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Abstract

A fully asynchronous implementation of the ARM microprocessor has
been developed in order to demonstrate the feasibility of building
complex systems using asynchronous design techniques. The design is
based upon SutherlasdMicropipelines and allows considerable internal
asynchronous concurrencyhe design exhibits several novel features
including: a register bank design which maintains coherent register
operation while allowing concurrent read and write access with arbitrary
timing and dependencies, the incorporation of an ALU whose speed of
operation depends upon the data presented, and an instruction prefetch
unit which has a non-deterministic (but bounded) prefetch depth beyond a
branch. The design also includes many complex features commonly
found in modern RISC processors, such as support for exact exceptions,
backwards instruction set compatibility and pipelined operation.

This thesis introduces the Micropipeline approach and discusses the
design, oganization, implementation and performance of the
asynchronous ARM microprocessor which was constructed in the course
of the work.
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Chapter 1: Introduction

Most current digital design is based upon a synchronous approach. Howegatly there

has been renewed interest in asynchronous design styles where instead of a global clock to
regulate operation, the subsystems of the design communicate with each other at arbitrary
times when they wish to exchange information. Much of the recent work in asynchronous
logic design has been motivated by perceiveficdifies in certain aspects of synchronous
vLsit design. At present thesefdaitilties are being overcome but the cost is increasing as
silicon geometry sizes decrease and clock frequencies and the degree of on-chip integration
increase.

1.1 Motivation

Asynchronous design styles mayesfreduced cost solutions to several of the gmgr
synchronous design @idulties. The three main areas that may benefit most from an
asynchronous design approach are global synchronisation, performance and power
consumption. & understand why asynchronous designs migy atlvantages in these areas

it is necessary to understand the nature of the problems and how they are currently being
resolved (and the cost associated with doing so in a synchronous environment).

1.1.1 Global synchronization

With the decrease in process feature size and the increase in the degree of on-chip
integration it is becoming increasingly fititilt to maintain the global synchronization
required in a clocked system. Thefidiflty lies in distributing the clock signal across the
silicon in such a way that all elements receive a transition of the clock at the same time. The
maximum time diference between any two parts of the circuit observing the same clock
transition is known as the clock sketihe next clock transition cannot be allowed to occur

until the previous transition has propagated to all parts of the circuit. If the clock skew is
large then the clock period must be extended to ensure correct operation and as a result the
maximum frequency is limited by the on-chip skew

State of the art designs [DEC92] have demonstrated that it is possible to engineer circuits to
overcome these problems, but the cost is high. For example, in the Alpha processor (21064-
AA [DEC92a]) about a third of the silicon area is devoted to the clock drivers. The
designers of the circuit carefully modelled the delay through the clock distribution network
[Dobb92] to ensure that the clock skew was small enough to allow 200MHz operation.

Asynchronous circuits have no global clock so there is no global synchronization constraint
to satisfy and the complex detail design of driver networks is not required.

1. Very Lage Scale Integration
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1.1.2 Performance

A characteristic of normal synchronous design it that it is optimized for worst-case
conditions. The minimum clock period (and hence maximum frequency) is constrained by
the operation that takes the longest time to complete. The clock frequency is fixed so that
every cycle is long enough to allow for the worst-case operation even though, tygheally
average case could be handled in a much shorter time. The time variation between worst-
case and typical operations is usually significant, so optimizing a circuit for typical rather
than worst-case operations has advantages which are not available to the synchronous
designer

The speed of a particular operation ieeted by a number of independent factors:

» Variations in the silicon processing of CMOS circuits leads to variations in
transistor strengths between limits. The worst-case is when both n- and p-
transistors are slow and the process is classifietbassiow. Transistors from a
typical process usually operate at approximately twice the speed of transistors from
a slow-slow process and transistors fronfaat-fast process usually show a factor
four increase in speed ovapw-slow transistors. As a process matures a higher
percentage of the devices fabricated fall intotipecal category and the process
variations are much reduced. Howeverany high performance processors take
advantage of leading edge technologies where the process variation may be high.

* Logic functions may have certain input data values that require more time to
evaluate than the average case. For example, a ripple-carry adder where the carry
has to ripple through all the bit positions requires more time for the result to
become stable than a carry that only ripples across a small part of the data word.

» The power supply voltage and temperature of a CMOS cirdeittafits speed.
The operation becomes slower with a decrease in supply voltage or an increase in
temperature and becomes faster if the temperature is lowered or the supply voltage
is raised (there are limits to the extent of voltage and temperature variations to
ensure the circuits can still operate).
For a synchronous system, the fixed clock period must be set to accommodate the situation
where the worst-case of all these factors exists at the same time.

With an asynchronous system it is possible to construct circuits optimized for the typical
case; worst-case operations simply take longer when required (there is no fixed clock period
during which the operation must be completed).

1.1.3 Power consumption

Power consumption is becoming increasingly important in the gengemarket of hand

held portable computing equipment [Lind92], where battery life is at a premium. Power
consumption is also becoming a problem in high performancelFijS)@essors with recent
designs dissipating 20 - 30afts [DEC92, Sun92], which leads to challenges in packaging
and system design to remove the generated heat.

1. Reduced Instruction Set Computer
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In CMOS, the power dissipated is proportional to the frequency of the clock [Eshr89], so as
the clock frequency increases the power dissipated also increases accobBoghasing

the power supply voltage from 5V to 3V reduces the power by a factor of three, but there
are limits to how low the supply voltage can go before the device stops functioning
correctly

The power reduction tdred by the shrinking of process geometries is usudtgioby an
increase in clock frequency and an increase in the functionality integrated on a single
device. If the rate of increase in power consumption remains unchecked then this will
shortly lead to a power (and performance) limit restricted by heat dissipation. A recent
design [Joup93, Hamb92]) has demonstrated a packaging technique involving a
thermosiphon capable of cooling a 150W device. This again shows that there if there is
sufficient demand an engineered solution can be obtained but again the cost is high.
Asynchronous design styles mayesfanother avenue to reducing the power consumption.

In a synchronous system, transitions of the clock are distributed across the entire chip on
every cycle, so all parts of the circuit are activated and dissipate power whether they are
needed or not. For example, in a microproceskerfloating point unit may not be required

for a particular instruction but it must still be clocked on every cy@ehfiiques have been
proposed for disabling the clock in areas of the circuit that are not in use by adding logic
functions into the clock bidrs. This makes the problem of global synchronization even
more dificult, so it is not a feasible solution for systems with high clock frequencies.

An asynchronous system, on the other hand, only activates a particular part of the circuit
when it is actually required and so does not dissipate any power in subcircuits that are not
required.

1.2 Basic concepts

There are a few key concepts fundamental to the understanding of asynchronous circuits:
the timing models used, the mode of operation and the signalling conventions.

1.2.1 Timing model

Asynchronous circuits are classified according to their behaviour with respect to circuit
delays. If a circuit functions correctly irrespective of the delays in the logic gates and the
delays in the wiring it is known af&lay-insensitive. A restricted form of this circuit known

as speed-independent allows arbitrary delays in logic elements but assumes zero delays in
the interconnect (i.e. all interconnect wires are equi-potential). Firfatlye circuit only
functions when the delays are below some predefined limit the circuit is kndeunasd-

delay.

1.2.2 Mode
Asynchronous circuits can operate in one of two modes. The first is Gaidainental
mode and assumes no further input changes can be applied until all outputs have settled in

response to a previous input. The secomalt/output mode, allows changes to the inputs
while the asynchronous circuit is still generating the outputs.
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1.2.3 Asynchronous signalling conventions

A communication between two elements in an asynchronous system can be considered as
having two or four phases of operation and a single bit of information can be conveyed on
either a single wire or a pair or wires (known as dual-rail encoding).

Two-phase
In a two-phase communication the information is transmitted by a single transition or

change in voltage level on a wire. Figure 1-1(a) shows an example of two-phase
communication.

Request
Sender Receiver
Acknowledge
Request \ j\ -
-
Acknowledge —
1st communication 2nd communication

(a) Communication protocol

_/_:_\_

(b) transition direction not important

Figure 1-1: Two-phase communication protocol

The sender initiates the communication by making a single transition on the request wire;
the receiver responds by making a single transition on the acknowledge wire completing the
two phases of the communication. The electrical level of the wires contains no information,
only a transition is important and rising or falling transitions are equivalent (see figure 1-
1())

There is no intermediate recovery stage, so that if the first communication resulted in a
transition from Low to High the new communication starts with a transition High to Low
(see figure 1-1(a), 2nd communication).
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Four-phase

With four-phase communication two phases are active communication while the other two
permit recovery to a predefined state. Figure 1-2 shows an example gihémer
communication; in this example all wires are initialised to a logical Low level.

Request
Sender Receiver
Acknowledge
- _ﬁ—ﬁ_
Acknowledge —— I |
1st communication 2nd communication

Figure 1-2: Four-phase communication protocol

The communication is initiated by the sender changing the request wire to a High level to
indicate that it is active. The receiver responds by changing the acknowledge wire to a High
level also. The sender observes this change, indicating that the communication has been
successful, and then changes the request wire back to Low to indicate it is no longer active.
The receiver completes the fourth phase of the operation by changing the acknowledge wire
back to a Low level to indicate that it too has become inactive.

After completing the four phases of a single communication, the voltage levels on the wires
have returned to their initial value (c.f. two-phase, where this is not the case).

Single-rail encoding

A single-rail circuit encodes information in a conventional level encoded m&memwire

is required for each bit of information. If the information is a data value, then a typical
encoding would use a Highdd) level to correspond to a logic ‘1’ and a Low lewés) to
represent a logic ‘0’

Dual-rail encoding

A dual-rail circuit requires two wires to encode every bit of information. Of the two wires,
one represents a logic ‘0O’ and the other represents a logic ‘1’. In any communication an
event occurs on either the logic ‘0’ wire or the logic ‘1’ wire. There cannot be an event on
both wires during any single communication (a value cannot be ‘0’ and ‘1’ at the same time

in a digital system). Similar]yin every communication there is always an event on one of

the two wires of each bit (a value has to be ‘0’ or ‘1"). It is therefore possible to determine
when the entire data word is valid because an event has been detected on one of the dual
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rails of every bit in the data word. Thus timing information is implicit with the data to
indicate its validity The event that is transmitted on one of the dual rails can either be two-
phase or fouphase.

There are various combinations of two-/fqirase and single-/dual-rail protocols that can

be used. Fouphase, dual-rail is popular for delay-insensitive asynchronous design styles.
The research described in this thesis employs a combination of styles. The control circuitry
is predominately two-phase, single-rail, although {fol@ase is used where it is more
efficient to do so. Dual-rail is also used but only in a few specialised applications. The
datapath part of the design uses standard single-rail logic to implement the functional units.

Overall the design adheres to the bounded-delay timing model (although some parts may be
considered delay-insensitive) and its pipeline stages operate in fundamental mode.

1.3 Objectives and thesis structug

The objective of this work is to investigate whether it is possible to build commercially
realistic complex circuits using an asynchronous design style and then assess what
advantages the circuits designed mdgrofflo demonstrate the asynchronous methodology
adopted (Micropipelines), an asynchronous implementation of thelA;RM:essor was
designed and fabricated on a CMOS process.

1.3.1 Structure of the thesis

A survey of recent work in the area of asynchronous logic design is presented in chapter 2
and an in-depth description of the Micropipeline design methodology and implementation
is described in chapter 3. Theganizational features of the asynchronous ARM processor
are described in chapter 4, including how the ARM instruction set is mapped onto an
asynchronous ganization. Chapters 5, 6 and 7 provide more detail about the register bank,
memory interface and the execution pipeline respectivehapter 8 brings together the
material of chapters 5, 6 and 7 and shows how the compd@xiaation is mapped onto
silicon, both in terms of design flow and VLSpanization. Chapter 9 evaluates the design
and proposes further work (much of which is already underway).

Chapter 10 describes the conclusions that have been drawn so far from this work. Chapter
11 is the bibliographyAppendix A contains the SPICE characterisation figures for the
event control modules described in chapter 3 and appendix B gives a brief overview of the
ARM architecture.

1.3.2 Author's contribution

The design and implementation of an asynchronous processor is a complex task undertaken
by a group of researchers (two full-time Research Associates, including the, amithor

three members of academic §taiThis section seeks to clarify the contribution of the
author to the work described in this thesis.

Chapter 3 contains mainly background information about Micropipelines and the
implementations that were chosen. The author contributed to the implementation and

1. The ARM (Advanced RISC Machine) is a 32-bit RISC processor (see appendix b)
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characterisation of the cell library (although most of the cells were based on existing
designs) and also performed the comparison of Micropipeline latch styles (section 3.4).

Chapter 4 contains a high-level architectural overview of the complete proddssavork
was undertaken by the whole group but with substantial input from the .author

Chapter 5 and chapter 6 (with the exception of the incrementer in section 6.1.7) contains
work primarily undertaken by the author

Chapter 7 contains a brief description of the execute pipeline. The author did not contribute
directly to this work and it is included for completeness in order that all aspects of the
asynchronous microprocessor design may be fully described.

Chapter 8 describes the design flow used and the silicon implementation. The author
contributed to the design flow by writing a test vector translation tool and the bundle
checker and had a substantial contribution to the silicon layout.
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Chapter 2 : Related work

The Macromodules project [Clar67] in the early 186f#monstrated the modular design of
asynchronous circuits and the ease with which designs could be put togetherarly

work of Miller [Mill65], Molnar [Clar74, Moln83, Moln85], Seitz[Seit70, Seit80], Unger
[Unge59, Unge69], Hlinan[Huff54] and Keller[Kell74] laid the foundations on which

most of the recent research in asynchronous design is based. The asynchronous
phenomenon of metastability was discovered during the early work [Chan73, Kinn76].

As the general aspects of asynchronous design methodologies are beyond the scope of this
thesis a brief description of current asynchronous design styles is presented here; a more in-
depth survey and bibliography are presented elsewhere [Gopa90, Hauk93, Asyn93].

2.1 Automatic synthesistools

There are three predominate styles of automatic synthesis of asynchronous circuits. The
first is based on compiling from a high level language to a VLSI circuit. The second
technique uses a graphical description as the starting point and the third uses asynchronous
finite state machines to describe the circuit.

2.1.1 CSP based compilation

A number of compilation schemes derive asynchronous VLSI circuits from high-level
languages based upon Communicating Sequential Processes (CSP) [Hoar78, Hoar85] and
Occam [Inmo83] derivatives.

Brunvand [Brun89, Brun91] presents a technique for compiling a subset of Occam into
delay-insensitive control circuits with bounded-delay datapath elements. @t dhthe

design flow [Brun91a] is a set of control and data modules rather than a transistor level
circuit. Circuit transformations can be applied after compilation to optimize the resulting
circuit in a similar manner to peephole optimizers in a software compiier\VLSI circuits
constructed using this technique have been mapped onto CMOS, Field Programmable Gate
Arrays (FPGA) and Galium Arsenide technologies [Brun91b, Brun91c, Brun92]. A simple
RISC processor has been implemented on multiple FPGA elements to demonstrate the
practicality of the approach [Brun93].

Martin [Mart86, Mart89, Mart90] and Burns [Burn87, Burn88] describe a technique for
translating from a “program notation” based on CSP and Dijksgqaarded-commands
[Dijk76] to a fourphase delay-insensitive circuit. The synthesis method has been
demonstrated with numerous circuit examples [Mart85, Mart85a, Mart85b]. An
asynchronous “RISC style” microprocessor has been developed [Mart89a, Mart89b] that
demonstrated the feasibility of the approach, however the processor constructed was a very

25



simple 16-bit machine with no support for thefidilt areas of hardware interrupts and
exact exceptions.

Van Berkel at Philips Research also describes a compilation system [vBer88, vBer88a,
Nies88] based upon CSP and Dijkstrguarded-command language. The term “VLSI
programming” is introduced to describe the process of writing a program to generate a
VLSI circuit and the languagengram [vBer91] is used as a VLSI programming language.

Compilation begins with the translation of then§ram program into an intermediate form
known ashandshake circuits [vBer92]. A handshake circuits is a network of components
connected together by point-to-point channels which interact only by transition signalling
along the channels (there are no global variables). The handshake circuit is converted into a
netlist of standard-cell VLSI modules for final silicon layout.

The resulting VLSI circuits use a delay-insensitive, {fpliase, dual-rail protocol for
communication between components (the intermediate form handshake circuits use a two-
phase delay-insensitive protocol).

The Tangram compilation system is a well integrated design system which incorporates a
suite of tools which include:

. A translator from @ingram to handshake circuits and behav-
iourally equivalent C programs.

. An analyser which produces circuit level statistics.

. A compiled C-Code simulator for coarse timing.

. A converter into VHDL and a VHDL simulator for detailed
timing.

. A standard-cell net-list generator and a standard-cell layout
package.

. A test-trace generator

The system has been used to generate a number of VLSI circuits [Saei88, Kess90, Kess90a,
Kess91, Kess92].

To address the area overhead associated withahgrdm use of dual-rail encoding for
datapath elements further work is being undertaken in the OMI-EXACT project, in
conjunction with the AMULET group at the University of Manchester [Edwa93], to
investigate the use of two-phase, bounded-delay techniques to reduce the area overhead.

Gopalakrishnan and Akella present a design environment for the specification, simulation
and synthesis of asynchronous circuits [Gopa93, Akel91], their specification language is
also based upon CSP

2.1.2 Signal transition graphs

A methodology for synthesizing speed-independent circuits from Statesifion Graphs
(STGs) was proposed by Chu [Chu85, Chu86a, Chu86b, Chu87]. STGS are similar to Petri
Nets whose transitions are labelled with signal names and whose places form the arcs of the
graph. When a transition fires in an STG the associated signal in the circuit changes. By
restricting the allowable structure of an STG it is possible to generate a state assignment
graph from which a circuit may be realised. A technique knowiCadraction was
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developed to help implement STG circuits without the exponential explosion in complexity
often associated with Petri Net circuits.

Several other researchers use the STG format to described asynchronous circuits and they
have developed algorithms for STG transformations and synthesis [Lin91, Lin91a, Lin92a,
Meng89, \anb90a, ¥nb90b, ¥ko92].

2.1.3 State machines

Davis, Coates and Stevens describe a collection of synthesis toolS | NtiEAyenerating
hazard free asynchronous finite state machines [Coat93]. The specification is a state
diagram with a restriction on the allowable input changes (known as burst-mode). The tool
generates a schematic at the complex gate transistor level (c.f. CSP compilation
methodologies which tget predefined modules). The tool has been used to develop a
complex communication chip with over 300,000 transistors [Coat93a].s Dilrifier

[Dill89] has been used tanalyse the resulting circuits for hazards.

Nowick and Dill have presented a technique for the automatic synthesis of asynchronous
state machines using a local clock [Nowi91, Nowi91b, Nowi9@gether with ¥in they

have also proposed a technique for the synthesis of 3D state machin@2][dnd an
extension to the specification of burst-mode to allow more concurrena@2¥]. Much of

the work of Davis, Dill and Nowick is being integrated into a single tool called Stetson
[Daviog].

2.2 Other related work

Myers and Meng present a synthesis method that uses timing constraints to generate a timed
asynchronous circuit [Myer92, Myer93]. Circuit examples are given to demonstrate the
advantages of this approach in comparison to speed-independent approaches. Beerel and
Meng [Beer92] describe a CAD tool for the synthesis of speed-independent asynchronous
control circuits that use only basic gates. Lavagno [Lava92] describes a design technique
where control circuits are designed using synchronous techniques and extra logic is added
to remove hazards.

Josephs and Udding describe an algebraic approach to the design of delay-insensitive
circuits [Jose90, Jose91] which allows the functional behaviour of primitive delay-
insensitive elements to be captured by algebraic expressions. Their sd>chliddebra

allows the designer to specify the circuit and the constraints that must be met by the
environment preciselyThe algebra also supports verification of the design against its
specification. Simple designs using the algebra have been demonstrated [Jose90, Jose92a].

Ebegen [Eber91] also presents a formal approach to the design of delay-insensitive circuits
from a specification based upon CSP and Dijkstgiarded-command language. A
modulo-N counter circuit developed using this technique exhibited a bounded response
time and bounded power consumption [Eber92].

Rem [Rem90] provides a precise mathematical definition of delay-insensitivity
decomposition and speed-independence and the issues of using delay-insensitive circuits
are discussed by Martin [Mart90a] and van Berkel [vBer92a].
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Williams addresses the issues of latency and throughput tresde@ra$elf-timed speed-
independent pipelines [WB0] and also describes a 54-bit self timed CMOS division
implementation [VWI91, Will91a].

2.3 Summary

The recent work described in this chapter has focused on novel design and verification
technigues with emphasis on mathematical approaches to the automatic synthesis of
asynchronous circuits. These techniquetesifom several drawbacks:

. They are limited to the size, type and complexity of circuit
they can process.

. The resulting circuits often carry adg@rarea and performance
overhead.

It is the authors opinion that these techniques had not matufedesdfy to synthesise an
asynchronous implementation of an ARM processor where the results are of practical
proportions. Therefore a less formal engineering approach, baseiigropipelines, was

used to build the asynchronous implementation of an ARM processor

2.3.1 Micropip€elines

Sutherland [Suth89] describes a methodology called Micropipelines for the design of
asynchronous systems using a two-phase bounded-delay protocol (Micropipelines are
described in detail in chapter 3).

Gopalakrishnan investigates some unusual Micropipeline circuits [Gopa93] and the
dynamic reordering of instruction sequences using a modified Micropipeline [Gopa92]. The
AMULET group at Manchester University have investigated various aspects of
Micropipeline designs.

2.3.2 AMULET group Micropipelines

Furber Paver and others give an overview of the design of the asynchronous ARM
processor [Furb92, Furb93a, Furb93b, Furb93c, Furb94, Pave93]GBeside and Paver

also discuss detailed aspects of the design [Day92, Day93, Gars92, Gars93, Pave9l,
Pave92a, Pave92b]. Other researchers within the AMULET group at Manchester University
are constructing a bipolar implementation of the asynchronous ARM processor [Kell93].
The use of Micropipeline design styles in cost sensitive consumer products is being
investigated in conjunction with Philips Research under the OMI-EXACT project [Farn93,
Farn93a, Farn94]. Wk on the OMI-HORN project at Manchester is investigating the
application of asynchronous techniques for low cost and low power microprocessors in
conjunction with INMOS Ltd. MSc research within the AMULET group has investigated
cache structures suitable for an asynchronous processor [Mehr92], the high-level modelling
of Micropipelines [Bn92], and the architectural features desirable for low power
asynchronous microprocessors [Ende93]. PhD research is investigating the modelling of the
asynchronous ARM microprocessor using Occam as a description language [Theo093].
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Chapter 3: Micropipelines

In the Turing Award lecture of 1988 Ivan Sutherland outlined a framework for designing
asynchronous circuits [Suth89]. The lecture, entitled “Micropipelines”, included a
description of a library of circuits that can be used to build asynchronous control structures
and a technique for encapsulating asynchronous sub-circuits using a predefined interface.
These basic sub-circuits can then be connected together to form asynchronous pipeline
systems whose communication protocol was also described in the lecture.

3.1 Basic concepts

Micropipelines use a two-phase bundled data interface as illustrated in figure 3-1 below.
This interface has an arbitrary number of data bits accompanied by two signalling wires
called RequestReq) and AcknowledgeAck). The communication protocol used by the
sender and receiver is illustrated in figure 3-2. Heresémeler prepares the data during its
active phase (denoted by the grey area) and, when the data is valid (denoted by the white
area), signals this to the receiver by generating a transition (in the first case from Low to
High) on theReq wire. The receiver then begins to process the data. When the receiver has
finished with the data on its input the sender is signalled to indicate that the data has been
received. This acknowledgement is transmitted by generating a transition Ack tivere

(the transition in this case is also Low to High). On receivingckrthe sender can remove

the data and begin preparing the next valaring the next cycle, after the sender has
prepared the next set of data, the request wire this time makes a transition from High to
Low. In keeping with the two-phase philosophy the direction of the transition is not
important, only that one has occurred. Again, when the receiver has processed the data, it
signals back to the sender with a transition (also from High to Low) on the acknowledge
wire.

