
The Design and Implementation

of an Asynchronous

Microprocessor

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE

By

Nigel Charles Paver

Department of Computer Science

1994



2

Table of Contents

Chapter 1 : Introduction..........................................................  17

1.1 Motivation .......................................................................................  17

1.1.1 Global synchronization..........................................................  17

1.1.2 Performance...........................................................................  18

1.1.3 Power consumption...............................................................  18

1.2 Basic concepts.................................................................................  19

1.2.1 Timing model........................................................................  19

1.2.2 Mode......................................................................................  19

1.2.3 Asynchronous signalling conventions...................................  20

1.3 Objectives and thesis structure........................................................  22

1.3.1 Structure of the thesis............................................................  22

1.3.2 Author’s contribution............................................................  22

Chapter 2 : Related work.......................................................  25

2.1 Automatic synthesis tools................................................................  25

2.1.1 CSP based compilation..........................................................  25

2.1.2 Signal transition graphs.........................................................  26

2.1.3 State machines.......................................................................  27

2.2 Other related work...........................................................................  27

2.3 Summary..........................................................................................  28

2.3.1 Micropipelines.......................................................................  28

2.3.2 AMULET group Micropipelines...........................................  28

Chapter 3 : Micropipelines...................................................  29

3.1 Basic concepts.................................................................................  29

3.1.1 Event control modules...........................................................  30

3.1.2 Metastability..........................................................................  31

3.1.3 Event-controlled storage element..........................................  32

3.2 Micropipelines.................................................................................  33

3.2.1 A Micropipeline FIFO...........................................................  33

3.2.2 Micropipelines with processing.............................................  34

3.3 Event control module structures......................................................  34

3.3.1 Exclusive OR gate.................................................................  35

3.3.2 Muller C-Gate........................................................................  36

3.3.3 Transparent latch...................................................................  37



3

3.3.4 SELECT block .......................................................................   37

3.3.5 Decision-Wait element ..........................................................   38

3.3.6 CALL block ...........................................................................   39

3.3.7 TOGGLE ...............................................................................   39

3.3.8 ARBITER ..............................................................................   41

3.3.9 Capture-Pass latch .................................................................   43

3.3.10 Cell layout ...........................................................................   44

3.3.11 Implementation costs ...........................................................   44

3.4 Micropipeline implementation ........................................................   46

3.4.1 The T-Latch Micropipeline ...................................................   47

3.4.2 The Capture-Pass Micropipeline ...........................................   49

3.4.3 Capture-Pass versus transparent latch area considerations ...   49

3.4.4 Micropipeline stage performance ..........................................   51

3.4.5 Power considerations .............................................................   53

3.4.6 Choosing an implementation .................................................   54

Chapter 4 : The asynchronous ARM ............................   57

4.0.1 The ARM processor ..............................................................   57

4.0.2 Implementation challenges ....................................................   57

4.0.3 Differences from the ARM6 ..................................................   58

4.0.4 Processor interface .................................................................   58

4.1 Processor organization .....................................................................   60

4.1.1 Address interface ...................................................................   60

4.1.2 The register bank ...................................................................   60

4.1.3 The execution unit .................................................................   60

4.1.4 The data interface ..................................................................   62

4.2  Pipeline organization and control ...................................................   62

4.2.1 Dynamic pipeline structure ....................................................   62

4.3 Instruction mapping .........................................................................   64

4.3.1 Data operation .......................................................................   65

4.3.2 Branch operation ...................................................................   66

4.3.3 Multiply operation .................................................................   67

4.3.4 Load data operation ...............................................................   67

4.3.5 Store data operation ...............................................................   70

4.3.6 Block transfer operation ........................................................   70

4.3.7 Exception entry operation ......................................................   74

4.4 Instruction flow control ...................................................................   76

4.4.1 The ARM PC model and the PC pipeline .............................   76



4

4.4.2 Condition code evaluation .....................................................   76

4.4.3 Branch operations ..................................................................   77

4.5 Exception handling ..........................................................................   79

4.5.1 Hardware interrupts ...............................................................   79

4.5.2 Data abort overview ..............................................................   81

4.5.3 Data abort signalling ..............................................................   82

Chapter 5 : The register bank .............................................   85

5.1 Register bank operation ...................................................................   85

5.1.1 Internal register structure .......................................................   86

5.1.2 Register bank hazards ............................................................   86

5.2 Write address storage .......................................................................   87

5.2.1 An asynchronous register lock FIFO .....................................   88

5.2.2 FIFO examination ..................................................................   89

5.2.3 Stalling reads .........................................................................   90

5.3 Asynchronous register bank design .................................................   90

5.3.1 Read and lock operations .......................................................   90

5.3.2 Write operations ....................................................................   92

5.4 Additional features ..........................................................................   93

5.4.1 Dual lock FIFO ......................................................................   93

5.5 Implementation ................................................................................   94

5.6 Future enhancements - register bypassing .......................................   96

5.6.1 Register through-passing .......................................................   96

5.6.2 Last result re-use ....................................................................   97

Chapter 6 : Memory interface ............................................   99

6.1 Address interface .............................................................................   99

6.1.1 Load/Store multiple operation ...............................................   101

6.1.2 Changing the PC value ..........................................................   101

6.1.3 PC loop deadlock ...................................................................   102

6.1.4 PC pipeline ............................................................................   103

6.1.5 Instruction overflow deadlock ...............................................   103

6.1.6 PCpipe implementation .........................................................   105

6.1.7 Incrementer ............................................................................   107

6.2 Data interface ...................................................................................   108

6.2.1 Data in ...................................................................................   108

Chapter 7 : Execution pipeline ..........................................   111

7.1 The multiplier ..................................................................................   111



5

7.2 The shifter ........................................................................................   112

7.3 The ALU ..........................................................................................   112

7.3.1 Performance considerations ...................................................   112

7.3.2 Implementation ......................................................................   113

7.4 The CPSR ........................................................................................   113

Chapter 8 : Implementation .................................................   117

8.1 Design flow ......................................................................................   117

8.1.1 Verification of the design ......................................................   117

8.2 Complete organization .....................................................................   119

8.2.1 Datapath VLSI organization ..................................................   121

8.3 Silicon layout ...................................................................................   121

8.4 Test devices .....................................................................................   123

Chapter 9 : Evaluation and further work ...................   125

9.1 Design characteristics ......................................................................   125

9.1.1 Area overhead ........................................................................   126

9.1.2 Pipeline organization .............................................................   127

9.2 Further work ....................................................................................   128

9.2.1 Base technology .....................................................................   128

9.2.2 Processor organization ...........................................................   129

9.2.3 Tools ......................................................................................   129

9.2.4 Test ........................................................................................   130

Chapter 10 : Conclusions .......................................................   131

10.1 Micropipelines ...............................................................................   131

10.2 AMULET1 .....................................................................................   132

10.3 An asynchronous future? ...............................................................   132

Chapter 11 : Bibliography .....................................................   133

 Appendix A: Timing characteristics ............................   143

A.1 Measurement conditions .................................................................   143

 SPICE timings for: CALL2 ...........................................................   144

 SPICE timings for: DMULLC2 .....................................................   146

 SPICE timings for: DXor/DXNor .................................................   147

 SPICE timings for: DWAIT2 ........................................................   148

 SPICE timings for: MULLC2R .....................................................   149

 SPICE timings for: MULLC2 .......................................................   150



6

 SPICE timings for: MULLC3R .....................................................   151

 SPICE timings for: TOGGLE .......................................................   152

 SPICE timings for: SELECT2 .......................................................   155

 SPICE timings for: TLTCHR ........................................................   156

 Appendix B: The ARM processor .................................   157

B.1 The ARM2 ......................................................................................   157

B.1.1 Instruction set ........................................................................   158

B.1.2 Organization ..........................................................................   159

B.2 The ARM6 ......................................................................................   159



7



8

Abstract

A fully asynchronous implementation of the ARM microprocessor has
been developed in order to demonstrate the feasibility of building
complex systems using asynchronous design techniques. The design is
based upon Sutherland’s Micropipelines and allows considerable internal
asynchronous concurrency. The design exhibits several novel features
including: a register bank design which maintains coherent register
operation while allowing concurrent read and write access with arbitrary
timing and dependencies, the incorporation of an ALU whose speed of
operation depends upon the data presented, and an instruction prefetch
unit which has a non-deterministic (but bounded) prefetch depth beyond a
branch. The design also includes many complex features commonly
found in modern RISC processors, such as support for exact exceptions,
backwards instruction set compatibility and pipelined operation.
This thesis introduces the Micropipeline approach and discusses the
design, organization, implementation and performance of the
asynchronous ARM microprocessor which was constructed in the course
of the work.
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Chapter 1 : Introduction
Most current digital design is based upon a synchronous approach. However, recently there
has been renewed interest in asynchronous design styles where instead of a global clock to
regulate operation, the subsystems of the design communicate with each other at arbitrary
times when they wish to exchange information. Much of the recent work in asynchronous
logic design has been motivated by perceived difficulties in certain aspects of synchronous
VLSI1 design. At present these difficulties are being overcome but the cost is increasing as
silicon geometry sizes decrease and clock frequencies and the degree of on-chip integration
increase.

1.1 Motivation

Asynchronous design styles may offer reduced cost solutions to several of the emerging
synchronous design difficulties. The three main areas that may benefit most from an
asynchronous design approach are global synchronisation, performance and power
consumption. To understand why asynchronous designs may offer advantages in these areas
it is necessary to understand the nature of the problems and how they are currently being
resolved (and the cost associated with doing so in a synchronous environment).

1.1.1  Global synchronization

With the decrease in process feature size and the increase in the degree of on-chip
integration it is becoming increasingly difficult to maintain the global synchronization
required in a clocked system. The difficulty lies in distributing the clock signal across the
silicon in such a way that all elements receive a transition of the clock at the same time. The
maximum time difference between any two parts of the circuit observing the same clock
transition is known as the clock skew. The next clock transition cannot be allowed to occur
until the previous transition has propagated to all parts of the circuit. If the clock skew is
large then the clock period must be extended to ensure correct operation and as a result the
maximum frequency is limited by the on-chip skew.

State of the art designs [DEC92] have demonstrated that it is possible to engineer circuits to
overcome these problems, but the cost is high. For example, in the Alpha processor (21064-
AA [DEC92a]) about a third of the silicon area is devoted to the clock drivers. The
designers of the circuit carefully modelled the delay through the clock distribution network
[Dobb92] to ensure that the clock skew was small enough to allow 200MHz operation.

Asynchronous circuits have no global clock so there is no global synchronization constraint
to satisfy and the complex detail design of driver networks is not required.

1. Very Large Scale Integration
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1.1.2  Performance

A characteristic of normal synchronous design it that it is optimized for worst-case
conditions. The minimum clock period (and hence maximum frequency) is constrained by
the operation that takes the longest time to complete. The clock frequency is fixed so that
every cycle is long enough to allow for the worst-case operation even though, typically, the
average case could be handled in a much shorter time. The time variation between worst-
case and typical operations is usually significant, so optimizing a circuit for typical rather
than worst-case operations has advantages which are not available to the synchronous
designer.

The speed of a particular operation is affected by a number of independent factors:

• Variations in the silicon processing of CMOS circuits leads to variations in
transistor strengths between limits. The worst-case is when both n- and p-
transistors are slow and the process is classified asslow-slow. Transistors from a
typical process usually operate at approximately twice the speed of transistors from
a slow-slow process and transistors from afast-fast process usually show a factor
four increase in speed overslow-slow transistors. As a process matures a higher
percentage of the devices fabricated fall into thetypical category and the process
variations are much reduced. However, many high performance processors take
advantage of leading edge technologies where the process variation may be high.

• Logic functions may have certain input data values that require more time to
evaluate than the average case. For example, a ripple-carry adder where the carry
has to ripple through all the bit positions requires more time for the result to
become stable than a carry that only ripples across a small part of the data word.

• The power supply voltage and temperature of a CMOS circuit affects its speed.
The operation becomes slower with a decrease in supply voltage or an increase in
temperature and becomes faster if the temperature is lowered or the supply voltage
is raised (there are limits to the extent of voltage and temperature variations to
ensure the circuits can still operate).

For a synchronous system, the fixed clock period must be set to accommodate the situation
where the worst-case of all these factors exists at the same time.

With an asynchronous system it is possible to construct circuits optimized for the typical
case; worst-case operations simply take longer when required (there is no fixed clock period
during which the operation must be completed).

1.1.3  Power consumption

Power consumption is becoming increasingly important in the emerging market of hand
held portable computing equipment [Lind92], where battery life is at a premium. Power
consumption is also becoming a problem in high performance RISC1 processors with recent
designs dissipating 20 - 30 Watts [DEC92, Sun92], which leads to challenges in packaging
and system design to remove the generated heat.

1. Reduced Instruction Set Computer
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In CMOS, the power dissipated is proportional to the frequency of the clock [Eshr89], so as
the clock frequency increases the power dissipated also increases accordingly. Decreasing
the power supply voltage from 5V to 3V reduces the power by a factor of three, but there
are limits to how low the supply voltage can go before the device stops functioning
correctly.

The power reduction offered by the shrinking of process geometries is usually offset by an
increase in clock frequency and an increase in the functionality integrated on a single
device. If the rate of increase in power consumption remains unchecked then this will
shortly lead to a power (and performance) limit restricted by heat dissipation. A recent
design [Joup93, Hamb92]) has demonstrated a packaging technique involving a
thermosiphon capable of cooling a 150W device. This again shows that there if there is
sufficient demand an engineered solution can be obtained but again the cost is high.
Asynchronous design styles may offer another avenue to reducing the power consumption.

In a synchronous system, transitions of the clock are distributed across the entire chip on
every cycle, so all parts of the circuit are activated and dissipate power whether they are
needed or not. For example, in a microprocessor, the floating point unit may not be required
for a particular instruction but it must still be clocked on every cycle. Techniques have been
proposed for disabling the clock in areas of the circuit that are not in use by adding logic
functions into the clock buffers. This makes the problem of global synchronization even
more difficult, so it is not a feasible solution for systems with high clock frequencies.

An asynchronous system, on the other hand, only activates a particular part of the circuit
when it is actually required and so does not dissipate any power in subcircuits that are not
required.

1.2 Basic concepts

There are a few key concepts fundamental to the understanding of asynchronous circuits:
the timing models used, the mode of operation and the signalling conventions.

1.2.1  Timing model

Asynchronous circuits are classified according to their behaviour with respect to circuit
delays. If a circuit functions correctly irrespective of the delays in the logic gates and the
delays in the wiring it is known asdelay-insensitive. A restricted form of this circuit known
asspeed-independent allows arbitrary delays in logic elements but assumes zero delays in
the interconnect (i.e. all interconnect wires are equi-potential). Finally, if the circuit only
functions when the delays are below some predefined limit the circuit is known asbounded-
delay.

1.2.2  Mode

Asynchronous circuits can operate in one of two modes. The first is calledfundamental
mode and assumes no further input changes can be applied until all outputs have settled in
response to a previous input. The second,input/output mode, allows changes to the inputs
while the asynchronous circuit is still generating the outputs.
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1.2.3  Asynchronous signalling conventions

A communication between two elements in an asynchronous system can be considered as
having two or four phases of operation and a single bit of information can be conveyed on
either a single wire or a pair or wires (known as dual-rail encoding).

Two-phase

In a two-phase communication the information is transmitted by a single transition or
change in voltage level on a wire. Figure 1-1(a) shows an example of two-phase
communication.

The sender initiates the communication by making a single transition on the request wire;
the receiver responds by making a single transition on the acknowledge wire completing the
two phases of the communication. The electrical level of the wires contains no information,
only a transition is important and rising or falling transitions are equivalent (see figure 1-
1(b))

There is no intermediate recovery stage, so that if the first communication resulted in a
transition from Low to High the new communication starts with a transition High to Low
(see figure 1-1(a), 2nd communication).

Sender

Request

Acknowledge
Receiver

=

Request

Acknowledge

1st communication 2nd communication

Figure 1-1: Two-phase communication protocol

(b) transition direction not important

(a) Communication protocol
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Four-phase

With four-phase communication two phases are active communication while the other two
permit recovery to a predefined state. Figure 1-2 shows an example of four-phase
communication; in this example all wires are initialised to a logical Low level.

The communication is initiated by the sender changing the request wire to a High level to
indicate that it is active. The receiver responds by changing the acknowledge wire to a High
level also. The sender observes this change, indicating that the communication has been
successful, and then changes the request wire back to Low to indicate it is no longer active.
The receiver completes the fourth phase of the operation by changing the acknowledge wire
back to a Low level to indicate that it too has become inactive.

After completing the four phases of a single communication, the voltage levels on the wires
have returned to their initial value (c.f. two-phase, where this is not the case).

Single-rail encoding

A single-rail circuit encodes information in a conventional level encoded manner. One wire
is required for each bit of information. If the information is a data value, then a typical
encoding would use a High (Vdd) level to correspond to a logic ‘1’ and a Low level (Vss) to
represent a logic ‘0’.

Dual-rail encoding

A dual-rail circuit requires two wires to encode every bit of information. Of the two wires,
one represents a logic ‘0’ and the other represents a logic ‘1’. In any communication an
event occurs on either the logic ‘0’ wire or the logic ‘1’ wire. There cannot be an event on
both wires during any single communication (a value cannot be ‘0’ and ‘1’ at the same time
in a digital system). Similarly, in every communication there is always an event on one of
the two wires of each bit (a value has to be ‘0’ or ‘1’). It is therefore possible to determine
when the entire data word is valid because an event has been detected on one of the dual

Request

Acknowledge

1st communication 2nd communication

Figure 1-2: Four-phase communication protocol

Sender

Request

Acknowledge
Receiver
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rails of every bit in the data word. Thus timing information is implicit with the data to
indicate its validity. The event that is transmitted on one of the dual rails can either be two-
phase or four-phase.

There are various combinations of two-/four-phase and single-/dual-rail protocols that can
be used. Four-phase, dual-rail is popular for delay-insensitive asynchronous design styles.
The research described in this thesis employs a combination of styles. The control circuitry
is predominately two-phase, single-rail, although four-phase is used where it is more
efficient to do so. Dual-rail is also used but only in a few specialised applications. The
datapath part of the design uses standard single-rail logic to implement the functional units.

Overall the design adheres to the bounded-delay timing model (although some parts may be
considered delay-insensitive) and its pipeline stages operate in fundamental mode.

1.3 Objectives and thesis structure

The objective of this work is to investigate whether it is possible to build commercially
realistic complex circuits using an asynchronous design style and then assess what
advantages the circuits designed may offer. To demonstrate the asynchronous methodology
adopted (Micropipelines), an asynchronous implementation of the ARM1 processor was
designed and fabricated on a CMOS process.

1.3.1  Structure of the thesis

A survey of recent work in the area of asynchronous logic design is presented in chapter 2
and an in-depth description of the Micropipeline design methodology and implementation
is described in chapter 3. The organizational features of the asynchronous ARM processor
are described in chapter 4, including how the ARM instruction set is mapped onto an
asynchronous organization. Chapters 5, 6 and 7 provide more detail about the register bank,
memory interface and the execution pipeline respectively. Chapter 8 brings together the
material of chapters 5, 6 and 7 and shows how the complex organization is mapped onto
silicon, both in terms of design flow and VLSI organization. Chapter 9 evaluates the design
and proposes further work (much of which is already underway).

Chapter 10 describes the conclusions that have been drawn so far from this work. Chapter
11 is the bibliography. Appendix A contains the SPICE characterisation figures for the
event control modules described in chapter 3 and appendix B gives a brief overview of the
ARM architecture.

1.3.2  Author’s contribution

The design and implementation of an asynchronous processor is a complex task undertaken
by a group of researchers (two full-time Research Associates, including the author, and
three members of academic staff). This section seeks to clarify the contribution of the
author to the work described in this thesis.

Chapter 3 contains mainly background information about Micropipelines and the
implementations that were chosen. The author contributed to the implementation and

1. The ARM (Advanced RISC Machine) is a 32-bit RISC processor (see appendix b)
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characterisation of the cell library (although most of the cells were based on existing
designs) and also performed the comparison of Micropipeline latch styles (section 3.4).

Chapter 4 contains a high-level architectural overview of the complete processor. This work
was undertaken by the whole group but with substantial input from the author.

Chapter 5 and chapter 6 (with the exception of the incrementer in section 6.1.7) contains
work primarily undertaken by the author.

Chapter 7 contains a brief description of the execute pipeline. The author did not contribute
directly to this work and it is included for completeness in order that all aspects of the
asynchronous microprocessor design may be fully described.

Chapter 8 describes the design flow used and the silicon implementation. The author
contributed to the design flow by writing a test vector translation tool and the bundle
checker and had a substantial contribution to the silicon layout.
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Chapter 2 : Related work
The Macromodules project [Clar67] in the early 1960’s demonstrated the modular design of
asynchronous circuits and the ease with which designs could be put together. The early
work of Miller [Mill65], Molnar [Clar74, Moln83, Moln85], Seitz[Seit70, Seit80], Unger
[Unge59, Unge69], Huffman[Huff54] and Keller[Kell74] laid the foundations on which
most of the recent research in asynchronous design is based. The asynchronous
phenomenon of metastability was discovered during the early work [Chan73, Kinn76].

As the general aspects of asynchronous design methodologies are beyond the scope of this
thesis a brief description of current asynchronous design styles is presented here; a more in-
depth survey and bibliography are presented elsewhere [Gopa90, Hauk93, Asyn93].

2.1 Automatic synthesis tools

There are three predominate styles of automatic synthesis of asynchronous circuits. The
first is based on compiling from a high level language to a VLSI circuit. The second
technique uses a graphical description as the starting point and the third uses asynchronous
finite state machines to describe the circuit.

2.1.1  CSP based compilation

A number of compilation schemes derive asynchronous VLSI circuits from high-level
languages based upon Communicating Sequential Processes (CSP) [Hoar78, Hoar85] and
Occam [Inmo83] derivatives.

Brunvand [Brun89, Brun91] presents a technique for compiling a subset of Occam into
delay-insensitive control circuits with bounded-delay datapath elements. The target of the
design flow [Brun91a] is a set of control and data modules rather than a transistor level
circuit. Circuit transformations can be applied after compilation to optimize the resulting
circuit in a similar manner to peephole optimizers in a software compiler. The VLSI circuits
constructed using this technique have been mapped onto CMOS, Field Programmable Gate
Arrays (FPGA) and Galium Arsenide technologies [Brun91b, Brun91c, Brun92]. A simple
RISC processor has been implemented on multiple FPGA elements to demonstrate the
practicality of the approach [Brun93].

Martin [Mart86, Mart89, Mart90] and Burns [Burn87, Burn88] describe a technique for
translating from a “program notation” based on CSP and Dijkstra’s guarded-commands
[Dijk76] to a four-phase delay-insensitive circuit. The synthesis method has been
demonstrated with numerous circuit examples [Mart85, Mart85a, Mart85b]. An
asynchronous “RISC style” microprocessor has been developed [Mart89a, Mart89b] that
demonstrated the feasibility of the approach, however the processor constructed was a very



26

simple 16-bit machine with no support for the difficult areas of hardware interrupts and
exact exceptions.

Van Berkel at Philips Research also describes a compilation system [vBer88, vBer88a,
Nies88] based upon CSP and Dijkstra’s guarded-command language. The term “VLSI
programming” is introduced to describe the process of writing a program to generate a
VLSI circuit and the languageTangram [vBer91] is used as a VLSI programming language.

Compilation begins with the translation of the Tangram program into an intermediate form
known ashandshake circuits [vBer92]. A handshake circuits is a network of components
connected together by point-to-point channels which interact only by transition signalling
along the channels (there are no global variables). The handshake circuit is converted into a
netlist of standard-cell VLSI modules for final silicon layout.

The resulting VLSI circuits use a delay-insensitive, four-phase, dual-rail protocol for
communication between components (the intermediate form handshake circuits use a two-
phase delay-insensitive protocol).

The Tangram compilation system is a well integrated design system which incorporates a
suite of tools which include:

• A translator from Tangram to handshake circuits and behav-
iourally equivalent C programs.

• An analyser which produces circuit level statistics.
• A compiled C-Code simulator for coarse timing.
• A converter into VHDL and a VHDL simulator for detailed

timing.
• A standard-cell net-list generator and a standard-cell layout

package.
• A test-trace generator

The system has been used to generate a number of VLSI circuits [Saei88, Kess90, Kess90a,
Kess91, Kess92].

