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Abstract

As VLSI process technologies develop and feature sizes shrink, the global clocking

schemes currently employed in synchronous systems are beginning to experience dif-

ficulties in a number of areas. Asynchronous circuits have a potentially higher perform-

ance than synchronous circuits since an asynchronous circuit exhibits average-case per-

formance, in contrast to synchronous systems, which must be specifically designed to

accommodate worst-case conditions. However, asynchronous design techniques are

not widely understood or developed, particularly in the context of a large, complex sys-

tem.

Recently, an asynchronous design methodology, namely Micropipelines, has been pre-

sented which has proved useful in developing an asynchronous CMOS implementation

of an existing commercial RISC architecture. A subsequent project has been initiated

to develop architectural modelling and implementation tools for an asynchronous high-

performance bipolar implementation of the same target architecture.

This thesis presents the issues involved in asynchronous logic design, the details of the

particular asynchronous design methodology employed and an introduction to the ar-

chitectural modelling environment used in the development of the bipolar asynchro-

nous implementation. The development of the system model is illustrated, with refer-

ence to the underlying primitive components and the hierarchical composition of the

complete design from asynchronous sub-functions communicating via a well-defined

signalling protocol. A demonstration of how the architectural model can be used to gen-

erate information regarding the internal operation of the system, which is then used to

improve the complete design is given. The suitability of modelling asynchronous sys-

tems with the modelling environment employed is discussed.
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 1.  Introduction

"By combining advances in integrated circuit technology, improvements in compil-

er design and new architectural ideas, significant performance improvements have been

realised in the contemporary design of computer systems. These improvements have

only been made possible by bringing together important technological advances with a

better empirical understanding of how computers are used. From this fusion has

emerged a style of computer design based on empirical data, experimentation and

simulation."

These ideas, drawn from probably the most important text on computer design over the

past decade - Computer Architecture: A Quantitative Approach [Henn90] - indicate the

considerable benefits of producing a model of any proposed prototype system. The

model should be capable of being exercised with a realistic workload to provide per-

formance indicators and to enable the effects of design decisions to be explored.

The work presented in this thesis is concerned with the architectural modelling of an

Asynchronous Bipolar Microprocessor. The prototype processor design is derived from

AMULET1 [Furb94a], an asynchronous CMOS version of the ARM RISC microproc-

essor. Although the AMULET1 architecture was not the first asynchronous microproc-

essor [Mart89], it is the first to overcome the difficult implementation areas of handling

interrupts and exact exceptions, and providing multi-cycle instruction support. The im-

plementation technology is based on a high-performance, differential, current-mode

logic family developed by GEC-Plessey Semiconductors. As outlined above, a simula-

tion model is desirable before implementing a prototype system. When, as is the case
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with this work, a novel system architecture produced using an unfamiliar design meth-

odology is to be implemented on a new advanced bipolar process, then extensive sim-

ulation becomes essential.

There are several objectives of this thesis. The first is to introduce the reader to the is-

sues involved in asynchronous logic design in Chapter 2 and to the specific asynchro-

nous design style used for the project in Chapter 3. The second is to familiarise the read-

er with the chosen system modelling language in Chapter 4 and the high-performance

bipolar technology used to implement the prototype system in Chapter 5. The next ob-

jective is to show how the system model components are constructed based on the cir-

cuit characteristics of the underlying implementation technology. This is presented in

Chapter 6. A further objective, achieved in Chapter 7, is to introduce the ARM archi-

tecture and explain the operation of the asynchronous implementation. The final objec-

tive is to show how the modelling environment is used to incorporate the design meth-

odology and to demonstrate how the information produced by the model may be used

to improve the design of the system in Chapter 8.

The structure of the remainder of this thesis is as follows:

Chapter 2 explains the domination of synchronous design techniques in current

electronic circuit synthesis. The problems with synchronous design, which are generat-

ing renewed interest in asynchronous design styles, are noted. An introduction to asyn-

chronous logic is given, along with the signalling protocols used, and some of the issues

involved in delay modelling are considered.

Chapter 3 gives an introduction to the particular asynchronous design methodology

used in the development of the Asynchronous Bipolar microprocessor. Examples of the

control circuit elements used are included.

Chapter 4 presents the modelling environment and demonstrates some of the lan-

guage constructs and the hierarchical structure capabilities. An indication of how time

is managed while exercising the model is given.
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Chapter 5 introduces the differential bipolar technology employed to implement the

prototype system. The circuit operation is explained by considering some gate function

examples.

Chapter 6 shows how the architectural models of the bipolar logic gates and func-

tions are developed based on the circuit simulations of the equivalent transistor models

of the basic gates. The effects of gate output loading and input drive characteristics are

explored.

Chapter 7 outlines the ARM target architecture and the instruction set. The structure

of the asynchronous bipolar architecture is then presented with detailed examination of

the major functional units, namely the Register Bank, Address Interface, Data Interface

and Execution Unit. Simulator output waveforms are included to demonstrate the oper-

ation of the units.

Chapter 8 illustrates how the architectural model of the asynchronous ARM was de-

veloped in the modelling environment using a hierarchical, modular structure. Some of

the features of the modelling language are then elaborated and some examples of the

modelling tools that have been constructed are demonstrated. Various executable pro-

grams used to validate the architecture and measure performance are presented. An il-

lustration of how the system model is used to gain information regarding the operation

of the design and subsequently, how this information is used to suggest system design

enhancements is given.

Chapter 9 summarises the current state of the project and draws together the con-

clusions resulting from this work, discussing the applicability of the Verilog to the ar-

chitectural modelling of asynchronous systems. Future research areas, continuing on

from this work are suggested.

The Appendix contains the complete hierarchical Verilog model of the MDCML

Asynchronous ARM including the functional subsystems, asynchronous control ele-

ments and standard logic gate primitives.
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 2.  Asynchronous Logic

Computer technology has evolved rapidly over the past few decades and the demand

for even higher performance machines seems set to continue as computing solutions to

new, more complex and computationally intensive problems emerge.

Synchronous design techniques have dominated the field of digital logic synthesis dur-

ing this development period. This supremacy has been brought about for several rea-

sons:

❑ The concepts required to create a synchronous solution to the production of a log-

ic circuit are easily understood - the designer simply defines the combinatorial logic

necessary to perform the required function and then surrounds it with latches which are

enabled with a common clock. In a large design, the entire system is then a composition

of subsystems communicating by passing data values between the clock-controlled reg-

isters.

❑ The global clock fulfils two system functions - the clock transitions define the

successive instants at which the system state changes can occur and the clock period is

sufficient to account for the logic and wire delays. Since the clock period is specified

to be greater than the slowest combinatorial path that could occur during the computa-

tion, circuit hazards and feedback problems can generally be ignored [Seit80].

❑ By neglecting the effects of clock skew - the time difference between the arrival

of the global clock signal at different points in the system - the total system state, when

considered at the end of the clock period, is assumed to be deterministic and discrete,

changing only at the edges of the system clock.
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❑ The synchronous design style is well-understood and formalised and is therefore

readily accessible to potential digital logic engineers, the preponderance of synchro-

nous circuits is then reinforced when these new engineers become productive.

❑ Also, widely available standard components, which are well-specified and docu-

mented, have been positively developed for use in the synchronous style.

❑ Verification of the correct operation of a synchronous design simply involves

checking the setup and hold times of the outputs of the combinatorial logic sections of

the design to ensure that they meet the requirements of the clocked registers.

❑ CAD tool support has also been developed, in parallel with the synchronous de-

sign concepts, which manage much of the timing verification involved.

❑ Testing is also a much easier proposition in a synchronous circuit since many

techniques including, for example, Scan Paths and BILBO (Built-In Logic Block Ob-

servation) are well-developed.

Recently, however, significant interest has arisen in the field of asynchronous logic de-

sign. This interest may be as a consequence of the problems associated with the global

clocking strategy becoming more acute, a recognition that the formal techniques for

handling asynchronous behaviour and the automatic synthesis potential of asynchro-

nous circuits are now worth exploiting, or that inspiration has been generated by recent

publications in the field, most notably the 1988 Turing Award Lecture on MICROPI-

PELINES given by Ivan Sutherland [Suth89].

As VLSI process technologies develop and feature sizes shrink, the global clocking

schemes currently employed in synchronous systems are now beginning to experience

severe difficulties in the following areas:

❑ Since the clock signal controls the entire system, it must be distributed across the

entire chip. This requirement for large scale clock driver circuitry is expensive - in cur-

rent high performance microprocessors a considerable proportion of the silicon area

used and power dissipation required is given over to the global clock logic [Dobb92].
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❑ The design effort needed for the clock driver circuitry, and consideration of the

effects of clock skew, is non-trivial. It is becoming increasingly difficult to maintain the

clock skew within reasonable bounds across all process, temperature and circuit oper-

ational speed parameters and may result in the clock period being extended. In current

leading-edge synchronous microprocessor designs, a significant proportion of the clock

period is used to account for the effects of clock skew.

❑ The circuit modifications required when a relatively small subsection of the sys-

tem is changed may have ramifications across the entire chip design.

❑ The global clock period must allow for the worst-case logic delay, even though,

if the system is not operated in an extreme environment, the worst-case delay may never

actually occur. The resulting performance is then reduced as the system is effectively

idle during the time between the outputs of the combinatorial logic settling and the ar-

rival time of the (worst-case period) clock.

It has long been recognised by logic circuit designers that asynchronous circuits have a

potentially higher performance that synchronous circuits, since an asynchronous circuit

exhibits average-case performance (the processing commences as soon as the new input

data arrives - the time required to complete the computation execution being dependent

on the actual input data values). A synchronous ALU, for example, must be particularly

designed to allow for worst-case execution time irrespective of the actual input data val-

ues presented to the circuit.

In general, arbitration is required when several sources compete for the same service

(or resource), since the service request signals may arrive at the shared resource at any

time. In a synchronous system, asynchronous inputs are synchronized to a local clock,

allowing metastable effects to be (hopefully) resolved in a limited period. An asynchro-

nous system can wait an arbitrary time for arbitration to occur before making a clear

decision. As a result arbitration is inherently more robust and reliable.

However, the asynchronous design framework is unfamiliar to established engineers.

The basic ‘building blocks’ of asynchronous logic synthesis need to be developed, since
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currently the components are unfamiliar and unoptimised. Also, the circuit size of an

asynchronous solution, relative to the equivalent synchronous design, is possibly in-

creased (in part, due to the unoptimised basic components); although this may be offset

by the non-trivial requirement for clock-driver circuitry for larger systems.

The existence of circuit races or hazards causes a further complication in an asynchro-

nous design. Fundamental Mode operation1 must be employed, or various assumptions

must be made regarding the relative delays or speeds of the circuit component elements.

The testing of asynchronous circuits also causes problems. Sequential circuits are very

difficult to test and techniques have not yet been fully developed to test asynchronous

combinatorial logic. No high-level method has yet been produced to assist in checking

the liveness (absence of deadlock) of a design.

Several methodologies have been developed to synthesize asynchronous circuits, some

are based on enhancements to Petri nets [Pete81, Moln92], others are compilation-

based on high-level languages [Mart90, Brun91] developed from CSP [Hoar85]. Sur-

veys of asynchronous design methodologies and techniques can be found in [Gopa90,

Hauc93]. Some of the asynchronous design terminology that may be encountered in the

text will now be explained. This relates to the modelling of signal propagation delays

and the mechanisms used for communication between asynchronous subsystems.

 2.1  Delay Modelling

In a BOUNDED DELAY model, it is assumed that the delays in the circuit elements and

wires are known (or at least have some upper bound). When input signals are applied

to a circuit, then after a particular time interval has elapsed the output signals are known

to be valid. Note that this is also the delay model used for synchronous designs.

DELAY-INSENSITIVE circuits use a contrasting model to that used in bounded delay

circuits; it is assumed that all signal delays in both elements and wires are unbounded.

1. Fundamental mode operation requires that a circuit achieve a stable internal state after every individual input signal

change.
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No matter how long the circuit waits, there is no guarantee that an input signal will be

received. Circuits designed in this style must include functions to detect when a new

input value actually arrives.

The SPEED-INDEPENDENT model is a weaker form of the delay-insensitive para-

digm, in that it is assumed that the element delays are unbounded but the interconnec-

tion wires have zero delay.

 2.2  Signalling Protocols

Communication between modules or subsystems in an asynchronous environment is

achieved by employing a commonly agreed set of control signals (and some associated

operational rules) which are passed between adjacent modules. The method usually in-

volves detecting an ‘event’ on the control signals, eg. a change in the voltage level of

the interconnecting wire.

In order to construct asynchronous systems by the composition of individual subsys-

tems, where each performs a specific (and different) function, a general signalling pro-

tocol is required. This protocol will operate between the various modules without any

regard to the internal processing rates of individual modules, or of the actual signal

propagation delays of the communication links. This can be achieved by placing no re-

strictions on the timing of the signals involved in the communication protocol. Only the

sequence of the control signal transitions is significant.

The basis for some of the simplest protocols involves the use of two wires connected

between adjacent modules: a REQUEST wire and an ACKNOWLEDGE wire.

Asynchronous systems usually employ one of two communication protocols: two-

phase (or transition) signalling or four-phase signalling.
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 2.2.1  Two-Phase Signalling

In this protocol, any transition between the two logic levels, a HIGH to LOW transition

or a LOW to HIGH transition, is accorded the same meaning.

A transition may also be referred to as an EVENT, hence the alternative name for this

protocol is ‘event signalling’.

Two-phase signalling operates between two modules in the following manner:

The sender generates an event (transition) on the REQUEST wire. At some point

in time later, the receiver detects the request transition and indicates that it has received

the request signal by generating an event on the ACKNOWLEDGE wire. The sender

eventually receives the acknowledge event, signifying that the receiver is ready to re-

ceive another request.

The arrows on the diagram indicate the constraints on the sequence of events allowed

on the control signals used in the protocol. The THICK arrows show the constraint im-

posed by the receiver: an acknowledge event cannot be generated until a request has ar-

rived. The THIN arrows show the constraint imposed by the sender: the sender cannot

generate another request until the previous request has been acknowledged by the re-

ceiver. The fact that each of the modules regulates the sequencing of one of the control

signals indicates that the correct operation of the inter-module communication path will

only occur when both sender and receiver obey the protocol rules.

Because BOTH edges are used in the two-phase scheme - the actual logic LEVEL of a

particular control signal does not assume any significance - it provides the capability of

REQUEST

ACKNOWLEDGE

Figure 1 : Two-phase (transition) Signalling.
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increasing the performance of communication protocols above that of conventional sig-

nalling methods, sinceevery change in the signal carries some information content.

Initially, the concepts of transition signalling may be difficult to assimilate into the

mindset of the conventional logic designer, since the two-phase circuits must be sym-

metrical with respect to the high and low logic levels of the control signals.

 2.2.2  Four-Phase Signalling

Four-phase (or ‘Return to Zero’) signalling is characterised by the control signals being

active when in the HIGH (logic ‘1’) state and then being required to return to the LOW

(logic ‘0’) state before subsequently becoming active again.

The protocol could take the following form:

The sending module raises the REQUEST line to its HIGH (active) state and after

a short time interval deactivates the signal by taking it LOW again. The receiver, having

detected the request line entering its active state, produces a response by briefly raising

the ACKNOWLEDGE line to its HIGH state.

However, the protocol in this form may result in communication failure since, if the

sender has a comparatively faster circuit operation than the receiver, the sender may

raise then quickly lower the request line to produce a very narrow ‘pulse’ which the re-

ceiver may be unable to detect.

REQUEST

ACKNOWLEDGE

Acknowledge
Active

Request
Active

Figure 2 : Four-phase Signalling (incorrect operation).



2  Asynchronous Logic

21

Correct protocol operation is enforced by requiring the sender to continue holding the

request line in its active (HIGH) state until ‘request reception’ is indicated to the sender

by the receiver raising the acknowledge line into its HIGH state. The request line is then

deactivated, allowing the receiver to subsequently deactivate the acknowledge line.

The properly functioning four-phase protocol is then:

Again, each of the modules taking part in the communication imposes constraints

on the sequencing of the control signal transitions. The THICK arrows indicate the con-

straints enforced by the receiver: the acknowledge line can only enter its active state af-

ter the request line is activated and can only be deactivated after the request line is de-

activated. Similarly, the THIN arrows show the constraints imposed by the sender: the

sender must not ‘remove’ the request signal until the receiver acknowledges that it has

‘seen’ the request and a subsequent request must not be generated until the acknowl-

edge has entered its inactive state.

The four phases of the protocol can be observed by noting the four possible combina-

tions of the control signals:

Request LOW,  Acknowledge LOW      -    Inactive

Request HIGH, Acknowledge LOW      -    Requesting

Request HIGH, Acknowledge HIGH     -    Acknowledged

Request LOW,  Acknowledge HIGH     -    Request cleared, Acknowledge to clear

REQUEST

ACKNOWLEDGE

Figure 3 : Four-phase Signalling (correct operation).
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Four-phase signalling may be more familiar to current logic designers since each phase

of the protocol may easily be determined by examining the logic LEVELS of the con-

trol signals.

Also, four-phase signalling is easier to implement because of the widely-available

standard components which have been developed to manage logiclevels.

 2.2.3  Data Communications

In addition to the signalling protocols used to indicate control actions, outlined above,

a mechanism for passing data values between modules is required.

The simple REQ/ACK scheme can only signal events. In order to transmit data values

a method of differentiating between two alternative events (sending a ‘1’ and sending

a ‘0’) must be employed. This method could be extended, by using two sets of REQ/

ACK pairs, into a four-wire per bit signalling system where each pair is used to com-

municate a particular bit value: Req0/Ack0 is used to send and acknowledge zeros,

Req1/Ack1 is similarly used for ones. In the simplest system, consisting of only four

wires, multiple bit values, bytes or words, are sent in bit-serial fashion.

The number of wires required, per bit, may be reduced to three by noting that the two

acknowledge wires Ack0 and Ack1 may be combined into one common acknowledge

wire, Ack.

This idea of a common acknowledge wire can be used for the communication of mul-

tiple bit ‘words’. Two request wires, R0 and R1, are provided for the transmission of

each bit (a technique also known as DUAL-RAIL ENCODING) and the common word

acknowledge signal is returned only when a transition has occurred on one of the re-

quest wires for each of the bits of the word.
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 2.2.4  Bundled-Data Interface

Although the previous schemes provide a robust communication technique in an envi-

ronment where signal propagation delays are unpredictable, the cost in terms of number

of signal wires needed is high. This is especially the case when the communication is

over a relatively long distance. There is also a cost in terms of the signal detection/com-

pletion circuitry required when dealing with multiple bit data ‘words’.

The bundled data interface seeks to significantly reduce the number of signal wires,

particularly for large bit-width data values, to just one data wire per bit (as in conven-

tional synchronous ‘bus’ structures). This set of signal wires is collectively known as a

BUNDLE. For each wire, the logiclevel indicates the value. In addition, a request/ac-

knowledge pair of control wires is needed per data word.

Assuming that two-phase (transition) signalling is used on the req/ack control wires, the

data values are transmitted in the following manner:

The sender places the n-bit value onto the data wires (bus) and then generates an

event on the REQUEST line. At some later time, the receiver will detect the arrival of

the request event which will indicate that the data bus is holding the correct transmitted

value. The receiver will then latch the data value before generating an acknowledge

event back to the sender. The sender is then free to remove the current data value and

set up the next value for transmission.

SENDER RECEIVER

REQ

ACK

DATA BUS

Figure 4 : Bundled Data Interface.
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Note that for correct operation, there is an implied assumption that the data value ar-

rives at the receiver before the request event i.e. in the same order as they were gener-

ated by the sender. More formally - “The sequence relationships of events in a bundle

are the same at the sender and the receiver.” [Suth86]. This is a timing constraint on the

use of the bundled-data interface and the logic circuit designer must ensure that this tim-

ing relationship is satisfied.

Also note that the sender may not change the data value, once it has generated a request,

until it receives an acknowledgment from the receiver. From the point of view of the

receiver, the data is only valid from the time of reception of the request event until the

acknowledge is generated.

DATA

REQ

ACK

DATA VALID DATA VALID

BUNDLING CONSTRAINT

DATA HELD STABLE
UNTIL ACK RECEIVED

Figure 5 : Data Value Constraints.
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 3.  Micropipelines

Pipelining is used in computer architectures to provide increased processing rates

through the use of concurrency [Kogg82]. A large computation is divided into a series

of operations, which execute in parallel.

Pipelines may be clocked (synchronous) or event-driven (asynchronous). In both syn-

chronous and asynchronous pipelines, the throughput - the number of data items proc-

essed in a given time interval - is limited by the computational rate of the slowest sub-

system (module) in the pipeline. However, the latency - the time taken for an individual

data item to pass through the complete (empty) pipeline - of the synchronous and asyn-

chronous pipelines differs.

For the synchronous case, the latency is calculated to be the number of pipeline

stages multiplied by the processing time of the slowest element; the clock period must

be specified to accommodate the slowest element, even though all other elements may

be capable of sustaining much higher clocking rates.

The latency of an asynchronous pipeline is calculated to be the sum of the

processing times of each element. This latency can be significantly less than that of the

synchronous case if there is a wide range of processing rates for the component ele-

ments.

The lower latency of asynchronous pipelines may be exploited in, for example,

processor instruction execution pipelines where the pipeline is frequently flushed when

a branch instruction is executed.
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Pipelines may also be categorised as ELASTIC or INELASTIC. For an inelastic pipe-

line, the input and output data rates must match, implying that the total amount of data

contained in the pipeline is fixed. When an inelastic pipeline contains no processing el-

ements, i.e. each stage consists of a storage element only, it acts like a simple SHIFT

REGISTER. In contrast, the input and output rates of an elastic pipeline, however, may

differ momentarily and therefore the amount of contained data is variable. An elastic

pipeline without processing elements is a FIFO (First-In, First-Out).

FIFOs provide an important buffering function between systems acting at variable

processing rates. The implementation of elastic FIFOs is difficult in a synchronous

model: each stage must have afull/empty flip-flop, and each stage must be provided

with full/empty information about the previous and successor stages. A particular stage

receives a new data value if, at the appropriate clock transition, the stage is EMPTY and

the previous stage was FULL. The stage can thenpass on the data value if, at a subse-

quent clock transition, the next stage is EMPTY. The current stage can then make itself

available to receive a new data value by changing its state flip-flop from FULL to EMP-

TY.

Also, since the clocking rates at the input and output of an elastic pipeline may be dif-

ferent, some form of arbitration and synchronisation will need to be provided between

the FIFO and the systems connected to it. An asynchronous implementation removes

the requirement for arbitration by allowing the input and output processes of each stage

of the FIFO to operate at their own pace.

In 1988, at the Turing Award Lecture, Ivan Sutherland put forward a modular approach

to the design of computer systems using asynchronous logic. His idea was based on the

use of simple data processing pipelines whose stages operate asynchronously. He

termed these ‘MICROPIPELINES’ [Suth89]. A micropipeline is an elastic, bounded-

delay, event-driven system using transition signalling and the bundled-data interface. A

micropipeline without processing, a simple elastic FIFO, can be constructed from a ba-

sic component known as an Event Register (see Section 3.2.1).
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One of the benefits of micropipelines is that the registers, used to hold the data values

as they flow through the pipeline, can be used to filter out hazards. This is achieved, in

a similar manner to that used in synchronous designs (where the clock period is suffi-

ciently long to account for hazards), bylocally delaying the request output signal until

all data values are stable. Also, any combinational logic structures can be used ‘be-

tween’ the pipeline registers including existing circuits used in synchronous designs.

As discussed in Chapter 2, the bundled-data interface is useful for data communications

since it reduces the number of data wires required to transmit a value, particularly for

large numbers of bits. In implementing an asynchronous 32-bit processor, for example,

the inter-module completion-detection circuitry required if the data was transmitted us-

ing the ‘2 wires per bit’ protocols would be prohibitively large.