Req

Y

Sender Data > Receiver

Ack

Figure 3-1: Bundled data interface
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Req / ﬂ o

Data
Ack k 4 \‘\
Z Sender’s Receiver’s
Action " Action

Figure 3-2: Thetwo-phase bundled data convention

Micropipelines are considered bounded-delay because the data are constrained to be valid
before the request and therefore the delay on the data must be less than the delay on the
request i.e. it is bounded. The requirement for the data to be valid before a request is issued
is known as the bundled-data delay constraint.

3.1.1 Event control modules
To ease the design of circuits using transition signalling, Sutherland proposed a library of
basic building blocks, as shown in figure 3-3. The first element shown here is the exclusive

OR gate XOR). This circuit acts as th@eR function for events in that an event arriving on
either input will cause an event on the output. For correct operation the envirbnment

!

-

o

(@) XOR (b) Muller C-Gate (c) TOGGLE
--—{d1 . dife—
SELECT i u
True False 6 e E
~-a— d2 < 2L —
(c) SELECT (d) CALL (e) ARBITER

Figure 3-3: Event logic library

1. The environment is the term used to describe the circuits within which an event module is placed
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ensure that events do not arrive simultaneously on both inputXRezlements are often
called MERGE elements because they are used @em®p event streams into one.

The Muller C-Gate [Mill65] (referred to as tiieGate for brevity), figure 3-3(b), acts as an

AND function for transition events. Here each input must receive an event before an event
is generated on the output. TieGate is also known as a RENDEZVOUS element
because it only enables events to continue when there has been an event on both inputs.
Various forms ofC-Gate are useful with dferent numbers of inputs some of which may be
initialised to an active state (see section 3.3.2). The primed inputs are indicated by placing
on small circle on them.

The TOGGLE (figure 3-3(c)) steers incoming events to alternate outputs. After
initialisation the first input event is steered to the output marked with ®dot The next
event is steered to the other outpBta(k) and then the cycle repeats for further input
events.

TheSELECT block (figure 3-3(c)) also steers events to one of two outputs. The destination
here is determined by the value of the Boolean select signal (indicated by the diamond in
figure 3-3(c)). A High input on the Boolean select line causes the input event to be steered
to theTrue output, a Low input causes the event to exit viaRélee output. The Boolean

signal must be set up before the arrival of the event and must not change close to the time
the input event arrives; this is a constraint which the environment must satisfy to ensure
reliable operation.

If two circuits share access a single sub-circuit the interaction can be controll€Alhy a
block (figure 3-3(d)), with the two circuits submitting requestslof r2 respectivelyThe
circuit which submits a requestl(& r2 must be mutually exclusive) has the request routed
to the request outr and on to the sub-circuit. When the sub-circuit has completed
processing it returns an acknowledggtb theCALL block where it is steered back to the
correct calling circuit, eithedl or d2.

The CALL block is analogous to a procedure call in software where a common subroutine
is called from two dierent places in the main program. The block is configured so that the
acknowledge is steered back to the correct calling circuit; the software equivalent of this
action is returning to the stored return address.

The ARBITER (figure 3-3 (e)) is used to control the interaction between two asynchronous
event streams. As the two streams can present requests at arbitrary relative times, the
arbitration logic is inherently prone to metastahilitiernally theARBITER must be able

to handle metastable states while still presenting valid logic levels at its interface.

3.1.2 Metastability

Metastability is the phenomenon whereby non-digital logic values are seen at the output of
a state storing element caused by the input to the element changing too close to the sample
point of the input. The metastable value on the output can persist for an arbitrary time
before eventually settling to one of the valid digital values.

The behaviour of a metastable system can be modelled mathematrcggrticular the
probability of the non-digital values persisting on the output can be shown to be a negative
exponential function of time [Cour75, Hors89].
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In a traditional clocked system, synchronisation is performed by sampling an input, waiting
a time calculated to ensure that the probability of the metastability persisting is extremely
small, and then sampling the output to determine its value. All synchronous systems have a
finite (but small) probability of synchronisation failure because the output sample point is
fixed by the clock period. There is a tradéodtween the reliability of a system and the
length of time allowed for metastability to be resolved.

In an asynchronous system it is possible to detect metastability and delay any output until
the metastability is resolved. TWRBITER proposed by Sutherland takes two (possibly
simultaneous) input requests, arbitrates between them, and when a definite decision has
been made issues a grant signal to whichever output was choseARRBhEER can be
combined with theCALL block to enable the two processes which are not mutually
exclusive to share a common sub-process.

3.1.3 Event-controlled stor age element

The blocks described above can be used to compose transition signalling control structures.
To construct a complete system also requires some state storage elements. Sutherland
proposed a latch based storage element with two transition signalling control wires termed
“capture” and “pass”. Figure 3-4 shows one of Suthertamuiplementations and the
symbol used to denote it.

During initialisation the latch is reset to a transparent state where the input is connected
through to the output. When a capture event occurs the input is disconnected from the
forward inverter forming the path to the output. The output of this inverter is now connected
via an inverter back to its input, forming a state-retaining loop. This loop is still connected
to the output, which therefore reflects the previous or “latched” value of the input and does
not change with subsequent input changes. The input is now connected to the lower forward
inverter When a “pass” event arrives the output is switched from the upper inverter loop
previously described to the lower inverter pair once again allowing the input to flow
through to the output but this time through the lower invefiee latch is again transparent

and theCapture-Pass sequence may repeat.

The Capture-Pass latch and the transition signalling library building blocks can be used to
form Micropipelines.

Capture Pass
Done I
{ OQ C * Pd
,._[>o— 8
Din;l/ ~~—]>— Dout Ne ¢ >
VB 2 o
C ]
< o -
Capture ¢ T

Done Pass

Figure 3-4: Event-controlled storage element
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3.2 Micropipelines

Sutherland assigned the name Micropipeline to a simple form of event-driven elastic
pipeline. The simplest Micropipeline is one in which there is no processing in between
pipeline stages. Micropipelines cause data ordering to be maintained so that data exits the
pipeline in the same order that it entered. This is referred to as a First In First Out (FIFO)
queue.

3.2.1 A Micropipeline FIFO

Figure 3-5 showsC-Gates and Capture-Pass latches configured to form a 4 stage
Micropipeline FIFO. The operation of the FIFO begins with the data being presented to the
first Capture-Pass latch viaDin. Initially all the event wires are Low and all the latches are
transparent. Th&in signal arrives at the firs€-Gate (as a Low to High transition) to
indicate that the data is now valid and may be latched. The other input to this gate is pre-
initialised, so that although no event has yet arrived fRahthe input of theC-Gate is

primed and th&in event propagates to the latch control circuits, closing the first latch. The
“capture done” Cd) control wire indicates when the latch has closed and this generates an
acknowledge event olin. Once this operation is complete the data may be removed from
the input to the FIFO. The “capture don€tj event is also fed into a delay unit in the path

to the next stage of the FIFO. This slows down the event signal thus giving the data time to
propagate through the rest of the first latch stage and to arrive at the second stage, ensuring
that the bundled-data delay constraint for the second stage is not violated.

The delayed event arrives at the priniaate in stage two. The data is now safely set up

at the input of the second stage and the latch closes after the event propagates through the
C-Gate. Again, once closed, the stage signals back to its predecessor that the data is no
longer needed. This causes the first stage to become transparent and primes@s input
Gate so that a subsequeRtn may propagate straight through to close the latchRi&in

event which arrives before the latch has opened is stalled @t@ate awaiting the latch

empty (pass doneRd) event.
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Figure 3-5: Simple Micropipeline FIFO
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The control signals continue to ripple down the FIFO tow&ulg, latching the data at

each stage and releasing the previous stage as they progress. Eventually the data and its
corresponding everdrrive at the output and the environment is signalledRout to

indicate that the data is now available@wut.

If the data is not removed from the output and more data is added at the input, the incoming
data progresses down the pipeline until a forward request reaches a non-empty stage. As
described above, a full stage will be inhibited by @&ate from processing any further
requests until it is first emptyrhis may eventually lead to all the FIFO stages becoming
full, the FIFO will then remain back-logged until data is removed from its output.

3.2.2 Micropipelineswith processing

The simple Micropipeline FIFO can be extended to include processing functions by the
addition of logic interspersed between adjacent latch stages (figure 3-6). This operates in a
similar manner to the empty FIFO with events rippling down the Micropipeline. The delay

in the forward request propagation path must be increased to allow for the delay incurred by
the data passing through the processing logic.

More complex structures, such as forking orgmeg pipelines, can be constructed with the
aid of other library elements (iIRELECT, XOR etc.).

Rin (DELAY) DELAY Rout
cgpd Cng CaF’d Cdgp
@ [ @ ©
n.l O n_l @) D.l @) D_I
in—Ns & 340 Ne o s—HoO Ne ¢ 340 Ne ¢ s
Din —l/g 3 & 8 12 3 § 8 l/g 3 a 8 12 3 é Dout
o o Q o
I - I | I | 5]
O O O ]
Cd P c Pd Cd P [ Pd
Ain - (DELAY) DELAY =— Aout

Figure 3-6: Processing Micropipeline

3.3 Event control module structures

The review of Micropipelines described so far is based upon the work presented by
Sutherland in the dring Award lecture. & construct a Micropipeline system an
implementation of the basic event module library is required. This section describes the
event module implementations chosen for the asynchronous microprocessor
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3.3.1 Exclusive OR gate

Figure 3-7 shows two standard implementations of an exclusive OR gate, (a) shows a
standard eight transistor implementation and (b) a six transistor version [Shoj88]

The eight transistoKOR assumes that both the true and complement of both inputs are
available; if this is not the case they must be generated locally at the cost of an inverter for
each input (2 transistors). In the course of the design of the asynchronous ARM processor it
was observed that in most cases at least one complement can be made available by the
environment.

The six transistoiXXOR needs the complement of only one of its inputs. Initially this
appears a more costfeftive XOR in terms of the number of transistors; however the
circuit sufers from a chaye sharing problem. Consider the following case: Initiadlyand

In2 are High. The transmission gate is turnedaoid the output is pulled low via the n-
transistor stack. Ifn2 goes Low (ancahin2 goes High) then the n-transistor stack turrs of
and the transmission gate turns on. The transmission gate initially has a High at one end
(In1) and a Low at the othe®(it). The resulting chage-sharing causes a glitch to appear on
the Inl input. A glitch is efiectively 2 transitions and would cause unexpected events to
propagate through the control circuitry if it passed the switching threshold of gates
connected to it. Analysis with SPICE [Nage73] revealed that the glitch could reach a
voltage of 0.8 VThe circuit was discarded on two grounds:

. Every instance of the gate would need to be checked to ensure
that the glitch did not cause problems with its immediate envi-
ronment.
. Any glitches generated by other circuitry could be mistaken as
XOR glitches instead of real errors.
The eight transistoXOR has therefore been used with additional local inverters to generate
the complements of the inputs as required.

In1 {1 F— ninl

——
nin2 *1 |C*In2 iz I
Out In1 — Out
In2 —| |— nin2 T
In2 —
In1 - nin1 S
(a) Eight transistor XOR (b) Six transistor XOR

Figure 3-7: Exclusive OR gates
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3.3.2 Muller C-Gate

Various implementations @-Gates have been proposed [Suth86]. The one adopted in the
asynchronous ARM design is based upon the dynamic Muller C-element described by
Sutherland. It was chosen in preference over the other designs on grounds of simplicity and
reduced transistor count.

The dynamic Muller C-element can be made pseudo-static by the addition of a weak
feedback inverter to maintain the state of the intermediate node (see figure 3-8). The
strength of the feedback inverter can be madecsiritly low (e.g. 1fsth normal strength)

that it incurs a negligible performance penalty on the gate overall.

The operation of the gate is quite simple. When both inputs are Low the p-transistors are
turned on and the intermediate nogeig pulled High thus forcing the output LoWhen
eitherInl or In2 makes a transition to High the pull-up stack is turnécuwodi is floating;

the state of the gate is retained however by the weak feedback inverter

When bothHnl andin2 have made transitions so that they are both High the n-transistors are
turned on causing the intermediate node to be pulled Low and hence the output High. This
sequence of operations is repeated for High to Low transitions of the input.

All event modules with internal state retention are designed so that they can be initialised
into a known state. The choice of initial state is arbitrary but to simplify circuit design all
event modules were defined to reset Ldwe C-Gate implementation therefore contains
initialisation circuitry to enable the output to be reset Low regardless of the state of the
inputs. The reset signaCdn - Clear down) is active Low Early designs of this gate used
only a pull-up p-transistor to reset the gate. This required the co-operation of the
environment to ensure that the inputs were not both High during initialisation (hence
turning on the n-transistor pull-down stack in opposition to the reset pull-up). Practical
circuits often contain loops where it was not possible to ensure that the input preconditions
for this type of reset could be met, so the full safe reset was implemented.

During reset the inputs of tie-Gate are forced Low by the environment (all other event

modules in the environment should be forcing their outputs low). Often it is necessary to
prime one of the inputs, for example in the simple Micropipeline shown in figure 3-5. This
can be done by simply placing an inverter on the input to be primed. The initial Low value

Cdn

In1 —— 4

In2 q i it In1 _|
Out In2 —37 out
-

Cdn

Figure 3-8: Pseudo-static Muller C-Gate
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on the primed input presents a High value internally toC#@&ate input transistor stack,
hence activating the corresponding n-transisitothis state the-transistor stack in thé-

Gate is half turned on so it requires only a single event after reset (Low to High transition)
on the non-inverting input for an event to appear orCHi&ate output.

In conventional CMOS gates the switching threshold is a function of the relative strengths
of the pull-up and pull-down stacks; however in tBi$ate implementation this is not the

case because the input stack does not switch directly from pulling-up to pulling-down but
instead the sequence of operation is from pulling-up to high impedance to pulling-down.
Therefore there is no overlap between pulling-up and pulling-down which gives the normal
balanced threshold [Eshr89, chapter 2]. The threshold @{Bate is the threshold of the
n-transistor or p-transistor which is much less than that of a standard static CMOS gate
(nominally half the supply voltage assuming correctly sized transistors). The pseudo-static
C-Gate is therefore a low threshold device; it turns on eaflyis must be taken into
account when designing with this element.

3.3.3 Transparent latch

A transparent latchT¢L atch) can be implemented using a structure very similar to that of a
C-Gate (figure 3-9). If the data is presented bmwhen enable En) is High it will
propagate to the output. When enable is Low the input transistor stacks are tbiaret! of
the state is sustained by the weak feedback invdier latch is also provided with reset
circuitry similar to theC-Gate.

Cdn
&
i TL
Out In  Out
En _| En Cdno
In _4|

|_

Figure 3-9: Transparent latch

3.3.4 SELECT block

The SELECT block can be implemented using transparent latchesX&id gates as
shown in figure 3-10. The operation of the circuit is as follows: After initialisation the two
latch outputs will be Low and the event inplri) (will also be Low (the environment must
ensure this). Th&l input is then set to determine which path the next event will take. If, for
example, th&dl input is asserted High, the event will be steered tdrheeoutput.

With the Sel input High, the lower latch will be transparent and the upper latch will be
opaque. When an event arriveslarit propagates through boXOR gates and arrives at
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TL
j ——in out False
En CdnfO+ In
In — ><: l
TL Sel seLect b Cdn
i ) In Out —True True False
En CdnfO-¢
Sel Cdn

Figure 3-10: SELECT block

the inputs of botf-L atches. The upper latch is opaque so the event propagates no further;
however the lower latch is transparent and allows the event to pass throughritoethe
output. The output event is fed back via the upf@R to cancel the request waiting at the
input of the upper latch thus preventing an erroneous transmission of an everids¢he
output on &el change.

With Sal Low, events are steered to tha se output in a similar fashion.

The environment must ensure that Sekinput is defined a sfi€ient time prior to an event
arriving and is stable for enough time afterwards to meet the setup and hold times of the
latches.

3.3.5 Decision-Wait element

The Decision-Wait element [Kell74] is not one of Sutherlasdibrary elements, but it is a
popular library element with other asynchronous design styles [Jose90] and can be used to
construct &CALL block.

The Decision-Wait block causes an event Bire to rendezvous with an event on eithér
or a2 (but not both) giving an event on the corresponding ougfhudr(z2).

The implementation of @ecision-Wait is shown in figure 34L The structure and
operation of the gate is similar to tBELECT block. The detailed operation proceeds as
follows: an event arrives on eithat or a2. For example, assume that an event arrives on

al. The arrival of this event primes the up@eGate. When an event arrives dfire this
propagates through th€ORs to the inputs of bot-Gates. The lowerC-Gate is stalled

waiting for an input om2 and so no further action results from this gate. However the upper
C-Gate has now had an event on both inputs and so propagates an event to its output and
hencezl. This output is fed back via th€OR to the lowerC-Gate to cancel the pending

Fire event on its input. Operation is similar for an evena®except the subsequent output
event will be ore2.
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Fire

72 ©

Cdn

Figure 3-11: Decision-Wait element

3.3.6 CALL block

TheCALL block is constructed from[@ecision-Wait element and a singkOR as shown
in figure 3-12. The operation begins with an input request on é&ither R2. This event
passes through th&XOR thus forming the request ouR)( At the same time the
correspondingal or a2 input of the Decision-Wait element is primed. When the
acknowledge returns from the sub-circuit @it will rendezvous with the primed input of
the Decision-Wait, causing an event to be generated on the acknowl@dge2) back to
the correct calling circuit.

R1
Dl—l 6 —D 1
SR S

DZJ—‘_ZZQ&‘ o

T —12 cdn
R2 °

Cdn

Figure 3-12: Call block
3.3.7 TOGGLE

TheTOGGLE proved to be the most difult circuit element to implement safefyigure 3-

13 shows a high-level view of lOGGLE circuit. The operation of the circuit is to allow a
transition to circulate around a loop under the control of two transparent lafdhgs (
Every time there is an event on the indui the latches allow the transition to propagate
one position round the loop. This is done by opening one latch while at the same time
closing the otherCare must be taken to ensure that both latches do not remain open together
during the change ovieotherwise the transition may propagate through two positions and
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Figure 3-13: TOGGLE high-level operation

generate a spurious transition on one of the outputs. This is particularly troublesome when
the latches are made from low threshold devices such as transmission gates, where the
latches open early and close late compared to standard gates. This caused “race-through”
problems with early designs which could be made to operate reliably only by controlling the

latches with non-overlapping clock generators.

-
Inl—q[  ninl— \:HO—Cdn In1—

Co Cl+— nC1

>—cC1

-
nin1—
CO—+—9

\:H?—Cdn

{ nC1l
nin1— In1— nin1—
Cdn— Cdn— Cdn—{

>—Co

In1—
Cdn_|

€ hi
(a) Half Toggle O (b) Half Toggle 1
Cdn
In1 Cdn In
ninl Half Toggle 0 ¢1—— Blank

Cco nC1l

nC1l nCO

nin1 Half Toggle 1 co Dot
In1 Cdn
T
Cdn

(c) Complete Toggle

Figure 3-14: TOGGLE element
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The TOGGLE circuit eventually chosen was based upon a design by datchév of
Oxford University PRG [#nt92]. This design was derived by speed-independent
decomposition of th& OGGLE [Jose92] specification using an algebraic approach (S-I
Algebra). The complete circuit is shown in figure 3-14. The two half toggles are transparent
latches similar to previous designs [Eshr89, fig 5.51(a)] and the overall operation is as
described above.

The speed-independent derivation assumes thatlbotind the complementin switch
simultaneouslyln an implementation this is never actually the case, and SPICE simulation
showed that ifn andnin were suficiently skewed the circuit could indeed be made to fail.
For this reason in the silicon implementation the complembntis generated locally
within the same cell so that the delay can be carefully controlled.

After adding the locahin inverter and reset circuitry to the initial design, the resulting
circuit was converted to silicon layout. The circuit parameters were then extracted and
analysed with SPICE to examine the behaviour at all process corners and at a variety of
temperature and voltage combinations. This demonstrated that the circuit functioned
correctly under all conditions and the inverter delay to complement the input was within the
limits required to prevent latch breakthrough.

OtherTOGGLE designs were considered including a circuit based on a TTL style D-type
flip-flop implemented in NAND gate technology [TTL85]. This is shown in figure 3-15 and
was demonstrated to be hazard free [Edwa92]. This was not adopted because of the
increased complexity and half strength output drive compared withahtehév circuit
(NAND gate compared to inverter drive).

Cdn

Blank

]

.

==

P+ Dot

6

R

Figure 3-15: NAND gate TOGGLE

3.3.8 ARBITER

The mutual exclusion circuit shown in figure 3-16(a) is based on a CMOS implementation
of a well-tried NMOS circuit [Mead80, figure 7.25]. The circuit comprises a pair of cross-
coupled NAND gates configured as an R-S flip-flop. The output of each NAND gate is
connected to the input of one of the output inverters and acts as the power supply for the
other If an input is activated by going High the corresponding internal node goe$-bow
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example ifR1 goes High the internal nodi# goes LowOnce the internal node is Low this
prevents subsequent events on the other ing2X from having any dééct. The other
internal node|2, remains High. A$2 also acts as the power supply for the lower inverter
the outpuiGL1 of this inverter is pulled High indicating that arbitration is complete.

If both inputs go high at the same time the R-S flip-flop may go into a metastable state
where both internal nodes remain at an intermediate, (non-digital level) for an arbitrary
amount of time. Wh intermediate levels on the internal nodes the output inverters are
unable to turn on and pull either of the outputs High, so the outputs remain Low since the n-
transistors are still partially turned on.

Eventually the R-S flip-flop will exit from the metastable state and one of the internal nodes
will settle Low the other High. When the tBfence between the internal nodes is more than

a p-transistor threshold one of the inverters will begin to turn on and start pulling its output
High.

The mutual exclusion circuit is released by removing the input reque&] returns Low
This causes the internal nodeto return High and allows any pending requestBdto be

serviced.
R1 11 N G2
—m R1 Gl
g — R2 G2
R2 12 Gl

(a) Four-phase mutual exclusion circuit

MUTEX

TL
In Out Gl
En Cdn[Oq
R1 —
R wlr aad el
X O D1l
W L
5 =
D2 D_» o = o EE D2 |—
J— — R2 G2
R2 En Cdn[o-$
In Out GZ
TL
Cdn

(b) Two-phase Micropipeline arbiter

Figure 3-16: ARBITER
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Figure 3-17: Robust two-phase ar biter

The circuit described above is a fqahvase circuit, in that the input must return to zero
when the operation is complete. Figure 3-16(b) shows how this mutual exclusion circuit can
be used to build a two-phageRBITER suitable for Micropipeline control circuits. An
incoming two-phase event is converted to fphase by th&XOR gate on the input. This
ensures that the mutual exclusion circuit always receives a Low to High transition to
activate it. After arbitration is complete one of the transparent latches is enabled to allow the
successful incoming two-phase event to propagate to the output. When the sub-circuit
issues an acknowledge in the form of an event on eitheDfher D2 inputs, the
corresponding input of the mutual exclusion returns Low and hence relea8&BhHEER

and closes the corresponding transparent latch.

Figure 3-17 shows a more robust variation of a two-p#eRBITER implementation
which allows simultaneous events on ttendd inputs. The extr&-Gates andTOGGLEs
ensure that the foyrhase mutual exclusion circuit is released before allowing another
request on the same input.

3.3.9 Capture-Passlatch

The implementation of th@apture-Pass latch is shown in figure 3-18. The operation of the
latch is as follows:

After reset, the captur€) and passH) signals are configured so that the input is connected
to the upper branch and the output is also connected to the same branch. In this state the
latch is transparent.

nC C P nP

In Out

i

Figure 3-18: Capture-Passimplementation
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Transitions on the capture control wir€s& nC) cause the upper input transmission gate to
close and the lower one to open. The state of the upper branch is sustained by the weak
feedback inverter and is still visible at the output. This configuration remains until the
arrival of a transition on the pass control wir€s& nP). This causes the upper output
transmission gate to close and the lower one to open. The output is now fed from the lower
branch, which is already connected to the input, so the latch is again transparent. The cycle
repeats with the input and output being switched back to the upper branch on the next
transitions of the capture and pass control wires.