To address the area overhead associated with the Tangram use of dual-rail encoding for
datapath elements further work is being undertaken in the OMI-EXACT project, in
conjunction with the AMULET group at the University of Manchester [Edwa93], to
investigate the use of two-phase, bounded-delay techniques to reduce the area overhead.

Gopalakrishnan and Akella present a design environment for the specification, simulation
and synthesis of asynchronous circuits [Gopa93, Akel91], their specification language is
also based upon CSP.

2.1.2  Signal transition graphs

A methodology for synthesizing speed-independent circuits from State Transition Graphs
(STGs) was proposed by Chu [Chu85, Chu86a, Chu86b, Chu87]. STGS are similar to Petri
Nets whose transitions are labelled with signal names and whose places form the arcs of the
graph. When a transition fires in an STG the associated signal in the circuit changes. By
restricting the allowable structure of an STG it is possible to generate a state assignment
graph from which a circuit may be realised. A technique known asContraction was
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developed to help implement STG circuits without the exponential explosion in complexity
often associated with Petri Net circuits.

Several other researchers use the STG format to described asynchronous circuits and they
have developed algorithms for STG transformations and synthesis [Lin91, Lin91a, Lin92a,
Meng89, Vanb90a, Vanb90b, Yako92].

2.1.3  State machines

Davis, Coates and Stevens describe a collection of synthesis tools (MEAT) for generating
hazard free asynchronous finite state machines [Coat93]. The specification is a state
diagram with a restriction on the allowable input changes (known as burst-mode). The tool
generates a schematic at the complex gate transistor level (c.f. CSP compilation
methodologies which target predefined modules). The tool has been used to develop a
complex communication chip with over 300,000 transistors [Coat93a]. Dill’s verifier
[Dill89] has been used toanalyse the resulting circuits for hazards.

Nowick and Dill have presented a technique for the automatic synthesis of asynchronous
state machines using a local clock [Nowi91, Nowi91b, Nowi92]. Together with Yun they
have also proposed a technique for the synthesis of 3D state machines [Yun92] and an
extension to the specification of burst-mode to allow more concurrency [Yun92b]. Much of
the work of Davis, Dill and Nowick is being integrated into a single tool called Stetson
[Davi93].

2.2 Other related work

Myers and Meng present a synthesis method that uses timing constraints to generate a timed
asynchronous circuit [Myer92, Myer93]. Circuit examples are given to demonstrate the
advantages of this approach in comparison to speed-independent approaches. Beerel and
Meng [Beer92] describe a CAD tool for the synthesis of speed-independent asynchronous
control circuits that use only basic gates. Lavagno [Lava92] describes a design technique
where control circuits are designed using synchronous techniques and extra logic is added
to remove hazards.

Josephs and Udding describe an algebraic approach to the design of delay-insensitive
circuits [Jose90, Jose91] which allows the functional behaviour of primitive delay-
insensitive elements to be captured by algebraic expressions. Their so-calledD-I Algebra
allows the designer to specify the circuit and the constraints that must be met by the
environment precisely. The algebra also supports verification of the design against its
specification. Simple designs using the algebra have been demonstrated [Jose90, Jose92a].

Ebergen [Eber91] also presents a formal approach to the design of delay-insensitive circuits
from a specification based upon CSP and Dijkstra’s guarded-command language. A
modulo-N counter circuit developed using this technique exhibited a bounded response
time and bounded power consumption [Eber92].

Rem [Rem90] provides a precise mathematical definition of delay-insensitivity,
decomposition and speed-independence and the issues of using delay-insensitive circuits
are discussed by Martin [Mart90a] and van Berkel [vBer92a].
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Williams addresses the issues of latency and throughput trade-offs in self-timed speed-
independent pipelines [Will90] and also describes a 54-bit self timed CMOS division
implementation [Will91, Will91a].

2.3 Summary

The recent work described in this chapter has focused on novel design and verification
techniques with emphasis on mathematical approaches to the automatic synthesis of
asynchronous circuits. These techniques suffer from several drawbacks:

• They are limited to the size, type and complexity of circuit
they can process.

• The resulting circuits often carry a large area and performance
overhead.

It is the authors opinion that these techniques had not matured sufficiently to synthesise an
asynchronous implementation of an ARM processor where the results are of practical
proportions. Therefore a less formal engineering approach, based uponMicropipelines, was
used to build the asynchronous implementation of an ARM processor.

2.3.1  Micropipelines

Sutherland [Suth89] describes a methodology called Micropipelines for the design of
asynchronous systems using a two-phase bounded-delay protocol (Micropipelines are
described in detail in chapter 3).

Gopalakrishnan investigates some unusual Micropipeline circuits [Gopa93] and the
dynamic reordering of instruction sequences using a modified Micropipeline [Gopa92]. The
AMULET group at Manchester University have investigated various aspects of
Micropipeline designs.

2.3.2  AMULET group Micropipelines

Furber, Paver and others give an overview of the design of the asynchronous ARM
processor [Furb92, Furb93a, Furb93b, Furb93c, Furb94, Pave93]. Day, Garside and Paver
also discuss detailed aspects of the design [Day92, Day93, Gars92, Gars93, Pave91,
Pave92a, Pave92b]. Other researchers within the AMULET group at Manchester University
are constructing a bipolar implementation of the asynchronous ARM processor [Kell93].
The use of Micropipeline design styles in cost sensitive consumer products is being
investigated in conjunction with Philips Research under the OMI-EXACT project [Farn93,
Farn93a, Farn94]. Work on the OMI-HORN project at Manchester is investigating the
application of asynchronous techniques for low cost and low power microprocessors in
conjunction with INMOS Ltd. MSc research within the AMULET group has investigated
cache structures suitable for an asynchronous processor [Mehr92], the high-level modelling
of Micropipelines [Tan92], and the architectural features desirable for low power
asynchronous microprocessors [Ende93]. PhD research is investigating the modelling of the
asynchronous ARM microprocessor using Occam as a description language [Theo93].
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Chapter 3 : Micropipelines
In the Turing Award lecture of 1988 Ivan Sutherland outlined a framework for designing
asynchronous circuits [Suth89]. The lecture, entitled “Micropipelines”, included a
description of a library of circuits that can be used to build asynchronous control structures
and a technique for encapsulating asynchronous sub-circuits using a predefined interface.
These basic sub-circuits can then be connected together to form asynchronous pipeline
systems whose communication protocol was also described in the lecture.

3.1 Basic concepts

Micropipelines use a two-phase bundled data interface as illustrated in figure 3-1 below.
This interface has an arbitrary number of data bits accompanied by two signalling wires
called Request (Req) and Acknowledge (Ack). The communication protocol used by the
sender and receiver is illustrated in figure 3-2. Here thesender prepares the data during its
active phase (denoted by the grey area) and, when the data is valid (denoted by the white
area), signals this to the receiver by generating a transition (in the first case from Low to
High) on theReq wire. The receiver then begins to process the data. When the receiver has
finished with the data on its input the sender is signalled to indicate that the data has been
received. This acknowledgement is transmitted by generating a transition on theAck wire
(the transition in this case is also Low to High). On receiving anAck the sender can remove
the data and begin preparing the next value.During the next cycle, after the sender has
prepared the next set of data, the request wire this time makes a transition from High to
Low. In keeping with the two-phase philosophy the direction of the transition is not
important, only that one has occurred. Again, when the receiver has processed the data, it
signals back to the sender with a transition (also from High to Low) on the acknowledge
wire.

Sender Receiver

Req

Ack

Data

Figure 3-1: Bundled data interface
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Micropipelines are considered bounded-delay because the data are constrained to be valid
before the request and therefore the delay on the data must be less than the delay on the
request i.e. it is bounded. The requirement for the data to be valid before a request is issued
is known as the bundled-data delay constraint.

3.1.1  Event control modules

To ease the design of circuits using transition signalling, Sutherland proposed a library of
basic building blocks, as shown in figure 3-3. The first element shown here is the exclusive
OR gate (XOR). This circuit acts as theOR function for events in that an event arriving on
either input will cause an event on the output. For correct operation the environment1 must

1. The environment is the term used to describe the circuits within which an event module is placed

Req

Data

Ack

Sender’s
Action

Receiver’s
Action

Figure 3-2: The two-phase bundled data convention

Figure 3-3: Event logic library
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ensure that events do not arrive simultaneously on both inputs. TheXOR elements are often
called MERGE elements because they are used to merge two event streams into one.

The Muller C-Gate [Mill65] (referred to as theC-Gate for brevity), figure 3-3(b), acts as an
AND function for transition events. Here each input must receive an event before an event
is generated on the output. TheC-Gate is also known as a RENDEZVOUS element
because it only enables events to continue when there has been an event on both inputs.
Various forms ofC-Gate are useful with different numbers of inputs some of which may be
initialised to an active state (see section 3.3.2). The primed inputs are indicated by placing
on small circle on them.

The TOGGLE (figure 3-3(c)) steers incoming events to alternate outputs. After
initialisation the first input event is steered to the output marked with a dot (Dot). The next
event is steered to the other output (Blank) and then the cycle repeats for further input
events.

TheSELECT block (figure 3-3(c)) also steers events to one of two outputs. The destination
here is determined by the value of the Boolean select signal (indicated by the diamond in
figure 3-3(c)). A High input on the Boolean select line causes the input event to be steered
to theTrue output, a Low input causes the event to exit via theFalse output. The Boolean
signal must be set up before the arrival of the event and must not change close to the time
the input event arrives; this is a constraint which the environment must satisfy to ensure
reliable operation.

If two circuits share access a single sub-circuit the interaction can be controlled by aCALL
block (figure 3-3(d)), with the two circuits submitting requests onr1 & r2 respectively. The
circuit which submits a request (r1 & r2 must be mutually exclusive) has the request routed
to the request out (r) and on to the sub-circuit. When the sub-circuit has completed
processing it returns an acknowledge (a) to theCALL block where it is steered back to the
correct calling circuit, eitherd1 or d2.

TheCALL block is analogous to a procedure call in software where a common subroutine
is called from two different places in the main program. The block is configured so that the
acknowledge is steered back to the correct calling circuit; the software equivalent of this
action is returning to the stored return address.

TheARBITER (figure 3-3 (e)) is used to control the interaction between two asynchronous
event streams. As the two streams can present requests at arbitrary relative times, the
arbitration logic is inherently prone to metastability. Internally theARBITER must be able
to handle metastable states while still presenting valid logic levels at its interface.

3.1.2  Metastability

Metastability is the phenomenon whereby non-digital logic values are seen at the output of
a state storing element caused by the input to the element changing too close to the sample
point of the input. The metastable value on the output can persist for an arbitrary time
before eventually settling to one of the valid digital values.

The behaviour of a metastable system can be modelled mathematically. In particular the
probability of the non-digital values persisting on the output can be shown to be a negative
exponential function of time [Cour75, Hors89].
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 In a traditional clocked system, synchronisation is performed by sampling an input, waiting
a time calculated to ensure that the probability of the metastability persisting is extremely
small, and then sampling the output to determine its value. All synchronous systems have a
finite (but small) probability of synchronisation failure because the output sample point is
fixed by the clock period. There is a trade-off between the reliability of a system and the
length of time allowed for metastability to be resolved.

In an asynchronous system it is possible to detect metastability and delay any output until
the metastability is resolved. TheARBITER proposed by Sutherland takes two (possibly
simultaneous) input requests, arbitrates between them, and when a definite decision has
been made issues a grant signal to whichever output was chosen. TheARBITER can be
combined with theCALL block to enable the two processes which are not mutually
exclusive to share a common sub-process.

3.1.3  Event-controlled storage element

The blocks described above can be used to compose transition signalling control structures.
To construct a complete system also requires some state storage elements. Sutherland
proposed a latch based storage element with two transition signalling control wires termed
“capture” and “pass”. Figure 3-4 shows one of Sutherland’s implementations and the
symbol used to denote it.

During initialisation the latch is reset to a transparent state where the input is connected
through to the output. When a capture event occurs the input is disconnected from the
forward inverter forming the path to the output. The output of this inverter is now connected
via an inverter back to its input, forming a state-retaining loop. This loop is still connected
to the output, which therefore reflects the previous or “latched” value of the input and does
not change with subsequent input changes. The input is now connected to the lower forward
inverter. When a “pass” event arrives the output is switched from the upper inverter loop
previously described to the lower inverter pair once again allowing the input to flow
through to the output but this time through the lower inverter. The latch is again transparent
and theCapture-Pass sequence may repeat.

TheCapture-Pass latch and the transition signalling library building blocks can be used to
form Micropipelines.

Figure 3-4: Event-controlled storage element
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3.2 Micropipelines

Sutherland assigned the name Micropipeline to a simple form of event-driven elastic
pipeline. The simplest Micropipeline is one in which there is no processing in between
pipeline stages. Micropipelines cause data ordering to be maintained so that data exits the
pipeline in the same order that it entered. This is referred to as a First In First Out (FIFO)
queue.

3.2.1  A Micropipeline FIFO

Figure 3-5 showsC-Gates and Capture-Pass latches configured to form a 4 stage
Micropipeline FIFO. The operation of the FIFO begins with the data being presented to the
first Capture-Pass latch viaDin. Initially all the event wires are Low and all the latches are
transparent. TheRin signal arrives at the firstC-Gate (as a Low to High transition) to
indicate that the data is now valid and may be latched. The other input to this gate is pre-
initialised, so that although no event has yet arrived fromPd the input of theC-Gate is
primed and theRin event propagates to the latch control circuits, closing the first latch. The
“capture done” (Cd) control wire indicates when the latch has closed and this generates an
acknowledge event onAin. Once this operation is complete the data may be removed from
the input to the FIFO. The “capture done” (Cd) event is also fed into a delay unit in the path
to the next stage of the FIFO. This slows down the event signal thus giving the data time to
propagate through the rest of the first latch stage and to arrive at the second stage, ensuring
that the bundled-data delay constraint for the second stage is not violated.

The delayed event arrives at the primed C-Gate in stage two. The data is now safely set up
at the input of the second stage and the latch closes after the event propagates through the
C-Gate. Again, once closed, the stage signals back to its predecessor that the data is no
longer needed. This causes the first stage to become transparent and primes its input C-
Gate so that a subsequentRin may propagate straight through to close the latch. AnRin
event which arrives before the latch has opened is stalled at theC-Gate awaiting the latch
empty (pass done -Pd) event.

Figure 3-5: Simple Micropipeline FIFO
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The control signals continue to ripple down the FIFO towardsRout, latching the data at
each stage and releasing the previous stage as they progress. Eventually the data and its
corresponding eventarrive at the output and the environment is signalled onRout to
indicate that the data is now available onDout.

If the data is not removed from the output and more data is added at the input, the incoming
data progresses down the pipeline until a forward request reaches a non-empty stage. As
described above, a full stage will be inhibited by theC-Gate from processing any further
requests until it is first empty. This may eventually lead to all the FIFO stages becoming
full, the FIFO will then remain back-logged until data is removed from its output.

3.2.2  Micropipelines with processing

The simple Micropipeline FIFO can be extended to include processing functions by the
addition of logic interspersed between adjacent latch stages (figure 3-6). This operates in a
similar manner to the empty FIFO with events rippling down the Micropipeline. The delay
in the forward request propagation path must be increased to allow for the delay incurred by
the data passing through the processing logic.

More complex structures, such as forking or merging pipelines, can be constructed with the
aid of other library elements (i.eSELECT, XOR etc.).

3.3 Event control module structures

The review of Micropipelines described so far is based upon the work presented by
Sutherland in the Turing Award lecture. To construct a Micropipeline system an
implementation of the basic event module library is required. This section describes the
event module implementations chosen for the asynchronous microprocessor.

Figure 3-6: Processing Micropipeline
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3.3.1  Exclusive OR gate

Figure 3-7 shows two standard implementations of an exclusive OR gate, (a) shows a
standard eight transistor implementation and (b) a six transistor version [Shoj88]

The eight transistorXOR assumes that both the true and complement of both inputs are
available; if this is not the case they must be generated locally at the cost of an inverter for
each input (2 transistors). In the course of the design of the asynchronous ARM processor it
was observed that in most cases at least one complement can be made available by the
environment.

The six transistorXOR needs the complement of only one of its inputs. Initially this
appears a more cost effective XOR in terms of the number of transistors; however the
circuit suffers from a charge sharing problem. Consider the following case: InitiallyIn1 and
In2 are High. The transmission gate is turned off and the output is pulled low via the n-
transistor stack. IfIn2 goes Low (andnIn2 goes High) then the n-transistor stack turns off
and the transmission gate turns on. The transmission gate initially has a High at one end
(In1) and a Low at the other (Out). The resulting charge-sharing causes a glitch to appear on
the In1 input. A glitch is effectively 2 transitions and would cause unexpected events to
propagate through the control circuitry if it passed the switching threshold of gates
connected to it. Analysis with SPICE [Nage73] revealed that the glitch could reach a
voltage of 0.8 V. The circuit was discarded on two grounds:

• Every instance of the gate would need to be checked to ensure
that the glitch did not cause problems with its immediate envi-
ronment.

• Any glitches generated by other circuitry could be mistaken as
XOR glitches instead of real errors.

The eight transistorXOR has therefore been used with additional local inverters to generate
the complements of the inputs as required.

Figure 3-7: Exclusive OR gates
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3.3.2  Muller C-Gate

Various implementations ofC-Gates have been proposed [Suth86]. The one adopted in the
asynchronous ARM design is based upon the dynamic Muller C-element described by
Sutherland. It was chosen in preference over the other designs on grounds of simplicity and
reduced transistor count.

The dynamic Muller C-element can be made pseudo-static by the addition of a weak
feedback inverter to maintain the state of the intermediate node (see figure 3-8). The
strength of the feedback inverter can be made sufficiently low (e.g. 1/25th normal strength)
that it incurs a negligible performance penalty on the gate overall.

The operation of the gate is quite simple. When both inputs are Low the p-transistors are
turned on and the intermediate node (i) is pulled High thus forcing the output Low. When
eitherIn1 or In2 makes a transition to High the pull-up stack is turned off andi is floating;
the state of the gate is retained however by the weak feedback inverter.

When bothIn1 andIn2 have made transitions so that they are both High the n-transistors are
turned on causing the intermediate node to be pulled Low and hence the output High. This
sequence of operations is repeated for High to Low transitions of the input.

All event modules with internal state retention are designed so that they can be initialised
into a known state. The choice of initial state is arbitrary but to simplify circuit design all
event modules were defined to reset Low. TheC-Gate implementation therefore contains
initialisation circuitry to enable the output to be reset Low regardless of the state of the
inputs. The reset signal (Cdn - Clear down) is active Low. Early designs of this gate used
only a pull-up p-transistor to reset the gate. This required the co-operation of the
environment to ensure that the inputs were not both High during initialisation (hence
turning on the n-transistor pull-down stack in opposition to the reset pull-up). Practical
circuits often contain loops where it was not possible to ensure that the input preconditions
for this type of reset could be met, so the full safe reset was implemented.

During reset the inputs of theC-Gate are forced Low by the environment (all other event
modules in the environment should be forcing their outputs low). Often it is necessary to
prime one of the inputs, for example in the simple Micropipeline shown in figure 3-5. This
can be done by simply placing an inverter on the input to be primed. The initial Low value

Figure 3-8: Pseudo-static Muller C-Gate
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on the primed input presents a High value internally to theC-Gate input transistor stack,
hence activating the corresponding n-transistor. In this state then-transistor stack in the C-
Gate is half turned on so it requires only a single event after reset (Low to High transition)
on the non-inverting input for an event to appear on theC-Gate output.

In conventional CMOS gates the switching threshold is a function of the relative strengths
of the pull-up and pull-down stacks; however in thisC-Gate implementation this is not the
case because the input stack does not switch directly from pulling-up to pulling-down but
instead the sequence of operation is from pulling-up to high impedance to pulling-down.
Therefore there is no overlap between pulling-up and pulling-down which gives the normal
balanced threshold [Eshr89, chapter 2]. The threshold of theC-Gate is the threshold of the
n-transistor or p-transistor which is much less than that of a standard static CMOS gate
(nominally half the supply voltage assuming correctly sized transistors). The pseudo-static
C-Gate is therefore a low threshold device; it turns on early. This must be taken into
account when designing with this element.

3.3.3  Transparent latch

A transparent latch (T-Latch) can be implemented using a structure very similar to that of a
C-Gate (figure 3-9). If the data is presented onIn when enable (En) is High it will
propagate to the output. When enable is Low the input transistor stacks are turned off and
the state is sustained by the weak feedback inverter. The latch is also provided with reset
circuitry similar to theC-Gate.

3.3.4  SELECT block

The SELECT block can be implemented using transparent latches andXOR gates as
shown in figure 3-10. The operation of the circuit is as follows: After initialisation the two
latch outputs will be Low and the event input (In) will also be Low (the environment must
ensure this). TheSel input is then set to determine which path the next event will take. If, for
example, theSel input is asserted High, the event will be steered to theTrue output.

With the Sel input High, the lower latch will be transparent and the upper latch will be
opaque. When an event arrives onIn it propagates through bothXOR gates and arrives at

Figure 3-9: Transparent latch
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the inputs of bothT-Latches. The upper latch is opaque so the event propagates no further;
however the lower latch is transparent and allows the event to pass through to theTrue
output. The output event is fed back via the upperXOR to cancel the request waiting at the
input of the upper latch thus preventing an erroneous transmission of an event to theFalse
output on a Sel change.

With Sel Low, events are steered to theFalse output in a similar fashion.

The environment must ensure that theSel input is defined a sufficient time prior to an event
arriving and is stable for enough time afterwards to meet the setup and hold times of the
latches.

3.3.5  Decision-Wait element

TheDecision-Wait element [Kell74] is not one of Sutherland’s library elements, but it is a
popular library element with other asynchronous design styles [Jose90] and can be used to
construct aCALL block.

TheDecision-Wait block causes an event onFire to rendezvous with an event on eithera1
or a2 (but not both) giving an event on the corresponding output (z1 or z2).

The implementation of aDecision-Wait is shown in figure 3-11. The structure and
operation of the gate is similar to theSELECT block. The detailed operation proceeds as
follows: an event arrives on eithera1 or a2. For example, assume that an event arrives on
a1. The arrival of this event primes the upperC-Gate. When an event arrives onFire this
propagates through theXORs to the inputs of bothC-Gates. The lowerC-Gate is stalled
waiting for an input ona2 and so no further action results from this gate. However the upper
C-Gate has now had an event on both inputs and so propagates an event to its output and
hencez1. This output is fed back via theXOR to the lowerC-Gate to cancel the pending
Fire event on its input. Operation is similar for an event on a2 except the subsequent output
event will be onz2.
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Figure 3-10: SELECT block

Sel Cdn

InEn

TL
In Out

Cdn

En

TL
In Out

Cdn



39

3.3.6  CALL block

TheCALL block is constructed from aDecision-Wait element and a singleXOR as shown
in figure 3-12. The operation begins with an input request on eitherR1 or R2. This event
passes through theXOR thus forming the request out (R). At the same time the
correspondinga1 or a2 input of the Decision-Wait element is primed. When the
acknowledge returns from the sub-circuit (onD) it will rendezvous with the primed input of
theDecision-Wait, causing an event to be generated on the acknowledge (D1/D2) back to
the correct calling circuit.

3.3.7  TOGGLE

TheTOGGLE proved to be the most difficult circuit element to implement safely. Figure 3-
13 shows a high-level view of aTOGGLE circuit. The operation of the circuit is to allow a
transition to circulate around a loop under the control of two transparent latches (TL).
Every time there is an event on the input (In) the latches allow the transition to propagate
one position round the loop. This is done by opening one latch while at the same time
closing the other. Care must be taken to ensure that both latches do not remain open together
during the change over, otherwise the transition may propagate through two positions and

Z2

Z1

Fire

C

A1

A2

Figure 3-11: Decision-Wait element
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generate a spurious transition on one of the outputs. This is particularly troublesome when
the latches are made from low threshold devices such as transmission gates, where the
latches open early and close late compared to standard gates. This caused “race-through”
problems with early designs which could be made to operate reliably only by controlling the
latches with non-overlapping clock generators.

Figure 3-13: TOGGLE high-level operation
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The TOGGLE circuit eventually chosen was based upon a design by Jay Yantchev of
Oxford University PRG [Yant92]. This design was derived by speed-independent
decomposition of theTOGGLE [Jose92] specification using an algebraic approach (S-I
Algebra). The complete circuit is shown in figure 3-14. The two half toggles are transparent
latches similar to previous designs [Eshr89, fig 5.51(a)] and the overall operation is as
described above.

