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Abstract

Asynchronous VLSI designs are becoming an intensive area of research due to their

advantages in comparison with synchronous circuits, such as the absence of the clock

distribution problem, lower power consumption and higher performance.

The work described in this thesis is an attempt to find possible ways to test asynchro-

nous VLSI circuits using random (or, more accurately, pseudo-random) patterns. The

main results have been obtained in the field of random testing of stuck-at faults in micro-

pipelines.

An asynchronous random testing interface has been designed which includes an asyn-

chronous pseudo-random pattern generator and an asynchronous parallel signature ana-

lyser. A program model of the universal pseudo-random pattern generator has been

developed. The universal pseudo-random pattern generator can produce multi-bit

pseudo-random sequences without an obvious shift operation and it can also produce

weighted pseudo-random test patterns.

Mathematical expressions have been derived for predicting the test length for random

pattern testing of logic blocks of micropipelines by applying equiprobable and weighted

random patterns to the inputs.

The probabilistic properties of then-input Muller-C element have been investigated. It is

shown that the optimal random test procedure for then-input Muller-C element is ran-

dom testing using equiprobable input signals. Using the probabilistic properties of the

Muller-C element and multiplexers incorporated into the circuit a certain class of asyn-

chronous networks can be designed for random pattern testability. It is also shown how

it is possible to produce pseudo-random patterns to detect all stuck-at faults in micropi-

pelines.
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Chapter 1 : Asynchronous VLSI

designs

1.1 Asynchronous versus synchronous VLSI circuits

The combination of recent developments in the technology for producing digital circuits

with powerful computer-aided design (CAD) tools [1, 2] has given designers new

opportunities to create circuits with high performance and high density of logic elements

in the form of very large scale integrated (VLSI) circuits.

Almost all today’s VLSI circuits and systems are designed using two major conceptual

rules: information is represented in a binary format, and time is discrete. In general, this

is an artificial approach to designing digital circuits which is used because it avoids

many of the problems concerned with representing and processing digital information.

Usually such VLSI circuits use a common clock signal distributed through the design to

control the timing and sequencing of the data flow. In such synchronous VLSI circuits,

hazards can be ignored simplifying the digital design process.

A VLSI circuit is a system of a large number of interconnected elements where a

sequence of events is realized. The most natural discipline for processing information in

digital systems is asynchronous, i.e. each element processes data in response to new

information being delivered to its inputs. The combination of an asynchronous disci-

pline for controlling the sequence of handling digital information with VLSI technology

creates new possibilities for designing VLSI circuits with new features and advantages

[3, 4, 5, 6, 7]. There are some general benefits of using asynchronous designs in compar-

ison with synchronous ones:

• The clock skew problem. The clock skew problem appears when it is necessary to

synchronize different parts of a VLSI system. This synchronization cannot be com-

pletely accurate for the simple reason the clock signal arrives at different parts of the
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VLSI circuit at different times, due to different track lengths. Asynchronous circuits

by definition have no common clock and, therefore, have no clock skew problem.

• Metastability problem. It is known that for a successful computation process the data

must be valid before being clocked. If this condition is not obeyed a synchronous cir-

cuit can go into an unstable equilibrium which is called a metastable state. Thus, the

exact values of the delays of elements must be known to ensure correct synchroniza-

tion. Asynchronous elements can have arbitrary delays and can wait an arbitrary time

while input information stabilizes.

• Performance. The performance of synchronous VLSI systems is limited by the worst

case when an element processes information for the longest time. As a rule, this situ-

ation is rare but must be taken into account to avoid the metastability problem. Asyn-

chronous VLSI circuits operate at a rate determined by element and wiring delays. As

a result the performance rate tends to reflect the average case delay rather than the

worst case delay.

• Power consumption. Synchronous VLSI circuits are designed in such way that even

if some parts of the circuit are not involved in a computation process they have to be

clocked, i.e. they perform their functions with data which is not in use. In contrast, in

asynchronous VLSI designs only those parts of the circuit which produce “useful”

information take part in the computation. This property of asynchronous designs

leads to power savings in VLSI circuits.

• Timing and design flexibility. If a designer of a synchronous VLSI circuit is required

to make a circuit work at a higher clock frequency, all parts of the circuit must be

improved because of the worst-case performance property. In the case of asynchro-

nous designs the problem can be solved if only “the most active” parts of the circuits

are modified. These modifications can be implemented using new developments in

VLSI technology. In general, greater throughput for synchronous circuits can be

achieved only when all VLSI components are realized on a new technology because

the critical (longest) path can go through all the elements of the VLSI circuit.
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Besides the advantages, asynchronous circuits also have some disadvantages. It appears

to be difficult to design asynchronous VLSI circuits for specific applications. The

designers must pay great attention to the dynamic properties of asynchronous circuits

and to the control of the sequence of operations. The lack of powerful CAD tools makes

it difficult to design asynchronous VLSI circuits. Nevertheless, the scope of asynchro-

nous designs is wider than that of synchronous ones. This encourages designers to do

more research in the field of creating productive asynchronous VLSI circuits.

1.2 Asynchronous design

In general synchronous designs can be seen as a particular case of representing data

processing designs in the multi-dimensional asynchronous world [2]. There are many

different approaches to designing asynchronous VLSI circuits. Nevertheless, the most

popular design approaches currently in use can be categorized by the way data is repre-

sented and processed [4]:

• Data representation. Data in asynchronous designs can be represented either by using

a dual rail encoding technique or a data bundling approach. In the dual rail encoded

data representation, each boolean variable is represented by two wires. Here the data

and timing information are carried by each wire. The data itself can be represented by

logic levels (a one is represented by a high voltage and a logic zero by a low voltage)

or by transition encoding where a change of signal level conveys information. The

bundled data approach uses one wire for each data bit and a separate control wire

containing the timing information.

• Data processing. There are three basic models for data processing in asynchronous

designs.Delay-insensitive circuits make no assumptions about delay within the

VLSI design, that is any logic element or interconnection may take an arbitrary time

to propagate a signal.Speed-independent circuits assume that the logic elements of

the VLSI design may have an arbitrary propagation delays but transmission along

wires is instantaneous. Inbounded-delay asynchronous circuits, all delays within the

circuit (caused either by logic elements or wires) are finite.
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In circuits using dual-rail encoding with transition signalling, a transition on one of the

two wires indicates the arrival of a zero or one. The signal levels are not taken into

account. Such circuits can be fully delay-insensitive. They possess the greatest flexibil-

ity to improve the design performance by replacing logic elements with their faster ver-

sions.

Another popular asynchronous design style uses dual-rail encoding with level sensitive

signalling [6]. In comparison with the previous case such designs require a “return to

zero” phase in each transition which causes more power dissipation. Nevertheless, the

realization of logic elements processing logic levels is simpler than transition processing

logic.

Ivan Sutherland described an approach to designing asynchronous circuits called

“micropipelines” [3]. This approach uses bundled data with transition signalling to form

a handshake protocol to control data transfers. Using the micropipeline approach, the

AMULET group in the Department of Computer Science at the University of Manches-

ter has designed an asynchronous implementation of the ARM6 microprocessor archi-

tecture and has successfully run an ARM validation suite that tests all the major

instruction types used in the architecture [5]. Silicon layout is complete, and the design

is fabricated. Considered at the highest level, the asynchronous ARM is one large micro-

pipeline that takes in a stream of data and instructions and outputs a stream of addresses

and processed results. Internally, many of the ARM’s subunits also behave as micropi-

pelines. For example, the data path is a three-stage micropipeline which contains the

register bank, the shifter/multiplier and the ALU [7]. As an extension of this work, the

solution of test problems of micropipelined structures becomes an interesting topic of

research.

1.3 Transition signalling

In micropipelined asynchronous designs, every signal transition (falling or rising) is

associated with an event. Compared with a pulse, a signal transition is the most econom-

ical representation of an event because the width and level of a pulse are more difficult
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to distinguish than a signal transition. Using transitions to indicate events it is possible

to control the sequence of operations in an asynchronous design. The standard hand-

shaking convention between a sender and a receiver includes at least two control wires:

request and acknowledge (Figure 1.1). First, the sender generates data for the receiver.

Once the data signals have reached their stable (conventional low and high) states the

sender produces the request signal to indicate that the data value is available. The

receiver captures the data and generates on its acknowledge wire a transition to indicate

that the data have been accepted. There is a strict sequence of three basic events in this

handshaking mechanism: data change, request and acknowledge. The sequence of

events in such an asynchronous communication protocol can be continued infinitely by

repeating the basic events. The data are operated on as a bundle when the levels of all

signals on the data wires reached their stable levels.

Two transition signalling schemes for the bundled data convention are known [2]. These

are two-phase (or two-cycle) and four-phase (or four-cycle) signalling protocols. In the

two-phase bundled data convention depicted in Figure 1.2 there are two active phases in

the communication process: these are the signal transitions (rising or falling) on the

request and acknowledge wires. An event on the request (acknowledge) control line ter-

minates the active phase of the sender (the receiver). During the receiver’s active phase

the sender must hold its data unchanged. Once the receiver generates an acknowledge

event new data can be produced by the sender. In Figure 1.2 solid (dashed) lines repre-

sent the sender’s (the receiver’s) actions.

SENDER RECEIVER

request

acknowledge

data

Figure 1.1: The standard bundled data interface
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Figure 1.3 shows the four-phase bundled data convention which uses four active phases

in the communication protocol. Each pair of rising and falling signal transitions on the

request (acknowledge) wire terminates the sender’s (receiver’s) active phase.

Each form of signalling has advantages and disadvantages. For example, the four-phase

bundled data convention requires twice as many signal transitions as the two-phase con-

vention. As a result, four-phase signalling can be used without serious performance pen-

alties in VLSI systems only where wire delays between elements are negligible. In the

Request

Data

Acknowledge

Figure 1.2: Two-phase transition signaling

Request

Data

Acknowledge

Figure 1.3: Four-phase transition signaling
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two-phase bundled data convention the interpretation of transitions requires more con-

trol logic than four-phase signalling requires.

1.4 Event-controlled logic elements

Asynchronous circuits which use transition signalling protocols for controlling data flow

require basic control building blocks which differ from synchronous ones. All event-

controlled logic elements are bistable digital circuits which form various logical combi-

nations of events. Figure 1.4 shows an assembly of the most frequently used asynchro-

nous logic modules for events [3].

The simplest module is theExclusive-OR (XOR) element which has a function equiva-

lent to merging two events: if an event is received on either of the inputs of an XOR ele-

ment a response event will be produced on the output of the element.

TheMuller C-element performs a logical AND of input events. When all the inputs of

a Muller C-element are ones (zeros) the Muller C-element generates an one (zero) on its

output and stores this state. If the inputs are different the Muller C-element retains its

previous state and holds the output unchanged. Therefore, the Muller C-element pro-

duces an event when an event takes place on each its input. Because of this property the

Muller C-element is sometimes called a “rendezvous” circuit.

The Toggle circuit sends a transition alternately to one or other of its outputs when an

event appears on its input. The first event is generated on the dotted output.

TheSelect module is a demultiplexer of two events. It steers a transition to one of two

outputs depending on the logical value on its diamond input.

TheCall element serves a function which is similar to a subroutine call in programming.

It remembers which one of its two inputs received an event first,r1 or r2, and calls the

procedure,r. After the procedure is finished,d, the Call element produces a matching

done event ond1 or d2 output.
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The Arbiter guarantees that both of its outputs are not active at the same time. The arbi-

tration function is in granting service, g1 or g2, to only one request, r1 or r2, at a time.

The other grant is delayed until after an event has taken place on the done wire, d1 or

d2, corresponding to the earlier grant.

1.5 Asynchronous micropipelines

A pipeline is a mechanism used for speeding up the throughput in a computer system.

The main reason for using pipelines is to increase the number of elements doing compu-

tations at a given time. A micropipeline is a data processing pipeline whose stages oper-

ate asynchronously. There are several papers which describe basic principles for

designing asynchronous micropipelines [3, 5]. Figure 1.5 represents the general struc-

C

TOGGLE

SELECT
true false

r1

d1

d2

r2

r

dC
A

LL

g1

d1

g2
d2

r1

r2 A
R

B
IT

E
R

Exclusive-OR

Muller C-element

TOGGLE element

SELECT module

ARBITER

CALL element

Figure 1.4: An assembly of basic logic modules for events
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ture of a two-phase micropipeline incorporating computation. The registers in the pic-

ture are similar to level sensitive latches which are usually used in synchronous designs.

The only difference is that they respond to transitions on two inputs instead of a single

clock wire. Initially all registers pass data directly from their inputs to outputs. When a

transition takes place on the C (capture) control input the current binary vector is latched

in the register. Once a transition occurs on the P (pass) wire the register returns to a

transparent state and the computation cycle repeats. The register output Cd (Pd) is the

capture-done (pass-done) output on which a delayed version of the capture (pass) event

is generated. If a transition is stored in the FIFO control logic the data will be buffered in

the registers. Since each computation logic block has its internal delay the Cd signal

transition must be delayed by as much as the worst-case logic block delay. Without the

logic blocks the micropipeline (Figure 1.5) is a FIFO buffer.

Using the same approach to designing micropipelines an asynchronous sequential cir-

cuit can easily be produced. Figure 1.6 shows the basic structure of such a circuit. This

structure uses two registers, RG1 and RG2; register RG1 holds the previous state of the

circuit and the new state is stored into register RG2. In the initial state the initial binary

vector is written into RG1. As a result a high voltage level is generated on the Cd output

of RG1, Pd output of RG2 and the acknowledge output of the circuit, A(in). The

delay

delay

delay

delay

CCd P

PdC

Cd

P

Pd

CCd

P

Pd

C

Cd P

Pd

C

CC

C

LO
G

IC

LO
G

IC

LO
G

IC

LO
G

IC

RG RG RG RG

R(in) R(out)

A(out)A(in)

Data Data

Figure 1.5: A computation micropipeline
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request event is produced by the sender when the primary inputs,PI, are stable. The

request signal is delayed for sufficient time to ensure stable levels on the internal and

primary outputs,PO, of the logic block. After storing the new state of the sequential cir-

cuit into RG2 the request event for the receiver is formed on theCd output ofRG2.

After the acknowledge event on theA(out) wire takes place the new state is copied from

RG2 to RG1 and the circuit produces the acknowledge signal transition for the sender.

Thus, after a new request event from the sender is registered the computation cycle of

the sequential circuit is repeated.

A major advantage of the micropipeline structure is the possibility of filtering out all

hazards in the logic blocks. Another positive feature is that an asynchronous micropipe-

line is automatically elastic; that is, data can be sent to and received from a micropipe-

line at arbitrary times. Although micropipelines are a powerful tool for implementing

elastic pipelines they have one serious drawback. The micropipeline approach is inher-

ently bounded-delay rather than delay-insensitive. In order to yield a completely delay-

insensitive system the timing information must be encoded with the data itself.

C

C
C

PPd

C Cd

PPd

C Cd

RG1 RG2

delay

LOGIC

A(in)

R(in) R(out)
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Figure 1.6: An asynchronous sequential circuit
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1.6 Summary

Asynchronous VLSI circuits are becoming a serious alternative to synchronous circuits

because of the absence of global clock distribution. One of the most attractive models to

implement asynchronous circuits is the bounded-delay model. Specifically, it is assumed

that the delay in all circuit elements and wires is known, or at least bounded. Such asyn-

chronous circuits can be designed easily using fundamental principles for designing syn-

chronous hardware and a pipelined approach. Unfortunately, bounded-delay

asynchronous circuits are complex systems where multiple control state machines and

data path elements are combined to implement the desired function. This leads to spe-

cific difficulties in solving the fault detection problem, which is the subject for discus-

sion in the following chapters.
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Chapter 2 : Testing VLSI circuits

2.1 Problems in testing VLSI circuits

The ability to put millions of transistors on a single chip of silicon creates great potential

for reducing power, increasing speed, and drastically reducing the cost of VLSI circuits.

Unfortunately, several serious problems must be solved in order to exploit these advan-

tages. The main problem is that of identifying faulty and fault-free VLSI designs before

and after fabrication. A large number of CAD tools has been developed to help design

engineers do logic and design verification [1, 2, 8, 9]. Several test generation algorithms

have been devised to detect faulty VLSI circuits after their physical implementation [9-

14]. The major problems which make the testing of either synchronous or asynchronous

VLSI circuits difficult or even impossible are:

• Test generation and testing time and consequently testing costs are increasing rapidly

with increasing VLSI circuit complexity. The increasing complexity of VLSI circuits

causes the controllability of the inputs and the observability of the outputs of VLSI

elements to be more and more problematic. At the same time the sequential depth of

VLSI circuits is increasing. It has been shown that the cost for test generation

increases as an exponential function of the sequential depth of the network [11].

• In order to test VLSI circuits test engineers have to deal with enormous amounts of

diagnostic information which demands the use of complex and expensive test equip-

ment.

• Rapid changes in VLSI technology create the possibility of physical defects mani-

festing themselves in a large number of ways. In some cases traditional fault models

for such circuits cannot be used to determine the fault coverage of test patterns.
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• The Application Specific Integrated Circuit (ASIC) market requires design engineers

to produce VLSI circuits as quickly as possible, reducing the time for estimating the

testability of new products. The low production volumes of ASICs makes test costs a

significant part of the overall costs.

2.2 Fault models for VLSI circuits

A VLSI circuit failure occurs when the circuit produces output information which devi-

ates from the result which is defined by the specification. The failure occurs because the

VLSI circuit is erroneous, i.e. there is an error in part of the circuit which leads to fail-

ure. The cause of the error is a fault. Thus, an error is the manifestation of a fault in the

VLSI circuit, and a failure is the effect of an error. In VLSI circuits all faults can be

divided into two classes [9]: physical faults and human-made faults, which may be

defined as follows:

• physical faults: adverse physical phenomena, either internal (physico-chemical disor-

ders: threshold changes, short circuits, open circuits, etc.) or external (changes in

environmental conditions: electromagnetic perturbations, temperature, vibrations,

etc.);

• human-made faults: imperfections which are design faults or interaction faults caused

by violations of operating or maintenance procedures.

A fault model is a description of the effect of a physical fault in a circuit. Test engineers

need to have as near as possible exact fault models for the derivation of high-quality

tests and fault simulations. The most useful fault models which can manifest themselves

by affecting the logical behaviour of both asynchronous and synchronous VLSI circuits

are stuck-at faults, bridging faults, stuck-open faults and delay faults [9, 15-17].

The stuck-at fault model. This fault model is one of the most widely used. The stuck-at

fault model assumes that faults will result in the wires at the logic gate level of the cir-

cuit being permanently logic zero (stuck-at-0) or one (stuck-at-1). This model is still

used since many circuits’ faults can be modelled by the stuck-at fault model at the logic
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level. Theoretically, for any circuit the total number of all possible faulty circuits with

multiple stuck-at faults can be estimated as , where  is the number of nodes in

the circuit. In practice, only single stuck faults are considered in order to eliminate an

incredibly large number of faulty VLSI circuits.

Figure 2.1 shows an NMOS NOR gate with four faults: faults 1 and 2 being shorts

(shown as dotted lines) and faults 3 and 4 being opens (depicted by crosses). Table 2.1

gives the behaviour of the gate when all possible two-bit binary vectors are applied

under these four faults. Outputs are shown for no fault ( ), for the two shorts (  and

) and for the two opens (  and ). Fault 1 is logically equivalent to the A input

stuck-at-0 since the gate cannot be driven to logic 0 when A=1 and B=0. Fault 4 is

equivalent to the B input stuck-at-1 and can be detected by applying A=0, B=1. If the

Table 2.1: The truth table of NMOS NOR gate with four faults

Inputs Outputs

0 0 1 1 1 1

0 1 0 0 u 0 1

1 0 0 1 0 0 0

1 1 0 0 0 0 0

3n 1− n

A B

F

VDD

1

2

3

4

A
B

F

Figure 2.1: NMOS NOR gate with four faults

F0 F1

F2 F3 F4

A B F0 F1 F2 F3 F4

Qn
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short marked 2 is present, then under the input 01, the output may not be 0 but may be an

indeterminate voltage represented asu. Thus, under this fault and this input combina-

tion, the output is permanently stuck at 0 or 1. This example demonstrates that in some

cases the stuck-at fault model cannot be accurate.