3.3.10 Cdll layout

The cells were implemented as standard-taits that they could be used in conjunction
with the ARM Ltd. standard logic element library (inverters, NAND gates etc.) to form
layout automatically compiled by conventional standard-cell place and route software
[Comp91]. The transistor sizes in the asynchronous cells were chosen to be compatible with
the ARM library and are integer multiples of the single inverter transistor sizes. gae tar
process was a 1.2 micron, twin-tub, double-layer metal process (the \éc8hdlogy
CMNZ12 process [VLSI91]).

Figure 3-19(a) shows an example of @v&ate standard-cell layout. The cells have a fixed
power supply pitch\{dd & Vss) running horizontally on metal 1. Connections to the €ell’
inputs and outputs are made vertically on the metal 2./&perweak feedback inverter of
the C-Gate can clearly be seen on the right of the cell with its characteristic “C” shaped
pull-down n-transistorThe transistor is so shaped to obtain minimum gate width and to
maximise gate length so giving the desired weak pull-down attribute.

Complex cells can be constructed from simpler cells with the interconnect wiring external
to the power supplies (ettively in the routing channel). Figure 3-19(b) showsGhd. L
block which is made up of @-Gatesand 3XOR gates.

The layout cells were extracted and their operation analysed with SPICE under varying load
conditions. The resulting timing characteristics can be found in appendix A.

3.3.11 Implementation costs

Figure 3-20 shows a plot of the relative sizes of the asynchronous cells taken from the
layout editor of the Compass Design Automation VLSI design tools [Comp9la]. There is a
single strength invertetrfvl) on the right to act as a scale reference point.

In principle it is possible to extend most of the asynchronous elements so that they have
more inputs/outputs. An example of this would be to extend the select block to steer an
incoming event to, sayne of 4 outputs. This can be done by having two select lines, four
T-Latches and four 4 inpuiXOR gates. These are wired so that eddhatch output is
connected to thEOR gates on the inputs of the othef-R atches. The overall operation is

as described previously but this time the event fed back cancels the event on the other three
T-Latches. Figure 3-20 shows that although in theory this may be a feasible idea, in
practice aSELECT4 built out of primitive elements is more than 2.5 times bigger than a

1. Standard-cells are VLSI cells that have a fixed power rail pitch and may be butted together to form
rows of cells that may be wired together by automatic routing tools.
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SELECT4 built out of threeSELECT?2 elements. The extra size can be attributed to the
more complexXOR gates and the interconnect wiring required.

3.4 Micropipeline implementation

Sutherland described two principle implementations of a Micropipeline stage, one based
upon aCapture-Pass latch as shown previously in figure 3-5 and the other based on
transparent latches as shown in figure 3-21.

The example shown here is a 2-bit Micropipeline stageX@®R and aTOGGLE element

are needed to translate the input transition signalling into the correct form for controlling
the level-sensitive enable of the transparent latches. The latches have active Low enables,
i.e. they are transparent when enable is.Uawially C, P, Cd andPd are all Low meaning

both latches are transparent.

When a capture event occurs ©nthis passes through tkeOR and forms a Low to High
transition on the enable of the latches, thus causing them to close. The same enable signal is
sensed by thE OGGLE to indicate that the latches have closed and a subseguienent

is generated on theot output. TheTOGGLE is connected to the same wire as the latch
enables so that if the number of data bits igdaand the enable signal has slow edges
(caused by the lge capacitive load) then tHEOGGLE element also sees the slow edge

and automatically compensates for it by waiting before switching until the enable signal has
reached the threshold level (irrespective of the time taken to reach it).

When the stage is to return to a transparent state an event arrivesaasing a High to
Low transition on the latch enable, causing the latches to open. This is again monitored by

mulic2 T-Latch
call
Select? Toggle Arbit
Sdlect? Toggle Atrbiter

Scale:
H - 1 Inv

Xor
Xor

mullc3
mullc3

Figure 3-20: Cell silicon area comparison
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Figure 3-21: Simpletransparent latch Micropipeline stage

the TOGGLE and an event is generated on Biank output d) to indicate when the
latches are open.

At a higher level, th&XOR can be viewed as ngng the Capture@) and PassH) event
streams and thEOGGLE as separating them again into Capture d@ad &nd Pass done
(Pd); together they form a two- to fophase interface.

Two practical implementations of Micropipeline stages will be described and used as the
basis of a comparison between the relative costs and performances of the two styles.

3.4.1 TheT-Latch Micropipeline

The T-Latch design described earlier (see figure 3-9) is used in the control circuits and
contains reset logic. This facility is redundant for datapath latches because they are forced
transparent during initialisation. It is also possible to simplify the design by using a
transmission gate as shown in figure 3-22. These latches are used for data storing of a
bundle so any transistor saving per latch is multiplied by the number of bits in the bundle.

nEn

In —X—ggf Out

En

Figure 3-22: Simple transmission gate latch
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The transmission gate on the input of the latches requires both the true and complement of
the enable signaEf & nEn) to operate. Instead of providing the circuitry to generate the
complement locally in each bit, the complement is generated by the control circuit and
supplied to all the latches. This further reduces the transistor cost per bit.

In the simple circuit shown in figure 3-21, thOGGLE is used to sense the level of the

latch enable to compensate for enable line loading. A consequence of using a transmission
gate latch is that there are now two enable sigialg€.(nEn) both of which must be sensed

to ensure they have made the required transitions. This can be achieved by causing the two
enable signals to rendezvous &-&ate before propagating to tHEOGGLE.

Figure 3-23 shows the detailed control logic required to implement a Micropipeline based
on transparent latches. Thd atches (not shown) are connected to tBeandnEn signals.

The figure shows the Hefs to drive true and complement enable lines an€Ctate to
synchronize the two enable lines.The small subscript on eafdr buferter indicates the
drive strength as a multiple of single inverter capabiliye control circuit shown was
designed to drive a 32-bit data bundle.

The overall operation begins whenim event arrives at the inp@-Gate. If the latch is

already transparent (indicated by the value fed back from@&GL E Blank output) then

the event propagates through theGate and XOR and causes the latch to close. When

both the true and complement enables have made a transition to the closed value the second
C-Gate detects this and an event is forwarded to TRESGLE. The Dot output of the
TOGGLE indicates that the latch is now safely closed and this can be used to signal to the
previous stage that the input value is no longer needayl {t also forms the request to the

next stageRout) to indicate that the data is now ready for further processing.

The stage is emptied when a returning acknowledge efeut) @rrives via thexOR and
opens the latches. This is detected byGHeate andTOGGLE and the resulting event on
the Blank output of theTOGGLE is used to prime the inp@-Gate ready for the nexRin.

Aout Rout

T— A
’

. En nEn )
Rin Ain

TOGGLE

Figure 3-23: Transparent latch Micropipeline control

48



3.4.2 The Capture-Pass Micropipeline

Figure 3-24 shows an implementation of the control structure requiredClaptar e-Pass
style Micropipeline. The “capture” and “pass” control wires of the data latch (see figure 3-
18) would be connected t€ & nC) and P & nP) respectively

The operation begins with an input requ&$h) which can propagate through the infut

Gate when the data latch is emptyhe signal is then bigred to drive the true and
complement of the data latch capture control wiresefisure the true and complement of
the capture signal have made their transition, they are forced to rendezvous at th€second
Gate before an input acknowledggif) and an output requestdut) are generated.

The data latches remain closed until an acknowlefigat) is received from the next stage

in the Micropipeline. This signal is Hefed and used to operate the pass signals of the data
latches and causes them to return to transparent. Again both control wires are synchronised
with aC-Gate before the input rendezvous is primed ready to accept th&imext

3.4.3 Capture-Pass versustransparent latch area considerations

Figure 3-25 shows the silicon implementation of an 8-bit, 3 stage Micropipeline and the
corresponding control for botA-Latch and Capture-Pass styles. The control is
automatically compiled standard-cells and the data part is hand composed custom layout.

The Capture-Pass latches shown are a silicon implementation of figure 3-18. Their size is
slightly more than double that offal atch. Howeverthe Capture-Pass latch has not been

as highly optimized as thE-Latch so a size ratio of 2:1 is a fairer estimate of the relative
area cost of &apture-Pass latch compared with &L atch.

Aout Rout

Rin nC C Ain

Figure 3-24. Capture-Pass Micropipeline control
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Capture-Pass Data Latches

Figure 3-25: Relative size of Capture-Passv T-Latch Micropipeline

By measuring the area of the control structures and using a 2:1 size ratio on the data part it
is possible to work out which style is more ardecieint for 8-bit data bundles (#f-L atch
is areaD thenCapture-Passis area 2P).

Table 1:
T-Latch Area Capture-Pass Area
TControl + Data CControl + 2 x Data
164352 + 778732 119616 + 1557502
242227)\° 275366\°
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whereTControl andCControl are the areas of the control logic for the two
Micropipeline stages aridata the area per data bit.

Note: for the VLSI CMN12 proce9s=0.6 Microns
This shows that-L atches are more area féient for this 8-bit example.

It is clear from figure 3-25 that the control overhead is smaller forCtpure-Pass
implementation and this is reinforced by the figures given in the calculation shown above. It
can therefore be expected that ®a&pture-Pass style will become more gfient as the

size of the data bundle decreases. The cross-over poi@afoure-Pass becoming more
efficient can be calculated as follows:

Table 2;

T-Latch Area > Capture-Pass Area

TControl + N x Databit >| CControl + N x 2 x Databit

TControl - C_Control > N
Databit
45 > N

whereN is the number of bits aridatabit the area cost per data bit.

This demonstrates th&apture-Pass latches are more areafieient for smaller data
bundles (N < 5) and’-Latches are more area f&ient for lage bundles. The tget
application contains mainly 32-bit data bundles, in this casé-thetch implementation is

36% smaller than th€apture-Pass latch. As the data width increases the size of the data
part becomes the dominant factor of the area with the control becoming negligible.
Therefore in the limit, as data width increases,Ttheatches would be approximately 50%
smaller than the correspondi@apture-Pass implementation as this reflects the relative
sizes of the two data latch styles.

3.4.4 Micropipeline stage performance

The performance of a Micropipeline can be considered in two ways. The first is the time
taken to propagate through the stages, this is referred to ketiay. In figure 3-23 this
would be the time fronRin to Rout. The second performance factor is how soon the stages
can accept the next value, referred to asciieke-time. The number of items that can be
processed in a unit time is known as ttir@ughput or bandwidth.

Using the figures in appendix A and the SPICE characteristics of the ARM Ltd. standard
cells [ARM91a], the latency of a 32-bitLatch Micropipeline (i.e. the time fronRin to
Rout) can be calculated.

The time from Rin to Rout can be broken down as follows:
C-Gate + XOR + Buffers + C-Gate + TOGGLE
2.16 + 0.97 +4.3 +2.16 +2.70=12.29 nS
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A similar analysis of £€apture-Pass style Micropipeline would give:
C-Gate + Buffers + C-Gate
2.16 +5.13 +2.16 =9.45nS

The extra delay for the bef circuit in the latter is attributed to the extra capacitive load on
the Capture-Pass lines (twice that of a simpl&-Latch).

The minimum cycle time is achieved by directly conneciogt to a similar Micropipeline
stagewithout intervening logicThe delay before the next value can be processed i the
Latch design is when thE OGGLE signals back to the inp@-Gate that the latches are
now open i.e after:

Rin->Rout + Rout->Aout+ XOR  + Buffers + C-Gate+ TOGGLE
12.29 +12.29 +0.97 +4.3 +2.16+ 2.70=34.71 nS
Again doing a similar calculation f@apture-Pass style stages the cycle time is:
Rin->Rout + Rout->Aout+ Buffers + C-Gate

9.45 +9.45 +5.13 +2.16 =26.19nS

From these figures it can be observed that the latencaptre-Pass stage is 23% less
than theT-L atch stage and also the cycle time is approximately 25% less.

Taking these figures at face value indicates a 25% performance gain by usiagtiines-
Pass latches; however a fairer comparison can be made by including other design issues in
the calculation.

The increased time taken figm to Rout in theT-L atch Micropipeline can be viewed as an
increased “delay” before thRout reaches the next stage. This corresponds well with
Sutherland model of a “delay element” as shown in figure 3-5. This extra delayRnom

to the latches closing increases the bundled-data delaymudithe data at th€-L atches,

and the delay from the latch closing to the requestRuautt) (and acknowledge bacRif))
ensures th@-Latch hold time is met and this also increases the bundled-data delgy mar
of theRin to data in the following stage.

If the simple Micropipeline is extended, so that processing logic is interspersed between the
stages then the extra rgar of theT-Latch can be used to contribute to the matched delay
required for logic. Therefore the delay in the control of the latches can be hidden to some
extent by the processing logic.

It is possible to improve the latency of theatch style design by forwarding the request

to the next stage earliefo avoid metastability problems the data must be stable at the
output of the data latches before they are closed. Therefore the signal that closes the latches
may be used to form an early request &atf) without waiting for the latches to close. The

input cannot be acknowledged until the latches are closéinsis connected as before.

Figure 3-26 shows the control circuitry with the “fast-forward” connection. The overall
operation is the same as before except Roat is derived from a diérent point in the

circuit.

The latency of the circuit is substantially reduced to approximately 2.5 nS ¢-&dte
with increased capacitive load) and the cycle time is also reduced becaRsatthéout
part of the cycle begins earliefhe bundled-data delay safety giaris reduced so care
must be taken when using this control circuit.
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Figure 3-26: Fast-forward Micropipeline control

Another constraint on the use of this type of control structure is that the acknowledge out
(Aout) must not arrive back before the stage has finished closing and issued the appropriate
Ain signal. It is usually quite simple to ensure this in the environment. For example,
connecting this to another micropipeline stage should ensure that theriécisrgusafety

maigin on the acknowledge back signabqt).

3.4.5 Power considerations

For small data bundles the power consumed is dominated by the complexity of the control
logic. The Capture-Pass with the simpler control will therefore be morefi@ént.
However the power consumed by ¢gr data bundle stages is dominated by theggner
required to switch the heavily loaded data latch enable lines.

In theT-Latch based design the enable lines are switched twice per cycle, once for closing
the data latches and one again for opening them. IG@dbture-Pass design, theCapture

lines are switched once to capture the data anBatedines are also switched only once to
enable the latches to become transparent again. FQafitere-Pass this gives a total of

two transitions on heavily loaded lines. Both design styles therefore switch a heavily loaded
line (and its complement) twice per cycle.

By examining the load per data bit, it can be noted that+hetch has one transmission
gate load whereas th@apture-Pass has two transmission gate loads per bit (for both
Capture andPass control wires). If the transmission gates in both styles are a similar size
then the capacitive load on tBapture/Pass control wires will be twice that of thB-Latch
enable wires.

The enegy (E) required to switch a node is given by 1cv? whereCis the capacitance of

the node and is the voltage swing the node is switczhed through [Mead80, chapter 9]. As
the Capture-Pass capacitive load is twice that of thel atch, the enagy required to switch

the former is twice that of the latt@rhis indicates that the-L atch is more power étient

for larger data bundles.

When closed, thd-Latch does not respond to fluctuations on the input, so no internal
power is dissipated as a result of these transitions. Hoyelien aCapture-Pass s in the
“captured” state, the input is connected to the opposite branch, so any changes on the input
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cause internal transitions on the branch connected to it. This in turn causes power to be
dissipated. Therefore theL atch is more power éitient, when closed, than@apture-
Pass.

Another interesting issue regarding power consumption stems from the fact that
Micropipelines are defined to be transparent when erBgtgxamining a pipeline that has

a fork, such as the one shown in figure 3-27, a technique for reducing the power
consumption can be demonstrated. Here when both branches are empty they are
transparent, so any transitions on the inpenfin) will propagate through both branches

of the fork and on towards any processing logic. Although the logic may not be activated for
evaluation purposes any transitions cause power to be dissipated in both branches. If most
of the incoming dataMemin) is intended for one of the forks, for example the instruction
pipeline (Pipe), then all instructions destined for th&pe will also cause transitions in the

data pipelineDPipe) thus wasting powetlf the top stage of thBPipe is constructed such

that it is opaque when not in use, this would prevent any unwanted transitions dissipating
power in theDPipe. When data has to enter tBéipe, the blocking stage is opened to
allow the data in and then closed again to latch the data safely in the top of the pipeline.

It is possible to reconfigure thELatch Micropipeline control so that it is a normally
blocking stage. This is shown in figure 3-28. The incoming requRej propagates
through theC-Gate andXOR in a similar fashion to the standareLatch. The latches are
then forced open to allow the data in. The opening is detected by the €2Gatd and the
TOGGLE. TheDot output of theTOGGLE is fed back to th&XOR to close the latches
again. Once the latches are closed this is again detected and the event Blamktbaetput

of theTOGGLE is used as thRout andAin. The nextRin can be processed as soon as an
Aout is received from the successor stage.

The penalty for using a blocking latch control is that the forward latency is approximately
double a standart-L atch design (the blocking latch must be first opened and then closed).
The forward latency can be improved by connectitayt to the Dot output of the
TOGGLE (as theDot output indicates the latch is open). This type of optimization can be
justified by similar aguments and constraints as used for the fast-forward latch control.

3.4.6 Choosing an implementation

The most dective style and configuration of Micropipeline implementation is dependent
on the intended application. AMULET1 contains agéanumber of 32-bit Micropipeline
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Figure 3-28: Blocking Micropipeline control

stages, so it was felt that the area penalty of usi@gpaure-Pass would be too great. A
retrospective investigation [Pave92b] revealed that the data processing part would have
been 25% bigger hadapture-Pass latches been used.

The exact consequences of using the lower performéhcach based design is not yet
known. It is likely that this may prove to be one of the performance limiting factors of the
whole design. It is for this reason further work is being undertaken to investigate whether it
is possible to combine the aredi@éncy of theT-Latch design with the simpletigh
performance control of th@apture-Pass design style.
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Chapter 4 : The asynchronous ARM

To investigate the suitability of the Micropipeline methodology for the design of complex
systems, an asynchronous implementation of the ARM processor was developed. The
asynchronous ARM (AMULET1) is object code compatible with the 32-bit ARM6 and
addresses several fiiult areas.

4.0.1 The ARM processor

The ARM processor employs a simple anficefnt RISC architecture. It was originally
designed at Acorn Computers, Cambridge, England in 1983-84. Its main features are:

. A small and simple design with fewer than 35,000 transistors.

. A RISC load/store architecture, with support foficent
block data transfers.

. All instructions can be conditionally executed.

. Low cost because of its small size.

. Very low powey again because of its simplicity and small
size. (One of the marketing metrics used by ARM Ltd. is that
it delivers 100 MIPS/\att).

The motivation behind the original design and a detailed description of the architecture are
described elsewhere [Furb89, VLSI9O0], a brief overview of the processor is presented in
appendix B.

4.0.2 Implementation challenges

The asynchronous implementation was required to be code compatible with the 32-bit
ARMBG6 and therefore had to address the followin§jdift areas:

1. Interrupts - The ARM supports two levels of interrupts known as IRQ
(Interrupt ReQuest) and FIQ (Fast Interrupt reQuest). Both use level
sensitive input signals; FIQ has higher priority

2. [Exact exceptions - The ARM processor supports virtual memory (VM)
systems and is therefore able to handle data aborts, for example, caused
by a page fault in a VM system.

3. Block data transfer - The ARM can load or save multiple registers from
the current working set with one instruction. This requires support for
multi-cycle instructions.

4. Conditional instructions - Every ARM instruction is conditionally exe-
cuted depending on the state of the processor status flags.
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The above list presents some of the more challenging features, each of which on its own is
non-trivial; handling all of them together can become very complex. For example, a data
abort can occur in the middle of a load multiple operation where half the registers have
already been reloaded before the exception is raised. The load multiple instruction must be
re-started after the cause of the exception has been removed. This is partictieuly dif
when the base register (which specified the memory address used in the transfer) has itself
already been overwritten (e.g. in a context restore) before the exception was flagged.

4.0.3 Differencesfrom the ARMG6

The asynchronous ganization of AMULETL1 difers from the ARM6 in the depth of
pipelining employed. The ARM6 has a three stage pipeline (see appendix B): fetch, decode
and execute, whereas AMULET1 employs a much greater depth of pipelining. In particular
the execute phase of AMULETL1 is sub-partitioned into a further three pipeline stages
(register read, shift/multiply and ALU). The exact detail of the pipeline structure is
discussed later

A small number of architectural features were not implemented or do not conform exactly
to the ARM6 specification due to the limited resources and time available. The features not
implemented include:

. Co-processor instructions.

. The ARMG6 26-bit compatibility mode which allows the
ARMBG6 to behave as if it was a 26-bit ARM2.

. The multiply-with-accumulate instructioMLA (although
multiply without accumulate is implemented)

All the co-processor instructions take the undefined instruction trap and their functionality
is emulated in software by the trap handler (the first synchronous ARM also used this
approach).

There are several obscure corners of the instruction set where the asynchronous
implementation deviates from the specification because the particular “features” were
defined as an artifact of the synchronous implementation and have little or no practical use.

4.0.4 Processor interface

The asynchronous implementation of the ARM employs an asynchronous Micropipeline
interface to the environment. Figure 4-1 shows how a system containing an asynchronous
ARM is configured. It is assumed that the input/output forms part of the memory system.
The memory management unit (MMU) and the memory have not been implemented as
VLSI circuits at this stage and are beyond the scope of this thesis. The asynchronous
interface of AMULET1 has the following signals:-

. The output bundle which contains a memory address, control
information and write data, if a write operation is being per-
formed.

. The input bundle which returns read data requested from
memory back to the processor

. The interrupt requests, memory abort response and processor
reset.
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Figure 4-1: The processor interface

The control information in the output bundle consists of a number of bits which include
read enable, write enable, a bit to indicate whether an instruction or data is being fetched
(opcode flag), a privilege mode bit so that memory protection can be implemented and 2
bits indicating whether sequential address behaviour is likely (and hence whether the
memory access can use the faster page mode of DRAM and some cache memories).

The processor design makes no assumption about the memory hierarchy employed. The
only constraint that must be enforced is the sequential ordering of memory accesses so that
data returns to the processor in the requested.drdertime taken for a memory access is

not critical for correct operation, if the Micropipeline protocol is obeyed. For example, a
system with a cache memory would exhibit a fast response for a cache hit and a much
slower response for a miss. Howeveache hits must not be allowed to overtake cache
misses or the sequential ordering constraint would be violated.

The ARMG6 architecture requires support for virtual memadite method used to handle

page faults is that of an exact exception. For every data access, the state of the processor is
preserved until it is known that the access will be successful. For each data access, the
MMU produces a fault/no fault response that signals back to the processor either to cause
instruction processing to resume (if there was no fault), or to enter the exception handling
software, (if there was a fault). The response time of the MMU determines how soon the
processor can resume executing instructions, so a fast response time is required for
optimum processor performance. The response from the MMU is signalled back to the
processor in a dual-rail encoded format.

Aborted instruction-prefetch accesses need not signal back to the processor in the same
way, as they do not &dct the current state of the procesddre non-valid instruction data

can be tagged as invalid when read into the proceBserexception handler is then called
when the instruction reaches the primary decode.

AMULET1 also supports the two level-sensitive interrupts of the ARM6 so that it can be
used with conventional peripheral chips. The level sensitive model of interrupts gives the

59



processor no information regarding the time taken for the peripheral to release the interrupt
line, so care must be taken in the exception handling routines to ensure that the same
interrupt does not cause multiple exceptions.

The final input to AMULET1 is the initialisation pin. This is used to reset the state of the
processor; its release causes the processor to begin issuing sequential instruction addresses
to the memory starting from address zero.

4.1 Processor organization

The internal aganization of AMULETL1 is shown in figure 4-2. This shows the four main
areas of the processor and how they are interconnected. A brief description of each of the
areas is presented in this section; more detail is provided later in the thesis.

4.1.1 Addressinterface

The main function of the address interface is to issue instruction prefetch requests to
maintain a steady flow of instructions into the proces3te address interface can
autonomously issue sequential instruction addresses with the aid of an internal incrementer

Data transfer operations use the address interface to generate the data transfer address and
the multiple data transfer instructions also use the incrementer in the address interface to
generate the sequential data addresses required.

The address interface supplies a PC value to the instruction currently being executed to be
used as an operand (via € Pipe). This is needed because the program counter forms the
‘general purpose’ regist&15 in the ARM architecture. The address interface is described

in more detail in chapter 6.

