
Plasticity in large-scale neuromorphic
models of the neocortex

A thesis submitted to the University ofManchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering.

2016

James Courtney Knight

School of Computer Science

2

Contents

Abstract 15

Declaration 17

Copyright 19

Acknowledgements 21

1 Introduction 23

1.1 Publications . 26

1.2 Contributions . 27

2 Neural systems 29

2.1 Neurons . 29

2.2 The Neocortex . 33

3 Modelling Neural Systems 37

3.1 Neural modelling . 37

3.1.1 Point neuron models . 38

3.1.2 Multi-compartmental neural models 45

3.1.3 Synaptic input . 45

3.2 Software simulation . 46

3

3.3 GPU simulation . 48

3.4 Neuromorphic hardware . 49

3.5 FPGA simulation . 50

3.6 PyNN . 52

3.7 SpiNNaker . 52

3.7.1 Hardware . 53

3.7.2 Spiking neural network simulation 55

3.7.3 Performance . 58

4 Spike-timing dependent plasticity 61

4.1 Spike-timing dependent plasticity (STDP) 63

4.1.1 Trace based models . 65

4.2 Related work . 71

4.3 Implementation . 75

4.3.1 Postsynaptic history storage 75

4.3.2 Fixed-point representation 77

4.3.3 Algorithm . 79

4.4 Performance . 85

4.5 Inhibitory plasticity in cortical networks 86

4.6 The effect of weight dependencies 90

4.7 Conclusions . 93

5 Bayesian Confidence Propagation Neural Networks 95

5.1 Background . 96

5.2 Implementation . 99

5.3 Validating BCPNN learning on SpiNNaker 102

5.4 Demonstrating probabilistic inference 105

4

5.5 Learning temporal sequences using a simplified neocortical het-

eroassociative memory model 107

5.6 Conclusions . 117

6 Synapse-centric simulation 119

6.1 Analysis . 120

6.2 Related work . 124

6.3 Implementation . 125

6.4 Static synaptic processing performance 131

6.5 Plastic synaptic processing performance 137

6.6 Conclusions . 142

7 Conclusions 145

7.1 SpiNNaker . 148

7.2 Models of the neocortex . 150

This thesis contains 25722 words.

5

6

List of Figures

2.1 Structure of a pyramidal neuron 30

2.2 A spike . 31

2.3 Neocortical columnar connectivity 34

2.4 Flow of information between layers of the neocortex 36

3.1 Response of a LIF neuron to a constant input current 42

3.2 Response of an Izhikevich neuron to a constant input current . . . 43

3.3 The basic architecture of a SpiNNaker chip 54

3.4 Standard mapping of a neural network to SpiNNaker 56

3.5 Unpacking a sparse synaptic row 57

3.6 Performance of a SpiNNaker core 58

4.1 Excitatory STDP curve . 64

4.2 Absolute change in synaptic efficacy after 60 spike pairs 64

4.3 Failure of pair-based STDP to reproduce frequency effects 65

4.4 Calculation of weight updates using pair-based STDP traces . . . 66

4.5 Inhibitory STDP curve . 68

4.6 Triplet rule matching frequency effects seen in experimental data . 69

4.7 The dendritic and axonal components of synaptic delay 71

4.8 Ratio distributions of cortical firing rates 76

4.9 DTCM memory usage of STDP event storage schemes 77

7

4.10 Number of integer bits required to represent traces 79

4.11 Performance of a SpiNNaker core with STDP synapses 83

4.12 Performance of a SpiNNaker core with different STDP rules . . . 84

4.13 A balanced random network . 87

4.14 The effect of inhibitory plasticity on a balanced random network . 89

4.15 Distributions of learnt synaptic weights 92

5.1 A naı̈ve Bayesian classifier . 97

5.2 Spike-based BCPNN estimates rate-based BCPNN 103

5.3 An example of a set of Gaussian component functions 106

5.4 Confusion matrix from classification of Iris dataset 107

5.5 Simplified neocortical architecture 108

5.6 Spiking activity during training and testing of temporal sequences 111

5.7 Average strength of learnt connections between minicolumns. . . 112

5.8 Total simulation time on SpiNNaker. 113

6.1 Performance of a SpiNNaker core with fixed connectivity 122

6.2 Performance of a SpiNNaker core with fixed STDP connectivity . 123

6.3 Synapse-centric mapping of a neural network to SpiNNaker 127

6.4 Limitations on synapse-centric splitting of neurons and synapses . 129

6.5 Performance of a static synapse processor 131

6.6 Distribution of neurons amongst cores 132

6.7 Performance of a SpiNNaker chip 134

6.8 External memory read bandwidth used by a SpiNNaker chip . . . 135

6.9 Performance of an STDP synapse processor 139

7.1 SpiNNaker card frame . 147

7.2 5 cabinet SpiNNaker system . 147

8

List of Tables

3.1 Model description of the benchmark network 59

4.1 Performance models of different STDP rules 86

4.2 Model description of the inhibitory plasticity network 88

4.3 Model description of the synaptic weight distribution network . . 91

5.1 Model description of the BCPNN validation network 104

5.2 Comparison of Cray XC-30 and SpiNNaker simulations 114

6.1 SpiNNaker simulations of the Vogels Abbott benchmark networks 138

6.2 SpiNNaker simulations of the BCPNN modular attractor network . 142

7.1 Estimated requirements for simulation of mouse neocortex 147

9

10

List of Acronyms

AMPA is the name of a family of receptors which Glutamate – a neurotransmitter

released into the synaptic cleft by excitatory neurons – binds onto causing

the opening of fast-acting ion channels.

ANN Artificial Neural Networks are computational models which – inspired by

the biological brain – consist of large networks of neural units and can be

used to solve machine learning problems.

ASIC Application-Specific Integrated Circuits are chips customised for a partic-

ular use (unlike FPGAs which can be reprogrammed).

BCPNN Bayesian Confidence Propagation Neural Network.

CPU Central Processing Units are the electrical circuits at the heart of almost all

computer systems which carries out the instructions specified by a computer

program.

DMA Direct Memory Access is a feature of many computer architectures which

allows hardware subsystems to access memory directly rather than going

through the CPU. This can improve overall system performance by freeing

up the CPU for other things.

DTCM Data Tightly-Coupled Memory is located on the processor die and there-

fore provides very low-latency, deterministic access to critical data.

11

fMRI Functional Magnetic Resonance Imaging is a non-invasive imaging tech-

nique which uses a strong magnetic field and radio waves to measure blood

flow in the brain and hence detect areas of activity.

FPGA Field-Programmable Gate Arrays are chips containing a large number of

programmable logic blocks whose function and the wiring connecting them

can be configured after manufacturing, typically using a Hardware Descrip-

tion Language.

GABA is the name of both a neurotransmitter released into the synaptic cleft by

inhibitory neurons and of a family of receptors that these neurotransmitters

bind onto.

GPU Graphics Processing Units are specialised electronic circuits included in

many types of computer which were historically designed to accelerate the

rendering of 2D and 3D graphics. However, more recently, GPUs’ highly-

parallel architectures have been employed to accelerate a wide range of al-

gorithms.

HPC High-Performance Computing generally refers to the distribution of large,

complex problems across parallel computer systems such as clusters or su-

percomputers so they can be run reliably and quickly.

Hz Hertz are a unit of frequency defined as one cycle per second. In digital elec-

tronics Hz are used to measure clock speed. Additionally, in neuroscience,

Hz are often used to measure the expected number of events a Poisson pro-

cesses might be expected to emit every second.

ISI Interspike Intervals are the times between successive spikes.

ITCM Instruction Tightly-Coupled Memory is similar to DTCM but used to store

instructions rather than data.

12

LIF Leaky integrate-and-fire is a simple spiking neuron model, described in more

detail in section 3.1.1.

LUT Lookup tables are arrays containing the pre-calculated results of evaluating

a function which can subsequently be used at runtime rather than evaluating

the function.

NMDA is, like AMPA, the name of a family of receptors which Glutamate binds

onto. However, unlike the ion channels which open in response to AMPA

binding, the ion channels opened by NMDA binding are not only slower

acting but also require a baseline level of activation.

NoC Network-on-Chip is a term used for packet-based network technologies

used to connect together multiple cores, caches etc in a modern CPU (rather

than using the type of busses seen in older architectures).

ODE Ordinary Differential Equations contain one of more functions of a single

independent variable and its derivatives (unlike a Partial Differential Equa-

tion which may contain functions of multiple independent variables).

SDRAM Synchronous Dynamic Random Access Memory is a generic name for

various types of volatile memory (its contents is lost when the computer is

turned off) which are synchronised to the CPU clock.

STDP Spike-timing dependent plasticity is a hypothesis as to how the efficacy of

connections between biological neurons (known as synapses) based on the

activity of the neurons. STDP is discussed in detail in chapter 4.

TLU Threshold Logic Units were an early computation model of neurons, de-

scribed in more detail in section 3.1.1.

13

WTA Winner-Take-All is a computational principle applied to Artificial Neural

Networks by which output neurons mutually inhibit each other while recur-

rently exciting themselves. This results in only the output neuron with the

highest activity remaining active.

14

Abstract

Plasticity in large-scale neuromorphic models of the neocortex

James Courtney Knight

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2016

The neocortex is the most recently evolved part of the mammalian brain and
enables the intelligent, adaptable behaviour that has allowed mammals to conquer
much of planet earth. The human neocortex consists of a thin sheet of neural tissue
containing approximately 20 × 109 neurons. These neurons are connected by a
dense network of highly plastic synapses whose efficacy and structure constantly
change in response to internal and external stimuli. Understanding exactly how we
perceive the world, plan our actions and use language, using this computational
substrate, is one of the grand challenges of computing research. One of the ways
to address this challenge is to build and simulate neural systems, an approach
neuromorphic systems such as SpiNNaker are designed to enable.

The basic computational unit of a SpiNNaker system is a general-purpose
ARM processor, which allows it to be programmed to simulate a wide variety of
neuron and synapse models. This flexibility is particularly valuable in the study of
synaptic plasticity, which has been described using a plethora of models. In this
thesis I present a new SpiNNaker synaptic plasticity implementation and, using
this, develop a neocortically-inspired model of temporal sequence learning con-
sisting of 2 × 104 neurons and 5.1 × 107 plastic synapses: the largest plastic neural
network ever to be simulated on neuromorphic hardware. I then identify several
problems that occur when using existing approaches to simulate such models on
SpiNNaker before presenting a new, more flexible approach. This new approach
not only solves many of these problems but also suggests directions for architec-
tural improvements in future neuromorphic systems.

15

16

Declaration

No portion of the work referred to in this thesis has been submitted in support of
an application for another degree or qualification of this or any other university or
other institute of learning.

17

18

Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs
and Patents Act 1988 (as amended) and regulations issued under it or, where
appropriate, in accordance with licensing agreements which the University
has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available in
the University IP Policy (see http://documents.manchester.ac.uk/
DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declara-
tions deposited in the University Library, The University Library’s regula-
tions (see http://www.manchester.ac.uk/library/aboutus/regulations)
and in The University’s policy on presentation of Theses

19

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

20

Acknowledgements

Firstly I would like to thank Marli Roode. Many years ago, outside an East Lon-

don pub she convinced me that I should quit my job and start a masters degrees

and, over subsequent years, she has continued to inject entropy into my life.

For making this plan a reality I would like to thank my parents who have

been nothing but supportive of this, somewhat drastic, change in life direction;

Simon Moore who first placed the fanciful ideas of neuromorphic engineering in

my head; and Steve Furber who, from our first email conversation onwards, has

offered invaluable advice, support and just the correct amount of rope to hang

myself in all number of interesting ways.

Since the first day I sat down next to them in IT302, Jonathan Heathcote and

Andrew Mundy have been great lunch buddies, willing readers, stoic providers of

Linux support and great friends to travel the world with. I would also like to thank

Jim Garside for being such a welcoming force in the APT group – my PhD would

have been nowhere near as much fun without his organisation of trips to various

pubs and hills.

Finally I would like to thank the Engineering and Physical Sciences Research

Council (EPSRC) and the President’s Doctoral Scholar Award for financially sup-

porting me during my throughout my PhD.

21

22

Chapter 1

Introduction

The neocortex is the distinguishing feature of the mammalian brain and enables

mammals to build an internal model of the ever-changing world, predict its future

and adapt to it. If we could understand the operation of the neocortex we might,

one day, be able to construct intelligent machines capable of solving problems

currently only human beings are capable of solving.

However, the neocortex is one of the most complex systems we know of – in

a human consisting of around 20 × 109 neurons connected by 150 × 1012 synaptic

connections [1]. In chapter 2 I give a brief overview of our current understand-

ing of the function of the neocortex. However, furthering this knowledge through

experiments on biological tissue alone is extremely difficult. Non-intrusive tech-

niques such as functional magnetic resonance imaging (fMRI) provide only very

limited temporal and spatial resolution and, while the number of neurons which

can be simultaneously recorded using implanted electrodes is growing [2], it is

currently limited to only a few hundred.

An alternative research direction is to build models of the brain and experi-

ment on simulations of these models instead. Simulations not only allow us to

fully control the input to the model being simulated but also to fully observe its

23

outputs – both impossible within the brain of a living animal. The electrophys-

iological behaviour of individual neurons is now relatively well understood and

several large scale projects are underway [3, 4] to build “connectomes” which can

be thought of as wiring diagrams of the brain. While the task of simulating models

at this scale is formidable, the development of petaFLOP supercomputers means

that it is becoming increasingly computationally tractable [5], albeit at the cost

of megawatts. In chapter 3 I discuss the software that enables large cortical net-

works to be simulated on such machines and how alternative technologies such as

graphics processing units (GPUs), field-programmable gate arrays (FPGAs) and

neuromorphic hardware may provide less power-hungry alternatives.

SpiNNaker is a digital neuromorphic architecture designed specifically for

simulating networks of up to 1 × 109 neurons in real time – enough to simulate the

brains of ten mice [6]. While the fundamental computational element of a SpiN-

Naker system is a general purpose ARM processor, SpiNNaker systems – inspired

by the brain – can combine up to a million such densely connected processors each

responsible for simulating up to 1000 neurons.

Whereas, in older brain areas neurons are hard-wired to perform specific tasks,

the neocortex has a relatively homogeneous structure within which neurons are

densely connected by highly plastic synapses. The efficacy and structure of these

synapses constantly changes in response to stimuli, allowing the neocortex to

perform a wide range of functions. However due to the sheer number of these

synapses and their plasticity, simulating them is a particularly complex problem

which previous SpiNNaker solutions have been incapable of addressing. I have

developed a new SpiNNaker synaptic plasticity implementation which has lower

algorithmic complexity than prior approaches and employs new low-level opti-

misations to better exploit the ARM instruction set. In chapter 4 I discuss this

implementation in depth and show that, not only does it almost double the perfor-

24

mance of previous solutions, but it is also flexible enough to support a wide range

of different plasticity rules.

Bayesian inference provides an intuitive model of how our brains internalise

uncertainty about the outside world and, using the Bayesian Confidence Propaga-

tion Neural Network (BCPNN) plasticity rule [7], it can be approximated using

spiking neurons. In chapter 5 I present the first SpiNNaker implementation of

BCPNN. Using this and a simple model of the neocortex, I demonstrate one way

in which the neocortex might be able to learn and replay sequences of neuronal

activity. Lashley [8] suggested that mammals’ behaviour is based on hierarchi-

cal sequences of actions and experimental evidence [9] has suggested that these

sequences of actions are realised as sequences of neuronal activity. Therefore

the ability of my neocortical model to learn such sequences is an important step

towards building functional models of the neocortex. I simulate the neocortical

model at scales of up to 20 × 103 neurons and 51.2 × 106 plastic synapses: the

largest plastic neural network ever to be simulated on neuromorphic hardware.

However, while running this network on SpiNNaker uses less than 3 % of the

power required to do so using a Cray XC-30 supercomputer system, it reveals

some issues with simulating large-scale neocortical models on SpiNNaker.

In chapter 6 I analyse these issues in more depth and find that, firstly, the per-

formance of the current SpiNNaker neural simulator scales poorly when simulat-

ing neurons with the degree of connectivity seen in the neocortex. Secondly, I find

that it would be difficult to extend the synaptic plasticity implementation devel-

oped in chapter 4 to support neurons whose input synapses have different synap-

tic plasticity rules. I solve both of these issues by developing a novel “synapse-

centric” approach for mapping large-scale spiking neural networks to SpiNNaker

where the simulation of neurons and synapses is distributed amongst different

cores of a SpiNNaker chip. In a benchmark network where neurons receive in-

25

put from a biologically-plausible number of plastic synapses, this new approach

quadruples the number of neurons that can be simulated on each SpiNNaker core.

I also demonstrate that, using this new approach, the neocortical model developed

in chapter 5 can be run in real time: double the speed that was previously achieved.

1.1 Publications

Much of the work discussed in this thesis has previously been presented in the

following publications:

J. C. Knight, P. J. Tully, B. A. Kaplan, A. Lansner, and S. B. Furber,

“Large-scale simulations of plastic neural networks on neuromorphic hard-

ware.,” Frontiers in Neuroanatomy, vol. 10, no. April, p. 37, 2016, issn: 1662-

5129 In this paper I first presented the SpiNNaker implementation of the BCPNN

learning rule, the neocortical model of sequence learning and the comparisons

with the supercomputer simulations discussed in chapter 5. This paper has been

selected by the Faculty of Science and Engineering at the University of Manch-

ester to be showcased as a “world leading paper”.

J. Knight and S. Furber, “Synapse-centric mapping of cortical models to

the SpiNNaker neuromorphic architecture,” Frontiers in Neuroscience, vol.

10, p. 420, 2016, issn: 1662-453X In this paper I first presented the synapse-

centric simulation approach discussed in chapter 6.

A. Mundy, J. Knight, T. C. Stewart, and S. Furber, “An efficient SpiN-

Naker implementation of the Neural Engineering Framework,” in The 2015

International Joint Conference on Neural Networks (IJCNN), IEEE, 2015 I

made modest contributions to this paper, primarily using the profiling tools devel-

26

oped for this thesis to analyse the performance of a novel SpiNNaker implemen-

tation of the Neural Engineering Framework (NEF) [13] developed by Andrew

Mundy. This paper was nominated for the best paper award at the International

Joint Conference on Neural Networks (IJCNN) 2015.

J. Knight, A. R. Voelker, A. Mundy, C. Eliasmith, and S. Furber, “Ef-

ficient SpiNNaker simulation of a heteroassociative memory using the neu-

ral engineering framework,” in The 2016 International Joint Conference on

Neural Networks (IJCNN), 2016 This paper builds on the previous paper by

investigating how two forms of synaptic plasticity [15, 16] can be incorporated

into NEF models and used as the basis for large-scale heteroassociative memories

which we demonstrated could be efficiently simulated on SpiNNaker. I presented

this paper at IJCNN 2016 in Vancouver.

1.2 Contributions

This thesis presents the following main contributions:

Plasticity implementation I develop a new synaptic plasticity implementation

for SpiNNaker which is not only almost twice as fast as previous solutions,

but is also a key component of the software developed for the Human Brain

Project [17].

Bayesian Confidence Propagation Neural Networks BCPNN provides a means

of approximating Bayesian inference using networks of spiking neurons.

Not only do I implement the learning rule required to simulate such net-

works on SpiNNaker, but I also use it as the basis of the largest plastic

neural network ever to be simulated on neuromorphic hardware.

27

Synapse-centric simulation I develop this entirely new means of simulating neu-

ral networks on SpiNNaker and demonstrate that it quadruples the number

of neurons with biologically-plausible numbers of plastic synapses that can

be simulated on a given SpiNNaker machine.

28

Chapter 2

Neural systems

To model the neocortex we need to understand the fundamental biological be-

haviour of both the neurons within it and of the circuits they form. In section 2.1 I

present a brief background on how biological neurons communicate and process

information and in section 2.2 I present evidence on the structure of the neocortex

and theories on how this may enable it to perform high-level cognitive functions.

2.1 Neurons

Like all animal cells, neurons consist of an impermeable cell membrane surround-

ing a nucleus, mitochondria and other organelles. However, neurons also have

several specialised components which support electro-chemical computation and

signalling. Ion pumps “pump” ions across the cell membrane at an approximately

constant rate to maintain a “resting” potential difference between the cell’s inte-

rior and the extracellular fluid which surrounds it. Ion channels also enable ions

to cross the cell membrane but, unlike ion pumps, the rate at which ion channels

transfer ions can be modulated by factors including the membrane potential and

the concentration of various chemical messengers.

29

Basal dendrites
Cell body

Apical
dendrites

Postsynaptic
dendrite

Synaptic cleft

Presynaptic
terminal

Axon

Myelin sheath

Figure 2.1: Structure of a pyramidal neuron. After [18].

30

0 1 2 3 4 5 6

Time [ms]

80

60

40

20

0

20

40
M

e
m

b
ra

n
e
 p

o
te

n
ti

a
l

[m
V

]

Spiking threshold

Resting potential

Excitation

Sodium channels open

Potassium channels open

Refractory period

Figure 2.2: A spike. Dashed horizontal lines show the resting potential and the
threshold at which sodium ion channels open.

Figure 2.1 shows the structure of a pyramidal neuron – one of the most com-

mon neuron types found in the neocortex. Changes in a neuron’s membrane poten-

tial cause sodium and potassium ion channels to act together, generating spikes:

the primary means of neuronal communication. When the membrane potential

reaches a certain threshold, sodium ion channels open allowing positively charged

sodium ions to rush into the neuron, rapidly increasing the membrane potential

from around −70 mV to around 30 mV. This sudden increase in membrane poten-

tial causes potassium ion channels to open, allowing positively charged potassium

ions to leave the neuron, and resulting in the stereotypical spike in membrane po-

tential potential shown in figure 2.2. Spikes then propagate down the axon of the

neuron as a wave of sodium and potassium ion channels open ahead of the spike.

As the pyramidal neuron in figure 2.1 illustrates, axons can also be wrapped in a

myelin sheath, through which spikes can propagate at much higher speeds. Be-

31

fore the neuron can spike again, ion pumps need to pump sodium ions out of the

neuron and potassium ions back in, restoring the membrane potential to its resting

level – a period known as the refractory period. To communicate spikes to other

neurons connections known as synapses are formed at the axon terminals.

From the point-of-view of one of these synapses, the neuron from which spikes

originate is known as the presynaptic neuron and the neuron which has made the

synaptic connection is known as the postsynaptic neuron. In general spikes can

have two effects on a postsynaptic neuron: excitatory spikes increase its mem-

brane voltage and inhibitory spikes decrease it. Dale’s law [19] states that a neu-

ron cannot excite some of its postsynaptic targets and inhibit others. Therefore

excitatory spikes are always emitted by excitatory neurons (such as the pyramidal

neuron shown in figure 2.1) and inhibitory spikes are always emitted by inhibitory

neurons. When a spike reaches an axon terminal, the increase in membrane poten-

tial causes calcium ion channels to open, drawing calcium ions into the neuron.

The resultant increased calcium concentration inside the neuron causes neuro-

transmitters to be released into the synaptic cleft between the pre and postsynaptic

neurons: primarily glutamate from excitatory neurons and GABA from inhibitory

neurons. These neurotransmitters diffuse across the synaptic cleft and bind to re-

ceptors, causing a final class of ion channels to open on the postsynaptic neuron.

The ion channels that open as result of glutamate binding allow current to flow

into the neuron and those that open as a result of GABA binding allow current to

flow out. Two important classes of ion channels that open in response to glutamate

binding are known as AMPA and NMDA. AMPA ion channels open and close rel-

atively quickly whereas NMDA ion channels not only open and close slower, but

also require the neuron’s membrane voltage to be elevated prior to activating. In

section 5.5 I present a model which uses the different time constants of AMPA and

NMDA synapses to learn features of temporal sequences at different time scales.

32

Synaptic connections can be made to almost any part of the neuron and how

the position of these connections affects the integration of the input currents they

supply is not fully understood. However, using the geometry of the neuron shown

in figure 2.1 as an example, synaptic input applied directly to the cell body or

to the nearby basal dendrites is likely to have more effect on spike generation

than synaptic input applied to the apical dendrites further from the cell body [20].

There is also evidence that local computation occurs within dendritic branches [21]

and that the interactions between NMDA ion channels and AMPA ion channels

have an important role [22].

2.2 The Neocortex

The neocortex is the most recent part of brain to evolve and consists of a sheet of

neurons ranging in size from around 6 cm2 in a rat to 2500 cm2 in a human. While

in older brain regions, specialised neurons and synaptic connections are “hard-

wired” to perform specific functions, the neocortex has a relatively homogeneous

structure with highly plastic synaptic connections whose efficacy and structure

constantly change in response to stimuli. This perhaps reflects the fact that, rather

than performing a single function, much of the processing performed by the neo-

cortex is learnt postnatally [23]. In fact, even in adulthood, the neocortex remains

plastic enough to allow vision to be restored – after sufficient training – by pro-

jecting images from a camera onto a matrix of actuators attached to the skin [24].

