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Abstract

As VLS process technologies develop and feature sizes shrink, the global clocking
schemes currently employed in synchronous systems are beginning to experience dif-
ficultiesin anumber of areas. Asynchronous circuits have apotentially higher perform-
ance than synchronous circuits since an asynchronous circuit exhibits average-case per-
formance, in contrast to synchronous systems, which must be specifically designed to
accommodate worst-case conditions. However, asynchronous design techniques are
not widely understood or devel oped, particularly in the context of alarge, complex sys-

tem.

Recently, an asynchronous design methodol ogy, namely Micropipelines, has been pre-
sented which has proved useful in devel oping an asynchronous CM OS implementation
of an existing commercial RISC architecture. A subsequent project has been initiated
to devel op architectural modelling and implementation tools for an asynchronous high-

performance bipolar implementation of the same target architecture.

Thisthesis presents the issues involved in asynchronous logic design, the details of the
particular asynchronous design methodology employed and an introduction to the ar-
chitectural modelling environment used in the development of the bipolar asynchro-
nous implementation. The development of the system model is illustrated, with refer-
ence to the underlying primitive components and the hierarchical composition of the
complete design from asynchronous sub-functions communicating via a well-defined
signalling protocol. A demonstration of how the architectural model can be used to gen-
erate information regarding the internal operation of the system, which is then used to
improve the complete design is given. The suitability of modelling asynchronous sys-

tems with the modelling environment employed is discussed.
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1. Introduction

"By combining advancesin integrated circuit technology, improvementsin compil-
er design and new architectural ideas, significant performanceimprovements have been
realised in the contemporary design of computer systems. These improvements have
only been made possible by bringing together important technological advanceswith a
better empirical understanding of how computers are used. From this fusion has
emerged a style of computer design based on empirical data, experimentation and

simulation."

Theseideas, drawn from probably the most important text on computer design over the
past decade - Computer Architecture: A Quantitative Approach [Henn90] - indicate the
considerable benefits of producing a model of any proposed prototype system. The
model should be capable of being exercised with a realistic workload to provide per-

formance indicators and to enable the effects of design decisions to be explored.

The work presented in this thesis is concerned with the architectural modelling of an
Asynchronous Bipolar Microprocessor. The prototype processor design isderived from
AMULET1 [Furb94a], an asynchronous CMOS version of the ARM RISC microproc-
essor. Although the AMULET1 architecture was not the first asynchronous microproc-
essor [Mart89], itisthefirst to overcomethe difficult implementation areas of handling
interrupts and exact exceptions, and providing multi-cycle instruction support. Theim-
plementation technology is based on a high-performance, differential, current-mode
logic family devel oped by GEC-Plessey Semiconductors. As outlined above, asimula-

tion model is desirable before implementing a prototype system. When, asis the case

11



1 Introduction

with thiswork, a novel system architecture produced using an unfamiliar design meth-
odology isto be implemented on a new advanced bipolar process, then extensive sim-

ulation becomes essential.

There are several objectives of thisthesis. The first is to introduce the reader to theis-
sues involved in asynchronous logic design in Chapter 2 and to the specific asynchro-
nous design style used for the project in Chapter 3. The second isto familiarise the read-
er with the chosen system modelling language in Chapter 4 and the high-performance
bipolar technology used to implement the prototype system in Chapter 5. The next ob-
jectiveisto show how the system model components are constructed based on the cir-
cuit characteristics of the underlying implementation technology. Thisis presented in
Chapter 6. A further objective, achieved in Chapter 7, is to introduce the ARM archi-
tecture and explain the operation of the asynchronous implementation. The final objec-
tive is to show how the modelling environment is used to incorporate the design meth-
odology and to demonstrate how the information produced by the model may be used

to improve the design of the system in Chapter 8.

The structure of the remainder of thisthesisis asfollows:

Chapter 2 explains the domination of synchronous design techniques in current
electronic circuit synthesis. The problems with synchronous design, which are generat-
ing renewed interest in asynchronous design styles, are noted. An introduction to asyn-
chronouslogicisgiven, aong with the signalling protocol s used, and some of theissues

involved in delay modelling are considered.

Chapter 3 gives an introduction to the particular asynchronous design methodol ogy
used in the development of the Asynchronous Bipolar microprocessor. Examples of the

control circuit elements used are included.

Chapter 4 presents the modelling environment and demonstrates some of the lan-
guage constructs and the hierarchical structure capabilities. An indication of how time

Is managed while exercising the model is given.

12



1 Introduction

Chapter 5 introducesthe differential bipolar technology employed to implement the
prototype system. The circuit operation is explained by considering some gate function

examples.

Chapter 6 shows how the architectural models of the bipolar logic gates and func-
tions are devel oped based on the circuit simulations of the equivalent transistor models
of the basic gates. The effects of gate output loading and input drive characteristics are

explored.

Chapter 7 outlinesthe ARM target architecture and theinstruction set. The structure
of the asynchronous bipolar architecture isthen presented with detailed examination of
the major functional units, namely the Register Bank, Address Interface, Data Interface
and Execution Unit. Simulator output waveforms are included to demonstrate the oper-

ation of the units.

Chapter 8illustrates how the architectural model of the asynchronous ARM was de-
veloped in the modelling environment using a hierarchical, modular structure. Some of
the features of the modelling language are then elaborated and some examples of the
modelling tools that have been constructed are demonstrated. Various executable pro-
grams used to validate the architecture and measure performance are presented. Anil-
lustration of how the system model is used to gain information regarding the operation
of the design and subsequently, how this information is used to suggest system design

enhancementsis given.

Chapter 9 summarises the current state of the project and draws together the con-
clusions resulting from this work, discussing the applicability of the Verilog to the ar-
chitectural modelling of asynchronous systems. Future research areas, continuing on

from thiswork are suggested.

The Appendix contains the complete hierarchical Verilog model of the MDCML
Asynchronous ARM including the functional subsystems, asynchronous control ele-

ments and standard |ogic gate primitives.
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2. AsynchronousLogic

Computer technology has evolved rapidly over the past few decades and the demand
for even higher performance machines seems set to continue as computing solutions to

new, more complex and computationally intensive problems emerge.

Synchronous design techniques have dominated the field of digital logic synthesis dur-
ing this development period. This supremacy has been brought about for several rea-

SO/INY

[0 The conceptsrequired to create a synchronous solution to the production of alog-
ic circuit are easily understood - the designer ssmply defines the combinatorial logic
necessary to perform the required function and then surrounds it with latches which are
enabled with acommon clock. In alarge design, the entire system isthen acomposition
of subsystems communicating by passing data val ues between the clock-controlled reg-
isters.

[0 The globa clock fulfils two system functions - the clock transitions define the
successive instants at which the system state changes can occur and the clock period is
sufficient to account for the logic and wire delays. Since the clock period is specified
to be greater than the slowest combinatorial path that could occur during the computa-
tion, circuit hazards and feedback problems can generally be ignored [ Seit80].

[0 By neglecting the effects of clock skew - the time difference between the arrival
of the global clock signal at different pointsin the system - the total system state, when
considered at the end of the clock period, is assumed to be deterministic and discrete,

changing only at the edges of the system clock.
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2 Asynchronous Logic

[0 The synchronous design style is well-understood and formalised and is therefore
readily accessible to potential digital logic engineers, the preponderance of synchro-
nous circuits is then reinforced when these new engineers become productive.

[0 Also, widely available standard components, which are well-specified and docu-
mented, have been positively developed for use in the synchronous style.

[0 Verification of the correct operation of a synchronous design simply involves
checking the setup and hold times of the outputs of the combinatorial logic sections of
the design to ensure that they meet the requirements of the clocked registers.

[0 CAD tool support has also been developed, in parallel with the synchronous de-
sign concepts, which manage much of the timing verification involved.

[0 Testing is also a much easier proposition in a synchronous circuit since many

techniques including, for example, Scan Paths and BILBO (Built-In Logic Block Ob-
servation) are well-devel oped.
Recently, however, significant interest has arisen in the field of asynchronous logic de-
sign. Thisinterest may be as a consequence of the problems associated with the global
clocking strategy becoming more acute, a recognition that the formal techniques for
handling asynchronous behaviour and the automatic synthesis potential of asynchro-
nous circuits are now worth exploiting, or that inspiration has been generated by recent
publications in the field, most notably the 1988 Turing Award Lecture on MICROPI-
PELINES given by Ivan Sutherland [ Suth89].

As VLSI process technologies develop and feature sizes shrink, the global clocking
schemes currently employed in synchronous systems are now beginning to experience

severe difficultiesin the following areas:

[0 Sincethe clock signal controls the entire system, it must be distributed across the
entire chip. This requirement for large scale clock driver circuitry isexpensive - in cur-
rent high performance microprocessors a considerable proportion of the silicon area

used and power dissipation required is given over to the global clock logic [Dobb92].
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2 Asynchronous Logic

[0 The design effort needed for the clock driver circuitry, and consideration of the
effects of clock skew, is non-trivial. It is becoming increasingly difficult to maintain the
clock skew within reasonable bounds across all process, temperature and circuit oper-
ational speed parameters and may result in the clock period being extended. In current
leading-edge synchronous microprocessor designs, a significant proportion of the clock
period is used to account for the effects of clock skew.

[0 The circuit modifications required when a relatively small subsection of the sys-
tem is changed may have ramifications across the entire chip design.

0 The global clock period must allow for the worst-case logic delay, even though,
if the system is not operated in an extreme environment, the worst-case delay may never
actually occur. The resulting performance is then reduced as the system is effectively
idle during the time between the outputs of the combinatorial logic settling and the ar-

rival time of the (worst-case period) clock.

It has long been recognised by logic circuit designers that asynchronous circuits have a
potentially higher performance that synchronous circuits, since an asynchronous circuit
exhibits average-case performance (the processing commences as soon as the new input
data arrives - the time required to complete the computation execution being dependent
on the actual input data values). A synchronous ALU, for example, must be particularly
designed to allow for worst-case execution time irrespective of the actual input data val-

ues presented to the circuit.

In general, arbitration is required when several sources compete for the same service
(or resource), since the service request signals may arrive at the shared resource at any
time. In a synchronous system, asynchronous inputs are synchronized to a local clock,
allowing metastable effects to be (hopefully) resolved in a limited period. An asynchro-
nous system can wait an arbitrary time for arbitration to occur before making a clear

decision. As a result arbitration is inherently more robust and reliable.

However, the asynchronous design framework is unfamiliar to established engineers.

The basic ‘building blocks’ of asynchronous logic synthesis need to be developed, since

16



2 Asynchronous Logic

currently the components are unfamiliar and unoptimised. Also, the circuit size of an
asynchronous solution, relative to the equivalent synchronous design, is possibly in-
creased (in part, due to the unoptimised basic components); although this may be offset

by the non-trivial requirement for clock-driver circuitry for larger systems.

The existence of circuit races or hazards causes a further complication in an asynchro-

nous design. Fundamental M ode operation® must be employed, or various assumptions
must be made regarding the relative delays or speeds of the circuit component el ements.
The testing of asynchronous circuits also causes problems. Sequential circuits are very
difficult to test and techniques have not yet been fully developed to test asynchronous
combinatorial logic. No high-level method has yet been produced to assist in checking

the liveness (absence of deadlock) of a design.

Several methodol ogies have been devel oped to synthesize asynchronous circuits, some
are based on enhancements to Petri nets [Pete81, Moln92], others are compilation-
based on high-level languages [Mart90, Brun91] developed from CSP [Hoar85]. Sur-
veys of asynchronous design methodologies and techniques can be found in [ Gopa90,
Hauc93]. Some of the asynchronous design terminology that may be encountered in the
text will now be explained. This relates to the modelling of signal propagation delays

and the mechanisms used for communication between asynchronous subsystems.

2.1 Delay Modelling

InaBOUNDED DELAY model, it is assumed that the delaysin the circuit elements and
wires are known (or at least have some upper bound). When input signals are applied
to acircuit, then after aparticular timeinterval has el apsed the output signals are known

to be valid. Note that thisis also the delay model used for synchronous designs.

DELAY-INSENSTIVE circuits use a contrasting model to that used in bounded delay

circuits; it isassumed that all signal delaysin both elements and wires are unbounded.

1. Fundamental mode operation requires that a circuit achieve astable internal state after every individual input signal
change.

17



2 Asynchronous Logic

No matter how long the circuit waits, there is no guarantee that an input signal will be
received. Circuits designed in this style must include functions to detect when a new

input value actually arrives.

The SPEED-INDEPENDENT model is a weaker form of the delay-insensitive para-
digm, in that it is assumed that the element delays are unbounded but the interconnec-

tion wires have zero delay.

2.2 Signalling Protocols

Communication between modules or subsystems in an asynchronous environment is
achieved by employing a commonly agreed set of control signals (and some associated
operational rules) which are passed between adjacent modules. The method usually in-
volves detecting an ‘event’ on the control signals, eg. a change in the voltage level of

the interconnecting wire.

In order to construct asynchronous systems by the composition of individual subsys-
tems, where each performs a specific (and different) function, a general signalling pro-
tocol is required. This protocol will operate between the various modules without any
regard to the internal processing rates of individual modules, or of the actual signal
propagation delays of the communication links. This can be achieved by placing no re-
strictions on the timing of the signals involved in the communication protocol. Only the

sequence of the control signal transitions is significant.

The basis for some of the simplest protocols involves the use of two wires connected

between adjacent modules: a REQUEST wire and an ACKNOWLEDGE wire.

Asynchronous systems usually employ one of two communication protocols: two-

phase (or transition) signalling or four-phase signalling.

18



2 Asynchronous Logic
2.2.1 Two-Phase Signalling

In this protocol, any transition between the two logic levels, a HIGH to LOW transition

or a LOW to HIGH transition, is accorded the same meaning.

A transition may also be referred to as an EVENT, hence the alternative name for this

protocol is ‘event signalling’.

Two-phase signalling operates between two modules in the following manner:

REQUEST J\ /Y\\\ j/r/_

ACKNOWLEDGE \

Figure1: Two-phase (transition) Signalling.

The sender generates an event (transition) on the REQUEST wire. At some point
in time later, the receiver detects the request transition and indicates that it has received
the request signal by generating an event on the ACKNOWLEDGE wire. The sender
eventually receives the acknowledge event, signifying that the receiver is ready to re-

ceive another request.

The arrows on the diagram indicate the constraints on the sequence of events allowed
on the control signals used in the protocol. The THICK arrows show the constraint im-
posed by the receiver: an acknowledge event cannot be generated until a request has ar-
rived. The THIN arrows show the constraint imposed by the sender: the sender cannot
generate another request until the previous request has been acknowledged by the re-
ceiver. The fact that each of the modules regulates the sequencing of one of the control
signals indicates that the correct operation of the inter-module communication path will

only occur when both sender and receiver obey the protocol rules.

Because BOTH edges are used in the two-phase scheme - the actual logic LEVEL of a

particular control signal does not assume any significance - it provides the capability of

19



2 Asynchronous Logic

increasing the performance of communication protocols above that of conventional sig-

nalling methods, sincevery change in the signal carries some information content.

Initially, the concepts of transition signalling may be difficult to assimilate into the
mindset of the conventional logic designer, since the two-phase circuits must be sym-

metrical with respect to the high and low logic levels of the control signals.

2.2.2 Four-Phase Signalling

Four-phase (or ‘Return to Zero’) signalling is characterised by the control signals being
active when in the HIGH (logic ‘1’) state and then being required to return to the LOW

(logic ‘0’) state before subsequently becoming active again.

The protocol could take the following form:

Request
Active
>
REQUEST / \4\ -
ACKNOWLEDGE /j/
<>
Acknowledge
Active

Figure?2: Four-phase Signalling (incorrect operation).

The sending module raises the REQUEST line to its HIGH (active) state and after
a short time interval deactivates the signal by taking it LOW again. The receiver, having
detected the request line entering its active state, produces a response by briefly raising

the ACKNOWLEDGE line to its HIGH state.

However, the protocol in this form may result in communication failure since, if the
sender has a comparatively faster circuit operation than the receiver, the sender may
raise then quickly lower the request line to produce a very narrow ‘pulse’ which the re-

ceiver may be unable to detect.

20



2 Asynchronous Logic

Correct protocol operation is enforced by requiring the sender to continue holding the
request line in its active (HIGH) state until ‘request reception’ is indicated to the sender
by the receiver raising the acknowledge line into its HIGH state. The request line is then

deactivated, allowing the receiver to subsequently deactivate the acknowledge line.

The properly functioning four-phase protocol is then:

REQUEST J \\ ad /7
\>

ACKNOWLEDGE

Figure 3 : Four-phase Signalling (correct operation).

Again, each of the modules taking part in the communication imposes constraints
on the sequencing of the control signal transitions. The THICK arrows indicate the con-
straints enforced by the receiver: the acknowledge line can only enter its active state af-
ter the request line is activated and can only be deactivated after the request line is de-
activated. Similarly, the THIN arrows show the constraints imposed by the sender: the
sender must not ‘remove’ the request signal until the receiver acknowledges that it has
‘seen’ the request and a subsequent request must not be generated until the acknowl-

edge has entered its inactive state.

The four phases of the protocol can be observed by noting the four possible combina-

tions of the control signals:

Request LOW, Acknowledge LOW - Inactive

Request HIGH, Acknowledge LOW - Requesting
Request HIGH, Acknowledge HIGH - Acknowledged
Request LOW, Acknowledge HIGH - Request cleared, Acknowledge to clear

21



2 Asynchronous Logic

Four-phase signalling may be more familiar to current logic designers since each phase
of the protocol may easily be determined by examining the logic LEVELS of the con-

trol signals.

Also, four-phase signalling is easier to implement because of the widely-available

standard components which have been developed to managkelgic

2.2.3 Data Communications

In addition to the signalling protocols used to indicate control actions, outlined above,

a mechanism for passing data values between modules is required.

The simple REQ/ACK scheme can only signal events. In order to transmit data values
a method of differentiating between two alternative events (sending a ‘1’ and sending
a ‘0’) must be employed. This method could be extended, by using two sets of REQ/
ACK pairs, into a four-wire per bit signalling system where each pair is used to com-
municate a particular bit value: Req0/AckO is used to send and acknowledge zeros,
Reql/Ackl is similarly used for ones. In the simplest system, consisting of only four

wires, multiple bit values, bytes or words, are sent in bit-serial fashion.

The number of wires required, per bit, may be reduced to three by noting that the two
acknowledge wires AckO and Ackl may be combined into one common acknowledge

wire, Ack.

This idea of a common acknowledge wire can be used for the communication of mul-
tiple bit ‘words’. Two request wires, RO and R1, are provided for the transmission of
each bit (a technique also known as DUAL-RAIL ENCODING) and the common word
acknowledge signal is returned only when a transition has occurred on one of the re-

guest wires for each of the bits of the word.
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2 Asynchronous Logic
2.2.4 Bundled-Data Interface

Although the previous schemes provide a robust communication technique in an envi-
ronment where signal propagation delays are unpredictable, the cost in terms of number
of signal wires needed is high. This is especially the case when the communication is
over a relatively long distance. There is also a cost in terms of the signal detection/com-

pletion circuitry required when dealing with multiple bit data ‘words’.

The bundled data interface seeks to significantly reduce the number of signal wires,
particularly for large bit-width data values, to just one data wire per bit (as in conven-
tional synchronous ‘bus’ structures). This set of signal wires is collectively known as a
BUNDLE. For each wire, the logievel indicates the value. In addition, a request/ac-

knowledge pair of control wires is needed per data word.

Assuming that two-phase (transition) signalling is used on the reg/ack control wires, the

data values are transmitted in the following manner:

REQ

SENDER RECEIVER
DATA BUS

ACK

Figure4: Bundled Data Interface.

The sender places the n-bit value onto the data wires (bus) and then generates an
event on the REQUEST line. At some later time, the receiver will detect the arrival of
the request event which will indicate that the data bus is holding the correct transmitted
value. The receiver will then latch the data value before generating an acknowledge
event back to the sender. The sender is then free to remove the current data value and

set up the next value for transmission.
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2 Asynchronous Logic

Note that for correct operation, there is an implied assumption that the data value ar-
rives at the receiver before the request event i.e. in the same order as they were gener-
ated by the sender. More formally - “The sequence relationships of events in a bundle
are the same at the sender and the receiver.” [Suth86]. This is a timing constraint on the
use of the bundled-data interface and the logic circuit designer must ensure that this tim-

ing relationship is satisfied.

Also note that the sender may not change the data value, once it has generated a request,
until it receives an acknowledgment from the receiver. From the point of view of the
receiver, the data is only valid from the time of reception of the request event until the

acknowledge is generated.

RS

DATA VALID LRKRKLR DATA VALID
DATA RRRRLKS

REQ

ACK

-
DATA HELD STABLE

UNTIL ACK RECEIVED
BUNDLING CONSTRAINT

Figure5: Data Value Constraints.
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3. Micropipelines

Pipelining is used in computer architectures to provide increased processing rates
through the use of concurrency [Kogg82]. A large computation is divided into a series

of operations, which execute in parallel.