4.1.2 Theregister bank

The register bank contains 30 general purpose registers, sixteen of which are accessible at
any one time. It also provides storage for the 5 Saved Processor Status Registers (SPSRs) as
specified in the ARM architecture definitioro @ccess the contents of the register bank,

two read ports are connected to fhandB operand buses; a single write port is provided

for modifying the contents. Internally the register bank has mechanisms for supporting
multiple outstanding write operations and managing -im&ruction dependencies. The

detail of these mechanisms is described in chapter 5.

4.1.3 The execution unit

The execution unit is the computational core of the proce3$mr data read from the
register bank can be multiplied using an autonomous 3-bits-at-a-time carry-save-adder
multiplier. If multiplication is not required then this logic is simply bypassed. The ARM
architecture specifies that one of the register operands can optionally be shifted for certain
classes of instructionolsupport this, a barrel shifter is attached tdBtloperand bus and its
output fed to the ALU. The ALU performs all other logic functions and contains a simple
ripple-carry adder with data dependent completion signalling. The output of the ALU can
be transferred onto the write bus to route results back to the register bank. The write bus is
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shared with the data interface which uses it for incoming data from memory; control of the
bus thus requires arbitration (data arrives asynchronously to the ALU result). The execution
unit is described in more detail in chapter 7.

4.1.4 Thedatainterface

The data interface manages the flow of data between the processor and the memory
subsystem. For write operations it provides a FIFO for storing data waiting to be written to
memory (lata out) and has the capability to replicate the least significant byte into all byte
positions across the word (for byte write operations).

Incoming values can be either new instructions for decoding or data destined for the register
bank. Instructions are stored in a FIFO prior to executgpd). If the instruction specifies

that an immediate value is required then a copy of the instruction is passed to dedicated
hardware ifnm. ext.) which extracts the immediate value from the instruction word.

Data destined for the register bank passes througtiathen section. This can rotate the
incoming data word by byte quantities. Data loads from non-word aligned addresses are
performed by loading from the word boundary and then rotating the data word until the
addressed byte is in the least significant byte posibata in also contains logic to enable

the processor to operate in “little-endian” or “big-endian” modes.

4.2 Pipeline organization and control

Figure 4-3 shows how the processor is divided into pipeline stages; each grey box
represents a pipeline latch. The execution phase is partitioned into three stages: register
bank, shift/multiply and the ALU. Each data processing stage has a corresponding decode
and control stage.

During instruction execution primary decode performs the complete decoding for the
register bank and the initial decoding for execution stages 2 and 3. Once the primary decode
is complete, the control information is latched along with the corresponding value of the
PC. While the operands are being read out of the register bank the secondary decoders for
stages 2 and 3 decode the instruction further

Although the control and data latches are drawn in alignment, the control and datapath only
synchronize when they reach their destination stage. Decode 2 only synchronizes with the
data when it reaches the shifter/multiplier and decode 3 only synchronizes when it reaches
the ALU.

The extra pipeline latch after the ALU is provided to allow the Current Processor Status
Register (CPSR) to be accessed; it also decouples the ALU from the result writeback phase.

4.2.1 Dynamic pipelinestructure

To reduce their sizes and transistor counts, the register bank, mulsipiiesr and ALU all

use dynamic structures. Each stage employs dynamic logic with an output latch for storing
the result. The output latch of one stage is the input latch of the next (see figure 4-4(a)). This
is similar to the canonical Micropipeline with processing shown in figure 3-6, except that
the dynamic logic imposes an additional constraint: the output latch must be empty before
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Figure 4-4: Dynamic pipeline structure

the evaluation of the logic begins to ensure the result can be latched before leakage renders
it invalid.

When any stage is active it needs both to be able to write into the output latch and also to
ensure that the input does not change until the computation is complete, therefore both
latches are involved in the activation of the stage. At any instant this means that only
alternate stages may be active. (Note, if no results are removed from the bottom stage, the
pipeline will backlog with each stage storing its result value in its output latch; in this state
the pipeline is fully occupied)

Having only half the pipeline stages active at any one time seems to incur a performance
loss; howeverthe dynamic stages require a pregbgrhase, so while one stage is active the
adjacent stages can predmi(figure 4-4(b)). If an extra latch were provided to decouple

the two stages, the pipeline could be fully active because the input and output latches need
no longer be shared. Howeydata flow from one stage to the next would still have to wait

for the next stage to preclgar This, along with the extra pipeline latch, would increase the
latency through the pipeline.

The dynamic shared latch pipeline with only alternate stages active can be used to
advantage in the ALU and shiftérhe shifter needs the current carry flag (for rotate with
carry) which can be changed by the ALU, but because the shifter and ALU are adjacent
stages only one of them can be active at any time. While the ALU is executing and possibly
calculating the new flag values, the shifter is in preghaihen the ALU is complete and

the flags are valid, the ALU input latch is released and the ALU enters mechéis

allows the shifter to begin execution. The flags are now valid and cannot be changed by the
ALU, so they can be used directly by the shifter without the need for complex
synchronization between the ALU and the shifter

4.3 Instruction mapping

The mapping of the ARM instruction set onto the asynchronogan@ation can be
described by examining the datapath activity of each class of instructions.
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4.3.1 Data operation

The simplest class of ARM instruction is the data processing operations. These can take two
operands, perform one of sixteen operations and then write the result to a.register

Figure 4-5(a) shows the datapath activity for a data operation that uses two register
operands. Here the two operands are read from the register bank ohianith® operand

buses (see figure 4-2 for bus naming convention). The multiplier is configured so that the
operands bypass the multiplier logic without activating it. The ARM architecture specifies
that one of the operands can be shifted by an arbitrary amount g hhe is passed
through a barrel shifter to perform this operation (the type of shift performed is specified in
the instruction). The two operands then enter the ALU where they are combined according
to the data operation instruction being executed. The ALU then takes control of the write
bus and sends the result back to the register bank (unless the destination is the program
countef - R15).

If the destination iIRR15, the result is steered to the address interface instead of the register
bank and the operation is similar to that of a branch (described in the next section).

If one of the operands R15 then the bottom entry from thRE pipe is multiplexed onto the
required operand buses. The correct value of the PC is supplied before instruction execution
begins, therefore no lock mechanism is needed to prevent register hazards (see section

A\
address out | address out |
4 P
pc pipe pc pipe
Rd PC
reglsters registers
Rn Rn
= =
] = N~ = N~
> pass thru ( > pass thru (
[ =/ [ s/
t as instruction / t as instruction /
| imm. extr. | | imm [7:0] |
i
| data out | | datain | | ipipe | | data out | | datain ipipe

)

(a) Data Op with 2 registers

T

(b) Data Op with 1 register & immediate data

Figure 4-5: Data operation datapath activity

1. The program counter can be accessed as a general purpose register (R15) in the ARM architecture.
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5.1.2). Any change of instruction flow (and hence PC availability) is managed at a higher
level of control.

When only one register is required, the other operand defaults to the PC because this will
not stall waiting for data to return to the register bank. The PC value is then discarded. It
would have been more powefieient to read just one registéut this would have required

extra bypass logic to implement whereas the solution adopted requires no additional
circuitry.

When one of the operands is an immediate value, as shown in figure 4-5(b), then only one
register is read from the register bank. The other operand is an 8-bit unsigned value
extracted from the instruction word and then multiplexed onto the input of the.hftet

from the source of the operands, the overall operation is as described previously

4.3.2 Branch operation

In the ARM architecture, the brancB)(is a PC relative jump. The instruction word
contains a 24-bit immediatefsét which is word aligned, sign extended and added to the
current PC value to achieve the brancgeaaddress. The ARM also specifies a subroutine
call instruction, branch and linIB(), which is similar to the branch but the address of the
next instruction is saved in registet4 to facilitate the subroutine return.

Figure 4-6(a) shows the branch operation and the first cycle of a branch and link. Here the
PC value is read from the register bank onto the A operand bus.f$&ei®Extracted from
the instruction word and sign extended to 32-bits. This value is then fed into the shifter
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Figure 4-6: Branch & branch and link datapath activity
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where a left shift of 2 is applied to word-align the value before it is added to the current PC
value in the ALU. The ALU takes control of the write bus and passes tfet tatdress to

the address interface. Here they&raddress enters into the prefetch loop and replaces the
original prefetch address (see chapter 6 for further details). Prefetching (not shown on the
diagrams) then resumes from the brancheiarAs a number of instructions may already
have been prefetched, these must be thrown away before instructions from the new stream
arrive. This is achieved by the instructioslour mechanism described in section 4.4.3.

A branch operation is concluded after the above cycle; branch with link however requires
an extra cycle to save the return address (i.e. the address of the next instruction). The PC
value delivered wheR15 is accessed is PC+8 (see section 4.4.1). The address of the next
instruction is PC+4, so the value R15 read from the register bank is decremented by 4
before it is written into the link registeR14), figure 4-6(b) shows the detailed operation of

this. TheR15 value is read from the register bank on Bibus and passed through the
multiplier and shifter unchanged. Four is subtracted by forcing the bottom two bitsfof the
operand bus High (three in binary) and then performing a subtract with bdreoe
achieving B-A-1 or (PC+8)-3-1= PC+4. The PC+4 value is written back to the register bank
via the write bus in a similar fashion to data processing operations.

4.3.3 Multiply operation

The multiplier in AMULET1 uses a shift-and-add technique with carry-save adders (see
section 7.1). The multiplier accepts two input operands from the register bank and internally
performs the multiplication of the two. When the operation is complete the partial sum and
partial carry are placed on the two output buses. These are then added together in the ALU
to form the result. This result is written back to the destination regisber datapath
activity is shown in figure 4-7.

4.3.4 Load data operation

The data transfer instructions in the ARM allow the programmer to specify a variety of
auto-indexing options including pre-/post-index and increment/decrement dsanfadm

the base address. The operation can be split into two phases; the address calculation and the
data transferThe address calculation will be described first.

Figure 4-8(a) shows a post-index load with a registisebfand writeback (in fact, post-

index is defined always to write back). Here, the address from which the data is loaded is
the value contained in the base register before it is modiftegeform the load, the base
register Rn) is sent via a special route directly to the address interface where it interrupts
the instruction prefetching to issue the data load address, at the same time the base register
is forwarded to the ALU, ready for the base update calculation. T$et oégister read onto

the B bus can optionally be shifted before being added to or subtracted from the base in the
ALU. The load cycle completes with the modified base value being written back to the
register bank.

Figure 4-8(b) shows a pre-index load with registésatfand writeback specified. The pre-

index designation indicates that the base is modified before being used as the data load
address, so the writeback value is the same as the load address. The operation begins with
the reading of base andf'sdét from the register bank which are forwarded to the ALU after
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optional shifting of the d$éet. The base modification calculation is performed and the result
transferred to the register bank (if writeback is specified) and to the address interface to be
used as the load address.

The ARM architecture specifies that an immediate value can be used dsednTdfe
datapath activity of the immediate value (not shown) is similar to that shown in data
operations except that thefsdt this time is 12 bits rather than 8 and no shift can be applied
to the immediate value.

In the ARM, non-word aligned byte loads are implemented by retrieving the data word from
the word boundary and then rotating the value obtained so that the addressed byte is in the
least significant byte position of the word. In the ARMB6, the rotation is performed in the
barrel shifter as the data passes through on its way to the register bank. In AMULET1
instructions which do not depend on the loaded data can continue to be processed while the
data is being loaded (see section 5.4.1). This means that the barrel shifter could be busy and
unavailable to rotate the incoming data, hardware is therefore provided in the data interface
to perform the required byte rotation.

The arrival of data is completely asynchronous to the internal operation of the prog@ssor
when data in wishes to use the write bus to transfer data to the register bank, it must
arbitrate with the ALU for control of the bus. If data is destined for any regitesr than

R15, it is routed to the register bank (as shown in Figure 4-8(c)). If the destinaRab is

then the loaded data is passed straight to the address interface to be used as the new PC
value (as shown in Figure 4-8(d)).
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4.3.5 Storedata operation

The store data operation has the same auto index options as the load instruction class. The
single cycle immediate fsfet store will be described first and then the more complex two
cycle register déet case will be analysed.

With an immediate déet, only 1 registerRn) is needed from the register bank for the base
address calculation. This allows the other register bank read port to be used to transfer the
store data to the data interfaakat@ out). The calculation of the address for store with
immediate diet is similar to the address calculation described for load operation. Post
index store (figure 4-9(a)) uses the direct connection from the register bank to the address
interface and pre-index store (figure 4-9(b)) writes the same data to the register bank and
the address interface. If store byte is specified, then the least significant byte of the word is
replicated indata out so it appears at each byte position. The store data then synchronizes
with the store address before being despatched to memory for the operation to be
completed.

A store data instruction with registerfs#t has a fundamental problem which prevents
single cycle operation; three register operands are required but the register bank only has 2
read ports. The three register operands are bdsef ahd store data. An extra read port
could have been added to the register file to make single cycle operation possible but as the
store with register et operation accounts for only 1% of all instructions [Furb89, page
278] the improvement in overall performance would be small. The solution adopted is to
perform the base calculation in the first cycle (figure 4-9(c)) and access the data to be stored
in the second cycle (figure 4-9(d)).

The cost of the second cycle is hidden to some extent by the depth of pipelining in the
execution unit. The store data can be read out of the register bank at the same time as the
address calculation is being performed in the ALU. The data route is a simple FIFO (with
optional byte replication) so the data propagates quickly and should therefore be available
by the time the address is ready to be sent to memory

4.3.6 Block transfer operation

The block transfer instructions are by far the most complex instructions to implement. The
instructions allow any subset of the sixteen available registers to be loaded or stored and the
base register to be auto-indexed. The instruction has options allowifeyelif
modifications to the base thus supporting various stack paradigms (e.g. empty/full,
ascending/descending stacks). The detailed operation of these options is complex and is
described elsewhere [ARM91D].

The first cycle of a block transfer instruction calculates the transfer start address. The
calculation is performed by reading the base address from the register bank and adding an
offset in the ALU (as shown in figure 4-10(a)). Thésef is introduced onto th& operand

bus using a similar mechanism to that described for branch operations. The value of the
offset depends whether a load or store operation is being performed and the stacking
paradigm selected. For example, an STM will have tsebbf 3 for a full ascending stack
(add),Cnt +3 for a full descending stack (subtra€t for an empty descending stack, or O

for a empty ascending stack (whéhet is the number of registers being transferred).
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Once the address calculation is complete it is forwarded to the address interface where it
waits for synchronisation with the primary decode.

The second cycle of the block transfer calculates the value the base register should have
after the instruction has completed (i.e. the modified stack pointer). The cycle takes the base
out of the register bank and forwards it to the ALU as in the first cycle. Thet of
introduced this time on th& bus is jusCnt, the number of registers to be transferred. This

is either added or subtracted depending on whether data is being loaded or stored and
whether the stack is ascending or descending. The base is then written back to the register
bank. For a load instruction, the base value is held in the output latch of theoksl)ih(

case it is needed for data abort recovery (described below).

The third cycle of a block transfer stalls until it is known that the instruction is definitely
going to be executed i.e. it has passed both its conditional and colour tests. This is done
because it is very di€ult to cancel the data transfers once they have started (data would
have to be retrieved from tlglata out pipeline etc.)

To achieve this interlock, the first cycle signals back to the primary decode to indicate
whether the instruction will execute. At the end of the second cycle this signal is checked to
determine whether the third cycle can begin or must be discarded.

The interlock mechanism could have been placed on the second cycle instead, but this
would have caused the execute pipeline to be starved of instructions while the second cycle
waited for an acknowledgement from the ALU. By waiting on the third cycle, the second
cycle can still proceed and progress down the execute pipe immediately after the first cycle.
The cost of the interlock is therefore hidden to some extent because the processor is still
executing a part of the instruction. The disadvantage of this approach is that if the
instruction does fail its condition test then two cycles have been executed, rather than just
one if the more conservative approach had been adopted.

The third phase of a block transfers is the data transfer phase, here the number of cycles is
directly related to the number of registers being transferred (one cycle for each register).
Figure 4-10(c) shows the data transfer for both load and store multiple instructions. For
each register in the data transfére primary decode signals to the address interface to
generate the memory address of the register being transferred. The next address is generated
with the aid of the incrementer in the address interface (the incrementing mechanism is
described in more detail in chapter 6). The primary decode generates the address of the
register to be transferred.

For store data transfers, the data exits the register bank Brbtleeand is diverted into the

data out pipe in the direction of the data interface. The instruction does not activate any
further elements on the execution datapath. When the data reaches the data write register it
synchronizes with the address generated by the address interface and is dispatched to
memory

For a load instruction, the transfers just involve locking destination registers and signalling
to the address interface to generate the load address. The returning data enters the processor
in a similar manner to the standard load data instruction.

For both load and store transfers, the signal to the address interface also indicates whether
the current transfer is the last. If it is the final transfer then the address is discarded after use
as the data address (rather than being incremented ready for the next transfer).
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For load instructions, the signal between primary decode and the address interface also
notifies if this transfer is to the program counilY). This primes the address interface to
discard the current prefetch address (after the block transfer is complete) and also forces it
to wait for the new program countarriving via thedata in port.

For the store multiple instruction, the transfer is complete after the third phase; hdarever

load instructions there is another cycle. This final phase (figure 4-10(d)) performs one of
two possible functions. The load multiple instruction allows the programmer to specify that
R15 is reloaded with the Current Processor Status Register (CPSR) restored at the same
time. The final cycle copies the SPSR to the CPSR in this case. The other possible operation
in the final phase is recovery of the base after a data abort. It is possible that the base may
have been reloaded before an abort was raigedeskart the instruction, the original base
register is needed (although the written back value fecwurit). This is preserved on the
output of the ALU in the second cycle (shownold). Therefore, to restore the base, a
dummy read from the register bank is sent to the ALU. The ALU ignores its inputs and
sends the previously preserved valole) of the base register back to the register bank. It is
theoretically possible for this preserved base to arrive back at the register bank before the
data for the same register arrives back from memory so the situation can arise that although
the base is restored it is still overwritten by the loaded datansure that this cannot
happen, the dummy read actually reads the base regstirat if the data destined for the

base from memory has not yet returned, it stalls. The read only proceeds when the loaded
data is safely in the registeso the base restore can now proceed without fear of being
corrupted.

4.3.7 Exception entry operation

Once an exception has been detected by the primary decode, the entry mechanism is the
same for all exceptions. The first cycle shown in figurd(@1lsends the exception vector
address to memanyhis is done by performing dummy reads from the register bank and
then introducing the exception vector onto Aheperand bus. This vector is passed straight
through the ALU and sent to the address interface to become the new program Tboenter
second cycle (figure 4i{b)) preserves the current processor status register (CPSR) by
copying it from the ALU into the SPSR of the exception mode the processor is entering.
The final cycle (figure 44Kc)) saves the return address of the instruction that was about to
execute before the exception was entered. For everything except data aborts, this is a
modified version of the PC value of the instruction extracted from the end of the PC
pipeline as for a normal accessRtb. However for data aborts, there is a special holding
register that preserves the address of the data transfer instruction that aborted (described in
more detail in section 6.1). This value is multiplexed onto the output #CGhepe so that

it can be used as the return address of the exception handling routine.

74



address out

=i

registers

=l

N

)

multiplier

¢

address out

T

SPSR

registers

=/

N

)

multiplier

¢

N

vector

~—
&/
| imm extr. |

i

i

| data out |

|datain | | ipipe |

——

(a) Generate exception vector

— AN
ALU
CPoR | imm extr. |
A
|dataout| | datain | | ipipe |

A

address out

|
S

4

Pl

PC

R14

PC
registers

1

N

el
)

pass thru

N
T~
B-A-1
| imm. extr. |
| data out | | datain ipipe

1y

e

(c) Save return address

1)

(b) Save CPSR O SPSR

Figure 4-11: Exception entry datapath activity

75



4.4 Instruction flow control

There are three main aspects to instruction flow control in AMULETL1:

. Instructions must have access to their correct PC values prior
to execution in case it is needed as an operand.

. Instructions which fail their condition tests must be discarded.

. Instructions already prefetched when a branch is taken must

also be discarded.

All these areas must be addressed to ensure correct operation and to maintain backwards
compatibility with the ARMS.

4.4.1 The ARM PC model and the PC pipeline

In synchronous ARM processors, the valu®th - when used as angarment - reflects the
instruction prefetching which has been done at the time it is used. In a clocked
implementation this is well defined and for most instructions yields a value of the current
instruction address + 8 (i.e. PC+8). If the PC is used r&tuen address, i.e when it is
moved into the link register (during procedure calls) the value written is PC+4. This is the
address of the instruction following the current one and is thus the address of the instruction
to return to after the procedure is complete. The value PC+4 can be calculated from PC+8
using the ALU on the way to the link register

In the synchronous ARM, the PC value is taken directly from the prefetch unit. This is
convenient but closely couples the architecture to a specific implementation. In the
Micropipelined implementation there is no direct coupling between the prefetch unit and
the ALU input. It is therefore not possible to determine how much prefetching has occurred,
and hence the relationship between the PC value in the prefetch unit and the required value
is not fixed.

For AMULET1 to be code compatible with an ARM&L5 must have the correct value; to
achieve this each instruction has a PC value associated with it. The instruction and its
corresponding PC value synchronize just before execution of the instruction begins. This is
implemented by keeping a FIFO (first-in, first-out queue) of PC values and matching them
with the instructions as they return from memdritis FIFO is called the “PC pipeline”.
Instructions returning from memory are stored in the instruction FIFO prior to execution.
Figure 4-12 shows a high-level representation of this operation; this is discussed in more
detail in section 6.1.4.

4.4.2 Condition code evaluation

All ARM instructions are conditionally executed depending on the setting of the Current
Processor Status Register (CPSR) arithmetic fldggdtive/signed less thafgro, Carry/

not borrow/rotate extend,Verflow) and the instruction word bits [31:28]. Thus a
comparison of the flag settings and instruction bits [31:28] must be carried out to check
whether the instruction should be executed or not. Instructions are typically executed with
the ‘always’ condition.
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The test of the condition flags is performed in parallel with the second stage of execution
(i.e. in parallel with the shift/multiply). A signal is sent from the second stage with the data
to the ALU to indicate whether the condition test was successful or not. This is used by the
ALU control to invalidate instructions which have failed their test. Instructions that have
previously locked a destination register must still return to the register bank to unlock the
destination. No data is written back from invalidated instructions; the lock is removed
without changing the register contents (see chapter 5 for detail about register locking).

The condition test can be performed in parallel with the shifter because the flags are already
valid by this time and cannot change until the ALU is activated. This is a consequence of
the dynamic shared latch pipeline structure.

4.4.3 Branch operations

With an autonomous prefetch system, it is not possible to predict how many instructions
will have been prefetched when a branch is taken. Prefetched instructions invalidated by the
branch must be discarded before instructions from the brarget &e processed. This is
achieved by maintaining a single fitlour flag which changes every time a branch is
taken. An instruction has an associated colour bit which indicates the state of the processor
colour when the instruction fetch was requested.

When the instruction stream changes, the reference colour changes and hence the colour of
instructions subsequently fetched also changes. Each instruction which arrives at the
datapath for execution has colour information which indicates whether the instruction was
from the original stream (and hence must be discarded) or from the new stream (to be
executed). Instructions whose colourfeli$ from the new reference colour are discarded.
This continues until instructions from the new stream arrive with the same colour as the
reference; these are then executed.
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There are two places on the datapath where the instruction colour could be checked: at the
ALU or at the primary decode. Each has merits and disadvantages as discussed below

Colour checking at the ALU

The most obvious position for colour checking is at the ALU, since a mechanism already
exists there to discard instructions which fail condition tests; this mechanism could simply
be extended to check colour as well. The ALU stage is also the earliest point at which it is
known whether an instruction has passed its condition test which determines, in the case of
a branch, whether or not the instruction stream will change.

Discarding instructions at the ALU is advantageous if a branch is not taken, because the
following instruction will be immediately behind the failed branch in the pipeline. The cost
of a branch not taken is the same as an instruction failing its condition test, i.e only 1 cycle.