The surface of neocortex is divided into areas responsible for processing vi-

sual, auditory and somatosensory stimuli; generating motor commands and per-

forming higher-level cognitive functions. Within each of these areas there is then

a hierarchy of regions connected together with both feedforward and feedback

connections. Typically this hierarchy reflects an increasing level of information

33

Figure 2.3: Neocortical columnar connectivity. Minicolumns (filled grey circles)
arranged into 9 macrocolumns (large outlined circles) and connected with patchy
connectivity.

abstraction within each region. For example the primary visual cortex – the lowest

level of the visual cortex hierarchy – receives input relayed via the thalamus from

the retina and responds to oriented line segments crossing the visual field [25]

whereas the inferior temporal cortex – at the top level of the visual cortex hierar-

chy – has been shown to respond to high-level concepts such as human faces [26].

Each neocortical area is made up of a large number of macrocolumns with

diameter in the range of 300 µm to 600 µm. Each of these macrocolumns consists

of approximately 100 minicolumns bound together with short-range horizontal

connections. Minicolumns are believed to be the basic functional unit of the neo-

cortex with each one consisting of approximately 100 neurons, tuned to respond

to the same stimuli [27, 28].

34

Across species and neocortical areas the size and structure of macrocolumns

remain approximately constant – the neocortices of humans and higher primates

simply have a larger number of macrocolumns than, for example, those of mice.

The average number of synapses providing input to each cortical neuron also re-

mains constant across species at around 8000 [1, 29, 30]. These properties are

independent of the size of the neocortex because cortical long-range cortical con-

nectivity follows the “patchy” structure illustrated in figure 2.3 [31–34]. The

“fan-out” of each minicolumn varies between neocortical areas but, for exam-

ple in the primary visual cortex, each minicolumn only connects to around 10

macrocolumns located within a radius of a few millimetres. The density of con-

nections between individual neurons in the connected minicolumns varies widely

but is always relatively sparse (recent measurements in the somatosensory cortex

of rats [35] suggest that pyramidal neuron connectivity saturates at around 20 %).

Hubel and Wiesel [25] provided the first experimental evidence of the role of

macrocolumns in the primary visual cortex of Macaque monkeys. These macro-

columns apply what has become known as a winner-take-all (WTA) circuit to the

output of the minicolumns which respond to the orientation of line segments. The

WTA circuit inhibits the output of all of minicolumns in a macrocolumn aside

from the one responding most strongly to the stimuli. While in higher cortical ar-

eas input cannot be directly manipulated, making it extremely difficult to perform

equivalent experiments, Douglas and Martin [36] suggest that this WTA circuitry

is fundamental to all neocortical areas.

Perpendicularly to this columnar structure the neocortex is also divided into 6

layers which, as illustrated in figure 2.4, can be grouped as follows:

Layer I contains very few neurons and its role appears to be largely one of “scaf-

folding” – a location where feedback synapses from higher cortical areas

can make connections with the dendrites of neurons in layers II/III.

35

Layer I

Layer II/III

Layer IV

Layer V/VI

Output to higher
cortical areas

Input from lower
cortical areas

Input from higher
cortical areas

Output to lower
cortical areas

Figure 2.4: Left: upward and Right: downward flow of information between
layers of the neocortex. Filled grey circles represent neurons taking part in the
information flow.

Layer II/III are where associations between feedback and feedforward input are

made; and fed forward to higher cortical areas and back via layers V/VI.

Layer IV is where feedforward input enters the macrocolumn from lower cortical

areas and is passed to layers II/III.

Layer V/VI passes the feedback output from layers II/III on to the dendrites

located in layer I of lower cortical areas.

However, even if we accept this cortical architecture, exactly how the brain

uses this structure to implement high-level cognitive functions remains an open

question.

36

Chapter 3

Modelling Neural Systems

Section 2.1 presented a high-level overview of the electrochemical behaviour of

individual neurons and in section 3.1 I will discuss how this behaviour can be

modelled at various levels of abstraction. In section 2.2 I went on to discuss how

neurons in the neocortex are arranged in a highly-connected, three dimensional

structure. This high degree of connectivity makes simulating large cortical net-

works particularly challenging and in sections 3.2 - 3.5 I will give an overview of

some of the approaches that have been applied to this problem.

SpiNNaker is a digital neuromorphic architecture designed specifically for the

simulation of large-scale neural networks and in section 3.7 I will discuss the

SpiNNaker system and its performance characteristics in more depth.

3.1 Neural modelling

As figure 2.1 illustrates, biological neurons can have complex dendritic tree struc-

tures. However the classical view on their role, as described by Ramón y Ca-

jal [37], is that:

37

“Dendrites exist solely to allow the cell to receive, and then transmit

to the axon, the greatest variety of information from the most diverse

sources.”

From this assumption the entire neuron can be viewed as being somewhat

analogous to a logic gate: gathering information from multiple sources and gener-

ating a single output in the soma (see figure 2.1). Models based on this assumption

are known as point neuron models and in section 3.1.1 I present a brief overview

of models of this type. In the remainder of this thesis I concentrate largely on

simulating point neuron models. However it has been suggested that dendritic

structure may play an important role in neurons’ information processing function-

ality. Therefore in section 3.1.2 I briefly discuss how point neuron models can be

extended to form multi-compartmental models that can be used to model neurons

with more realistic dendritic structures.

3.1.1 Point neuron models

Binary models

Coming from the logic gate analogy it is unsurprising that early computational

models of neurons, such as the Threshold Logic Unit (TLU) developed by Mc-

Culloch and Pitts [38], closely resemble logic gates. The TLU receives multiple

binary inputs (xi) and produces a single binary output (y) by applying a Heaviside

step activation function to the sum of a bias term (β) and the inputs (xi), weighted

with the weights (wi j):

38

u = β +

n∑
i=1

wixi (3.1)

y =


1 i f u ≥ 0

0 i f u < 0
(3.2)

This neuron model can be directly used to implement boolean AND and OR

functions and, by building recurrent networks, where the output of some neurons

fed back into others, it could be used to build simple memory systems.

Rate-based neuron models

The TLU model was subsequently generalised to use real valued inputs. In this

case, the wi and β parameters can be thought of as defining a plane through an

n-dimensional input space, which defines a linear separation between two classes

of input vectors. Neurons of this type have been used to build single layer arti-

ficial neural networks (ANNs) such as Perceptrons [39] which can be combined

to form multi-layer networks capable of classifying patterns that are not linearly

separable. To give these extra layers more computational power than is achievable

by using a larger layer of linear neurons multi-layer networks typically use neu-

rons that generate a real valued output based on a non-linear activation function.

Furthermore to enable the use of the back-propagation algorithm [40] – a popular

approach for training multi-layer ANNs – these activation functions are required

to be differentiable. Therefore activation functions such as tanh or the sigmoid

function [41] are common choices. In terms of modelling biological neurons this

output can be thought of as representing the firing rate of the neuron.

39

Spiking neuron models

Although rate-based neuron models are mathematically convenient and the firing

rates of neurons have been shown to encode stimuli [42] in many parts of the

brain, both temporal [43] and spatial information [44] has also been shown to be

encoded in the timings of individual spikes. To model these effects, more realistic

spiking models must be used.

As discussed in section 2.1, neurons emit spikes when their membrane po-

tential is rapidly depolarised by the opening of sodium ion channels before being

immediately repolarised by the opening of potassium ion channels. The potential

across an ion channel can be modelled using the following simple ODE:

C
dV
dt

= −gion (V − Eion) (3.3)

Where C is the membrane capacitance, V is the potential across the ion chan-

nel, Gion is the conductance of the ion channel and Eion is the channel’s reversal

potential. Hodgkin and Huxley [45] developed a neural model which combined

the effect of 3 types of ion channel: a leak channel (L) with a constant conduc-

tance representing the action of the ion pumps and voltage-gated potassium (K)

and sodium channels (Na):

C
dV
dt

= −gKn (V − EK) − gNam3h (V − ENa) − gL (V − EL) (3.4)

The voltage gating is achieved using the dimensionless n, m and h variables,

each of which is modelled using a further differential equation:

40

dn
dt

=
n∞(V) − n
τn(V)

dm
dt

=
m∞(V) − m
τm(V)

dh
dt

=
h∞(V) − h
τh(V)

(3.5)

Where n∞, m∞, h∞, τn, τm and τh represent different, voltage-dependent func-

tions.

Hodgkin-Huxley neurons, fitted to biological data, have been used for large-

scale modelling [5], but are extremely computationally expensive to simulate and

have a large number of parameters to configure. Therefore a common alternative

approach is to model the subthreshold dynamics of the membrane voltage – up

to the point at which the neuron emits a spike – using a simpler system and then

artificially reset the membrane voltage to simulate rapid repolarisation. One of

the simplest models of this type is the leaky integrate-and-fire (LIF) model whose

subthreshold membrane voltage (V) is modelled using the following simple first-

order ODE:

C
dV
dt

= −gL(V − Vrest) + Iapp (3.6)

Where gL and C represent the leak conductance of the membrane and its ca-

pacitance; Vrest represents the membrane’s resting voltage and Iapp represents the

input current. In the absence of any input, V decays linearly with a time constant

of τm = C
gL

. However when V reaches a fixed threshold (Vthresh) it is reset to Vreset

and a spike is emitted. Additionally a timer can be started to prevent further input

being integrated during the period in which a biological neuron would be in its

refractory period. The LIF model has the advantage of being fast to compute and,

as equation 3.6 has an algebraic solution, easy to analyse mathematically.

However, as figure 3.1 shows, the LIF model will always spike regularly when

provided with a constant input current whereas cortical neurons have been shown

41

0 50 100 150 200

Time [ms]

−70

−65

−60

−55

−50

M
em

br
an

e
po

te
nt

ia
l[

m
V

]

Iapp = 0.50nA Iapp = 0.75nA Iapp = 1.00nA

Figure 3.1: Response of a LIF neuron to a constant input current. Simulated
using NEST 2.6 [46] with Vthresh = −51 mV, Vreset = Vrest = −70 mV, C = 1 nF,
gL = 50 nS.

to reproduce a wide range of spiking behaviours [47–49].

By modelling the subthreshold neural dynamics using a more complex two

dimensional system Izhikevich [50] developed an integrate-and-fire neuron model

which can replicate a much wider range of spiking behaviours while remaining

fast to compute:

dV
dt

= 0.04V2 + 5V + 140 − u + Iapp (3.7)

du
dt

= a (bV − u) (3.8)

Similarly to the LIF model, when V reaches a threshold, it is reset to a fixed

value and u has an offset applied to it. The quadratic term of equation 3.7 enables

the membrane voltage to rise in a faster, more realistic manner than that of the

42

−80

−60

−40

−20

0

20

40

M
em

br
an

e
po

te
nt

ia
l[

m
V

]

Regular spiking Fast spiking

0 50 100 150 200

Time [ms]

−80

−60

−40

−20

0

20

40

M
em

br
an

e
po

te
nt

ia
l[

m
V

]

Chattering

0 50 100 150 200

Time [ms]

Intrinsically bursting

Figure 3.2: Response of a Izhikevich neuron to a constant 10 pA input current.
Simulated using NEST 2.6 [46] using parameters specified by Izhikevich [50].

43

LIF neuron during the period immediately before a spike. Additionally, the u

state variable acts as a subthreshold adaptation mechanism – altering the firing

rate of the neuron based on its past activity [51]. By using different values of the

a, b, c and d parameters the Izhikevich neuron can reproduce the wide range of

spiking behaviours illustrated in figure 3.2.

The adaptive exponential integrate-and-fire model (AdEx) [52] is another widely

used neuron model and has been shown to accurately reproduce the behaviour of

neurons modelled using the Hodgkin-Huxley equations. As with the Izhikevich

model, the aEIF model is described by two coupled differential equations:

C
dV
dt

= −gL(V − Vrest) + gL∆T exp
(
V − Vthresh

∆T

)
− w + Iapp (3.9)

τw
dw
dt

= a(V − Vrest) − w (3.10)

As with the LIF model, gL and C represent the leak conductance of the mem-

brane and its capacitance; Vrest represents the membrane’s resting voltage; Vthresh

the spiking threshold and; Iapp the input current. The second w state variable plays

the same role as u in the Izhikevich model – representing a subthreshold adapta-

tion mechanism with a strength defined by a and a time constant of τw. Finally

∆T defines the “sharpness” of the spiking threshold. The behaviour of the aEIF

model at this threshold is somewhat different from that of the LIF and Izhikevich

models as, when V ≥ Vthresh, the exponential term causes the membrane to rapidly

depolarise before it is artificially reset at a second, higher threshold V = 20 mV.

At this point, similarly to the Izhikevich model, V is reset to Vreset and b is added

to w (defining the strength of the spike-triggered adaptation).

In all of the integrate-and-fire neuron models discussed in this section I have

represented the input to the neuron model as a single Iapp term. While a constant

44

value of Iapp can be used to perform the kind of simple experiments shown in

figures 3.1 and 3.2, typically Iapp is calculated from the conductances of the neu-

ron’s synapses using equation 3.3. Although synaptic conductance injection has

been shown to better represent the behaviour of biological neurons [53], to make

the model easier to analyse mathematically this additional non-linearity can be

removed and synapses can be viewed as injecting current directly.

3.1.2 Multi-compartmental neural models

The point neuron models described in the previous section all assume that the

membrane potential of a neuron is constant across its entire cell membrane. How-

ever, particularly when neurons have narrow sections such as those within the

dendritic tree of the pyramidal neuron shown in figure 2.1, this may be a poor

approximation. Multi-compartmental models address this by splitting the neuron

into smaller compartments within which the membrane voltage is assumed to be

constant. Each of these compartments can then be simulated using either a de-

tailed Hodgkin-Huxley or a simpler integrate-and-fire model [54]. Compartments

are then linked using ohmic channels allowing current to flow between neighbour-

ing compartments [55, p. 217].

3.1.3 Synaptic input

As discussed in section 2.1, spike transmission between biological neurons is the

result of a complex cascade of biological processes. Similarly to the Hodgkin-

Huxley models of neurons discussed in section 3.1.1 highly detailed models of

synaptic transmission have been developed [56] but, as with detailed neuron mod-

els, are costly to simulate. Therefore simpler models of the conductance of the

postsynaptic ion channel are often employed.

45

The simplest models of ion channel conductance assume that a presynaptic

spike at time t0 causes the ion channel to open immediately and its synaptic con-

ductance (gsyn) to increase immediately to ḡsyn before exponentially decaying with

time constant τ as the neurotransmitters are reabsorbed and the ion channel closes:

gsyn(t) = ḡsyn exp
(
−

t − t0

τ

)
(3.11)

However, as the rise time of a real ion channel’s conductance is finite, it is

more realistic to describe this conductance using the difference of two exponen-

tials:

gsyn(t) = ḡsync
(
exp

(
−

t − t0

τdecay

)
− exp

(
−

t − t0

τrise

))
(3.12)

Where c is a constant used to scale the peak amplitude to ḡsyn; and τrise and

τdecay are the time constants of the ion channel opening and closing respectively.

In the special case where the peak synaptic conductance occurs at t = τ this model

can be simplified to an alpha function with a single time constant τ:

gsyn(t) = ḡsyn
t − t0

τ
exp

(
1 −

t − t0

τ

)
(3.13)

3.2 Software simulation

In this section I will outline some strategies used to simulate spiking neural net-

works in software before briefly discussing a representative selection of the tools

which use them.

46

Clock-driven simulation algorithms, where time is advanced in discrete steps

(typically 1 ms or 0.1 ms), are amongst the most common. In a typical clock-

driven simulation algorithm the state of each neuron is updated every time step

using some form of numerical integration technique such as Runge-Kutta [57].

However some models, such as simple forms of the LIF neuron discussed in sec-

tion 3.1.1, are linear so can be solved by simply multiplying the previous state

by a constant matrix [58]. After updating each neuron in this manner its spike

threshold condition is checked and, if it is satisfied, the spike is propagated to

all target neurons. While this spike propagation technique is convenient because

“time models itself”, its results are only approximate as spike threshold conditions

are only tested at time step boundaries, and therefore exact spike timings are lost.

The clock-driven simulation scheme can be extended to overcome this inaccuracy

by calculating the times at which neurons spike within the simulation time step

and passing these times, along with the spikes, to the target neurons. Neurons can

then sort incoming spikes based on these times and apply them exactly.

An alternative approach is to employ an event-driven algorithm where the state

of neurons and synapses are updated only when they receive spikes. This allevi-

ates the inaccuracies caused by clock-driven approaches and has the potential to

improve performance if spikes are sufficiently sparse. However, event-driven al-

gorithms require that neuron and synapse models have explicit solutions i.e. that

their state can be calculated at any time. All the static synapse models discussed

in section 3.1.3 and many plastic synapse models (discussed further in chapter 4)

have this property. However, of the neuron models discussed in section 3.1.1, only

the LIF model has an explicit solution [59, 60]. Furthermore Morrison et al. [61]

argue that, because cortical neurons receive input from the order of 10 × 103 other

neurons, the combined input event rate is such that any computational advantages

of using an event-driven algorithm for simulating neurons is lost. Therefore many

47

software simulators – including NEST [46], NEURON [62] and Brian [63] – use

a “hybrid” approach where neurons are simulated using a time-driven algorithm

and synapses using an event-driven algorithm.

One common means of accelerating large-scale software simulations is by run-

ning them on distributed cluster systems or even supercomputers. Both NEST and

NEURON support this mode of operation and have both been shown to enable

supra-linear speedup across thousands of processors [64]. In fact NEST was used

to run the largest neuronal network simulation to date consisting of 1.73 × 1012

neurons and 10.4 × 1018 synapses distributed across 82 944 processors of the K

supercomputer and taking 40 min to simulate 1 s of neural activity [65].

3.3 GPU simulation

With 69 of the machines in the June 2016 Top 500 list [66] featuring GPU acceler-

ation it is clear that GPUs have become a dominant force in the high-performance

computing (HPC) landscape. Therefore, as a major HPC application, it is unsur-

prising that there has been significant interest in using GPUs to accelerate spiking

neural network simulations.

Nageswaran et al. [67] developed a GPU simulator which was used to sim-

ulate a network with up to 100 × 103 Izhikevich neurons and 10 × 106 synapses

at 0.66× real time. Fidjeland and Shanahan [68] further optimised this approach

to enable neurons with more realistic numbers of synapses to be simulated and

used this to simulate a network with 30 × 103 Izhikevich neurons and 30 × 106 at

approximately 2× real time. However neither of these approaches offers a large

speedup over a CPU implementation considering the raw computational power

GPUs offer (Nageswaran et al. reported 26×).

Both Nageswaran et al. and Fidjeland and Shanahan identify that this bottle-

48

neck arises largely because synaptic transmission makes inefficient use of GPU

architectures. Yavuz et al. [69] provided further evidence for this inefficiency by

simulating networks of both Izhikevich and Hodgkin-Huxley neurons. They found

that their GPU implementation offered a speedup of over 100× in simulations us-

ing Hodgkin-Huxley neurons where updating each neuron is a mathematically

intensive operation. However they obtained only a 10× speedup in simulations

of a simple cortical network built with integrate-and-fire neurons where synaptic

transmission costs dominated. The neocortical models which are the focus of this

thesis have properties much more similar to this second network and, as GPUs

can also have a peak power usage of around 200 W, they seem ill-suited to the

low power simulation of such models.

3.4 Neuromorphic hardware

As discussed in section 3.2, software simulators can scale to take advantage of

the latest peta-scale supercomputers, allowing extremely large neural networks to

be simulated. However supercomputers, like the GPUs discussed in the previous

section, require considerable electrical power to do this.

In the late 1980s Mead [70] observed that transistors exhibit “hauntingly” sim-

ilar electrical behaviour to neurons and synapses. Therefore Mead proposed that,

instead of using power-hungry digital computers to simulate the brain, we could

instead implement neurons and synapses using sub-threshold analogue circuits.

This approach became known as “neuromorphic engineering” and, over the pro-

ceeding years, a number of neuromorphic systems have been built with the aim of

reducing the power consumption and execution time of neural simulations. These

systems have been constructed using a number of approaches: ROLLS [71], Neu-

roGrid [72] and BrainScaleS [73] are built using custom analogue hardware and

49

True North [74] is built using custom digital hardware. These systems all have the

potential to simulate neural networks using many orders of magnitude less power

than the software-based approaches discussed in the previous section. However,

they also all share several limitations which hinder their ability to simulate the

type of highly-connected, plastic models of the cortex that are the focus of this the-

sis. These limitations stem from how synapses are implemented in such systems.

Both BrainScaleS and TrueNorth are fabricated with several hundred individual

synapse circuits associated with each neuron. Although both systems have mech-

anisms that allow synapses to be “borrowed” from other neurons to implement

higher connectivity, this is done at the expense of the total number of neurons the

system can simulate. ROLLS and NeuroGrid use an alternative approach where

each neuron has a single synaptic input circuit into which input currents from

multiple synapses are injected. While this approach allows much higher degrees

of connectivity to be achieved, synapses implemented in this manner cannot sup-

port plasticity. To overcome this limitation ROLLS also has a limited number of

plastic synapses implemented as individual circuits.

3.5 FPGA simulation

The development of application specific integrated circuits (ASICS) of the type

discussed in section 3.4 has become prohibitively expensive as process sizes shrink

[75]. Therefore field-programmable gate arrays (FPGAs) – devices consisting of a

large number of lookup-table based logic blocks, connected using a programmable

fabric – are becoming a popular alternative in many small-volume applications.

However the additional logic required to implement this programmability means

that a given circuit may occupy 40× more silicon area if it is implemented us-

ing FPGA rather than ASIC logic [76]. Therefore employing the approach used

50

by the neuromorphic devices discussed in section 3.4 where individual neuron

circuits are implementing in FPGA logic only scales to very small networks of

neurons [77].

However modern FPGAs typically run at clock speeds in the order of hun-

dreds of MHz: many times faster than biological neurons. Therefore, as simple

integrate-and-fire neurons of the type discussed in section 3.1.1 can be evaluated

in very few clock cycles, a single neuron circuit can be used to simulate large num-

ber of “time-division multiplexed” neurons. Moore et al. [78] used this approach

in the multi-FPGA Bluehive system which is capable of simulating up to 64 × 103

Izhikevich neurons and 64 × 106 synapses on a single FPGA. Furthermore Moore

et al. predict that the performance of Bluehive will scale linearly across up to 64

FPGAs. However the resultant system is still somewhat inflexible as the neuron

model is directly implemented in FPGA logic.

One way in which FPGA designs can be made more flexible is by incorporat-

ing a general purpose CPU, implemented in FPGA logic, into the design so that

non-performance-critical components can be implemented in software. Naylor et

al. [79] developed a vector coprocessor which improves the performance of such

a CPU to the point where it can accelerate neural simulations to within a factor of

two of the Bluehive system. This approach shows much promise but it remains

to be seen how competitive it would be at the scale of the SpiNNaker system

discussed in section 3.7.

51

3.6 PyNN

In the previous sections I have discussed a variety of simulation tools with differ-

ent advantages and disadvantages. However researchers wishing to work across

a number of these will typically have to learn new programming languages, APIs

and possibly modelling paradigms.

While it is not a simulator in its own right the PyNN [80] project aims to ad-

dress this issue by providing a standard abstraction layer for describing and sim-

ulating neural network models in Python. By using this abstraction layer a model

defined in PyNN can, at least in principle, be run unmodified on any supported

simulator. PyNN defines models in terms of populations and projections.

Populations are logical groups of neurons which can be simulated using the

same neuron model. For example, in listing 3.1 two populations are created, one

contains a single LIF neuron and the other a single SpikeSourceArray (an artificial

neuron model that injects spikes into the network at pre-programmed times).

Projections represent connections between populations which can be simu-

lated using the same synapse model. Projections also have an associated “con-

nector” which defines how the individual neurons within the population are con-

nected. For example, the AllToAllConnector used in listing 3.1, connects each

neuron in the presynaptic population to every neuron in the postsynaptic popula-

tion. PyNN also provides standard interfaces for controlling the simulation and

recording its state.

3.7 SpiNNaker

SpiNNaker [81] is a massively parallel computer architecture which, inspired by

the biological brain, has abandoned three features common to the majority of such

architectures: memory coherence, synchronicity and determinism. Instead it has

52

Listing 3.1: Simple example model described using PyNN 0.7. The model con-
sists of a spike source programmed to emit a single spike 0 ms into the simulation.
The spike source is connected to a single leaky integrate-and-fire neuron whose
output spikes and membrane voltage are recorded.

import pyNN.nest as p

Configure simulation time step to 1ms
p. setup (timestep=1.0)

Create two populations
pop 1 = p. Population (1, p. IF curr exp , {})
pop 2 = p. Population (1, p.SpikeSourceArray, {” spike times ”: [0]})

Connect the two populations together
p. Projection (pop 2, pop 1, p.AllToAllConnector(weights=5.0, delays=1))

Record neural population ’s spikes and membrane voltage
pop 1. record ()
pop 1. record v ()

Run simulation for 10ms
p.run(10)

been designed specifically for the low-power, real-time simulation of large net-

works of spiking neurons. Therefore, in our taxonomy of neural simulation tech-

niques, SpiNNaker falls somewhere between the software simulators discussed in

section 3.2 and the hardware simulators discussed in section 3.4.