Micropipelines offer the opportunity to construct complex systems by the hierarchical

composition of simpler modules. The two-phase signalling protocol allows modules of

widely-differing performance to be easily integrated into a complete, correctly func-

tioning, system. The data-driven execution rates of the individual asynchronous mod-

ules allow the benefits of average-case performance. The micropipeline approach also

provides the facility to replace a particular module with one of a higher performance

without impacting on the correct operation of the total system (as would be the likely

case with a synchronous global clocking scheme).

In the context of VLSI technology, the design cost of large systems both in terms of

time and effort is beginning to outweigh the combined fabrication and production costs

of the final integrated circuits. Since an ‘ad hoc’ design style is impractical for large

scale circuits, micropipelines provide a basis for an asynchronous design methodology

for the construction of such systems. Pre-synthesised modular solutions to standard

problems, packaged in an asynchronous design library, can then be interconnected us-

ing the transition signalling protocol.
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The circuit designer simply ensures that each module conforms to the interface protocol

and need not be fully conversant with the internal intricacies of the asynchronous

‘cells’. The inefficiencies of this ‘standard module’ approach may be negligible when

compared to the extra design cost of a full custom approach.

 3.1  Control Circuit Elements

The transition signalling control circuits used to coordinate the activities of micropipe-

lines may be constructed from a standard set of ‘event logic’ modules [Suth86]. Some

of the more widely-used modules are presented below.

 3.1.1  XOR (Merge)

The Exclusive-OR (or non-equivalence) gate provides an ‘OR’ function for tran-

sition signals. An output transition (event) occurs in response to a transition arriving at

any of the inputs. This module is also known as a MERGE element.

 3.1.2  Muller-C (Join)

The Muller-C element serves as an ‘AND’ function for events. A transition occurs

on its output only after a transition has occurred oneach of its inputs. In logic level

terms, when the input levels match, the output assumes the same logic level as the in-

puts, otherwise the output holds its previous level. A reset input may be added to force

the output to a defined initial state. The standard AND logic symbol with a large ‘C’

inside is used to represent the Muller-C element, which is also known as a JOIN or

RENDEZVOUS element.

C
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 3.1.3  Select

The Select element ‘steers’ an input transition to one of the two outputs depending

on the Boolean value of a second, ‘select’, input. The select Boolean valuemust be val-

id before the input transition occurs. This is, effectively, a bundling constraint on the

IN (event) input. The module isNOT delay-insensitive because of this requirement.

Furthermore, while the Select element is essentially an event-triggered device, the logic

level of the select input is significant.

 3.1.4  Toggle

In a similar manner to the Select element above, an input transition of the Toggle

element is steered to one of the two outputs. However, the output event is produced al-

ternately on the two outputs in response to an input transition. Following a Reset signal,

the first output to receive an event in response to an input event is marked with a heavy

dot (see diagram), the outputs are then known as Dot and Blank (i.e. no dot).
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 3.1.5  Decision-Wait

A Decision-Wait element has two sets of input signals and produces an output

event when one event in each input ‘set’ has been received. For example, an event on

input Y and an event on either X1 or X2 will produce an output event on either Q1 or

Q2 respectively. Note that for correct operation, only one input event can be received

on an X input (X1 or X2) for each event received on the Y input before the appropriate

output transition occurs.

 3.1.6  Arbiter

An Arbiter is used to guarantee mutually exclusive access to a shared resource for

two competing independent requests. The arbiter chooses only one of the active input

requests and allows only the corresponding output grant signal event to occur. When

the arbiter is already in use by a requester, a second requester is inhibited until the “re-

quest done” acknowledge event is received (DONE1 or DONE2, depending on the cur-

rently active requester) indicating that the active requester is releasing control of the ar-

biter. The arbiter will then issue a grant signal (event) to the second requester.
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Although the input requests can occur at any time, even simultaneously, the output

grant signals are guaranteed to be mutually exclusive or serialized.

 3.1.7  Call

The Call element provides the functional equivalent of a “subroutine call”. A re-

quest event for access to a common hardware function is received on one of the two re-

quest inputs, R1 or R2, which will subsequently generate a ‘subroutine’ request event

on the Rsub output. When the subroutine function has completed, indicated by the ar-

rival of an event on the Dsub (subroutine done) input, the Call element generates an out-

put event on the appropriate ‘request done’ output (D1 or D2, depending on the active

requester).

For correct operation, the full Request / Subroutine Request / Subroutine Done / Done

cycle must complete before the next Request occurs and therefore the two input request

signals, R1 and R2, must be mutually exclusive. For a circuit topology where R1 and

R2 cannot be guaranteed to be mutually exclusive, the input requests may be routed to

the Call element via an Arbiter.
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 3.1.8  Capture-Pass Latch

The Capture-Pass latch is a storage element for use in an event-controlled system;

unlike a traditional level-sensitive latch in which thehigh andlow states of the clock/

enable signal indicate a different function, the event-controlled latch must provide

equivalent responses to rising and falling transitions.

When the Capture and Pass inputs are in the same state (either bothhigh or bothlow),

the latch is in thePASS state: the output of the latch follows any change in the input

value. When the Capture ‘event’ occurs, the latch will become insensitive to changes in

the input data and willCAPTURE (store) the current input value, resulting in the out-

put value being held stable. After a subsequent Pass ‘event’, the element will become

transparent and the output will again follow the input.

For the Capture-Pass latch to operate correctly, the Capture and Pass events must alter-

nate.

 3.2  Control Circuit Examples

 3.2.1  Event Register

As mentioned previously, an asynchronous FIFO can be constructed from a basic com-

ponent known as an Event Register.

CAPTURE

PASS

IN OUT
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An Event Register uses a two-phase signalling protocol on its input and output control

circuits and incorporates an event-controlled storage element for the associated bun-

dled-data value.

Event Registers with 32-bit data values are used extensively throughout the Asynchro-

nous ARM design.

The operation of the Event Register is as follows:

i)   Initially, assume all signals areLOW and the Capture-Pass latch is in the

PASS (transparent) state.

ii)  An input data value is supplied followed by the arrival of a ReqIN event

at the Muller-C and, because of the input inversion of theLOW state of

the other input, an output event is generated from the Muller-C.

iii) The Muller-C output event causes the Capture-Pass latch to enter the

CAPTURE state: it latches the data value presented on its input.

iv) Once the Capture-Pass latch has captured the data, an AckIN event is

sent to the ‘previous’ stage (the previous stage can now prepare a new

C

C

P

IN OUT

ReqIN

Din

AckIN

ReqOUT

Dout

AckOUT

INPUT
BUNDLED-DATA

INTERFACE

EVENT-CONTROLLED
STORAGE ELEMENT

OUTPUT
BUNDLED-DATA

INTERFACE

Figure 6 : Event Register.
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input data value) and a ReqOUT event is sent to the ‘next’ stage of the

pipeline.

Note that the Event Register will only capture the data in response to a ReqIN event if

the stage is currentlyEMPTY. That is, if an acknowledge from the output stage is not

pending from a previously generated ReqOUT event to the next stage.

Also, the Capture-Pass latch must be in the PASS state (Dout valid) before a Capture

event occurs and, since the ReqOUT event is equivalent to the Capture event, the Dout

data value must be valid before the ReqOUT event. The output interface of the Event

Register therefore obeys the data bundling constraint.

 3.2.2  Design Example: PARITY FUNCTION

A dual-rail encoded parity function using a transition signalling protocol was presented

to the IFIP Working Conference on Asynchronous Design Methodologies (April 1993,

Manchester) by Charles Molnar and this will be used as a design example:

The circuit will receive an input signal as an event on one of the two input wires,

I0 or I1, depending on whether a ‘1’ or a ‘0’ is indicated. The circuit must then provide

an output event on one of the two output wires, P0 or P1, to indicate thecumulative par-

ity of all of the inputs received up to that point.

A general, high-level, formal method of synthesizing Micropipeline control circuits

does not, as yet, exist. A pragmatic approach must therefore be taken to derive a design

for the parity function circuit using the Micropipeline control blocks outlined previous-

ly in Section 3.1.

PARITY

FUNCTION
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Assume that after a global reset, all the interface signals (inputs and outputs) of the par-

ity function areLOW.

It can be noted that the accumulated parity of the received inputs is actually given by

the logic level of the I1 input. If I1 is HIGH, the accumulated parity is ‘1’, if I1 is LOW,

the parity is ‘0’.

Events occurring on the I1 input cause alternating output parity signals to occur, since

an I1 event indicates the arrival of a ‘1’ and this will cause the accumulated parity to

change. ATOGGLE element can be used to alternate the parity output events when the

I1 input event indicates another ‘1’ has been received.

Events occurring on I0 (indicating a ‘0’ has arrived) cause an output event on P1 or P0

depending on the current accumulated parity value. That is, the output to be activated

is indicated by the logic level of the I1 input signal. ASELECT block can be employed

to ‘steer’ the I0 input event to the appropriate parity function output based on the logic

level of I1.

Two XOR elements are used to merge each of the separate sources of the P1 and P0

output events (from the Toggle and Select blocks) onto the actual parity function out-

puts. The Micropipeline control block implementation1 is shown in Figure 7.

1. Since Micropipeline control circuits are usually concerned with the control of datapath elements using the bundled-

data convention, this example circuit is not typical of those found in an asynchronous Micropipelined microprocessor.
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Figure 7 : Micropipeline Control Block Implementation of Parity Function.
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 4.  Verilog HDL

 4.1  Introduction to HDLs

When viewed at its lowest level, a digital system, particularly in the context of a VLSI

implementation, may consist of several hundreds of thousands of primitive compo-

nents. These components may be transistors or simple logic gates. At a higher level,

these elements may be logically grouped into functional units such as Arithmetic Logic

Units (ALUs), cache memories and Floating Point Units (FPUs) [Thom92].

Hardware Description Languages (HDLs) have been developed to assist the design

process of such systems in managing the complexity involved in the synthesis of com-

plex digital systems [Hart87]. The system may contain a large number of elements and

a wide range of logical and physical implementation abstractions, in order to give a total

overview of the system.

Initially, a conceptual idea of the required logical system is coupled with a set of con-

straints (relating to performance, power requirements, circuit size etc.) that the imple-

mented system must meet and a set of primitive components from which to construct

the system. The creative design process is an iterative operation of either manual com-

position or automatic synthesis of alternative solutions, which are then compared

against the given system constraints. Normally, the design is partitioned into smaller

sub-units, in the classical engineering technique of “divide and conquer” (or top-down

design), and each sub-unit is then further divided until the complete system is specified

in terms of the known primitive components [Brow91].
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 4.2  Introduction to Verilog

The Verilog1 Hardware Description Language [Veri92] describes a digital logic system

as a collection of textual-based models that define the functionality of the component

sub-units and connections to those sub-units. The language accommodates a wide range

of levels of abstraction:

ALGORITHMIC - the component’s operation is expressed in high-level

(program-like) language constructs.

REGISTER TRANSFER LEVEL (RTL) - the flow of data between regis-

ters is described.

GATE LEVEL - the system is defined in terms of logic gate primitives and

their interconnections.

SWITCH LEVEL - for low-level design, particularly for MOS implemen-

tation, the system may be described in terms of transistors and storage

nodes.

The language supports the early conceptual stages of design with its behavioural levels

of abstraction (algorithmic and RTL), and the later implementation stages with its struc-

tural levels of abstraction (gate and switch levels).

During the design process, behavioural and structural constructs can be mixed as each

of the sub-systems is designed. Hierarchical constructs are also provided to allow the

system designer to control the complexity of the description.

 4.3  Modules

Verilog describes a digital system in the form of a set of MODULES. The logical struc-

ture of each module is expressed either in logic gate (or MOS primitives) terms or as a

behavioural representation.

1. Verilog is a trademark of Cadence Design Systems, Inc.
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A module definition includes declarations of the external interface presented to other

modules and any internal state used by the module. The external interface is defined in

terms of PORTS, which are specified in parentheses after the module name. Ports may

be declared to be INPUTS, OUTPUTS or bidirectional INOUTS. A module body con-

tains either behavioural statements which specify the functionality of the module, or

statements which create instances of other user-defined modules or logic gate primi-

tives. By allowing module definitions to instantiate other modules, a hierarchical de-

scription of the system can be specified. The use of a hierarchical modular approach ac-

commodates the “bottom-up” and “top-down” design styles.

 4.4  Structural Modelling

A structural representation of a functional unit is achieved using gate and/or switch lev-

el modelling. A set of 26 standard gate-level primitives are incorporated and these can

be extended by employing user-defined primitives. This provides a compact and effi-

cient way of describing an arbitrary block of logic.

The Verilog HDL facilitates the accurate modelling of signal contention, bidirectional

pass gates, resistive MOS devices, dynamic MOS, charge sharing and other technology

dependent network configurations by allowing net signal values to have a wide range

of unknown values and different levels of drive strengths.

A declaration begins with the gatetype keyword specifying the required gate or switch

primitive. Gatetype keywords include:and, or, not, buf, nmos, pmos, pullup etc. Gate

and switch instances include an optional instance name and a required terminal connec-

tion list.

The propagation delay from input to output through a logic gate or switch primitive may

be specified in a declaration. The drive strengths on the output terminals of a gate dec-

laration instance may also be defined.
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‘Nets’ are a fundamental data type of the language and are used to model an electrical

connection. Except for thetrireg net, which models a wire as a capacitor that holds

electrical charge, nets do not store signal values. Nets only transmit values that are driv-

en on them by structural elements (gate outputs or assign statements) or behavioural

models (registers).

 4.4.1  Design Example: RS Flip-Flop

An RS flip-flop consists of two inputs, SET and RESET, and (normally) two outputs,

Q andQ. For the purposes of this design example, theQ signal will not be generated as

a module output. All the signals, inputs and output, will be activeHIGH i.e. positive

logic.

When the SET input is asserted (HIGH), the Q output signal goes HIGH and remains

HIGH even when the SET input is deactivated. When the RESET input is asserted, the

Q output goes LOW and again stays LOW when the RESET signal is deasserted. A con-

flict will occur if the SET and RESET inputs are both HIGH simultaneously. The logic

circuit designer should ensure that this situation never arises.

A circuit implementation consists of two cross-coupled NOR gates [Mano84]:

An example module of a structural (gate-level) representation of a RS flip-flop is given

overleaf. Each module definition begins with themodule keyword and is terminated by

RESET

SET

Qg1

g2

Figure 8 : Possible Implementation of RS Flip-Flop.

(Qbar)
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theendmodule statement. The first line of the definition specifies the module name and

the names of its ports.

module RS_FF(set, reset, Q);        (1)

input set, reset;                   (2)

output Q,                           (3)

wire Qbar;                          (4)

nor #10 g1(Q, reset, Qbar);         (5)

nor #10 g2(Qbar, set, Q);           (6)

endmodule                           (7)

In lines 2 and 3 in the example, the type of each port is specified: set and reset are input

ports, Q is an output port. The module’s logic gate primitive components are defined in

lines 5 and 6. The first word in the line indicates the component type-name - in this case,

nor gates. The #10 indicates that the propagation delay of the gate from input to output

is 10 time units. Thenor gates are then instantiated by giving each one an instantiation

name (g1 and g2) and specifying the gate connections. The output is specified first, fol-

lowed by any number of inputs (in this example two). There is a net (or wire) which is

internal to the module, i.e. it is not an input or output, which connects the output of g2

to an input of g1. This internal net is declared and named in line 4.

 4.5  Behavioural Modelling

When a system is modelled as a structural, gate-level representation, very little transla-

tion effort is required to convert the HDL model into a correctly functioning physical

implementation. However, in many cases the circuit engineer requires the opportunity

to derive many design alternatives and consider the merits of each design solution. Be-

havioural modelling facilitates the architectural refinement of a design. It allows the

higher-level functional aspects of the prototype system to be easily evaluated in isola-

tion, without regard to the final implementation of the proposed circuits [Russ89].

The syntax of the Verilog behavioural language is very similar to the high-level pro-

gramming language ‘C’ [Kern88]. It contains a number of procedural constructs which
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include the familiar if-then-else conditional execution construct, the conditional as-

signment (?:) operator and the multi-way branch case statement. Four different state-

ments are provided for iterative sequential behaviour: the for, while, repeat and forev-

er loops. A full range of arithmetic, logical, bit-wise and reduction operators are also

incorporated.

 4.5.1  Compound Statements

Two or more statements may be grouped together by means of a block statement so that,

syntactically, they act like a single statement. In a SEQUENTIAL block, which is de-

limited by the keywords begin and end, the statements execute in sequence. Control

passes out of the block when the last statement executes. The delay values used in the

assignment statements are relative to the execution time of the previous statement:

begin

    #10 a = 1;

    #5  b = 0;

    #10 c = a;

end

In the example, register a is assigned the value 1 ten time units after the execution of

the block statement commences. A further five time units later, i.e. fifteen time units

from the start of the block statement, register b is assigned the value 0. Register c is then

assigned the value of a (now equal to 1) a further ten time units later.

The keywords fork and join surround a CONCURRENT block statement in which the

individual statements execute in parallel. Delay values in assignment statements are rel-

ative to the simulation time on entry to the block and control passes out of the block

when all of the statements have executed:

fork

    #10 a = 1;

    #15 b = 0;

    #25 c = a;

join
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To achieve the equivalent effect to the sequential block statement, the assignment to

register b in the second line must have a delay value of fifteen time units, since the delay

is relative to the start of the block (not relative to the previous statement, as in the se-

quential block example). In a similar manner, the assignment to register c has a delay

value of twenty-five time units.

 4.5.2  Process Control

The essence of a Verilog behavioural model is a PROCESS, which can be thought of

as an independent flow of activity. The dynamic behaviour of a digital system is then a

set of independent, inter-communicating processes. The basic Verilog control construct

for describing a process is the always statement:

always

    <statement>        // Continually repeats

The always construct continually repeats the statement following, which may be a

block statement (outlined earlier). All of the functionality of a module should be spec-

ified within an always statement.

A further Verilog control construct, called the initial statement, describes a process that

is executed only once - it provides a means of initialising signals and internal module

state variables:

initial

    begin

        busy = ‘false;    // Initialise values

        out = 0;

    end

During simulation of a model, all of the activity flows defined by the initial and always

statements start together at simulation time zero.

 4.5.3  Timing Control

Two types of explicit timing control are provided in Verilog to regulate when procedur-

al statements are to occur in simulation time. The first type is a delay control in which



4  Verilog HDL

43

a value expression specifies the time duration between the activity flow reaching a par-

ticular statement and the simulation time at which the statement actually executes. The

second type of timing control is theevent expression, which allows the execution of

statements in a particular procedure to wait for the occurrence of some simulation

event. The awaited simulation event will be generated by some other, concurrently-ex-

ecuting, procedure. A simulation event can be either the change of a value on a net, or

in a register (an IMPLICIT event), or the occurrence of an explicitly named event that

is triggered from other procedures (an EXPLICIT event). In many cases, the event con-

trol is the positive or negative edge of a clock signal.

Simulation time can only advance by one of the following three methods:

❑ A delay control, which is introduced by the number symbol (#):

eg.#100 out = ~in;

After 100 time units, the output is defined to be the inverse of the input signal.

❑ An event control, which is introduced by the at symbol (@):

eg.always @(negedge clock)

out = ~in;

At every clock transition from HIGH to LOW, the output becomes the inverse

of the input.

❑ Thewait statement, which operates like a combination of awhile loop and

anevent control:

eg.wait (reset)

out = 0;

Suspend the process until the ‘reset’ signal is HIGH. When the reset signal does

eventually go HIGH, the output signal is forced to zero.
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 4.5.4  Design Example: Behavioural Representation

module RS_FF(set, reset, Q);                                  (1)

input set, reset;                                             (2)

output Q;                                                     (3)

reg Q;                                                        (4)

initial                                                       (5)

    Q = 0;                                                    (6)

always @ (set or reset)                                       (7)

    case ({set,reset})                                        (8)

        2‘b10:  #10 Q = 1;                                    (9)

        2‘b01:  #10 Q = 0;                                    (10)

        2‘b11:  begin                                         (11)

                    $display("RS_FF: SET and RESET active");  (12)

                    #10 Q = x;                                (13)

                end                                           (14)

    endcase                                                   (15)

endmodule                                                     (16)

Again the module definition is enclosed in the module and endmodule keywords and,

as in the structural representation, the ports and port types are declared in lines 2 and 3.

Line 4 declares a register with the same name as the output, Q, which will (implicitly)

drive the output. Any value assigned to Q will be stored in the register and any value

held in the register will be propagated to the output port. Registers are an abstraction of

storage devices found in digital systems. Single-bit registers (like Q in the example) are

termed scalar; multiple-bit registers are termed vector (eg. addr[31:0] is a 32 bit regis-

ter).

The initial statement in line 5 is executed only once at the commencement of the sim-

ulation. This provides a mechanism for initialising the output value.

The always statement in line 7 is used to provide the dynamic functionality of the mod-

ule. always @ (set or reset) indicates that the following statements should be executed

whenever there is a change to one of the specified signals, i.e. the inputs. The case state-

ment on the following line provides a decision capability based on the values of the SET

and RESET inputs. Line 9 means that Q will be set HIGH, if the values of the SET and
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RESET inputs, when concatenated together ({set, reset}), match the 2-bit Boolean val-

ue 10 (2‘b10). Basically, if the SET input is HIGH and the RESET input is LOW, then

the output (register) Q will be set. Similarly, in line 10, if the SET input is LOW and

the RESET input is HIGH, the output is driven LOW (reset).

Lines 11 to 14 indicate an important feature of the Verilog behavioural language, name-

ly the ability to report diagnostic messages to the logic circuit designer while the sim-

ulation is running. As mentioned in the introduction to the design example, the SET and

RESET inputs should never be active simultaneously. If this condition is detected, at

line 11, the compound statements (enclosed in thebegin andend keywords) on lines

12 and 13 are executed. An appropriate error message is displayed and the output value

is set to undefined (x).

 4.5.5  Programmable Logic Arrays

Verilog allows the modelling of both a synchronous and an asynchronous programma-

ble logic array (PLA). The synchronous form allows the designer to control the simu-

lation time at which the array will evaluate the inputs and update the outputs. For the

asynchronous type, evaluation is performed automatically whenever an input term

changes value.

PLAs are modelled using 2 orthogonal planes:

The logic equations of the separate planes are defined by loading individual data files

containing the associated bit patterns.

AND OR

INPUTS OUTPUTS

MINTERMS
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 4.6  Verilog Simulator

The Verilog description of the system may be simulated using a digital logic simulator.

This is a software tool that allows many design process tasks to be carried out without

the various costs involved in constructing a hardware prototype. These design activities

may include [Russ85]:

❑ Functional Verification.

❑ Identification of design errors.

❑ Determination of the feasibility of new design ideas.

❑ Timing Analysis

❑ Evaluation of several approaches to a design problem.

The simulator exercises the system model by applying external input signal stimuli.

Any generated register or gate output signal changes are then propagated to other gate

and module inputs. The main characteristic of the simulator is the ability to manage the

concept of time; causing the changed signal values to appear at some specified time in

the future. These predicted signal changes are typically stored in a time-ordered event

queue.

The RS flip-flop behavioural representation given in Section 4.5.4 is now used as an

example to demonstrate the Verilog simulator operation.

