
Design for Testability of

Asynchronous VLSI Circuits

A thesis submitted to

the University of Manchester

for the degree of

Doctor of Philosophy

in the Faculty of Science and Engineering

Oleg Alexandrovich Petlin

Department of Computer Science

1996

Page 2

Contents

Contents... 2
List of Figures ... 7
List of Tables... 12
Abstract ... 14
Declaration .. 15
Copyright and the ownership of intellectual property rights............. 16
Acknowledgements ... 17
The Author .. 18

Chapter 1 : Asynchronous VLSI Circuits .. 20

1.1 Asynchronous VLSI circuits .. 20
1.1.1 Motivation for using asynchronous circuits 20

1.2 Asynchronous VLSI design methodologies ... 22
1.2.1 Delay models in VLSI circuits .. 23
1.2.2 Data representation .. 23
1.2.3 Signalling protocols ... 24
1.2.4 Asynchronous design styles... 26

1.3 Motivation for the chosen design methodologies................................... 28
1.4 Micropipelines.. 29

1.4.1 Event controlled logic elements... 29
1.4.2 Micropipeline structures .. 31

1.5 Handshake circuits.. 33
1.6 Design for testability of asynchronous circuits 37
1.7 Thesis overview.. 38

Chapter 2 : Testing Asynchronous Circuits - Related Work............ 40

2.1 Fault models ... 40
2.1.1 Gate-level fault models.. 41
2.1.2 Transistor-level fault models ... 42

2.2 Testing delay-insensitive and speed-independent circuits 46
2.3 Testing bounded delay circuits ... 51

2.3.1 Testing asynchronous sequential circuits .. 51

Contents

Page 3

2.3.2 Testing micropipelines... 54
2.4 Summary... 57

Chapter 3 : Power Consumption and Testability of

CMOS VLSI Circuits... 58

3.1 Power consumption of CMOS circuits... 58
3.2 Information theory and digital circuits ... 59
3.3 Information content and transition probability....................................... 65
3.4 Discussion... 69
3.5 Summary... 70

Chapter 4 : Designing C-elements for Testability............................ 72

4.1 Introduction .. 72
4.2 Symmetric C-element CMOS designs.. 73

4.2.1 Testing for stuck-open faults ... 75
4.2.2 Testing for stuck-at faults .. 77

4.3 Static asymmetric C-elements .. 79
4.3.1 Testing for stuck-open faults in asymmetric C-elements 81
4.3.2 Testing for stuck-at faults in asymmetric C-elements 84

4.4 Scan testing of C-elements ... 86
4.5 Summary... 90

Chapter 5 : Scan Testing of Micropipelines..................................... 92

5.1 Micropipeline latch control .. 92
5.2 Fault model... 95
5.3 Scan test design .. 96

5.3.1 Scan latch implementation... 96
5.3.2 Scan register design ... 98

5.4 Scan test control ... 99
5.4.1 Scan test control for two-phase transition signalling..................... 100
5.4.2 Scan test control for four-phase signalling 100

5.5 Test strategy.. 102
5.6 Scan testing of asynchronous sequential circuits 106

5.6.1 Sequential circuits based on the micropipeline approach.............. 106
5.6.2 Scan test design.. 108
5.6.3 Scan test scenario... 108

5.7 Testing faults in four-phase latch control circuits 111

Contents

Page 4

5.7.1 Testing for faults in the semi-decoupled control circuit 111
5.7.2 Testing for faults in the control circuit of

the four-phase sequential circuit ... 115
5.8 A case study of the AMULET2 register destination decoder............... 115

5.8.1 Design and implementation ... 115
5.8.2 Design for testability.. 118
5.8.3 Cost comparisons... 125

5.9 Summary... 125

Chapter 6 : Design for Random Pattern Testability of

Asynchronous Circuits .. 127

6.1 Asynchronous pseudo-random pattern generator and
signature analyser designs.. 127

6.2 Sequential circuit designs ... 134
6.3 Parallel random testing of sequential circuits....................................... 136