3.7.1 Hardware

The SpiNNaker architecture can be used to build systems ranging in size from

single boards to room-size machines, all using the same basic building block: the

SpiNNaker chip. As shown in figure 3.3, a SpiNNaker chip contains 18, 200 MHz,

ARM cores, each equipped with two small tightly-coupled memories: 32 KiB

for instructions (ITCM) and 64 KiB for data (DTCM). The cores within a chip

connect to each other, 128 MiB of external SDRAM and a multicast router using a

network-on-chip (NoC) known as the “System NoC”. Every chip’s router connects

53

Router

Core 1

DTCM ITCM

Core 2

DTCM ITCM

Core 3

DTCM ITCM
. . . Core 18

DTCM ITCM

System NoC

SDRAM (128 MiB)

S SW W N NE E

Figure 3.3: The basic architecture of a SpiNNaker chip.

to the routers of six immediate neighboring chips using a second NoC known as

the “Communications NoC”.

Beyond its lack of globally shared memory one notable restriction of the SpiN-

Naker architecture is that, for reasons of silicon area and energy efficiency, no

hardware floating point unit is included. While floating point operations can be

emulated in software, this incurs a significant performance penalty meaning that

performance-critical SpiNNaker software needs instead to use fixed-point arith-

metic. Hopkins and Furber [82] discuss the challenges of using fixed-point arith-

metic for neural simulation on the SpiNNaker platform in detail and highlight two

main issues of particular importance. Firstly, the range of fixed-point numeric

representations is static so, to attain maximal accuracy, the optimal representation

for storing each state variable must be chosen ahead of time. Secondly, there is no

standard means of calculating transcendental functions such as exp or log using

fixed-point arithmetic. These functions can be approximated using, for instance,

a Taylor series expansion. However, the resultant functions are likely to take the

54

order of 100 CPU cycles to evaluate [83], making them too slow for use in the

most performance-critical SpiNNaker applications. Another approach is to use

pre-calculated lookup tables (LUTs). These are particularly well suited to imple-

menting periodic functions such as sin(x) or functions such as exp
(
−t
τ

)
which (for

small values of τ) decay to 0 after only a small number of table entries.

3.7.2 Spiking neural network simulation

While SpiNNaker has a somewhat unusual memory hierarchy, its lack of global

shared memory means that many of the problems related to simulating large spik-

ing neural networks on a SpiNNaker system are shared with more typical dis-

tributed computer systems. Therefore the SpiNNaker neural simulator uses a very

similar hybrid event and clock-driven approach to software simulators designed

to run on distributed systems (section 3.2). Figure 3.4 illustrates how neural net-

works are mapped to SpiNNaker with each processing core being responsible for

simulating a collection of neurons and their afferent synapses. The neurons are

simulated using a time-driven approach with their state held in the DTCM. Each

neuron is uniquely identified by a 32 bit ID and, when a simulation step results in

a spike, a packet containing this ID is sent to the SpiNNaker router. These “spike”

packets are then routed across the network fabric to all the cores on which neurons

targeted by the spiking neuron are simulated. While, as discussed in section 3.2,

this strictly clock-driven approach does not produce exact results, Hopkins and

Furber [82] developed some extensions to the basic clock-driven algorithm which

improve accuracy.

Due to the large number of synapses and the relatively low firing rate of single

neurons, the synapses are simulated in an event-driven manner, meaning that they

get updated only when they transfer a spike. On SpiNNaker this event-driven ap-

proach is also advantageous as, due to the sheer number of synapses, per-synapse

55

1 2 3

5

6

4

10 11

12

7
8

9

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3 4 5 6

Core 1

1
2
3
4
5
6
7
8
9
10
11
12

7 8 9 101112

Core 2

Network

Figure 3.4: Standard mapping of a spiking neural network to SpiNNaker. An ex-
ample network consisting of 12 neurons is distributed between two SpiNNaker
cores. The synaptic matrix is split vertically and its columns are distributed be-
tween the two cores responsible for simulating the corresponding postsynaptic
neurons (filled circles). Both cores contain synaptic matrix rows corresponding
to all 12 presynaptic neurons (non-filled circles). The SpiNNaker router routes
spikes from firing neurons (filled circles) to the cores responsible for simulating
the neurons these spikes target.

56

Weight

Delay

Index

+2

1

A

+3

2

D

+1

1

G

A B C D E F G H

t

t+ 1

t+ 2

t+ 3

Neural input

Postsynaptic neurons

D
elay

slots

2

3

1

Figure 3.5: Unpacking a sparse synaptic matrix row with three synapses into a
delay ring-buffer supporting delays of up to 3 simulation time steps and 8 neurons
(labelled A–H).

data such as synaptic weights must be stored in the off-chip SDRAM which each

core can only access at a maximum of 300 MiB s−1 [84] – insufficient to transfer

the per-synapse data associated with every synapse each simulation time step. In-

stead, on receipt of a “spike” packet, cores initiate a direct memory access (DMA)

transfer to fetch the row of the connectivity matrix associated with the firing neu-

ron from SDRAM. Each of these rows describes the synaptic connections be-

tween a presynaptic neuron and the postsynaptic neurons simulated on the core.

As shown in figure 3.5, rows are represented using a sparse format where each

synapse consists of a weight (the magnitude of the input conductance or current

change the spike induces), the index of the target postsynaptic neuron and a trans-

mission delay. This transmission delay is implemented using a data structure we

call a ring-buffer which accumulates the weights due to be applied to each neuron

in future simulation time steps. Once a row is retrieved, the synaptic weights it

contains are inserted into the correct locations within the ring-buffer as illustrated

in figure 3.5. The ring-buffer is then ‘rotated’ each simulation time step – the

weights accumulated in the t + 1 delay slot are applied to the neuron and those

accumulated in the t + 2 delay slot are moved into the t + 1 slot etc.

57

0 64 128 192 256

Row length [synapses]

0

1

2

3

4

5

6

7

8

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

Figure 3.6: Performance of a SpiNNaker core simulating 256 neurons with vary-
ing sparseness of connectivity. Each data point represents the maximum Poisson
input rate (provided by multiple 10 Hz sources) that the core can handle in real
time. The dashed line illustrates the performance estimated using equation 3.14.

3.7.3 Performance

The design of SpiNNaker was based on the assumption that each processing core

would be responsible for simulating 1000 spiking neurons [86]. However profil-

ing current models shows that updating the state of a single neuron requires 187

CPU cycles rather than the 50 CPU cycles estimated by Jin et al. Therefore 256

neurons are typically simulated on each core. As discussed in section 2.2 each

cortical neuron receives input from an average of 8000 synapses meaning that the

performance of the synaptic row processing stage discussed in the previous sec-

tion is critical. Profiling of the row processing code shows that processing each

synapse in a row takes 21 cycles allowing us to build the following simple model

of the maximum rate at which a single 200 MHz SpiNNaker core can handle in-

coming spikes:

58

Model Summary

Populations Neurons, stimuli
Connectivity Probabilistic with a fixed number of postsynaptic

neurons connected to each presynaptic neuron
Neuron model Leaky integrate-and-fire with

exponential-shaped synaptic current inputs
Synapse model Current-based with exponential-shaped PSCs
Input Independent 10 Hz Poisson spike trains

Populations
Name Elements Size

Neurons LIF 256
Stimuli Independent 10 Hz As described

Poisson spike trains in section 3.7.3

Connectivity
Source Target Weight

Stimuli Neurons 0 nA

Neuron and synapse model

Type Leaky integrate-and-fire with
exponential-shaped synaptic current inputs

Parameters gL = 0.05 µS leak conductance
C = 1 nF membrane capacitance
Vthresh = −50 mV threshold voltage
Vreset = −65 mV reset voltage
Vrest = −65 mV resting voltage
τsyn = 5 ms synaptic time constant

Table 3.1: Model description of the benchmark network. After [85]

59

µinput ≈
1

21

(
200 × 106 −

187Nneurons

dt

)
= 7.2 × 106 (3.14)

Where the simulation time step dt = 1 ms and the number of neurons Nneurons =

256. Using equation 3.14 and the mean cortical firing rates of 2 Hz to 3 Hz mea-

sured by Buzsáki and Mizuseki [87] suggests that a single SpiNNaker core can

easily simulate 256 neurons each with 8000 synapses.

To verify this performance estimate I developed a benchmark, described fully

in table 3.1, in which a single SpiNNaker core is used to simulate a population of

256 leaky integrate-and-fire neurons. Maimon and Assad [88] suggest that, while

it is not true across all areas of the neocortex, the timing of the spikes emitted by

many neocortical neurons can be modelled as a Poisson process. By convention

the number of spikes such models are expected to emit each second is expressed in

Hz and in this benchmark the neurons are stimulated using spikes generated using

multiple, independent Poisson processes with an expected firing rate of 10 Hz,

generated on additional SpiNNaker cores. The maximum input spike rate that

the core can handle was measured by increasing the number of inputs until the

core simulating the neurons was unable to complete all processing within a 1 ms

simulation time step. Figure 3.6 shows the result of this benchmark and illustrates

how spike processing performance not only peaks well below that estimated by

equation 3.14 but is also strongly dependent on the number of synapses in each

row. This is because, beyond the 21 clock cycles spent processing each synapse,

there is a significant fixed cost in: initiating the DMA transfer of the row; servicing

the interrupts raised in response to the arrival of the spike and the completion of

the DMA; and setting up the synapse processing loop.

60

Chapter 4

Spike-timing dependent plasticity

In chapter 2 I briefly discussed the highly plastic nature of synapses in the neo-

cortex and in this chapter I will discuss synaptic plasticity in more depth. One of

the earliest and most famous hypotheses on when synaptic plasticity occurs came

from Donald Hebb, who postulated [89]:

“When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased”

In this thesis I consider only the changing of the strength of existing connec-

tions and, in this context, Hebb’s postulate indicates that connections between

neurons which persistently fire at the same time will be strengthened. Neurons

which persistently fire at the same time are likely to do so because they respond

to similar or related stimuli.

Bliss and Lømo [90] provided the first evidence to support this hypothesis by

measuring how – if two connected neurons are stimulated simulateously – the

synaptic connections between them are strengthened. In networks of rate-based

61

neurons this behaviour has been modelled using rules such as the Bienenstock,

Cooper, Munroe rule [91] and Oja’s rule [92]. However the focus of this thesis is

on spiking neural networks and in such networks the timings of individual spikes

has been shown to encode both temporal and spatial information (section 3.1.1).

Therefore in this chapter I will focus on spike-timing dependent plasticity (STDP)

– a form of synaptic plasticity capable of learning such timings.

In section 4.1 I will outline some of the experimental evidence supporting

STDP and discuss how STDP can be modelled in networks of spiking neurons.

Then in section 4.2 I will discuss how STDP has previously been implemented

on SpiNNaker and other distributed systems. Unfortunately the previous best per-

forming SpiNNaker implementation [93] reduces the static synaptic input pro-

cessing performance presented in section 3.7.3 by over 10×. This approximately

corresponds to a 10× reduction in the size of model which a given SpiNNaker ma-

chine can simulate – significantly hampering our ability to simulate large plastic

models of the neocortex.

I have developed a new SpiNNaker STDP implementation which has both

lower algorithmic complexity than prior approaches and employs new low-level

optimisations to better exploit the ARM instruction set. In section 4.3 I will dis-

cuss this implementation in depth before demonstrating, in section 4.4, that it

achieves double the performance of previous solutions. This new implementation

is now a key component of the SpiNNaker software developed as part of the Hu-

man Brain Project which aims to provide a common platform for running PyNN

simulations on SpiNNaker, BrainScaleS and HPC platforms. The current version

of this software is available from https://github.com/SpiNNakerManchester/

sPyNNaker.

62

https://github.com/SpiNNakerManchester/sPyNNaker
https://github.com/SpiNNakerManchester/sPyNNaker

4.1 Spike-timing dependent plasticity (STDP)

Levy and Steward [94] showed that, if the experiment performed by Bliss and

Lømo [90] was repeated with a delay between the stimulation of two neurons

then the magnitude of the increase in weight could be reduced or even reversed.

Subsequently Bi and Poo [95] measured the changes in synaptic efficacy induced

in the synapses of hippocampal neurons by pairs of pre and postsynaptic spikes

with different relative timings. The relationship between the magnitude of these

changes and the relative timing of the pre and postsynaptic spikes is known as

STDP and the data recorded by Bi and Poo suggests that it reinforces causality

between the firing of the pre and postsynaptic neurons. When a presynaptic spike

arrives before a postsynaptic spike is emitted the synapse is potentiated (strength-

ened). However, if a presynaptic spikes arrives after a postsynaptic spike has been

emitted, the synapse is depressed (weakened). Furthermore the data recorded by

Bi and Poo suggest that the magnitude of the changes in synaptic efficacy (∆wi j)

is related to the relative spike timings with the following exponential functions

(figure 4.1):

∆wi j =


F+(wi j) exp

(
−∆t
τ+

)
i f ∆t > 0

F−(wi j) exp
(

∆t
τ−

)
i f ∆t ≤ 0

(4.1)

Where ∆t = t j− ti represents the relative timing of pre and postsynaptic spikes,

τ± defines the time constant of the exponentials and the F± functions define how

the magnitude of the change in weight depends on the current synaptic efficacy.

Bi and Poo [95] measured how ∆wi j depended on the previous value of wi j. In

figure 4.2 I redraw their data on a double-logarithmic scale and fit straight lines to

the potentiation and depression components (as suggested by Morrison et al. [96]).

63

40 20 0 20 40

Relative spike timing (∆t=t fj −t
f
i) [ms]

40

20

0

20

40

60

80

100

R
el

at
iv

e
w

ei
gh

t c
ha

ng
es

 [%
]

Figure 4.1: Excitatory STDP curve. Each dot represents the relative change in
synaptic efficacy after 60 pairs of spikes. After [95].

30 100 300 1000 3000

Initial weight [pA]

-300

-100

-30

-10

-3

0

3

10

30

100

300

A
b

so
lu

te
 w

e
ig

h
t

ch
a
n

g
e
 [

p
A

]

Potentiation Depression

Figure 4.2: Absolute change in synaptic efficacy after 60 spike pairs. Potentiation
is induced by spike pairs where the presynaptic spike precedes the postsynaptic
spike by 2.3 ms to 8.3 ms. Depression is induced by spike pairs in which the
postsynaptic spike precedes the presynaptic spike by 3.4 ms to 23.6 ms. Upper
blue line is a linear fit to the potentiation data with slope: 0.4. Lower green line is
a linear fit to the depression data with slope: −1. After [96].

64

0 10 20 30 40 50

Frequency [Hz]

60

40

20

0

20

40

60

80

100
R

e
la

ti
ve

 w
e
ig

h
t

ch
a
n

g
e
s

[%
]

Sjöström: ∆t= 10ms

Pair model: ∆t= 10ms

Sjöström: ∆t= − 10ms

Pair model: ∆t= − 10ms

Figure 4.3: Fitting a pair-based STDP model with τ+ = 16.8 ms and τ− = 33.7 ms
to data from Sjöström et al. [98] by minimising mean squared error fails to repro-
duce frequency effects. Blue lines and data-points redrawn from Sjöström et al.
and green lines show best fit obtained by the pair-based STDP model. After [99].

The nature of the F± functions is indicated by the gradient of each line. Since the

trend line through the depression data has a gradient of −1 it would suggest that

F− is linearly proportional to the weight. However the nature of F+ is less clear

as the trend line through the potentiation data has a gradient of 0.4. Gütig et al.

[97] and Morrison et al. [96] proposed using the power law function F+ ∝ wi j
µ

to represent the magnitude of the change in weight in response to potentiation.

µ = 0 makes the weight update independent of the previous weight; µ = 1 makes

the update linearly proportional to the previous weight. With µ = 0.4 the linear fit

to the potentiation data recorded by Bi and Poo can be obtained.

4.1.1 Trace based models

Another common means of describing STDP rules is by using “trace variables” [96,

100, 101] which get updated when pre and postsynaptic spikes occur and represent

65

Presynaptic
 trace si

Presynaptic
 spikes

Postsynaptic
 spikes

Postsynaptic
 trace sj

Weight
 trace wij

Figure 4.4: Calculation of weight updates using pair-based STDP traces. Pre and
postsynaptic traces reflect activity of pre and postsynaptic spike trains. Potenti-
ation is calculated at each postsynaptic spike time by sampling the presynaptic
trace (green circle) to obtain a measure of recent presynaptic activity. Depression
is calculated at each presynaptic spike time by sampling the postsynaptic trace
(blue circle) to obtain a measure of recent postsynaptic activity. Weight depen-
dence is additive. After [100].

66

the combined effects of the preceding pre and postsynaptic spikes. For example

the interactions between individual pairs of spikes described by equation 4.1 can

alternatively be modelled based on pre (si) and postsynaptic (s j) trace variables:

dsi

dt
= −

si

τ+

+
∑

t f
i

δ(t − t f
i) (4.2)

ds j

dt
= −

s j

τ−
+

∑
t f

j

δ(t − t f
j) (4.3)

Pre and postsynaptic spikes occurring at t f
i and t f

j respectively are modelled

using Dirac delta functions (δ) and, as the top 4 panels of figure 4.4 show, the trace

variables represent a low-pass filtered version of these spikes. These dynamics can

be thought of as representing chemical processes. For example si can be viewed as

a model of glutamate neurotransmitters which, having crossed the synaptic cleft

from the presynaptic neuron, bind to receptors on the postsynaptic neuron and are

reabsorbed with a time constant of τ+.

As the dashed blue lines in figure 4.4 illustate, when a presynaptic spike oc-

curs at time t f
i , the s j trace can be sampled to obtain the combined depression

caused by the pairs made between this presynaptic spike and all preceding post-

synaptic spikes. Similarly, as the dashed green lines in figure 4.4 illustate, when

a postsynaptic spike occurs at time t f
j , the si trace can be sampled, leading to the

following equations for calculating depression (∆w−i j) and potentiation (∆w+
i j):

∆w−i j(t
f
i) = F−(wi j)s j(t

f
i) (4.4)

∆w+
i j(t

f
j) = F+(wi j)si(t

f
j) (4.5)

67

100 50 0 50 100

Relative spike timing (∆t= tfj − t
f
i) [ms]

20

0

20

40

60

80

100

R
e
la

ti
ve

 w
e
ig

h
t

ch
a
n

g
e
s

[%
]

Figure 4.5: Inhibitory STDP curve. The relative change in synaptic efficacy after
60 pairs of spikes. After [102].

Bi and Poo [95] recorded the data plotted in figures 4.1 and 4.2 from rat hip-

pocampal neurons but subsequent studies have revealed similar relationships –

albeit with different time constants and polarities – in other brain areas [103].

Specifically, in the neocortex, excitatory synapses appear to exhibit STDP with

similar asymmetrical kernels to hippocampal neurons whereas inhibitory synapses

have a symmetrical kernel similar to that shown in figure 4.5.

While rules that consider pairs of spikes provide a good fit for the data mea-

sured by Bi and Poo they cannot account for effects seen in more recent experi-

mental data. Sjöström et al. [98] stimulated cortical neurons with pairs of pre and

postsynaptic spikes separated by a constant 10 ms but with between 20 ms and 10 s

separating the pairs. When the time between the pairs approaches the time con-

stants defining the temporal range of the pair-based STDP rule, spikes from neigh-

bouring pairs begin to interact. As shown in figure 4.3 this interaction then cancels

out the potentiation or depression that the original pair should have elicited.

68

0 10 20 30 40 50

Frequency [Hz]

60

40

20

0

20

40

60

80

100
R

e
la

ti
ve

 w
e
ig

h
t

ch
a
n

g
e
s

[%
]

Sjöström: ∆t= 10ms

Triplet model: ∆t= 10ms

Sjöström: ∆t= − 10ms

Triplet model: ∆t= − 10ms

Figure 4.6: Fitting triplet STDP model with τ+ = 16.8 ms, τ− = 33.7 ms, τx =

101 ms and τy = 125 ms to the data recorded by Sjöström et al. [98] by minimising
mean squared error effectively reproduces frequency effects. Blue lines and data-
points (with errors) redrawn from Sjöström et al. and green lines show best fit
obtained by the triplet STDP model. After [99].

Several extensions to the STDP rule have been proposed which take into ac-

count the effect of multiple preceding spikes including the “triplet rule” proposed

by Pfister and Gerstner [99]. In this rule the effect of earlier spikes is modelled

using a second set of traces (s2
i and s2

j) with longer time constants τx and τy:

ds2
i

dt
= −

s2
i

τx
+

∑
t f
i

δ(t − t f
i) (4.6)

ds2
j

dt
= −

s2
j

τy
+

∑
t f

j

δ(t − t f
j) (4.7)

To incorporate the effect of these traces into the weight updates Pfister and

Gerstner also extended equations 4.4 and 4.5:

69

∆w−i j(t
f
i) = s j(t

f
i)

(
A−2 + A−3 s2

i (t f
i − ε)

)
(4.8)

∆w+
i j(t

f
j) = si(t

f
j)

(
A+

2 + A+
3 s2

j(t
f
j − ε)

)
(4.9)

Where ε is a small positive constant used to ensure that the second set of s2

traces is sampled just before the spike occurs at t f
i or t f

j . This rule has an explicitly

additive weight dependence with the relative effect of the four traces controlled by

the four free parameters A+
2 , A−2 , A+

3 and A−3 . Pfister and Gerstner fitted these free

parameters to the data obtained by Sjöström et al. [98] and, as shown in figure 4.6,

demonstrated that the rule can accurately reproduce the frequency effect measured

by Sjöström et al.

The trace-based models we have discussed so far assume that all preceding

spikes can affect the magnitude of STDP weight updates. However experimental

data [98] suggest that this might not be the case and that basing pair-based STDP

weight updates on only the most recent spike can improve the fit of these models

to experimental data. This “nearest-neighbour” spike interaction scheme can be

implemented in a trace-based model by resetting the appropriate trace to 1 when

a spike occurs rather than by incrementing it by 1. Pfister and Gerstner also in-

vestigated the effect of different spike interaction schemes on their triplet rule but

found it had no significant effect on its fit to the data recorded by Sjöström et al.

This suggests that alternative spike-pairing schemes may simply be another means

of overcoming some of the limitations of pair-based STDP models.

70

Presynaptic
neuron

Postsynaptic
neuron

Axonal delay
(DA)

Dendritic delay
(DD)

Figure 4.7: The dendritic and axonal components of synaptic delay. After [100].

4.2 Related work

Implementing the STDP rules discussed in section 4.1 in a naı̈ve manner is rel-

atively trivial. However, implementing them in a manner suitable for large scale

simulation on a distributed system such as SpiNNaker is more difficult.

The efficient access to synaptic weights required by the event-driven synaptic

processing algorithm (section 3.7.2) is facilitated by storing the synaptic matrices

in a row-major format. Consequently, when a presynaptic spike arrives, weight

updates (equation 4.4) can be evaluated on a row which is contiguous in mem-

ory. However, when a postsynaptic spike is emitted, weight updates (equation 4.3)

must be evaluated on a non-contiguous synaptic matrix column. Accessing synap-

tic matrix columns is problematic at the hardware level as the SpiNNaker DMA

controller can fetch only contiguous blocks of data. Moreover, because connec-

tivity in the neocortex is relatively sparse, synaptic matrices are represented us-

ing a compressed sparse row structure which does not provide efficient access to

matrix columns. To remove the need for column accesses, all of the STDP imple-

mentations presented in this section defer outgoing postsynaptic spikes to allow

postsynaptic weight updates to be deferred until the next presynaptic spike occurs.

An additional problem regards synaptic delays. As discussed in section 3.7.2,

delays are simulated on SpiNNaker by inserting synaptic weights into an input

ring-buffer. However the relative timing of pre and postsynaptic spikes, and there-

fore the outcome of spike-timing dependent plasticity, depends on how much of

71

this total delay occurs in the presynaptic axon and how much in the postsynap-

tic dendritic tree. As shown in figure 4.7, presynaptic spikes travelling down the

presynaptic axon to the synapse incur an “axonal delay” and postsynaptic spikes

propagating back through the postsynaptic dendritic tree to the synapse incur a

“dendritic delay”.

The approaches discussed in this section differ largely in the algorithms and

data structures they use to perform the deferral of postsynaptic spikes and to in-

corporate synaptic delays into the STDP processing. Jin et al. [104] were the first

to implement STDP on SpiNNaker. They assumed that the whole synaptic delay

was axonal implying that, as presynaptic spikes reach the synapse before this ax-

onal delay has been applied, they too must be buffered. Jin et al. used a compact

data structure for buffering both presynaptic and postsynaptic spikes containing

the time at which the neuron last spiked and a bit field, the bits of which indicate

previous spikes in a fixed window of time. Consequently, only a small amount

of DTCM is required to store the deferred spikes associated with each postsynap-

tic neuron. However, because this approach does not use the trace-based STDP

model (section 4.1) the effect of all possible pairs of pre and postsynaptic spikes

must be calculated separately using equation 4.1. Additionally the bit field based

recording of history – while compact – represents only a fixed window of time

meaning that only a very small number of spikes from slow firing neurons can

ever be processed.

