back to memory;

the others are discarded by marking them invalid.

If the table becomes full execution is stalled to allow values from

completed blocks to be written back. As the compiler knows the size

of the write buffer it can limit the size of compiled blocks if the number

of stores reaches this size, ensuring that the write buffer can always at

least hold all of the stores in any compiled block.

Load table

The load table maintains a list of addresses that have been loaded from in

the currently executing block. The latest sequence number for each address is

stored to allow read-after-write hazards caused by out of order execution of

loads and stores to be detected. The load table is structured similar to a small

fully associative cache: the address is used as the index into the table. During

relevant events the load table operates as follows:

Load: When a load occurs the address of the load and its sequence number

is added to the load table. If the address already exists in the table the

Chapter 5. Reconfigurable hardware structure 125

sequence number is updated if the currently executing load has a later

sequence number than already stored in the table.

Store: During a store operation the load table is checked for a matching

address. If a match is found the sequence number is compared with that

of the store; if it is later than the store then a read-after-write hazard has

been detected and the executing block is broken out of.

Block completion or block breakout: The load information for a block is no

longer needed after it exits and so the table is cleared.

Aswith thewrite buffer, the load table cannot become full during the execution

of a block as the compiler is aware of the size of thewrite buffer and so can limit

the size of a compiled block to prevent it containing more loads than the table

can hold.

5.3.2 Interface with architectural registers

Although the number of registers that must be read during a block is small,

the operations in the first cycle of a block will require values from the register

bank before they can execute. This means multiple parallel transfers from

the register bank to the reconfigurable hardware must be possible to allow

the block to begin executing as soon as possible. A microprocessor register

bank will typically contain multiple read ports to supply software instructions

with multiple operands; these can be used to allow multiple transfers to the

hardware structure.

Three registers may be transferred in each cycle, requiring three register

read ports. The third register read port is shared between FU3 and FU4,

meaning that only one of these can read a register in the same cycle.

Transfers from reconfigurable hardware to architectural registers happen

more frequently; however, they are typically more evenly distributed through-

out the block meaning that fewer parallel transfers are required. Two register

Chapter 5. Reconfigurable hardware structure 126

write ports are deemed sufficient. Register renaming is used to preserve

register state at the start of the block.

5.3.3 Functional units

As discussed in section 5.2.4 the size of the functional units should match

that of the microprocessor instructions being compiled into hardware. In this

case an ARM microprocessor architecture is used, which has a 32-bit operand

width. In addition to matching the width of the data to be processed, the

operations that a functional unit can perform should match those that will be

contained in the data flow graphs generated from the object code of hot spots.

The set of possible data processing operations is small: it consists of additions

and subtractions (including compares), bitwise logical operations, shifts and

multiplications. This limited set of operations means that the flexibility of

FPGA-like look-up tables is not required, allowing faster and more power

efficient fixed-function ALUs to be used.

The number of functional units that can perform certain operations should

match the frequency of those operations in the generated data flow graphs.

Although four functional units are present within the hardware structure they

need not all be able to perform every operation. Figure 5.13 shows the relative

proportion of different types of data operations in compiled blocks. The

majority of operations are arithmetic: these include additions, subtractions,

compares, and address additions or subtractions. These operations are very

common and can all be performed with an adder; therefore all functional

units should contain an adder to ensure performance is not limited by a

lack of adders. In contrast, very few multiplications are performed in these

benchmarks. By only having one functional unit with a multiplier the

size and power consumption of the hardware structure can be reduced (as

multipliers are relatively large) without significantly affecting performance.

However, if this system was targeted towards applications that frequently use

Chapter 5. Reconfigurable hardware structure 127

Figure 5.13: Proportion of data processing operation types in executed
hardware blocks

multiplications, such as DSP algorithms, then having a single multiplier may

limit performance.

5.3.4 Immediate operands

Most instruction sets contain mechanisms for embedding data in the instruc-

tion stream. These are called immediates and provide convenient access to

constants within a program.

Immediates do, however, create difficulties when the instructions are to be

compiled into a hardware structure. The instruction stream, which contains

the immediate values, is not fetched when executing in hardware and so an

alternative method must be used to supply the functional units within the

hardware structure with these values. Immediate values could be stored

within the compiled definition of the block and ‘immediate’ registers within

the hardware structure configured directly for each execution cycle by the

Chapter 5. Reconfigurable hardware structure 128

blowfish cjpeg nasm qsort

Value % Value % Value % Value %

1 13.7 1 21.9 1 26.2 4 30.6

2 11.7 2 10.1 0 19.2 1 24.9

8 11.3 0 8.7 4 8.2 0 22.0

FF 10.2 4 7.6 FF 6.1 8 3.3

10 8.7 3 3.4 3 4.7 3 2.2

4 6.2 6C 2.7 2 4.5 FF 2.2

0 4.0 30 2.5 1F 2.8 10 0.9

48 2.9 10 2.3 8 2.6 2 0.7

Table 5.1: Most frequent immediate values, sorted by percentage of total
immediates within hardware blocks

sequencer. This would require a large number of configuration bits, as a 32-

bit value would be added to each functional unit’s configuration data.

Immediate values are frequently re-usedmultiple times during a program’s

execution. Table 5.1 shows the most frequent immediates used within

compiled blocks in the benchmarks. Some values are frequently re-used, such

as 1, 4 and 0, as they are commonly used in increments, address offsets, and

compares. Storing immediate values in an immediate pool allows values to be

specified once and then re-used multiple times. Values are added to the pool

as the blocks containing them are compiled and loaded into the HCT. Values

can be overwritten when they are not contained within any currently loaded

block.

The immediate pool should be large enough to contain all the immediates

currently contained within the set of loaded blocks. Table 5.2 shows the

maximum number of different immediate values contained in simultaneously

loaded blocks. Cjpeg requires 113 different immediate values to be simul-

taneously available, requiring a large immediate pool. The immediate pool

must have multiple read ports to support parallel immediate operand access;

this, combined with the large number of required entries, would require a

large amount of hardware, increasing power consumption. In addition, if the

Chapter 5. Reconfigurable hardware structure 129

Benchmark blowfish cjpeg nasm qsort
Max. loaded immediate values 24 113 64 54

Table 5.2: Number of different immediate values in blocks stored in HCT
(maximum at one time)

number of required immediate values became larger than the immediate pool

some compiled blocks would have to be discarded to free space for immediate

values in newly compiled blocks.

An alternative would be to only load the immediates used in the current

block into the immediate pool. These would be loaded from the block

configuration as each block was entered. This would require a much smaller

immediate pool: figure 5.14 shows that the vast majority of blocks contain

fewer than 16 different immediate values. The compiler could divide blocks

that contained a greater number of immediates into multiple blocks (as is done

with blocks containing too many memory operations). However, the number

of values that must be loaded into the immediate pool at the start of each block

is quite large, with many blocks requiring four or more different immediate

values. This increases the amount of data that must be transferred from the

HCT during each block execution.