In the top-level simulation test file (shown overleaf) the flip-flop module is instantiated

(RS_FF) with the instantiation name, f1. The input signal names are set and reset, and

the output signal name is Q. In the first initial statement block, the input stimulus se-

quence is specified. In the second initial statement block, the required waveform output

display is configured using the $gr_waves() system task.
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‘timescale 1ps /1ps
module test();
reg  set, reset;
wire Q;

RS_FF f1    ( set, reset, Q);

initial
begin
    set = 0; reset = 0;

    #50 set = 1;   #20 set = 0;
    #50 reset = 1; #20 reset = 0;

    #50 set = 1; reset = 1;
    #20 set = 0; reset = 0;

    #50 reset = 1; #20 reset = 0;
end

initial begin
$gr_waves( "set",   set
          ,"reset", reset
          ,"Q",     Q     );
    $freeze_waves; #340 $stop;
    $unfreeze_waves;

$ps_waves("waves.ps", "RS_FF simulation example", 0, 330);
    #1 $finish;
end

endmodule

The console output text generated during the simulation execution is given below. Note

the warning message displayed when the set and reset signals are simultaneously ac-

tive:

VERILOG-XL 1.7   Jan 20, 1995  09:27:16

Compiling source file "test.v"
GRAPHICS  4.2.2 Thu May 27 23:28:23 PDT 1993 (cds2082)
Highest level modules:
test

RS_FF: SET and RESET active @ time=190

L29 "test.v": $stop at simulation time 340
Type ? for help
C1 > .
L32 "test.v": $finish at simulation time 341
114 simulation events
End of VERILOG-XL 1.7   Jan 20, 1995  09:27:37

The graphical display waveforms can also be directed (using the $ps_waves() system

task) to a postscript file, which is shown below:

Header:  RS_FF simulation example

User:  Robert Kelly

Date:  Dec 7,1994 09:52:46                     Time Scale From:  0  To:  330                                     Page:  1 of 1

247165820
TIME

set

reset

Q
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 5.  Multi-Level Differential Current

Mode Logic

 5.1  Introduction to Logic Families

Integrated circuit technology has developed dramatically over the past few decades,

both in terms of gate switching speed and sophisticated circuit design, as a result of fab-

rication process enhancements and shrinking minimum geometries.

The nature of the semiconductor product market tends to segment customers into two

groups: performance-oriented users who seek leading-edge performance technology at

virtually any cost, and cost-sensitive users who need the best performance available at

a given price. Since semiconductor economies depend heavily on a volume market, it

is the more numerous cost-sensitive users who tend to drive the development of main-

stream semiconductor technology [John91].

Early integrated transistors were bipolar, since these were much easier to fabricate.

This fact led to the market success of bipolar transistor logic families (DTL, RTL

through to TTL) during the early years of IC development. Eventually, the development

of the planar process led to the introduction of MOS logic families. Initially, because

of the more sophisticated processing requirements of CMOS, NMOS logic dominated.

However, as chip sizes increased, power consumption problems emerged and the addi-

tional complexity in producing CMOS (the lowest power MOS technology) circuits

was justified. CMOS technology has now advanced to become the dominant VLSI

technology [West89].
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When considering the merits of the various logic families several characteristics are ex-

amined:

Transistor switching speed - which translates into logic gate delay.

Noise immunity - a measure of the circuit’s resilience to EMI.

Silicon layout size - the degree of integration possible on a given chip size.

Power dissipation - specialist techniques are required for high power circuits.

Fan-Out - the drive capability of the logic gates.

Except for the inability to operate at very high switching speeds, CMOS performs very

well when judged against these criteria and as a result currently holds an unassailable

advantage in the low and medium frequency ranges of the digital logic market.

At low frequencies, CMOS dissipates considerably less power than bipolar circuits be-

cause of its virtually zerostatic power consumption brought about by its low leakage

current.

However, as the operating frequency rises, thedynamic power dissipation of CMOS be-

comes the dominant factor up to a point where bipolar technologies actually dissipate

less power. The power/speed trade-off point between bipolar and CMOS logic families

was claimed to be around 50MHz in 1988 [GPS88]. However, with the continuing en-

hancements of process technologies (particularly with regard to CMOS) the trade-off

figure may currently be higher.

Figure 9 : Dynamic Power Dissipation.

BIPOLAR

CMOS

50 MHz

Power
Dissipation

Dynamic

Circuit Switching Speed
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Emitter-Coupled Logic (ECL) operates by “steering current” through a differential

(“long-tailed”) pair of switching bipolar transistors which are coupled through an emit-

ter resistor. ECL is an extremely fast logic family since it is non-saturating and keeps

the logic signal swings relatively small (around 0.8V).

Differential logic is an enhancement of ECL which still uses the long-tailed pair of

switching transistors to steer the gate current to one of the two complementary outputs.

However, the input signaland its complement are used as the inputs to the switching

transistors.

The noise immunity of the gate is increased by the use of the signal and its inverse as

inputs, since any noise is experienced as a common-mode signal. The differential am-

plifier with complementary inputs possesses a high Common-Mode Rejection Ratio

(CMRR). The increased noise immunity of differential logic allows much lower volt-

age swings to be used resulting in a faster gate switching speed (for the same gate cur-

rent).

 5.2  Multi-Level Differential Current Mode Logic

Differential logic (unlike standard ECL or CMOS) can be stacked into a switching

“tree” configuration and as a result complex logic functions can be packed into a single

gate.

GPS (GEC Plessey Semiconductors) have combined a stacked differential switching

tree arrangement with a fabrication process based on Trench-Isolated Bipolar Silicon

Technology [Depe89] to produce a logic family known as Multi-Level Differential

Current Mode Logic (MDCML) (FAB5 variant).

MDCML has up to 3 levels in the circuit switching tree. This has been chosen as the

best compromise between the higher functionality of increasing the number of switch-

ing levels and the penalty paid in terms of increased silicon area, the requirement for

(voltage) level shifters to transpose signals between levels and the increased power sup-
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ply voltage needed to incorporate the many switching levels. GPS estimate that up to

25% of area and 40% of current, in the worst case (i.e. random logic), may be required

for level shifting [GPS88].

A 3-input AND gate structure is shown in Figure 10. There are 3 distinct transistor

switching levels. By convention these are known as: LEVEL 3 at the top (inputs A and

A), LEVEL 2 in the middle (inputs B and B) and LEVEL 1 at the bottom (inputs C and

C). The voltage difference between the switching levels is defined to be one VBE drop,

to ensure that the transistors do not saturate, this also simplifies the level shifting cir-

cuitry.

The operation of the MDCML 3-input AND gate is as follows:

Assuming all differential input signals are at logic 1, then input A is HIGH and

input A is LOW; similarly, inputs B and C are HIGH and inputs B and C are LOW.

Transistors tA1, tB1 and tC1 are ON and transistors tA2, tB2 and tC2 are OFF. The emitter

current flows through tA1, tB1 and tC1 and causes a voltage drop across the load resistor

RL connected to the collector of tA1. As a result, Q is pulled LOW and since no current

flows through tA2, tB2 or tC2, Q is HIGH.

RL

Vs

Gnd

RL

A A

BB

IE

C C

Q Q

Figure 10 : MDCML 3-Input AND Gate.

tC1

tA1 tA2

tB1 tB2

tC2
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If differential input signal B is then driven to a logic 0, transistor tB2 will turn ON

(and tB1 will turn OFF) causing the emitter current to flow through tB2 and tC1, result-

ing in output Q being pulled LOW. Also, since no current path exists between theQ

output and ground,Q is pulled HIGH.

Similarly, if differential input signal C is at logic 0, while A and B are at logic 1,

transistor tC2 is ON. A current path exists between the collector of tA2 and ground,

causing the Q output to be pulled LOW (Q is again HIGH).

It can be observed that the output Q is HIGH (and its complementQ is LOW) if, and

only if, all the differential input signals A, B and C are at logic 1, i.e. the gate performs

the AND function.

The logic swing of the gates is defined by the load resistors, RL, and the gate current,

IE, and is nominally 160mV. By selecting between alternative gate current-resistor

‘pairs’ different speed/power options are available.

Due to the differential switching tree arrangement, many complex logic functions can

be incorporated into a single gate structure. Two example functions, a 4:1 Multiplexer

and a Transparent Latch with Reset are shown in Figures 11 and 12.

RL

Vs

Gnd

RL

OUT

A3
A2

A1
A0

S0

S1

OUT

A3
A2

A1
A0

S0S0 S0

S1

S1 S0 OUT

0 0 A0

1 A1

A2

A3

0

0

1 1

1

Figure 11 : 4:1 Multiplexer.
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The S1 and S0 inputs, at level 1 and level 2 respectively, uniquely select one of

the level 3 inputs (A3-A0) for passing to the output.

The Reset signal overrides all other inputs and so is at level 1 - when Reset is as-

serted the Data/Enable switching tree is not active and the output signal is driven to log-

ic 0 (OUT = LOW, OUT = HIGH). When Reset is deasserted, the Data input is passed

through to the output (when Enable = 1) or the latch holds the output stable (when En-

able = 0). Data storage for the latch is provided by the cross-coupled pair of transistors

at level 3.

In summary, the advantages of MDCML are:

❑ Non-saturating switching transistors and very small voltage swings allow

very high speed operation.

❑ Differential operation removes the requirement for temperature-compensat-

ed voltage reference circuits (needed in ECL).

❑ Increased noise immunity and enhanced resilience to supply voltage fluctu-

ations, temperature variations and IR drops because of the excellent Com-

mon-Mode Rejection Ratio.

RL

Gnd

OUT

Data

Enable

ResetReset

Enable

Data

OUT

RL

Vs

OUT

1 X

DATA1

(no change)

0

RESET ENABLE

00

0

Figure 12 : Transparent Latch with Reset.
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❑ The multiple levels of switching transistors results in a high functionality of

the standard cells.

❑ The use of differential signals removes the requirement for inverters (a sig-

nal is inverted by simply “swapping the wires”), which may represent up to

20% of all the gates in a system [GPS88].

❑ The high impedance of the long-tailed pair arrangement enhances high fan-

out operation.

However, disadvantages include:

❑ High static power dissipation - although MDCML can be operated at 3V and

the small voltage swings employed result in very small currents when com-

pared with ECL (MDCML - 90µA, ECL ~ 1mA).

❑ Extra silicon area and power is required for level shifting circuits.

❑ The routing area needed may be increased by a factor of two, since two

wires are needed for each signal. A CAD system may require more sophis-

ticated routing software since, to preserve the common-mode rejection char-

acteristics of differential logic, the two signal wires must be routed as a sin-

gle entity.
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 6.  Verilog Modelling of MDCML

 6.1  Requirement for Accurate Model of System

The utility of a simulation model of a complex digital system is ultimately determined

by the extent to which that model closely reflects reality. A model that is simple and

easy to manipulate is of little benefit if it does not mirror the actual switching charac-

teristics of the implementation technology.

Circuit level simulation is normally the lowest level of simulation used in the design of

an electronic system and is usually performed on circuits consisting of a few tens of

components: transistors, resistors, capacitors etc. [Russ85]. The circuit simulation de-

termines the electrical characteristics of the component group which may form a logic

gate primitive, for example an AND gate, and may require a few minutes of CPU time.

Circuit simulation of an entire design consisting of many thousands of transistors may

be performed in rare circumstances, but generally, the computing resources required

make this approach prohibitive. To produce an accurate design simulation, the standard

solution is to model the system at a higher level of abstraction based on information

gained from circuit simulation of the primitive components [Hill87].

 6.2  Determination of Electrical Characteristics of

MDCML

The switching characteristics of MDCML logic primitives are determined by circuit

simulation of the arrangement of transistors and associated component models required
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to produce a particular logic function. The circuit simulation is achieved using HSPICE

[Hspi90], a widely-used, commercially-available, development of the original Berke-

ley SPICE program [Nage73].

For the purposes of demonstrating the simulation procedure, a 2-input AND gate will

be used as an example. A circuit diagram of the primitive components used to construct

a 2-input AND gate is shown in Figure 13:

A textually-based SPICE model of the circuit is produced:

Each component instance is given an instantiation name. In the AND2 gate model of

Figure 14, transistors have been labelled, xq1, xq2, xq3 and xq4, resistors have been

labelled xr1 and xr2 and the current source is labelled xics. The circuit connections are

Rn

Vs

Gnd

Rn

A A

BB

ICS

AND AND

Figure 13 : 2-input AND gate.

xr1 xr2

6 7

xq1 xq2
8

5 4

xq3 xq4
3 29

xics

0

1

*subckt and2 out Nout i3 Ni3 i2 Ni2 Vs
.subckt  and2   7     6     5   4    3    2    1
xr1    1  6   rn
xr2    1  7   rn
xq1   6  5  8  t20
xq2   7  4  8  t20

xq3   8  3  9  t20
xq4   7  2  9  t20
xics  9  0   cs90
.lib ’Elibbase’ rn
.lib ’Elibbase’ t20
.lib ’Elibbase’ cs90
.ends and2 Figure 14 : SPICE model of AND2.
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specified in terms of numbered nodes and the name of the model primitive used for each

component is indicated. For example, “xq3 8 3 9 t20” specifies a transistor with the in-

stance name xq3, which has its collector, base and emitter connected to nodes 8, 3 and

9 respectively and has the circuit behaviour defined by the t20 transistor model.

The propagation delays from each of the inputs, A and B, to the output are measured

for both rising and falling edges. Since both phases of the signal are available in differ-

ential logic, delays are measured from the input crossover point to the output crossover

point. The A (level 3) input, B (level 2) input and output waveforms are shown in Figure

15.

The measured propagation delays for an unloaded 2-input AND gate are:

A rising -> OUT rising = 178ps

A falling -> OUT falling = 178ps

B rising -> OUT rising = 241ps

B falling -> OUT falling = 193ps

7 = A input
6 = A input

5 = B input
4 = B input

3 = AND output
2 = AND output

Figure 15 : 2-input AND gate SPICE waveforms.
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The results shown in Figure 15 indicate that:

i) The level 3 (A input) propagation delay is less than the level2 (B input)

propagation delay: the higher levels in the MDCML switching tree switch

faster.

ii) The rising and falling delays of level 2 are different. This may be ex-

plained by noting that the switching tree is non-symmetrical above the level

2 inputs.

 6.2.1  Output Loading Effects

The effects on the propagation delay of loading the gate output are now considered. The

output load is provided by the successive addition of level 3 buffer circuits. The buffer

circuit is chosen for this purpose because no level shifting is required between the

AND2 gate output and the input of the buffer. Also, since the buffer circuit has a sym-

metrical switching tree structure, it should provide an equivalent response to both rising

and falling input waveforms. The topology of the test circuit is shown below:

The propagation delay effects of gate output loading were measured for both level 3 and

level 2 input signal changes, and for both rising and falling edges. The following results

were obtained (all times measured in picoseconds):

Delay

3

2

Rising Falling Rising Falling

Additional
O/P Load

LEVEL 3 LEVEL 2
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232
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330
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241
262
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307
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440

193
220
249
281
317
358
404
444
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A graph of additional delay against additional load was plotted (see Figure 16).

The graphs can be approximated to a straight line through the origin. The conclusion

drawn from the results is that each additional load applied to the output of a 2-input

AND gate adds around 30ps to the propagation delay for both input levels and for both

rising and falling edges.

 6.2.2  Input Drive Effects

When thepreceding gate is heavily loaded, this can have an effect on the propagation

delay of the gate in question. This is as a result of the input signal drive capability being

‘shared’ between severalsuccessor gate inputs. Alevel 3 buffer circuit was again used

as the (preceding) gate load in the following configuration:
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Figure 16 : Graphs of Additional Load vs Additional Delay.
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The effects on propagation delay were measured for each level and for rising and falling

input signal changes. The following results were obtained:

A graph of additional delay against extent of drive sharing was plotted (see Figure 17).

The conclusion is that the effect of input drive sharing on the 2-input AND gate is dif-

ferent for each of the input signal levels: for level 3, 10ns is added to the propagation

delay for each gate sharing the drive, for level 2 the delay is only increased by 3ns. This

suggests that level 2 signals have a greater drive capability than level 3 signals.
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Figure 17 : Graphs of Additional Delay vs Extent of Drive Sharing.
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Also, the effect on gate propagation delay of input drive sharing is less significant than

the effect of output loading.

 6.3  Production of Verilog Model

The information obtained from the circuit simulation may then be used to generate a

model capable of being simulated at a higher level of abstraction. In this case, a behav-

ioural or gate-level model is produced using the Verilog Hardware Description Lan-

guage.

On initial examination of the simulation data, two points emerge regarding the switch-

ing characteristics of the MDCML 2-input AND gate. Firstly, there are different prop-

agation delay for the rising and falling signal changes of the level 2 input and, secondly,

the delays differ for the different input levels.

For gate-level modelling in Verilog, both rising and falling propagation delays may be

specified for each logic primitive. For behavioural modelling, both input signal edges

may be detected using the “always @ (posedge ...)/always @ (negedge ...)” construct.

In this example, however, only a single propagation delay will be specified for each in-

put level (for either signal transition direction) to maintain the model simplicity.

The worst-case delay will be used for each level:

A (level 3) -> out = 178ps

B (level 2) -> out = 241ps

Both a behavioural and a gate-level model of the 2-input AND gate are produced to

demonstrate how a logic primitive may be modelled. Also, two approaches to model-

ling the different input level propagation delays can be shown.
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Considering the behavioural module first:

module and2 (out, Ain,Bin);

‘timescale 1ps/1ps

‘define and2A_delay 178

‘define and2B_delay 241

input Ain, Bin;

output out;

reg out;

always @ (Ain)

    #(‘and2A_delay) out = Ain & Bin;

always @ (Bin)

    #(‘and2B_delay) out = Ain & Bin;

endmodule

In the behavioural example, the module is triggered when there is a change in any of

the input signal values. Depending on whether the input change is at level 3 (Ain) or

level 2 (Bin), the output is specified to change (if an output value change is warranted)

after a different time interval, and2A_delay or and2B_delay. In this manner, the differ-

ent propagation delays from input to output of the different levels are modelled.

The gate-level, or structural, module is based on the and and buf logic primitives used

in the following configuration:

module and2 (out, Ain,Bin);

‘timescale 1ps/1ps

‘define and2A_delay 178

‘define and2B_delay 241

input Ain, Bin;

output out;

wire delb;

and #(‘and2A_delay)                g1 (out, Ain,delb);

buf #(‘and2B_delay - ‘and2A_delay) g2 (delb, Bin);

endmodule

andbuf
Bin

Ain
outg1

g2 2

3
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A single propagation delay is specified for theand logic primitive; theminimum of the

A and B propagation delays, which isand2A_delay. An additional delay is encountered

by a B input signal change and this is modelled by providing abuf (buffer) logic prim-

itive. Thebuf element has a propagation delay equivalent to the difference between the

propagation delays of the two input levels (A and B). In this way, an A input change

will propagate to the output after theand2A_delay time through theand primitive.

Also, a B  input signal change will  propagate to  the output after the ‘and2B_delay -

and2A_delay’ time through thebuf primitive plus the and2A_delay time through the

and primitive, i.e. a total propagation delay time ofand2B_delay.

An example of the waveforms produced by both the behavioural (AND2_Be) and struc-

tural (AND2_St) modules when simulated in Verilog using the same input stimuli is

shown below:

 6.3.1  Accuracy Comparison

The MDCML 2-input AND gate exhibits differing propagation delays to input changes

occurring at the different levels. This suggests that the operation of the Verilog models

of the AND2 gate may be sensitive to simultaneous or nearly simultaneous changes in

the input signals. The two models of the AND2 gate were simulated under these condi-

tions and a problem was discovered which can be observed in the following
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waveforms:

The output waveforms of the two AND2 modules indicates that the behavioural and

gate-level models react differently to the specified input stimulus. In particular, the re-

sponse to a B input change closely followed by an A input change must be examined

for each of the models.

For the behavioural module, when the A input change occurs (always @ (Ain)), the

output assignment expression, out = Ain & Bin, will be evaluated. At this point, both

the Ain and Bin inputs are HIGH and so the output value will be scheduled to change

after the propagation delay time of the Ain input, #(‘and2A_delay) out = Ain & Bin.

For the gate-level (structural) module, when the Ain input change occurs, the previous

change of the Bin input has not yet propagated through thebuf primitive. So, at this

point in time, the A input to theand primitive is HIGH, but the B inputto theand prim-

itive is LOW. Therefore, the Ain input change does not directly affect the output of the

and primitive in this situation. Some time later, when the effect of the Bin input change

has propagated through thebuf primitive, both inputs to theand primitive will be

HIGH and the output will be scheduled to change.

In summary, for the behavioural model, the Ain propagation delay takes priority,

whereas for the gate-level model, the Bin propagation delay takes priority. The question

is then: which model most closely reflects reality? To provide the definitive answer, a

Header:  MDCML 2-input AND gate - test Bin->Ain
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HSPICE circuit simulation is performed with the appropriate input stimulus. The re-

sults are shown below in Figure 18.

The Ain input change occurs 21.6ps after Bin for the rising transition and 22.3ps after

Bin for the falling transition.

The measured propagation delays are:

A rising -> OUT rising = 238ps

B rising -> OUT rising = 260ps

A falling -> OUT falling = 113ps

B falling -> OUT falling = 135ps

Considering the rising transitions of the A and B inputs, the actual measured output

propagation delay is most closely modelled by the gate-level module. That is, the B in-

put signal change tends to take priority. The output propagation delay of the falling in-

put transitions seems to be anomalous; since the measured delay is much less than either

Figure 18 : Ain after Bin SPICE waveforms.

7 = A input
6 = A input

5 = B input
4 = B input

3 = AND output
2 = AND output
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the normal A or B input falling transition delays. This behaviour may be as a result of

both input changes simultaneously tending to force the output LOW.

Since the gate-level, structural, module gives the most accurate modelling behaviour of

the 2-input AND gate, this module is chosen as the basis for the AND2 logic gate in the

MDCML Verilog component library. The full component library is constructed by con-

sidering each logic gate function in a similar manner.

 6.3.2  Continuous Assignment

The CPU resources required for the simulation of a large scale digital system can be

significant, even when the design is simulated at higher levels of abstraction. The Ver-

ilog HDL provides a mechanism for accelerating the performance of the modelling con-

structs by applying a technique known as continuous assignment. Continuous assign-

ment may be used to increase the simulation performance of models by directly assign-

ing values to outputs of primitives based on the values currently on the inputs.

The gate-level model of the 2-input AND gate can be replaced by a continuous assign-

ment version which increases the simulator performance:

module and2 (out, Ain,Bin);

‘timescale 1ps/1ps

‘define and2A_delay 178

‘define and2B_delay 241

input Ain, Bin;

output out;

wire delb;

assign #(‘and2A_delay)              out = (Ain & delb);

assign #(‘and2B_delay-‘and2A_delay) delb = Bin;

endmodule

Here the assign statement replaces the instantiations of the and and buf primitives in

the gate-level model.
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The technique is restricted to logic primitives that are:

❑ purely combinatorial, i.e. the primitive does not contain any internal state.

❑ based on very simple logical operations.

 6.3.3  Net Delays

The issue of how the output loading and drive sharing information should be incorpo-

rated into the Verilog model of the system is now examined.

It can be noted that, essentially, the causes of the propagation delays of an interconnect-

ed system of component modules can be divided into two types. The first type, Elemen-

tal delays, concern the direct operation of the basic logic function, i.e. the propagation

delay through the unloaded gate. The second type, which can be called Topological de-

lays, cause an additional propagation delay to be applied to each basic component de-

pending on the nature of its interconnections, both input and outputs, with the rest of

the system, i.e. the fan-in and fan-out of the individual gates.

Verilog provides a facility whereby delay values may be assigned to individual nets

(wires) connecting system modules (known as net delays). This would appear to be an

ideal method of managing the additional propagation delay effects of the system inter-

connections. The basic component modules would incorporate the Elemental delays

and the interconnecting nets would include the Topological delays.

For completeness, the system models should incorporate the effects of input drive-shar-

ing and output loading. However, for a reasonably large design, calculating the addi-

tional gate propagation delay due to these effects by hand would be tedious - some form

of automatic netlist generation is required (this is best achieved in conjunction with a

schematic design-capture system).

In addition, the circuit delay values due to track capacitance (measured during the phys-

ical layout design process) could easily be backannotated into the Verilog simulation

model by modifying the net delay values. However, until the actual physical layout of
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the design is accomplished, and real track capacitance values can be used to generate

real interconnection delay values, the MDCML Asynchronous ARM Verilog model

will use only elemental delays.
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 7.  MDCML Asynchronous ARM

 7.1  ARM Architecture

 7.1.1  Overview

The Advanced RISC Machine (ARM) is a general purpose 32-bit microprocessor ar-

chitecture based on the Reduced Instruction Set Computer (RISC) principle of a simple,

regular instruction set allowing fast and efficient decoding [Furb89,VLSI90]. Together

with a three stage (fetch, decode, execute) execution pipeline, this results in a high in-

struction throughput. The ARM uses a load/store architecture with a register-oriented

instruction set.