Diehl and Cook [93] developed the first trace-based STDP implementation for

SpiNNaker. To store the pre and postsynaptic traces they extended each synapse

in the synaptic row to contain the values of the traces at the time of the last update.

They allowed synapses to have arbitrary axonal and dendritic delays meaning that,

like Jin et al., they stored a history of both pre and postsynaptic spikes. However,

rather than using a bit field to store this, they used a fixed-size circular buffer to

72

store the spike times. This data structure is not only faster to iterate over than a bit

field but also holds a constant number of spikes, regardless of the firing rates of the

pre and postsynaptic neurons. However, these buffers can still overflow, leading to

spikes not being processed if the pre and postsynaptic firing rates are too different.

For example, consider a buffer with space for ten entries being used to defer the

spikes from a postsynaptic neuron firing at 10 Hz. If one of the neuron’s input

synapses only receives spikes (and is thus updated) at 0.1 Hz, there is insufficient

buffer space for all 100 = 10 Hz
0.1 Hz of the postsynaptic spikes that occur between the

updates. Using these spike histories Diehl and Cook developed an algorithm to

perform trace-based STDP updates whenever the synaptic matrix row associated

with an incoming spike packet is retrieved from the SDRAM. The algorithm loops

through these synapses and, for each one, iterates through the buffered pre and

postsynaptic spikes in the order that they occurred since the last update (taking

into account the dendritic and axonal delays). The effect of each buffered spike

is then applied to the synaptic weight (using equation 4.4 for presynaptic spikes

and equation 4.5 for postsynaptic spike) and the appropriate trace updated (using

equation 4.2 for presynaptic spikes and equation 4.3 for postsynaptic spike). Diehl

and Cook measured the performance of their approach using a benchmark network

of 50 LIF neurons stimulated by a large number of 250 Hz Poisson spike sources

connected with 20 % sparsity. Using this network, they showed that their approach

could process 500 × 103 incoming synaptic events per second compared to the

50 × 103 achievable using the approach developed by Jin et al.

As discussed in section 3.7.2 there are many similarities between simulating

large spiking neural networks on SpiNNaker and on other distributed computer

systems – including the two problems identified at the beginning of this section.

In the distributed computing space, Morrison et al. [96] addressed these in ways

highly relevant to a SpiNNaker implementation. Although the nodes of the dis-

73

tributed systems they targeted do not have to access synaptic matrix rows using

a DMA controller, accessing non-contiguous memory is also costly on architec-

tures with hardware caches. Therefore postsynaptic weight updates still need to

be deferred until a presynaptic spike. As each node has significantly more mem-

ory, Morrison et al. use a dynamic data structure to guarantee that all deferred

postsynaptic spikes get processed.

Morrison et al. simplify the model of synaptic delay by supporting only con-

figurations where the axonal delay is shorter than the dendritic delay. This sim-

plification allows presynaptic spikes to be processed immediately as it guarantees

that postsynaptic spikes emitted before the axonal delay has elapsed will never

“overtake”, and thus need to be processed before, the presynaptic spike.

This simplification means that only the time of the last presynaptic spike and

the value of the presynaptic trace at that time need to be stored with each synaptic

matrix row. Based on this simplification the algorithm developed by Morrison et

al. loops through each synapse in the row and, for each one, loops through the

buffered postsynaptic spikes. The effect of each buffered spike is then applied to

the synaptic weight (using equation 4.5). After all of the postsynaptic spikes have

been processed, the effect of the presynaptic spike that instigated the update is

applied to the synaptic weight (using equation 4.4). Once all of the synapses in

the row have been processed the presynaptic trace is updated (using equation 4.2).

To assess the relative algorithmic complexity of the approaches presented in

this section we can consider the situation where an STDP synapse is updated based

on N pre presynaptic and N post postsynaptic spikes. In the approach developed by

Jin et al. [104] each pair of spikes is processed individually the complexity is

O(N preN post). However, by using a trace-based approach Diehl and Cook [93]

reduced this complexity to O(N pre+N post) and Morrison et al. [96] further reduced

this to O(N post) by removing the need to buffer presynaptic spikes.

74

4.3 Implementation

The best performing SpiNNaker STDP implementation presented in the previous

section was that developed by Diehl and Cook [93]. Their benchmark indicated

that, using their implementation, a SpiNNaker core could process up to 500 × 103

incoming synaptic events per second – a tenth of the performance of the static

simulator discussed in section 3.7.2. As this corresponds to a similar reduction in

the size of model a given SpiNNaker machine can simulate, improving the perfor-

mance of STDP is an important part of enabling large-scale neocortical simulation

on SpiNNaker .

I have developed a new SpiNNaker STDP implementation based on the algo-

rithm developed by Morrison et al. [96] which has lower algorithmic complexity

than previous SpiNNaker implementations and employs new low-level optimisa-

tions to better exploit the ARM instruction set. In this section I present the details

of this new implementation and demonstrate how it addresses the previously iden-

tified problems with distributed simulation of STDP.

4.3.1 Postsynaptic history storage

As discussed in section 4.2, Diehl and Cook used a fixed-sized data structure

with space for 10 events to store the postsynaptic history. Using this system, if

more than 10 postsynaptic spikes backpropagate to a synapse between updates,

some will be lost. Based on the distributions of cortical neuron firing rates in rats

and macaque monkeys presented by Buzsáki and Mizuseki [87] we can derive

the distribution of firing rate ratios between pairs of neurons shown in figure 4.8.

Based on these ratio distributions we can determine that a buffer with 10 entries

will be sufficient to handle the activity at 90 % of synapses. However to prevent

postsynaptic spikes being lost when the pre and postsynaptic neurons have very

75

0 5 10 15 20 25 30 35

Firing rate ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
 p

ro
b

a
b

il
it

y

Rat (auditory cortex) Macaque (cortex)

Figure 4.8: Ratio distributions of cortical firing rates. Calculated from firing rate
distributions presented by Buzsáki and Mizuseki [87].

different firing rates I developed an additional mechanism I call “flushing” to force

the processing of these spikes. This mechanism uses one bit in the 32 bit ID

associated with each neuron to signify whether the neuron is emitting a “flush” or

an actual spike event. To determine when these events should be sent, each neuron

tracks its interspike interval (ISI) and, if this is bufferSize times longer than the ISI

corresponding to the maximum firing rate of the network, a flush event is emitted.

Figure 4.9 shows the local memory requirements of postsynaptic history struc-

tures with capacity for 10 entries of different sizes. To implement STDP rules such

as the triplet rule discussed in section 4.1 each entry needs to be large enough to

hold not only a spike time but also two trace values. Figure 4.9 suggests that, to

avoid further reductions in the number of neurons that each SpiNNaker core can

simulate, each of these traces should be represented as a 16 bit value. Using 16 bit

trace entries has an additional advantage as the ARM 968 CPU used by SpiN-

Naker includes single-cycle instructions for multiply and multiply-accumulate op-

76

0 32 64 96 128 160 192 224 256

Number of neurons

0

8

16

24

32

40

48

56

64

72
D

T
C

M
 u

sa
g

e
 [

K
iB

]

No-learning

STDP: 32 bit time

STDP: 32 bit time and 16 bit state

STDP: 32 bit time and 32 bit state

STDP: 32 bit time and 64 bit state

Figure 4.9: DTCM memory usage of STDP event storage schemes. Memory
usage of other components based on current SpiNNaker tools. All trace-based
schemes assume times are stored in a 32 bit format and traces in a 16 bit format,
with two look-up tables with 256 16 bit entries providing exponential decay. The
dashed horizontal line shows the maximum available DTCM.

erations on signed 16 bit integers [105]. These instructions allow additive weight

updates such as wi j ← wi j + s j exp
(
−dt
tau

)
to be performed using a single SMLAxy

instruction and, when implementing rules such as the triplet rule that require two

traces, they provide an efficient means of operating on pairs of 16 bit traces stored

within a 32 bit field.

4.3.2 Fixed-point representation

As discussed in section 3.7.1 the range of fixed-point numeric representations is

static. Thus the optimal representation for storing traces must be chosen ahead of

time based on the maximum expected value. We can calculate this by considering

77

the value of a trace x with time constant τ after n spikes emitted at f Hz:

x(n) =

n∑
i=0

e−
i
τ f (4.10)

This can be rearranged into the form of a geometric sum:

x(n) =

n∑
i=0

(
e−

1
τ fmax

)i
(4.11)

Which has the value:

x(n) =
1 −

(
e−

1
τ f
)n

1 − e−
1
τ f

(4.12)

Since
∣∣∣∣e− 1

τ f

∣∣∣∣ < 1, as n→ ∞ this converges to:

xmax =
1

1 − e−
1
τ f

(4.13)

The sustained firing rate of most neurons is constrained by the time that ion pumps

take to return the neuron’s membrane potential to its resting potential. This gen-

erally limits a neuron’s maximum firing rate to around 100 Hz but, as Gittis et al.

[106] discuss, there are mechanisms that can overcome this limit. For example

vestibular nucleus neurons can maintain sustained firing rates of around 300 Hz.

Figure 4.10 shows that – based on this worst case maximum firing rate – 4 inte-

ger bits are required to store traces with time constants in the range fitted to the

data recorded by Bi and Poo [95]. Therefore a 16 bit fixed-point numeric repre-

sentation with 4 integer, 11 fractional bits and a sign bit is the optimal choice for

representing the traces required for pair-based STDP.

78

0 10 20 30 40 50

τ [ms]

0

1

2

3

4

5

6

7

8
N

u
m

b
e
r

o
f

in
te

g
e
r

b
it

s

Figure 4.10: Number of integer bits required to represent traces of 300 Hz spike
train with different time constants.

4.3.3 Algorithm

In the PyNN programming interface discussed in section 3.6, STDP learning rules

are defined in terms of three components:

The timing dependence defines how the relative timing of the pre and postsy-

naptic spikes affects the magnitude of the weight update.

The weight dependence defines how the current synaptic weight affects the mag-

nitude of the weight update (the F+ and F− functions discussed in sec-

tion 4.1).

The voltage dependence defines how the membrane voltage of the postsynaptic

neuron affects the magnitude of the weight update.

However, adding a voltage dependence to the type of event-based STDP im-

plementation discussed in this chapter presents several challenges beyond the

79

scope of this thesis. Firstly the weight changes induced by several forms of

voltage-based STDP [107] are continuous rather than only occurring at the time

of pre or postsynaptic spikes. Secondly, assuming that the voltage takes a finite

time to backpropagate from the soma to the synapse, presynaptic spikes cannot be

processed immediately based on the current membrane voltage of the postsynaptic

neuron.

Therefore, in this thesis, I implement only the timing and weight dependencies

supported by PyNN. So as to allow users of the Human Brain Project software to

not only select from the weight dependencies specified by PyNN but also easily

implement their own, my implementation defines simple interfaces which timing

and weight dependencies must implement. Timing dependencies must define the

correct types for the pre and postsynaptic states (si and s j respectively); functions

to update pre and postsynaptic trace entries based on the time of a new spikes (up-

datePreTrace and updatePostTrace respectively) and functions to apply the ef-

fect of deferred pre and postsynaptic spikes to a synaptic weight (applyPreSpike

and applyPostSpike respectively). Algorithm 1 shows an implementation of the

functions required to implement pair-based STDP using this interface. The up-

datePreTrace adds the effect of a new presynaptic spike at time t to the presynaptic

trace by decaying the value of si calculated at the time of the last spike (tlastSpike)

and adding 1 to represent the effect of the new spike (the closed-form solution to

equation 4.2 between two t f
i s). Similarly, the applyPreSpike function samples the

postsynaptic trace by decaying the value of s j calculated at the time of the last

postsynaptic spike (t j) (the s j

(
t f
i

)
term of equation 4.4).

To decouple the timing and weight dependencies the applyPreSpike and ap-

plyPostSpike functions in the timing dependence call the applyDepression and ap-

plyPotentiation functions provided by the weight dependence rather than directly

manipulating wi j themselves. Algorithm 2 shows an implementation of applyDe-

80

Algorithm 1 Pair-based STDP timing-dependence implementation. Equivalent
updatePostTrace and applyPostTrace functions are omitted for brevity.

function updatePreTrace(si, t, tlastSpike)
∆t ← t − tlastSpike

return si · exp
(
− ∆t

tau

)
+ 1

function applyPreSpike(wi j, t, t j, s j)
∆t ← t − t j

if ∆t , 0 then
return applyDepression(wi j, s j · exp

(
− ∆t

tau

)
)

else
return wi j

pression which performs an additive weight update.

Algorithm 2 Additive weight-dependence implementation. Equivalent applyPo-
tentiation function is omitted for brevity.

function applyDepression(wi j, d)
return wi j + A+ · d

Algorithm 3 is the result of combining the simplified delay model proposed

by Morrison et al. [96] with the flushing mechanism and the interfaces for tim-

ing and weight dependencies discussed in this section. The algorithm begins by

looping through each postsynaptic neuron (j) in the row and retrieving a list of

the times (t j) at which that neuron spiked between tlastUpdate and t; and its state

at that time (s j) (taking into account the dendritic (DD) and axonal (DA) delays

associated with each synapse). The algorithm continues by looping through each

postsynaptic spike and calling the applyPostSpike function to apply the effect of

the interaction between the postsynaptic spike and the presynaptic spike that oc-

curred at tlastSpike to the synapse. If the update was instigated by a presynaptic spike

rather than a flush, the applyPreSpike function is called to apply the effect of the

interaction between the presynaptic spike and the most recent postsynaptic spike

to the synapse. Once all events are processed, the fully updated weight is added

81

to the input ring buffer. If the update was instigated by a presynaptic spike rather

than a flush, after all the synapses are processed, the presynaptic state stored in

the header of the row (si) is updated by calling the updatePreTrace function and

tlastSpike and tlastUpdate are set to the current time. If however the update was insti-

gated by a flush event, only tlastUpdate is updated to the current time, meaning that

the interactions between future postsynaptic events and the last presynaptic spike

will continue to be calculated correctly.

Algorithm 3 The new SpiNNaker STDP algorithm
function processRow(t, f lush, tlastUpdate, tlastSpike, si, synapses)

for each (j,wi j, dA, dD) in synapses do
history← getHistoryEntries(j, tlastUpdate + dA − dD, t + dA − dD)

for each (t j, s j) in history do
wi j ← applyPostSpike(wi j, t j + dD, tlastSpike + dA, si)

if not f lush then
(t j, s j)← getLastHistoryEntry(t + dA − dD)
wi j ← applyPreSpike(wi j, t + dA, t j + dD, s j)
addWeightToRingBuffer(wi j, j)

if not f lush then
si ← updatePreTrace(si, t, tlastSpike)
tlastSpike ← t

tlastUpdate ← t

82

0 50 100 150 200 250

Row length [synapses]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

0Hz 10Hz 20Hz

Figure 4.11: Performance of a SpiNNaker core simulating 256 neurons with
STDP synapses and varying sparseness of connectivity. Each data point repre-
sents the maximum Poisson input rate (provided by multiple 10 Hz sources) that
the core can handle in real time when the neurons on the core are spiking at differ-
ent rates (fixed via direct current injection). The horizontal dashed line represents
the performance of 500 × 103 synaptic events per second reported by Diehl and
Cook [93].

83

0 50 100 150 200 250

Row length [synapses]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

Nearest pair Pair all-to-all Triplet Vogels

Figure 4.12: Performance of a SpiNNaker core simulating 256 neurons with dif-
ferent types of STDP synapse and varying sparseness of connectivity. Each data
point represents the maximum Poisson input rate (provided by multiple 10 Hz
sources) that the core can handle in real time when the neurons on the core are
spiking at 10 Hz (fixed via direct current injection). “Vogels” refers to the in-
hibitory plasticity rule developed by Vogels et al. [102], “Triplet” to the triplet
rule developed by Pfister and Gerstner [99], and “Nearest” and “all-to-all” refer
to different spike-pairing schemes. The horizontal dashed line represents the per-
formance of 500 × 103 synaptic events per second reported by Diehl and Cook
[93].

84

4.4 Performance

Improving the performance of previous SpiNNaker STDP implementations is an

important aspect of this work. Therefore in this section I will perform an in depth

analysis of the performance of the new STDP implementation developed in this

chapter. The cost of evaluating algorithm 3 depends on the number of events

stored in history. Therefore I repeated the benchmark presented in section 3.7.3

on a SpiNNaker core simulating plastic synapses and used an additional DC input

current to vary the postsynaptic firing rate. Figure 4.11 shows the results of this

benchmark and illustrates that, probably due to the use of the simplified timing

model, our algorithm out-performs the approach developed by Diehl and Cook

[93] by up to 2×. Furthermore the results suggest that, due to the higher cost

of updating STDP compared to static synapses, the fixed costs associated with

processing a spike which we discussed in section 3.7.3 can be amortised over

shorter rows.

To determine the relative cost of the different timing dependencies and spike-

pairing schemes discussed in section 4.1 I also repeated the same benchmark with

a nearest-neighbour spike pairing scheme, the inhibitory plasticity rule proposed

by Vogels et al. [102] and the triplet rule proposed by Pfister and Gerstner [99].

As figure 4.12 illustrates, the performance for all four rules shows the same char-

acteristics with sparser connectivity and therefore shorter rows resulting in lower

performance. I also profiled the SpiNNaker implementations of each rule and

fitted the simple models shown in table 4.1 to the performance of algorithm 3.

As discussed in section 4.1 the nearest-neighbour spike-pairing is implemented

by resetting each trace to 1 when a spike occurs. This not only saves a multipli-

cation operation in each of the functions defined in algorithm 1, but also means

that the values of the traces do not have to be stored or retrieved – simplifying

many parts of algorithm 3. The second term of each model corresponds to the

85

Spike pairing Timing Dependence Row processing cost [cycles]

Nearest-neighbour Spike pair 103 + R(23P + 111)
All-to-all Spike pair 125 + R(31P + 131)
All-to-all Inhibitory [102] 125 + R(24P + 123)
All-to-all Triplet [99] 133 + R(33P + 146)

Table 4.1: Performance models of different STDP rules. R is the length of the
synaptic matrix row (in synapses). P is the number of postsynaptic events in
history.

cost of the applyPostSpike function and therefore reflects the increased complex-

ity of the triplet rule over the other pair-based STDP rules. Similarly simpler up-

datePreTrace functions result in smaller coefficients on the first term and simpler

applyPreSpike functions result in smaller coefficients on the third term.

4.5 Inhibitory plasticity in cortical networks

One of the simplest models of a cortical network consists of a population of exci-

tatory neurons and a smaller population of inhibitory neurons, sparsely connected

with the recurrent and reciprocal synapses shown in figure 4.13. Brunel [108]

identified that these networks can operate in several well-defined regimes depend-

ing on the relative weights of the inhibitory and excitatory synapses. The asyn-

chronous irregular regime has proved of particular interest as it matches firing rate

statistics recorded in the neocortex [109] and responds rapidly to small changes

in input making it an ideal substrate for computation [110]. However, it is unclear

how the carefully balanced synaptic weights required to establish this regime are

maintained in the brain. Vogels et al. [102] demonstrated that the asynchronous

irregular regime can be established using an STDP rule with the type of symmet-

rical kernel shown in figure 4.5. I implemented this learning rule using the timing

86

Figure 4.13: A balanced random network consisting of recurrently and recip-
rocally connected populations of excitatory neurons (red filled circles) and in-
hibitory neurons (blue filled circles). Excitatory connections are illustrated with
red arrows and inhibitory connections with blue arrows.

dependence functions defined in algorithm 4 and used it to reproduce the results

presented by Vogels et al. using a network of 2000 excitatory and 500 inhibitory

neurons with the parameters listed in table 4.2.

Without inhibitory plasticity the network remained in the synchronous regime

shown in figure 4.14a in which neurons spiked simultaneously at high rates. How-

ever, with inhibitory plasticity enabled on the connection between the inhibitory

and the excitatory populations, the neural activity quickly stabilised and, as shown

in figure 4.14b, the network entered an asynchronous irregular regime in which

neurons spiked at a much lower rate.

87

Model Summary

Populations Excitatory, inhibitory
Connectivity Probabilistic with 2 % connection probability
Neuron model LIF with exponential current inputs
Plasticity Inhibitory plasticity Vogels et al. [102]

Populations
Name Elements Size

Excitatory LIF 2000
Inhibitory LIF 500

Connectivity
Source Target Weight

Excitatory Inhibitory 0.03 nA
Excitatory Excitatory 0.03 nA
Inhibitory Inhibitory 0.3 nA
Inhibitory Excitatory 0 nA

Neuron and synapse model

Type LIF with exponential current inputs
Parameters gL = 0.01 µS leak conductance

C = 0.2 nF membrane capacitance
Vthresh = −50 mV threshold voltage
Vreset = Vrest = −60 mV reset/resting voltage
τexc

syn = 5 ms excitatory synaptic time constant
τinh

syn = 10 ms inhibitory synaptic time constant

Plasticity

Type Inhibitory plasticity Vogels et al. [102]
on Inhibitory →Excitatory synapses

Parameters ρ = 0.12 µS postsynaptic target firing rate
τ = 20.0 ms trace time constant
η learning rate

Table 4.2: Model description of the inhibitory plasticity network. After [85]

88

(a) Without inhibitory plasticity

(b) With inhibitory plasticity

Figure 4.14: The effect of inhibitory plasticity on a balanced random network
with 2000 excitatory and 500 inhibitory neurons. Without inhibitory plasticity the
network is in a synchronous state with all neurons firing regularly at high rates.
Inhibitory plasticity establishes the asynchronous irregular state with all neurons
firing at approximately 10 Hz.

89

Algorithm 4 Inhibitory plasticity timing-dependence implementation. up-
datePreTrace and updatePostTrace functions are identical to those used by stan-
dard STDP and are therefore omitted for brevity.

function applyPreSpike(wi j, t, t j, s j)
∆t ← t − t j

return applyPotentiation(wi j, s j · exp
(
− ∆t

tau

)
− α)

function applyPostSpike(wi j, t, ti, si)
∆t ← t − ti

return applyPotentiation(wi j, si · exp
(
− ∆t

tau

)
)

4.6 The effect of weight dependencies

In section 4.1 I discussed how the choice of weight dependence affects the fit of

STDP models to biological data. Rubin et al. [111] showed that different weight

dependencies also result in different equilibrium distributions of synaptic weights

when neurons with a biologically-plausible number of synapses are stimulated

with Poisson spike trains. Rubin et al. proved that a multiplicative weight depen-

dence results in a unimodal distribution of weights whereas an additive distribu-

tion results in a bimodal distribution.

To demonstrate the flexibility of the SpiNNaker STDP implementation pre-

sented in this chapter I reproduced these results empirically using the simple

PyNN model described in table 4.3. The resultant weight distributions are plotted

in figure 4.15. Additive weight dependencies in PyNN specify hard upper and

lower bounds and, as Rubin et al. predicted, the experiment using the additive

weight dependence results in a weight distribution with modes centred at these

bounds. Again, as Rubin et al. predicted, the experiment using the multiplicative

weight dependence results in a unimodal weight distribution.

90

Model Summary

Populations Neurons, stimuli
Connectivity All-to-all
Neuron model LIF with exponential current inputs
Plasticity STDP

Populations
Name Elements Size

Neurons LIF 1
Stimuli Independent 15 Hz 1000

Poisson spike trains

Connectivity
Source Target Weight

Stimuli Neurons Uniformly distributed
between 0 nA to 0.01 nA

Neuron and synapse model

Type LIF with exponential current inputs
Parameters gL = 0.017 µS leak conductance

C = 0.17 nF membrane capacitance
Vthresh = −54 mV threshold voltage
Vreset = −60 mV reset voltage
Vrest = −74 mV resting voltage
τsyn = 5 ms synaptic time constant

Plasticity

Type STDP with additive or multiplicative weight dependence
Parameters A+ = 0.01 potentiation rate

A− = 0.0105 depression rate
τ+ = 20.0 ms trace time constant
τ− = 20.0 ms learning rate

Table 4.3: Model description of the synaptic weight distribution network. Af-
ter [85]

91

0.00 0.25 0.50 0.75 1.00

Normalised weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n

 o
f

w
e
ig

h
ts

A

0.00 0.25 0.50 0.75 1.00

Normalised weight

B

0.00 0.25 0.50 0.75 1.00

Normalised weight

C

Figure 4.15: Histograms showing A initial uniform distribution of synaptic
weights and; distribution of synaptic weights following B STDP with additive
weight dependence and C STDP with multiplicative weight dependence. Simu-
lation consists of a single integrate-and-fire neuron with 1000 independent 15 Hz
Poisson spike sources providing synaptic input.

92

4.7 Conclusions

In this chapter I have provided some background on models of synaptic plastic-

ity and reviewed past approaches used to simulate them on both SpiNNaker and

other distributed systems. Building on these approaches I developed an entirely

new SpiNNaker STDP implementation which, by both reducing the algorithmic

complexity of previous approaches and employing new low-level optimisations,

almost doubles the performance of previous approaches. This implementation

forms a key component of the SpiNNaker software being developed as part of

the Human Brain Project which aims to provide a common platform for running

PyNN simulations on SpiNNaker, BrainScaleS and HPC platforms.