The bridging fault model. Bridging faults are the result of many physical faults which at

the circuit level will produce shorts between interconnecting lines. In TTL technology

this model treats shorts between lines in the logic gate network and assumes that all

affected lines will have the wired-AND or wired-OR logic value under fault [15]. It has

been shown that the bridging fault can convert a combinational circuit to a sequential

one in CMOS technology [14]. This, in turn, creates extra problems in the testing of

VLSI circuits.

The stuck-open fault models. These kinds of faults are inherent to MOS technology [16].

In the case of a stuck-open fault an open transistor (or a broken line) can lead to a MOS

gate behaving as if it had memory. For example, fault 3 in the NMOS NOR gate (Figure

2.1) produces a high-impedance output under the combination 00 (Table 2.1). In NMOS

technology this means that the gate stores the previous output (shown as) at least for

a period of time until any residual charge leaks away from the output. Fault 3 can mani-

fest itself on the output of the gate only under a certain sequence of input combinations.

If two input vectors are applied as 11, 00, then the fault will be detected since will be

a 0 and the correct output should be a 1. If the 00 combination was applied first, when

the output wire was 1, fault 3 would not be detected.

Delay faults. A delay fault is a fault on an element or path that alters its delay. In syn-

chronous VLSI circuit such a fault would require the chip to be clocked at a slower rate.

However, in an asynchronous VLSI circuit there is no clock to slow down, and a delay

fault can cause incorrect circuit operation that in some particular cases cannot be fixed.

For instance, in Figure 2.2, a pulse generator drives a pulse detector. The delay in the

pulse detector feedback line is designed to be smaller than the pulse generator’s pulse

width. As a result, the pulse detector remains 1 after the first pulse is detected. If a delay

fault occurs in the pulse detector delay, the feedback value may not arrive before the

Qn

Qn
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pulse has ended. Thus, the pulse detector will oscillate. Methods for detecting delay

faults have been developed [17, 18]. Unfortunately, they require complex test equipment

capable of applying multiple test sequences rapidly and checking data at specific times.

Although the stuck-at fault model is widely accepted by test engineers as a standard for

measuring test coverage, this model is now becoming inadequate as new failure mecha-

nisms are being discovered for VLSI circuits.

2.3 Logic testing of VLSI circuits

All test procedures assume the application of a set of patterns (“tests”) to the inputs of

the circuit under test (CUT) and an analysis of the responses obtained. If the CUT pro-

duces the right outputs it means that it is fault free for the predefined class of faults.

Most test methods separate the testing process from normal operation in order to provide

a higher degree of fault coverage [13, 19, 20]. Basically, a test procedure includes three

main steps: test pattern generation, applying the set of test patterns to the CUT, and eval-

uating the responses observed on the outputs of the CUT (Figure 2.3). The aim of the

test pattern generation step is to derive those tests which will detect all possible faults

from the set of faults. The test patterns can be applied in two ways. The first way is to

use external test equipment to apply tests to the CUT and check the responses. The sec-

ond way presumes the application of test patterns inside the CUT. The method of apply-

ing test patterns internally is suitable for realization in VLSI systems for arranging self-

testing procedures [21]. The results of the process of evaluating the responses obtained

Pulse
Generator Pulse

Detector

Figure 2.2: Delay fault hazard in an asynchronous VLSI circuit
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from the CUT can help to solve two test tasks: the definition of a faulty circuit (so called

go/no-go testing) and, in addition to this, the indication of the position of the fault in the

CUT (fault location testing) [20]. Go/no-go testing is reasonable for testing VLSI chips

as a chip is a replaceable element in most VLSI systems. Both test methods can be used

for testing VLSI systems.

2.3.1 Test generation methods

The main goal for the test generation process is to derive those input patterns which,

when applied to the CUT, will sensitize any existing faults (the controllability problem)

and propagate an incorrect response to the observable outputs of the CUT (the observa-

bility problem) [10]. A test set is good if it is capable of detecting a high percentage of

faults from the possible CUT faults or simply if it can guarantee a high fault coverage.

Before designing tests for a digital circuit a test engineer has to solve two problems: to
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chose an appropriate descriptive model for the CUT (the description at the transistor,

gate or register transfer level) and to develop a fault model to define the result of a phys-

ical fault. Obviously, the lower the level of circuit representation used in test pattern

generation, the more accurate the fault model will be. However, the use of low level

description languages for VLSI circuits having many thousands of transistors aggravates

the problem of test pattern generation drastically. It has been shown that the problem of

generating a test set for single stuck-at faults in a combinational circuit represented at

the gate level is an NP-complete problem [22]. For a sequential circuit the test genera-

tion problem becomes much more difficult since the number of incorporated memory

elements increases. Thus, in each particular case a test engineer must find a compromise

between the time to derive the test and the level of fault coverage achieved by the test.

Basically, approaches to test generation can be divided into three groups: exhaustive

testing, random (pseudo-random) testing and algorithmic test generation methods (Fig-

ure 2.3). Exhaustive testing assumes the application of all possible input vectors to the

CUT. If a faulty combinational circuit has a fault which does not result in sequential cir-

cuit behaviour the application of all possible binary vectors to the inputs of the CUT can

guarantee 100% fault coverage. For the exhaustive testing of a circuit with a large

number of inputs the number of tests becomes incredibly large. An approach to extend-

ing the exhaustive test technique to large circuits by means of partitioning the CUT into

subcircuits any of which can be tested for a reasonable time has been described [23].

However, this approach has a major problem concerned with finding the most suitable

partitions.

In random (pseudo-random) testing [14, 24, 25], input vectors are produced with the

help of random (pseudo-random) test pattern generators. The reactions of the faulty and

the fault-free circuits for each random vector are compared using a simulator. If the

responses are different the current vector is put into a test set. The main advantage of all

random (pseudo random) generation techniques is that the test engineer has a source of

test patterns and only the problem to be solved is that of proving that the random test set

has the desired fault coverage.
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Many algorithms have been proposed [9-14] for generating test vectors for either combi-

national or sequential circuits. The majority of these methods generate test sequences by

means of analysing the topological structure of the CUT. Such well-known path sensiti-

zation algorithms as the D-algorithm [10], PODEM [14] and FAN [9] have successfully

been used for automatic test generation for VLSI circuits.

The concept of the path sensitization technique is illustrated in Figure 2.4. The deriva-

tion procedure for the stuck-at fault on lined includes three sequential steps marked by

circled numbers. The goal of the first step is to set lined to 0. In Figure 2.4 the logical

value before the slash is the correct value for the fault-free circuit; the value after the

slash is the logical result in the faulty circuit. On the second step, linea should be set to

0 in order to justify the previous step. The last test generation step makes the effect of

the fault on lined propagate to the outpute by setting lineb to 0. As a result, test pattern

00 can be applied to detect the stuck-at-1 fault on lined.

As shown above, the main point of path sensitization algorithms is in analysing the cir-

cuit topology in order to construct an input vector which will sensitize a path from the

fault site to a primary output. The process of path sensitization consists of three basic

operations: justification, implication and propagation [13]. Step 2 of the above example

is justification for generating a logical 0 on noded. In general, when a value is assigned

to a certain node, it may imply other logical values for some lines of the circuit. The aim

of the implication procedure is to cause forward propagation of the result of the justifica-

tion step. For example, a logical 0 can be set on lined by setting a logical 1 on lineb

(see Figure 2.4). In this case the effect of the fault on lined cannot be propagated

a

b

c
d

e

1

2

3

Stuck-at-1

0

0/1

1/0

0

Figure 2.4: Path sensitization technique

1
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through the NOR gate to the outpute. Therefore, the result of the justification step can

be propagated only if a logical 0 is set on linea. The effect of the propagation process

(step 3) is to move the fault effect through a sensitized path to an output of the circuit.

One of the classical methods for detecting stuck-at faults is the D-algorithm [10] which

employs the path sensitization technique. The set of five elements {0, 1,, , } for

representing signals is used to facilitate the path sensitization process. means

unknown.  represents a signal which has the value 1 in a normal circuit and 0 in a

faulty circuit.  is the complement of . The D-algorithm consists of three parts: fault

excitation and forward implication, D-propagation, backward justification. On the first

step the minimal input conditions are selected in order to produce an error signal ( or

) on the output (faulty node) of the logic element. The forward implication process is

performed in order to determine the outputs of those gates whose inputs are specified.

The goal of the D-propagation step is to propagate the fault effect to primary outputs by

means of assigning logical values to corresponding internal lines and primary inputs. In

backward justification, node values are justified from primary inputs. If there is a con-

flict in one of the nodes the backwards consideration from the conflict node to the pri-

mary inputs is reiterated until the fault effect (  or ) reaches at least one of the

primary outputs.

Not all the stuck-at faults of the CUT can be detected by path sensitization algorithms.

Hardware redundancy is the reason why these faults cannot be detected. For example,

the stuck-at-1 fault on nodec of the circuit shown in Figure 2.4 is undetectable since

there is no sensitization path from the fault site to the output of the CUT. It is easy to

ensure that while the stuck-at-1 fault is present on nodec the faulty circuit produces the

correct responses. Clearly, the combinational circuit shown in Figure 2.4 produces the

following Boolean function: . This function is redundant and equivalent to

 which is not redundant.

Although path sensitization techniques formalize the test derivation procedure, they can

no longer be used in testing VLSI circuits due to drastically increasing test generation

time.

X D D
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2.3.2 Response evaluation techniques

The main goal for response evaluation is to detect any wrong response. There are two

basic approaches for achieving this goal. The first approach uses a good response gener-

ator and the second one is based on principles of compact testing techniques.

In good response generation techniques the major problem is to choose a method of

obtaining a good response for the CUT. Any faulty response can be detected by compar-

ing good responses with responses produced on the outputs of the CUT. In the stored

response testing technique (Figure 2.5) all good responses are stored in a ROM. After

applying each test pattern to the CUT the actual response is compared with the good

one. If they are different the comparator will activate an error signal at its output. Good

responses can easily be obtained by means of software-simulation of the VLSI circuit as

a part of the design verification stage [9].

Figure 2.6 shows the flow diagram for the comparison testing technique. In order to

detect any faulty response test patterns are applied to the inputs of the CUT and a golden

unit simultaneously and the responses of both units are compared by the comparator.

In comparison with stored response testing, comparison testing has some advantages:

1) it allows the testing of VLSI circuits over a large range of speeds and electrical

parameters because the golden unit and the CUT are operated under the same condi-

tions;

Test patterns CUT CUT response

Stored good
response

Comparator

Figure 2.5: Stored response testing

Error
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2) a change in the test sequence does not require any change in the test process.

On the other hand, the stored response testing technique needs to store good responses

(the results of simulation) only once before testing whereas the quality of comparison

testing depends on the quality of the golden unit.

The main drawback of the response evaluation techniques is the necessity to operate

with a large amount of response data during the testing of VLSI circuits. In order to sim-

plify the problem of storing and analysing test responses the compact testing methods

have been devised [14]. The general idea of compact testing is to compress the response

data into a compact form during the test. After the test is complete the response of the

CUT is compared with the compressed response of the golden unit. A basic diagram of

the compact testing technique is shown in Figure 2.7. However, during the compression

process there is a probability that some part of the diagnostic information from the

Test patterns

CUT CUT response

Good
response

Comparator

Golden unit

Error

Figure 2.6: Comparison testing

Test patterns

CUT

Comparator

Figure 2.7: Compact testing

Error

compressed
response

Good

Compression
functionResponses
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response data flow will be lost. This in turn creates the possibility of making a wrong

decision about the test results. All the compact testing methods differ in the method of

data compression. The most widely used compact testing methods are transition count-

ing [14] and signature analysis [19, 26]. The transition counting method compresses the

response data into the number of 0 to 1 and 1 to 0 transitions in the sequence. In the sig-

nature analysis technique the response data are compressed using a signature analyser

built as a linear feedback shift register. This method will be described in more detail in

Chapter 3.
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Chapter 3 : Pseudo-random

testing of VLSI circuits

Deterministic test generation methods for modern VLSI circuits are becoming too

expensive in terms of computational time. As an alternative, random (pseudo-random)

techniques for generating test sets can be used. The random (pseudo-random) testing

technique consists of applying a random (pseudo-random) test sequence to a CUT and a

golden unit with a consequent comparison of the two responses obtained (see Figure

2.6). The main feature of this kind of testing is that the test sequence does not depend on

the specification of the CUT and can be applied to all circuits to be tested. As a result,

the costs for implementing such testing are less than that of algorithmic test generation

techniques.

3.1 Generating pseudo-random patterns

There are two ways to generate random test sequences. The first method lies in using

random number programs to generate random tests. Knuth discussed thoroughly the

properties of software random number generators [27]. The second method is more con-

venient for testing VLSI circuits. It uses a linear feedback shift register (LFSR) to gener-

ate random input stimuli. The standard LFSR consists of a series of D-type flip-flops

without external inputs and with linear feedback provided by means of XOR gates. Such

an LSFR implements the following function:

, (1)

where  is a clock number;  are the symbols of the generated sequence;

 are constants;  is the operation of XORing logical variables.

a t n 1−+( ) αia t i 1−+( )
i 1=

n

∑=

t a t( ) 0 1,{ }∈

αi 0 1,{ }∈ ∑ n
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Figure 3.1 shows the general structure of an LFSR. Symbol indicates the presence

( ) or absence ( ) of a feedback connection from the output of theth stage

to the XOR network. Sometimes the coefficients  are called “taps” since they deter-

mine the structure of the LFSR.

An LFSR can be realized in a modular form depicted in Figure 3.2. The modular realiza-

tion of an LFSR [28] has the same number of XOR gates as the standard structure,

which is defined by feedback taps. If the number of feedback signals,, is more than 2,

the modular LFSR is faster than the standard one: the former has one gate propagation

delay whereas the standard LFSR has  gate delays per one clock.

If a homogeneous Bernouilli process [29] is used for simulating the behaviour of an

LFSR such a procedure is called “random pattern generation”. As the nature of the pat-

XOR

n-1 n-2 1 0

αn
αn 1− α3 α2 α1

a(t+n-1) a(t+n-2) a(t+2) a(t+1) a(t)

Figure 3.1: Linear feedback shift register

αi

αi 1= αi 0= i

αi

n-1 n-2 1 0

αnαn 1−α3α2α1

bn t( ) bn 1− t( ) b2 t( ) b1 t( )

Figure 3.2: Modular realization of a LFSR

k
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terns generated by an LFSR is deterministic, a non-homogeneous Bernouilli process can

be used for simulation. This is called pseudo-random pattern generation [24].

It is easy to show that for a certain combination of coefficients  the period of the

sequence, , generated by an LFSR will be maximal and equal to .

Although such a sequence can be characterized by equiprobable and randomly appear-

ing 1s and 0s, as in a truly random sequence [30], the signals generated by an LFSR can

be reproduced repeatedly after setting it into the initial state. For this reason, the

sequences produced by maximal-length LFSRs are called pseudo-random sequences to

distinguish them from truly random sequences. Pseudo-random sequences are more

suitable for testing digital circuits than truly random ones due to the possibility of

repeating them for simulation purposes.

Figure 3.3 shows a four-bit pseudo-random pattern generator (PRPG) which is realized

using a four-bit register. The pseudo-random sequences of maximal period, ,

are generated on the register outputs (see Table 3.1). If the initial state of the PRPG is

=  then the sequence  is reproduced on

output  after each 15th clock (the combination of all 0s is never produced).

The behaviour of the LFSR (Figure 3.1) can be described by means of the following

matrix:

αi

a t( ) M 2n 1−=

M 15=

q1 q2 q3 q4, , ,( ) 1 1 1 1, , ,( ) 101011001000111

a t( )

RG

D1

D2

D3

D4

Q2

Q3

Q4

Q1

C

S

Clock

Set

a(t)
a(t+1)
a(t+2)
a(t+3)

Figure 3.3: Four-bit PRPG
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, (2)

where the values of all the coefficients  are defined by the feedback connections of the

LFSR. The elements of the first row determine the XOR operation. The other elements

of matrix (2) define the shift operation. If the sequence of LFSR states is denoted by=

 then the operational sequence can be represented as

(3)

Equation (3) can be rewritten in a short form as . It is necessary

to mention that time is discrete. Multiplying the current state  by matrix

Table 3.1: State sequence for the four-bit PRPG

State State

0 1 1 1 1 8 1 0 0 1

1 0 1 1 1 9 0 1 0 0

2 1 0 1 1 10 0 0 1 0

3 0 1 0 1 11 0 0 0 1

4 1 0 1 0 12 1 0 0 0

5 1 1 0 1 13 1 1 0 0

6 0 1 1 0 14 1 1 1 0

7 0 0 1 1 15 1 1 1 1

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
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times, the LFSR state at time ( ) can be found, i.e. . The

number  is called the period of LFSR if  or , where

 is the identity matrix.

The cyclic properties of the LFSR are defined entirely by the derivation polynomial

=  which is the determinant of the matrix

. For example, for the LFSR shown in Figure 3.3 the derivation polynomial is

.

If derivation polynomial  of power  1) cannot be divided into any other polyno-

mial of power less than; 2) is a primitive one, i.e. it cannot be the result of the division

of polynomial , where , by any other polynomial; then the LFSR

designed on the base of  produces pseudo-random sequences of maximal period

. Thus, the main aim of designing a maximum-length PRPGs is to ensure that polyno-

mial  obeys the above mentioned conditions.

It is known that there are precisely  different polynomials which allow the

generation of maximum-length pseudo-random sequences by means of an LFSR. Func-

tion  is the Euler function [30]. The result of  is the number of positive

integers which are less or equal to and do not have common factors with. The

number, , of polynomials of power  grows rapidly with increasing, there-

fore, the number of LFSRs of maximum length becomes very large. For instance, for

 equals 16, but if  the number of all possible polynomials of

maximum-length LFSRs is 2048. A polynomial with a minimal number of non-zero

coefficients  can be found from the set of polynomials of power which obey to the

conditions of producing maximum-length pseudo-random sequences. This polynomial

corresponds to the simplest realization of an LFSR since the feedback network of such

an LFSR has the minimal number of XOR gates. Table 3.2 contains some examples of
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primitive polynomials which determine the minimal realizations of maximum-length

LFSRs for different  from 1 to 33. Tables of primitive polynomials can be found in

[30].

Let  be a pseudo-random binary sequence, where=

 is the period of a maximum-length-stage LFSR. Consider the basic properties

of maximal-length pseudo-random sequences:

• A pseudo-random sequence has exactly  ones and  zeros. The prob-

ability of a one (zero) on the outputs of the LFSR, ( ), can be estimated as follows

. If  is quite large then the val-

ues of  and  are very close to 0.5 as in a truly random sequence.

• For a certain polynomial  there are  different pseudo-random sequences

which can be obtained from  by cyclicly shifting it to , , positions.