Pipelines may be clocked (synchronous) or event-driven (asynchronous). In both syn-
chronous and asynchronous pipelines, the throughput - the number of dataitems proc-
essed in agiven timeinterval - islimited by the computational rate of the slowest sub-
system (module) in the pipeline. However, the latency - the time taken for an individual
dataitem to pass through the complete (empty) pipeline - of the synchronous and asyn-
chronous pipelines differs.

For the synchronous case, the latency is calculated to be the number of pipeline
stages multiplied by the processing time of the slowest element; the clock period must
be specified to accommodate the slowest element, even though all other elements may
be capable of sustaining much higher clocking rates.

The latency of an asynchronous pipeline is calculated to be the sum of the
processing times of each element. Thislatency can be significantly less than that of the
synchronous case if there is a wide range of processing rates for the component ele-
ments.

The lower latency of asynchronous pipelines may be exploited in, for example,
processor instruction execution pipelines where the pipelineisfrequently flushed when

abranch instruction is executed.
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Pipelines may also be categorised as ELASTIC or INELASTIC. For an inelastic pipe-
line, the input and output data rates must match, implying that the total amount of data
contained in the pipeline is fixed. When an inelastic pipeline contains no processing el-
ements, i.e. each stage consists of a storage element only, it acts like a simple SHIFT
REGISTER. In contrast, the input and output rates of an elastic pipeline, however, may
differ momentarily and therefore the amount of contained data is variable. An elastic

pipeline without processing elements is a FIFO (First-In, First-Out).

FIFOs provide an important buffering function between systems acting at variable
processing rates. The implementation of elastic FIFOs is difficult in a synchronous
model: each stage must havéuldl/empty flip-flop, and each stage must be provided
with full/empty information about the previous and successor stages. A particular stage
receivesa new data value if, at the appropriate clock transition, the stage is EMPTY and
the previous stage was FULL. The stage can plass orthe data value if, at a subse-
guent clock transition, the next stage is EMPTY. The current stage can then make itself
available to receive a new data value by changing its state flip-flop from FULL to EMP-

TY.

Also, since the clocking rates at the input and output of an elastic pipeline may be dif-
ferent, some form of arbitration and synchronisation will need to be provided between
the FIFO and the systems connected to it. An asynchronous implementation removes
the requirement for arbitration by allowing the input and output processes of each stage

of the FIFO to operate at their own pace.

In 1988, at the Turing Award Lecture, lvan Sutherland put forward a modular approach
to the design of computer systems using asynchronous logic. His idea was based on the
use of simple data processing pipelines whose stages operate asynchronously. He
termed these ‘MICROPIPELINES’ [Suth89]. A micropipeline is an elastic, bounded-
delay, event-driven system using transition signalling and the bundled-data interface. A
micropipeline without processing, a simple elastic FIFO, can be constructed from a ba-

sic component known as an Event Register (see Section 3.2.1).
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One of the benefits of micropipelines is that the registers, used to hold the data values
as they flow through the pipeline, can be used to filter out hazards. This is achieved, in
a similar manner to that used in synchronous designs (where the clock period is suffi-
ciently long to account for hazards), logally delaying the request output signal until

all data values are stable. Also, any combinational logic structures can be used ‘be-

tween’ the pipeline registers including existing circuits used in synchronous designs.

As discussed in Chapter 2, the bundled-data interface is useful for data communications
since it reduces the number of data wires required to transmit a value, particularly for
large numbers of bits. In implementing an asynchronous 32-bit processor, for example,
the inter-module completion-detection circuitry required if the data was transmitted us-

ing the ‘2 wires per bit’ protocols would be prohibitively large.

Micropipelines offer the opportunity to construct complex systems by the hierarchical
composition of simpler modules. The two-phase signalling protocol allows modules of
widely-differing performance to be easily integrated into a complete, correctly func-
tioning, system. The data-driven execution rates of the individual asynchronous mod-
ules allow the benefits of average-case performance. The micropipeline approach also
provides the facility to replace a particular module with one of a higher performance
without impacting on the correct operation of the total system (as would be the likely

case with a synchronous global clocking scheme).

In the context of VLSI technology, the design cost of large systems both in terms of
time and effort is beginning to outweigh the combined fabrication and production costs
of the final integrated circuits. Since an ‘ad hoc’ design style is impractical for large
scale circuits, micropipelines provide a basis for an asynchronous design methodology
for the construction of such systems. Pre-synthesised modular solutions to standard
problems, packaged in an asynchronous design library, can then be interconnected us-

ing the transition signalling protocol.
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The circuit designer simply ensures that each module conforms to the interface protocol
and need not be fully conversant with the internal intricacies of the asynchronous
‘cells’. The inefficiencies of this ‘standard module’ approach may be negligible when

compared to the extra design cost of a full custom approach.

3.1 Control Circuit Elements

The transition signalling control circuits used to coordinate the activities of micropipe-
lines may be constructed from a standard set of ‘event logic’ modules [Suth86]. Some

of the more widely-used modules are presented below.

3.1.1 XOR (Merge)

—)o—

The Exclusive-OR (or non-equivalence) gate provides an ‘OR’ function for tran-
sition signals. An output transition (event) occurs in response to a transition arriving at

any of the inputs. This module is also known as a MERGE element.

3.1.2 Muller-C (Join)
—lc)—

The Muller-C element serves as an ‘AND’ function for events. A transition occurs

on its output only after a transition has occurreceaahof its inputs. In logic level

terms, when the input levels match, the output assumes the same logic level as the in-
puts, otherwise the output holds its previous level. A reset input may be added to force
the output to a defined initial state. The standard AND logic symbol with a large ‘C’
inside is used to represent the Muller-C element, which is also known as a JOIN or

RENDEZVOUS element.
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3.1.3 Select
SELECT

n
@

—> TRUE

true

In

SELECT

—> FALSE

false

_‘
—w0n
—

RESET

The Select element ‘steers’ an input transition to one of the two outputs depending
on the Boolean value of a second, ‘select’, input. The select Booleamwadtibe val-
id before the input transition occurs. This is, effectively, a bundling constraint on the
IN (event) input. The module NOT delay-insensitive because of this requirement.
Furthermore, while the Select element is essentially an event-triggered device, the logic

evel of the select input is significant.

3.1.4 Toggle

@ —— DOT

—> BLANK

TOGGLE

|
RESET

In a similar manner to the Select element above, an input transition of the Toggle
element is steered to one of the two outputs. However, the output event is produced al-
ternately on the two outputs in response to an input transition. Following a Reset signal,
the first output to receive an event in response to an input event is marked with a heavy

dot (see diagram), the outputs are then known as Dot and Blank (i.e. no dot).
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3.1.5 Decison-Wait

Q1

X1

X2

Q2

A Decision-Wait element has two sets of input signals and produces an output
event when one event in each input ‘set’ has been received. For example, an event on
input Y and an event on either X1 or X2 will produce an output event on either Q1 or
Q2 respectively. Note that for correct operation, only one input event can be received
on an X input (X1 or X2) for each event received on the Y input before the appropriate

output transition occurs.

3.1.6 Arbiter
1——> GRANT1
REQ1 i 9
Ll di«—— DONE1
=
> d2 DONE2
REQ2 r2 %
g2—> GRANT2

An Arbiter is used to guarantee mutually exclusive access to a shared resource for
two competing independent requests. The arbiter chooses only one of the active input
requests and allows only the corresponding output grant signal event to occur. When
the arbiter is already in use by a requester, a second requester is inhibited until the “re-
guest done” acknowledge event is received (DONE1 or DONEZ2, depending on the cur-
rently active requester) indicating that the active requester is releasing control of the ar-

biter. The arbiter will then issue a grant signal (event) to the second requester.
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Although the input requests can occur at any time, even simultaneously, the output

grant signals are guaranteed to be mutually exclusive or serialized.

3.1.7 Call

R1 ——rl

D1 <—d1
——> Rsub

Dsub

D2 «<——d2
R2 ——{r2

The Call element provides the functional equivalent of a “subroutine call”. A re-
guest event for access to a common hardware function is received on one of the two re-
guest inputs, R1 or R2, which will subsequently generate a ‘subroutine’ request event
on the Rsub output. When the subroutine function has completed, indicated by the ar-
rival of an event on the Dsub (subroutine done) input, the Call element generates an out-
put event on the appropriate ‘request done’ output (D1 or D2, depending on the active

requester).

For correct operation, the full Request / Subroutine Request / Subroutine Done / Done
cycle must complete before the next Request occurs and therefore the two input request
signals, R1 and R2, must be mutually exclusive. For a circuit topology where R1 and
R2 cannot be guaranteed to be mutually exclusive, the input requests may be routed to

the Call element via an Arbiter.

Ackl
gl ri
Reql 1
°d L d1 dl _j
= —| R———> Requesj g
m << Dk—— Don
Reqg2 r2 o d2 d2 O e
©q < g2 r2
Ack2
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3.1.8 Capture-PassLatch

\— CAPTURE
@

IN ouT

—
PASS
o

The Capture-Pass latch is a storage element for use in an event-controlled system;
unlike a traditional level-sensitive latch in which thigh andlow states of the clock/
enable signal indicate a different function, the event-controlled latch must provide

equivalent responses to rising and falling transitions.

When the Capture and Pass inputs are in the same state (eithegbathbothlow),

the latch is in thé*ASS state: the output of the latch follows any change in the input
value. When the Capture ‘event’ occurs, the latch will become insensitive to changes in
the input data and WilCAPTURE (store) the current input value, resulting in the out-

put value being held stable. After a subsequent Pass ‘event’, the element will become

transparent and the output will again follow the input.

For the Capture-Pass latch to operate correctly, the Capture and Pass events must alter-

nate.
3.2 Control Circuit Examples

3.2.1 Event Register

As mentioned previously, an asynchronous FIFO can be constructed from a basic com-

ponent known as an Event Register.
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3 Micropipelines

An Event Register uses a two-phase signalling protocol on its input and output control
circuits and incorporates an event-controlled storage element for the associated bun-

dled-data value.

ReqIN —> ReqOUT
C
a AN AN
Din >IN OUT ~> Dout
P
INPUT OUTPUT
BUNDLED-DATA BUNDLED-DATA
INTERFACE INTERFACE
EVENT-CONTROLLED
STORAGE ELEMENT
AckIN «<——— ——<— AckOUT

Figure 6 : Event Register.

Event Registers with 32-bit data values are used extensively throughout the Asynchro-

nous ARM design.

The operation of the Event Register is as follows:

i) Initially, assume all signals at®©W and the Capture-Pass latch is in the
PASS (transparent) state.

i) An input data value is supplied followed by the arrival of a RegIN event
at the Muller-C and, because of the input inversion of D¢/ state of
the other input, an output event is generated from the Muller-C.

iii) The Muller-C output event causes the Capture-Pass latch to enter the
CAPTURE state: it latches the data value presented on its input.

iv) Once the Capture-Pass latch has captured the data, an AckIN event is

sent to the ‘previous’ stage (the previous stage can now prepare a new
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input data value) and a ReqOUT event is sent to the ‘next’ stage of the

pipeline.

Note that the Event Register will only capture the data in response to a ReqIN event if
the stage is currentlgMPTY. That is, if an acknowledge from the output stage is not

pending from a previously generated ReqOUT event to the next stage.

Also, the Capture-Pass latch must be in the PASS state (Dout valid) before a Capture
event occurs and, since the ReqOUT event is equivalent to the Capture event, the Dout
data value must be valid before the ReqOUT event. The output interface of the Event

Register therefore obeys the data bundling constraint.

3.2.2 Design Example: PARITY FUNCTION

A dual-rail encoded parity function using a transition signalling protocol was presented
to the IFIP Working Conference on Asynchronous Design Methodologies (April 1993,

Manchester) by Charles Molnar and this will be used as a design example:

ly — parTY —® P;

lo o FUNCTION - P,

The circuit will receive an input signal as an event on one of the two input wires,
lo or 11, depending on whether a ‘1’ or a ‘0’ is indicated. The circuit must then provide
an output event on one of the two output wires, PO or P1, to indicaantblative par-

ity of all of the inputs received up to that point.

A general, high-level, formal method of synthesizing Micropipeline control circuits
does not, as yet, exist. A pragmatic approach must therefore be taken to derive a design
for the parity function circuit using the Micropipeline control blocks outlined previous-

ly in Section 3.1.
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Assume that after a global reset, all the interface signals (inputs and outputs) of the par-

ity function areLOW.

It can be noted that the accumulated parity of the received inputs is actually given by

the logic level of thelinput. If I; is HIGH, the accumulated parity is ‘1, if is LOW,

the parity is ‘0’

Events occurring on thg Input cause alternating output parity signals to occur, since
an |, event indicates the arrival of a ‘1’ and this will cause the accumulated parity to

change. ATOGGLE element can be used to alternate the parity output events when the

I, input event indicates another ‘1’ has been received.

Events occurring oryl(indicating a ‘0’ has arrived) cause an output eventqoor %,

depending on the current accumulated parity value. That is, the output to be activated

is indicated by the logic level of theihput signal. ASELECT block can be employed
to ‘steer’ the § input event to the appropriate parity function output based on the logic

level of |;.

Two XOR elements are used to merge each of the separate sources phitite
output events (from the Toggle and Select blocks) onto the actual parity function out-

puts. The Micropipeline control block implementafios shown in Figure 7.

w e

4 ) > P
Il——> 8 1

o

D

=T
[P — i
° Bl ) > Py

Figure 7 : Micropipeline Control Block Implementation of Parity Function

1. Since Micropipeline control circuits are usually concerned with the control of datapath elements using the bundled-
data convention, this example circuit is not typical of those found in an asynchronous Micropipelined microprocessor
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4. Verilog HDL

4.1 IntroductiontoHDLSs

When viewed at its lowest level, a digital system, particularly in the context of a VLSI
implementation, may consist of several hundreds of thousands of primitive compo-
nents. These components may be transistors or simple logic gates. At a higher level,
these elements may be logically grouped into functional units such as Arithmetic Logic

Units (ALUs), cache memories and Floating Point Units (FPUs) [Thom92].

Hardware Description Languages (HDLs) have been developed to assist the design
process of such systems in managing the complexity involved in the synthesis of com-
plex digital systems [Hart87]. The system may contain a large number of elements and
a wide range of logical and physical implementation abstractions, in order to give a total

overview of the system.

Initially, a conceptual idea of the required logical system is coupled with a set of con-
straints (relating to performance, power requirements, circuit size etc.) that the imple-
mented system must meet and a set of primitive components from which to construct
the system. The creative design process is an iterative operation of either manual com-
position or automatic synthesis of alternative solutions, which are then compared
against the given system constraints. Normally, the design is partitioned into smaller
sub-units, in the classical engineering technique of “divide and conquer” (or top-down
design), and each sub-unit is then further divided until the complete system is specified

in terms of the known primitive components [Brow91].
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4.2 Introduction to Verilog

The Verilog: Hardware Description Language [Veri92] describes a digital logic system
as a collection of textual-based models that define the functionality of the component
sub-units and connections to those sub-units. The language accommodates a wide range
of levels of abstraction:
ALGORITHMIC - the component’s operation is expressed in high-level
(program-like) language constructs.
REGISTER TRANSFER LEVEL (RTL) - the flow of data between regis-
ters is described.
GATE LEVEL - the system is defined in terms of logic gate primitives and
their interconnections.
SWITCH LEVEL - for low-level design, particularly for MOS implemen-
tation, the system may be described in terms of transistors and storage

nodes.

The language supports the early conceptual stages of design with its behavioural levels
of abstraction (algorithmic and RTL), and the later implementation stages with its struc-

tural levels of abstraction (gate and switch levels).

During the design process, behavioural and structural constructs can be mixed as each
of the sub-systems is designed. Hierarchical constructs are also provided to allow the

system designer to control the complexity of the description.

4.3 Modules

Verilog describes a digital system in the form of a set of MODULES. The logical struc-
ture of each module is expressed either in logic gate (or MOS primitives) terms or as a

behavioural representation.

1. Verilog is a trademark of Cadence Design Systems, Inc
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A module definition includes declarations of the external interface presented to other
modules and any internal state used by the module. The external interface is defined in
terms of PORTS, which are specified in parentheses after the module name. Ports may
be declared to be INPUTS, OUTPUTS or bidirectional INOUTS. A module body con-
tains either behavioural statements which specify the functionality of the module, or
statements which create instances of other user-defined modules or logic gate primi-
tives. By allowing module definitions to instantiate other modules, a hierarchical de-
scription of the system can be specified. The use of a hierarchical modular approach ac-

commodates the “bottom-up” and “top-down” design styles.

4.4 Structural Modelling

A structural representation of a functional unit is achieved using gate and/or switch lev-
el modelling. A set of 26 standard gate-level primitives are incorporated and these can
be extended by employing user-defined primitives. This provides a compact and effi-

cient way of describing an arbitrary block of logic.

The Verilog HDL facilitates the accurate modelling of signal contention, bidirectional
pass gates, resistive MOS devices, dynamic MOS, charge sharing and other technology
dependent network configurations by allowing net signal values to have a wide range

of unknown values and different levels of drive strengths.

A declaration begins with the gatetype keyword specifying the required gate or switch
primitive. Gatetype keywords includand, or, not, buf, nmos, pmos, pullup etc. Gate
and switch instances include an optional instance name and a required terminal connec-

tion list.

The propagation delay from input to output through a logic gate or switch primitive may
be specified in a declaration. The drive strengths on the output terminals of a gate dec-

laration instance may also be defined.
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‘Nets’ are a fundamental data type of the language and are used to model an electrical
connection. Except for thiireg net, which models a wire as a capacitor that holds

electrical charge, nets do not store signal values. Nets only transmit values that are driv-
en on them by structural elements (gate outputs or assign statements) or behavioural

models (registers).

4.4.1 Design Example: RS Flip-Flop

An RS flip-flop consists of two inputs, SET and RESET, and (normally) two outputs,
Q andQ. For the purposes of this design exampleQthignal will not be generated as
a module output. All the signals, inputs and output, will be at¢iiveH i.e. positive

logic.

When the SET input is asserted (HIGH), the Q output signal goes HIGH and remains
HIGH even when the SET input is deactivated. When the RESET input is asserted, the
Q output goes LOW and again stays LOW when the RESET signal is deasserted. A con-
flict will occur if the SET and RESET inputs are both HIGH simultaneously. The logic

circuit designer should ensure that this situation never arises.

A circuit implementation consists of two cross-coupled NOR gates [Mano84]:

RESET
oy
bar
SET B’ (Qpar)

Figure 8 : Possible Implementation of RS Flip-Flop.

An example module of a structural (gate-level) representation of a RS flip-flop is given

overleaf. Each module definition begins with thedule keyword and is terminated by
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theendmodule statement. The first line of the definition specifies the module name and

the names of its ports.

modul e RS _FF(set, reset, Q; (1)
i nput set, reset; (2)
out put Q (3)
wire Qoar; (4)
nor #10 g1(Q reset, Qbar); (5)
nor #10 g2(Qbar, set, Q; (6)
endnodul e (7)

In lines 2 and 3 in the example, the type of each port is specified: set and reset are input
ports, Q is an output port. The module’s logic gate primitive components are defined in
lines 5 and 6. The first word in the line indicates the component type-name - in this case,
nor gates. The #10 indicates that the propagation delay of the gate from input to output
is 10 time units. Thaor gates are then instantiated by giving each one an instantiation
name (g1 and g2) and specifying the gate connections. The output is specified first, fol-
lowed by any number of inputs (in this example two). There is a net (or wire) which is
internal to the module, i.e. it is not an input or output, which connects the output of g2

to an input of g1. This internal net is declared and named in line 4.

4.5 Behavioural Modelling

When a system is modelled as a structural, gate-level representation, very little transla-
tion effort is required to convert the HDL model into a correctly functioning physical
implementation. However, in many cases the circuit engineer requires the opportunity
to derive many design alternatives and consider the merits of each design solution. Be-
havioural modelling facilitates the architectural refinement of a design. It allows the
higher-level functional aspects of the prototype system to be easily evaluated in isola-

tion, without regard to the final implementation of the proposed circuits [Russ89].

The syntax of the Verilog behavioural language is very similar to the high-level pro-

gramming language ‘C’ [Kern88]. It contains a number of procedural constructs which
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include the familiar if-then-else conditional execution construct, the conditional as-
signment (?:) operator and the multi-way branch case statement. Four different state-
ments are provided for iterative sequential behaviour: thefor, while, repeat and for ev-
er loops. A full range of arithmetic, logical, bit-wise and reduction operators are also

incorporated.

4.5.1 Compound Statements

Two or more statements may be grouped together by means of ablock statement so that,
syntactically, they act like a single statement. In a SEQUENTIAL block, which is de-
limited by the keywords begin and end, the statements execute in sequence. Control
passes out of the block when the last statement executes. The delay values used in the

assignment statements are relative to the execution time of the previous statement:

begi n
#10 a = 1;
#5 b = 0;
#10 ¢ = a;
end

In the example, register a is assigned the value 1 ten time units after the execution of
the block statement commences. A further five time units later, i.e. fifteen time units
from the start of the block statement, register b isassigned thevalue 0. Register cisthen

assigned the value of a (now equal to 1) afurther ten time units later.