As demonstrated in sections 4.4 - 4.6 the modular structure of this new STDP

implementation allows new weight and timing dependencies to be easily imple-

mented. However, while any rule that relies purely on spike timings can easily be

integrated in this way, there is currently some debate as to whether a dependence

on postsynaptic membrane voltage [112] or its derivative [113] is in fact more

fundamental than postsynaptic spike timing. As discussed in section 4.3.3, in the

general case, voltage-dependent learning rules would be difficult to implement on

SpiNNaker. However some voltage-dependent learning rules, such as the rule de-

veloped by Brader et al. [112], depend only on whether the membrane potential is

above or below a threshold. In this case, as well as postsynaptic spikes, the post-

synaptic history could additionally store the times at which postsynaptic neurons

crossed this threshold.

93

94

Chapter 5

Bayesian Confidence Propagation

Neural Networks

In chapter 4 I discussed several STDP learning rules. These rules aim to repro-

duce experimental data without providing any explicit theory as to their role in

processing information.

An alternative approach is to start with a theoretical model of information

processing and map it onto neurons and plastic synapses, taking into account re-

strictions such as synaptic locality and the time constants of known biological

processes. Bayesian inference provides an intuitive model of how our brains inter-

nalise uncertainty about the outside world and, as such, it is a popular theoretical

framework on which to base such models [114, 115]. The Bayesian Confidence

Propagation Neural Networks (BCPNN) [7, 116] is a model of this type which

approximates Bayesian inference using networks of neurons. Moreover, several

of the synaptic plasticity phenomena discussed in chapter 4 as well as a form of

“intrinsic plasticity” – which alters neuron’s overall sensitivity to input – emerge

from spike-based BCPNN [117].

95

In section 5.1 I present a derivation of the spike-based BCPNN learning rule

from Bayes’ theorem and this forms the basis for my implementation of the first

SpiNNaker version of BCPNN which I present in section 5.2. I demonstrate

the correctness of this implementation by comparing it to a previous rate-based

model [118] in section 5.3 and using it to build a naı̈ve Bayesian classifier capable

of classifying the iris dataset [119] in section 5.4. Finally, in section 5.5, I build

a simple model of the neocortex and show that, using BCPNN, it is capable of

learning temporal sequences. I simulate this network at scales of up to 20 × 103

neurons and 51.2 × 106 plastic synapses: the largest plastic neural network ever to

be simulated on neuromorphic hardware. The SpiNNaker implementation of the

BCPNN synaptic plasticity rule and all the models presented in this chapter are

archived by Knight [120].

Much of the material in this chapter reproduces material published by Knight

et al. [10] in the “Anatomy and plasticity in large-scale brain models” special

edition of the Frontiers in Neuroanatomy journal.

5.1 Background

In this section I derive the BCPNN learning rule from Bayesian inference and

show how it can be approximated using spiking neurons. This derivation be-

gins with a naı̈ve Bayesian classifier network (figure 5.1). Each input layer unit

represents the probability of an independent binary attribute (P(xi)). Similarly

output layer unit represents the probability of the input belonging to a certain

class (P(y j)). Using Bayes’ theorem the probability of each class given the prob-

ability of each input attribute can be expressed as:

96

x1

x2

x3

x̄1

x̄2

x̄3

y1

y2

y3

y4

Input
layer

Output
layer

Figure 5.1: A naı̈ve Bayesian classifier. After [7].

P(y j|x1...n) = P(y j)
P(x1...n|y j)
P(x1...n)

(5.1)

Because the inputs to the classifier are assumed to be independent, we can

rewrite this as:

P(y j|x1...n) = P(y j)
n∏

i=1

P(xi|y j)
P(xi)

s (5.2)

Then, by taking logarithms and applying the chain rule, we obtain:

log(P(y j|x)) = log(P(y j)) +

n∑
i=1

log
(

P(y j, xi)
P(y j).P(xi)

)
(5.3)

Finally the terms of this equation can be separated to obtain weights (wi j) for

the connections between the input and output layers and biases (β j) to apply to the

97

output units:

β j = log(P(y j)) (5.4)

wi j = log
(

P(y j, xi)
P(y j).P(xi)

)
(5.5)

Lansner and Holst [7] originally trained BCPNN networks offline by counting

occurrences and co-occurrences of attributes and classes and, from these, calcu-

lating probabilities and thus weights and biases. More recently Tully et al. [117]

developed an approach for estimating P(xi), P(y j) and P(y j, xi) online using a net-

work of spiking neurons.

This approach begins with pre (Zi) and postsynaptic (Z j) traces known as the

“primary traces”:

τzi

dZi

dt
=

1
fmax∆t

∑
t f
i

δ
(
t − t f

i

)
− Zi (5.6)

τz j

dZ j

dt
=

1
fmax∆t

∑
t f

j

δ
(
t − t f

j

)
− Z j (5.7)

These traces are very similar to those discussed in section 4.1 but are scaled

based on the maximum allowed firing rate (fmax) and the simulation time step (∆t).

The primary trace time constants (τzi and τz j) determine the time scale over which

correlations can be detected and are inspired by fast biological processes. The

primary traces are then fed into the “probability traces” (Pi ≈ P(xi) and P j ≈

P(y j)) and the probability of two neurons firing together (Pi j ≈ P(y j, xi)) is also

calculated:

98

τp
dPi

dt
= Zi − Pi τp

dPi j

dt
= ZiZ j − Pi j τp

dP j

dt
= Z j − P j (5.8)

While, theoretically, the time constant of these traces (τp) can be set to several

days to match the rate of long-term cortical learning [121], this not only increases

simulation times but also results in implementation issues which I will discuss

in the next section. Estimated probabilities calculated using these traces are then

combined to compute a postsynaptic bias membrane current (Iβ j) and synaptic

weight between pre- and postsynaptic neurons (wi j):

Iβ j = βgain log(P j + ε) wi j = wsyn
gain log

Pi j + ε2

(Pi + ε)
(
P j + ε

) (5.9)

Here βgain and wsyn
gain are free parameters used to scale the dimensionless log

probabilities into neuronal input currents and synaptic efficacies respectively. The

lowest attainable probability estimate ε = 1000
fmaxτp

and the scaling used in equa-

tion 5.6 combine to establish a linear mapping from neuronal spike rates to prob-

abilities.

5.2 Implementation

Equations 5.6 - 5.9 cannot be directly evaluated within the event-driven synaptic

processing scheme outlined in section 4.3 but, as they are simple first-order linear

ODEs, they can be solved to find analytic solutions for advancing the Z and P

traces from the time of the last spike (tlast) to the current time (t). For example the

presynaptic traces, Zi and Pi can be advanced between spike times by evaluating:

99

Zi(t
f
i) =Zi(tlast) exp

(
−

∆t
τzi

)
+ 1 (5.10)

Pi(t
f
i) =Pi(tlast) exp

(
−

∆t
τp

)
+ Zi(tlast)ai

(
exp

(
−

∆t
τzi

)
− exp

(
−

∆t
τp

))
(5.11)

With the following coefficient used for brevity:

ai =
1

fmax

(
τzi − τp

)
The Z j and P j traces can be advanced between postsynaptic spike times using a

matching set of equations and Pi j can be advanced using the following equation:

Pi j(t) =Pi j(tlast) exp
(
−

∆t
τp

)
+ Zi(tlast)Z j(tlast)ai j

(
exp

(
−

∆t
τzi j

)
− exp

(
−

∆t
τp

))
(5.12)

Again with the following coefficients used for brevity:

τzi j =

(
1
τzi

+
1
τz j

)−1

ai j =
1

fmax
2
(
τz j + τzi

) (
τzi j − τp

)
Equations 5.10 - 5.12 could be used directly in the event-driven STDP algorithm

developed in chapter 4. However, even compared to the triplet STDP rule imple-

mented in chapter 4, equation 5.12 would be very costly to evaluate in the ap-

plyPreSpike and applyPostSpike functions called from algorithm 3. To reduce this

complexity Vogginger et al. [122] converted equations 5.10 - 5.12 into a “spike-

response model” [123] – A standard means of representing event-driven neural

systems. Vogginger et al. show that, as this model consists only of linear com-

binations of exp
(
−t
τzi

)
, exp

(
−t
τz j

)
and exp

(
−t
τp

)
, it can be re-framed into a new set of

state variables: Z∗i , Z∗j , P∗i , P∗j and P∗i j. The Z∗ and P∗ state variables have the same

dynamics as the STDP trace variables discussed in section 4.1 and can therefore

100

be evaluated when a spike occurs at time t:

Z∗i (t f
i) = Z∗i (tlast) exp

(
−

∆t
τzi

)
+ 1 P∗i (t f

i) = P∗i (tlast) exp
(
−

∆t
τp

)
+ 1 (5.13)

These Z∗ and P∗ traces can now be stored in the pre and postsynaptic state (si

and s j) and updated both in the updatePreTrace function called from algorithm 3

and when postsynaptic neurons fire. Pi j can similarly be re-framed in terms of a

new state variable which can be stored alongside the synaptic weight (wi j) in each

synapse. These state variables can then be updated in the applyPreSpike function

called from algorithm 3:

P∗i j(t
f
i) = P∗i j(t

last) exp
(
−

∆t
τp

)
+ Z∗j (t

f
i) (5.14)

as well as in the applyPostSpike function also called from algorithm 3:

P∗i j(t
f
j) = P∗i j(t

last) exp
(
−

∆t
τp

)
+ Z∗i (t f

j) (5.15)

The final stage of the event-based implementation is to obtain the probability trace

(Pi, P j and Pi j) values required to evaluate equation 5.9 from the new state vari-

ables enabling wi j and β j to be calculated:

Pi(t) = ai
(
Z∗i (t) − P∗i (t)

)
(5.16)

Pi j(t) = ai j

(
Z∗i (t)Z∗j (t) − P∗i j(t)

)
(5.17)

This approach makes implementing spike-based BCPNN on SpiNNaker feasible

from an algorithmic point of view but further problems arise from the need to use

fixed-point arithmetic. Vogginger et al. [122] investigated the use of fixed-point

types for BCPNN as a means of saving memory and calculated that, to match

101

the accuracy of a time-driven floating point implementation, a fixed-point format

with 10 integer and 12 fractional bits would be required. However, not only do the

individual neurons in the neocortical models which are the focus of this thesis fire

at much lower rates than the entire minicolumns being considered by Vogginger

et al., but the ARM architecture allows only 8, 16 or 32 bit types to be natively

addressed. Therefore, using the same approach discussed in section 4.3, we can

re-evaluate these calculations for a SpiNNaker implementation using 16 bit signed

traces. As the P∗ trace has the largest time constant it will decay the slowest

and therefore reach the largest value. By using equation 4.13 to calculate the

maximum value of this trace we can determine that a signed fixed-point format

with 6 integer and 9 fractional bits allows traces with τp < 3.17 s to be represented

if fmax = 20 Hz and with τp < 1.27 s if fmax = 50 Hz.

The relatively large time constants of the P∗ traces mean that – while more

LUT entries are required before exp
(
−t
τp

)
decays to 0 than for the STDP traces

discussed in chapter 4 – this function can still be implemented using the type of

simple LUTs discussed in section 3.7.1. However the log(x) function required

to evaluate equation 5.9 has no convenient decaying or periodic properties and

therefore needs to operate over a much larger domain. Conveniently x can be

normalised into the form x = y × 2n : n ∈ Z, y ∈ [1, 2) so a LUT is only required

to cover the interval [1, 2) and n can be calculated using an integer log2 operation.

5.3 Validating BCPNN learning on SpiNNaker

In this section I demonstrate that the implementation of BCPNN described in sec-

tion 5.2 produces connection weights and intrinsic excitabilities comparable to

those learned by previous models. To do this I use the network described in ta-

ble 5.1 and the procedure developed by Tully et al. [117] to compare the dynamics

102

0 2 4 6 8 10
time
τp

2

0

−2

w
ij

[n
A

] 0 2 4 6 8 10
−5.0

−2.5

0.0

β
j

[n
A

]

Postsynaptic Bias

Correlated
Independent

Anti-Correlated
Both Muted

Post Muted

Figure 5.2: Spike-based BCPNN estimates rate-based BCPNN for different input
patterns. Comparing weight and bias (inset) development under different proto-
cols when using rate-based (dashed) and SpiNNaker (solid) versions of the learn-
ing rule. SpiNNaker simulations were repeated 10 times and averaged, with stan-
dard deviations illustrated by the shaded regions.

of a BCPNN synapse connecting two neurons modelled using both my SpiNNaker

BCPNN implementation and a previous rate-based implementation [118]. I per-

formed this comparison by presenting the neurons with five patterns of differing

relative activations, each repeated for ten consecutive 200 ms trials. Correlated

patterns meant both neurons were firing at fmax Hz or ε Hz each trial; independent

patterns meant uniform sampling of fmax Hz and ε Hz patterns for both neurons

in each trial; anti-correlated patterns meant one neuron fired at fmax Hz and the

other at ε Hz or vice-versa in each trial; both muted meant both neurons fired at

ε Hz in all trials; and post muted meant uniform sampling of presynaptic neuron

activity while the postsynaptic neuron fired at ε Hz in all trials.

As figure 5.2 shows, during the presentation of patterns in which both units are

firing, the weights calculated by the abstract model fall well within the standard

103

Model Summary

Populations Pre, Post, Pre stimuli, Post stimuli
Connectivity One-to-one
Neuron model LIF with exponential current inputs
Plasticity Spiking BCPNN

Populations
Name Elements Size

Pre, post LIF 1
Pre stimuli, Post stimuli independent Poisson spike trains 1

as described in section 5.3

Connectivity
Source Target Weight

Pre Post Plastic
Pre stimuli Pre 2 nA
Post stimuli Post 2 nA

Neuron and synapse model

Type LIF with exponential current inputs
Parameters gL = 0.025 µS leak conductance

C = 0.25 nF membrane capacitance
Vthresh = −55.4 mV threshold voltage
Vreset = Vrest = −70 mV reset voltage
τsyn = 2.5 ms synaptic time constant

Plasticity

Type Spiking BCPNN as described in this chapter
Parameters fmax = 50 Hz maximum spiking frequency

τzi = τz j = 10 ms primary trace time constant
τp = 1000 ms probability trace time constant
wsyn

gain = 1 nA weight gain
βgain = 1 nA intrinsic bias gain

Table 5.1: Model description of the BCPNN validation network. After [85]

104

deviation of those calculated by the SpiNNaker model but, as units are muted,

the two models begin to diverge. Further investigation into the behaviour of the

individual state variables shows that this is due to the P∗ term of equation 5.16

coming close to underflowing the 16 bit fixed-point format when a long time has

passed since the last spike. This inaccuracy in the P∗ term is then further ampli-

fied when the weights and intrinsic excitabilities are calculated using equation 5.9

as for small values of x, log(x) approaches its vertical asymptote. The standard

deviations visible in figure 5.2 reflect the fact that for the spiking learning rule,

the individual spikes making up the Poisson stimuli were different for each trial,

but with the rate-based model there was no probabilistic element.

5.4 Demonstrating probabilistic inference

To demonstrate how the spiking BCPNN learning rule developed in this chapter

can perform Bayesian inference I built a network with the architecture shown in

figure 5.1 and used it to classify the classic Iris dataset [119]. Each class and input

was represented by a population of 30 integrate-and-fire neurons, densely con-

nected in the manner shown in figure 5.1. The Iris dataset contains 4 continuous

measurements (sepal length, sepal width, petal length and petal width) recorded

from 150 irises of 3 different species (Iris setosa, Iris virginica and Iris versicolor).

To transform these continuous variables into a number of binary attributes I used

the approach described by Lansner and Holst [7] and mapped each parameter to

a finite mixture of Gaussian probability density functions. For example the sepal

length parameter is mapped to 11 input populations with the tuning curves shown

in figure 5.3. I trained the network using a training set consisting of 120 randomly

ordered samples each presented for 75 ms. The four parameters associated with

each sample were presented by stimulating the input units using the finite mix-

105

4.30 4.66 5.02 5.38 5.74 6.10 6.46 6.82 7.18 7.54 7.90

Sepal length [cm]

0

5

10

15

20

F
ir

in
g

 r
a
te

 [
H

z]

Figure 5.3: An example of a set of Gaussian component functions. Covering the
interval [4.3, 7.9] of the “Sepal length” parameter of the Iris dataset [119].

ture parameter encoding and the correct class by stimulating the corresponding

class population with fmax Hz Poisson noise. Using a testing set consisting of the

remaining 30 samples I then tested the trained network by again stimulating the

input units using the same finite mixture parameter encoding and recording the

most highly active class population i.e. the population corresponding to the class

with the highest probability. The results of this classification task are shown in

the confusion matrix presented in figure 5.4 and the overall classification accu-

racy was 90 %. However, non-spiking naı̈ve Bayesian classifiers typically achieve

nearer 96 % [124] on this task. My analysis suggests that this poor performance

is due to the training regime taking 9 s whereas τp is only 2 s. This means that the

probability estimates calculated for earlier samples will have decayed significantly

by the end of the training regime.

106

Iris-virginica Iris-setosa Iris-versicolor

Predicted class

Iris-virginica

Iris-setosa

Iris-versicolor

A
ct

u
a
l

cl
a
ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.4: Confusion matrix from classification of Iris dataset [119] using spiking
BCPNN.

5.5 Learning temporal sequences using a simplified

neocortical heteroassociative memory model

One theory as to the overarching function of the neocortex comes from Lashley [8]

who first suggested that all behavioural sequences were controlled by hierarchical

plans. In humans, Lashley went on to say, that the production of speech is the

ultimate example of this where:

“There is a series of hierarchies of organisation; The order of vocal

movements in pronouncing the word, the order of words in the sen-

tence, the order of sentences in the paragraph, the rational order of

paragraphs in a discourse.”

More recently Averbeck et al. [9] decoded neural activity from the prefrontal

cortex of macaque monkeys as they drew shapes on a screen which demonstrated

several of the properties Lashley predicted. However, it remains a major challenge

107

Figure 5.5: Simplified neocortical architecture with 4 macrocolumns (black out-
lined circles) each consisting of 10 excitatory minicolumns (red circles) and an in-
hibitory population (blue circle). Local inhibitory connections are indicated with
thin blue arrows and local excitatory connections with thin red arrows. Global
plastic excitatory connections are indicted using thick red arrows.

to learn such functionally meaningful dynamics within large-scale models using

biologically plausible synaptic and neural plasticity mechanisms. In this section I

use a simplified model of the neocortical architecture discussed in section 2.2 and

the spiking BCPNN learning rule developed in this chapter to demonstrate one

way in which this might be possible.

The network shown in figure 5.5 is inspired by the model proposed by Lundqvist

et al. [125] and consists of NHC macrocolumns arranged in a grid where each

macrocolumn consists of 250 inhibitory neurons and 1000 excitatory neurons

evenly divided into 10 minicolumns. The neurons in this network are modelled

108

using the simple LIF model presented in section 3.1.1. However, to aid the tran-

sition between sequence elements, the excitatory neurons use the simple spike-

frequency adaptation mechanism proposed by Liu and Wang [126]. This mecha-

nism generates a current Ia which is calculated as follows and subtracted from the

Iapp term of equation 3.6:

τa
dIa

dt
= −Ia (5.18)

τa is the time constant of this adaptation process and, when the neuron emits a

spike, a current of 0.15 nA is added to a. Within each macrocolumn the excitatory

and inhibitory neurons are connected with the recurrent and reciprocal connec-

tions shown in figure 5.5 – enabling WTA dynamics between the minicolumns

of each macrocolumn. While the strength of these synapses remains fixed, all

excitatory cells in the network are also recurrently connected to each other with

both fast-acting AMPA and slow-acting NMDA plastic synapses modelled using

the spiking BCPNN rule. The AMPA synapses are modelled using exponential

synapses with a short time constant of 5 ms and, although the NMDA synapses

are also modelled using simple exponential synapses rather than a more realistic

voltage-gated model, they have a longer time constant of 150 ms.

All connections in the network have distance-dependent synaptic delays based

on the Euclidean distance within the grid of macrocolumns. The delay between

the neurons in macrocolumns Hpre
xy and Hpost

xy is therefore calculated with:

tHpre
xy Hpost

xy

d =
dnorm

√(
Hpost

x − Hpre
x

)2
+

(
Hpost

y − Hpre
y

)2

V
+ 1 (5.19)

Where conduction velocity V = 0.2 mm ms−1 and dnorm = 0.75 mm mean-

109

ing that all connections within a macrocolumn have delays of 1 ms. Tully et al.

[117] proposed that networks of this sort could learn sequences of minicolumn

activation using the BCPNN learning rule. Additionally they suggested that the

direction in which the network would replay these sequences could be controlled

by employing asymmetrical Zi and Z j trace time constants. I demonstrated these

abilities by employing a training regime – a subset of which is shown in figure 5.6a

– in which all cells in a mutually exclusive sequence of minicolumns were re-

peatedly stimulated for 50 training epochs. Each minicolumn was stimulated for

100 ms, such that the neurons within it fired at an average rate of fmax Hz. During

training I disabled the input from the plastic AMPA and NMDA synapses meaning

that, while the weights were learned online, the dynamics of the network did not

disturb the training regime. A recall phase followed this learning phase in which

a 50 ms stimulus of fmax Hz was applied to all cells in the first minicolumn of

the learned sequence. During both the training and recall phases I provided back-

ground input to each cell in the network from an independent 65 Hz Poisson spike

source. These Poisson spike sources are simulated on SpiNNaker cores additional

to those running the neural simulation algorithm described in section 3.7.2.

The training regime was able to produce the connectivity required to recall se-

quences in the same order in which they were presented during training as shown

in figure 5.6b. Strong recurrent AMPA connectivity is learned amongst the neu-

rons in each minicolumn as shown in figure 5.7a. This AMPA connectivity allows

a stable, self-sustaining pattern of neuronal activity known as an attractor [127]

to form if these neurons are given an initial stimulus. Transitioning between the

attractor states associated with two sequence elements occurs due to the interac-

tion between several mechanisms. Spike-frequency adaptation reduces the firing

rate of the neurons within the active attractor and the NMDA connectivity shown

in figure 5.7b stimulates the neurons within the attractor corresponding to the next

110

(a) Training

(b) Testing

Figure 5.6: Spike rasters of excitatory cells and the average firing rate within
each minicolumn during subset of training and testing of temporal sequences of
minicolumn activation in 9 macrocolumn modular attractor network. Active mini-
columns are identified with numbers 0–9.

111

0 1 2 3 4 5 6 7 8 9

Post-synaptic attractor number

0

1

2

3

4

5

6

7

8

9

P
re

-s
yn

a
p

ti
c

a
tt

ra
ct

o
r

n
u

m
b

e
r

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
ij
 [

n
A

]
(a) AMPA - τzi = 5 ms and τz j = 5 ms

0 1 2 3 4 5 6 7 8 9

Post-synaptic attractor number

0

1

2

3

4

5

6

7

8

9

P
re

-s
yn

a
p

ti
c

a
tt

ra
ct

o
r

n
u

m
b

e
r

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

w
ij
 [

n
A

]

(b) NMDA - τzi = 150 ms and τz j = 5 ms

Figure 5.7: Average strength of learnt connections between minicolumns.

112

Train Test Train Test Train Test
0

20

40

60

80

100

120
T

im
e
 [

m
in

u
te

s]

NHC = 4 NHC = 9 NHC = 16

Downloading Uploading Generation Simulation

Figure 5.8: Total simulation time on SpiNNaker.

sequence element. After approximately 200 ms, the action of these mechanisms

leads to the activity within the attractor corresponding to the next sequence ele-

ment exceeding that within the previously active attractor. At this point, the WTA

connectivity between the minicolumns acts to complete the transition, inhibiting

the neurons that are not part of the newly active attractor.

Because of the modular structure of the network described in this section, this

temporal sequence learning can be performed using networks of varying scales

by instantiating different numbers of macrocolumns and linearly scaling the wsyn
gain

parameter of the connections between them. By doing this, I investigated how

the time taken to simulate the network on SpiNNaker scales with network size.

Figure 5.8 shows how these times are split between the training and testing phases

and how long is spent generating data on the host computer, transferring it to and

from SpiNNaker, and running the simulation. So as to fit this simulation onto the

single board SpiNNaker systems available at the time, I ran all of these simulations

113

Simulation SpiNNaker Cray XC-30
NHC time [min] # chips Peak power [W] # nodes Peak power [W]

4 17 6 6 2 938
9 50 12 12 2 938

16 146 21 21 2 938

Simulation SpiNNaker Cray XC-30
NHC time [min] # chips Peak power [W] # nodes Peak power [W]

4 9 6 6 4 1875
9 23 12 12 141 6563

16 62 21 21 9 4219

Table 5.2: Comparison of power usage of modular attractor network simulations
running on SpiNNaker with simulations distributed across enough compute nodes
of a Cray XC-30 system to match SpiNNaker simulation time. Cray XC-30 power
usage is based on the 30 kW power usage of an entire Cray XC-30 compute
rack [128]. SpiNNaker power usage is based on the 1 W peak power usage of
the SpiNNaker chip [81]. Top: SpiNNaker simulation times include downloading
of learned weights and re-uploading required by current software. Bottom: Time
taken to download learned weights, re-generate and re-upload model to SpiN-
Naker have been removed. 1 It is unclear why more supercomputer compute nodes
are required to match the SpiNNaker simulation times when NHC = 9 than when
NHC = 16. This is assumed to be an artefact of the different scaling properties of
the two simulators, but further investigation is outside of the scope of this work.