Table 3.2: Primitive polynomials for different n from 1 to 33

1, 2, 3, 4, 6, 7,
15, 22

13

5, 11, 21, 29 14, 16

10, 17, 20, 25,
28, 31

19, 27

9 24

23 26

18 30

8 32

12 33

n

n ϕ X( ) n ϕ X( )

1 X Xn+ + 1 X X3 X4 Xn+ + + +

1 X2 Xn+ + 1 X3 X4 X5 Xn+ + + +

1 X3 Xn+ + 1 X X2 X5 Xn+ + + +

1 X4 Xn+ + 1 X X2 X7 Xn+ + + +

1 X5 Xn+ + 1 X X2 X6 Xn+ + + +

1 X7 Xn+ + 1 X X2 X23 Xn+ + + +

1 X2 X3 X4 Xn+ + + + 1 X X2 X22 Xn+ + + +

1 X X4 X6 Xn+ + + + 1 X13 Xn+ +

ak{ } a0 a1 a2 … aM 1−, , , ,= M

2n 1− n

2n 1− 2n 1− 1−( )

p q

p 2n 1− 2n 1−( )⁄ 0.5 1 2n 1+ 2−( )⁄+= =

q 2n 1− 1−( ) 2n 1−( )⁄ 0.5 1 2n 1+ 2−( )⁄−= = n

p q

ϕ X( ) M

ak{ } s 1 s M<≤
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• In sequence  there is only one combination of 1s and  consecutive

0s. For  there are  runs of a combination of consecutive 1s and

 consecutive 0s. For instance, there are 4 runs of such combinations as 01 or 10

( ) in the pseudo-random sequence generated by the 4-stage LFSR shown in

Figure 3.3.

• For each integer , , there is an integer, , such that

. In other words, the result of the sum of a pseudo-ran-

dom sequence and its shifted version is another shifted version of the same sequence.

This autocorrelation property of maximal-length pseudo-random sequences is similar

to that of truly random sequences.

• Each maximal-length LFSR sequence ( ) is associated with another sequence,

the reverse sequence, which consists of the symbols of the original sequence but in

reverse order. The specification for the LFSR corresponding to the reverse sequence

is obtained by replacing each entry in the original specification by . For exam-

ple, for the LFSR (Figure 3.3) with derivation polynomial  there

is another polynomial  which determines the structure of the

LFSR whose output sequence is the reverse sequence.

3.2 Exhaustive and pseudo-exhaustive testing of VLSI

circuits

It is well known that for 100% testing of combinational circuits all binary input combi-

nations should be applied to its input. This approach is called exhaustive testing. A

binary counter can be used to generate all combinations of binary symbols. A modified

version of a maximal-length LFSR can also be used for exhaustive testing [23]. This

LFSR is forced to go through all states including the all-0 state. This can be done with

the help of the extra NOR gate incorporated into the LFSR structure as shown in Figure

3.4. As a result, the LFSR cycles through all its original states plus the all-0 state which

is forced by the NOR gate in the state 0001. After the all-0 state the LFSR goes to the

state 1000 and then the sequence proceeds as before (see Table 3.1). The main short-

ak{ } n n 1−( )

1 s n 1−≤ ≤ 2n s− 1− s

s

s 1=

s 1 s M 1−≤ ≤ r 1 r M 1−≤ ≤

ak{ } ak s−{ }⊕ ak r−{ }=

n 4>

i n i−

ϕ X( ) 1 X X4+ +=

ϕ X( ) 1 X3 X4+ +=
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coming of the exhaustive testing technique is that it requires test sequences which are

too long when testing combinational circuits with large numbers of inputs. To reduce the

exhaustive test lengths analysis of the topology of the CUT is necessary.

It was shown by E. J. McCluskey [31] that the vast majority of practical multi-output

combinational networks can be exhaustively tested by applying exhaustive tests only to

parts of them. This testing technique is called pseudo-exhaustive or verification testing.

The main point of this approach is to find a subset of inputs which determines logical

values on each output of the circuit to be tested. All possible vectors are applied to the

subsets of the CUT inputs during pseudo-exhaustive testing. As a result, all subfunctions

of the circuit and, therefore, the entire circuit are exhaustively tested. However, when an

output of the CUT depends on all the inputs the verification testing technique cannot

make exhaustive testing shorter than when all binary combinations are applied to all

inputs of the circuit. E. J. McCluskey also proposed the division of the circuit into seg-

ments and partitions, each tested exhaustively [23]. The major requirement of this

approach is that all subcircuits’ inputs must be controllable at the primary inputs and all

subcircuits’ outputs must be observable at the primary outputs of the circuit. To achieve

this goal two ways of partitioning the entire circuit were proposed. According to the first

way (hardware partitioning), the embedded inputs and outputs of each subcircuit under

test are accessed through multiplexers incorporated into the circuit. The hardware parti-

tioning approach can be used for most combinational networks but it introduces some

hardware redundancy which, in turn, can reduce the operating speed of the circuit. The

3 2 14

D D D D
a(t)

Figure 3.4: A modified four-stage LFSR
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second method (sensitized partitioning) applies appropriate input patterns to the primary

inputs of the circuit to partition it and isolate subcircuits not to be tested.

3.3 Signature analysis

The first practical realization of the signature analysis technique, as a method of detect-

ing errors in output data steams produced by hardware designs, was pioneered by

Hewlett Packard Ltd. [26]. Signature analysis uses a special technique of data compres-

sion and stores the responses obtained from the CUT in compact forms called signa-

tures. A circuit used for implementing the data compression technique is called a

signature analyser. Figure 3.5 represents the general structure of a signature analyser.

This structure includes an-bit shift register and a feedback XOR gate fed by 1) the

shift register outputs defined by coefficients of the appropriate derivation polynomial; 2)

an input data stream from the outputs of the CUT. The initial state of the signature ana-

lyser is the all-0 state. After the data stream, , has been clocked through, the con-

tent (signature) of the shift register can be calculated as shown below:

, ,

, (4)

, , .

It is clear from (4) that if the input data stream is all 0’s then the signature produced by

the signature analyser is one of the states of the maximal-length LFSR.

From a mathematical point of view the process of calculating signatures can be

described as a procedure for dividing an input data stream represented in a polynomial

form into the primitive polynomial of the LFSR. Anyk-bit sequence can be written as

polynomial  of powerk-1. For example, the5-bit sequence 10011 can be written

as . The result of dividing  into primitive polynomial

can be described by the following equation , where

n

y t( )

ai 0( ) 0= 1 i n≤ ≤

a1 t( ) y t( ) αiai t 1−( )
i 1=

n

∑⊕=

aj t( ) aj 1− t 1−( )= 2 j n≤ ≤ 1 t 2n 1−≤ ≤

ψ X( )

ψ X( ) X4 X 1+ += ψ X( ) ϕ X( )

ψ X( ) z X( ) ϕ X( ) s X( )⊕= s X( )
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is the residue of the division. In other words, the residue of dividing the input polyno-

mial describing the data flow into the primitive polynomial is the signature.

In signature analysis testing the inputs of the CUT are supplied with tests produced by

the test generator. Unique signatures are calculated at each internal node and primary

output of the circuit tested. The obtained signatures are stored for comparison with good

signatures obtained at the same nodes from the golden unit or from simulation of the

CUT. If any differences between the two signatures for each node are found the CUT

works incorrectly. By comparing signatures from the primary outputs to the primary

inputs the fault site can be discovered.

XOR n-bit shift register

Feedback from the shift register
Signature

Clock Reset

Y(t)

Figure 3.5: General structure of a signature analyser
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Clock

Reset
Responses
from the CUT

Signature







Figure 3.6: Four-stage serial signature analyser
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In practice, two basic kinds of signature analysers are used: serial and parallel signature

analysers [28]. A four-stage serial signature analyser and four-stage parallel signature

analyser are shown in Figure 3.6 and Figure 3.7 respectively. A serial signature analyser

treats only one response bit at every clock whereas a parallel signature analyser com-

pacts responses from the outputs of multiple networks under test.

Let us evaluate the probability that an error will not be detected by a signature analyser.

Assume that an input sequence of a given length, say , can be good or faulty at ran-

dom. There are  possible signatures which are produced by an -bit signature ana-

lyser. From the set of all possible input sequences of length  there are  sequences

which map into one signature. Thus, there are  error sequences which are

undetectable because they leave the same residue as the correct sequence. This causes

fault masking errors in a signature analyser. The probability of a signature analyser fail-

ing to detect an error can be evaluated by dividing all error sequences which map into

the same signature by the total number of error sequences, i.e.

. For long input sequences, when  is large enough,

.

RG

D1

D2

D3

D4

Q2

Q3

Q4

Q1

C

R

Signature

Reset

Clock
Y1

Y2

Y3

Y4

Figure 3.7: Four-stage parallel signature analyser
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In summary, a signature analyser based on an LFSR can detect all errors in data streams

of  or fewer bits, because the entire sequence will remain in the shift register. For long

sequences, whose lengths are more than the LFSR length, the probability of fault mask-

ing errors in a signature analyser depends on the LFSR length. For the 16-bit signature

analyser used by Hewlett Packard . This confirms the high quality of the

signature analysis technique.

n

P 1.5 5−×10=
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Chapter 4 : Design for testability

of VLSI circuits

4.1 What is design for testability?

It is known that the major parts of testing costs are the cost of test pattern generation and

the cost of test application. Testability is a measure of how easily a VLSI circuit can be

tested to ensure that it performs its intended function. A circuit which can be tested with

less time and effort possesses a greater degree of testability. A circuit which has unde-

tectable faults is untestable and possesses a zero level of testability. Between these two

extremes there are VLSI circuits which have to be tested for long times and/or require

expensive test equipment. Therefore, design for testability (DFT) can be defined as a

design philosophy that leads to decreasing the cost of testing digital circuits and to

increasing the fault coverage or fault isolation.

There are two key concepts in DFT techniques: controllability and observability [32-

35]. Controllability refers to the ease of producing test patterns to the inputs of the sub-

circuit via the primary inputs of the CUT. Observability refers to the ease with which the

responses of the subcircuit can be determined via the primary outputs of the CUT. The

degree of controllability of the circuit can be increased by means of incorporating in it

some additional logic elements and control terminals. The easiest way to increase

observability is to add some extra output terminals into the CUT.

The procedure for designing for testability assumes that modifications of the circuit are

possible to ease the generation and application of test vectors to the circuit to be tested.

To improve testability three groups of DFT techniques have been used: an ad hoc strat-

egy, structured approaches and built-in self-test techniques [33]. There are several basic

criteria which must be taken into account when choosing the most suitable DFT method

for designing a VLSI circuit. These are as follows:
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• impact on the original VLSI design: the increase in silicon area; effects on perform-

ance; the testability of the extra logic;

• the ease of implementation of the technique chosen;

• the effects on test pattern generation: reduction in computational time; improved fault

coverage; reduction in engineering effort;

• additional requirements for automatic test generation tools.

4.2 Ad-hoc techniques

The ad-hoc strategy is used to help designers of VLSI circuits to alleviate testing prob-

lems. Test engineers, using their experience, have developed a number of recommenda-

tions for enhancing the testability of VLSI circuits. R. G. Bennetts described some

practical guidelines for designing testable circuits [32]. All these recommendations can

be divided into two groups: the guidelines which 1) make test pattern generation easier;

2) simplify test application and fault isolation. Consider some ad-hoc rules for improv-

ing VLSI design testability:

It is known that primary access to subcircuits of a VLSI design is extremely limited. In

this case the use of multiplexers and demultiplexers can improve controllability and

observability characteristics of the VLSI circuit as shown in Figure 4.1. Demultiplexers

Select Select

Primary
inputs

Normal functional
signals

Test control
signals

Test observe
signals

Primary
outputs

DX MX

(a) (b)

Figure 4.1: Improving VLSI testability using (a) demultiplexers; (b) multiplexers
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and multiplexers incorporated into the VLSI circuit allow the test engineer to change the

directions of data stream manipulations inside the circuit which are dependent on the

chosen mode of operation (normal or test mode). The major penalties of such an

approach are hardware redundancy and additional propagation delays included into the

VLSI circuit.

Shift registers can be used to make internal nodes of the VLSI circuit more accessible

either for controllability or observability as shown in Figure 4.2. A serial-in, parallel-out

shift register is used to set the circuit into a predefined state (see Figure 4.2(a)). Figure

4.2 (b) shows a parallel-in, serial-out shift register which is used to store test information

from internal nodes and to scan it out to a primary output of the VLSI circuit.

The addition of extra gates to block signal paths can be used to partition a VLSI design

into smaller subcircuits, provide facilities to break feedback paths, break up long coun-

ter chains and provide initialisation of stored-state devices for simplifying test genera-

tion. This technique has been described in detail [23, 32].

Ad-hoc techniques can be applicable to almost any VLSI design and do not impose

severe restrictions upon the designer. However, these methods are not easily automated,

and test generation and fault simulation for ad-hoc approaches are not usually as simple

as they would be for structured techniques. The reason for using this very inadequate

Clock

Reset

Test control

signals

Clock

Reset

Test observation

signals
Scan in

Scan out

Figure 4.2: Using shift registers for improving (a) control access; (b) observation
access
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DFT strategy is due firstly to the fact that the designer does not have the expertise

required for testing and secondly that no effective analysis tools are available to make

good this shortcoming.

4.3 Structured approaches

Although automatic test pattern generators and ad-hoc techniques ease some of the test

problems they cannot ensure the desired degree of controllability and observability at

the structural level for such complicated systems as VLSI circuits. In the mid to late

1970s a number of structural DFT approaches were proposed. Most of these structured

approaches rely on the concept that, if one can control and observe the latch variables

within a sequential circuit, then the test generation problem can be reduced to the testing

of just the combinational logic. The basic structure of the Huffman model for a sequen-

tial network is shown in Figure 4.3. This model includes a number of memory elements,

 ( ), separated from the combinational logic,CL. The combinational logic

is fed by the primary inputs and the outputs of memory elements placed in the feedback

loops. If all the memory elements could be treated by a straightforward mechanism to

control and observe their states, then the test generation and fault simulation need to be

done only for the combinational logic rather than for the much more difficult case of the

sequential circuit. As a result of considerable research into structured DFT techniques,

MEi 1 i n≤ ≤

Primary

outputs

Primary

inputs

CL
ME1

ME2

MEn

Figure 4.3: Huffman model for a sequential circuit
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four main formal methods have evolved: scan path [28,34], level-sensitive scan design

[8,13,32], scan/set [9,14] and random access scan [33].

4.3.1 Scan path

The scan path approach assumes that during the test all the memory elements of the

sequential circuit are configured into a long shift register (see Figure 4.4) called the scan

path. All the memory elements of the circuit can be controlled and observed by means of

shifting in and shifting out test data along the path. During normal operation all the stor-

age elements are reconfigured in the way shown in Figure 4.3. The selection of the input

source for the storage elements can be achieved using multiplexed data flip-flops [28] or

two-port flip-flops with two data inputs and two clocks [9].

A scan path technique can be used to partition a VLSI structure into a number of less

complex subcircuits by organizing the scan path to pass through a number of combina-

tional networks. The sequential depth of such a circuit is much less than the depth of the

original one which alleviates the test problem considerably. To test the scan path itself,

flush and shift tests are applied. The flush test consists of all zeros and all ones. The shift

test exercises the memory elements of the scan path through all of their possible combi-

nations of initial and next states.

Shift in
Enable
shift

Shift out

Primary
inputs

Primary

outputs

RG

CL

Figure 4.4: The principle of scan path techniques
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4.3.2 Level-sensitive scan design

Level-sensitive scan design (LSSD) is based on two main concepts: level sensitivity, and

a scan path. The first assumes that: 1) all changes in the circuit are controlled by the

level of a clock signal; 2) the steady state response of the sequential circuit to an input

state change is independent of the rise and fall times and propagation delays of signals

within the circuit. The second concept of LSSD technique assumes that the circuit must

incorporate a scan path.

Shift register latches (SRL) are used to implement all memory elements in LSSD cir-

cuits. Figure 4.5 shows the symbolic representation of an SRL and its implementation in

NAND gates. In the normal mode of operation clock C3 is not activated and clock C1 is

used to write data to latch L1. Output data can be taken from L1 or, if clock C2 is used,

from L2. In the test operation mode non-overlapping clocks C3 and C2 are used to shift

data from output L2 of the previous SRL into latch L1 (clock C3) with consequent cop-

ying of the data from output L1 into latch L2 (clock C2).

The basic LSSD configuration is illustrated in Figure 4.6. In this structure the pair of two

non-overlapping clocks C1 and C2 are used to store the system data from the combina-

tional logic, CL, in the SRLs (normal operation mode). In the test mode of operation two

sequences of clocks C3 and C2 are applied to control and observe the states of all the

SRLs by means of transferring test data through the scan path (dotted line). Note that

both the L1 and L2 latches participate in the system function and during the test.

Data input (DI)
System clock (C1)
Scan input (SI)
Shift clock (C3)

System/Shift clock (C2)

L1

L2

DI

SI

C2

C1
C3

L1

L2

L1

L2

(a) (b)

Figure 4.5: Polarity hold latch (a) symbolic representation; (b) implementation in
NAND gates



Design for testability of VLSI circuits

Page 54

The basic algorithm for testing with the LSSD structure shown in Figure 4.6 can be writ-

ten as follows:

• Verify the operation of all the SRLs by applying flush and shift tests.

• Load a test into the SRLs. The test is loaded from the scan-in port of the circuit and

shifted in serially by means of clocks C3 and C2 alternatively activated.

• Generate a test pattern on the primary inputs, PI, of the circuit and turn clock C1 on

and off. As a result, the response of the combinational network is stored in the L1

latches.

• Pulse the system clock C2 to rewrite the contents of the L1 latches into the L2

latches.

• Pulse two sequences of clocks C3 and C2 to scan out the contents of the SRLs. Mean-

while a new test pattern can be loaded into the SRLs.

PI

PO

L1

L1

L1

L2

L2

L2

CL

Scan path

C1

C2

C3
Scan in

Scan out

Figure 4.6: LSSD structure
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The test procedure described above is continued until the combinational logic has been

tested. The responses of the circuit are observed at the primary outputs, PO, and the

scan-out port. The LSSD technique imposes on designers special design rules [32]. The

incorporation of SRLs used in accordance with these rules ensures that the design will

be testable. Test generation can also be fully automatic since the tests must be produced

just for the combinational part of the LSSD circuit. Fault simulation is simplified greatly

as a result of the elimination of hazards and races inside the network. These advantages

must be balanced against: the increased silicon area of the chip (from 4% to 22%) [13];

additional delays caused by the use of SRLs; restrictions in design freedom; the need to

use complex CAD design rule checkers.

4.3.3 Scan/set technique

The scan/set technique uses a shift register built by using memory elements,, which

are not involved in system calculations as shown in Figure 4.7. The only function of the

shift register is to shift data in and out of the circuit. Since the internal storage elements

are neither controllable nor observable, this DFT approach does not separate system

storage elements from the combinational circuit during the test. However, the scan/set

technique allows the checking of the internal variables of the circuit during its normal

functioning. This is possible because the scan path is completely separate from the sys-

tem and they are controlled by independent clocks. The major advantages of the scan/set

technique are: tests do not have to be conducted in a separate operation mode; the scan/

set system is tested while it operates at its normal speed, so that some dynamic parame-

MEi

System logic

Scan in Scan out

OutputsInputs

Shift register

Figure 4.7: Scan/Set configuration

ME1 ME2 MEn
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ters of the circuit can be obtained. The internal nodes of the circuit which are to be con-

nected to the shift register are derived from the results of testability analysis programs

[14,28].

4.3.4 Random access scan

The random access scan approach treats each of the latches as a bit of memory as illus-

trated in Figure 4.8. Each element has its own unique address in the addressable space of

the whole memory. There is one common port from which data are loaded into the latch.

The content of each latch is observable for inspection at one output. As a result, the ran-

dom access scan structure reduces the test generation problem to producing tests only

for the combinational logic, CL.

