Arithmetic and Control Components
for an Asynchronous System

A THESISSUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

1997

Jianwei Liu

Department of Computer Science

Table of Contents

| ntroduction 17
Background 24
P22 N 1 ¢ 0 To [[ox 1o] [PPSR 24..
2.2 BaSIC CONCEPLS....oevviieiriiiiiiiiii e e e e e e e 26..
2.2.1 Delay models......cccooviiiiiiiiiiiiie e 26
2.2.2 Circuit classification............ccoeciivviiiiiiiiiiiiieeeeee e 26
2.2.3 Hazards and raCes.........ccccceeeeiiiiiiiiiiiiiiiiiieeeeeeee 27
2.2.4 Metastability and arbitration................ccoovvvivviiiiennnnn. 27
2.2.5 Circuit specifications............cceeeeeiiiiiiieeeeeeeeeeeeeviiies 28
2.2.6 Signalling protoCols..........cccovvviiiiiiiiiiiiciiee e, 29
2.2.7 Datarepresentation................uvuveeiiiiiiiiieeeeeeeereeeeeennnnnn 30
2.2.8 SYNNESIS...cviiiiiiiiiiii e 30.
2.3 Sutherland’s micropipelines........cccccceeeeeeiiiiiiiieecee e 31
2.3.1 Eventcontrol modules...........ccccoiiiiiiiiiiiiiiieen 31
2.3.2 Event-controlled storage element..............cccccceeeennnn. 33
2.3.3 Micropipeline FIFO...........ccccovviiiiiiiciciee e 34
2.3.4 Micropipelines with processing..........cccceeeeeeeveiveennnnnns 35
2.4 The AMULET ProOJeCL......cccoiiiiiiiiiiiiiiiieie e e e e e ee e 35
2.4.1 AMULETL Chip «oooiiiiiiiiiii e 36
2.4.2 AMULET2€ Chip...cuuuiiiiiiiiiiiiiiiieeieeeeeei 37
2.4.3 AMULET3I oot 38
Adder design 39
G 200 R [010 Yo [T 1 [o IR PPPURR 39..
3.2 Carry arbitratioN...........ceeeeie e 4Q.
3.2.1 Two-way carry arbitel.......ccccooeeeeeeiiiiiiieeeenn 41
3.2.2 Three-way carry arbiter........cccccccccciiieiieeeeeeeeeneeeeeennn 44
3.2.3 Carry arbiters with more than three ways.................. 46
3.3 Parallel prefix computation............ooooiiiiiiiiiiiii e 47
3.4 IMPIEMENTAtION......coiiiieeee e 49.
3.5 Refinement of the Manchester carry chain............................ 53
3.6 Simplification of carry select adders...........ccccoevvvvvviiniiinnnnnnn. 55

3.7 Adder designfor AMULET3I ..cccoeiiiiiieieceece e 57

3.8 CIrCUIt dESIgN ..ueeeceie et 58
TS BN - Vo U1 ae (== o [SRR 61
310 EVAIUBLION ..ot 62
3.10.1 Performanceccoooeiiiinenineeeeeee s 62
3.10.2 Power CoNSUMPLIONcccveeiieiiiesieesiee e esee e 62
3.10.3 SHICON @A ...t 62
G S U 011 0= YRR 64
Multiplier design 66
4.1 INIrOTUCTION ..ovviiiiieiieieee e 66
411 Making each addition fastercccccevevinireneneneeen, 68
4.1.2 Reducing the number of additionsrequired 70
4.2 AMULET2e MUIIPHEr oo 72
4.3 Multiply support for AMULETS3Icooiiiiiiiieieeeeeeeees 75
431 Normal MUItIPIY ..ocoooeeiieeee e 75
4.3.2 Long MUILIPIY eooeeeiiiiieeeeee e 75
4.4 MuUItiplier organiZationc.ccoceeererenieeienesesee e 76
441 First design iterationcccooeveeereeienenese e 76
4.4.2 Encoding techniquecccooveririiienene e, 77
4.4.3 Second design iterationccceceeeeereeneeneneneseseeeeeans 79
444 SIgN EXLENSIONooueieiieierie e 81
45 CirCUIt dBSIGN ..ot 82
451 Booth mux cell designcocevereriiriiieee e, 82
452 4-2 CoUNEr dESION ...oovvveiierierieeeeeeee e 84
453 Pipelineregister designccoceveeveeienenene s 88
45.4 Partia product register designccccevevenereneneneenenn. 90
455 LOW POWES OESIGN ..coooviiiierierieeeeee e 91
4.6 LayoOUt dESION ..ooeoieeiieieieieies et 93
A7 EVAIUBLION ..ooiiiiiieceeee e 93
471 PerfOrmManCe ... 94
4.7.2 POWEr CONSUMPLION ...ovviiiiiiirienieeieeie e 9
4.7.3 SHICON @EA ...ocveeeeeeeeeese e 94
4.8 SUMMEIY ..ooviiiiiieeiteeee ettt en e sre e e s neene e e nnens 96
Four-phase pipeline control 97
5.1 INrOUCLIONooiiiiiiiiieieeeeeee s 97

5.2 Datarvalidity SCheme ..o 98

5.3 Logic activation configurationcccceeeeieeneeeieeseesieeeseesnnes 100
54 Decoupling degreecccveveeiieiiiieie et 101
5,5 ERU latch control CIrCUItcoovveeiieiiiecee e 102
5.6 ERSIatch control CIrCUItccveeveeiiiccie e 103
5.7 ERF latch control CIFCUItcceeevveeiieiiiecee e 106
5.8 BRU latch control CIrCUItccccoeeiieiiieciecec e 107
5.9 BRSIatch control CIrCuitcccoeeiieiiieieceece e 108
5.10 BRF latch control CIrCuitccccoeevieiiieiieceece e 109
511 BAS & BAF latch control CIrCUItScceevveecieeviecieecee e 111
I A 1 01 = = 1 o [SRR 114
5.13 Low-power design using dynamicC lOgiCcccceveevveeveriiieesieennne. 115
514 SIMUIation reSUILScccvveiiieiiecee e 117
5,15 DISCUSSION ..vviiiieiiie et stee st see et see st e e sneeete e sneeenns 118
5.16 SUMIMAIY oooviiiiiiiiiciieesitte et e e e s s sa s sba e sbe e s e snneas 120
Four-phase control modules 121
(G200 R 1 011 (0o [F o (o) ISP 121
6.2 CALL MOAUIESoeeieeectee et 123
6.21 PCALL MOAUIEoceiiiiiiieiieeeee e 123
6.2.2 dCALL MOAUIEoecveeeieeceeceecee e 124
6.2.3 DCALL MOAUIEoeoveeieecteceecee et 126
6.3 ARBITER MOAUIEScceveeteeceeeeece et 127
6.3.1 PARBITERMOAUIEcooviiiiiiieicieeee e 128
6.3.2 dARBITER MOAUIEccoeeeveeeeeee e 130
6.3.3 DARBITER MOAUIEccceeieeeeecieeeeeceee e 131
6.4 JOIN MOUUIEScveeeeece ettt 133
6.4.1 PIOIN MOAUIEc.oceiiieeee e 133
6.4.2 dJOIN MOTUIEc.eeeieeireecteece e 133
6.4.3 DBJIOIN MOTUIEc.eeereieeeceeeeeee e 134
6.5 FORK MOAUIESoooveeeeee e 135
6.5.1 PFORK MOCUIEcccoviiiiriiriiriieieiee e 135
6.5.2 dFORK mMOdUIEccoeevveeieeeccee e 135
6.5.3 DBFORK mMOdUIEcceeireeeececee e 136
6.6 SELA MOAUIESooeereeeeee et 137
6.6.1 PSELA MOAUIEocviriiiiriiniiceee e 137
6.6.2 dSELA MOAUIEoeeveereeeeeeee e 138

0.6.3 DSELA MOAUIE ...t eens 138

6.7 SELB MOUUIESooeiieecee et
6.8 TOGGLE MOCUIEooeieieeiee et
6.9 AN example @ COUNLENcccccueeiieiie e
6.10 Arbiter modules revisitedcccocevieiiievie e

6.11 Moduleswith multiple input lINKScccceeiieiiecieeie e,
B.12 SUMIMAIY .eiiiiiiiiiie i eite ettt et e e e s s sba e sbe e sne e e enneas

AMULETSI

5 R 1 011 (0o [F o (o) ISR
7.2 AMULETSI oot s
G T N |V 1 I S
A = o U (0] o T o SO
7.5 IMPIEMENEELION ...cc.ocvireiriieiieieeee s
7.6 SUMMAIY .oovviiiiiieeiieie ettt r e sne e

Conclusions

8.1 CONHBDULIONSoeeieiiiiiece e
8.2 FULUNEWOIK ...ooviiieiicie ettt
8.2.1 Low power marketccccecviviieiiieiee e
8.2.2 Mobile communication marketccoevvviiiiiininene,
8.3 ASyNChronOUS PrOSPECESeeeieieeiieeiie e seectee et

Bibliography

OO ®>»

Adder schematics
Adder layouts
Multiplier schematics
Multiplier layouts

162

170

176

181

196

3-10
311
3-12
3-13
314
3-15
3-16
3-17
4-1
4-2
4-3
4-4
4-5

List of Figures

A bundled data interface ... 31
Micropipeline event 10gic MOdUlESccvveveevieciiece e, 32
Event-controlled storage elementcceevecevieie e 33
MicropipeliNnE FIFO ..o 34
Basic MiCropipeling StrUCLUNecccveeeveerie et 36
Two-way carry arbiterccoooeeiieec 41
4-Dit Carry COMPULBLTIONeeveeeeerieeeeseesieeee e e eee e e saeeee e nee e ens 42
Three-way Carry arbiterccocoviiiiie i 45
O-hit carry COMPULBLIONccceveerieeiesiierieeeeseese e ee e e e ee e 46
Static implementation of atwo-way carry arbitercccoeeveneen. 50
Pass-transistor based implementationccccvveveeceseevescee e 50
Direct implementation of athree-way carry arbitercccccoennee. 51
Modified implementation of athree-way carry arbiter 52
Manchester carry chain with buffers ..., 54
Manchester carry chain without bUffers ..., 54
Carry select adderccoooveiii e 55
New carry SeleCt adderccovcvieeie e 56
AMULETS3i adder block diagramcccceevieieciieve e, 57
Devicesfor dynamiC CIFCUITScccevveveereeiesee e e 58
Static Implementation of athree-way carry arbitercccccvevennee. 59
New Implementation of athree-way carry arbitercccccoeevveneee. 60
Physical layout of the adder datapathcccoeeeeiieiieiiicece, 63
Dot representation of 8 X 8 bit add and shift multiplication 67
A Smple MUILIPIIEr ..o 68
A carry-SaVe MUITIPHEN ..o s 69
AMULET2e multiplier organizationccccecveeeveesieeeiieeseesineesnnns 73

T VL= 5= Lo] IR 78

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24

SECONA VEISION. .. e e e e eneens 8qQ..

BOOth MUX Cell ... 83..
4-2 COUNTET SITUCTUIE... ..ot 84.
4-2 Counter with enable CoNtrol.........cccoovvveeiieiiiiiii, 86

4-2 Counter without enable contral..............oiiiiiiiiiiiciiii e, 87

Pipeling regISter... ... 89..
Partial product register...........uuiiiiiiiiiiiiie e al.
Physical layout of the multiplier datapath................ccccccviiiiiinnnnen. a5

Micropipeline stage StruCture...........ccueeeieiiiviiiii e, a8

Three data-validity SChemes...........ccccoiiiiiii Q9

“Request-activate” configuration............cccoeeevveviiiieeeieeiiiie e, 100
“Acknowledge-activate” configuration...............ccccuvvviiriiieeeennnnnnnnn. 101
STG of the ERU latch control Circuit.............coooovviiiiiiiiinie, 102
ERU latch control CIrCUIt..........uiiiiieieie e 103
STG of the ERS latch control CirCuit.............ooovviiiiiiiiiiiiieeeee, 104
ERS latch control CIrCUIL...........cooviviiiieieiicceee e 105
Asymmetric C-gate Notation.............ueeiiiiiiiiiiiiieeceec e, 105
STG of the ERF latch control CirCUiL............ccovvvviiiiiiiiiiiiieeeeeeee, 106
ERF latch control CirCUIL............oooiiiiiiiiiii s 107
STG of the BRU latch control CirCuit...........cccoovvvvvvviiiiiiiiiciieeen. 107
BRU latch control CIrCUIt...........ceiiiiiieecee e 108
STG of the BRS latch control CirCuit............coovvvvvivviiiiiiniieeeeeee, 108
BRS latch control CIrCUIt...........coooiiiiiiiiiiic s 109
STG of the BRF latch control CirCUiL............ccovvvviiiiiiciiiiiieeeeeee, 110
BRF latch control CIrCUIL............oooiiiiiiiiiii s 110
Another “Acknowledge-activate” configuration......................oen. 111
STG of the BAS latch control CirCUiL............coovvvviiiiiiiiiiiiieeeeeeee, 112
STG of the BAF latch control CIrCUL.............oeevvvvviiiiiiiiiiiieeeeeeee, 112
BAS latch control CIrCUIL...........coooiiiiiiiiiii e, 113
BAF latch control CIFCUIt...........coovvviiiieieiccee e 113
STG Of the CONVEIEL.....cviiiiiiiiieee e 114
(@0] g\ V72T 8 (= g o] [o1 U 1| 115

525 TS CITCUIT e mennnmnns 118

6-1 Four-phase control MOAUIESccccoeriierininieeee e 122
6-2 PN of the pPCALL MOAUIEc.oooviiiiiiiie e 124
6-3 pCALL circuit implementationcccoereneninienesese e 124
6-4 PN of the dCALL mMOAUIEcceoiiiiiiiieeeeeee e 125
6-5 dCALL circuit implementationcccoveveneninienesese e 125
6-6 PN Of the SCALL MOCUIEooeeiiiiiieeeeeee e 126
6-7 SCALL circuit implementationccocoverenerienienenese e 126
6-8 MUTEX CIFCUIT oot 127
6-9 PN of the pARBITER MOAUIEccoooiiiiiiieeeee e, 129
6-10 pARBITER circuit implementationcccceveeviiecieenee e 129
6-11 PN of thedARBITER MOAUIEccovveeeeieeceeeeee e 130
6-12 dARBITER circuit implementationcccceveevieciecvee e 131
6-13 PN of the DARBITERcveiiieee ettt 132
6-14 DARBITER circuit implementationcccceceeviecieevie e 132
6-15 pJOIN circuit implementationcccoeeerenierinieresese e 133
6-16 dJOIN circuit implementationcccccevceeiieeieesee e 134
6-17 DBJOIN circuit implementationcccoevevenerieierese e 135
6-18 pFORK circuit implementationcccccevieiieeiiee e 136
6-19 dFORK circuit implementationcccocvererieienenene e 136
6-20 DFORK circuit implementationcccccevieeieeiiee e 137
6-21 pSELA circuit implementationccocooevenerinienesese e 138
6-22 dSELA circuit implementationcccocoeveriiiesiee e 139
6-23 DBSELA circuit implementationcccoevenenirienesese e 139
6-24 Implementation of the SELB modulescccccoeviviiiviecceevee e, 140
6-25 TOGGLE circuit implementationcccoceeoerieieneneneneseseseeeans 141
6-26 Speed-independent INCrEMENLErcccoeevieeiee i 142
6-27 PN of the eARBITER MOAUIEocveveeiiiee e 144
6-28 eARBITER circuit implementationccccecivevievieevie e, 144
6-29 PN of thefARBITER MOAUIEc.eovveeeeiieeeeeee e 145
6-30 fARBITER circuit implementationccccceveevieeiieenee e 145

S R I (= <14 o)1 (= (TR 146

AMULETS3i block diagramccoeeiveieeiiecieece et 150

AMULET3 block diagramccccoevereninieieesese e 151
AMULET3 0rganiSalioNccccueeiveeiieeiieeseeeiteeseeesseesseesnseessessseessneas 153
Execution pipeline organiZationccoceeeeereeeienenesese e 154

AMULET3 datapath StrUCLUIEccvveiieiiecieecee et 155

2-1
2-2
31
3-2
3-3
34
3-5
3-6
3-7
4-1
4-2
4-3
4-4
4-5
4-6
4-7
5-1

List of Tables

Characteristics of AMULETLoooiiiiiiieieeee s 37
Characteristics Of AMULET2€ ..o 38
(O Y (= o U RSP RRR 40
TWO-WaY CATY FEQUESES ...coiiieeieieeieeeeiee et 41
DU -TAIl COUR ...t 42
(9, P) CAITY FEQUESESeeeieeieeeiee ettt nnens 43
The Brent and Kung Carry COAEoovvveeiieiiieese e 44
Three-way Carry reQUESESoocueeeerieeieseesee et 45
Simulation results of the three-way carry arbitercccoccevvveiviiennen, 61
Modified Booth algorithm ..o 72
Simulation results on the Booth mux cell ... 83
Truth table for 4-2 COUNEN'Soceoiiieeeeeee e s 85
Simulation results on the 4-2 Counter with enable control 88
Simulation results on the 4-2 Counter without enable control 88
Simulation results on the pipeline registerccccvvvevvevevienecce e, 90
Simulation results on the partial product registerccccocceveeeiveceenen, 91
HSPICE SIMUIation rESUILSccceieiiiire e 117

10

Abstract

This thesis describes arithmetic components (an adder and a multiplier) and
control components which have been designed and implemented for AMULET3I,
a commercial asynchronous embedded system chip incorporating the third

generation asynchronous ARM processor (AMULET3).

A novel carry arbitration scheme is proposed (and has been patented) for parallel
adder circuits. This new scheme provides digient encoding in which the carry

is generated by arbitrating several input carry requests, exploiting the associativity
of the carry computation. Post-layout simulation, in a 0.35 micron triple metal
CMOS technologyshows that the adder for AMULET3i takes 1.8 ns to complete

the computation of a 32-bit addition.

The multiplier design uses the modified Bosthlgorithm integrated with a new
encoding technique for adjusting the product result of an unsigned number
multiplication. An adjustment value is made on the least significant 32-bit
positions. Post-layout simulation, in a 0.35 micron triple metal CMOS technology
shows that the multiplier for AMULETS3Ii takesl.2 ns (2.8 ns< 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

Organizing these arithmetic componentscedntly into a fourphase asynchronous
pipeline is investigated and a set of speed-independent latch control circuits is then
proposed. Additionallya set of control modules for fephase micropipelines is
presented. These two sets of control components can be used to construct complex

and powerful asynchronous systems.

11

Declar ation

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or

other institution of learning.

12

(1)

2)

Copyright and the Owner ship of
| ntellectual Property Rights

Copyright in text of thisthesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with
instructions given by the Author and lodged in the John Rylands University
Library of Manchester. Detaills may be obtained from the Librarian. This
page must form part of any such copies made. Further copies (by any
process) of copies made in accordance with such instructions may not be

made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in
this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third
parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of Department of Computer Science.

13

The Author

The author was awarded the degrees of B.Sc and M.Sc, both in Electrical and
Electronic Engineering, at Shenyang Institute e€fihology and Harbin Institute

of Technology China, in 1984 and 1987, respectiveygnificant experience was
gained from involvement in 16-bit and 32-bit microprocesE®GA and ASIC

chip designs at the Northeast Microelectronics Institute, China, from 1987 to 1993.
He became interested in asynchronous design, VHDL design and formal
approaches to hardware design when at dahfiical University of Denmark, as a
visiting scholay from 1993 to 1994. He obtained an M.Sc degree in Computer
Science from the University of Manchester in 1995. This thesis reports the results
of the work undertaken during the AMULET project at the Computer Science

Department of the University of Manchester

14

Acknowledgements

First and foremost, | am grateful to my supervi€ieve Furbemho has been an
invaluable source of inspiration and continuous support in every aspect of this

work. | could not hope for a better supervisor

During my PhD studyl have also been with the Cogenachinology Inc., as a
VLSI design engineeihanks are due to Nigel PayPaul DayCraig Farnsworth,
Dave Jackson and &kfen Lien for their support. Again, special thanks go to Nigel

Paver for his commenting on the thesis structure and continuous support.

Thanks are due also to my advjsBPoug Edwards, for his encouragement and
support, and to Steveemple, Jim Garside, Dave Gilbert, Phil Endecott, Oleg
Petlin and Julian Skidmore for their kind help. Thanks also to David Lloyd for his
commenting on a draft of this thesis, to John Bainbridge and Suck-Heui Chung for
discussions on the PETRIFY tool, and to SwmYTan for interesting
conversations in Chinese. The other members of the AMULET group are

acknowledged for their contributions at the regular Monday afternoon meetings.
I would also like to acknowledge with gratitude the grants from ORS and URS.

Last, but not least, | owe much gratitude togéar Staunstrup, who brought me
into the world of asynchronous design when | stayed atebleriical University of

Denmark as a visiting scholar from 1993 to 1994.

15

Dedication

To

My parents —
My wife _

And my sons—

ks

Fmyic £
BmET

gm L

Penggi Liu and Shuhua Zhang
Li He

Dan Liu and Yhg Liu

R A B
GE]

X5 Mo

16

| ntroduction

The real world is asynchronous by nature. It is, thus, logical to build digital systems in an
asynchronous wayexploiting the potential advantages of this inherent property of
asynchrony to their fullest. Howevesynchronous design styles have been preferred and
have dominated digital systems for the last three decades. This is not surprising for two
reasons. Firstlysynchronous design is easier to understand and easier to implement,
which are attractive characteristics. Secondhgynchronous design was usually

considered less disciplined and more anarchic, which frightens most designers away

With the rapid development of synchronous digital systems, howtese is evidence

that we are beginning to hit some of the fundamental limitations of syncHhtoisy
becoming ever more di€ult to establish global synchrony within todaychips, let

alone from chip to chip. It is becoming unacceptable for global synchrony to burn
increasing powerespecially for powesensitive applications where short battery life is

the bane of the users. It is becoming a huge task for a digital system to be maintained and
for its components to be replaced or reused. High noise emission and Electro-Magnetic
Interference (EMI) are also increasingly becoming concerns in mobile communication

applications.

Introduction 17

Asynchronous design [1] has made a come-back in recent years, showing a number of
advantages [2,3] over synchronous design. There are no clock related problems because
global synchrony has been removed. Performance can be better as it is based on the
average case rather than the worst case. Power consumption can be lower since power is
only consumed when needed. gardigital systems can easily be maintained due to the
high modularity and composability as each block can be designed without knowledge of
the timing characteristics of any of the other blocks. Also, the low noise emission and
good Electro-Magnetic Compatibility (EMC) of asynchronous systems are of potential
use in mobile communication applications since increasingly rigorous EMI compliance

specifications and testing can be more easily satisfied.

With asynchronous design becoming widely recognized after a world-widgeaserof
interest, it seems that it is expanding beyond its initial area of interest (which was
primarily in academic research) into industijowever there is still confusion
surrounding the claimed advantages as there are very few demonstrable chips available
to assess and therefore to endorse the asynchronous design methddwagytcomes

for most claims are still to be answered, though some are obvious.

The AMULET (Asynchronous Microprocessor Using Low Hjeffechniques) group

was established late in 1990, led by Professor Steve Fuobewvestigate the claimed
advantages and the feasibility of designingéaasynchronous systems. The objective is

to realize asynchronous microprocessors with lower power consumption and higher
performance than is currently available using synchronous design techniques. Rather
than adding to the theoretical work, an engineering approach was adopted and this has

contributed to the growing pool of asynchronous knowledge during the last seven years.

Introduction 18

The first milestone was AMULET1 [4-8] in 1994, an asynchronous implementation of
the ARM 32-bit RISC microprocessor [9,10]. It demonstrated the feasibility of building
an asynchronous system at the levels of complexity of current synchronous digital

systems with the resources and tools readily available to synchronous designers.

The second milestone was AMULET2d]1n 1996, an asynchronous embedded system
chip which includes a significantly enhanced version of AMULETL. Its performance and
power eficiency are competitive with the industry leading synchronous ARM designs.
The AMULET2e work established a path to the commercial exploitation of

asynchronous design.

AMULETS3Ii, a commercial asynchronous embedded system chip for communication
applications, is currently under development. This will be a significant milestone: the

first fully asynchronous embedded system going into a commercially viable product.

The main objective of the work described in this thesis is to design high performance and
low power arithmetic components (an adder and a multiplier) and control components
for AMULETS3i. An adder and a multiplier have been designed and implemented down

to the layout level; these are two basic arithmetic blocks which are critical to the
performance of the processor core. A set of control components foipliase
micropipelines, namely the pipeline latch control circuits, have been proposed, which
can be used to ganize arithmetic componentsfiefently into a micropipeline.
Additionally, another set of control components, namely-fthase control modules, is

also presented as basic building blocks. These two set of control components can be used

to construct complex and powerful asynchronous systems.

Introduction 19

Thesisoverview

Due to the engineering nature of my PhD work, there is considerable detail which could
easily blur the picture of the basic ideas. Instead, only the key ideas and relevant
information are given here. Some engineering detail can be found in the circuit
schematics and layout, presented in the appendices. Background information for
asynchronous design is provided in chapter 2. The body of the work is divided into two
main parts. The first part includes the arithmetic components, the AMULETS3i adder in
chapter 3 and the AMULET3i multiplier in chapter 4. The other part deals with the
control components, a set of fgpinase micropipeline latch control circuits in chapter 5

and a set of fouphase control modules in chapter 6. Each chapter is self-contained.

Addition is one of the most important arithmetic operations performed frequently within
both general purpose and digital signal processing systems and an adder is therefore an
important arithmetic component. A novel carry arbitration scheme is proposed (and has
been patented [12]) for parallel adder circuits in chapter 3. This scheme provides an
efficient encoding in which the carry is generated by arbitrating several input carry
requests, exploiting the associativity of the carry computation. The new coding is a
logically redundant superset of the conventional carry process. Departing from this
general coding, certain modifications which reduce the redundancy can easily be made
where this simplifies the implementation. The proposed carry arbitration scheme not
only leads to high speed adders due to the reduction in the required layers of logic, but
also ofers a regular and compact layout and uniform fan-in and fan-out loadimngs. T
demonstrate the feasibility andfesftiveness of the new scheme, a 32-bit adder for

AMULETS3i has been designed and implemented down to the layout level.