114

at 0.5× real-time – allowing each core to process twice as many synaptic events

within each simulation time step. This meant that the simulation time remained

constant as the network grows, but the times required to generate the data and to

transfer it grow significantly, meaning that when NHC = 16 (2.0 × 104 neurons

and 5.1 × 107 plastic synapses), the total simulation time is 146 min. However,

the time spent in several phases of the simulation is increased by limitations of

the current SpiNNaker toolchain. 84 min is spent downloading the learned weight

matrices and re-uploading them for the testing – a process that is required only be-

cause the changing of parameters (in this case, whether learning is enabled or not)

mid-simulation is not currently supported. Additionally, the current implementa-

tion of the algorithm outlined in section 3.7.2 only allows neurons simulated on

one core to have afferent synapses with a single learning rule configuration. This

means that the training regime has to be run twice with the same input spike trains,

once for the AMPA synapses and once for the NMDA synapses thus doubling the

time taken to simulate the training network.

Previous supercomputer simulations of modular attractor memory networks

have often used more complex neuron models and connectivity [129] making

simulation times difficult to compare with the SpiNNaker simulation, due to the

simpler network model presented in this section. To present a better compari-

son, a network model with the same connectivity as the SpiNNaker model was

built and simulated on a Cray XC-30 supercomputer system using NEST version

2.2 [46] with the spike-based BCPNN implementation developed by Tully et al.

[117]. NEST does not include the adaptive neuron model described in this section

so I instead used the adaptive exponential model presented in section 3.1.1 [52].

As previously discussed, SpiNNaker runs at a fixed-fraction of real-time so

the NEST simulations were distributed across increasing numbers of Cray XC-30

compute nodes (each consisting of two 2.5 GHz Intel Ivy Bridge Xeon proces-

115

sors) until the simulation completed in the same time as those shown in figure 5.8

for my SpiNNaker simulations. Table 5.2 shows the result of both these super-

computer simulations and a second set with the time taken for the mid-simulation

downloading and re-uploading of weights – currently required by the SpiNNaker

software – removed. Due to this redundant step and because NEST parallelises

the generation of simulation data across the compute nodes, at all three scales,

the modular attractor network can be simulated using 2 compute nodes. However,

if the time spent downloading and re-uploading the weights is removed, 9 com-

pute nodes are required to match the run-time of the SpiNNaker simulation when

NHC = 16.

While a more in-depth measurement of power usage is beyond the scope of

this thesis, approximate figures for the power usage of the simulations running on

both systems can be derived based on the 1 W peak power usage of the SpiNNaker

chip and the 30 kW power usage of a Cray XC-30 compute rack [128]. While

these figures ignore the power consumed by the host computer connected to the

SpiNNaker system, the power consumed by the “blower” and storage cabinets

connected to the Cray XC-30 and assume that all CPUs are running at peak power

usage they show that, even in the worst case, SpiNNaker uses 45× less power

than the Cray XC-30 and, if the limitations of the current SpiNNaker software are

addressed, this can be improved to 200×.

116

5.6 Conclusions

In this chapter I have demonstrated that BCPNN learning is possible on SpiN-

Naker. However, the implementation described in section 5.2 could also be ex-

tended to support spike-based reinforcement learning [130] by adding an extra

level of eligibility traces with time constants between those of the primary and

probability traces [117]. Eligibility traces propagate into the probability traces at

a rate previously described as κ [117]. This represents a reward signal and could be

used to represent basal ganglia input [131], allowing the modular attractor mem-

ory model described in section 5.5 to switch between behavioural sequences when

this might be a beneficial strategy for successful task completion [132].

The original event-driven BCPNN model developed by Vogginger et al. [122]

includes a set of E∗ state variables which are used to represent the components

of the spike-response model arising from the eligibility trace dynamics. Though

omitted here, the SpiNNaker BCPNN implementation could be extended to in-

clude these traces at the cost of some extra computation and the memory required

to store an additional 16 bit trace with each synapse and entry in the postsynap-

tic history structure. In section 5.3 I showed that by using a 16 bit fixed-point

representation for the Z∗ and P∗ state variables, results comparable to previous

floating-point implementations can be produced when both τp and fmax are rel-

atively small. However, as discussed in section 5.4, τp restricts the number of

patterns that the network can learn and additionally this approach doesn’t scale

to the type of model described by Fiebig and Lansner [121] where learning time

constants span many orders of magnitude. In these situations, it may be necessary

to use a 32 bit fixed-point representation for the P∗ traces, further increasing the

memory and computational cost of the learning rule.

In section 5.5 I presented simulations of a modular attractor network model

with up to 16 macrocolumns, connected uniformly with 10 % connectivity. At

117

this scale each pyramidal cell in the network receives 4.0 × 103 afferent excitatory

synapses but – if the model were scaled up to, for example, the scale of the mouse

neocortex with approximately 1.6 × 107 neurons [30] – each pyramidal cell would

receive 1.3 × 106 afferent synapses. However, as discussed in section 2.2, due to

the “patchy” nature of long-range cortical connectivity each pyramidal cell in the

neocortex receives, on average only 8.0 × 103 synapses. Additionally, while each

macrocolumn in the model contains 10 minicolumns, biological macrocolumns

typically have closer to 100 [27, 28]. This means that, because of the winner-

take-all dynamics within each macrocolumn, while 10 % of neurons in the current

model are active at any given time, only 1 % would be active in a more realistic

model.

As demonstrated by the benchmarks presented in sections 3.7.3 and 4.4 the

CPU load is highly dependent on the rate of incoming synaptic events. The com-

bined effect of the more realistic global connectivity and sparser activity discussed

in the previous paragraph would be to reduce the rate of incoming synaptic events

by a factor of 5 when compared to the current model. This means that a model

with more realistic connectivity could run faster than the current model on SpiN-

Naker.

118

Chapter 6

Synapse-centric simulation

The design of SpiNNaker was based on the assumption that each ARM processing

core would be responsible for simulating 1000 spiking neurons. Each of these

neurons was expected to have around 1000 synaptic inputs each receiving spikes

at an average rate of 10 Hz [86].

However, over recent years it has become clear that larger, more realistic cor-

tical models of the type discussed in section 2.2 are likely to break these assump-

tions. In section 6.1 of this chapter I will re-analyse the performance of the current

SpiNNaker neural simulator and show how these, more realistic, models cannot

be efficiently simulated using the approach described in section 3.7.2. Due to the

flexible nature of the SpiNNaker architecture, several alternative simulators have

been developed which aim to overcome some of these problems. In section 6.2

I give an overview of these alternative approaches and show that, again, in the

context of more realistic models they are still likely to provide poor performance.

I solve these performance problems by developing a novel “synapse-centric”

SpiNNaker simulator which I discuss in section 6.3. In sections 6.4 and 6.5 I

demonstrate the improved performance of this new simulator – showing that it

can quadruple the number of neurons with a biologically plausible number of

119

plastic synapses that can be simulated on a single SpiNNaker core when com-

pared to the current SpiNNaker simulator. Finally I rerun the simulations of the

neocortical model performed in the previous chapter and show that, using the new

simulator, they can be performed in biological real time with two forms of simul-

taneously active synaptic plasticity. The version of the synapse-centric simula-

tor used in this chapter is available from https://github.com/project-rig/

pynn_spinnaker/releases/tag/release_0_3_1.

The work presented in this chapter largely reproduces material published by

Knight and Furber [11] in the Frontiers in Neuromorphic Engineering journal.

6.1 Analysis

In sections 3.7.2 and 4.4 I showed that the synaptic input processing performance

of the current SpiNNaker simulation kernel was strongly dependent on the length

of the synaptic matrix rows and hence the density of the synaptic connectivity.

This is clearly problematic because, as discussed in section 2.2, the connectivity

of cortical networks is typically relatively sparse.

In section 2.2 I stated that cortical neurons have an average of 8000 synaptic

inputs and Buzsáki and Mizuseki [87] found that the average firing rate of such

neurons was at most 3 Hz. Therefore, in this section, I analyse the synaptic input

processing performance of the SpiNNaker simulator based on neurons which each

receive a fixed input rate of 24 kHz. I model this by stimulating a population of

neurons with Poisson spike input delivered by multiple 10 Hz sources simulated

on additional SpiNNaker cores. As the connectivity becomes sparser each spike

source connects to fewer postsynaptic neurons via a shorter synaptic matrix row.

Therefore more input spikes, and hence synaptic matrix rows need to be processed

to handle the same total input spike rate. As figure 6.1b shows, this leads to synap-

120

https://github.com/project-rig/pynn_spinnaker/releases/tag/release_0_3_1
https://github.com/project-rig/pynn_spinnaker/releases/tag/release_0_3_1

tic input processing performance dropping to only 60 % of the peak performance

even at the maximum biological connection density of 20 % [35]. As discussed

in section 3.7.2 this occurs because, beyond the cost of processing each synapse,

there is a significant fixed cost in processing each row. Furthermore, to maintain

the desired input rate, the only way to counteract the decreasing performance is

to further reduce the number of neurons simulated on each core which further

reduces the length of the synaptic matrix rows and thus exacerbates the problem.

To increase temporal accuracy [133] or improve the numerical precision with

which the differential equations used to model each neuron are solved [82], it can

be necessary to simulate the time-driven components of the SpiNNaker simula-

tion on a shorter time step such as 0.1 ms. Synaptic processing is event-driven

and therefore reducing the simulation time step will have no direct effect on its

computational cost. However if the simulation time step is reduced from 1 ms to

0.1 ms, so as to leave the same number of CPU cycles available for synaptic pro-

cessing, 10× fewer neurons can be simulated on each core leading to row lengths

also being reduced by 10×. In this situation, as figure 6.1a shows, even with

100 % connectivity the row length is sub-optimal so that only 70 neurons can be

simulated on each core. Furthermore, as the connectivity becomes sparser, perfor-

mance drops to the point where, at 10 % connectivity, it is impossible to simulate

the benchmark in real time.

I continued this analysis of the synaptic input processing performance by mea-

suring the performance of pair-based STDP synapses with an additive weight de-

pendence using the same benchmark network. Figure 6.2 shows that, much like

the static synaptic processing performance discussed earlier in this section, per-

formance drops to only around 30 % of the peak performance at 20 % connectivity

due to very short row lengths.

121

10 20 30 40 50 60 70 80 90 100

Connectivity [Percentage]

0

50

100

150

200

250

300

M
a
xi

m
u

m
 n

e
u

ro
n

s
p

e
r

co
re

A

10 20 30 40 50 60 70 80 90 100

Connectivity [Percentage]

0

1

2

3

4

5

6

7
M

a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

B

0.1ms time step 1.0ms time step

Figure 6.1: Static synaptic processing performance of a single SpiNNaker core
simulating neurons using simulation time steps of 1 ms and 0.1 ms. Each neuron
receives 24 kHz of synaptic input from multiple 10 Hz Poisson spike sources, con-
nected with varying degrees of connection sparsity. With a simulation time step
of 0.1 ms it was impossible to run simulations with connectivity sparser than 20 %
in real time. (A) Performance in terms of the maximum number of these neurons
that can be simulated on each core. (B) Performance in terms of the raw synaptic
event processing performance of each core.

122

20 30 40 50 60 70 80 90 100

Connectivity [Percentage]

5

10

15

20

25

30

35

40

45

M
a
xi

m
u

m
 n

e
u

ro
n

s
p

e
r

co
re

A

20 30 40 50 60 70 80 90 100

Connectivity [Percentage]

0.2

0.4

0.6

0.8

1.0

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

B

0.0Hz 10.0Hz 20.0Hz

Figure 6.2: STDP synaptic processing performance of a single SpiNNaker core
simulating neurons with three different postsynaptic firing rates. Each neuron re-
ceives 24 kHz of synaptic input from multiple 10 Hz Poisson spike sources, con-
nected with varying degrees of connection sparsity. (A) Performance in terms of
maximum number of these neurons that can be simulated on each core. (B) Per-
formance in terms of raw synaptic event processing performance of each core.

123

6.2 Related work

Galluppi et al. [134] developed a very different approach for simulating synap-

tic plasticity on SpiNNaker compared to the event-driven approaches discussed in

section 4.2. They simulated neurons and their synaptic inputs using the standard

approach described in section 3.7.2 but used extra cores to simulate plasticity us-

ing a time-driven approach. These “plasticity cores” operated on a relatively slow

time step of 128 ms within which they read back the entire synaptic matrix row-

by-row. Then, based on a record of pre and postsynaptic activity recorded into

shared memory during the previous 128 ms by the “neuron core”, the plasticity

core updated the synaptic weights. Galluppi et al. reported that, with each neuron

core simulating 100 neurons, this system could perform STDP synaptic process-

ing at rates of up to 1.5 × 106 synaptic events per second per core. However, this

was based on a benchmark in which the population of neurons being simulated

received input from just 195 densely connected, high frequency Poisson inputs

meaning that just 195 rows needed to be processed within each 128 ms plasticity

time step. If, however, we consider the model of cortical connectivity described

in section 2.2 where each neuron has 8000 sparsely connected inputs, even if the

connection density is 20 %, the synaptic matrix will contain 40 000 rows. If we

assume the lowest mean cortical firing rate of around 2 Hz measured by Buzsáki

and Mizuseki [87], each row will contain approximately 20 synapses (based on

the 100 neurons per core used in the benchmark) and each row update will have

to process an average of 5 postsynaptic events during each 128 ms plasticity time

step. As each of the updates performed by the plasticity cores uses a trace-based

approach similar to algorithm 3 we can estimate the cost of each resultant update

based on the performance model presented in section 4.4. This model suggests

that updating each row will take around 2800 CPU cycles meaning that, as a

SpiNNaker core has 256 × 105 clock cycles available within each 128 ms plas-

124

ticity time step, each plasticity core would be able to update approximately 9100

rows within this time. Therefore, the updating of all 40 000 rows would need to

be distributed amongst 5 plasticity cores. This would result in a per-core synap-

tic processing performance of just 350 × 103 synaptic events per second, only a

marginal improvement over the 289 × 103 synaptic events per second achieved by

the current approach in the benchmarks presented in the previous section.

Lagorce et al. [133] recently presented an alternative means of simulating neu-

rons with 1 µs temporal accuracy on SpiNNaker using an event-driven neuron

model. While some sensory neurons [135] may require this degree of temporal

accuracy, in cortical networks of the type considered in this thesis, spike timings

are typically only synchronised to within several ms [136]. Additionally, as dis-

cussed in section 3.2, only a small subset of neuron models can be simulated in

an event-driven manner and cortical connectivity means that simulating neurons

using an event-driven approach is likely to have little performance benefit. For

these reasons, in the rest of this chapter, only time-driven neural models will be

considered.

6.3 Implementation

In section 6.1 I identified two main problems with the current approach to mapping

large, highly-connected spiking neural networks to SpiNNaker.

1. Synaptic processing performance decreases as connectivity becomes sparser

due to shorter synaptic matrix rows over which to amortize the fixed costs

of servicing interrupts, initiating the DMA transfer of the synaptic matrix

row etc.

2. The only way to reduce the load on a single SpiNNaker core and thus allow

neurons with a given synaptic input rate to be simulated in real time is to

125

reduce the number of neurons being simulated on the core, exacerbating the

first problem.

In this section I present a novel solution to mapping spiking neural networks

with both plastic and static synapses to SpiNNaker which alleviates both of these

problems. The key intuition behind this approach is that, if the synaptic matrix

is split in a row-wise manner over multiple cores rather than column-wise with

the neurons, row lengths can be kept as long as local memory restrictions allow

and are unaffected by dividing the synapses amongst multiple cores. As shown in

figure 6.3 I achieve this by using separate cores to simulate the neurons and their

afferent synapses. The afferent synapses associated with the population are split

between one or more synapse processors based on the following criteria:

1. By synapse type, meaning that each synapse processor needs to have only

sufficient local memory for a single input ring-buffer and different synaptic

plasticity rules can be simulated on separate cores.

2. Postsynaptically (vertically) based on the local memory requirements of the

ring-buffer structure and, if the core is simulating plastic synapses, the post-

synaptic history structure required for the plasticity algorithm (as discussed

in section 4.3).

3. Presynaptically (horizontally) based on an estimate of the presynaptic pro-

cessing cost derived from the firing rate of the presynaptic neurons and their

connectivity.

The local memory requirements of the input ring-buffer limits each synapse

processor to simulating the static synapses associated with 1024 postsynaptic neu-

rons. The extra local memory required for the postsynaptic history structure, dis-

cussed in section 4.3, limits synapse processors to simulating the STDP synapses

126

7
8
9
10
11
12

Synapse core 2

1
2
3
4
5
6

Synapse core 1

1 2 3 4 5 6 7 8 9 101112

Neuron core

Network

Figure 6.3: The example network used in figure 3.4 is distributed amongst three
SpiNNaker cores using the synapse-centric approach. The neuron core is respon-
sible for simulating all 12 neurons (filled circles). The synaptic matrix is split
horizontally with the rows associated with the presynaptic neurons (non-filled cir-
cles) distributed between two synapse cores. Double arrows indicate how input
currents or conductances are transferred from the synapse processors to the neuron
processors through shared memory.

127

associated with 512 postsynaptic neurons. At the beginning of each simulation

time step the synapse processors initiate a DMA transfer to write the input cur-

rent or conductance accumulated in the ring-buffer (which in the current approach

would be passed directly to the neuron model) to a buffer located in the external

SDRAM.

The time-driven simulation of the neurons is split amongst neuron processors

until memory and real time CPU constraints are met. Without having also to simu-

late the afferent synapses, each neuron processor can simulate many more neurons

than is possible using the current approach. For example 1024 LIF neurons with

exponential synapses simulating on a 1 ms time step can be simulated on a single

core.

At the beginning of each simulation time step each neuron processor initiates

a series of DMA reads to fetch the buffers containing the input currents or conduc-

tances written by its associated synapse processors. The current or conductance

inputs associated with each of the neuron model’s receptors are then summed to-

gether and passed to the neuron model.

Although the postsynaptic splitting of neurons and synapses can be indepen-

dent, because the neuron and synapse processors communicate through shared

memory buffers only accessible to the 16 cores on the same SpiNNaker chip, this

is somewhat restricted.

For example, if we consider a population of simple LIF neurons (1024 of

which can be simulated on a single core) with complex plastic synapses whose

local memory requirements mean that they must be split postsynaptically at 256

neurons. If, presynaptically, 5 synapse processors are required to handle the input

to these 256 neurons then, as figure 6.4a illustrates, 21 cores would need to access

the same shared memory buffer – more than are available on the SpiNNaker chip.

The solution to this problem is to reduce the number of neurons simulated on

128

S
y
n
ap

se
p
ro
ce
ss
or
s

Neuron processors

256 512 768 1024

(a) Splitting with 1024 neurons per
neuron processor – Does not fit on a
single SpiNNaker chip

S
y
n
ap

se
p
ro
ce
ss
or
s

Neuron processors

256 512 768 1024

(b) Splitting with 512 neurons per neu-
ron processor – Fits on two SpiNNaker
chips

Figure 6.4: Limitations on synapse-centric splitting of neurons and synapses.
Double arrows indicate how input currents or conductances are transferred from
the synapse processors to the neuron processors through shared memory.

129

each neuron processor to 512 meaning that, as figure 6.4b illustrates, only 9 cores

would need to access the same shared memory buffer.

As well as the inputs they receive from other neurons in the network, neurons

in cortical models are often kept in the asynchronous irregular regime by a source

of background noise. This background input often takes the form of independent

Poisson spike trains and, when using the approach discussed in section 3.7.2, these

are delivered to the neurons using the SpiNNaker interconnect network. However,

the mechanism for providing input to a neuron processor through external memory

buffers can be re-used to allow the background input to be delivered from current

input processors directly to the neuron processors. The current input processors

generate a Poisson spike vector every time step, multiply it by a weight vector

to convert the spikes into current or conductance values, and write the resulting

vector to the external memory buffers.

The approach described in section 4.3 would also be difficult to extend to allow

populations of neurons to have multiple learning rules on their afferent synapses.

This would require the postsynaptic history structure to be extended to include

postsynaptic state (s j) for each learning rule – adding to its already considerable

memory requirements with each additional learning rule. Algorithm 3 would also

have to be extended to select the correct learning rule for each synapse and call the

appropriate applyPostSpike and applyPreSpike functions – increasing the cost of

this, performance-critical, algorithm. However, supporting multiple learning rules

is trivial when using the synapse-centric approach; additional synapse processors

can simply be instantiated to simulate each required synapse type.

130

0 20 40 60 80 100

Connectivity [percent]

4

5

6

7

8

9

10

11

12

13

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]
1e6

Figure 6.5: Performance of a synapse processor simulating the afferent static
synapses associated with 1024 neurons. Each data point represents the maximum
Poisson input rate (provided by multiple 10 Hz sources) that the core can handle
in real time.

6.4 Static synaptic processing performance

I profiled the performance of the new static synapse processors and found that

their performance has improved over the current approach: down to 15 cycles to

process a synapse. This saving is achieved because, as each synapse processor

has to process only a single type of synapse, the synapse processing loop can be

further optimised. Using this figure we can estimate the rate of incoming synaptic

events that each synapse processor can handle.

µevents ≈
200 × 106

15
(6.1)

This suggests that each synapse processor can handle just over 13 × 106 synap-

131

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

150 neurons

3.5× 106

synaptic events/s

Spikes

Spikes

(a) Current approach – 7 cores

11× 106

synaptic events/s

Spikes

11× 106

synaptic events/s

Spikes

1024 neurons
Spikes

(b) Synapse-centric approach – 3 cores

Figure 6.6: Distribution of 1024 neurons with static synapses each receiving
24 kHz input amongst SpiNNaker cores using current and synapse-centric ap-
proaches. Connection density is 20 %. Dashed outlines illustrate the processing
that occurs on a single SpiNNaker core. Heights of synapse processing blocks
are scaled to reflect synaptic event processing performance. Heights of neuron
processing blocks are scaled to reflect number of neurons that can be simulated.
Double arrows indicate communication on same core and thick grey arrows indi-
cate communication through external memory buffers.

132

tic events per second which will be divided amongst the 1024 neurons whose

synapses each static synapse processor can simulate. If it is then assumed that,

based on the model of cortical connectivity described in section 2.2, each neu-

ron receives 24 kHz of synaptic input then we can estimate that 1024 neurons’

afferent synapses could be simulated using 2 synapse processors. To verify these

results I repeated the benchmark described in section 6.1 on a population of 1024

neurons mapped to one neuron processor and one synapse processor using the

new synapse-centric approach. Figure 6.5 shows that the peak performance of

the synapse processor is, indeed, almost 13 × 106 synaptic events per second al-

though this reduces significantly with sparser connectivity. However, because the

number of postsynaptic neurons does not need to be reduced until all of the affer-

ent synapses can be simulated on a single core and because the length of a row

representing the same connectivity is 4× longer than it would be when using the

current approach, this effect is significantly less pronounced. On this basis, just

2 synapse processors can handle 100 % connectivity and 3 can handle the same

situation with 20 % connectivity. Therefore, including the neuron processor, 341

neurons can be simulated per core at 100 % connectivity and 256 per core at 20 %

connectivity; a significant improvement over the 256 and 155 achieved using the

current approach.

One potential downside of the synapse-centric approach is that transferring

input via SDRAM from the synapse to the neuron processors every simulation

time step requires extra external memory bandwidth. To determine whether this

affects the scaling of the synapse-centric approach, I extended the benchmark to

use multiple synapse processors with the inputs divided evenly amongst them.

Figure 6.7 shows that, with up to 9 synapse processors, synaptic processing per-

formance grows linearly, with each additional synapse processor adding approxi-

mately 10 × 106 synaptic events per second to the total performance. However, the

133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of synapse processors

0

20

40

60

80

100

120

140

160

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]

1e6

Figure 6.7: Performance of a SpiNNaker chip containing one neuron processor
simulating population of 512 neurons and increasing numbers of synapse proces-
sors simulating the afferent static synapses associated with the population. Each
data point represents the maximum Poisson input rate (provided by multiple 10 Hz
sources) that the core can handle in real time. 20 % connection sparsity is used for
all data points. The dashed line shows the linear scaling of the performance with
one synapse processor.