During the test operation mode in random access scan only one latch is activated at a

time to control the internal state of the latch or observe its content. This, in turn, makes

the test procedure slower in comparison to the use of a shift register. Other disadvan-

tages of the random access scan approach are that: 1) it requires high overheads in terms

of additional logic and input/output pins needed to implement the RAM; 2) some con-

straints are imposed on the logic design (for instance, the exclusion of asynchronous

latch operation) [14].

RAM

Address

Inputs Outputs

Scan outScan inCL

Figure 4.8: Random access scan structure
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4.4 Built-in self-test

Built-in self-test (BIST) structures are chip architectures which incorporate self-test

ability. A number of variations of the scan path designs have been proposed with BIST

characteristics [9,14,21,23,28]. In these designs the test patterns are generated by a cir-

cuit included on the chip and the response analysis is also fulfilled by on-chip circuitry.

The major factors which make BIST techniques the target of intensive research are:

• the growing volume of test data required for testing VLSI circuits and, as a result, the

increasing test time;

• the high cost of test equipment;

• the need to test a VLSI circuit at its normal operation speed which is difficult to

implement using multi-functional testers.

Figure 4.9 shows the taxonomy of self-test approaches. The microprocessor self-stimu-

lated testing uses functional patterns generated by the microprocessor. These patterns

are applied to the network and the responses to the tests are stored in a register within

the network. Another type of self-test techniques applies random/pseudo-random pat-

terns to the network and compresses the test results inside the chip. There are two possi-

ble realizations of such self-test approach: InSitu and ExSitu self-testing [9]. The main

Self-test

Microprocessor

self-simulated test InSitu ExSitu

Pseudo-random Exhaustive

Functional patterns Random/pseudo-random patterns

Figure 4.9: Taxonomy of self-test approaches
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difference between these two approaches is that InSitu self-test uses system registers to

generate and compact test data whereas the ExSitu structure uses registers external to

the system function to generate tests and analyse the responses of the circuit.

4.4.1 InSitu self-testing

The classical examples of InSitu self-test are the built-in logic block observation tech-

nique [14] and built-in verification testing [23,31].

Built-in logic block observer

This technique is based on the use of a multi-purpose test module named a “built-in

logic block observer (BILBO)” which can be reconfigured to function as a pseudo-ran-

dom pattern generator or as a signature analyser within a VLSI circuit. The BILBO tech-

nique uses signature analysis in conjunction with a scan path technique. The structure of

a basic 4-bit BILBO element is shown in Figure 4.10. The function of the BILBO ele-

ment is controlled by lines B1 and B2. The storage elements are D-flip-flops. The inputs

of the BILBO element are usually fed by the outputs of the preceding combinational cir-

cuit, the outputs are connected to the inputs of the succeeding combinational network.

There are four modes which can be defined for the BILBO register as follows:

Z1 Z2 Z3 Z4

B1

B2

SDI

Q1 Q2 Q3 Q4

SDO

MX

D1 D2 D3 D4

Figure 4.10: Basic BILBO element
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1. B1=B2=1,System operation mode. The BILBO is configured as a set of D flip-flops

to store system states of a VLSI circuit.

2. B1=B2=0,Shift register mode. The BILBO functions as a long shift register forming a

scan path.

3. B1=1, B2=0, LFSR with multiple inputs. If all the inputs of the BILBO are fixed the

BILBO element shown in Figure 4.10 is configured into the 4-stage PRPG (see Figure

3.3). Otherwise the BILBO functions as the 4-bit parallel signature analyser as shown in

Figure 3.7.

4. B1=0, B2=1,Reset mode. The BILBO register is reset.

Figure 4.11 shows how the BILBO technique can be used to test a VLSI circuit. Initially

one BILBO register works as a PRPG to stimulate the combinational circuit to be tested.

The second BILBO is used as a signature analyser to compress the responses of the cir-

cuit under test. After a certain number of clocks the BILBO register that contained the

signature is reconfigured into a scan path register and the content is shifted out to com-

pare with the signature of the golden unit. The roles of the BILBOs are reversed to test

the next combinational circuit. The above method is called the simplex method of self-
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test. The simlex method is more efficient for self-testing pipelined structures but it has

considerable drawbacks for circuits in which the inputs to one block are formed from the

outputs of many other blocks. In such cases duplex methods must be used where each

functional block has its own PRPG and signature analyser.

There are some networks which are difficult to test by the BILBO technique. For exam-

ple, such circuits as PLAs have a very high ratio of fan-in to logic gates. The probability

of detecting some faults in PLAs can be very low during random testing which causes

the test length to be prohibitively long. Therefore, in order to have this kind of circuit

tested, either deterministic test patterns need to be applied or the circuit must be modi-

fied. Another problem in using the BILBO method lies in the difficulty of calculating

fault free signatures and total fault coverage. The overhead for BILBO is the LSSD or

scan path overhead plus at least one exclusive OR gate per stage of shift register.

Built-in verification testing

This is a technique which applies all possible patterns to the combinational part of the

VLSI circuit. The main principle of verification testing is that if all possible patterns are

applied and the fault mechanism does not change the combinational circuit into a

sequential one, then any faults of the circuit will be detected. During verification testing

every single point in the Karnaugh map is inspected. In the case when every output of a

combinational logic block is not a function of all the inputs, a subset of all possible pat-

terns can be applied to test each subfunction.

The difference between BILBO and verification testing is that the BILBO technique

needs to have a tool to determine the number of random patterns required for random

testing. Also this tool must indicate whether the circuit is testable with random patterns

which is not an easy task [35]. During verification testing, since all possible patterns are

applied to the inputs of the combinational part of the circuit, all faults which are not

redundant will be detected. No special tools are required for such an approach. There is

only one major restriction which is to ensure that there are no redundancies in the net-

work under test.
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4.4.2 ExSitu self-testing

ExSitu BIST structures generate pseudo-random patterns and compact the test results by

means of LFSRs which are not part of the system logic as illustrated in Figure 4.12.

LSSD on-chip self-test

The LSSD on-chip self-test (LOCST) technique has been developed to reduce the vol-

ume of test data to be applied during the random testing of a chip [36]. The basic struc-

ture of the LOCST method is shown in Figure 4.13. The test technique is based on a

scan path approach which uses LSSD latches. There is a special control circuit called the

on-chip monitor, OCM, which monitors the modes of operation of the whole chip.

Pseudo-random
Signature analyser

System logic

Figure 4.12: ExSitu self-testing structure

pattern generator

Enable

Scan in

Scan out
OCM

PRPG

SA

Scan path

Scan path

Scan path
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Figure 4.13: LOCST test structure
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In self-test operation mode all the latches of the LOCST design are configured into a

long scan register. The first twenty latches of the design are reconfigured into a PRPG

with maximal length to generate pseudo-random patterns. The last sixteen latches of the

scan path are modified into a signature analyser, SA, to collect test data received from

the scan path register. The reconfigurations of the PRPG and SA are controlled by the

OCM. During self-testing of the chip the pseudo-random sequence generated by the

PRPG is scanned into the scan register. When the register is full the OCM produces a

clock to store the response of the combinational logic into the same register. After that

the content of the scan register is shifted out to the SA. This test cycle is repeated until

the required number of pseudo-random patterns have been applied to the network. At

the end of the test the signature collected into the SA is compared with the good signa-

ture. Clearly, the overall fault coverage of the LOCST technique depends on the extent

of the logic whose inputs and outputs can be accessible by using the scan latches. The

OCM and any embedded RAMs of the chip can not be tested by the LOCST technique.

The main disadvantage of this self-test method is that the test time proportionally

depends on the length of the scan path. As a result, the LOCST technique cannot be used

for any VLSI design with an arbitrary number of memory elements.

STUMPS approach

The major disadvantage of the LOCST self-test technique can be overcome if the PRPG

is reconfigured to supply several scan path registers with pseudo-random patterns in par-

allel. The test data obtained from these registers are compressed using a parallel signa-

ture analyser. Such a self-test approach was named the STUMPS approach [37]. The

general structure of the STUMPS approach is shown in Figure 4.14.

This technique drives the scan paths of LSSD chips. Once all the shift registers are

loaded a system clock is activated so that the test results are stored in some of the SRLs

on the chips. This data is then off-loaded into the parallel signature analyser. The time of

testing such design depends on the length of the longest scan path.
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4.5 Summary

It is clear that one particular DFT method cannot solve all the problems concerned with

testing VLSI circuits. Each DFT technique can solve only a subset of test problems with

the help of increasing the degree of testability of the VLSI circuit to be tested. The most

widely used DFT systems use a reconfigurable structure which permits the combina-

tional logic and the memory elements to be separated for test purposes. The combina-

tional circuit is tested in isolation. All the memory elements are formed into a long shift

register or RAM to feed the inputs of the combinational network with tests and store the

responses for inspection as in the case of scan path techniques. Self-test methods allow

the generation and compression of test data inside a chip which alleviates the problem of

operating with a large amount of test data.

The advantages of DFT methods for VLSI circuits are not achieved without a cost meas-

ured usually in terms of silicon overhead. Estimates vary typically from 4% to 20%. The

true figure for the silicon overhead for a particular DFT approach is not easy to derive

because it depends on many factors such as the structural characteristics of the VLSI cir-

cuit, the desired test time, test generation methods and so on. Performance degradation
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and reduction in reliability due to extra components in the signal path are other serious

penalties of using DFT methods. The justification for incurring these or other costs of

DFT lies in the savings in test-related costs.
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Chapter 5 : Testing asynchronous

VLSI designs - related

works

5.1 Problems with testing asynchronous VLSI circuits

Despite the essential advantages of using asynchronous designs the testing of asynchro-

nous VLSI circuits remains a difficult problem due to the following reasons:

• asynchronous circuits often include races and are susceptible to incorrect operation

due to hazards;

• to derive an iterative model for the circuit it is necessary to identify all feedback

wires which requires an expensive analysis of the topology of the circuit;

• the correctness of the asynchronous circuit often depends on delays incorporated into

the circuit, whereas the most test generation algorithms ignore delays;

• most asynchronous designs use a certain amount of hardware redundancy to avoid

hazards, which compromises testability;

• the absence of a global clock makes the application of test techniques for combina-

tional circuits hard to adapt to the testing of sequential circuits;

• asynchronous designs use a large number of storage elements (such as Muller-C ele-

ments, toggles etc.) which do not allow the use of DFT techniques due to the prohib-

itively large extent of the resulting hardware redundancy.

The publications devoted to the testing of asynchronous designs can be classified

according to the objects under test. The first group deals with testing bounded-delay

asynchronous circuits, the second one considers some possible solutions to the testing of
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delay-insensitive circuits, and the third group of works is devoted to the problem of test-

ing speed-independent asynchronous designs. This chapter is structured accordingly.

Although micropipelines are inherently bounded-delay asynchronous circuits, the issues

in the fault simulation and testing of micropipelines are discussed in the last section of

the chapter since this is the main topic of this thesis.

5.2 Testing bounded-delay circuits

The most obvious model to use for asynchronous circuits is the Huffman model for dig-

ital networks which is widely used for designing synchronous circuits. To design an

asynchronous circuit it is assumed that the delays of all the logic elements and wires are

known in this model, or at least bounded. The same techniques of designing combina-

tional circuits are used to build combinational networks in asynchronous VLSI systems.

All static and dynamic hazards must be removed by adding extra logic elements [4].

Bounded-delay asynchronous circuits complicate the fault detection procedure. The

adding of redundant terms to functions to eliminate hazards is in direct conflict with the

fault testing technique which requires the avoidance of redundant terms to make faults

visible [11]. The Huffman model for synchronous sequential circuits shown in Figure

4.3 can be used for designing bounded delay asynchronous circuits. Since we need to

make sure that the combinational logic has settled in response to a new input before the

present-state entries change, all the memory elements must be replaced by delay ele-

ments.

G. R. Putzolu and J. P. Roth have described an algorithm for generating tests to detect

stuck-at faults in asynchronous sequential logic circuits [38]. This algorithm is based

upon an extension of the D-algorithm. A general view of an asynchronous sequential

circuit S was considered. It was assumed that a stuck-at faultF modifies only the logical

function ofS. The basic test strategy proposed consists of the following steps:

1) to transform the detection procedure of faultF in S into the detection of a correspond-

ing set  of faults in an iterative combinational logic circuit derived fromS;Fr Cr
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2) to extend the D-algorithm to derive a testT for  in ;

3) to simulate the test inS to verify whether or notT is a test forF.

An algorithm was described for selecting points inS at which to cut its feedback loops

until S is transformed into an acyclic circuitC. After cutting feedback lines the original

circuit S become acyclic as shown in Figure 5.1(a). Acyclic circuitC has primary inputs,

PI, primary outputs,PO, and primary pseudo-inputs,SI, and pseudo-outputs,SO, which

are introduced by the cutting points. If it is necessary to find a test forF in S of lengthr,

that is a sequence of length r of primary input patterns which detectsF, thenF is modi-

fied into a sequence ofr identical combinational networks , , with primary

inputs , pseudo-inputs , pseudo-outputs  and outputs . The pseudo-inputs

of  are identical to the pseudo-inputs of  (see Figure 5.1(b)).

The modified D-algorithm is used to find a test for fault in  with the following con-

ditions:

1) the derived test cannot be dependent upon any of the pseudo-inputsSI of ;

2) an effect of faultF must be visible at one of the primary outputsPO.

Fr Cr

Ci 1 i r≤ ≤

PIi SIi SOi POi

Ci Ci 1+

C

PI

SI

PO

SO

PI1 PI2 PIr

SI1

PO1 PO2 POr

SOr
C1 C2 Cr
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b)

Figure 5.1: Modifying sequential circuit S into a) its acyclic counterpart; b)

corresponding iterative combinational circuit Cr

Fr Cr

Cr
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As a result, the test consists of an ordered set ofr input patterns applied to the primary

inputsPI of S. After that the behaviour ofS is simulated while applying the derived set

of patterns. If during the simulation no races or hazards are registered inS, then the test

is accepted as a test for faultF in S.

The main drawbacks of this test generation algorithm are that:

1) it requires an extended analysis of the topology of the circuit to be tested;

2) it cannot guarantee the derivation of a race and hazard free test.

S. G. Chappell has proposed another approach to testing bounded-delay asynchronous

circuits [39]. In this method Boolean equations are developed for the outputs of the cir-

cuit in terms of sequences of signals. The circuit model treats logic circuits as intercon-

nections of unit- and zero-time-delay logic elements. The main features of this approach

are:

1) all test sequences for detecting a specific fault can be derived;

2) some race conditions can be dealt with;

3) feedback lines need not be identified in the circuit.

The test generation algorithm is represented by the following steps:

1. Set the maximum sequence lengthm=1.

2. Generate equations for the circuit under test with sequence length m.

3. Obtain tests using maximum-cover strategy.

4. Simulate the derived tests. If the percentage of undetected faults is less then 10% then

go to step 5. Otherwise, setm=m+1 and return to step 2.

5. Generate tests for remaining faults detectable with sequence length m.
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6. If the percentage of undetected faults is less or equal to the desired fault coverage then

stop. Otherwise, setm=m+1 and return to step 5.

The technique generates two equations denoted as  and  for each logic ele-

ment in the circuit. These equations determine the input conditions required to set gateF

to logical 0 and 1 respectively at timet. The technique starts from the circuit inputs and

proceeds forward through the circuit. As a result, it is not necessary to identify feedback

lines and combinational and sequential circuits can be treated by the same algorithm.

The sequence length of the test indicates the number of input patterns required to detect

a fault and propagate the fault effect to an output of the circuit. To generate all tests for a

combinational circuit a sequence length of one is sufficient. Figure 5.2 shows an exam-

ple of an R-S flip-flop which is realized using NAND gates. Let  and

denote logical 0 and 1 respectively on input linea during theith vector of the sequence.

The algorithm for deriving equations for an R-S flip-flop from an unknown state is

shown in Table 5.1. It is assumed that in the initial state .

The inputs are applied at timet. Only  and  changed values at timet+1. As a con-

sequence, only  and  are calculated at timet+2. At time t+3, none of the output

equations changed which means that the flip-flop has reached its stable state and compu-

tation stops. Similar computations can be carried out if the circuit is in a known initial

state.

Equations for faulty circuits can be derived in the same way as for fault-free circuits.

This approach allows the generation of tests for detecting stuck-at faults in asynchro-

nous circuits. Faults in circuits are represented by fault variables and  which

F0 t( ) F1 t( )

a0 i( ) a1 i( )

F0 F1 G0 G1 0= = = =

F1 G1

G0 F0

F

G

a0 a1,( )

b0 b1,( )

Figure 5.2: R-S flip-flop realized using NAND gates

x0 i, x1 i,
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mean that the fault  is not present and is present in the circuit respectively. Parameter

i is just a current number for the fault considered. These two states of a fault are used for

making the comparison of the faulty and fault-free circuit to obtain a test detecting the

fault. Figure 5.3 demonstrates equations for handling stuck-at faults in a NAND gate.

The same analysis can be extended to asynchronous sequential circuits.

The maximum-cover strategy is used to generate tests for stuck-at faults at each input of

the circuit under test. This method allows the detection of around 90% of classical

faults. The equations describing the circuit must be reasonably long which is specifieda

priori . Let outputG of the circuit have the following equations represented in a general

form:

;

Table 5.1: Equations for an R-S flip-flop

time

t 0 0 0 0

t+1 0 0

t+2

t+3

x i,

x,1a

b
G

G0 a1 b1⋅ x1 1,+=

G1 a0 x0 1 b0 x0 1,⋅+,⋅=

x,2a

b
G

a)

b)

G0 a1 b1⋅ x1 2, b1⋅+=

G1 a0 x0 2 b0+,⋅=

Figure 5.3: Equations for handling faults in a NAND circuit for the case of a)
stuck-at-0 fault at the output; b) stuck-at-1 fault at input a

F1 F0 G1 G0

a0 b0

a0 a1 b0⋅ b0 a0 b1⋅

a0 a0 b1⋅+ a0= a1 b0⋅ b0 a1 b0⋅+ b0= a0 b1⋅

G0 A B x1 i,⋅ C x0 i,⋅+ +=
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,

whereA, ...,F are also sum-of-products expressions. The tests to detect faultx,i at out-

putG are defined by . The basic idea of the maximum-cover strategy is that

tests for all stuck-at faults on the primary input lines can also detect some other (inter-

nal) stuck-at faults of the circuit. For this purpose the output equations are factored as

before, i.e.

;

.

Tests for faultj on inputa are derived from the following expression:

.

This expression, except for specifying the propagation conditions of the fault, deter-

mines the value to be assigned to input linea. The main drawback of the test generation

technique described above is that it requires the detailed examination of the circuit to be

tested. This leads to the computation time for the derivation of tests for VLSI designs

increasing prohibitively.

A general description of asynchronous sequential circuits and their testability problems

has been given by B. J. Heard [40]. A set of hardware modification techniques is

described which allows asynchronous VLSI circuits to be tested by scan techniques. The

use of special simulation techniques for flip-flops allows the generation of tests for asyn-

chronous circuits on the basis of the D-algorithm. Two types of asynchronous designs

were considered: circuits in which there is at least one flip-flop providing an asynchro-

nous set/reset input to another flip-flop; circuits which contain at least one flip-flop pro-

viding the clock input to another flip-flop.