The ARM6 (the target architecture of the MDCML Asynchronous ARM) has a 32-bit

data space and a 32-bit address space [ARM91](see Figure 19). All instructions are one

word (32-bits) and all data processing operations are performed on word quantities.

Byte quantities (in addition to words) can only be specified for load and store opera-

tions.

The ARM6 may be executing instructions in one of six processor modes:

❑ User- normal program execution.

❑ Supervisor- protected mode for operating system support.

❑ IRQ- normal interrupt handling.

❑ FIQ - ‘fast’ interrupt handling (for external data I/O).

❑ Abort - data or instruction prefetch abort.

❑ Undef- undefined instruction execution.
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Most applications programs execute in User mode, the other (privileged) modes are en-

tered to service interrupts or handle processor exceptions.

A total of 37 registers are provided, 31 general purpose registers (each 32-bits wide)

and 6 status registers. The registers partially overlap such that, depending on the current

processor mode, only 15 general purpose registers (R0 - R14) and R15 holding the Pro-

gram Counter (PC) are ‘visible’. In all modes the Current Program Status Register

(CPSR), which contains the condition code flags and the current mode bits, is visible

and in the privileged modes the Saved Program Status Register (SPSR) is also visible.

R14 is used as the subroutine link register (receiving a copy of the PC return address on

executing a Branch and Link instruction).
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The fast interrupt mode (FIQ) has seven ‘banked’ registers (R8 - R14) and all privileged

modes have banked R13 (stack pointer) and R14 (subroutine link) registers. There is a

SPSR (loaded with the CPSR on exception entry) for each of the privileged modes.

 7.1.2  Instruction Set

The ARM instruction set consists of ten basic instruction types. All ARM instructions

are conditionally executed based on the value of the N, Z, C and V flags in the CPSR.

The conditionsalways (AL) and never (NV) also exist. Conditional execution of all

ARM instructions seeks to improve processor performance by removing the need for

small-offset forward branches which therefore maintains the execution pipelining.

The data processing instructions can be divided into two groups: those concerned with

logical operations (AND, EOR, ORR, BIC, MOV, MVN, TST, TEQ) and those per-

forming arithmetic operations (ADD, ADC, SUB, RSB, CMP, CMN). This class of in-

struction also contains anS bit which indicates whether the condition codes should be

set based on the result of the specified operation. Since the ARM architecture contains

a barrel shifter connected to one of the input operand buses of the Arithmetic Logic Unit

(ALU), it is possible to perform various shift functions on one of the input operands be-

fore the specified data operation is applied. A subset of the data processing type, the

MRS/MSR instructions provide access to the CPSR and the SPSR: theMRS instruc-

tion moves the contents of the CPSR or SPSR into a register and theMSR instruction

moves a register value into the CPSR or SPSR.

The branch (B) and branch-with-link (BL) instructions allow the PC to be modified by

adding a signed offset. A ‘jump’ instruction can also be achieved by using theMOV

instruction to load the PC (R15) directly with an immediate or register value.

A multiply (MUL) or multiply-accumulate (MLA) instruction uses a 2-bit Booth’s al-

gorithm to perform integer multiplication, the multiply-accumulate form adds a third

operand register value to the result of the basic two input register multiplication.
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Two instruction types are concerned with moving data between registers and memory.

TheLDR/STR data transfer instructions move a single byte or word of data. TheLDM/

STM block data transfer instructions are used to move any subset of the currently vis-

ible register set.

The software interrupt (SWI) instruction is used to enter supervisor mode in a control-

led manner and the single data swap (SWP) instruction is used to swap a byte or word

quantity between a register and memory as an ‘atomic’ (uninterruptable) operation -

this facility provides the basis for multiprocessing semaphore support.

Three further instruction types are used in the context of coprocessor interaction and

will not be discussed further.

 7.2  MDCML Asynchronous ARM

 7.2.1  Overview

The high-level design of the MDCML asynchronous ARM will closely follow that of

the AMULET1 [Furb94b]; an asynchronous ARM microprocessor developed for

CMOS technology within the ESPRIT OMI-MAP project involving the AMULET

group at Manchester University. The TAM-ARM project will also consider if any of

the design enhancements proposed for the CMOS successor to AMULET1, in the light

of experience gained while producing the original prototype, will be appropriate for the

MDCML implementation.

Much of the architectural design information presented in this chapter is derived from

[Pave94], a Ph.D. thesis of one of the principal design team members.

The internal structure of the MDCML asynchronous ARM is shown in Figure 20 over-

leaf.
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Since the MDCML asynchronous ARM will be a preliminary demonstrator of an asyn-

chronous bipolar implementation of the ARM6 architecture, several features have not

been incorporated into the MDCML asynchronous ARM architecture due to system de-

sign time constraints. Unimplemented features include the class of instructions used to

manage coprocessor interaction, support for 26-bit mode operation (an instruction-set

backwards-compatibility issue) and the MLA (Multiply-with-Accumulate) instruction.
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The MDCML ARM will employ a transition-signalling bundled-data interface between

the asynchronous processor and the external memory subsystem involving the follow-

ing signals:

❑ An output bundle containing the requested memory address, associated con-

trol signals and, possibly, a write data value (if a write operation is speci-

fied).

❑ An input bundle containing a data value (which may be an instruction) read

from memory and the bundled-data protocol control signals.

❑ A memory abort response. Every data access to memory requires a response

signal to indicate whether the access will successfully complete. This allows

the processor to support a virtual memory system.

A processor reset and level-sensitive interrupt request signals complete the MDCML

asynchronous ARM connections to the external environment.

The structure of the Execution Pipeline, which includes the Register Bank, Execution

Unit and Instruction Decode, is outlined in Figure 21 overleaf. In particular, the typical

micropipeline structure of Event Registers (shown as shaded boxes) interposed by com-

putational logic can clearly be seen. The pipeline operation is controlled by the transi-

tion signalling protocol operating between the event registers and functional blocks, but

the details have been omitted from the diagram in the interests of clarity.
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The Primary Decode provides the entire decoding for the Register Bank control signals

and a partial decode for the Execution Unit function blocks. Note that the decode and

control signals are also pipelined, but this does not imply that the datapath and control

operate in lockstep. Control signals and data values only synchronise at the appropriate

functional unit.
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Figure 21 : Micropipelined Structure of the Execution Pipeline.
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 7.2.2  Register Bank

The register bank provides the storage required for the general-purpose registers and

program status registers defined by the ARM architecture. For the execution of a typical

instruction, one or two operands are read from the register bank onto the A and B buses.

They are then subjected to some logical or arithmetic operation to yield a result, which

is normally written back to the register bank via the W bus. To improve overall CPU

performance, pipeline operation is employed whereby several instructions may be in

different phases of execution. At a certain instant in time, the operands of one instruc-

tion may be undergoing an ALU operation, while simultaneously, the operands of the

next instruction are being read from the register bank and the ALU result of the previ-

ous instruction is being written back to the register bank.

In an asynchronous design context, pipelined instruction execution with concurrent

read and write access to registers presents a number of problems with regard to coherent

register operation:

❑ Due to execution phase pipelining, multiple register write operations may be

outstanding. The register bank control logic must maintain a record of the

correct sequence of write register addresses.

Instruction
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Figure 22 : Register Bank Operation.
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❑ An operand read action may be requested from a register that has a write op-

eration pending. The register read needs to be suspended until the write ac-

tually occurs (the register read should get thenew register value).

❑ Asynchronous read and write operations on the same register may interact

unpredictably.

These problems may be solved by storing the write (destination) register addresses in a

FIFO (First-In, First-Out queue). After the register bank is accessed during the initial

stages of instruction execution, to provide the operands, the destination register address

is entered into the FIFO. When the instruction result value eventually arrives back at

the register bank, the destination (write) address is at the end of the FIFO. The depth of

the FIFO determines the number of register write operations that can be outstanding.

On every read access to the register bank to obtain the instruction operands, the Write

Address FIFO is examined. If either of the read addresses is found to match any of the

write addresses in the FIFO, the read operation for that particular register stalls until af-

ter the write operation on the register has completed. Once the operands have been suc-

cessfully read from the register bank, the destination (write) register address for the in-

struction result is entered into the Write Address FIFO. The FIFO effectively provides

a ‘locking’ function on the register bank to prevent Read-after-Write register hazards -

hence the alternative name for the Write Address FIFO is the Lock FIFO [Pave92]. The

asynchronous register bank design is shown overleaf in Figure 23.

The operation of the asynchronous register bank is now described - the associated Ver-

ilog waveforms in Figures 24, 25 and 26 show a Read cycle, a Read cycle stalled on a

register lock and a Write cycle respectively:

The registerread request (R_Req) arrives (Figure 24) and presents two instruction

operand register addresses (A_addr & B_addr) and a destination (write result) register

address (W_addr). Additional addressing information indicates the current processor

mode and hence the ‘visibility’ of a particular register set. TheR_Req signal is stalled
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(by the Muller-C gate) until the register bank is able to commence another operand read

cycle (indicated by the Rgo signal). The A and B bus decoders are then enabled (by

Rdec) and at the same time the destination address is latched into the W latch.

The decoded read enable signals are gated with the Write Address FIFO lock infor-

mation for the associated register (Lock) - a read will be suspended if the register is

locked i.e. a write operation is pending on the register. A read will proceed (A_enb &

B_enb activated) if the register is unlocked, while a read on a locked register must wait

until a subsequent write operation clears the lock.

Once both read operations have completed (both A_done & B_done events have oc-

curred), the operands (A_bus & B_bus) are latched (by the O_Req signal) and the read

decoders are disabled. Loading the read output Event Register causes the D_Req event
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to be signalled to the Execute Unit, indicating that the instruction operands are now

available. The write decoder is then enabled (Wdec) and the decoded destination regis-

ter address is entered in the Write Address Lock FIFO (LK_Req), thereby locking the

register. The write address is stored in the Lock FIFO in decoded form to enable a

locked register address to be detected easily (the detail is described elsewhere

[Pave91]). Once the Lock FIFO has accepted the new result destination address

(LK_Ack), the write decoder is disabled and the write address latch is freed (Lt_dn).

R_Ack is signalled and the next instruction can now commence its operand read phase.

The second waveform (Figure 25) shows the effect of a locked register on the read

cycle. When the read decoders are enabled (Rdec), the B bus register enable (B_enb) is

activated and the B bus operand read completes (B_done, B_bus is valid). However, the

A bus operand register is locked and therefore the A bus register enables arenot acti-

vated (A_enb). Eventually, a subsequent write operation will clear the register lock

(Lock), the A bus enables will be activated and the A bus read will complete (A_done).

The sequence of events following this point is as outlined previously.

The write request signal (W_Req), Figure 26, indicates that a result value has ar-

rived on the W bus (W_bus) for writing into its destination register. When the decoded

destination register address (W_reg) is available at the output of the Lock FIFO, the

write operation can begin (Wgo). A control signal (valid) also arrives with the data val-

ue to provide a facility to clear destination register locks (remove register addresses

from the Lock FIFO) without actually writing data into the register bank. This mecha-

nism allows instructions that have failed condition code tests at the ALU to remove

write locks from previously ‘reserved’ destination registers.

If the full register write operation is to proceed (W_ok), the write bus enables are

signalled (Wr_reg) and the appropriate register write enable line is activated (W_enb)

and the data value is written into the register. Once the register write operation has com-

pleted (W_done), the write bus enables are turned off and the write address is removed

from the Lock FIFO (Lock) - unlocking the register for subsequent read operations. The
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remaining waveforms at the bottom of Figure 26 show a stalled read operation resume

once the register lock is cleared.
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 7.2.3  Memory Interface

The interface between the external memory system and the processor is divided into

two parts: theAddress Interface issues all address information to memory and the

Data Interface is responsible for all data values written to or read from memory.

For awrite operation, the address generated by the address interface synchronises with

the write data value supplied by the data interface before being passed to the memory

subsystem.

For aread operation, the address generated by the address interface is sent directly to

the memory subsystem and control information for the access is passed to the data in-

terface. The control information is examined when the memory read value is supplied

to the data interface. The read data value is ‘routed’ to the correct processor function

block destination based on the associated control information.

 7.2.4  Address Interface

One of the primary functions of the address interface is to generate sequential addresses

for instruction prefetching. The Program Counter (PC) value circulates around a loop

containing the Memory Address Register (MAR), an (address) Incrementer and two PC

Holding Latches (see Figure 27). Two holding latches are required because of a poten-

tial deadlock situation if only one latch was provided. The deadlock occurs when a data

transfer request immediately follows the arrival of a new PC value - this is described in

detail elsewhere [Pave94, pp126-127]. In each cycle of the PC loop, the PC value is

copied into the Memory Address Register where it initiates an external memory instruc-

tion read request. After the processor reset signal is deactivated, the Memory Address

Register is forced to all zeros and a memory request event is generated causing instruc-

tion prefetching (and therefore instruction execution) to begin at memory address (hex)

00000000.



7  MDCML Asynchronous ARM

84

When the address interface is required to generate a memory address for a data transfer

operation (either read or write), the PC prefetching loop must be temporarily suspend-

ed. Since the prefetch operation is asynchronous with respect to the rest of the processor

operation, arbitration is required to gain exclusive control of the address interface re-

sources.

The value of the Program Counter is available to the programmer as register R15 and

can be used as a source or destination operand in the same manner as a general-purpose

register. Note that writing a new value to R15, changing the PC, has the same effect as

a branch instruction. However, because of the 3-stage (fetch, decode, execute) execu-

tion pipeline operation of the synchronous ARM 6, the address value read from R15

(the PC) is 8 bytes (2 instruction words) ahead of the actual address of the currently ex-

ecuting instruction. In order to ensure that existing ARM instruction code programs

have the same functionality, some mechanism must be provided in the asynchronous

implementation to mimic the behaviour when register R15 is accessed to provide in-

struction operands.
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The PC Pipe is a 2-stage FIFO into which the instruction prefetch PC address value is

copied after it has been used to generate a memory read access. However, after system

reset the first two instruction prefetch addresses are not copied into the PC Pipe. When

the first prefetched instruction eventually reaches the primary instruction decoder and

synchronises with its associated R15 (PC) value, the R15 value will precede the actual

memory address location of the decoded instruction by 8 bytes. As a result of the action

of the PC Pipe, the asynchronous implementation can emulate the synchronous ARM

behaviour of the R15 (PC) register.

The PC Pipe mechanism of maintaining the R15 value 8 bytes ahead of the currently

executing instruction temporarily fails after a branch instruction executes. However,

the association between R15 values and instructions is only incorrect for those instruc-

tions that do not execute, i.e. the instructions prefetched beyond the branch instruction.

When the branch target instruction actually begins the decode phase, prior to execution,

the PC Pipe mechanism has re-synchronised - further details can be found in [Pave94,

p128].

The operation of the address interface is now described - the associated Verilog wave-

forms in Figures 28, 29, 30 and 31 show the instruction prefetching mechanism, a data

transfer address arriving on the W bus, the address interface interaction of a LDM

(LoaD Multiple) instruction and the effect of a branch address arriving on the W bus

respectively:

The instruction prefetching cycle request (PC_Req), Figure 28, arrives at the ad-

dress interface control arbiter along with a PC value (PreAddr) as an input to the Mem-

ory Address Register (MAR). Eventually, control is granted (PCgo) to the PC loop and

the PC value is latched into the MAR by the MAR_Req signal. A memory read access

is then initiated (Mem_Req) with the PC address value contained in the MAR (MemAd-

dr). The control circuit then triggers the Address Incrementer (Inc_Req) and, once the

PC value has been incremented by adding 4 (all ARM instructions are 32 bits wide and

are word aligned), a completion signal (Inc_dn) is generated. A control signal, PC/
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LSM, indicates whether the incrementer has been used to generate a PC value or a Load/

Store Multiple (LSM) address (since a LSM instruction also uses the incrementer func-

tionality to generate sequential addresses). The incrementer output value (Incre) is then

latched into the first of the PC holding latches (PC_lt1) and, subsequently, the output

of the first latch (PCx) is copied into the second PC holding latch (on reception of the

PC_lt2 event). The output of the second latch (the current PC value) is then entered into

the PC Pipe (PP_Req) and, when the PC Pipe indicates that it has accepted the PC value

(PP_Ack), the instruction prefetch cycle request (PC_Req) is again generated.

A data transfer address can arrive at the address interface directly from the register

bank on the A bus or, in this example (Figure 29), on the ALU (write) result bus

(W_bus). The data access request (W_Req) is directed to the address interface control

arbiter and arbitration takes place between the data transfer request and the PC prefetch

loop request. Eventually, the data transfer is given control of the address interface

(Wctl) and a request grant signal is generated (Wgo). The multiplexer control signals

(MuxCtl) are switched to allow the W bus value to pass to the input of the MAR (Pre-

Addr), to be subsequently latched by the MAR_Req signal. A memory access request

event is then generated (Mem_Req) with the address contained in the MAR (MemAddr).

Since this is a single word transfer, the incrementer is not activated (Inc_by) and the

data transfer is completed when an acknowledge signal is returned to the source of the

W bus value (W_Ack).

The remaining waveforms in Figure 29 indicate a stalled PC prefetch request

(PC_Req) which is unable to continue (PCgo) until the W bus acknowledge has oc-

curred (W_Ack). The actual PC memory access request must also wait until the previous

W bus data transfer memory cycle has completed (indicated by Mem_Ack). The

prefetch loop then resumes by incrementing the PC access address.

For the block data transfer instructions (LDM/STM) involving the movement of

multiple data values to or from consecutive memory locations (Figure 30), only the base

address of the transfer is sent (via the A bus or, in this example, the W_bus) to the ad-
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dress interface. The data transfer request (W_Req) arrives at the address interface con-

trol arbiter and again, eventually, control is given to the data transfer (Wctl) and the

grant signal (Wgo) is generated. The MAR input multiplexers are switched (MuxCtl)

and the data transfer address (PreAddr) is latched into the MAR (MAR_Req). A mem-

ory access is then initiated (Mem_Req) with the block data transfer base address (Me-

mAddr). The address incrementer then operates (Inc_Req) to generate the next sequen-

tial LSM address (Incre). The PC/LSM control signal indicates that a LSM instruction

triggered the address incrementer and so, when the incrementer operation has complet-

ed (Inc_dn), the address value is copied into the LSM (temporary storage) register

(LSM_Req). The address interface continues to generate sequential memory addresses

until a control signal (LDM_dn) indicates that the required number of addresses have

been produced. The LSM data transfer then relinquishes control of the address interface

arbiter by signalling W_Ack. At this point, the PC prefetching loop can again resume.

When the processor executes a branch instruction (Figure 31), the new PC value

arrives at the address interface from the ALU via the W_bus. The W bus data request

(W_Req) is directed to the address interface arbiter and eventually exclusive access is

indicated (Wctl) and a grant signal is generated (Wgo). The multiplexer is again

switched (MuxCtl) and the W bus address value is passed to the input of the MAR (Pre-

Addr) where it is subsequently latched (MAR_Req). A memory read access is signalled

(Mem_Req) with the new PC address contained in the MAR (MemAddr) to fetch the

branch target instruction. The first phase of branch instruction interaction with the ad-

dress interface, namely supplying the target address and initiating an instruction

prefetch memory access, is now complete and control of the arbiter is released

(W_Ack).

The second phase of the branch interaction involves restarting the PC prefetching

loop with the new instruction stream addresses. Once a memory access is activated on

the branch target address, the address incrementer is signalled (Inc_Req), the target ad-

dress is incremented (Incre) and the incrementer completion signal is generated

(Inc_dn). The PC/LSM control signal indicates that the incrementer output value is an
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instruction prefetch address and it is latched through the PC holding latches (PC_lt1

and PC_lt2) to become the current PC value. A new instruction prefetching cycle re-

quest (PC_Req) is directed to the address interface control arbiter and, when control is

granted (PCgo), prefetching restarts with the new PC address value. The previous

PC_Req* request signal that was stalled at the arbiter, while the branch target address

arrived on the W bus, is released (PCgo*) when the W bus access relinquishes control

of the arbiter (W_Ack). Control circuitry in the instruction prefetching loop is able to

detect that a new PC value has arrived and so the prefetch request for the old instruction

stream is discarded.
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Date:  Sep 30, 1994  18:19:08 Time Scale From:  34.73 ns  To:  76.20 ns Page:  1 of 1

User:  Robert Kelly

Header:  Address Interface - Instruction Prefetching loop

 PC_Req

PreAddr

   PCgo

MAR_Req

Mem_Req

MemAddr

Inc_Req

 Inc_dn

  Incre

 PC/LSM

 PC_lt1

    PCx

 PC_lt2

     PC

 PP_Req

 PP_Ack

 PC_Req

000000100000000c00000008

0000000c00000008

000000100000000c

000000100000000c

000000100000000c

TIME
34.73 ns 45.09 ns 55.46 ns 65.83 ns

Figure 28 : Address Interface Instruction Prefetching Waveform.
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Date:  Oct  4, 1994  16:39:42 Time Scale From:  712.62 ns  To:  754.28 ns Page:  1 of 1

User:  Robert Kelly

Header:  Address Interface - Data address via W bus

  W_bus

  W_Req

   Wctl

    Wgo

 MuxCtl

PreAddr

MAR_Req

MemAddr

Mem_Req

Inc_byp

  W_Ack

       

       

 PC_Req

   PCgo

Mem_Ack

Inc_Req

  Incre

 Inc_dn

     PC
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00000c0400000c7c

00000c0400000c7c
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00000c0800000c04 00000c04

TIME
712.62 ns 723.03 ns 733.45 ns 743.86 ns

Figure 29 : Address Interface Data Transfer Waveform.
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Date:  Oct  4, 1994  16:52:59 Time Scale From:  371.67 ns  To:  437.60 ns Page:  1 of 1

User:  Robert Kelly

Header:  Address Interface - 3 register LDM

  W_bus

  W_Req

   Wctl

    Wgo

 MuxCtl

PreAddr

MAR_Req

MemAddr

Mem_Req

Inc_Req

  Incre

 Inc_dn

 PC/LSM

LSM_Req

 LSM_dn

 Wr_ack

       

       

 PC_req

   PCgo

     PC

2222222200000074
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000000380000007c00000078

000000380000007c0000007800000074

0000007c00000078

00000038 00000038

TIME
371.67 ns 388.15 ns 404.63 ns 421.11 ns

Figure 30 : Address Interface Block Data Transfer Waveform.
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Date:  Oct  4, 1994  17:18:04 Time Scale From:  73.92 ns  To:  126.56 ns Page:  1 of 1

User:  Robert Kelly

Header:  Address Interface - Branch => new address into PC loop

  W_bus

  W_Req

   Wctl

    Wgo

 MuxCtl

PreAddr

MAR_Req

MemAddr

Mem_Req

  W_Ack

       

Inc_Req

  Incre

 Inc_dn

 PC/LSM

 PC_lt1

 PC_lt2

     PC

 PC_Req

   PCgo

00000094000000940000026800000268
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000002700000026c00000268
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000002700000026c00000014

000002700000026c00000014

TIME
73.92 ns 87.08 ns 100.24 ns 113.40 ns

Figure 31 : Address Interface Branch Waveform.
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 7.2.5  Data Interface

The data interface controls the interaction between the external data bus and the proc-

essor. It handles the values returned from memory after a read access and the data val-

ues written out to memory. The overall structure of the data interface is shown below

in Figure 32.

For memory write operations, in which a byte quantity is specified, the Data Out

(DOUT) section has the facility to replicate the least significant byte across all byte po-

sitions in the word (to enable byte writes to any byte-aligned address). The memory

write data request (indicating that the data value is available) must rendezvous with the

Memory Address Register request (indicating that a write address has been generated

MWRr

Event RegisterDOUT

I_Pipe

Imm_Pipe

Mem_Control

Destination

Control

Mem_Ctl_Pipe

DIN

Mctl[9:0]
MARaMARrMEMrMEMaMRRa

MRR[31:0]
MRRr

MWR[31:0]

DOa DOr DI_AckDI_Req IM_Req IM_Ack
IMM[31:0]DO[31:0] DI[31:0]

IMa
IMr

IN_Req

IN[31:0]

IN_Ack

MWRa

MCPir MCPia

MCPor MCPoa

MDr

MDa

DIr

INr

INa

DIa

Figure 32 : Data Interface Structure.
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by the Address Interface) before the external memory access request is despatched.