The keywords fork and join surround a CONCURRENT block statement in which the
individual statementsexecutein parallel. Delay valuesin assignment statementsarerel-
ative to the simulation time on entry to the block and control passes out of the block

when all of the statements have executed:

fork
#10 a = 1;
#15 b = 0;
#25 ¢ = a;
join

41



4 Verilog HDL

To achieve the equivalent effect to the sequentia block statement, the assignment to
register b inthe second line must have adelay value of fifteen timeunits, sincethedelay
Is relative to the start of the block (not relative to the previous statement, as in the se-
guential block example). In a similar manner, the assignment to register ¢ has a delay

value of twenty-five time units.

45.2 Process Control

The essence of a Verilog behavioural model is a PROCESS, which can be thought of
as an independent flow of activity. The dynamic behaviour of adigital systemisthena
set of independent, inter-communicating processes. The basic Verilog control construct
for describing a process is the always statement:
al ways
<statement> /I Continually repeats
The aways construct continually repeats the statement following, which may be a
block statement (outlined earlier). All of the functionality of a module should be spec-

ified within an always statement.

A further Verilog control construct, called theinitial statement, describes aprocessthat
is executed only once - it provides a means of initialising signals and internal module
state variables:
initial

begin

busy = ‘false; // Initialise values

out=0;

end

During smulation of amodel, all of the activity flowsdefined by theinitial and always

statements start together at ssmulation time zero.

4.5.3 Timing Control

Two types of explicit timing control are provided in Verilog to regulate when procedur-

al statements are to occur in simulation time. The first type is a delay control in which
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a value expression specifies the time duration between the activity flow reaching a par-
ticular statement and the simulation time at which the statement actually executes. The
second type of timing control is tlegent expression, which allows the execution of
statements in a particular procedure to wait for the occurrence of some simulation
event. The awaited simulation event will be generated by some other, concurrently-ex-
ecuting, procedure. A simulation event can be either the change of a value on a net, or
in a register (an IMPLICIT event), or the occurrence of an explicitly named event that
Is triggered from other procedures (an EXPLICIT event). In many cases, the event con-

trol is the positive or negative edge of a clock signal.
Simulation time can only advance by one of the following three methods:

[0 A delay control, which is introduced by the number symbol (#):

eg.#100 out = ~in;
After 100 time units, the output is defined to be the inverse of the input signal.

[0 An event control, which is introduced by the at symbol (@):
eg.always @(negedge clock)

out = ~in;

At every clock transition from HIGH to LOW, the output becomes the inverse

of the input.

[0 Thewait statement, which operates like a combinationwhde loop and
anevent control:
eg.wait (reset)

out = 0;

Suspend the process until the ‘reset’ signal is HIGH. When the reset signal does

eventually go HIGH, the output signal is forced to zero.
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4.5.4 Design Example: Behavioural Representation

nmodul e RS_FF(set, reset, Q); Q)
input set, reset; (2)
output Q; 3)
reg Q; 4)
initial (5)
Q=0; (6)
al ways @ (set or reset) (7
case ({set,reset}) (8)
2'b10: #10Q =1; (9)
2'b01: #10Q =0; (10)
2'b11: begin (11)
$display("RS_FF: SET and RESET active"); (12)
#10 Q = X; (13)
end (14)
endcase (15)
endnodul e (16)

Again the module definition is enclosed in the module and endmodule keywords and,

asinthe structural representation, the ports and port types are declared in lines 2 and 3.

Line 4 declares aregister with the same name as the output, Q, which will (implicitly)
drive the output. Any value assigned to Q will be stored in the register and any value
held in the register will be propagated to the output port. Registers are an abstraction of
storage devicesfound in digital systems. Single-bit registers(like Q in the example) are
termed scalar; multiple-bit registers are termed vector (eg. addr[31:0] isa 32 bit regis-

ter).

Theinitial statement inline 5 is executed only once at the commencement of the sim-

ulation. This provides a mechanism for initialising the output value.

Thealways statement in line 7 is used to provide the dynamic functionality of the mod-
ule. always @ (set or reset) indicates that the following statements should be executed
whenever thereisachangeto one of the specified signals, i.e. theinputs. The case state-
ment on the following line provides a decision capability based on the values of the SET
and RESET inputs. Line 9 means that Q will be set HIGH, if the values of the SET and
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RESET inputs, when concatenated together ({set, reset}), match the 2-bit Boolean val-
ue 10 (2'b10). Basically, if the SET input is HIGH and the RESET input is LOW, then
the output (register) Q will be set. Similarly, in line 10, if the SET input is LOW and
the RESET input is HIGH, the output is driven LOW (reset).

Lines 11 to 14 indicate an important feature of the Verilog behavioural language, name-
ly the ability to report diagnostic messages to the logic circuit designer while the sim-
ulation is running. As mentioned in the introduction to the design example, the SET and
RESET inputs should never be active simultaneously. If this condition is detected, at
line 11, the compound statements (enclosed ifbé&ge andend keywords) on lines

12 and 13 are executed. An appropriate error message is displayed and the output value

is set to undefined (x).

4.5.5 Programmable Logic Arrays

Verilog allows the modelling of both a synchronous and an asynchronous programma-
ble logic array (PLA). The synchronous form allows the designer to control the simu-

lation time at which the array will evaluate the inputs and update the outputs. For the
asynchronous type, evaluation is performed automatically whenever an input term

changes value.

PLAs are modelled using 2 orthogonal planes:

INPUTS OUTPUTS
AND OR
MINTERMS

The logic equations of the separate planes are defined by loading individual data files

containing the associated bit patterns.
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4.6 Verilog Simulator

The Verilog description of the system may be simulated using adigital logic simulator.
Thisis asoftware tool that allows many design process tasks to be carried out without
the various costsinvolved in constructing a hardware prototype. These design activities

may include [Russ35]:
Functional Verification.
|dentification of design errors.

U
U
[0 Determination of the feasibility of new design ideas.
O Timing Analysis

U

Evaluation of several approachesto adesign problem.

The simulator exercises the system model by applying external input signal stimuli.
Any generated register or gate output signal changes are then propagated to other gate
and module inputs. The main characteristic of the simulator is the ability to manage the
concept of time; causing the changed signal values to appear at some specified timein
the future. These predicted signal changes are typically stored in atime-ordered event

queue.

The RS flip-flop behavioural representation given in Section 4.5.4 is now used as an

example to demonstrate the Verilog simulator operation.

In the top-level simulation test file (shown overleaf) the flip-flop module isinstantiated
(RS_FF) with the instantiation name, f1. The input signal names are set and reset, and
the output signal name is Q. In the first initial statement block, the input stimulus se-
guenceisspecified. Inthe second initial statement block, the required waveform output

display is configured using the $gr_waves() system task.
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‘timescale 1ps /1ps
nmodul e test();

reg set, reset;
wire Q;

RS_FF fi ( set, reset, Qj

initial
begin
set = 0; reset = 0;

#50 set=1; #20set=0;
#50 reset = 1; #20 reset = 0;

#50 set =1; reset = 1;
#20 set = 0; reset = 0;

#50 reset = 1; #20 reset = 0;
end

initial begin
$gr _waves( "set", set
,"'reset”, reset

QY Q)
$freeze_waves; #340 $stop;
$unfreeze_waves;
$ps_waves("'waves.ps", "RS_FF simulation example”, 0, 330);
#1 $finish;
end

endnodul e

The console output text generated during the simul ation execution is given below. Note

the warning message displayed when the set and reset signals are ssmultaneously ac-

tive:

VERILOG-XL 1.7 Jan 20, 1995 09:27:16

Compiling source file "test.v"

GRAPHICS 4.2.2 Thu May 27 23:28:23 PDT 1993 (cds2082)
Highest level modules:

test

RS_FF: SET and RESET active @tinme=190

L29 "test.v": $stop at simulation time 340
Type ? for help
C1l>

L32 "fest.v": $finish at simulation time 341
114 simulation events
End of VERILOG-XL 1.7 Jan 20, 1995 09:27:37

The graphical display waveforms can also be directed (using the $ps waves() system

task) to a postscript file, which is shown below:

Header: RS_FF simulation example
User: Robert Kelly
Date: Dec 7,1994 09:52:46 Time Scale From: 0 To: 330 Page: 1of1l
set
reset
Q I I 4
TIME | |
82 165 247

a7



5. Multi-Level Differential Current
Mode Logic

5.1 Introduction to Logic Families

Integrated circuit technology has developed dramatically over the past few decades,
both in terms of gate switching speed and sophisticated circuit design, asaresult of fab-

rication process enhancements and shrinking minimum geometries.

The nature of the semiconductor product market tends to segment customers into two
groups. performance-oriented users who seek |eading-edge performance technology at
virtually any cost, and cost-sensitive users who need the best performance available at
agiven price. Since semiconductor economies depend heavily on a volume market, it
is the more numerous cost-sensitive users who tend to drive the development of main-

stream semiconductor technology [John91].

Early integrated transistors were bipolar, since these were much easier to fabricate.
This fact led to the market success of bipolar transistor logic families (DTL, RTL
throughto TTL) during the early years of | C development. Eventually, the devel opment
of the planar process led to the introduction of MOS logic families. Initially, because
of the more sophisticated processing requirements of CMOS, NMOS logic dominated.
However, as chip sizes increased, power consumption problems emerged and the addi-
tional complexity in producing CMOS (the lowest power MOS technology) circuits
was justified. CMOS technology has now advanced to become the dominant VLS

technology [West89].
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When considering the merits of the various logic families several characteristics are ex-
amined:

Transistor switching speed - which translates into logic gate delay.

Noise immunity - a measure of the circuit’s resilience to EMI.

Silicon layout size - the degree of integration possible on a given chip size.
Power dissipation - specialist techniques are required for high power circuits.
Fan-Out - the drive capability of the logic gates.

Except for the inability to operate at very high switching speeds, CMOS performs very
well when judged against these criteria and as a result currently holds an unassailable

advantage in the low and medium frequency ranges of the digital logic market.

At low frequencies, CMOS dissipates considerably less power than bipolar circuits be-
cause of its virtually zergtatic power consumption brought about by its low leakage

current.

However, as the operating frequency risesdjinamic power dissipation of CMOS be-
comes the dominant factor up to a point where bipolar technologies actually dissipate
less power. The power/speed trade-off point between bipolar and CMOS logic families
was claimed to be around 50MHz in 1988 [GPS88]. However, with the continuing en-

hancements of process technologies (particularly with regard to CMOS) the trade-off

/ CMOS
v/ BIPOLAR

figure may currently be higher.

Dynamic
Power
Dissipation

50 MHz

L
Circuit Switching Speed

Figure9: Dynamic Power Dissipation.
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Emitter-Coupled Logic (ECL) operates by “steering current” through a differential
(“long-tailed”) pair of switching bipolar transistors which are coupled through an emit-
ter resistor. ECL is an extremely fast logic family since it is non-saturating and keeps

the logic signal swings relatively small (around 0.8V).

Differential logic is an enhancement of ECL which still uses the long-tailed pair of
switching transistors to steer the gate current to one of the two complementary outputs.

However, the input signand its complemerdre used as the inputs to the switching

transistors.

The noise immunity of the gate is increased by the use of the signal and its inverse as
inputs, since any noise is experienced as a common-mode signal. The differential am-
plifier with complementary inputs possesses a high Common-Mode Rejection Ratio
(CMRR). The increased noise immunity of differential logic allows much lower volt-
age swings to be used resulting in a faster gate switching speed (for the same gate cur-

rent).

5.2 Multi-Level Differential Current Mode Logic

Differential logic (unlike standard ECL or CMOS) can be stacked into a switching
“tree” configuration and as a result complex logic functions can be packed into a single

gate.

GPS (GEC Plessey Semiconductors) have combined a stacked differential switching
tree arrangement with a fabrication process based on Trench-lsolated Bipolar Silicon
Technology [Depe89] to produce a logic family known as Multi-Level Differential

Current Mode Logic (MDCML) (FAB5 variant).

MDCML has up to 3 levels in the circuit switching tree. This has been chosen as the
best compromise between the higher functionality of increasing the number of switch-
ing levels and the penalty paid in terms of increased silicon area, the requirement for

(voltage) level shifters to transpose signals between levels and the increased power sup-
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5 Multi-Level Differentia Current-Mode Logic

ply voltage needed to incorporate the many switching levels. GPS estimate that up to
25% of area and 40% of current, in the worst case (i.e. random logic), may be required

for level shifting [GPS88].

Gnd

Figure 10 : MDCML 3-Input AND Gate.

A 3-input AND gate structure is shown in Figure 10. There are 3 distinct transistor
switching levels. By convention these are known as: LEVEL 3 at the top (inputs A and
A), LEVEL 2inthemiddle (inputs B and B) and LEVEL 1 at the bottom (inputs C and

C). The voltage difference between the switching levelsis defined to be one V gg drop,

to ensure that the transistors do not saturate, this also ssmplifies the level shifting cir-

cuitry.

The operation of the MDCML 3-input AND gate is as follows:
Assuming all differential input signals are at logic 1, then input A is HIGH and
input A is LOW; similarly, inputs B and C are HIGH and inputs B and C are LOW.

Transistorsta q, tg1 andtc; are ON and transistorsta ,, tgo and te, are OFF. The emitter
current flowsthrough ta 4, tg1 and t-; and causes avoltage drop across the load resistor
R, connected to the collector of ta;. Asaresult, Q is pulled LOW and since no current

flows through tAZ’ th or tcz, Q isHIGH.
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If differential input signal B is then driven to a logic O, transiggemtill turn ON
(and 1 will turn OFF) causing the emitter current to flow throughand ¢4, result-

ing in output Q being pulled LOW. Also, since no current path exists betwe€h the

output and groundy is pulled HIGH.

Similarly, if differential input signal C is at logic 0, while A and B are at logic 1,

transistor ¢, is ON. A current path exists between the collectorygfand ground,

causing the Q output to be pulled LOW i6 again HIGH).

It can be observed that the output Q is HIGH (and its comple@&ntOW) if, and
only if, all the differential input signals A, B and C are at logic 1, i.e. the gate performs

the AND function.

The logic swing of the gates is defined by the load resistprsail the gate current,
lg, and is nominally 160mV. By selecting between alternative gate current-resistor

‘pairs’ different speed/power options are available.

Due to the differential switching tree arrangement, many complex logic functions can
be incorporated into a single gate structure. Two example functions, a 4:1 Multiplexer

and a Transparent Latch with Reset are shown in Figures 11 and 12.

RL |i| |i| R
OUT« 4 | '
Al Al A3 A3
A0 A2 A2
SO SO SO SO

A0
514';T T’;‘— s1

0

S1 SO| ouTt
0 0 A0
0 1 Al
Gnd
1 0 A2
Figure11: 4:1 Multiplexer. 1 1| A3
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The S1 and SO inputs, at level 1 and level 2 respectively, uniquely select one of

the level 3 inputs (A3-A0) for passing to the output.

OouT | OuUT
Data é f % ;l Data
Enable
RESET ENABLE| OUT
Reset 1 X 0
0 1 DATA
0 0 (no change)

Gnd

Figure 12 : Transparent Latch with Reset.

The Reset signal overrides al other inputsand so isat level 1 - when Reset isas-
serted the Data/Enabl e switching treeis not active and the output signal isdrivento log-
ic0(OUT = LOW, OUT = HIGH). When Reset is deasserted, the Data input is passed
through to the output (when Enable = 1) or the latch holds the output stable (when En-
able = 0). Data storage for the latch is provided by the cross-coupled pair of transistors
at level 3.

In summary, the advantages of MDCML are:
[0 Non-saturating switching transistors and very small voltage swings alow
very high speed operation.
[0 Differential operation removesthe requirement for temperature-compensat-
ed voltage reference circuits (needed in ECL).
O Increased noise immunity and enhanced resilience to supply voltage fluctu-
ations, temperature variations and IR drops because of the excellent Com-

mon-Mode Rejection Ratio.
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[0 The multiple levels of switching transistors results in a high functionality of
the standard cells.

[0 The use of differential signals removes the requirement for inverters (a sig-
nal is inverted by simply “swapping the wires”), which may represent up to
20% of all the gates in a system [GPS88].

[0 The high impedance of the long-tailed pair arrangement enhances high fan-

out operation.

However, disadvantages include:

[0 High static power dissipation - although MDCML can be operated at 3V and
the small voltage swings employed result in very small currents when com-
pared with ECL (MDCML - 90A, ECL ~ 1mA).

[0 Extra silicon area and power is required for level shifting circuits.

[0 The routing area needed may be increased by a factor of two, since two
wires are needed for each signal. A CAD system may require more sophis-
ticated routing software since, to preserve the common-mode rejection char-
acteristics of differential logic, the two signal wires must be routed as a sin-

gle entity.
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6. Verilog Modelling of MDCML

6.1 Requirement for Accurate Model of System

The utility of asimulation model of acomplex digital system is ultimately determined
by the extent to which that model closely reflects reality. A model that is simple and
easy to manipulate is of little benefit if it does not mirror the actual switching charac-

teristics of the implementation technology.

Circuit level simulation isnormally the lowest level of simulation used in the design of
an electronic system and is usually performed on circuits consisting of a few tens of
components:. transistors, resistors, capacitors etc. [Russ85]. The circuit simulation de-
termines the electrical characteristics of the component group which may form alogic

gate primitive, for example an AND gate, and may require afew minutes of CPU time.

Circuit smulation of an entire design consisting of many thousands of transistors may
be performed in rare circumstances, but generally, the computing resources required
make this approach prohibitive. To produce an accurate design simulation, the standard
solution is to model the system at a higher level of abstraction based on information

gained from circuit ssimulation of the primitive components [Hill87].

6.2 Determination of Electrical Characteristics of
MDCML

The switching characteristics of MDCML logic primitives are determined by circuit

simulation of the arrangement of transistors and associated component models required
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6 Verilog Modelling of MDCML

to produce a particular logic function. The circuit simulation is achieved using HSPICE
[Hspi90], a widely-used, commercially-available, development of the original Berke-

ley SPICE program [Nage73].

For the purposes of demonstrating the simulation procedure, a 2-input AND gate will
be used as an example. A circuit diagram of the primitive components used to construct

a 2-input AND gate is shown in Figure 13:

AND

0 Gnd

Figure 13: 2-input AND gate.

A textually-based SPICE model of the circuit is produced:

*subckt and2 out Nout i3 Ni3 i2 Ni2 Vs
.subckt and2 7 6 5 4 3 2 1
xrl 16 rn

xr2 17 rn

xql 6 5 8 t20

Xg2 7 4 8 t20

Xg3 8 3 9 t20

xXg4 7 2 9 t20

xics 9 0 ¢s90

.lib 'Elibbase’ rn

.lib 'Elibbase’ t20

lib ’Elibbase’ ¢s90

ends and2 Figure 14 : SPICE model of AND2.

Each component instance is given an instantiation name. In the AND2 gate model of
Figure 14, transistors have been labelled, xql, xg2, xq3 and xg4, resistors have been

labelled xrl and xr2 and the current source is labelled xics. The circuit connections are

56



6 Verilog Modelling of MDCML

specified in terms of numbered nodes and the name of the model primitive used for each
component is indicated. For exampheg3 8 3 9t20” specifies a transistor with the in-
stance name xqg3, which has its collector, base and emitter connected to nodes 8, 3 and

9 respectively and has the circuit behaviour defined by the t20 transistor model.

The propagation delays from each of the inputs, A and B, to the output are measured
for both rising and falling edges. Since both phases of the signal are available in differ-
ential logic, delays are measured from the input crossover point to the output crossover
point. The A (level 3) input, B (level 2) input and output waveforms are shown in Figure

15.

¥ 2-INPUT AND DELAYS
94/05/24 18:52:30

e 7 = A input
“oo———— 6 =Alinput

z — - o <

[[————& AND2.TRO
Z 5

~s———— 5=Binput
“-———— 4=Binput

z — - o <

3 = AND output
2 =AND output

z — - o <

| | o | | | | | | 3
50N 10.0N 15.0N
0. TIME CLINJ 16 .0N

Figure 15: 2-input AND gate SPICE waveforms.

The measured propagation delays for an unloaded 2-input AND gate are:

Arising -> OUTrising = 178ps
Afalling -> OUT falling = 178ps
Brising -> OUTrising = 241ps
B falling -> OUT falling = 193ps
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The results shown in Figure 15 indicate that:
i) The level 3 (A input) propagation delay is less than the level2 (B input)
propagation delay: the higher levelsin the MDCML switching tree switch
faster.
i) The rising and falling delays of level 2 are different. This may be ex-
plained by noting that the switching tree is non-symmetrical above the level

2 inputs.