Figure 5.4a illustrates an example of an asynchronous reset network. This circuit cannot

be tested by conventional scan techniques because:

G1 D E x1 i,⋅ F x0 i,⋅+ +=

B F⋅ C E⋅+

F0 A B a1 j,⋅ C a0 j,⋅+ +=

F1 D E a1 j,⋅ F a0 j,⋅+ +=

B F⋅ C E⋅+( ) a1 j a0 j,+,( )⋅



Testing asynchronous VLSI designs - related works

Page 72

1) the asynchronous input can be activated while the test data are being loaded into the

flip-flops of circuit 2 which can alter the data shifted into the D flip-flop;

2) the asynchronous input is sensitive to hazards which can take place on the output of

circuit 2 during the test which, in turn, can change the response stored into the D flip-

flop.

Figure 5.4b shows a solution which allows the asynchronous network to be made testa-

ble. The asynchronous control clock is controlled independently. When the asynchro-

nous control clock is asserted to a logic one the synchronous logic (circuit 1) can be

tested using scan methods. The asynchronous logic is tested when the system clock is

held steady while the asynchronous control clock is pulsed. A set of software simulation

Sequential circuit 1

Sequential circuit 2

D Q

Reset

Sequential circuit 1

Sequential circuit 2

D Q

Reset

Asynchronous
control clock

a) b)

Figure 5.4: An example of untestable a) and testable b) asynchronous reset network
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asynchronous model
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programs is proposed to generate tests for asynchronous set/reset circuits. The model

shown in Figure 5.5a is used to simulate the synchronous test procedure. For simulating

asynchronous testing, the model shown in Figure 5.5b is used.

This method for testing asynchronous circuits is oriented to the detection of only stuck-

at faults and cannot solve the problem of identifying timing relationships between asyn-

chronous signals inside asynchronous networks. The performance of such testable asyn-

chronous circuits is affected by the extra delays of set/reset and clock lines. As a result,

the designer must take into consideration the effects of these extra delays when calculat-

ing the timing characteristics of the circuit.

T. Fujieda and N. Zenke have described an original method for testing such asynchro-

nous VLSI devices as Video RAMs, Dual Port RAMs and FIFOs [41]. The problem of

testing these circuits is that they have two or more ports operating at different frequen-

cies asynchronously and simultaneously. Conventional test methods are not able to

check the asynchronous operation of multiple ports properly. The new method proposed

allows the testing of two ports simultaneously and asynchronously by means of using

the test system which includes two pattern generators and two timing generators.

An attempt to implement boundary-scan and pseudo-random BIST in an asynchronous

transfer mode switch has been made [42]. The asynchronous transfer switch mode is

capable of switching up to  Gbit/s. The switching function is essentially com-

posed of a Double Access RAM which stores the incoming cells under supervision of a

control circuit. Two types of faults in the Double Access RAM were considered imple-

mented in CMOS technology:

1) stuck-open faults;

2) simultaneous reading and writing faults.

The proposed approach allows the detection of these faults during the test operation

mode with fault coverage of 99.9%. During testing, all addresses and input stimuli are

16 1.244×
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produced by a PRPG and the responses are collected into a signature analyser. A special

register was developed for testing the Double Access RAM.

C. Bellon and R. Velazco have proposed a behavioural test method for programmable

circuits [43]. This method is based upon the notion of behavioural sequential machines

and the identification principle. They described a system for automated generation of

test programs for microprocessors. The system, besides generating tests, is capable of

making a composition of timing diagrams of test signals. This simplifies testing such

asynchronous functions of a microprocessor as interrupts caused by peripheral circuits.

The major disadvantage of the test approaches described above is that they were devised

to test only special purpose asynchronous circuits and asynchronous functions inside

synchronous designs. A set of formal methods was proposed to design testable asyn-

chronous sequential circuits [44-46]. A. K. Susskind proposed to add one or at most two

state variables, one extra input and to use one or more observable outputs in order to

make the sequential circuit under test strongly connected and testable through scan-out

features [44]. An asynchronous sequential network is strongly connected if any stable

state can be reached from any other state. The scan-out technique is applied directly to

the flow table describing the asynchronous sequential circuit to be tested. The test proce-

dure proposed is based on verifying the flow table of the circuit under test. As a result,

no fault models are used. The use of this approach is limited by the complexity of the

circuit to be tested and becomes impractical for asynchronous VLSI circuits. The test

technique does not guarantee both hazard-free operation and hazard-free robust path-

delay-fault testability of asynchronous circuits. K. Keutzer, L. Lavagno and A. Sangio-

vanni-Vincentelli have described some heuristic techniques and procedures to design

asynchronous circuits which are simultaneously hazard-free, robust path-delay-fault

testable and hazard-free in operation [46]. The synthesis of asynchronous sequential cir-

cuits is performed using a high level specification, the signal transition graph. Using an

appropriate delay model it is possible to design asynchronous circuits which are hazard-

free. The test procedure uses scan techniques for applying each pair of test vectors to

detect an appropriate path-delay-fault in a robust and hazard-free manner. In such asyn-
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chronous circuits every latch can be scanned to increase controllability and observability

of its inputs and outputs. It was shown that there is a negligible area or delay penalty

required to achieve robust path-delay-fault testability. Nevertheless, the test approach

imposes strict limitations on the speed at which the circuit can be tested.

5.3 Testing delay-insensitive circuits

P. Hazewindus made a successful proposal to adapt known test generation algorithms

for testing delay-insensitive circuits using stuck-at fault model [47]. A technique to test

delay-insensitive circuits was synthesized from a high-level specification. It used the

high-level synthesis method for delay-insensitive circuits that was developed by A. J.

Martin [6]. Two types of stuck-at faults in delay-insensitive circuits were considered:

faults that cause the circuit to halt entirely, and faults which change the output of the cir-

cuit. The last kind of fault is either a stimulating or an inhibiting fault. The stuck-at fault

is stimulating if this fault in a delay-insensitive circuit causes a production rule to fire

when it should not. If a stuck-at fault in a delay-insensitive circuit may cause a produc-

tion rule not to fire when it should then the fault is identified as inhibiting. It was

assumed that the delay-insensitive circuits to be tested are non-redundant. In such a case

for each inhibiting fault there is a state in the handshaking expansion where the fault

causes a transition not to take place when it should; for each stimulating fault there is a

state in the handshaking expansion where the fault causes a transition to occur when it

should not. Thus, the testing algorithm is to force the faulty circuit to go in such a state

(the state where the fault manifests itself) and to propagate the fault to an observable

output of the circuit under test.

A combinational logic in a synchronous design is a feedback-free network of logic ele-

ments which calculates a function of the primary inputs. There are similar feedback-free

delay-insensitive circuits which make their computations without buffering the result,

although they contain state-holding elements. It was shown that any delay-insensitive

circuit in which:

1) there are no feedback lines at the gate level;
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2) each production rule for an up-transition (down-transition) has only positive (nega-

tive) literals in its guard;

can be reduced to a standard combinational logic circuit to ease the testing procedure.

This combinational network is monotonic, and any test which detects all testable faults

in this network will also detect all testable faults in the delay-insensitive circuit.

The standard D-algorithm can be extended to obtain a test pattern for a stuck-at fault in a

delay-insensitive combinational circuit. Regular forward and backward propagation

techniques can be used for such circuits. The major difference with combinational cir-

cuits is that there are some state-holding elements in delay-insensitive combinational

circuits. It is necessary to take into consideration whether the circuit is in an up-going or

a down-going phase for propagating a fault through a state-holding element.

Forward propagation. Let S be a state-holding element. Transform S into  by replac-

ing the guard for the down-transition with the negation of the guard for the up-transition.

Gate  is a combinational gate and is equivalent to S during the up-phase. Thus, the

propagation of D and  is the same for S as for . For instance, if S is a C-element,

then  is an AND gate. During a down-phase, S propagates a faulty signal if the output

of the gate is 1 after the up-phase. Transform S into  by replacing the guard for the up-

transition with the negation of the guard for the down-transition. Then  is a combina-

tional gate which is equivalent to S during the down-phase, if the output of S is 1 after

the up-phase. The propagation of D and  is the same for S as for . If S is a C-element

then  is an OR gate.

Backward propagation. Transform S into  for the up-phase and  for the down-

phase. The backward propagation for these combinational circuits is the same as it was

described before. If S is a C-element with output D then all its inputs must be 1 for

detection during an up-phase, and at least one input is 1 for detection during a down-

phase. If the output is  then during an up-phase at least one input is 0; during a down-

phase all the inputs are 0.
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Design for testability problems for delay-insensitive circuits were discussed. It was

shown that each fault in a delay-insensitive circuit can be made testable by means of the

addition of test points. These test points can be either control or observation points. If a

premature firing is unstable then a control point is needed; if the premature firing is not

propagated to a primary output then an observation point is needed. It was shown how to

find a place where a test point must be inserted. For VLSI circuits which are pad-limited,

it was proposed to merge the test points together into a queue. A fully testable design for

such a test queue was derived.

The test approach for delay-insensitive circuits described above is efficient enough only

for circuits of reasonable complexity, and becomes impractical for delay-insensitive

VLSI circuits. Roncken and Saeijs have proposed a test strategy which can be integrated

with the design of VLSI circuits through silicon compilation [48]. The strategy is based

on a simple test procedure for which circuits are enhanced with a special mode of opera-

tion. As a result, the test generation time is linear in the size of the VLSI circuit.

5.4 Testing speed-independent networks

The problem of testing speed-independent circuits has already been addressed [49-50].

It was shown that live speed-independent circuits, which are strongly connected and

composed of AND gates, OR gates and C-elements can be decomposed into a set of

semi-modular networks. As a result, these circuits are self-checking with respect to cer-

tain classes of output stuck-at faults and input stuck-at faults. A live speed-independent

circuit is a circuit whose signal graph is live, i.e. the signal graph is strongly connected

and every transition of every signal is enabled in some valid state. A speed-independent

circuit is semi-modular if its signal graph contains only transitions which do not disable

other transitions.

The self-checking property of speed-independent circuits is due to the fact that a stuck-

at fault can be considered as an infinite delay. Thus, a circuit whose operation depends

on that delay will halt in the presence of that fault. Unfortunately, the class of faults for
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which the self-checking property can be used for testing purposes is very limited and

can hardly represent real faults in speed-independent circuits.

5.5 Testing micropipelines

One of the most detailed considerations of the problems of testing micropipelines has

been made by Pagey, Sherlekar and Venkatesh [51]. It was noted that micropipelines

have some advantages which make them easy to test. These are:

• the control circuits of the micropipeline are tested during normal operation mode;

• test generation for the data path of the micropipeline can be reduced to testing only

combinational logic by means of minor changes in test operation mode;

• testing latches can be done by applying only two-pattern tests which can be generated

using test generation techniques for combinational networks.

The single stuck-at fault model on all the lines (either logic or control lines) in the

micropipeline was considered. Three classes of faults for the micropipeline were identi-

fied:

• faults in the control part of the micropipeline;

• faults in logic blocks;

• faults in the latches.

It was assumed that a stuck-at fault inside the latch can put a register bit of the latch in

capture (stuck-at-capture fault) or pass (stuck-at-pass fault) mode permanently. The

analysis of behaviour of the C-element was made in the presence of single stuck-at

faults.If a stuck-at-1 or stuck-at-0 fault is present on the output of the Muller C-element

then the Muller C-element remains in this state. If the Muller C-element was previously

set to 1 (0) and there is stuck-at-0 (stuck-at-1) fault on one of its inputs then only one

transition  ( ) can occur on the output of the Muller C-element.1 0→ 0 1→
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Faults in the control part of the micropipeline

These are faults on the inputs and outputs of the Muller C-elements and the request and

acknowledge lines of the micropipeline. Any stuck-at fault on a request or acknowledge

line causes the micropipeline to halt since no events are produced in the control part of

the micropipeline. As was shown above, any stuck-at fault on the inputs or the output of

the Muller C-element allows at most one event to be generated on the output of the

Muller C-element. As a result, in the presence of a stuck-at fault in the control part, the

micropipeline advances through at most one step and then halts. Thus, stuck-at faults in

the control part of the micropipeline manifest themselves by preventing activity in the

micropipeline.

Faults in the logic blocks

If it is possible to set all the latches of the micropipeline in the pass mode then all logic

elements can be treated as a single combinational logic block (see Figure 1.5). To detect

any of the single stuck-at faults in such combinational logic test vectors can be obtained

using any known test generation technique for combinational circuits. Therefore, the test

procedure for the micropipeline contains two major steps:

1) the micropipeline is emptied, i.e. all the latches are set in the pass mode;

2) the test vectors are applied to the inputs of the micropipeline and the responses of the

micropipeline are compared with good responses.

Faults in the latches

It is assumed that the combinational logic obtained after the latches have been set in the

pass mode has no redundant faults. Figure 5.6 shows an example of an implementation

of the event controlled latch. An event generated on the dotted line inside the latch

causes a switch between two modes of the latch: pass and capture.
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Single stuck-at faults. Any stuck-at fault on the inputs or outputs of the latch is equiva-

lent to the appropriate fault in the combinational logic. A stuck-at fault on the control

(dotted) lines of the latch (Figure 5.6) prevents the generation of any events in the latch.

This causes the micropipeline to halt. The absence of activity in the micropipeline can

easily be identified and, hence, there is no need for test generation for such faults.

Single stuck-at-capture faults. A single stuck-at-capture fault in a latch causes a register

bit of the latch to remain permanently in capture position. As an effect of this fault, the

faulty bit can be captured as a constant logic one or zero. When all the latches of the

micropipeline are in the pass mode this fault is equivalent to an appropriate stuck-at

fault on a line of the combinational logic. Thus, stuck-at-capture faults can be easily

detected using standard tests for stuck-at faults in combinational networks.

Single stuck-at-pass faults. These faults make a register bit of a latch to be in the pass

mode permanently. A two pattern test is required to detect this kind of faults. Consider a

stuck-at-pass fault on a bit of thekth latch of the micropipeline. Let the faulty bit of the

latch be connected to line l of the complete combinational network, CN, obtained by

switching all the latches into the pass mode. The test for the faulty bit consists of two

patterns, say  and , which are applied one after another. Pattern  is the test pat-

tern for a stuck-at-z fault on linel of CN, wherez is a logical value which is equal to 1 or

Toggle

C P

Cd Pd

IN1

INn

OUT1

OUTn

C

Cd

P

Pd

Din Dout

Figure 5.6: Event controlled latch

P1 P2 P1
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0. Pattern  is the test vector which forces linel to be set to logical valuez. These test

patterns can be obtained easily by means of standard test generation methods for combi-

national circuits.

The test procedure for detecting a stuck-at-pass fault in the micropipeline is the follow-

ing:

1. Apply pattern  to the inputs of the micropipeline while all the latches are in the

pass mode. Put thekth latch in the capture mode. As a result, linel has been set to logic

. The response is observed at the outputs of the micropipeline.

2. Apply pattern  to the inputs of the micropipeline. Thus, linel of CN has been

driven to logicz since the faulty bit of the latch is connected to linel of CN; other lines

of the latch are at their logical values corresponding to pattern. This causes at least

one output of the micropipeline to be different from the fault-free response.

The result described above is the starting point in researching possible test approaches

for micropipelines. The preliminary results show that tests for the single stuck-at type

fault model can be generated using known test generation algorithms for combinational

circuits. Problems which must be solved are

• designing appropriate methods for transferring the micropipeline from the normal

operation mode to the test mode;

• testing delay faults either in CN or individual logic blocks;

• designing for testability.

P2

P1

z

P2

P1
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Chapter 6 : Asynchronous

random testing

interface

Although DFT methods give test engineers a great opportunity to simplify the testing of

either synchronous or asynchronous VLSI designs, test generation and fault simulation

costs are still large and are rising with the increasing complexity of VLSI circuits. As a

result, random testing becomes a viable alternative for testing asynchronous VLSI

devices for at least two reasons:

• As shown in the previous chapters test generation methods for asynchronous VLSI

circuits are more complicated than for synchronous ones, whereas the use of pseudo-

random pattern generators (PRPG) for the random testing of VLSI circuits does not

require any special properties from the CUT except that it does not have illegal input

combinations.

• It is possible to use pseudo-random test patterns in asynchronous BIST VLSI struc-

tures.

Some asynchronous realizations of a PRPG and a signature analyser with the two-phase

transition signalling communication protocol and a general description of software tools

for simulating the behaviour of the universal PRPG are presented in this chapter.

6.1 Asynchronous implementations of PRPG and signature

analyser

As asynchronous VLSI circuits perform their functions asynchronously the test proce-

dure must be organized in the same (asynchronous) manner to correspond to the same

asynchronous communication protocol between the CUT and test equipment. There are
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three major components in the random test procedure: PRPG, CUT and parallel signa-

ture analyser (see Figure 6.1). All the components of the structure operate using the two-

phase bundled data convention mechanism. Test patterns are generated by the PRPG and

the responses of the CUT are collected by the parallel signature analyser, PSA.

6.1.1 Asynchronous PRPG

The simplest way to realize an asynchronous version of the PRPG is the use of the syn-

chronous PRPG which is clocked by the special asynchronous circuitry as illustrated in

Figure 6.2. In the initial state the PRPG is set to the non-zero initial state and all the

other lines of the asynchronous circuitry are set to logical zeros. As a result, the asyn-

chronous PRPG produces a request signal on its output R(out). After receiving an

acknowledge signal on its input A(out) the rising edge of the clock signal is generated

CUTPRPG PSA

R(in) R(out)

A(in) A(out)

Request

Acknowledge

Request

Acknowledge

R(out)

A(out) A(in)

R(in)

Data(in) Data(out)

Figure 6.1: Asynchronous random testing interface with the two-phase bundled
data convention

R(out)

A(out)
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Figure 6.2: An asynchronous version of a pseudo-random pattern generator
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on the clock input of the synchronous PRPG. If the synchronous PRPG goes into a new

state on a rising edge of the clock signal, then a new test pattern is generated on the out-

puts of the asynchronous PRPG. The Toggle element produces a rising signal transition

on its output marked by the dot. This transition is delayed long enough for all the signal

levels on the outputs of the PRPG to stabilize. After that a falling signal transition is pro-

duced on the clock input of the synchronous PRPG and the input of the Toggle element.

The Toggle element generates a rising signal transition on its non-marked output. As a

result, a new request event is produced in the form of a falling signal transition on output

R(out). The procedure of generating a new clock signal for the synchronous PRPG is

repeated after receiving a falling signal transition on the acknowledge input A(out) of

the asynchronous PRPG. The structure and simulation results of the behaviour of the

asynchronous 4-bit PRPG can be found in the appendix of the thesis. The simulation

was done using the Powerview CAD tool (from Viewlogic Inc.).

The main advantage of this structure for the asynchronous PRPG is that it allows differ-

ent types of synchronous PRPGs to be incorporated in it.

6.1.2 Asynchronous signature analyser

The basic idea of the asynchronous implementation of the signature analyser is the same

as for the asynchronous PRPG, i.e. it involves a synchronous signature analyser with

extra asynchronous logic which generates clock signals for the signature analyser and

control signal transitions for the outside world. Figure 6.3 shows such an asynchronous

parallel signature analyser. The main block of this structure is the synchronous parallel

signature analyser, PSA. The synchronous parallel signature analyser is clocked by the

asynchronous control logic which is an extended implementation of the same logic used

in the asynchronous PRPG. The asynchronous control circuit produces the request and

acknowledge events for the CUT, R(in) and A(in), and for a comparator, R(out) and

A(out), which can be used for indicating a faulty behaviour of the CUT. Simulation

results for the asynchronous 4-bit parallel signature analyser obtained by using the Pow-

erview CAD tool are illustrated in the appendix of the thesis.
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As in the previous case the structure of the asynchronous parallel signature analyser

allows various types of synchronous signature analysers to be used to collect the

responses from the CUT during its random testing.

6.2 Generating patterns for the random testing of

asynchronous VLSI circuits

Some special structures of synchronous PRPGs which can be used effectively for the

random testing of asynchronous VLSI circuits are discussed in this section.