This rendezvous occurs in the Memory Control (Mem_Control) section.

Once a memory read value arrives at the data interface, it is latched in an Event Regis-

ter. The Destination Control block will then extract the corresponding control infor-

mation from the Memory Control Pipe (Mem_Ctl_Pipe) for this read access. Note that

the control information was entered into the Memory Control Pipe when the Address

Interface generated the read access address. The retrieved control information will in-

dicate whether the memory read value was an instruction or a data value.

Data values read from memory are passed to the Data In (DIN) section, where byte-ro-

tation logic is provided to rotate values read from non-word aligned memory addresses.

Also, logic exists for masking the most significant 24 bits of the data word for byte read

quantities.

Incoming instructions are buffered before execution in the 5-stage Instruction FIFO

Pipeline (I_Pipe). The I_Pipe must be 3 stages longer than the (2-stage) PC Pipe be-

cause of a complex deadlock situation - a detailed explanation can be found elsewhere

[Pave94, pp130-131]. An instruction emerging from the I_Pipe may also be passed into

the Immediate Field Extraction Unit (Imm_Pipe), so that any immediate operand can

be retrieved from the appropriate fields of the instruction word prior to full decoding.

The output of the Immediate Field Extraction Unit can be multiplexed onto one of the

datapath operand buses, if required.

The operation of the data interface is now described - the associated Verilog waveforms

in Figures 33, 34, and 35 show a data byte read operation, a data byte write operation

and the reception of a prefetched instruction word from which an immediate operand is

extracted respectively:

A memory read data byte (or word) operation (Figure 33) begins when the address

interface signals (MARr) that a valid memory access address (MemAddr) has been gen-

erated. Since this is a read data transfer, the associated control information (Mctl) is
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latched into the Memory Control Pipe (MCPir), while the external memory request is

generated (MEMr). Some time later, the memory subsystem responds with a data word

value (MRR) which is latched into the Memory Read (Event) Register by the MRRr re-

quest signal. An acknowledge signal is generated (MRRa) once the data is latched and

the external memory read cycle is completed when the memory subsystem responds

with the MEMa acknowledge event. The read input request (MDr), indicating that a val-

id read data value is contained in the Event Register (RdData), and the Memory Control

Pipe output request (MCPor), signifying the availability of the associated control infor-

mation for this memory access, synchronise (Sync) in the Destination Control section.

The Opcode control signal indicates that the value read from memory is not an instruc-

tion and so the DIr request signal latches the value into the Data In (DIN) section. Ad-

ditional control information is passed to the DIN block indicating that a data byte read

has occurred (B/nW) and the position of the required byte within the word (ByteNo).

The unwanted bytes are masked out and the byte read value is shifted into the least sig-

nificant byte position (SelByte). An output request (DI_Req) is then sent to the Execu-

tion Pipeline to signal that the output of the Data In section (DI) is now valid and, even-

tually, an acknowledge event (DI_Ack) will be received when the byte read value has

been consumed.

A write data byte (or word) operation (Figure 34) is initiated when a request signal

(DOr) is received by the Data Out (DOUT) section of the data interface. It indicates that

a write data word value (DO) has been read from the register bank and is available for

transfer to memory. A control signal (B/nW) specifies that a byte data transfer is re-

quired. The byte-replication logic is then triggered (Rep_Req), which causes the least

significant byte position value to be copied into all byte positions in the data word (By-

teRep). The replicated byte value is then latched (Rep_dn) into the Memory Write Reg-

ister (MWR) contained within the Data Out section. The MWRr request signal indicates

to the Memory Control (Mem_Control) section that a write value is now ready for trans-

fer. The MARr request signal indicates that the address interface has generated the as-

sociated memory address (MemAddr) for this write data transfer. When these two re-
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quest signals synchronise (Sync) in the Memory Control section, a external memory

data transfer is initiated (MEMr). Since this is a write memory access, the associated

control information (Mctl) is not entered (no event onMCPir) into the Memory Control

Pipe (Mem_Ctl_Pipe). A memory write access is specified (Wen) by the control infor-

mation and, eventually, the memory subsystem responds with an acknowledge signal

(MEMa) indicating that the memory write cycle has completed. The Memory Control

section can then clear the Memory Write Register (MWRa) and signal the memory write

cycle termination to the address interface (MARa).

An instruction read operation (Figure 35), in a similar manner to a data read oper-

ation, commences when an address interface request signal (MARr) arrives indicating

that a PC prefetch address has been generated (MemAddr). The associated control in-

formation (Mctl) is again latched (MCPir) into the Memory Control Pipe before the ex-

ternal memory read access is requested (MEMr). A request signal (MRRr), generated

by the memory subsystem, is used to latch the returned memory value (MRR) into the

Memory Read Register. When the latch operation has completed, the data interface re-

sponds with an acknowledge signal (MRRa) and the external memory cycle is terminat-

ed by the MEMa acknowledge signal. The MDr signal indicating the presence of a re-

turned memory value (RdData) in the Memory Read Register and the Memory Control

Pipe output request (MCPor) synchronise in the Destination Control section. The Op-

code control signal indicates that the memory read value is a prefetched instruction and

so the value is latched (INr) into the Instruction Pipeline (I_Pipe). Some time later, a

request signal to the primary instruction decode (IN_Req) indicates that the prefetched

instruction (IN) has emerged from the Instruction Pipeline. The output of the instruction

disassembler (DIS) shows that the instruction does indeed contain an immediate oper-

and value. The full instruction word is subsequently latched (IMr) into the Immediate

Field Extraction Unit (Imm_Pipe), where the immediate operand value (IMM) is re-

trieved. A request event (IM_Req) is sent to the Execute Unit control indicating the va-

lidity of the output of the Imm_Pipe. An acknowledge signal (IN_Ack) is received from

the primary instruction decode stage when the instruction word has been consumed.
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Date:  Oct  7, 1994  09:24:26 Time Scale From:  477.90 ns  To:  522.19 ns Page:  1 of 1

User:  Robert Kelly

Header:  Data Interface - Read data byte

   MARr

MemAddr

   Mctl

  MCPir

   MEMr

   MRRr

    MRR

   MRRa

   MEMa

    MDr

 RdData

  MCPor

   Sync

 Opcode

    DIr

   B/nW

 ByteNo

SelByte

 DI_Req

     DI

 DI_Ack

000000480000004800000082

18c18c094

1234567812345678e1a04005

1234567812345678e1a04005

0220

1234567800000034000000a0

0000003400000034000000a0

TIME
477.90 ns 488.97 ns 500.04 ns 511.11 ns

Figure 33 : Data Interface Byte Read Waveform.
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Date:  Oct  9, 1994  13:46:13 Time Scale From:  614.62 ns  To:  677.39 ns Page:  1 of 1

User:  Robert Kelly

Header:  Data Interface - Write data byte

    DOr

     DO

   B/nW

Rep_Req

ByteRep

 Rep_dn

    MWR

   MWRr

   MARr

MemAddr

   Sync

   MEMr

   Mctl

  MCPir

    Wen

   MEMa

   MWRa

   MARa

000000000000000056781234

000000000000000034343434

34343434 3434343434343434

0000009d0000005800000054

15408c 08c

TIME
614.62 ns 630.31 ns 646.00 ns 661.69 ns

Figure 34 : Data Interface Byte Write Waveform.
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Date:  Oct  7, 1994  10:39:55 Time Scale From:  762.08 ns  To:  842.04 ns Page:  1 of 1

User:  Robert Kelly

Header:  Data Interface - Read instruction with immediate value

   MARr

MemAddr
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   MEMr
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     PC
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Figure 35 : Data Interface Instruction Read Waveform.
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 7.2.6  Execution Unit

The execution unit contains the computational logic of the processor. It comprises (see

Figure 36) a Multiplier, Shifter, ALU and storage registers for the Current Program Sta-

tus Register (CPSR). The Multiplier accepts two input operands to produce partial sum

and partial carry outputs which are then added together in the ALU to produce a final

result. It is based on an iterative shift-and-add operation using carry-save adders and in-

corporates early-termination detection logic.The Shifter is connected to one of the op-

erand buses in series with the ALU allowing various shift and rotate operations to be

performed on one of the ALU input values.

The Arithmetic Logic Unit (ALU) performs all the logical operations and arithmetic

functions needed by the ARM architecture. The arithmetic functions requiring the ALU

multiply

shift

ALU

mux

CPSR

CPSR’

mux

From register bankFrom
immediate

extract.

To
register

bank A B

To address interface

To condition
code test

To data out

ALU flags

ALU result

Figure 36 : Execution Unit Structure.
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to carry out an addition are potentially the most time-consuming operations because of

the carry propagation between the bit positions of the calculation. A study of ARM in-

struction execution [Jagg90] indicates that around 20% of all instructions perform arith-

metic data processing. However, since the ALU is also used in calculating addresses for

data transfer and branch instructions, the actual percentage of instructions requiring an

ALU addition operation is much higher than the above figure.

In a synchronous system, all ALU operations must take place within a fixed clock pe-

riod and techniques, such as carry-lookahead, have been developed to reduce the time

required for an addition. The ARM6 uses a carry-select mechanism. An asynchronous

ALU may vary the required computation time, dependent on the actual input data val-

ues, and can determine addition operation completion by noting when carry propaga-

tion has terminated.

The operation of the MDCML Asynchronous ARM ALU has a similar high-level de-

sign to that employed in the CMOS AMULET1 [Gars93] in that addition completion is

signalled when carry propagation has ceased. The actual implementation of the ALU

datapath components in MDCML logic yields a much higher performance than the

CMOS counterpart. However, because the circuit design technique of wired logic

(wire-AND, wire-OR etc.) is not easily produced in MDCML technology, some aspects

of the MDCML ALU control logic are slower than the equivalent CMOS circuit. In par-

ticular, the 32-bit AND function used to determine when valid signals have been assert-

ed by all bit positions and the 32-bit NOR function used to produce the ALU output Z

(zero) flag are implemented in (slow) multiple stages of 3-input gates. The average ad-

dition time in the MDCML Asynchronous ALU is much faster than the worst-case time

and all logical operation are completed in a fixed (short) time period. The exploitation

of data-dependent computation time results in a simple ALU design of comparable per-

formance to existing synchronous designs which incorporate carry-lookahead or carry-

select techniques.
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The operation of the execution unit is now described - the associated Verilog wave-

forms in Figures 37 and 38 show a multiply operation (followed by the addition of the

partial sum and partial carry multiplier outputs in the ALU) and an ALU logical oper-

ation involving ashift of one of the ALU input operands respectively:

The execution of amultiply instruction (Figure 37) begins when the datapath input

request (RD_Req) arrives indicating that the two operands specified by the instruction

have been read from the register bank (A_bus and B_bus). A control signal (Mult)

shows that a multiply operation is required and so the multiplier request signal (Mul_-

Req) is generated. When the multiply operation has finished two outputs are produced,

the partial sum (Psum) and the partial carry (Pcarry), and a completion signal

(Mul_dn). The partial sum and carry are then latched into the ALU input operand event

register by theOp_Req signal. At this point the register bank output register is no longer

required to hold the initial instruction operands stable and the execution unit indicates

this by generating an acknowledge signal (RD_Ack). The two ALU input operands

(A_op andB_op) are subjected to the required ALU function (Afunc) - in this case, an

addition to combine the partial sum and carry - when the ALU is enabled (ALU_Enb).

When the ALU operation has terminated, an output value (ALU) is produced along with

a completion signal (ALU_dn). The ALU output latch is then closed (ALU_lt), holding

the ALU output result (Result) stable. A request event is generated (O_Req) to indicate

that the result value is available for copying into the execution unit output register (not

shown in Figure 36). A W (write) bus request signal (W_Req) is forwarded to the Write

Control unit, while the execution unit output register value (W_bus) is placed on the W

bus. The Write Control unit will ‘steer’ the W_Req request signal to the appropriate

function unit based on the associated control information (Wctl) for this instruction.

Eventually, the specified function unit (in this example, the register bank) will respond

with an acknowledge signal (W_Ack) when the result value has been received.

For the execution of an instruction involving a (register)shifted operand (Figure

38), the input request (RD_Req) from the register bank again indicates the validity of
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the input operands (A_bus and B_bus). The shifter is enabled (Sh_Enb) with the appro-

priate function control signals (Sfunc) and eventually the shifter output result (Shift) is

produced along with a completion signal (Sh_dn). The A bus instruction operand and

the shifted B bus operand are then latched into the ALU input operand event register by

the Op_Req signal and the register bank input request is subsequently acknowledged

(RD_Ack). From this point on the execution unit control signals and sequence of events

is similar to the ALU operation described for the multiply instruction previously. The

ALU input operands (A_op and B_op) are again subjected to the required function

(Afunc - in this example, an AND operation) when the ALU is enabled (ALU_Enb) and,

eventually, an output value (ALU) is produced followed by a completion signal

(ALU_dn). The ALU output value is latched (ALU_lt) into the ALU result latch (Result)

and the execution unit output register is signalled (O_Req). The W bus request signal

(W_Req) is generated when the execution unit output value (W_bus) is valid and the ap-

propriate function unit is signalled based on the associated instruction result control in-

formation (Wctl). An acknowledge signal (W_Ack) is received when the result destina-

tion function unit has consumed the value.
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Date:  Oct 19, 1994  18:47:23 Time Scale From:  748.61 ns  To:  823.72 ns Page:  1 of 1

User:  Robert Kelly

Header:  Execute Pipeline - Multiply operation
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  A_bus

  B_bus

   Mult

Mul_Req

   Psum

 Pcarry

 Mul_dn

 Op_Req

 RD_Ack

   A_op

   B_op

  Afunc
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    ALU

 ALU_dn

 ALU_lt

 Result

  O_Req

  W_Req

  W_bus

   Wctl

  W_Ack
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062600600000000000000000
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TIME
748.61 ns 767.38 ns 786.16 ns 804.94 ns

Figure 37 : Execution Unit Multiply Waveform.
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Date:  Oct 19, 1994  18:52:17 Time Scale From:  926.32 ns  To:  981.24 ns Page:  1 of 1

User:  Robert Kelly

Header:  Execute Pipeline - Logical operation (shifted operand)
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 7.2.7  Comments on the MDCML Asynchronous ARM Design

The MDCML ARM demonstrates that the implementation of a simple RISC architec-

ture using asynchronous design techniques is attainable. The complex design task is

made manageable by employing a modular design methodology, namely micropipe-

lines, with subsystems communicating via a well-defined protocol i.e. the transition-

signalling bundled-data interface. The design of the Register Bank control logic, with

the novel, arbiter-free method of allowing concurrent read and write operation interac-

tion, gives an example of how new design problems can be overcome. The data-de-

pendent operation of the ALU shows how an asynchronous system can take advantage

of the variable processing rates of a particular functional unit in order to increase overall

performance. Also, the autonomous action of the instruction prefetching mechanism in

the Address Interface demonstrates the independent operation of the component sub-

systems.

The MDCML Asynchronous ARM exhibits a very high degree of concurrency which

is suggested in many of the Verilog waveforms shown earlier in the chapter. This is as

a result of the self-timed constituent function units operation being solely dependent on

input data availability. As a consequence of this asynchronous computational parallel-

ism, the total system state at any particular instant is difficult to determine. Similarly,

the effects of the interactions between two communicating subsystems, in an overall

system context, are difficult to quantify. Developing an understanding of the total sys-

tem operation is still in the early stages, and the design changes required to increase

overall system performance are not immediately obvious. The production of a realistic

simulation model of the entire system (described in the following chapter) which has

the ability to execute real ARM instruction code programs has proved invaluable in ex-

ploring the complex behaviour of the running system.
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 8.  Architectural Modelling

 8.1  Introduction

Verilog is an industry-standard Hardware Description Language which is integrated

into the CAD system supplied by the MDCML technology provider, GEC-Plessey

Semiconductors (GPS). The entire process, therefore, of architectural modelling

through schematic design capture and physical layout to bipolar technology fabrication

is more easily accomplished.

Architectural modelling of a system seeks to hide the lowest levels of the implementa-

tion complexity from the conceptual design, so that alternative design ideas can be more

easily considered and evaluated. The design process iteratively refines the higher levels

of abstraction to move towards an implementation of the prototype system. At each

stage in the process, the Verilog system model can be simulated to provide an indication

of the design correctness and system performance.

 8.2  Modelling

The initial requirement in developing a model of a prototype system is the production

of a library of components that can be used to construct larger functional subsystems.

The Verilog HDL has a range of logic primitives incorporated into the language but,

because of the switching characteristics of the different signal levels in MDCML, the

standard primitives must be combined to produce models of the MDCML gate-level

equivalents (see Section 6.3). For example a 3-input OR gate can be modelled in the

following manner:
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An ‘asynchronous control element’ library is also produced using the behavioural mod-

elling language constructs of Verilog. This comprises the micropipeline control circuit

elements outlined in Section 3.1. The Verilog behavioural model of the Muller-C ele-

ment is shown below:

The dynamic simulation behaviour of the above Muller-C element is provided by the 3

concurrently-executingalways @ statements, one for each of the inputs:Ain, Bin and

Rst.

‘timescale 1ps/1ps
module or3 (Out,   Ain,Bin,Cin);

‘define  A_del   230
‘define  B_del   300
‘define  C_del   400

output  Out;
input   Ain,Bin,Cin;
wire     delb,delc;

buf   #(‘B_del -  ‘A_del)   g1 (delb,  Bin);
buf   #(‘C_del -  ‘A_del)   g2 (delc,  Cin);
or     #(‘A_del)                     g3 (Out,  Ain,delb,delc);

endmodule

buf
or

buf

delb

delc

Ain

Bin

Cin

Out

A

B

C

‘timescale 1ps/1ps
module MullC (Out,   Ain,Bin,Rst);

‘define  A_del      470
‘define  B_del      640
‘define  Rst_del    370

output  Out;
reg       Out;
input   Ain,Bin,Rst;

always @ (Ain)
       if ((!Rst) && ((Ain===Bin) || (Ain===‘bx)))
              #(‘A_del)   Out = Ain;

always @ (Bin)
       if ((!Rst) && ((Ain===Bin) || (Bin===‘bx)))
              #(‘B_del)   Out = Bin;

always @ (Rst)
case (Rst)

              1‘b1:      #(‘Rst_del)   Out = 0;
              1‘b0:      if (Ain===Bin)
                                    #(‘B_del)   Out = Bin;
              1‘bx:      #(‘Rst_del)   Out = ‘bx;

endcase

endmodule

C Out

Rst

Ain

Bin

A

B
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As an illustration of the operation of the model, theAin behavioural code is explained:

At every change of theAin signal (always @ (Ain) ), if theRst (reset) signal is

inactive ( !Rst ) and both inputs have the same value ( Ain === Bin ) or theAin

input is undefined ( Ain === ‘bx ), then theAin input signal is passed to the out-

put ( Out = Ain ) after the appropriate delay ( #‘A_del ).

Note that any undefined input signal arriving at the Muller-C is propagated to the out-

put. This feature assists in the detection of incorrect operation (see Section 8.5.3).

Larger components, such as 32-bit Event Registers (Section 3.2.1) can be constructed

from their constituent elements: a Muller-C gate and 32 Capture-Pass latches. Howev-

er, since Event Registers are widely used throughout the MDCML Asynchronous

ARM, a behavioural model of an Event Register is produced which improves simulator

performance. That is, a single model is invoked for any input data signal change rather

than multiple invocations of the constituent models. Also, by producing a single behav-

ioural model for a larger function, additional checking can be incorporated into the

model structure to report all occurrences of incorrect circuit operation. For example, the

reception of two successive input request events, without an intervening input acknowl-

edge event, results in an error message being displayed during the simulation execution.

The complex computational subsystems of the Asynchronous ARM architecture, in-

cluding the ALU, shifter and multiplier, are also modelled as behavioural modules. It

is much easier to handle the input and output bus values of such components as single

data entities (e.g. 32-bit integers) rather than manipulating the individual bit values. For

example, consider adding two 32-bit operands in the ALU:

input [31:0] A, B;
output [31:0] out;
reg [31:0] out;

out = A + B;

Once the bit-widths of the input and output buses are specified, the addition result

assignment to the output bus is achieved by means of a single arithmetic operator.
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The complete MDCML Asynchronous ARM model consists of a single module which

instantiates the component subsystems to produce a hierarchical composition of asyn-

chronous modules. The autonomous subsystems communicate using the two-phase

bundled-data interface, and the total system is self-starting from reset. Once the global

reset signal is deactivated, instruction prefetching commences (from the external mem-

ory model) leading to execution of the test program instructions.

The processor diagram shown overleaf in Figure 39 shows the major functional subsys-

tems and the significant control signal and data bundles connected between them. To

assist in the clarity of the diagram, some of the signals found in the Verilog processor

‘core’ model in Figure 40 have not been included in Figure 39. The signal names in the

bolder typeface in the processor diagram indicate the connections to the external envi-

ronment. At the top right-hand corner of the diagram are the bundled-data interface sig-

nals used to communicate with the external memory system. These include the Memory

Access Control Information, Memory Address, Write Data and Read Data values and

the associated protocol control signals. The memory subsystem is modelled using the

Verilog behavioural language to generate the required data values and the communica-

tion protocol control signal sequences. The two signals names at the bottom of the fig-

ure (nAbt andDabt[1:0]) handle the fault responses of the memory system. The ‘nor-

mal’ and ‘fast’ interrupt signals (Nirq andNfiq) are shown at the top left-hand corner.