6.2.1 Output Loading Effects

The effects on the propagation delay of loading the gate output are now considered. The
output load is provided by the successive addition of level 3 buffer circuits. The buffer
circuit is chosen for this purpose because no level shifting is required between the
AND?2 gate output and the input of the buffer. Also, since the buffer circuit has a sym-
metrical switching tree structure, it should provide an equivalent response to both rising

and falling input waveforms. The topology of the test circuit is shown below:

DD
tDeIayji__ ——

The propagation delay effects of gate output |oading were measured for both level 3and
level 2 input signal changes, and for both rising and falling edges. The following results

were obtained (all times measured in picoseconds):

Additional LEVEL 3 LEVEL 2

O/PLoad | Rising Falling Rising Falling
0 178 178 241 193
1 205 205 262 220
2 232 233 283 249
3 262 263 307 281
4 294 296 333 317
5 330 332 362 358
6 370 372 404 404
7 412 412 440 444
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A graph of additional delay against additional load was plotted (see Figure 16).

8

o

(4]

IS

w

B—F1 LEVEL 2 - Rising
(G—©O LEVEL 3 - Rising & Falling
/A—2\ LEVEL 2 - Falling

Additional Load (i.e. No of Buffers)

0 100 200
Additional Propagation Delay (ps)

Figure 16 : Graphs of Additional Load vs Additional Delay.

The graphs can be approximated to a straight line through the origin. The conclusion
drawn from the results is that each additional load applied to the output of a 2-input
AND gate adds around 30ps to the propagation delay for both input levels and for both

rising and falling edges.

6.2.2 Input Drive Effects

When thepreceding gate is heavily loaded, this can have an effect on the propagation
delay of the gate in question. This is as a result of the input signal drive capability being
‘shared’ between severalccessor gate inputs. Aevel 3 buffer circuit was again used

as the (preceding) gate load in the following configuration:
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The effects on propagation delay were measured for each level and for rising and falling

input signal changes. The following results were obtained:

Drive LEVEL 3 LEVEL 2

Sharing Rising Falling Rising Falling
0 178 178 241 193
1 188 189 244 196
2 199 200 248 199
3 210 211 251 202
4 222 222 254 205
5 232 233 258 207
6 242 241 262 210
7 250 248 265 213

A graph of additional delay against extent of drive sharing was plotted (see Figure 17).

8

Extent of Drive Sharing
N

LEVEL 2 - Rising & Falling
(S|
2 A—A LEVEL 3 - Rising & Falling

0 10 20 30 20 50 60 70
Additional Propagation Delay (ps)

Figure 17 : Graphs of Additional Delay vs Extent of Drive Sharing.

The conclusion is that the effect of input drive sharing on the 2-input AND gate is dif-
ferent for each of the input signal levels: for level 3, 10nsis added to the propagation
delay for each gate sharing the drive, for level 2 thedelay isonly increased by 3ns. This
suggests that level 2 signals have a greater drive capability than level 3 signals.
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Also, the effect on gate propagation delay of input drive sharing is less significant than

the effect of output loading.

6.3 Production of Verilog M odel

The information obtained from the circuit simulation may then be used to generate a
model capable of being simulated at a higher level of abstraction. In this case, a behav-
ioural or gate-level model is produced using the Verilog Hardware Description Lan-

guage.

On initial examination of the simulation data, two points emerge regarding the switch-
ing characteristics of the MDCML 2-input AND gate. Firstly, there are different prop-
agation delay for the rising and falling signal changes of the level 2 input and, secondly,

the delays differ for the different input levels.

For gate-level modelling in Verilog, both rising and falling propagation delays may be
specified for each logic primitive. For behavioural modelling, both input signal edges
may be detected using thalWays @ (posedge .)lalways @ (negedge ...)tonstruct.

In this example, however, only a single propagation delay will be specified for each in-

put level (for either signal transition direction) to maintain the model simplicity.

The worst-case delay will be used for each level:

A (level3) -> out 178ps

B (level2) -> out 241ps

Both a behavioural and a gate-level model of the 2-input AND gate are produced to
demonstrate how a logic primitive may be modelled. Also, two approaches to model-

ling the different input level propagation delays can be shown.
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Considering the behavioural module first:

nodul e and2 (out, Ain,Bin);
‘timescale 1ps/1ps

‘define and2A_delay 178
‘define and2B_delay 241

input Ain, Bin;
output out;
reg out;

al ways @(Ain)
#(‘and2A_delay) out = Ain & Bin;

al ways @ (Bin)
#('and2B_delay) out = Ain & Bin;

endnodul e

In the behavioural example, the module is triggered when there is a change in any of
the input signal values. Depending on whether the input change is at level 3 (Ain) or
level 2 (Bin), the output is specified to change (if an output value change is warranted)
after adifferent timeinterval, and2A_delay or and2B_delay. In this manner, the differ-

ent propagation delays from input to output of the different levels are modelled.

The gate-level, or structural, module is based on the and and buf logic primitives used

in the following configuration:

buf
. and
Bin > >
_ | ol out
Ain 3

nodul e and2 (out, Ain,Bin);
‘timescale 1ps/1ps

‘define and2A _delay 178
‘define and2B_delay 241

input Ain, Bin;
output out;
wire delb;

and #(‘and2A_delay) gl (out, Ain,delb);
buf #(‘and2B_delay - ‘and2A_delay) g2 (delb, Bin);

endnodul e

62



6 Verilog Modelling of MDCML

A single propagation delay is specified for &mel logic primitive; theminimum of the

A and B propagation delays, whichaisd2A_delay. An additional delay is encountered

by a B input signal change and this is modelled by providimgf gbuffer) logic prim-

itive. Thebuf element has a propagation delay equivalent to the difference between the
propagation delays of the two input levels (A and B). In this way, an A input change
will propagate to the output after tla@d2A delay time through theand primitive.

Also, a B input signal change will propagate to the output afteattt?B_delay -
and2A_delay’ time through thebuf primitive plusthe and2A_delay time through the

and primitive, i.e. a total propagation delay timeanfi2B_delay.

An example of the waveforms produced by both the behavioural (AND2_Be) and struc-
tural (AND2_St) modules when simulated in Verilog using the same input stimuli is

shown below:

Header: MDCML 2-input AND gate

User: Robert Kelly

Date: Mar 7,1994 09:52:46 Time Scale From: 0 To: 4000 Page: 1of 1

e R Ee— | L

Out_Be
Out_St

TIME | | | |
0 1000 2000 3000

6.3.1 Accuracy Comparison

The MDCML 2-input AND gate exhibits differing propagation delays to input changes

occurring at the different levels. This suggests that the operation of the Verilog models
of the AND2 gate may be sensitive to simultaneous or nearly simultaneous changes in
the input signals. The two models of the AND2 gate were simulated under these condi-

tions and a problem was discovered which can be observed in the following
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waveforms:

Header: MDCML 2-input AND gate - test Bin->Ain

User: Robert Kelly

Date: Mar 8,1994 09:52:46 Time Scale From: 200 To: 1000 Page: 1of1

Ain /_ |
Bin \L |
|

L
A L
[ ]

Out_Be

Out_St

TIME |
200 400 600 800

The output waveforms of the two AND2 modules indicates that the behavioural and
gate-level models react differently to the specified input stimulus. In particular, the re-
sponse to a B input change closely followed by an A input change must be examined

for each of the models.

For the behavioural module, when the A input change odalwsys @ (Ain)), the
output assignment expression, out = Ain & Bin, will be evaluated. At this point, both
the Ain and Bin inputs are HIGH and so the output value will be scheduled to change

after the propagation delay time of the Ain input, #('and2A_delay) out = Ain & Bin.

For the gate-level (structural) module, when the Ain input change occurs, the previous
change of the Bin input has not yet propagated throughuherimitive. So, at this

point in time, the A input to thend primitive is HIGH, but the B inpub theand prim-

itive is LOW. Therefore, the Ain input change does not directly affect the output of the
and primitive in this situation. Some time later, when the effect of the Bin input change
has propagated through tbef primitive, both inputs to thand primitive will be

HIGH and the output will be scheduled to change.

In summary, for the behavioural model, the Ain propagation delay takes priority,
whereas for the gate-level model, the Bin propagation delay takes priority. The question

is then: which model most closely reflects reality? To provide the definitive answer, a
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HSPICE circuit simulation is performed with the appropriate input stimulus. The re-

sults are shown below in Figure 18.
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94/05/31 10:05:28

72 o2 TRo

7=Ainput
6 = A input

=~ - o<

5=Binput
4 = B input

=~ - o<

- 8 3 =AND output
-5 2=AND output

=~ - o<
o
©
o
=

Ve
I I I I ‘ I I I I ‘ I I I I

1.0N 2 .0N 3.0N 40N

0. TIME (LIN) 5_0N

Figure 18 : Ain after Bin SPICE waveforms.

The Ain input change occurs 21.6ps after Bin for the rising transition and 22.3ps after

Bin for the falling transition.

The measured propagation delays are:

A rising ->  OUT rising =  238ps
B rising ->  OUT rising =  260ps
Afdling -> OUTfdling = 113ps
Bfaling -> OUTfdling =  135ps

Considering the rising transitions of the A and B inputs, the actual measured output
propagation delay is most closely modelled by the gate-level module. That is, the B in-
put signal change tends to take priority. The output propagation delay of the falling in-

put transitions seemsto be anomal ous; since the measured delay ismuch lessthan either
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the normal A or B input falling transition delays. This behaviour may be as aresult of

both input changes simultaneously tending to force the output LOW.

Sincethe gate-level, structural, modul e gives the most accurate modelling behaviour of
the 2-input AND gate, this module is chosen asthe basisfor the AND2 |ogic gatein the
MDCML Verilog component library. Thefull component library is constructed by con-

sidering each logic gate function in a similar manner.

6.3.2 Continuous Assignment

The CPU resources required for the simulation of a large scale digital system can be
significant, even when the design is simulated at higher levels of abstraction. The Ver-
ilog HDL providesamechanism for accel erating the performance of the modelling con-
structs by applying a technique known as continuous assignment. Continuous assign-
ment may be used to increase the simulation performance of models by directly assign-

ing values to outputs of primitives based on the values currently on the inputs.

The gate-level model of the 2-input AND gate can be replaced by a continuous assign-
ment version which increases the simulator performance:

nodul e and2 (out, Ain,Bin);

‘timescale 1ps/1ps

‘define and2A_delay 178
‘define and2B_delay 241

input Ain, Bin;
output out;
wire delb;

assi gn #('and2A_delay) out = (Ain & delb);
assi gn #(‘and2B_delay-‘and2A_delay) delb = Bin;

endnodul e

Here the assign statement replaces the instantiations of the and and buf primitivesin

the gate-level model.
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The technique is restricted to logic primitives that are:

0 purely combinatorial, i.e. the primitive does not contain any internal state.

[0 based on very simple logical operations.

6.3.3 Net Delays

The issue of how the output loading and drive sharing information should be incorpo-

rated into the Verilog model of the system is now examined.

It can be noted that, essentially, the causes of the propagation delays of an interconnect-
ed system of component modules can be divided into two types. Thefirst type, Elemen-
tal delays, concern the direct operation of the basic logic function, i.e. the propagation
delay through the unloaded gate. The second type, which can be called Topological de-
lays, cause an additional propagation delay to be applied to each basic component de-
pending on the nature of its interconnections, both input and outputs, with the rest of

the system, i.e. the fan-in and fan-out of the individual gates.

Verilog provides a facility whereby delay values may be assigned to individual nets
(wires) connecting system modules (known as net delays). This would appear to be an
ideal method of managing the additional propagation delay effects of the system inter-
connections. The basic component modules would incorporate the Elemental delays

and the interconnecting nets would include the Topological delays.

For compl eteness, the system model s should incorporate the effects of input drive-shar-
ing and output loading. However, for a reasonably large design, calculating the addi-
tional gate propagation delay due to these effects by hand would be tedious - someform
of automatic netlist generation is required (this is best achieved in conjunction with a

schematic design-capture system).

In addition, the circuit delay values dueto track capacitance (measured during the phys-
ical layout design process) could easily be backannotated into the Verilog simulation

model by modifying the net delay values. However, until the actual physical layout of
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the design is accomplished, and real track capacitance values can be used to generate
real interconnection delay values, the MDCML Asynchronous ARM Verilog model

will use only elemental delays.
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7.1 ARM Architecture

7.1.1 Overview

The Advanced RISC Machine (ARM) is a general purpose 32-bit microprocessor ar-
chitecture based on the Reduced Instruction Set Computer (RISC) principle of a simple,
regular instruction set allowing fast and efficient decoding [Furb89,VLSI90]. Together
with a three stage (fetch, decode, execute) execution pipeline, this results in a high in-
struction throughput. The ARM uses a load/store architecture with a register-oriented

instruction set.

The ARMG6 (the target architecture of the MDCML Asynchronous ARM) has a 32-bit
data space and a 32-bit address space [ARM91](see Figure 19). All instructions are one
word (32-bits) and all data processing operations are performed on word quantities.
Byte quantities (in addition to words) can only be specified for load and store opera-

tions.

The ARM6 may be executing instructions in one of six processor modes:

User- normal program execution.

Supervisor protected mode for operating system support.
IRQ- normal interrupt handling.

FIQ - fast’ interrupt handling (for external data 1/0).

Abort - data or instruction prefetch abort.

o o o o o O

Undef- undefined instruction execution.
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Most applications programs execute in User mode, the other (privileged) modes are en-

tered to service interrupts or handle processor exceptions.
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Figure 19 : ARM6 Block Diagram.

A total of 37 registers are provided, 31 general purpose registers (each 32-bits wide)
and 6 status registers. The registers partially overlap such that, depending on the current
processor mode, only 15 general purpose registers (RO - R14) and R15 holding the Pro-
gram Counter (PC) are ‘visible’. In all modes the Current Program Status Register
(CPSR), which contains the condition code flags and the current mode bits, is visible
and in the privileged modes the Saved Program Status Register (SPSR) is also visible.
R14 is used as the subroutine link register (receiving a copy of the PC return address on

executing a Branch and Link instruction).
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The fast interrupt mode (FIQ) has seven ‘banked’ registers (R8 - R14) and all privileged
modes have banked R13 (stack pointer) and R14 (subroutine link) registers. There is a

SPSR (loaded with the CPSR on exception entry) for each of the privileged modes.

7.1.2 Instruction Set

The ARM instruction set consists of ten basic instruction types. All ARM instructions
are conditionally executed based on the value of the N, Z, C and V flags in the CPSR.
The conditionsalways (AL) and never (NV) also exist. Conditional execution of all
ARM instructions seeks to improve processor performance by removing the need for

small-offset forward branches which therefore maintains the execution pipelining.

The data processing instructions can be divided into two groups: those concerned with
logical operationsAND, EOR, ORR, BIC, MOV, MVN, TST, TEQ) and those per-
forming arithmetic operation®OD, ADC, SUB, RSB, CMP, CMN). This class of in-
struction also contains &hbit which indicates whether the condition codes should be
set based on the result of the specified operation. Since the ARM architecture contains
a barrel shifter connected to one of the input operand buses of the Arithmetic Logic Unit
(ALU), it is possible to perform various shift functions on one of the input operands be-
fore the specified data operation is applied. A subset of the data processing type, the
MRS/M SR instructions provide access to the CPSR and the SPSRIRISanstruc-

tion moves the contents of the CPSR or SPSR into a register avdB@struction

moves a register value into the CPSR or SPSR.

The branchB) and branch-with-linkBL ) instructions allow the PC to be modified by
adding a signed offset. A ‘jump’ instruction can also be achieved by using@hé

instruction to load the PC (R15) directly with an immediate or register value.

A multiply (MUL) or multiply-accumulateM L A) instruction uses a 2-bit Booth'’s al-
gorithm to perform integer multiplication, the multiply-accumulate form adds a third

operand register value to the result of the basic two input register multiplication.
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Two instruction types are concerned with moving data between registers and memory.
TheL DR/STR data transfer instructions move a single byte or word of datd. DN
STM block data transfer instructions are used to move any subset of the currently vis-

ible register set.

The software interrupSV1) instruction is used to enter supervisor mode in a control-
led manner and the single data sw@y/ P) instruction is used to swap a byte or word
guantity between a register and memory as an ‘atomic’ (uninterruptable) operation -

this facility provides the basis for multiprocessing semaphore support.

Three further instruction types are used in the context of coprocessor interaction and

will not be discussed further.

7.2 MDCML Asynchronous ARM

7.2.1 Overview

The high-level design of the MDCML asynchronous ARM will closely follow that of
the AMULET1 [Furb94b]; an asynchronous ARM microprocessor developed for
CMOS technology within the ESPRIT OMI-MAP project involving the AMULET
group at Manchester University. The TAM-ARM project will also consider if any of
the design enhancements proposed for the CMOS successor to AMULETL, in the light
of experience gained while producing the original prototype, will be appropriate for the

MDCML implementation.

Much of the architectural design information presented in this chapter is derived from

[Pave94], a Ph.D. thesis of one of the principal design team members.

The internal structure of the MDCML asynchronous ARM is shown in Figure 20 over-

leaf.
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Figure 20 : Internal Processor Organisation.

Sincethe MDCML asynchronous ARM will be apreliminary demonstrator of an asyn-
chronous bipolar implementation of the ARM®6 architecture, several features have not
been incorporated into the MDCML asynchronous ARM architecture due to system de-
sign time constraints. Unimplemented features include the class of instructions used to

manage coprocessor interaction, support for 26-bit mode operation (an instruction-set

backwards-compatibility issue) and the MLA (Multiply-with-Accumulate) instruction.
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the asynchronous processor and the external memory subsystem involving the follow-
ing signals:
[0 Anoutput bundle contai ning the requested memory address, associated con-
trol signals and, possibly, a write data value (if a write operation is speci-
fied).
0 Aninput bundle containing a data value (which may be an instruction) read
from memory and the bundled-data protocol control signals.
[0 A memory abort response. Every data access to memory requires a response
signal to indicate whether the accesswill successfully complete. Thisallows

the processor to support avirtual memory system.

A processor reset and level-sensitive interrupt request signals complete the MDCML

asynchronous ARM connections to the external environment.

The structure of the Execution Pipeline, which includes the Register Bank, Execution
Unit and Instruction Decode, isoutlined in Figure 21 overleaf. In particul ar, the typical
mi cropipeline structure of Event Registers (shown as shaded boxes) interposed by com-
putational logic can clearly be seen. The pipeline operation is controlled by the transi-
tion signalling protocol operating between the event registers and functional blocks, but

the details have been omitted from the diagram in the interests of clarity.
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The Primary Decode provides the entire decoding for the Register Bank control signals
and a partial decode for the Execution Unit function blocks. Note that the decode and
control signals are also pipelined, but this does not imply that the datapath and control
operate in lockstep. Control signals and data values only synchronise at the appropriate

functional unit.
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Figure 21 : Micropipelined Structure of the Execution Pipeline.
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7.2.2 Register Bank

The register bank provides the storage required for the general-purpose registers and
program status registers defined by the ARM architecture. For the execution of atypical
instruction, one or two operands are read from the register bank onto the A and B buses.
They are then subjected to some logical or arithmetic operation to yield aresult, which
is normally written back to the register bank viathe W bus. To improve overal CPU
performance, pipeline operation is employed whereby several instructions may be in
different phases of execution. At a certain instant in time, the operands of one instruc-
tion may be undergoing an ALU operation, while simultaneously, the operands of the
next instruction are being read from the register bank and the ALU result of the previ-
ous instruction is being written back to the register bank.

Instruction

\/

Instruction
Decoder

[l

Aoperand >
"\ Register Execution
Bank Unit
B operand\/

result

Figure 22 : Register Bank Operation.

In an asynchronous design context, pipelined instruction execution with concurrent
read and write accessto registers presents anumber of problemswith regard to coherent

register operation:

[0 Dueto execution phase pipelining, multipleregister write operations may be
outstanding. The register bank control logic must maintain a record of the

correct sequence of write register addresses.
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[0 An operand read action may be requested from a register that has a write op-
eration pending. The register read needs to be suspended until the write ac-
tually occurs (the register read should gettee register value).

[0 Asynchronous read and write operations on the same register may interact

unpredictably.

These problems may be solved by storing the write (destination) register addresses in a
FIFO (First-In, First-Out queue). After the register bank is accessed during the initial
stages of instruction execution, to provide the operands, the destination register address
is entered into the FIFO. When the instruction result value eventually arrives back at
the register bank, the destination (write) address is at the end of the FIFO. The depth of

the FIFO determines the number of register write operations that can be outstanding.

On every read access to the register bank to obtain the instruction operands, the Write
Address FIFO is examined. If either of the read addresses is found to match any of the
write addresses in the FIFO, the read operation for that particular register stalls until af-
ter the write operation on the register has completed. Once the operands have been suc-
cessfully read from the register bank, the destination (write) register address for the in-
struction result is entered into the Write Address FIFO. The FIFO effectively provides

a ‘locking’ function on the register bank to prevent Read-after-Write register hazards -
hence the alternative name for the Write Address FIFO is the Lock FIFO [Pave92]. The

asynchronous register bank design is shown overleaf in Figure 23.