6.3.1 Probabilistic properties of an XOR gate.. 136
6.3.2 Sequential circuit designs for random-pattern testability 136
6.3.3 Analysis of the parallel random testing technique......................... 141

6.4 Bit-serial random testing of sequential circuits 141
6.4.1 Two-phase sequential circuit design.. 142
6.4.2 Four-phase sequential circuit design ... 146
6.4.3 Analysis of the bit-serial random test technique............................ 149

6.5 Handshake implementations of a sequential circuit for random
pattern testability ...153

6.5.1 The design of a handshake sequential circuit 153
6.5.2 Parallel random testing .. 157
6.5.3 Bit-serial random testing.. 159

6.6 A case study of the AMULET2e memory controller 163
6.7 Built-in self-testing of micropipelines.. 167

6.7.1 Asynchronous BILBO register design... 167
6.7.2 Micropipeline structure with BIST features 171
6.7.3 Analysis of the BIST micropipeline structure 174

6.8 Summary... 175

Chapter 7 : Design for Testability of an Asynchronous Adder...... 177

7.1 AMULET1 asynchronous adder... 177
7.2 Single-rail asynchronous adder .. 179
7.3 Testing of a single-rail asynchronous adder... 181

7.3.1 Design for testability of the single-rail asynchronous adder 183

Contents

Page 5

7.4 Dual-rail implementation of an asynchronous adder............................ 186
7.5 Hybrid implementation of an asynchronous adder............................... 188
7.6 A case study of an asynchronous comparator 190
7.7 Summary... 191

Chapter 8 : The Design and Test of an Asynchronous

Block Sorter ... 193

8.1 Design of the asynchronous block sorter.. 193
8.2 Testing the block sorter .. 195

8.2.1 Fault model .. 195
8.2.2 Testable implementation of the sorting cell................................... 196
8.2.3 Design for testability of the block sorter 197

8.3 Procedure for changing the operation mode... 198
8.4 Test application .. 203

8.4.1 Scan testing.. 203
8.4.2 Built-in self testing .. 205

8.5 Simulation results and cost comparisons.. 206
8.5.1 Scan testable design... 206
8.5.2 Built-in self test design .. 207

8.6 Summary... 208

Chapter 9 : Conclusions and Future Work 210

9.1 Conclusions .. 210
9.2 Future work .. 214

9.2.1 Testing control circuits .. 214
9.2.2 Testing microprocessors .. 215

Appendix A : Testing of Synchronous VLSI Circuits 216

A.1 Test generation methods.. 216
A.1.1 Algorithmic test generation .. 216
A.1.2 Random pattern testing ... 218

A.2 Response evaluation techniques .. 219
A.2.1 Good response generation... 220
A.2.2 Signature analysis ... 220

Contents

Page 6

Appendix B : Design for Testability of Synchronous

VLSI Circuits .. 222

B.1 What is design for testability? ... 222
B.2 Ad-hoc techniques ... 222
B.3 Structural DFT approaches .. 224

B.3.1 Scan path ... 224
B.3.2 Level-sensitive scan design... 224

B.4 Built-in self-test ... 227

Appendix C : Testable Asynchronous Cells 230

Appendix D : AMULET2e memory controller.............................. 241

Appendix E : Asynchronous Block Sorter 243

E.1 Tangram program of the four-stage block sorter 243
E.2 Handshake implementations of the basic components of

the block sorter .. 245
E.2.1 Handshake implementation of the head cell 245
E.2.2 Handshake implementation of the sorting cell 245
E.2.3 Handshake implementation of the tail cell 247