However if the branch is taken, instructions to be discarded must still traverse the datapath
to have their colours checked at the ALU. The performance of taken branches may be
impacted if the time taken to flush the old instruction stream is greater than the brgetch tar
reload time. This may be significant if one of the instructions to be discarded is a multiply
which can take up to eleven internal cycles in the shift/multiply block (before being
discarded at the ALU). Howevdypically, loading from a non-sequential location is likely

to take longer than flushing the datapath.

Another problem with discarding instructions at the ALU is that by the time the instruction

reaches the ALU it has already locked its destination registers (if any). Therefore the
instruction must still notify the register bank that the destination register should be
unlocked, even though its result is to be discarded.

The worst case for both power and performance would be the instruction FIFO being full of
prefetched multi-cycle instructions when the instruction stream is changed. Each instruction
would enter the datapath, split into multiple cycles, progress down the datapath to the ALU
and then be discarded. The activation of the functional units on the way to the ALU would
consume power and could take longer than the brangét tasload time. Although typical
instruction streams may not often exhibit such worst case characteristics, it is still
disadvantage of colour checking at the ALU.

Colour checking at the primary decode

The main advantage of checking the colour before any registers are read is that the
instruction can then be discarded before entering the datapath. fEngsaopower saving

over the previously described ALU colour checker (no functional units are activated when
instructions are being discarded). Another advantage is that the instructions are discarded
before entering any computational stages so that even complex instructions can be
discarded quickly and &giently.

As all instructions are conditionally executed, it is not known whether a branch will be
taken until its condition codes have been evaluated at the ALU decode. Instructions
following the branch cannot be allowed to proceed to the colour checker in the primary
decode until confirmation is received whether the branch was taken or not (so that the
reference colour can be changed). Confirmation is received when the branch instruction
reaches the ALU; the fefct of this is that the pipeline stalls at the primary decode waiting
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for confirmation from the ALU for every possible branch instruction. For taken branches
this is very dicient because only instructions which are to be executed from the original
instruction stream enter the datapath and hence consume power

If the branch is not taken (i.e. the branch failed its condition test) then the pipeline between
the ALU and the register bank will be emptied for no reason. Investigations into ARM
instruction set usage [Jagg89] have revealed that approximately 15-20% of instructions
executed are branches, with just over 50% of branches taken. This means that
approximately 10% of the instructions executed would stall at the register bank
unnecessarilywith the performance penalty that flushing the datapath pipeline carries.

A combined colour checking mechanism

Both schemes described have merit, however each has drawbacks. The solution adopted is a
combination of the two. Colour checking is primarily carried out at the ALU decoder
However when the colour changes, the colour information is transmitted to the primary
decode with the aid of an arbitémstructions already in progress are discarded at the ALU

and instructions waiting in the instruction FIFO are discarded by the primary decode.

Care must be taken to ensure that when instructions are discarded by the primary decode,
the corresponding entry in the PC pipeline is also discarded to maintain the correct
association between instructions and PC values.

4.5 Exception handling

The ARM architecture specifies four classes of exception that must be handled. These are
listed below in order of increasing complexity:

1. Software interrupts and undefined instructions.
2. Instruction prefetch aborts.

3. Hardware interrupts.

4. Data aborts.

For the first class of exceptions, the primary decode simply recognises the bit pattern for the
software interrupt (SWI) or undefined instruction and immediately begins the exception
entry routine (see section 4.3.7). This is similar to normal instruction execution.

When an instruction prefetch abort occurs the memory responds with a invalid data word
marked by an “abort” flagh@abt). This flag is copied into the instruction pipeline along with

the invalid instruction where it is queued for entry into the primary decode. When it enters
primary decode the prefetch abort flag is detected causing the instruction data to be ignored
and the exception entry routine to be entered. The aborted instruction still associates with its
PC value, which is read &l5 by the exception entry routine and stored (after suitable
modification) as the exception return address.

45.1 Hardwareinterrupts
The level sensitive hardware interrupts may become active at any time and are completely
asynchronous to the processooperation. Therefore arbitration is required to prevent any

synchronization failure. These interrupts enter the processor between the instruction
pipeline and the primary decode (see figure 4-3).
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Figure 4-13 shows the arbitration hardware in the event path betweépiphand the
primary decode. Although the interrupts are level sensitive, a change in level which causes
the interrupt to become active can be viewed as an event. The transition between levels can
be used to trigger a Micropipeline arbit&his is also a convenient place to manage the
reference instruction colour which arrives asynchronously from the ALU when a branch is
taken. The robust arbiters described in chapter 3 are used. The operation of the circuit is as
follows:

Initially the rising edge of the reset sign&ldf) requests control of all three arbiters in
parallel ¢1). Once all three grantgX) have been received an event is sent to primary
decode I(req) to indicate that the arbiters are locked. Any events arrivinglQnIRQ or

PCCol cannot gain control of the arbiters. When the primary decode finishes decoding the
first instruction it issues an acknowled@adk), causing all three arbiters to be temporarily
released. If there are any outstanding requesi@nIRQ or PCCol they then take control

of their respective arbiters. The pending event (change in level) is propagated to the arbiter
output @2). This output is wired directly back to the “done” input of the arbd2y $o the

arbiter is immediately released again. The rfeicebf doing this is that the change in level

of the input of the arbiter has now propagated to the output. When the next instruction
arrives at primary decode it waits for all three arbiters to return to locked (signalled by
Lreg). The primary decode can then insp8€EtQ, SRQ & SPCCol to see if their levels
indicate that special action is required. The values are guaranteed to be stable because all
the arbiters are locked so any further asynchronous transitiofQ@nRQ or PCCoal

cannot propagate and&dt the primary decod&F1Q, SRQ andSPCCol are stable copies

of the inputs which are only allowed to change at a well defined time (beRaeleand the

next instruction arriving), this is shown in figure 4-14. (The external FIQ and IRQ pins are
defined to be active Low; the polarity of the interrupt signals shown in the diagrams are
active High because an inversion takes place on chip between the pin and arbiters).

from external pins from ALU to Ipipe
FI IR PCCol IPack
Q Q Cdnl‘
v P =
N =3 N) = N R
ARBITER ARBITER ARBITER
DS 2Q RS 2L RS a2g
y 4y w b 1
Interrupt
Mask
Bis —@ : |
SFIQ SIRQ SPCCaol Lreq Pack
stable Boolean flags for primary decode to primary decode

Figure 4-13: Interrupt and PC colour entry into the instruction stream
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When the primary decode detects an interrupt request Fi@nor IRQ the instruction

which was about to start decoding is usurped and the exception entry routine is initiated
instead. The PC value at the end of B@&pipe (and hence the value appearindas) is

the address of the instruction that was usurped (+8).Rlbevalue can be read by the
exception entry routine and used to form the interrupt return address.

The interrupt flagsSFIQ, SRQ) remain active until they are gated out by writing to the
interrupt mask bits in the CPSR. This happens during exception entry (otherwise the
processor would repeatedly enter the exception handler).

The exception entry routine inherits the colour of the instruction it usurped. Therefore if the
exception entry routine is following a branch which is taken it will be discarded because it
has the wrong coloulrhe interrupt flags remain active so the next instruction which passes
the arbiters also gets usurped for exception entry and is also subsequently discarded. This
continues until an instruction from the branchyérarrives with the correct colourhis

time the exception entry routine is successfully executed and the active interrupt flag is
masked out.

The reason for not forcing the execution of exception entry cycles which have the wrong
colour is that the PC value at the end of the PC pipe associated with the usurped instruction
will not give the correct restart address. The correct return address is the brgeiciTtas

is automatically delivered by waiting for an instruction with the correct colour

45.2 Data abort overview

Data aborts are by far the most complex exception to handle. The ARM architecture
specifies that the instruction which caused the abort must be restartable once the cause of
the abort has been removed (e.g. a virtual memory page fault has been tixedjaif the
instruction, the processor needs to determine the address which faulted and the address of
the data transfer instruction that issued the faulting address; it must also ensure that its state
is preserved whenever an abort is taken (so that a restarted instruction resumes execution in
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the same environment). An overview of the data abort process is presented here, more detail
is provided in the next section.

When a data transfer instruction begins execution, the PC value at the end of the PC pipe is
copied into a special FIFO referred to as the exception pipefipieg). When the data
transfer reaches the ALU to perform the address calculation, its corresponding PC value is
at the end of theXpipe. The ALU sends the data address to memory (via the address
interface - see section 4.3.4) and then waits for a response from the memory management
unit (MMU) to indicate whether the transfer was successful.

If it was successful, the ALU can continue with the next instruction and the PC value in the
Xpipe is discarded. If a data abort is signalled then the PC value at the endXpiphes

copied into a holding latchX{atch - see section 6.1.6) and the exception entry routine
entered by signalling to the primary decode. The abort entry routine can then access the
exception PC address and store it as the exception return addressufe the instruction

can restart, the base register (the address of the transfer) must also be preserved. Any base
modifications (due to auto-indexing) are allowed to complete because these are
deterministic and can be reversed by the exception handling software. Loads which
overwrite the base register cannot be permitted to complete because this would destroy the
transfer address and hence the instruction could not be restarted.

A single register data load operation, which loads data into the base registet destroy

the base if it aborts because no data is retrieved from memory so there is nothing to
overwrite the base register with. Howeviar a load multiple operation it is possible to
overwrite the base register early in the sequence and have a subsequent address cause an
abort. In this case special measures are needed to ensure that a copy of the base is preserved
and is available to restart the instruction (see section 4.3.6).

4.5.3 Data abort signalling

When a data abort is signalled to the ALU, the primary decode must be directed to enter the
exception routine. The ALU achieves this by first changing the reference colour so that
following instructions are discarded (and therefore do not change the processor state). The
change in instruction colour is signalled to the primary decode via the previously described
arbiter This causes all remaining prefetched instructions to be discarded (see figure 4-15)
via SELECT Sl and XOR X1. Once the colour mismatch is established no further
instructions can reach the primary decode.

An event is generated when the exception PC holding IXichidgh) becomes full (which

must be the result of a data abort). This event is asynchronous with respect to the primary
decode and would normally require an arbiter to introduce it into the logic. Hovoeer

the PC colour mismatch is detected there can be no further events in the primary decode
because incoming instructions are being discarded). The data abort event is therefore safely
allowed to pass directly to the primary decode to start the exception entry routine. This
safety is ensured because the data abort event is blocked by a transparent latch until the
colour mismatch has definitely been established (and hence no more instructions can enter
primary decode).

The event to the primary decode is accompanied by a Boolea#ht) (o indicate that
this is a data abort request. The exception entry routine begins, and saves the exception PC
etc. (see section 4.3.7). The various cycles of the data abort entry are forced to execute
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Figure 4-15: Data abort entry into the primary decode

irrespective of the condition codes or colour checking. This is because the data abort entry
is not linked to an instruction in the instruction pipeline and does not use an associated PC
value; it uses its own value from tKelatch.

When the exception entry is complete the primary decode acknowledge$aelgk This

event is steered back to the exception PC holding latch and it also resets the state of
SELECT &) so that it steers subsequent acknowledges backivia the arbiters and the

Ipipe. The normal instruction event path is shown in green in figure 4-15, and the data abort
event path is shown in red.

Eventually instructions from the exception handler arrive with the correct colour and begin
execution as normal instructions.






Chapter 5: Theregister bank

A high performance register bank is a central component of a RISC procé&ksor
challenge in an asynchronous design is to maintain coherent register operation while
allowing concurrent read and write access with arbitrary timing and dependencies between
them. The solution adopted in AMULET1 includes a novel adbigsr register locking
mechanism (described later) which enabldiient read operations in the presence of
multiple pending writes.

The special requirements for a register bank in a Micropipelined processor can be specified
only after analysing the general operation of a register bank and the hazards which are
introduced by a Micropipelined execute unit.

5.1 Register bank operation

A register bank consists of a number of registers with common sets of read and write buses.
All registers are the same width; in the 32-bit ARM6 microprocessor they are all 32 bits
wide. The microprocessor executes instructions as follows:

The instruction decoder extracts the addresses of the registers to be, H@adnd the

register where the result will be writtew)(from the op-code; these are passed to the
register bank to begin execution. The operands are read out and passed to the execution unit
where the operation is performed to provide the result. Some time later the result arrives
back at the register bank and is written to the appropriate regigtdfigure 5-1 shows a

Instruction

\/

Instruction
Decoder
Ul
A operand A
"\ Register Execution
Bank Unit
B operand A

result

Figure 5-1: Register bank operation
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high level view of this process. The number of registers read by any instruction is limited by
the number of output ports on the register bank, which in the case of the ARM6 is two.

5.1.1 Internal register structure

Figure 5-2 shows the internal structure of a typical register bank for reading one operand,
each register occupies a vertical slice of the register bank. A register comprises of a number
of individual memory cells arranged in a vertical stack (32 memory cells for a 32-bit
register). Each of the memory cells has an input (which is used for changing its value) and
two outputs (which are used to read the value from the cell ontd therand and
operand buses). All operations are performed on all the cells of a particular register at the
same time. Three enable signals are provided for each register to control reading Anto the
bus, reading onto th& bus and writing from the result bus into the cell.

TheA bus decoder takes the binary representation ok thygerand register numbea) @nd
converts this into a unary representation (1 olN)aised as th& bus output-enable for the
selected registerFigure 5-2 shows 1 out dfl registers selected in this waimilar
decoders are provided for tBébus and for the write bus which have been omitted from the
diagram for clarity

The A operandB operand and write buses all run horizontally through all the registers as
shown above; again tiieand write buses have been omitted for clarity

At a slightly higher level this can be represented as in figure 5-3. Physiballgecoders
are stacked on top of each other with the select wires routed vertically through to the
register bank.

5.1.2 Register bank hazards

If the execution phase of the instruction is pipelined then it is possible to have multiple
operations in progress at the same time implying that there may be more than one write
operation outstanding.oTensure the correct result is written to the appropriate regster
record of destination register addresses must be maintained; this allows a returning result to
pair with the correct destination address and to update the correct register

a
i

A bus decoder

—» 31

A Bus

-
-

(SIS

Figure 5-2: Register bank internal structure
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Another consequence of a pipelined execution unit is that an instruction may try to read the
contents of a register that is to be written by an instruction already in progress. This
situation can be caused by an instruction which uses the result of the preceding instruction.
If the result has not yet been calculated then the previous value could be read erroneously
To ensure correct operation, the dependencies between instructions must be managed so
that reads from registers which have not yet been written wait until the contents are valid.

The third hazard of register bank operation is related to the asynchronous nature of the write
operation in relation to a read. The execution unit can take a data dependent time to
complete its operation, so there is no fixed time at which a result is expected to return to the
register bank. The next read may start as soon as the operand data is latched into the execute
pipeline. Therefore reading and writing are asynchronous operations and care must be taken
to ensure that any interaction between the two, for example writing and reading the same
register does not cause metastability problems (e.g. when a register value is changed part
way through a read operation).

In summarythe three register hazards associated with an asynchronous pipelined processor
are as follows:

1. There may be multiple outstanding write operations

2. A read may be requested from a register whose contents are invalid
pending a write.

3. Asynchronous read and write operations using the same register may
interact unpredictably

5.2 Write address storage

The obvious way to store the write addresses is in a simple FIFi@. Atldresses are put
into the FIFO after the instruction reads its operands and removed from the FIFO when the
destination address is required to write the result back into the register bank. A standard

N

| W decode |

" iy "

| A decode |

" iy 1

| B decode |

' 1

A operand >
Wresult Registers
B operand >

Figure 5-3: Decoder arrangement
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Figure 5-4: Write address storage

Micropipeline provides a simple andfieient way of doing this. Figure 5-4 shows an
example instruction stream and how the write addresses are stored within such a FIFO. The
example shows that the first two instructions have begun execution and placed their
destination write addresses in the FIFO. The third instruction cannot commence until the
result of the previous instructio®4) has been written back to the register bank since it is
required as one of the operands. The FIFO contains a list of all registers whose contents are
invalid. These invalidated registers mustlbeked so that reads to them cannot proceed
until the contents are valid. A read operation could therefore inspect the so called “lock
FIFO” to determine whether it may proceed or whether it must wait for a value to return.
This poses the problem of finding and comparing register values in the asynchronous lock
FIFO to determine if the registers to be read are locked. The condition detection
mechanism[Pave91] provides a simple ariidieht way of achieving this.

5.2.1 An asynchronousregister lock FIFO

If the lock FIFO is constructed so that the locked registers are represented as decoded unary
values, (i.e. 1 out of N), then each lock entry will have exactly 1 set bit (in the position that
corresponds to the register that is locked). For example if there are 32 registers then there
will be 32 bits, and if bit 3 is set then this indicates that register 3 is locked pending a write
operation.

Using this representation, the determination of whether a register is locked is a matter of
establishing whether there is a bit set in a particular column. Figure 5-5 illustrates how the

R7 R4 RO
M

00 0/0j]0O0O0O0O

00 0/0j]0O0O0O0O

0001|0000

00 0/0j0O0O01O0
)

Figure 5-5: Lock detection
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FIFO is interrogated to determineRfl is locked and whether the read may proceed or not
(the FIFO illustrated contains the unary encoded valué¥l @nd R4). In this casd4 is
expecting write data so the read must stall.

A further, beneficial, consequence of storing the write address in unary form is that the last
stage of the FIFO can be used to drive the write word lines of the register bank without
further decoding.

5.2.2 FIFO examination

The columns in the lock FIFO can be examined by sir@yng together successive bits

of the FIFO as shown below in figure 5-6. This gives two outputs, one that indicates that the
next write operation is to this register and the other indicates that this register has a write
pending and is therefore locked. For this sim@®&ing technique to work in an
asynchronous FIFO, three conditions must be met:

1. Empty stages must not interfere with the lock and so must present a
zero output.
2. Data must be copied to the next stage before being deleted from the
current stage to prevent it from transiently disappearing fronOfe
chain.
3. Data must not be allowed to enter the FIFO while thaeKed” output
is being examined to prevent asynchronous interaction problems
(metastability etc.).
Micropipelines, in general, are transparent when engatyensuring empty stages give a
zero output is a simple matter of ensuring that the input to the FIFO is held at zero while
data is not being entered. Another feature of standard Micropipelines is that they
automatically copy data to the next stage before deleting it from the current stage, so the
second condition is also satisfied.

Instructions which read and write the same register must not lock the destination until the
read is complete otherwise they would stall on their own lock. This requires sequential
ordering of the read and lock operations. This high-level control constraint also solves the

5]
Y
Y

[1]

(o]
l

Write  Locked

Figure 5-6: Lock interrogation
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Figure5-7: Read lock gating

third condition required for correct operation of the lock FIFO. The detail of the high-level
control is discussed later

5.2.3 Stalling reads

The lock FIFO provides a mechanism which indicates that a register has a write pending.
This information must be used to prevent any read operations from proceeding until the data
has returned and the write operation is complete. Figure 5-7 shows how the lock FIFO
locked output and thé\ andB decode word lines are combined with a simfdD gate to

stall reads. A lock in any columnfettively disables th&ND gates for that register and so
prevents the register read from enabling the contents of the locked register onto the operand
buses. A read will remain stalled until the lock entry reaches the last stage and is matched
with the corresponding write data. The write operation then completes and the bottom entry
of the FIFO is removed; the corresponding set bit will then disappear and allow the stalled
read operation to proceed.

The diagram also shows how the last stage of the FIFO is enabled onto the register bank
write word lines \(V Sel) under the control of a write enable signal.

5.3 Asynchronousregister bank design

The overall oganization of the register bank is shown in figure 5-8 [Pave92a]. The
interfaces use the bundled-data convention with transition signalling. Intethellgesign
employs a combination of two-phase and {fphbase techniques, the latter being well
matched to the preclga-active cycle of the dynamic circuits used in the basic register cell.

5.3.1 Read and lock operations

A new instruction has its availability signalled IsiReq, and presents two register addresses

to be readd andb) and a register address to be writtey gnce the execute unit result is
available.l-Req is stalled until the register bank is ready to start a new read operation when
the read decoders are enabled. Concurrently with the read address decoding, the write
register address is latched WWLatch).
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The decoded read addresses present “enables” for the selected registers which are gated
with the locked register information. A read of an unlocked register will proceed, whereas a
read of a locked register will stall at this point until a write operation clears the register lock.

The register read circuitry uses dynamic techniques to minimise the cell size, wit char
retention circuits to give pseudo-static operation. A extra thirty-third bit line gives a
matched completion signal and when both register values are available they are latched and
passed to the execution path (viaBr®eq signal) which can begin to process the data with

no further delay

Once the data has been latched, the read decoders are disabled and the read lgesiprechar
turned on to prepare for the next access. Normally the write address will be latched well
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Figure5-9: A Petri Net model of theread-lock sequencing

before this time, and the instruction acknowledgadk) is issued so that a new instruction
can be prepared during the register recovery time.

The write decoder is disabled during the read operation to present inactive inputs to the lock
FIFO. Once the read data is latched, the write decoder is enabled and the destination register
is locked. As soon as the lock FIFO has accepted the new address, a new instruction may be
allowed to start its read operation. The lock logic will continue by disabling the write
decoderit will then free the write address latch for the next value.

The read-lock sequencing is illustrated in Petri Net form [Pete81] in figure 5-9, which
shows the critical sequential dependencies in the read operation. Note particularly that the
W decoder is disabled until the read has completed, in order to ensure that no spurious lock
indications are passed via the empty (and therefore transparent) stages in the lock FIFO;
similarly it is disabled before th#&/ latch is allowed to accept a new value. The next read is
allowed to proceed as soon as the locks are stable, since any transient caused by the slow
disabling of thewW decoder will cause at worst a delay in the read operation, never an
incorrect action.

The critical path in the register bank (frdaRReg to D-Req) has the minimum number of
dependencies on internal operations; this defines the register access latency of the design.
The cycle time will include this and the slowest of three independent recovery routes:

. The supply of the next instruction.
. The completion of the locking operation.
. The read bus preclge time
(omitted from figure 5-9 for clarity).
In general it is expected that the first of the above will be the critical path in determining the
register bank cycle time.

5.3.2 Write operations
A write data value (signalled oWw-Req in figure 5-8) is paired with the decoded write
address at the output of the lock FIFO. The appropriate write word line is then enabled and

the data written, following which the destination register is unlocked for reading by
removing its address from the FIFO. The write operation is self-timed by detecting the
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transitions on the word line with a wide dynamic OR gate, the same circuit ensures that
writes are fully disabled before the write data is allowed to change

5.4 Additional features

There are several features described in this section which were omitted from figure 5-8 to
maintain the clarity of the diagram. The write operation includes a Boolean flag to indicate
whether the data is valid. This allows instructions which have failed condition tests at the
ALU to return to the register bank to remove locks placed previowglyout writing any
data. The valid flag is used to steer the write request to remove the last item in the lock
FIFO without enabling the write word lines. No data is written into the register bank.

The program counter on the ARM is available as a general purpose reBigerThe

value of the program counter for any particular instruction arrives with the instruction (from
the PC pipe) so the register bank simply transfers the value onto the operand bus if required.
The multiplexer control is similar to the read control of the general purpose registers;
however asR15 is not an actual register in the bank, there is no notion of writifRi%o

within the register bank. Therefore there is no lock FIFO entriRférand reads frorR15

can never be stalled on a lock. The valuR1S is changed by sending the new value to the
address interface (a branch operation).

Some instructions do not require all three register addresde# (w) so logic is supplied

to bypass a subset of theno €&conomise on logic for the read operations, instructions
which do not need both operands read the PC value instead and then discard it. It is safe to
do this because reads frdh5 can never stall.

The register bank also contains several special registers which contain saved versions of the
processor status regist8PER); these can be accessed only viaAhgperand bus but are
enabled in a similar manner to the general purpose registers. Extra information is provided
with the instruction to indicate that the access is t&R#R. Write operations to aBPSR

can specify that only part of the status word is to be changed (e.g. arithmetic flags, control
flags or both), extra information therefore is required for write operations 8% to
indicate which parts are to change. When a write toSR8R is detected the extra
information is stored in a control FIFO and maintained in step with the main lock FIFO;
when the write address for tH#°SR reaches the bottom of the main lock FIFO, the
corresponding information in the control FIFO is therefore also at the bottom. This is then
used to control the write enable of the two halves ofSP&R depending on what the
instruction specified.