Table 5.1 shows that many immediate values, such as 0 and 1, are used

commonly in all benchmarks. By keeping a set of these permanently available

in the immediate pool the number that must be loaded from the block

configuration data at the start of each block can be reduced. Figure 5.15

shows the number of immediate values required when eight values are kept

permanently within the immediate pool. The values used are the same in

all benchmarks. The majority of blocks require three or fewer additional

immediates to be loaded from the block configuration data; over 80% of blocks

in nasm and qsort require none at all. An immediate pool size of 8 configurable

values, in addition to the 8 fixed values, is sufficient in most cases,

Chapter 5. Reconfigurable hardware structure 130

This hybrid arrangement of predetermined and configurable immediates

exploits commonly used immediate values to reduce the amount of configura-

tion data required, and therefore the size and power consumption of the HCT.

5.3.5 Control of block execution

Operations within the block are scheduled statically to execute in parallel

using the available functional units. As the operations to be performed in

each cycle have been pre-determined by the compiler all the sequencer needs

to do each cycle is configure the functional units and interconnect within the

hardware structure based on the compiled configuration data. No conditional

branches are contained within the block, so operations execute in a linear

sequence. Controlling the hardware structure is therefore straightforward:

much of the work is done at block compile time.

Some dynamic control of operation execution is required however. In-

structions in some architectures may be executed conditionally. Points where

conditional branches have been removed by the basic block chaining process

must be tested to determine whether the block can continue executing or must

be terminated. In addition, the address of the next instruction to be fetched

after the hardware block has exited must be loaded into the program counter

to allow execution to continue.

Conditional instructions

In the ARM instruction set any instruction may be executed conditionally:

each instruction contains a 4-bit condition field that determines which, if any,

of the condition flags are used to decide whether the instruction executes.

The hardware structure must also be able to perform conditional execution

of the operations contained within conditional instructions. This requires

being able to select between two possible values for a register depending on

the condition: the value written if the conditional operation is executed and

Chapter 5. Reconfigurable hardware structure 131

Figure 5.14: Number of different immediate values in each executed hardware
block

Figure 5.15: Number of different immediate values in each executed hardware
block, excluding most common values (0, 1, 2, 3, 4, 8, 10 and FF)

Chapter 5. Reconfigurable hardware structure 132

the original value to be used if the operation does not execute. This can be

achieved by scheduling operations in such a way that the original architectural

register maps to a hardware structure register. The result from the conditional

operation can then overwrite this value if the condition is true; if the condition

is false then the previous value remains in the register.

Detecting and handling block exits

During the block chaining process branches at the end of basic blocks are

removed; these may be conditional branches. It is assumed, based on profile

information, that these branches will be taken in a single direction the majority

of the time but the condition tests must still be performed to ensure the

program executes correctly. Operations that test the conditions for these

branches signal the control unit if an ‘unexpected’ result occurs. The control

unit then terminates execution of the block, removes any values written to the

write buffer and hands control back to the microprocessor at the address of the

first instruction in the block. The block is then executed in software, allowing

the unexpected conditional branch to be taken.

If the block terminates normally the control unit must determine the

address of the next instruction to be fetched and write it into the program

counter to allow execution to continue. This address may depend on the

result of a conditional branch at the end of the last basic block. The branch

destination addresses of a final branch must therefore be stored within the

block configuration data. In some cases the next address may be generated

by the operations executing within the hardware block: for example if

the block terminates with a stack pop operation then the address will be

loaded from memory and so need not be stored in the configuration data.

If this address matches the start of a compiled block then that block is

loaded into the hardware structure and execution continues in hardware.

Values are transferred between consecutive hardware blocks via the software

Chapter 5. Reconfigurable hardware structure 133

register bank to allow the later block to break out and restore control to the

microprocessor at its start point if necessary.

5.4 Block mapping algorithm

Section 4.3 described the process of constructing a block from a chain of basic

blocks and producing an optimised data flow graph (DFG) of the block. A

mapping algorithm is required to map the operations in the DFG into the

hardware structure taking into account the restrictions on operation and data

memory parallelism, the limited capabilities of individual functional units

in the hardware structure and the restrictions in the interconnect between

functional units.

The algorithm used to schedule the DFG into the hardware structure

first prioritises operations in the DFG based on the number of dependent

operations and the length of the path they are in. Operations at the start

of the critical path of the block will therefore be given the highest priority.

Operations that generate a result used by many other operations in separate

paths are also given a high priority. The scheduling algorithm attempts for

each execution cycle in the block to schedule the remaining operations with

the highest priority into the available functional units, taking into account

the restrictions on the number of parallel operations of certain types, such

as stores. Load operations are also scheduled as early as possible before the

loaded value is required to reduce the effect of a stall caused by a cache miss.

The results in this thesis were generated using this simple mapping

algorithm to estimate the number of cycles required to execute a block in

the hardware structure. This algorithm, however, does not account for the

restricted routing of the interconnect between execution stages (see figure

5.8). To verify the validity of this simplified model for generating results, a

selection of the most frequent blocks in the benchmarks were hand-mapped

Chapter 5. Reconfigurable hardware structure 134

Write R6
SUB SUB SUB

#68 #8 #0 #1

Breakout test 4

R42 R101 R81T4

ADD SUB LSL
Breakout test 3

#C #7 #1

Read R8

T3 R42 R101 R33 R81

ADDADD SUB
Write R4 Write R8

#4 #1

T1 T3 R43 R42 R34 R53 R81

SUB STR AND
Write R3

#18

T1 R35 R43 R51 R54 R31 R81

Read R5

#FF

SUB LSL ASR ADD
#7 #10 #1

Exit branch test

T1 TS R51 R21 R32 R81

ADD LSL AND STR
#8 #8 #FF

T1 T2 TS R52 R90 R61 R32 R22

Write R2

OR SUB SUB
#FF #1

Breakout test 2Write R5

T1 T2 R52 R61 R32 R23

SUB STR STR
#0

Breakout test 1

R61

STR

LOAD

LOAD

LOAD Load 3

Loaded value 2

Loaded value 3

Load 1

Load 2

Loaded value 1

R101

Read R11 Read R4 Read R10

R111 R41

(pass)

Execute cycle 1

Execute cycle 2

Execute cycle 3

Execute cycle 4

Execute cycle 5

Execute cycle 6

Execute cycle 7

Execute cycle 8

Execute cycle 9

Register read cycle

R32

Figure 5.16: Example mapping of block on page 77 into hardware structure

Chapter 5. Reconfigurable hardware structure 135

into the hardware structure following the restrictions of the interconnect.