6.2.1 Generating equiprobable test patterns

PRPGs based on LFSRs do not always produce pseudo-random test patterns which can

be used effectively for the random testing of asynchronous circuits due to the presence

of the shift operation used to generate each pattern.

Figure 6.4 shows the general structure of an asynchronous circuit which includes asyn-

chronous logic, AL, and a latch for buffering the input data. In the initial state the out-

puts of the latch are set to the initial state and all the control lines are set to logical 0s.

After receiving a request signal on input R(in) the asynchronous logic starts to operate

R(in)

R(out)

C

delay

A(in)

To
gg

le

A(out)

Clk

Reset

PSA

Reset

D(in) D(out)

Figure 6.3: An asynchronous implementation of a signature analyser
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on the data from its inputs, D(in), and the outputs of the latch. When the operation is

completed the asynchronous logic generates a request signal on its output r(out). As a

result, a request event is produced on the output R(out) of the asynchronous circuit.

After receiving the acknowledge event on the input A(out) the data from the input bus

D(in) are stored in the latch and the circuit generates the acknowledge signal on its out-

put A(in). If a new request signal appears on input R(in) the data operation procedure is

reiterated.

An example of the asynchronous circuit described above with some faults is illustrated

in Figure 6.5. The control lines are omitted to simplify the structure.

Let  be a stuck-at-0 fault,  be a stuck-at-1 or stuck-at-0 fault and  be a bridging

fault. These faults cannot be detected by random test patterns generated by LFSRs. Let

the synchronous 4-bit LFSR (see Figure 3.3) incorporated into the structure of an asyn-

chronous PRPG be a source of pseudo-random patterns. It is easy to check that in the

pseudo-random test sequence (see Table 3.1) applied to the inputs of the circuit there is

no test pattern which can force any of the faults to manifest itself. For instance, during

the test 1) fault  is untestable since only logical zeros are generated on the output of

C

P Pd

CCd

Latch

AL

R(in)

A(in)

R(out)

A(out)

Figure 6.4: Asynchronous logic with a latch
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the XOR gate; 2) fault  cannot be detected because the Muller-C element keeps its ini-

tial state unchanged (if the initial state of the Muller-C element is a logical 1(0), then

stuck-at-1(0) fault  is undetectable); 3) the bridging fault cannot be forced to mani-

fest itself since only two input stimuli, 00 and 11, are generated on the inputs of the

Muller-C element. The cause which makes these faults untestable lies in the nature of

pseudo-random patterns generated by an LFSR which uses a shift register to produce the

test patterns.

Let us build a PRPG which generates pseudo-random patterns on the basis of linear

feedback but without the obvious shift operation. Table 6.1 shows the modification pro-

Table 6.1: State modifying table for the 4-bit LFSR

State 1 2 3 4
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Figure 6.5: An example of asynchronous circuit with undetectable faults
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cedure for the first four states of the 4-bit LFSR built using the derivation polynomial

= . The pseudo-random sequence generated by this LFSR is the

reverse sequence produced by the LFSR shown in Figure 3.3. It is possible to continue

Table 6.1 to obtain expressions for all the states of the LFSR within the period. All these

expressions (except the first one) determine the structures of PRPGs. For example, the

fifth row (state number 4) defines the structure of PRPG which is equivalent to the struc-

ture shown in Figure 3.3 with the exception that all the flip-flops of the register are T

flip-flops. Table 6.2 contains the state sequence for the PRPG built using T flip-flops and

the derivation polynomial . As seen from the table the state sequence generated

by the PRPG has the maximal period (15 clocks). There is no obvious shift operation in

the generation of a new pattern. As a result, if these pseudo-random patterns are applied

to the inputs of the asynchronous circuit shown in Figure 6.5, then all the faults,,

and , can manifest themselves during pseudo-random testing.

Let us answer the following question: “Is it possible to use any of the rows in the state

modifying table to obtain the PRPG of maximal length?” The answer to this question

can be found after a detailed examination of the state sequence shown in Figure 6.2.

Table 6.3 contains the results showing the equivalence between states of the three 4-bit

PRPGs: the first column contains the state numbers of the PRPG built using T flip-flops,

Table 6.2: State sequence for the four-bit PRPG built using the state modification
procedure

State State

0 1 1 1 1 8 0 0 1 1

1 1 0 0 0 9 0 0 1 0

2 1 1 0 0 10 1 0 1 1

3 1 0 1 0 11 1 1 1 0

4 0 1 1 1 12 0 0 0 1

5 0 1 0 0 13 1 0 0 1

6 0 1 1 0 14 0 1 0 1

7 1 1 0 1 15 1 1 1 1

ϕr X( ) 1 X3 X4+ +

ϕr X( )

f1 f2

f3

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
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the second and third columns consist of the state numbers of the LSFR built using deri-

vation polynomials  and  respectively. The final formula, which allows

relationships to be established between the states of the generator built using theth

row from the state modifying table of the LFSR built using derivation polynomial

 (generator 1) and the LFSR of maximal lengthM built using derivation polyno-

mial  (generator 2), is the following one:

d=M-( )(mod M),

where d ands are state numbers of the generators 1 and 2 respectively.

For instance, in the case of the 4-bit PRPG,=4 andM=15, the 5th state of the genera-

tor 1 is equal to the 10th state of the generator 2 (10=15-()(mod 15)=15-5).

The equation derived above allows us to find the condition when the generator 1 will be

the PRPG of maximal length. This is the following condition: numbers andM must

have no common factors. Indeed, in the above example numbers 4 (=4) and 15

(M=15) have no common factors and, therefore, the period of the 4-bit PRPG is 15

clocks.

Table 6.3: Table of equivalence between states of the three 4-bit PRPGs

State
(s)

State in the
reverse

sequence (r)
 (mod15)

State in the
original

sequence (d)
(15-r)

State
(s)

State in the
reverse

sequence (r)
 (mod 15)

State in the
original

sequence (d)
(15-r)

0 0 15 8 2 13

1 4 11 9 6 9

2 8 7 10 10 5

3 12 3 11 14 1

4 1 14 12 3 12

5 5 10 13 7 8

6 9 6 14 11 4

7 13 2 15 0 15

ϕr X( ) ϕ X( )

si

ϕr X( )

ϕ X( )

s si⋅

s 4× s 4×

si

5 4⋅

si

si
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Table 6.4 shows the state modification procedure for the first eight states of the 6-bit

LFSR built using the derivation polynomial = . As the period of the

6-bit LSFR is 63 clocks, it is possible to use the 9th row of Table 6.4 ( =8) as a rule for

modifying states of memory elements in order to obtain the 6-bit PRPG of maximal

length (the numbers 8 and 63 have no common factors). Figure 6.6 shows the structure

of this PRPG. The realization of such a 6-bit PRPG requires the use of more XOR gates

than the equivalent LFSR and cannot allow the use of T flip-flops to obtain a simpler

structure.

Table 6.4: State modifying table for the 6-bit LFSR
S

ta
te

1 2 3 4 5 6
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Q1 Q2 Q3 Q4 Q5 Q6
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Q2 Q3⊕ Q3 Q4⊕ Q4 Q5⊕ Q5 Q6⊕ Q1 Q2

Q1 Q2⊕ Q2 Q3⊕ Q3 Q4⊕ Q4 Q5⊕ Q5 Q6⊕ Q1

Q1 Q5 Q6⊕ ⊕ Q1 Q2⊕ Q2 Q3⊕ Q3 Q4⊕ Q4 Q5⊕ Q5 Q6⊕

Q4 Q6⊕ Q1 Q5 Q6⊕ ⊕ Q1 Q2⊕ Q2 Q3⊕ Q3 Q4⊕ Q4 Q5⊕

Q3 Q5⊕ Q4 Q6⊕ Q1 Q5 Q6⊕ ⊕ Q1 Q2⊕ Q2 Q3⊕ Q3 Q4⊕

ϕr X( ) 1 X5 X6+ +

si

D D D D D D
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Figure 6.6: The 6-bit PRPG based on using the 8-th state from the state
modification table of the 6-bit LSFR
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Thus, the implementation complexity of a PRPG to produce pseudo-random patterns

without the obvious shift operation depends on:

• the number of outputs of the PRPG;

• the complexity of the derivation polynomial.

The technique for building PRPGs proposed in this section allows the creation of new

structures for PRPGs which can be widely used for the pseudo-random (random) testing

of various types of asynchronous VLSI circuits.

6.2.2 A PRPG for weighted test patterns

It was already noted that the derivation of tests from a source of equiprobable patterns to

test data paths of digital circuits is not always an efficient procedure in terms of time and

fault coverage [52-55]. The Monte Carlo method for logic testing of digital circuits has

been proposed [53]. It was shown that in combinational logic the probability of detect-

ing a stuck-at fault can be optimized by a proper selection of the probabilities of a zero

and one on the outputs of the source of random test patterns. This fact was used for

improving the efficiency of test generation over the commonly employed heuristics of

equiprobable 0 and 1.

P
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M
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m+1
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Figure 6.7: A general structure of a PRPG with given signal probabilities on its
outputs
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Figure 6.7 shows a general structure of a weighted pseudo-random pattern generator

(WPRPG) which generates pseudo-random signals with a given probability of a one

(zero) on its output . In this structure the combinational logic, CL, is fed with a subset

of the outputs of the PRPG which is the source of equiprobable patterns. The probability

of a one and zero on the output of the combinational logic can be estimated as

 and ,

where  ( ) is the number of ones (zeros) in the truth table of Boolean function.

Thus, the basic procedure for deriving the desired signal probability on the outputs of

the WPRPG can be described by the following sequence of steps:

• put the desired number of ones (zeros) in the truth table of the Boolean function;

• make the minimal (in terms of logic elements) realization of the function.

The second step is important for obtaining a fast version of the WPRPG.

6.3 Program tools for the behavioural simulation of PRPGs

In order to have program tools for the simulation of the pseudo-random (random) testing

of asynchronous VLSI circuits a behavioural model of the universal PRPG was

designed. This simulation program for the universal PRPG is written in the C language.

It includes three main programs (see Figure 6.8):

• long_gps.c which generates equiprobable pseudo-random patterns;

• rom_prob.c simulates the behaviour of the WPRPG based on using ROMs;

• prpg_prob.c which is a simulation program for the WPRPG based on using addi-

tional logic elements.

The key features of these programs are the following:

Long_gps.c generates:

fj

p fj( ) N1 2 i−⋅= q fj( ) N0 2 i−⋅=

N1 N0 fj
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• pseudo-random patterns by means of PRPGs designed using the technique described

in subsection 6.2.1;

• pseudo-randomn-bit test patterns, wheren is a number from 2 to 127;

• pseudo-random patterns by means of using a composition of PRPGs which are

started from different seeds.

Rom_prob.c produces:

• pseudo-random binary sequences of any desired period and with any desired proba-

bility of a one (zero).

Prpg_prob.c generates:

• pseudo-random signals with a probability of a one (zero) which is a fractional power

of two.

Let us consider the structures of WPRPGs which are modelled by programsrom_prob

and prpg_prob. Figure 6.9shows a general structure of a WPRPG which generates

weighted pseudo-random patterns using ROMs. In this structure,n ROMs are addressed

by n different PRPGs. All the PRPG have different numbers of outputs. In the initializa-

Universal PRPG

(gtest.c)

PRPG
(long_gps.c)

PRPG based on
using additional

logic
(prpg_prob.c)

PRPG based on
using ROM

(rom_prob.c)

Initialization Generation

Figure 6.8: A general structure of the universal PRPG
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tion phase, the desired number of ones (zeros) are stored into the ROMs. Neither the rel-

ative placements of ones and zeros in the memory space of each ROM or the seeds of

the PRPGs are significant. In the generation phase, the probability of a one (zero) on the

ith output of the WPRPG can be calculated as follows:

 ( ),

where  ( ) is the number of ones (zeros) in theith ROM of the generator.

The period of the generator is equal to

.

The last formula can be approximated as follows

,

whereT is a number of clocks.

The structure of the generator illustrated in Figure 6.9 is flexible due to the possibility of

generating pseudo-random sequences of any period (which depends on the number of

pi N1i 2 N i 1−+( )−⋅= qi N0i 2 N i 1−+( )−⋅=

N1i N0i

T 2N 1−( ) 2N 1+ 1−( ) … 2N n 1−+ 1−( )⋅ ⋅ ⋅=

T 2 0.5n n 1−( ) Nn+( )=

ROMPRPG
1 1

A

ROMPRPG
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n n
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N
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N+n-1

1
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n

Figure 6.9: A WPRPG built by using ROMs
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outputs of the PRPG) and with any desired probability of a one (zero) (which is deter-

mined by the number of ones (zeros) stored into the ROM).

The WPRPG illustrated in Figure 6.10 is simulated by programprpg_prob. This genera-

tor uses NAND and AND gates fed by the outputs of the PRPG. In the case of an AND

(NAND) gate, the probability of a one is equal to

 ( ),

wherei is a number of inputs of the gate.

The period of the generator is the same as that of the PRPG.

In conclusion it is necessary to note that:

• Although the WPRPG based on using ROMs can generate any desired signal proba-

bilities on its outputs, the hardware redundancy of its realization is large. This kind of

generator is principally for use in universal external testers for the random testing of

either asynchronous or synchronous VLSI circuits.

• The WPRPG based on using additional logic elements is less complex and can be

used as a source of pseudo-random test signals in either asynchronous or synchro-

nous built-in self-test VLSI structures.
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Figure 6.10: A PRPG of weighted patterns based on using additional logic
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Chapter 7 : Test lengths for

random testing of

micropipelines

There are two important characteristics of random testing: the time taken to generate the

desired set of test vectors, and the probability of detecting all possible faults from the

predetermined class of the circuit’s faults. The first parameter reflects the practical usa-

bility of the test set or simply the random pattern testability of the circuit under test. The

second parameter is a characteristic of the quality of random testing.

Figure 7.1 shows a general structure for the random testing of a micropipeline all the

latches of which are in the pass mode during the test. The primary inputs of the combi-

national logic, CL, are supplied with test patterns which are generated by the PRPG

asynchronously. The responses from the primary outputs of the combinational logic are

collected by the parallel signature analyser, PSA. The total test time of the micropipeline

depends on the time for the random testing of the combinational logic, which basically

consists of a number of subcircuits  ( ). It is assumed that the number of

outputs of the PRPG is larger than the number of inputs of the combinational circuit

under test. This can be justified because usually random test equipment is universal and

uses PRPGs which produce very long pseudo-random sequences. The question is, how

is it possible to estimate the test length for the random testing of such a combinational

network?

Past work has already addressed the question of determining the pseudo-random and

random pattern test lengths [25, 56-58]. In some of these papers mathematical expres-

sions are derived for the test length on the basis of the smallest detection probability of

possible faults in the circuit [25, 56]. On the other hand, it was shown by J. Savir and P.

H. Bardell [57] that the random pattern test length increases logarithmically with the

number of faults which have a detection probability close to the minimum. The main

CLi 1 i w≤ ≤
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drawback of these results is that all of them assume that the detection probabilities of all

hard-to-detect faults are known. This means that the internal structure of the circuit

under test is known. But if the complexity of the circuit is high enough it is very difficult

or even impossible to find all faults with small detection probabilities because of the

huge number of faults. C. K. Chin and E. J. McCluskey proposed to evaluate the number

of pseudo-random test patterns generated by a PRPG whose length is equal to the

number of inputs of the combinational network to be tested [58]. Unfortunately, in prac-

tical random testing of VLSI circuits, this result can hardly be used for combinational

circuits to be tested inside VLSI designs. All previous results were derived only for the

case of equiprobable patterns applied to the inputs of the circuit.

In this chapter the test length for random pattern testing of logic blocks of micropipe-

lines is estimated by applying equiprobable and weighted random test patterns to their

inputs.

7.1 Test length for random pattern testing.

Suppose that to detect all faults from the predetermined class of the combinational net-

work’s faults it is necessary to generate on its inputs the set, , of  test

patterns. The test confidence probability threshold,, is the probability that all neces-

sary test patterns from  will be applied to the inputs of the circuit under test, hence,

the escape probability threshold of the test, , is the probability that at least

CL

CL1

CL2

CLw

Figure 7.1: Random testing of logic blocks of micropipelines
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one pattern from the set  will not be applied to the inputs of the combinational logic

during the test. The test length, , is the total number of test patterns applied to the

inputs of the circuit.

Figure 7.2 shows the basic structure for pseudo-random testing an-input combina-

tional circuit. It assumes that the number of inputs to the combinational logic is fewer

than the total number of storage elements of the PRPG. In this case it is possible to con-

sider the pseudo-random test procedure as the random testing of the combinational logic

by means of applying equiprobable test patterns to its inputs [58]. The probability that

any one pattern will be generated on outputs of the PRPG is . During the ran-

dom pattern testing of the combinational circuit the test results are observed in a com-

pact form on the outputs of a signature analyser.

Let us estimate the random test length that is sufficient that  different -bit

test patterns to appear on the circuit’s inputs. Consider the event  when fewer than

of the required test vectors are generated on the inputs during the random test of length

. The event  is the union of the  following events: the event  when pattern

 does not appear on the inputs; the event when pattern  does

not appear, and so on up to event  when pattern  does not appear. The

Qm

Tm

n

n p 2 n−=

1
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Figure 7.2: Random testing a combinational logic block.
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events included in  are not mutually exclusive, therefore the equation for the proba-

bility of , , can be obtained with the help of a Venn Diagram [59]

(5)

As the probability  is the escape probability of the test pattern, taking into

account the independent character of the test patterns which are used, the equation for

the probability  can be written as , ( ).

Using the Venn Diagram it is possible to modify equation (5) into an inequality, i.e.

. (6)

The probability  should be no larger than the escape probability threshold, that is

. It follows from (6) that the inequality  suffices to ensure

that all  test vectors will appear on the inputs with no less than the predetermined test

confidence probability. Thus, the lower bound of the test length of the random test pro-

cedure, , can be estimated as

. (7)

It is known [60] that if  (i.e. the probability of generating one defined n-bit pattern

is very close to zero) then . Hence, if the number of inputs to the com-

binational network under test is large enough then inequality (7) will take the following

form

. (8)

Expression (8) can be derived from the Poisson theorem [60] because in the case when

 ( ) and  the mathematical expectation of the number of

appearances of one random pattern,, during the test, is going to be a constant, i.e.

Em
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. Therefore the probability, , that during the random test of

length  the number of appearances of one pattern will be equal to is the Poisson

probability with parameters and :

, where .

The probability  ( ) that only one pattern will not come out after the ran-

dom test is the Poisson probability with :

.

Taking into account that  and (6) the expression (8) for the lower bound of

the random pattern test length can be obtained.

To estimate the actual numerical values of the variable which allows formula (8) to be

used instead of (7) without losing significant accuracy it is reasonable to evaluate the

relative error, , of the random pattern test lengths calculated by using formula (8):

, (9)

where  and  are calculated from (7) and (8) respectively.

Substituting the corresponding expressions for and  in inequality (9) the follow-

ing inequality is obtained:

.

As  the inequality for  can be rewritten using a limit, i.e.

.

It is known that . Therefore, the final inequality for the

relative error  can be written in the following form: . From this formula

it is possible to find the inequality for taking into account that , i.e.

a Tm p const→⋅= P a k,( )

Tm k

a k
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. (10)

For instance, if % then according to expression (10) inequality (8) can be used

instead of (9) for calculating the lower bound of the random pattern test length whenever

.