Introduction 20

Multiplication is another of the most common arithmetic operations. In chapter 4, the
multiplier design for AMULET3i is presented, in which attention is focused on CMOS
circuit design techniques. The AMULET3i multiplier can process two classes of
multiply instructions: a normal 32-bit result and a long 64-bit result; both types of
multiply instruction can also optionally perform an accumulate operation. A new
encoding technique has been employed to adjust the final result of an unsigned number
multiply operation. The design uses the modified Bso#tjorithm [13,14] and eight

bits are scanned at a time. A new 4-2 Counter with an enable control has been proposed.
High speed circuit design techniques including the “true single-phase clocking registers”
[15] are used. Some of this chapter is based on previous work by the author described in

his M.Sc thesis [16].

As the fourphase micropipeline design style [17-19] was adopted for AMULETS3I, the
design of arithmetic components, the adder and the multigliersimilar to clocked
designs in some ways. However there are some sulfeetites between the two; this

is obvious in the multiplier design where the asynchronous nature has been exploited.
The fundamental dérence lies in the control mechanisms, which are described in

chapter 5 and chapter 6.

The AMULET designs are based on Sutherlandiicropipelines [20]. Although
micropipelines were originally conceived with two-phase control, most recent work uses
four-phase control mainly for performance reasons. The change from two-phase control
to fourphase control leaves many choices open regarding thenimation of the
asynchronous pipelines. Chapter 5 explores these control schemes for asynchronous

pipelines and presents a set of pipeline latch control circuits. All of the proposed pipeline

Introduction 21

latch control circuits are speed-independent, which is verified using the FORCAGE tool
[21]. Low power considerations and the use of dynamic logic are also discussed in this

chapter

To ease the design of asynchronous systems based guhéme micropipelines, a set of
basic control modules is required. Such a set is proposed in chapter 6. Arbiters, which
are non-trivial and tricky to implement, are also included. The specifications of these
four-phase control modules are carried out using Petri Nets [22]. These basic control
modules, together with the pipeline latch control circuits, can construct complex and
powerful asynchronous systems including forking or joining multiple pipelines. All of
the proposed control modules are speed-independent, which is verified using the

PETRIFY tool [23-26].

A brief description of AMULETS3i is given in chapter 7 in the hope of providing the big

picture into which the components described in the previous chapters can be placed.

Conclusions are finally made in chapter 8.

Contributions

The main contributions made in this thesis are:

[0 In chapter 3, a high performance, low power asynchronous 32-bit adder for
AMULET3i has been designed and implemented down to the layout level. The design
uses a novel carry arbitration scheme (which has been patented) exploiting the

associativity of the carry computation.

Introduction 22

[l In chapter 4, a high performance, low power asynchronous 32-bit multiplier for
AMULETSIi has been designed and implemented down to the layout level. The design
employs the modified Bootyralgorithm integrated with a new encoding technique for

adjusting the product result of an unsigned number multiply operation.

[l In chapter 5, a set of speed-independent latch control circuits has been proposed
for asynchronous pipelines. These pipeline latch control circuits provide a framework

within which arithmetic components can béaéntly organized.

(] Inchapter 6, a set of speed-independent control modules has been proposed. These
control modules provide basic building blocks which can be used to construct complex

and powerful asynchronous systems.

Introduction 23

Background 2

In this chapterwe highlight some aspects of asynchronous design. Asynchronous design
here refers to the design of digital circuits which operate correctly without relying on
global clocks for synchronization. It is not possible tieiod comprehensive overview
here; instead a brief introduction to the basic concepts is provided. The micropipeline
design style and the AMULET project are then overviewed, which are of interest here
because they form the background for the rest of the work described in this thesis. A full

treatment of other asynchronous design styles can be founded elsewhere [2,3].

2.1 Introduction

A binary digital circuit uses two distinct values, 0 and 1. This is an ideal model. In
reality, there are no true digital circuits, but only analog circuits which approximate to
digital behaviours. No matter hayuick the transitions the digital signals make, there are
not only 05 and 1s but also undefined values between 0 and 1. These undefined values,
when they occyrmay not be recognized or may be interpreted ifemdiht ways by a
digital circuit. As a result the digital circuit may behave unexpectédtily period of this

time uncertainty of a transition can be interpreted as “delay”, and unexpected

phenomena in a digital circuit due to the existence of delays are called “hazards’. T

Background 24

avoid such hazards, we must wait and evaluate digital signals only at well-defined
reference points. Generallygligital design methodologies fall into two categories
according to how these reference points are defined. The synchronous design
methodology uses global clock signals as reference points, whereas the asynchronous
design methodology employs the elapse of time or local control signals as reference

points.

Historically, most early asynchronous designs used the elapse of time as reference
points, based on someal delay assumptions on circuit elements or wires. The design
process is much the same as synchronous design. It postulates many local clock signals
based on the elapse of time between the changes of circuit signals. These postulated local
clock signals are used to define reference points, which can be variable and controlled by
adjusting delays in circuit elements or wires. Though mufdrteias been expended
during the last three decades on this design approach, there are some fundamental
problems that are hard to deal with. As a result, this design style is viewed as less
disciplined and more anarchic than synchronous design, and this view has frightened

most designers away in the past and still generates an adverse reaction.

However most current asynchronous designs have abandoned the old ad hoc method
based onreal delay assumptions on circuit elements or wires. Instead, they use
unbounded delay assumptions, which means a circuit always operates correctly under
any distribution of circuit element delays or wire delays. Though this seems very
pessimistic, it resolves all the delay-related problems that would otherwise arise. At the
same time, the performance of a circuit is not compromised and even may be improved

since concurrent operations can easily be exploited. Another benefit is that the circuit

Background 25

correctness issue is separated from delays and as a result circuit verification becomes
easy which is increasingly important for a complex system. Current asynchronous

design is very systematic and well disciplined.

2.2 Basic concepts

A few key concepts and a taxonomy of asynchronous design are introduced and defined
informally here; these are fundamental to the understanding of asynchronous design.

Formal definitions are beyond the scope of this thesis and can be found elsewhere.

2.2.1 Delay models

The bounded delay model assumes that there is an upper bound on the delay of a circuit

element or a wire.

The unbounded delay model assumes that there is no upper bound on the delay of a

circuit element or a wire.

2.2.2 Circuit classification

Timed circuits are circuits whose correct operation is dependent on the delays in circuit

elements and wires.

Soeed-independent circuits are circuits whose correct operation is independent of the

delays in circuit elements, and wire delays are assumed to be zero.

Delay-insensitive circuits are circuits whose correct operation is independent of the

delays in both circuit elements and wires.

Background 26

Quasi-delay-insensitive circuits are delay-insensitive circuits augmented with isochronic

forks.

(Isochronic forks are sets of interconnecting wires where the deldgrdifice between

the branches is zero or negligible compared to the circuit element delays.)

2.2.3 Hazardsand races

A static hazard is a single transition of a signal which should remain constant.

A dynamic hazard is a multiple transition of a signal which should change only once.

A function hazard is inherent in the specification of the logic function.

A logic hazard depends on the particular implementation of the logic function.

An essential hazard is inherent in the specification of the finite state machine.

A non-essential hazard (also called aace) depends on the particular state encoding.

A noncritical race is whereall transient states settle to the same final state.

A critical raceis wheredifferent transient states may lead to théd#nt final states.

2.2.4 Metastability and arbitration

The metastability problem [27] is the phenomenon of the unusually long delay in the
logic decision time between two values 0 and 1 for bistable systems such as flip-flops.
When two asynchronous inputs to a bistable system arrive at very nearly the same time, a
discrete decision must be made from a continuous range of input possibilities. It is
fundamentally impossible to make this decision reliably within a bounded time. The
delay may theoretically be an indefinite amount of time [28-B8fitration is the

mechanisms whereby a bistable system responds to either one input or the other

Background 27

Though metastability is an inevitable problem, the resulting metastable states can be

resolved internally to maintain valid logic levels at the circuit interface using analog

circuit techniques. Thmutual exclusion couit (MUTEX) [31] has this property and is

used for making a non-deterministic decision between asynchronous calling requests.

It is worth noting here that the probability of failure of synchronous designs can never be
zero and it must be accepted that whenever an asynchronous signal is input there is some
chance of failure, though the probability can be made small with careful design
technigues. Howevethis is not the case in asynchronous designs; an asynchronous
circuit can be designed always to operate corretttbugh it will require an unbounded

time to resolve in the worst case.

2.2.5 Circuit specifications

Generally speaking, there are two broad classes of asynchronous design specification

styles: state-based and event-based approaches.

Asynchonous finite state specificatioaseHuffman state machind82,33] or extended

Huffman state machines such Bsrst Modestate machine [34,35]. Hufnan circuits

operate infundamental modevhich assumes that only one input can change at a time,

and succeeding input changes must not occur until the entire circuit settles into be a
stable state. Relaxing the condition of only one input change in fundamental mode,
burst-mode circuits allow multiple input changes as a burst. Another operation mode is

called theinput/output mod¢36], which assumes that further external input changes can

be applied as soon as the expected outputs have responded the currefbiabstate

specification$37,38] are referred to &duller state graphsfrom which the semantics of

Background 28

event-based models are deriveltace theory [39,40] is an abstract and formal

description of a Muller state graph.

Event specificationare referred to as Petri Net [22] specifications, and include I-nets

[41], Signal Fansition Graphs (STG) [42,43], and Change Diagrams (CD) [2Ré4].
Net specifications are a mathematical formalism to describe the behaviour of systems

with concurrencycausality and conflicts between events.

I-netsare restricted Petri Nets in which interface signal names are assigned to transitions.

Signal Tansition Graphsare interpreted Petri Nets whose transitions are labelled as

signal value changes. Similar to STGhange diagramsire interpreted Petri Nets, but

allow OR-type signal transitions and disengageable arcs for nonrepeating signal

transitions.

2.2.6 Signalling protocols

A handshakes a procedure where one signal (the request signal) makes a transition and

a second signal (the acknowledge signal) makes a transition as a response.

Links are sets of request and acknowledgement wires used for communications through

handshaking between tfent blocks.

The two-phase[20] protocol uses one handshake along a link for one transaction

between two blocks. As a result, rising and falling signal transitions are equivalent,

The four-phase[17-19] protocol uses two handshakes along a link for one transaction

between two blocks. There are variant schemes (see chapter 5) based on this protocol.

Background 29

2.2.7 Datarepresentation

Bundled data [20] comprises a set of data wires and an associated control signal that
indicates the validity of the data. The data wires and the control wire are constructed
such that stable data are available at the receiver before the control signal makes an
indication of valid data. The relationship between the data and control delays required to

ensure correct operation is referred to asthmgling constraint.

Coded data systems hide timing information in the data itself. There are many ways to
encode data [45]. One well-known method is dbel-rail code [46] that requires two
wires to encode a single bit of data. A transition can occur on either one wire or the other

and not on both wires.

2.2.8 Synthesis

The type of specification usually determines the style of synthesis which can be used to
generate the asynchronous circuit. State-based and event-based specifications have
corresponding synthesis approaches: state-based and event-based synthesis. These twa
synthesis approaches are often used to design controllable asynchronous modules. Once
a set of asynchronous modules is at handglasynchronous systems can be built up

from these modules. Syntax directed program translations for specifications using CSP
like programming languages [47] such asndram [48] are examples of this approach to
building circuits from a library of modules. Although state-based or event-based design
techniques can be applied directly togmrasynchronous systems, they have not been
very successful and practical for VLSI applications. Note that some designs are

combinations of state-based and event-based design approaches.

Background 30

2.3 Sutherlands micropipelines

Micropipelines were introduced by Ivan Sutherland in his 198&d Award lecture
[20], and are a framework for building asynchronous pipelines. Micropipelines are
composed of a bounded delay datapath operated by an unbounded delay two-phase

control circuit.

Data passes on a bus from sender to receiver and is associatedRagbest wire
indicating when the data is valid. There isfaknowledge wire from the receiver to the
sender which indicates whether the data has been received. (see figure 2-1). The data
wires and the request signalling wire must be treated as a bundle; the data must reach the
receiver prior to the request event. Rising and falling transitions of request and

acknowledge wires are equivalent, carrying the same information.

Request
Data \
Sender /| Receiver
< Acknowledge

Figure 2-1: A bundled data interface

2.3.1 Event contol modules

Figure 2-2 illustrates a basic set of event control blocks proposed by Sutherland which
can be “programmed” to build complex and powerful asynchronous systems. These

basic building blocks were designed using I-nets [41].

Background 31

— - o —

o

—-rl —{rl gl—-
~t—d1l dlj--—

:

SELECT
True False

CALL
ARBITER

d2|—

Figure 2-2: Micropipeline event logic modules

TheXOR gate acts as the OR function for events. A transition on either input results in a
transition on its output. For correct operation events must not arrive simultaneously on
both inputs. XOR modules are often calM&ERGE elements because they getwo

event streams into one.

The Muller C-gate acts as the AND function for events. A transition will occur at the
output only when there have been transitions at both of the inputs. Muller C-gates are
often calledRENDEZVOUS elements because they make events at the output wait until

events have been received on both inputs.

TheTOGGLE module steers incoming events to its outputs alternately; the first event to
arrive is issued to the output marked with a dot, the second to the unmarked output, and

SO on.

The SELECT module steers incoming events to one of two outputs according to the
Boolean value of its diamond input. The Boolean value must be set up before the

incoming event that it steers, a requirement similar to the bundling constraint.

Background 32

The CALL module allows two processes to share a common resource, similar to a
procedure call in software. The calling processes must be mutually exclusive; if they are

not, they must access the call block through an arbiter

The ARBITER module is used to control the interaction between two asynchronous
event streams. As the two streams can issue requests at any time, the arbitration logic is
inherently prone to metastabilitfhe metastable states must be resolved internally to

maintain valid logic levels at the interface of the module.

2.3.2 Event-controlled storage element

Event-controlled storage elements are needed to build a complete micropipeline circuit.
Figure 2-3 shows an implementation of an event-controlled storage element and the

symbol used to denote it.

Capture , Pass
! q ' Done ‘ T
|
| | C * Pd
Din . 3 Output o =
' N e——— —5 5 &~
| [t §
b O
| | Cd P
CaptureI | ! T
Done | . Pass

Figure 2-3: Event-controlled storage element

The input is initially connected to the output; it is transparent when empty and does not
behave as a storage element at all. An event on the “capture” wire flips the two switches,
and as a result a loop is formed containing two inverters, causing the data to be latched.

This loop is still connected to the output, which therefore carries the previously latched

Background 33

value and does not follow subsequent input changes. An event on the “capture done”
wire is issued after the switches have flipped. An event on the “pass” wire flips the other
switch and as a result the element is returned to the transparent state and ready for the
next coming transaction. Similaylgn event on the “pass done” wire is issued after the

switch has flipped.

2.3.3 Micropipeline FIFO

A micropipeline with no processing in it, which is simply a FIFO, can be built as shown
in figure 2-4. A data value can be entered into the FIFO from the left by signalling an
event on th&in wire, whereupon it will ripple down the FIFO and eventually will be fed

out through the wir®out.

DELAY (CDELAY ——p——
Rout

(]
.

C
Pd
Cd

p

C
Pd
Cd

p

Dout

Din

g g g g
c o'y coyg o5 c o'y
)) { eSS Jpemn)S S ")
& g g &
O o o O

Cd
Pd
Cd

p
C
p
C
Pd

o)
©)

Ain Aout
—} (_DELAY DELAY - ——

Figure 2-4: Micropipeline FIFO

One of the elegant features of a micropipeline FIFO is its elastiiatya can be inserted

into or removed from a FIFO at any rate bounded from zero to a maximum defined by

the throughput parameteifhe maximum insertion rate at the input end and the

Background 34

maximum removal rate at the output end can be achieved at the same time. Hiowever

this condition, the percentage occupancy of the FIFO remains unchanged, and is
determined by how fast the request signal passes forward and the acknowledge signal
returns backward. If the request signal and acknowledge signal travel at the same rate,
which is the most common case for a micropipeline FIFO, the percentage occupancy is

only 50%.

Therefore, if we want to sustain high throughput for a long time, more FIFO stages
should be used than might be expected. This is why an asynchronous micropipeline

FIFO is often deeper than its synchronous counterpart for the same application.
2.3.4 Micropipelineswith processing

The simple micropipeline FIFO can be extended to interpose processing logic between
micropipeline FIFO stages, as shown in figure 2-5. The operation of this micropipeline
with processing operates in a similar manner to the micropipeline FIFOs. The delay in
the request event path must match the logic processing delay in order to preserve the data

bundling convention.

More complex structures including forking and gieg multiple pipelines can be built

with the aid of other event control modules.

24 The AMULET project

It is our belief that asynchronous designs should be justified not only on a theoretical
significance but also by their practical implications. This is also the motivation behind

the AMULET project.

Background 35

DELAY (CoELAY —p—
Rout

(ok

C
p
C
Pd
Cd
p

Dout

Din

E 3
4 é 4 4
S s s g e s 18 co 5
)= © 2 52 Zmmz 52 ZmmE £ ¢ Znm—)
= 0 a = 0 1 = 0 3 = 0
g & g g
O O O O

Cd
p
Cc
Pd
Cd
P
C
Pd

©)
1o

Ain 5 Aout
— - (DELAY) (DELAY) L -

Figure 2-5: Basic micropipeline structure

241 AMULET1 chip

In 1994 Professor Steve Furtee AMULET group at the University of Manchester took
delivery of the AMULET1 processprthe first asynchronous implementation of a

commercial processor architecture. The AMULETL1 chips are code compatible with the

ARM 32-bit RISC processor

The design used the two-phase micropipeline style and includes several novel features
such as the register locking mechanism [49], the instruction prefetching with its “colour”
management of non-determinism and the data dependent ALU operations [50]. The
chips were fabricated on two CMOS processes:panlprocess at ES2 and a Quih

process at GEC Plessey Semiconductors.

Table 2-1 shows a summary of the characteristics of the AMULET1 chips with those of
ARMG6 for comparison. The chips demonstrate robustness to variations in temperature

and voltage supplyThe AMULET1 chip demonstrated the feasibility of building an

Background 36

asynchronous digital system at the levels of complexity of current synchronous digital

systems.
Table 2-1: Characteristicsof AMULET1 [4]
AMULET1 (a) AMULET1 (b) ARM6
Process 1um 0.7pum 1um
Area (mnf) 55%x4.1 3.9%x29 4.1%2.7
Transistors 58,374 58,374 33,494
Performance 20.5 kDhry 40 kDhry 31 kDhry
Power 152 mW N/A 148 mW
MIPS/W 77 N/A 120
Conditions 5 volt, 20°C 5 volt, 20°C 5 volt, 20 MHz

24.2 AMULET2echip

Two years laterthe AMULET group took delivery of the AMULET2e embedded system
chip. AMULET2e is aimed at the embedded control market, and includes AMULET2 (a
significantly enhanced version of AMULETL1), 4 Kbytes of RAM which can also be
configured to operate as a cache, a cottmtar for real-time reference, a flexible
memory interface and various configuration and control registers. The design includes
several novel features such as the load and register forwarding, braysthptadiction,

and the “halt” mode. The design uses the foaise micropipeline design style. The

chips were fabricated in a Qun triple metal CMOS technology

Table 2-2 shows a summary of the characteristics of AMULET2e with those of ARM710
and ARMS810 for comparison. AMULET2e is the first asynchronous processor whose

performance and poweifficiency are competitive with the industry-leading clocked

Background 37

ARM designs. One remarkable feature of AMULET?2e is that the power consumption

drops to nearly zero with the “halt” function enabled.

Table 2-2: Characteristicsof AMULET2e[11]

ARM710 AMULET?2e ARMS810
Process 0.6um 2LM 0.5um 3LM 0.5um 3LM
Area (mnf) 32 41 76
Transistors 570,295 454,000 836,022
Cache 8 K 4-way 4K 64-way 8K 64-way
MIPS 23 40 86
Power 120 mW 150 mW 500 mW
MIPS/W 192 250 172
Conditions 3.3 volt, 25 MHz | 3.3 volt, 20°C 3.3 volt, 72 MHz

243 AMULETSI

AMULETSIi, an asynchronous embedded system chip which incorporates the third

generation asynchronous ARM processor (AMULET3), is currently under development.

Different from its predecessors, AMULET1 and AMULET2e, AMULETS3i is aimed to

be a commercially viable product for communication applications. This will be a

significant step (see chapter 7).

Background

38

Adder design 3

In this chapter a novel carry arbitration scheme is proposed (and has been patented) for
parallel adder circuits. The proposed scheme providediaie®ef encoding in which the

carry is generated by arbitrating several input carry requests, exploiting the associativity
of the carry computation. The new scheme not only leads to high speed adders due to a
reduction in the required layers of logic, but aldersfa regular and compact layout and
uniform fan-in and fan-out loadingso Wemonstrate the feasibility andesftiveness of

the proposed scheme, a 32-bit adder for AMULET3i has been designed. Post-layout
simulation, in a 0.35 micron triple metal CMOS techno)aows that it takes 1.8 ns to

complete the computation of a 32-bit addition.

3.1 Introduction

Addition is one of the most important arithmetic operations performed frequently within
both general purpose and digital signal processing systems. A problem with designing
high speed adder circuits is that the most significant bits of the result are logically and
physically dependent upon the carry output values from the least significant bits. The
consequence of this sequential dependency is that addition operations tend to be

relatively slow This has been widely recognized, and adder design has been studied

Adder design 39

extensively for decades. Generalthe basis of adder designs is still either carry
generation and carry propagation [51-55] or carry selection based on all possible results
being available [56,57]. In recent years carry free additions achieved by employing
redundant number systems have received considerable attention [58,59]. flortaio ef
develop adder circuits that are capable of operating at high speed a carry arbitration
scheme for parallel adders is proposed. The new scheme providdisiantefncoding

in which the carry is generated by arbitrating several input carry requests, exploiting the

associativity of the carry computation.

3.2 Carry arbitration

The interesting and di€ult task in an adder circuit is the computation of the carry bits.

For an addition of two 1-bit numbeasandb;, the carryc; can be evaluated as shown in

table 3-1. There are two general cases defined by the valagarufb;. The first case,

where there is a carry request, arises when both operand bits are equal. A 1-carry request
occurs if both inputs are 1, whereas a 0-carry request occurs if both inputs are 0. The
second case, where there is no carry request, arises when the operand bitéehent dif
values. The lettan indicates there is no carry request. Carry computation is similar to the
logic behaviour when connecting wirgsandb; together If they have the same value,

then the result follows. If they are fdifent, the result is undefined.

Table 3-1: Carry request

a, by G
00 0
11 1
01 u
10 u

Adder design 40

3.2.1 Two-way carry arbiter

One input pair may or may not make a carry request. If two input pairs (&, b;) and (g, by)
are considered together, they may issue carry requests at the same time. Therefore, there
is aneed to arbitrate these two carry requests. Figure 3-1 shows atwo-way carry arbiter.
The input pair (g, b;) can make a non-maskable carry request, where non-maskable
means that a carry request from the input pair (g, b;) must aways be granted service to
the output ¢;. The input pair (g, bj) can make maskable carry requests, where maskable
means that a carry request from the input pair (aj, bj) may be masked by the input pair
(&, by). Only when there is no non-maskable carry request from the input pair (a;, b;) isa
maskable carry request from the input pair (g bj) granted service to the output ¢;. The

truth table required to implement two-way carry arbitersisillustrated in table 3-2.

R
bj ———
Two-Way Ci
_ Carry Arbiter| ', W)
o

Figure 3-1: Two-way carry arbiter

Table 3-2: Two-way carry requests

a, by a, by G
00 -- 0
11 - - 1
01(or10) 00 0
01 (or 10) 11 1
01(or10) | O1l(or10) u

Adder design 41

The output carryc; can be encoded using two wires, (v) as shown in table 3-3.
Equations EQ-1 and EQ-2 satisfy table 3-2 and table 3-3.

Table 3-3: Dual-rail code

G Vir Wi

0 00

1 11

u 01 (orl0)
Vi=ab; + (& + by (EQ-1)
W, = ajb; + (3 + by)b (EQ-2)

Figure 3-2 shows a 4-bit carry computation using two-way carry arbiters. The solid dots
represent two-way carry arbiters. The carry output values of the high order bits is
generated by arbitrating carry requests from their low order bits. High order bit carry
requests have priority over low order bit carry requests. For any carry output bits, there
must exist a path to every low order input operand bits, which reflects the fact that the

carries shall propagate across all the way of the word length of the operands.

carry output

L
NW

A A A

Two input operands

Figure 3-2: 4-bit carry computation

Adder design 42

The proposed scheme is similar to bufetént from the scheme proposed by Brent and
Kung [52]. Firstly the computation logic needed for carry genemgteand carry
propagate; in the Brent and Kung adders is not necessary in our scheme. This leads to a
reduction of the required layers of logic and hence high speed carry generation.
Secondly only single-rail signals need to be routed instead of dual-rail signals if the
signalsv; andw; are predicted to be equal (which indicates that the carry has been
generated, either a 1-carry request or a O-carry request). This results in a reduction of
chip area, especially in the final row of the carry computation where more room is
needed to accommodate signals crossing from the least significant bits to the most
significant bits. Finally and more importantiyroup adders in a carry select adder can be

eliminated using the modified implementation of carry arbiters as we will see later

In fact, the Brent and Kung scheme can be viewed as a special encoding of our scheme
as shown in table 3-4. The two signal pags §) and ¢;, pj) generated from the input

pairs @, bj) and &, bj) can be seen as new input pairs. The new input gap;X issues

a O-carry request when they are both 0, a 1-carry request gvherl, and no carry
request whemp; is 1. Note thag; andp; are mutually exclusive. In other words, the case

of (g;, p;) with the value (1, 1) is removed by the Brent and Kung encoding.