The speed-independent derivation assumes that both In and the complement nIn switch
simultaneously. In an implementation this is never actually the case, and SPICE simulation
showed that ifIn andnIn were sufficiently skewed the circuit could indeed be made to fail.
For this reason in the silicon implementation the complementnIn is generated locally
within the same cell so that the delay can be carefully controlled.

After adding the localnIn inverter and reset circuitry to the initial design, the resulting
circuit was converted to silicon layout. The circuit parameters were then extracted and
analysed with SPICE to examine the behaviour at all process corners and at a variety of
temperature and voltage combinations. This demonstrated that the circuit functioned
correctly under all conditions and the inverter delay to complement the input was within the
limits required to prevent latch breakthrough.

OtherTOGGLE designs were considered including a circuit based on a TTL style D-type
flip-flop implemented in NAND gate technology [TTL85]. This is shown in figure 3-15 and
was demonstrated to be hazard free [Edwa92]. This was not adopted because of the
increased complexity and half strength output drive compared with the Yantchev circuit
(NAND gate compared to inverter drive).

3.3.8  ARBITER

The mutual exclusion circuit shown in figure 3-16(a) is based on a CMOS implementation
of a well-tried NMOS circuit [Mead80, figure 7.25]. The circuit comprises a pair of cross-
coupled NAND gates configured as an R-S flip-flop. The output of each NAND gate is
connected to the input of one of the output inverters and acts as the power supply for the
other. If an input is activated by going High the corresponding internal node goes Low. For

Figure 3-15: NAND gate TOGGLE
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example ifR1 goes High the internal nodeI1 goes Low. Once the internal node is Low this
prevents subsequent events on the other input (R2) from having any effect. The other
internal node,I2, remains High. AsI2 also acts as the power supply for the lower inverter,
the outputG1 of this inverter is pulled High indicating that arbitration is complete.

If both inputs go high at the same time the R-S flip-flop may go into a metastable state
where both internal nodes remain at an intermediate, (non-digital level) for an arbitrary
amount of time. With intermediate levels on the internal nodes the output inverters are
unable to turn on and pull either of the outputs High, so the outputs remain Low since the n-
transistors are still partially turned on.

Eventually the R-S flip-flop will exit from the metastable state and one of the internal nodes
will settle Low, the other High. When the difference between the internal nodes is more than
a p-transistor threshold one of the inverters will begin to turn on and start pulling its output
High.

The mutual exclusion circuit is released by removing the input request, i.e. R1 returns Low.
This causes the internal nodeI1 to return High and allows any pending requests onR2 to be
serviced.

Figure 3-16: ARBITER
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The circuit described above is a four-phase circuit, in that the input must return to zero
when the operation is complete. Figure 3-16(b) shows how this mutual exclusion circuit can
be used to build a two-phaseARBITER suitable for Micropipeline control circuits. An
incoming two-phase event is converted to four-phase by theXOR gate on the input. This
ensures that the mutual exclusion circuit always receives a Low to High transition to
activate it. After arbitration is complete one of the transparent latches is enabled to allow the
successful incoming two-phase event to propagate to the output. When the sub-circuit
issues an acknowledge in the form of an event on either theD1 or D2 inputs, the
corresponding input of the mutual exclusion returns Low and hence releases theARBITER
and closes the corresponding transparent latch.

Figure 3-17 shows a more robust variation of a two-phaseARBITER implementation
which allows simultaneous events on ther andd inputs. The extraC-Gates andTOGGLEs
ensure that the four-phase mutual exclusion circuit is released before allowing another
request on the same input.

3.3.9  Capture-Pass latch

The implementation of theCapture-Pass latch is shown in figure 3-18. The operation of the
latch is as follows:

After reset, the capture (C) and pass (P) signals are configured so that the input is connected
to the upper branch and the output is also connected to the same branch. In this state the
latch is transparent.

M
U

T
E

X

R1

R2

G1

G2

G1

G2

R1

R2

D1

D2

T
O

G
G

L
E

T
O

G
G

L
E

Figure 3-17: Robust two-phase arbiter

C

C

G1 released

G2 released

Figure 3-18: Capture-Pass implementation

OutIn

wk

wk

CnC P nP



44

Transitions on the capture control wires (C & nC) cause the upper input transmission gate to
close and the lower one to open. The state of the upper branch is sustained by the weak
feedback inverter and is still visible at the output. This configuration remains until the
arrival of a transition on the pass control wires (P & nP). This causes the upper output
transmission gate to close and the lower one to open. The output is now fed from the lower
branch, which is already connected to the input, so the latch is again transparent. The cycle
repeats with the input and output being switched back to the upper branch on the next
transitions of the capture and pass control wires.

3.3.10  Cell layout

The cells were implemented as standard-cells1 so that they could be used in conjunction
with the ARM Ltd. standard logic element library (inverters, NAND gates etc.) to form
layout automatically compiled by conventional standard-cell place and route software
[Comp91]. The transistor sizes in the asynchronous cells were chosen to be compatible with
the ARM library and are integer multiples of the single inverter transistor sizes. The target
process was a 1.2 micron, twin-tub, double-layer metal process (the VLSI Technology
CMN12 process [VLSI91]).

Figure 3-19(a) shows an example of theC-Gate standard-cell layout. The cells have a fixed
power supply pitch (Vdd &  Vss) running horizontally on metal 1. Connections to the cell’s
inputs and outputs are made vertically on the metal 2 layer. The weak feedback inverter of
the C-Gate can clearly be seen on the right of the cell with its characteristic “C” shaped
pull-down n-transistor. The transistor is so shaped to obtain minimum gate width and to
maximise gate length so giving the desired weak pull-down attribute.

Complex cells can be constructed from simpler cells with the interconnect wiring external
to the power supplies (effectively in the routing channel). Figure 3-19(b) shows the CALL
block which is made up of 2C-Gates and 3XOR gates.

The layout cells were extracted and their operation analysed with SPICE under varying load
conditions. The resulting timing characteristics can be found in appendix A.

3.3.11  Implementation costs

Figure 3-20 shows a plot of the relative sizes of the asynchronous cells taken from the
layout editor of the Compass Design Automation VLSI design tools [Comp91a]. There is a
single strength inverter (Inv1) on the right to act as a scale reference point.

In principle it is possible to extend most of the asynchronous elements so that they have
more inputs/outputs. An example of this would be to extend the select block to steer an
incoming event to, say, one of 4 outputs. This can be done by having two select lines, four
T-Latches and four 4 inputXOR gates. These are wired so that eachT-Latch output is
connected to theXOR gates on the inputs of the other 3T-Latches. The overall operation is
as described previously but this time the event fed back cancels the event on the other three
T-Latches. Figure 3-20 shows that although in theory this may be a feasible idea, in
practice aSELECT4 built out of primitive elements is more than 2.5 times bigger than a

1. Standard-cells are VLSI cells that have a fixed power rail pitch and may be butted together to form
rows of cells that may be wired together by automatic routing tools.
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Figure 3-19: Examples of cell layout
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SELECT4 built out of threeSELECT2 elements. The extra size can be attributed to the
more complexXOR gates and the interconnect wiring required.

3.4 Micropipeline implementation

Sutherland described two principle implementations of a Micropipeline stage, one based
upon aCapture-Pass latch as shown previously in figure 3-5 and the other based on
transparent latches as shown in figure 3-21.

The example shown here is a 2-bit Micropipeline stage. AnXOR and aTOGGLE element
are needed to translate the input transition signalling into the correct form for controlling
the level-sensitive enable of the transparent latches. The latches have active Low enables,
i.e. they are transparent when enable is Low. Initially C, P, Cd andPd are all Low, meaning
both latches are transparent.

When a capture event occurs onC, this passes through theXOR and forms a Low to High
transition on the enable of the latches, thus causing them to close. The same enable signal is
sensed by theTOGGLE to indicate that the latches have closed and a subsequentCd event
is generated on theDot output. TheTOGGLE is connected to the same wire as the latch
enables so that if the number of data bits is large and the enable signal has slow edges
(caused by the large capacitive load) then theTOGGLE element also sees the slow edge
and automatically compensates for it by waiting before switching until the enable signal has
reached the threshold level (irrespective of the time taken to reach it).

When the stage is to return to a transparent state an event arrives onP causing a High to
Low transition on the latch enable, causing the latches to open. This is again monitored by

Figure 3-20: Cell silicon area comparison
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the TOGGLE and an event is generated on theBlank output (Pd) to indicate when the
latches are open.

At a higher level, theXOR can be viewed as merging the Capture (C) and Pass (P) event
streams and theTOGGLE as separating them again into Capture done (Cd) and Pass done
(Pd); together they form a two- to four-phase interface.

Two practical implementations of Micropipeline stages will be described and used as the
basis of a comparison between the relative costs and performances of the two styles.

3.4.1  The T-Latch Micropipeline

The T-Latch design described earlier (see figure 3-9) is used in the control circuits and
contains reset logic. This facility is redundant for datapath latches because they are forced
transparent during initialisation. It is also possible to simplify the design by using a
transmission gate as shown in figure 3-22. These latches are used for data storing of a
bundle so any transistor saving per latch is multiplied by the number of bits in the bundle.

Figure 3-21: Simple transparent latch Micropipeline stage

TOGGLE

En

TL
In Out

C

Cd

P

Pd

Out[0]

Out[1]

In[0]

In[1]
En

TL
In Out

Figure 3-22: Simple transmission gate latch

OutIn

wk

En

nEn



48

The transmission gate on the input of the latches requires both the true and complement of
the enable signal (En & nEn) to operate. Instead of providing the circuitry to generate the
complement locally in each bit, the complement is generated by the control circuit and
supplied to all the latches. This further reduces the transistor cost per bit.

In the simple circuit shown in figure 3-21, theTOGGLE is used to sense the level of the
latch enable to compensate for enable line loading. A consequence of using a transmission
gate latch is that there are now two enable signals (En & nEn) both of which must be sensed
to ensure they have made the required transitions. This can be achieved by causing the two
enable signals to rendezvous at aC-Gate before propagating to theTOGGLE.

Figure 3-23 shows the detailed control logic required to implement a Micropipeline based
on transparent latches. TheT-Latches (not shown) are connected to theEn andnEn signals.
The figure shows the buffers to drive true and complement enable lines and theC-Gate to
synchronize the two enable lines.The small subscript on each buffer inverter indicates the
drive strength as a multiple of single inverter capability. The control circuit shown was
designed to drive a 32-bit data bundle.

The overall operation begins when anRin event arrives at the inputC-Gate. If the latch is
already transparent (indicated by the value fed back from theTOGGLE Blank output) then
the event propagates through theC-Gate andXOR and causes the latch to close. When
both the true and complement enables have made a transition to the closed value the second
C-Gate detects this and an event is forwarded to theTOGGLE. The Dot output of the
TOGGLE indicates that the latch is now safely closed and this can be used to signal to the
previous stage that the input value is no longer needed (Ain). It also forms the request to the
next stage (Rout) to indicate that the data is now ready for further processing.

The stage is emptied when a returning acknowledge event (Aout) arrives via theXOR and
opens the latches. This is detected by theC-Gate andTOGGLE and the resulting event on
theBlank output of theTOGGLE is used to prime the inputC-Gate ready for the nextRin.
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3.4.2  The Capture-Pass Micropipeline

Figure 3-24 shows an implementation of the control structure required for aCapture-Pass
style Micropipeline. The “capture” and “pass” control wires of the data latch (see figure 3-
18) would be connected to (C & nC) and (P & nP) respectively.

The operation begins with an input request (Rin) which can propagate through the inputC-
Gate when the data latch is empty. The signal is then buffered to drive the true and
complement of the data latch capture control wires. To ensure the true and complement of
the capture signal have made their transition, they are forced to rendezvous at the secondC-
Gate before an input acknowledge (Ain) and an output request (Rout) are generated.

The data latches remain closed until an acknowledge (Aout) is received from the next stage
in the Micropipeline. This signal is buffered and used to operate the pass signals of the data
latches and causes them to return to transparent. Again both control wires are synchronised
with a C-Gate before the input rendezvous is primed ready to accept the nextRin.

3.4.3  Capture-Pass versus transparent latch area considerations

Figure 3-25 shows the silicon implementation of an 8-bit, 3 stage Micropipeline and the
corresponding control for bothT-Latch and Capture-Pass styles. The control is
automatically compiled standard-cells and the data part is hand composed custom layout.

TheCapture-Pass latches shown are a silicon implementation of figure 3-18. Their size is
slightly more than double that of aT-Latch. However, the Capture-Pass latch has not been
as highly optimized as theT-Latch so a size ratio of 2:1 is a fairer estimate of the relative
area cost of aCapture-Pass latch compared with a T-Latch.
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Figure 3-24: Capture-Pass Micropipeline control



50

By measuring the area of the control structures and using a 2:1 size ratio on the data part it
is possible to work out which style is more area efficient for 8-bit data bundles (if T-Latch
is area D thenCapture-Pass is area 2xD).

Table 1:

T-Latch Area Capture-Pass Area

TControl + Data CControl + 2 x Data

164352 + 77875λ2 119616 + 155750λ2

242227λ2 275366λ2

Figure 3-25: Relative size of Capture-Pass v T-Latch Micropipeline

T-Latch Control Capture-Pass Control

T-Latch Data Latches

Capture-Pass Data Latches
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whereTControl andCControl are the areas of the control logic for the two
Micropipeline stages andData the area per data bit.

Note: for the VLSI CMN12 processλ=0.6 Microns

This shows thatT-Latches are more area efficient for this 8-bit example.

It is clear from figure 3-25 that the control overhead is smaller for theCapture-Pass
implementation and this is reinforced by the figures given in the calculation shown above. It
can therefore be expected that theCapture-Pass style will become more efficient as the
size of the data bundle decreases. The cross-over point forCapture-Pass becoming more
efficient can be calculated as follows:

where N is the number of bits andDatabit the area cost per data bit.

This demonstrates thatCapture-Pass latches are more area efficient for smaller data
bundles (N < 5) andT-Latches are more area efficient for large bundles. The target
application contains mainly 32-bit data bundles, in this case theT-Latch implementation is
36% smaller than the Capture-Pass latch. As the data width increases the size of the data
part becomes the dominant factor of the area with the control becoming negligible.
Therefore in the limit, as data width increases, theT-Latches would be approximately 50%
smaller than the correspondingCapture-Pass implementation as this reflects the relative
sizes of the two data latch styles.

3.4.4  Micropipeline stage performance

The performance of a Micropipeline can be considered in two ways. The first is the time
taken to propagate through the stages, this is referred to as thelatency. In figure 3-23 this
would be the time fromRin to Rout. The second performance factor is how soon the stages
can accept the next value, referred to as thecycle-time. The number of items that can be
processed in a unit time is known as thethroughput or bandwidth.

Using the figures in appendix A and the SPICE characteristics of the ARM Ltd. standard
cells [ARM91a], the latency of a 32-bitT-Latch Micropipeline (i.e. the time fromRin to
Rout) can be calculated.

The time from Rin to Rout can be broken down as follows:

C-Gate + XOR + Buffers + C-Gate + TOGGLE

2.16 + 0.97 + 4.3 + 2.16 + 2.70= 12.29 nS

Table 2:

T-Latch Area > Capture-Pass Area

TControl + N x Databit > CControl + N x 2 x Databit

> N

4.5 > N

TControl CControl−
Databit
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A similar analysis of aCapture-Pass style Micropipeline would give:

C-Gate + Buffers + C-Gate

2.16 + 5.13 + 2.16 = 9.45 nS

The extra delay for the buffer circuit in the latter is attributed to the extra capacitive load on
theCapture-Pass lines (twice that of a simpleT-Latch).

The minimum cycle time is achieved by directly connectingRout to a similar Micropipeline
stagewithout intervening logic.The delay before the next value can be processed in theT-
Latch design is when theTOGGLE signals back to the inputC-Gate that the latches are
now open i.e after:

Rin->Rout + Rout->Aout+ XOR + Buffers + C-Gate + TOGGLE

12.29 + 12.29 + 0.97 + 4.3 + 2.16+ 2.70 = 34.71 nS

Again doing a similar calculation forCapture-Pass style stages the cycle time is:

Rin->Rout + Rout->Aout+ Buffers + C-Gate

9.45 + 9.45 + 5.13 + 2.16 = 26.19 nS

From these figures it can be observed that the latency of aCapture-Pass stage is 23% less
than the T-Latch stage and also the cycle time is approximately 25% less.

Taking these figures at face value indicates a 25% performance gain by using theCapture-
Pass latches; however a fairer comparison can be made by including other design issues in
the calculation.

The increased time taken forRin to Rout in theT-Latch Micropipeline can be viewed as an
increased “delay” before theRout reaches the next stage. This corresponds well with
Sutherland’s model of a “delay element” as shown in figure 3-5. This extra delay fromRin
to the latches closing increases the bundled-data delay margin of the data at theT-Latches,
and the delay from the latch closing to the request out (Rout) (and acknowledge back (Ain))
ensures theT-Latch hold time is met and this also increases the bundled-data delay margin
of theRin to data in the following stage.

If the simple Micropipeline is extended, so that processing logic is interspersed between the
stages then the extra margin of theT-Latch can be used to contribute to the matched delay
required for logic. Therefore the delay in the control of the latches can be hidden to some
extent by the processing logic.

It is possible to improve the latency of theT-Latch style design by forwarding the request
to the next stage earlier. To avoid metastability problems the data must be stable at the
output of the data latches before they are closed. Therefore the signal that closes the latches
may be used to form an early request out (Rout) without waiting for the latches to close. The
input cannot be acknowledged until the latches are closed soAin is connected as before.
Figure 3-26 shows the control circuitry with the “fast-forward” connection. The overall
operation is the same as before except thatRout is derived from a different point in the
circuit.

The latency of the circuit is substantially reduced to approximately 2.5 nS (i.e 1C-Gate
with increased capacitive load) and the cycle time is also reduced because theRout->Aout
part of the cycle begins earlier. The bundled-data delay safety margin is reduced so care
must be taken when using this control circuit.
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Another constraint on the use of this type of control structure is that the acknowledge out
(Aout) must not arrive back before the stage has finished closing and issued the appropriate
Ain signal. It is usually quite simple to ensure this in the environment. For example,
connecting this to another micropipeline stage should ensure that there is sufficient safety
margin on the acknowledge back signal (Aout).

3.4.5  Power considerations

For small data bundles the power consumed is dominated by the complexity of the control
logic. The Capture-Pass with the simpler control will therefore be more efficient.
However, the power consumed by large data bundle stages is dominated by the energy
required to switch the heavily loaded data latch enable lines.

In theT-Latch based design the enable lines are switched twice per cycle, once for closing
the data latches and one again for opening them. In theCapture-Pass design, theCapture
lines are switched once to capture the data and thePass lines are also switched only once to
enable the latches to become transparent again. For theCapture-Pass this gives a total of
two transitions on heavily loaded lines. Both design styles therefore switch a heavily loaded
line (and its complement) twice per cycle.

By examining the load per data bit, it can be noted that theT-Latch has one transmission
gate load whereas theCapture-Pass has two transmission gate loads per bit (for both
Capture andPass control wires). If the transmission gates in both styles are a similar size
then the capacitive load on theCapture/Pass control wires will be twice that of theT-Latch
enable wires.

The energy (E) required to switch a node is given by  whereC is the capacitance of
the node andV is the voltage swing the node is switched through [Mead80, chapter 9]. As
theCapture-Pass capacitive load is twice that of theT-Latch, the energy required to switch
the former is twice that of the latter. This indicates that theT-Latch is more power efficient
for larger data bundles.

When closed, theT-Latch does not respond to fluctuations on the input, so no internal
power is dissipated as a result of these transitions. However, when aCapture-Pass is in the
“captured” state, the input is connected to the opposite branch, so any changes on the input
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cause internal transitions on the branch connected to it. This in turn causes power to be
dissipated. Therefore theT-Latch is more power efficient, when closed, than aCapture-
Pass.

Another interesting issue regarding power consumption stems from the fact that
Micropipelines are defined to be transparent when empty. By examining a pipeline that has
a fork, such as the one shown in figure 3-27, a technique for reducing the power
consumption can be demonstrated. Here when both branches are empty they are
transparent, so any transitions on the input (MemIn) will propagate through both branches
of the fork and on towards any processing logic. Although the logic may not be activated for
evaluation purposes any transitions cause power to be dissipated in both branches. If most
of the incoming data (MemIn) is intended for one of the forks, for example the instruction
pipeline (IPipe), then all instructions destined for theIPipe will also cause transitions in the
data pipeline (DPipe) thus wasting power. If the top stage of theDPipe is constructed such
that it is opaque when not in use, this would prevent any unwanted transitions dissipating
power in theDPipe. When data has to enter theDPipe, the blocking stage is opened to
allow the data in and then closed again to latch the data safely in the top of the pipeline.

It is possible to reconfigure theT-Latch Micropipeline control so that it is a normally
blocking stage. This is shown in figure 3-28. The incoming request (Rin) propagates
through theC-Gate andXOR in a similar fashion to the standardT-Latch. The latches are
then forced open to allow the data in. The opening is detected by the secondC-Gate and the
TOGGLE. TheDot output of theTOGGLE is fed back to theXOR to close the latches
again. Once the latches are closed this is again detected and the event from theBlank output
of theTOGGLE is used as theRout andAin. The nextRin can be processed as soon as an
Aout is received from the successor stage.

The penalty for using a blocking latch control is that the forward latency is approximately
double a standardT-Latch design (the blocking latch must be first opened and then closed).
The forward latency can be improved by connectingRout to the Dot output of the
TOGGLE (as theDot output indicates the latch is open). This type of optimization can be
justified by similar arguments and constraints as used for the fast-forward latch control.

3.4.6  Choosing an implementation

The most effective style and configuration of Micropipeline implementation is dependent
on the intended application. AMULET1 contains a large number of 32-bit Micropipeline

Figure 3-27: Micropipeline fork
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stages, so it was felt that the area penalty of using a Capture-Pass would be too great. A
retrospective investigation [Pave92b] revealed that the data processing part would have
been 25% bigger hadCapture-Pass latches been used.

The exact consequences of using the lower performanceT-Latch based design is not yet
known. It is likely that this may prove to be one of the performance limiting factors of the
whole design. It is for this reason further work is being undertaken to investigate whether it
is possible to combine the area efficiency of theT-Latch design with the simpler, high
performance control of theCapture-Pass design style.
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Chapter 4 : The asynchronous ARM
To investigate the suitability of the Micropipeline methodology for the design of complex
systems, an asynchronous implementation of the ARM processor was developed. The
asynchronous ARM (AMULET1) is object code compatible with the 32-bit ARM6 and
addresses several difficult areas.

4.0.1  The ARM processor

The ARM processor employs a simple and efficient RISC architecture. It was originally
designed at Acorn Computers, Cambridge, England in 1983-84. Its main features are:

• A small and simple design with fewer than 35,000 transistors.
• A RISC load/store architecture, with support for efficient

block data transfers.
• All instructions can be conditionally executed.
• Low cost because of its small size.
• Very low power, again because of its simplicity and small

size. (One of the marketing metrics used by ARM Ltd. is that
it delivers 100 MIPS/Watt).

The motivation behind the original design and a detailed description of the architecture are
described elsewhere [Furb89, VLSI90], a brief overview of the processor is presented in
appendix B.

4.0.2  Implementation challenges

The asynchronous implementation was required to be code compatible with the 32-bit
ARM6 and therefore had to address the following difficult areas:

1. Interrupts - The ARM supports two levels of interrupts known as IRQ
(Interrupt ReQuest) and FIQ (Fast Interrupt reQuest). Both use level
sensitive input signals; FIQ has higher priority.

2. Exact exceptions - The ARM processor supports virtual memory (VM)
systems and is therefore able to handle data aborts, for example, caused
by a page fault in a VM system.

3. Block data transfer - The ARM can load or save multiple registers from
the current working set with one instruction. This requires support for
multi-cycle instructions.

4. Conditional instructions - Every ARM instruction is conditionally exe-
cuted depending on the state of the processor status flags.
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The above list presents some of the more challenging features, each of which on its own is
non-trivial; handling all of them together can become very complex. For example, a data
abort can occur in the middle of a load multiple operation where half the registers have
already been reloaded before the exception is raised. The load multiple instruction must be
re-started after the cause of the exception has been removed. This is particularly difficult
when the base register (which specified the memory address used in the transfer) has itself
already been overwritten (e.g. in a context restore) before the exception was flagged.