References ... 248

Page 7

List of Figures

Figure 1.1: Standard handshake signalling protocol.. 24

Figure 1.2: Bundled-data protocol using two-phase transition signalling 25

Figure 1.3: Bundled-data protocol using four-phase transition signalling 25

Figure 1.4: An assembly of basic logic modules for events 30

Figure 1.5: A micropipeline with processing .. 31

Figure 1.6: AMULET1 event latch structure... 32

Figure 1.7: Single buffer stage: a) Tangram program;

b) handshake implementation ... 34

Figure 1.8: Handshake components a) repeater; b) sequencer; c) transferer;

d) storage element ... 36

Figure 2.1: Three-input NAND gate.. 41

Figure 2.2: Locations of line stuck-at faults and their interpretation in

a fragment of CMOS design ... 43

Figure 2.3: CMOS inverters: a) inverter with two logically untestable

stuck-at faults; b) testable inverter .. 44

Figure 2.4: D-element .. 47

Figure 2.5: Gate level implementation of the modified C-element 51

Figure 2.6: Huffman finite state machine a) and

its corresponding iterative combinational circuit b).......................... 52

Figure 3.1: Markov chain representing the mechanism of

changing the state of a circuit with one output 60

Figure 3.2: Logic elements and their transition probabilities 61

Figure 3.3: Average ouput information content of the two-input AND gate 64

Figure 3.4: Average ouput information content of the two-input XOR gate....... 64

Figure 3.5: Average ouput information content of the two-input

symmetric C-element .. 65

Figure 3.6: Average ouput information content of the two-input

asymmetric C-element .. 65

Figure 3.7: Graph of function F(x,y) ... 68

Figure 3.8: Graph of function H(x,y)... 68

List of Figures

Page 8

Figure 3.9: Graph of function e(x,y).. 69

Figure 4.1: Symmetric C-elements: a) symbol of the two-input C-element;

b) and c) static C-elements; d) pseudo-static C-element................... 73

Figure 4.2: Locations of stuck-open faults in the static symmetric C-element ... 75

Figure 4.3: Locations of stuck-at faults in the static C-element 77

Figure 4.4: Static OR-AND type asymmetric C-element: a) symbol;

b) gate level representation; c) CMOS implementation.................... 79

Figure 4.5: Static AND-OR type asymmetric C-element: a) symbol;

b) gate level representation; c) CMOS implementation.................... 80

Figure 4.6: Static asymmetric C-elements testable for stuck-open faults:

a) OR-AND type asymmetric C-element;

b) AND-OR type asymmetric C-element.. 81

Figure 4.7: Static OR-AND type asymmetric C-element testable for

stuck-at faults .. 84

Figure 4.8: Pseudo-static symmetric C-element with scan features 87

Figure 4.9: CALL element with scan features... 89

Figure 5.1: Two-phase control for a normally closed latch 92

Figure 5.2: a) Simple and b) semi-decoupled four-phase control for

a normally closed latch.. 93

Figure 5.3: Single-phase static latch .. 94

Figure 5.4: CMOS implementation of the scan latch .. 96

Figure 5.5: Scan register .. 98

Figure 5.6: A micropipeline with scan features... 99

Figure 5.7: Scan test control logic for a two-phase micropipeline 100

Figure 5.8: Scan test control logic for a four-phase micropipeline 101

Figure 5.9: Two-phase sequential circuit... 106

Figure 5.10: Latch control of the sequential circuit.. 107

Figure 5.11: Four-phase asynchronous sequential circuit with

normally closed registers Reg1 and Reg2....................................... 107

Figure 5.12: Two-phase sequential circuit with scan features............................ 109

Figure 5.13: Asymmetric C-element: a) symbol; b) CMOS implementation;

c) testable CMOS implementation .. 111

Figure 5.14: Testable 3-stage four-phase semi-decoupled latch control circuit . 112