The operation of the asynchronous register bank is now described - the associated Ver-
ilog waveforms in Figures 24, 25 and 26 show a Read cycle, a Read cycle stalled on a

register lock and a Write cycle respectively:

The registeread requestiR_Req) arrives (Figure 24) and presents two instruction
operand register address@sdddr & B_addr) and a destination (write result) register
address\(V_addr). Additional addressing information indicates the current processor

mode and hence the ‘visibility’ of a particular register set. Rheeq signal is stalled
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(by the Muller-C gate) until the register bank is able to commence another operand read
cycle (indicated by the Rgo signal). The A and B bus decoders are then enabled (by

Rdec) and at the same time the destination address is latched into the W latch.

R_Ack W_addr R_Req A_addr B_addr

»
t.dn Rdec
AZd Wdec N7 N2

W Decode A Decode
LK_Ack JL LK_Req

Lock

FIFO
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WReq > 1 JE JL
WAk« | =~ =
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Write Enable Gating
Wb
W done JL EnablIJ:s Eﬁabt;;zs
_ [K— D_Ack
[0}
%) :'|>
D
W bus Y
REGISTERS E
— =)
it
—> D_Req

Figure 23 : Asynchronous Register Bank Design.

The decoded read enable signals are gated with the Write Address FIFO lock infor-
mation for the associated register (Lock) - a read will be suspended if the register is
locked i.e. awrite operation is pending on the register. A read will proceed (A _enb &
B_enb activated) if the register isunlocked, while aread on alocked register must wait
until a subsequent write operation clears the lock.

Once both read operations have completed (both A_done & B_done events have oc-
curred), the operands (A _bus & B _bus) are latched (by the O_Req signal) and the read
decoders are disabled. Loading the read output Event Register causesthe D_Req event
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to be signalled to the Execute Unit, indicating that the instruction operands are now

available. The write decoder is then enabl&degc) and the decoded destination regis-

ter address is entered in the Write Address Lock FIRO Req), thereby locking the

register. The write address is stored in the Lock FIFO in decoded form to enable a

locked register address to be detected easily (the detail is described elsewhere

[Pave9l]). Once the Lock FIFO has accepted the new result destination address

(LK_Ack), the write decoder is disabled and the write address latch is freeih)(

R _Ack is signalled and the next instruction can now commence its operand read phase.
The second waveform (Figure 25) shows the effect of a locked register on the read

cycle. When the read decoders are enaliRdec], the B bus register enabB nb) is

activated and the B bus operand read complBtetofie, B_busis valid). However, the

A bus operand register is locked and therefore the A bus register enablesamte

vated A enb). Eventually, a subsequent write operation will clear the register lock

(Lock), the A bus enables will be activated and the A bus read will compleder(e).

The sequence of events following this point is as outlined previously.

Thewrite request signaM/_Req), Figure 26, indicates that a result value has ar-
rived on the W busW _bus) for writing into its destination register. When the decoded
destination register addre3#/ (reg) is available at the output of the Lock FIFO, the
write operation can begiWgo). A control signalalid) also arrives with the data val-
ue to provide a facility to clear destination register locks (remove register addresses
from the Lock FIFO) without actually writing data into the register bank. This mecha-
nism allows instructions that have failed condition code tests at the ALU to remove
write locks from previously ‘reserved’ destination registers.

If the full register write operation is to proce&l k), the write bus enables are
signalled Wr_reg) and the appropriate register write enable line is activatedn)
and the data value is written into the register. Once the register write operation has com-
pleted WW_done), the write bus enables are turned off and the write address is removed

from the Lock FIFOI(ock) - unlocking the register for subsequent read operations. The
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remaining waveforms at the bottom of Figure 26 show a stalled read operation resume

once the register lock is cleared.
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7.2.3 Memory Interface

The interface between the external memory system and the processor is divided into
two parts: theAddress Interface issues all address information to memory and the

Data Interface is responsible for all data values written to or read from memory.

For awrite operation, the address generated by the address interface synchronises with
the write data value supplied by the data interface before being passed to the memory

subsystem.

For aread operation, the address generated by the address interface is sent directly to
the memory subsystem and control information for the access is passed to the data in-
terface. The control information is examined when the memory read value is supplied

to the data interface. The read data value is ‘routed’ to the correct processor function

block destination based on the associated control information.

7.2.4 AddressInterface

One of the primary functions of the address interface is to generate sequential addresses
for instruction prefetching. The Program Counter (PC) value circulates around a loop
containing the Memory Address Register (MAR), an (address) Incrementer and two PC
Holding Latches (see Figure 27). Two holding latches are required because of a poten-
tial deadlock situation if only one latch was provided. The deadlock occurs when a data
transfer request immediately follows the arrival of a new PC value - this is described in
detail elsewhere [Pave94, ppl126-127]. In each cycle of the PC loop, the PC value is
copied into the Memory Address Register where it initiates an external memory instruc-
tion read request. After the processor reset signal is deactivated, the Memory Address
Register is forced to all zeros and a memory request event is generated causing instruc-
tion prefetching (and therefore instruction execution) to begin at memory address (hex)

00000000.
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When the address interface is required to generate amemory address for adata transfer
operation (either read or write), the PC prefetching loop must be temporarily suspend-
ed. Sincethe prefetch operation isasynchronous with respect to the rest of the processor
operation, arbitration is required to gain exclusive control of the address interface re-
sources.

A bus W bus

TR

| PC |
holding latches

d 4

to PC
Pipe

arbitrating mux LSM register
lL AN
mux
Incrementer
AN
MAR
to Memory

Figure 27 : Address Interface Structure.

The value of the Program Counter is available to the programmer as register R15 and
can be used as a source or destination operand in the same manner as a general-purpose
register. Note that writing a new value to R15, changing the PC, has the same effect as
a branch instruction. However, because of the 3-stage (fetch, decode, execute) execu-
tion pipeline operation of the synchronous ARM 6, the address value read from R15
(the PC) is 8 bytes (2 instruction words) ahead of the actual address of the currently ex-
ecuting instruction. In order to ensure that existing ARM instruction code programs
have the same functionality, some mechanism must be provided in the asynchronous
implementation to mimic the behaviour when register R15 is accessed to provide in-

struction operands.
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The PC Pipeisa2-stage FIFO into which the instruction prefetch PC addressvalue is
copied after it has been used to generate a memory read access. However, after system
reset the first two instruction prefetch addresses are not copied into the PC Pipe. When
the first prefetched instruction eventually reaches the primary instruction decoder and
synchronises with its associated R15 (PC) value, the R15 value will precede the actual
memory address |ocation of the decoded instruction by 8 bytes. Asaresult of the action
of the PC Pipe, the asynchronous implementation can emulate the synchronous ARM

behaviour of the R15 (PC) register.

The PC Pipe mechanism of maintaining the R15 value 8 bytes ahead of the currently
executing instruction temporarily fails after a branch instruction executes. However,
the association between R15 values and instructions is only incorrect for those instruc-
tions that do not execute, i.e. the instructions prefetched beyond the branch instruction.
When the branch target instruction actually beginsthe decode phase, prior to execution,
the PC Pipe mechanism has re-synchronised - further details can be found in [Paved4,
p128].

The operation of the address interface is now described - the associated Verilog wave-
formsin Figures 28, 29, 30 and 31 show the instruction prefetching mechanism, adata
transfer address arriving on the W bus, the address interface interaction of a LDM
(LoaD Multiple) instruction and the effect of a branch address arriving on the W bus

respectively:

Theinstruction prefetching cycle request (PC_Req), Figure 28, arrives at the ad-
dressinterface control arbiter along with aPPC value (PreAddr) as an input to the Mem-
ory Address Register (MAR). Eventually, control is granted (PCgo) to the PC loop and
the PC value is latched into the MAR by the MAR _Req signal. A memory read access
Istheninitiated (Mem_Req) with the PC address value contained in the MAR (MemAd-
dr). The control circuit then triggers the Address Incrementer (Inc_Req) and, once the
PC value has been incremented by adding 4 (all ARM instructions are 32 bits wide and

are word aligned), a completion signal (Inc_dn) is generated. A control signal, PC/
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LSV, indicateswhether the incrementer has been used to generate aPC value or aLoad/
Store Multiple (LSM) address (since aLSM instruction also uses the incrementer func-
tionality to generate sequential addresses). Theincrementer output value (Incre) isthen
latched into the first of the PC holding latches (PC_It1) and, subsequently, the output
of thefirst latch (PCx) is copied into the second PC holding latch (on reception of the
PC_It2 event). The output of the second latch (the current PC value) isthen entered into
the PC Pipe (PP_Req) and, when the PC Pipeindicatesthat it has accepted the PC value

(PP_Ack), the instruction prefetch cycle request (PC_Req) is again generated.

A datatransfer address can arrive at the addressinterface directly from the register
bank on the A bus or, in this example (Figure 29), on the ALU (write) result bus
(W _bus). The data access request (W_Req) is directed to the address interface control
arbiter and arbitration takes place between the data transfer request and the PC prefetch
loop request. Eventually, the data transfer is given control of the address interface
(Wetl) and arequest grant signal is generated (Wgo). The multiplexer control signals
(MuxCtl) are switched to alow the W bus value to pass to the input of the MAR (Pre-
Addr), to be subsequently latched by the MAR Req signal. A memory access request
event isthen generated (Mem_Req) with the address contained inthe MAR (MemAddr).
Since thisis a single word transfer, the incrementer is not activated (Inc_by) and the
data transfer is completed when an acknowledge signal is returned to the source of the
W bus value (W_Ack).

The remaining waveforms in Figure 29 indicate a stalled PC prefetch request
(PC_Req) which is unable to continue (PCgo) until the W bus acknowledge has oc-
curred (W_Ack). The actual PC memory access request must also wait until the previous
W bus data transfer memory cycle has completed (indicated by Mem Ack). The

prefetch loop then resumes by incrementing the PC access address.

For the block data transfer instructions (LDM/STM) involving the movement of
multiple datavaluesto or from consecutive memory locations (Figure 30), only the base

address of the transfer is sent (viathe A bus or, in this example, the W_bus) to the ad-
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dressinterface. The data transfer request (W_Req) arrives at the address interface con-
trol arbiter and again, eventually, control is given to the data transfer (Wctl) and the
grant signal (Wgo) is generated. The MAR input multiplexers are switched (MuxCtl)
and the data transfer address (PreAddr) islatched into the MAR (MAR_Req). A mem-
ory access is then initiated (Mem_Req) with the block data transfer base address (Me-
mAddr). The address incrementer then operates (Inc_Req) to generate the next sequen-
tial LSM address (Incre). The PC/LSM control signal indicates that a LSM instruction
triggered the address incrementer and so, when the incrementer operation has compl et-
ed (Inc_dn), the address value is copied into the LSM (temporary storage) register
(LSM_Req). The address interface continues to generate sequential memory addresses
until a control signal (LDM_dn) indicates that the required number of addresses have
been produced. The LSM datatransfer then relinquishes control of the addressinterface

arbiter by signalling W_Ack. At this point, the PC prefetching loop can again resume.

When the processor executes a branch instruction (Figure 31), the new PC value
arrives at the address interface from the ALU via the W_bus. The W bus data request
(W_Req) is directed to the address interface arbiter and eventually exclusive accessis
indicated (Wctl) and a grant signal is generated (Wgo). The multiplexer is again
switched (MuxCtl) and the W bus address valueis passed to the input of the MAR (Pre-
Addr) whereit is subsequently latched (MAR _Req). A memory read accessis signalled
(Mem_Req) with the new PC address contained in the MAR (MemAddr) to fetch the
branch target instruction. The first phase of branch instruction interaction with the ad-
dress interface, namely supplying the target address and initiating an instruction
prefetch memory access, is now complete and control of the arbiter is released
(W_Ack).

The second phase of the branch interaction involves restarting the PC prefetching
loop with the new instruction stream addresses. Once a memory access is activated on
the branch target address, the addressincrementer issignalled (Inc_Req), the target ad-
dress is incremented (Incre) and the incrementer completion signal is generated

(Inc_dn). The PC/LSM control signal indicates that the incrementer output valueis an
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instruction prefetch address and it is latched through the PC holding latches (PC_It1
and PC_lt2) to become the current PC value. A new instruction prefetching cycle re-
quest (PC_Req) is directed to the address interface control arbiter and, when control is
granted (PCgo), prefetching restarts with the new PC address value. The previous
PC_Reg* request signal that was stalled at the arbiter, while the branch target address
arrived on the W bus, is released (PCgo*) when the W bus access relinquishes control
of the arbiter (W_Ack). Control circuitry in the instruction prefetching loop is able to
detect that anew PC value has arrived and so the prefetch request for the old instruction

stream is discarded.
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Header: Address|nterface- Instruction Prefetching loop

User: Robert Kelly

Date: Sep 30, 1994 18:19:08

Time Scale From: 34.73ns To: 76.20ns Page: 1of 1
PC_Req [
PreAddr ( 00000008 X 0000000c X 00000010
PCgo \ ’7
MAR_Req \ [
Mem_Req | |
MemAddr | 00000004 | 00000008 | o000000c
Inc_Reg | |
Inc_dn ‘ ‘
Incre 00000008 | 0000000c J 00000010
PC/LSM
PC_It1 | \
PCx 00000008 X 0000000c X 00000010
PC_It2 B \ \
PC 00000008 X 0000000c X 00000010
PPReg | | \ ]
PPAck | | \ ]
PC_Req ‘ ’7
TIME 34.73ns 4500 ns 55.46ns 65.83ns

Figure 28 : Address Interface Instruction Prefetching Waveform.
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Header: Address|nterface- Data addressviaW bus
User: Robert Kelly

Date: Oct 4,1994 16:39:42 Time Scale From: 712.62ns To: 754.28 ns Page: 1of 1
W_bus 00000c7c 00000c7c 00000c7c
W_Reg | |
Wetl ]
Wgo *‘
MuxCtl 0 E Jo 0
PreAddr 00000c04 | 00000c7c | 00000c04 |
MAR_Req \
MemAddr | 00000c00 [ ooo00c7e | 00000004
Mem_Req | \
Inc_byp ‘
W_Ack \
PC_Req
PCgo
Mem_Ack ‘
Inc_Req \
Incre 00000c04 [ ooo0oc7e [o0000c04 Y oo000c08
Inc_dn
PC 0000004 00000c04 X 00000c08
TIME
712.62 ns 723.03 ns 733.45ns 743.86 ns

Figure 29 : Address Interface Data Transfer Waveform.
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Header: Address|nterface- 3register LDM

User: Robert Kelly

Date: Oct 4,1994 16:52:59 Time Scale From: 37167 ns To: 437.60ns Page: 1of 1
W_bus 00000074 [T J22222222 [ ]
W_Reqg | |
wetl ]
Wgo 4
MuxCtl E [1 1 [ o 0
PreAddr 00000038 | 00000074 [ 00000078 [ oooo0o7e I Tooooo0ss | 0000003
ke | [ 1] |
MemAddr | 00000038 | cooo0074 [ oooo0o7s | 0000007 J 00000038
Y I — |
Inc_Req j ’—
Incre 00000038 00000074 | 00000078 | 0oo0007c J 00000038 | 0000003
.o ] —
pcsmM [ ] \
LSM_Req [ ]
Lo | E—
Wr_ack ‘
PC_req | L
PCgo ‘ ||
PC 00000038 00000038 [ 0000003
TIME
37167 ns 388.15ns 4046315 42111ns
Figure 30 : Address Interface Block Data Transfer Waveform.
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Header: Address|Interface - Branch => new addressinto PC loop

User: Robert Kelly

Date: Oct 4,1994 17:18:04 Time Scale From: 73.92ns To: 126.56 ns Page: 1of 1

W_bus ] 00000268 00000268 [ 00000004 00000094
W_Req

Wetl

Wgo

MuxCtl 0 E Jo 0

O e [T oo =
MAR_Req \ \ i
MemAddr [ oo000010 | ooooozes | oooo026¢

MemReq | | | |

W_Ack \

Inc_Req \ \

Incre 00000010 J 00000014 | 00000268 [ ooooozec [ oo000270

Inc_dn \ ’7

PC/LSM

PC_It1 \ ]

PC_It2 \ ]
PC 00000010 | 00000014 J ooocozec 00000270

PC_Req * \ |
PCgo * L

TIME

73.92ns 87.08 ns 100.24 ns 113.40ns

Figure 31 : Address Interface Branch Waveform.
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7.2.5 Datalnterface

The data interface controls the interaction between the external data bus and the proc-
essor. It handles the values returned from memory after a read access and the data val-

ues written out to memory. The overall structure of the data interface is shown below

in Figure 32.
DOa DOrDI_Req DI_Ack IM_Req IM_Ack
DO[31:0] DI[31:0] IMI\#?:O] ‘
Imm_Pipe
I% IMa
DIN — IMr
ZT % —— | |—— IN_Req
l'> |_Pipe IN[3L:0]
RdData
‘ Na IN_Ack
Dla
Dir
Destination
Control
MDr
Mba MCPor jr MCPoa
N2
DOUT Event Register Mem_Ctl_Pipe
AN
MCPir |MCPia
MWRr I
\

MWRa

Mem_Control

MW‘R[]31:O] MRR[31:0] Mctl[9:0] l

MRRr MRRa MEMa MEMr MARr MARa

[

Figure 32 : Data Interface Structure.

For memory write operations, in which a byte quantity is specified, the Data Out
(DOUT) section hasthefacility to replicate the least significant byte acrossall byte po-
sitions in the word (to enable byte writes to any byte-aligned address). The memory
write datarequest (indicating that the data value is available) must rendezvous with the

Memory Address Register request (indicating that a write address has been generated
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by the Address Interface) before the external memory access request is despatched.

This rendezvous occurs in the Memory Control (Mem_Control) section.

Once amemory read value arrives at the datainterface, it islatched in an Event Regis-
ter. The Destination Control block will then extract the corresponding control infor-
mation from the Memory Control Pipe (Mem_Ctl_Pipe) for thisread access. Note that
the control information was entered into the Memory Control Pipe when the Address
Interface generated the read access address. The retrieved control information will in-

dicate whether the memory read value was an instruction or a data value.

Data values read from memory are passed to the DataIn (DI N) section, where byte-ro-
tation logic is provided to rotate values read from non-word aligned memory addresses.
Also, logic exists for masking the most significant 24 bits of the dataword for byte read

guantities.

Incoming instructions are buffered before execution in the 5-stage Instruction FIFO
Pipeline (I_Pipe). The | _Pipe must be 3 stages longer than the (2-stage) PC Pipe be-
cause of acomplex deadlock situation - a detailed explanation can be found elsewhere
[Paved4, ppl130-131]. Aninstruction emerging from thel _Pipe may also be passed into
the Immediate Field Extraction Unit (Imm_Pipe), so that any immediate operand can
be retrieved from the appropriate fields of the instruction word prior to full decoding.
The output of the Immediate Field Extraction Unit can be multiplexed onto one of the

datapath operand buses, if required.

The operation of the datainterfaceis now described - the associated V erilog waveforms
in Figures 33, 34, and 35 show a data byte read operation, a data byte write operation
and the reception of a prefetched instruction word from which an immediate operand is

extracted respectively:

A memory read data byte (or word) operation (Figure 33) begins when the address
interface signals (MARYr) that avalid memory access address (MemAddr) has been gen-

erated. Since this is a read data transfer, the associated control information (Mctl) is
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latched into the Memory Control Pipe (MCPir), while the external memory request is
generated (MEMr). Sometime later, the memory subsystem responds with a data word
value (MRR) which islatched into the Memory Read (Event) Register by the MRRr re-
quest signal. An acknowledge signal is generated (MRRa) once the datais latched and
the external memory read cycle is completed when the memory subsystem responds
with the MEMa acknowledge event. Theread input request (MDr), indicating that aval-
id read datavalueis contained in the Event Register (RdData), and the Memory Control
Pipe output request (MCPor), signifying the availability of the associated control infor-
mation for this memory access, synchronise (Sync) in the Destination Control section.
The Opcode control signal indicates that the value read from memory is not an instruc-
tion and so the DIr request signal latches the value into the DataIn (DIN) section. Ad-
ditional control information is passed to the DIN block indicating that a data byte read
has occurred (B/nW) and the position of the required byte within the word (ByteNo).
The unwanted bytes are masked out and the byte read value is shifted into the least sig-
nificant byte position (SelByte). An output request (DI_Req) is then sent to the Execu-
tion Pipelineto signal that the output of the Data In section (DI) isnow valid and, even-
tually, an acknowledge event (DI_Ack) will be received when the byte read value has

been consumed.