The measured cycle time of these hand-mapped blocks was compared to the

estimated cycle times of the blocks mapped using the simplified algorithm.

The simplified model matched the hand-mapping in most cases due to the

length of the critical path through the block limiting the available parallelism

to less than four and so reducing the impact of the limited interconnect. Some

blocks with a large available parallelism or short critical path, however, can

not complete in the same number of cycles as the simple mapping estimate

due to the restricted interconnect.

Figure 5.16 shows an example of this; the figure shows a block hand-

mapped into the proposed structure, following the restricted interconnect. The

block used is the same as the example in chapter 4 and shown on page 77. The

block takes nine execute cycles to complete, with an additional cycle required

at the start to read register operands. The last execute cycle contains a single

store operation. The constraint that stores can only be performed by FU2 and

FU4 restricts the scheduling of operations, preventing this store from executing

in an earlier execute cycle despite the required operands being present.

5.5 Summary

This chapter outlines the requirements of a hardware structure suitable for

executing the data flow graphs generated by the processes in chapters 3 and

4. Three is determined to be the most efficient number of functional units

from a performance and utilisation perspective; however four functional units

will ease the scheduling of operations and allow slightly higher performance

without severely impacting utilisation. A single load per cycle allows adequate

performance while allowing for a simple memory interface.

A suitable structure is proposed: this is a sequenced execution engine

containing four parallel functional units and eight accumulator registers.

Chapter 5. Reconfigurable hardware structure 136

An immediate pool is used to supply immediate operands to the hardware

structure. Operations within blocks may be executed speculatively due to

block chaining, requiring mechanisms to preserve architectural and memory

state while the block executes. A write buffer holds stores until the

block completes, and register renaming is used to preserve register values.

Mechanisms for detecting memory aliasing are also described.

Chapter 6

System Analysis

The previous three chapters described the processes of hot spot detection,

compilation and execution in hardware separately. This chapter combines

these three elements to analyse the system as a whole. The first half of this

chapter discusses performance improvements gained by performing dynamic

compilation to hardware, while the second half discusses possible effects on

power consumption compared to existing architectures.

6.1 Evaluation method

To generate these results the ARM simulator described in section 1.2 was

modified with a software model of the the hot spot detector described in

chapter 3. A 64 entry model of the BPT was modelled, with other parameters

as detailed in section 3.5. The model of the HCT used also had 64 entries

with other parameters such as breakout limits as detailed in section 3.6. This

model extends a software model of an ARM microprocessor. The compiler

performs all the optimisations described in chapter 4 with the exception

of removing stack push and pop operations contained within blocks. The

compiler generates a DFG of each block that can be used to estimate the

increase in performance of the block. This DFG is constrained by the 4-way

137

Chapter 6. System Analysis 138

parallelism, single load per cycle, two stores per cycle and single cycle load

delay described in chapter 5. The scheduling of operations into the hardware

structure to determine parallelism and therefore performance is as described

in section 5.4.

6.2 Performance

The main aim of compiling hot spots into reconfigurable hardware was to

improve performance. This is primarily achieved by introducing parallelism

in blocks. The overall performance increase is determined by the proportion

of instructions that execute in hardware, the increase in parallelism within

compiled blocks and the compilation time.

6.2.1 Amount of code executed in hardware

The key determinant of how effective this system is at improving performance

is the proportion of instructions executed that are detected as hot spots and

compiled into hardware. Parallelisation and other optimisations are only

performed on detected hot spots, therefore a larger proportion of blocks

executed in hardware will increase the effect of performance gains.

Code sections can only be executed in hardware once they have been

detected as hot spots, compiled, and loaded into the hardware structure.

Figure 6.1 shows the proportions of instructions executed during a dynamic

trace which are executed by the reconfigurable hardware structure. These are

equivalent numbers of software instructions: the original instructions are no

longer fetched and executed as they have been translated into a different form.

The remainder are instructions not determined to be within hot spots and so

are executed in a standard fashion within the microprocessor pipeline.

These results show that for blowfish, cjpeg and qsort the majority of

instructions – 92% to 96% – are executed in the reconfigurable hardware.

Chapter 6. System Analysis 139

Figure 6.1: Percentage of instructions executed in hardware and software
during benchmark execution

As expected, a much smaller proportion of instructions in nasm execute in

hardware, due to this benchmark containing no significant hot spots.

6.2.2 Effect of block breakouts

If a block must be terminated due to an unexpected branch decision or an

unresolvable memory hazard then results generated so far within the block

are discarded and execution restarts from the start of the block in software.

This causes some extra operations to be performed, of which the results are

not used. This has an impact on overall performance. Figure 6.2 shows the

number of instructions executed in blocks that are broken out of. In a worst

case scenario, where all operations in a block are executed before a breakout

is detected, all of these instructions will effectively be executed twice: once

in hardware and once in software. However, as the number of instructions

Chapter 6. System Analysis 140

Figure 6.2: Percentage of instructions re-executed due to hardware blocks
terminating early (upper bound, assuming all instructions in a block are
executed twice if it terminates early)

executed in blocks that are terminated early is extremely small the effect of

breakouts on performance can be considered negligible.

6.2.3 Performance of blocks executed in hardware

The performance of blocks executing in hardware is generally greater than

executing them in software. This is due both to an increase in parallelism and

the removal of operations, such as intermediate branches, moves, stack pops,

operations duplicated in chained basic blocks and operations only required

by not-taken branches. Figure 6.3 shows the gain in performance of blocks

executed in hardware, compared to executing them in software. These results

are only for blocks detected as hot spots and compiled into hardware, and

show a weighted mean based on the number of times each block executes.

Again, the results were generated by running the benchmarks in a software

Chapter 6. System Analysis 141

Figure 6.3: Performance improvement of blocks compiled into hardware,
weighted mean based on dynamic frequency of execution

model of the system. Blocks detected as hot spots were mapped into a model

of the hardware structure as described in section 5.4. This was then used to

work out the performance increase of these blocks . The performance increase

of each block was then multiplied by the number of times it executed, to give

an overall performance increase of all compiled hardware blocks during the

execution of the benchmark.

An improvement of over double the software performance is achieved in

these blocks in blowfish, cjpeg and qsort. Again nasm performs relatively poorly,

with compiled blocks performing at 158% of their performance in software.

Less predictable execution in this benchmark reduces branch bias, therefore

reducing the size of block chains that can be constructed. This has an impact

on the available parallelism within blocks and reduces the scope over which

other optimisations can be performed.