Table 3-4: (g, p) carry requests

9, i (&, 1) 9, b (&, 1) Ci
00 (0 0) - (-9) 0
10(11) - (-9) 1

01(01lor10) 00(00) 0

01(0lorl0) 10(11) 1

01(01lor10)01(01or10) u

Adder design 43

The carry request outpuat is encoded here as shown in table 3-5. Equations EQ-3 and
EQ-4 give the behaviour defined by table 3-4 and table 3-5.

Table 3-5: The Brent and Kung carry code

Ci Vi, W,

0 00

1 11

u 01
Vi =0+ pig; (EQ-3)
Wi = pip; (EQ-4)

Equations EQ-3 and EQ-4 are the key ideas of the well known Brent and Kung adders. It
is clear that the computation logic for carry genegatad carry propagaf is wasteful

except for understanding how the carries are generated and propagated. By encoding the
input pairg; andb; to the carry generatg and propagatpg;, the advantage in our scheme

of some signals being routed in single-rail form is lost because the dual-rail gignals

andp; are always required in the Brent and Kung scheme.

3.2.2 Three-way carry arbiter

A three-way carry arbiter is shown in figure 3-3. As before, the input gaip;) can
issue a non-maskable carry request. The input pairk;X and &, by) can both make
maskable carry requests at any time, possibly at the same time. Hotheviaput pair
(a]-, bj) has priority over the input paiay b,). Only when there is no non-maskable carry
request from the input paia;(by) is a maskable carry request from the input Egiby)

granted service to the outpejit Only when there is no non-maskable carry request from

Adder design 44

the input pair & b;) and no maskable carry request from the input @,irbp is a

maskable carry request from the input paj 10,) granted service to the outpt

q_y
by ———

- Three-Way G
f3ij]—>— Carry Arbitef (Vi" W)
Y p
b—>———

Figure 3-3: Three-way carry arbiter

The truth table required to implement three-way carry arbiters is shown in table 3-6.
Equations EQ-5 and EQ-6 give the behaviour defined by table 3-3 and table 3-6.

Table 3-6: Three-way carry requests

a, by a, by 3y by Ci

00 -- -- 0

11 - - - - 1
Ol(or10)| 00 .- 0
01l(or10) 11 -- 1
01(or10)01(or10)| 00 0
01 (or10)| 01 (or10) 11 1
01(or10)01(or10)01(or10) wu
vi=aib+ (@ + (b + @+ b)ag (EQ-5)
W, = ajb; + (& + by)(ajb; + (& + by)by) (EQ-6)

Figure 4 shows a 9-bit carry computation using three-way carry arbiters. The addition of
an n-bit binary number using three-way carry arbiters can be performed in a time

proportional toO(logzn), and therefore is more feient than using two-way carry

Adder design 45

arbiters where the computation time is O(log,n). It is worth noting here that there is a
difference in complexity between two-way and three-way carry arbiters, which should be

taken into account when comparing them.

carry output

\
\

Two input operands

Figure 3-4: 9-bit carry computation

The algorithm as shown in the above diagram is very elegant, and follows avery smple
rule:

t=3; while(ci=u) {¢; =c t= 3t}
Heret isthe number of input pairs of carry arbiters used, and is three for this case. In the
bottom line, the carries are computed just by looking at the three bits and hold either u or
the correct carries. In the top line, the carry computation covers more bits and reach the
point where al of the bit positions have been examined, therefore all of the carries are

generated.

3.2.3 Carry arbiterswith morethan three ways

Using the same approach, carry arbiters with any number of pairs of input signals can be

derived. Theoretically, it will be appreciated that a single carry arbitration circuit could

Adder design 46

be responsive to pairs of input signalsn(> 3). Howevercarry arbiters with more than
four ways are not usually of practical interest. Firsihp many series transistors are
needed to implement these arbiters, which leads tbareeit CMOS designs. Secondly

the arbiter cell layout can easily become togéddor the bit pitch of a datapath.

The circuit which implements a 9-bit carry computation as shown in figure 3-4 can be, in
fact, considered as a nine-way carry arbit@nich is built up using three-way carry

arbiters.

Now it may be questioned why the new term “carry arbitration” has been introduced to
describe a circuit whose function is purely combinational. The introduction of this new
term serves to explain the idea, since it ididift to use the conventional terms

“generate”, “kill” and “propagate” to describe the new coding.

In a sense, the new coding is a logically-redundant superset of the conventional carry
process. Departing from this general coding, certain modifications (which reduce the
redundancy) can easily be made where this simplifies the implementation as we will see

later in section 3.4.

3.3 Parallel prefix computation

In this section the verification of the adder design using the proposed scheme is carried
out formally by taking an n-bit addition using two-way carry arbiters as an example. Let
(& 8n-1, --+» &7) and by, b1, ..., by) be n-bit binary input operands with output carries

(Ch Cre1y -5 C1), @nd letcy be the initial input carry bit. ¥/define an operaton™ [60]

hereas follows:

Adder design 47

Lemma 1:

Proof:

Lemma 2:

Proof:

(a, b)o(@, b') = (@b + (a+ b)b', ab + (a + b)b')

a(cy, ¢y) if i =1

Let
(v, w) = L
O(a, b)) o(vi_y,w,_q) if 2<i<n

wherec; = a;b; + (a1 + bq)Cp.

Then ¢ =vi=w, fori=1,2,...,n.

We prove the lemma by induction on
It is obvious that the above equation holds true fot.
If i >1 andci_q =Vj.; =W;_q, then
(Vi W)= (&, by)o(vi.1, Wi-1)
= (&, b)o(Ci-1, Gi.1)
= (ab; + (g +by)ci-g, &by + @ +by)Ci-q)
= (G,)

Thus, the equation holds true by induction.
The operatord” is associative.

For any threedg, bs), (ay, by) and @, by),

[(as, bs)o(ay, by)lo(ay, by) =

[(agbs + (a3 + b)ay), (aghs + (ag + ba)by)]o(ay, by) =
(((agbs + (ag + ba)ay)(aghg + (ag + ba)by) +

((aghs + (az + ba)ay) + (aghz + (@3 + ba)by))ay),
((agbg + (ag + b3)a)(aghs + (a3 + by)by) +

((agbs + (a3 + b3)ay) + (aghz + (@3 + ba)by))by)) =

(((aghbs + (ag + by)aghy) + (aghs + (az + bg)(ay + by))ay),

Adder design

48

((aghz + (ag + b)aghy) + (aghs + (@3 + ba)(@y + by)by)) =
((agbs + (ag + bg)(axby + (8 + by)ay)),

(agbs + (ag + ba)(aghy + (3 + by)by))) =

(a3, ba)o(aghy + (8 + by)ay, axhy + (8 + by)by) =

(a3, bs)ol(@z, by)o(ay, by)]

Thus, the operatoro” is associative.

This lemma provides the foundation for using tree structures to generate carries since the
signalsv; andw; can be computed in any order from the given input values. This is the

key idea for the proposed scheme.
Lemma 3: The operatord” is not commutative.

This can easily be proved by inspection that (d(Q,)0) # (0, Op(1, 1). This lemma

implies that carry arbitration should perform in a prioritized.way

3.4 Implementation

Figure 3-5 shows a static CMOS implementation of a two-way carry ardiée that
the outputsv; and w; are complemented signals. Howevéhe arbiter is quite
symmetrical and implementing the next stage in inverse logic is straightforward. The

signals through two arbiters are naturally positive true, so no inverters are needed.

Figure 3-6 shows a pass-transistor based implementation of a two-way carry Bnister
implementation has an additional feature. The outpist zero if and only if the output
w; is zero, and the outpuwt; is one if and only if the outpwt is one. This provides

another view of the arbitewhen the outputg andw; are diferent this means that there

Adder design 49

_/I W,
A T A
e "
:' 4F :'
L
’—4[
by — L
a —» L
b —» :I E :I
g —» | IE |
1]]

Figure 3-5: Static implementation of a two-way carry arbiter

are no carry requests from the inputs as described previéustiiermore we can view

the outputy;, as the carry out generated with a one carry-in and the aymtpstthe carry

out generated with a zero carry-in. The implementation in figure 3-5 does not distinguish
which is the carry out generated with a one carry-in and which with a zero carry-in, since
each output can be zero or one independent of the other output. The AND and OR gates
in figure 3-6 serve as an input conversion from (0 1) to (1 0). The signals after these two

gates, e.g.q, z), take one of the three values (0 0), (1 1) and (1 0).

e

DT

311 O W
LD Dy

H O

Figure 3-6: Pass-transistor based implementation

Adder design 50

Three-way carry arbiters and feway carry arbiters may be advantageous if dynamic
CMOS techniques are used. Figure 3-7 shows a direct dynamic CMOS implementation
[61-63] of a three-way carry arbitdnstead of using a global precharcontrol signal,

local incoming input signals are used for this purpose. The operation of the circuit is
such that the nodesl andn2 are prechaed high when the inputg andb; are low

during the reset phase of the control handshake and will conditionally djsathating

the evaluation phase in a self-timed design. The inverters are required for the next stage

and also served to maintain proper drive strength.

VI Wi
A A
4
4
A A
ny ny
by —» I
A —» IC
b —» IE IE f
a} > I:] I I:]
1]
by — E = |
a: > ::I IF :a
1 1

L

Figure 3-7: Direct implementation of a three-way carry arbiter

Figure 3-8 gives a modified version of the three-way carry arbiter by reducing the
redundancy of the new coding.eVdssume here that every input pair takes one of the
three values (0 0), (1 1) and (1 0), and (0 1) has already been transformed to (1 0) as

described previouslyfhe outpuy; is the carry out generated with a one carry-in and the

Adder design 51

outputw; is the carry out generated with a zero carry-in if no carry requests issue from
input signals. This results in the elimination of group adders in a carry select adder (see

section 3.6) and is the main feature of our scheme.

However the use of the modified implementation needs the input conversion from (0 1)
to (1 0). Fortunately this causes no problem; the conversion is simple. It consists of one
2-input NAND and one 2-input NOR gate per bit. For practical reasons, gates are
normally necessary anyway to isolate the signals from the main input buses. The
difference here is that NAND and NOR gates are used instead of inverters. If the two
input buses are designed using a preggmistructure, the outputs from the NAND and
NOR gates are naturally low (as required in the dynamic implementation) when the
buses are prechgad high. Furthermore, these NAND and NOR gates can be reused for

logic operations in an ALU design.

JE—C
A A
ny no

b, —» I
A —p. IC
b —» I I

: 1]
Sj > :EI

| » ||_| ||:|
8 —» IC

Figure 3-8: Modified implementation of a thee-way carry

Adder design 52

It could be questioned here whether there is a refaréifce between this new scheme
eliminating the value (0 1) compared with the Brent and Kung scheme which does not
use the value (1 1). How can we claim that the new arrangement without the formation of
generate and propagate terms has an advantage after adding initial NAND and NOR
gates? The answer lies in observing that the constraint of not using the value (1 1) is
inherent in the Brent and Kung scheme and therefore an initial formation of the generate
and propagate terms is required, whereas the constraint of not using the value (0 1) in the
modified implementation of the carry arbitration scheme is introduced as an optimization
rather than enforced. The optimization leads to the benefit of eliminating group adders in

a carry select adder (see section 3.6) and also results directly in a simplified circuit.

3.5 Refinement of the Manchester carry chain

One simple application of the new scheme is given in this section, where it is used to
refine the Manchester carry chain. In the next section, another application is given,

which is to simplify the design of carry select adders.

A wide variety of addition schemes and their implementations are available to serve
different performance/cost requirements. One of them is the well known Manchester
carry chain [31], which is often found in custom datapaths combined with the carry skip
scheme. However a problem with the Manchester carry chain is that too many pass
transistors are in series along the carry chain, which degrades the performance especially
in CMOS designs with a low supply voltagea dvoid this problem, btdrs are usually

used to divide the carry chain into several sets of series pass transistors as shown in

figure 3-9.

Adder design 53

Figure 3-9: Manchester carry chain with buffers

Instead of using btgrs to limit the number of pass transistors in series, the carry chain
can be rearranged using the part of the circuit in figure 3-6 based on the concept of carry
arbitration. Figure 3-10 shows a new carry chain in which the output of one set of series
pass transistors is connected to the control gate of the next stage. By so doing, we avoid
the series connection of pass transistors without any overhead. It is worth noting that a
double pass-transistor logic design style [64] should be used in order to exploit this new

carry chain fully

- e’
a a
=) =]

Figure 3-10: Manchester carry chain without buffers

Obviously this new implementation of the Manchester carry chain can be derived
directly from the truth table without any knowledge of the carry arbitration scheme. The

new implementation was found during the development of the carry arbitration scheme.

Adder design 54

3.6 Simplification of carry select adders

Figure 3-11 shows an adder design using the conventional carry select scheme [57]. The
inputs are divided into d-bit (or possibly variable width) groups. Two d-bit adders are
needed per group. One is an adder with a zero carry-in and the other with a one carry-in.
The carry generator is responsible for generating the boundary carries for all groups,

which are then used to select the appropriate sum using a multiplexer.

Co
—> d-bit adder
‘5)
B| e d-bit adder
. |2 -
] [] [] -l‘g
3 O . . ol
= Z” C ° ° 5
o — S
@)
d-bit adder
—>
d-bit adder

Figure 3-11: Carry select adder

Design decisions must be made to choose the appropriate group widths in order to
balance the worst case delays of both the carry generator and the group adders. If the
group adders are made too long, the decreasing delays in the carry generator are
exceeded by the increasing delays of the group adders. If the group adders are made too
short, the logical complexity of the carry generator increases and its delay determinesthe
total adder delay. Usually a mechanism for carry computation with low complexity, such
as the Manchester carry chain, is chosen in the group adders. So the group cannot be

made long (normally less than or equal to 8 bits) dueto itslinearly increasing delay. This

Adder design 55

leads to the increasing complexity of the carry generators. Carry generators designed
using conventional approaches consume much chip area and power as well as limiting

the ultimate performance that can be achieved.

If carry arbiters, modified according to the circuit in figure 3-6 or figure 3-8, are used as
elements to design the carry generatioe group adders can be eliminated as shown in
figure 3-12. The outpw is the carry out generated with a one carry-in and the owfput

is the carry out generated with a zero carry-in if no carry requests issue from input
signals. Choosing the length of the group adders becomes unnecessary since the group
adders are not required at all. This results in a significant reduction of chip area,
especially when the groups are made long, since group adders also need a mechanism for

carry computation.

boundary carry

v (ct Sé
w (C S

°
[

boundary carry ®
1
e
w (C S

Figure 3-12: New carry select adder

Mux

outputs

inputs
Carry Generator

Mux

The intermediate signalg and w; in the carry generator are elegantly reused for
generating the two intermediate sums. If the signasdw; are equal (meaning that the
carry has been generated), the final result is independent of the boundary carry since the

two intermediate sums are equal. If the signalsand w; are diferent, the two

Adder design 56

intermediate sums with the signajsandw; as inputs are those with a one carry-in and a
zero carry-in, respectivelyrherefore the boundary carry can choose one of these two
intermediate sum results to use as the final sum result. It is clear that these two
intermediate signalg andw; have dynamic meanings, and this is the main feature of the
proposed scheme. It is worth noting that the carry generator itself is much simplified and

optimized by using the proposed scheme

3.7 Adder design for AMULETS3i

A 32-bit adder for AMULET3i has been designed, using the architecture in figure 3-12,
to demonstrate the proposed scheme. The whole adder is visualized (but not divided) as
consisting of four 8-bit long groups. Figure 3-13 illustrates the block diagram for the

AMULETS3i adder

1st 2nd 3rd 4th 5th
O 210 (2|0 |20 PPlO O -0
Y A

5| [jgm O 15-8

]
(G0
]
=
N

1 T 1 e

O 210 |20 |2/0 PO [T O -1
sBe D jﬁ
1 T 1 1 Jed

O D10 (210 |20 P10 [T O n-2
s "D jﬁ

Figure 3-13: AMULET3i adder block diagram

Adder design 57

The AMULET3i adder compromises one row of conversion circuits containing 2-input
NAND and NOR gates and two rows of three-way carry arbiters to generate all the
intermediate signals; and w;. Additionally, two extra three-way carry arbiters are
needed to compute the boundary carries. These operate in parallel with the XOR gates

(the 4th and 5th levels are mostly operating in parallel).

3.8 Circuit design

An efficient three-way carry arbiter design is the key to the whole adder design. The
dynamic implementation of a three-way carry arbiter as shown in figure 3-8 was initially
chosen since dynamic circuitsf@f the benefits of increased speed and lower switched
capacitance. Howevedynamic circuits are sensitive to noise when both the NMOS pull
down and the PMOS pull up networks are in tHestzfte. Additional devices as shown in
figure 3-14 are, in practice, incorporated into dynamic circuits to combat noise. There is
then the problem that the dynamic circuit with the additional device might demonstrate a
considerable performance disadvantage since the NMOS pull down network must

overdrive the additional device.

N or

Figure 3-14: Devicesfor dynamic circuits

We look firstly at the static implementation of a three-way carry arbiter as shown in

figure 3-15 before moving on to an alternative implementation. In the case of this fully

Adder design 58

complementary CMOS circuit, the size of the p-type transistors should be 2 ~ 3 times
greater than that of the n-type transistors to compensate for the typically 2 ~ 3 times
slower speed of the p-type transistors. As a result, this circuit consumge arksa and

is quite slow due to its lge input capacitance. The problem can easily be solved by
making the size of all the p-typed transistors minimum. Howehisrchange makes the

rise time of the circuit dramatically increase.

W, T v
A :1][A
r 0
:11|_
I_l
: h
I
AT n,
b —» [
Y —» i
b — Iﬁ Iﬁ
g4 —» Ig
b —» E [
1]
g —» B

Figure 3-15: Static Implementation of athree-way carry arbiter

The original idea of dynamic circuits can be reintroduced here but all the p-type
transistors are retained. Figure 3-16 shows a new implementation combining both static
and dynamic circuit propertieswd p-type transistors P1 and P2 are introduced for
prechaging. While this may seem like a foolish idea at first, it has some merit. Although

the new implementation is almost the same as the static implementation apart from the

Adder design 59

two extra p-type transistors at the circuit level, the operation of the two circuitsis totally

different.

All the p-type transistors except these two precharge transistors are minimum sized in
the new implementation. The p-type transistors in the original static implementation
should be oversized by 2 ~ 3 times compared with the size of the n-type transistors to
keep the rise time in line with the fall time. The large input capacitance due to the
oversized p-type transistor therefore requires a previous stage with more drive strength.

Thisinevitably results in degraded performance and increased power consumption.

Wi 1 Vi
A :1{ A
N “ -
_Ip . P2l
I_l
" "
iy 4L N,
b —» I
A —» I
b, —» I I
: 1]
?,j > :EI
H [| Ir
' 1]
% —» L

Figure 3-16: New I mplementation of a three-way carry arbiter

The new implementation behaves both statically and dynamically, thus having the

advantages of these two types of circuit. The transistors marked with an asterisk can, in

Adder design 60

fact, be eliminated. This veryfifient carry arbiter circuit provides a firm foundation for

the realisation of a high speed AMULET3i adder

The three-way carry arbiter shown in figure 3-16 was analysed using HSPICE on
extracted layout under the conditions of 3.3 volt supply voltage andCl@mperature.

The simulation results are given in table 3-7. The estimation of power consumption of a
circuit is difficult since it is a function of not only its inputs but also of their histiéoy

the sake of simplicitythe power consumption was measured under the assumption of

100% input activity

Table 3-7: Simulation results of thethree-way carry arbiter

delay power
72uW @ 100 MHz
typical process case 0.35ns 153 W@ 200 MHz
71uW @ 100 MHz
worst process corne 0.44 ns

148uW @ 200 MHz

3.9 Layout design

The technology on which the AMULETS3i adder is based, is a 0.35 micron triple metal

CMOS process. The minimum drawn width is 0.4 micron.

The layout of the AMULETS3i adder uses a full-custom style for the datapath, where the
circuit and layout are optimized. The bit pitch in the datapath As Bita flow is routed
horizontally in metal3, while control flow is relayed vertically in metal2. Metall is used
for local interconnections in cells. The global power rails use metall and metal3, and the

local power rails use metal2.

Adder design 61

3.10 Evaluation

An evaluation of the AMULETS3i adder in terms of performance, power consumption

and silicon area is presented in this section.

3.10.1 Performance

The critical path covers one NAND/NOR gate stage, three three-way carry arbiter stages
and one multiplexer stage. The critical delay is about 1.8 ns under worst-case conditions
(Vdd = 3.3V Vss=0.1V, slow-slow process corneat 100°C temperature). This results in

a 460 MHz computational speed with a 20% engineeringimar

3.10.2 Power consumption

The estimation of power consumption is didifit problem as it is a strong function of

the inputs and their histanA rough estimate of power consumption is given based on
some assumptions. It is highly unlikely that all data bits will change for every data value.
Based on the assumptions that half the data bits on average will change and that the
dynamic switching power is 90% of the total poyibe power estimate of the datapath is
about 8 and 17 mW operating at 100 and 200 MHz (under typical process conditions),

respectively

3.10.3 Silicon area

The silicon area of the datapath is 68& 2624\ (137.2% 524.8um?). Figure 3-17
shows the physical layout of the datapath of the AMULET3i adaied illustrates its

regular structure.

Adder design 62

Figure 3-17: Physical layout of the adder datapath

Adder design 63

3.11 Summary

A carry arbitration scheme is proposed (and has been patented) for parallel adder
circuits. The proposed scheme provides ditieft encoding in which the carry is
generated by arbitrating several input carry requests, exploiting the associativity of the
carry computation. The new scheme not only leads to high speed adders due to the
reduction in the required layers of logic, but aldersfa regular and compact layout and

uniform fan-in and fan-out loadings.

CMOS implementations of carry arbiters have been derived and modified. The meaning
of the modified version is twofold. If the intermediate signglandw; are equal, it
means that the carry has been generated. If they &eedif it means that there are no
carry requests from the input signals. The intermediate sigrain be viewed as the
carry out generated with a one carry-in and the intermediate signassthe carry out

generated with a zero carry-in.

A new implementation of a three-way carry arbiter has been developed, which behaves
both statically and dynamicajlyhus having the advantages of both static and dynamic

circuits.

Two applications of the scheme are given in this chaPiee is to refine the Manchester

carry chain. Another is to simplify carry select adders.

A high performance, low power asynchronous 32-bit adder with a reasonable hardware
resource has been developed for AMULET3i, demonstrating the feasibility and

effectiveness of the new scheme. It takes 1.8 ns to completebd &adition and

Adder design 64

occupies 137.2 um X 524.8 um of chip areain a0.35 um triple metal CM OS technology.
The power estimate of the datapath is about 8 and 17 mW operating at 100 and 200 MHz

(under typical process conditions), respectively.

It is worth noting that the proposed scheme is general and can be applied to both
asynchronous design and synchronous design. The new scheme was used in the adder

design for the ARM Piccolo DSP processor [65].

Adder design 65

Multiplier design 4

This chapter presents the design of a multiplier for AMULETS3i. Attention is focused on
CMOS circuit design techniques.eVgtart with an introduction to basic algorithms for
multiplication. The asynchronous multiplier for AMULET2e is then reviewed, as this
formed the starting point for the design of the AMULET3i multiplignally, the design

of an asynchronous multiplier for AMULETS3i is developed which uses the modified
Booth's algorithm integrated with a new encoding technique for adjusting the product
result of an unsigned number multiplication. Post-layout simulation, in a 0.35 micron
triple metal CMOS technologyshows that it takes112 ns (2.8 nsx 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

4.1 Introduction

The general principle by which computers carry out multiplication is quite simple. The
multiplication of two 1-bit binary numbers is even simpler than addition since there is no
need for the carry to propagate. Consider the multiplication of two unsigned numbers
using the ordinary pap@nd-pencil method. Figure 4-1 illustrates a dot representation
[66] for the multiplication of two 8-bit unsigned numbers. Roughly speaking, the number

of dots reflects the amount of hardware in a parallel multiplier or the processing time for

Multiplier design 66

a serial multiplier The height of the dot diagram relates to the latency for carrying out
the multiplication. The papemnd-pencil method comprises two distinct steps. Fjrally

the partial products are generated simultanepusign they are added together
proceeding column-wise from right to left. Although conceptually simple, a direct
mechanical implementation of the pajaed-pencil method would lead to a very

inefficient design [67] due to the asymmetry betweefediht columns.

Multiplicand e ©6 6 6 6 06 0 o
Multiplier ® 6 6 6 6 0 © o
® © 6 6 06 0 0 O
® ©6 6 6 6 6 & o
® 6 6 6 06 06 0 O
® © 6 06 6 0 0 O
® 6 6 6 06 06 0 o
® © 6 6 06 0 0 o
® 6 6 6 06 06 0 O
® ©6 6 6 6 06 0 o

Figure 4-1: Dot representation of 8 x 8 bit add and shift multiplication

Looking row-wise, there is a degree of symmetry in terms of the number of dots, though
they have dierent weights in each row is thus desirable to proceed row-wise from top

to bottom for VLSI implementations, either sequentially or using parallel hardware. The
scheme derived from a straightforward application of the papepencil method is
essentially a process of repeated adds (conditionally adding the multiplicand to a running
partial product) and shifts. Therefore there are two basic approaches to improving the

speed of multiplication: making each addition fas@nd reducing the number of

Multiplier design 67

additions required. An additional technique is to use an “early out” scheme [68], which

depends upon the operands presented.

4.1.1 Making each addition faster

A simple multiplier using the scheme derived from the paperpencil method is
illustrated in figure 4-2. The multiplier and multiplicand are initially placed in regidters
and B, respectively; registeP which holds the partial product is initially 0. Each
multiply step consists of replacifigywith the sum oP andB (AND-gated by the least

significant bit ofA), and then shifting® andA together one bit right at a time.