Figure 5.15: AMULET2 register destination decoder .. 116

List of Figures

Page 9

Figure 5.16: Gate-level implementations of the RS latch using:

a) a conventional RS latch; b) a symmetric C-element................... 117

Figure 5.17: CMOS implementation of the symmetric C-element with

an active low reset input... 120

Figure 5.18: AMULET2 register destination decoder with scan features 121

Figure 6.1: Asynchronous a) pseudo-random pattern generator;

b) signature analyser based on using a synchronous LFSR 128

Figure 6.2: Four-phase latch control.. 128

Figure 6.3: Handshake implementations of the a) autonomous;

b) request-driven pseudo-random pattern generators; and

c) the signature analyser.. 130

Figure 6.4: Random test interface using a) the autonomous generator;

b) the request-driven generator ... 131

Figure 6.5: An implementation of the passivator .. 131

Figure 6.6: Mechanisms for generating pseudo-random vectors using

a) even and b) odd outputs of the LFSR ... 133

Figure 6.7: Four-phase sequential circuit with the normally

closed Reg1 and the normally transparent Reg2............................. 135

Figure 6.8: Two-phase sequential circuit with parallel random testing............. 137

Figure 6.9: Four-phase sequential circuit with parallel random testing 137

Figure 6.10: Asymmetric C-element: a) symbol; b) CMOS implementation;

c) testable CMOS implementation .. 140

Figure 6.11: Two-phase sequential circuit with bit-serial random testing 142

Figure 6.12: The mechanism for a) applying test patterns to the inputs of

the CLB and b) compressing the responses from the outputs of

the CLB during the test ... 144

Figure 6.13: Compressing the test data from the internal outputs of the CLB:

a) the structure of the signature analyser;

b) the equivalent schematic of the signature analyser..................... 145

Figure 6.14: Four-phase sequential circuit with bit-serial random testing 147

Figure 6.15: Handshake implementation of a sequential circuit 153

Figure 6.16: Handshake implementations of the a) combine element;

b) fork; c) combinational circuit; d) bitwise XOR operation;

e) case element; f) mixer; g) multiplexer .. 155

List of Figures

Page 10

Figure 6.17: Procedure SC performed by the sequential circuit

shown in Figure 6.15... 156

Figure 6.18: Handshake sequential circuit with parallel random testing............ 157

Figure 6.19: Parallel random testing procedure SC_PRT 158

Figure 6.20: Handshake sequential circuit with bit-serial random testing 160

Figure 6.21: Bit-serial random testing procedure SC_BST................................ 162

Figure 6.22: Block diagram of the AMULET2e microprocessor....................... 163

Figure 6.23: Graph dependencies between the percentage of

detected faults and the number of random tests applied to

the inputs of the memory controller without testability features

(graph 1) and the one designed for testability (graph 2) 165

Figure 6.24: CMOS implementation of the BILBO register latch 167

Figure 6.25: Asynchronous BILBO register structure.. 168

Figure 6.26: A two-stage micropipeline with BIST features.............................. 171

Figure 7.1: Single-rail implementation of an asynchronous 1-bit full adder:

a) using multiplexers; b) using logic gates...................................... 178

Figure 7.2: Asynchronous 8-bit adder with single-rail data encoding............... 180

Figure 7.3: Control part of the single-rail 8-bit adder 181

Figure 7.4: Testable asynchronous 1-bit full adder with

single-rail data encoding ... 183

Figure 7.5: Asymmetric C-element notation ... 184

Figure 7.6: Transistor level implementation of the NAND/INV gate 184

Figure 7.7: Control part of the single-rail 8-bit adder in test mode. 185

Figure 7.8: Implementations of a) a dual-rail asynchronous 1-bit full adder;

b) a conversion element between single-rail and dual-rail data

encoding; c) a dual-rail multiplexer; d) a dual-rail XOR gate. 187

Figure 7.9: Dual-rail implementation of an asynchronous 8-bit adder.............. 188

Figure 7.10: Hybrid implementation of an asynchronous 1-bit full adder 189

Figure 7.11: Asynchronous 8-bit comparator ... 191

Figure 8.1: High level design of the block sorter .. 194

Figure 8.2: Block diagram of the sorting cell .. 194

Figure 8.3: Testable sorting cell .. 196

Figure 8.4: Scan testable design of the block sorter .. 198

Figure 8.5: Four-phase arbiter: a) symbol; b) high level; and

c) gate level implementations.. 199

List of Figures

Page 11

Figure 8.6: Procedure for changing the operation mode of the sorting cells..... 201