The Verilog model in Figure 40, illustrates the top-level components of the MDCML

Asynchronous ARM and the connectivity of the processor signals. The full hierarchical

model developed by the author is given in Appendix A. For example, the Register Bank

(Reg) has the instantiation namerg; it produces theRGa, RWa andRDr output signals

along with two 32-bit output buses (Na[31:0] andNb[31:0]). The Register Bank has

five input signals (RGr, RWr, Wc[2], Wsel andRDa), in addition to the global reset sig-

nal (Rst), and has three input buses: a 32-bit Write (result) bus, a 30-bit PC (program

counter) bus and a 28-bit control bus (Rs[27:0]).
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Figure 39 : MDCML Asynchronous ARM Processor Diagram.
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//                           MDCML Micropipelined ARM
‘timescale 10ps /10ps

module ARMstCore (Add[31:0],Dout[31:0],Ctl[6:0],MEMr,MRRa,
                       MRR[31:0],Nfiq,Nirq,Dabt[1:0],PAbt,MEMa,MRRr,BigEnd,nAbt,Rst);
‘include "ARMstCore.inc"

// Ctl[] = Seq, Inc, Ren, Wen, Usr, B/W, Opc

// memory data in blocks and instruction pipeline
DatInt dat (MARa,DOa,MEMr2,MWR[31:0],MRRa,DWr,DW[31:0],DWusr,
            DWv,DWpc,INr,IN[31:0],flo[1:0],Nim[31:0],IMa0,IMr2,
                        MARr,DOr,nMLb[31:0],DObw,MEMa2,MRRr,MRR[31:0],PAbt,DWa,
                        INa,{MAR[1:0],MAc[4:0],Mval,MdPC,MpPC},IMr0,IMa2,BigEnd,Rst);

EvtReg #32 lat0 (Dout[31:0],MEMa0,MEMr0,    MWR[31:0],MEMr2,MEMa,Rst);

Cgate2     c0   (MEMa2,    MEMa0,MEMa1,Rst);
Cgate2     c1   (MEMr,     MEMr0,MEMr1,Rst);

// 1st decode stage
Decode1 dec1 (RGr,Rs[27:0],IN2r,IN2[25:0],IN3r,IN3[19:0],PCsel,XPr,
              XLa,INa,IMr0,LSMPr,nTRM,r15,NGr0,nGn[1:0],vect[2:0],
                            INr,IN[31:0],flo[1:0],Nfiq,Nirq,PCpar,RGa,IN2a,IN3a,XPa,
                            XLr,PPr3,IMa0,LSMPa,ALUgo,ALUok,mode[5:0],NGa0,nAbt,Rst);

// 1st execution and 2nd decode stage
Reg rg (RGa,RWa,RDr,Na[31:0],Nb[31:0],
                              RGr,Rs[27:0],nPC[31:2],RWr,W[31:0],Wc[2],Wsel,RDa,Rst);

NGen nGen (NGa0,NGr2,ng[5:0],    NGr0,IN[15:0],nGn[1:0],vect[2:0],NGa2,Rst);

Decode2 dec2 (IN2a,RSa,C2r,{Imd[6:0],SHop[9:0],DObw,c2[7:0]},
                                                IN2r,IN2[25:0],RSr,Na[7:0],C2a,Rst);

// IN[]  = Xt[1:0],PCpar,cond[3:0],sctls[2:0],I[11:5],
//                                         DObw,toRs,cpCP,~toDO,~toA,nGen,~Mult,NImm
// Imd[] = Xt[1:0],PCpar,cond[3:0]
// c2[]  = toRs,cpCP,~toDO,~toA,nGen,~Mult,NImm

// 3rd decode stage
Decode3 dec3 (IN3a,C3r,ALfs[9:0],{vec3[2:0],c3[22:0]},    IN3r,IN3[19:0],C3a,Rst);

// c3[]  = UseCP,S,F,C,Wcp[2:0],Ral,Rcnd,~ALUwt,~DabtWt,
//                            tPCp[1:0],Wreg,Wadd,SP,LSM,Ren,Wen,B/W,Opc,destPC,Rsel

// 3rd control and execution stages
Shift shft (Sh[31:0],ShC,SHd,    nMLb[31:0],Nim[31:0],c2[0],SHop[9:0],psrC,SHe);

ExecP excP (RDa,C2a,C3a,NGa2,SHe,IMa2,PCpar,ALUgo,ALUok,mode[5:0],psrC,
            WRr,W[31:0],Wc[9:0],Wq[1:0],APr,DOr,nMLb[31:0],RSr,Dabt0,
                            RDr,Na[31:0],Nb[31:0],C2r,c2[7:0],C3r,c3[22:0],vec3[2:0],
                            ALfs[9:0],NGr2,ng[5:0],Sh[31:0],ShC,SHd,IMr2,Imd[6:0],
                            DW[31:0],DWv,DWusr,WRa,Wsel,APa,DOa,RSa,Dabt[1:0],Rst);

// write bus control
WrCtl wctl (DWa,WRa,RWr,ADr,Wsel,    DWr,DWpc,DWv,WRr,Wq[1:0],RWa,ADa,WLx,Rst);

// the memory address interface
AddInt add (ADa,WLx,APa,PPr3,XPa,XLr,nPC[31:2],LSMPa,
            MARr,MAR[31:0],{MAc[6:0],Mval,MdPC,MpPC},
                                      ADr,W[31:0],Wc[9:0],APr,Na[31:0],LSMPr,nTRM,
                                      r15,INa,XPr,XLa,PCsel,MARa,Dabt[1],Dabt0,Rst);

// MAc[] = Seq, Inc, Ren, Wen, Usr, B/W, Opc
// Mval  = valid    MdPC = destPC    MpPC = PCpar

EvtReg2 #(32,7) lat1 (Add[31:0],Ctl[6:0],MEMa1,MEMr1,
                                                MAR[31:0],MAc[6:0],MEMr2,MEMa,Rst);

endmodule // ARMstCore

Figure 40 : MDCML Asynchronous ARM ‘Top-Level’ Verilog Model.
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The Verilog comment at line 8 of Figure 40 (// Ctl[] = Seq,Inc,Ren,Wen,Usr,B/W,Opc)

indicates the component signals that comprise theCtl[6:0] external memory control

bus. Some of the other MDCML Asynchronous ARM control buses are also expanded

in the comment lines.

 8.3  Features

 8.3.1  Instantiation Parameters

One useful feature of the Verilog modelling environment is the use of parameters when

instantiating components. These parameters may be used, for example, to specify dif-

ferent propagation delay times for different instances of the same module (to reflect

particular gate loading effects) or to specify multiple bit-widths for certain components.

To illustrate this point, a register can be modelled by specifying a multiple bit-width

parameter for the data input and output nets of a latch.

When instantiating components, the required parameters must be specified in the same

order as they are given in the particular component definition - in the case of the T_latch

above: width,Data_delay,Enb_delay. If no parameters are specified, the default values

are used, i.e. width =1, Data_delay = 330ps, Enb_delay = 490ps.

‘timescale 1ps/1ps
module T_latch (out, in, enable);
parameter width=1;                                   // default data width = 1
parameter Data_delay=330;
parameter Enb_delay=490;

output [width-1:0] out;
reg      [width-1:0] out;
input   [width-1:0] in;
input enable;

always @ (enable)
    case (enable)

            1‘b1:   #‘Enb_delay out = in;
            1‘bx:   out = ‘bx;

 endcase

always @ (in)
       if (enable)
             #‘Data_delay out = in;

endmodule

T

enable

in[ ] out[ ]



8  Architectural Modelling

114

The modules are then instantiated in the following manner:

Two single-bit latches with differing data propagation delays

T_latch #(1,300,500)  t1   (out1, in1, enb1);

T_latch #(1,400,500)  t2   (out2, in2, enb2);

t1 is a single-bit T_latch, with a 300ps input-output data propagation delay and a

500ps enable-output propagation delay, where the data input signal is called in1, the

output is called out1 and the enable signal is called enb1.

t2 is also a single-bit T_latch, this time with a 400ps input-output data propagation

delay and again an enable-output propagation delay of 500ps.

A 3-stage pipeline for 32-bit data values:

T_latch #(32,300,500)  p1  (o1[31:0], pin[31:0], enb);

T_latch #(32,300,500)  p2  (o2[31:0], o1[31:0], Nenb);

T_latch #(32,300,500)  p3  (pout[31:0], o2[31:0], enb);

The pipeline is constructed by instantiating T_latch components with 32-bit data

widths. The input of the pipeline, pin[31:0], is fed into the input of the first latch, p1.

The output of p1, o1[31:0], is fed into the input of the second latch, p2, and so on.

The enable signals of the successive stages of the pipeline operate in antiphase,

causing data values to move one stage along the pipeline for every two transitions of

the enable signal.

 8.3.2  Test Vector Generation

A standard technique of generating test patterns for validating a fabricated chip is to ap-

ply stimuli to the simulation model of the design and then dump the values of the sig-

nificant control signals and data buses at suitable time intervals to an activity file. In a

synchronous system, this normally occurs at the clock edge, when all signals are usually

stable. For an asynchronous system, however, given that subsystems operate concur-

rently at their own rate, the sequential ordering of changes in logic level of two inde-

pendent signals internal to two separate subsystems cannot be specified. Therefore, the

total system state at any given instant cannot be known.
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One method used to automatically generate test patterns for a micropipelined system is

to locally delay the acknowledge signal into each subsystem until sufficient time has

elapsed so that all internal signals have reached a stable state. Effectively, the module

is deadlocked awaiting the acknowledge input. The subsystem state is then recorded at

the instant of the acknowledge input event using the $fstrobe() Verilog function. Test

patterns for the entire chip can be produced by delaying the external memory access ac-

knowledge input for each memory access and dumping the control and bus values of

interest.

The $strobe() Verilog system task allows the value, at the end of the current timestep,

of any signal wire or register to be displayed on the standard output device. The

$fstrobe() function allows the values to be written to a file via an output channel iden-

tifier. For example:

always @ (input)

$fstrobe(chan_id, " %b %b %h", input, output, state);

The $fstrobe() task is triggered on every input signal change ( always @ (input) ). The

signal values are written to the file which was bound to the chan_id channel identifier

when it was initially opened. The signal values are written on the same line, for each

input signal change, in the following order: input, output, state. The format of the signal

values ( " %b %b %h" ) is Binary for the input and output, and Hexadecimal for the

state.

The example illustrated overleaf is of the MDCML Asynchronous ARM Chip model

(ARMst), which consists of the processor core and the bond pad driver circuits. In order

to reduce the pin count, the input data bus (MRR[31:0]) and the output data bus

(Dout[31:0]) use the same external data bus (Xd[31:0]) by means of tristate driver cir-

cuitry.

The activity file is opened, in a Verilog initial timing control block, using the following

file operation system task:

dump_chan = $fopen("ARMst_vecs");

if (dump_chan == 0) $finish; // quit simulation if $fopen() fails.
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The interface signals for the ARMst module are then recorded in the activity file by the

$fstrobe() system task whenever the Reset (XRst), Memory Read Request (XRr) or

Memory Access Acknowledge (XMa) signals change:

always @(XRst or XRr or XMa)

$fstrobe(dump_chan,

"  %b %b %b %b %b %b %b %b %b %b %h  |  %h %b %b %b   -   %0d",

XBigEnd, XnAbt, XPAbt, XDabt, XNfiq, XNirq, Xdbe,

XRr, XMa, XRst, Xd, Xa, Xc, XMr, XRa, $time);

The format of the resulting activity file is shown below:

          Test vectors for ARMst chip (core + peripherals)

                Inputs                       Outputs
    X                              |
    B                              |
    i X X  X X X                   |
    g n P  D N N X     X           |
    E A A  a f i d X X R           |                   X X
    n b b  b i r b R M s     X     |      X       X    M R
    d t t  t q q e r a t     d     |      a       c    r a     time
  --*-*-*-10-*-*-*-*-*-*-********--|--********-*******-*-*-----****-
    0 0 x xx 1 1 x 0 x 1 xxxxxxxx  |  xxxxxxxx xxxxxxx x x  -  0
    0 0 x 00 1 1 x 0 0 1 xxxxxxxx  |  xxxxxxxx xxxxxxx x x  -  101
    0 0 0 00 1 1 0 0 0 0 xxxxxxxx  |  00000000 0110001 0 0  -  1000
    0 0 0 00 1 1 0 1 0 0 ea000098  |  00000000 0110001 1 0  -  2736
    0 0 0 00 1 1 0 1 1 0 ea000098  |  00000000 0110001 1 1  -  3271
    0 0 0 00 1 1 0 0 1 0 ea000022  |  00000004 1110001 0 1  -  4514
    0 0 0 00 1 1 0 0 0 0 ea000022  |  00000004 1110001 0 0  -  5049
    0 0 0 00 1 1 0 1 0 0 ea00008e  |  00000008 1110001 1 0  -  6292
    0 0 0 00 1 1 0 1 1 0 ea00008e  |  00000008 1110001 1 1  -  6827

The prototype silicon can then be tested by subjecting the test specimen to the input

stimulus given on the left-hand side of each line in the activity file. Eventually, the

specimen outputs should (for a fully-functioning device) assume the associated test

vector file output values for each stimulus line.

Since the signal values are only ‘sampled’ when the system state is stable, there is a risk

that timing errors may be overlooked. However, only timing errors on the external in-

terface signals may be missed, since any internal data-bundling timing errors will prop-

agate incorrect data values to the outputs - which will then be detected. Design effort

must be directed to the external interface control elements to ensure data-bundling er-

rors are eliminated.
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 8.4  Code Execution

 8.4.1  Compilation Method

The executable binary is generated from the actual program and an ARM assembler file

which contains various initialisation and library functions. The files are compiled, as-

sembled and linked using the ARM Cross-Development Toolkit. This allows code to

be generated by a SPARC-based workstation for execution on an ARM processor. A

binary executable is produced, which is then converted to a text format suitable for

loading into the asynchronous ARM Verilog model.

 8.4.2  Validation Suite

Since the MDCML Asynchronous ARM is binary code-compatible with the existing

synchronous ARM devices, the test program suite used by Advanced RISC Machines

(ARM) Ltd. to test prototype devices can also be used to test the design of the asynchro-

nous implementation.

The ARM Validation Suite consists of over a dozen test programs written in ARM as-

sembler [Cock87]. The suite includes programs to exercise the data processing subsys-

tems of the ARM architecture, involving the Arithmetic Logic Unit, Shifter and Multi-

plier. Further validation programs test the operation of the Register Bank, including the

reading and writing of the Current and Saved Processor Status Registers (CPSR and SP-

SRs) and the interaction of the processor with the external memory system via the Load/

Store Register (LDR/STR) and Load/Store Multiple (LDM/STM) instructions. The

branch (and branch-and-link) mechanism of the processor is also fully tested.

As mentioned previously, the MDCML Asynchronous ARM has no support for coproc-

essor interaction and the Multiply-with-Accumulate (MLA) instruction is not imple-

mented, therefore these aspects of the ARM Validation Suite are not considered during

the design test phase.
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The simulated execution of the ARM Validation programs revealed a number of errors

in the Asynchronous ARM model. In particular, running the Multiplier function test

program contained in the Validation Suite exposed an error in the Verilog Multiplier

module. The cause of the problem was traced to a specific feature of the Verilog mod-

elling environment. When the assignment of a new value to a bus or control signal oc-

curs, but the newly assigned value is the same as the previous value, thenno Verilog

event is generated for the assignment. This means that any event control statement de-

pendent on the signal value (eg.always @ (signal)) isnot triggered. The Multiplier be-

havioural model had to be modified and the addition of an extra control signal was re-

quired.

Complete verification of the MDCML Asynchronous ARM architectural model, by

running the ARM Validation Suite, gives a significant degree of confidence in the over-

all asynchronous design and the component subsystems.

 8.4.3  Dhrystone Benchmark

As a high-level language platform, a computer architecture should efficiently execute

those features of a programming language that are most frequently used in actual pro-

grams. This ability can be measured by a program known as abenchmark. A benchmark

can be a real application program supplied with specific input data chosen to provide a

representative task or a specially-written (synthetic) program incorporating a wide

range of high-level language statements and constructs.

The original Dhrystone synthetic benchmark program (written in Ada) was published

in the CACM in October 1984 [Weic84]. A ‘C’ version was produced in 1988. The pro-

gram contains statements of a high-level programming language in a distribution which

is considered representative of a general-purpose, integer-computational processor

workload. The program statement statistics used to develop the Dhrystone benchmark

are based on the execution of over 700 programs written in several languages.



8  Architectural Modelling

119

The actual benchmark statement distribution is as follows (‘C’ version):

assignments 51.0%

control statements 32.3%

procedure, function calls 16.7%

The distribution of statements is also balanced with respect to operators (arithmetic,

logical, comparison etc.), operand type (integer, character, pointer, Boolean etc.) and

operand locality (global, local, procedure parameters, function results etc.). The pro-

gram does not compute anything meaningful, but is syntactically and semantically cor-

rect.

There are several areas where the execution details (compiler influence, timing meas-

urement method, cache interaction etc.) have to be checked very carefully whenever a

synthetic benchmark program is used for comparison of different processors or differ-

ent systems. However, for evaluation of design alternatives of the functional compo-

nents of a prototype microprocessor, the Dhrystone benchmark, with its representative

mix of program statement types, provides a useful metric.

The executable binary is generated from three files: two ‘C’ source files (dhry_1.c and

dhry_2.c) which contain the actual benchmark program and an ARM assembler file

which contains initialisation and library functions. A 16Kbyte binary executable is pro-

duced, which is then converted to the text format suitable for loading into the Verilog

external memory model.

The model executes 1 Dhrystone loop in approximately 344 seconds and indicates a

simulated time of 22.9 microseconds, the ratio of the actual running time to the simu-

lated time is 15,000,000:1. This translates to a Dhrystone benchmark figure of around

43,500 Dhrystones per second. For the purposes of the benchmark execution, an exter-

nal memory access time figure of 5ns is assumed. Also, the result is based on typical

parameters for the underlying 1.2µm bipolar technology.
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For comparison, the 1µm CMOS AMULET1 device yields a figure of 20,500 Dhrys-

tones per second [Furb94b].

 8.5  Usage

 8.5.1  Instrumentation

Since the Verilog language has a rich and powerful behavioural modelling capability,

custom design tools and system modelling instrumentation functions can also be quick-

ly and easily produced. The following tools, which assist the digital engineer in explor-

ing the dynamic behaviour of the prototype system, have been written by the author.

The data bundling constraint (see Section 2.2.4) is an integral and necessary part of the

interface protocol. ABundle Checker module has been written in the Verilog behav-

ioural modelling language and attached to each of the data “bundles” of interest (data

bus + request signal) to determine the validity of the data value change and request sig-

nal event sequencing. This has enabled modules with an insufficient bundling tolerance

to be identified and modified. The bundle checking code is also incorporated into the

behavioural representation of the Event Register module, since these components are

widely used throughout the Asynchronous ARM design.

Usually, a1 nanosecond bundling margin is considered safe, i.e. the data arrives at

least 1ns before the request event. However, an Event Register has a ‘built-in’ bundling

margin of around 1.2ns because of the circuit topology (see Figure 6). The ReqIN re-

quest signal must pass through the Muller-C element and then through a power driver

circuit (not shown in Figure 6) before the Capture-Pass element begins to latch the in-

coming data, Din. Therefore, even if the data and request signals arrive simultaneously

at the Event Register external inputs, the ‘built-in’ bundling margin results in a safe

transfer of data.
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A sample output of the Bundle Checker module and Event Register during a simulation

run is shown below (all times are given in picoseconds):

Bund_Chk  test.sys.cpu.core.rg.LkF.ChkA: Margin = 90 @ 14573
Bund_Chk  test.sys.cpu.core.rg.LkF.ChkM: Margin = 90 @ 26342

EvtReg    test.sys.cpu.core.dat.memCP.l0:    2730 @ 9671
EvtReg    test.sys.cpu.core.dec1.l3:         4230 @ 35185
Bund_Chk  test.sys.cpu.core.rg.ChkI:         2450 @ 6206
EvtReg    test.sys.cpu.core.rg.wlat:         1730 @ 35891
Bund_Chk  test.sys.cpu.core.rg.LkF.ChkA:       90 @ 14573
Bund_Chk  test.sys.cpu.core.rg.LkF.ChkM:       90 @ 26342
EvtReg    test.sys.cpu.core.add.xpipe.e1:   21280 @ 46342

The first block shows where (and when) the Bundle Checker has detected a bundling

margin below 1000ps (i.e. 1ns) while the simulation is running. The second block in-

volves each bundle checking component (including Event Registers) reporting its min-

imum bundling values at the end of the simulation run. Note that some of the modules

indicate a bundling margin well in excess of 1ns. This suggests areas where the control

circuit performance may be increased.

Another, behaviourally-modelled, design tool which has been implemented is the Pipe-

line Occupancy Monitor. This is used to collect information regarding the effective-

ness of each of the FIFO buffering pipelines used throughout the design, and can clearly

be used to influence the pipeline depth in the design. The effect that the number of pipe-

line stages has on performance is examined in greater detail in Section 8.6.4.

A further useful tool when attempting to understand the operation of a microprocessor

is a disassembler, since it is often useful to know the specific instruction that a particular

functional unit is processing. This can be achieved by disassembling the 32-bit value

representing the instruction (as in most RISC architectures, the ARM instructions are a

fixed width). A Verilog Disassembler module can be connected to the input stage of

the instruction (buffering) pipeline in the Data Interface, to note when a particular in-

struction of interest is (pre)fetched from external memory. Alternatively, it could be

connected to the input of the Instruction Decoder to determine when the instruction ac-

tually begins decoding. Usually, the latter option is chosen because it represents the

commencement of the actual instruction execution.
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Writing the disassembler module in the Verilog behavioural language was relatively

straightforward for the author because of two factors: The Verilog language syntax is

very similar to an existing high-level procedural language (‘C’) of which the author has

programming experience; and the instruction set generally follows the RISC principle

of having few instruction formats with regular bit-field positions. The output of the Ver-

ilog-ARM Disassembler is in the form of a text string which is suitable for display in

conjunction with other signal and bus values using the Verilog waveform display de-

scribed in the following section.

A Disassembler output example can be seen towards the bottom of Figure 35 (labelled

DIS) in the previous chapter. In this case, the disassembler module is connected to the

input stage of the Primary Instruction Decoder.

 8.5.2  Graphical Output

The Verilog waveform output mechanism is implemented by thegr_waves() system

task. The user can continuously monitor the waveforms via the interactive graphics in-

terface as the simulation progresses. Two different screens are provided: theWaves

screen, on which the signal waveforms are displayed as timing diagrams, and theSelect

screen, which displays the list of signals from which the user can choose a subset for

current display. The unknown (or X) state of a signal or bus is displayed as a solid filled

box. The high impedance (or Z) state is displayed as a horizontal line which is vertically

centred between the ‘0’ and ‘1’ levels. Thegr_waves system task was used to produce

the waveform diagrams illustrated in the previous chapter.

Verilog provides an interactive graphics interface to display data as a screen of text

along with the formatted values of system model nets and registers. Thegr_regs() sys-

tem task defines the layout of the screen and specifies the text and variables to be dis-

played and the appropriate formats. The graphics screen is updated whenever a value

changes for any of the variables defined in thegr_regs task during the simulation exe-

cution.
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A time bar is displayed at the top of thegr_regs window representing the total time pe-

riod of the simulation execution. The interactive mode allows the user to select a par-

ticular instant in time by positioning the cursor at a particular point on the time bar - the

required data values for the corresponding time are then displayed in thegr_regs win-

dow.

This graphical output feature is particularly useful for displaying information about the

internal state of the prototype system. The Asynchronous ARM Register Bank is dis-

played using this feature in Figure 41. The Register Bank consists of 31 general-pur-

pose registers (including the Program Counter (PC) - R30) and 6 SPSRs (Saved Proc-

essor Status Registers). Only a subset of the entire Register Bank is ‘visible’ to the pro-

grammer in any one of the processor execution modes. Thegr_regs Register Bank

Figure 41 : Register Bank Display using Verilog gr_regs() system task.
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display shows the current simulation time in the top right-hand corner (t = 20893.49ns).

The value of each of the 37 registers, at this particular time, is shown in the left-hand

column. The previous value of each of the registers, and the (simulation) time at which

each register was modified is shown in the middle and right-hand columns respectively.

Verilog also provides the capability to view data as dynamically changing bar graphs.

The gr_bars() system task allows the user to set up charts with multiple bar graphs and

update the bars as the simulation proceeds.

The gr_bars facility can be used in conjunction with the Pipeline Occupancy module

(see Section 8.5.1) to display information regarding the occupancy of all buffering

structures used throughout the Asynchronous ARM design. Figure 42 shows the occu-

pancy of the pipelines and buffer structures used in the processor core at a particular

instant in (simulated) time. These include: the Immediate Field Extraction Unit, In-

struction Pipe, Write Data Buffer and Memory Control Pipe in the Data Interface; the

PC Pipe and Exception Pipe in the Address Interface and the Memory Lock FIFO and

ALU Lock FIFO in the Register Bank.

Figure 42 : Pipeline Occupancy using Verilog gr_bars() system task.
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 8.5.3  Detecting Incorrect Operation

One of the primary requirements in exercising a simulation model of a prototype system

is to determine when, and where, the system functions incorrectly. For an asynchronous

design, erroneous operation may be easier to detect and locate than for a synchronous

design, since, in many cases, the asynchronous system will deadlock. A control element

may have generated a request signal and not received an acknowledge due to a design

fault in the control circuit. Location of the fault is usually achieved by determining

which request-acknowledge signalling pairs have not yet completed their communica-

tion actions and examining the control circuits responsible for generating these signals.

In some circumstances, the control signal events going to a particular control element

may not appear in the correct sequence. For example, an Arbiter may receive a request

signal on input R1 and then receive a second request event on R1 before a done signal

is received (D1), releasing the Arbiter after the first R1 request. Also, for a Call ele-

ment, the common (subroutine) done signal may be received before any of the request

input channels has actually received a request event. Generally, the cause of incorrect

sequencing of the control signals is (as above) design faults in the control circuits. The

Verilog behavioural models of many of the asynchronous control elements contain ex-

tra checks to detect incorrect interface signal sequencing and report errors (including

the module instance concerned and the time) while the simulation is running. Also,

when incorrect sequencing is detected, the outputs of the particular control element are

forced into the undefined state, since in the real system the output values would not be

valid if the control element functions incorrectly.