* shift right
_
carry-out
| P | A | |

o
i®]
©
<

| B |

Figure4-2: A ssmplemultiplier

Obviously the time necessary for carry propagation imposes the ultimate limit on the
speed of addition and thus multiplication. All the techniques for faster adders can be
used here to speed up multiplication. Howewvaultiplication is a special case of
repetitive addition in which the intermediate results of all but the last addition are not of
any interest. So it is not necessary for the carries to propagate during every multiply step.

Instead, the carries generated during one step may be saved and used again in the next

Multiplier design 68

step with an appropriate shift. In this way partial sum and a partial (saved) carry
together present the partial product. Thus each multiply step needs only the time required
for a 1-bit addition since all the carry bits are passed from internal intermediate signals to
outputs. Only on the last step need the carries be propagated to completion instead of

being saved. A carry-save multiplier is illustrated in figure 4-3.

+ shift right
—_—

P]g L A | |
P |

CSA

g
-
~—(|

Figure4-3: A carry-save multiplier

Alternatively redundant number systems [58] can be used to achieve addition without
carry propagation.dke the radix-2 redundant representation as an example, which has a
digit set {1, 0, 1} wherel denotes -1. An n-bit redundant numier [y, 1,...,Yol has the

value nilyi x 21, wherey; belongs to , 0, 1}. This is similar to an unsigned binary
represlgnq[ation except thgtcan bel. The key idea to avoid carry propagation when
adding two redundant numbers is to set the intermediate sum to 0 or 1 when there is a
negative carry from the next lower order position and to set the intermediate sum to O or
1 when there is a positive carry from the next lower order position. By so doing, there is

no need to know the lower order carry to obtain the carry as the intermediate sum and

carry from the next lower order position cannot both be 1 and -1 at the same time.

Multiplier design 69

It is worth noting that since the partial product has been replaced by a partial sum and a
partial carry the carry-save scheme infeaft employs a redundant concept. The
difference is that the carry-save scheme uses the digit set {0, 1, 2, 3} instda0,df}

since the combination of a partial sum and a partial carry results in four values of

unsigned number

4.1.2 Reducing the number of additionsrequired

One way to reduce the number of additions required is to use multi-operand additions
(more than three operands), which can add many numbers simultanewsiedd of just

two or three at a time. A ®llace tree [69] is well known for its optimal computation
time. Howeverits implementation is often too expensive to justify the speed obtained.
Several tree or array structures derived from ttedlable tree have been proposed by

trading speed for regularity [70-72].

Another way to reduce the number of additions required is to skip over any contiguous
string of 1s and Os in the multipljesather than form a partial product for each bit. The

original Booths algorithm [13] is based on this idea.

Taking a 32-bit twe complement number as an example. A 32-bit signed word
(azqa3p --- @ ag) can be expressed as:
30
= -2%ay + 5 2'a
i=0
The principle of the original Bootdralgorithm is to rewrite this number as:
30 31

31
A=-2%a, + Z 2ia, = Z 21 (a_,—a) = Z 2k;
i=0 i=0 i=0

Multiplier design 70

wherea_; is a dummy bit that is equal to zero, &= a;_; - &) belongs to the digit set

of {1, 0, 1}. Thus, the original Bootls' algorithm may be viewed as a conversion of the
multiplier representation from a conventional code into a redundant code. The redundant
code is {1, 0, 1}, and the radix is two. The radix (rb-} @etermines how many bits (b) of

multiplier are retired in an iteration.

A redundant addition or carry-save addition scheme encodesutliplicand using a
redundant representation, while the original Baothigorithm encodes thaultiplier
using a redundant representation. It is worth noting that the radix of the algorithm and

the radix of the number representation are not the same concept.

A slightly different algorithm, called the modified Boathalgorithm [14], considers
groups of bits of the multiplier rather than skipping over arbitrarily long strings. The
multiplier bits are divided into two-bit groups. Three bits are scanned at a time, two bits

from the present group and the third bit being the highaer bit of the next loweorder

group.

The principle of the modified Boothalgorithm is to rearrange a number as:
30 15 15
A=-2%a, + z 2la, = z 22 (ay _ta,—2a,) = 2 221k
i=0 i=0

i=0
wherea_; is a dummy bit that is equal to zero, dad= ay., + ay; - 2ay,.1) belongs to

the digit set of {-2, -1, 0, +1, +2}. Thus, the modified Bosthlgorithm may be viewed

as a conversion of the multiplier representation from a conventional code into a
redundant code. The redundant code is {-2, -1, 0, 1, 2}, and the radix.i®\foadix 4

algorithm retires 2 bits of multiplier in an iteration.

Multiplier design 71

The modified Bootls algorithm is described in table 4-1.

Table 4-1: Modified Booth algorithm

Group Action
000 0
001 +1
010 +1
011 +2
100 -2
101 -1
110 -1
111 0

The modified Bootls algorithm is more commonly used than the original Beoth’

algorithm since VLSI implementations favour its fixed shift of the multiplier in each
iteration. The modified Bootk’algorithm halves the number of additions that have to be
performed compared with the simple paped-pencil method, therefore speeding up the

multiplication.

An additional technique that may be used to further reduce the number of additions is to
check in each multiply step whether the shifted multiplier register contains only 1s or Os,
and, if so, to terminate the multiply process eaNgte that the final result must be

correctly aligned.

4.2 AMULETZ2e multiplier

The AMULET2e multiplier has been described elsewhere [16], so only a summary is

presented here. Figure 4-4 shows tlgaorsation of the AMULETZ2e multiplier

Multiplier design 72

4-bits shift to right ‘BUSA

Control circuit

Cor— — P A reglster
8 least significant bits ' | |
I :
| BusB 4- blts shift to left
I 1
I
:— - — B reglster
I
I
. I
= |
R . Booth's
o .
o | Mux
© |
I
A |
' :- -} > P1&P2registers
|
| I
—_ — - L - = _|
Control signals;
o
N 4-2
I Counter
I
|
I
I

Al

S & C registers

r
|
|

Datapath

...

Figure4-4: AMULET2e multiplier organization

Multiplier design 73

[] The AMULET2e multiplier is a 32-bit normal multipliewhich means that the

final result is the least significant 32 bits of the 64-bit product. One benefit from this sort
of multiplier is that both unsigned and signed number multiplications give the same
result. The AMULETZ2e multiplier does not detect overflow and leaves it to software

either to constrain the operands to ensure there is no overflow or to perform explicit

checks (as required by the ARM instruction set definition).

[] The AMULET2e multiplier uses the modified Boathalgorithm. Wo stages of
the Booths algorithm are performed in each cycle by shifting four bits at a time. The
AMULET?2e multiplier employs an “early out” scheme, which depends on the operands

provided, hence achieving statistical speed improvement and saving power

[] An iterative structure was chosen combined with a pipeline technique in the
AMULET?2e multiplier to reduce the hardware cost by increasing hardware utilization.
The partial products in the AMULET2e multiplier remain at a fixed alignment to avoid
difficulty when selecting the final result in “early out” cases. Instead, the multiplicand

and multiplier shift left and right, respectively

[] The AMULET2e multiplier uses the high speed, low power true single-phase
clocking (TSPC) methodology and pass-transistor logic style. Novel 4-2 Counters are
used which are symmetric with respect to their inputs and outpatssi$tors with small

size were favoured for low power

[] The AMULET2e multiplier was designed in a ub three metal CMOS process
technology The layout is regular and compact with a datapath area of only 320

umz. The working chip has a 6.5 ns multiplier cycle tim#][1

Multiplier design 74

4.3 Multiply support for AMULET 3i

AMULETSI supports two classes of multiply instruction: a normal 32-bit result and a
long 64-bit result. Both types of multiply instruction can also optionally perform an

accumulate operation.

4.3.1 Normal multiply

There are two normal multiply instructions, producing 32-bit results:
MUL

The MUL instruction multiples the values of two registers togeth@ncates the result

to 32 bits, and stores the result in a third register
MLA

The MLA instruction multiples the values of two registers togetheds the value of a

third registertruncates the result to 32 bits, and stores the result into a fourth register

Both instructions can operate on signed or unsigned numbers since only the least
significant 32 bits of the product result are stored in the destination register and the type

of the operands does nofedt this value.

4.3.2 Long multiply
There are four long multiply instructions, producing 64 bit results:

SMULL & UMULL

Multiplier design 75

These two instructions multiply the values of two registers together and store the 64 bit
result in a third and a fourth registeFhere are signed (SMULL) and unsigned
(UMULL) variants. The signed variants produce dedént result in the most significant

32 bits if either or both of the source operands is negative.
SMLAL & UMLAL

These two instructions multiply the values of two registers togedddrthe 64 bit value
from a third and a fourth register and store the 64 bit result back into those (third and
fourth) registers. There are again signed (SMLAL) and unsigned (UMLAL) variants.

These two instructions perform a long multiply and accumulate.

4.4 Multiplier organization

The taget for the multiplier design for AMULET3i is a 2 times speed improvement
compared with the AMULET2e multipliewith a reasonable area increase. Latency and
chip area were considered the most important parameters to be minimized. The
AMULETS3i multiplier is not optimized for low power since multiplication instructions
are not very often used compared with other instructions for general purpose
applications. Howeverlow power was kept in mind during the development of the

design.

4.4.1 First design iteration

The first design decision was to use the modified Bsatlgorithm, processing 8 bits at
a time. The reasons are twofold. Firsthased on the evaluation of the AMULET2e

multiplier, this approach is likely to meet the speedearSecondlyan 8-bit scheme,

Multiplier design 76

just having four cases (caused by early outs) to choose from, simplifies the product result
select compared with the eight cases arising from the “early out” scheme with 4 bits at a
time. This dificulty was avoided in the AMULET2e multiplier by shifting the
multiplicand left while the partial product remains fixed, since the most significant 32
bits of a product result can be thrown awdgwever as the multiplier for AMULET3i
supports long multiply instructions, the fastilty cannot easily be avoided as the

multiplicand should remain fixed here while the partial products are shifted right.

The second design decision was to define an iterative structure for the AMULETS3I
multiplier. It is possible to implement a fast parallel 32-bit multiplieowever a
significant amount of hardware would be needed. On the other hand, serial multipliers
use less area but are quite sléwserial/parallel iterative structure was chosen as a good

compromise for the AMULET3i multiplier

The initial design is shown in figure 4-5. A 64 bit accumulate value can be used to
initialise one of the partial product regist&k andP2 (the most significant 32 bits and

the least significant 32 bits of an accumulate value a@pélirandP1H or P2L andP2H,
respectively). Multiplier data can be stored into the least significant 32 bits of either of
the partial product registeRl or P2. The most significant 32 bits of one of the partial
product register®1 or P2 is unused and should be initialised to 0. This initial version of

the design presents a minimum hardware requirement.

4.4.2 Encoding technique

As described previouslyhe multiplier for AMULETS3i should support both unsigned

and signed numbers. In fact, the modified Bao#lgorithm can also be used with an

Multiplier design 77

Multiplicand

¢
rrvy

4-2 counter)
final result

gl P
(4-2 counter) (F;eSTult SeAleCt>

A4
L P2H ¥ | P2L |
P1H P1L
—_—

shift 8 bits right per cycle

Figure 4-5: First version

unsigned system. For an unsigned number multiply operation, an extra action must be
performed to adjust the product result. The conventional equation of the modified
Booth’s algorithm for an unsigned number is, in the case of a 32-bit nutolearrange

an unsigned numbéy = (ag;azg ... & agp) as:

30 15 15
A = 281a, + Z 2la, = Z 2% (ay _,tay—2a, ,,) +2%ay = z 22k, + 2%a,,
i=0 i=0 i=0

wherea_4 is a dummy bit that is equal to zero, dQd= ayj.1 + ayj - 2&j,1) belongs to

the digit set of {-2, -1, 0, +1, +2}. Obviouslgn adjustment value (a multiplicand value)

Multiplier design 78

can initially be put into either registBiL or P2L to represent the term°’22131. However

this cannot easily be done since one of the regiBtHtsandP2L is used for the most
significant 32 bits of an accumulate value and the other is used for a multiplier operand.
One observation is that one of the registtkl andP2H is for the least significant 32

bits of an accumulate value and the other is left unused. The new idea introduced here is

to put an adjustment value in one of the regigtdtd andP2H.

A signed or unsigned number can be expressed as:

30 15 15
A= 2%ay+ Y 2a = Y 22(by by, —20y) tag = Y 2%k +ay
i=0 0 i=0

| =
whereby = 0,b; =g (1<i < 31), andbs, = sign x az;. Thesign bit indicates that signed
numbers are used if it is 1 and unsigned numbers are used if it is 0. In thianvay

adjustment value can initially put into either regif&H or P2H to present the term@y,

4.4.3 Second design iteration

From figure 4-5, a multiply cycle should cover the delay of two 4-2 Counters, one Booth
mux cell and one registein order to improve the speed, a common pipeline technique
can be used, as shown in the figure 4v6o &dditional pipeline registers are added to the
initial version. This does not cause a big increase in hardware since part of registers can
be meged eficiently into the preceding 4-2 Counter as we will see later in the circuit
design. Howevetthe pipeline register causes a one clock cycle skew between the partial
products and the signals before the pipeline registers since the partial product registers
are shift registers. A multiplexer can be used before the partial product registers to solve

the skew problem as is frequently done in clocked designs. The alternative approach is to

Multiplier design 79

Multiplicand

¢

Booth Mux

rry

4-2 counter

¢

Y |
Pipeline register
final result
— l A
(4-2 counter
Y
L P2H ¥ | P2L |
P1H P1L
.

shift 8 bits right per cycle

Figure 4-6: Second version

use gated registers (conditional clocking) for partial products. Only on the first cycle are

the partial registers disabled and the contents of the registers remains unshifted, therefore

the partial registers are naturally aligned with the incoming signals from the pipeline

registers after the first cycle.

The first approach (using a multiplexer) will ®ufa hardware overhead, whereas the

second approach (conditional clocking) will violate the high speed true single-phase

Multiplier design 80

clocking methodology we will use in the circuit design as the clock signals for the
pipeline registers and the partial product registers have to be separated due to the gated
clock requirement for the partial product registers. The two above approaches were

heavily influenced by the clocked design methodalogy

In fact, the skew problem can easily be solved within the asynchronous framework by
making the pipeline registers initially transparent. It will be seen that the first cycle time
must cover the whole path delay just as in the non-pipelined case. Hpthiessdoes not
matter for an asynchronous design which can have variable cycle times. This is an
example of how nicely an asynchronous design can solve problems which can only be

solved with much ébrt in clocked designs.

Another change is that a final shifter for “early out” cases is not used since there is
difficulty in the layout stage. Though the number of tracks for buses is ten per bit pitch,
six buses must be reserved for global use and only four local buses are available for the

multiplier. As a result, the final result can be quickly shifted out instead.

4.4.4 Sign extension

Due to the two negative terms (-1 and -2) in the modified B®allgorithm, the sign bit

(the most significant bit) of the partial products has to be extended up to the most
significant bit of the expected result. This means that in a real circuit implementation the
sign bit has to be broadcast up to the most significant bit of the expected result and this
may cause both decreased circuit speed, since a heavy capacitance load arises from the
high fan-out of the sign bit, and increased layout area. The scheme presented below

avoids these drawbacks.

Multiplier design 81

Consider a numbeh,; of ak-bit signed partial produdk = (a_18y.» ... § ag), Which
must be sign extended byits. Its value is:

s+k—-2 k

2
— _os+k-1 ! i
Aext = =2 1t D 2t) 2a

K—1 i'=0

The above equation can be rearranged as:

s+k-1 k-2
Ay = Z 20+ 2k-1(1-a,)+ z 2'a,
k-1 i=0

From the equation, instead of direct sign extension, constant 1s (the first term) can be
added at the most significant skit positions of the numbeXk.,; and the invertedy_;
(the second term) replaces the origma]. All the constant 1s of the partial products can

be pre-calculated as a adjustment value.

4.5 Circuit design

The true single-phase clocking (TSPC) methodology [15] and pass-transistor logic style
[73-77] were chosen for the circuit design in order to achieve high performance and low
power One main advantage of the true single-phase clocking methodology is that the
clock skew problem of complementary phase or multi-phase clocking schemes is
avoided. Another advantage is its low power consumption as only one enabling signal is

required. Pass-transistor logic style is flexible for the design of arithmetic components.

4.5.1 Booth mux cell design

The modified Bootls algorithm examines three bits of the multiplier at a time to
determine whether to add 0, +1, +2, -1, or -2 times the multiplicand. The Booth mux cell

performs this function, and it steers the appropriate multiplicand value to the output.

Multiplier design 82

Figure 4-7 shows the circuit of the Booth mux cell used in the AMULETS3i multiplier

Some dfiort was expended to ensure that only one path from the input to the output is on

at any time, minimising short circuit currents for low power reasons.

+1* -1* +2* D%
Mi Igg] {>¢ Outi
M, S
Mi+ 1 E‘E}'
* &
Mg o<
+1 -1 +2 -2

Figure 4-7: Booth mux cell

The Booth mux cell was analysed using HSPICE on extracted layout under the

conditions of 3.3 volt supply voltage and 1@ temperature. The simulated results are

given in table 4-2. The estimation of power consumption of a circuitfisutifsince it is

a function of not only its inputs but also of their histdfgr the sake of simplicityhe

power consumption was measured under the assumption of 100% input.activity

Table 4-2: Simulation results on the Booth mux cell

delay power
41pW @ 100 MHz
typical process case 0.61 ns 87 IW @ 200 MHz
WOrst process cornet 37uW @ 100 MHz
0.72 ns

78 UW @ 200 MHz

Multiplier design 83

45.2 4-2 Counter design

4-2 Counters [78-82] are used to speed up the partial product compression process. The
main advantage of 4-2 counters over the more familiar 3-2 counters (i.e., full adders) is
that their structure is analogous to a binary tree, which leads to regular layout and
improved speed. Logicallya 4-2 counter consists of two full adders as shown in figure 4-

8 and has four XOR gate delays. Since@bet signal is independent of tit&n signal,

there is no propagation problem when several 4-2 counters are abutted into the same
row; this is the key idea behind 4-2 counters. A 4-2 counter is similar to beredif

from a 5-3 counterA 5-3 counter has three flifent weights for the outputs, while a 4-2

counter has two diérent weights for the outputs.

Inl In2 In3 In4

FEEE--

I I
I I
| 3-2 counter |
I I
I I
I I

-

Cout I l I Cin
I I
| 3-2 counter |
I I
L_____l___l__J

Carry Sum

Figure 4-8: 4-2 Counter structure

With careful design, following the truth table as shown in table 4-3, one XOR gate delay

can be saved. Figure 4-9 and figure 4-10 show the new 4-2 Counter with and without

Multiplier design 84

enable control, respectivelfx 4-2 Counter with enable control includes the functionality
of the pipeline register (see section 4.5.3). This inclusion is natural and without hardware

overhead; just two more n-type transistors are introduced.

The circuits use pass-transistor logic and borrow a common practice from analog designs
in which noise immunity is achieved by using quasiedédntial signals. The interfacing

signals are singled-ended and internal signals are complementary

Normally the enable signal is high and the circuit behaves stati€akysum and carry
delays are balanced for decreasing glitches; this is also desirable since both signals are
on the critical path. This is dérent from the case of adder designs where the carry delay
should be minimized since it is on the critical path and the sum delalytisediritical

path.

Table 4-3: Truth table for 4-2 Counters

The number of inputs high Cin Cout Sum Carry
0 0 0 0 0
1 0 0 1 0
2 0 1/gnote) 0 o/1(note)
3 0 1 1 0
4 0 1 0 1
0 1 0 1 0
1 1 0 0 1
2 1 o/1(note) 1 1/ginote)
3 1 1 0 1
4 1 1 1 1
(note) — eithelCout or Carry may be one or zero, but not both.

Multiplier design 85

Co| |nCo|nCin Cin En
o | = =
% s
nPS
4L
P4
o
po AET% — =
> [4L|_ 'D
—LEQ— nPC
—ml B
” jJ EL
'—{I 1
P1 {>¢ h”:ng_ DO—]
[[>o
— -
ki |

Figure 4-9: 4-2 Counter with enable control

Multiplier design 86

Co| |nCo|nCin Cin
o | = =
] 4L|_ b
B nPS
B :r,_ _L:
15
P4
o
po AET% — =
> [4L|_ 'D
s nPC
™
i
P] EF
'—{I 1
P1 {>¢ h”:ng_ DO—]
[[>o
— -
™ |

Figure 4-10: 4-2 Counter without enable control

Multiplier design

87

The two 4-2 Counters were analysed using HSPICE on extracted layout under the
conditions of 3.3 volt supply voltage and 10D temperature. The simulation results are
given in table 4-4 and table 4-5. For the sake of simplittiy power consumption was

measured under the assumption that one input is active.

Table 4-4: Simulation results on the 4-2 Counter with enable control

delay power
319uW @ 100 MHz
typical process case 1.10 ns 644W @ 200 MHz
302uW @ 100 MHz
worst process corner 1.40 ns

611 yW @ 200 MHz

Table 4-5: Simulation results on the 4-2 Counter without enable control

delay power
300pW @ 100 MHz
typical process case 0.97 ns 606 W @ 200 MHz
285uW @ 100 MHz
worst process corner 1.24 ns

574pW @ 200 MHz

4.5.3 Pipelineregister design

Figure 4-1 shows the circuit of a pipeline regist@&he first enabled inverting stage
predischages the nodel low and the second enabled inverting stage is opaque when
the enable signdtn is high. At the time than falls, the nodenl is either pulled high
(input In low) through two pull-up transistors or remains low (inpuhigh), and this
level is then stored into the dynamic nadethrough the second transparent inverting

stage wheten is low. Normally the enable sign&h is high. Since the signals andnLt

Multiplier design 88

are initially high and lowrespectivelywhich allows the inpukn to propagate down to

the noden2, the noden2 has static behaviouit is obvious that the initially transparent
pipeline register not only solves the skew problem (see “Second design iteration” on
page79), but also makes the nod2 static; otherwise somefeft would have to be put

into ensuring that the nod® was static rather than “floating”. There is no node in the
circuit that is in the floating state for an arbitrary long time. It is worth noting that one
enabled inverting stage required for a negative edge triggered TSPC registegad mer

into the last stage of the previous 4-2 Counter

En Lt nLt
+—C L
In € 2 P out
nl
Y 1 *
—
—
—

Figure 4-11: Pipelineregister

The pipeline register was analysed using HSPICE on extracted layout under the
conditions of 3.3 volt supply voltage and 10D temperature. The simulation results are
given in table 4-6. For the sake of simplicithe power consumption was measured

under the assumption of 100% input activity

Multiplier design 89

Table 4-6: Simulation results on the pipelineregister

delay

power
In - En En —» Out

58uW @ 100 MHz
92 uW @ 200 MHz
44uW @ 100 MHz
83uW @ 200 MHz

typical process cas¢ 0.0 ns 0.46 ns

worst process cornegr 0.0 ns 0.68 ns

4.5.4 Partial product register design

Figure 4-12 shows the circuit of the partial product registdtich comprises three
clocked inverting stages. The first stage is transparent and the third stage is opaque when
En is high. On the other hand, the first stage is opaque and the third stage is transparent
whenEn is low. At the time thaEn is high, nodenl in the second stage is prediscjeat

low. WhenEn falls, the nodenl is either pulled high or remains Ipand this level is

then transfer into the third stage.

The partial product register also provides a direct load capahiiitially the noden2 is
made static high by the signa, and it can then be conditionally disajp@amdepending

on the signal® andLt.

The partial product register was analysed using HSPICE on extracted layout under the
conditions of 3.3 volt supply voltage and 1UD temperature. The simulation results are
given in table 4-7. For the sake of simplicithe power consumption was measured

under the assumption of 100% input activity

Multiplier design 90

En Lt nZ

S e N
q[—qC _4%7
—L nl n2 {>c out
In 1 —E —|i —
D ;1
Figure4-12: Partial product register
Table 4-7: Simulation resultson the partial product register
delay
power
In - En En —» Out
39 yW @ 100 MHz
typical 0.19 0.47
ypical process case ns ns 63 LW @ 200 MHz
31 W @ 100 MHz
2)
worst process corner 0.23ns 0.65ns 57 W @ 200 MHz

4.5.5 Low power design

The multiplier for AMULETS3i is not optimized for low power, however low power was

kept in mind during the whole process of design devel opment.

Dynamic logic [83,84] is favourable for low power due to its lower switched

capacitance. However, a direct application of dynamic logic in an asynchronous design

Multiplier design 91

will cause a state-loss problem since an asynchronous design allows activity to cease for
an arbitrarily long time. Therefore low power designs often employ dynamic logic with
additional latches or chge-retention circuits to give pseudo-static behavidinese
additions increase the cost and power consumption of the dynamic circuits, thereby
compromising their potential advantages. Circuits used for the AMULET3i multiplier
are dynamic logic without the above-mentioned encumbrances whilst still retaining

externally static behaviour

The true single-phase clocking methodology has been adopted in the circuit design. The
reasons are threefold. Firstligs dynamic logic which can be integrated with static
behaviour is desirable for both low power and high speed. Secamiijyone enabling

signal is required and the minimum size and number of transistors are needed in the
TSPC registers. Thirdlyt is easy to integrate some logic into a TSPC register to reduce

the hardware complexity and overall delay and therefore save.power

To minimize the physical capacitance for low paowsansistors are made small
whenever this is possible. Cells for the AMULET3i multiplier usually comprise two
stages. The first stage contains transistors with the smallest size possible to minimize the
required area and powevhereas the second stage uses transistors with greater sizes to

ensure that they have the drive capability for their capacitive load.