Figure 8.7: Implementation of the multiplexer.. 202

Figure 8.8: Mechanism for converting a two-phase signalling along

channel ChMode2 into a four-phase signalling along

channel ChMode4 ... 203

Figure 8.9: Handshake implementation of the scan-in block 204

Figure 8.10: Four-phase bit-serial shift register ... 204

Figure 8.11: Procedure ScanIn performed by the circuit shown in Figure 8.9... 205

Figure A.1: Path sensitization technique .. 217

Figure A.2: Four-bit pseudo-random pattern generator...................................... 219

Figure A.3: Four-stage serial signature analyser .. 221

Figure A.4: Four-stage parallel signature analyser... 221

Figure B.1: Using shift registers for improving (a) control access;

(b) observation access ... 223

Figure B.2: Polarity hold latch a) symbolic representation;

b) implementation in NAND gates ... 225

Figure B.3: LSSD structure .. 226

Figure B.4: Basic BILBO element ... 227

Figure B.5: Self-testing structure with BILBOs... 228

Figure E.1: Head cell.. 245

Figure E.2: Sorting cell .. 246

Figure E.3: Tail cell.. 247

Page 12

List of Tables

Table 2.1: Test set for stuck-at faults in the three input NAND gate..................41

Table 2.2: Tests for stuck-at and stuck-open faults of the inverter in

Figure 2.3b ...45

Table 4.1: Tests for stuck-open faults of the symmetric C-element in

Figure 4.2 ...76

Table 4.2: Operation modes of the C-element in Figure 4.276

Table 4.3: Tests for stuck-at faults of the C-element in Figure 4.3.....................78

Table 4.4: Tests for stuck-open faults of the OR-AND type

asymmetric C-element ...82

Table 4.5: Tests for stuck-open faults of the AND-OR type

asymmetric C-element ...82

Table 4.6: Operation modes of asymmetric C-elements

shown in Figure 4.6..83

Table 4.7: Tests for stuck-at faults of the asymmetric C-element in

Figure 4.7 ...85

Table 4.8: Tests for stuck-open faults of the C-element in Figure 4.8................88

Table 4.9: Summary of costs of the testable C-elements90

Table 5.1: Data path delays for the basic and scan latches97

Table 5.2: Two-phase scan test control delays..100

Table 5.3: Four-phase scan test control delays..101

Table 5.4: State tables for a conventional RS latch and

the C-element performed its function ..119

Table 5.5: Cost comparisons for the AMULET2 register destination

decoder designs ..125

Table 6.1: State sequence of the 2-bit PRPG ..132

Table 6.2: Two-phase implementations of the AMULET2e memory

controller ..164

Table 6.3: Four-phase implementations of the AMULET2e memory

controller ..164

List of Tables

Page 13

Table 6.4: Handshake implementations of the AMULET2e memory

controller ..164

Table 6.5: Operation modes of the BILBO register in Figure 6.25...................169

Table 7.1: Truth table for the full adder ..178

Table 7.2: Truth table for the full adder carry output..178

Table 7.3: Simulation results of the comparator using

different adder designs ...192

Table 8.1: Simulation results and cost comparisons ...208

Table 9.1: Testability of micropipeline structures...212

Table A.1: State sequence of the four-bit LFSR shown in Figure A.2b 220

Table C.1: Names of the testable cells and their meanings 230

Table D.1: State table for the AMULET2e memory controller 241

Page 14

Abstract

Asynchronous design methodologies are a subject of growing research interest since
they appear to offer benefits in low power applications and promise greater design mod-
ularity. However, before these advantages can be exploited commercially, it must be
shown that asynchronous circuits can be tested effectively in volume production. This
thesis presents the results of research into various aspects of the design for testability of
asynchronous circuits.