Chapter 6. System Analysis 142

Figure 6.4: Overall performance improvement of benchmark, excluding
performance penalties due to compilation process

Figure 6.4 combines the performance improvement results in figure 6.3

with the percentage of program coverage results in figure 6.1. This shows

the overall performance improvement due to blocks executing in hardware,

over the execution of the entire benchmark. As expected, the impact of the

performance improvements due to parallelism and optimisation are reduced,

compared to the performance improvement in just the hardware blocks, as not

all blocks execute in hardware. The performance improvement over a software

system is still significant in blowfish, cjpeg and qsort, as a large proportion of

executed instructions are within compiled hardware blocks. Nasm has the

fewest blocks executing in hardware and shows the smallest performance gain

in these blocks. This translates to a small performance increase of about 15%.

The results in figure 6.4 only show performance improvements due to the

execution of hot spots in hardware. It does not account for any performance

overheads caused by the compilation process itself.

Chapter 6. System Analysis 143

6.2.4 Performance impact of run-time compilation

In section 4.4 three possible methods were described for performing the

compilation. The first, pausing execution and compiling in software, will cause

a delay each time a compilation is performed. The other methods, using the

reconfigurable engine or dedicated hardware, will incur less or no delay as

execution can continue during compilation but require additional hardware.

Figure 6.5 shows the average number of compilations performed for each

million instructions executed. This is very low: the worst case, nasm, has

only ten compilations for each million instructions executed. Although the

overhead of performing compilations cannot be known without an accurate

implementation of the compiler software or hardware, these results suggest

that the overhead from each compilation could be quite large, in excess of an

equivalent 10000 instructions, before it is greater than the performance gained.

Using dedicated hardware can inflict almost no performance penalty: other

systems that perform run-time translation into VLIW instructions [NH97] and

reconfigurable hardware [Lev05] are able to perform similar tasks with very

little delay by using dedicated hardware.

6.2.5 Performance analysis

The results presented here show a performance improvement of around

double for programs which contain a small number of frequently executed hot

spots. Around 95% of instructions in these programs are executed in hardware

and compiled blocks execute at slightly over double their performance in

software. The performance of nasm is only improved by around 10%. This

is partly caused by relatively few instructions being executed in hardware, but

also due to smaller amounts of available parallelism in compiled blocks.

Chapter 6. System Analysis 144

Figure 6.5: Number of compilations per million instructions executed

6.3 Energy consumption

The previous section demonstrates that this system has the potential to

improve performance over a scalar microprocessor, primarily by increasing

parallelism. Many other architectural techniques, such as superscalar or VLIW,

can achieve performance gains by increasing instruction level parallelism.

The architecture proposed in this thesis has advantages over VLIW in that it

does not require code to be compiled for a specific level of parallelism and is

compatible with existing compiled code. Superscalar has these advantages

over VLIW; however, superscalar architectures consume more energy than

scalar architectures or VLIW due to the requirement to detect dependencies

and schedule operations in parallel each time a section of code is executed.

This section explores the possibility for the proposed architecture to improve

performance without this increased energy consumption.

Chapter 6. System Analysis 145

Figure 6.6: Power breakdown of superscalar processors [Val05]

6.3.1 Parallelising instructions

The hardware that performs the dynamic scheduling of operations in super-

scalar microprocessors accounts for a significant proportion of the total power

consumed by the processor [Val05][KGPK01][MKG98]. Figure 6.6 shows

the power breakdown of a selection of superscalar architectures; the energy

consumed by the Out-Of-Order (OOO) issue hardware which parallelises

operations consumes between 25% and 46% of the total power consumed by

the processor.

In the architecture proposed in this thesis the parallelising of instructions

only occurs for hot spots as these are compiled; once performed the

parallelised hot spot can execute many times without the need for this work to

Chapter 6. System Analysis 146

be repeated. This greatly reduces the amount of work required to parallelise

operations; therefore this architecture may have the potential to be more

energy efficient than superscalar architectures. However, power savings may

be offset by the additional hardware required to monitor code execution and

compile detected hot spots. In addition, some hardware to support out-of-

order execution is still necessary, such as the write buffer and load table

required to detect memory aliasing due to speculatively re-ordered load and

store operations.

6.3.2 Reduced register bank access

The register bank in a microprocessor is one of the most power consuming

components: for example it consumes around 25% in the AMULET3 ARM

microprocessor core [Eft02]. The need for multiple read and write ports in

the register bank increase its size and power consumption over individual

registers. The register bank is frequently accessed, typically multiple times in

each instruction to read andwrite operands. Many values stored in the register

bank are short lived temporary values [FS92]. This property can be exploited:

one method is to store new values for a short time in a buffer, preventing short

lived values from being written to the register bank. This has been shown to

give a power saving of 30% in one superscalar processor [HM00].

In the system described in this thesis, values in the hardware structure

are not forwarded between operations via a register bank. Results from one

operation are explicitly forwarded to the input of other operations by the

interconnect in the hardware. Any values that are local to the compiled block

are not written to the register file: only values that are still valid at the end of

a block are written back when the block terminates. This exploits the temporal

locality of values to reduce register bank accesses significantly.

Figures 6.7 and 6.8 show the breakdown of remaining register bank reads

and writes when executing hot spots in hardware. “Software” accesses are

Chapter 6. System Analysis 147

Figure 6.7: Remaining register bank reads

Figure 6.8: Remaining register bank writes

Chapter 6. System Analysis 148

from instructions not detected to be in a hot spot and so continue to execute

normally in software. Accesses from “hardware” are due to register reads to

transfer values used in a block into the reconfigurable hardware and writes of

valid values back into the register bank when the block exits.

Register reads

The remaining reads from software correspond approximately to the percent-

age of instructions that execute in software as shown in figure 6.1. Register

bank reads from blocks executing hardware are reduced significantly over

executing those blocks in software. This is due partly to values that are

local to the block: these are held between operations in temporary storage

locations within the reconfigurable hardware and not stored in and read from

the register bank. Further reductions come from re-use of values in a block:

these values are generally only read once from the register bank and then can

be stored in the reconfigurable hardware for re-use1. In cjpeg and blowfish the

number of register bank reads reduces to around 25%. In nasm the number

of reads is reduced to just over 80%; this is mainly due to the relatively small

proportion of instructions that execute in hardware in this benchmark.

Register writes

The remaining writes from software are approximately proportionally the

same as for register reads; small variations are due only to slightly different

proportions of register reads and writes in compiled and non-compiled blocks.

The number of writes from hardware blocks is significantly higher than the

number of remaining reads: approximately double the proportion of register

writes remain in compiled blocks. This is due to the difficulty of determining

1A value may be read from the register bank multiple times if storing it within the block
would be an impractical use of resources; for example if a value is only required at the start
and end of a block. These results assume that a register value used in a block is only read once
and stored in hardware for re-use.