In an asynchronous system composed of functional units communicating using transi-

tion signalling, an event occurs when the logic value on any signal wire changes be-

tween the logic 0 and logic 1 levels - in either direction. An undefined value on any of

the control signal wires in such a system could prove catastrophic, particularly if the

undefined state remains undetected. Usually, an undefined control signal causes the re-

quest-acknowledge communication protocol to fail and the system will deadlock. In or-
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der to ensure that the system deadlocks as quickly as possible in such circumstances,

the Verilog models of the control blocks of the MDCML Asynchronous ARM have

been written so that undefined control signals are rapidly propagated throughout the

system. Any undefined input signal arriving at a control element is immediately prop-

agated toall outputs of that control element. Total system deadlock results very quickly,

enabling the source of the original undefined signal to be easily detected.

The case of incorrect operation which is most difficult to detect is where the bundling

constraint is not met when a data value is passed between two asynchronous modules

using the bundled-data interface. If the transfer request event arrives at the receiving

module before the actual data value, the receiver may latch (capture) an incorrect data

value. The request and acknowledge control signals are correctly generated and re-

ceived by the sender and receiver, respectively, and in the correct sequence. As a result,

the system will continue to operate, but with the ‘wrong’ data value. The effects of

propagating an incorrect data value may be significant, particularly if the value is sub-

sequently used to generate system control signals. It is in consideration of this factor

that a great deal of design effort must be directed towards eliminating ‘data bundling’

errors. The Bundle Checker module (section 8.5.1) assists the asynchronous logic de-

signer appreciably.

 8.6  Performance analysis

 8.6.1  Subsystem Processing Performance

The Dhrystone benchmark program has been used as a general test program to evaluate

alternative design decisions and to provide a performance measure. In particular, it al-

lows the effect of a change in processing rate of a given datapath component, in the con-

text of overall system performance, to be assessed in order to pinpoint computational

bottlenecks. The effect on the execution time of varying a module’s processing rate by
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altering the delay between its Request_In and Request_Out control signals is shown in

Figure 43 for the ALU, Register Bank and Primary Decode PLA.

It might be expected that at a high processing rate (for a given subsystem block) the

graphs would be almost horizontal until a point was reached, as the processing rate de-

creased, when the time delay through the block would move it onto the ‘critical path’

causing system performance to be severely impacted.

The results however do not show this. Instead they seem to suggest that in an asynchro-

nous system of inter-communicating modules, when considered over a number of exe-

cuted instructions, every subsystem on the datapath is on the ‘critical path’, i.e. a change

in processing rate of any subsystem has an effect on overall system performance. The

Dhrystone performance graph for the Primary Decode PLA is approximately constant

over the processing delay range shown. This tends to indicate almost complete overlap

with concurrent, slower datapath operation. By considering the gradient of the graphs

for each subsystem, it can be noted that the degree of linkage between subsystem per-

formance and overall system performance is different. Design effort, to increase system

performance, should therefore be concentrated on those subsystems which produce the
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Figure 43 : Graph of Block Processing Time vs Dhrystone performance.
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steepest gradient processing rate graphs, since this will have the most beneficial effect

on overall instruction throughput.

 8.6.2  Non-symmetrical Propagation Delays

Due to the characteristics of the underlying bipolar technology, with inputs to the basic

circuit elements being at different voltage levels, the propagation delay from input to

output for many of the primitive logic functions is non-symmetrical i.e. it is different

for each of the inputs. To determine if the effect of the non-symmetrical propagation

delays significantly affects the performance of the MDCML Asynchronous ARM, the

switching characteristics of two of the most heavily used primitive asynchronous con-

trol elements, the XOR gate and the Muller-C element, are examined.

The XOR gate acts as a MERGE element for events (see Section 3.1.1). An output event

(transition) is generated forevery input event. Initially, the most active input of each

XOR gate instance is determined i.e. the input that switches most during a complete run

of the benchmark program. The most active input signal is then assigned to the fastest

switching (level 3) input terminal of each of the XOR gates and the benchmark is again

run. For comparison, the XOR gate inputs are reversed (with the most active input sig-

nal assigned to the slower switching input terminal, at level 2) and the benchmark pro-

gram is again executed.

The Muller-C gate acts as a JOIN element for events (see Section 3.1.2). An output

event is generated only after an event has been received onboth inputs. In contrast to

the ‘most active input’ technique for the XOR gate, the ‘later switching’ input must be

determined for each Muller-C element i.e. the last event to arrive for each input event

‘pair’. The later switching input signal is assigned to the fastest switching (again level

3) input terminal of the Muller-C and the benchmark program executed. Again, for

comparison, the benchmark is executed with the Muller-C elements inputs reversed.
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The results for the XOR gate and Muller-C element are shown in the table below (all

figures are expressed in Dhrystones per second):

The figures indicate that, in the case of the XOR gate, the non-symmetrical propagation

delays have little effect on overall performance. However, in the case of the Muller-C

element, a 3% improvement in system performance can be achieved simply by connect-

ing the gate the "optimum way round".

 8.6.3  Processor-Memory Interaction

The MDCML Asynchronous ARM processor core is contained within an external sim-

ulation environment which includes a simple MMU and memory model capable of sup-

porting the bundled-data communication protocol. In order to determine if the proces-

sor performance is limited by the external memory access time, for prefetching instruc-

tions or reading and writing data values, several simulation runs of the Dhrystone

benchmark program were performed with different access time values in the memory

model for each run. The results are shown in the Figure 45 overleaf.

The graph shows that the processor performance is, to some extent, limited by the ex-

ternal memory speed. Although a doubling of memory speed does not result in a dou-

bling of processor speed, any increased memory performance is reflected in increased

processor performance. Also, an indication of the peak performance of the processor

can be obtained by extrapolating the graph backwards to the zero point on the x-axis,

i.e. memory access time is 0ns (an infinitely fast memory). This gives a theoretical peak

performance of around 46,500 Dhrystones per second.

Fastest Slowest Difference

XOR

MULLER-C

43535 43137 398

43950 42644 1306

Figure 44 : Effect of Non-Symmetrical Propagation Delays.
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 8.6.4  Internal Pipeline Efficiency

The Asynchronous ARM processor contains several pipeline structures which act as

buffers to even out the flow of data between functional units of differing speed in the

design. Some Event Registers between datapath stages are necessary to support concur-

rent operation since a previous result can be held while a unit computes its next result.

In an attempt to improve the performance of the overall system, the efficiency of these

pipelines must be examined. The lengths of some of the internal processor pipelines are

fixed, since they perform a particular function or are used to prevent potential deadlock

situations. For example, the PC Pipe in the Address Interface must be 2 stages long (see

Section 7.2.4) and the 5-stage Instruction FIFO Pipeline in the Data Interface must be

3 stages longer than the PC Pipe to prevent a complex deadlock state (see Section

7.2.5). Also, the Memory Control Pipe in the Data Interface must be the same length as

the Instruction FIFO Pipeline.
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The operation of 4 particular pipelines will be examined in detail. These are the ALU

and Memory Lock FIFOs in the Register Bank, the Immediate Field Extraction Unit

and the Write Data buffering structure in the DOUT section of the Data Interface.

The Pipeline Occupancy Monitor module was connected to the external request and ac-

knowledge signals of the pipelines under investigation and the Dhrystone benchmark

program was executed. The results are displayed, using the $gr_bars() system task, in

Figure 46 below:

For each of the pipelines, the fraction of the total simulation time that the pipeline oc-

cupancy was a particular value is shown. For example, for 89% of the total time, the

ALU Lock FIFO was empty and for 10% of the time, the ALU Lock FIFO contained

only one item.

The results seem to suggest that the ALU Lock FIFO, Memory Lock FIFO and Write

Data Buffering pipelines are too long and could be reduced to contain only 1 stage (or

Figure 46 : Pipeline Occupancy during Benchmark Execution.
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possibly removed altogether). The Immediate Field Extraction Unit is probably the cor-

rect length.

The investigation was carried further by modifying the length of each of the pipelines,

in isolation, and noting the effect on the processor performance when executing the

Dhrystone benchmark. Performance may be improved by shortening pipelines, which

reduces the latency of the pipeline, i.e. the time taken for a single item to pass through

an empty pipeline. The results are shown in the graphs below in Figure 47.

The *’s in each of the graphs shows the length of that particular structure in the current

MDCML Asynchronous ARM design. Note that the Immediate Field Extraction Pipe

must contain at least one stage for correct system operation.
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Figure 47 : Effect of Pipeline Length on Processor Performance.
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The results indicate that the ALU Lock FIFO should be shortened by 2 stages (to 1

stage), the Memory Lock FIFO should be shortened by 1 stage (to 3 stages), the Imme-

diate Field Extraction Pipe should be shortened by 1 stage (to 1 stage) and the Write

Data Buffer should contain only 1 stage (shortened by 2 stages). These ‘recommended’

pipeline modifications were simultaneously incorporated into the processor design and

the benchmark was again executed. The resulting Dhrystone performance was meas-

ured at 44,045 Dhrystones per second - the increase in performance was approximately

equal to the sum of the performance increases when the best case of each individual

pipeline graph is considered separately. Of greater importance in the bipolar design,

than the performance gain, is the decrease in silicon area used for active cells and rout-

ing in addition to the power reduction.

The conclusion from this pipeline efficiency study is that the lengths of the pipelines in

the current MDCML Asynchronous ARM design should be reduced, in some cases by

as much as 2 stages. However, the results only apply to the execution performance of a

particular program (the Dhrystone benchmark). There is a requirement to consider a

range of general-purpose applications, where individual pipeline structures may be

more heavily stressed and, unless silicon area is at a premium, it is better to provide ex-

tra buffering to smooth out processing ‘hot spots’.

 8.6.5  Comments on the Performance Analysis.

As mentioned in the concluding comments of the previous chapter, developing an un-

derstanding of the total system operation of the MDCML Asynchronous ARM, with its

complex integration of inter-communicating, self-timed subsystems is still in its early

stages. However, the ability to develop user-instrumentation for a wide variety of mon-

itoring tasks using the Verilog behavioural modelling language and to present the re-

sulting information in its most appropriate form using the graphical and text output Ver-

ilog system tasks assists the asynchronous logic designer appreciably in designing

working (i.e. correct) systems and exploring the dynamic behaviour of those systems.
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 9.  Conclusions

The principal aim of this project was to build an architectural model of the MDCML

(bipolar) Asynchronous ARM processor capable of supporting the simulated execution

of real ARM instruction code programs. This has been achieved. Furthermore, the mod-

el has then been used to explore the dynamic behaviour of the system. Various forms

of user-instrumentation were written by the author to enable detailed examination of

particular function units, and to present the resulting information in a wide variety of

forms. Design enhancements were then proposed and tested by the execution of a wide-

ly-used benchmark program.

When designing systems incorporating new ideas, whether these are implementation

technology developments or new architectural features, the risks of encountering diffi-

culties are increased over a more mature foundry process or circuit design style. Simu-

lation offers the opportunity to exhaustively test the prototype system before it is com-

mitted to the integrated circuit manufacture, where design changes are not possible.

 9.1  Production of the System Model

Initially, circuit simulation of the basic bipolar logic primitives was carried out to pro-

vide information regarding the switching characteristics of the target implementation

technology. The knowledge gained was then employed to construct structural and be-

havioural models of the standard logic primitives (AND, OR, etc.) and asynchronous

control elements in the Verilog modelling environment. By producing gate-level and
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functional models of the system building blocks, the simulation of a large-scale proc-

essor design becomes computationally feasible.

The functional subsystems of the Asynchronous ARM, including the Register Bank,

ALU, Memory Interface and Decode logic were then developed. They were construct-

ed, either from the combination of the logic primitives and asynchronous control ele-

ments or from representations involving a behavioural description. The complete sys-

tem consists of the functional subsystems supported by a transition-signalling commu-

nication protocol.

 9.2  Current State of the Project

The architectural model of the MDCML Asynchronous ARM processor has been com-

pleted and, at the time of writing, the major part of the datapath is near submission for

fabrication. This has only been possible through the use of simulation since it involves

a novel design methodology and a new target implementation technology. A simulation

environment, consisting of a simple Memory Management Unit (MMU) and an exter-

nal memory model, has also been produced. The Asynchronous ARM model success-

fully executes all the programs in the ARM Validation Suite, except for those instruc-

tions requiring specific hardware resources which will not be implemented in the target

bipolar technology. A number of design and monitoring aids have been written by the

author which expose significant parts of the internal operation of the asynchronous sys-

tem. Information gained during the processor pipeline length investigation enabled the

length of the ALU and Memory Lock FIFOs to be reduced in the original design to im-

prove performance and reduce silicon area.

 9.3  Comments on the Verilog Modelling Environment

Verilog provides an ideal environment for modelling a micropipelined asynchronous

microprocessor architecture. Its modular, hierarchical structure is in harmony with a

system composed of inter-communicating asynchronous functional units, and asyn-
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chronous operation maps well onto its control constructs. The flexibility and suitability

of Verilog is further demonstrated by the production of custom tools and test vectors

specifically for our prototype design.

The bottom-up, incremental design style and verification of individual primitive com-

ponents is easily accommodated into a high-level, behavioural view of the overall sys-

tem, which is largely technology independent. The production of a full execution code-

compatible architectural model results in a valuable aid in analysing the dynamic be-

haviour of the system and gives a degree of confidence in the design approach. Alter-

native design decisions have been more easily evaluated and an indication of expected

performance has been gained.

In common with many other digital logic modelling environments, a Verilog design de-

scription is exercised by means of anevent-driven simulator. This simulation paradigm

fits particularly well with the event-driven computational model of asynchronous logic.

Furthermore, the timing control mechanisms incorporated into the Verilog behavioural

language, especially theevent control constructs, would be ideal for modelling a self-

timed system developed using any asynchronous design methodology.

A high degree of concurrency is supported in the Verilog system model through the use

of the fork andjoin compound statements (see Section 4.5.1), allowing a non-deter-

ministic ordering of the notionally parallel execution of the individual statements. Also,

multiplealways @ event control blocks across the entire design result in many ‘threads

of execution’ being simultaneously active throughout the prototype system.

The modular approach to designing with asynchronous inter-communicating subsys-

tems afforded by the micropipeline approach is closely reflected in the architectural

modelling environment of Verilog with its hierarchical module structure. All these fea-

tures make Verilog sympathetic to an asynchronous design style.
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 9.4  Future Research

 9.4.1  Technology Migration

The architectural modelling of the MDCML Asynchronous ARM design has been

achieved in a hierarchical, modular fashion at a relatively high level of abstraction. The

figures used for the propagation delays of the standard logic primitives and asynchro-

nous control elements are based on the circuit simulation of their realisation in the target

bipolar technology. By re-designing the required low-level components in a different

implementation technology and determining the respective propagation delay times,

the characteristics of the new target technology can be incorporated into the basic Ver-

ilog system models. This results in the Asynchronous ARM processor design being eas-

ily migrated to a new fabrication technology and would, for example, enable a compar-

ison between MDCML and CMOS on the basis of performance.

Of course, detailed design of the functional units will consider if any circuit optimisa-

tions exist in the new implementation technology to increase the performance, reduce

the gate count, or improve the power efficiency of the system. For example, the lack of

a Wire-OR circuit design technique in the MDCML bipolar technology significantly in-

creased the amount of logic required and the propagation delay times for the ALU Com-

pletion logic and the Zero-Detect function in the current ALU design. Although the ba-

sic switching speed of the MDCML technology is superior to that of CMOS, the circuit

design flexibility afforded by CMOS can produce faster and smaller component designs

in certain circumstances.

 9.4.2  Architectural Design Alternatives

In producing the MDCML Asynchronous ARM design, various datapath functional

units and control circuit components have been developed using the behavioural mod-

elling language of the Verilog environment. The vast amount of simulation and valida-
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tion performed on the system containing these components should convince the logic

designer of the integrity of these components.

The system designer is now free to compose these datapath and control elements to pro-

duce and explore novel asynchronous computational structures. Multiple functional

units can be combined to produce an asynchronous superscalar design or more radical

architectures, such as dataflow, may be considered.
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Appendix A: Verilog Model

The following complete listing of the MDCML (bipolar) Asynchronous ARM Verilog

Model contains:

Top-level processor core ................................................ 143

ARM functions behavioural library ............................... 152

Asynchronous component library .................................. 159

Standard gate functions library ...................................... 168

Example of PLA structure modelling ............................ 173
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p
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0
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a
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o

u
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;

//
 s
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n
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e
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p
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e
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e
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m
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(N
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,

R
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);
D

L
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x0
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r,

Ir
0

,N
R
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);

A
rb
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a

0
(F

,r
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,
N

fiq
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r,

F
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a

,R
st

);
A
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,r
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,

N
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q
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r,

I,
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,R
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);
A

rb
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a
2
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,r
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,
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C

p
r,
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,P

,I
a

,R
st

);
C

g
a

te
3

c
(I

r1
,
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0

,r
I1

,r
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,R
st

);

e
n

d
m

o
d

u
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/ 
A

rb
itX

//
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e
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n
d
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 (
sh
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) 

d
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e
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o
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e
co

d
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IN
2

a
,R
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],
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r,
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2
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],
R
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r,

R
s[

7
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],
C

2
a

,R
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);
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u
d

e
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e
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e
2
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//
 I
N

2
[]
 =

 X
t[
1

:0
],
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C
p
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n
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],
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],
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}

//
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],
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],

//
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}
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R
e
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],
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S
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,
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s[
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],
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R
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);

D
L
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1
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r,
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2
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],
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2
[1
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],
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2
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],
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])

;

S
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_

P
L
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0

0
 s
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N

2
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0
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],
R
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],

sh
R
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])
;
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p
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//
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0
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],
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,
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ss
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M
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r,
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r,
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2
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],
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},

//
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m
 r

o
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te
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R
[9
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],

//
 R

s 
sh

ift
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2
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7
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6
])

;
D

L
a

n
d

2
d

l0
(R

S
sh

,
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2
[1
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],
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2
[1
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])

;
S

e
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sl

0
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t,
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,
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r,

R
S

sh
,R
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);

C
g

a
te

2
c0

(i
s1

,
is

,R
S

r2
,R

st
);

D
L

xo
r2

x0
(I

N
2

a
,

R
S

a
2

,A
is

n
t)

;
C

a
ll

ca
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(R
S

a
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n
t,
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,
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t,
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);
E

vt
R

e
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 #
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],
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N
2
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],
S
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o

p
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],
IN

2
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]}

,I
N
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,C
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,R
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);

e
n

d
m

o
d

u
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 /
/ 
D

e
c2

//
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e
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ia
ry

 (
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U

) 
d

e
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e
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m
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d

u
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 D
e
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d

e
3

 (
IN
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a

,C
3
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a
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[9
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],
d

3
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],
IN

3
r,

IN
3

[1
9

:0
],
C

3
a

,R
st

);

‘in
cl

u
d

e
 "

D
e

co
d

e
3

.in
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//
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N

3
[]
 =

 v
e

ct
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],
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5
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1

5
A
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4
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],
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],
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U
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~

D
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//
 d
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],
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],
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],
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A
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U
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//
~
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p
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],
W

re
g

,W
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,S
P

,L
S

M
,R

e
n
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e

n
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/W
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p
c,

d
e

st
P

C
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se
l

//
 A

L
U

 d
e

co
d

e
 P

L
A

A
L

U
c_

D
P

L
A

 #
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0
0

 d
e
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({
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3
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],
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3
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:3
]}

,I
N

3
r,

R
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,
d

[2
6

:0
],
D

r)
;

//
 p

ip
e

lin
e

 t
h

e
 c

o
n

tr
o

l o
u
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u

ts
E

vt
R

e
g

2
 #

(1
0
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) 
re
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0
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],
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],
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, d
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],
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],
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d

[1
5

:1
1

],
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d
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],
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d
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]}
,D
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2
,R
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);

E
vt

R
e

g
2

 #
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) 

re
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1
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],
d
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],
a

2
,C

3
r,

a
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[9
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],
d

2
[2

5
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],
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,C
3

a
,R

st
);

e
n

d
m

o
d

u
le

 /
/ 
D

e
c3

//
M

ic
ro

p
ip

e
lin

e
d

 r
e

g
is

te
r 

b
a

n
k 

m
o

d
e
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m

o
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le
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e

g
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0
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D
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],
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1
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],
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0
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0
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],
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1
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],
W

va
l,W

m
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,D
a

k,
R

st
);

‘in
cl

u
d

e
 "

R
e

g
.in
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//
 I
rq

, 
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k 
b

u
n

d
le
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] 
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n
d
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1

:2
] 
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h
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//
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E
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p
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e
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],
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e

c[
3

:0
],
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S
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],
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p
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D
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],
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e

c[
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],
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]

//
 la
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1
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n
d

 in
st
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n
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R
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 #
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) 
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],
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],
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0
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);

//
 b

e
g

in
 t
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 p
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ce
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e
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 in

st
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ct
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n
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P
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);
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L
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v
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L
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);
C

g
a

te
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o

,
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P
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);
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R
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R
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);
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L
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e
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R
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);

//
 t
h

e
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d
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g
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b
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(R
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],
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);

D
L
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(R
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R
b
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d
n

);
D

L
xo
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rb

y2
(P
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,
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b
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P
d
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);

//
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e
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//
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;
D

e
co

d
e

B
d

e
c

(d
cB

[3
0

:0
],
xx

[4
:0

],
I[
2

1
:1

8
],
I[
6

:0
],
R

e
n

,V
d

d
);
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;
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//
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],
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],
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L
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;
D

L
in

v
L

A
in

v
(L

kA
L

U
,

n
L

kA
L

U
);

D
L

a
n

d
4

L
K

m
(n

L
kM

E
M

,
L

[1
4

],
L

[1
3

],
L

[1
2

],
L
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;
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b
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D
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D
L

xo
r2

L
b

yA
2

(L
d

n
A

,
L

b
yA

,L
a

A
);

D
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D
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b
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[3

1
:0

],
N

b
[3

1
:0

],
R

d
n

,D
rq

,
N

a
0

[3
1

:0
],
N

b
0

[3
1

:0
],
D

lr
q

,D
a

k,
R

st
);

e
n

d
m

o
d

u
le

 /
/ 
R

e
g

m
o

d
u

le
 L

kF
IF

O
 (

L
a

A
,L

a
M

,W
g

o
,W

a
[2

9
:0

],
W

P
a

[4
:0

],
P

se
l[1

:0
],
L

kd
[2

9
:0

],
L

kP
[4

:0
],

L
rA

,L
rM

,lk
A

[2
9

:0
],
lk

M
[2

9
:0

],
lP

A
[4

:0
],
lP

M
[4

:0
],
P

s0
[1

:0
],
W

rq
,W

m
a

,W
d

n
,R

st
);

‘in
cl

u
d

e
 "

L
kF

IF
O

.in
c"

//
 t
h

e
 in

te
rn

a
l (

A
L

U
) 

so
u

rc
e

d
 r

e
su

lt 
a

d
d

re
ss

 lo
ck

 F
IF

O
L

kR
e

g
st

g
1

(l
1

[2
9

:0
],
P

1
[4

:0
],
P

s1
[1

:0
],
lk

1
[2

9
:0

],
P

k1
[4

:0
],
L

a
A

,r
q

2
,

lk
A

[2
9

:0
],
lP

A
[4

:0
],
P

s0
[1

:0
],
lk

A
[2

9
:0

],
lP

A
[4

:0
],
L

rA
,a

k2
,R

st
);

L
kR

e
g

st
g

2
(l
2

[2
9

:0
],
P

2
[4

:0
],
P

s2
[1

:0
],
lk

2
[2

9
:0

],
P

k2
[4

:0
],
a

k2
,r

q
3

,
 l1

[2
9

:0
],
P

1
[4

:0
],
P

s1
[1

:0
],
lk

1
[2

9
:0

],
P

k1
[4

:0
],
rq

2
,a

k3
,R

st
);

L
kR

e
g

st
g

3
(l
3

[2
9

:0
],
P

3
[4

:0
],
P

s3
[1

:0
],
lk

3
[2

9
:0

],
P

k3
[4

:0
],
a

k3
,A

rq
,

 l2
[2

9
:0

],
P

2
[4

:0
],
P

s2
[1

:0
],
lk

2
[2

9
:0

],
P

k2
[4

:0
],
rq

3
,A

a
k,

R
st

);