4.0.3  Differences from the ARM6

The asynchronous organization of AMULET1 differs from the ARM6 in the depth of
pipelining employed. The ARM6 has a three stage pipeline (see appendix B): fetch, decode
and execute, whereas AMULET1 employs a much greater depth of pipelining. In particular,
the execute phase of AMULET1 is sub-partitioned into a further three pipeline stages
(register read, shift/multiply and ALU). The exact detail of the pipeline structure is
discussed later.

A small number of architectural features were not implemented or do not conform exactly
to the ARM6 specification due to the limited resources and time available. The features not
implemented include:

• Co-processor instructions.
• The ARM6 26-bit compatibility mode which allows the

ARM6 to behave as if it was a 26-bit ARM2.
• The multiply-with-accumulate instructionMLA (although

multiply without accumulate is implemented).

All the co-processor instructions take the undefined instruction trap and their functionality
is emulated in software by the trap handler (the first synchronous ARM also used this
approach).

There are several obscure corners of the instruction set where the asynchronous
implementation deviates from the specification because the particular “features” were
defined as an artifact of the synchronous implementation and have little or no practical use.

4.0.4  Processor interface

The asynchronous implementation of the ARM employs an asynchronous Micropipeline
interface to the environment. Figure 4-1 shows how a system containing an asynchronous
ARM is configured. It is assumed that the input/output forms part of the memory system.
The memory management unit (MMU) and the memory have not been implemented as
VLSI circuits at this stage and are beyond the scope of this thesis. The asynchronous
interface of AMULET1 has the following signals:-

• The output bundle which contains a memory address, control
information and write data, if a write operation is being per-
formed.

• The input bundle which returns read data requested from
memory back to the processor.

• The interrupt requests, memory abort response and processor
reset.
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The control information in the output bundle consists of a number of bits which include
read enable, write enable, a bit to indicate whether an instruction or data is being fetched
(opcode flag), a privilege mode bit so that memory protection can be implemented and 2
bits indicating whether sequential address behaviour is likely (and hence whether the
memory access can use the faster page mode of DRAM and some cache memories).

The processor design makes no assumption about the memory hierarchy employed. The
only constraint that must be enforced is the sequential ordering of memory accesses so that
data returns to the processor in the requested order. The time taken for a memory access is
not critical for correct operation, if the Micropipeline protocol is obeyed. For example, a
system with a cache memory would exhibit a fast response for a cache hit and a much
slower response for a miss. However, cache hits must not be allowed to overtake cache
misses or the sequential ordering constraint would be violated.

The ARM6 architecture requires support for virtual memory. The method used to handle
page faults is that of an exact exception. For every data access, the state of the processor is
preserved until it is known that the access will be successful. For each data access, the
MMU produces a fault/no fault response that signals back to the processor either to cause
instruction processing to resume (if there was no fault), or to enter the exception handling
software, (if there was a fault). The response time of the MMU determines how soon the
processor can resume executing instructions, so a fast response time is required for
optimum processor performance. The response from the MMU is signalled back to the
processor in a dual-rail encoded format.

Aborted instruction-prefetch accesses need not signal back to the processor in the same
way, as they do not affect the current state of the processor. The non-valid instruction data
can be tagged as invalid when read into the processor. The exception handler is then called
when the instruction reaches the primary decode.

AMULET1 also supports the two level-sensitive interrupts of the ARM6 so that it can be
used with conventional peripheral chips. The level sensitive model of interrupts gives the

Figure 4-1: The processor interface
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processor no information regarding the time taken for the peripheral to release the interrupt
line, so care must be taken in the exception handling routines to ensure that the same
interrupt does not cause multiple exceptions.

The final input to AMULET1 is the initialisation pin. This is used to reset the state of the
processor; its release causes the processor to begin issuing sequential instruction addresses
to the memory starting from address zero.

4.1 Processor organization

The internal organization of AMULET1 is shown in figure 4-2. This shows the four main
areas of the processor and how they are interconnected. A brief description of each of the
areas is presented in this section; more detail is provided later in the thesis.

4.1.1  Address interface

The main function of the address interface is to issue instruction prefetch requests to
maintain a steady flow of instructions into the processor. The address interface can
autonomously issue sequential instruction addresses with the aid of an internal incrementer.

Data transfer operations use the address interface to generate the data transfer address and
the multiple data transfer instructions also use the incrementer in the address interface to
generate the sequential data addresses required.

The address interface supplies a PC value to the instruction currently being executed to be
used as an operand (via thePC Pipe). This is needed because the program counter forms the
‘general purpose’ registerR15 in the ARM architecture. The address interface is described
in more detail in chapter 6.

4.1.2  The register bank

The register bank contains 30 general purpose registers, sixteen of which are accessible at
any one time. It also provides storage for the 5 Saved Processor Status Registers (SPSRs) as
specified in the ARM architecture definition. To access the contents of the register bank,
two read ports are connected to theA andB operand buses; a single write port is provided
for modifying the contents. Internally the register bank has mechanisms for supporting
multiple outstanding write operations and managing inter-instruction dependencies. The
detail of these mechanisms is described in chapter 5.

4.1.3  The execution unit

The execution unit is the computational core of the processor. The data read from the
register bank can be multiplied using an autonomous 3-bits-at-a-time carry-save-adder
multiplier. If multiplication is not required then this logic is simply bypassed. The ARM
architecture specifies that one of the register operands can optionally be shifted for certain
classes of instruction. To support this, a barrel shifter is attached to theB operand bus and its
output fed to the ALU. The ALU performs all other logic functions and contains a simple
ripple-carry adder with data dependent completion signalling. The output of the ALU can
be transferred onto the write bus to route results back to the register bank. The write bus is
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Figure 4-2: Processor organization
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shared with the data interface which uses it for incoming data from memory; control of the
bus thus requires arbitration (data arrives asynchronously to the ALU result). The execution
unit is described in more detail in chapter 7.

4.1.4  The data interface

The data interface manages the flow of data between the processor and the memory
subsystem. For write operations it provides a FIFO for storing data waiting to be written to
memory (data out) and has the capability to replicate the least significant byte into all byte
positions across the word (for byte write operations).

Incoming values can be either new instructions for decoding or data destined for the register
bank. Instructions are stored in a FIFO prior to execution (Ipipe). If the instruction specifies
that an immediate value is required then a copy of the instruction is passed to dedicated
hardware (imm. ext.) which extracts the immediate value from the instruction word.

Data destined for the register bank passes through thedata in section. This can rotate the
incoming data word by byte quantities. Data loads from non-word aligned addresses are
performed by loading from the word boundary and then rotating the data word until the
addressed byte is in the least significant byte position.Data in also contains logic to enable
the processor to operate in “little-endian” or “big-endian” modes.

4.2  Pipeline organization and control

Figure 4-3 shows how the processor is divided into pipeline stages; each grey box
represents a pipeline latch. The execution phase is partitioned into three stages: register
bank, shift/multiply and the ALU. Each data processing stage has a corresponding decode
and control stage.

During instruction execution primary decode performs the complete decoding for the
register bank and the initial decoding for execution stages 2 and 3. Once the primary decode
is complete, the control information is latched along with the corresponding value of the
PC. While the operands are being read out of the register bank the secondary decoders for
stages 2 and 3 decode the instruction further.

Although the control and data latches are drawn in alignment, the control and datapath only
synchronize when they reach their destination stage. Decode 2 only synchronizes with the
data when it reaches the shifter/multiplier and decode 3 only synchronizes when it reaches
the ALU.

The extra pipeline latch after the ALU is provided to allow the Current Processor Status
Register (CPSR) to be accessed; it also decouples the ALU from the result writeback phase.

4.2.1  Dynamic pipeline structure

To reduce their sizes and transistor counts, the register bank, multiplier, shifter and ALU all
use dynamic structures. Each stage employs dynamic logic with an output latch for storing
the result. The output latch of one stage is the input latch of the next (see figure 4-4(a)). This
is similar to the canonical Micropipeline with processing shown in figure 3-6, except that
the dynamic logic imposes an additional constraint: the output latch must be empty before
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Figure 4-3: Pipeline organization and control
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the evaluation of the logic begins to ensure the result can be latched before leakage renders
it invalid.

When any stage is active it needs both to be able to write into the output latch and also to
ensure that the input does not change until the computation is complete, therefore both
latches are involved in the activation of the stage. At any instant this means that only
alternate stages may be active. (Note, if no results are removed from the bottom stage, the
pipeline will backlog with each stage storing its result value in its output latch; in this state
the pipeline is fully occupied)

Having only half the pipeline stages active at any one time seems to incur a performance
loss; however, the dynamic stages require a precharge phase, so while one stage is active the
adjacent stages can precharge (figure 4-4(b)). If an extra latch were provided to decouple
the two stages, the pipeline could be fully active because the input and output latches need
no longer be shared. However, data flow from one stage to the next would still have to wait
for the next stage to precharge. This, along with the extra pipeline latch, would increase the
latency through the pipeline.

The dynamic shared latch pipeline with only alternate stages active can be used to
advantage in the ALU and shifter. The shifter needs the current carry flag (for rotate with
carry) which can be changed by the ALU, but because the shifter and ALU are adjacent
stages only one of them can be active at any time. While the ALU is executing and possibly
calculating the new flag values, the shifter is in precharge. When the ALU is complete and
the flags are valid, the ALU input latch is released and the ALU enters precharge. This
allows the shifter to begin execution. The flags are now valid and cannot be changed by the
ALU, so they can be used directly by the shifter without the need for complex
synchronization between the ALU and the shifter.

4.3 Instruction mapping

The mapping of the ARM instruction set onto the asynchronous organization can be
described by examining the datapath activity of each class of instructions.

Figure 4-4: Dynamic pipeline structure
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4.3.1  Data operation

The simplest class of ARM instruction is the data processing operations. These can take two
operands, perform one of sixteen operations and then write the result to a register.

Figure 4-5(a) shows the datapath activity for a data operation that uses two register
operands. Here the two operands are read from the register bank onto theA andB operand
buses (see figure 4-2 for bus naming convention). The multiplier is configured so that the
operands bypass the multiplier logic without activating it. The ARM architecture specifies
that one of the operands can be shifted by an arbitrary amount so theB bus is passed
through a barrel shifter to perform this operation (the type of shift performed is specified in
the instruction). The two operands then enter the ALU where they are combined according
to the data operation instruction being executed. The ALU then takes control of the write
bus and sends the result back to the register bank (unless the destination is the program
counter1 - R15).

If the destination isR15, the result is steered to the address interface instead of the register
bank and the operation is similar to that of a branch (described in the next section).

If one of the operands isR15 then the bottom entry from thePC pipe is multiplexed onto the
required operand buses. The correct value of the PC is supplied before instruction execution
begins, therefore no lock mechanism is needed to prevent register hazards (see section

1. The program counter can be accessed as a general purpose register (R15) in the ARM architecture.
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5.1.2). Any change of instruction flow (and hence PC availability) is managed at a higher
level of control.

When only one register is required, the other operand defaults to the PC because this will
not stall waiting for data to return to the register bank. The PC value is then discarded. It
would have been more power efficient to read just one register, but this would have required
extra bypass logic to implement whereas the solution adopted requires no additional
circuitry.

When one of the operands is an immediate value, as shown in figure 4-5(b), then only one
register is read from the register bank. The other operand is an 8-bit unsigned value
extracted from the instruction word and then multiplexed onto the input of the shifter. Apart
from the source of the operands, the overall operation is as described previously.

4.3.2  Branch operation

In the ARM architecture, the branch (B) is a PC relative jump. The instruction word
contains a 24-bit immediate offset which is word aligned, sign extended and added to the
current PC value to achieve the branch target address. The ARM also specifies a subroutine
call instruction, branch and link (BL), which is similar to the branch but the address of the
next instruction is saved in registerR14 to facilitate the subroutine return.

Figure 4-6(a) shows the branch operation and the first cycle of a branch and link. Here the
PC value is read from the register bank onto the A operand bus. The offset is extracted from
the instruction word and sign extended to 32-bits. This value is then fed into the shifter
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where a left shift of 2 is applied to word-align the value before it is added to the current PC
value in the ALU. The ALU takes control of the write bus and passes the target address to
the address interface. Here the target address enters into the prefetch loop and replaces the
original prefetch address (see chapter 6 for further details). Prefetching (not shown on the
diagrams) then resumes from the branch target. As a number of instructions may already
have been prefetched, these must be thrown away before instructions from the new stream
arrive. This is achieved by the instructioncolour mechanism described in section 4.4.3.

A branch operation is concluded after the above cycle; branch with link however requires
an extra cycle to save the return address (i.e. the address of the next instruction). The PC
value delivered whenR15 is accessed is PC+8 (see section 4.4.1). The address of the next
instruction is PC+4, so the value ofR15 read from the register bank is decremented by 4
before it is written into the link register (R14), figure 4-6(b) shows the detailed operation of
this. TheR15 value is read from the register bank on theB bus and passed through the
multiplier and shifter unchanged. Four is subtracted by forcing the bottom two bits of theA
operand bus High (three in binary) and then performing a subtract with borrow, hence
achieving B-A-1 or (PC+8)-3-1= PC+4. The PC+4 value is written back to the register bank
via the write bus in a similar fashion to data processing operations.

4.3.3  Multiply operation

The multiplier in AMULET1 uses a shift-and-add technique with carry-save adders (see
section 7.1). The multiplier accepts two input operands from the register bank and internally
performs the multiplication of the two. When the operation is complete the partial sum and
partial carry are placed on the two output buses. These are then added together in the ALU
to form the result. This result is written back to the destination register. The datapath
activity is shown in figure 4-7.

4.3.4  Load data operation

The data transfer instructions in the ARM allow the programmer to specify a variety of
auto-indexing options including pre-/post-index and increment/decrement of an offset from
the base address. The operation can be split into two phases; the address calculation and the
data transfer. The address calculation will be described first.

Figure 4-8(a) shows a post-index load with a register offset and writeback (in fact, post-
index is defined always to write back). Here, the address from which the data is loaded is
the value contained in the base register before it is modified. To perform the load, the base
register (Rn) is sent via a special route directly to the address interface where it interrupts
the instruction prefetching to issue the data load address, at the same time the base register
is forwarded to the ALU, ready for the base update calculation. The offset register read onto
theB bus can optionally be shifted before being added to or subtracted from the base in the
ALU. The load cycle completes with the modified base value being written back to the
register bank.

Figure 4-8(b) shows a pre-index load with register offset and writeback specified. The pre-
index designation indicates that the base is modified before being used as the data load
address, so the writeback value is the same as the load address. The operation begins with
the reading of base and offset from the register bank which are forwarded to the ALU after
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optional shifting of the offset. The base modification calculation is performed and the result
transferred to the register bank (if writeback is specified) and to the address interface to be
used as the load address.

The ARM architecture specifies that an immediate value can be used as an offset. The
datapath activity of the immediate value (not shown) is similar to that shown in data
operations except that the offset this time is 12 bits rather than 8 and no shift can be applied
to the immediate value.

In the ARM, non-word aligned byte loads are implemented by retrieving the data word from
the word boundary and then rotating the value obtained so that the addressed byte is in the
least significant byte position of the word. In the ARM6, the rotation is performed in the
barrel shifter as the data passes through on its way to the register bank. In AMULET1
instructions which do not depend on the loaded data can continue to be processed while the
data is being loaded (see section 5.4.1). This means that the barrel shifter could be busy and
unavailable to rotate the incoming data, hardware is therefore provided in the data interface
to perform the required byte rotation.

The arrival of data is completely asynchronous to the internal operation of the processor, so
when data in wishes to use the write bus to transfer data to the register bank, it must
arbitrate with the ALU for control of the bus. If data is destined for any register, other than
R15, it is routed to the register bank (as shown in Figure 4-8(c)). If the destination isR15
then the loaded data is passed straight to the address interface to be used as the new PC
value (as shown in Figure 4-8(d)).
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4.3.5  Store data operation

The store data operation has the same auto index options as the load instruction class. The
single cycle immediate offset store will be described first and then the more complex two
cycle register offset case will be analysed.

With an immediate offset, only 1 register (Rn) is needed from the register bank for the base
address calculation. This allows the other register bank read port to be used to transfer the
store data to the data interface (data out). The calculation of the address for store with
immediate offset is similar to the address calculation described for load operation. Post
index store (figure 4-9(a)) uses the direct connection from the register bank to the address
interface and pre-index store (figure 4-9(b)) writes the same data to the register bank and
the address interface. If store byte is specified, then the least significant byte of the word is
replicated indata out so it appears at each byte position. The store data then synchronizes
with the store address before being despatched to memory for the operation to be
completed.

A store data instruction with register offset has a fundamental problem which prevents
single cycle operation; three register operands are required but the register bank only has 2
read ports. The three register operands are base, offset and store data. An extra read port
could have been added to the register file to make single cycle operation possible but as the
store with register offset operation accounts for only 1% of all instructions [Furb89, page
278] the improvement in overall performance would be small. The solution adopted is to
perform the base calculation in the first cycle (figure 4-9(c)) and access the data to be stored
in the second cycle (figure 4-9(d)).

The cost of the second cycle is hidden to some extent by the depth of pipelining in the
execution unit. The store data can be read out of the register bank at the same time as the
address calculation is being performed in the ALU. The data route is a simple FIFO (with
optional byte replication) so the data propagates quickly and should therefore be available
by the time the address is ready to be sent to memory.

4.3.6  Block transfer operation

The block transfer instructions are by far the most complex instructions to implement. The
instructions allow any subset of the sixteen available registers to be loaded or stored and the
base register to be auto-indexed. The instruction has options allowing different
modifications to the base thus supporting various stack paradigms (e.g. empty/full,
ascending/descending stacks). The detailed operation of these options is complex and is
described elsewhere [ARM91b].

The first cycle of a block transfer instruction calculates the transfer start address. The
calculation is performed by reading the base address from the register bank and adding an
offset in the ALU (as shown in figure 4-10(a)). The offset is introduced onto the A operand
bus using a similar mechanism to that described for branch operations. The value of the
offset depends whether a load or store operation is being performed and the stacking
paradigm selected. For example, an STM will have an offset of 3 for a full ascending stack
(add),Cnt +3 for a full descending stack (subtract),Cnt for an empty descending stack, or 0
for a empty ascending stack (whereCnt is the number of registers being transferred).
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Once the address calculation is complete it is forwarded to the address interface where it
waits for synchronisation with the primary decode.

The second cycle of the block transfer calculates the value the base register should have
after the instruction has completed (i.e. the modified stack pointer). The cycle takes the base
out of the register bank and forwards it to the ALU as in the first cycle. The offset
introduced this time on theA bus is justCnt, the number of registers to be transferred. This
is either added or subtracted depending on whether data is being loaded or stored and
whether the stack is ascending or descending. The base is then written back to the register
bank. For a load instruction, the base value is held in the output latch of the ALU (old) in
case it is needed for data abort recovery (described below).

The third cycle of a block transfer stalls until it is known that the instruction is definitely
going to be executed i.e. it has passed both its conditional and colour tests. This is done
because it is very difficult to cancel the data transfers once they have started (data would
have to be retrieved from thedata out pipeline etc.)

To achieve this interlock, the first cycle signals back to the primary decode to indicate
whether the instruction will execute. At the end of the second cycle this signal is checked to
determine whether the third cycle can begin or must be discarded.

The interlock mechanism could have been placed on the second cycle instead, but this
would have caused the execute pipeline to be starved of instructions while the second cycle
waited for an acknowledgement from the ALU. By waiting on the third cycle, the second
cycle can still proceed and progress down the execute pipe immediately after the first cycle.
The cost of the interlock is therefore hidden to some extent because the processor is still
executing a part of the instruction. The disadvantage of this approach is that if the
instruction does fail its condition test then two cycles have been executed, rather than just
one if the more conservative approach had been adopted.

The third phase of a block transfers is the data transfer phase, here the number of cycles is
directly related to the number of registers being transferred (one cycle for each register).
Figure 4-10(c) shows the data transfer for both load and store multiple instructions. For
each register in the data transfer, the primary decode signals to the address interface to
generate the memory address of the register being transferred. The next address is generated
with the aid of the incrementer in the address interface (the incrementing mechanism is
described in more detail in chapter 6). The primary decode generates the address of the
register to be transferred.

For store data transfers, the data exits the register bank on theB bus and is diverted into the
data out pipe in the direction of the data interface. The instruction does not activate any
further elements on the execution datapath. When the data reaches the data write register it
synchronizes with the address generated by the address interface and is dispatched to
memory.

For a load instruction, the transfers just involve locking destination registers and signalling
to the address interface to generate the load address. The returning data enters the processor
in a similar manner to the standard load data instruction.

For both load and store transfers, the signal to the address interface also indicates whether
the current transfer is the last. If it is the final transfer then the address is discarded after use
as the data address (rather than being incremented ready for the next transfer).
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For load instructions, the signal between primary decode and the address interface also
notifies if this transfer is to the program counter (R15). This primes the address interface to
discard the current prefetch address (after the block transfer is complete) and also forces it
to wait for the new program counter, arriving via thedata in port.

For the store multiple instruction, the transfer is complete after the third phase; however, for
load instructions there is another cycle. This final phase (figure 4-10(d)) performs one of
two possible functions. The load multiple instruction allows the programmer to specify that
R15 is reloaded with the Current Processor Status Register (CPSR) restored at the same
time. The final cycle copies the SPSR to the CPSR in this case. The other possible operation
in the final phase is recovery of the base after a data abort. It is possible that the base may
have been reloaded before an abort was raised. To restart the instruction, the original base
register is needed (although the written back value is sufficient). This is preserved on the
output of the ALU in the second cycle (shown as old). Therefore, to restore the base, a
dummy read from the register bank is sent to the ALU. The ALU ignores its inputs and
sends the previously preserved value (old) of the base register back to the register bank. It is
theoretically possible for this preserved base to arrive back at the register bank before the
data for the same register arrives back from memory so the situation can arise that although
the base is restored it is still overwritten by the loaded data. To ensure that this cannot
happen, the dummy read actually reads the base register, so that if the data destined for the
base from memory has not yet returned, it stalls. The read only proceeds when the loaded
data is safely in the register, so the base restore can now proceed without fear of being
corrupted.

4.3.7  Exception entry operation

Once an exception has been detected by the primary decode, the entry mechanism is the
same for all exceptions. The first cycle shown in figure 4-11(a) sends the exception vector
address to memory. This is done by performing dummy reads from the register bank and
then introducing the exception vector onto theA operand bus. This vector is passed straight
through the ALU and sent to the address interface to become the new program counter. The
second cycle (figure 4-11(b)) preserves the current processor status register (CPSR) by
copying it from the ALU into the SPSR of the exception mode the processor is entering.
The final cycle (figure 4-11(c)) saves the return address of the instruction that was about to
execute before the exception was entered. For everything except data aborts, this is a
modified version of the PC value of the instruction extracted from the end of the PC
pipeline as for a normal access toR15. However, for data aborts, there is a special holding
register that preserves the address of the data transfer instruction that aborted (described in
more detail in section 6.1). This value is multiplexed onto the output of thePC pipe so that
it can be used as the return address of the exception handling routine.
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4.4 Instruction flow control

There are three main aspects to instruction flow control in AMULET1:

• Instructions must have access to their correct PC values prior
to execution in case it is needed as an operand.

• Instructions which fail their condition tests must be discarded.
• Instructions already prefetched when a branch is taken must

also be discarded.

All these areas must be addressed to ensure correct operation and to maintain backwards
compatibility with the ARM6.

4.4.1  The ARM PC model and the PC pipeline

In synchronous ARM processors, the value ofR15 - when used as an argument - reflects the
instruction prefetching which has been done at the time it is used. In a clocked
implementation this is well defined and for most instructions yields a value of the current
instruction address + 8 (i.e. PC+8). If the PC is used as areturn address, i.e when it is
moved into the link register (during procedure calls) the value written is PC+4. This is the
address of the instruction following the current one and is thus the address of the instruction
to return to after the procedure is complete. The value PC+4 can be calculated from PC+8
using the ALU on the way to the link register.

In the synchronous ARM, the PC value is taken directly from the prefetch unit. This is
convenient but closely couples the architecture to a specific implementation. In the
Micropipelined implementation there is no direct coupling between the prefetch unit and
the ALU input. It is therefore not possible to determine how much prefetching has occurred,
and hence the relationship between the PC value in the prefetch unit and the required value
is not fixed.