Low power is often achieved by minimising circuit activity. However, testable designs
require high transition probabilities. It is shown that design for testability and design for
low power are in direct conflict. As a result, the more testable a circuit is, the more
power it consumes. The resolution of this conflict can be found in the separation of nor-
mal operation and test modes. In test mode the circuit activity is increased, dissipating
more power.

Many asynchronous designs use Muller C-elements in a large variety of applications
including both control and data paths. Testable CMOS designs for C-elements are pre-
sented which provide for the detection of transistor stuck-at and stuck-open faults.

The scan test technique is used to test stuck-at and delay faults in micropipelines. This
technique is generalised to the design for testability of either two-phase or four-phase
micropipelines. An asynchronous built-in self test (BIST) micropipeline design based
on the BILBO technique is presented. The proposed design for the BILBO register
allows stuck-at and delay faults to be detected inside the combinational circuits of the
micropipeline.

Structural designs for random pattern testability techniques applicable to asynchronous
sequential circuits are described. The proposed random test procedure provides for the
detection of all single stuck-at faults in the control and data paths of the sequential cir-
cuit under test, reducing the overall test complexity to the testing of its combinational
network.

Case studies of testable implementations of some high-level asynchronous functions,
including an adder and a block sorter, are analysed for their testability, performance and
area cost. These designs show that, as expected, there is a trade-off to be made between
testability and cost. However, satisfactory testability can be achieved for a circuit
designed with a small area overhead for test circuitry and little performance degrada-
tion.

Page 15

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or institute

of learning.

Page 16

Copyright and the ownership of intellectual

property rights

Copyright in text of this thesis rests with the Author. Copies (by any process) either in

full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the John Rylands University Library of Manchester. Details may

be obtained from the Librarian. This page must form part of any such copies made. Fur-

ther copies (by any process) of copies made in accordance with such instructions may

not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this thesis

is vested in the University of Manchester, subject to any prior agreements to the con-

trary, and may not be made available for use by third parties without the written permis-

sion of the University, which will prescribe the terms and conditions of any such

agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Head of Department of the Department of Computer

Science.

Page 17

Acknowledgements

During the years which I have spent in the Department of Computer Science at the Uni-

versity of Manchester I have received a great deal of help from many people, without

which the work described in this thesis would not have been achievable.

My supervisor Professor Steve Furber has been a great source of inspiration and moral

support. I would like to express my gratitude for his constant interest in my ideas and

research results and for correcting and commenting on drafts of this thesis.

The other members of the AMULET research group have created a friendly and com-

fortable atmosphere in which I have carried out my research. I am grateful to God that I

had the opportunity to conduct my research in the AMULET group which for me was a

rich source of ideas and vital material for the realization of my research results. I would

like to thank all of those people who have spent their valuable time to help me to under-

stand asynchronous VLSI design techniques.

I am especially grateful to Phil Endecott for his help and useful tips with theFrame-

Maker design environment. Many thanks to Craig Farnsworth whose invaluable practi-

cal recommendations and consultations with theCadence design environment and the

SIMIC design verification tools made it possible to implement my ideas in practice.

Some people have helped by reading and commenting on drafts of this thesis as well. I

must express my thanks to Phil Endecott and David Gilbert for their useful comments.

Page 18

The Author

Oleg Petlin obtained an Engineering degree (1989) and a Candidate of Technical Sci-

ences degree (1993) in Computer Science from Kiev Polytechnical Institute (Ukraine).

In 1994 he received a Master of Science degree in Computer Science from the Univer-

sity of Manchester.

This thesis is the result of three years of research as a member of the AMULET research

group at the University of Manchester. AMULET (Asynchronous Microprocessors

Using Low Energy Techniques) comprises several projects looking at different areas

where asynchronous logic techniques can be applied.

Page 19

To my mother

Page 20

Chapter 1 : Asynchronous VLSI

Circuits

This chapter starts by describing the major advantages of using asynchronous VLSI

designs and provides an overview of the asynchronous design methodologies and tech-

niques developed so far. Subsequent sections present descriptions of the micropipeline

and handshake circuit design methodologies which are the basic asynchronous design

styles used in the work described in this thesis. The importance of developing asynchro-

nous design for testability (DFT) techniques is discussed. Finally, the last section con-

tains a thesis overview describing the structure of this thesis and the results published by

the author.