Reducing the activity of nodes with adarcapacitive load is another approach adopted
for low power An early out technique is used, which not only gives a statistical speed
improvement but also saves powAittention is also given to minimise short circuit

currents during the circuit design [85].

Multiplier design 92

4.6 Layout design

The layout design of the AMULET3i multiplier uses a full-custom style for the datapath,

where the circuit and layout of almost every transistor is optimized, and a standard cell
style for the control logic, where the layout is automatically placed and routed using
Compass Design Automation tools [86]. When the layout of a cell was complete, it was

verified against the corresponding schematitSLand then simulated using HSPICE.

The full-custom style is used in order to exploit the regularity of the datapath by
designing only one “bit slice”. The height of the bit slice in the datapath desigmis 82
for the AMULET3i multiplier The number of tracks available for buses is ten per bit
slice. Four tracks are for local routing and the other six for through buses. Data flow is
routed horizontally in metal3, while control flow is relayed vertically in metal2. Both
metall and metal2 are used for local interconnect in cells. The global power rails use

metall and metal3, and the local power rails use metal2.

The overall height and width of the standard cells for AMULET2e a&Aland a
multiple of 8A, respectivelyThis means that the connectors of a cell must havehan 8
spacing and a 4 horizontal magin to either side of a cell. By taking into account
existing open vertical routing tracks inside the standard cells, the routing over cell

algorithm helps to reduce the final chip size.

4.7 Evaluation

An evaluation of the AMULET3i multiplier in terms of performance, power

consumption and silicon area is presented in this section.

Multiplier design 93

4.7.1 Performance

The critical path in the first pipeline stage includes one Booth mux cell, one 4-2 Counter
(with enable control) and one pipeline register and the critical delay is about 2.8 ns under
worst-case conditionsvVfid = 3.3\/ Vss=0.1V, slow-slow process corneat 100°C
temperature). The critical path in the second pipeline stage includes one 4-2 Counter
(without enable control), one partial product register and one multiplexer for the final

result and the critical delay is about 2.6 ns under worst-case conditions.

The delays of the two pipeline stages are well matched. This results in a 300 MHz

computational speed with a 20% engineeringgimar

4.7.2 Power consumption

The estimation of power consumption is didifit problem since it is a strong function

of the inputs and their histarj rough estimate of power consumption is given based on
some assumptions. It is highly unlikely that all data bits will change for every data value.
Based on the assumptions that half the data bits on average will change and that the
dynamic switching power is 90% of the total powike power estimate of the datapath is
about 40 and 82 mW operating at 100 and 200 MHz (under typical process conditions),

respectively

4.7.3 Silicon area

The silicon area of the datapath is 208% 3198\ (416.4% 639.6um2). Figure 4-13
shows the physical layout of the datapath of the AMULET3i multipdied illustrates its

regular structure.

Multiplier design 94

I-IIII.-I-..IIIJ-I.II-I_.-.If =t

mApmr memmer = e = ome

.1:-5 sopiann mass

#

Figure 4-13: Physical layout of the multiplier datapath

Multiplier design

95

4.8 Summary

A high performance, low power asynchronous 32 bit multiplier with a reasonable
hardware resource has been developed for AMULET3i. The design uses the modified
Booth’s algorithm with 8 bits at a time with an iterative structure. An “early out” scheme

is employed.

The pipeline registers are made initially transparent to avoid the data skew problem
caused by introducing one pipeline stage. An new coding scheme is used to adjust the
product result of an unsigned number multiplication. An adjustment value is made on the

least significant 32-bit positions.

The true single-phase clocking methodology and pass-transistor logic style are chosen

for circuit design. A new 4-2 counter circuit has been incorporated.

The AMULET3i multiplier presents a minimum hardware requirement given

performance constraints and is designed for low power

Post-layout simulation, in a 0.35 micron triple metal CMOS technplslgyws that it

takes 1.2 ns (2.8 n¥ 4 cycles) to complete the computation of a 32-bit multiplication in

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at
100 and 200 MHz (under typical process conditions), respectiVieéylayout is regular

and compact with a datapath area of only 4¥6689.6pm?.

Taken individually the characteristics above are not novel. What is new is the manner in
which the AMULET3i multiplier has been designed to combine elegantly all these

algorithm and circuit design techniques within an asynchronous framework.

Multiplier design 96

Four-phase pipeline control 5

This chapter explores the design of fpimase control schemes for asynchronous
pipelines. The study is focused mainly on the foliase micropipeline design style
which uses conventional level-sensitive data latches. Low power considerations and the
use of dynamic logic are also discussed. All of the proposed pipeline latch control
circuits are speed-independent, and this has been verified using the FORCAGE tool [21].

Simulation results in a 0.35 micron triple metal CMOS technology are presented.

5.1 Introduction

Micropipelines were introduced by Ivan Sutherland in his 1988n@ Award lecture
[20], and are a practical way to build asynchronous pipelines. Micropipelines are viewed
as being composed of a control circuit employing the two-phase handshake protocol and

a datapath using the bounded delay model.

The AMULET1 asynchronous processateveloped by Professor Steve Furber
AMULET group at the University of Manchestarsed the two-phase micropipeline
design techniques. However its successors, AMULET2e and AMULET3i, abandoned

two-phase control in favour of foyphase control, mainly for performance reasons.

Four-phase pipeline control 97

The fourphase micropipeline design space may be roughly categorized by viewing
along three dimensions: the data-validity scheme, the logic activation configuration, and
the decoupling degree. These three dimensions have the possible valiat/diroad

or Late; Request-activate ohcknowledge-activaten-decoupledSemi-decoupled or
Eully-decoupled, respectivelA three-character shorthand notation can therefore be
used to convey the category for a particular design. For example, the abbrdsifion
would signify a circuit which employs thearly data-validity scheme, useRe@quest

signal to activate combinational logic, andridly-decoupled.

5.2 Data-validity scheme

Figure 5-1 shows a general micropipeline stage structure. The latch control circuit
communicates with neighbouring pipeline stages on both its inputRinkAin) and its
output link Rout, Aout). The control link E, D) connects with associated combinational
logic. In addition to these three handshake links, a latch control Wijrés(needed to
open and close the latch when low and high, respectiidlg pipeline latches are

configured as transparent when empty and we will return to this later

(@] e
Datain =2 £ [——>Dataout
— -
E| ID Lt
Rin ———» —» Rout
) Controller
Ain «— «—— Aout

Figure5-1: Micropipeline stage structure

Four-phase pipeline control 98

The fourphase micropipeline design uses two successive handshakes for completing one
communication process between neighbouring pipeline stages. There is a choice to be
made as to which edge (rising or falling) of each handshake signal indicates the validity
of data. This leaves us with three possible data-validity schemes, “early” [17,18],
“broad” [19] or “late”, which are depicted in figure 5-2. It is worth noting that all these

schemes take the micropipeline view that the sender of the data initiates the. transfer

e \

o

“Early” X X

“Br oad” X X

“Late” X X
Figure 5-2: Three data-validity schemes

Initially, theRin andAin wires are both lowThe “early” data-validity scheme uses the
rising edge of th&n wire to indicate “data available” and the rising edge ofilmevire

to indicate “data latched”. Then tiRen wire is returned loywvhereafter théin wire is

also returned lowThe first handshake frorRin high to Ain high is called the
“processing” or “evaluation” phase, during which the data remains valid. Data can
change after the first handshake. The second handshakBifréma to Ain low is called

the “recovery” or “reset” phase, which is redundant and carries no meaning.

Four-phase pipeline control 99

The “broad” data-validity scheme uses the rising edge oRithevire to indicate “data
available” and the falling edge of t#én wire to indicate “data latched”. Data must be
guaranteed valid throughout two successive handshake processes. No “evaluation” or

“reset” phases are distinguished.

The “late” data-validity scheme uses the falling edge ofRilmewire to indicate “data
available” and the falling edge of th&n wire to indicate “data latched”. The first
handshake frorRin high toAin high is called the “preset” phase, which is redundant and
carries no meaning. The second handshake fRmM low to Ain low is called
“processing” or “evaluation” phase, during which the data remains valid. Since the “late”
data-validity scheme is rarely used, we focus only on the “early” and “broad” data-

validity schemes and omit further consideration of the “late” scheme in this thesis.

5.3 Logic activation configuration

The rising edge oRin, which indicates “data available” in both “early” and “broad”
data-validity schemes, is usually used to activate combinational logic. This common

arrangement is referred to as a “request-activate” configuration as shown in figure 5-3.

) O <
Datain 8’ % :> Data out
- —
E|l D Lt
Rin —» Rout
) Controller
Ain «—] «—— Aout

Figure 5-3: “Request-activate” configuration

Four-phase pipeline control 100

Instead of using th&in wire, the “broad” data-validity scheme has the choice of using
the Ain wire to activate combinational logic as the data remains valid during the whole
handshaking process. This new arrangement is referred to as an “acknowledge-activate”
configuration as shown in figure 5-4, and provides ac&ft framework for low power

design using dynamic logic (see section 5.13).

(&) e
Datain > £ [——>Dataout
| -
El |D Lt
Rin > - » Rout
) Controller
Ain < «—— Aout

Figure 5-4: “Acknowledge-activate” configuration

5.4 Decoupling degee

Conceptuallythe decoupling degree is used to describe how the input link interacts with
the output link. For the sake of discussion, three terms are defined here. The first
handshake is called “initiated” and the second handshake “completed”. “Suspended” is

between “initiated” and “completed”.

A micropipeline stage is said to be un-decoupled if it satisfies the following two
conditions: (1) a new communication coming along its input link cannot be “initiated”
until the current communication going along its output link has been “completed”, (2)
and it is “suspended” if the new communication along its output link has not been

“initiated”. A micropipeline stage becomes semi-decoupled by getting rid of the first

Four-phase pipeline control 101

condition, and it becomes fully-decoupled by also removing the second condition. A new
communication along the input link of a fully-decoupled latch control circuit may be

“completed” before the new communication along its output link has been “initiated”.

5.5 ERU latch control circuit

The specification of the latch control circuit is described using a Sigaasifion Graph

(STG) which shows the causal relationships between the signal transitions. An STG for
an ERU latch control circuit is shown in figure 5-5. The dashed arrows indicate
dependencies that the environment (usually the neighbouring stages) must observe and
the solid arrows represent internal orderings; both must be maintained to ensure that the
corresponding circuit is speed-independent. The “tokens” drawn next to certain arcs
represent an initial “marking”. A particular transition can fire only when there is a token

on each of its input arcs and a token is placed on each of its output arcs after it fires.

TN T

]

. D+ > A+ » Rout+
I l :

! v

: Ain+ «—— Lt+ Aout+
1

! '

: v /

: D- » A- » Rout-
| | :

1 \ 4 -)
‘. Ain- —— Lt Aout-

Figure5-5: STG of the ERU latch control circuit

The state graph may be derived from the STG and then an implementation from the state

graph, but in this simple case it may be seen by inspection that the circuit in figure 5-6 is

Four-phase pipeline control 102

an implementation of the STG in figure 5-5. There should be one closure and one
opening of the latch before one communication has been “completed” for this latch
control circuit. Thus the latch can only be closed when the next stage latch is open since
Aout must be low (the next latch is open) befbtean go high. In the case when data is
inserted into the pipeline at a greater rate than it is removed from the pipeline, the
pipeline will eventually fill. A full micropipeline has alternate closed and open latches
(and therefore only alternate stages can be occupied), similar to-slageetatches in
synchronous designs. Thidegtively halves the asynchronous pipeline depth. Therefore

this design is not of practical interest, and it is used here only as a starting point.

D Ain

c | L |t

Aout Rout

Figure 5-6: ERU latch control circuit

5.6 ERSlatch control circuit

An STG specification for an ERS latch control circuit [18] is shown in figure 5-7. It is
worth noting that an internal variablg)(is introduced on purpose. The variab#¢ (s

used to record when the input link is ready to proceed. It is expected that there will be
dozens of latched data and afbuifs to be needed to maintain reasonable drive strength.
This bufer reflects the need for the latch to close before the input link is “initiated”. It

could, perhaps, begued that some delay should be built into the path fPoto Rout.

Four-phase pipeline control 103

However there is no need for the latch to close befwet is signalled so long as the
data have propagated through the latch which is transparent when €mgtggument
reflects, in fact, the constraint of the bounded delay model. Therefore the deldy toom
Rout must be no shorter than the propagation delay through the latch for the correct

operation of the circuit, which is almost always satisfied with confidence.

,"*Q O(_\ .{_\

|

. D+ > A+ » Rout+
: l :

! v
ANt «—— Lt+ Aout+
1

! "

: v

. D- > A- » Rout-
1 l 1

1 1

1 4
‘oo Ain- —— Lt- Aout- -)

Figure5-7: STG of the ERS latch control circuit

To obtain formally an implementation of an STG specification, the STG is first
transformed into the state graph by applying the underlying Petri net rules to construct
the reachability tree. The state graph should have the CSC (Complete State Coding)
property then logic equations for the output variables can be derived. Figure 5-8 shows
an implementation of the ERS latch control circuit [18]. The notation used here for
asymmetric C-gates follows that used in previous work [18]. An input controls both
edges of the output when it is connected to the main body of the gate, it controls only the
rising edge when connected to the extension marked “+”, and it controls only the falling
edge when connected to the extension marked “-". This notation is illustrated in figure 5-

9 which shows a possible transistor level implementation of an asymmetric C-gate.

Four-phase pipeline control 104

c I —»— |t

Aout Rout

Figure 5-8: ERSlatch control circuit

—dC

= B {>C Z
—iL
C4|[

Figure5-9: Asymmetric C-gate notation

With the ERS circuit a new communication on the input link can be “initiated” before the
current communication on the output link has been “completed”, but it is “suspended”
until the new communication on the output link has been “initiated”. This means that one
communication should cover two “evaluation” processes and can therefore be performed

in a time proportional to the sum of the two processing logic delays.

Four-phase pipeline control 105

5.7 ERF latch control circuit

An STG specification for an ERF latch control circuit is shown in figure 5-10. Note that
the bufer falling delay fromLt high toLt low is removed from the input link path. This
is significant since the bigfr delay especially in a wide datapath where the capacitive

loading is lage, has an adversdeat on the handshake delays.

PR [] (]
v

D+ > A+ » Rout+

1
| ;
Ain+ «—— Lt+ Aout+

D- > A- » Rout-
/ / ;
‘<. Ain- Lt-‘j Ao:t- -j

Figure5-10: STG of the ERF latch control circuit

The ERF latch control circuit is shown in figure B-A new communication along the

input link can be “completed” before the new communication along the output link has
been “initiated”. The essence of a fully-decouped latch control circuit is to break the
sequential operational dependency between its input side and its output side in order to
allow them to run concurrently on either side. A clocked pipeline is, in some senses,
fully-decouped, but it should use an edge-triggered as one pipeline stage to isolate its
input flow from its output flowlt is obvious that asynchronous pipelines are more
efficient in terms of the number of latches required, especially when a wide datapath or a
deep pipeline is involved. It should be mentioned here that early asynchronous designs

[87] used edge-triggered latches, simply following the practice of the clocked design.

Four-phase pipeline control 106

—— | {

!

Aout Rout

Figure 5-11: ERF latch control circuit

5.8 BRU latch control circuit

For the sake of comparison, an STG specification and implementation of a BRU latch

control circuit are shown in figure 5-12 and figure 5-13, respectively

;TN @ []
v ‘ 1
D+ » A+ » Rout+

]

1

1

1

1

1

: Ain+ Lt+ < Aout+
1

! i

: v l

. D- > A- » Rout-
| / j :

1 v
‘<. Ain- Lt- «—— Aout-

Figure5-12: STG of the BRU latch contral circuit

Four-phase pipeline control 107

I

Rout Aout

Figure 5-13: BRU latch control circuit

5.9 BRSlatch control circuit

An STG specification and implementation of a BRS latch control circuit are shown in
figure 5-14 and figure 5-15, respectivelyne BRS latch control circuit is very similar to
the ERS one. Howevethe bufer delay directly contributes to the input link delay in the
ERS latch control circuit, whereas the feafdelay is “invisible” from the input link and

moved into the output link in the BRS one.

,"*Q Qf_\ Qq

D+ » A+ » Rout+
/ :
v

Ain+ Lt+ «—1— Aout+

' !

D- > A- » Rout-
e ;
‘<. Ain- Lt- «—— Aout-

Figure5-14: STG of the BRSlatch control circuit

Four-phase pipeline control 108

Rout Aout

Figure 5-15: BRSlatch control circuit

The BRS latch control circuit has the same drawback as the ERS one: the pipeline cycle
time increases by twice the processing logic ddlay of potential use only in FIFO

applications.

5.10 BRF latch control circuit

An STG specification of a BRF latch control circuit is shown in figure 5-16. For the input
link (D, Ain), the path fromAin low to D high is the critical arc since the evaluation
process is by assumption much longer than internal handshake transitions. Sifoilarly
the output link Rout, Aout), the path fronRout high toAout high is the critical arc. By

now, an intuitive feel for fully-decoupling is that operations on these two critical paths
should not be dependent on each otherother words, there is no simple loop that
contains these two arcs in the STG specifications. By so doing, two neighbouring

combinational logic functions can be performed in parallel at all times.

Four-phase pipeline control 109

;TN @ [] (]
v v \
D+ ——» A+ —— Rout+

/Lt+// ;

Ain+

' LU

D- ———» A- ——» Rout-

o

‘< Ain- Lt- «—— Aout-

Figure5-16: STG of the BRF latch control circuit

Figure 5-17 shows an implementation of the BRF latch control circuit [19]. The
emphasis of asynchronous pipeline designs is on maximum allowable concurrency
which was kept in mind during the development of these latch control circuits. Only

slight differences in STG specifications may lead to verfgidifit latch control circuits.

D Ain

——— |t

Rout Aout

Figure 5-17: BRF latch control circuit

Four-phase pipeline control 110

5.11 BAS & BAF latch control circuits

By now, we may sense the key féifence between the “early” and “broad” data-validity
schemes, which lies in the decision point on when to issue the acknowledgeAsignal

For the “early” data-validity schemes, only after the data has been latched is the
acknowledge Ain issued. However for the “broad” data-validity schemes, the
acknowledgeAin can be issued before the data has been latched. The key idea of the
“broad” data-validity scheme is to make the first handshake as fast as possible and the
associated combinational logic is sidelined from the pipeline (see figure 5-4). The
request signaRin is no longer entitled to activate the combinational logic since it may
return low independently of whether the evaluation phase is complete or not. Instead, the
acknowledgeAin can take the job. It could, perhaps, bguad that the point of
activation of the combinational logic has been delayed and the performance feill suf
However firstly, the delay is mainal since the first handshake is fast. Seconfiyis

still an issue, another arrangement can be made as shown in figure 5-18.

(&) <
i = &)
Datain =2 £ :> Data out
- -
A
E| D Lt
Rin L » — Rout
. Controller
Ain « Aout

Figure 5-18: Another “Acknowledge-activate” configuration

Four-phase pipeline control 111

STG specifications for a BAS and a BAF latch control circuit are shown in figure 5-19
and figure 5-20, respectivelynplementations of a BAS and a BAF latch control circuit

are shown in figure 5-21 and figure 5-22, respectivEhgse two latch control circuits

are almost the same as their request-activate counterparts but have an extra input. They

can be used to exploit the advantage of dynamic logic for low power designs as we will

’ *‘ .{ j [) '/ \
Rin+ — A+ - - --- » D+ —» Rout+

V S!
/ v

]

1

1

1

1

1

| Ain+ Lt+ «—— Aout+
: : /

Ly

' RIN- — A - -- + D- ——— Rout-
| P :
‘.. Ain- t- «—— Aout-

[

Figure 5-19: STG of the BASlatch control circuit

N . °
N v

: R|n+ —_ A+ _____ > D+ ROUt"‘
| v S;

: v

i Ain+ Lt+ Aout+
I 1

! v / l

1

! Rin- ———» A- -—--- » D- ——» Rout-
' P '
- ;
‘<. Ain- t- «—— Aout-

[

Figure 5-20: STG of the BAF latch control circuit

Four-phase pipeline control 112

discuss in the next section. It should be noted here that up to now all the combinational
circuits presented earlier are assumed to be static by default. Some effort must be made

before dynamic circuits can be used.

Rin Ain D

Rout Aout

Figure 5-21: BASlatch control circuit

Rin Ain D

e

Rout Aout

Figure 5-22: BAF latch contral circuit

Four-phase pipeline control 113

5.12 Interfacing

There are occasions where it may be desirable to use both “early” and “broad” latch
control circuits. For example, the BAS or BAF latch control circuit for low power
designs using dynamic logic should be used together with other latch control circuits to

ensure that the end condition is satisfied. (see section 5.13).

To interface a “broad” latch control circuit into an “early” latch controller would appear
to be rather straightforward, since the “broad” scheme is more tHanesifto cover the

input specification of the “early” scheme. However there must be a converter when
interfacing an “early” latch control circuit into a “broad” one. An STG specification and

implementation of a converter are shown in figure 5-23 and figure 5-24, respectively

;SN @)
\ 4
D+ » A+ » Rout+

1
| ;
Ain+ «—— Lt+ / Aout+
v / l

D- - » Rout-

> A
T

- +«— Aout-

\ .
~- Ain-

Figure5-23: STG of the Converter
It should be noted that a broad latch control circuit can be used for cases where the early
protocol is used. Howevethe operation of the circuit is totally sequential, which is

undesirable from the performance perspective. Therefore appropriate latch control

circuits should be used for particular application cases.

Four-phase pipeline control 114

]) > |t

Aout Rout

Figure 5-24. Converter circuit

With the Converter circuit a new communication along the input link is not subject to
being blocked and will be completed as long as it has been initiated. This property is

useful to ensure the end condition that we will discuss in the next section.

5.13 Low-power design using dynamic logic

The micropipeline design style configures the pipeline latches as transparent when
empty The motivation for this comes from both performance and testalHlitgt,
transparent latches steer the inputs directly to the outputs, thus reducing the latency of
the pipeline. Secondlythey make the datapath have a combinational behaviour in its
initial state, ofering good testability of the datapath logic. Howeubrs comes at a

price. Data and glitches can be broadcast down the pipelines, thus wasting power

Four-phase pipeline control 115

Dynamic circuits can be used to localise the data flow to solve the above problem [88].
The obstruction of data flow is achieved since the dynamic logic is held during the
prechaged phase. Additionallydynamic circuits dér the benefits of increased speed

and lower switched capacitance. Therefore low power designs often employ dynamic

logic, especially in the datapath design.

However there is a dffculty in directly using dynamic circuits in asynchronous designs
since the asynchronous control can stall in any state for any time. Leakage currents cause
the output of dynamic circuits to be valid for a short time; therefore evaluation cannot
begin until the output latch is free. The inputs must also be held stable until evaluation is
complete, so during evaluation both the input and the output latches are required by the

intervening dynamic logic, resulting in at mé6€6 of the logic being active at any time.

Although additional latches or clya-retention circuits can be used to make dynamic
circuits pseudo-static, these additions increase the cost and power consumption of the

dynamic circuits, thereby compromising their potential advantages.

The new idea introduced here is to observe that it is not strictly necessary for the output
latch to be free before evaluation begins; it is only necessary to know that it will become
free “soon”. Here “soon” is interpreted as any period which is not subject to arbitrary

delay and is within the dynamic storage time of the output nodes. This relaxation of the

evaluation start time allows a significant improvement in the pipselperformance.

The dynamic logic begins evaluation when its enaB)egpes high and it indicates a
valid output on a “done” signalDj. When its enable is low it is precged, and

prechage completion is signalled by the “done” signal going. I(sge figure 5-4).

Four-phase pipeline control 116

For the BAS or BAF latch control circuit, the acknowledge whie is indeed a
confirmation signal which indicates that the output latch will be free “soon”. “Soon” is
just the result of internal self-timed delays qmagd is determined by the evaluate phase
(V) and the prechge phaseR) together with a few internal control delays. Here the
assumption is that the pipeline stage is connected to similar neighb@uagyu\& that a

stall can only occur betwedtout high andAout high on the arrow markeslin figure 5-

19 or figure 5-20. If this is true, the property is propagated back to the input, and hence,
by induction, along a pipeline of similar stages. Only the end conditions remain to be

checked. This condition is satisfied by using the Converter (see figure 5-24).

5.14 Simulation results

The latch control circuits have been laid out usingp Gnicron triple metal CMOS
technology and simulated using HSPICE operating at worst-case condifioirs 8.3V,
Vss = 0.1\, slow-slow process corneat 100°C) and driving a 32 bit latch. The

simulation results are shown in table 5-1.

Table 5-1;: HSPICE simulation results

Parameter ERS ERF BRS BRF BAS BAF

FIFOCycleTime | 3.7ns | 44ns | 36ns | 40ns | 3.6ns | 4.0ns
FIFO Response 8.6ns | 10.1ns| 8.0ns 3.7ns 8.0 ns 3.7ns
Proc. CycleTime | 10.1ns| 7.7ns | 100ns| 7.1ns | 7.0ns | 7.2ns

Proc. Response 185ns| 10.2ns| 17.5ns| 3.8ns 8.9 ns 3.9ns

A micropipeline with no processing in it is a FIFO and its cycle time gives an upper

bound on the potential throughput. The response time is measured by stalling the output

Four-phase pipeline control 117

of a3 stage pipeline until it is full, and then seeing how long it takes from releasing the
stall until the input starts moving. The corresponding results for a micropipeline with
processing in it are established by inserting combinational logic into the pipeline with an

evaluation time of 3.0 ns and reset time of 0.3 ns. The test circuit is shown in figure 5-25.

Datain Data Out
nGo
2 Controller Controller Controller {j

nL ock

Figure 5-25: Test circuit

5.15 Discussion

The simulation results show that the cycle times of the ERS and BRS latch control
circuits increase by approximately twice the processing deétacating both the
processing delay on the input side and that on the output side are included. The cycle
times of the other four latch control circuits just increase by the evaluation, delay
indicating the processing delay on only one side is included. Here we now see how the

different decoupling techniques havéeafed the resulting cycle times.