134

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of synapse processors

0

50

100

150

200

250

300

350

400

450

S
D

R
A

M
 r

e
a
d

 b
a
n

d
w

id
th

[M
iB
s
−

1
]

A

1 2 3 4 5 6 7 8

Number of synapse processors

B

Synapse processing bandwidth Buffer read bandwidth

Figure 6.8: External memory read bandwidth used by a SpiNNaker chip con-
taining increasing numbers of synapse processors simulating the afferent static
synapses associated with 512 neurons. Colours indicate how much of this band-
width is used transferring synaptic matrix rows and how much for transferring
input currents to the neuron processor(s). (A) With a simulation time step of 1 ms
where the 512 neurons are simulated on a single neuron processor. (B) With a sim-
ulation time step of 0.1 ms where the 512 neurons are simulated across 8 neuron
processors.

135

performance plateaus with 12 synapse processors delivering a synaptic processing

performance of around 100 × 106 synaptic events per second.

Fetching the synaptic matrix rows required by a single synapse processor re-

quires approximately 40 MiB s−1 of external memory bandwidth and transferring

the input currents associated with 512 neurons every 1 ms simulation time step re-

quires approximately another 2 MiB s−1. Figure 6.8a shows the external memory

read bandwidth usage in the benchmark and – similarly to the performance shown

in figure 6.7 – this increases linearly with up to 9 synapse processors and plateaus

at 420 MiB s−1.

If the simulation time step is reduced to 0.1 ms, the bandwidth required to

transfer the input currents from each synapse processor increases to 20 MiB s−1.

Figure 6.8b shows the results of repeating the benchmark on a 0.1 ms simulation

time step with 8 neuron processors and up to 8 synapse processors. Because

of the increased bandwidth required to transfer input currents every 0.1 ms, this

configuration has a significantly higher peak bandwidth of 450 MiB s−1, but shows

no sign of the performance plateauing.

To illustrate the advantages of this new simulator in the context of a more re-

alistic network I ran several simulations of the network developed by Vogels and

Abbott [110]. This network was designed as a medium for experimentation into

signal propagation through cortical networks, but has subsequently been widely

used as a benchmark [64]. The network consists of 10 000 integrate-and-fire neu-

rons, split between an excitatory population of 8000 cells and an inhibitory pop-

ulation of 2000 cells. To be representative of long-range cortical connectivity

these populations are randomly connected with a very low connection probabil-

ity of 2 %. Table 6.1 shows that, if a 500 ms simulation of this network is run

on SpiNNaker using either 1 ms or 0.1 ms time steps, the new approach requires

fewer cores than the current approach. However, due to its small size and sparse

136

connectivity, each neuron in this network receives only 200 synaptic inputs; far

below the degree of connectivity seen in the cortex and the performance limits of

the synapse processors. Therefore I increased the connection density of the net-

work to 10 % (the highest density at which Vogels and Abbott suggest their results

hold) and increased the total number of neurons to 80 000 so that each neuron in

the network receives 8000 inputs. Because the neurons in this network have both

inhibitory and excitatory synapses, in the synapse-centric approach, they are sim-

ulated on separate synapse processors. Therefore an extra synapse processor –

beyond the 3 previously calculated – is required to simulate the synapses associ-

ated with each 1024 neurons. As discussed in section 6.3 each neuron processor

can simulate up to 1024 LIF neurons. However, processing this many neurons

leaves insufficient time within a simulation time step to process the input from 4

synapse processors. Therefore I reduced the number of neurons simulated on each

neuron processor to 512, resulting in an average of 170 neurons being simulated

on each core. This is a significant improvement over the 60 neurons per core the

benchmark – shown in figure 6.1 – suggests the standard approach can achieve at

10 % connectivity.

6.5 Plastic synaptic processing performance

I profiled the performance of a synapse processor core simulating synapses with

pair-based STDP and an additive weight dependence [101]. Similarly to the static

synapse processors, due to the optimisations made possible because only a sin-

gle type of synapse is simulated on each synapse processor, the performance was

somewhat improved over that presented in section 4.4. Based on the model ob-

tained through this profiling we can estimate the rate of incoming synaptic events

that each STDP synapse processor can handle using the following equation:

137

N
um

berof
C

onnectivity
Sim

ulator
Sim

ulation
N

um
berofcores

N
eurons

neurons
[%

]
tim

e
step

[m
s]

N
euron

Synapse
Total

percore

10000
2

Standard
1
.0

40
40

250
Synapse-centric

1
.0

10
20

30
333

10000
2

Standard
0
.1

157
157

64
Synapse-centric

0
.1

99
26

125
80

80000
10

Synapse-centric
1
.0

157
314

471
170

Table
6.1:

Sim
ulations

of
the

Vogels
A

bbott
benchm

ark
netw

orks
on

SpiN
N

aker
using

synapse-centric
and

standard
ap-

proaches.

138

0 20 40 60 80 100

Connectivity [percent]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M
a
xi

m
u

m
 i

n
p

u
t

ra
te

[s
yn

a
p

ti
c

e
ve

n
ts

 p
e
r

se
co

n
d

]
1e6

0Hz 10Hz 20Hz

Figure 6.9: Performance of a synapse processor simulating the afferent STDP
synapses associated with 512 neurons. Each data point represents the maximum
Poisson input rate (provided by multiple 10 Hz sources) that the core can handle
in real time.

µevents ≈
200 × 106

107 + 30h
(6.2)

Where h represents the average number of postsynaptic events in the history

structure that require processing at each synapse. This models suggests that in the

case where the pre and postsynaptic neurons are firing at approximately the same

rate (h = 1) each synapse processor can handle just over 1.4 × 106 synaptic events

every second. As discussed in section 6.3 the local memory requirements of the

postsynaptic history structure mean that each STDP synapse processor can sim-

ulate the afferent synapses associated with 512 neurons. Therefore if we divide

the total estimated performance between 512 neurons, and again use the model of

cortical connectivity summarised in section 6.1, we can estimate that the afferent

139

synapses associated with the 512 neurons can be simulated using 9 synapse pro-

cessors. To verify this performance I repeated the STDP benchmark described in

section 6.1 using a population of 512 neurons mapped to one neuron processor

and one synapse processor using the new synapse-centric approach. The results

of this benchmark are presented in figure 6.9 and show that the peak performance

is indeed nearly 1.4 × 106 synaptic events per second. Because processing an

STDP synapse is significantly more costly than processing a static synapse, the

fixed cost of processing a row is amortised over fewer synapses, meaning that 10

STDP synapse processors are sufficient to deliver the model of cortical connectiv-

ity down to just over 10 % connection sparsity. Therefore, taking into account the

core used by the neuron processor, 46 neurons can be simulated per core, more

than 4× the number possible when using the current approach with 20 % connec-

tivity.

In chapter 5 I demonstrated how the spiking BCPNN learning rule [117] could

be implemented efficiently on SpiNNaker, within the framework developed in

chapter 4, and used to learn temporal sequences of neural activity within a mod-

ular attractor network. While this was the largest plastic neural network ever to

be simulated on neuromorphic hardware, the training process was hampered by

the inability of the approach described in section 4.3 to simulate neurons with

different learning rules on their afferent synapses. This limitation meant that sep-

arate networks had to be simulated to train the AMPA and NMDA synapses, the

learned weights downloaded, combined together and finally re-uploaded to the

SpiNNaker machine for testing. This model also had several features that placed

high demands on the local memory available to each core. Firstly BCPNN re-

quires 32 bits of state to be stored with each event in the postsynaptic history

structure rather than the 16 bits required by STDP synapses, meaning that a 10 en-

try postsynaptic history requires an extra 20 B of local memory for each neuron.

140

Additionally the model uses three synapse types (AMPA, NMDA and GABA) –

each of which requires a separate input ring-buffer – and each neuron in the net-

work also has several extra parameters used to configure a simple spike frequency

adaptation mechanism [126]. These factors conspired to reduce the local memory

available and, when combined with the high cost of simulating BCPNN synapses,

meant that, although each neuron in the model only had 4000 inputs, only 75 neu-

rons could be simulated on each core and the network could be run only at 0.5×

real time.

Using the new approach I trained both the AMPA and NMDA plastic synapses

of the network described in section 5.5 simultaneously on separate synapse pro-

cessors, each with different BCPNN configurations. The implementation of BCPNN

for use with the synapse-centric simulator and the modular attractor network are

available from https://github.com/project-rig/pynn_spinnaker_bcpnn.

Table 6.2 summarises the results of simulations of this modular attractor network

with 4, 9 and 16 macrocolumns using the synapse-centric approaches. While,

in all but the 4 macrocolumn configuration, these simulations require more cores

than those presented in chapter 5 (see table 5.2) they allow the network to be sim-

ulated in real time in all configurations. The standard approach can only simulate

the network in real time with 4 macrocolumns and would require the neural popu-

lations to be further sub-divided to achieve real time performance at larger scales.

Furthermore, the comparison is somewhat unfair as, when using the standard ap-

proach, only one synapse type is learned at once meaning that, during the training

phase when plasticity is enabled, each core needs to be capable of handling only

half the rate of incoming synaptic events.

141

https://github.com/project-rig/pynn_spinnaker_bcpnn

Num Number of cores
macrocolumns Neuron Synapse Poisson Stimulus Total

4 12 44 8 4 68
9 27 180 27 18 252

16 48 448 48 32 576

Table 6.2: SpiNNaker simulations of the BCPNN modular attractor network at
varying scales using synapse-centric approach.

6.6 Conclusions

In this chapter I have presented a new synapse-centric approach for mapping the

simulation of highly-connected point neuron networks to SpiNNaker and have

shown how this approach can significantly increase the size of network that can

be simulated on a given SpiNNaker machine. In section 6.4 I analysed the peak

synaptic processing performance of an entire SpiNNaker chip using this approach

and found that, with up to 9 synapse processors running on the chip, performance

scales linearly but plateaus with 12 synapse processors at around 100 × 106 synap-

tic events per second. This peak throughput requires 420 MiB s−1 of external

memory read bandwidth which is significantly lower than the peak external mem-

ory read bandwidth of 600 MiB s−1 measured by Painkras et al. [84]. Therefore I

believe that this plateau occurs when contention for access to the external memory

increases the duration of each DMA transfer to the point where external memory

latency can no longer be hidden. However, if the simulation time step is reduced

to 0.1 ms – requiring input currents to be transferred from the synapse processors

to the neuron processors 10× more frequently – 450 MiB s−1 of external memory

read bandwidth can be obtained. This supports the view that the plateauing of

performance is not due to the memory bandwidth being saturated. Furthermore,

by simulating a more realistic network of 80 000 neurons each with 8000 sparsely

142

connected inputs, I demonstrate that 8 synapse processors and 4 neuron processors

running on a SpiNNaker chip is likely to be a more typical configuration for sim-

ulating cortical networks with static synapses. This configuration is well within

the region where figures 6.7 and 6.8 show linear performance scaling and leaves

4 cores free to provide additional background noise or stimuli to the neurons. In

section 6.5 I analyse the performance of pair-based STDP synapses with an addi-

tive weight dependence and find that they are between 6.5× and 10× more costly

to simulate than static synapses. This reduction in performance compared to static

synapse processors corresponds to similar reductions in memory read bandwidth

requirements meaning that the static network represents the worst case in terms of

external memory bandwidth requirements.

In section 6.5 I demonstrated that this new approach offers significant effi-

ciency savings when simulating cortical models with plastic synapses and also

enables the simulation of neurons with multiple types of synapse. However, neu-

rons in the cortex have many more degrees of heterogeneity particularly in the

morphology and complexity of their dendritic trees [137]. In section 3.1.2 I briefly

discussed the type of multi-compartmental models that can be used to simulate this

heterogeneity and, potentially, the synapse-centric simulator could provide the ba-

sis for mapping such models onto SpiNNaker by adding dendritic compartment

processors. The dendritic compartment processors would, like the current neu-

ron processors, receive synaptic input from synapse processors through memory

buffers. Additionally they would receive membrane voltages from neighbouring

neuron and dendritic compartment processors through additional memory buffers.

During each simulation time step the dendritic compartment processors would up-

date the state of their dendritic compartment and write its membrane voltages to a

memory buffer.

143

144

Chapter 7

Conclusions

Compared to older regions of the brain the neocortex has a relatively homoge-

neous structure. However, this structure is connected by highly plastic synapses

whose efficacy and structure change dynamically in response to stimuli. While its

dynamic nature allows the neocortex to perform a diverse range of functions, it

also makes attempting to understand its structure through experiments on living

biological tissue extremely difficult.

A promising alternative is, instead, to perform experiments on computer simu-

lations of neocortical models. Unlike experiments on biological tissue such exper-

iments allow all the input to the model be controlled and its outputs fully observed.

However, due to both their plasticity and sheer number, efficiently simulating the

synaptic connections of the neocortex is a difficult task.

One approach to this challenge is to a use a massively parallel neuromorphic

architecture such as SpiNNaker which is designed specifically for simulating large

networks of spiking neurons in real time. Unfortunately previous approaches de-

veloped for simulating synaptic plasticity on SpiNNaker have drastically impacted

on the number of neurons a given SpiNNaker machine can simulate.

My first contribution, presented in chapter 4, is a new SpiNNaker synap-

145

tic plasticity implementation with lower algorithmic complexity than prior ap-

proaches and employing new low-level optimisations to better exploit the ARM

instruction set. This new implementation almost doubles the performance of pre-

vious approaches and is now a key component of the SpiNNaker software devel-

oped for the Human Brain Project.

My second contribution, presented in chapter 5, is the first SpiNNaker im-

plementation of the Bayesian Confidence Propagation Neural Network (BCPNN)

learning rule. Bayesian inference provides an intuitive model of how our brains

internalise uncertainty about the outside world and BCPNN can approximate this

using spiking neurons. Using the BCPNN learning rule I built a simple neocor-

tical model which was able to learn and replay sequences of neuronal activity –

demonstrating a possible way in which temporal and spatial associations could be

learnt in the neocortex.

Simulations of this neocortical model reveal however, that as we begin to

simulate models with the degree of connectivity found in the neocortex, the cur-

rent SpiNNaker simulator scales poorly. In fact, when simulating neurons with

a biologically-plausible number of plastic synapses, the performance of a single

SpiNNaker core can be 3× lower than the benchmarks presented in chapter 4 pre-

dict. Therefore, my final contribution, presented in chapter 6, is an entirely new

“synapse-centric” SpiNNaker simulator which addresses this poor scaling and, I

believe, is the most significant contribution of this thesis. In practice this new

simulator quadruples the number of neurons with biologically plausible numbers

of plastic synapses that can be simulated on a single SpiNNaker core when com-

pared to the current SpiNNaker simulator. Using the new simulator a rerun of

the simulations of the neocortical model performed in chapter 5 demonstrates that

they can be performed in biological real time with two forms of simultaneously

active synaptic plasticity.

146

Simulator Synapse Num neurons Cores Card frames
Type per core required required

Current Static 155 103 226 6
Synapse-centric Static 256 62 500 4

Current Plastic 10 1 600 000 87
Synapse-centric Plastic 46 347 827 19

Table 7.1: Estimated SpiNNaker hardware requirements for simulation of mouse
neocortex consisting of 1.6 × 107 neurons and 1.28 × 1011 synapses [30]. Con-
nection sparsity is assumed to be 20 %. Plastic synapses are simulated using the
implementation discussed in chapter 4.

Figure 7.1: 20 000 core SpiNNaker
card frame.

Figure 7.2: 500 000 core 5 cabinet
SpiNNaker system.

147

To put the improved performance of the new synapse-centric simulator in con-

text, consider a full-size model of a mouse neocortex comprising 1.6 × 107 neu-

rons and 1.28 × 1011 synapses [30]. Table 7.1 shows that, using the SpiNNaker

simulator presented in chapter 3, a version of this model with static synapses could

be simulated using 6 of the SpiNNaker card frames shown in figure 7.1. However,

using the synapse-centric simulator, this could be reduced to only 4 such card

frames – allowing the half million core machine shown in figure 7.2 to simulate

two additional mouse neocortices. Furthermore, using the current SpiNNaker sim-

ulator and the synaptic plasticity implementation developed in chapter 4, a version

of this model using plastic synapses would require 87 card frames – Almost dou-

ble the 10 cabinets planned for the final SpiNNaker machine. However, using this

same synaptic plasticity implementation with the new synapse-centric simulator,

the plastic mouse neocortical simulation could be run on only 19 card frames –

fitting easily on the system shown in figure 7.2.

7.1 SpiNNaker

In this thesis I have developed neural simulation tools optimised for the cur-

rent SpiNNaker architecture. The synaptic plasticity implementation presented

in chapter 4 exploits its ARM instruction set for improved performance and the

synapse-centric simulator presented in chapter 6 parallelises the simulation of

neurons and synapses amongst multiple cores of a SpiNNaker chip.

Because the current SpiNNaker architecture provides no other means of bulk

on-chip communications, the cores used for the synapse-centric neural simulator

communicate using memory buffers. In section 6.4 I demonstrated that the ex-

tra external memory bandwidth this requires is unlikely to saturate the memory

bandwidth of the current SpiNNaker system.

148

Designs for a next-generation SpiNNaker system are already underway and,

while its basic computational units are likely to be somewhat more powerful than

those used by the current system, improved performance will largely be obtained

by integrating more cores into each chip [138]. However, the gap in performance

between DRAM and CPUs has increased since the SpiNNaker architecture was

originally conceived, meaning that providing sufficient external memory band-

width for a SpiNNaker chip with more cores is likely to present a significant

challenge. These architectural pressures act to make bandwidth more precious.

As discussed in section 6.6 the synapse-centric approach may also be a possi-

ble means of simulating multi-compartmental models of the type discussed in

section 3.1.2 on SpiNNaker. Furthermore, to accurately simulate more complex

models, smaller simulation time steps are likely to be necessary [82] which, as

figure 6.8b showed, increase the frequency at which buffers have to be exchanged

and further exacerbates the problem. These issues – highlighted in this work –

have been addressed in the proposed design of the next-generation SpiNNaker

system by employing a NoC architecture that allows cores direct access to the

local memory of other cores.

Beyond its use by the synapse-centric simulator, the ability to share data amongst

cores without sacrificing external memory bandwidth will allow applications to

extract another level of (finer-grained) parallelism, which message passing alone

cannot provide. This will have additional benefits for the system’s fault tolerance

as it can allow the contents of a crashed core’s local memory to be transferred to

another core allowing it to continue from the same state.

149

7.2 Models of the neocortex

The neocortical model presented in chapter 5 demonstrates a possible way that

layers II/III of the neocortex may learn temporal and spatial associations. How-

ever, the sequences formed by these associations represent only one level of the

hierarchy of sequences which Lashley [8] suggested is the basis of the complex

behaviour performed by the mammalian neocortex. Exactly how models of this

sort can be combined to facilitate the forward and backward flow of information

discussed in section 2.2 remains unclear.

One possibility might be to replace the single inhibitory and excitatory popula-

tions which makes up each macrocolumn in the current model with a more realis-

tic, layered, macrocolumn model such as that developed by Potjans and Diesmann

[139]. Multiple macrocolumns, modelled in this way, could then be connected us-

ing plastic synapses to form the connectivity presented in section 2.2. However,

this approach would drastically increase the complexity of the model and there-

fore the size of the parameter space required to configure it. Alternatively, both

Bartlett and Sejnowski [140] and Johansson and Lansner [141] suggest that sim-

pler multi-layer neocortical models can be built by adding a model of layer IV in

which competitive learning occurs between the feedforward inputs to each macro-

column.

A more fundamental limitation of the model presented in chapter 5 is that it

uses an unrealistic learning paradigm. Learning is manually turned on while perti-

nent information is presented to the model and then turned off again afterwards. In

reality, our brains are permanently awash with stimuli, but we remember only that

which is novel, surprising or results in reward. Novelty, surprise and reward are

believed to be communicated in the brain by neuromodulators such as dopamine,

acetylcholine and noradrenaline (see Frémaux and Gerstner [142] for a review).

As discussed in section 5.6, neuromodulatory input can be incorporated into

150

the BCPNN learning rule using the κ parameter. However, as spikes can arrive at

the synapse from neuromodulator-releasing populations at any time, the times of

modulatory as well as postsynaptic spikes need to be integrated into the synap-

tic plasticity algorithm. Because entire populations of neuromodulator-releasing

neurons can deliver modulatory input to a single synapse, the postsynaptic history

structure presented in chapter 4 is not a viable means of storing them. Potjans et

al. [143] extend the STDP algorithm developed by Morrison et al. [96] to support

neuromodulated learning by introducing “volume transmitter” populations which

handle all the incoming modulatory input to a virtual “volume” of neural tissue.

These populations maintain a spike-history of all incoming modulatory spikes and

deliver these to the synapses of neuronal populations within this volume, both at

presynaptic spike times and after a fixed period so as to “flush out” the spike-

history data structure and allow it to be kept relatively small. This approach has

the potential to map well to the SpiNNaker architecture and could be used as the

basis of a future SpiNNaker implementation of neuromodulated learning using

BCPNN.

151

152

Bibliography

[1] B. Pakkenberg, D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G. Gunder-

sen, J. R. Nyengaard, and L. Regeur, “Aging and the human neocortex,”

Experimental Gerontology, vol. 38, no. 1, pp. 95–99, 2003.

[2] I. H. Stevenson and K. P. Kording, “How advances in neural recording

affect data analysis.,” Nature Neuroscience, vol. 14, no. 2, pp. 139–142,

2011, issn: 1097-6256. arXiv: NIHMS150003.

[3] S. W. Oh, J. A. Harris, L. Ng, et al., “A mesoscale connectome of the

mouse brain,” Nature, vol. 508, no. 7495, pp. 207–214, 2014.

[4] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K.

Ugurbil, W.-M. H. Consortium, et al., “The WU-Minn human connectome

project: An overview,” Neuroimage, vol. 80, pp. 62–79, 2013.

[5] H. Markram, E. Muller, S. Ramaswamy, et al., “Reconstruction and sim-

ulation of neocortical microcircuitry,” Cell, vol. 163, no. 2, pp. 456–492,

2015, issn: 10974172.

[6] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Tem-

ple, and A. D. Brown, “Overview of the SpiNNaker system architecture,”

IEEE Transactions on Computers, vol. 62, no. 12, pp. 2454–2467, 2013.

153

http://arxiv.org/abs/NIHMS150003

[7] A. Lansner and A. Holst, “A higher order Bayesian neural network with

spiking units,” International Journal of Neural Systems, no. Pearl, pp. 1–

16, 1996.

[8] K. Lashley, “The problem of serial order in behavior,” Cerebral Mecha-

nisms in Behavior, pp. 112–131, 1951.

[9] B. B. Averbeck, M. V. Chafee, D. A. Crowe, and A. P. Georgopoulos,

“Parallel processing of serial movements in prefrontal cortex,” Proc Natl

Acad Sci U S A, vol. 99, no. 20, pp. 13 172–13 177, 2002, issn: 00278424.

[10] J. C. Knight, P. J. Tully, B. A. Kaplan, A. Lansner, and S. B. Furber,

“Large-scale simulations of plastic neural networks on neuromorphic hard-

ware.,” Frontiers in Neuroanatomy, vol. 10, no. April, p. 37, 2016, issn:

1662-5129.

[11] J. Knight and S. Furber, “Synapse-centric mapping of cortical models

to the SpiNNaker neuromorphic architecture,” Frontiers in Neuroscience,

vol. 10, p. 420, 2016, issn: 1662-453X.

[12] A. Mundy, J. Knight, T. C. Stewart, and S. Furber, “An efficient SpiN-

Naker implementation of the Neural Engineering Framework,” in The

2015 International Joint Conference on Neural Networks (IJCNN), IEEE,

2015.

[13] C. Eliasmith and C. H. Anderson, Neural Engineering. MIT Press, 2003,

isbn: 978-0262550604.

[14] J. Knight, A. R. Voelker, A. Mundy, C. Eliasmith, and S. Furber, “Effi-

cient SpiNNaker simulation of a heteroassociative memory using the neu-

ral engineering framework,” in The 2016 International Joint Conference

on Neural Networks (IJCNN), 2016.

154

[15] D. MacNeil and C. Eliasmith, “Fine-tuning and the stability of recurrent

neural networks.,” PloS ONE, vol. 6, no. 9, e22885, 2011, issn: 1932-6203.

[16] A. R. Voelker, E. Crawford, and C. Eliasmith, “Learning large-scale het-

eroassociative memories in spiking neurons,” Unconventional Computa-

tion and Natural Computation (UCNC), The 13th International Confer-

ence on, 2014.

[17] H. Markram, K. Meier, T. Lippert, et al., “Introducing the human brain

project,” Procedia Computer Science, vol. 7, pp. 39–42, 2011.

[18] J. D. Zakis and B. J. Lithgow, “Neurone modelling using VHDL,” in The

Inaugural Conference of the Victorian Chapter of the IEEE Engineering

in Medicine and Biology Society, Victoria, Australia, 1999.

[19] H. Dale, “Pharmacology and nerve-endings,” Journal of the Royal Society

of Medicine, vol. 28, no. 3, pp. 319–332, 1935.

[20] N. Spruston, “Pyramidal neurons: dendritic structure and synaptic inte-

gration.,” Nature Reviews. Neuroscience, vol. 9, no. 3, pp. 206–221, 2008,

issn: 1471-003X.

[21] T. Branco and M. Häusser, “The single dendritic branch as a fundamental

functional unit in the nervous system,” Current Opinion in Neurobiology,

vol. 20, no. 4, pp. 494–502, 2010, issn: 09594388.