5.4.1 Dual lock FIFO

Instead of a single lock FIFO as described earlier the implementation has two FIFOs; one
for operations that load data from memory and one for internal operations where the data
comes from the ALU.

The dual FIFOs allow internal ALU cycles to overtake slower external memory accesses
assuming there are no register dependencies between the two. This gives rise to potential
compiler code-reordering optimizations to reduce dependencies on loaded data and to
increase performance (independent ALU cycles can be executed while the data is being
fetched).
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Figure 5-10 shows how the two FIFOs are configured so that they can still correctly indicate
a locked condition bYD)Ring across both FIFOswb decoders are provided, one for each
FIFO and the primary decode supplies two write addresses. This allows an entry to be
placed in both FIFOs concurrently and is used to support instructions which have two
destination registers (e.g. load data with base writeback; here the two registers are for the
data coming back from memory and for the modified base value returning from the ALU).

If only one destination address is needed, only one of the write decoders is enabled, and
only the appropriate FIFO activated. Once the destination address is in the correct FIFO, the
write decode is disabled and the operation proceeds as before.

When aW-Req is received it is accompanied by a Boolean flag to indicate whether the data
value to be written came from the ALU or memoFhis is used to multiplex the correct
write destination address onto the write word lines before the write commences. When the
write is complete the last entry in the selected FIFO is removed and any read stalled on this
write is released automatically

5.5 Implementation

Storing the write addresses in the lock FIFO in unary encoded form may appkeemief

in the use of silicon area, but it allows the full stack of word control logicAtBeandW
decoders, the lock FIFO, read lock gating and the write enable logic) to be pitch-matched to
the register cell block. Figure 3-shows the silicon layout of the register bank. The lock
FIFO can clearly be seen as the dense regular layout above the datapath register gells. The
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Figure5-11: Register bank silicon implementation
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andB decoders (labelled in figure 331below the lock FIFO have the read lock gating built
into them with the “locked” signal provided from the FIFO above.

The main core of the bank - the datapath register cells - are identical to those used in the
ARM®G6 with bit 31 at the top and bit O towards the bottom. The thirty-third bit used for the
self-timing path is in an extra row at the bottom just above the power rails. Using the
existing ARMG6 register cells maintains the areficieincy of the original synchronous
datapath area and illustrates the ability of the Micropipeline design methodology to re-use
synchronous elements.

Figure 5-1 also features the SPSRs which are the sparse registers to the right of the
datapath cells. The sparse nature results from the fact that the processor status word only
contains information in bits 31-28, 7, 6 and 4-0 so storage in the other bit positions is not
needed (see appendix B for information about the PSR format).

The register bank control logic is implemented in the automatically compiled area of
standard cells shown towards the top of the diagram. The decode pipeline latch and the
register bankV latch can be seen as the two thin horizontal strips at the extreme top of the
diagram.

5.6 Future enhancements - register bypassing

Typical instruction streams frequently display the use of the result of one instruction as an
operand of the next. Such data dependencies between consecutive instructions can cause a
significant reduction in throughput for typical code, compared with best case code without
dependencies, if the result is only available to the next instruction after it has been written
back to the register bank.

Clocked processors generally usgister bypassing to allow a result to be re-used without
incurring the register write-then-read penalifie global clock ensures thatfdient parts

of the processor are operating at fixed relative times, so the result and operand addresses at
two stages can be compared to activate the bypass when appropriate.

In an asynchronous processor there is no such fixed relationship between the timing of
operations in dferent parts of the processao explicit synchronisation is necessary if a
similar result and operand address comparison is to form the basis of a bypass mechanism.
This synchronisation will have a cost in reduced throughput and, since it forces lock-step
operation of at least two parts of the processoa serious obstacle to fully exploiting the
advantages of asynchronous operation.

Two alternatives to register bypassing have been considered which deliver some of the
benefits without impeding the asynchronous operation of the pipeline. Although these have
not been implemented in the current design, they are included as suggestions for future
enhancements and are described below as register through-passing and last result re-use.

5.6.1 Register through-passing
The design shown in figure 5-8 is very conservative in its timing for a write operation which
clears a lock and thereby allows a read to proceed. A mechanism under consideration

would, with the addition of a latch to the write enable logic, allow the lock to be cleared
much earlier in the write process (see figure 5-12). As soon as the write is complete the lock
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is removed from the FIFO to enable the read to proceed while the write enable lines are held
stable by thewrite enable latch until the write enables are safely turnetl ®his prevents
writes to spurious registers.

5.6.2 Last result re-use

Another mechanism under consideration detects data dependencies at the decode stage.
Each instruction leaves behind in the instruction decoder a record of its destination register
when the next instruction enters the decoder its operand addresses are compared with this
record. If a match is found, the read operation is bypassed and the result is collected for
operand use directlyThe mechanism has ndfexft on the design of the register bank in
figure 5-8 as it is manifested in additional logic elsewhere in the decode and execution
paths.

This second mechanism has better performance than the first when it is applicable, but it has
several limitations. A particular problem on the ARM is that all instructions are executed
conditionally so an instruction which fails to pass the condition test will not produce a
result. By this time its successor may depend on that result, so this mechanism must include
logic to determine whether or not an instruction may be annulled (and hence will not
produce a result). This adds to the complexity of the design.
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Chapter 6: Memory interface

The memory interface can be divided into two distinct parts: the address interface,
responsible for issuing all address information to memang the data interface which
manages the flow of data into and out of the processor

A memory access can be either a read or a write operation. For a write operation, the
address supplied by the address interface synchronizes with the data supphéal doy

before being dispatched to memoRor a read operation, there is no immediate need to
synchronize with the data interface when issuing the memory address. Homieerthe

read value returns, the data interface must know whether the value returned is read data
destined for the register bank or an instruction to be queued ready for execution.

To enable the data interface to route incoming values to their correct destination, a
Micropipeline FIFO containing control information is connected between the address and
data interface. For every read request issued by the address interface control information is
placed in thisnemory control FIFO. Every read value arriving from memory pairs up with

its control information taken out of the memory control FIFO and is steered to the correct
destination.

6.1 Addressinterface

The main function of the address interface is to generate sequential instruction addresses.
This is achieved by circulating the PC around a loop containing an incrementer (see section
6.1.7 for further information about the incrementer). For each pass around the loop (shown

in figure 6-1(a)) the next sequential address is sent to memory

After reset, processor execution begins with the memory address register (MAR) being
forced to all zeros and an event being generated to start the processor prefetching. The first
value sent to memory 8. This value is also passed to the incrementer where the next
instruction address is generated (PC +4). The incrementer is a dynamic structure so the
result is stored in the PC holding registel8C HLS (the reason why two registers are
needed is discussed later). If no other address source wishes to use the address interface,
then the PC value returns to the MAR via the multiplexers. The next instruction address is
dispatched to memory and the process repeats.

The program counter can circulate around this loop at its own speed, decoupled from the
actions in the rest of the procesdérthe processor wishes to use the address interface to
generate the address for a data transfer the PC incrementing loop must be temporarily
interrupted; the PC loop is asynchronous to the rest of the pracessorarbiter is required

to manage the interaction. The data transfer begins with the transfer address being supplied
on either the write bus or tiebus (depending on the instruction and whether pre- or post-
indexing is specified - see section 4.3 for details of how addresses arrive at the address
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interface). Arbitration takes place between the PC value and the transfer address to take
control of the MAR. Eventually the data transfer takes control and passes its address out to
memory via the arbitrated multiplexer and MAR (figure 6-1(b)). Once the transfer is
complete the arbiter is released allowing the pending PC to continue to circulate around the
loop.

6.1.1 Load/Store multiple operation

A load/store multiple operation sends only the base address of the transfer to the address
interface and the sequential transfer addresses are generated by modifying the base using
the incrementer (similar to sequential PC address generation). A load/store multiple
operation begins with the base address arriving on the write bus in the same way as for a
data transferOnce control is taken of the MAR, the interface waits for a signal from the
primary decode. This signal contains information about whether this is the last transfer and
for a load operation it indicates whether the data being loaded is the new PC value. The last
transfer information is used to stop any further incrementing and if a new PC transfer is
signalled then the interface is initialized to expect the new PC value.

Once the signal is received from the primary decode, the address is dispatched to memory;
if the transfer is not the last, the address is sent to the incrementer where the next sequential
address is generated. The incremented address is stored in the load/store multiple holding
register LSM reg).

To take advantage of fast sequential modes of DRAM and some cache memories, the PC is
forced to wait until the transfer is complete before prefetching is allowed to continue (this
ensures that the LSM addresses are uninterrupted sequential addresses). This is achieved by
not releasing the arbiter until the transfer is complete. A consequence of this is that the re-
circulating LSM address is not subject to arbitration to take control of the MAR because
everything else is locked out of the loop. Therefore, as soon BSheeg has received the
appropriate signal from the primary decode, it can forward its value directly to the MAR as
shown in figure 6-1(c). The sequential address generation continues until the primary
decode signals that the transfer in progress is the last one. In this case, the address is
discarded after the transfer is complete (rather than incrementing it). The arbiter is then
released to allow the PC to continue to circulate and issue instruction addresses ta memory

6.1.2 Changingthe PC value

The PC value circulating in the address interface has an associated colour related to the
main colour mechanism (see section 4.4.3). This is used to discard old circulating PC values
when a branch is taken. The address interface control contains a reference colour against
which the colour of the circulating PC value is compared; if the colours do not match the PC
is removed from the loop and discarded.

When a branch is executed, the new PC value arrives on the write bus from the ALU,
bringing with it a copy of the new PC colo@nce the new PC value has taken control of
the arbiter the reference colour is updated to the new value from the ALU. The new PC
value then appears on the output of the MAR and is sent to memory and the inccementer

Once the arbiter is released, the old PC value, which has waited in one of the holding
registers, can gain control of the arhi#&s it enters the control circuitrg colour mismatch
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is detected and the old PC value is discarded. The new PC value completes circulating the
loop and presents a request to the arblieis time, when control is granted by the arbiter

the PC colour matches the new reference colour so the PC value is allowed to continue to
the MAR unhindered. The PC modification is then complete.

6.1.3 PC loop deadlock

The PC incrementer loop includes two holding latciR€SKILSin figure 6-1) to prevent a
potential deadlock situation arising as described below:

Consider the case with only one holding late HL); the old PC value is waiting in the
holding latch and the new PC already in the MAR as shown in the simplified diagram of the
address interface shown in figure 6-2(a).

The new PC value cannot circulate any further until the holding latch is free. In most cases,
when the arbiter is released, the old PC immediately gains access and is discarded, freeing
up the holding latch and enabling the new PC to continue to circulate.

However if instead of the old PC value gaining control of the arpgtelata transfer request
takes control, the deadlock situation shown in figure 6-2(b) can. dtere the data transfer
address cannot enter the MAR because the new PC is still occupying it waiting for the PC
holding latch to become emptyhe holding latch is waiting to gain control of the arbiter
and the arbiter will not be freed until the data transfer address is safely in the MAR, hence
deadlock results.

If two PC holding latches are provided then the new PC value can move around the loop
leaving the MAR clear for any data transfers.

Although data transfer operations immediately following a branch should be discarded
because the branch has been taken, a load which is cancelled must still release any
destination registers locked previouslg ensure that the write/unlock operations maintain

incrementer

incrementer

write bus —__

write bus [l

arbitrating mux

data transfer

to memory to memory

(a) prior to arbiter release (b) deadlock situation

Figure 6-2: PC loop potential deadlock
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strict sequential ordering, the unlock request is placed in the memory control FIFO. This is
accessed via the address interface so annulled loads still pass through.

When a cancelled load reaches the end of the memory control FIFO in the data interface it is
forwarded to the register bank to unlock the destination. Since the load was cancelled, no
address was sent to memory and the FIFO entry therefore does not rendezvous with any
returning data - it is just sent to the register bank as soon as it reaches the end of the memory
control FIFO in the data interface.

The other function the address interface must perform is to supply the PC value to the
execution unit for use as tf5 value. The PC values are stored in a pipeline whose input

is connected to the incrementer PC holding latch (as shown in figure 6-1). The operation of
the PC pipeline is described belomoting particularly how the value presentedras is
controlled to emulate the behaviourRi#5 in the synchronous design.

6.1.4 PC pipeline

As previously described, after hardware reset, the processor starts execution from the
bottom of its address space by forcing the MAR to output zero along with the appropriate
event control signals. The first value to appear on the output of the incrementer is thus
00000004. If the output of the incrementer PC holding latch were simply connected to the
input of thePC pipe then the value PC+4 would be delivered to be synchronized later with
the instruction (fetched from address PC). The value actually required for ARMG6
backwards compatibility is PC+8oRllow for this, the first PC value after hardware reset is
not placed in théC pipe. The first instruction éctively matches up with the “PC+4” of

the following instruction hence giving PC+8. This is shown in figure 6-3.

Figure 6-4 shows how the PC values are managed when a branch in the instruction stream
occurs; for example, if the instruction at addregsan unconditional branch to locatidt

The instructions immediately following the brandB & 14) are assumed to have already
been prefetched before the branch instruction was decoded and executed; they must
therefore be “thrown away” along with their corresponding PC values. Instrudtien
incorrectly matched up with a value from tR€ pipe (in fact it matches with the PC+4 of

the branch tayet) but this is irrelevant as the instruction is not executed. The brageh tar
instruction is then matched correctly with its PC+8 value.

6.1.5 Instruction overflow deadlock

If no values are removed from tRE pipe it will eventually fill; this could happen if the
currently executing instruction takes a long time to complete (e.g. a multiplication). When

Instruction
Address / PC5=20
12: 14 / PC4=16
8: 13 / PC3=12
4: 12 / PC2=8 )
0: 11 PCl=4 |~—— First PC not placed

in PC pipe

Figure 6-3: Staggering of PC pipe to achieve carct R15 value
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Instruction

Address / bC7-56
48: 6~ -~ PC652
Branch target 44: 15 / PC5=48 > Instructions pre-fetched but
12: 14 PC4=16 not executed
8: 13 ? PC3=12
Branch 4: 12 / PC2=8
0. 11 PC1=4 |«~—— First PC not placed

in PC pipe

Figure 6-4: PC pipe behaviour across a branch

the PC pipe is full, the incrementer PC holding latch will iIssue a request to it bueGhe

pipe will not acknowledge until there is space in the FIFO for the PC value to be stored.
This prevents the incremented PC value reaching the MAR, so no further instruction
addresses are issued to memory untiRBeipe has some free space.

The length of the PC pipeline determines how many instructions can be outstanding at any
particular time, this acts as a self regulating queutarottie. This throttle mechanism is
important in preventing a possible deadlock situation as described below

If the datapath is stalled at the register bank, waiting for a data value to be loaded from
memory into a registerinstructions will begin to backlog and gradually fill up the
instruction FIFO. If there was no throtting mechanism it would be possible for the
instructions to backlog all the way into the memdiyhe data value happens to be behind

this backlog, it would not then be able to complete the transfer to the register bank because
the instructions are blocking the memory interface. The instructions are backlogged because
of the stall in the register bank which cannot be released because the data value cannot get
to the register bank; hence the system is deadlocked. This is shown in figure 6-5.

To ensure that this deadlock can not happen the number of instruction requests issued to
memory must not exceed the number of spaces in the instruction FIFO. Thus any backlog is
restricted internally to the instruction FIFO itself, leaving the data interface clear to allow
the data value to return.

PC pip€eline Length

The address interface stops issuing instruction addresses whe@ gige becomes full,

this is a function of the number of stages inRiapipe. If the pipe is N stages long then
when it is full, N+1 instruction address will have been issued to memory (the first PC value
after reset does not enter A€ pipe). Therefore the instruction FIFO must be at least N+1
stages long to accommodate all instructions returning from meassyciated with values

in the PC pipe. When thHeC pipe is full, there will also be a PC value in the PC holding
latches waiting to enter tHeC pipe. The instruction corresponding to the PC value in the
holding latch will have already been sent to memsoythere are in fact N+2 outstanding
instructions which need accommodation in the instruction FIFQifde) to prevent
deadlock.

If a branch is taken when the old PC value is waiting to enteP@heipe (with N+2
instructions already outstanding) the new PC value arrives from the ALU and is sent out to
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Memory DATA <— returning to the Register Bank
Pipeline 15 ~<— Instruction waiting
to enter Instruction FIFO
Data | AV |
Interface i L
14
13 Instruction
12 FIFO
11
To Register < @ Instruction flow
Bank stalled waiting for data to return

to the Register Bank

Figure 6-5: Potential processor deadlock

memory making the total of outstanding instructions N+3. If a load follows the branch then
this is annulled, but must still unlock any destination registers locked previdognsure

that the write/unlock operations maintain strict sequential ordering, the unlock request is
placed in the memory control FIFO. This is accessed via the address interface so annulled
loads still pass through.

If the processor is stalled waiting for the destination of the cancelled load to be unlocked,
deadlock will ensue if the memory control FIFO is blocked by any outstanding instruction
requests, i.e. all outstanding instructions must be in the instruction FIFOPijeemust
therefore be 3 stages longer (N+3 stages) thaRGh@pe (N stages). This demonstrates the
complex relationship between the depth of the PC and instruction pipelines.

6.1.6 PCpipeimplementation

The PC pipelines are split into two parts: PC storage for supdRiiigyalues PC pipe in
figure 6-6) andXpipe for storing the addresses of instructions in progress which could
potentially generate a data abort (i.e. all data transfer instructions).

When an instruction begins execution its corresponding PC value is in the last stage of the
PC pipe; for normal operation this value is selected by the multiplexer and made available
as theR15 value needed by the register bank. Once the primary decode of the instruction
has completed, the PC value can be released, if the instruction is not a data transfer the PC
value is removed from thBC pipe and discarded. If however the instruction is a data
transfer then the PC value is placed in the top oKfnge, and is removed from the bottom

only when the corresponding memory access is complete.

Figure 6-7 shows the detailed operation for removing a PC value frodpijpes Each data
transfer has a corresponding PC value in Xpge which awaits a response from the
memory management unit (MMU). There is a single PC value and MMU response for each
load/store multiple transfer
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{ } interface

—— PC pipe

=

—

X pipe

z

| X latch
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mux
to register bank

Figure 6-6: The PC pipelines

When the PC value reaches the last stage oiXfinge its request out signal primes a
Decision-Wait element ready for the MMU response. The MMU issues an evegitham
data abort or no data abort . If there is no data abort then the request out of tbéipe is
steered back as its own acknowledge (viaXtR), effectively removing the PC value in

the process.

When a data abort is signalled the last stage oiXflipe (containing the PC+8 of the
instruction that aborted) is copied into the exception holding la¢dbaich). The request
out of the holding latch is the event used to indicate to the primary decode that a data abort
has occurred. The exception entry routine needs access to the address of the failed
instruction so that it can retry the instruction when the cause of the exception has been

X pipe
Aout

Rout |

1

j y:

from primary decode
(exception processing complete)

to primary decode

Figure 6-7: Data abort PC storage
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removed. The exception address Xlatch) is multiplexed onto the output of the PC
pipelines and is made to appeaRas in the register bank, where it can be read and copied
into the exception return registeso that when the data abort recovery software routine
exits, the processor automatically returns and retries the aborted instruction. Once the
exception PC is safely stored elsewhere Xatch can be acknowledged and returned to

its empty state.

6.1.7 Incrementer

The incrementer is constructed using a simple ripple-carry mechanism with completion
detection. Each bit-cell is simple and identical as shown in figure 6-8. The worst case time
for this style of incrementer is @ because the carry may have to propagate through 30
bits (since PC and LSM are always word aligned there is no need to consider the bottom 2
bits, hence 30 bits worst case). On average, two bits change per operation [Gars92], so the
typical case is much faster than the worst. In a synchronous system the cycle time is limited
by the worst case, but with an asynchronous implementation the cycle time can vary
depending on the data and the extent of carry propagation, so the circuit can be optimized
for typical values instead of worst case.

The incrementing operation begins with a carry injected into the lowest bit; if the input to
the stage is Low (0) the carry will propagate no further (0+1=1 carry 0). The input selects
the path the carry takes through the de-multiplexer; with the input Low (0), the carry is
steered to the completion detection circuitry because the increment is finished; if the input
is High (1), the carry-in must propagate through the stage when it arrives, to the next
highest bit (1+1= 0 carry 1). This is done by the input selecting the other output of the de-
multiplexer The carry continues to propagate until it reaches a stage where the input is
Low; here, instead of the carry propagating any furihes used to signal competition.

The completion circuitry is implemented by a simple wired-OR of the completion signal in
every bit. Only one bit will signal completion per incrementing operation. The circuit is
implemented using dynamic circuitry to reduce the transistor count to only 20 transistors
per bit. Weak-feedback chge retention is provided on the carry inputs to ensure that the

Carry out

— Complete

o/
Input y | ‘)D_ Output

[

Carry In

Figure 6-8: Simpleripple-carry incrementer cell
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Figure 6-9: Data-in organization

Imm. pipe

carry inputs of the higher order bits do not decay after the incrementing has completed and
hence cause power dissipation.

6.2 Data interface

The data interface is much simpler than the address interfacdafBlrait section is simply
a two stage FIFO with optional byte replication built into the input of the second stage. The
datain logic is more complex.

6.2.1 Datain

Values arriving from memory are initially stored in the memory read register (see figure 6-
9). For each value, the data interface extracts the corresponding control information from
the memory control pipe, this determines whether the value is an instruction or data value.

The instruction pipelinégipe) is a simple 5 stage Micropipeline configured as fast forward
latches (see figure 3-26) to reduce latency throughipiipe. The end of the instruction
FIFO is connected to the primary decode and the immediate field exttastop{pe).

The immediate extractor consists of two Micropipeline stages with intermediate extraction
logic. It is possible to determine the size of immediate value to extract (8, 12 or 24 bits) by
examining just two bits of the instruction word, so the extraction logic is quite simple. The
input stage is configured to be a normally closed (blocking) latch so that, when the
immediate extractor is not in use, transitions on its input caused by passing instructions do
not cause internal power to be dissipated. The output of the immediate extractor is
connected to a multiplexer on the input of the shifter

The final part of the data interface is the logic which processes data destined for the register
bank @lata in). This consists of two Micropipeline stages with logic to perform rotates in
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byte quantities for non word-aligned loads and gating to mask out the top 24 bits for byte
reads. It also contains logic that can be used to alter which byte in the word is addressed as
byte zero (i.e. it can change from “little-endian” to “big-endian” operation).

As the majority of values returning from memory are instructions, the data processing part
has a blocking latch on its input to prevent internal power dissipation when it is not needed
(i.e. when the incoming value is an instruction).
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Chapter 7 : Execution pipeline

The execution unit contains the major data processing logic of the prodepsavides an
autonomous multipliera barrel shifter connected to one of the operand buses, an ALU and
storage for the Current Processor Status Register (CPSR). The interconnection of these
elements is shown below in figure 7-1 (the shaded boxes represent pipeline latches).

When the multiplier is not required, there is an internal bypass mechanism which passes its
inputs straight through to the outputs.

7.1 The multiplier

The multiplier in AMULET1 is substantially ddrent from the ‘2-bits at a time’ Boo#’
multiplier used in the ARM6 [Furb89, Page 253]. A multiplication using the ARM6
involves a complete cycle around the datapath for every 2 bits of the multiplicand with the
intermediate results being stored temporarily in the register bank.

from (o] from
register bank register bank Immediate ext.

U
{

y;
> |
o

[ =it/
Z

\ ALU //

multiply

a
mux

to
H condition test
mux
L ]

to address interface

Figure 7-1: Execute pip€eline
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Multiplication in AMULET1 is based upon a shift-and-add multiplier using carry-save
adders [Day92]. It is an autonomous unit which accepts two source operands and produces
the partial product and carries which are added together in the ALU to complete the
operation. Internally the multiplier controls the cycles of the shift and add operations and
can terminate early when the multiplication is complete.

Each cycle of the multiplication involves:

1. Latching the inputs to the adders.
2. Performing the shift and add operation.
3. Latching the output of the adders

This continues until the multiplication is complete. The speed of operation of the circuit is
governed by the speed at which the two-phase control circuitry can open and close the input
and output latches. Early designs indicated that the control cycle time was much greater
than that required to perform a single 1-bit shift and add operation. Investigations revealed
that it was possible to do a 3-bit shift and add operation in the control cycle time so although
the cycle time of the multiplier could not be improved, the amount of work done per cycle
was increased and the overall performance of the multiplier improved.