For AMULET1 to be code compatible with an ARM6,R15 must have the correct value; to
achieve this each instruction has a PC value associated with it. The instruction and its
corresponding PC value synchronize just before execution of the instruction begins. This is
implemented by keeping a FIFO (first-in, first-out queue) of PC values and matching them
with the instructions as they return from memory. This FIFO is called the “PC pipeline”.
Instructions returning from memory are stored in the instruction FIFO prior to execution.
Figure 4-12 shows a high-level representation of this operation; this is discussed in more
detail in section 6.1.4.

4.4.2  Condition code evaluation

All ARM instructions are conditionally executed depending on the setting of the Current
Processor Status Register (CPSR) arithmetic flags, (Negative/signed less than,Zero,Carry/
not borrow/rotate extend, oVerflow) and the instruction word bits [31:28]. Thus a
comparison of the flag settings and instruction bits [31:28] must be carried out to check
whether the instruction should be executed or not. Instructions are typically executed with
the ‘always’ condition.
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The test of the condition flags is performed in parallel with the second stage of execution
(i.e. in parallel with the shift/multiply). A signal is sent from the second stage with the data
to the ALU to indicate whether the condition test was successful or not. This is used by the
ALU control to invalidate instructions which have failed their test. Instructions that have
previously locked a destination register must still return to the register bank to unlock the
destination. No data is written back from invalidated instructions; the lock is removed
without changing the register contents (see chapter 5 for detail about register locking).

The condition test can be performed in parallel with the shifter because the flags are already
valid by this time and cannot change until the ALU is activated. This is a consequence of
the dynamic shared latch pipeline structure.

4.4.3  Branch operations

With an autonomous prefetch system, it is not possible to predict how many instructions
will have been prefetched when a branch is taken. Prefetched instructions invalidated by the
branch must be discarded before instructions from the branch target are processed. This is
achieved by maintaining a single bitcolour flag which changes every time a branch is
taken. An instruction has an associated colour bit which indicates the state of the processor
colour when the instruction fetch was requested.

When the instruction stream changes, the reference colour changes and hence the colour of
instructions subsequently fetched also changes. Each instruction which arrives at the
datapath for execution has colour information which indicates whether the instruction was
from the original stream (and hence must be discarded) or from the new stream (to be
executed). Instructions whose colour differs from the new reference colour are discarded.
This continues until instructions from the new stream arrive with the same colour as the
reference; these are then executed.
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ExecutionAddress
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There are two places on the datapath where the instruction colour could be checked: at the
ALU or at the primary decode. Each has merits and disadvantages as discussed below.

Colour checking at the ALU

The most obvious position for colour checking is at the ALU, since a mechanism already
exists there to discard instructions which fail condition tests; this mechanism could simply
be extended to check colour as well. The ALU stage is also the earliest point at which it is
known whether an instruction has passed its condition test which determines, in the case of
a branch, whether or not the instruction stream will change.

Discarding instructions at the ALU is advantageous if a branch is not taken, because the
following instruction will be immediately behind the failed branch in the pipeline. The cost
of a branch not taken is the same as an instruction failing its condition test, i.e only 1 cycle.

However, if the branch is taken, instructions to be discarded must still traverse the datapath
to have their colours checked at the ALU. The performance of taken branches may be
impacted if the time taken to flush the old instruction stream is greater than the branch target
reload time. This may be significant if one of the instructions to be discarded is a multiply
which can take up to eleven internal cycles in the shift/multiply block (before being
discarded at the ALU). However, typically, loading from a non-sequential location is likely
to take longer than flushing the datapath.

Another problem with discarding instructions at the ALU is that by the time the instruction
reaches the ALU it has already locked its destination registers (if any). Therefore the
instruction must still notify the register bank that the destination register should be
unlocked, even though its result is to be discarded.

The worst case for both power and performance would be the instruction FIFO being full of
prefetched multi-cycle instructions when the instruction stream is changed. Each instruction
would enter the datapath, split into multiple cycles, progress down the datapath to the ALU
and then be discarded. The activation of the functional units on the way to the ALU would
consume power and could take longer than the branch target reload time. Although typical
instruction streams may not often exhibit such worst case characteristics, it is still
disadvantage of colour checking at the ALU.

Colour checking at the primary decode

The main advantage of checking the colour before any registers are read is that the
instruction can then be discarded before entering the datapath. This offers a power saving
over the previously described ALU colour checker (no functional units are activated when
instructions are being discarded). Another advantage is that the instructions are discarded
before entering any computational stages so that even complex instructions can be
discarded quickly and efficiently.

As all instructions are conditionally executed, it is not known whether a branch will be
taken until its condition codes have been evaluated at the ALU decode. Instructions
following the branch cannot be allowed to proceed to the colour checker in the primary
decode until confirmation is received whether the branch was taken or not (so that the
reference colour can be changed). Confirmation is received when the branch instruction
reaches the ALU; the effect of this is that the pipeline stalls at the primary decode waiting
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for confirmation from the ALU for every possible branch instruction. For taken branches
this is very efficient because only instructions which are to be executed from the original
instruction stream enter the datapath and hence consume power.

If the branch is not taken (i.e. the branch failed its condition test) then the pipeline between
the ALU and the register bank will be emptied for no reason. Investigations into ARM
instruction set usage [Jagg89] have revealed that approximately 15-20% of instructions
executed are branches, with just over 50% of branches taken. This means that
approximately 10% of the instructions executed would stall at the register bank
unnecessarily, with the performance penalty that flushing the datapath pipeline carries.

A combined colour checking mechanism

Both schemes described have merit, however each has drawbacks. The solution adopted is a
combination of the two. Colour checking is primarily carried out at the ALU decoder.
However, when the colour changes, the colour information is transmitted to the primary
decode with the aid of an arbiter. Instructions already in progress are discarded at the ALU
and instructions waiting in the instruction FIFO are discarded by the primary decode.

Care must be taken to ensure that when instructions are discarded by the primary decode,
the corresponding entry in the PC pipeline is also discarded to maintain the correct
association between instructions and PC values.

4.5 Exception handling

The ARM architecture specifies four classes of exception that must be handled. These are
listed below in order of increasing complexity:

1. Software interrupts and undefined instructions.
2. Instruction prefetch aborts.
3. Hardware interrupts.
4. Data aborts.

For the first class of exceptions, the primary decode simply recognises the bit pattern for the
software interrupt (SWI) or undefined instruction and immediately begins the exception
entry routine (see section 4.3.7). This is similar to normal instruction execution.

When an instruction prefetch abort occurs the memory responds with a invalid data word
marked by an “abort” flag (Pabt). This flag is copied into the instruction pipeline along with
the invalid instruction where it is queued for entry into the primary decode. When it enters
primary decode the prefetch abort flag is detected causing the instruction data to be ignored
and the exception entry routine to be entered. The aborted instruction still associates with its
PC value, which is read asR15 by the exception entry routine and stored (after suitable
modification) as the exception return address.

4.5.1  Hardware interrupts

The level sensitive hardware interrupts may become active at any time and are completely
asynchronous to the processor’s operation. Therefore arbitration is required to prevent any
synchronization failure. These interrupts enter the processor between the instruction
pipeline and the primary decode (see figure 4-3).
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Figure 4-13 shows the arbitration hardware in the event path between theIpipe and the
primary decode. Although the interrupts are level sensitive, a change in level which causes
the interrupt to become active can be viewed as an event. The transition between levels can
be used to trigger a Micropipeline arbiter. This is also a convenient place to manage the
reference instruction colour which arrives asynchronously from the ALU when a branch is
taken. The robust arbiters described in chapter 3 are used. The operation of the circuit is as
follows:

Initially the rising edge of the reset signal (Cdn) requests control of all three arbiters in
parallel (r1). Once all three grants (g1) have been received an event is sent to primary
decode (Lreq) to indicate that the arbiters are locked. Any events arriving onFIQ, IRQ or
PCCol cannot gain control of the arbiters. When the primary decode finishes decoding the
first instruction it issues an acknowledge (Pack), causing all three arbiters to be temporarily
released. If there are any outstanding requests onFIQ, IRQ or PCCol they then take control
of their respective arbiters. The pending event (change in level) is propagated to the arbiter
output (g2). This output is wired directly back to the “done” input of the arbiter (d2) so the
arbiter is immediately released again. The net effect of doing this is that the change in level
of the input of the arbiter has now propagated to the output. When the next instruction
arrives at primary decode it waits for all three arbiters to return to locked (signalled by
Lreq). The primary decode can then inspectSFIQ, SIRQ & SPCCol to see if their levels
indicate that special action is required. The values are guaranteed to be stable because all
the arbiters are locked so any further asynchronous transitions onFIQ, IRQ or PCCol
cannot propagate and affect the primary decode.SFIQ, SIRQ andSPCCol are stable copies
of the inputs which are only allowed to change at a well defined time (betweenPack and the
next instruction arriving), this is shown in figure 4-14. (The external FIQ and IRQ pins are
defined to be active Low; the polarity of the interrupt signals shown in the diagrams are
active High because an inversion takes place on chip between the pin and arbiters).
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When the primary decode detects an interrupt request fromFIQ or IRQ the instruction
which was about to start decoding is usurped and the exception entry routine is initiated
instead. The PC value at the end of thePC pipe (and hence the value appearing asR15) is
the address of the instruction that was usurped (+8). TheR15 value can be read by the
exception entry routine and used to form the interrupt return address.

The interrupt flags (SFIQ, SIRQ) remain active until they are gated out by writing to the
interrupt mask bits in the CPSR. This happens during exception entry (otherwise the
processor would repeatedly enter the exception handler).

The exception entry routine inherits the colour of the instruction it usurped. Therefore if the
exception entry routine is following a branch which is taken it will be discarded because it
has the wrong colour. The interrupt flags remain active so the next instruction which passes
the arbiters also gets usurped for exception entry and is also subsequently discarded. This
continues until an instruction from the branch target arrives with the correct colour. This
time the exception entry routine is successfully executed and the active interrupt flag is
masked out.

The reason for not forcing the execution of exception entry cycles which have the wrong
colour is that the PC value at the end of the PC pipe associated with the usurped instruction
will not give the correct restart address. The correct return address is the branch target. This
is automatically delivered by waiting for an instruction with the correct colour.

4.5.2  Data abort overview

Data aborts are by far the most complex exception to handle. The ARM architecture
specifies that the instruction which caused the abort must be restartable once the cause of
the abort has been removed (e.g. a virtual memory page fault has been fixed). To restart the
instruction, the processor needs to determine the address which faulted and the address of
the data transfer instruction that issued the faulting address; it must also ensure that its state
is preserved whenever an abort is taken (so that a restarted instruction resumes execution in
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the same environment). An overview of the data abort process is presented here, more detail
is provided in the next section.

When a data transfer instruction begins execution, the PC value at the end of the PC pipe is
copied into a special FIFO referred to as the exception pipeline (Xpipe). When the data
transfer reaches the ALU to perform the address calculation, its corresponding PC value is
at the end of theXpipe. The ALU sends the data address to memory (via the address
interface - see section 4.3.4) and then waits for a response from the memory management
unit (MMU) to indicate whether the transfer was successful.

If it was successful, the ALU can continue with the next instruction and the PC value in the
Xpipe is discarded. If a data abort is signalled then the PC value at the end of theXpipe is
copied into a holding latch (XLatch - see section 6.1.6) and the exception entry routine
entered by signalling to the primary decode. The abort entry routine can then access the
exception PC address and store it as the exception return address. To ensure the instruction
can restart, the base register (the address of the transfer) must also be preserved. Any base
modifications (due to auto-indexing) are allowed to complete because these are
deterministic and can be reversed by the exception handling software. Loads which
overwrite the base register cannot be permitted to complete because this would destroy the
transfer address and hence the instruction could not be restarted.

A single register data load operation, which loads data into the base register, cannot destroy
the base if it aborts because no data is retrieved from memory so there is nothing to
overwrite the base register with. However, for a load multiple operation it is possible to
overwrite the base register early in the sequence and have a subsequent address cause an
abort. In this case special measures are needed to ensure that a copy of the base is preserved
and is available to restart the instruction (see section 4.3.6).

4.5.3  Data abort signalling

When a data abort is signalled to the ALU, the primary decode must be directed to enter the
exception routine. The ALU achieves this by first changing the reference colour so that
following instructions are discarded (and therefore do not change the processor state). The
change in instruction colour is signalled to the primary decode via the previously described
arbiter. This causes all remaining prefetched instructions to be discarded (see figure 4-15)
via SELECT S1 and XOR X1. Once the colour mismatch is established no further
instructions can reach the primary decode.

An event is generated when the exception PC holding latch (XLatch) becomes full (which
must be the result of a data abort). This event is asynchronous with respect to the primary
decode and would normally require an arbiter to introduce it into the logic. However, once
the PC colour mismatch is detected there can be no further events in the primary decode
because incoming instructions are being discarded). The data abort event is therefore safely
allowed to pass directly to the primary decode to start the exception entry routine. This
safety is ensured because the data abort event is blocked by a transparent latch until the
colour mismatch has definitely been established (and hence no more instructions can enter
primary decode).

The event to the primary decode is accompanied by a Boolean flag (Dabt) to indicate that
this is a data abort request. The exception entry routine begins, and saves the exception PC
etc. (see section 4.3.7). The various cycles of the data abort entry are forced to execute
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irrespective of the condition codes or colour checking. This is because the data abort entry
is not linked to an instruction in the instruction pipeline and does not use an associated PC
value; it uses its own value from the X-Latch.

When the exception entry is complete the primary decode acknowledges back (Pack). This
event is steered back to the exception PC holding latch and it also resets the state of
SELECT (S2) so that it steers subsequent acknowledges back viaX1 to the arbiters and the
Ipipe. The normal instruction event path is shown in green in figure 4-15, and the data abort
event path is shown in red.

Eventually instructions from the exception handler arrive with the correct colour and begin
execution as normal instructions.
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Chapter 5 : The register bank
A high performance register bank is a central component of a RISC processor. The
challenge in an asynchronous design is to maintain coherent register operation while
allowing concurrent read and write access with arbitrary timing and dependencies between
them. The solution adopted in AMULET1 includes a novel arbiter-free register locking
mechanism (described later) which enables efficient read operations in the presence of
multiple pending writes.

The special requirements for a register bank in a Micropipelined processor can be specified
only after analysing the general operation of a register bank and the hazards which are
introduced by a Micropipelined execute unit.

5.1 Register bank operation

A register bank consists of a number of registers with common sets of read and write buses.
All registers are the same width; in the 32-bit ARM6 microprocessor they are all 32 bits
wide. The microprocessor executes instructions as follows:

The instruction decoder extracts the addresses of the registers to be read (a, b) and the
register where the result will be written (w) from the op-code; these are passed to the
register bank to begin execution. The operands are read out and passed to the execution unit
where the operation is performed to provide the result. Some time later the result arrives
back at the register bank and is written to the appropriate register (w). Figure 5-1 shows a

Figure 5-1: Register bank operation
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high level view of this process. The number of registers read by any instruction is limited by
the number of output ports on the register bank, which in the case of the ARM6 is two.

5.1.1  Internal register structure

Figure 5-2 shows the internal structure of a typical register bank for reading one operand,
each register occupies a vertical slice of the register bank. A register comprises of a number
of individual memory cells arranged in a vertical stack (32 memory cells for a 32-bit
register). Each of the memory cells has an input (which is used for changing its value) and
two outputs (which are used to read the value from the cell onto the A operand andB
operand buses). All operations are performed on all the cells of a particular register at the
same time. Three enable signals are provided for each register to control reading onto theA
bus, reading onto theB bus and writing from the result bus into the cell.

TheA bus decoder takes the binary representation of theA operand register number (a) and
converts this into a unary representation (1 out ofN) used as theA bus output-enable for the
selected register. Figure 5-2 shows 1 out ofN registers selected in this way. Similar
decoders are provided for theB bus and for the write bus which have been omitted from the
diagram for clarity.

The A operand,B operand and write buses all run horizontally through all the registers as
shown above; again theB and write buses have been omitted for clarity.

At a slightly higher level this can be represented as in figure 5-3. Physically, the decoders
are stacked on top of each other with the select wires routed vertically through to the
register bank.

5.1.2  Register bank hazards

If the execution phase of the instruction is pipelined then it is possible to have multiple
operations in progress at the same time implying that there may be more than one write
operation outstanding. To ensure the correct result is written to the appropriate register, a
record of destination register addresses must be maintained; this allows a returning result to
pair with the correct destination address and to update the correct register.

Figure 5-2: Register bank internal structure
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Another consequence of a pipelined execution unit is that an instruction may try to read the
contents of a register that is to be written by an instruction already in progress. This
situation can be caused by an instruction which uses the result of the preceding instruction.
If the result has not yet been calculated then the previous value could be read erroneously.
To ensure correct operation, the dependencies between instructions must be managed so
that reads from registers which have not yet been written wait until the contents are valid.

The third hazard of register bank operation is related to the asynchronous nature of the write
operation in relation to a read. The execution unit can take a data dependent time to
complete its operation, so there is no fixed time at which a result is expected to return to the
register bank. The next read may start as soon as the operand data is latched into the execute
pipeline. Therefore reading and writing are asynchronous operations and care must be taken
to ensure that any interaction between the two, for example writing and reading the same
register, does not cause metastability problems (e.g. when a register value is changed part
way through a read operation).

In summary, the three register hazards associated with an asynchronous pipelined processor
are as follows:

1. There may be multiple outstanding write operations
2. A read may be requested from a register whose contents are invalid

pending a write.
3. Asynchronous read and write operations using the same register may

interact unpredictably.

5.2 Write address storage

The obvious way to store the write addresses is in a simple FIFO. Write addresses are put
into the FIFO after the instruction reads its operands and removed from the FIFO when the
destination address is required to write the result back into the register bank. A standard

Figure 5-3: Decoder arrangement
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Micropipeline provides a simple and efficient way of doing this. Figure 5-4 shows an
example instruction stream and how the write addresses are stored within such a FIFO. The
example shows that the first two instructions have begun execution and placed their
destination write addresses in the FIFO. The third instruction cannot commence until the
result of the previous instruction (R4) has been written back to the register bank since it is
required as one of the operands. The FIFO contains a list of all registers whose contents are
invalid. These invalidated registers must belocked so that reads to them cannot proceed
until the contents are valid. A read operation could therefore inspect the so called “lock
FIFO” to determine whether it may proceed or whether it must wait for a value to return.
This poses the problem of finding and comparing register values in the asynchronous lock
FIFO to determine if the registers to be read are locked. The condition detection
mechanism[Pave91] provides a simple and efficient way of achieving this.

5.2.1  An asynchronous register lock FIFO

If the lock FIFO is constructed so that the locked registers are represented as decoded unary
values, (i.e. 1 out of N), then each lock entry will have exactly 1 set bit (in the position that
corresponds to the register that is locked). For example if there are 32 registers then there
will be 32 bits, and if bit 3 is set then this indicates that register 3 is locked pending a write
operation.

Using this representation, the determination of whether a register is locked is a matter of
establishing whether there is a bit set in a particular column. Figure 5-5 illustrates how the

1. R1:= R2 + R3

2. R4:= R5 - R6

3. R7:= R9 - R4

Figure 5-4: Write address storage
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of instructions 1 & 2
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R1
R4

0 0 0 0 0 00 0
0 0 0 0 0 00 0
0 0 0 1 0 00 0
0 0 0 0 0 10 0

Figure 5-5: Lock detection
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FIFO is interrogated to determine if R4 is locked and whether the read may proceed or not
(the FIFO illustrated contains the unary encoded values ofR1 andR4). In this caseR4 is
expecting write data so the read must stall.

A further, beneficial, consequence of storing the write address in unary form is that the last
stage of the FIFO can be used to drive the write word lines of the register bank without
further decoding.

5.2.2  FIFO examination

The columns in the lock FIFO can be examined by simplyORing together successive bits
of the FIFO as shown below in figure 5-6. This gives two outputs, one that indicates that the
next write operation is to this register and the other indicates that this register has a write
pending and is therefore locked. For this simpleORing technique to work in an
asynchronous FIFO, three conditions must be met:

1. Empty stages must not interfere with the lock and so must present a
zero output.

2. Data must be copied to the next stage before being deleted from the
current stage to prevent it from transiently disappearing from theOR
chain.

3. Data must not be allowed to enter the FIFO while the “Locked” output
is being examined to prevent asynchronous interaction problems
(metastability etc.).

Micropipelines, in general, are transparent when empty, so ensuring empty stages give a
zero output is a simple matter of ensuring that the input to the FIFO is held at zero while
data is not being entered. Another feature of standard Micropipelines is that they
automatically copy data to the next stage before deleting it from the current stage, so the
second condition is also satisfied.

Instructions which read and write the same register must not lock the destination until the
read is complete otherwise they would stall on their own lock. This requires sequential
ordering of the read and lock operations. This high-level control constraint also solves the

Figure 5-6: Lock interrogation
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third condition required for correct operation of the lock FIFO. The detail of the high-level
control is discussed later.

5.2.3  Stalling reads

The lock FIFO provides a mechanism which indicates that a register has a write pending.
This information must be used to prevent any read operations from proceeding until the data
has returned and the write operation is complete. Figure 5-7 shows how the lock FIFO
locked output and theA andB decode word lines are combined with a simpleAND gate to
stall reads. A lock in any column effectively disables theAND gates for that register and so
prevents the register read from enabling the contents of the locked register onto the operand
buses. A read will remain stalled until the lock entry reaches the last stage and is matched
with the corresponding write data. The write operation then completes and the bottom entry
of the FIFO is removed; the corresponding set bit will then disappear and allow the stalled
read operation to proceed.

The diagram also shows how the last stage of the FIFO is enabled onto the register bank
write word lines (W Sel) under the control of a write enable signal.

5.3 Asynchronous register bank design

The overall organization of the register bank is shown in figure 5-8 [Pave92a]. The
interfaces use the bundled-data convention with transition signalling. Internally, the design
employs a combination of two-phase and four-phase techniques, the latter being well
matched to the precharge-active cycle of the dynamic circuits used in the basic register cell.

5.3.1  Read and lock operations

A new instruction has its availability signalled byI-Req, and presents two register addresses
to be read (a and b) and a register address to be written (w) once the execute unit result is
available.I-Req is stalled until the register bank is ready to start a new read operation when
the read decoders are enabled. Concurrently with the read address decoding, the write
register address is latched (in W Latch).

Figure 5-7: Read lock gating
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The decoded read addresses present “enables” for the selected registers which are gated
with the locked register information. A read of an unlocked register will proceed, whereas a
read of a locked register will stall at this point until a write operation clears the register lock.

The register read circuitry uses dynamic techniques to minimise the cell size, with charge
retention circuits to give pseudo-static operation. A extra thirty-third bit line gives a
matched completion signal and when both register values are available they are latched and
passed to the execution path (via theD-Req signal) which can begin to process the data with
no further delay.

Once the data has been latched, the read decoders are disabled and the read bus precharge is
turned on to prepare for the next access. Normally the write address will be latched well
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before this time, and the instruction acknowledge (I-Ack) is issued so that a new instruction
can be prepared during the register recovery time.

The write decoder is disabled during the read operation to present inactive inputs to the lock
FIFO. Once the read data is latched, the write decoder is enabled and the destination register
is locked. As soon as the lock FIFO has accepted the new address, a new instruction may be
allowed to start its read operation. The lock logic will continue by disabling the write
decoder, it will then free the write address latch for the next value.

The read-lock sequencing is illustrated in Petri Net form [Pete81] in figure 5-9, which
shows the critical sequential dependencies in the read operation. Note particularly that the
W decoder is disabled until the read has completed, in order to ensure that no spurious lock
indications are passed via the empty (and therefore transparent) stages in the lock FIFO;
similarly it is disabled before theW latch is allowed to accept a new value. The next read is
allowed to proceed as soon as the locks are stable, since any transient caused by the slow
disabling of theW decoder will cause at worst a delay in the read operation, never an
incorrect action.

The critical path in the register bank (from I-Req to D-Req) has the minimum number of
dependencies on internal operations; this defines the register access latency of the design.
The cycle time will include this and the slowest of three independent recovery routes:

• The supply of the next instruction.
• The completion of the locking operation.
• The read bus precharge time

(omitted from figure 5-9 for clarity).
In general it is expected that the first of the above will be the critical path in determining the
register bank cycle time.