Chapter 6. System Analysis 149

whether values are “live” at the end of a block. In this system it is not

known which values will be read by following instructions, therefore it must

be assumed all registers written to during a block are “live” at the end. All

registers written to during the block must have their final values written back.

Only repeated writes to the same register within a block can be removed as

these are temporary values local to the block.

The number of registers written back could be reduced by searching the

following code paths after the block to determine which registers are live at

the end of the block; however, this would require extra work to be performed

when the block was compiled (see section 4.1.1).

Additionally procedure call standards could be used to reduce the number

of registers written back. For example, the ARM procedure call standard

defines registers R1-R3 to be scratch registers during a procedure call. If a block

ended at a return these could be assumed to be invalid, removing the need to

write values back to those registers. This requires the program to adhere to the

procedure call standard.

Combining reads and writes, the total reduction in accesses is around 70%

in blowfish and cjpeg, 50% in qsort and 15% in nasm.

6.3.3 Fetch and decode

The processes of fetching and decoding instructions also account for a sig-

nificant proportion of the power consumption of microprocessors [MWea96].

The HCT is effectively a type of on-chip instruction cache where instructions

have been translated to configure the hardware directly in a similar fashion to

microcode. Instructions executed as part of a translated block will not need

to be fetched from the instruction cache and decoded, reducing the energy

consumption of these components. However, these savings will be offset in

part by the operation of the HCT itself and the configuration of the hardware

during block execution.

Chapter 6. System Analysis 150

6.3.4 Hot spot detector and compilation process

The energy consumption of the hot spot detection hardware is expected to be

small as the hot spot detector is only active during software execution: in all

benchmarks except nasm this is for around 5% of instructions executed. The

hot spot detector is only updated when a branch instruction is executed (about

one in seven instructions) so it is only accessed in less than 1% of instructions

executed in these benchmarks, ensuring low switching activity. BPT access

in nasm will be more frequent, during around 10% of instructions, due to the

larger proportion of instructions executed in software.

As with performance overhead, power overhead of compiling blocks is

estimated to be small due to the low number of compilations (see figure

6.5). The energy consumption of performing a compilation would need to be

very large, equivalent to executing many thousands of instructions, to have a

significant overall impact.

6.4 Summary

The techniques described in this thesis can give an increase in performance

of over double in some benchmarks. These improvements are due to

introducing parallelism into hot spots and by reducing the number of

operations performed. The system is best suited to code where a small number

of hot spots dominate execution time, as is seen in cjpeg and blowfish.

There is also potential for reduced power consumption compared to

superscalar microprocessors as the need to determine parallelism each time

a section of code is executed is removed. A detailed power analysis of the

techniques proposed in this thesis would be an interesting topic for future

work in this area.

Chapter 7

Conclusions

This thesis presented a discussion on techniques for dynamically compiling

program hot spots into reconfigurable hardware. An example system has been

described and evaluated in terms of performance.

Chapter 3 presented a mechanism for rapid detection of hot spots based

around a Block Profile Table containing counters for recently executed basic

blocks. This operates as a cache of the most hot blocks and monitors how

frequently they execute; these values are periodically decremented to bias

recently executed basic blocks. This allows the BPT to be small: a table with 32-

64 entries detects the majority of hot spots. The BPT also gathers information

on the bias of the branch terminating the basic block; this is used to chain basic

blocks linked by highly biased branches together.

A method of varying the sensitivity of the hot spot detector based on the

number of active compiled hot spots was introduced. Variable sensitivity al-

lows the hot spot detector to adapt to different program behaviour, preventing

thrashing in programs with many hot spots, enabling less frequently executed

blocks to be compiled in programs with few hot spots and allowing the set of

compiled blocks to be replaced rapidly if behaviour changes during execution.

This has been shown to adapt to different demands with different benchmarks.

151

Chapter 7. Conclusions 152

Detected hot spots are compiled and stored in a Hardware Configuration

Table. From here they are loaded into a reconfigurable hardware structure

on demand. The size of this table determines the number of simultaneously

available compiled hot spots. A small table of 32-64 entries allows 90-95% of

instructions to be executed in hardware in programs that contain significant

hot spots. Programs that do not contain significant hot spots require a larger

table for the majority of the program to be executed in hardware; however, this

comes at the cost of an increased number of compilations.

This hot spot detection mechanism is effective at detecting frequently

executed basic blocks while only requiring a small amount of hardware. The

hot spots constructed are small atomic entities with a single entry and exit

point suitable for compiling into reconfigurable hardware. This is in contrast

to other hot spot detection mechanisms which typically build long traces of

instructions into the most frequently executed order.

Optimisations that can be performed on these detected hot spots were

described in chapter 4. Using profile information a number of basic blocks can

be chained together around highly biased branches to produce a larger atomic

block of code for optimisation. These larger blocks allow a greater number of

temporary values to be detected, reducing register bank accesses. Their atomic

nature assumes a single path of control through the block, allowing internal

control dependencies to be removed. This reduced number of dependencies

allows increased parallelism and operations generating results only used by

not-taken branches can be removed, yielding increased performance.

Chapter 5 described a suitable hardware execution engine for processing

the data flow graphs generated by the processes described in the previous two

chapters. The number of parallel functional units in the hardware was chosen

to be four, based on an analysis of the available parallelism in compiled blocks

and the potential performance gain versus decreased utilisation of functional

Chapter 7. Conclusions 153

units. Additional parallel hardware reduces utilisation; reduced hardware

increases scheduling difficulty. It is likely that this structure is close to optimal

within the constraints of compiling from sequential code and a single memory

load per cycle. However, restrictions on the functional units that can perform

certain operations, particularly memory stores, reduces scheduling flexibility

and can reduce parallelism and therefore performance.

Such a structure can be compared to superscalar and VLIW machines,

which typically execute around four parallel operations per cycle, due to

inherent limits in instruction level parallelism of sequential code. Much of

the parallelism available in algorithms cannot be extracted from sequential

representations, hence the requirement of many reconfigurable computing

systems to use different programming methods and to separate core parts of

an algorithm to be parallelised statically.

Compiling from object code presents other difficulties in addition to

extracting parallelism. Immediate operands pose such a problem. They

are encoded into the instruction stream, which is not available to the

reconfigurable execution engine. Storing them within the block configuration

data would increase its size considerably. The solution proposed here is to

access immediates from an immediate pool: this is configured at the start of

each block with the values used in that block. Many immediate values, such

as 1 and 0, are frequently re-used; this observation is exploited to reduce the

number that must be stored in the block configuration data by preconfiguring

the immediate pool to store these values at all times. However, this method

relies on the majority of immediates to fall within this preconfigured set.

Finally, chapter 6 analysed the performance of the system as a whole.