It is quite interesting that the BAS latch control circuit behaves in a “fully-decoupled”
way. This is due to the fact that the point when the combinational logic begins evaluation

has been moved in the acknowledge-activate configuration. This reflects the fact that the

Four-phase pipeline control 118

combinational logic is pulled out of the input link path and put aside. By so doing, the
handshake process of the input link is in fact isolated from that of the output link. The
change in the activation mechanism for the combinational logic makes theeite

between semi-decoupled and fully-decouped behaviours.

The response times of the BRF and BAF latch control circuits is a lot smaller than the
other four latch control circuits. The reason stems from the fact that when a confirmation
signal @in) goes high this propagates very quickly backwards up the pipeline, allowing
every pipeline stage to begin evaluation at almost the same time. For other latch control
circuits, each pipeline stage must wait to clear the interlock before the initiating action is
taken. Obviouslythis is a very important factor in the performance of asynchronous
pipelines which has unfortunately been ignored in the past. The response time relates to
how fast a bubble [88] travels back up a pipeline. The detailed analysis of bubbles

making self-timed pipelines fast can be found in [89].

It seems that the BRS and BAS latch control circuits will give the best performance in
FIFO applications. Howeveit takes a long time to start moving after the full pipeline is
released. Therefore, the BRF and BAF latch control circuits are suitable for both FIFO

applications and pipelines including processing logic.

It is clear that the circuits using the broad protocol give better performance than those
employing the early protocol. Among latch control circuits described above, the BRF

and BAF latch control circuits are the best choice.

The BAF latch control circuits can be used to exploit the advantages of dynamic logic for

low power designs. Howevethe end condition (a stall can only occur betwReut

Four-phase pipeline control 119

high to Aout high) must be met. For the BAF latch control circuit, this condition can

easily be met by using the Converter circuit (see section 5.12).

All of the latch control circuit in this chapter are speed-independent, and were verified

using the FORCAGE tool.

5.16 Summary

The design of control schemes for asynchronous pipelines has been studied. The study
focused mainly on the fogphase micropipeline design style which uses conventional
level-sensitive data latches. A set of speed-independent latch control circuits has been

presented. &fification was carried out using the FORCAGE tool.

The BRF and BAF latch control circuits are the best choice for both FIFO applications
and pipelines including processing logic. The ERRF BAS and BAF latch control
circuits behave in the “fully-decoupled” wayhere the cycle time increases by just one

evaluation time. The BRF and BAF latch control circuits give the good response time.

The circuits using the broad protocol give better performance than those employing the
early protocol. The acknowledge-activation configuration allows dynamic logic to be
easily exploited for low power design. Dynamic logic retains externally static behaviour
without additional latches or clgg@-retention circuits (allowing activity to cease without

loss of state), and hence power can be saved.

Four-phase pipeline control 120

Four-phase control modules 6

This chapter presents a set of control modules forgbase micropipelines. Arbiters,
which are non-trivial and tricky to design, are also included. These control modules,
together with the pipeline latch control circuits described in the previous chegotdre

used to construct complex and powerful asynchronous systems including forking or
joining multiple micropipelines. All of the proposed fepiiase control modules are

speed-independent, and this has been verified using the PETRIFY tool [23-26].

6.1 Introduction

In order to build asynchronous systems based onpioase micropipelines, a set of
basic control modules is required. Such a set is proposed here and shown in figure 6-1.
The first element is th e ALL module, which enables two processes to share a common
resource. The two calling requests must be mutually exclusive. If they are not, the
ARBITER module must be used instead. It is worth emphasizing that unlike in the
synchronous case, an asynchronous arbiter always operates cofreethOIN and

FORK modules are used to join and fork multiple control flows or pipelines,
respectivelyTheSEL ECT module comes with two versions: one with a control link and

one with a Boolean guard. The input Boolean guard must be prepared prior to the

Four-phase control modules 121

incoming handshakes on the input link and must remain stable during the handshaking
process (restricted and guaranteed by the environment). The SELECT module steers
incoming input handshakes to one of two outputs, depending on the handshake result
along the control link or the Boolean value. ThROGGLE module steers incoming
four-phase handshakes to alternate outputs. All of thesepf@mse control modules are

speed-independent, and this has been verified using the PETRIFY tool.

—|R1 —»|Rly —{R1 R1f>
«1{AL —Rof» «f{a1 Hrol» «—|A1L =Ro|> —{Ri X ALl
< m O .
+—A2 QA0 [¢— <+ A2 §A0<— A2 QACM— <« Ai 8A2<—
—»{R2 —{R2 < —{ R2 R2 [
—|Ri Al le— —»Ri Al le— S0
~ SELA _ SELB —Ri Q

<« A A2 |le— « A A2 |le— O]
ORX|—»
R2[—» R2[» =

Figure 6-1: Four-phase control modules

This set of control modules provides the basic building blocks, which can be used to
construct other control modules and asynchronous systems. The circuit implementations
presented here are not claimed to be optimal. It should be appreciated that optimizations
can be made if input constraints (determined by the environment) are known a priori to
designers. A CALL module is an example, where it is known that the two input requests
are mutually exclusive as a result of the environmental constraints. An ARBITER
module is more general as its input changes are unrestricted. Hpwevezircuit

implementation of a CALL module is much simpler than that of an ARBITER module.

Four-phase control modules 122

The specifications of these control modules are described using Petri Nets (PN) [22]. The
PETRIFY tool then takes and manipulates this initial specification. It either generates
another PN which is simpler than the original description or synthesizes an optimized
speed-independent asynchronous circuit. The original specification may not satisfy the
requirement of Complete State Coding (CSC) [90] and may leadf¢éoedht states with

the same binary value when encoding rd@solve this state coding conflict the PETRIFY

tool automatically inserts a new state signal. The rising and falling transitions of this new
state signal are inserted in such way that the synthesized circuit is optimized according to

a selected cost function.

6.2 CALL modules

The CALL module serves the role of the procedure call in software where a common
subroutine is shared. This section describes three types of CALL module: pCALL,
dCALL, and bCALL. The first two CALL modules use the fqirase early protocol,

while the last employs the fophase broad protocol. The whole fgalrase handshaking
process on one input link must be completed before the next process on the other input

link starts. Otherwise, the circuit will operate improperly

6.2.1 pCALL module

A specification and implementation for a CALL module, called pCALL, are shown in
figure 6-2 and figure 6-3, respectivelihe pCALL module allows concurrent processing
on the input link and resetting on the output link. Howgtrer input and output links are
not allowed to reset in parallel, with the input link being first reset and the output link

following.

Four-phase control modules 123

\ r
Ro+ «— R1+ 4—@—> R2+ — Ro+

| T~ 1
A U
.} J \ e,

Figure 6-2: PN of the pCALL module

R1
>)r\ I_C\ Ro
R2 40‘ +

Ao

Figure 6-3: pCALL circuit implementation

6.2.2 dCALL module

A specification and implementation for a CALL module, called dCALL, are shown in
figure 6-4 and figure 6-5, respectivelyke the pCALL module, the dCALL module

allows concurrent processing on the input link and resetting on the output link.

Four-phase control modules 124

\ r
Ro+ «—— R1+ 4—@—> R2+ — Ro+

Ao+'—* A2+ «— Ao+

u/lj\l\lj

Figure 6-4: PN of the dCALL module

R1

— -
o) ———+
R2 Ro
D -—
e
Al
+
Ao
+ 4—
A2
P e

Figure 6-5: dCALL circuit implementation

Furthermore, concurrent resetting on both the input and output links are also allowed in
the dCALL module. The resetting on the output link can start even before that on the
input link. The output link has the property of self-resetting as soon as it has completed
the calling procedure; resetting of the output link does not depend on an input reset

request.

Four-phase control modules 125

6.2.3 bCALL module

The first two CALL modules described above use the-pinase early protocol. There
are occasions where it may be desirable to use thepfmse broad protocol, e.g., using
dynamic logic for low-power design (see “Low-power design using dynamic logic” on
pagell5). A specification and implementation for a CALL module using the broad
protocol, called bCALL, are shown in figure 6-6 and figure 6-7, respectiMaycircuit

is quite simple. It is worth noting that no processing or resetting phases are distinguished

Rot+ «—— R1+ 4—@—> R2+ — Ro+

! !
Aot — Al+ A2+ «—— Ao+
! !

Ro- +—— RI- R2- — Ro-
! !
Ao-— Al- A2- — Ao-

Figure 6-6: PN of the sSCALL module

E, Ro
-) =
R2

Al j

A2 Ao

Figure 6-7: sSCALL circuit implementation

Four-phase control modules 126

in the broad protocol. The bCALL module can also be used for cases where the early
protocol is used since the specification of the broad protocol is more tli@restto
cover that of the early protocol. Howeyeahe operation of the circuit is totally

sequential, which is undesirable from the performance perspective.

6.3 ARBITER modules

The ARBITER module produces an exclusive grant to one of two asynchronous calling
requests. As discussed in section 2.2.4 (see “Metastability and arbitration” c27page

the ARBITER module is inherently prone to metastabilitpwever this metastable
problem only dects the performance of the ARBITER module, not its functionality
(only in the asynchronous case). Analog circuit techniques are used to keep the
metastable states internal while maintaining valid logic levels at the interface. The
mutual exclusion circuit (MUTEX) [31], as shown in figure 6-8, is such an analog circuit
which makes a non-deterministic decision between two asynchronous requests. It
comprises a cross-coupled NAND structure and a.fili&ée cross-coupled NAND
structure may go metastable when the two inputs switch high at very nearly the same
time. The filter conceals possible metastable states from the environment to maintain

valid logic levels at the interface.

Figure 6-8: MUTEX circuit

Four-phase control modules 127

This section describes three types of ARBITER module: pARBITER, dARBITER, and
bARBITER. The first two ARBITER modules use the fqivase early protocol, while

the last employs the foyrhase broad protocol.

6.3.1 pARBITER module

A specification and implementation for an ARBITER module, called pARBITER, are
shown in figure 6-9 and figure 6-10, respectiv&lye signal$s1 andG2 are the outputs

of the MUTEX element and internal signals of the pARBITER module. The two
transitions Ro+ — Ao+) and Ro- — Ao-) are illustrated by the expressiomo€, Ao+)

and Ro-, Ao-), respectivelyfor the sake of brevityAs shown in [44], logic synthesis can
produce speed-independent implementations only for specifications without conflicts on
non-input signals. Howevethere is a conflict between the sign@ls and G2 in this
specification and these two signals are internal (non-input) signalsawget around

this difficulty by treating the signalS1 andG2 as additional inputs [44] whose changes

are restricted by the MUTEX element. The MUTEX element is considered to be part of
the environment for the pARBITER module. This design trick is not restricted to
conflicts on non-input signals and can also be applied to no-conflict casléslefhed
modules can be treated in the same way as the MUTEX element and their outputs (also
internal signals for a specification to be synthesized) are considered as additional inputs.
By so doing, dfcient implementations can be derived for some cases which otherwise

may be dificult to synthesize.

The pARBITER module allows concurrent processing on the input link and resetting on

the output link. Howevetthe input and output links are not allowed to reset in parallel,

Four-phase control modules 128

with the input link being first reset and the output link following. Note that the signals

G1 andG2 are often used to control a multiplexer to select the input data.

° (v R1+ Gl+ — < G2+ < R2+ v\'
(Ro+, Aot)
R1l- «— Al+ O > A2+ » R2-

L

Al- ¢
Figure 6-9: PN of the pARBITER module
—
AL £
+
R1
—»—R1 Gl
< —1 +
g | R
= :D <
=) !
—»—R2 G2
R2
+ Ao
A2
—= d

Figure 6-10: pARBITER circuit implementation

Four-phase control modules 129

6.3.2 dARBITER module

A specification and implementation for an ARBITER module, called dARBITER, are

shown in figure 6-1 and figure 6-12, respectivelyike the pARBITER module, the

dARBITER module allows concurrent processing on the input link and resetting on the

output link. Furthermore, concurrent resetting on both the input and output links are also

allowed in the dARBITER module. The resetting on the output link can start even before

that on the input link. The output link has the property of self-resetting as soon as it has

completed the calling procedure; resetting of the output link does not depend on an input

reset request.

Specifications with more concurrent operations lead, in general, to complex circuit

implementations. This can bee seen from the development of the circuits above.

(o)
4 @\

l

(Ro+, Aot)

|
O

O
|

‘(v R1+

R1- «—Al+

|

G1-

Ro-——

/@

Al-

.

+— G2+

R2+ \‘

A2+ — R2-

|

G2-

I~

Figure 6-11: PN of the dARBITER module

Four-phase control modules 130

Al
=]
+
o—
) >—
R1
— R1 Gl +
ﬁ . Ro
5 Dana
R2 =
— R2 G2
+ o—— AO
-«—
A2
Rl

Figure 6-12: dARBITER circuit implementation

6.3.3 bARBITER module

The first two ARBITER modules described above use thegdbase early protocol. A
specification and implementation for an ARBITER module using the broad protocol,
called bARBITER, are shown in figure 6-13 and figure 6-14, respectivVédig
bARBITER module can also be used for cases where the early protocol is used since the
specification of the broad protocol is more tharfisgieht to cover that of the early
protocol. Howeverthe operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Generally specifications using the broad protocol, e.g. the bARBITER, often have

simpler circuit implementations than those using the early protocol.

Four-phase control modules 131

All the ARBITER modules described above are fair arbiters [91], which means that a
pending request on one input link must be granted after the granted request on the other

input link has compl eted.

O
o

° [v R1+ Gl+ — «— G2+ R2+ v\‘
(Ro+, Aot)
R1- «— Al+ Q — A2+ — R2-

| |
G1- > Q < G2-
[

OS]

Al- ¢

Figure 6-13: PN of the bARBITER

—
— - C
Al __
+
R1
—>——|RL_Gl D _
w — Ro
5) >t
> 9) |
—»—R2 G2
R2
+
A2 You Ao
C

Figure 6-14: bARBITER circuit implementation

Four-phase control modules 132

6.4 JOIN modules

The JOIN module synchronizes and concatenates two input links to the output link, and
is used in aganizing multiple control flows or pipelines. This section presents three
types of JOIN module: pJOIN, dJOIN and bJOIN. The first two JOIN modules use the
four-phase early protocol, while the last employs the-fihase broad protocol. As all of

the PN specifications in this section and the following sections are quite straightforward

they are omitted for the sake of brevity

6.4.1 pJOIN module

Figure 6-15 shows a circuit implementation for a JOIN module, called pJOIN. The
pJOIN module allows concurrent processing on the input link and resetting on the output
link. However the input and output links are not allowed to reset in parallel, with the

input link being first reset and the output link following.

0 C
RL—» Ao
-
L d+
A2 — RO
R2—» Y >

Figure 6-15: pJOIN circuit implementation

6.4.2 dJOIN module

Figure 6-16 shows a circuit implementation for a JOIN module, called dJOIN. Like the

pJOIN module, the dJOIN module allows concurrent processing on the input link and

Four-phase control modules 133

resetting on the output link. Furthermore, concurrent resetting on both the input and
output links are also allowed in the dJOIN module. The resetting on the output link can
start even before that on the input link. The output link has the property of self-resetting
as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

Rl +
R
o

Al OE -

(c |

(- Ao
VA R— + -
R2

Figure 6-16: dJOIN circuit implementation

6.4.3 bJOIN module

The first two JOIN modules described above use theffbase early protocol. A circuit
for an ARBITER module using the broad protocol, called bARBITER, is shown in figure
6-17. The circuit is simple, and is similar to a C-gate. fed#hce is that the signRb,

not Ao, is fed back internally in a C-gate.

The bARBITER module can also be used for cases where the early protocol is used since
the specification of the broad protocol is more thaficseimt to cover that of the early
protocol. Howeverthe operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Four-phase control modules 134

Al —a Ao
RL | _D\—LW

R2 —+—— —D/J—L/ ™ ro
A2 <

Figure 6-17: bJOIN circuit implementation

6.5 FORK modules

The FORK module is often used when there are multiple destinations. It is worth noting
that the FORK module and the isochronic fork [92] discussed in section 2.2.2 are
completely diferent concepts that have no relation to each offfes section presents
three types of FORK module: pFORK, dFORK and bFORK. The first two FORK

modules use the foyohase early protocol, while the last employs the broad protocol.

6.5.1 pFORK module

Figure 6-18 shows a circuit implementation for a FORK module, called pFORK. The
pFORK module allows concurrent processing on the input link and resetting on the
output link. Howeverthe input and output links are not allowed to reset in parallel, with

the input link being first and the output link following.

6.5.2 dFORK module

Figure 6-19 shows a circuit implementation for a FORK module, called dFORK. Like

the pFORK module, the dFORK module allows concurrent processing on the input link

Four-phase control modules 135

< Al

| — » R1
+
Ri L\
L&
Ai o » R2

“ NG - A2

Figure 6-18: pFORK circuit implementation

and resetting on the output link. Furthermore, concurrent resetting on both the input and
output links are also allowed in the dFORK module. The resetting on the output link can
start even before that on the input link. The output link has the property of self-resetting
as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

: c >— Rl
Ri D
—

j‘i ' A
Ai

(c |
+

-+— A2

Figure 6-19: dFORK circuit implementation

6.5.3 bFORK module

The first two FORK modules described above use thedbase early protocol. A
circuit for a FORK module using the broad protocol, called bFORK, is shown in figure

6-20. The bFORK module can also be used for cases where the early protocol is used

Four-phase control modules 136

since the specification of the broad protocol is more thditient to cover that of the
early protocol. Howeverthe operation of the circuit is totally sequential, which is

undesirable from the performance perspective.

Ri —————4— Al

—»— R2
————— A2

Figure 6-20: bFORK circuit implementation

6.6 SELA modules

This section presents three types of SELA modules: pSELA, dSELA and bSELA. All of
these three SELA modules use a control link. The SSELA module serves the role of the
if-else statement in programming languages. The input request first issues a handshake
along the control link. If the returned value of the dual-rail acknowledge signal is true,
the handshake will proceed along the output iRk, Al); otherwise it goes along the
output link R2, A2). The first three SELA modules use the fphase early protocol,

while the last employs the fophase broad protocol.

6.6.1 pSELA module

Figure 6-21 shows a circuit implementation for a SELA module, called pSELA. The
pPSELA module allows concurrent processing on the input link and resetting on the
output link. Howeverthe input and output links are not allowed to reset in parallel, with

the input link being first and the output link following.

Four-phase control modules 137

Rc Af¢ +At

|) >
Ri T/
| Al
Ai CQ |
g e
|
+
D

Figure 6-21: pSEL A circuit implementation

6.6.2 dSELA module

Figure 6-22 shows a circuit implementation for a SELA module, called dSELA. Like the
PSELA module, the dSELA module allows concurrent processing on the input link and
resetting on the output link. Furthermore, concurrent resetting on both the input and
output links are also allowed in the dSELA module. The resetting on the output link can
start even before that on the input link. The output link has the property of self-resetting
as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

6.6.3 bSELA module

The first two SELA modules described above use thegbase early protocol. A circuit
for a SELA module using the broad protocol, called bSELA, is shown in figure 6-23.

Note that the acknowledge signals of the control link are dual-rail encoded, so they are

Four-phase control modules 138

Rc Af¢ At

R1
) -

Ri *
—> Al
A o G j:: A2

+
o) o 2

./

Figure 6-22: dSEL A circuit implementation

able to convey a Boolean value and make the circuit implementation speed-independent.
The bSELA module can also be used for cases where the early protocol is used since the
specification of the broad protocol is more tharfisieht to cover that of the early
protocol. Howeverthe operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Rc Af* At

Ri R1
—

Ai :z:

-
Al

A2
-

—>_
R2

Figure 6-23: bSEL A circuit implementation

Four-phase control modules 139

6.7 SELB modules

There are often cases where a boolean guard is known prior to incoming input
handshakes and remains stable during the process of handshaking. The SELB modules
are designed for those cases. Figure 6-24 shows an implementation of the SELB module
using the SELA module. This SELB module is still considered to be speed-independent

as long as the Boolean guard is well controlled by the environment.

Generally most speed-independent circuits ieofaust, whererobust means that multiple

input changes are allowed and the orders of input changes ddeubtlaé behaviour of

the circuit. This property is certainly desirable to designers. Howévéne input
changes of a specification are restricted by the environment and are known a priori to

designers, the circuit implementation could be much simplified and nfmwie et

By taking the nature of Boolean guard into account, simple aficieaf circuit

implementations of the SELB module can be derived; they are omitted here for the sake

of brevity.
Sel
Sel R1}—

—p{ Ri Al le— —

 SELB -
A A2 [e— Rc AU Afpg |,

R2
— —|Ri Al le—
~ SELA

<« Ai A2 l¢—
R2 |—

Figure 6-24: Implementation of the SEL B modules

Four-phase control modules 140

6.8 TOGGLE module

The TOGGLE module produces communications alternately on its two outputs in
response to its input. TheOIGGLE module is a useful building block and can be used to
construct other control modules or even asynchronous systems. HpilieVvEDGGLE
module itself is the most di€ult module to implement, though it appears to be quite
simple. Many circuit implementations had been derived and then verified not to be speed
independent. The di€ult lies in the fact that circuit implementations tend to contain an

inherent race hazard.

Figure 6-25 shows a circuit implementation for tf@GGLE module using NOR gates.
Since the DGGLE module is designed mainly as a basic building block for constructing
other control modules, there are no associated acknowledge signals to form input or
output links. Therefore, the environment must provide an input at a proper point only
after the outputs have responded the previous input changes. Analysis of this circuit
implementation has demonstrated that the operation is totally sequential, and races

cannot happen as there is only one enabled transition in every possible state.

y D——iy

Ri gb

q

Figure 6-25: TOGGLE circuit implementation

Four-phase control modules 141

6.9 An example: a counter

This section shows how an n-bit speed-independent counter is built usinQ@@LE
modules as the building blocks. The worse case settling time of this countge isifare

the carry may propagate from the low-order bit up to the high-order bit. Hovaser

two bits change per operation on average [93]; the typical case is much faster than the

worst case.

Figure 6-26 illustrates the diagram of the n-bit speed-independent colinéecarry

stops at a bit position where the internal state variable (see figure 6-25) is zero; this is
indicated by the transition along tR& output of the DGGLE module. If one bit stage

is one, the transition happens along ®e output which is connected to the next
neighbour DGGLE module. There are only two input states for the Completion
Detector: either all are zeros or only one of them is one. When a change from one input
state to the other is detected, it means the carry has completed its journey and the result is

generated. The result lies in the internal state variable of@@&GILE modules.

Ry[n-1] Ry[1] Ry[0] Go
Ri Ri Ri
TOGGLE TOGGLE TOGGLE
Ry Rx Ry Rx Ry Rx
Ry[n] | RX[n] ‘e Rx[1] Rx[0]

Completion Detector bone

Figure 6-26: Speed-independent inementer

Four-phase control modules 142

6.10 Arbiter modulesrevisited

All of the arbiter circuits described in section 6.3 take the micropipeline view that the
request signal initiates the data transfer (this is calf@atachannel). Howevearbiters

are often used in a bus structure, where the acknowledge signal initiates the data transfer
(called apull channel). One undesirable property of push arbiters is that the output
request must wait whenever the MUTEX element goes metastable. Therefore the latency
is unbounded, which is quite serious in some applications requiring low lafEmsy
section presents two types of pull ARBITER module. The eARBITER modules use the

four-phase early protocol, while the fARBITER module employs the broad protocol.

6.10.1 eARBITER module

A specification and implementation of a pull ARBITER module, called eARBITER, are
shown in figure 6-27 and figure 6-28, respectivEhe request sign&o directly follows

the input requests and it is not necessary to wait until the output SgfhatelG2 of the

MUTEX element have been resolved when a metastable state occurs. The circuit has a
bounded request latenayhich is important for applications requiring low latendpte

that the place “p1” can accommodates two tokens, which the PETRIFY tool can deal
with. However other tools based on STGs have restrictions for multiple token cases,

though a CD specification can describe this situation using OR-type signal transitions.

6.10.2 fARBITER module

A specification and implementation of a pull ARBITER module using the broad

protocol, called fARBITER, are shown in figure 6-29 and figure 6-30, respectively

Four-phase control modules 143

Al

(v R1+ Gl1+

R1- «—Al+

|

Gl1-

®

—

|

(Ro+ A0+)

G2+ R2+ V\Q

A)M—/ R

KM_/@'><

Ay

A2-

Figure 6-27: PN of the eARBITER module

" — 1
— R1 Gl—
< . +
8 | R
> :I> ©
R2 =
— R2 G2
Ao
" -
A2

Figure 6-28: eARBITER circuit implementation

Four-phase control modules 144

.

R1

l

G1-

Al+ <

R1+ R2+
(Ro+ Ao+t)

Q c2

K Al-/@‘gsz\AZ- j

> A2+ ——> R2-

l
|

Figure 6-29: PN of thefARBITER module

Al
P
+o—
. 1A
— R1 < Gl
L Ro
= IS
R2 =
— R2 G2
+ b
A2
4{ Ao
-«

Figure 6-30: fARBITER circuit implementation

Four-phase control modules

145

6.11 Moduleswith multipleinput links

Up to now all the modules presented have had at most two input links. There are often
cases where multiple input links are required. Circuit implementations for modules with
multiple input links can be derived following the procedure described in the previous
sections. Howevethey are most practically built by using the corresponding two input

link modules. This section examines the design of these modules with multiple input
links. The design of a foyphase early protocol arbiter with multiple input links is taken

as an example and discussed. The discussions can, in general, apply to other modules

with multiple input links.