As the AMULET1 multiplier is an autonomous self contained unit, it does not activate the
entire datapath for every cycle of its operation (thus saving power).

7.2 The shifter

The shifter in AMULETL1 is the ARMG6 barrel shifter with an added matched path for self-
timing purposes. The barrel shifter is constructed as a 32 x 32 cross switch matrix of n-type
pass transistors. The circuit is dynamic in operation with the outputs being gezthigh

before a shift is evaluated. As specified by the ARM architecture, the shifter is only
connected to one operand bus and is in series with the ALU.

7.3TheALU

ARM ALU operations fall into one of three main categories: moving data from input to

output, performing logic functions (XOR, AND, OR) and arithmetic operations (addition).

Input bufers allow optional zeroing or complementing of operands to support subtraction
(using twos-complement).

In addition to the use of the ALU for the sixteen explicit data processing instructions
specified by the ARM architecture, the ALU is used implicitly by the other instruction
classes (see section 4.3), for example, to calculate the address of a data transfer given the
base address and arfisett.

7.3.1 Performance consider ations

In a synchronous system, the overall performance of the ALU is usually limited by the
arithmetic logic. The speed of the addition operation is related to how quickly the carry
signals can propagate across the word. The worst case occurs when the carry propagates
across all bits in the word. In a synchronous system the clock period is chosen to allow time
for this worst case operation although typically the result will be ready much s@oner
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reduce the time for the worst case (and hence reduce the clock period) synchronous systems
use schemes such as carry look-ahead or carry select [Eshr89].

Without the constraint of an external clock, an asynchronous ALU can be designed to be
quick for “typical” operands and slower for worse case operands; there is no need to ensure
that the worst case is equally fast, if it does not happen very often. The emphasis, with
asynchronous logic design techniques, is to make the average case operation fast but to
accommodate the worst case by allowing more time for the calculation. Synchronous
systems cannot allow more time for the worst case because the clock period is fixed.

Optimizing the ALU design for the fast addition of “typical” operands only has benefits if
the worst case is statistically rare and much worse than the average. Figure 7-2 (a) shows
the mean carry propagation distance as a function of the width of the word when the data
are random (figures 7-2(a) & (b) are reproduced with the kind permission. aX.IDr
Garside [Gars93]). It can be noted that the mean carry propagation distance for a 32-bit
addition is only 4.4 bits. This is much less than the worst case (32-bit).

In practice, data are not random, so to obtain a more accurate reflection of the mean carry
distance a carry length analysis of a dynamic instruction trace was undertaken. The
distribution of carry propagation lengths while running a benchmark program is shown in
figure 7-2(b). The statistics are divided into address calculations and data operations where
the average propagation distance for data operations was found to be approximately 18 bits,
whereas the propagation distance for address calculations was found to be only 9 bits.
Overall this gave a combined average carry propagation distance of approximately 12-13
bits. This is described in more detail elsewhere [Gars93].

The net result of the small average propagation distance during typical ALU operation is
that a simple ripple-carry design can be constructed which, on average, performs better than
more elaborate carry lookahead/select adders; but if the (rare) worst case is encountered it
takes longer to calculate the answer

7.3.2 Implementation

The ALU adder in AMULET1 consists of thirty two full adders with no special acceleration
logic to speed up carry propagation. The carry signal is encoded in dual-rail format and a
completion detection circuit signals to the environment when the carry propagation is
complete. The detail transistor circuitry to achieve this is described elsewhere [Gars93].

Figure 7-3 shows the resulting silicon layout of the ALU in AMULETL1 in comparison to
the ALU of the ARM6 drawn at the same scale. The asynchronous ALU of AMULET1 is
approximately 40% of the area of its synchronous counterpart. The sparse, di@anef
carry-select logic can clearly be seen to the left of the ARM6 ALU.

7.4 The CPSR

The placement of the CPSR was one of the most taxing decisions taken during the design of
AMULET], it contains the arithmetic flags and the processor mode information. The
arithmetic flags are generated and used in the ALU but are also made available to the
condition evaluation hardware. The control flags are changed either as a result of decode
information or by being directly loaded (using an ARNRSMSR instruction). The mode
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(a) ARM6 ALU (b) AMULET1 ALU

Figure7-3: ARM6v AMULET1ALU area

information is used in the primary decode to determine which subset of the register bank is
currently available to the programmer and in the memory interface to ensure that the correct
memory privileges are enforced.

The ALU decode is the earliest point at which it is known whether an instruction will
execute (i.e. whether it has passed its condition test). It is also the earliest point at which the
processor state can be changed, so it is a convenient place to store the processor state.
Placing the CPSR close to the ALU is also advantageous because of the close connection
required between the CPSR arithmetic flags and the ALU.

An instruction which changes the CPSR mode flags also changes the visible register set (see
figure B-4 for the register bankgamization). The mode information is directly connected
from the CPSR to the register decode circuisy that the correct register selection is
performed. ©® ensure correct operation, an instruction which follows a mode changing
operation in the pipeline is forced to wait at the primary decode until the potential mode
change has taken place. The ALU decode (decode 3) signals to the primary decode when it
is safe to continue (i.e. the mode flags are stable and will select the correct register subset).
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The CPSR structure consists of 2 latches connected as shown below in figure 7-4. The
active CPSR is stored in latéh with the output connected to the condition evaluation
hardware and the relevant register decode logic. The second latch holds a copy of the CPSR
while new values are being calculated. In partigutanolds the previous arithmetic flag
inputs to the ALU stable while the new flags are being calculated.

The second latch also has an important role in preserving the original CPSR during
exception entryThere are three cycles associated with exception entry; generate and issue
the exception vectpcopy the CPSR to the SPSR (of the mode being entered) and finally
copy the PC into the link register of the destination mode (see section 4.3.7).

During the first cycle, the mode of the processor is changed inAathhe same time as

the exception vector is sent to the address interface. The original CPSR is still preserved in
latch B. The second cycle of exception entry waits in the primary decode for the mode
change to take place and then, after locking the SPSR in the new mode, it progresses to the
ALU stage where the original CPSR is copied from |&eimd sent to the SPSR of the new
mode in the register bank.

to condition test ALU flags
from
ALU flags & )
control < < @
=) N v o
= V|9 V19 V]
(@) (@)
v x
5 to
B - =) m—
from
ALU output >

Figure 7-4: CPSR structure

116



Chapter 8 : Implementation

To implement a complex circuit, such as the asynchronous ARM, an ordered approach to
design and verification is required. The design flow used during the construction of
AMULET1 has many similarities with that used by ARM Ltd. in the design of the
synchronous ARM processors [Furb89, Page 285].

8.1 Design flow

The overall design flow for AMULET1 is shown in figure 8-1. The design process begins
by constructing a high-level model. Initialiylainsail [XIDA87, Comp91b], the language

used in the Compass Design Automation tools, was used but proved tdibemieh this
application and the resulting simulations took too long to run. Instead, ASIM [Smit92], an
internal ARM Ltd. tool was used to model the proces&8iM provides an dicient event

driven simulator and a hardware description language with a library of standard parts. Extra
models written in C [Kern88] can be added to the standard library

A complete design of the processor was developed within the ASIM environment.
Verification was performed by connecting the asynchronous processor to a simple simulated
memory system and then loading and running the ARM validation programs. In total, over
4 million instruction cycles were simulated and it was during this time that the deadlock
situations described earlier were detected (e.g. see chapter 6).

Once a stable processor design was available, this was transferred into schematic form in
the Compass Design Automation environmenithWietail schematics complete, it is
possible to begin designing the silicon geomeliye silicon layout usesfefient custom
designed cells for the datapath and standard cells from a cell library for the majority of the
control logic. When the layout of a block is complete, it is compared to the schematic using
automatic comparison tools (net compare [Comp91c]) to ensure it is correct.

8.1.1 \érification of the design

It is possible to generate static test vectors for a block which adheres to a Micropipeline
interface. This is done by placing dar delays in all event wires which cross the test
interface in the high-level model. The output events of a block indicate that the output data
is valid, so a lage delay in the request path means that the output data is stable for longer
and can be extracted as a test vedosimilar agument can be applied to input bundles
with large delays in the event path.

ASIM allows any level of hierarchy to be defined as a test interface for vector generation.
This allows the complete processor core to be simulated and the vectors to be generated just
for the required interface (note that all event wires crossing the interface must have had the
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delays inserted first). Once the vectors have been extracted, ASIM provides a facility to
verify that the vectors are static by re-applying them directly to the block to be tested and
observing the outputs. Experience has shown that it is relatively straightforward to generate
static vectors for a clean Micropipeline interface.

The block level test vectors are translated into the Compass Design Automation
environment and can be used to verify the block level schematics and subsequently the
extracted silicon layout.

An important consideration of a Micropipeline system is to ensure that all interfaces obey
the bundle data convention. This constrains the output data to be valid before an output
request is issued and the data must remain stable until an acknowledgement is received (see
figure 3-2 in chapter 3).

The bundle constraints are checked at two levels, first by using SPICE to examine any
matched paths or self-timing and then, at a higher level, a simple tool was written to check
the simulator output. Given a definition of data bundles and their corresponding control, it
is relatively straightforward to check that the data was stable before a transition on the
request wire and that it did not change until after a transition on the acknowledge wire.

The same verification approach was applied to the complete chip after the blocks of layout
were composed and the top level wiring connected. In addition, all test vector simulations
were run at all four “process corners” of the silicon (i.e. all combinations of fast and slow n-
and p-transistors). This can give &eefive speed ratio of n- to p-transistors of 4:1 in both
directions.

To allow the design to be verified “at speed” (rather than using just static vectors), the
extracted layout of the complete chip was connected to a simulated system. The memory of
the system was then loaded with a program and the processor allowed to execute it at its
own speed. This “at speed” testing applies only to the particular point in the possible
process space to which the simulator is calibrated; to increase test confidence, the program
was executed at all four simulated process corners (again using a 4:1 spread in transistor
speeds).

The complete chip has a Micropipeline interface, so static test vectors can be generated as
described before. Programs carefully chosen to toggle a high percentage of internal nodes
can be used to generate the static production test vectors required to verify the chip after
fabrication. The static nature of the vectors allows conventional testers to be used.

Much work still needs to be done to address the problem of test and verification of an
asynchronous processor (fault simulation etc.). As many parts of the asynchronous datapath
are essentially the same as their synchronous counterparts, some of the synchronous test
techniques may be applied to them. Howgteechniques to verify the control need to be
further developed.

8.2 Complete organization

The overall complexity of the resulting design is shown in figure 8-2. The diagram features
details not previously illustrated:

» The memory control FIFOhgem ctrl. FIFO) is connected from the address control
information latch to the destination contralegt. ctrl.) in the data interface to
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allow the incoming memory values to be steered to the correct destination (either
the instruction pipelineistr. pipe) or the data-in processing loglayte align)).

» The primary decode and the address interface are connected M@vib@ipeline
to facilitate the load/store multiple instruction (see section 4.3.6 & section 6.1.1).

» Rdgen which sequentially generates the addresses of the registers to transfer in a
load/store multiple instruction given the sixteen bit field from the instruction word
(1 bit is set for each register to transfer).

* Ngen calculates the number of registers to be transferred in a load/store multiple
instruction from the bottom sixteen bits of the instruction. The resulting value is
used in base calculations (see section 4.3.6). It is also conveniemgefoto
generate the vector addresses for exception entry (see section 4.3.7) because of its
connection to the datapathbus.

» The write bus control logioapus ctrl.) which arbitrates requests from either the
ALU result register or incoming memory data wishing to use the write bus.

8.2.1 Datapath VL SI organization

Figure 8-3 shows an implementation orientated view of the ovemgdinaation, with
particular emphasis on the VLSI floorplan of the datapath. The major data buses are shown
in blue and the major control dependencies are shown in red. The actual order of the
datapath blocks in the diagram are as implemented in silicon. The diagram also shows how
some of the multiplexers, shown in figure 8-2, are implemented as a shared bus with each
possible source having tri-state drivers onto the bus. For example, the ALU output latch and
the CPSR in the previous diagram are shown as being combined with a multiplexer into the
result latch. The actual implementation shows a shared bus arrangement.

8.3 Silicon layout

The complete silicon layout of AMULET1 is shown in figure 8-4. This is annotated with the
major block names so that it can be related to earlier figures in this cAdygéower half is

the regular custom designed, datapath, the order of which is detailed in figure 8-3. The
control section is predominately compiled standard cells. The cells are taken from the basic
cell library from ARM Ltd. with the addition of the Sutherland elements described in
chapter 3. There are two areas of the control that are implemented as PLA structures. These
are synthesized using a modified version of the ARM Ltd. PLA generator [Howa89].

Internally, the PLAs are dynamic with a self-timed matched path completion signal which

powers down the PLA after the results are latched. The modifications for use in AMULET1
simply made the completion signal available at the PLA interface. The PLA circuit, as used
in the ARMBG, is a good example of a high volume self-timed circuit in use today and shows
that it is possible to have reliable self-timed circuits.
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Figure8-4: AMULETL1 1.2 micron physical layout
8.4 Test devices

Although the design of AMULET1 was tgted at the VLSI 8chnologies CMN12 (1.2
micron) process, the first test devices were fabricated on a 0.7 micron CMOS process by
GEC Plessey Semiconductors. The silicon layout was translated onto the new process by a
series of semi-automatic geometry transformations applied by the foundry

AMULET1 was fabricated as part of a multi-project wafeshares a single gate array pad

ring with other third party test circuits, with only one of the test cores connected to the pad
ring in any particular die (the last metal layer determines which core is connected to the pad
ring). Figure 8-5 shows a plot (from CAD tools) of thgamization of the die with the
AMULET1 core clearly visible in the lower left corner

Figure 8-6 shows a photograph of the fabricated devices mounted in a PGA package. The
organization of the die is as in shown the previous figure (figure 8-5) with the AMULET1
core in the lower left corneAll 256 pads are bonded out to the package but the AMULET1
core is connected to only 100 pads.
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Figure8-6: AMULET1: 0.7 micron multi-project die
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Chapter 9 : Evaluation and further work

Twenty four (0.7 micron) test devices were delivered from the foundry; ten were delivered
untested and fourteen had been successfully wafer probe tested (using the static test vectors
that were generated from ASIM - see section 8.1.1).

A printed circuit board test card was constructed to evaluate the devices flingé@oard
consists of an AMULET1 device, 128K of RAM, 128K ROM, a URRfor a serial
interface) and associated control logic. The test card was designed to be compatible with the
standard ARM6 PIE card [ARM92] so that the ARM6 debug mohifoontained in a

ROM) could be used to analyse the AMULETL1 design.

The debug monitor ran successfully on the AMULET1 test card and enabled the card to
communicate with a host machine to download and run programs. All the ARM validation
programs which could run on the test card completed succeésfOfithe ten untested
devices seven were found to be functional, and of the fourteen probe tested, twelve were
found to be functional after packaging

Preliminary performance measurements using the Dhrystone benchmark have shown
AMULET1 operating at 28K Dhrystones; further refinements to the test card could well
improve on this. Wh no on-chip cache the performance of AMULETL is likely to be
limited by the speed of the test card memory system.

The power consumption of the AMULET1 core cannot be measured separately on the first
test devices because the core and pads share the same power supplies (this is a consequence
of the multi-project die). Further devices are being fabricated (on a CMN12 compatible
process at a ddérent foundry) with the core power supplies separated to enable accurate
power measurements to be taken.

9.1 Design characteristics

As a basis for comparison between AMULET1 and ARMS6, table 9-1 shows the
characteristics of both chips on the CMN12 process, using performance and power figures
obtained from simulations undgow-slow conditions.

1. ARM60-PIE DEMON V1.0, ARM Ltd., 1991.

2. Some of validation programs are written in such a way that they must be loaded at address location
0 in memory and therefore cannot run under the debug monitor because it also uses the same memory
area.
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Table 9-1: Characteristics of the AMULET1 compared with ARM6

AMULET1 ARM6
Process 1.2uym DLM CMOS? 1.2 ym DLM CMOS
Cell core area 5.5mm x 4.1mm 4.1mm x 2.7mm
No. of transistors 58,374 33,494
Performance 9K Dhrystone@ 14K Dhrystones @ 10MHz
Dissipation 83mwf 75mW @ 10MHz
Design Efort (approx.) 5 man years 5 man years

a. Double Layer Metal CMOS
b. Simulated performance under slow-slow conditions
c. Estimated power consumption from simulation

This table shows that the silicon implementation of AMULET1 is approximately twice the
cell area of an ARM6 on an equivalent process. This is also reflected in the 75% more
transistors used in AMULET1 compared to ARM6.

The performance figures for AMULET1 shown in table 9-1 are based upon workt-case
simulation of the device running Dhrystone code compiled using a standard ARM compiler
The ARMSG figures are the worst-case specification from the data?s{AEWlle]. The
difference between the estimated performance (shown in table 9-1) and that achieved by the
test devices can be accounted for by observing that the supplied devices reyppesent
silicon® which is usually twice the performancesdw-slow, and the transition from a 1.2
micron process to a 0.7 micron process results in approximately 30-50% speed
improvement (this figure is hard to quantify exactly).

The power dissipation figures for AMULET1 are taken from a tool which monitors all
extracted layout nodes in a simulation and calculates thgyedessipated whenever there

is a transition at a node [Davi94]. The power is calculated by summing thgyener
dissipation at all nodes and averaging this value over time. The results from this power
analysis tool have yet to be verified but this is the best estimate for power consumption at
present.

The design dbrt required to design and implement the asynchronogandation of
AMULET1 was comparable to the cost of producing its synchronous counterpart.

9.1.1 Areaoverhead

The oganization of AMULET1 employs a relatively deep pipeline, which accounts for
much of the increase in transistor count and die size relative to the ARM6. The ARM6 also

1. Worst-case simulation is when both n- and p-transistors are characterised as slow and the process
is known asSow-Sow.

2. Production ARM6 devices have been qualified at significantly higher clock rates.

3. GEC Plessey Semiconductors have measured the silicon and classifigoi¢ahs

126



has more compact silicon layout (approximately 14% of the AMULET1 die area is under
utilised).

The area overhead of the asynchronous control of AMULET1 can be estimated by
considering a synchronous implementation of a similar pipelig@naration. The datapath

part of the design would remain broadly similar but the control for the latches etc. would be
driven from the global clock rather than individual control circuits communicating between
themselves. The control area overhead can therefore be derived by calculating the area
consumed by these individual control circuits and their event communication paths. A first
order approximation of this cost can be given by assuming all event control modules form
the overhead.dble 9-2 shows a breakdown of the event control module use in AMULET1
and the percentage of the utilised core area they use.

Table 9-2: AMULET1 event control module area overhead

Module Number % of Total Core Area
XOR 139 0.94
CGate 98 0.86

TOGGLE 67 2.9
SELECT 56 2.15
CALL 13 0.52
ARBITER 5 0.28
DWAIT 7 0.22
Total module area 7.87
Wiring cost 7.87
Total area overhead 15.74

As well as the area of the modules themselves there is also an overhead associated with
their wiring interconnect. By examining the existing standard cell areas in AMULETL1 it can

be noted that each row of standard cells has, on average, a similar area of wiring
interconnected associated with it. Therefore the estimated wiring cost given in table 9-2 is
the same as the module area. The table shows the total estimated cost of the asynchronous
control to be approximately 16% of the total core area of AMULET1.

9.1.2 Pipeline organization

Normally it would be expected that a deeper pipeline would result in an increased
throughput, however in AMULET1 this is not the case because of several factors:

. The primary decode takes too long to process instructions, so
the pipeline is never busy

. Register dependencies between consecutive instructions cause
the pipeline to stall.
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. The depth of the pipeline increases the cost of branches.
Time and resource pressure in this first asynchronous design did not allow for the primary
decode to be modified once it was realised that it represented a bottleneck, but this can be
addressed in the future. The problem of register dependencies is a function of the way the
compiler allocates registers and schedules instructions. The standard ARM compilers take
no account of inteinstruction dependencies because the performance of the ARM6 is not
affected by them, however the performance of AMULET1 can be adverdebteal by
inter-instruction dependencies.o Tachieve optimum performance the compiler must
therefore schedule instructions to avoid dependencies between consecutive instructions
where possible. Preliminary investigations have shown that it is possible to improve the
performance of AMULET1 significantly by including such compiler optimizations.

The cost of inteinstruction dependencies remaining after these compiler optimizations
have been applied can be reduced by modifications to the procegsuration to include
the last result re-use and register through-passing techniques described in chapter 5.

Pipeline depth

Retrospective analysis of the AMULET1 design has revealed that the depth of pipelining is
too great. This is partly due to FIFO fers being conceptually easy to use within the
Micropipeline design style, and as a result too many were added. There are many stages that
contribute little (or nothing) towards performance but still cost silicon area, transistors and
power dissipation (and some stages actually decrease performance!).

The depth of the pipeline also has an adverfeztebn the branch Iatenl:yAs branches
represent approximately 20% of ARM instructions [Furb89] (i.e 1 in 5 instructions) the
increased latency significantlyfetts performance.

9.2 Further work

Further work (sponsored by the ESPRIT OMI-DE project) is already under way in several
areas. The main objectives of the work are to revise the asynchronous core to reflect the
experience gained during the first implementation and to add an on-chip cache and MMU.
The aim of the core modifications are to improve its performance although there is much
work to do before an exact figure for the extent of this improvement can be given. Some of
the proposed modifications are discussed here and are split into four sections: base
technology processor @anisation, development tools and test.

9.2.1 Basetechnology

In chapter 3 we saw that there were trads-of different latch styles in terms of area and
speed. Preliminary investigations have show that is possible to improve performance and
reduce power consumption by adopting a Svensson [Sven89] style latch, as shown in figure
9-1. This latch requires only a single enable signal (c.f. transmission gate latches which
require the true and complement of the enable signal) so simplifying the control circuitry
required. The enable transistors can be much reduced in size in comparison to the standard

1. The branch latency is defined to be the time from a branch beginning execution until the time an
instruction from the branch @&t begins execution.
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Figure 9-1: Svensson style latch

latch and so the capacitive load on the enable line is reduced. Both of these factors reduce
power consumption and improve performandéis work is being undertaken in
conjunction with the OMI-HORN project [Day93].

Investigations are also under way to determine the cost of two-phase signalling in relation
to fourphase. ® achieve this, the primary decode is being re-implemented irpfase
logic so that a realistic comparison can be made.

9.2.2 Processor organization

There are several areas of the processgamization which will be revised in future
versions of the AMULET processdrhe technique of last result re-use and register through
passing described in chapter 5 will be included in new designs to reduce the cost of inter
instruction dependencies.

The primary decode in AMULETL1 is one of the major performance bottlenecks in the
current design. iime pressure in the original design did not allow this to be modified but
future versions will incorporate improvements in this area.

Many of the pipeline stages in AMULET1 contribute nothing to the overall performance of
the design, therefore future version of the asynchronous processor will have a much reduced
pipeline structure with some pipeline stages gmg. (Current investigations are
considering the viability of mgmg the shift/multiply stage with the ALU stage. Logic
would be provided to bypass the shifter when it is not required or a shift of zero is
specified).

Support for a co-processor interface will be added in future versions to enable an on-chip
cache controller and memory management unit to act as a co-prodésserare no plans
to add an external co-processor interface at present.

9.2.3 Tools

Work has begun to investigate the compiler optimization strategies which would be
appropriate for the asynchronouggamization of AMULET1. This involves taking an
existing compiler (GCC [Stall92]) and modifying the code generating “back-end” to
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perform the required optimization. An example of the type of optimization being considered
is to reduce the intenstruction register dependencies of adjacent instructions by code re-
ordering. If the number of register dependencies is reduced then the register bank will stall
less frequently on register locks so the performance should increase accordingly

There is a need to develop formal tools to help analyse potential deadlock situations and
prevent them occurring.oTthis end, a high level model of the entire processor is being
constructed in Occam as part of other research [Theo93]. The Occam model is a more
appropriate starting point for any possible formal reasoning than the detailed transistor
schematics.