Programs that contain a small number of hot spots, such as image compression

and encryption, approximately double in performance when compared to a

scalar microprocessor due to increased parallelism. Performance in the nasm

Chapter 7. Conclusions 154

assembler only improves by around 15% as execution is spread over a large

portion of the program and so a small number of hotspots do not dominate

like in the other benchmarks, limiting the amount of regularly used code that

can be stored in the HCT.

The compilation process has not been modelled in detail and so the

performance impact of performing compilations can only be estimated.

However, due to the small number of compilations this is expected to

be significantly lower than the gain in performance caused by increased

parallelism.

The improvements in performance are not as great as the improvements

shown in some applications on reconfigurable coprocessor architectures such

as PipeRench and Garp. However, in these systems core algorithms are

selected statically, and require special design processes and tools to create

the hardware configurations. In contrast, the system proposed in this thesis

can provide these improvements whilemaintaining architectural compatibility

with the original microprocessor, requiring no changes to programming

methods, tools or existing object code. The level of parallelism extracted is

instead comparable to superscalar or VLIW architectures. Again this system

has advantages over VLIW in that existing code can be used; additionally the

level of parallelism is not decided at compile-time as in VLIW, allowing future

versions of the hardware to improve without requiring code to be recompiled.

Superscalar also has these advantages; however, power consumption of

superscalar architectures is high due to the requirement to schedule operations

in parallel each time they are executed. The system described in this thesis only

determines parallelism at block compile time: this information is then re-used

when the compiled block is re-executed.

Chapter 7. Conclusions 155

7.1 Limitations

The main limitation in this thesis is that the four benchmarks that were used in

the analysis do not give a thorough evaluation of the system presented. While

an effort was made to choose a variety of real-world applications, further

examples are required to assess the effectiveness of the techniques presented in

a wider variety of situations. The behaviour of nasm stands out in particular:

this benchmark does not contain any significant hot spots and so performed

relatively poorly compared to the other three benchmarks which all performed

similarly.

Additionally, there are limitations in the compilation algorithms developed

to map data flow graphs into the restrictive interconnect of the hardware

structure. These do not take into account the detailed structure and limitations

of the interconnect between functional units; therefore, the efficiency of

scheduling into this structure is only an estimate based on hand-mapping of

blocks into the structure.

7.2 Future work

This thesis has described an architecture for detecting hot spots and compiling

them into a reconfigurable hardware structure at run-time. This has been

evaluated in terms of performance; future work is required to evaluate the

system in terms of energy consumption. In addition, the hot spots detected

have limitations in that they cannot contain loops or multiple paths of control.

Exploring the detection, compilation and mapping to hardware of such code

structures presents an interesting area for future work.

Chapter 7. Conclusions 156

7.2.1 Energy consumption evaluation

This system has only been evaluated in terms of performance compared to

a scalar microprocessor. This system is designed to extract parallelism from

a sequence of instructions at run-time; therefore, it would be interesting

to evaluate this system against other architectural techniques that extract

parallelism at run-time, such as superscalar architectures. This comparison

should take into account both the performance and power consumption of the

systems involved. The system described in this thesis has the potential for

lower power consumption per unit of performance compared to a superscalar

architecture as the process of detecting and extracting parallelism is only

performed at block compile time, compared with each time the instructions

are executed for a superscalar architecture.

This could be performed by modelling the proposed system in a hardware

description language such as Verilog and then simulating it to measure the

relative energy consumption of each component. This would not only give an

accurate energy measurement, it could also be used to fine-tune the design to

maximise energy savings.

7.2.2 Looping within compiled blocks

The system proposed can compile the body of a loop and execute it in

hardware, but relies on software for the loop control. This is because allowing

looping within hardware blocks removes the statically determinable proper-

ties of compiled blocks as the number of iterations cannot be determined at

block compile time. This may cause overflows in the write buffer or load table.

This restriction introduces overheads as values must be passed between loop

iterations via the register bank and control is handed back to software at the

end of each iteration. This also limits parallelism, as operations in different

iterations cannot overlap.

Chapter 7. Conclusions 157

Looping within blocks could be supported by introducing checkpoints into

the block. These are points during the block where execution so far can be

determined to be valid and so values in the block can be committed to registers

andmemory, overwriting the previous architectural state. If a breakout occurs,

control is returned to software at the checkpoint instead of at the start of

the block. Operations between checkpoints can be executed speculatively as

before. Checkpoints would be inserted into each loop iteration. Loops that

have been profiled to iterate many times could be assumed by the compiler

to execute indefinitely. When the loop termination conditions do occur this

would be treated as a breakout and state would be returned to the last

checkpoint. The final iteration of the loop would then execute in software.

7.2.3 Multiple paths through compiled blocks

A further limitation in this system that execution is limited to a single path of

control. This prevents small if-then-else structures being compiled into blocks.

By allowing multiple conditional paths through a block these structures could

be contained within compiled blocks, increasing block size and reducing

software overheads. This would require support within the control of the

hardware structure to use different parts of a block configuration depending

on conditional tests within the block.

7.2.4 Compilation and scheduling algorithms

The algorithms required to schedule the data flow graphs produced by the

hot spot detector into the reconfigurable hardware structure proposed have

not been fully developed. This would have to be performed to verify the

assumption made in this thesis that compilation can be performed at run-time

without incurring significant overhead.

Chapter 7. Conclusions 158

7.3 Summary

Run-time compilation of program hot spots into reconfigurable hardware can

provide approximately double the performance of a scalar microprocessor

when executing programs containing hot spots; a slight gain is achieved

in less suitable programs. Superscalar and VLIW architectures provide

similar performance benefits; however, this architecture is more flexible than

VLIW as existing compiled code can be used, and has potential for lower

power consumption than superscalar due to reduced work in determining

parallelism. Further work in power analysis is required to determine the extent

of any improvements in power consumption. The algorithms that perform

well in this system are ones that perform a repeated set of operations on a large

amount of data; this matches the behaviour of streaming media algorithms

to process audio and video. This technique therefore has the potential to

increase the capabilities of modern portable electronic devices, such as mobile

phones and portable media players, which demand high performance in such

applications.

References

[AFG+00] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the Jalapeño JVM. ACM SIGPLAN

Notices, 35(10):47–65, 2000.

[BDB00] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent

dynamic optimization system. ACM SIGPLAN Notices, 35(5):1–12,

2000.

[BH03] M. Berndl and L. Hendren. Dynamic profiling and trace cache

generation. In CGO ’03: Proc. International Symposium on Code

Generation and Optimization, pages 276–285, Washington, DC, USA,

2003. IEEE Computer Society.

[BR96] S. Brown and J. Rose. Architecture of FPGAs and CPLDs: A

tutorial. IEEE Design and Test of Computers, 13(2):42–57, 1996.