//
 t
h

e
 e

xt
e

rn
a

l (
m

e
m

o
ry

) 
so

u
rc

e
d

 r
e

su
lt 

a
d

d
re

ss
 lo

ck
 F

IF
O

L
kR

e
g

st
g

4
(l
4

[2
9

:0
],
P

4
[4

:0
],
P

s4
[1

:0
],
lk

4
[2

9
:0

],
P

k4
[4

:0
],
L

a
M

,r
q

5
,

 lk
M

[2
9

:0
],
lP

M
[4

:0
],
P

s0
[1

:0
],
lk

3
[2

9
:0

],
P

k3
[4

:0
],
L

rM
,a

k5
,R

st
);

L
kR

e
g

st
g

5
(l
5

[2
9

:0
],
P

5
[4

:0
],
P

s5
[1

:0
],
lk

5
[2

9
:0

],
P

k5
[4

:0
],
a

k5
,r

q
6

,
 l4

[2
9

:0
],
P

4
[4

:0
],
P

s4
[1

:0
],
lk

4
[2

9
:0

],
P

k4
[4

:0
],
rq

5
,a

k6
,R

st
);

L
kR

e
g

st
g

6
(l
6

[2
9

:0
],
P

6
[4

:0
],
P

s6
[1

:0
],
lk

6
[2

9
:0

],
P

k6
[4

:0
],
a

k6
,r

q
7

,
 l5

[2
9

:0
],
P

5
[4

:0
],
P

s5
[1

:0
],
lk

5
[2

9
:0

],
P

k5
[4

:0
],
rq

6
,a

k7
,R

st
);

L
kR

e
g

st
g

7
(l
7

[2
9

:0
],
P

7
[4

:0
],
P

s7
[1

:0
],
lk

7
[2

9
:0

],
P

k7
[4

:0
],
a

k7
,M

rq
,

 l6
[2

9
:0

],
P

6
[4

:0
],
P

s6
[1

:0
],
lk

6
[2

9
:0

],
P

k6
[4

:0
],
rq

7
,M

a
k,

R
st

);

//
 t
h

e
 lo

ck
e

d
 o

u
tp

u
t 
in

ve
rt

e
rs

 a
n

d
 w

ri
te

 a
d

d
re

ss
 m

u
lti

p
le

xe
rs

B
in

v 
#

3
0

in
v1

(L
kd

[2
9

:0
],

lk
7

[2
9

:0
])

;
B

in
v 

#
5

in
v2

(L
kP

[4
:0

],
P

k7
[4

:0
])

;
m

u
x2

 #
3

0
m

u
x1

(W
a

[2
9

:0
],

l7
[2

9
:0

],
l3

[2
9

:0
],
W

m
a

);
m

u
x2

 #
5

m
u

x2
(W

P
a

[4
:0

],
P

7
[4

:0
],
P

3
[4

:0
],
W

m
a

);
m

u
x2

 #
2

m
u

x3
(P

se
l[1

:0
],

P
s7

[1
:0

],
P

s3
[1

:0
],
W

m
a

);

//
 t
h

e
 w

ri
te

 r
e

q
u

e
st

 s
te

e
ri
n

g
 lo

g
ic

S
e

le
ct

se
l2

(W
rq

m
,W

rq
a

,
W

rq
,W

m
a

,R
st

);
C

g
a

te
2

C
1

(M
g

o
,

W
rq

m
,M

rq
,R

st
);

C
g

a
te

2
C

2
(A

g
o

,
W

rq
a

,A
rq

,R
st

);
C

a
ll

ca
ll

(M
a

k,
A

a
k,

W
g

o
,

M
g

o
,A

g
o

,W
d

n
,R

st
);

e
n

d
m

o
d

u
le

 /
/ 
L

kF
IF

O

//
A

d
d

re
ss

 I
n

te
rf

a
ce

m
o

d
u

le
 A

d
d

In
t 
(W

a
0

,W
a

,A
P

a
0

,P
P

r3
,X

P
a

0
,X

L
r1

,R
1

5
[3

1
:2

],
L

S
M

P
a

,M
A

r,
M

A
[3

1
:0

],
M

A
c[

9
:0

],
W

r0
,W

0
[3

1
:0

],
W

c0
[9

:0
],
A

P
r0

,A
[3

1
:0

],
L

S
M

P
r,

N
tr

m
,

d
P

C
,P

P
a

3
,X

P
r0

,X
L

a
1

,P
C

se
l,M

A
a

,D
a

b
t1

,D
a

b
t0

,R
st

);

‘in
cl

u
d

e
 "

A
d

d
In

t.
in

c"

//
 W

c[
] 
=

 S
P

, 
L

S
M

, 
R

e
n

, 
W

e
n

, 
U

sr
, 
B

/W
, 
O

p
c,

 v
a

lid
, 
d

e
st

P
C

, 
P

C
p

a
r

//
 M

A
c[

] 
=

 S
e

q
, 
In

c,
 R

e
n

, 
W

e
n

, 
U

sr
, 
B

/W
, 
O

p
c,

 v
a

lid
, 
d

e
st

P
C

, 
P

C
p

a
r

//
 t
h

e
 W

 b
u

s 
la

tc
h

E
vt

R
e

g
2

 #
(3

2
,1

0
) 

w
la

t
(W

[3
1

:0
],
W

c[
9

:0
],
W

a
0

,W
r,

 W
0

[3
1

:0
],
W

c0
[9

:0
],
W

r0
,W

a
,R

st
);

D
L

a
n

d
2

g
0

(L
S

M
p

c,
W

c[
8

],
d

P
C

);
D

L
o

r2
g

1
(d

P
C

c,
W

c[
1

],
L

S
M

p
c)

;
D

L
a

n
d

2
g

2
(L

S
in

,
W

c[
8

],
N

tr
m

);
D

L
o

r2
g

3
(t

o
In

c,
L

S
in

,W
c[

3
])

;

//
 t
h

e
 A

 b
u

s 
p

ip
e

lin
e

P
ip

e
2

a
p

ip
e

(A
2

[3
1

:0
],
A

P
a

0
,A

P
r2

,
A

[3
1
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],
A

P
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,A
P

a
2

,R
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);

//
 a

d
d

re
ss

 b
u

s 
a

n
d

 c
o

n
tr

o
l b

u
s 

m
u

xs
m

u
x4

 #
3

2
a

m
u

x
(M

A
0

[3
1
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],

P
C

[3
1
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],
L

S
[3

1
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],
A

2
[3

1
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],
W
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1
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],
A

d
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);
m

u
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1

0
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u
x

(M
A

c0
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],

{p
O

p
c,

V
d

d
,V

d
d

,V
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,U
sr

,V
ss

,V
d

d
,V

d
d

,V
ss

,P
C

p
a

r}
,

{V
d

d
,N

tr
m

,M
A

c0
[7

],
M

A
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],
U

sr
,V

ss
,V

ss
,V

d
d

,d
P

C
,P

C
p

a
r}

,
{V

ss
,t
o

In
c,

W
c[

7
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],
d

P
C

c,
W

c[
0
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,

{V
ss

,t
o

In
c,

W
c[

7
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],
d

P
C

c,
W

c[
0

]}
,A

d
sl

);

E
vt

R
e

g
2

 #
(3

2
,1

0
) 

m
a

r
(M

A
[3

1
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],
M

A
c[

9
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],
M

A
a

0
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A
r,

 M
A

z[
3

1
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],
M

A
c0
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],
M

A
r0

,M
A

a
1

,R
st

);

//
 t
h

e
 a

d
d

re
ss

 c
o

n
tr

o
l l

o
g
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A

d
d

C
a

d
d

C
(W

a
,P

C
a

1
,A

P
a

2
,L

S
a

1
,L

S
M

P
a

,M
A
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,P

C
p

a
r,

U
sr

,A
d
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W
r,

W
c[

9
],
W

c[
8

],
W
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0

],
W

c[
5

],
P

C
r2

,A
P

r2
,L

S
r1

,L
S

M
P

r,
N

tr
m

,M
A

a
0

,R
st

);

//
 a

 f
u

d
g

e
 t
o

 f
o

rc
e

 t
h

e
 P

C
 o

u
tp

u
t 
to

 z
e

ro
 a

ft
e

r 
re

se
t

B
N

b
u

ff
 #

3
2

 p
cr

st
(N

rs
t[
3

1
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],
{3

2
{R

st
}}

);
B

a
n

d
 #

3
2

P
C

z
(M

A
z[

3
1

:0
],

M
A

0
[3

1
:0

],
N

rs
t[
3

1
:0

])
;

//
 s

a
ve

 p
re

vi
o

u
s 

O
p

c 
va

lu
e

E
vt

L
ch

e
l2

(p
O

p
c,

M
A

c0
[3

],
M

A
a

0
,R

st
);

//
 s

e
le

ct
 in

cr
e

m
e

n
te

r 
b
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a

ss
 o

r 
->

 P
C

 o
r 

->
 L

S
M

 r
e

g
S

e
le

ct
s0

(N
in

c,
IN

C
ri
n

,
M

A
r,

M
A

c[
8

],
R

st
);

C
g

a
te

2
c0

(M
A

a
1

,
M

A
a

,x
0

,R
st

);
D

L
xo

r2
xo

r0
(x

0
,

N
in

c,
x1

);

In
cr

e
in

c
(I

n
c[

3
1

:0
],

M
A

[3
1

:0
],
IN

C
ri
n

,I
N

C
ro

u
t,
x1

,R
st

);

S
e

le
ct

s1
(L

S
r0

,P
C

r0
,

IN
C

ro
u

t,
M

A
c[

3
],
R

st
);

E
vt

R
e

g
 #

3
2

 p
c0

(P
C

x[
3

1
:0

],
P

C
a

0
,P

C
r9

,
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c[
3

1
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],
P

C
r0

,P
C

a
9

,R
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);
E
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R

e
g

 #
3

2
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(P

C
[3

1
:0

],
P

C
a

9
,P

C
r1

,
P

C
x[

3
1
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],
P

C
r9

,P
C

a
2

,R
st

);
E

vt
R

e
g

 #
3

2
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S
M

r
(L

S
[3

1
:0

],
L

S
a

0
,L

S
r1

,
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c[
3

1
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L

S
r0

,L
S

a
1

,R
st

);

D
L

xo
r2

xo
r1

(x
1

,
P

C
a

0
,L

S
a

0
);

//
 c

o
p

y 
P

C
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to
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C
 p
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e

, 
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je
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e
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n

d
 in
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n
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o
m
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S
e

le
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(Z
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P
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,

P
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,Z

,R
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);
D

L
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(x

2
,

P
P

a
0

,Z
);

D
L
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v
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v
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R
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,

R
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);
C

a
ll
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0

(n
c0

,P
C

a
2

,P
C

r2
,

N
R

st
,x

2
,P

C
a

1
,R

st
);

//
 P

C
 p

ip
e
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e
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lo

ck
s

P
ip

e
2

p
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e

(p
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1
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],
P

P
a

0
,P

P
r3

,
P

C
[3

1
:0

],
P

P
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,P
P

a
3

,R
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);
P
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e

3
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e

(X
P

3
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1
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],
X

P
a

0
,X

P
r3

,
p
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1
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],
X

P
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,X
P

a
3

,R
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);
E

vt
R

e
g

 #
3

2
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la
t

(X
L

[3
1
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],
X

L
a

0
,X

L
r1

,
X

P
3

[3
1

:0
],
X

L
r0

,X
L

a
1

,R
st

);
m

u
x2

 #
3

2
p
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u

x
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R
1

5
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1
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n
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},

p
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1
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],
X

L
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1
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],
P

C
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S
in

k 
#

3
sk

1
({

n
c0

,n
c1

,n
c2

})
;

//
 D

a
ta

 A
b

o
rt

 c
o

n
tr

o
l o

f 
X

 p
ip

e
D

e
cW

a
it2
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 d

w
0

(n
D

b
t,
X

L
r0

,
X

P
r3

,D
a

b
t0

,D
a

b
t1

,R
st

);
D

L
xo

r2
x3

(X
P

a
3

,
n

D
b

t,
X

L
a

0
);

e
n

d
m

o
d

u
le

m
o

d
u

le
 A

d
d

C
 (

W
a

,P
C

a
,A

P
a

,L
S

M
a

,L
S

M
P

a
,M

A
R

r,
P

C
p

a
r,

U
sr

,A
d

sl
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],

W
r,

S
P

,L
S

M
,P

C
p
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,U

sr
0

,P
C

r,
A

P
r,

L
S

M
r,

L
S

M
P

r,
N

tr
m

,M
A

R
a

,R
st

);

in
p

u
t 
W

r,
S

P
,L

S
M

,P
C

p
in

,U
sr

0
,P

C
r,

A
P

r,
L

S
M

r,
L

S
M

P
r,

N
tr

m
,M

A
R

a
,R

st
;

o
u

tp
u

t 
[1

:0
] 
A

d
sl

;
o

u
tp

u
t 
W

a
, 
P

C
a

, 
A

P
a

, 
L

S
M

a
, 
L

S
M

P
a

, 
M

A
R

r,
 P

C
p

a
r,

 U
sr

;

//
 W

r/
a

 b
u

n
d

le
s 

S
P

 (
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e
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a
l l

o
a

d
 =
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S

R
A

 o
r 

L
S

M
),

 L
S

M
, 
P

C
p

in
(p

a
ri
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 in
),

 U
sr

0
//
 L

S
M

P
r/

a
 b

u
n

d
le

s 
N

tr
m

 (
=

 n
o

t 
la

st
 L

S
M

 c
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le
),

 d
P

C
 (

=
 d

e
st

 is
 P

C
)

//
 M

A
R

r/
a

 b
u

n
d

le
s 

P
C

p
a

r,
 U

sr
, 
A

d
sl

[1
:0

],

//
 a

rb
itr

a
te

 in
to

 t
h

e
 P

C
 lo

o
p

A
rb

itA
a
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(W

g
o

,P
C

g
o

,W
m

u
x,

W
r,

P
C

r,
W

a
,P

C
a

,R
st

);

//
 la

tc
h

 W
 s

o
u

rc
e

d
 b

o
o

le
a

n
s

E
vt

L
ch

e
l0

(P
C

p
a

r,
P

C
p

in
,W

g
o

,R
st

);
E

vt
L

ch
e

l1
(U
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,

U
sr

0
,W

g
o

,R
st

);

//
 s

o
rt

 o
u

t 
th

e
 W

 s
o

u
rc

e
d
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p

e
ra

tio
n

s
S

e
le

ct
sl

0
(r

1
,L

S
P

r,
W
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o

,S
P

,R
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);
S

e
le

ct
sl

1
(L

A
r,

L
S

M
g

o
,

L
S

P
r,

L
S

M
,R

st
);

C
g

a
te

2
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(r
0

,
L

A
r,

A
P

r,
R

st
);

D
L

xo
r2

xo
r0

(x
0

,
A

P
a

,d
1

);
D

L
xo
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x2

(W
a

,
x0

,L
S

M
x)

;

//
 t
h

e
 P

C
 p

ro
ce

ss
in

g
 b

it
S

e
le

ct
sl

2
(r

2
,P

C
x,

P
C

g
o

,P
C

k,
R

st
);

D
L

xo
r2

x3
(P

C
k,

P
C

x,
P

C
p

a
r)

;
D

L
xo

r2
x4

(P
C

a
,

P
C

x,
d

2
);

//
 t
h

e
 L

S
M

 p
ro

ce
ss
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g
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it

D
L

xo
r2

xo
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(x
5

,
L

S
M
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);
C

g
a

te
2
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,
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,L

S
M

P
r,

R
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);
S

e
le

ct
4

sl
3

(s
0

0
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0
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1

0
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1
1
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S

M
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x,
N
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R
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);

D
L

xo
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S
M

m
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1

0
);

D
L
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(L

S
M
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0
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1
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);
D

L
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);

D
L
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S
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);

D
L

xo
r2
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M
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a
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L
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M
x,
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);

C
g
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2
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u
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,
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S
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R
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);

//
 m
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e
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P
a

,d
1

,d
2

,d
3

,
M

A
R
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A
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);

//
 p
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d

u
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e
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d
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 m
u

x 
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d
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P
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1
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u
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M
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P
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S
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A

d
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])
;

e
n
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m
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d

u
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/ 
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d
d

C

//
D
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n
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o
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u
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M
W

R
[3

1
:0

],
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],
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u
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,

D
W
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c,
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1
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],
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],
Im
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],
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,I
M

r2
,
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r,

D
O

r,
D

b
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1
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],
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b

w
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R
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R
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1
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],
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W
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N
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A

D
c[

9
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],
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a
2
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ig
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n

d
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);

‘in
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u
d

e
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D
a
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n

t.
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//
M

A
D

c[
] 
=

 b
yt

e
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],
 R

e
n

, 
W

e
n

, 
U
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, 
B
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O

p
c,

 v
a

lid
, 
d

e
st

P
C

, 
P

C
p

a
r

//
M

C
p
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yt

e
[1
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],
 U
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, 
B

/W
, 
O

p
c,

 v
a

lid
, 
d

e
st

P
C

, 
P

C
p

a
r

E
vt

R
e

g
2

 #
(3

2
,1

) 
m

rr
(M

D
in
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],
b

1
,M
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R

a
,M
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r,

M
R

R
[3

1
:0

],
P

a
b

t,
M

R
R

r,
M

D
a

,R
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);

D
o

u
t

d
o

u
t

(M
W

R
[3

1
:0

],
D

O
a

,M
W

R
r,

D
b

[3
1

:0
],
D

O
b

w
,D

O
r,

M
W

R
a

,R
st

);

D
st

C
tl

d
st

ct
l

(M
D

a
,M

C
P

a
5

,D
Ir

,I
N

r0
,

M
D

r,
M

C
P

r5
,M

C
P

5
[2

],
M

C
P

5
[3

],
D

Ia
,I
N

a
0

,R
st

);

D
L

in
v

in
v

(N
a

b
t,

b
1

);
D

L
a

n
d

2
g

1
(D

Iv
,

N
a

b
t,
M

C
P

5
[2

])
;

D
in

d
in

(D
Ia

,D
W

r,
D

W
[3

1
:0

],
D

W
u

sr
,D

W
v,

D
W

p
c,
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C

P
5

[7
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],
D

Iv
,M

C
P

5
[1

]}
,D

Ir
,M

D
in

[3
1
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],
D

W
a

,B
ig

E
n

d
,R
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);

Ip
ip

e
ip

ip
e

(I
N

1
[3

1
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],
flo

[1
:0

],
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,I
N

a
0

, 
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D
in

[3
1

:0
],
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1
,M

C
P

5
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,I
N
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,I
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a
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,R
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);

IM
M

p
ip

e
im

m
(I

m
m

[3
1

:0
],
IM

a
0

,I
M

r2
,

IN
1

[3
1

:0
],
IM

r0
,I
M

a
2

,R
st

);

M
e

m
C

P
m

e
m

C
P

(M
C

P
5

[7
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],
M

C
P

a
0

,M
C

P
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,
{M

A
D

c[
9

:8
],
M

A
D

c[
5

:0
]}

,M
C

P
r0

,M
C

P
a

5
,R

st
);

M
e

m
C

tl
m

e
m

C
tl

(M
W

R
a

,M
A

R
a

,M
C

P
r0

,M
E

M
r,

M
W

R
r,

M
A

R
r,

M
A

D
c[

6
],
M

A
D

c[
7

],
M

A
D

c[
2

],
M

A
D

c[
3

],
M

A
D

c[
1

],
M

C
P

a
0

,M
E

M
a

,R
st

);

e
n

d
m

o
d

u
le

 /
/ 
D

a
tI
n

t

m
o

d
u

le
 I
p

ip
e

 (
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1
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],
q

5
[1

:0
],
r5

,a
0

,
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[3
1

:0
],
q

0
[1

:0
],
r0

,a
5

,R
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);

in
p

u
t 
[3

1
:0

] 
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; 
in

p
u

t 
[1

:0
] 
q

0
; 
in

p
u

t 
r0

,a
5

,R
st

;
o

u
tp

u
t 
[3

1
:0

] 
i5

; 
o

u
tp

u
t 
[1

:0
] 
q

5
; 
o

u
tp

u
t 
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,a
0

;
w

ir
e

 [
3

1
:0

] 
i1

,i2
,i3

,i4
; 
w
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e

 [
1

:0
] 
q

1
,q

2
,q

3
,q

4
;

//
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u
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e

r 
p

ip
e
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e
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q
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] 
co

n
ta
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s 

P
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fe
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h
 a

b
o

rt
 (

1
) 

a
n

d
 P

C
 p

a
ri
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 (
0

) 
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E
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R
e

g
2

 #
(3

2
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) 
la
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1
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],
q

1
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:0
],
a

0
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1
,
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[3

1
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],
q

0
[1
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],
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,a
1

,R
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);
E

vt
R

e
g

2
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2
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) 

la
t1
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[3
1

:0
],
q

2
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:0
],
a

1
,r

2
,
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1
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],
q

1
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],
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,a
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,R
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);
E
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R

e
g
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) 

la
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[3
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],
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:0
],
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2
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,
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1
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],
q

2
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:0
],
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,a
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,R
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);
E

vt
R

e
g

2
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) 

la
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[3
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],
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4
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:0
],
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4
,
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1
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],
q

3
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],
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);
E
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R

e
g
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) 

la
t4
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:0
],
q

5
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:0
],
a
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5
,
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1
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],
q
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],
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,a
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,R
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);

e
n

d
m

o
d

u
le

 /
/ 
Ip

ip
e

m
o

d
u

le
 D
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 (

a
0
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1

,D
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1
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],
D

1
u
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D

1
p
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0
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],
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1
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E

n
d

,R
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);

in
p

u
t 
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1
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] 
D

0
; 
in

p
u

t 
[5
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] 
b

0
; 
in

p
u

t 
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,a
1

,B
ig

E
n

d
,R

st
;

o
u
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u

t 
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1
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] 
D

1
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o

u
tp

u
t 
a

0
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1
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1
u
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v,
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1
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c;
w
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e
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1
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] 
D

0
a

;
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//
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h

e
 d

a
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p

u
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b
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, 
in
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u

d
in

g
 b

yt
e

 s
e
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ct
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n
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n

d
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n

m
e

n
t 
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g
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//
 b

0
[5

:0
] 
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n
ta
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s:

 b
yt

e
[1
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];
 U
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; 
B
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e
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o
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; 
V

a
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; 
P

C
d

e
st

;

S
in

k 
#

1
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(B
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E
n

d
);

D
in
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b
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d

in
(D

0
a

[3
1

:0
],

D
0
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1

:0
],
b

0
[5
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],
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0
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])
;

E
vt

R
e

g
2

 #
(3

2
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la

t0
 (

D
1

[3
1

:0
],
{D

1
u

,D
1

v,
D
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p
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a
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1
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],
{b

0
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);
e

n
d

m
o

d
u
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/ 
D
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m
o

d
u

le
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o
u

t 
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3
[3

1
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],
a

0
,r

3
,

D
0

[3
1
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],
b

w
,r

0
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3
,R
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);

in
p

u
t 
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1
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] 
D

0
; 
in

p
u

t 
b

w
,r

0
,a

3
,R

st
;

o
u
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u

t 
[3

1
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] 
D
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; 
o

u
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u
t 
a

0
,r

3
;

w
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e
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1
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] 
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1
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,D
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;

//
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h

e
 d

a
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u

t 
b

lo
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in
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u

d
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g
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e
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e

p
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a
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g
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E
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R
e
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1
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0
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],
b

w
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0
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1
,R
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D
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u
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b
lk

d
o

u
t
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a
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],
D

1
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E
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R
e

g
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;
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e
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P
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e
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//
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;

D
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;
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;
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;
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R
s
t
)
;



A  Verilog Model

150

D
L

xo
r2

x1
(A

L
e

,
A

L
g

o
,A

L
x1

);
T

o
g

g
le

t0
(A

L
x,

A
L

rd
y,

A
L

d
,R

st
);

D
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 c
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D
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P
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P
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P
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P
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