5.3.2  Write operations

A write data value (signalled onW-Req in figure 5-8) is paired with the decoded write
address at the output of the lock FIFO. The appropriate write word line is then enabled and
the data written, following which the destination register is unlocked for reading by
removing its address from the FIFO. The write operation is self-timed by detecting the
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Figure 5-9: A Petri Net model of the read-lock sequencing
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transitions on the word line with a wide dynamic OR gate, the same circuit ensures that
writes are fully disabled before the write data is allowed to change

5.4 Additional features

There are several features described in this section which were omitted from figure 5-8 to
maintain the clarity of the diagram. The write operation includes a Boolean flag to indicate
whether the data is valid. This allows instructions which have failed condition tests at the
ALU to return to the register bank to remove locks placed previously, without writing any
data. The valid flag is used to steer the write request to remove the last item in the lock
FIFO without enabling the write word lines. No data is written into the register bank.

The program counter on the ARM is available as a general purpose register (R15). The
value of the program counter for any particular instruction arrives with the instruction (from
the PC pipe) so the register bank simply transfers the value onto the operand bus if required.
The multiplexer control is similar to the read control of the general purpose registers;
however, asR15 is not an actual register in the bank, there is no notion of writing toR15
within the register bank. Therefore there is no lock FIFO entry forR15 and reads fromR15
can never be stalled on a lock. The value ofR15 is changed by sending the new value to the
address interface (a branch operation).

Some instructions do not require all three register addresses (a, b & w) so logic is supplied
to bypass a subset of them. To economise on logic for the read operations, instructions
which do not need both operands read the PC value instead and then discard it. It is safe to
do this because reads fromR15 can never stall.

The register bank also contains several special registers which contain saved versions of the
processor status register (SPSR); these can be accessed only via theA operand bus but are
enabled in a similar manner to the general purpose registers. Extra information is provided
with the instruction to indicate that the access is to anSPSR. Write operations to anSPSR
can specify that only part of the status word is to be changed (e.g. arithmetic flags, control
flags or both), extra information therefore is required for write operations to anSPSR to
indicate which parts are to change. When a write to anSPSR is detected the extra
information is stored in a control FIFO and maintained in step with the main lock FIFO;
when the write address for theSPSR reaches the bottom of the main lock FIFO, the
corresponding information in the control FIFO is therefore also at the bottom. This is then
used to control the write enable of the two halves of theSPSR depending on what the
instruction specified.

5.4.1  Dual lock FIFO

Instead of a single lock FIFO as described earlier the implementation has two FIFOs; one
for operations that load data from memory and one for internal operations where the data
comes from the ALU.

The dual FIFOs allow internal ALU cycles to overtake slower external memory accesses
assuming there are no register dependencies between the two. This gives rise to potential
compiler code-reordering optimizations to reduce dependencies on loaded data and to
increase performance (independent ALU cycles can be executed while the data is being
fetched).
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Figure 5-10 shows how the two FIFOs are configured so that they can still correctly indicate
a locked condition byORing across both FIFOs. Two decoders are provided, one for each
FIFO and the primary decode supplies two write addresses. This allows an entry to be
placed in both FIFOs concurrently and is used to support instructions which have two
destination registers (e.g. load data with base writeback; here the two registers are for the
data coming back from memory and for the modified base value returning from the ALU).
If only one destination address is needed, only one of the write decoders is enabled, and
only the appropriate FIFO activated. Once the destination address is in the correct FIFO, the
write decode is disabled and the operation proceeds as before.

When aW-Req is received it is accompanied by a Boolean flag to indicate whether the data
value to be written came from the ALU or memory. This is used to multiplex the correct
write destination address onto the write word lines before the write commences. When the
write is complete the last entry in the selected FIFO is removed and any read stalled on this
write is released automatically.

5.5 Implementation

Storing the write addresses in the lock FIFO in unary encoded form may appear inefficient
in the use of silicon area, but it allows the full stack of word control logic (theA, B andW
decoders, the lock FIFO, read lock gating and the write enable logic) to be pitch-matched to
the register cell block. Figure 5-11 shows the silicon layout of the register bank. The lock
FIFO can clearly be seen as the dense regular layout above the datapath register cells. TheA

Figure 5-10: Dual lock FIFO configuration
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andB decoders (labelled in figure 5-11) below the lock FIFO have the read lock gating built
into them with the “locked” signal provided from the FIFO above.

The main core of the bank - the datapath register cells - are identical to those used in the
ARM6 with bit 31 at the top and bit 0 towards the bottom. The thirty-third bit used for the
self-timing path is in an extra row at the bottom just above the power rails. Using the
existing ARM6 register cells maintains the area efficiency of the original synchronous
datapath area and illustrates the ability of the Micropipeline design methodology to re-use
synchronous elements.

Figure 5-11 also features the 5SPSRs which are the sparse registers to the right of the
datapath cells. The sparse nature results from the fact that the processor status word only
contains information in bits 31-28, 7, 6 and 4-0 so storage in the other bit positions is not
needed (see appendix B for information about the PSR format).

The register bank control logic is implemented in the automatically compiled area of
standard cells shown towards the top of the diagram. The decode pipeline latch and the
register bankW latch can be seen as the two thin horizontal strips at the extreme top of the
diagram.

5.6 Future enhancements - register bypassing

Typical instruction streams frequently display the use of the result of one instruction as an
operand of the next. Such data dependencies between consecutive instructions can cause a
significant reduction in throughput for typical code, compared with best case code without
dependencies, if the result is only available to the next instruction after it has been written
back to the register bank.

Clocked processors generally useregister bypassing to allow a result to be re-used without
incurring the register write-then-read penalty. The global clock ensures that different parts
of the processor are operating at fixed relative times, so the result and operand addresses at
two stages can be compared to activate the bypass when appropriate.

In an asynchronous processor there is no such fixed relationship between the timing of
operations in different parts of the processor, so explicit synchronisation is necessary if a
similar result and operand address comparison is to form the basis of a bypass mechanism.
This synchronisation will have a cost in reduced throughput and, since it forces lock-step
operation of at least two parts of the processor, is a serious obstacle to fully exploiting the
advantages of asynchronous operation.

Two alternatives to register bypassing have been considered which deliver some of the
benefits without impeding the asynchronous operation of the pipeline. Although these have
not been implemented in the current design, they are included as suggestions for future
enhancements and are described below as register through-passing and last result re-use.

5.6.1  Register through-passing

The design shown in figure 5-8 is very conservative in its timing for a write operation which
clears a lock and thereby allows a read to proceed. A mechanism under consideration
would, with the addition of a latch to the write enable logic, allow the lock to be cleared
much earlier in the write process (see figure 5-12). As soon as the write is complete the lock
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is removed from the FIFO to enable the read to proceed while the write enable lines are held
stable by thewrite enable latch until the write enables are safely turned off. This prevents
writes to spurious registers.

5.6.2  Last result re-use

Another mechanism under consideration detects data dependencies at the decode stage.
Each instruction leaves behind in the instruction decoder a record of its destination register,
when the next instruction enters the decoder its operand addresses are compared with this
record. If a match is found, the read operation is bypassed and the result is collected for
operand use directly. The mechanism has no effect on the design of the register bank in
figure 5-8 as it is manifested in additional logic elsewhere in the decode and execution
paths.

This second mechanism has better performance than the first when it is applicable, but it has
several limitations. A particular problem on the ARM is that all instructions are executed
conditionally so an instruction which fails to pass the condition test will not produce a
result. By this time its successor may depend on that result, so this mechanism must include
logic to determine whether or not an instruction may be annulled (and hence will not
produce a result). This adds to the complexity of the design.
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Chapter 6 : Memory interface
The memory interface can be divided into two distinct parts: the address interface,
responsible for issuing all address information to memory, and the data interface which
manages the flow of data into and out of the processor.

A memory access can be either a read or a write operation. For a write operation, the
address supplied by the address interface synchronizes with the data supplied bydata out
before being dispatched to memory. For a read operation, there is no immediate need to
synchronize with the data interface when issuing the memory address. However, when the
read value returns, the data interface must know whether the value returned is read data
destined for the register bank or an instruction to be queued ready for execution.

To enable the data interface to route incoming values to their correct destination, a
Micropipeline FIFO containing control information is connected between the address and
data interface. For every read request issued by the address interface control information is
placed in thismemory control FIFO. Every read value arriving from memory pairs up with
its control information taken out of the memory control FIFO and is steered to the correct
destination.

6.1 Address interface

The main function of the address interface is to generate sequential instruction addresses.
This is achieved by circulating the PC around a loop containing an incrementer (see section
6.1.7 for further information about the incrementer). For each pass around the loop (shown
in figure 6-1(a)) the next sequential address is sent to memory.

After reset, processor execution begins with the memory address register (MAR) being
forced to all zeros and an event being generated to start the processor prefetching. The first
value sent to memory is0. This value is also passed to the incrementer where the next
instruction address is generated (PC +4). The incrementer is a dynamic structure so the
result is stored in the PC holding registers - PC HLS (the reason why two registers are
needed is discussed later). If no other address source wishes to use the address interface,
then the PC value returns to the MAR via the multiplexers. The next instruction address is
dispatched to memory and the process repeats.

The program counter can circulate around this loop at its own speed, decoupled from the
actions in the rest of the processor. If the processor wishes to use the address interface to
generate the address for a data transfer the PC incrementing loop must be temporarily
interrupted; the PC loop is asynchronous to the rest of the processor, so an arbiter is required
to manage the interaction. The data transfer begins with the transfer address being supplied
on either the write bus or theA bus (depending on the instruction and whether pre- or post-
indexing is specified - see section 4.3 for details of how addresses arrive at the address
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interface). Arbitration takes place between the PC value and the transfer address to take
control of the MAR. Eventually the data transfer takes control and passes its address out to
memory via the arbitrated multiplexer and MAR (figure 6-1(b)). Once the transfer is
complete the arbiter is released allowing the pending PC to continue to circulate around the
loop.

6.1.1  Load/Store multiple operation

A load/store multiple operation sends only the base address of the transfer to the address
interface and the sequential transfer addresses are generated by modifying the base using
the incrementer (similar to sequential PC address generation). A load/store multiple
operation begins with the base address arriving on the write bus in the same way as for a
data transfer. Once control is taken of the MAR, the interface waits for a signal from the
primary decode. This signal contains information about whether this is the last transfer and
for a load operation it indicates whether the data being loaded is the new PC value. The last
transfer information is used to stop any further incrementing and if a new PC transfer is
signalled then the interface is initialized to expect the new PC value.

Once the signal is received from the primary decode, the address is dispatched to memory;
if the transfer is not the last, the address is sent to the incrementer where the next sequential
address is generated. The incremented address is stored in the load/store multiple holding
register (LSM reg).

To take advantage of fast sequential modes of DRAM and some cache memories, the PC is
forced to wait until the transfer is complete before prefetching is allowed to continue (this
ensures that the LSM addresses are uninterrupted sequential addresses). This is achieved by
not releasing the arbiter until the transfer is complete. A consequence of this is that the re-
circulating LSM address is not subject to arbitration to take control of the MAR because
everything else is locked out of the loop. Therefore, as soon as theLSM reg has received the
appropriate signal from the primary decode, it can forward its value directly to the MAR as
shown in figure 6-1(c). The sequential address generation continues until the primary
decode signals that the transfer in progress is the last one. In this case, the address is
discarded after the transfer is complete (rather than incrementing it). The arbiter is then
released to allow the PC to continue to circulate and issue instruction addresses to memory.

6.1.2  Changing the PC value

The PC value circulating in the address interface has an associated colour related to the
main colour mechanism (see section 4.4.3). This is used to discard old circulating PC values
when a branch is taken. The address interface control contains a reference colour against
which the colour of the circulating PC value is compared; if the colours do not match the PC
is removed from the loop and discarded.

When a branch is executed, the new PC value arrives on the write bus from the ALU,
bringing with it a copy of the new PC colour. Once the new PC value has taken control of
the arbiter, the reference colour is updated to the new value from the ALU. The new PC
value then appears on the output of the MAR and is sent to memory and the incrementer.

Once the arbiter is released, the old PC value, which has waited in one of the holding
registers, can gain control of the arbiter. As it enters the control circuitry, a colour mismatch
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is detected and the old PC value is discarded. The new PC value completes circulating the
loop and presents a request to the arbiter. This time, when control is granted by the arbiter,
the PC colour matches the new reference colour so the PC value is allowed to continue to
the MAR unhindered. The PC modification is then complete.

6.1.3  PC loop deadlock

The PC incrementer loop includes two holding latches (PC HLS in figure 6-1) to prevent a
potential deadlock situation arising as described below:

Consider the case with only one holding latch (PC HL); the old PC value is waiting in the
holding latch and the new PC already in the MAR as shown in the simplified diagram of the
address interface shown in figure 6-2(a).

The new PC value cannot circulate any further until the holding latch is free. In most cases,
when the arbiter is released, the old PC immediately gains access and is discarded, freeing
up the holding latch and enabling the new PC to continue to circulate.

However, if instead of the old PC value gaining control of the arbiter, a data transfer request
takes control, the deadlock situation shown in figure 6-2(b) can occur. Here the data transfer
address cannot enter the MAR because the new PC is still occupying it waiting for the PC
holding latch to become empty. The holding latch is waiting to gain control of the arbiter
and the arbiter will not be freed until the data transfer address is safely in the MAR, hence
deadlock results.

If two PC holding latches are provided then the new PC value can move around the loop
leaving the MAR clear for any data transfers.

Although data transfer operations immediately following a branch should be discarded
because the branch has been taken, a load which is cancelled must still release any
destination registers locked previously. To ensure that the write/unlock operations maintain
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strict sequential ordering, the unlock request is placed in the memory control FIFO. This is
accessed via the address interface so annulled loads still pass through.

When a cancelled load reaches the end of the memory control FIFO in the data interface it is
forwarded to the register bank to unlock the destination. Since the load was cancelled, no
address was sent to memory and the FIFO entry therefore does not rendezvous with any
returning data - it is just sent to the register bank as soon as it reaches the end of the memory
control FIFO in the data interface.

The other function the address interface must perform is to supply the PC value to the
execution unit for use as theR15 value. The PC values are stored in a pipeline whose input
is connected to the incrementer PC holding latch (as shown in figure 6-1). The operation of
the PC pipeline is described below, noting particularly how the value presented asR15 is
controlled to emulate the behaviour ofR15 in the synchronous design.

6.1.4  PC pipeline

As previously described, after hardware reset, the processor starts execution from the
bottom of its address space by forcing the MAR to output zero along with the appropriate
event control signals. The first value to appear on the output of the incrementer is thus
00000004. If the output of the incrementer PC holding latch were simply connected to the
input of thePC pipe then the value PC+4 would be delivered to be synchronized later with
the instruction (fetched from address PC). The value actually required for ARM6
backwards compatibility is PC+8. To allow for this, the first PC value after hardware reset is
not placed in thePC pipe. The first instruction effectively matches up with the “PC+4” of
the following instruction hence giving PC+8. This is shown in figure 6-3.

Figure 6-4 shows how the PC values are managed when a branch in the instruction stream
occurs; for example, if the instruction at address4 is an unconditional branch to location44.
The instructions immediately following the branch (I3 & I4) are assumed to have already
been prefetched before the branch instruction was decoded and executed; they must
therefore be “thrown away” along with their corresponding PC values. InstructionI4 is
incorrectly matched up with a value from thePC pipe (in fact it matches with the PC+4 of
the branch target) but this is irrelevant as the instruction is not executed. The branch target
instruction is then matched correctly with its PC+8 value.

6.1.5  Instruction overflow deadlock

If no values are removed from thePC pipe it will eventually fill; this could happen if the
currently executing instruction takes a long time to complete (e.g. a multiplication). When
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the PC pipe is full, the incrementer PC holding latch will issue a request to it but thePC
pipe will not acknowledge until there is space in the FIFO for the PC value to be stored.
This prevents the incremented PC value reaching the MAR, so no further instruction
addresses are issued to memory until thePC pipe has some free space.

The length of the PC pipeline determines how many instructions can be outstanding at any
particular time, this acts as a self regulating queue orthrottle. This throttle mechanism is
important in preventing a possible deadlock situation as described below.

If the datapath is stalled at the register bank, waiting for a data value to be loaded from
memory into a register, instructions will begin to backlog and gradually fill up the
instruction FIFO. If there was no throttling mechanism it would be possible for the
instructions to backlog all the way into the memory. If the data value happens to be behind
this backlog, it would not then be able to complete the transfer to the register bank because
the instructions are blocking the memory interface. The instructions are backlogged because
of the stall in the register bank which cannot be released because the data value cannot get
to the register bank; hence the system is deadlocked. This is shown in figure 6-5.

To ensure that this deadlock can not happen the number of instruction requests issued to
memory must not exceed the number of spaces in the instruction FIFO. Thus any backlog is
restricted internally to the instruction FIFO itself, leaving the data interface clear to allow
the data value to return.

PC pipeline Length

The address interface stops issuing instruction addresses when thePC pipe becomes full,
this is a function of the number of stages in thePC pipe. If the pipe is N stages long then
when it is full, N+1 instruction address will have been issued to memory (the first PC value
after reset does not enter thePC pipe). Therefore the instruction FIFO must be at least N+1
stages long to accommodate all instructions returning from memory, associated with values
in the PC pipe. When thePC pipe is full, there will also be a PC value in the PC holding
latches waiting to enter thePC pipe. The instruction corresponding to the PC value in the
holding latch will have already been sent to memory, so there are in fact N+2 outstanding
instructions which need accommodation in the instruction FIFO (I pipe) to prevent
deadlock.

If a branch is taken when the old PC value is waiting to enter thePC pipe (with N+2
instructions already outstanding) the new PC value arrives from the ALU and is sent out to
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memory making the total of outstanding instructions N+3. If a load follows the branch then
this is annulled, but must still unlock any destination registers locked previously. To ensure
that the write/unlock operations maintain strict sequential ordering, the unlock request is
placed in the memory control FIFO. This is accessed via the address interface so annulled
loads still pass through.

 If the processor is stalled waiting for the destination of the cancelled load to be unlocked,
deadlock will ensue if the memory control FIFO is blocked by any outstanding instruction
requests, i.e. all outstanding instructions must be in the instruction FIFO. The IPipe must
therefore be 3 stages longer (N+3 stages) than thePC pipe (N stages). This demonstrates the
complex relationship between the depth of the PC and instruction pipelines.

6.1.6  PCpipe implementation

The PC pipelines are split into two parts: PC storage for supplyingR15 values (PC pipe in
figure 6-6) andXpipe for storing the addresses of instructions in progress which could
potentially generate a data abort (i.e. all data transfer instructions).

When an instruction begins execution its corresponding PC value is in the last stage of the
PC pipe; for normal operation this value is selected by the multiplexer and made available
as theR15 value needed by the register bank. Once the primary decode of the instruction
has completed, the PC value can be released, if the instruction is not a data transfer the PC
value is removed from thePC pipe and discarded. If however the instruction is a data
transfer then the PC value is placed in the top of theXpipe, and is removed from the bottom
only when the corresponding memory access is complete.

Figure 6-7 shows the detailed operation for removing a PC value from theXpipe. Each data
transfer has a corresponding PC value in theXpipe which awaits a response from the
memory management unit (MMU). There is a single PC value and MMU response for each
load/store multiple transfer.
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When the PC value reaches the last stage of theXpipe its request out signal primes a
Decision-Wait element ready for the MMU response. The MMU issues an event oneither
data abort or no data abort . If there is no data abort then the request out of theXpipe is
steered back as its own acknowledge (via theXOR), effectively removing the PC value in
the process.

When a data abort is signalled the last stage of theXpipe (containing the PC+8 of the
instruction that aborted) is copied into the exception holding latch (X-Latch). The request
out of the holding latch is the event used to indicate to the primary decode that a data abort
has occurred. The exception entry routine needs access to the address of the failed
instruction so that it can retry the instruction when the cause of the exception has been
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X pipe

X latch
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Figure 6-6: The PC pipelines
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removed. The exception address (in X-Latch) is multiplexed onto the output of the PC
pipelines and is made to appear asR15 in the register bank, where it can be read and copied
into the exception return register, so that when the data abort recovery software routine
exits, the processor automatically returns and retries the aborted instruction. Once the
exception PC is safely stored elsewhere, theX-Latch can be acknowledged and returned to
its empty state.

6.1.7  Incrementer

The incrementer is constructed using a simple ripple-carry mechanism with completion
detection. Each bit-cell is simple and identical as shown in figure 6-8. The worst case time
for this style of incrementer is large because the carry may have to propagate through 30
bits (since PC and LSM are always word aligned there is no need to consider the bottom 2
bits, hence 30 bits worst case). On average, two bits change per operation [Gars92], so the
typical case is much faster than the worst. In a synchronous system the cycle time is limited
by the worst case, but with an asynchronous implementation the cycle time can vary
depending on the data and the extent of carry propagation, so the circuit can be optimized
for typical values instead of worst case.

The incrementing operation begins with a carry injected into the lowest bit; if the input to
the stage is Low (0) the carry will propagate no further (0+1=1 carry 0). The input selects
the path the carry takes through the de-multiplexer; with the input Low (0), the carry is
steered to the completion detection circuitry because the increment is finished; if the input
is High (1), the carry-in must propagate through the stage when it arrives, to the next
highest bit (1+1= 0 carry 1). This is done by the input selecting the other output of the de-
multiplexer. The carry continues to propagate until it reaches a stage where the input is
Low; here, instead of the carry propagating any further, it is used to signal competition.

The completion circuitry is implemented by a simple wired-OR of the completion signal in
every bit. Only one bit will signal completion per incrementing operation. The circuit is
implemented using dynamic circuitry to reduce the transistor count to only 20 transistors
per bit. Weak-feedback charge retention is provided on the carry inputs to ensure that the
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Carry out

Complete

OutputInput

01

Figure 6-8: Simple ripple-carry incrementer cell
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carry inputs of the higher order bits do not decay after the incrementing has completed and
hence cause power dissipation.

6.2 Data interface

The data interface is much simpler than the address interface. Thedata out section is simply
a two stage FIFO with optional byte replication built into the input of the second stage. The
data in logic is more complex.

6.2.1  Data in

Values arriving from memory are initially stored in the memory read register (see figure 6-
9). For each value, the data interface extracts the corresponding control information from
the memory control pipe, this determines whether the value is an instruction or data value.

The instruction pipeline (Ipipe) is a simple 5 stage Micropipeline configured as fast forward
latches (see figure 3-26) to reduce latency through theIpipe. The end of the instruction
FIFO is connected to the primary decode and the immediate field extractor (Imm. pipe).

The immediate extractor consists of two Micropipeline stages with intermediate extraction
logic. It is possible to determine the size of immediate value to extract (8, 12 or 24 bits) by
examining just two bits of the instruction word, so the extraction logic is quite simple. The
input stage is configured to be a normally closed (blocking) latch so that, when the
immediate extractor is not in use, transitions on its input caused by passing instructions do
not cause internal power to be dissipated. The output of the immediate extractor is
connected to a multiplexer on the input of the shifter.

The final part of the data interface is the logic which processes data destined for the register
bank (data in). This consists of two Micropipeline stages with logic to perform rotates in

byte rotate

i pipe

memory read reg

to shifter

from memory

extract logic

to primary
decode

to register bank

Figure 6-9: Data-in organization

Imm. pipe

data in
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byte quantities for non word-aligned loads and gating to mask out the top 24 bits for byte
reads. It also contains logic that can be used to alter which byte in the word is addressed as
byte zero (i.e. it can change from “little-endian” to “big-endian” operation).

As the majority of values returning from memory are instructions, the data processing part
has a blocking latch on its input to prevent internal power dissipation when it is not needed
(i.e. when the incoming value is an instruction).
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Chapter 7 : Execution pipeline
The execution unit contains the major data processing logic of the processor. It provides an
autonomous multiplier, a barrel shifter connected to one of the operand buses, an ALU and
storage for the Current Processor Status Register (CPSR). The interconnection of these
elements is shown below in figure 7-1 (the shaded boxes represent pipeline latches).

When the multiplier is not required, there is an internal bypass mechanism which passes its
inputs straight through to the outputs.

7.1 The multiplier

The multiplier in AMULET1 is substantially different from the ‘2-bits at a time’ Booth’s
multiplier used in the ARM6 [Furb89, Page 253]. A multiplication using the ARM6
involves a complete cycle around the datapath for every 2 bits of the multiplicand with the
intermediate results being stored temporarily in the register bank.
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Multiplication in AMULET1 is based upon a shift-and-add multiplier using carry-save
adders [Day92]. It is an autonomous unit which accepts two source operands and produces
the partial product and carries which are added together in the ALU to complete the
operation. Internally the multiplier controls the cycles of the shift and add operations and
can terminate early when the multiplication is complete.