A writedata byte (or word) operation (Figure 34) isinitiated when arequest signal
(DOr) isreceived by the Data Out (DOUT) section of the datainterface. It indicatesthat
awrite data word value (DO) has been read from the register bank and is available for
transfer to memory. A control signal (B/nW) specifies that a byte data transfer is re-
quired. The byte-replication logic is then triggered (Rep_Req), which causes the least
significant byte position value to be copied into al byte positionsin the dataword (By-
teRep). Thereplicated byte valueisthen latched (Rep_dn) into the Memory Write Reg-
ister (MWR) contained within the Data Out section. The MWRr request signal indicates
to the Memory Control (Mem_Control) section that awrite valueis now ready for trans-
fer. The MARr request signal indicates that the address interface has generated the as-

sociated memory address (MemAddr) for this write data transfer. When these two re-
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guest signals synchronise (Sync) in the Memory Control section, a externa memory
data transfer is initiated (MEMr). Since this is a write memory access, the associated
control information (Mctl) isnot entered (no event onMCPir) into the Memory Control
Pipe (Mem_Ctl_Pipe). A memory write access is specified (Wen) by the control infor-
mation and, eventually, the memory subsystem responds with an acknowledge signal
(MEMa) indicating that the memory write cycle has completed. The Memory Control
section can then clear the Memory Write Register (MWRa) and signal the memory write

cycle termination to the address interface (MARa).

Aninstruction read operation (Figure 35), in asimilar manner to a dataread oper-
ation, commences when an address interface request signal (MARr) arrives indicating
that a PC prefetch address has been generated (MemAddr). The associated control in-
formation (Mctl) isagain latched (MCPir) into the Memory Control Pipe before the ex-
ternal memory read access is requested (MEMr). A request signal (MRRr), generated
by the memory subsystem, is used to latch the returned memory value (MRR) into the
Memory Read Register. When the latch operation has completed, the datainterface re-
sponds with an acknowledge signal (MRRa) and the external memory cycleisterminat-
ed by the MEMa acknowledge signal. The MDr signal indicating the presence of are-
turned memory value (RdData) in the Memory Read Register and the Memory Control
Pipe output request (MCPor) synchronise in the Destination Control section. The Op-
code control signal indicates that the memory read value is a prefetched instruction and
so the value is latched (INr) into the Instruction Pipeline (I_Pipe). Some time later, a
request signal to the primary instruction decode (IN_Req) indicates that the prefetched
instruction (IN) has emerged from the Instruction Pipeline. The output of theinstruction
disassembler (DI1S) shows that the instruction does indeed contain an immediate oper-
and value. The full instruction word is subsequently latched (IMr) into the Immediate
Field Extraction Unit (Imm_Pipe), where the immediate operand value (IMM) is re-
trieved. A request event (IM_Req) is sent to the Execute Unit control indicating the va-
lidity of the output of the Imm_Pipe. An acknowledge signal (IN_Ack) isreceived from

the primary instruction decode stage when the instruction word has been consumed.
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Header: Datalnterface- Read data byte

User: Robert Kelly

Date: Oct 7,1994 09:24:26 Time Scale From: 477.90ns To: 522.19ns Page: 1of 1
MARr [ ]
MemAddr | 0ooooos2 | 00000048 00000048
Mctl [ 004 [ 18c 18c
MCPir ]
MEMr
MRRr \
MRR | 1204005 | 12345678 12345678
MRRa \
MEMa
MDr \
RdData | e1a04005 | 12345678 12345678
M CPor
Sync
Opcode
Dir
B/nW \ \
ByteNo o 2 2 [o
SelByte | | 00000020 | 00000034 | 12345678
DI_Req \
DI | | 00000020 | 00000034 00000034 )
DI_Ack |
TIME
477.90 ns 488.97 ns 500.04 ns 511.11ns

Figure 33 : Data Interface Byte Read Waveform.
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Header: Data Interface- Write data byte

User: Robert Kelly

Date: Oct 9, 1994 13:46:13 Time Scale From: 614.62ns To: 677.39ns Page: 1of 1
DOr ]
DO | 6781234 ] 00000000 00000000
B/nW \
Rep Req | |
ByteRep | [assesa34 | 00000000 00000000
Repdn | |
MWR | [ 34343434 34343434 34343434 [ ]
MWRr [ ]
MARr [ ]
MemAddr | 00000054 | 000000s8 | 0000009d ]
Sync \
vemr | R
Mctl o8 08¢ [ 154 ]
Mcpir | |
wen | I
MEMa | | \ ]
MWRa [
MARa | | |
e L s o e

Figure 34 : Data Interface Byte Write Waveform.
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Header: Data Interface - Read instruction with immediate value

User: Robert Kelly

Date: Oct 7,1994 10:39:55 Time Scale From: 762.08ns To: 842.04ns Page: 1of 1
MARr ] |
MemAddr [ oooo0068 | 0000006 00000070 00000074 |
Mectl 38c 38¢ 38¢
M CPir | \ \
MEMr [ | | T
MRRr \ \
MRR €1a07008 | e5db2345 [e1a0900a | e3a00021
MRRa \ \
MEMa \ \
MDr \ \
RdData €1a07008 | e5db2345 | e1a0900a | e3a00021

M CPor \ \ |
Opcode

INr \ \
IN_Req \ \

IN €1a04005 | e1a05006 | e1a07008 | e5db2345 |
DIS MOV R4,R5 [Mov R5Ré [mov R7Rs | LDRB R2[R11,#&345]
IMr
IMM 00000005 | 00000006 | 00000008 00000345

IM_Req ]
IN_Ack [

PC | 0o0o0006c | 00000070 00000074 |

TIME ‘
762.08 ns 782.07 ns 802.06 ns 822.05ns

Figure 35 : Data Interface Instruction Read Waveform.
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7.2.6 Execution Unit

7 MDCML Asynchronous ARM

The execution unit contains the computational logic of the processor. It comprises (see

Figure 36) aMultiplier, Shifter, ALU and storage registersfor the Current Program Sta-

tus Register (CPSR). The Multiplier accepts two input operands to produce partial sum

and partial carry outputs which are then added together in the ALU to produce afinal

result. It is based on an iterative shift-and-add operation using carry-save adders and in-

corporates early-termination detection logic.The Shifter is connected to one of the op-

erand buses in series with the ALU alowing various shift and rotate operations to be

performed on one of the ALU input values.

To From
register immediate
bank extract. A

From register bank

multiply

&7 L1
D <

N
V]

> To data out

shift

A\ 4
\ ALU

ALU flags

ALU result

To condition

%
N

N

To address interface

code test

Figure 36 : Execution Unit Structure.

The Arithmetic Logic Unit (ALU) performs al the logical operations and arithmetic

functions needed by the ARM architecture. The arithmetic functionsrequiring the ALU
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to carry out an addition are potentially the most time-consuming operations because of
the carry propagation between the bit positions of the calculation. A study of ARM in-
struction execution [Jagg90] indicatesthat around 20% of al instructions perform arith-
metic data processing. However, sincethe ALU isalso used in cal culating addressesfor
datatransfer and branch instructions, the actual percentage of instructions requiring an

ALU addition operation is much higher than the above figure.

In a synchronous system, all ALU operations must take place within afixed clock pe-
riod and techniques, such as carry-lookahead, have been developed to reduce the time
required for an addition. The ARM6 uses a carry-select mechanism. An asynchronous
ALU may vary the required computation time, dependent on the actual input data val-
ues, and can determine addition operation completion by noting when carry propaga

tion has terminated.

The operation of the MDCML Asynchronous ARM ALU has a similar high-level de-
sign to that employed in the CMOS AMULET1 [Gars93] in that addition completionis
signalled when carry propagation has ceased. The actual implementation of the ALU
datapath components in MDCML logic yields a much higher performance than the
CMOS counterpart. However, because the circuit design technique of wired logic
(wire-AND, wire-OR etc.) isnot easily produced in MDCML technology, some aspects
of the MDCML ALU control logic are slower than the equivalent CMOS circuit. In par-
ticular, the 32-bit AND function used to determine when valid signal s have been assert-
ed by all bit positions and the 32-bit NOR function used to produce the ALU output Z
(zero) flag are implemented in (slow) multiple stages of 3-input gates. The average ad-
ditiontimeintheMDCML Asynchronous ALU ismuch faster than the worst-case time
and al logical operation are completed in afixed (short) time period. The exploitation
of data-dependent computation timeresultsinasimple ALU design of comparable per-
formance to existing synchronous designs which incorporate carry-lookahead or carry-

select techniques.
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The operation of the execution unit is now described - the associated Verilog wave-
forms in Figures 37 and 38 show a multiply operation (followed by the addition of the
partial sum and partial carry multiplier outputs in the ALU) and an ALU logical oper-

ation involving ashift of one of the ALU input operands respectively:

The execution of enultiply instruction (Figure 37) begins when the datapath input
request RD_Req) arrives indicating that the two operands specified by the instruction
have been read from the register baAkb(s andB_bus). A control signal §ult)
shows that a multiply operation is required and so the multiplier request $Wiat (

Req) is generated. When the multiply operation has finished two outputs are produced,
the partial sum Fsum) and the partial carryP¢arry), and a completion signal
(Mul_dn). The partial sum and carry are then latched into the ALU input operand event
register by th@©p_Req signal. At this point the register bank output register is no longer
required to hold the initial instruction operands stable and the execution unit indicates
this by generating an acknowledge sigrRD (Ack). The two ALU input operands
(A_op andB_op) are subjected to the required ALU functi@iunc) - in this case, an
addition to combine the partial sum and carry - when the ALU is enahlléd Enb).

When the ALU operation has terminated, an output va#lu®) is produced along with

a completion signal{LU_dn). The ALU output latch is then closeflL(U_It), holding

the ALU output resultResult) stable. A request event is generatedReq) to indicate

that the result value is available for copying into the execution unit output register (not
shown in Figure 36). A W (write) bus request sigifdl Req) is forwarded to the Write
Control unit, while the execution unit output register vallvelus) is placed on the W

bus. The Write Control unit will ‘steer’ the W_Req request signal to the appropriate
function unit based on the associated control informatfgctl) for this instruction.
Eventually, the specified function unit (in this example, the register bank) will respond

with an acknowledge signalM_Ack) when the result value has been received.

For the execution of an instruction involving a (regissaijted operand (Figure

38), the input requesRD_Req) from the register bank again indicates the validity of
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the input operands (A_bus and B_bus). The shifter is enabled (Sh_Enb) with the appro-
priate function control signals (Sfunc) and eventually the shifter output result (Shift) is
produced along with a completion signal (Sh_dn). The A bus instruction operand and
the shifted B bus operand are then latched into the ALU input operand event register by
the Op_Req signal and the register bank input request is subsequently acknowledged
(RD_Ack). From this point on the execution unit control signals and sequence of events
Issimilar to the ALU operation described for the multiply instruction previously. The
ALU input operands (A op and B_op) are again subjected to the required function
(Afunc - inthisexample, an AND operation) when the ALU isenabled (ALU_Enb) and,
eventually, an output value (ALU) is produced followed by a completion signal
(ALU_dn). The ALU output valueislatched (ALU_It) intothe ALU result latch (Result)
and the execution unit output register is signalled (O_Req). The W bus request signal
(W_Req) isgenerated when the execution unit output value (W_bus) isvalid and the ap-
propriate function unit is signalled based on the associated instruction result control in-
formation (Wctl). An acknowledge signal (W_AcK) is received when the result destina-

tion function unit has consumed the value.
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Header: Execute Pipeline- Multiply operation

User: Robert Kelly

Date: Oct 19, 1994 18:47:23

Time Scale From: 748.61ns To: 823.72ns Page: 1of 1
RDReq | | | ﬁ
A_bus [ oooos678 00005678 | 00o0004b
B_bus [ 00001234 00001234 | o0oooo00
Mult | \
Mul_Req ]
Paum | o< [020000%
Poary |1 I - [0200050
Mul_dn \
Op_Req
RD_Ack \
Ao [ N - [onco00db
Bop | N i | L 1
Afunc odd Jos7 057 Jodd
ALUEmD |[ | I B
ALU I 00000000 00000000 T 05250060 |
ALU_dn [ [ [
AU | R e
Result B s 00000000 T 05250060 | ]
ORe | | | L
W_Req \
W_bus 00000000 00000000 | 05250060 |
Wwetl 3ce 3ce 3ce
W_Ack [
TIME
74861 ns 767.38ns 804.94ns

Figure 37 : Execution Unit Multiply Waveform.
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Header: Execute Pipeline - Logical operation (shifted operand)
User: Robert Kelly

Date: Oct 19, 1994 18:52:17 Time Scale From: 926.32ns To: 981.24 ns

Page: 1of 1

RD_Reqg | | \

A_bus | 00000d00 | 0000004b 00000040

B_bus | 00000007 | 00000000 00000000

sew |1 [ 1. [ 1|

Sfunc [308 [ 300 300

s o I o I

n_dn — I 1
Op_Req \ \ ]
RD_Ack \

A_op | o0o0odoo | 00000040 00000040

B_op T o070 | T 00000000

Afunc [ 050
ALUEnb | ] [ ]
ALU T oooooo00 I 00000500 T 00000000
ALU_dn B B
ALu_t [ ] [ ]

Result I 00000000 T 00000500 I 00000000
O_Req \

Odd

W_Req \

W_bus 00000000 00000000 X 00000500 X
Woetl 3ce 3ce

W_Ack [ ]

TIME ‘

926.32 ns 940.05 ns 953.78 ns 967.51 ns

Figure 38 : Execution Unit Shifted ALU Operand Waveform.
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7.2.7 Commentson the MDCML Asynchronous ARM Design

The MDCML ARM demonstrates that the implementation of a simple RISC architec-
ture using asynchronous design techniques is attainable. The complex design task is
made manageable by employing a modular design methodology, namely micropipe-
lines, with subsystems communicating via a well-defined protocol i.e. the transition-
signalling bundled-datainterface. The design of the Register Bank control logic, with
the novel, arbiter-free method of allowing concurrent read and write operation interac-
tion, gives an example of how new design problems can be overcome. The data-de-
pendent operation of the ALU shows how an asynchronous system can take advantage
of the variable processing rates of aparticular functional unit in order to increase overall
performance. Also, the autonomous action of the instruction prefetching mechanismin
the Address Interface demonstrates the independent operation of the component sub-

systems.

The MDCML Asynchronous ARM exhibits a very high degree of concurrency which
IS suggested in many of the Verilog waveforms shown earlier in the chapter. Thisisas
aresult of the self-timed constituent function units operation being solely dependent on
input data availability. As a consequence of this asynchronous computational parallel-
ism, the total system state at any particular instant is difficult to determine. Similarly,
the effects of the interactions between two communicating subsystems, in an overall
system context, are difficult to quantify. Developing an understanding of the total sys-
tem operation is still in the early stages, and the design changes required to increase
overall system performance are not immediately obvious. The production of arealistic
simulation model of the entire system (described in the following chapter) which has
the ability to execute real ARM instruction code programs has proved invaluable in ex-

ploring the complex behaviour of the running system.
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8. Architectural Modelling

8.1 Introduction

Verilog is an industry-standard Hardware Description Language which is integrated
into the CAD system supplied by the MDCML technology provider, GEC-Plessey
Semiconductors (GPS). The entire process, therefore, of architectural modelling
through schematic design capture and physical layout to bipolar technology fabrication

is more easily accomplished.

Architectural modelling of a system seeksto hide the lowest levels of the implementa-
tion complexity from the conceptual design, so that aternative design ideas can be more
easily considered and evaluated. The design processiteratively refinesthe higher levels
of abstraction to move towards an implementation of the prototype system. At each
stagein the process, the V erilog system model can be simulated to provide anindication

of the design correctness and system performance.

8.2 Modedlling

The initia requirement in developing a model of a prototype system is the production
of alibrary of components that can be used to construct larger functional subsystems.
The Verilog HDL has a range of logic primitives incorporated into the language but,
because of the switching characteristics of the different signal levelsin MDCML, the
standard primitives must be combined to produce models of the MDCML gate-level
equivalents (see Section 6.3). For example a 3-input OR gate can be modelled in the

following manner:

107



‘timescale 1ps/1ps
module or3 (Out, Ain,Bin,Cin);

‘define A_del 230
‘define B_del 300
‘define C_del 400

output Out;
input Ain,Bin,Cin;
wire delb,delc;

buf #(‘B_del = ‘A_del) g1 (delb, Bin);
buf #(‘C_del= ‘A_del) g2 (delc, Cin);

Ain
Bin

or  #(‘A_del) g3 (Out, Ain,delb,delc);

endmodule

8 Architectural Modelling

buf s
= deb 1g or Out
Cin ,> delc c

buf

An ‘asynchronous control element’ library is also produced using the behavioural mod-

elling language constructs of Verilog. This comprises the micropipeline control circuit

elements outlined in Section 3.1. The Verilog behavioural model of the Muller-C ele-

ment is shown below:

‘timescale 1ps/1ps
module MullC (Out, Ain,Bin,Rst);

‘define A _del 470
‘define B_del 640
‘define Rst_del 370

output Out;
reg Out;
input Ain,Bin,Rst;

always @ (Ain)
if (IRst) && ((Ain===Bin) || (Ain==="bx)))
#('A_del) Out = Ain;

always @ (Bin)
if (IRst) && ((Ain===Bin) || (Bin==="bx)))
#('B_del) Out = Bin;

always @ (Rst)
case (Rst)
1'bl: #('Rst_del) Out=0;
1'b0: if (Ain===Bin)
#('B_del) Out = Bin;
1'bx:  #(‘Rst_del) Out = ‘bx;
endcase

endmodule

Ain
Bin

Rst

The dynamic simulation behaviour of the above Muller-C element is provided by the 3

concurrently-executinglways @ statements, one for each of the inpiis, Bin and

Rst.
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8 Architectural Modelling

As an illustration of the operation of the model, Ane behavioural code is explained:

At every change of thain signal (always @ (Ain) ), if the Rst (reset) signal is
inactive ( 'Rst) and both inputs have the same value ( Ain === Bin ) dirthe
input is undefined (Ain === ‘bx ), then tien input signal is passed to the out-

put ( Out = Ain ) after the appropriate delay ( #'A_del).

Note that any undefined input signal arriving at the Muller-C is propagated to the out-

put. This feature assists in the detection of incorrect operation (see Section 8.5.3).

Larger components, such as 32-bit Event Registers (Section 3.2.1) can be constructed
from their constituent elements: a Muller-C gate and 32 Capture-Pass latches. Howev-
er, since Event Registers are widely used throughout the MDCML Asynchronous
ARM, a behavioural model of an Event Register is produced which improves simulator
performance. That is, a single model is invoked for any input data signal change rather
than multiple invocations of the constituent models. Also, by producing a single behav-
loural model for a larger function, additional checking can be incorporated into the
model structure to report all occurrences of incorrect circuit operation. For example, the
reception of two successive input request events, without an intervening input acknowl-

edge event, results in an error message being displayed during the simulation execution.

The complex computational subsystems of the Asynchronous ARM architecture, in-
cluding the ALU, shifter and multiplier, are also modelled as behavioural modules. It
is much easier to handle the input and output bus values of such components as single
data entities (e.g. 32-bit integers) rather than manipulating the individual bit values. For
example, consider adding two 32-bit operands in the ALU:

input  [31:0] A, B;

output [31:0] out;
reg [31:0] out;

out=A + B;

Once the bit-widths of the input and output buses are specified, the addition result

assignment to the output bus is achieved by means of a single arithmetic operator.
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8 Architectural Modelling

The complete MDCML Asynchronous ARM model consists of a single module which
instantiates the component subsystems to produce a hierarchical composition of asyn-
chronous modules. The autonomous subsystems communicate using the two-phase
bundled-data interface, and the total system is self-starting from reset. Once the global
reset signal is deactivated, instruction prefetching commences (from the external mem-

ory model) leading to execution of the test program instructions.

The processor diagram shown overleaf in Figure 39 shows the major functional subsys-
tems and the significant control signal and data bundles connected between them. To
assist in the clarity of the diagram, some of the signals found in the Verilog processor
‘core’ model in Figure 40 have not been included in Figure 39. The signal names in the
bolder typeface in the processor diagram indicate the connections to the external envi-
ronment. At the top right-hand corner of the diagram are the bundled-data interface sig-
nals used to communicate with the external memory system. These include the Memory
Access Control Information, Memory Address, Write Data and Read Data values and
the associated protocol control signals. The memory subsystem is modelled using the
Verilog behavioural language to generate the required data values and the communica-
tion protocol control signal sequences. The two signals names at the bottom of the fig-
ure (Abt andDabt[1:0]) handle the fault responses of the memory system. The ‘nor-

mal’ and ‘fast’ interrupt signals\jrq andNfiq) are shown at the top left-hand corner.