Figure 6-31 shows a tree arbiter with eight input links, where the solid dots represent the
two input link arbiters. The following terms are defined for the sake of discussion. The
top arbiter is called thkeome node, the bottom arbiters are called tleaf nodes and the
arbiters between the home node and the leaf nodes are calldidetbery nodes. The

input links connected to the same leaf node foteafagroup. The input links connected

to the same directory node forndiaectory group. For an example, the input linksand

12 form a leaf group and input linkS, i6, i7 andi8 form a directory group.

out

home node

i1 i2 i3 i4 i5 i6 i7 18

Figure 6-31: Tree arbiter

Four-phase control modules 146

Imagine a case where all eight asynchronous input requests arrive and one input request
(say the input linkil) is granted and the other seven input requests are pencdenareWV
interested irwhich input request will be granted antien after the granted input request

from the input linki1 is released.

All the ARBITER modules presented earlier are.flirother words, a pending calling
request must be granted after a bounded number of other input requests are granted. The
bounded number is eight in this case. Seen from the home node, one input request from
the directory groupi, i6, i7, 18} will be granted after the input request from the input

links i1 is released because of the fair nature of the home node. Therefore, those input
links should be put into ddrent directory groups or digrent leaf groups if calling
requests from those input links are likely to compete for a common resource. This is the

first conclusion.

Suppose that SARBITER modules are used. The release of the calling request from the
input link i1 involves resetting all the nodes from the leaf node to the home node. All
these resettings are sequential and thus delay a grant for other calling requests. Supposed
that pARBITER modules are used. The situation will improve as the resetting of the
output link of the home node and the falling transition of the input link of the directory
noded1234 can be in parallel. Howevehe circuit still waits for the falling transition of

the calling request from the input link. This is unacceptable if the height of the tree
structure is high. Supposed that dARBITER modules are used. The problem will be
solved since the dARBITER module can reset the output link by itself as soon as it has
completed the calling procedure and resetting of the output link does not depend on its

input reset request (see “dARBITER module” on pa8@). Therefore, dARBITER

Four-phase control modules 147

modules should be used to build an arbiter with multiple input links based on the tree
structure. If other types of arbiters are used, the response time will be degraded. This is

the second and also very important conclusion.

6.12 Summary

A set of control modules for foyphase micropipelines with d#rent implementations

has been presented. Arbiters, which are non-trivial and tricky to design, are also
included. These control modules, together with the pipeline latch control circuits
described in the previous chaptean be used to construct complex and powerful
asynchronous systems including forking or joining multiple pipelines. Also they can be
used to construct other fephase control modules. All of the proposed control modules

are speed-independent, and this has been verified using the PETRIFY tool.

The design of an arbiter with multiple input links based on a tree structure has also been
discussed. The dARBITER modules should be used to build an arbiter with multiple

input links as their output links can be self-reset.

Petri nets have been shown to be an appropriate formalism for describing the behaviour
of asynchronous systems with concurrencgusality and conflicts between events.
Though most steps of the development of these control modules were processed by hand,
the PETRIFY tool played a key role and was used to synthesize various implementations

for comparison and analysis.

Four-phase control modules 148

AMULETS3I 7

AMULETSI is an asynchronous embedded system chip which incorporates the third
generation asynchronous ARM processor (AMULET3)fddént from its predecessors,
AMULET1 and AMULET2e, AMULETS3I is aimed to be a commercially viable product
for communication applications. This will be a significant step. A brief description of
AMULETS3i and AMULET3 is given in this chapter in the hope of providing the big

picture into which the components described in the previous chapters can be placed.

7.1 Introduction

As we said previous)yt is our belief that asynchronous design must be justified on its
practical significance rather than solely on a theoretical basis. The motivation behind the

AMULET project is to demonstrate this practical significance.

AMULET1 demonstrated the feasibility of building an asynchronous system at the levels
of complexity of current synchronous systems. AMULET2e proved the competitiveness
of an asynchronous system compared with current synchronous systems, from both the
power perspective and the performance perspective. AMULET3i will, in turn, put the

asynchronous experience of the academic community into industrial practice.

AMULETSi 149

7.2 AMULETSI

AMULETS3i is a commercial asynchronous embedded system chip, whgseization
is shown in figure 7-1. In addition to AMULET3 (the third generation asynchronous

ARM processor), AMULET3i contains 8 Kbytes of RAM (which can also be configured

_l\ Test
interface

controller

—l/ AMULET3

N] 8K byte Control
/] RAM registers

data

Memory
interface

Jb <y address
< MARBLE bus chip

selects

DRAM

control

Synchronous
DMA i
peripheral asynchronous
controller interface
synchronous
S)F/)ré ﬂ;)rrc])enr({)j1 l|JS Ip;eoripheral
subsystem >

Figure 7-1: AMULETS3i block diagram

AMULETS3i 150

as a cache), a DMA controllea MARBLE (Manchester AsynchRonous Bus for Low
Enegy) bus [94], a flexible memory interface, a general synchronous peripheral
interface, an on-chip synchronous peripheral subsystem, and various configuration and

control registers. A test interface is also included to support the design for test strategy

7.3 AMULETS3

AMULETS is the third generation asynchronous ARM proceskoimplements the
ARM architecture version 4 and supports the Thumb instruction set [95]. Figure 7-2

shows the block diagram of AMULET3, which consists of five major blocks. The

S

l\
Prefetch
—\/

Instruction fetch

—N] Decode &
—/

Register read

Data access

Execute

Data
transfers

Reorder &
Writeback

Figure 7-2: AMULET3 block diagram

AMULETS3i 151

detailed oganization of AMULET3 is shown in Figure 7-3. (Note that figures 7-1, 7-2
and 7-3 are reproduced from the “Scoreboard” of the AMULET project with the kind

permission of Professor Steve Furber). The design includes several novel features.

Firstly, a Harvard architecture is used and the data interface is sidelined from the main
instruction flow As a result, data transfer operations, especially multiple load and store
instructions, can be decoupled from purely internal operations. Another benefit of this
organization is that an interrupt can be dealt with in the Prefetch Unit rather than in the
Decoder Unit and treated as a predicted branch, giving a fast interrupt response. As
loaded values are reordered into the Register Bank and data aborts are allowed to be
delayed, there is significant speculation following a load or store instruction without

paying penalties for slow memaory

Secondly instructions are allowed to execute out of order and a Reordésr B96]
(borrowed from superscalar design techniques) is used to hold results to be written back
to the Register Bank in ordérhis reorder biér is, in essence, an implementation of the
register renaming mechanism. Therefore, result forwarding (not only the last result as in
AMULET?2e [11]) can be achieved in a deterministic and arbitration-free matnsr

worth noting that two Thumb instructions are fetched per bus cycle, which is another

superscalar aspect of the design.

Finally, branch prediction and a halt mechanism are included. The halt mechanism is
straightforward in asynchronous designs and achieves a three to four orders of
magnitude power saving I1in the idle state, whereas a synchronous design can only

approach this power fegiency by stopping the clocks with considerablertf

AMULETSi 152

A4

¥

s ulMeMa u=

mmsDMEMNs u =

+4
BTC
branch/indirect PC address
indirect
i } i i L 5 PC value
— instruction address }
Imem Ctl
m instructions |
{7 4 HEn
-1
47 Thumb CP Citl <
N .
—l/
7 ;
L i} | | decode | & PC
V Q
Br Add/ N7 N £
Q read Reg. Bank C— Bank
A B C
; L @
o)
post-indexed indirect PC address g
)
N S
repl. §
N 7
47 _|_A U Vol sorean
/1_ /1 \X/ store data
N N Tnkpe v L
— s || e | " | data address v <
| | internal \v/ T
results X |
| B o go R [r— —— Xp|pe = i) - /v\ load data

Regs write

PRV

N
in order

Q write

(S

% % %rot/sgne/

xternal results

Figure 7-3: AMULET3 organisation

AMULETS3i

153

7.4 EXxecution unit

Figure 7-4 shows the block diagram of the Execution Unit. The ALU comprises alogic
unit and an adder unit. The design of the adder unit is presented in chapter 3. The design
of the multiplier is described in chapter 4. Multiplexers are used to implement the result
forwarding mechanism, and choose operands either from the Register Bank or from the

Reorder Buffer (which is also called the Queue).

Register Bank
A B C
Forwarding
From Queue
LN
\Mux AMUXAMUX/
Z AV
Multiplier
& Shifter
Immediates
I

Figure 7-4: Execution pipeline organization

AMULETS3i 154

7.5 Implementation

Figure 7-5 shows an implementation oriented view of the AMULET 3 datapath structure.

AMULETS3i isdesigned using a 0.35 um triple metal CM OS technol ogy.

| 3 :
Q < a
<
[a
E]
<
¢ ‘4_|
E
S
E
SN
j [0] —
2 8
m
— >
L] P
i [« [«O»» |
< m , O
S
5 o]
X @
[8Y
—]1a < =
x & = | E
o
@ 2 >
‘ T
S I
E
A
O 3 -
= i A=
- — 3 g
2P s g
S @ £
o’ -
= <
Sl to
3 2
a £ =

Figure 7-5: AMULET3 datapath structure

AMULETSi 155

7.6 Summary

A brief description of AMULET3i and AMULETS3 has been given. AMULET3i is an
asynchronous embedded system chip, which is aimed to be commercially viable product
for communication applications. AMULET3 is the third generation asynchronous ARM
processor, which implements the ARM architecture version 4 and supports the Thumb
instruction set. Clearly, the adder and the multiplier, described in the chapter 3 and 4,
have directly contributed to AMULET3i. Two sets of asynchronous control circuits,
described in the chapter 5 and 6, have also contributed to AMULETS3i, but this is not

clear in the pictures presented here.

AMULETSi 156

Conclusions

This thesis has presented engineering work on asynchronous design. The arithmetic and
control components were designed and implemented for AMULET3i, a commercial
asynchronous embedded system chip for communication applications. The arithmetic
components comprise an adder and a multiplier; these two are critical to the performance
of the processor core. The control components consist of a set of pipeline latch control
circuits and a set of control modules; all of these components are speed-independent.
Though the nature of the work is mainly engineering, there are some significant new

insights gained in the course of the work.

8.1 Contributions

A novel carry arbitration scheme was proposed (and has been patented) for parallel adder
circuits. The proposed scheme provides dicient encoding in which the carry is
generated by arbitrating several input carry requests, exploiting the associativity of the
carry computation. The new coding is a logically redundant superset of the conventional
carry process. Departing from this general coding, certain modifications which reduce
the redundancy can easily be made where this simplifies the implementation. The new

scheme not only leads to high speed adders due to the reduction in the required layers of

Conclusions 157

logic, but also ders a regular and compact layout and uniform fan-in and fan-out
loadings. A high performance, low power 32-bit adder for AMULET3i has been
designed using the new scheme and implemented down to the layout level. It takes 1.8 ns
to complete a 3bit addition and occupies 1372n X 524.8um of chip area in a 0.35

pum triple metal CMOS technolog¥he power estimate of the datapath is about 8 and 17

mW operating at 100 and 200 MHz (under typical process conditions), respectively

A high performance, low power asynchronous 32 bit multiplier with a reasonable
hardware resource has been developed for AMULETS3i. A new encoding technique has
been used in the AMULET3i multiplier to adjust the product result of an unsigned
number multiply operation. An adjustment value is made on the least significant 32-bit
positions. A new 4-2 compressor with an enable control has been presented, together
with several other circuit design techniques including the use of true single-phase
clocking registers. The elegance of this multiplier is the manner in which the algorithm
and the circuit implementation are well matched within the asynchronous framework.
Post-layout simulation, in a 0.35 micron triple metal CMOS technolslgyws that it

takes 1.2 ns (2.8 n& 4 cycles) to complete the computation of a 32-bit multiplication in

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at
100 and 200 MHz (under typical process conditions), respectiliedylayout is regular

and compact with a datapath area of only 4¥6689.6um?.

A set of pipeline latch control circuits for fephase asynchronous pipelines has been
proposed. These can be used tgaoize arithmetic componentsfiefently into a
micropipeline. All of the proposed pipeline latch control circuits are speed-independent,

and this has been verified using the FORCAGE tool. A-ftxaise micropipeline can be

Conclusions 158

configured either in a request-activated form or in an acknowledge-activated form. The

latter is the framework within which dynamic logic can be exploited for low power

A set of control modules has been proposed in order to ease the design of asynchronous
systems based on fephase micropipelines. Arbiters, which are non-trivial and tricky to
implement, are also included. All of the proposed control modules are speed-
independent, and this has been verified using the PETRIFY tool. These control modules,
together with the pipeline latch control circuits, can be used to construct complex and

powerful asynchronous systems.

8.2 Futurework

There are some application areas where asynchronous designs are likely to demonstrate
advantages. Our philosophy is still to prove that the theoretical benefits are practically

realizable, and this is reflected in the engineering nature of work presented here.

There are two areas where asynchronous designs are attacking and are likely to win. The
first is the low power market where short battery life is the bane of the user and the
second is the mobile communication market where good EMC is required. Thus more

future work is expected in these two areas.

8.2.1 Low power market

The field of low power designs using traditional clocked design methodologies has been
plagued with fundamental didulties. Global clock generation and distribution is
blamed for a significant portion of the total power consumption in a synchronous CMOS

circuit [97]. Though advanced power management can deal with clock gating and even

Conclusions 159

shut down clocks, this comes at a price in terms of increased compléaitever
advanced power management is inherent within the asynchronous design methodology
Power is only consumed when needed. There are many ogluenemts which suggest

an asynchronous design is a low power design. But the most convincing demonstration is
the AMULET2e work, which reduces power below that achievable in the industry-

leading clocked ARM designs.

It is worth noting that there is no single solution to the power consumption problem. A
design should consider power at all levels of the design hieranctiyding the
technology layout, circuit, logic, design style, architectural and algorithmic levels [98-

103].

8.2.2 Mobile communication market

In the early 19th Centuryhe French mathematician Jean-Baptiste Fourier proved that
any reasonably behaveariodic function,g(t), with frequencyf can be constructed by

summing a number of sines and cosines:

g(t) = c+ z a,sin (2mnft) + z b, cos (2mnft)

n=1 n=1
wherec is a constant,, andb,, are the sine and cosine amplitudes ofrtieharmonics,
which decrease asincreases. From the above equation, it is clear that a synchronous
system produces “harmonic pollution” that aligns with harmonics of the clock, in
addition to “fundamental noise” that aligns with the clock frequeHoyvever periodic
operation is the fundamental property of synchronous systems and there is no way

around this. Fortunateglyasynchronous systems aaperiodic and therefore do not

Conclusions 160

produce harmonic pollution (or produce negligible harmonic pollution). This very good
EMC is a unique advantage of asynchronous systems. It is worth noting that an
asynchronous system generates less fundamental noise compared with a similar
synchronous system as it produces broadband distributed current without the high
amplitude peaks. Recent work has shown that the magnitude of the current peak of a
synchronous system is 2.5 times that of a similar asynchronous system [i04]. W
increasingly rigorous EMI compliance specifications and testing, good EMC properties

will demonstrate another meritorious aspect of asynchronous design.

8.3 Asynchronous prospects

“It is possible that all the énewed intarst in asynctonous techniques will come to
nothing, though this seems unlikdlyis also possible that industry will suddenly see the
asynchonous light and switch completely to the new apph. This seems even mor
unlikely! What seems niikely is that aeas will be identified wherasynchonous
approaches haveeally worthwhile advantages; these will be niches in otherwise

synchonous designs.”

The above statement was made by Professor Steve Furber at a time shortly after the
AMULET group was established. It still remains true todaythe intervening years,

work in the AMULET group and elsewhere has moved asynchronous technology much
closer to commercial realityThe research described in this thesis is expected to
contribute to this movement, making the low power and EMC advantages inherent in
asynchronous technology more accessible to the designers of products which need these

benefits.

Conclusions 161

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

Furber S.B., “Computing without clocks”,
Proceedings of the VII Bah¥Workshop: Asynchronous
Hardware Design, Baf)ffCanada, 1993.

Asynchronous Logic Home Page,
http://mww.cs.man.ac.uk/amulet/async/index.html.

On-Line Asynchronous Bibliography
http://www.win.tue.nl/win/cs/pa/wsinap/async.html.

Furber S.B., DayPR, Garside, J.D., PaveX.C., Temple, S. and
Woods, J.V, “The design and evaluation of an asynchronous
microprocessor”, Proceedings of ICCD 94, Boston, Massachusetts,
October 1994.

Furber S.B., DayP, Garside, J.D., Payed.C. and Vdods, J.V,

“A Micropipelined ARM”, Proceedings of the IFIP TC 10/WG 10.5
International Conference oreky Laige Scale Integration
(VLSI'93), Grenoble, France, September 1993,

Ed. Yanagawa, Tand Ivey PA., Pub. North Holland.

Furber S.B., DayP, Garside, J.D., Payed.C. and Vdods, J.V,
“AMULET1: A Micropipelined ARM”, Proceedings of the IEEE
Computer Conference, San Francisco, March 1994.

Paver N.C., “The design and implementation of an asynchronous
microprocessor”, PhD thesis, University of Mancheskene 1994,

Woods, J.V, Day P, Furbey S.B., Garside, N.C., Pay&i.C. and
Temple, S., “AMULET1: an asynchronous ARM microprocessor”,
IEEE Transactions on Computers, vol. 46, April 1997, pp. 385-398.

Furber S.B., “VLSI RISC architecture andgamization”,
Marcel Dekker Inc., New afk, 1989.

Furber S.B., “ARM System Architecture”,
Addison Wesley Longman Limited, Nework, 1996.

Furber S.B., Garside, J.D.gmple, S., Liu, J., Day and

Paver N.C., “AMULET2e: An asynchronous embedded
controller”, Proceedings of Async’97, IEEE Computer Society
Press, April 1997.

162

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Liu, J., “Digital adder circuits”,
UK Patent no. 9620526, November 1996.

Booth, A.D., “A signed binary multiplication technique”,
Quarterly Journal of Mechanics and Applied Mathematics,
vol. 4, June 1951, pp. 236-240.

MacSorley O.L., “High-speed arithmetic in binary computers”,
Proceedings of the IRE, vol. 49, January 1961, pp. 67-91.

Yuan, J. and Svensson, C., “High-speed CMOS circuit techniques,
IEEE Journal of Solid-State Circuits, vol. 24, February 1989,
pp. 62-70.

Liu, J., “The design of asynchronous multiplier”,
MSc thesis, University of Manchestdune 1995.

Day, P and Wods, J.V, “Investigation into micropipeline latch
design styles”, IEEE rRnsaction on VLSI Systems, vol. 3,
June 1995, pp. 264-272.

Furber S.B. and DayP, “Fourphase micropipeline latch control
circuits”, IEEE Transaction on VLSI Systems, vol. 4, June 1996,
pp. 247-253.

Furber S. B. and Liu, J., “Dynamic logic in foyphase
micropipelines”, Proceedings of Async’96,
IEEE Computer Society Press, March 1996.

Sutherland, I.E., “Micropipelines”, The 1988rThg Avard
Lecture, Communications of the ACM,vol. 32, June 1988,
pp. 720-738.

Kishinevsk, M., Kondratye\A., Taubin, A. and ¥rshavskyV.,
“Concurrent hardware: the theory and practice of self-timed
design”, John Wey & Sons, Inc., New ¥rk, 1994.

Murata, T, “Petri nets: properties, analysis and applications”,
Proceedings of IEEE, vol. 77, April 1989, pp. 541-580.

Cortadella, J., Kishinevsk#., KondratyeyA., Lavagno, L. and
Yakovley A., “Complete state encoding based on the theory of
regions”, Proceedings of Async’'96, IEEE Computer Society Press,
March 1996.

Cortadella, J., Kishinevsk., Lavagno, L. and &kovley A.,
“Synthesizing Petri nets from state-based models”,
Proceedings of ICCAD’95, November 1995, pp. 164-171.

Cortadella, J., Kishinevsk., KondratyeyA., Lavagno, L. and
Yakovley A., “Methodology and tools for state encoding in
asynchronous circuit synthesis”, Proceedings of ACM/IEEE
Design Automation Conference, 1996.

163

[26] Cortadella, J., Kishinevskl., KondratyeyA., Lavagno, L. and
Yakovley A., “Technology mapping of speed-independent circuits
based on combinational decomposition and resynthesis”,
Proceedings of European Design aedtiConference, 1997.

[27] ChaneyT.J. and MolnarC.E., “Anomalous behavior of
synchronizer and arbiter circuits”, IEEEahsactions on
Computers, vol. 22, April 1973, pp. 421-422.

[28] Couranz, G.R. and &n, D.F, “Theoretical and experimental
behaviour of synchronizers operating in the metastable region”,
IEEE Transactions on Computers, vol. 24, June 1975, pp.604-616.

[29] Kinniment, D.J. and \bds, J.V,
“Synchronisation and arbitration circuits in digital systems”,
Proceedings of IEE, vol. 123, no. 10, Octold&76, pp. 961-966.

[30] Horstmann, J.U., Eichel, H.vVend Coates, R.L.,“Metastability
behavior of CMOS ASIC flip-flops in theory and test”,
IEEE Journal of Solid-State Circuits,
vol. 24, February 1989, pp. 146-157.

[31] Mead, C. and Conway., “Introduction to VLSI systems”,
Addison-Weésley London, 1980.

[32] Huffman, D.A., “The synthesis of sequential switching circuits”,
J.Franklin Institute, vol. 257, March/April 1954,
pp. 161-190/275-303.

[33] Unger S.H., “Asynchronous sequential switching circuits”,
Wiley-Interscience, John M@y & Sons, Inc., New drk, 1969.

[34] Yun, K. and Dill, D., “Automatic synthesis of 3D asynchronous
state machine”, Proceedings of ICCAD, 1992.

[35] Yun, K., Dill, D. and Norwick, S.M., “Synthesis of 3D
asynchronous state machines”, Proceedings of ICCD, 1992.

[36] Lavagno, L. and Mcentelli, A.S.,

“Algorithms for synthesis and testing of asynchronous circuits”,
Kluwer Academic Publishers, 1993.

[37] Muller, D.E. and BartkyW.C., “A theory of asynchronous circuits”,
Annals of Computing Laboratory of Harvard University
1959, pp.204-243.

[38] Staunstrup, J., “A formal approach to hardware design”,
Kluwer Academic Publishers, 1994.

[39] Ebegen, J.C., “Tanslating programs into delay-insensitive
circuits”, PhD thesis, Eindhoven University céchnology 1987.

[40] Ebegen, J. C., “A formal approach to designing delay-insensitive
circuits”, Distributed Computing, vol. 5, July 1991, pp. 10B-1

164

[41] Molnar, C.E., Fang, ‘P and Rosenbger, EU., “Synthesis of
delay-insensitive modules”, Proceedings of the 1985 Chapel
Hill Conference on Advanced Research in VLSI, 1985.

[42] Chu, TA., Leung, C.K.C. and ¥huga, TS.,
“A design methodology for concurrent VLSI systems”,
Proceedings of ICCD, 1985.

[43] Rosenblum, L.Yand Yakovley A.V., “Signals graph: from
self-timed to timed ones”, Internationalovishop on
Timed Petri Nets, drino, Italy, 1985.

[44] Kishinevsky M.A., KondratyeyA.Y., Taubin, A.R. and
VarshavskyV.1., “On self-timed behavior verification”,
Proceedings of AU’'92, March 1992.

[45] Verhoef, T., “Delay-insensitive codes an overview”,
Distributed Computing, vol. 3, 1988, pp. 1-8.

[46] Sparsg, J. and Staunstrup, J.,
“Delay-insensitive multi-ring structures”,
Integration, the VLSI Journal, vol. 15, 1993, pp. 313-340.

[47] Martin, A.J., “Programming in VLSI: from
communicating processes to delay-insensitive circuits”,
UT Year of Programming Series, Hoare, C.A.R., Ed.,
Addison-Wesley 1990.

[48] Berkel, K.\, “Handshake circuits: an asynchronous architecture for
VLSI programming”, volume 5, International Series on Parallel
Computation, Cambridge University Press, 1993.

[49] Paver N.C., “Condition detection in asynchronous pipelines”,
UK Patent no. 914513, October 1991.
[50] Garside, J.D., “A CMOS VLSI implementation of an

asynchronous ALU”, Proceedings of the IFIBMIng
Conference on Asynchronous Design Methodologies,
ManchesterEngland, 1993.

[51] Ling, H., “High-speed binary adder”,
IBM J.Res.Developmentpol. 25, 1981, pp. 156-166.
[52] Brent, R.Pand Kung, H.T,

“A regular layout for parallel adders”,
IEEE Transactions on Computers, vol. 31, 1982, pp. 260-264.

[53] Oklodzija, VG. and Barnes, E.R.,
“On implementing addition in VLSI technology”,
Parallel Distributed Computing, vol. 5, 1988, pp. 716-728.

[54] Lynch, T and SwartzlandgeE.E.,
“A spanning tree carry lookahead adder”,
IEEE Transactions on Computers, vol. 41, 1992, pp. 931-939.

165

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Quach, N.Tand Flynn, M.J., “High-speed addition in CMOS”,
IEEE Transactions on Computers, vol. 41, 1992, pp. 1612-1615.

Sklansky J, “Conditional-sum addition logic”,
IRE Transactions on Electronic Computers, vol. 9,
1960, pp. 226-231.

Bedrij, O.J., “Carry-select adder”, IREdnsactions on
Electronic Computers,vol. 9, 1962, pp. 226-231.

Avizienis, A., “Signed-digit number representations for fast parallel
arithmetic”, IRE Tansactions on Electronic Computers, vol. 10,
September 1961, pp. 389-400.

Srinivas, H.R. and Parhi, K.K., “A fast VLSI adder architecture”,
IEEE Journal of Solid-State Circuits,
vol. 27, June 1992, pp. 761-767.

Ladner R.E. and FischeM.J., “Parallel prefix computation”,
J.ACM, vol. 27. 1980, pp. 831-838.

Uyemura, J.R“Circuit design for CMOS VLSI”,
Kluwer Academic Publishers, 1992.

Shoji, M., “CMOS digital circuit technology”,
Prentice-Hall, Inc., Englewood Cis, New Jersey1988.