[CCH+00] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and

A. DeHon. Stream computations organized for reconfigurable

execution (score). In FPL ’00: Proc. The Roadmap to Reconfigurable

Computing, 10th International Workshop on Field-Programmable Logic

and Applications, pages 605–614, 2000.

[CDN94] Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partition-

ing of variables for multiple-register-file VLIW architectures. In

159

REFERENCES 160

ICPP ’94: Proceedings of the 1994 International Conference on Parallel

Processing, pages 298–301, 1994.

[CH97] A. Chernoff and R. Hookway. DIGITAL FX!32 — running 32-

Bit x86 applications on Alpha NT. In Proc. USENIX Windows NT

Workshop, Seattle, Washington, pages 9–13, 1997.

[CH02] K. Compton and S. Hauck. Reconfigurable computing: A survey

of systems and software. ACM Computing Surveys, 34(2):171–210,

2002.

[cjp] Independent JPEG Group. http://www.ijg.org.

[CLCG00] W. Chen, S. Lerner, R. Chaiken, and D. Gillies. Mojo: A dynamic

optimization system. In Proc. Third ACM Workshop on Feedback-

Directed and Dynamic Optimization, 2000.

[CMH96] T. M. Conte, K. N. Menezes, and M. A. Hirsch. Accurate

and practical profile-driven compilation using the profile buffer.

In Proc. 29th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-29), page 36, 1996.

[CPMC96] T. M. Conte, B. A. Patel, K. N. Menezes, and J. S. Cox.

Hardware-based profiling: An effective technique for profile-

driven optimization. International Journal of Parallel Programming,

24(2):187–206, 1996.

[CPSS00] Y. Chou, P. Pillai, H. Schmit, and J. P. Shen. PipeRench

implementation of the instruction path coprocessor. In Proc.

International Symposium on Microarchitecture, pages 147–158, 2000.

[CS00] Y. Chou and J. P. Shen. Instruction path coprocessors. In Proc. 27th

International Symposium on Computer Architecture, 2000.

REFERENCES 161

[DB00] E. Duesterwald and V. Bala. Software profiling for hot path

prediction: less is more. SIGPLAN Not., 35(11):202–211, 2000.

[DGB+03] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber,

and J. Mattson. The Transmeta code morphing software: using

speculation, recovery, and adaptive retranslation to address real-

life challenges. In Proc. International Symposium on Code Generation

and Optimization, pages 15–24, 2003.

[EA97] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for

100% architectural compatibility. In ISCA, pages 26–37, 1997.

[Ear03] R. Earnshaw. Procedure call standard for the ARM architecture.

Technical report, ARM, October 2003.

[Eft02] A. Efthymiou. Asynchronous techniques for power-adaptive processing.

PhD thesis, School of Computer Science, University of Manchester,

2002.

[EP00] A. J. Elbirt and C. Paar. An FPGA implementation and performance

evaluation of the serpent block cipher. In Proc. ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages

33–40, 2000.

[Fis83] J. A. Fisher. Very long instruction word architectures and the

ELI-512. In ISCA ’83: Proc. 10th Annual International Symposium

on Computer Architecture, pages 140–150, Los Alamitos, CA, USA,

1983. IEEE Computer Society Press.

[FS92] M. Franklin and G. Sohi. Register traffic analysis for streamlining

inter-operation in fine-grain parallel processors. In Proc. 25th

Annual International Symposium onMicroarchitecture, pages 236–245,

1992.

REFERENCES 162

[FS94] M. Franklin and M. Smotherman. A fill-unit approach to multiple

instruction issue. In MICRO 27: Proc. 27th Annual International

Symposium on Microarchitecture, pages 162–171, 1994.

[gcc] GCC, the GNU Compiler Collection. http://gcc.gnu.org.

[GHK+91] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,

D. Sweely, and D. Lopresti. Building and using a highly parallel

programmable logic array. Computer, 24(1):81–89, 1991.

[Gos96] G. R. Goslin. A guide to using field programmable gate arrays

for application-specific digital signal processing performance. Proc.

SPIE, 2914:321–331, 1996.

[GSM+99] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,

R. R. Taylor, and R. Laufer. Piperench: a co/processor for

streaming multimedia acceleration. In ISCA ’99: Proc. 26th Annual

International Symposium on Computer Architecture, pages 28–39,

1999.

[Har01] R. Hartenstein. Coarse grain reconfigurable architecture. In

ASP-DAC ’01: Proc. 2001 conference on Asia South Pacific Design

Automation, pages 564–570, 2001.

[HFHK97] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera

reconfigurable functional unit. In Proc.IEEE Symposium on FPGAs

for Custom Computing Machines, pages 87–96, 1997.

[HKZ+06] J. Hiser, N. Kumar, M. Zhao, S. Zhou, B. R. Childers, J. W.

Davidson, and M. L. Soffa. Techniques and tools for dynamic

optimization. In Proc. IEEE International Parallel and Distributed

Processing Symposium, 2006.

REFERENCES 163

[HM00] Z. Hu andM.Martonosi. Reducing register file power consumption

by exploiting value lifetime characteristics. In Proc. Workshop on

Complexity-Effective Design, 2000.

[HP] J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, third edition.

[HSU+01] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,

and P. Rousseland. The microarchitecture of the Pentium R© 4

processor. Intel Technology Journal, QI, 2001.

[HW97] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a

reconfigurable coprocessor. In Proc. IEEE Symposium on FPGAs for

Custom Computing Machines, pages 12–21, 1997.

[JS00] D. Jaggar and D. Seal. ARMArchitecture Reference Manual. Addison

Wesley Publishing Company, 2000.

[Kel75] R. M. Keller. Look-ahead processors. ACM Computing Surveys,

7(4):177–195, 1975.

[KGPK01] Gurhan Kucuk, Kanad Ghose, Dimitry V. Ponomarev, and Peter M.

Kogge. Energy: efficient instruction dispatch buffer design for

superscalar processors. In ISLPED ’01: Proc. 2001 International

Symposium on Low Power Electronics and Design, pages 237–242.

ACM, 2001.

[Kla00] A. Klaiber. The technology behind CrusoeTM processors. Technical

report, Transmeta Corporation, January 2000.

[Lev05] B. Levine. HASTE: Hybrid architectures with a single, transformable

executable. PhD thesis, Carnegie Mellon University, May 2005.

[LL00] K. M. Lepak andM. H. Lipasti. Silent stores for free. In International

Symposium on Microarchitecture, pages 22–31, 2000.

REFERENCES 164

[MKG98] Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline

gating: speculation control for energy reduction. In ISCA ’98:

Proc. 25th Annual International Symposium on Computer Architecture,

pages 132–141. IEEE Computer Society, 1998.