To verify the integrity of the layout produced, it would be convenient to have tools which
could verify statically that the bundle constraints have been satisfied. This could operate in
a similar manner to a standard synchronous timing verifier [Comp91d]. Given the
completion circuitry and the data circuitry it should be possible to check statically that the
bundle constraints are satisfied provided there is no internal feedback. As Micropipelines
operate in fundamental mode (section 1.2.2), all feedback must flow through a latch stage
(and hence a Micropipeline interface). This means it is possible to break all feedback loops
if the correct level of abstraction is chosen.

9.24 Test

One of the least explored areas that needs addressing in future work is that of test and
verification. The design of AMULETL1 incorporated a very ad-hoc approach to test. Static
vectors were generated from the high-level model by placimg ldelays in the event
control wires passing through the test interface. By this means it was possible to generate
static vectors for the complete chip, so the resulting device could be tested by a
conventional tester

Further research has begun in conjunction with the University of Hanover to investigate the
testability of asynchronous circuits (University of Hanover is a partner in OMI-DE).
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Chapter 10: Conclusions

The design of AMULET1 has achieved the objectives set out for this work by
demonstrating the feasibility of implementing a complex commercial RISC architecture
using asynchronous design techniques. The resulting design addresses manyfafulhe dif
issues associated with modern RISC processors such as support for exact exceptions,
backwards instruction set compatibility and pipelined operation.

The AMULET1 design exhibits several innovative features:

. The incorporation of a simple ripple-carry asynchronous ALU
adder with a data dependent propagation time which performs
better on average, than more elaborate carry select adders.

. A novel arbitetfree register coherency mechanism which
allows register read and writes with arbitrary timing and also
allows internal ALU cycles to overtake slower external mem-
ory accesses (assuming there are no register dependencies
between the two).

. An instruction prefetch unit which has a non-deterministic
(but bounded) prefetch depth beyond a branch.

The design also includes a pipeline structure which allows asynchronous concurrent
operation of internal functional units.

10.1 Micropipelines

Micropipelines appear to fef a good engineering framework for the design of an
asynchronous microprocessor and the design details have much in common with
synchronous design. The re-use of synchronous library elements is a major advantage of the
Micropipeline approach over other asynchronous design styles, especially for data
processing operations where many bits are processed in parallel and ardigiandyeére
important. In AMULET1 it was possible to use the existing silicon layout of the ARM6
register cells and barrel shifter simply by adding a self-timing path to each. This yielded a
very eficient, compact datapath layout with a comparable cost to the synchronous
implementation. The overhead of using the asynchronous Micropipeline control has been
estimated to be approximately 16%.

The flexibility of the asynchronous Micropipeline approach allows designs to be optimized

for typical operating conditions and allows resources to be concentrated on functions that
are used most frequently with rare worst-case functions being allowed more time to
evaluate (c.f synchronous design where resources are used to speed-up the rare worst-case
functions). The asynchronous design style does, hoyenerent some of the architectural
enhancements often associated with deeply pipelined clocked processors (e.g. register
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forwarding) from being used, but alternative solutions to these problems can be adopted
(e.g. last result re-use). The Micropipeline design style makes FIF€dabnceptually

easy to use, however care must be taken to ensure that their ease of use does not lead to
them being used too liberally (as was the case in AMULET1).

The robustness of the Micropipeline design style has been demonstrated by the fact that a
circuit which was originally designed for a 1.2 micron process has been successfully
translated onto a 0.7 micron process (with all process translations being performed semi-
automatically at the silicon foundry). Thefeet required to design and implement
AMULET1 using the Micropipeline methodology was comparable with that required for
the synchronous processor (5 man years).

10.2 AMULET1

The asynchronous design is within a factor 2 of the synchronous ARM6 in the important
parameters of performance, silicon area and power consumption, but at present it does not
show any significant advantage over its clocked counterpart. HoweMeiLET1 is a first

attempt at a Micropipelined design of this complexity and scale, whereas the ARM6 is a
fourth generation synchronous processor and a world leader in its class for small die area
and powetefficiency In addition the ARM instruction set contains many features that were
defined as an artifact of the original synchronous implementation. This has caused extra
complexity in AMULET1 because of its extended pipeline strudtangl its asynchronous
operation.

The performance of AMULET1 is also degraded by conservative engineeriggsyan

the first design the emphasis was placed upon functionality rather than outright
performance, and there is considerable scope for enhancing the speed andfpoeveEyef

of the design in the future.

10.3 An asynchronous future?

Asynchronous design styles are enjoying a geure of interest at present due to their
immunity from clock skew and their potential for high performance and pofeeepty.

Many questions remain to be answered before this potential can be fully realised. Up to
now, one of these questions has related to the feasibility of designfegtivef
asynchronous circuits at the level of complexity required for commercial applications.
AMULET1 answers this question by providing a convincing demonstration that complex
asynchronous circuits are, indeed, feasible.

1. A synchronous ARM with a similar pipeline structure would also encounter some of the same
problems.
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Appendix A: Timing characteristics

This appendix contains the timing characteristics of some of the Micropipeline
library elements designed for use in the asynchronous ARM. Each cell is characterised by
simulating the extracted netlist with SPICE under worst case conditions for a selection of
loads. The exact conditions used are described in the next section. The cells analysed are
listed below:

CALL2 - 2 input call block

DMULLC2 - 2 input C-Gate with double strength drive on the input stack
to enable the gate to drive from the internal node

DXOR/DXNOR - 2input XOR, each input requires complimentary

DWAIT2 - 2 input Decision-Wait

MULLC2R - 2 input C-Gate with reset

MULLC2 - 2 input C-Gate without reset

MULLC3R - 2 input C-Gate with reset

TOGGLE - TOGGLE element

SELECT2 - 2 input SELECT block

TLTCHR - transparent latch with true & complement enable required

A.1 Measurement conditions

The measurements are taken at the following conditions:

VDD 4.6 VSS 0.1

Temp 100°C

Process CMOS 1.2 micron, Sow-Slow transistors
All measurements in the tables are in nanoseconds (unless otherwise stated)
Inputs ramp 0-100% (0-4.6v) in 4 nS

The propagation delay is measured from the 50% point of the input to the 50% point on the
output.

Therise/fall time is measured between the 10% and 90% value of the output.
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AMULET Group

SPICE timingsfor: CALL2

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There arethree input signals R1, R2, D and the complements nR1 and nR2. Thereisaso areset Cdn. There are
three outputs D1, D2, R and their complements nD1 and nD2. The forward measurement (RU/R2 -> R) is
equivaent to aDXOR and the reverse measurement (D -> D1/D2) is the same as a DWAIT2. The measure-
ments shown below are taken from the appropriate corresponding gate.

D -> D1/ D2 (equal load on D1/nD1 and D2/nD2)

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 351 4.22 181 1.39
0.12 2 3.97 473 2.32 1.76
0.18 4 4.40 521 2.85 215
0.24 5 4.83 5.68 3.37 253
0.50 10 6.70 7.69 571 4.23
1.00 20 10.08 11.54 10.17 7.42

D- >nD1/nD2 (equal load on D/nD1 and D2/nD2)

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 31 2.64 2.59 2.18
0.12 2 3.28 2.89 3.03 251
0.18 4 3.45 3.07 3.49 2.81
0.24 5 3.60 3.28 391 31
0.50 10 4.29 4.19 5.92 472
1.00 20 554 571 9.78 7.56
R1/R2 -> R
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 0.63 131 201 148
0.12 2 0.98 1.68 2.74 1.96
0.18 4 131 2.05 3.52 247
0.24 5 157 242 4.29 2.86

SPICE timings for: CALL2 144



AMULET Group

R1/R2 -> R
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.50 10 2.50 4.10 7.95 4.65
1.00 20 425 7.28 15.18 8.51
Capacitance
R 0.071PF
R1 0.145PF
R2 0.186PF
nRYNR2  0.05PF
D 0.170PF
D1/D2 0.184PF
nDUnD2  0.275PF
Cdn 0.227PF
SPICE timings for: CALL2 145




AMULET Group

SPICE timingsfor: DMULLC2

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There are 2 input signals Inl, In2, and the reset signal Cdn. There are two outputs Out and nOut. The measure-
ments are for equal 1oads on both outputs.

Out
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 2.39 2.09 171 1.28
0.12 2 2.86 257 211 154
0.18 4 3.28 3.06 2.61 1.94
0.24 5 3.73 355 3.13 231
0.50 10 5.55 5.61 5.46 3.88
1.00 20 9.10 9.50 9.73 6.98

nOut
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 114 173 2.78 201
0.12 2 1.32 1.96 3.68 2.32
0.18 4 1.49 214 3.60 2.69
0.24 5 1.66 2.35 3.95 2.99
0.50 10 2.32 3.18 5.85 435
1.00 20 3.61 4.83 9.44 7.23

Capacitance

Inl/In2 0.09PF

Out 0.134PF
nOut 0.226PF
Cdn 0.105PF

SPICE timings for: DMULLC2 146



AMULET Group

SPICE timingsfor: DXor/DXNor

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

Thereare 4 input signals Inl, In2, ninl, nin2. Thereis a single output Out.

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 0.63 131 201 148
0.12 2 0.98 1.68 2.74 1.96
0.18 4 131 2.05 3.52 247
0.24 5 157 242 4.29 2.86
0.50 10 250 4.10 7.95 4.65
1.00 20 425 7.28 15.18 8.51

Capacitance

Inl/In2 0.038PF

SPICE timings for: DXor/DXNor 147
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Change history

SPICE timingsfor: DWAIT2

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There are threeinput signals A1, A2, Fire and the reset Cdn. There are two outputs Z1 and Z2 and their comple-

ments nZ1 and nZ2. The measurements are taken with equal 1oads on true and complement outputs.

2172
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 351 4,22 181 1.39
0.12 2 397 4,73 2.32 1.76
0.18 4 4.40 521 2.85 2.15
0.24 5 4.83 5.68 3.37 2.53
0.50 10 6.70 7.69 571 4.23
1.00 20 10.08 11.54 10.17 7.42
nZ1/nz2
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 3.1 2.64 2.59 2.18
0.12 2 3.28 2.89 3.03 251
0.18 4 3.45 3.07 3.49 281
0.24 5 3.60 3.28 391 3.1
0.50 10 4.29 4,19 5.92 4,72
1.00 20 5.54 571 9.78 7.56
Capacitance

ALA2 0.098PF

2122 0.183PF

nZlnzZ2  0.274PF

Cdn 0.226PF
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SPICE timingsfor: MULLC2R

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There are 2 input signals In1, In2, and the reset signal Cdn. There are two outputs Out and nOuit.

output should be used as the complimentary output has poor drive capabilities.

Only thetrue

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 231 2.02 161 142
0.12 2 251 2.24 2.06 1.68
0.18 4 2.72 2.46 2.56 1.78
0.24 5 2.87 2.69 2.92 1.92
0.50 10 3.53 3.61 4.79 2.99
1.00 20 472 5.37 8.59 5.20

Capacitance

Inl/In2 0.05PF

Out 0.129PF

Cdn 0.054PF

SPICE timings for: MULLC2R
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SPICE timingsfor: MULLC2

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There are 2 input signals Inl, and In2. There are two outputs Out and nOut. Only the true output should be
used as the complimentary output has poor drive capabilities.

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 2.13 1.62 148 1.36
0.12 2 2.33 1.86 1.92 1.60
0.18 4 2.53 2.09 2.26 1.78
0.24 5 2.68 2.30 2.77 201
0.50 10 3.35 3.24 4.75 2.97
1.00 20 452 4.99 8.57 5.12

Capacitance
Inl/In2  0.05PF
Out 0.129PF

Cdn 0.054PF
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SPICE timingsfor: MULLC3R

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

Thereare 3input signalsInl, In2, In3, and the reset signal Cdn. There are two outputs Out and nOut. Only the
true output should be used as the complimentary output has poor drive capabilities.

Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 2.88 2.27 1.64 1.34
0.12 2 3 253 211 164
0.18 4 3.33 2.77 2.59 1.96
0.24 5 353 3.01 3.02 2.29
0.50 10 428 3.98 5.03 3.42
1.00 20 554 5.76 8.71 5.60

Capacitance
In1/1n2/In3 0.05PF
Out 0.129PF

Cdn 0.054PF

SPICE timings for: MULLC3R 151



AMULET Group

SPICE timingsfor: TOGGLE

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

Thereisasingleinput In and the reset signal Cdn. There are two outputs Dot and Blank and their complements
nDot and nBlank. The measurements are for equal 1oads on both true and complement outputs.

Dot
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 2.97 252 1.62 1.26
0.12 2 342 3.07 2.00 1.59
0.18 4 3.98 3.61 247 1.97
0.24 5 4.39 4.16 3.00 2.28
0.50 10 6.63 6.49 5.15 3.80
1.00 20 10.74 10.89 9.06 7.01

nDot
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 1.46 219 2.87 2.80
0.12 2 1.70 244 3.42 321
0.18 4 1.95 2.75 4.15 3.64
0.24 5 219 3.00 4.62 4.06
0.50 10 321 431 7.39 6.27
1.00 20 5.19 6.64 12,61 10.6

Blank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 257 3.58 143 1.06
0.12 2 3.06 413 1.80 1.50
0.18 4 3.57 4.66 240 1.86
0.24 5 4.10 5.16 2.70 2.27
0.50 10 6.17 7.47 4.66 3.83

SPICE timings for: TOGGLE
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Blank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
1.00 20 10.32 11.97 8.62 7.04

nBlank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 2.62 1.96 3.44 2.78
0.12 2 2.93 2.22 3.97 3.25
0.18 4 3.12 2.58 4.62 3.77
0.24 5 3.36 2.86 533 4.19
0.50 10 441 4.02 7.90 6.38
1.00 20 6.45 6.46 13.12 10.95
M easurements taken with only Dot and Blank loaded (Temp=0C):

Dot
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 261 219 1.60 1.10
0.12 2 271 2.35 1.93 1.32
0.18 4 2.89 252 2.22 154
0.24 5 3.06 2.70 254 1.66
0.50 10 3.58 3.40 394 264
1.00 20 4.50 4.73 6.69 4.42

nDot
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 117 1.89 2.35 2.30
0.12 2 117 1.84 227 2.20
0.18 4 117 1.86 2.02 217
0.24 5 117 191 2.00 217
0.50 10 117 191 1.95 217
1.00 20 117 1.84 1.92 217

Blank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 224 3.22 1.19 1.19

SPICE timings for: TOGGLE
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Blank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.12 2 243 344 154 1.22
0.18 4 2.58 3.69 1.92 143
0.24 5 2.72 3.80 219 1.63
0.50 10 3.28 451 3.53 2.54
1.00 20 4.28 5.92 6.32 442
nBlank
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 241 1.69 2.88 2.25
0.12 2 241 1.69 2.90 2.28
0.18 4 243 1.66 2.88 2.28
0.24 5 241 1.64 2.85 215
0.50 10 2.39 1.69 2.86 2.06
1.00 20 2.46 1.69 2.86 2.23
Capacitance

In 0.213PF

Dot 0.182PF

nDot 0.176PF

Blank 0.109PF

nBlank 0.232PF

Cdn 0.186PF
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SPICE timingsfor: SELECT?2

Change history

version author date comment
0.1 N.C.Paver | 5/5/1993 initial version
Signals

There are 2input signals In1 and Select and the reset signal Cdn. There are two outputs True and False and
their complements nTrue and nFalse. The measurements are for equal loads on both true and complement out-
puts.

True/False
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 3.85 4.73 1.86 1.46
0.12 2 4.63 571 244 1.85
0.18 4 5.40 6.70 3.09 2.22
0.24 5 6.16 7.63 347 2.62
0.50 10 9.52 11.83 6.06 4.24
1.00 20 15.64 19.71 10.30 7.48
nTrue/nFalse
Load Stand. Load Fall Prop. Rise Prop Rise Fall
0.06 1 3.56 2.95 2.77 2.36
0.12 2 4.18 3.50 3.26 2.86
0.18 4 4.83 4.05 3.82 343
0.24 5 5.48 4.58 4.39 3.97
0.50 10 8.19 6.93 6.75 6.28
1.00 20 13.38 11.17 11.31 10.30
Capacitance
In 0.168PF
S 0.181PF

True/False 0.194PF

nTrue/NFalse 0.278PF

Cdn 0.227PF
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SPICE timingsfor: TLTCHR

Change history

version author date comment
0.1 PDay 5/5/1993 initial version
Signals

There are 3 input signals In, En, NEn, and the reset signal Cdn. There are two outputs Out and nOut. It should

be noted that the complimentary output has poor drive capabilities.

In-> Out (NOut)

Load Stand. Load I/PFal Prop. | I/PRiseProp. Rise Fall
0.06 1 2.51(1.84) 2.08 (1.08) 1.61(2.27) 1.25(2.98)
0.12 2 2.72 (1.85) 2.32 (1.09) 2.05(2.15) 1.45(3.02)
0.18 4 2.90(1.84) 2.54(1.09) 2.53(2.12) 1.69 (3.06)
0.24 5 3.07(1.84) 2.76 (1.09) 2.97 (2.10) 1.97 (3.06)
0.50 10 3.73 3.69 4.89 3.07
1.00 20 4.79 5.45 8.75 5.17
En/nEn -> Out (nOut)
Load Stand. Load En-> O/P low En->O/P Rise Fall
high
0.06 1 2.21(1.58) 1.79(0.82) 1.67 (2.11) 1.44 (2.87)
0.12 2 241 (1.57) 2.01(0.82) 2.16 (1.96) 1.72(2.92)
0.18 4 2.62(1.58) 2.25(0.83) 2.54(1.94) 1.88 (2.95)
0.24 5 2.80 2.49 2.95 2.10
0.50 10 3.48 3.42 4,94 3.06
1.00 20 4.65 5.19 8.78 5.20
Capacitance

In 0.029pF

En 0.035pF nEn 0.058pF

Out 0.132pF nOut  0.143pF

Cdn 0.054pF

SPICE timings for: TLTCHR
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Appendix B: The ARM processor

The Advanced RISC MachindRM) is a 32-bit general purpose reduced instruction set
microprocessorThe 1987 ARM2 will be described first, followed by the modifications that
have lead to the ARM6.

B.1 The ARM2

The ARM2 features 27 registers each of 32 bits. The registersganeizad into a set of
partially overlapping banks of registers. There are fifteen general purpose registers and a
register containing both the program counter and the program status register (PSR)
available at any time. The ARM2 supports four modes -, &gvervisor §VC), Interrupt

(IRQ) and Fast Interrup#{ Q). Figure B-1 shows how the registers banks are mapped on to
the four modes.

RO

R1

R2

R3

R4

R5

R6

R7

R8 FIQ R8

R9 FIQ R9

R10 FIQ R10

R11 FIQ R11

R12 FIQ R12

.R13 _ ~ve Ri3]%Q R13 FIQ R13

R14 (Link Register) rRQO R14| FR R14

svC R14
R15 -PC and PSR

FigureB-1: The ARM 2 register organization

The external address bus of the ARM2 is only 26-bits wide. This gives an addressing range
of 64 MBytes. A consequence of this is that the program counter needs only to cover this
range. Instructions in the ARM2 are always word aligned so in fact only 24-bits are needed
for the program countefThe remaining bits in the 32-bit word are used to store the

processor status bits. The format of the combined PC and PSR is shown in figure B-2. The
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PC and PSR can be treated as a single entity for saving and loading but the PC can be used
separately when it is used as a base address.

B.1.1 Instruction set

The ARM2 instruction set is based on a load/store model. There are six classes of
instructions. The first is data operations; these perform arithmetic and logical operations on
the register contents. The status flags of the processor can be changed according to the
result of the operation if the ‘set flags’ bit in the instruction is true. This allows the
programmer to determine which instructions can change the status flags. The ARM2 also
allows all the data operations (except multiplies) to shift, by an arbitrary amount, one of the
operands before performing the operation so there is no separate shift operation.

The second class of instructions loads and stores data which transfer data between memory
and the register bank. The address in memory is calculated from the contents of a register
(the base) and the addition of either a second register or a 12-bit immediate value (the
offset). The contents of the register containing thsebfmay optionally be shifted before

the address is calculated. The instruction class also supports auto increment/decrement of
the base register with the option of specifying whether the change should be before or after
the base is used to calculate the current memory address (i.e. pre-/post-increment/
decrement).

The third class of instruction allows multiple registers to be transferred to or from memory
by a single instruction. The registers to be transferred are specified by the progréinemer
registers are stored to memory in a sequential manner at an address determined by the
contents of a base regist€he base register is modified after the operation. How the base is
modified and where exactly the registers are stored in relation to the base address can be

31 30 29 28 27 26 25 2 1 0
IN|z|c|v|1|F] PROGRAM COUNTER (PC)  |M|M,|
L ]
I—I_I— Processor Mode
00 - User Mode
01 - FIQ Mode
10 - IRQ Mode

11 - Supervisor Mode
Program Counter
(Word Aligned)

FIQ Disable
0 - Enable
1 - Disable

IRQ Disable
0 - Enable
1 - Disable

Overflow

Carry/Not Borrow/
Rotate Extend

Zero

Negative/ Signed
Less Than

Figure B-2: Program counter and program status wor d
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configured such that various stack paradigms can be supported (e.g. empty/full ascending/
descending stacks). These instructions are intended to make procedure entry/exit more
efficient (i.e. saving and restoring registers).

The next class of instruction are branches. A special link flag is available to the programmer
to cause the address of the following instruction to be placed in the link reBBtrThis

allows subroutine calls to be made. fEturn from a subroutine entered in this maiier
contents oR14 are used as the new program counter (i.e. rid¥e> R15).

The remaining instruction classes cover supervisor calls and external coprocessors.

An unusual feature of the ARM2 is that all instructions are conditionally executed, so that
short forward branches are usually unnecesddrg instruction set is described in more
detail elsewhere [Cock87].

B.1.2 Organization

The internal architecture is 32-bit and ig@mized as shown in figure B-3. This shows the
register bank described previoystiie barrel shiftera 2-bit Booths multiplier and the

ALU. The address incrementer is used to generate the sequential addresses during
instruction prefetch and multiple register transfer instructions.The external data bus is also
32-bits but the address bus is only 26-bits thus giving an address range of 64 Mbyte.

The operation of the ARM2 is pipelined into three stages as follows:-

1. |Instruction PreFetch

2. Instruction Decode

3. Execute
The execute stage is the complete datapath operation i.e. register read, shift, ALU operation
and result writeback. Each stage takes one cycle to complete so that a new instruction may
start every cycle.

The ARM2 is described in detail elsewhere [Furb89, VLSI9O0].

B.2 The ARMG

The ARM6 was developed to extend the 26-bit address range to 32 bits and to provide
additional modes to ease operating system design. The two new modes each have a
corresponding set d®13/R14 registers so that the total number of registers has increased
from 27 to 31, but still with only sixteen visible at any one time. The register structure is
illustrated in figure B-4.

A consequence of the 32-bit program counter is that the processor status information can no
longer be stored in the same registdre concept of a separate PSR has been introduced to
solve this problem. There is the Current Processor Status Register (CPSR) which contains
the working flags and there is a set of Saved Processor Status Registers (SPSRs) one for
each of the privileged modes. This allows the status information to be saved across mode
changes. Wo new instructions have been added to allow the status information to be
transferred to and from the CPSR and SPSR (of the current mode) to one of the general
purpose registers. The format of the new CPSR/SPSR is similar to the format of the ARM2
status flags, with the addition of 3 extra mode bits and with the I/F flags moved from bits
27/26 (as shown in figure B-2) to bits 7/6.
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Figure B-3: ARM 2 block diagram
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R6

R7

R8

FIQ

R9
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R10

FIQ

R11

FIQ

R12
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R13
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R14 (Link Register)

svc R13

RQ_R13

FIQ

R15 -PC and PSR

UND R14|ABT R14

svc R14

RQ R14

FIQ

Figure B-4: The ARMG6 register organization

The general functionality of the processor remains the same as the ARM2. There is a special
mode flag that allows the ARM6 to operate as a 26-bit ARM2. This flag can be set either by
strapping a hardware pin or by changing the flag which appears in the CPSR by software.
When running in 26-bit mode, the ARM6 has only four modes and 27 registers and a
combined PC and PSR (as described in the ARM2 section). The ARM6 is described in more

detail elsewhere [ARM91].
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