The Verilog model in Figure 40, illustrates the top-level components of the MDCML
Asynchronous ARM and the connectivity of the processor signals. The full hierarchical
model developed by the author is given in Appendix A. For example, the Register Bank
(Reg) has the instantiation namg; it produces th&Ga, Rwa andRDr output signals
along with two 32-bit output busehlg[ 31:0] andNb[31:0]). The Register Bank has

five input signalsRGr, RWr, Wc[ 2], Wsel andRDa), in addition to the global reset sig-

nal (Rst), and has three input buses: a 32-bit Write (result) bus, a 30-bit PC (program
counter) bus and a 28-bit control bi&s[7:0]).
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Figure 39 : MDCML Asynchronous ARM Processor Diagram.
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I MDCML Micropipelined ARM
‘timescale 10ps /10ps

nmodul e ARMstCore (Add[31:0],Dout[31:0],CtI[6:0], MEMr,MRRa,
MRR[31:0],Nfig,Nirg,Dabt[1:0],PAbt, MEMa,MRRr,BigEnd,nAbt,Rst);
‘include "ARMstCore.inc"

/I Ctl[] = Seq, Inc, Ren, Wen, Usr, B/W, Opc

/I memory data in blocks and instruction pipeline
Dat | nt dat (MARa,DOa,MEMr2,MWR[31:0],MRRa,DWr,DW[31:0],DWusr,
DW\v,DWpc,INr,IN[31:0],flo[1:0],Nim[31:0],IMa0,IMr2,
MARr,DOr,nMLb[31:0],DObw,MEMa2,MRRr,MRR[31:0],PAbt,DWa,
INa,{MAR[1:0],MAc[4:0],Mval, MdPC,MpPC},IMr0,IMa2,BigEnd,Rst);

Evt Reg #32 lat0 (Dout[31:0], MEMa0,MEMr0, MWR[31:0], MEMr2,MEMa,Rst):

Cgate2 c¢0 (MEMa2, MEMa0,MEMal,Rst);
Cgate2 c¢1 (MEMr, MEMrO,MEMrl,Rst);

/I 1st decode stage
Decodel decl (RGr,Rs[27:0],IN2r,IN2[25:0],IN3r,IN3[19:0],PCsel, XPr,
XLa,INa,IMr0,LSMPr,nTRM,r15,NGr0,nGn[1:0],vect[2:0],
INr,IN[31:0],flo[1:0],Nfig,Nirq,PCpar,RGa,IN2a,IN3a,XPa,
XLr,PPr3,IMa0,LSMPa,ALUgo,ALUok,mode[5:0],NGa0,nAbt,Rst);

/I 1st execution and 2nd decode stage
Reg rg (RGa,RWa,RDr,Na[31:0],Nb[31:0],
RGr,Rs[27:0],nPC[31:2],RWr,W[31:0],Wc[2],Wsel,RDa,Rst);

NGen nGen (NGaO,NGr2,ng[5:0], NGr0,IN[15:0],nGn[1:0],vect[2:0],NGa2,Rst);

Decode2 dec2 (IN2a,RSa,C2r,{Imd[6:0],SHop[9:0],DObw,c2[7:0]},
IN2r,IN2[25:0],RSr,Na[7:0],C2a,Rst);

// IN[] = Xt[1:0],PCpar,cond[3:0],sctls[2:0],I[11:5],
DObw,toRs,cpCP,~toDO,~toA,nGen,~Mult,NImm

// Imd[] = Xt[1:0],PCpar,cond[3:0]

/I c2[] =toRs,cpCP,~toDO,~toA,nGen,~Mult,NImm

/I 3rd decode stage
Decode3 dec3 (IN3a,C3r,ALfs[9:0],{vec3[2:0],c3[22:0]}, IN3r,IN3[19:0],C3a,Rst);

// c3[] = UseCP,S,F,C,Wcp[2:0],Ral,Rcnd,~ALUwt,~DabtWt,
tPCp[1:0],Wreg,Wadd,SP,LSM,Ren,Wen,B/W,Opc,destPC,Rsel

/I 3rd control and execution stages
Shi ft shft (Sh[31:0],ShC,SHd, nMLb[31:0],Nim[31:0],c2[0],SHop[9:0],psrC,SHe);

ExecP excP (RDa,C2a,C3a,NGa2,SHe,IMa2,PCpar,ALUgo,ALUok,mode[5:0],psrC,
WRr,W[31:0],Wc[9:0],Wq[1:0],APr,DOr,nMLb[31:0],RSr,Dabt0,
RDr,Na[31:0],Nb[31:0],C2r,c2[7:0],C3r,c3[22:0],vec3[2:0],
ALfs[9:0],NGr2,ng[5:0],Sh[31:0],ShC,SHd,IMr2,Imd[6:0],
DWI[31:0],DWv,DWusr,WRa,Wsel,APa,DOa,RSa,Dabt[1:0],Rst);

/I write bus control
WCt |l wctl (DWa,WRa,RWr,ADr,Wsel, DWr,DWpc,DWv,WRr,Wq[1:0],RWa,ADa,WLx,Rst);
/I the memory address interface
Addl nt add (ADa,WLx,APa,PPr3,XPa,XLr,nPC[31:2],LSMPa,
MARr,MAR[31:0],{MAc[6:0],Mval, MdPC,MpPC},
ADr,W[31:0],Wc[9:0],APr,Na[31:0],LSMPr,nTRM,
r15,INa,XPr,XLa,PCsel,MARa,Dabt[1],Dabt0,Rst);

/I MAc[] = Seq, Inc, Ren, Wen, Usr, B/W, Opc
/I Mval =valid MdPC =destPC MpPC = PCpar

Evt Reg2 #(32,7) lat1 (Add[31:0],Ctl[6:0], MEMal,MEMTr1,
MAR[31:0],MAc[6:0], MEMr2, MEMa,Rst);

endnodul e // ARMstCore

Figure 40 : MDCML Asynchronous ARM ‘Top-Level’ Verilog Model.
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The Verilog comment at line 8 of Figure 40Gtl[] = Seq,Inc,Ren,Wen,Usr,B/W,0Opc)
indicates the component signals that compriseCthié:0] external memory control
bus. Some of the other MDCML Asynchronous ARM control buses are also expanded

in the comment lines.

8.3 Features

8.3.1 Instantiation Parameters

One useful feature of the Verilog modelling environment is the use of parameters when
instantiating components. These parameters may be used, for example, to specify dif-
ferent propagation delay times for different instances of the same module (to reflect
particular gate loading effects) or to specify multiple bit-widths for certain components.
To illustrate this point, a register can be modelled by specifying a multiple bit-width

parameter for the data input and output nets of a latch.

‘timescale 1ps/1ps
module T_latch (out, in, enable);
parameter width=1; // default data width = 1
parameter Data_delay=330;
parameter Enb_delay=490;

enable
output [width-1:0] out; |
reg  [width-1:0] out;
input [width-1:0] in; in[1—) T = out[]
input enable;

always @ (enable)
case (enable)
1'bl: #Enb_delay out =in;
1'bx: out = ‘bx;
endcase
always @ (in)
if (enable)
#'Data_delay out = in;

endmodule

When instantiating components, the required parameters must be specified in the same
order as they are given in the particular component definition - in the case of the T_latch
above: width,Data_delay,Enb_delay. If no parameters are specified, the default values

are used, i.e. width =1, Data_delay = 330ps, Enb_delay = 490ps.
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The modules are then instantiated in the following manner:

Two single-bit latches with differing data propagation delays
T_latch #(1,300,500) t1 (outl, inl, enbl);
T latch #(1,400,500) t2 (out2, in2, enb2);
tlisasingle-bit T_latch, with a 300ps input-output data propagation delay and a
500ps enable-output propagation delay, where the data input signal is called inl, the
output is called outl and the enable signal is called enbl.
t2isasoasingle-bit T_latch, thistimewith a400psinput-output data propagation
delay and again an enable-output propagation delay of 500ps.

A 3-stage pipeline for 32-bit data values:

T latch #(32,300,500) pl (01[31:0], pin[31:0], enb);
T_latch #(32,300,500) p2 (02[31:0], 01[31:0], Nenb);
T latch #(32,300,500) p3 (pout[31:0], 02[31:0], enb);

The pipeline is constructed by instantiating T_latch components with 32-bit data
widths. The input of the pipeline, pin[31:0], isfed into the input of the first latch, pl.
The output of pl, 01[31:0], isfed into the input of the second latch, p2, and so on.

The enable signals of the successive stages of the pipeline operate in antiphase,
causing data values to move one stage along the pipeline for every two transitions of

the enable signal.

8.3.2 Test Vector Generation

A standard technique of generating test patternsfor validating afabricated chip isto ap-
ply stimuli to the ssimulation model of the design and then dump the values of the sig-
nificant control signals and data buses at suitable time intervals to an activity file. In a
synchronous system, thisnormally occurs at the clock edge, when all signalsare usually
stable. For an asynchronous system, however, given that subsystems operate concur-
rently at their own rate, the sequential ordering of changesin logic level of two inde-
pendent signalsinternal to two separate subsystems cannot be specified. Therefore, the

total system state at any given instant cannot be known.
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One method used to automatically generate test patterns for a micropipelined systemis
to locally delay the acknowledge signal into each subsystem until sufficient time has
elapsed so that all internal signals have reached a stable state. Effectively, the module
Is deadlocked awaiting the acknowledge input. The subsystem state is then recorded at
the instant of the acknowledge input event using the $fstrobe() Verilog function. Test
patternsfor the entire chip can be produced by delaying the external memory access ac-
knowledge input for each memory access and dumping the control and bus values of

interest.

The $strobe() Verilog system task allows the value, at the end of the current timestep,

of any signal wire or register to be displayed on the standard output device. The
$fstrobe() function alows the values to be written to afile viaan output channel iden-
tifier. For example:

always @ (input)
$fstrobe(chan_id, " %b %b %h", input, output, state);

The $fstrobe() task istriggered on every input signal change ( always @ (input) ). The
signal values are written to the file which was bound to the chan_id channel identifier
when it was initially opened. The signal values are written on the same line, for each
input signal change, in thefollowing order: input, output, state. The format of the signal
values (" %b %b %h" ) is Binary for the input and output, and Hexadecimal for the

state.

The example illustrated overleaf is of the MDCML Asynchronous ARM Chip model
(ARMst), which consists of the processor core and the bond pad driver circuits. In order
to reduce the pin count, the input data bus (MRR[31:0]) and the output data bus
(Dout[31:0]) use the same external data bus (Xd[31:0]) by means of tristate driver cir-

cuitry.

The activity fileisopened, inaVeriloginitial timing control block, using the following
file operation system task:

dump_chan = $fopen("ARMst_vecs');

if (dump_chan == 0) $finish; Il quit simulation if $fopen() fails.
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The interface signals for the ARMst module are then recorded in the activity file by the
$fstrobe() system task whenever the Reset (XRst), Memory Read Request (XRr) or
Memory Access Acknowledge (XMa) signals change:

always @(XRst or XRr or XMa)
$fstrobe(dump_chan,
" %b %b %b %b %b %b %b %b %b %b %h | %h %b %b %b - %0d",
XBigEnd, XnAbt, XPAbt, XDabt, XNfiq, XNirqg, Xdbe,
XRr, XMa, XRst, Xd, Xa, Xc, XMr, XRa, $time);

Theformat of the resulting activity file is shown below:

Test vectors for ARMst chip (core + peripherals)

| nput s Qut put s

X |

B |

i XX XXX

gnP DNNX X |

EAA afidXXR | X X

nbb birbRMs X | X X M R

dtt tgqger at d | a c r a tinme
__*_*_*_10_*_*_*_*_*_*_********__|__********_*******_* kN I S O

00 X xXx 11X 0 X 1 XXXXXXXX | XXXXXXXX XXXXXXX X X - O

00X 0011x 00 1 XXXXXXXX | XXXXXXXX XXXXXXX X X - 101

00000110000 xxxxxxxx | 00000000 0110001 0 O - 1000

00000110100 eal00098 | 00000000 0110001 1 O - 2736

00000110110 ea000098 | 00000000 0110001 1 12 - 3271

00000110010 eal00022 | 00000004 1110001 0 1 - 4514

00000110000 eal00022 | 00000004 1110001 0 O - 5049

00000110100 eal0008e | 00000008 1110001 1 0O - 6292

00000110110 eal0008e | 00000008 1110001 1 1 - 6827

The prototype silicon can then be tested by subjecting the test specimen to the input
stimulus given on the left-hand side of each line in the activity file. Eventually, the
specimen outputs should (for a fully-functioning device) assume the associated test

vector file output values for each stimulus line.

Since the signal values are only ‘'sampled’ when the system state is stable, there is a risk
that timing errors may be overlooked. However, only timing errors on the external in-
terface signals may be missed, since any internal data-bundling timing errors will prop-
agate incorrect data values to the outputs - which will then be detected. Design effort
must be directed to the external interface control elements to ensure data-bundling er-

rors are eliminated.
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8.4 Code Execution

8.4.1 Compilation Method

The executable binary is generated from the actual program and an ARM assembler file
which contains various initialisation and library functions. The files are compiled, as-
sembled and linked using the ARM Cross-Development Toolkit. This allows code to
be generated by a SPARC-based workstation for execution on an ARM processor. A
binary executable is produced, which is then converted to a text format suitable for

loading into the asynchronous ARM Verilog model.

8.4.2 Validation Suite

Since the MDCML Asynchronous ARM is binary code-compatible with the existing
synchronous ARM devices, the test program suite used by Advanced RISC Machines
(ARM) Ltd. to test prototype devices can al so be used to test the design of the asynchro-

nous implementation.

The ARM Validation Suite consists of over a dozen test programs written in ARM as-
sembler [Cock87]. The suite includes programs to exercise the data processing subsys-
tems of the ARM architecture, involving the Arithmetic Logic Unit, Shifter and Multi-
plier. Further validation programstest the operation of the Register Bank, including the
reading and writing of the Current and Saved Processor Status Registers (CPSR and SP-
SRs) and the interaction of the processor with the external memory system viathe Load/
Store Register (LDR/STR) and Load/Store Multiple (LDM/STM) instructions. The

branch (and branch-and-link) mechanism of the processor is also fully tested.

Asmentioned previously, the MDCML Asynchronous ARM has no support for coproc-
essor interaction and the Multiply-with-Accumulate (MLA) instruction is not imple-
mented, therefore these aspects of the ARM Validation Suite are not considered during

the design test phase.
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The simulated execution of the ARM Validation programs revealed a number of errors
in the Asynchronous ARM model. In particular, running the Multiplier function test
program contained in the Validation Suite exposed an error in the Verilog Multiplier
module. The cause of the problem was traced to a specific feature of the Verilog mod-
elling environment. When the assignment of a new value to a bus or control signal oc-
curs, but the newly assigned value is the same as the previous valug Yfetiog

event is generated for the assignment. This means that any event control statement de-
pendent on the signal value (efvays @ (signal)) isnot triggered. The Multiplier be-
havioural model had to be modified and the addition of an extra control signal was re-

quired.

Complete verification of the MDCML Asynchronous ARM architectural model, by
running the ARM Validation Suite, gives a significant degree of confidence in the over-

all asynchronous design and the component subsystems.

8.4.3 Dhrystone Benchmark

As a high-level language platform, a computer architecture should efficiently execute
those features of a programming language that are most frequently used in actual pro-
grams. This ability can be measured by a program knowhesstamark. A benchmark

can be a real application program supplied with specific input data chosen to provide a
representative task or a specially-written (synthetic) program incorporating a wide

range of high-level language statements and constructs.

The original Dhrystone synthetic benchmark program (written in Ada) was published
in the CACM in October 1984 [Weic84]. A ‘C’ version was produced in 1988. The pro-
gram contains statements of a high-level programming language in a distribution which
is considered representative of a general-purpose, integer-computational processor
workload. The program statement statistics used to develop the Dhrystone benchmark

are based on the execution of over 700 programs written in several languages.
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The actual benchmark statement distribution is as follows (‘C’ version):
assignments 51.0%
control statements 32.3%

procedure, function calls 16.7%

The distribution of statements is also balanced with respect to operators (arithmetic,
logical, comparison etc.), operand type (integer, character, pointer, Boolean etc.) and
operand locality (global, local, procedure parameters, function results etc.). The pro-
gram does not compute anything meaningful, but is syntactically and semantically cor-

rect.

There are several areas where the execution details (compiler influence, timing meas-
urement method, cache interaction etc.) have to be checked very carefully whenever a
synthetic benchmark program is used for comparison of different processors or differ-
ent systems. However, for evaluation of design alternatives of the functional compo-
nents of a prototype microprocessor, the Dhrystone benchmark, with its representative

mix of program statement types, provides a useful metric.

The executable binary is generated from three files: two ‘C’ source files (dhry_1.c and
dhry_2.c) which contain the actual benchmark program and an ARM assembler file
which contains initialisation and library functions. A 16Kbyte binary executable is pro-

duced, which is then converted to the text format suitable for loading into the Verilog

external memory model.

The model executes 1 Dhrystone loop in approximately 344 seconds and indicates a
simulated time of 22.9 microseconds, the ratio of the actual running time to the simu-
lated time is 15,000,000:1. This translates to a Dhrystone benchmark figure of around
43,500 Dhrystones per second. For the purposes of the benchmark execution, an exter-
nal memory access time figure of 5ns is assumed. Also, the result is based on typical

parameters for the underlying fur bipolar technology.
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For comparison, theyim CMOS AMULET1 device yields a figure of 20,500 Dhrys-

tones per second [Furb94b].
8.5 Usage

8.5.1 Instrumentation

Since the Verilog language has a rich and powerful behavioural modelling capability,
custom design tools and system modelling instrumentation functions can also be quick-
ly and easily produced. The following tools, which assist the digital engineer in explor-

ing the dynamic behaviour of the prototype system, have been written by the author.

The data bundling constraint (see Section 2.2.4) is an integral and necessary part of the
interface protocol. Bundle Checker module has been written in the Verilog behav-
loural modelling language and attached to each of the data “bundles” of interest (data
bus + request signal) to determine the validity of the data value change and request sig-
nal event sequencing. This has enabled modules with an insufficient bundling tolerance
to be identified and modified. The bundle checking code is also incorporated into the
behavioural representation of the Event Register module, since these components are

widely used throughout the Asynchronous ARM design.

Usually, al nanosecond bundling margin is considered safe, i.e. the data arrives at

least 1ns before the request event. However, an Event Register has a ‘built-in’ bundling
margin of around 1.2ns because of the circuit topology (see Figure 6). The ReqIN re-
guest signal must pass through the Muller-C element and then through a power driver
circuit (not shown in Figure 6) before the Capture-Pass element begins to latch the in-
coming data, Din. Therefore, even if the data and request signals arrive simultaneously
at the Event Register external inputs, the ‘built-in’ bundling margin results in a safe

transfer of data.
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A sample output of the Bundle Checker module and Event Register during asimulation

run is shown below (all times are given in picoseconds):

Bund_Chk test.sys.cpu.core.rg.LkF. ChkA: Margin = 90 @ 14573
Bund_Chk test.sys.cpu.core.rg.LkF.ChkM Margin = 90 @ 26342

Evt Reg test.sys.cpu.core. dat. menCP. | 0: 2730 @9671

Evt Reg test.sys.cpu.core.decl. | 3: 4230 @ 35185
Bund_Chk test.sys.cpu.core.rg.Chkl: 2450 @ 6206

Evt Reg test.sys.cpu.core.rg.w at: 1730 @ 35891
Bund_Chk test.sys.cpu.core.rg.LkF. ChkA: 90 @ 14573

Bund_Chk test.sys.cpu.core.rd.LkF. ChkM 90 @ 26342
Evt Reg test. sys. cpu. core. add. xpi pe. el: 21280 @ 46342

The first block shows where (and when) the Bundle Checker has detected a bundling
margin below 1000ps (i.e. 1ns) while the ssimulation is running. The second block in-
volves each bundle checking component (including Event Registers) reporting its min-
imum bundling values at the end of the simulation run. Note that some of the modules
indicate a bundling margin well in excess of 1ns. This suggests areas where the control

circuit performance may be increased.

Another, behaviourally-modelled, design tool which has been implemented isthe Pipe-
line Occupancy Monitor. Thisis used to collect information regarding the effective-
ness of each of the FIFO buffering pipelines used throughout the design, and can clearly
be used to influence the pipeline depth in the design. The effect that the number of pipe-

line stages has on performance is examined in greater detail in Section 8.6.4.

A further useful tool when attempting to understand the operation of a microprocessor
isadisassembler, sinceit isoften useful to know the specific instruction that a particular
functional unit is processing. This can be achieved by disassembling the 32-bit value
representing the instruction (asin most RISC architectures, the ARM instructions are a
fixed width). A Verilog Disassembler module can be connected to the input stage of
the instruction (buffering) pipeline in the Data Interface, to note when a particular in-
struction of interest is (pre)fetched from external memory. Alternatively, it could be
connected to the input of the Instruction Decoder to determine when the instruction ac-
tually begins decoding. Usually, the latter option is chosen because it represents the

commencement of the actual instruction execution.
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Writing the disassembler module in the Verilog behavioural language was relatively
straightforward for the author because of two factors: The Verilog language syntax is
very similar to an existing high-level procedural language (‘C’) of which the author has
programming experience; and the instruction set generally follows the RISC principle
of having few instruction formats with regular bit-field positions. The output of the Ver-

ilog-ARM Disassembiler is in the form of a text string which is suitable for display in

conjunction with other signal and bus values using the Verilog waveform display de-

scribed in the following section.

A Disassembler output example can be seen towards the bottom of Figure 35 (labelled
DIS) in the previous chapter. In this case, the disassembler module is connected to the

input stage of the Primary Instruction Decoder.