Weste, N.H.E. and Eshraghian, K.,
“Principle of CMOS VLSI design: a system perspective”,
Addison-Wesley Massachusetts, 1988.

Suzuki, M. et al.,

“A 1.5 32-b CMOS ALU in double pass-transistor logic”,
IEEE Journal of Solid-State Circuits,

vol. 28, June 1993, ppl145-1151.

Turley, J., “ARM tunes Piccolo for DSP performance”,
Microprocessor Report, vol. 10, November 1996, pp. 17-20.

Bewick, G. and Flynn, M.J., “Binary multiplication using partially
redundant multiples”, &chnical Report, CSL-TR-92-528,
Computer Systems Laboratp§tandford UniversityJune 1992.

Omondi, A.R., “Computer arithmetic systems —
algorithms, architecture and Implementation”,
Prentice Hall International (UK) Limited, Cambridge, 1994.

Day, P, “A micropipelined multiplier”,
ACID-WG/EXACT Workshop on Asynchronous Processing,
Veldhoven, Netherlands, December 1992.

Wallace, C.S., “A suggestion for parallel multipliers”, IEEE
Transactions on Electronic Compuyteol. 13, 1964, pp. 14-17.

166

[70] Harata, Y, Nakamura, Y Nagase, H.,dkigawa, M. and dkagi, N.,
“A high-speed multiplier using a redundant binary adder tree”,
IEEE Journal of Solid-State Circuits,
vol. 22, February 1987, pp. 28-34.

[71] HennessyJ.L. and Patterson, D.A.,
“Computer architecture, a quantitative approach”,
Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[72] Zuras, D. and McAlliste\W., “Balanced delay trees and
combinatorial division in VLSI”, IEEE Journal of Solid-State
Circuits, vol. 21, October 1986, pp. 814-819.

[73] Wu, X. and ProssefTheory of transmission switches and its
application to design of CMOS digital circuits”,
Int. J. Circuit Theory Application, vol. 20, 1992.

[74] Zhuang, N., and W, H., “A new design of the CMOS full adder”,
IEEE Journal Solid-State Circuit, vol. 27, May 1992, pp. 840-844.
[75] Wang, J.M., Fang, S.C. and Feng S/ “New eficient designs for

XOR and XNOR functions on the transistor level”, IEEE Journal of
Solid-State Circuits, vol. 29, July 1994, pp. 780-786.

[76] Pasternak, J.H. and Salama, C_A‘Design of submicrometer
CMOS differential pass-transistor logic circuits”, IEEE Journal
Solid-State Circuit, vol. 26, September 1991, pp. 1249-1258.

[77] Yano, K., Yamanaka, T Nishida, T, Saito, M., Shimonigashi, K.
and Shimizu, A., “A 3.8-ns CMOS ¥@6-b multiplier using
complementary pass-transistor logic”, IEEE Journal Solid-State
Circuit, vol. 25, April 1990, pp. 388-395.

[78] Santoro, M., “SPIM: a pipelined 6464-bit iterative multiplier”,
IEEE Journal of Solid-State Circuits,
vol. 24, April 1989, pp. 487-493.

[79] Nagamatsu, M.,dnaka, S., Mori, J., Hirano, K., Noguchi,ahd
Hatanaka, K., “A 15-ns 32 32-b CMOS multiplier with an
improved parallel structure”, IEEE Journal of Solid-State Circuits,
vol. 25, April 1990, pp. 494-497.

[80] Mori, J. et al., “A 10-ns 5% 54 parallel structured full array
multiplier with 0.5pm CMOS technology”, IEEE Journal of
Solid-State Circuits, vol. 26, 1991, pp. 600-606.

[81] Goto, G, Sato, .TNakajima, M. and Sukemura,, TA 54 x 54
regularly structured tree multiplier”, IEEE Journal of Solid-State
Circuits, vol. 27, September 1992, pp. 1229-1236.

[82] Gerosa, G, Gans. and Dietz, C., “A 2.2W 80MHz superscalar
RISC microprocessor”, IEEE Journal of Solid-State Circuits,
vol. 29, December 1994, pp. 1440-1454.

167

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Chandrakasan, A./.Sheng, S. and Brodersen, E.YW.ow-power
CMOS digital design”, IEEE Journal of Solid-State Corcuits,
vol. 27, April 1992, pp. 473-484.

Farnsworth, C., Edwards, D., Liu, J. and Sikand, S.,

“A hybrid asynchronous system design environment”,
Proceedings of the Secon¥king Conference on Asynchronous
Design Methodologies, London, May 1995.

Veendrick, H.J.M., “Short-circuit dissipation of static CMOS
circuitry and its impact on the design of faufcircuits”, IEEE
Journal of Solid-State Circuit, vol. 19, August 1984, pp. 468-473.

User Manual, Compass Design Automation Inc.,
San Jose, U. S. A.

Meng, TH.Y., Brodersen, E.W and Messerschmitt, D.G.,
“Automatic synthesis of asynchronous circuits from high-level
specifications”, IEEE fnsactions on Computéided Design,
vol. 8, November 1989, ppl&5-1204.

Greenstreet, M.R. and Steiglitz, K., “Bubbles can make self-timed
pipelines fast”, Journal of VLSI and Signal Processing,
vol. 2, November 1990, pp. 139-148.

Greenstreet, M.R., “SARI: A technique for high-bandwidth
communication”, PhD thesis, Princeton Universit993.

Moon, C.W, “Synthesis and verification of asynchronous circuits
from graphical specifications”, PhD thesis, Unversity of California
at Berkeley1992.

Martin, A.L., “Synthesis of asynchronous VLSI circuits”,
Technical Report, TR-93-28, Computer Science Department,
California Institute of €&chnology 1993.

Berkel, K.\, “Beware the isochronic fork”, Integration,
the VLSI Journal, vol. 13, June 1992, pp. 103-128.

Garside, J.D., “Micropipeline structures”, ACID-WG.EXACT
Workshop on Asynchronous Data Processing, the Netherlands,
December 1992.

Bainbridge, WJ. and FurbelS.B., “MARBLE: a proposed
asynchronous system level macrocell bus”, Proceedings of the
Second UK Asynchronous Forum, England, July 1997.

ARM Architecture Reference Manual,
Prentice Hall, Advanced RISC Machines Ltd. (ARM), 1996.

Johnson, M., “Superscalar microprocessor design”,
Prentice Hall, Englewood Cig, New Jerseyl991.

168

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Dobberpuhl, D.Wet al.,

“A 200- MHz 64-b dual-issue CMOS microprocessor”,
IEEE Journal of Solid-State Circuit,

vol. 27, November 1992, pp. 1555-1565.

Liu, D. and Svensson, C., “Power consumption estimation in
CMOS VLSI chips”, IEEE Journal of Solid-State Circuits,
vol. 29, June 1994, pp. 663-670.

Liu, D. and Svensson, C., tading speed for low power by choice
of supply and threshold voltages”, IEEE Journal of Solid-State
Circuits, vol. 28, January 1993, pp. 10-17.

Nielsen, L.S., Niessen, C., Sparsg, J. and Berkel, K.V
“Low-power operation using self-timed circuits and adaptive
scaling of the supply voltage”, IEEEansaction on VLSI Systems,
vol. 2, December 1994, pp. 391-397.

Burd, T, “Low-power CMOS library design methodology”,
MSc thesis, University of California, Berke|ey994.

Berkel, K.\, Bumgess, R., Kessels, J.L.\WPeeters, A., Roncken, M.
and Schalij, F “A fully asynchronous low power error corrector for
the DCC player”, IEEE Journal of Solid-State Circuits,

vol. 29, December 1994, pp. 1429-1239.

Chandrakasan, A Burstein, A. and Broderson, R.W

“A low-power chipset for a portable multimedic 1/0O terminal”,
IEEE Journal of Solid-State Circuits,

vol. 29, December 1994, pp. 1415-1428.

“Cogency pushes asynchronous logic”,
Microprocessor Report, vol11October 1997.

169

Adder schematics A

This appendix contains the schematics of some of the cell library for the AMULET3

adder. Below isalist:

[0 adder_datapath
(0 adder_arbiter3
0 adder_nor2
0 adder_xor2

0 adder_select

Appendix A 170

path

A.1 adder data

xo o oo
ze0u xunsu aa aa
U
192128 42ppo ¢aepqunueppo Lo CieyqI0T Jepp
[t Awnsu _
Kown: 0£1Z_da [GHTAL
P [o£1Z oo 06199
s fs
y D e e e bt o s
xe N [€71¢aa €71z aa 1921z aq [OEE)
b
D P zaTaE AT e Ta—
[vZ'92'8¢ 0z Jwinsy 2 0510 £45110407 43pPO €J211Q10 7 I3pPO ciaUa0 T Isppo LAje— e ———
1o0105 ™ 1oppo S — o
[@iz
o) a1z aq
[CTAEATATSIIET) M Wi T A TS
[SFIGAEE
< e G
. [N Y 2 Terz o0 § ° Shaen o z T 90 10U | g [01CTIOU
s Xs 61 a9 61z aq [ERET]
e Ee pou 4sppo
TOIGL 0z 22108 IO IOPPO LA 4510 T I8P LAl CieyqI0T Jepp
toret Junss oo ool PUDU | et (0115 JPUOU
1o0105 ™ 1oppo Eu "
oou
[7ANCNE Jwinsu TZLBLL, 70
18l 10
A AT 44
«|‘ 1z aq €% aa
x5 As _ o9u
B0 sepp0
8oLzl lwnsu
1o0105 ™ 1oppo
wo
[BILELGLwnsy (611 €1GLIAS
[6LLE) 4
_ =
T00e)C_ob Z1z_0o gugu i
oo 0051z aa [z1z_an
2 — u
T T F4OX ™ 42ppD -
4 ot ioppo L
r—. |\ X ol ° T o| °
TEIT0UX Jous g o o_vuu 4 N
3)
it 10X | @ oq| | ¢
T3 B 5| £
o
(g wnsu o jowiie bt 5WBYDS UOIYDJ}IGID AUIDD M3BU 3U} Y}IM J1appD uy
[olwnsu
- Lo} 3
v X
pAox Jeppo S oo |
toig10u soux uu.
[oig1Iox torren Jox m“
[0140%

171

Appendix A

A.2 adder arbiter3

99 =

z/0z'z/01

5

d

0'z/0z
| =
fo,w\oﬁ «@ 0'z/0L
| | =
[T
0'z/0C
I =
Ly
W.N\Oﬁ 0'z/0l
W — =
o'z/oL
” =
o'z/oL
W 8
z/oz'z/o0
W
qu pu V_EO &
0'c/S
P
0'z/S
mT
0'z/s 0'z/s
mT mv
1 d
0'c/S
b
0'z/0L 0‘z/0L
b —p
zd
0'C/S
b

P

Zq

oL

09

[s]s)

172

Appendix A

A.3

adder _nor?2

nGo & - -
- sl
20/2,0 20/2,0
> P
[oN [oN
A
I 9
20/2,0 20/2,0
bb
=
nand | B
e \ —L
10/2,0 10/2,0
o= 9 a
20/2,0 20/2,0
E E
[oN [oN
A
- sl
20/2,0 20/2,0 =
ag
X
nor |
e \ —L
10/2,0 10/2,0 m

Appendix A 173

A4

adder _xor2

xnor X

xor X

]

10/2,110/2 10/2,0

#
|

pb

bb &

2

P

10/2.10/2

nb

pa

B sumb

aa =

=

e

0/2.10/2

na

B suma

Appendix A

A.5

adder _select

sy X
N
p=4
Qi;;
sumay B
#
10/2,10/2
X
DQ nsumy
10/2,10/2
sumby B
#
10/2,10/2
nsy
nsx
sumax B
#
10/2,10/2
&
% Nsumx
10/2,10/2
sumbx X
#
10/2,10/2
N
>
sx b4

Appendix A

175

Adder layouts B

This appendix contains the layouts of some of the cell library for the AMULET3 adder.

Below isalist:

0 adder_arbiter3
0 adder_nor2
0 adder_xor2

0 adder_ select

Appendix A 176

gae e

rTTIT]

dsditdiindsit
Attt

#,
o

A ety

Ao

%
o

A g

frchehiy]
dahinas
e
AN
]
ety

T

gaas

T
e

o5

ISR

8%
ottt

LT

g

duddliled

B.1 adder arbiter3

177

i

Appendix A

B.2 adder nor2

Tt

B
]

-
35

AT
b

i

.
Y
g5

Y

4]
&
i
85
i
5
i
85
i
85
i
5
i
5
i
8

e

S
o

&

hes

B 4

RN

Skanatny

e

oy

55 At
S

B3, i

e e

o
e

EngnANg

T

cacacacs
s
ehebdheh
fhdbdbet s
goeaehee
Ry

caen
++.++.
e
o

iy

b

gt
Ry
£
e
gy

&

&

b

o
£

i
i
&

b
iy
(o
(e

iy

b

o
£

¢
iy

ke
o
e
e

Jenasenaa

BE

EaCaENEy

SRR

CanERANy

e
L

&

ety

S

A

Faoy
Ehefi

ISR .

Sata

T

e
it
i

g

fSeanse
SaRaeace o

T
bt
]
£ e
: N

G

-+

ges agadh
o K

F

b

e

R

(ToANEDAY

jEngnANs

S nTREa

178

Appendix A

B.3 adder xor2

T

R

T

A
2

g,

fodsaey

sy

T R T R
R

s ot
E e e

s ot

[e e e
R

gttty

EaRaEas

TR
s EE

asaayty

179

Appendix A

ERAER,
2iAsgnas
e

e

180

mx

e

gt e

Facst peata

Appendix A

Lahlenn
Lttt

NSS

B.4 adder select

il

Multiplier schematics C

This appendix contains the schematics of some of the cell library for the AMULET3

multiplier. Below isalist of the following appendix sections:

O AMULET3 Multiplier
0 multdatapath

0 multboothmux33

0 multrowl

0 multrow2

0 multrow3

O multboothmux

0 multent42e

0 multent42c

O multmuxe

O multlatch

O multdffa
0 multdffb
0 multdffc

Appendix A 181

C.1 AMULET3 Multiplier

=) 2 2 2
i 5 5 o b H
© [@ S o
= a a a o
z e g g 8
5 5 5
H [0:1834810 2 = 2 et H
crcrm e 5 @ 5 3
a a a a
4ou
™
H g H
u3 vl
HYIT
H RNz H
ne
nenl Gl
2817
it
1
H zu H
ss
= N
— sies
[$) as =
H Z H
— EIES O
= aes aes o
o N o
@) on EN iy
i O
L = 20 he] 4
=
= I E
i g
A
TAU
o
A
H 14137 H
e
[ipILNY
1vILN
v v
ib]Ldu
s Wi
1vILd
H [L:7JONY H
1% 10N
[110du
e oo
11:%10d
weos _ _ _
Q o o
~ v 2 = = 5 5
2] = 5 o 2 iy i il
S < @ < I o < @ o
W o X c u @ = - = = W
s 3 e o 5 2 2 e 2
< = < S o 5 o 5
< = 5]

Appendix A 182

(DLEHSS

[01EH2d

[0°1£17S d g

[

L€ 710 o g

[OUE 12N

0S4 TBeISIaY [EAr
T B N e Moz zan
e moynu - Cexnuyooqynu
[3SZH) [(E3=y
o Zozan o N o Mozt v an
LIS PR PN P b A A, Bs < B b Ao Ay 4 A ERLI = - z -
gf &% %y 5§z 8°8°3 R Rl E 3] 3
z ER £ £ £ = =

[LiPIINY
[iblLdy
[L:¥IONY
[L:¥10dY

(D1£18

C.2 multdatapath

183

Appendix A

C.3 multboothmux33

184

Appendix A

[02y TZenan b
[0:2¢12dy EASL odd
» XNWY100g}|nu
m : u T o zn oG u — w0
10:zeled Teerd O — n a w1eE
[0:ZeTpa TZeTram pad an ToTEm
L vt P I e s U210} INW
ey L e O
N
M 07Zau 2d4 W] 1o
xnfuyloopynw
% edu e [=~
7u an
U e 7
iz pad an SSA
g I T T T T O e o
N s A 4 A, A5 b 4. A, 7u o811
i ER- - - - -
£ N by N by ¥ by N £

C.4 multrowl

o3

[

5 a%d 154
P ——
e (59XEEY
¥ sz¢jus}NW
z S
v T530Ad T5anes
u3
¥ w3
oy Ad I
TISToT TS ey e T]
ol e e ey
3| 2 DHpyIn 2Zp1ud}NW 1
" I | —
EEEE xet xd 5 LEIXd. ST e TLZEve geavay
ol a| @ InaQ un
T
— 7J
s oo = e
[5E L81Xd 154 [SITT
B L 108! Zizau
WagzHjudynw
T Ta e
[EE6E LE1Ad 104 £ 3= [GED
3
23 E G " =] u3 B a
&
Cri=rvrammn G d e Ve NS
ey
E=rh T
22 o aEy
=l = o nw [T (0E1bdY
HE HP3 aZZwoMNW [GYI T T
= 3D 1923vd
T
— xd - [CERE==1
a S e IS
[
CSI IRy

TETaT
[

10z pdy

(G

10z zdy

[z

185

Appendix A

C.5 multrow?2

(o1

101

[Zisised

ozan o
=AsE 2
s o g
” - ; Py P,
e Ciaer s
o C66128
axnuwijnw 9ZHIuUoHNW
wasd TE61Sd ol [EEIED
- 3l &
ss w noou uou g o=
: os o 8| =
i 2 2 s z : 3l g gl 2
3 3 R - sl 2| g e
T
aun
e
3 3 ™
8 I
E3 e
NI ————
id [86515d [CEE]
. ey
cau o T
axnwinw 5Z¢3uo}INW
qpynw B zewoy .
ud Teica [f43]]
Ad A [86£102dY 186£10d rod id [
v A x i sbs
E10ed T0ca [o9
[EEE] fom
[W ey eeen & Sesh aes

186

Appendix A

C.6 multrows3

[0:1£10¢d

[0:1£15¢d

0:LIHH

101024
Toceiota teenoid
11524
CEAE (2357
-
2
2
@ sx E— Xellt e (1:£35 7
z [CEZIST] xd Tecesed TozTeised xd
Spinwi gipynw
- Ad £ - - Ad e ———— AR
e LRIl Teeeiocd [
i a1 A X x D R X1 xa
I 9 z q
8 IS = 2
¥ E
¢ E i g
=
z
o
2
LQ:L143IN QL1
LOLE 3N u3z zv HY 1 0L IHY 831 10

187

Appendix A

C.7 multboothmux

®nM2 M2 BnMi BM
nPOC4:1]
L) ; B H
(4] 4
! ! Dc "nP4
#a 10/2,10/2
10/2,10/2
POL4:1]
ANOL4:1]
i3] E
Do ®nP3
#
L Tﬁﬁ,‘, torastra il
10/2,10/2
NOL4:1]
APTI4:1]
L) ' L
(21 2
>!< ‘ ‘ Do "nP2
D (lu 10/2.10/2
10/210/2
PTL4:1]
ANTL4:1]
- .
&] it i DO 8 np]
#
| —D‘Q, o/ar0rz ||
10/210/2
NTC4:1] _
:
ZE[4:1) - -
1 sl I
o
'e)

Appendix A 188

C.8 multcnt42e

od

Sd

e
It

uou

oo

A e
2
o
]
Bl voe/n ania
i 4
au % I
]
5
Zd %
]

ez
W

nogu

e
1t

o

d

e
W

=T

|[0JIUCD 2|gDUS Y}IM J91JSAUOD Z—1

189

Appendix A

C.9 multcentd42c

2]
0 ez I
g o'z/ol
0 W o'z/ol
p——t
a
g <forz/o
N o'z/o
g
T
o'z/ol
. P—
o'z/al o'z/oL
|
5 S
3 EA
| I
0'z/0r 0'z/0L
o'z/o
od ez
Il W o'z/ol
0'z/01 0°z/0L p——
d b 5
q Lis
> ES o'z/ol
—d p— P
o'z/ol o'z/oL
oz/oL
p——t
o
0'Z/01 0°z/0l
5 E
3 ES
f f
o'z/a o'z/oL 1]
{ 2oz
W
Sd
o'z/al o'z/oL
i rT [
la ' iz
& E
—d b1
0'z/or 0'z/0L [t}
|0JIUOD 2|gDU2 JNOYIIM J2}I2AUOD Z—1
ujou u nodu noo

190

Appendix A

C.10 multmuxe

PS &

SelP &

X

1SelS

SS ®

SC ®

PC =

®nPC

Appendix A

191

C.11 multlatch

=
C =
X X
Q
* g
L 773 L
Q
|| = 8 |
T
=
=
=
- & -
N
C (@]
[@N]
~
| 9}

|
X B
5/2,
5/2
|

D

Appendix A 192

C.12 multdffa

PY &

PX &

EN ALt EnLt
10/2,0 10/2.0
Ny o
10/2,0 10/2.0 - &l
Y
Y 9 DC 8 nPY
f
10/2.0/2
*X B 5/2,0 5/2,0
- - 10/2,0]7!
bPY 10/2.0
1
5/2,0]yM
i
1
5/2,0
10/2,0 10/2.0
M o
g g
10/2,0 10/2.0 ax B
DO &’ nPX
£
10/2:0/2
*X = 5/2.0 5/2.0
10/2,0 P
bPX 10/2.0
5/2.0]"
5/2,0

Appendix A

193

C.13 multdffb

®En DX B LtX ® ®DY ®LLY ®nZ
10/2,0 10/2,0
[— o™)
Pre———— [5726
10/2,0 10/2,0 ' .
Y QYN DC
®PY
f
[} 0/2,10/2 m
|
5/2,0 5/2,0 !
/2, /2, 5/2,0 Jyn!
4 4 |
- - 1
| 5/2,0 Ll
L 10/2,0 10/2,0 [
— o™
NPX B—————
5/2,0
10/2,0 10/2,0 / .
X iaxN Do
L 2 pyx Ll
"
10/2,0/2
|
1
5/2,0 5/2,0 s/2.0
4 4 |
L - - 1 Ll
5/2,0

Appendix A 194

C.14 multdffc

YS B

XS B——*

En DX B LtX B DY BLtY ®nZ
4
4 L
5/2,0 10/2,0 10/2,0
— o
5/2,0 10/2,0 10/2,0 5/2.0 Qv
T 2 PY
0/2:10/2
|
1
5/2,0 5/2,0 5/2,0 s/20]yn?
|
1
5/2,0
4
4 L
5/2,0 10/2,0 10/2,0
— o
g g
5/2.0 10/2.0 10/2,0 T
E > Px
0/2.10/2
|
1
5/2,0 5/2,0 5/2,0 5/2,0 12
i
- - 1
5/2,0

Appendix A

195

Multiplier layouts D

This appendix contains the layouts of some of the cell library for the AMULET3

multiplier. Below isalist:

0 multboothmux
0 multent42e
0 multent42c
00 multmuxe

O multlatch

O multdffa
0 multdffb
0 multdffc

Appendix A 196

D.1 multboothmux

i)

:] o] B || s
, Lo T CTR O I i |IE]
N = .= + A i
;] . T |
e : - aﬂ ,,,,, i 1™ i

LI

i

sl

i
!
E
;

i
H

=]

H

il

5
g:
iE
5

o

N

197

Appendix A

AT
no k.
- e 3 praeac N e sl i
o R e :
: B T Rt 5 o o N P T hintae : e L
G RIS 1 0 1 SRR NN B0 P o R e B i B g B
5 = B L
o 1. o meskls
I [= o T SRS |- i nann ﬁg
) E A.Imlzumﬁ. [
5 S Mot Rst e s 7 B ;
...... | R s I
B . iy =
R R
...... it
..... = 05 ul SRR e £
" R | ERcSERc! 08 "
...... > RO ithehene 1 2 ;
..... b I et
i R
R KT e £ o I 5
SRR U EotiEnt ey 1 i Bl [R eheoermn e
RS R Ty I S T
EIn o S R §+ Spn S L
i] L. : 1
| R
S - =
B ot ¥ IR
]
: i

D.2 multcnt42e

198

Appendix A

D.3 multcnt42c

ﬁﬂu 1

SRS
i Ko
b it

Appendix A 199

D.4 multmuxe

R R s
s i T +y Tk F
e i i
] St et o |
Sk S M
jehdatey B el by e bt
gangaah A X paagngs i oy
e i dhdads o et 2 LA
Ferteeh 5 et T g
e 0 T i i
BBBANR - o SR o

Z5ANZ5RY

200

Appendix A

D.5 multlatch

e e reocoe

ENPRRGR!

e

SER e

T GahaGans ey
R e SR

201

Appendix A

D.6 multdffa

bR e S B e

e
PR,
e

e

ot

A
el Rkl

PP P
iR
R

S

SR

o
i

»
e
e

%
%
A
3

R
R

. 4+‘
S

+
-
-

%5

I

202

Appendix A

D.7 multdffb

L

FEEEE

B Ry
R s

SR

e R

RS s e S bl
R s PR F et e dtalay

damatdan Padadarne et)

R e

- TS S T [
b =7 T

. e

e

b

o
et

e

T

203

Appendix A

D.8 multdffc

ttf
- iRl
| B} i
- PR R
B, . R

e

TR

T
S

sty

... 0

S el

CCUE
I

R g BN
o [

£

4 i
e |

b e o

A R e — R

R R et o e

[e e

B I it ahasy 2ladnldnde et 0t

SRS R dhinattdey SR SRR e et e R

e

s
i

el

Saaal

3¢5
Se3
7
b
e
S

T
|
|
)
&5
)]
)]
)
b

e,
fehdsd

&
)
o
&
g

“
2
o
“

i
o
Ko

e

[,

]

+
)
)
i

g

Qgasy
N,

1255
0!
i

%

e

7y

e

5

26753
e

g5

5e3
]

5
82
]

EeaEnen

FERAE

B
!

e

=

ettty

gKac)

g
e
83
o
X

5

@3

204

Appendix A