Each cycle of the multiplication involves:

1. Latching the inputs to the adders.
2. Performing the shift and add operation.
3. Latching the output of the adders

This continues until the multiplication is complete. The speed of operation of the circuit is
governed by the speed at which the two-phase control circuitry can open and close the input
and output latches. Early designs indicated that the control cycle time was much greater
than that required to perform a single 1-bit shift and add operation. Investigations revealed
that it was possible to do a 3-bit shift and add operation in the control cycle time so although
the cycle time of the multiplier could not be improved, the amount of work done per cycle
was increased and the overall performance of the multiplier improved.

As the AMULET1 multiplier is an autonomous self contained unit, it does not activate the
entire datapath for every cycle of its operation (thus saving power).

7.2 The shifter

The shifter in AMULET1 is the ARM6 barrel shifter with an added matched path for self-
timing purposes. The barrel shifter is constructed as a 32 x 32 cross switch matrix of n-type
pass transistors. The circuit is dynamic in operation with the outputs being precharged High
before a shift is evaluated. As specified by the ARM architecture, the shifter is only
connected to one operand bus and is in series with the ALU.

7.3 The ALU

ARM ALU operations fall into one of three main categories: moving data from input to
output, performing logic functions (XOR, AND, OR) and arithmetic operations (addition).
Input buffers allow optional zeroing or complementing of operands to support subtraction
(using twos-complement).

In addition to the use of the ALU for the sixteen explicit data processing instructions
specified by the ARM architecture, the ALU is used implicitly by the other instruction
classes (see section 4.3), for example, to calculate the address of a data transfer given the
base address and an offset.

7.3.1  Performance considerations

In a synchronous system, the overall performance of the ALU is usually limited by the
arithmetic logic. The speed of the addition operation is related to how quickly the carry
signals can propagate across the word. The worst case occurs when the carry propagates
across all bits in the word. In a synchronous system the clock period is chosen to allow time
for this worst case operation although typically the result will be ready much sooner. To
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reduce the time for the worst case (and hence reduce the clock period) synchronous systems
use schemes such as carry look-ahead or carry select [Eshr89].

Without the constraint of an external clock, an asynchronous ALU can be designed to be
quick for “typical” operands and slower for worse case operands; there is no need to ensure
that the worst case is equally fast, if it does not happen very often. The emphasis, with
asynchronous logic design techniques, is to make the average case operation fast but to
accommodate the worst case by allowing more time for the calculation. Synchronous
systems cannot allow more time for the worst case because the clock period is fixed.

Optimizing the ALU design for the fast addition of “typical” operands only has benefits if
the worst case is statistically rare and much worse than the average. Figure 7-2 (a) shows
the mean carry propagation distance as a function of the width of the word when the data
are random (figures 7-2(a) & (b) are reproduced with the kind permission of Dr. J.D.
Garside [Gars93]). It can be noted that the mean carry propagation distance for a 32-bit
addition is only 4.4 bits. This is much less than the worst case (32-bit).

In practice, data are not random, so to obtain a more accurate reflection of the mean carry
distance a carry length analysis of a dynamic instruction trace was undertaken. The
distribution of carry propagation lengths while running a benchmark program is shown in
figure 7-2(b). The statistics are divided into address calculations and data operations where
the average propagation distance for data operations was found to be approximately 18 bits,
whereas the propagation distance for address calculations was found to be only 9 bits.
Overall this gave a combined average carry propagation distance of approximately 12-13
bits. This is described in more detail elsewhere [Gars93].

The net result of the small average propagation distance during typical ALU operation is
that a simple ripple-carry design can be constructed which, on average, performs better than
more elaborate carry lookahead/select adders; but if the (rare) worst case is encountered it
takes longer to calculate the answer.

7.3.2  Implementation

The ALU adder in AMULET1 consists of thirty two full adders with no special acceleration
logic to speed up carry propagation. The carry signal is encoded in dual-rail format and a
completion detection circuit signals to the environment when the carry propagation is
complete. The detail transistor circuitry to achieve this is described elsewhere [Gars93].

Figure 7-3 shows the resulting silicon layout of the ALU in AMULET1 in comparison to
the ALU of the ARM6 drawn at the same scale. The asynchronous ALU of AMULET1 is
approximately 40% of the area of its synchronous counterpart. The sparse, area-inefficient,
carry-select logic can clearly be seen to the left of the ARM6 ALU.

7.4 The CPSR

The placement of the CPSR was one of the most taxing decisions taken during the design of
AMULET1, it contains the arithmetic flags and the processor mode information. The
arithmetic flags are generated and used in the ALU but are also made available to the
condition evaluation hardware. The control flags are changed either as a result of decode
information or by being directly loaded (using an ARMMRS/MSR instruction). The mode
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information is used in the primary decode to determine which subset of the register bank is
currently available to the programmer and in the memory interface to ensure that the correct
memory privileges are enforced.

The ALU decode is the earliest point at which it is known whether an instruction will
execute (i.e. whether it has passed its condition test). It is also the earliest point at which the
processor state can be changed, so it is a convenient place to store the processor state.
Placing the CPSR close to the ALU is also advantageous because of the close connection
required between the CPSR arithmetic flags and the ALU.

An instruction which changes the CPSR mode flags also changes the visible register set (see
figure B-4 for the register bank organization). The mode information is directly connected
from the CPSR to the register decode circuitry, so that the correct register selection is
performed. To ensure correct operation, an instruction which follows a mode changing
operation in the pipeline is forced to wait at the primary decode until the potential mode
change has taken place. The ALU decode (decode 3) signals to the primary decode when it
is safe to continue (i.e. the mode flags are stable and will select the correct register subset).

Figure 7-3: ARM6 v AMULET1 ALU area

(a) ARM6 ALU (b) AMULET1 ALU
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The CPSR structure consists of 2 latches connected as shown below in figure 7-4. The
active CPSR is stored in latchA with the output connected to the condition evaluation
hardware and the relevant register decode logic. The second latch holds a copy of the CPSR
while new values are being calculated. In particular, it holds the previous arithmetic flag
inputs to the ALU stable while the new flags are being calculated.

The second latch also has an important role in preserving the original CPSR during
exception entry. There are three cycles associated with exception entry; generate and issue
the exception vector, copy the CPSR to the SPSR (of the mode being entered) and finally
copy the PC into the link register of the destination mode (see section 4.3.7).

During the first cycle, the mode of the processor is changed in latchA at the same time as
the exception vector is sent to the address interface. The original CPSR is still preserved in
latch B. The second cycle of exception entry waits in the primary decode for the mode
change to take place and then, after locking the SPSR in the new mode, it progresses to the
ALU stage where the original CPSR is copied from latchB and sent to the SPSR of the new
mode in the register bank.

Figure 7-4: CPSR structure
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Chapter 8 : Implementation
To implement a complex circuit, such as the asynchronous ARM, an ordered approach to
design and verification is required. The design flow used during the construction of
AMULET1 has many similarities with that used by ARM Ltd. in the design of the
synchronous ARM processors [Furb89, Page 285].

8.1 Design flow

The overall design flow for AMULET1 is shown in figure 8-1. The design process begins
by constructing a high-level model. Initially, Mainsail [XIDA87, Comp91b], the language
used in the Compass Design Automation tools, was used but proved to be inefficient in this
application and the resulting simulations took too long to run. Instead, ASIM [Smit92], an
internal ARM Ltd. tool was used to model the processor. ASIM provides an efficient event
driven simulator and a hardware description language with a library of standard parts. Extra
models written in C [Kern88] can be added to the standard library.

A complete design of the processor was developed within the ASIM environment.
Verification was performed by connecting the asynchronous processor to a simple simulated
memory system and then loading and running the ARM validation programs. In total, over
4 million instruction cycles were simulated and it was during this time that the deadlock
situations described earlier were detected (e.g. see chapter 6).

Once a stable processor design was available, this was transferred into schematic form in
the Compass Design Automation environment. With detail schematics complete, it is
possible to begin designing the silicon geometry. The silicon layout uses efficient custom
designed cells for the datapath and standard cells from a cell library for the majority of the
control logic. When the layout of a block is complete, it is compared to the schematic using
automatic comparison tools (net compare [Comp91c]) to ensure it is correct.

8.1.1  Verification of the design

It is possible to generate static test vectors for a block which adheres to a Micropipeline
interface. This is done by placing large delays in all event wires which cross the test
interface in the high-level model. The output events of a block indicate that the output data
is valid, so a large delay in the request path means that the output data is stable for longer
and can be extracted as a test vector. A similar argument can be applied to input bundles
with large delays in the event path.

ASIM allows any level of hierarchy to be defined as a test interface for vector generation.
This allows the complete processor core to be simulated and the vectors to be generated just
for the required interface (note that all event wires crossing the interface must have had the
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delays inserted first). Once the vectors have been extracted, ASIM provides a facility to
verify that the vectors are static by re-applying them directly to the block to be tested and
observing the outputs. Experience has shown that it is relatively straightforward to generate
static vectors for a clean Micropipeline interface.

The block level test vectors are translated into the Compass Design Automation
environment and can be used to verify the block level schematics and subsequently the
extracted silicon layout.

An important consideration of a Micropipeline system is to ensure that all interfaces obey
the bundle data convention. This constrains the output data to be valid before an output
request is issued and the data must remain stable until an acknowledgement is received (see
figure 3-2 in chapter 3).

The bundle constraints are checked at two levels, first by using SPICE to examine any
matched paths or self-timing and then, at a higher level, a simple tool was written to check
the simulator output. Given a definition of data bundles and their corresponding control, it
is relatively straightforward to check that the data was stable before a transition on the
request wire and that it did not change until after a transition on the acknowledge wire.

The same verification approach was applied to the complete chip after the blocks of layout
were composed and the top level wiring connected. In addition, all test vector simulations
were run at all four “process corners” of the silicon (i.e. all combinations of fast and slow n-
and p-transistors). This can give a effective speed ratio of n- to p-transistors of 4:1 in both
directions.

To allow the design to be verified “at speed” (rather than using just static vectors), the
extracted layout of the complete chip was connected to a simulated system. The memory of
the system was then loaded with a program and the processor allowed to execute it at its
own speed. This “at speed” testing applies only to the particular point in the possible
process space to which the simulator is calibrated; to increase test confidence, the program
was executed at all four simulated process corners (again using a 4:1 spread in transistor
speeds).

The complete chip has a Micropipeline interface, so static test vectors can be generated as
described before. Programs carefully chosen to toggle a high percentage of internal nodes
can be used to generate the static production test vectors required to verify the chip after
fabrication. The static nature of the vectors allows conventional testers to be used.

Much work still needs to be done to address the problem of test and verification of an
asynchronous processor (fault simulation etc.). As many parts of the asynchronous datapath
are essentially the same as their synchronous counterparts, some of the synchronous test
techniques may be applied to them. However, techniques to verify the control need to be
further developed.

8.2 Complete organization

The overall complexity of the resulting design is shown in figure 8-2. The diagram features
details not previously illustrated:

• The memory control FIFO (mem ctrl. FIFO) is connected from the address control
information latch to the destination control (dest. ctrl.) in the data interface to
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allow the incoming memory values to be steered to the correct destination (either
the instruction pipeline (instr. pipe) or the data-in processing logic (byte align)).

• The primary decode and the address interface are connected via theLSMp pipeline
to facilitate the load/store multiple instruction (see section 4.3.6 & section 6.1.1).

• Rdgen which sequentially generates the addresses of the registers to transfer in a
load/store multiple instruction given the sixteen bit field from the instruction word
(1 bit is set for each register to transfer).

• Ngen calculates the number of registers to be transferred in a load/store multiple
instruction from the bottom sixteen bits of the instruction. The resulting value is
used in base calculations (see section 4.3.6). It is also convenient forngen to
generate the vector addresses for exception entry (see section 4.3.7) because of its
connection to the datapathA bus.

• The write bus control logic (wbus ctrl.) which arbitrates requests from either the
ALU result register or incoming memory data wishing to use the write bus.

8.2.1  Datapath VLSI organization

Figure 8-3 shows an implementation orientated view of the overall organization, with
particular emphasis on the VLSI floorplan of the datapath. The major data buses are shown
in blue and the major control dependencies are shown in red. The actual order of the
datapath blocks in the diagram are as implemented in silicon. The diagram also shows how
some of the multiplexers, shown in figure 8-2, are implemented as a shared bus with each
possible source having tri-state drivers onto the bus. For example, the ALU output latch and
the CPSR in the previous diagram are shown as being combined with a multiplexer into the
result latch. The actual implementation shows a shared bus arrangement.

8.3 Silicon layout

The complete silicon layout of AMULET1 is shown in figure 8-4. This is annotated with the
major block names so that it can be related to earlier figures in this chapter. The lower half is
the regular, custom designed, datapath, the order of which is detailed in figure 8-3. The
control section is predominately compiled standard cells. The cells are taken from the basic
cell library from ARM Ltd. with the addition of the Sutherland elements described in
chapter 3. There are two areas of the control that are implemented as PLA structures. These
are synthesized using a modified version of the ARM Ltd. PLA generator [Howa89].

Internally, the PLAs are dynamic with a self-timed matched path completion signal which
powers down the PLA after the results are latched. The modifications for use in AMULET1
simply made the completion signal available at the PLA interface. The PLA circuit, as used
in the ARM6, is a good example of a high volume self-timed circuit in use today and shows
that it is possible to have reliable self-timed circuits.
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8.4 Test devices

Although the design of AMULET1 was targeted at the VLSI Technologies CMN12 (1.2
micron) process, the first test devices were fabricated on a 0.7 micron CMOS process by
GEC Plessey Semiconductors. The silicon layout was translated onto the new process by a
series of semi-automatic geometry transformations applied by the foundry.

AMULET1 was fabricated as part of a multi-project wafer. It shares a single gate array pad
ring with other third party test circuits, with only one of the test cores connected to the pad
ring in any particular die (the last metal layer determines which core is connected to the pad
ring). Figure 8-5 shows a plot (from CAD tools) of the organization of the die with the
AMULET1 core clearly visible in the lower left corner.

Figure 8-6 shows a photograph of the fabricated devices mounted in a PGA package. The
organization of the die is as in shown the previous figure (figure 8-5) with the AMULET1
core in the lower left corner. All 256 pads are bonded out to the package but the AMULET1
core is connected to only 100 pads.
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PIPE
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Cntrl
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DATA
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Dec 2

Primary decode

Figure 8-4: AMULET1 1.2 micron physical layout
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Figure 8-5: AMULET1: 0.7 multi-project die organization

Figure 8-6: AMULET1: 0.7 micron multi-project die
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Chapter 9 : Evaluation and further work
Twenty four (0.7 micron) test devices were delivered from the foundry; ten were delivered
untested and fourteen had been successfully wafer probe tested (using the static test vectors
that were generated from ASIM - see section 8.1.1).

A printed circuit board test card was constructed to evaluate the devices further. The board
consists of an AMULET1 device, 128K of RAM, 128K ROM, a UART (for a serial
interface) and associated control logic. The test card was designed to be compatible with the
standard ARM6 PIE card [ARM92] so that the ARM6 debug monitor1 (contained in a
ROM) could be used to analyse the AMULET1 design.

The debug monitor ran successfully on the AMULET1 test card and enabled the card to
communicate with a host machine to download and run programs. All the ARM validation
programs which could run on the test card completed successfully2. Of the ten untested
devices seven were found to be functional, and of the fourteen probe tested, twelve were
found to be functional after packaging

Preliminary performance measurements using the Dhrystone benchmark have shown
AMULET1 operating at 28K Dhrystones; further refinements to the test card could well
improve on this. With no on-chip cache the performance of AMULET1 is likely to be
limited by the speed of the test card memory system.

The power consumption of the AMULET1 core cannot be measured separately on the first
test devices because the core and pads share the same power supplies (this is a consequence
of the multi-project die). Further devices are being fabricated (on a CMN12 compatible
process at a different foundry) with the core power supplies separated to enable accurate
power measurements to be taken.

9.1 Design characteristics

As a basis for comparison between AMULET1 and ARM6, table 9-1 shows the
characteristics of both chips on the CMN12 process, using performance and power figures
obtained from simulations underslow-slow conditions.

1. ARM60-PIE DEMON V1.0, ARM Ltd., 1991.
2. Some of validation programs are written in such a way that they must be loaded at address location
0 in memory and therefore cannot run under the debug monitor because it also uses the same memory
area.
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This table shows that the silicon implementation of AMULET1 is approximately twice the
cell area of an ARM6 on an equivalent process. This is also reflected in the 75% more
transistors used in AMULET1 compared to ARM6.

The performance figures for AMULET1 shown in table 9-1 are based upon worst-case1

simulation of the device running Dhrystone code compiled using a standard ARM compiler.
The ARM6 figures are the worst-case specification from the data sheet2 [ARM91b]. The
difference between the estimated performance (shown in table 9-1) and that achieved by the
test devices can be accounted for by observing that the supplied devices represent typical
silicon3 which is usually twice the performance ofslow-slow, and the transition from a 1.2
micron process to a 0.7 micron process results in approximately 30-50% speed
improvement (this figure is hard to quantify exactly).

The power dissipation figures for AMULET1 are taken from a tool which monitors all
extracted layout nodes in a simulation and calculates the energy dissipated whenever there
is a transition at a node [Davi94]. The power is calculated by summing the energy
dissipation at all nodes and averaging this value over time. The results from this power
analysis tool have yet to be verified but this is the best estimate for power consumption at
present.

The design effort required to design and implement the asynchronous organisation of
AMULET1 was comparable to the cost of producing its synchronous counterpart.

9.1.1  Area overhead

The organization of AMULET1 employs a relatively deep pipeline, which accounts for
much of the increase in transistor count and die size relative to the ARM6. The ARM6 also

a. Double Layer Metal CMOS
b. Simulated performance under slow-slow conditions
c. Estimated power consumption from simulation

1. Worst-case simulation is when both n- and p-transistors are characterised as slow and the process
is known as Slow-Slow.
2. Production ARM6 devices have been qualified at significantly higher clock rates.
3. GEC Plessey Semiconductors have measured the silicon and classified it as typical.

Table 9-1:  Characteristics of the AMULET1 compared with ARM6

AMULET1 ARM6

Process 1.2 µm DLM CMOSa 1.2 µm DLM CMOS

Cell core area 5.5mm x 4.1mm 4.1mm x 2.7mm

No. of transistors 58,374 33,494

Performance 9 K Dhrystonesb 14K Dhrystones @ 10MHz

Dissipation 83mWc 75mW @ 10MHz

Design Effort (approx.) 5 man years 5 man years
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has more compact silicon layout (approximately 14% of the AMULET1 die area is under
utilised).

The area overhead of the asynchronous control of AMULET1 can be estimated by
considering a synchronous implementation of a similar pipeline organization. The datapath
part of the design would remain broadly similar but the control for the latches etc. would be
driven from the global clock rather than individual control circuits communicating between
themselves. The control area overhead can therefore be derived by calculating the area
consumed by these individual control circuits and their event communication paths. A first
order approximation of this cost can be given by assuming all event control modules form
the overhead. Table 9-2 shows a breakdown of the event control module use in AMULET1
and the percentage of the utilised core area they use.

As well as the area of the modules themselves there is also an overhead associated with
their wiring interconnect. By examining the existing standard cell areas in AMULET1 it can
be noted that each row of standard cells has, on average, a similar area of wiring
interconnected associated with it. Therefore the estimated wiring cost given in table 9-2 is
the same as the module area. The table shows the total estimated cost of the asynchronous
control to be approximately 16% of the total core area of AMULET1.

9.1.2  Pipeline organization

Normally it would be expected that a deeper pipeline would result in an increased
throughput, however in AMULET1 this is not the case because of several factors:

• The primary decode takes too long to process instructions, so
the pipeline is never busy.

• Register dependencies between consecutive instructions cause
the pipeline to stall.

Table 9-2: AMULET1 event control module area overhead

Module Number % of Total Core Area

XOR 139 0.94

CGate 98 0.86

TOGGLE 67 2.9

SELECT 56 2.15

CALL 13 0.52

ARBITER 5 0.28

DWAIT 7 0.22

Total module area 7.87

Wiring cost 7.87

Total area overhead 15.74
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• The depth of the pipeline increases the cost of branches.
Time and resource pressure in this first asynchronous design did not allow for the primary
decode to be modified once it was realised that it represented a bottleneck, but this can be
addressed in the future. The problem of register dependencies is a function of the way the
compiler allocates registers and schedules instructions. The standard ARM compilers take
no account of inter-instruction dependencies because the performance of the ARM6 is not
affected by them, however the performance of AMULET1 can be adversely affected by
inter-instruction dependencies. To achieve optimum performance the compiler must
therefore schedule instructions to avoid dependencies between consecutive instructions
where possible. Preliminary investigations have shown that it is possible to improve the
performance of AMULET1 significantly by including such compiler optimizations.

The cost of inter-instruction dependencies remaining after these compiler optimizations
have been applied can be reduced by modifications to the processor organization to include
the last result re-use and register through-passing techniques described in chapter 5.

Pipeline depth

Retrospective analysis of the AMULET1 design has revealed that the depth of pipelining is
too great. This is partly due to FIFO buffers being conceptually easy to use within the
Micropipeline design style, and as a result too many were added. There are many stages that
contribute little (or nothing) towards performance but still cost silicon area, transistors and
power dissipation (and some stages actually decrease performance!).

The depth of the pipeline also has an adverse effect on the branch latency1. As branches
represent approximately 20% of ARM instructions [Furb89] (i.e 1 in 5 instructions) the
increased latency significantly affects performance.

9.2 Further work

Further work (sponsored by the ESPRIT OMI-DE project) is already under way in several
areas. The main objectives of the work are to revise the asynchronous core to reflect the
experience gained during the first implementation and to add an on-chip cache and MMU.
The aim of the core modifications are to improve its performance although there is much
work to do before an exact figure for the extent of this improvement can be given. Some of
the proposed modifications are discussed here and are split into four sections: base
technology, processor organisation, development tools and test.

9.2.1  Base technology

In chapter 3 we saw that there were trade-offs in different latch styles in terms of area and
speed. Preliminary investigations have show that is possible to improve performance and
reduce power consumption by adopting a Svensson [Sven89] style latch, as shown in figure
9-1. This latch requires only a single enable signal (c.f. transmission gate latches which
require the true and complement of the enable signal) so simplifying the control circuitry
required. The enable transistors can be much reduced in size in comparison to the standard

1. The branch latency is defined to be the time from a branch beginning execution until the time an
instruction from the branch target begins execution.
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latch and so the capacitive load on the enable line is reduced. Both of these factors reduce
power consumption and improve performance.This work is being undertaken in
conjunction with the OMI-HORN project [Day93].

Investigations are also under way to determine the cost of two-phase signalling in relation
to four-phase. To achieve this, the primary decode is being re-implemented in four-phase
logic so that a realistic comparison can be made.

9.2.2  Processor organization

There are several areas of the processor organization which will be revised in future
versions of the AMULET processor. The technique of last result re-use and register through
passing described in chapter 5 will be included in new designs to reduce the cost of inter-
instruction dependencies.

The primary decode in AMULET1 is one of the major performance bottlenecks in the
current design. Time pressure in the original design did not allow this to be modified but
future versions will incorporate improvements in this area.

Many of the pipeline stages in AMULET1 contribute nothing to the overall performance of
the design, therefore future version of the asynchronous processor will have a much reduced
pipeline structure with some pipeline stages merging. (Current investigations are
considering the viability of merging the shift/multiply stage with the ALU stage. Logic
would be provided to bypass the shifter when it is not required or a shift of zero is
specified).

Support for a co-processor interface will be added in future versions to enable an on-chip
cache controller and memory management unit to act as a co-processor. There are no plans
to add an external co-processor interface at present.

9.2.3  Tools

Work has begun to investigate the compiler optimization strategies which would be
appropriate for the asynchronous organization of AMULET1. This involves taking an
existing compiler (GCC [Stall92]) and modifying the code generating “back-end” to

Figure 9-1: Svensson style latch
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perform the required optimization. An example of the type of optimization being considered
is to reduce the inter-instruction register dependencies of adjacent instructions by code re-
ordering. If the number of register dependencies is reduced then the register bank will stall
less frequently on register locks so the performance should increase accordingly.

There is a need to develop formal tools to help analyse potential deadlock situations and
prevent them occurring. To this end, a high level model of the entire processor is being
constructed in Occam as part of other research [Theo93]. The Occam model is a more
appropriate starting point for any possible formal reasoning than the detailed transistor
schematics.