[22] B. W. Mel, “NMDA-based pattern discrimination in a modeled cortical

neuron,” Neural Computation, vol. 4, pp. 502–517, 1992, issn: 0899-7667.

[23] H. Ko, L. Cossell, C. Baragli, J. Antolik, C. Clopath, S. B. Hofer, and

T. D. Mrsic-Flogel, “The emergence of functional microcircuits in visual

cortex,” Nature, vol. 496, no. 7443, pp. 96–100, 2013, issn: 0028-0836.

[24] P. Bach-Y-Rita, C. C. Collins, F. A. Saunders, B. White, and L. Scadden,

“Vision substitution by tactile image projection,” Nature, 1969.

155

[25] D. Hubel and T. N. Wiesel, “Functional architecture of macaque monkey

visual cortex,” in Proc. R. SOC. Lond. B, vol. 198, 1977, pp. 1–59.

[26] D. Y. Tsao, W. A. Freiwald, R. B. Tootell, and M. S. Livingstone, “A

cortical region consisting entirely of face-selective cells,” Science, vol.

311, no. 5761, pp. 670–674, 2006.

[27] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain,

vol. 120, no. 4, pp. 701–722, 1997.

[28] D. P. Buxhoeveden and M. Casanova, “The minicolumn hypothesis in

neuroscience,” Brain, vol. 125, no. 5, pp. 935–951, 2002, issn: 14602156.

[29] C. Beaulieu and M. Colonnier, “Number and size of neurons and synapses

in the motor cortex of cats raised in different environmental complexities,”

Journal of Comparative Neurology, vol. 289, no. 1, pp. 178–187, 1989.

[30] V. Braitenberg and A. Schüz, Cortex: Statistics and geometry of neuronal

connectivity. Springer Science & Business Media, 2013.

[31] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, “Orientation

selectivity and the arrangement of horizontal connections in tree shrew

striate cortex,” The Journal of Neuroscience, vol. 17, no. 6, pp. 2112–

2127, 1997.

[32] P. S. Goldman and W. J. Nauta, “Columnar distribution of cortico-cortical

fibers in the frontal association, limbic, and motor cortex of the developing

rhesus monkey,” in Neuroanatomy, Springer, 1993, pp. 561–581.

[33] J DeFelipe, M Conley, and E. Jones, “Long-range focal collateralization

of axons arising from corticocortical cells in monkey sensory-motor cor-

tex,” The Journal of Neuroscience, vol. 6, no. 12, pp. 3749–3766, 1986.

156

[34] C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic hori-

zontal and corticocortical connections in cat visual cortex,” The Journal

of Neuroscience, vol. 9, no. 7, pp. 2432–2442, 1989.

[35] R. Perin, T. K. Berger, and H. Markram, “A synaptic organizing principle

for cortical neuronal groups.,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 108, no. 13, pp. 5419–5424,

2011, issn: 0027-8424.

[36] R. J. Douglas and K. A. Martin, “Neuronal circuits of the neocortex,”

Annual Review of Neuroscience, vol. 27, no. 1, pp. 419–451, 2004, issn:

0147-006X.

[37] S. R. y Cajal, Histology of the nervous system of man and vertebrates.

Oxford University Press, USA, 1995, vol. 1.

[38] W. McCulloch and W Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–

133, 1943.

[39] M. Minsky and S. Papert, Perceptron: an introduction to computational

geometry. MIT press Boston, MA: 1969, vol. 19, p. 88, isbn: 0-262-63022-

2.

[40] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,”

in System modeling and optimization, Springer, 1982, pp. 762–770.

[41] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10), 2010, pp. 807–814.

[42] D. Tolhurst, “The amount of information transmitted about contrast by

neurones in the cat’s visual cortex,” Visual Neuroscience, vol. 2, pp. 409–

413, 1989.

157

[43] F. Rieke, Spikes: Exploring the neural code. MIT press, 1999.

[44] S. Panzeri, R. S. Petersen, S. R. Schultz, M. A. Lebedev, and M. E. Dia-

mond, “Coding of stimulus location by spike timing in rat somatosensory

cortex,” Neurocomputing, vol. 44-46, pp. 573–578, 2002, issn: 09252312.

[45] A. Hodgkin and A. Huxley, “A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve,” The Journal

of Physiology, pp. 500–544, 1952.

[46] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”

Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[47] B. W. Connors and M. J. Gutnick, “Intrinsic firing patterns of diverse neo-

cortical neurons,” Trends in Neurosciences, vol. 13, no. 3, pp. 99–104,

1990.

[48] C. M. Gray and D. A. McCormick, “Chattering cells: Superficial pyrami-

dal neurons contributing to the generation of synchronous oscillations in

the visual cortex,” Science, vol. 274, no. 5284, p. 109, 1996.

[49] J. R. Gibson, M. Beierlein, and B. W. Connors, “Two networks of electri-

cally coupled inhibitory neurons in neocortex,” Nature, vol. 402, no. 6757,

pp. 75–79, 1999.

[50] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on

neural networks, vol. 14, no. 6, pp. 1569–72, 2003, issn: 1045-9227.

[51] M. J. Richardson, N. Brunel, and V. Hakim, “From subthreshold to firing-

rate resonance,” Journal of Neurophysiology, vol. 89, no. 5, pp. 2538–

2554, 2003.

[52] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity,” Journal of Neurophysiol-

ogy, vol. 94, no. 5, pp. 3637–3642, 2005.

158

[53] A. Destexhe, M. Rudolph, and D. Paré, “The high-conductance state of

neocortical neurons in vivo.,” Nature Reviews. Neuroscience, vol. 4, no. 9,

pp. 739–751, 2003, issn: 1471-003X.

[54] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian

thalamocortical systems.,” Proceedings of the National Academy of Sci-

ences of the United States of America, vol. 105, no. 9, pp. 3593–8, 2008,

issn: 1091-6490. arXiv: 9906002 [cs].

[55] P. Dayan and L. F. Abbott, Theoretical neuroscience. Cambridge, MA:

MIT Press, 2001, vol. 806.

[56] D. Attwell and A. Gibb, “Neuroenergetics and the kinetic design of exci-

tatory synapses,” Nature Reviews. Neuroscience, vol. 6, no. 11, pp. 841–

849, 2005.

[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-

ical Recipes in C: The art of scientific computing. Cambridge University

Press, 1997, vol. 2.

[58] S Rotter and M Diesmann, “Exact digital simulation of time-invariant lin-

ear systems with applications to neuronal modeling.,” Biological cyber-

netics, vol. 81, no. 5-6, pp. 381–402, 1999, issn: 0340-1200.

[59] R. Brette, “Exact simulation of integrate-and-fire models with synaptic

conductances,” Neural Computation, vol. 18, no. 8, pp. 2004–2027, 2006.

[60] ——, “Exact simulation of integrate-and-fire models with exponential cur-

rents,” Neural Computation, vol. 19, no. 10, pp. 2604–2609, 2007.

[61] A. Morrison, C. Mehring, T. Geisel, a. D. Aertsen, and M. Diesmann,

“Advancing the boundaries of high-connectivity network simulation with

distributed computing.,” Neural computation, vol. 17, no. 8, pp. 1776–

801, Aug. 2005.

159

http://arxiv.org/abs/9906002

[62] N. T. Carnevale and M. L. Hines, The NEURON book. Cambridge Univer-

sity Press, 2006.

[63] D. Goodman and R. Brette, “Brian: A simulator for spiking neural net-

works in Python.,” Frontiers in Neuroinformatics, vol. 2, no. November,

p. 5, 2008, issn: 1662-5196.

[64] R. Brette, M. Rudolph, T. Carnevale, et al., “Simulation of networks of

spiking neurons: a review of tools and strategies.,” Journal of computa-

tional neuroscience, vol. 23, no. 3, pp. 349–98, 2007, issn: 0929-5313.

[65] RIKEN. (2013). Largest neuronal network simulation achieved using K

computer, [Online]. Available: http://www.riken.jp/en/pr/press/

2013/20130802_1/.

[66] H. Meuer. (2016). Top500 list - June 2016, [Online]. Available: http:

//www.top500.org/list/2016/06/.

[67] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V. Veiden-

baum, “A configurable simulation environment for the efficient simulation

of large-scale spiking neural networks on graphics processors,” Neural

networks, vol. 22, no. 5, pp. 791–800, 2009.

[68] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking

neural networks using GPUs,” in The 2010 International Joint Conference

on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.

[69] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: a code generation frame-

work for accelerated brain simulations.,” Scientific reports, vol. 6, no.

November 2015, p. 18 854, 2016, issn: 2045-2322.

[70] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,

vol. 78, no. October, pp. 1629–1636, 1990.

160

http://www.riken.jp/en/pr/press/2013/20130802_1/
http://www.riken.jp/en/pr/press/2013/20130802_1/
http://www.top500.org/list/2016/06/
http://www.top500.org/list/2016/06/

[71] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumis-

lawska, and G. Indiveri, “A reconfigurable on-line learning spiking neuro-

morphic processor comprising 256 neurons and 128k synapses,” Frontiers

in Neuroscience, vol. 9, no. April, pp. 1–17, 2015, issn: 1662-453X.

[72] B. V. Benjamin, P. Gao, E. McQuinn, et al., “Neurogrid: a mixed-analog-

digital multichip system for large-scale neural simulations,” Proceedings

of the IEEE, vol. 102, no. 5, pp. 699–716, 2014, issn: 00189219.

[73] J. Schemmel, D Bruderle, A Grubl, M. Hock, K. Meier, and S. Millner, “A

wafer-scale neuromorphic hardware system for large-scale neural model-

ing,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE Inter-

national Symposium on, IEEE, 2010, pp. 1947–1950.

[74] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “A million spiking-

neuron integrated circuit with a scalable communication network and in-

terface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[75] Z. Or-Bach. (2014). FPGA as ASIC alternative: Past and future, [Online].

Available: http://www.monolithic3d.com/blog/fpga-as-asic-

alternative-past-and-future.

[76] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”

IEEE Transactions on computer-aided design of integrated circuits and

systems, vol. 26, no. 2, pp. 203–215, 2007.

[77] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardware spik-

ing neural network with run-time reconfigurable connectivity in an au-

tonomous robot,” in Evolvable hardware, 2003. proceedings. nasa/dod

conference on, IEEE, 2003, pp. 189–198.

161

http://www.monolithic3d.com/blog/fpga-as-asic-alternative-past-and-future
http://www.monolithic3d.com/blog/fpga-as-asic-alternative-past-and-future

[78] S. W. Moore, P. J. Fox, S. J. Marsh, a. T. Markettos, and A. Mujumdar,

“Bluehive - a field-programable custom computing machine for extreme-

scale real-time neural network simulation,” 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing Machines, pp. 133–

140, 2012.

[79] M. Naylor, P. J. Fox, A. T. Markettos, and S. W. Moore, “Managing the

FPGA memory wall: Custom computing or vector processing?” 2013 23rd

International Conference on Field Programmable Logic and Applications,

FPL 2013 - Proceedings, 2013.

[80] A. P. Davison, D. Brüderle, J. Eppler, et al., “PyNN: a common interface

for neuronal network simulators.,” Frontiers in neuroinformatics, vol. 2,

no. January, p. 11, 2008, issn: 1662-5196.

[81] S. B. Furber, F Galluppi, S Temple, and L. A. Plana, “The SpiNNaker

project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014,

issn: 0018-9219.

[82] M. Hopkins and S. Furber, “Accuracy and efficiency in fixed-point neural

ODE solvers,” Neural Computation, vol. 27, pp. 2148–2182, 2015, issn:

1530888X.

[83] M. Moise, “A fixed point arithmetic library for SpiNNaker,” PhD thesis,

The University of Manchester, 2012.

[84] E. Painkras, L. A. Plana, J. Garside, et al., “SpiNNaker: a 1-W 18-core

system-on-chip for massively-parallel neural network simulation,” Solid-

State Circuits, IEEE Journal of, vol. 48, no. 8, pp. 1943–1953, 2013.

[85] E Nordlie, M. O. Gewaltig, and H. E. Plesser, “Towards reproducible de-

scriptions of neuronal network models,” PLoS Computational Biology,

vol. 5, no. 8, e1000456, 2009, issn: 1553-7358.

162

[86] X Jin, S. Furber, and J. Woods, “Efficient modelling of spiking neural

networks on a scalable chip multiprocessor,” The 2008 International Joint

Conference on Neural Networks (IJCNN), pp. 2812–2819, 2008.

[87] G. Buzsáki and K. Mizuseki, “The log-dynamic brain: how skewed dis-

tributions affect network operations.,” Nature reviews. Neuroscience, vol.

15, no. 4, pp. 264–78, 2014, issn: 1471-0048.

[88] G. Maimon and J. A. Assad, “Beyond poisson: increased spike-time regu-

larity across primate parietal cortex,” Neuron, vol. 62, no. 3, pp. 426–440,

2009, issn: 08966273.

[89] D. O. Hebb, The organization of behavior. Wiley & Sons, 1949.

[90] T. Bliss and T Lømo, “Long-lasting potentiation of synaptic transmission

in the dentate area of the anaesthetized rabbit following stimulation of the

perforant path,” The Journal of Physiology, pp. 331–356, 1973.

[91] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the de-

velopment of neuron selectivity: orientation specificity and binocular in-

teraction in visual cortex.,” The Journal of Neuroscience, vol. 2, no. 1,

pp. 32–48, 1982, issn: 0270-6474.

[92] E. Oja, “A simplified neuron model as a principal component analyzer,”

Journal of Mathematical Biology, vol. 15, pp. 267–273, 1983.

[93] P. U. Diehl and M. Cook, “Efficient implementation of STDP rules on

SpiNNaker neuromorphic hardware,” in The 2014 International Joint Con-

ference on Neural Networks (IJCNN), 2014, pp. 4288–4295.

[94] W. Levy and O Steward, “Temporal contiguity requirements for long-term

associative potentiation/depression in the hippocampus,” Neuroscience,

vol. 8, no. 4, 1983.

163

[95] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic

cell type.,” The Journal of Neuroscience, vol. 18, no. 24, pp. 10 464–72,

1998, issn: 0270-6474.

[96] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-dependent plas-

ticity in balanced random networks.,” Neural computation, vol. 19, no. 6,

pp. 1437–67, 2007, issn: 0899-7667.

[97] R. Gütig, R Aharonov, S Rotter, and H. Sompolinsky, “Learning input cor-

relations through nonlinear temporally asymmetric hebbian plasticity.,”

The Journal of Neuroscience, vol. 23, no. 9, pp. 3697–714, 2003, issn:

1529-2401.

[98] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, “Rate, timing, and

cooperativity jointly determine cortical synaptic plasticity.,” Neuron, vol.

32, no. 6, pp. 1149–64, 2001, issn: 0896-6273.

[99] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of spike timing-

dependent plasticity.,” The Journal of Neuroscience, vol. 26, no. 38, pp. 9673–

82, 2006, issn: 1529-2401.

[100] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models

of synaptic plasticity based on spike timing,” Biological Cybernetics, vol.

98, pp. 459–478, 2008, issn: 03401200.

[101] S Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning

through spike-timing-dependent synaptic plasticity.,” Nature neuroscience,

vol. 3, no. 9, pp. 919–26, 2000, issn: 1097-6256.

[102] T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner, “In-

hibitory plasticity balances excitation and inhibition in sensory pathways

164

and memory networks,” Science, vol. 334, no. 6062, pp. 1569–1573, 2011,

issn: 0036-8075.

[103] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast.,”

Nature Neuroscience, vol. 3 Suppl, pp. 1178–83, 2000, issn: 1097-6256.

[104] X. Jin, A. Rast, and F. Galluppi, “Implementing spike-timing-dependent

plasticity on SpiNNaker neuromorphic hardware,” in The 2010 Interna-

tional Joint Conference on Neural Networks (IJCNN), Ieee, 2010, pp. 1–

8, isbn: 978-1-4244-6916-1.

[105] H. Francis, “ARM DSP-enhanced extensions,” 2001.

[106] A. H. Gittis, M. H. Setareh, and S. du Lac, “Mechanisms of sustained

high firing rates in two classes of vestibular nucleus neurons: Differen-

tial contributions of resurgent Na, Kv3, and PPBK currents,” Journal of

Neurophysiology, pp. 1625–1634, 2010.

[107] C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner, “Connectivity re-

flects coding: A model of voltage-based STDP with homeostasis.,” Na-

ture neuroscience, vol. 13, no. December 2009, pp. 344–352, 2010, issn:

1097-6256.

[108] N. Brunel, “Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons,” Journal of computational neuroscience, vol.

8, no. 3, pp. 183–208, 2000, issn: 09252312.

[109] W. R. Softky and C. Koch, “The highly irregular firing of cortical cells is

inconsistent with temporal integration of random EPSPs.,” The Journal of

Neuroscience, vol. 13, no. 1, pp. 334–50, 1993, issn: 0270-6474.

[110] T. P. Vogels and L. F Abbott, “Signal propagation and logic gating in

networks of integrate-and-fire neurons,” The Journal of Neuroscience, vol.

25, no. 46, pp. 10 786–10 795, 2005, issn: 0270-6474, 1529-2401.

165

[111] J. Rubin, D. Lee, and H. Sompolinsky, “Equilibrium properties of tempo-

rally asymmetric hebbian plasticity,” Physical Review Letters, vol. 86, no.

2, pp. 364–367, 2001, issn: 0031-9007.

[112] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neu-

ral network with spike-driven synaptic dynamics.,” Neural Computation,

vol. 19, no. 11, pp. 2881–912, 2007, issn: 0899-7667.

[113] A. Saudargiene, B. Porr, and F. Wörgötter, “How the shape of pre-and

postsynaptic signals can influence STDP: A biophysical model,” Neural

Computation, vol. 16, no. 3, pp. 595–625, 2004.

[114] A. Soltani and X.-J. Wang, “Synaptic computation underlying probabilis-

tic inference.,” Nature neuroscience, vol. 13, no. 1, pp. 112–9, 2010, issn:

1546-1726.

[115] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity,” PLoS Computational Biology, vol. 9, no. 4, 2013, issn: 1553734X.

[116] A. Lansner and Ö. Ekeberg, “A one-layer feedback artificial neural net-

work with a Bayesian learning rule,” International journal of neural sys-

tems, vol. 1, no. 01, pp. 77–87, 1989.

[117] P. J. Tully, M. H. Hennig, and A. Lansner, “Synaptic and nonsynaptic plas-

ticity approximating probabilistic inference.,” Frontiers in synaptic neuro-

science, vol. 6, no. April, p. 8, 2014, issn: 1663-3563.

[118] a Sandberg, A Lansner, K. M. Petersson, and O Ekeberg, “A Bayesian

attractor network with incremental learning.,” Network (Bristol, England),

vol. 13, no. 2, pp. 179–94, 2002, issn: 0954-898X.

[119] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”

Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

166

[120] J. Knight, BCPNN spinnaker, Apr. 2016.

[121] F. Fiebig and A. Lansner, “Memory consolidation from seconds to weeks:

a three-stage neural network model with autonomous reinstatement dy-

namics,” Frontiers in Computational Neuroscience, 2014.

[122] B. Vogginger, R. Schuffny, A. Lansner, L. Cederstrom, J. Partzsch, and

S. Hoppner, “Reducing the computational footprint for real-time BCPNN

learning,” Frontiers in Neuroscience, vol. 9, no. January, pp. 1–16, 2015,

issn: 1662-453X.

[123] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press, 2002.

[124] G. H. John and P. Langley, “Estimating continuous distributions in bayesian

classifiers,” in Proceedings of the Eleventh conference on Uncertainty in

artificial intelligence, Morgan Kaufmann Publishers Inc., 1995, pp. 338–

345.

[125] M. Lundqvist, M. Rehn, M. Djurfeldt, and A. Lansner, “Attractor dynam-

ics in a modular network model of neocortex,” Network: Computation in

Neural Systems, vol. 17, no. 3, pp. 253–276, 2006.

[126] Y. H. Liu and X. J. Wang, “Spike-frequency adaptation of a generalized

leaky integrate-and-fire model neuron,” Journal of Computational Neuro-

science, vol. 10, no. 1, pp. 25–45, 2001, issn: 09295313.

[127] D. J. Amit, Modeling brain function: The world of attractor neural net-

works. Cambridge University Press, 1992.

[128] Cray, “Cray XC30-ACTM supercomputer,” Tech. Rep., 2013.

[129] M. Lundqvist, A. Compte, and A. Lansner, “Bistable, irregular firing and

population oscillations in a modular attractor memory network,” PLoS

Computational Biology, vol. 6, no. 6, e1000803, 2010.

167

[130] E. M. Izhikevich, “Solving the distal reward problem through linkage of

stdp and dopamine signaling,” Cerebral Cortex, vol. 17, no. 10, pp. 2443–

2452, 2007, issn: 1047-3211.

[131] P. Berthet, J. Hellgren-Kotaleski, and A. Lansner, “Action selection per-

formance of a reconfigurable basal ganglia inspired model with hebbian–

bayesian go-nogo connectivity,” Frontiers in behavioral neuroscience, vol.

6, 2012.

[132] A. Ponzi and J. Wickens, “Sequentially switching cell assemblies in ran-

dom inhibitory networks of spiking neurons in the striatum,” The Journal

of Neuroscience, vol. 30, no. 17, pp. 5894–5911, 2010.

[133] X. Lagorce, E. Stromatias, F. Galluppi, L. a. Plana, S.-C. Liu, S. B. Furber,

and R. B. Benosman, “Breaking the millisecond barrier on SpiNNaker:

Implementing asynchronous event-based plastic models with microsec-

ond resolution,” Frontiers in Neuroscience, vol. 9, no. June, pp. 1–14,

2015, issn: 1662-453X.

[134] F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana, S. B.

Furber, and R. B. Benosman, “A framework for plasticity implementation

on the SpiNNaker neural architecture,” Frontiers in Neuroscience, vol. 8,

p. 429, 2015, issn: 1662-453X.

[135] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal

learning rule for sub-millisecond temporal coding,” Nature, vol. 383, no.

LCN-ARTICLE-1996-002, pp. 76–78, 1996.

[136] A. Riehle, S. Grun, M. Diesmann, et al., “Spike synchronization and rate

modulation differentially involved in motor cortical function,” Science,

vol. 278, no. 5345, pp. 1950–1953, 1997, issn: 00368075.

168

[137] G. N. Elston, “Cortex, cognition and the cell: new insights into the pyra-

midal neuron and prefrontal function,” Cerebral Cortex, vol. 13, no. 11,

pp. 1124–1138, 2003, issn: 10473211.

[138] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The

case for a single-chip multiprocessor,” ACM SIGOPS Operating Systems

Review, vol. 30, no. 5, pp. 2–11, 1996, issn: 01635980.

[139] T. C. Potjans and M. Diesmann, “The cell-type specific cortical microcir-

cuit: relating structure and activity in a full-scale spiking network model.,”

Cerebral cortex (New York, N.Y. : 1991), 2012, issn: 1460-2199.

[140] M. Bartlett and T. Sejnowski, “Learning viewpoint-invariant face repre-

sentations from visual experience in an attractor network,” Network: Com-

putation in Neural Systems, vol. 9, no. 3, pp. 399–417, 1998, issn: 0954-

898X.

[141] C. Johansson and A. Lansner, “Towards cortex sized artificial neural sys-

tems.,” Neural networks : The official journal of the International Neural

Network Society, vol. 20, no. 1, pp. 48–61, 2007, issn: 0893-6080.

[142] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent

plasticity and theory of three-factor learning rules,” Frontiers in Neural

Circuits, vol. 9, no. 85, p. 85, 2016, issn: 1662-5110.

[143] W. Potjans, A. Morrison, and M. Diesmann, “Enabling functional neural

circuit simulations with distributed computing of neuromodulated plas-

ticity.,” Frontiers in computational neuroscience, vol. 4, no. November,

p. 141, 2010, issn: 1662-5188.

169

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Publications
	Contributions

	Neural systems
	Neurons
	The Neocortex

	Modelling Neural Systems
	Neural modelling
	Point neuron models
	Multi-compartmental neural models
	Synaptic input

	Software simulation
	GPU simulation
	Neuromorphic hardware
	FPGA simulation
	PyNN
	SpiNNaker
	Hardware
	Spiking neural network simulation
	Performance

	Spike-timing dependent plasticity
	Spike-timing dependent plasticity (STDP)
	Trace based models

	Related work
	Implementation
	Postsynaptic history storage
	Fixed-point representation
	Algorithm

	Performance
	Inhibitory plasticity in cortical networks
	The effect of weight dependencies
	Conclusions

	Bayesian Confidence Propagation Neural Networks
	Background
	Implementation
	Validating BCPNN learning on SpiNNaker
	Demonstrating probabilistic inference
	Learning temporal sequences using a simplified neocortical heteroassociative memory model
	Conclusions

	Synapse-centric simulation
	Analysis
	Related work
	Implementation
	Static synaptic processing performance
	Plastic synaptic processing performance
	Conclusions

	Conclusions
	SpiNNaker
	Models of the neocortex