8.5.2 Graphical Output

The Verilog waveform output mechanism is implemented bygthevaves() system

task. The user can continuously monitor the waveforms via the interactive graphics in-
terface as the simulation progresses. Two different screens are providedvidse
screen, on which the signal waveforms are displayed as timing diagrams, Sglddhe
screen, which displays the list of signals from which the user can choose a subset for
current display. The unknown (or X) state of a signal or bus is displayed as a solid filled
box. The high impedance (or Z) state is displayed as a horizontal line which is vertically
centred between the ‘0’ and ‘1’ levels. Tdre waves system task was used to produce

the waveform diagrams illustrated in the previous chapter.

Verilog provides an interactive graphics interface to display data as a screen of text
along with the formatted values of system model nets and registerg. Tlegs() sys-

tem task defines the layout of the screen and specifies the text and variables to be dis-
played and the appropriate formats. The graphics screen is updated whenever a value
changes for any of the variables defined inghe&egs task during the simulation exe-

cution.
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A time bar is displayed at the top of tre regs window representing the total time pe-
riod of the simulation execution. The interactive mode allows the user to select a par-
ticular instant in time by positioning the cursor at a particular point on the time bar - the
required data values for the corresponding time are then displayedgin tbgs win-

dow.

CHROMOUS AR

Current

208934

f=] E=] b= L= E=] E=] (0] E=] E=] L= C=] E=] L= [=] L= [=] L= [=] L= C=] =]

Figure4l: Register Bank Display using Verilog gr_regs() system tas

This graphical output feature is particularly useful for displaying information about the
internal state of the prototype system. The Asynchronous ARM Register Bank is dis-
played using this feature in Figure 41. The Register Bank consists of 31 general-pur-
pose registers (including the Program Counter (PC) - R30) and 6 SPSRs (Saved Proc-
essor Status Registers). Only a subset of the entire Register Bank is ‘visible’ to the pro-

grammer in any one of the processor execution modesgiTinegs Register Bank
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display showsthe current simulation timein the top right-hand corner (t = 20893.49ns).
The value of each of the 37 registers, at this particular time, is shown in the left-hand
column. The previous value of each of the registers, and the (simulation) time at which

each register was modified is shown in the middle and right-hand columns respectively.

Verilog aso provides the capability to view data as dynamically changing bar graphs.
Thegr_bars() system task allows the user to set up charts with multiple bar graphs and

update the bars as the simulation proceeds.

akd BARS

Il'll'n—li In=str WeDat MemCP  PC
Oata Interface Addr

Mem_F ALU_F
Lock FIFO

Figure 42 : Pipeline Occupancy using Verilog gr_bars() system task.

The gr_bars facility can be used in conjunction with the Pipeline Occupancy module
(see Section 8.5.1) to display information regarding the occupancy of all buffering
structures used throughout the Asynchronous ARM design. Figure 42 shows the occu-
pancy of the pipelines and buffer structures used in the processor core at a particular
instant in (simulated) time. These include: the Immediate Field Extraction Unit, In-
struction Pipe, Write Data Buffer and Memory Control Pipe in the Data Interface; the
PC Pipe and Exception Pipe in the Address Interface and the Memory Lock FIFO and
ALU Lock FIFO in the Register Bank.
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8.5.3 Detecting Incorrect Operation

One of the primary requirementsin exercising asimulation model of aprototype system
isto determine when, and where, the system functionsincorrectly. For an asynchronous
design, erroneous operation may be easier to detect and locate than for a synchronous
design, since, in many cases, the asynchronous system will deadlock. A control element
may have generated a request signal and not received an acknowledge due to a design
fault in the control circuit. Location of the fault is usually achieved by determining
which request-acknowledge signalling pairs have not yet completed their communica-

tion actions and examining the control circuits responsible for generating these signals.

In some circumstances, the control signal events going to a particular control element
may not appear in the correct sequence. For example, an Arbiter may receive a request
signal on input R1 and then receive a second request event on R1 before a done signal
is received (D1), releasing the Arbiter after the first R1 request. Also, for a Call ele-
ment, the common (subroutine) done signal may be received before any of the request
input channels has actually received a request event. Generally, the cause of incorrect
sequencing of the control signalsis (as above) design faultsin the control circuits. The
Verilog behavioural models of many of the asynchronous control elements contain ex-
tra checks to detect incorrect interface signal sequencing and report errors (including
the module instance concerned and the time) while the simulation is running. Also,
when incorrect sequencing is detected, the outputs of the particular control element are
forced into the undefined state, since in the real system the output values would not be

valid if the control element functionsincorrectly.

In an asynchronous system composed of functional units communicating using transi-
tion signalling, an event occurs when the logic value on any signal wire changes be-
tween the logic 0 and logic 1 levels - in either direction. An undefined value on any of
the control signal wires in such a system could prove catastrophic, particularly if the
undefined state remains undetected. Usually, an undefined control signal causesthe re-

quest-acknowledge communication protocol to fail and the system will deadlock. In or-
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der to ensure that the system deadlocks as quickly as possible in such circumstances,
the Verilog models of the control blocks of the MDCML Asynchronous ARM have
been written so that undefined control signals are rapidly propagated throughout the
system. Any undefined input signal arriving at a control element is immediately prop-
agated tall outputs of that control element. Total system deadlock results very quickly,

enabling the source of the original undefined signal to be easily detected.

The case of incorrect operation which is most difficult to detect is where the bundling
constraint is not met when a data value is passed between two asynchronous modules
using the bundled-data interface. If the transfer request event arrives at the receiving
module before the actual data value, the receiver may latch (capture) an incorrect data
value. The request and acknowledge control signals are correctly generated and re-
ceived by the sender and receiver, respectively, and in the correct sequence. As a result,
the system will continue to operate, but with the ‘wrong’ data value. The effects of
propagating an incorrect data value may be significant, particularly if the value is sub-
sequently used to generate system control signals. It is in consideration of this factor
that a great deal of design effort must be directed towards eliminating ‘data bundling’
errors. The Bundle Checker module (section 8.5.1) assists the asynchronous logic de-

signer appreciably.

8.6 Performance analysis

8.6.1 Subsystem Processing Perfor mance

The Dhrystone benchmark program has been used as a general test program to evaluate
alternative design decisions and to provide a performance measure. In particular, it al-
lows the effect of a change in processing rate of a given datapath component, in the con-
text of overall system performance, to be assessed in order to pinpoint computational

bottlenecks. The effect on the execution time of varying a module’s processing rate by
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altering the delay between its Request_In and Request_Out control signals is shown in

Figure 43 for the ALU, Register Bank and Primary Decode PLA.

It might be expected that at a high processing rate (for a given subsystem block) the
graphs would be almost horizontal until a point was reached, as the processing rate de-
creased, when the time delay through the block would move it onto the ‘critical path’

causing system performance to be severely impacted.

50000

+—f ALU
48000 G—o© Reg. Read Access
A—A Decode PLA

46000

Dhrystones per sec.

44000

42000

40000
0

4 6
Processing delay time (ns)

Figure 43 : Graph of Block Processing Time vs Dhrystone performance

The results however do not show this. Instead they seem to suggest that in an asynchro-
nous system of inter-communicating modules, when considered over a number of exe-
cuted instructions, every subsystem on the datapath is on the ‘critical path’, i.e. a change
in processing rate of any subsystem has an effect on overall system performance. The
Dhrystone performance graph for the Primary Decode PLA is approximately constant
over the processing delay range shown. This tends to indicate almost complete overlap
with concurrent, slower datapath operation. By considering the gradient of the graphs
for each subsystem, it can be noted that the degree of linkage between subsystem per-
formance and overall system performance is different. Design effort, to increase system

performance, should therefore be concentrated on those subsystems which produce the
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steepest gradient processing rate graphs, since this will have the most beneficial effect

on overall instruction throughput.

8.6.2 Non-symmetrical Propagation Delays

Due to the characteristics of the underlying bipolar technology, with inputs to the basic
circuit elements being at different voltage levels, the propagation delay from input to
output for many of the primitive logic functions is non-symmetrical i.e. it is different
for each of the inputs. To determine if the effect of the non-symmetrical propagation
delays significantly affects the performance of the MDCML Asynchronous ARM, the
switching characteristics of two of the most heavily used primitive asynchronous con-

trol elements, the XOR gate and the Muller-C element, are examined.

The XOR gate acts as a MERGE element for events (see Section 3.1.1). An output event
(transition) is generated fewery input event. Initially, the most active input of each
XOR gate instance is determined i.e. the input that switches most during a complete run
of the benchmark program. The most active input signal is then assigned to the fastest
switching (level 3) input terminal of each of the XOR gates and the benchmark is again
run. For comparison, the XOR gate inputs are reversed (with the most active input sig-
nal assigned to the slower switching input terminal, at level 2) and the benchmark pro-

gram is again executed.

The Muller-C gate acts as a JOIN element for events (see Section 3.1.2). An output
event is generated only after an event has been receiveatlfomputs. In contrast to

the ‘most active input’ technique for the XOR gate, the ‘later switching’ input must be
determined for each Muller-C element i.e. the last event to arrive for each input event
‘pair’. The later switching input signal is assigned to the fastest switching (again level
3) input terminal of the Muller-C and the benchmark program executed. Again, for

comparison, the benchmark is executed with the Muller-C elements inputs reversed.
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The results for the XOR gate and Muller-C element are shown in the table below (all

figures are expressed in Dhrystones per second):

Fastest Slowest Difference
XOR 43535 43137 398
MULLER-C 43950 42644 1306

Figure 44 : Effect of Non-Symmetrical Propagation Delays.

Thefiguresindicate that, in the case of the XOR gate, the non-symmetrical propagation
delays have little effect on overall performance. However, in the case of the Muller-C
element, a 3% improvement in system performance can be achieved simply by connect-

ing the gate the "optimum way round".

8.6.3 Processor-Memory Interaction

The MDCML Asynchronous ARM processor core is contained within an external sim-
ulation environment which includes asimple MM U and memory model capable of sup-
porting the bundled-data communication protocol. In order to determine if the proces-
sor performance is limited by the external memory accesstime, for prefetching instruc-
tions or reading and writing data values, severa simulation runs of the Dhrystone
benchmark program were performed with different access time values in the memory

model for each run. The results are shown in the Figure 45 overleaf.

The graph shows that the processor performance is, to some extent, limited by the ex-
ternal memory speed. Although a doubling of memory speed does not result in a dou-
bling of processor speed, any increased memory performance is reflected in increased
processor performance. Also, an indication of the peak performance of the processor
can be obtained by extrapolating the graph backwards to the zero point on the x-axis,
I.e. memory accesstimeisOns (an infinitely fast memory). Thisgivesatheoretical peak

performance of around 46,500 Dhrystones per second.
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Figure 45 : Effect of Memory Speed on Processor Performance.

8.6.4 Internal Pipeline Efficiency

The Asynchronous ARM processor contains several pipeline structures which act as
buffers to even out the flow of data between functional units of differing speed in the
design. Some Event Registers between datapath stages are necessary to support concur-
rent operation since a previous result can be held while a unit computes its next result.
In an attempt to improve the performance of the overall system, the efficiency of these
pipelines must be examined. The lengths of some of theinternal processor pipelinesare
fixed, since they perform a particular function or are used to prevent potential deadlock
situations. For example, the PC Pipein the Address Interface must be 2 stages|ong (see
Section 7.2.4) and the 5-stage Instruction FIFO Pipeline in the Data Interface must be
3 stages longer than the PC Pipe to prevent a complex deadlock state (see Section
7.2.5). Also, the Memory Control Pipein the Data I nterface must be the same length as

the Instruction FIFO Pipeline.
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The operation of 4 particular pipelines will be examined in detail. These are the ALU
and Memory Lock FIFOs in the Register Bank, the Immediate Field Extraction Unit

and the Write Data buffering structure in the DOUT section of the Data Interface.

The Pipeline Occupancy Monitor module was connected to the external request and ac-
knowledge signals of the pipelines under investigation and the Dhrystone benchmark
program was executed. The results are displayed, using the $gr_bars() system task, in
Figure 46 below:
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Figure 46 : Pipeline Occupancy during Benchmark Execution.

For each of the pipelines, the fraction of the total simulation time that the pipeline oc-
cupancy was a particular value is shown. For example, for 89% of the total time, the
ALU Lock FIFO was empty and for 10% of the time, the ALU Lock FIFO contained

only oneitem.

The results seem to suggest that the ALU Lock FIFO, Memory Lock FIFO and Write

Data Buffering pipelines are too long and could be reduced to contain only 1 stage (or
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possibly removed altogether). The Immediate Field Extraction Unit is probably the cor-

rect length.

The investigation was carried further by modifying the length of each of the pipelines,

in isolation, and noting the effect on the processor performance when executing the
Dhrystone benchmark. Performance may be improved by shortening pipelines, which
reduces the latency of the pipeline, i.e. the time taken for a single item to pass through

an empty pipeline. The results are shown in the graphs below in Figure 47.
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Figure 47 : Effect of Pipeline Length on Processor Performance.

The *'s in each of the graphs shows the length of that particular structure in the current
MDCML Asynchronous ARM design. Note that the Immediate Field Extraction Pipe

must contain at least one stage for correct system operation.
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The results indicate that the ALU Lock FIFO should be shortened by 2 stages (to 1

stage), the Memory Lock FIFO should be shortened by 1 stage (to 3 stages), the Imme-
diate Field Extraction Pipe should be shortened by 1 stage (to 1 stage) and the Write
Data Buffer should contain only 1 stage (shortened by 2 stages). These ‘recommended’
pipeline modifications were simultaneously incorporated into the processor design and

the benchmark was again executed. The resulting Dhrystone performance was meas-
ured at 44,045 Dhrystones per second - the increase in performance was approximately
equal to the sum of the performance increases when the best case of each individual
pipeline graph is considered separately. Of greater importance in the bipolar design,

than the performance gain, is the decrease in silicon area used for active cells and rout-

ing in addition to the power reduction.

The conclusion from this pipeline efficiency study is that the lengths of the pipelines in
the current MDCML Asynchronous ARM design should be reduced, in some cases by
as much as 2 stages. However, the results only apply to the execution performance of a
particular program (the Dhrystone benchmark). There is a requirement to consider a
range of general-purpose applications, where individual pipeline structures may be
more heavily stressed and, unless silicon area is at a premium, it is better to provide ex-

tra buffering to smooth out processing ‘hot spots’.

8.6.5 Commentson the Performance Analysis.

As mentioned in the concluding comments of the previous chapter, developing an un-
derstanding of the total system operation of the MDCML Asynchronous ARM, with its
complex integration of inter-communicating, self-timed subsystems is still in its early
stages. However, the ability to develop user-instrumentation for a wide variety of mon-
itoring tasks using the Verilog behavioural modelling language and to present the re-
sulting information in its most appropriate form using the graphical and text output Ver-
ilog system tasks assists the asynchronous logic designer appreciably in designing

working (i.e. correct) systems and exploring the dynamic behaviour of those systems.

133



O. Conclusions

The principal aim of this project was to build an architectural model of the MDCML
(bipolar) Asynchronous ARM processor capable of supporting the simulated execution
of real ARM instruction code programs. This has been achieved. Furthermore, the mod-
el has then been used to explore the dynamic behaviour of the system. Various forms
of user-instrumentation were written by the author to enable detailed examination of
particular function units, and to present the resulting information in a wide variety of
forms. Design enhancements were then proposed and tested by the execution of awide-

ly-used benchmark program.

When designing systems incorporating new ideas, whether these are implementation
technology developments or new architectural features, the risks of encountering diffi-
culties are increased over a more mature foundry process or circuit design style. Simu-
lation offers the opportunity to exhaustively test the prototype system beforeit is com-

mitted to the integrated circuit manufacture, where design changes are not possible.

9.1 Production of the System Model

Initialy, circuit simulation of the basic bipolar logic primitives was carried out to pro-
vide information regarding the switching characteristics of the target implementation
technology. The knowledge gained was then employed to construct structural and be-
havioural models of the standard logic primitives (AND, OR, etc.) and asynchronous

control elements in the Verilog modelling environment. By producing gate-level and
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functional models of the system building blocks, the ssmulation of a large-scale proc-

essor design becomes computationally feasible.

The functional subsystems of the Asynchronous ARM, including the Register Bank,
ALU, Memory Interface and Decode logic were then devel oped. They were construct-
ed, either from the combination of the logic primitives and asynchronous control ele-
ments or from representations involving a behavioural description. The complete sys-
tem consists of the functional subsystems supported by a transition-signalling commu-

nication protocol.

9.2 Current State of the Project

The architectural model of the MDCML Asynchronous ARM processor has been com-
pleted and, at the time of writing, the major part of the datapath is near submission for
fabrication. This has only been possible through the use of simulation since it involves
anovel design methodol ogy and anew target implementation technology. A simulation
environment, consisting of asimple Memory Management Unit (MMU) and an exter-
nal memory model, has also been produced. The Asynchronous ARM model success-
fully executes all the programsin the ARM Validation Suite, except for those instruc-
tions requiring specific hardware resources which will not be implemented in the target
bipolar technology. A number of design and monitoring aids have been written by the
author which expose significant parts of the internal operation of the asynchronous sys-
tem. Information gained during the processor pipeline length investigation enabled the
length of the ALU and Memory Lock FIFOsto be reduced in the original designtoim-

prove performance and reduce silicon area.

9.3 Commentson theVerilog Modelling Environment

Verilog provides an ideal environment for modelling a micropipelined asynchronous
microprocessor architecture. Its modular, hierarchical structure is in harmony with a

system composed of inter-communicating asynchronous functional units, and asyn-
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chronous operation maps well onto its control constructs. The flexibility and suitability
of Verilog is further demonstrated by the production of custom tools and test vectors

specifically for our prototype design.

The bottom-up, incremental design style and verification of individual primitive com-
ponents is easily accommodated into a high-level, behavioural view of the overall sys-
tem, which is largely technology independent. The production of a full execution code-
compatible architectural model results in a valuable aid in analysing the dynamic be-
haviour of the system and gives a degree of confidence in the design approach. Alter-
native design decisions have been more easily evaluated and an indication of expected

performance has been gained.

In common with many other digital logic modelling environments, a Verilog design de-

scription is exercised by means ofement-driversimulator. This simulation paradigm

fits particularly well with the event-driven computational model of asynchronous logic.

Furthermore, the timing control mechanisms incorporated into the Verilog behavioural
language, especially tlegent control constructs, would be ideal for modelling a self-

timed system developed using any asynchronous design methodology.

A high degree of concurrency is supported in the Verilog system model through the use
of thefork andjoin compound statements (see Section 4.5.1), allowing a non-deter-
ministic ordering of the notionally parallel execution of the individual statements. Also,
multiple always @ event control blocks across the entire design result in many ‘threads

of execution’ being simultaneously active throughout the prototype system.

The modular approach to designing with asynchronous inter-communicating subsys-
tems afforded by the micropipeline approach is closely reflected in the architectural
modelling environment of Verilog with its hierarchical module structure. All these fea-

tures make Verilog sympathetic to an asynchronous design style.
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9.4 Future Research

9.4.1 Technology Migration

The architectural modelling of the MDCML Asynchronous ARM design has been
achieved in ahierarchical, modular fashion at arelatively high level of abstraction. The
figures used for the propagation delays of the standard logic primitives and asynchro-
nous control elementsare based on the circuit simulation of their realisation in thetarget
bipolar technology. By re-designing the required low-level components in a different
implementation technology and determining the respective propagation delay times,
the characteristics of the new target technology can be incorporated into the basic Ver-
ilog system models. Thisresultsin the Asynchronous ARM processor design being eas-
ily migrated to a new fabrication technology and would, for example, enable acompar-

ison between MDCML and CMOS on the basis of performance.

Of course, detailed design of the functional units will consider if any circuit optimisa-
tions exist in the new implementation technology to increase the performance, reduce
the gate count, or improve the power efficiency of the system. For example, the lack of
aWire-OR circuit design techniquein the MDCML bipolar technology significantly in-
creased the amount of logic required and the propagation delay timesfor the ALU Com-
pletion logic and the Zero-Detect function in the current ALU design. Although the ba-
sic switching speed of the MDCML technology is superior to that of CMOS, the circuit
design flexibility afforded by CM OS can produce faster and smaller component designs

in certain circumstances.

9.4.2 Architectural Design Alternatives

In producing the MDCML Asynchronous ARM design, various datapath functional
units and control circuit components have been devel oped using the behavioural mod-

elling language of the Verilog environment. The vast amount of simulation and valida-

137



9 Conclusions

tion performed on the system containing these components should convince the logic

designer of the integrity of these components.

The system designer isnow free to compose these datapath and control elementsto pro-
duce and explore novel asynchronous computational structures. Multiple functional
units can be combined to produce an asynchronous superscalar design or more radical

architectures, such as dataflow, may be considered.
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Appendix A: Verilog M odel

The following complete listing of the MDCML (bipolar) Asynchronous ARM Verilog

Model contains:

Top-level Processor COre .......oviviieiieiiee e 143
ARM functions behavioural library ..........ccccovvenennne 152
Asynchronous component lHbrary ..........cccocceecveeereeenne 159
Standard gate functionslibrary ..o 168
Example of PLA structure modelling .........ccccceveeevennne 173
Externa environment model - MMU and memory ....... 174
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