To verify the integrity of the layout produced, it would be convenient to have tools which
could verify statically that the bundle constraints have been satisfied. This could operate in
a similar manner to a standard synchronous timing verifier [Comp91d]. Given the
completion circuitry and the data circuitry it should be possible to check statically that the
bundle constraints are satisfied provided there is no internal feedback. As Micropipelines
operate in fundamental mode (section 1.2.2), all feedback must flow through a latch stage
(and hence a Micropipeline interface). This means it is possible to break all feedback loops
if the correct level of abstraction is chosen.

9.2.4  Test

One of the least explored areas that needs addressing in future work is that of test and
verification. The design of AMULET1 incorporated a very ad-hoc approach to test. Static
vectors were generated from the high-level model by placing large delays in the event
control wires passing through the test interface. By this means it was possible to generate
static vectors for the complete chip, so the resulting device could be tested by a
conventional tester.

Further research has begun in conjunction with the University of Hanover to investigate the
testability of asynchronous circuits (University of Hanover is a partner in OMI-DE).
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Chapter 10 : Conclusions
The design of AMULET1 has achieved the objectives set out for this work by
demonstrating the feasibility of implementing a complex commercial RISC architecture
using asynchronous design techniques. The resulting design addresses many of the difficult
issues associated with modern RISC processors such as support for exact exceptions,
backwards instruction set compatibility and pipelined operation.

The AMULET1 design exhibits several innovative features:

• The incorporation of a simple ripple-carry asynchronous ALU
adder with a data dependent propagation time which performs
better, on average, than more elaborate carry select adders.

• A novel arbiter-free register coherency mechanism which
allows register read and writes with arbitrary timing and also
allows internal ALU cycles to overtake slower external mem-
ory accesses (assuming there are no register dependencies
between the two).

• An instruction prefetch unit which has a non-deterministic
(but bounded) prefetch depth beyond a branch.

The design also includes a pipeline structure which allows asynchronous concurrent
operation of internal functional units.

10.1 Micropipelines

Micropipelines appear to offer a good engineering framework for the design of an
asynchronous microprocessor and the design details have much in common with
synchronous design. The re-use of synchronous library elements is a major advantage of the
Micropipeline approach over other asynchronous design styles, especially for data
processing operations where many bits are processed in parallel and area and efficiency are
important. In AMULET1 it was possible to use the existing silicon layout of the ARM6
register cells and barrel shifter simply by adding a self-timing path to each. This yielded a
very efficient, compact datapath layout with a comparable cost to the synchronous
implementation. The overhead of using the asynchronous Micropipeline control has been
estimated to be approximately 16%.

The flexibility of the asynchronous Micropipeline approach allows designs to be optimized
for typical operating conditions and allows resources to be concentrated on functions that
are used most frequently with rare worst-case functions being allowed more time to
evaluate (c.f synchronous design where resources are used to speed-up the rare worst-case
functions). The asynchronous design style does, however, prevent some of the architectural
enhancements often associated with deeply pipelined clocked processors (e.g. register
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forwarding) from being used, but alternative solutions to these problems can be adopted
(e.g. last result re-use). The Micropipeline design style makes FIFO buffers conceptually
easy to use, however care must be taken to ensure that their ease of use does not lead to
them being used too liberally (as was the case in AMULET1).

The robustness of the Micropipeline design style has been demonstrated by the fact that a
circuit which was originally designed for a 1.2 micron process has been successfully
translated onto a 0.7 micron process (with all process translations being performed semi-
automatically at the silicon foundry). The effort required to design and implement
AMULET1 using the Micropipeline methodology was comparable with that required for
the synchronous processor (5 man years).

10.2 AMULET1

The asynchronous design is within a factor 2 of the synchronous ARM6 in the important
parameters of performance, silicon area and power consumption, but at present it does not
show any significant advantage over its clocked counterpart. However, AMULET1 is a first
attempt at a Micropipelined design of this complexity and scale, whereas the ARM6 is a
fourth generation synchronous processor and a world leader in its class for small die area
and power-efficiency. In addition the ARM instruction set contains many features that were
defined as an artifact of the original synchronous implementation. This has caused extra
complexity in AMULET1 because of its extended pipeline structure1 and its asynchronous
operation.

The performance of AMULET1 is also degraded by conservative engineering margins; in
the first design the emphasis was placed upon functionality rather than outright
performance, and there is considerable scope for enhancing the speed and power efficiency
of the design in the future.

10.3 An asynchronous future?

Asynchronous design styles are enjoying a resurgence of interest at present due to their
immunity from clock skew and their potential for high performance and power efficiency.
Many questions remain to be answered before this potential can be fully realised. Up to
now, one of these questions has related to the feasibility of designing effective
asynchronous circuits at the level of complexity required for commercial applications.
AMULET1 answers this question by providing a convincing demonstration that complex
asynchronous circuits are, indeed, feasible.

1. A synchronous ARM with a similar pipeline structure would also encounter some of the same
problems.
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 Appendix A: Timing characteristics
This appendix contains the timing characteristics of some of the Micropipeline

library elements designed for use in the asynchronous ARM. Each cell is characterised by
simulating the extracted netlist with SPICE under worst case conditions for a selection of
loads. The exact conditions used are described in the next section. The cells analysed are
listed below:

CALL2 - 2 input call block
DMULLC2 - 2 input C-Gate with double strength drive on the input stack

to enable the gate to drive from the internal node
DXOR/DXNOR - 2 input XOR, each input requires complimentary
DWAIT2 - 2 input Decision-Wait
MULLC2R - 2 input C-Gate with reset
MULLC2 - 2 input C-Gate without reset
MULLC3R - 2 input C-Gate with reset
TOGGLE - TOGGLE element
SELECT2 - 2 input SELECT block
TLTCHR - transparent latch with true & complement enable required

A.1 Measurement conditions

The measurements are taken at the following conditions:

VDD 4.6 VSS 0.1

Temp 100oC

Process CMOS 1.2 micron, Slow-Slow transistors

All measurements in the tables are in nanoseconds (unless otherwise stated)

Inputs ramp 0-100% (0-4.6v) in 4 nS

The propagation delay is measured from the 50% point of the input to the 50% point on the
output.

The rise/fall time is measured between the 10% and 90% value of the output.
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SPICE timings for: CALL2

Change history

Signals

There are three input signals R1, R2, D and the complements nR1 and nR2. There is also a reset Cdn. There are
three outputs D1, D2, R and their complements nD1 and nD2. The forward measurement (R1/R2 -> R) is
equivalent to a DXOR and the reverse measurement (D -> D1/D2) is the same as a DWAIT2. The measure-
ments shown below are taken from the appropriate corresponding gate.

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

D -> D1/ D2 (equal load on D1/nD1 and D2/nD2)

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.51 4.22 1.81 1.39

0.12 2 3.97 4.73 2.32 1.76

0.18 4 4.40 5.21 2.85 2.15

0.24 5 4.83 5.68 3.37 2.53

0.50 10 6.70 7.69 5.71 4.23

1.00 20 10.08 11.54 10.17 7.42

D- > nD1/nD2 (equal load on D1/nD1 and D2/nD2)

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.11 2.64 2.59 2.18

0.12 2 3.28 2.89 3.03 2.51

0.18 4 3.45 3.07 3.49 2.81

0.24 5 3.60 3.28 3.91 3.11

0.50 10 4.29 4.19 5.92 4.72

1.00 20 5.54 5.71 9.78 7.56

R1/R2 -> R

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 0.63 1.31 2.01 1.48

0.12 2 0.98 1.68 2.74 1.96

0.18 4 1.31 2.05 3.52 2.47

0.24 5 1.57 2.42 4.29 2.86
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Capacitance

R 0.071PF

R1 0.145PF

R2 0.186PF

nR1/nR2 0.05PF

D 0.170PF

D1/D2 0.184PF

nD1/nD2 0.275PF

Cdn 0.227PF

0.50 10 2.50 4.10 7.95 4.65

1.00 20 4.25 7.28 15.18 8.51

R1/R2 -> R

Load Stand. Load Fall Prop. Rise Prop Rise Fall
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SPICE timings for: DMULLC2

Change history

Signals

There are 2 input signals In1, In2, and the reset signal Cdn. There are two outputs Out and nOut. The measure-
ments are for equal loads on both outputs.

Capacitance

In1/In2 0.09PF

Out 0.134PF

nOut 0.226PF

Cdn 0.105PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Out

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.39 2.09 1.71 1.28

0.12 2 2.86 2.57 2.11 1.54

0.18 4 3.28 3.06 2.61 1.94

0.24 5 3.73 3.55 3.13 2.31

0.50 10 5.55 5.61 5.46 3.88

1.00 20 9.10 9.50 9.73 6.98

nOut

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 1.14 1.73 2.78 2.01

0.12 2 1.32 1.96 3.68 2.32

0.18 4 1.49 2.14 3.60 2.69

0.24 5 1.66 2.35 3.95 2.99

0.50 10 2.32 3.18 5.85 4.35

1.00 20 3.61 4.83 9.44 7.23
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SPICE timings for: DXor/DXNor

Change history

Signals

There are 4 input signals In1, In2, nIn1, nIn2. There is a single output Out.

Capacitance

In1/In2 0.038PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 0.63 1.31 2.01 1.48

0.12 2 0.98 1.68 2.74 1.96

0.18 4 1.31 2.05 3.52 2.47

0.24 5 1.57 2.42 4.29 2.86

0.50 10 2.50 4.10 7.95 4.65

1.00 20 4.25 7.28 15.18 8.51
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SPICE timings for: DWAIT2

Change history

Signals

There are three input signals A1, A2, Fire and the reset Cdn. There are two outputs Z1 and Z2 and their comple-
ments nZ1 and nZ2. The measurements are taken with equal loads on true and complement outputs.

Capacitance

A1/A2 0.098PF

Z1/Z2 0.183PF

nZ1/nZ2 0.274PF

Cdn 0.226PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Z1/Z2

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.51 4.22 1.81 1.39

0.12 2 3.97 4.73 2.32 1.76

0.18 4 4.40 5.21 2.85 2.15

0.24 5 4.83 5.68 3.37 2.53

0.50 10 6.70 7.69 5.71 4.23

1.00 20 10.08 11.54 10.17 7.42

nZ1/nZ2

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.11 2.64 2.59 2.18

0.12 2 3.28 2.89 3.03 2.51

0.18 4 3.45 3.07 3.49 2.81

0.24 5 3.60 3.28 3.91 3.11

0.50 10 4.29 4.19 5.92 4.72

1.00 20 5.54 5.71 9.78 7.56
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SPICE timings for: MULLC2R

Change history

Signals

There are 2 input signals In1, In2, and the reset signal Cdn. There are two outputs Out and nOut. Only the true
output should be used as the complimentary output has poor drive capabilities.

Capacitance

In1/In2 0.05PF

Out 0.129PF

Cdn 0.054PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.31 2.02 1.61 1.42

0.12 2 2.51 2.24 2.06 1.68

0.18 4 2.72 2.46 2.56 1.78

0.24 5 2.87 2.69 2.92 1.92

0.50 10 3.53 3.61 4.79 2.99

1.00 20 4.72 5.37 8.59 5.20
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SPICE timings for: MULLC2

Change history

Signals

There are 2 input signals In1, and In2. There are two outputs Out and nOut. Only the true output should be
used as the complimentary output has poor drive capabilities.

Capacitance

In1/In2 0.05PF

Out 0.129PF

Cdn 0.054PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.13 1.62 1.48 1.36

0.12 2 2.33 1.86 1.92 1.60

0.18 4 2.53 2.09 2.26 1.78

0.24 5 2.68 2.30 2.77 2.01

0.50 10 3.35 3.24 4.75 2.97

1.00 20 4.52 4.99 8.57 5.12
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SPICE timings for: MULLC3R

Change history

Signals

There are 3 input signals In1, In2, In3, and the reset signal Cdn. There are two outputs Out and nOut. Only the
true output should be used as the complimentary output has poor drive capabilities.

Capacitance

In1/In2/In3 0.05PF

Out 0.129PF

Cdn 0.054PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.88 2.27 1.64 1.34

0.12 2 3.11 2.53 2.11 1.64

0.18 4 3.33 2.77 2.59 1.96

0.24 5 3.53 3.01 3.02 2.29

0.50 10 4.28 3.98 5.03 3.42

1.00 20 5.54 5.76 8.71 5.60
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SPICE timings for: TOGGLE

Change history

Signals

There is a single input In and the reset signal Cdn. There are two outputs Dot and Blank and their complements
nDot and nBlank. The measurements are for equal loads on both true and complement outputs.

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

Dot

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.97 2.52 1.62 1.26

0.12 2 3.42 3.07 2.00 1.59

0.18 4 3.98 3.61 2.47 1.97

0.24 5 4.39 4.16 3.00 2.28

0.50 10 6.63 6.49 5.15 3.80

1.00 20 10.74 10.89 9.06 7.01

nDot

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 1.46 2.19 2.87 2.80

0.12 2 1.70 2.44 3.42 3.21

0.18 4 1.95 2.75 4.15 3.64

0.24 5 2.19 3.00 4.62 4.06

0.50 10 3.21 4.31 7.39 6.27

1.00 20 5.19 6.64 12.61 10.6

Blank

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.57 3.58 1.43 1.06

0.12 2 3.06 4.13 1.80 1.50

0.18 4 3.57 4.66 2.40 1.86

0.24 5 4.10 5.16 2.70 2.27

0.50 10 6.17 7.47 4.66 3.83



SPICE timings for: TOGGLE 153

AMULET Group

Measurements taken with only Dot and Blank loaded (Temp=0C):

1.00 20 10.32 11.97 8.62 7.04

nBlank

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.62 1.96 3.44 2.78

0.12 2 2.93 2.22 3.97 3.25

0.18 4 3.12 2.58 4.62 3.77

0.24 5 3.36 2.86 5.33 4.19

0.50 10 4.41 4.02 7.90 6.38

1.00 20 6.45 6.46 13.12 10.95

Dot

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.61 2.19 1.60 1.10

0.12 2 2.71 2.35 1.93 1.32

0.18 4 2.89 2.52 2.22 1.54

0.24 5 3.06 2.70 2.54 1.66

0.50 10 3.58 3.40 3.94 2.64

1.00 20 4.50 4.73 6.69 4.42

nDot

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 1.17 1.89 2.35 2.30

0.12 2 1.17 1.84 2.27 2.20

0.18 4 1.17 1.86 2.02 2.17

0.24 5 1.17 1.91 2.00 2.17

0.50 10 1.17 1.91 1.95 2.17

1.00 20 1.17 1.84 1.92 2.17

Blank

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.24 3.22 1.19 1.19

Blank

Load Stand. Load Fall Prop. Rise Prop Rise Fall
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Capacitance

In 0.213PF

Dot 0.182PF

nDot 0.176PF

Blank 0.109PF

nBlank 0.232PF

Cdn 0.186PF

0.12 2 2.43 3.44 1.54 1.22

0.18 4 2.58 3.69 1.92 1.43

0.24 5 2.72 3.80 2.19 1.63

0.50 10 3.28 4.51 3.53 2.54

1.00 20 4.28 5.92 6.32 4.42

nBlank

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 2.41 1.69 2.88 2.25

0.12 2 2.41 1.69 2.90 2.28

0.18 4 2.43 1.66 2.88 2.28

0.24 5 2.41 1.64 2.85 2.15

0.50 10 2.39 1.69 2.86 2.06

1.00 20 2.46 1.69 2.86 2.23

Blank

Load Stand. Load Fall Prop. Rise Prop Rise Fall
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SPICE timings for: SELECT2

Change history

Signals

There are 2input signals In1 and Select and the reset signal Cdn. There are two outputs True and False and
their complements nTrue and nFalse. The measurements are for equal loads on both true and complement out-
puts.

Capacitance

In 0.168PF

Sel 0.181PF

True/False 0.194PF

nTrue/NFalse 0.278PF

Cdn 0.227PF

version author date comment

0.1 N.C.Paver 5/5/1993 initial version

True/False

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.85 4.73 1.86 1.46

0.12 2 4.63 5.71 2.44 1.85

0.18 4 5.40 6.70 3.09 2.22

0.24 5 6.16 7.63 3.47 2.62

0.50 10 9.52 11.83 6.06 4.24

1.00 20 15.64 19.71 10.30 7.48

nTrue/nFalse

Load Stand. Load Fall Prop. Rise Prop Rise Fall

0.06 1 3.56 2.95 2.77 2.36

0.12 2 4.18 3.50 3.26 2.86

0.18 4 4.83 4.05 3.82 3.43

0.24 5 5.48 4.58 4.39 3.97

0.50 10 8.19 6.93 6.75 6.28

1.00 20 13.38 11.17 11.31 10.30
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Change history

Signals

There are 3 input signals In, En, NEn, and the reset signal Cdn. There are two outputs Out and nOut. It should
be noted that the complimentary output has poor drive capabilities.

Capacitance

In 0.029pF

En 0.035pF nEn 0.058pF

Out 0.132pF nOut 0.143pF

Cdn 0.054pF

version author date comment

0.1 P.Day 5/5/1993 initial version

In -> Out (nOut)

Load Stand. Load I/P Fall Prop. I/P Rise Prop. Rise Fall

0.06 1 2.51 (1.84) 2.08 (1.08) 1.61 (2.27) 1.25 (2.98)

0.12 2 2.72 (1.85) 2.32 (1.09) 2.05 (2.15) 1.45 (3.02)

0.18 4 2.90 (1.84) 2.54 (1.09) 2.53 (2.12) 1.69 (3.06)

0.24 5 3.07 (1.84) 2.76 (1.09) 2.97 (2.10) 1.97 (3.06)

0.50 10 3.73 3.69 4.89 3.07

1.00 20 4.79 5.45 8.75 5.17

En/nEn -> Out (nOut)

Load Stand. Load En -> O/P low En -> O/P
high

Rise Fall

0.06 1 2.21 (1.58) 1.79 (0.82) 1.67 (2.11) 1.44 (2.87)

0.12 2 2.41 (1.57) 2.01 (0.82) 2.16 (1.96) 1.72 (2.92)

0.18 4 2.62 (1.58) 2.25 (0.83) 2.54 (1.94) 1.88 (2.95)

0.24 5 2.80 2.49 2.95 2.10

0.50 10 3.48 3.42 4.94 3.06

1.00 20 4.65 5.19 8.78 5.20
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 Appendix B: The ARM processor
The Advanced RISC Machine (ARM) is a 32-bit general purpose reduced instruction set
microprocessor. The 1987 ARM2 will be described first, followed by the modifications that
have lead to the ARM6.

B.1 The ARM2

The ARM2 features 27 registers each of 32 bits. The registers are organized into a set of
partially overlapping banks of registers. There are fifteen general purpose registers and a
register containing both the program counter and the program status register (PSR)
available at any time. The ARM2 supports four modes - User, Supervisor (SVC), Interrupt
(IRQ) and Fast Interrupt (FIQ). Figure B-1 shows how the registers banks are mapped on to
the four modes.

The external address bus of the ARM2 is only 26-bits wide. This gives an addressing range
of 64 MBytes. A consequence of this is that the program counter needs only to cover this
range. Instructions in the ARM2 are always word aligned so in fact only 24-bits are needed
for the program counter. The remaining bits in the 32-bit word are used to store the
processor status bits. The format of the combined PC and PSR is shown in figure B-2. The

R0

R2
R3
R4
R5
R6
R7
R8
R9
R10

R1

R11
R12
R13

R14 (Link Register)
R15 -PC and PSR

R13
R14

R13
R14

SVC

SVC

IRQ

IRQ

R8
R9
R10
R11
R12
R13
R14

FIQ

FIQ

FIQ

FIQ

FIQ

FIQ

FIQ

Figure B-1: The ARM2 register organization
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PC and PSR can be treated as a single entity for saving and loading but the PC can be used
separately when it is used as a base address.

B.1.1  Instruction set

The ARM2 instruction set is based on a load/store model. There are six classes of
instructions. The first is data operations; these perform arithmetic and logical operations on
the register contents. The status flags of the processor can be changed according to the
result of the operation if the ‘set flags’ bit in the instruction is true. This allows the
programmer to determine which instructions can change the status flags. The ARM2 also
allows all the data operations (except multiplies) to shift, by an arbitrary amount, one of the
operands before performing the operation so there is no separate shift operation.

The second class of instructions loads and stores data which transfer data between memory
and the register bank. The address in memory is calculated from the contents of a register
(the base) and the addition of either a second register or a 12-bit immediate value (the
offset). The contents of the register containing the offset may optionally be shifted before
the address is calculated. The instruction class also supports auto increment/decrement of
the base register with the option of specifying whether the change should be before or after
the base is used to calculate the current memory address (i.e. pre-/post-increment/
decrement).

The third class of instruction allows multiple registers to be transferred to or from memory
by a single instruction. The registers to be transferred are specified by the programmer. The
registers are stored to memory in a sequential manner at an address determined by the
contents of a base register. The base register is modified after the operation. How the base is
modified and where exactly the registers are stored in relation to the base address can be

N Z C V I F M1 M0PROGRAM COUNTER (PC)

31 30 29 28 27 26 25 2 1 0

Processor Mode
00 - User Mode
01 - FIQ Mode
10 - IRQ Mode
11 - Supervisor Mode

Program Counter
(Word Aligned)

FIQ Disable
0 - Enable
1 - Disable

IRQ Disable
0 - Enable
1 - Disable

Overflow
Carry/Not Borrow/

Rotate Extend
Zero
Negative/ Signed

Less Than

Figure B-2: Program counter and program status word
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configured such that various stack paradigms can be supported (e.g. empty/full ascending/
descending stacks). These instructions are intended to make procedure entry/exit more
efficient (i.e. saving and restoring registers).

The next class of instruction are branches. A special link flag is available to the programmer
to cause the address of the following instruction to be placed in the link register (R14). This
allows subroutine calls to be made. To return from a subroutine entered in this manner, the
contents ofR14 are used as the new program counter (i.e. moveR14 -> R15).

The remaining instruction classes cover supervisor calls and external coprocessors.

An unusual feature of the ARM2 is that all instructions are conditionally executed, so that
short forward branches are usually unnecessary. The instruction set is described in more
detail elsewhere [Cock87].

B.1.2  Organization

The internal architecture is 32-bit and is organized as shown in figure B-3. This shows the
register bank described previously, the barrel shifter, a 2-bit Booth’s multiplier and the
ALU. The address incrementer is used to generate the sequential addresses during
instruction prefetch and multiple register transfer instructions.The external data bus is also
32-bits but the address bus is only 26-bits thus giving an address range of 64 Mbyte.

The operation of the ARM2 is pipelined into three stages as follows:-

1. Instruction PreFetch
2. Instruction Decode
3. Execute

The execute stage is the complete datapath operation i.e. register read, shift, ALU operation
and result writeback. Each stage takes one cycle to complete so that a new instruction may
start every cycle.

The ARM2 is described in detail elsewhere [Furb89, VLSI90].

B.2 The ARM6

The ARM6 was developed to extend the 26-bit address range to 32 bits and to provide
additional modes to ease operating system design. The two new modes each have a
corresponding set ofR13/R14 registers so that the total number of registers has increased
from 27 to 31, but still with only sixteen visible at any one time. The register structure is
illustrated in figure B-4.

A consequence of the 32-bit program counter is that the processor status information can no
longer be stored in the same register. The concept of a separate PSR has been introduced to
solve this problem. There is the Current Processor Status Register (CPSR) which contains
the working flags and there is a set of Saved Processor Status Registers (SPSRs) one for
each of the privileged modes. This allows the status information to be saved across mode
changes. Two new instructions have been added to allow the status information to be
transferred to and from the CPSR and SPSR (of the current mode) to one of the general
purpose registers. The format of the new CPSR/SPSR is similar to the format of the ARM2
status flags, with the addition of 3 extra mode bits and with the I/F flags moved from bits
27/26 (as shown in figure B-2) to bits 7/6.
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REGISTER BANK
(27 32-bit registers)
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Figure B-3: ARM2 block diagram
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The general functionality of the processor remains the same as the ARM2. There is a special
mode flag that allows the ARM6 to operate as a 26-bit ARM2. This flag can be set either by
strapping a hardware pin or by changing the flag which appears in the CPSR by software.
When running in 26-bit mode, the ARM6 has only four modes and 27 registers and a
combined PC and PSR (as described in the ARM2 section). The ARM6 is described in more
detail elsewhere [ARM91].
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Figure B-4: The ARM6 register organization