When using random pattern testing it is important to know the number of storage ele-

ments, , of the PRPG (or simply the length of the PRPG) which is sufficient to justify

the use of a random pattern test model for predicting the test length. It is known that dur-

ing random test of length  the most probable number (the mathematical expectation)

of appearances of any one pattern from the set of all possible combinations of

Boolean variables is equal to . On the other hand, after the period of the PRPG

the number of appearances of any Boolean combination on the outputs ( ) of the

PRPG is equal to . Thus, the pseudo-random test length which is calculated

from inequality (7) or (8) can make sense only in the case when , that

is, when .

Experimental results from estimating the test lengths for exhaustive random test-

ing.

If the internal structure of the combinational logic under test is not known then all the

possible  binary patterns should be applied to the circuit’s  inputs to test it. The main

advantage of the exhaustive testing technique is that if there are no faults in the combi-

national network which change the network into a sequential one, then the test patterns

will be good for any fault model. Experimental results for the test lengths required to

obtain all  patterns on  outputs of the PRPG were derived with the help of the simu-

lation programs which were described in the previous chapter. The number of storage

elements in the PRPG modelled was chosen as 73 because the period of such a PRPG is

very large and structure is very simple. For every value of the variable, ( ) values

for the random pattern test lengths were obtained. All the simulation results were put

into a table with  columns and  rows where all the elements,, in each row were

n
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sorted into increasing order, i.e. , . The final result was

obtained in the form of vector with elements where

, .

Each element  of the vector is a value for the statistical random test length with test

confidence probability , where . The last element of the vector

( ) has no meaning because in practice it is impossible to achieve absolute confi-

dence in a random testing. In the simulation experiments the number of columns and

rows were equal to 100, i.e.  and . Apparently, the larger  is the

more precisely the value of the random test lengths can be calculated, that is the statisti-

Table 7.1: Statistical and theoretical random lengths for the exhaustive testing of
combinational networks

(7) (8)

2 0.9 13 13 14

0.95 15 15 17

0.99 20 21 23

4 0.9 78 79 81

0.95 89 89 92

0.99 109 114 118

8 0.9 1965 2005 2009

0.95 2134 2182 2186

0.99 2500 2593 2598

10 0.9 9336 9451 9455

0.95 10012 10160 10165

0.99 11279 11808 11813

12 0.9 42978 43485 43500

0.95 45727 46323 46340

0.99 51148 52913 52932

ti1 ti2 … tiK≤ ≤ ≤ 1 i L≤ ≤
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cal random pattern test length will be closer to the theoretical value. The values of,

and  chosen in the simulation were restricted by the available simulation time on the

computers used for the experiment.

Some of the practical and theoretical estimates of the random test length are shown in

Table 7.1. The column headed  contains the values of the test lengths calculated by

using formulas (7) and (8). Statistical test lengths are placed in the column headed.

In order to restrict the table size the results are presented only for=0.9, 0.95, 0.99, and

=2, 4, 8, 10 and 12. It can be seen from Table 7.1 that the simulation results are no

larger than the theoretically obtained ones. This confirms that expressions (7) and (8)

may be used to calculate the lower bound of the random test length. Formula (8) is less

complex than (7) and in fact it can be used instead of (7).

7.2 Test length for random testing using weighted patterns

Random testing using only equiprobable random test patterns is not always the optimal

test procedure for obtaining the minimal (or close to minimal) random pattern test length

for a certain subset of test patterns from the set of all possible binary combinations. To

reduce the length of random pattern testing, methods were derived for achieving optimal

output signal probabilities for generators of weighted pseudo-random patterns

(WPRPG) [54-55]. The aim of this section is to present an approach for estimating the

random pattern test length, , which will guarantee the test confidence probability, ,

of obtaining the desired number, , of weighted test patterns from the set. In general

the source of random test patterns can be a WPRPG with different signal probabilities

on its outputs. Let us calculate the minimal probability, , of a random pattern from

the set ,

 i.e. , , ,

where ,

Suppose that all  test patterns from the set  have the same probability of appearance

which is equal to . Thus, the weighted random testing of a combinational logic cir-

K L
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cuit can be substituted on the random pattern testing by means of equiprobable test vec-

tors. In this case for estimating the random pattern test length it is possible to use

expression (8) where , i.e.

. (11)

Obviously inequality (11) evaluates the redundant lower bound for the test length for the

random testing with the help of the WPRPG.

Consider the case when the set contains only two test patterns with probabilities of

appearance  and  respectively. The model of the generation of all these patterns

during random testing can be represented by the Markov chain (Figure 7.3) with four

states:  and  are the states which correspond to the appearance of neither and both

test patterns respectively; states and  correspond to the appearance of the first and

the second test pattern respectively. The transition probabilities between the states are

marked on the transition arcs of the Markov chain. The initial state probabilities of the

Markov chain are , .

p pmin=

Tm
U pmin

1− m qt⁄( )log≥
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Figure 7.3: The Markov chain describing the process of the appearance of two
different random patterns
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Let us estimate the probability  that during the generation of test patterns by

the WPRPG the patterns from set will appear. For this purpose the system of differ-

ence equations which describes the behaviour of the Markov chain (Figure 7.3) can be

composed as:

.

The solution of this system of difference equations subject to the initial conditions is

given by

.

According to the condition of random pattern testing the probability  should be

no less than the test confidence probability, hence,

. (12)

Inequality (12) can be simplified taking into account that  is a positive

value which is less than either  or , i.e.

. (13)

Suppose that , where , . It follows from expression (13) that

the larger parameter  is, the less effect probability  has on the random pattern test

length. In practice the random testing of-input digital circuits presumes that the prob-

Pk S12( ) k

Q2

Pk S0( ) 1 v1 v2−−( ) Pk 1− S0( ) ,⋅=

Pk S1( ) 1 v2−( ) Pk 1− S1( )⋅ v1 Pk 1− S0( ) ,⋅+=

Pk S2( ) 1 v1−( ) Pk 1− S2( )⋅ v2 Pk 1− S0( ) ,⋅+=

Pk S12( ) v2 Pk 1− S1( )⋅ v1 Pk 1− S2( )⋅ Pk 1− S12( )+ +=

Pk S0( ) 1 v1 v2+( )−( ) k;= Pk S1( ) 1 v2−( ) k 1 v1 v2+( )−( ) k;−=

Pk S2( ) 1 v1−( ) k 1 v1 v2+( )−( ) k;−=

Pk S12( ) 1 1 v1−( ) k 1 v2−( ) k−−= 1 v1 v2+( )−( ) k+

Pk S12( )

pt

1 1 v1−( ) k 1 v2−( ) k− 1 v1 v2+( )−( ) k+− pt≥

1 v1 v2+( )−( ) k

1 v1−( ) k 1 v2−( ) k

1 v1−( ) k 1 v2−( ) k+ qt≤

v2 cv1= c const= c 1≥

c v2

n



Test lengths for random testing of micropipelines

Page 106

abilities of appearance of rare test patterns are very small (especially if is large

enough) and . Therefore, expression (13) can be approximated as

. (14)

Let us estimate the value of parameter that will change the test length,, calculated

from formula (14) by no more than the predetermined value of a relative error, . In

other words, it is required to find from the following inequality:

, (15)

where  is the test length calculated from (10) when .

Let , hence, inequality (14) can be rewritten as

. (16)

If  then the solution of inequality (16) is obvious: , that is,

. When  the solution of quadratic inequality (16) is the follow-

ing:  (the second root of quadratic equation (16) is negative

whereas ), therefore, . Substituting  and  in

(15) the following inequality is derived:

. (17)

When  it is necessary to solve the cubic inequality (16). Cubic equation (16) has

three roots: one is real; the other two are complex conjugate roots [60]. As should be a

positive real value then the solution of cubic inequality (16) can be found as

, where , therefore,

. Substituting the expression for  in (15)

the following inequality is obtained:
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. (18)

Table 7.2 shows the results of numerical solutions of equation (15), i.e. ,

for  and different values of variable . The columns marked as  and

 represent the solutions of equations (17) and (18) respectively.

Table 7.2: Numerical solutions of inequalities (17) and (18)

Figure 7.4 shows a graph of the dependence of the relative error on the escape proba-

bility  for . It can be seen that the solutions of inequalities (17) and (18) lie

beneath the appropriate curves and . From Table 7.2

and Figure 7.4 it can be seen that values  and  are very close together

for high confidence random pattern testing. Thus, choosing a value of variable which

is more than 2 does not significantly affect the random test length with the high test con-

fidence probability. In other words, if the probability of one test pattern is more than

twice the minimal probability of a test pattern from set then to estimate the lower

bound for the random pattern test length it is sufficient to take into account the probabil-

ities of test patterns which belong to the range [ ]. Therefore, the final algo-

rithm for calculating the lower bound for the test length for random testing by means of

applying weighted test patterns can be described as the following sequence of steps:

0.001 9.1% 9.1%

0.01 12.9% 13.1%

0.05 17.5% 18.7%

0.1 20.2% 22.8%

0.2 23.3% 28.5%

0.3 25.1% 32.6%

0.5 27.5% 38.1%
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i) compute the minimal probability of a test pattern from set, ;

ii) calculate how many test patterns,, have a probability of appearance no larger than

twice the minimal probability ;

iii) estimate the random pattern test length as

. (19)

Example. Let us calculate the test length for the optimal random pattern testing of a 10-

input AND gate ( ) where . For optimal random testing of AND gates

the signal probability of each output of the WPRPG should be  [55]. It

is known that the test set for the testing of all stuck-at faults of an-input AND gate

consists of ( ) test vectors, i.e. for the case of 10-input AND gate the test set con-

tains ten 10-bit “running zero” test patterns and one pattern which includes all ones. The

minimal probability of appearance is for the “running zero” test pattern:

 or for the case of 10-input AND gate . The proba-
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bility, , that “all ones” test vector will appear is. As , . The

probability  is much more than two times larger probability , therefore, .

To calculate the test length for the optimal random pattern testing of a 10-input AND

gate expression (19) is used, i.e. . In comparison with random testing using

equiprobable random test patterns ( ) the random pattern test length is

reduced by a factor greater than 40.

Table 7.3 contains some experimental and theoretical results for evaluating test lengths

for the exhaustive random testing of a 3-input combinational circuit. The test lengths

calculated from expression (19) are shown in the column headed. The simulation

results are in the column . Table 7.3 confirms that formula (19) can be used in prac-

tice for predicting the number of weighted random test patterns needed for the testing of

a combinational circuit.

Table 7.3: Theoretical and experimental results for estimating the test lengths for
random pattern testing of a 3-input combinational circuit

0.125 0.25 0.5 0.016 2
0.9 192 183

0.99 339 310

0.1 0.25 0.5 0.013 2
0.9 240 231

0.99 424 396

0.125 0.125 0.25 0.003 1
0.9 590 588

0.99 1179 1083

0.25 0.333 0.5 0.042 2
0.9 72 70

0.99 128 115

0.033 0.1 0.5 0.002 2
0.9 1816 1755

0.99 3212 2954
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7.3 Summary

In this chapter mathematical expressions were derived for predicting the test length for

random pattern testing of micropipelines by means of applying to their inputs equiprob-

able and weighted patterns. It was shown that to estimate the lower bound for the test

length using equiprobable random test patterns it is possible:

i) to use the assumption that appearances of all test patterns are mutually exclusive

events;

ii) to exploit the Poisson approximation for calculating the probabilities of these events.

 It was proved that to evaluate more exactly the lower bound for the test length for ran-

dom testing a combinational network by means of weighted test patterns it is sufficient

to take into account the probability of the rarest test pattern,, and the number of test

patterns whose appearance probabilities belong to the range [; ]. The theoreti-

cal results were confirmed by simulation. The results obtained in this chapter can be

used to estimate the level of random pattern testability of logic blocks of micropipelines

which can be incorporated into asynchronous VLSI designs and BIST structures.

pmin

pmin 2pmin
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Chapter 8 : Special aspects of

random testing of

asynchronous circuits

8.1 Probabilistic properties of the Muller-C element

Let us consider the two-input Muller-C element. Its output  is high at timet if both

the inputs are high ( ) or if it is already high ( ) and one of the inputs is

still high:

, (20)

wherea andb are the inputs of the Muller-C element.

A possible implementation of the function of the two-input Muller-C element is shown

in Figure 8.1. Let us estimate the output signal probability of the two-input Muller-C

element when the signal probabilities of its inputs, and , are given. It is known that

in order to calculate the output signal probability of a Boolean function, sayf, with n

inputs it is necessary:

1) to find a coverF which is a set of cubes each of which containsn literals;

c t( )

a b⋅ c t 1−( ) 1=

c t( ) a b a c t 1−( ) b c t 1−( )⋅+⋅+⋅=

a
b

c

Figure 8.1: An implementation of the two-input Muller-C element

pa pb
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2) to calculate the probabilities of each cube ofF and find the sum of these probabilities

[61-63]. In the case of the two-input Muller-C element, its Boolean function (20) can be

written as:

. (21)

To calculate the output signal probability of a network with feedback it is assumed that

all the signals of the feedback lines have equal probabilities since probability by defini-

tion is an average estimation of the signal frequency. Thus, the probability of a one

(zero) of on linec of the Muller-C element (as shown in Figure 8.1 linec is the output

and one of the inputs of the Muller-C element simultaneously) is the same, that is

 ( ). Therefore, the out-

put signal probability of the two-input Muller-C element can be found from (21) as fol-

lows:

,

wherep andq are the probabilities of a one and zero respectively.

Taking into account that  the probability of a one signal on the output of the

two-input Muller-C element can be found:

. (22)

The probability of a zero on the output of the Muller-C element can be calculated as fol-

lows: . It is assumed that input test signals are independent, therefore, the

following equation takes place: , i.e. the appear-

ance of each combination of two-bit input vectors is an independent event and all these

events are mutually exclusive ones. Thus, the probability of a zero signal on the output

of the Muller-C element can be estimated with the help of the following expression:

. (23)

It is easy to check that the sum of the equations (22) and (23) is equal to 1.

c t( ) a b c t 1−( )⋅ ⋅ a b c t 1−( )⋅ ⋅ a b c t 1−( )⋅ ⋅+ += a b c t 1−( )⋅ ⋅+

p c t( )( ) p c t 1−( )( ) pc= = q c t( )( ) q c t 1−( )( ) qc= =

pc pa pb pc⋅ ⋅ pa pb qc⋅ ⋅ qa pb pc⋅ ⋅ pa qb pc⋅ ⋅+ + +=

p q+ 1=

pc pa pb⋅ 1 qa pb⋅ pa qb⋅−−( )⁄=

qc 1 pc−=

pa pb⋅ qa pb⋅ pa qb⋅ qa qb⋅+ + + 1=

qc qa qb⋅ 1 qa pb⋅ pa qb⋅−−( )⁄=
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Making an analysis of expressions (22) and (23) the following probabilistic properties of

the two-input Muller-C element can be noted:

1. If the probability of a 1 on at least one of the two inputs of the Muller-C element is

equal to one then the output probability of a 1(0) is equal to one (zero). This can be

proved easily by placing ones into equations (22) and (23) instead of  or . Simi-

larly, if the probability of a 0 on at least one of the two inputs of the Muller-C element is

equal to one then the output probability of a 1(0) is equal to zero (one). This is easy to

check by replacing  or  by ones into equations (22) and (23).

This property proves that from the probabilistic point of view a stuck-at-1 (stuck-at-0)

fault on at least one of the inputs of the Muller-C element is equivalent to a stuck-at-1

(stuck-at-0) fault on its output.

2. If one input signal of the two-input Muller-C element has equal probabilities of a 1

and 0 then the output signal probability is equal to the signal probability of the other

input of the two-input Muller-C element.

Proof. Let  be equal to 0.5 ( =0.5). Then = .

Consequence. If both input signals of the Muller-C element are equiprobable and inde-

pendent then a sequence of equiprobable signals is generated on its output.

From the probabilistic point of view this property can be explained as the follows: if the

signal probability of one of the inputs of the two-input Muller-C element is 0.5 then the

Muller-C element is transferred into a line which connects its other input and the output.

The probabilistic properties of the two-input Muller-C element can be generalized for

the n-input Muller-C element:

1. If the probabilities of a 1(0) on k inputs of the n-input Muller-C element ( )

are the same and equal to 1 then the output probability of a 1(0) is equal to 1. That is

stuck-at-1 (stuck-at-0) faults on k inputs of the n-input Muller-C element ( ) are

pa pb

qa qb

pa qa pc 0.5 pb⋅ 1 0.5 pb qb+( )⋅−( )⁄= pb

1 k n≤ ≤

1 k n≤ ≤
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equivalent to a stuck-at-1 (stuck-at-0) fault on its output from the probabilistic point of

view.

The proof of this property is trivial if then-input Muller-C element is considered as a set

of two-input Muller-C elements connected as a tree.

2. If (n-1) input signals of then-input Muller-C element are equiprobable and independ-

ent then the output signal probability is equal to the signal probability of the other input

of then-input Muller-C element.

Proof. The output signal probability of then-input Muller-C element can be estimated

as:

, (24)

where .

Let  ( ) then substituting the

variables of equation (24) with their appropriate values the following equation is

derived:

.

This equation proves the validity of the property.

8.2 Random testing of asynchronous control circuits

As the Muller-C element is used frequently in designing asynchronous control circuits

let us consider how it is possible to test it using random patterns.

8.2.1 Random testing of the Muller-C element

Lemma. To detect all stuck-at-0 (stuck-at-1) faults of then-input Muller-C element it is

sufficient to apply a set of two test patterns to its inputs: the first pattern includesn zeros

(ones) and the second one includesn ones (zeros).

pc p1 p2 … pn⋅ ⋅ ⋅ p1 p2 … pn⋅ ⋅ ⋅ q1 q2 … qn⋅ ⋅ ⋅+( )⁄=

p1 p2 … pn⋅ ⋅ ⋅ q1 q2 … qn⋅ ⋅ ⋅+ 1 q1 q2 … pn …− p1 p2 … qn⋅ ⋅ ⋅−⋅ ⋅ ⋅−=

p2 p3 … pn 0.5= = = = q2 q3 … qn 0.5= = = =

pc p1 0.5n 1−⋅ p1 q1+( ) 0.5n 1−⋅( )⁄ p1= =
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Proof.

Single stuck-at faults.

A stuck-at-0 (stuck-at-1) fault on the output of then-input Muller-C element can be

tested by only one pattern which consists ofn ones (zeros).

A stuck-at-0 (stuck-at-1) fault on one of the inputs of then-input Muller-C element can

be detected by the pair of patterns. The first pattern must set the Muller-C element to

zero (one) state which can be done by applying logical zero (one) signals to all the

inputs. The second pattern must set the Muller-C element to one (zero) state by applying

logical ones (zeros) to all its inputs. As a result, a faulty Muller-C element with a stuck-

at-0 (stuck-at-1) fault on one of its inputs can be identified by non-changing output sig-

nals. It is necessary to note that the order of the tests is significant.

Multiple stuck-at faults.

It is easy to check that the case of the presence stuck-at-0 (stuck-at-1) faults onk inputs

of then-input Muller-C element ( ) is equivalent to the case of a single stuck-at

fault. Hence, a faulty behaviour of then-input Muller-C element can be identified by the

same set of test patterns.

In the case of multiple stuck-at-0 and stuck-at-1 faults a faultyn-input Muller-C element

will never change its state which can be detected by applying all 0s and all 1s test pat-

terns with no regard to their order.

Thus, the set of all 1s and all 0s tests can detect all stuck-at faults of then-input Muller-

C element.

Let us estimate the optimal output signal probabilities of the PRPG used for the random

testing of then-input Muller-C element. It is assumed that the probabilities of input sig-

nals are equal, i.e. . Using the results of the lemma proved

above and the assumption of the independence of all the input test signals the probability

1 k n≤ ≤

p1 p2 … pn p= = = =



Special aspects of random testing of asynchronous circuits

Page 116

of the pair of the test patterns for the detection of all stuck-at faults of then-input

Muller-C element can be found as:

,

where  and ( ).