[MO99] T. Miyamori and K. Olukotun. REMARC: Reconfigurable

multimedia array coprocessor. IEICE Trans. Information Systems,

(2):389–397, 1999.

[MTG+99] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and

W. W. Hwu. A hardware-driven profiling scheme for identifying

program hot spots to support runtime optimization. In ISCA ’99:

Proc. 26th Annual International Symposium on Computer Architecture,

pages 136–147, 1999.

[MTL95] F. Mounes-Toussi and D. J. Lilja. Write buffer design for cache-

coherent shared-memory multiprocessors. In Proc. International

Conference on Computer Design, pages 506–511, 1995.

[MTN+00] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and W. W.

Hwu. A hardware mechanism for dynamic extraction and relayout

of program hot spots. In ISCA 2000: Proc. 27th Annual International

Symposium on Computer Architecture, pages 59–70, 2000.

[MVV+03] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De

Man, and Rudy Lauwereins. ADRES: An architecture with

tightly coupled VLIW processor and coarse-grained reconfigurable

matrix. In Proc. Field-Programmable Logic and Applications, pages 61–

70, 2003.

[MWea96] J. Montanaro, R.T. Wite, and K. Anne et al. A 160-MHz, 32-b, 0.5-

W CMOS RISC microprocessor. IEEE Journal of Solid-State Circuits,

31:1703–1714, 1996.

REFERENCES 165

[nas] The Netwide Assembler: NASM. http://nasm.sourceforge.net.

[NH97] R. Nair andM. E. Hopkins. Exploiting instruction level parallelism

in processors by caching scheduled groups. In International

Symposium on Computer Architecture, pages 13–25, 1997.

[NZ04] A. Niyonkuru and H. C. Zeidler. Designing a runtime

reconfigurable processor for general purpose applications. In

Proc. 18th International Parallel and Distributed Processing Symposium

(IPDPS 2004), pages 143–149, 2004.

[Pag94] I. Page. The HARP reconfigurable computing system. Technical

report, Oxford University Hardware Compilation Group, 1994.

[PL01] S. Patel and S. Lumetta. rePLay: a hardware framework for

dynamic optimization. IEEE Transactions on Computers, 50(6), 2001.

[RBS96] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low latency

approach to high bandwidth instruction fetching. In International

Symposium on Microarchitecture, pages 24–35, 1996.

[RLG+98] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt,

J. M. Arnold, and M. Gokhale. The NAPA adaptive processing

architecture. In FCCM ’98: Proc. IEEE Symposium on FPGAs for

Custom Computing Machines, page 28, 1998.

[RS94] R. Razdan andM. D. Smith. A high-performance microarchitecture

with hardware-programmable functional units. In Proc. 27th

Annual International Symposium on Microarchitecture, pages 172–80,

1994.

[Sch93] B. Schneier. Description of a new variable-length key, 64-bit block

cipher (Blowfish). In Fast Software Encryption, Cambridge Security

Workshop Proceedings, pages 191–204, 1993.

REFERENCES 166

[SLL+00] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and

E. M. C. Filho. MorphoSys: an integrated reconfigurable system

for data-parallel and computation-intensive applications. IEEE

Transactions on Computers, 49(5):465–481, 2000.

[SR00] M. S. Schlansker and B. R. Rau. EPIC: Explicitly parallel instruction

computing. Computer, 33(2):37–45, 2000.

[Val05] M. G. Valluri. A Hybrid-Scheduling Approach for Energy-Efficient

Superscalar Processors. PhD thesis, The University of Texas at

Austin, 2005.

[WC96] R. Wittig and P. Chow. OneChip: An FPGA processor with

reconfigurable logic. In Kenneth L. Pocek and Jeffrey Arnold,

editors, IEEE Symposium on FPGAs for Custom Computing Machines,

pages 126–135, Los Alamitos, CA, 1996. IEEE Computer Society

Press.

[WH95] M. J. Wirthlin and B. L. Hutchings. DISC: the dynamic instruction

set computer. In Field Programmable Gate Arrays (FPGAs) for Fast

Board Development and Reconfigurable Computing, Proc. SPIE 2607,

pages 92–103, 1995.

[ZPG+00] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous,

and J. Rabaey. A 1-V heterogeneous reconfigurable DSP IC for

wireless baseband digital signal processing. IEEE Journal of Solid-

State Circuits, 35(11):1697–1704, 2000.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Research goals
	Simulator and benchmark details
	Thesis outline

	Reconfigurable hardware and dynamic compilation
	Reconfigurable computing
	Field programmable gate arrays
	Granularity
	Coupling with host processor
	Configuring the hardware
	Hardware/software partitioning

	Dynamic optimisation
	Dynamic optimisation in software
	Hardware dynamic optimisation
	Detecting hot spots

	Summary

	Hot spot detection
	Program behaviour
	Dynamic basic blocks
	Dynamic analysis of executed basic blocks
	Hot spots
	Phased behaviour

	Chains of basic blocks
	Handling unexpected branch decisions
	Change of branch behaviour
	Increase in block size

	Profiling
	Static profiling
	Dynamic profiling

	Operation of hot spot detector
	Determining which blocks to compile
	Sensitivity of the hot spot detector
	Constructing Block Chains

	Block Profile Table
	Size of block profile table

	Hardware Configuration Table
	Storage of hardware configuration data
	Number of entries in hardware configuration table

	Summary

	Block optimisation and compilation
	Optimisations on single basic blocks
	Temporary values
	Increasing parallelism

	Optimisations on chains of basic blocks
	Increased number of temporary values
	Increase parallelism
	Memory aliasing
	Reducing stack operations

	Block compilation process
	Performing the compilation process
	Summary

	Reconfigurable hardware structure
	Advantages of executing in reconfigurable hardware
	Design aspects of the hardware execution engine
	Interface with microprocessor
	Parallelism
	Memory and register interface
	Word size of functional units
	Size of compiled block definitions
	Implementation of reconfigurable hardware structure

	Structure description
	Memory interface
	Interface with architectural registers
	Functional units
	Immediate operands
	Control of block execution

	Block mapping algorithm
	Summary

	System Analysis
	Evaluation method
	Performance
	Amount of code executed in hardware
	Effect of block breakouts
	Performance of blocks executed in hardware
	Performance impact of run-time compilation
	Performance analysis

	Energy consumption
	Parallelising instructions
	Reduced register bank access
	Fetch and decode
	Hot spot detector and compilation process

	Summary

	Conclusions
	Limitations
	Future work
	Energy consumption evaluation
	Looping within compiled blocks
	Multiple paths through compiled blocks
	Compilation and scheduling algorithms

	Summary

	References