For the optimal signal probability, , the following expression must be true:

, i.e. it is necessary to find such value for variablep in which function

 has its maximum.

The maximum of  is determined by the maximums of functions  and .

It is known that the maximum of function  is reached whenp=0.5 [60]. To find the

extremum of function  it is necessary to solve the following equation: ,

i.e.  or p=0.5. It is easy to check thatp=0.5 is the maximum of . Ana-

lysing the results derived above it becomes clear that there is only one maximum of

function  which is reached whenp= =0.5.

Thus, the optimal random test procedure for the testing of then-input Muller-C element

is random testing by using equiprobable input signals. In this case the output signal

probability of then-input Muller-C element is equal to 0.5.

8.2.2 Random testing of a certain class of asynchronous

circuits

Figure 8.2 shows a general structure of asynchronous control logic without feedback.

For the sake of simplicity this circuit contains one two-input Muller-C element fed by

the outputs of two combinational logic blocks,CL1 and CL2. Combinational logic

block CL3 produces the final result of the asynchronous circuit. Let us consider how it is

possible to test single stuck-at faults in this asynchronous logic.

Single stuck-at faults of the combinational logic circuits.

R p( ) pc qc⋅
gn p( )

1 f p( )−( ) 2
= =

g p( ) p 1 p−( )⋅= f p( ) Cn
i pi 1 p−( ) n i−⋅ ⋅

i 1=

n 1−

∑= 0 g< p( ) f p( ), 1<

po

R po( ) max=

R p( )

R p( ) g p( ) f p( )

f p( )

g p( ) ġ p( ) 0=

1 2 p⋅− 0= g p( )

R p( ) po
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These kinds of faults can be tested by the modified D-algorithm [47]. For example, if it

is necessary to propagate a zero (one) effect of the fault of one of the two combinational

networks,CL1 or CL2, then:

1) the Muller-C element must be set to one (zero) state by manipulating primary inputs

,  and ;

2) zero (one) effect must be propagated from the output of the faulty combinational net-

work through the Muller-C element by setting the other its input to a logical zero (one)

which can be done by controlling inputs ,  and ;

3) the fault effect must be propagated to output of CL3 by driving inputs .

As a result it is necessary to apply two patterns to detect a single stuck-at fault in one of

combinational logicsCL1 andCL2.

A single stuck-at fault of combinational circuitCL3 can be detected easily by setting the

Muller-C element to the appropriate state (the manipulation of inputs,  and )

and applying an appropriate test vector on inputs. This procedure can be done by

applying only one pattern to the inputs of the asynchronous circuit under test.

Single stuck-at faults of the Muller-C element.

PI1 PI2 PI3

PI1 PI2 PI3

f3 PI4

C

CL1

CL2

CL3

Figure 8.2: An example of an asynchronous logic block
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To test a stuck-at-0 (stuck-at-1) fault on the output of the Muller-C element it is enough

to use only one test pattern which sets the Muller-C element to one (zero) state and

makes its output observable on the output of the asynchronous logic under test. Stuck-at

faults on inputs of the Muller-C element are tested by two test patterns: the first one sets

the Muller-C element to zero (one) state and the second test pattern sets the Muller-C

element to one (zero). Inputs  are driven into the appropriate logic values to propa-

gate the state of the Muller-C element to the output of the asynchronous logic under test.

Thus, to test a single hard-to-detect stuck-at fault in the asynchronous logic circuit

shown in Figure 8.2 two test patterns must be applied sequentially. This result can be

generalized easily for the case of asynchronous logic circuit without feedback with any

number of Muller-C elements.

Test lengths for the exhaustive random testing of this kinds of asynchronous circuits are

much more longer than in the case of exhaustive random testing of simple combina-

tional circuits. This is because all the mutual combinations of two test vectors must be

generated on the inputs of the asynchronous circuit under test.

As an alternative to the traditional random testing technique where a parallel signature

analyser is used for collecting the responses from the CUT a set of counters can be used

for estimating signal probabilities in the nodes of the CUT [61-63].

During the testn ( ) random test patterns are applied to the inputs of the circuit.

The probability of a one in nodei, , is estimated by dividing the total number of

ones registered in nodei by the total number of random patterns applied. To estimate a

range for the good node signal probability (the probability of a one in nodei of the good

circuit) during the random testing the Laplace integral theorem can be used [59,60], i.e.

, (25)

where  ( ) is the theoretical good probability of a one (zero) in nodei;

PI4

n ∞→

pi n( )

P
pi n( ) pi−

piqi n⁄
x≤

 
  ϕ t( ) td

x−

x

∫→ Φ x( ) Φ x−( )− 2Φ x( ) 1−= =

pi qi
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 is the probability that ;

 is Gauss’ integral function.

The values of Gauss’ integral function for different arguments can be found in special

tables [60].

Probability  calculated during the random testing can belong to a certain range

with a certain probability. Hence, equation (25) must be equal to the predetermined con-

fidence probability, . Thus, argumentx can be found from (25) as

, (26)

where  is the argument of Gauss’ integral function for which .

Using equations (25) and (26) the range for the good signal probability of nodei of the

circuit under random test is estimated as follows:

. (27)

For example, if =0.999 then using equation (26) and the tables for the values of func-

tion  it can be easily found thatx=3.5. Therefore, inequality (27) can be written as

.

Apparently, the largern, the closer the value of the signal probability calculated during

the random test to the theoretical signal probability.

The theoretical signal probabilities of nodes for the good combinational networks can be

derived by known techniques [61-63]. Table 8.1 contains the equations for calculating

theoretical probabilities of a one and zero on outputs of some basic logic elements. It is

assumed that all the inputs of the logic elements are independent. These equations can

P
pi n( ) pi−

piqi n⁄
x≤

 
  x− pi n( ) pi−( ) piqi n⁄( )⁄ x≤ ≤

Φ x( ) ϕ t( ) td
∞−

x

∫
1

2π
exp t2 2⁄−( ) td

∞−

x

∫= =

pi n( )

pc

x argΦ 1 pc+( ) 2⁄( )=

argΦ y( ) Φ x( ) y=

pi x pc( )
piqi

n
− pi≤ n( ) pi x pc( )

piqi

n
+≤
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Φ x( )

pi 3.5
piqi

n
⋅− pi≤ n( ) pi 3.5
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n
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be used for the computation of the theoretical signal probabilities in the nodes of the cir-

cuit under random test.

Figure 8.3 shows an asynchronous logic without feedback for random pattern testability.

A multiplexer is inserted into the asynchronous logic to provide for its random pattern

testability by connecting either the additional test input or the output of CL2 to the input

of the Muller-C element. The signal probability on the output of the multiplexer is esti-

mated on the additional test point, TP. The output signal probability of the asynchronous

logic under random test is calculated as well.

Table 8.1: Equations for calculating theoretical probabilities of a one and zero of basic
logic elements

Logic
element

p q

Inverter

n-input
AND
gate

n-input
OR
gate

1 p1− p1

pj
j 1=

n

∏ 1 pj
j 1=

n

∏−

1 1 pj−( )
j 1=

n

∏− 1 pj−( )
j 1=

n

∏

C

CL1

CL2

CL3

Figure 8.3: An asynchronous logic circuit for random pattern testability

TI
Control

MX

TP

f1

f2

f3

fc

PI1

PI2

PI3
PI4



Special aspects of random testing of asynchronous circuits

Page 121

In the normal operation mode the control signal of the multiplexer is set to connect the

output ofCL2 with the input of the Muller-C element. In this case additional inputTI

and outputTP are not used.

Random test procedure. During the random test operation mode all the inputs (including

test input TI) are coupled to the outputs of the PRPG. OutputsTP and  are connected

to the counters which calculate the number of ones on each output.

First test phase. In the first phase of the random testing procedure node is connected

to the input of the Muller-C element. The random patterns are applied to the inputs of

the CUT. The signal probability on outputTP (the output of combinational logicCL2) is

calculated.

Second test phase. In the second random test phase the test input is connected to the

input of the Muller-C element. The set of random patterns are applied to the inputs of the

CUT. Due to the probabilistic property of the Muller-C element  since

 during the random testing. This means that from the probabilistic point

of view combinational circuitsCL1 andCL3 can be treated as one combinational net-

work to derive the good signals probabilities in its nodes during the random testing. The

output signal probability of this combinational circuit is calculated on output.

After the random testing if at least one of the signal probabilities derived on the observ-

able outputs (  andTP) is out of the ranges for the good signal probabilities then the

circuit is faulty, otherwise it is good.

The main advantages of the technique described above are that:

1) the additional hardware inserted into the circuit to provide its testability is tested dur-

ing the random testing;

2) it allows the avoidance of a very complicated procedure for calculating theoretical

good signal probabilities in nodes of circuits with reconvergent fanouts.

f3

f2

p f1( ) p fc( )=

p TP( ) 0.5=

f3

f3
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In the case of the asynchronous circuit shown in Figure 8.3 the reconvergent fanouts are

formed by primary inputs , nodes ,  and the output of the Muller-C element. The

technique for designing asynchronous logic circuits for random pattern testability can be

generalised for any number of Muller-C elements. The major disadvantage of this

approach is that the extra hardware inserted into the circuit incurs additional delays

which must be taken into account during the design process.

8.3 Generating patterns for the pseudo-random testing of

micropipelines and asynchronous control circuits

It was mentioned above that single stuck-at faults in some types of asynchronous cir-

cuits (see Figure 8.2) can be tested by two patterns to be applied sequentially. In addi-

tion, single stuck-at-pass faults of micropipelines can be detected by pairs of tests. This

property requires an answer to the question: “Is it possible to design the structure of a

PRPG which can generate multi-bit pseudo-random sequences with all possible combi-

nations of two multi-bit vectors in them?”

It appears that the pseudo-random generator used for the exhaustive testing of digital

circuits (see Figure 3.4) is able to produce the pseudo-random sequences which have

this property. Figure 8.4 shows the structure of a generator which includes the LSFR

with a period of  clocks. Only even or odd outputs of the LFSR must be used as the

outputs of the generator.

PI2 f1 f2

12N N-1 N-2 N-3 N-5N-4

O1
ON 2⁄ ON 2 1−⁄ ON 2 2−⁄

PRPG

Figure 8.4: PRPG used for testing micropipelines

2N
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The multi-bit pseudo-random sequence generated on the outputs of this PRPG has the

property that during the period of the LFSR it is possible to find all combinations of

two (N/2)-bit vectors inside the sequence.

Table 8.2 contains the states of the 4-bit LFSR and the outputs of the PRPG shown in

Figure 8.4 for 18 clocks. The PRPG uses the fourth and the second outputs of the LFSR

for generating a two-bit pseudo-random sequence (columns headed as and ). The

4-bit LFSR starts to generate pseudo-random patterns from zero state. During the period

of the 4-bit LFSR (16 clocks) all the combinations of 2-bit vectors are generated inside

this sequence. For instance, the combinations: 00 00, 00 01, 00 10 and 00 11 can be

found easily in the output sequence. This is true for any other combinations of two 2-bit

vectors in which 01, 10 or 11 takes first place.

Thus, pseudo-random patterns generated by the proposed PRPG can be used effectively

for detecting all kinds of single stuck-at faults in micropipelines and asynchronous con-

trol circuits without feedback. It should be noted that the micropipeline is tested exhaus-

tively since besides the generation of all possible binary vectors for the exhaustive

testing of the logic blocks of the micropipeline all the combinations of two (N/2)-bit

Table 8.2: State sequence for the two-bit PRPG

State State

0 0 0 0 0 0 0 9 1 1 0 1 1 0

1 1 0 0 0 1 0 10 0 1 1 0 0 1

2 1 1 0 0 1 0 11 0 0 1 1 0 1

3 1 1 1 0 1 1 12 1 0 0 1 1 0

4 1 1 1 1 1 1 13 0 1 0 0 0 0

5 0 1 1 1 0 1 14 0 0 1 0 0 1

6 1 0 1 1 1 1 15 0 0 0 1 0 0

7 0 1 0 1 0 0 16 0 0 0 0 0 0

8 1 0 1 0 1 1 17 1 0 0 0 1 0

Q4 Q3 Q2 Q1 O2 O1 Q4 Q3 Q2 Q1 O2 O1

2N

O1 O2
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vectors are produced by the generator for the detection of all single stuck-at-pass faults

in the latches.
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Chapter 9 : Conclusions and

further work

9.1 Conclusions

Asynchronous VLSI design is becoming a subject of intensive research because of the

possibility of achieving higher performance and lower power consumption on the asyn-

chronous chip in comparison with its synchronous equivalent. More accurately, syn-

chronous design is a special case representing a single point in a multi-dimensional

asynchronous world. There are several approaches to the design of asynchronous digital

circuits. The bounded-delay model is the most attractive approach since it allows for the

design of complex asynchronous networks by using fundamental principles for design-

ing digital circuits and a pipelined approach.

The micropipelined approach used by the AMULET group in the design of an asynchro-

nous version of ARM6 is based on a convention where the data is encoded normally but

is bundled together with control signals called “request” and “acknowledge”. Once

designed it is necessary to ensure that a physical implementation of such a microproces-

sor will work correctly. This can be achieved by applying a set of test patterns to its

inputs and observing the responses on the outputs. The asynchronous implementation of

ARM6 is more complicated than the synchronous one which aggravates the test prob-

lems significantly.

As was shown, the major difficulties in testing both synchronous and asynchronous

VLSI circuits are similar. The general fault models which can be used for representing

fault effects in asynchronous VLSI designs are stuck-at faults, bridging faults, stuck-

open faults and delay faults. Each kind of fault manifests itself differently in asynchro-

nous networks than in synchronous circuits and this requires a more detailed analysis to
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be done in order to derive effective test vectors. In bounded-delay asynchronous

designs, delay faults are the source of the most difficult test problems to be solved.

Random (pseudo-random) testing is becoming a viable alternative to deterministic test

generation methods for the following reasons:

• the test sequence applied to the inputs of the VLSI circuit does not depend on its

specification and can be used for all the circuits to be tested;

• pseudo-random pattern generators are simple and can be used successfully in asyn-

chronous built-in self-test structures.

The majority of DFT methods have been developed to ease the generation and applica-

tion of test vectors to synchronous circuits. Three groups of DFT techniques can be dis-

tinguished: ad hoc strategies, structured approaches and built-in self-test techniques.

The most popular DFT methods allow for the separation of the combinational part of the

circuit from the memory elements during the test. A particular DFT method can solve a

subset of the test problems concerned with the circuit to be tested. The advantages of

DFT methods for VLSI circuits cannot be achieved without a cost measured usually in

terms of silicon overhead, performance degradation and reduction in reliability.

Testing asynchronous VLSI circuits is a difficult problem mainly because of the differ-

ent approaches to designing these kinds of networks whereas the majority of test gener-

ation methods have been devised for testing synchronous circuits. Analysis of work in

the field of testing asynchronous VLSI circuits shows that there are two main directions

to solve this problem:

• adapting existing test generation techniques for testing synchronous VLSI circuits to

test asynchronous ones;

• deriving new test generation approaches to testing asynchronous VLSI circuits.

Recent results in the testing of micropipelines show that the test procedure of such asyn-

chronous designs must include the testing of both the control part and the data paths of
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the micropipeline under test. It was proved that single stuck-at faults in the control cir-

cuits of the micropipeline are tested during the normal operation mode whereas two test

patterns are required to detect those faults in the data paths of the micropipeline.

An asynchronous random testing interface has been described in this thesis. It includes

an asynchronous pseudo-random pattern generator and an asynchronous parallel signa-

ture analyser. The correctness of the structures proposed has been checked using stand-

ard CAD tools for simulating hardware designs. A program model of the universal

pseudo-random pattern generator has been developed. This generator can produce multi-

bit pseudo-random sequences without the obvious shift operation, and can also produce

weighted pseudo-random test patterns.

In this thesis, mathematical expressions have been derived for predicting test lengths for

the random pattern testing of micropipelines by using equiprobable and weighted test

patterns. It was shown that to estimate the lower bound for the test length using

equiprobable random test patterns it is possible: 1) to use the assumption that appear-

ances of all test patterns are mutually exclusive events and 2) to exploit the Poisson

approximation for calculating the probabilities of these events. It was proved that to

evaluate more exactly the lower bound for the test length for random testing a combina-

tional network by means of weighted test patterns it is sufficient to take into account the

probability of the rarest test pattern, , and the number of test patterns whose appear-

ance probabilities belong to the range [ ; ]. The theoretical results have been

confirmed by simulation.

The probabilistic properties of then-input Muller-C element have been investigated. It

was proved that from the probabilistic point of view:

• stuck-at-1 (stuck-at-0) faults onk inputs of then-input Muller-C element ( )

are equivalent to a stuck-at-1 (stuck-at-0) fault on its output;

• if (n-1) input signals of then-input Muller-C element are equiprobable and independ-

ent then the Muller-C element can be considered as a line which connects its other

input and the output.

pmin

pmin 2pmin

1 k n≤ ≤
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It was shown that the optimal random test procedure for the testing of then-input

Muller-C element is random testing by using equiprobable input signals. Using the prob-

abilistic properties of the Muller-C element and multiplexers incorporated into the cir-

cuit a certain class of asynchronous networks can be designed for random pattern

testability.

It was shown how it is possible to produce pseudo-random patterns to test micropipe-

lines exhaustively. The LFSR generating all possible binary vectors is used as a source

of test patterns. To provide the pseudo-exhaustive testing of the micropipeline it is nec-

essary to use only even (odd) outputs of such an LFSR.

9.2 Future work

The work presented in this thesis will provide a basis for my future research. I intend to

continue my work in the field of the random testing of bounded-delay asynchronous cir-

cuits. The main directions of my future research are the following:

• investigating fault effects and elaborating more accurate fault models which may be

different from the classical fault models but must reflect the appropriate technologi-

cal properties of asynchronous VLSI circuits;

• investigating the behaviour of real asynchronous VLSI circuits (the circuits designed

by the AMULET research group) to be tested by equiprobable and weighted random

(pseudo-random) patterns;

• working out techniques for the effective testing of delay faults in the data paths and

control circuits of micropipelines;

• developing techniques for estimating the degree of random pattern testability of asyn-

chronous VLSI circuits;

• research on asynchronous VLSI designs for random pattern testability in a scan envi-

ronment;
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• developing asynchronous built-in self-test VLSI structures;

• designing a real chip for random pattern testability and estimating its characteristics

in terms of hardware redundancy, performance and reliability.
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Appendix A : Asynchronous 4-bit

PRPG

A.1 Schematic of the generator

Figure A.1: An asynchronous implementation of the 4-bit PRPG
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A.2 The register of the generator

Figure A.2: An implementation of the 4-bit register of the generator

Q
1

Q
2

Q
3

S

C

CC
E

D
Q

R
D

D
F
F

CC
E

D
Q

R
D

D
F
F

CC
E

D
Q

R
D

D
F
F

CC
E

D
Q

R
D

D
F
F

I
3

I
2

Q
4

I
4

N
O
R
3

X
O
R
2

I
1



Appendix A : Asynchronous 4-bit PRPG

Page 132

A.3 Simulation results

Figure A.3: The results of the behavioural simulation of the generator
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Appendix B : Asynchronous 4-bit

parallel signature

analyser

B.1 Schematic of the signature analyser

Figure B.1: An asynchronous implementation of the 4-bit parallel signature analyser
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B.2 The register of the signature analyser

Figure B.2: An implementation of the register of the signature analyser
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B.3 Simulation results

Figure B.3: The results of the behavioural simulation of the signature analyser
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