1.1 Asynchronous VLSI circuits

Very Large Scale Integration (VLSI) circuits designed using modern Computer-Aided

Design (CAD) tools are becoming faster and larger, incorporating millions of smaller

transistors on a chip [Rice82, Russ87, Weste93]. VLSI designs can be divided into two

major classes: synchronous and asynchronous circuits. Synchronous circuits use global

clock signals which are distributed throughout their subcircuits to ensure correct timing

and to synchronize their data processing mechanisms. Asynchronous circuits contain no

global clocks. Their operation is controlled by locally generated signals [Mead80].

1.1.1 Motivation for using asynchronous circuits

A resurgence of interest in the design of asynchronous circuits has been stimulated by

their potential advantages compared to their synchronous counterparts:

• The absence of the clock skew problem. The largest problem with clocking in VLSI

circuits lies in distributing the clock at the same instant to all clocked elements across

Asynchronous VLSI Circuits

Page 21

the chip. “Clock skew” describes the phenomenon whereby different parts of the

VLSI system see the clock at slightly different times due to delay variations in the

clock interconnections. Clock distribution schemes which minimise the clock-skew

window become more and more costly in modern VLSI designs. This is because

modern state of art VLSI technology tends to use smaller transistors in larger chips

which increases the importance of physical delays along wires in a chip rather than

signal delays through transistors. For instance, the clock driver circuitry in the DEC

Alpha microprocessor occupies about 10% of the chip area [Dob93]. In asynchro-

nous circuits, the clock skew problem no longer exists since they do not use synchro-

nization clocks to control their operation.

• Performance. The fixed clock period in synchronous circuits is chosen using worst-

case performance analysis. As a consequence, synchronous circuits perform at their

worst-case rates. In asynchronous circuits, the communication between separate

blocks on the chip occurs when the data is ready to be transmitted. As a result, asyn-

chronous designs can exhibit typical case performance rather than worst-case per-

formance.

• Power consumption. The power consumption of VLSI circuits is important in porta-

ble digital systems since a design objective is to maximize the life of lightweight bat-

tery packs. All parts of a synchronous VLSI design are clocked even if they do not

produce “useful” results. In asynchronous circuits, only those parts of the circuit

which produce meaningful results are involved in the computation process. As a

result, the use of asynchronous circuits can lead to lower power consumption

[Birt95].

• Timing and design flexibility. If a synchronous VLSI circuit is required to work at a

higher clock frequency, all parts of the circuit must be improved to operate within the

shorter clock period. In an asynchronous circuit, performance can be enhanced by

modifying only the most active parts of the design using innovations in VLSI tech-

nology. Since asynchronous circuits communicate using signalling protocols rather

than clocks the modified components must only obey the requirements of the com-

Asynchronous VLSI Circuits

Page 22

munication protocol. In principal, greater throughput for synchronous circuits can be

achieved only when all VLSI components are realized on a new technology.

• Adoption to environmental variations. Changing environmental conditions can sig-

nificantly vary the logic delays in VLSI circuits. Synchronous circuits are simulated

extensively under a wide variation of parameters such as supply voltage and operat-

ing temperature to ensure that the chosen clock period guarantees correct operation

under all specified conditions. The adaptability of asynchronous VLSI circuits allows

them to function correctly under large environmental variations by allowing them to

operate more quickly or more slowly accordingly.

The advantages of asynchronous circuits have not yet been fully realised due to the fol-

lowing reasons:

• The design of asynchronous VLSI circuits for specific applications appears to be dif-

ficult due to the lack of suitable CAD tools.

• Special techniques for removing hazards in asynchronous circuits often lead to a sig-

nificant increase in silicon area [Lav93, Brzo95a].

Nevertheless, a growing interest from industry in asynchronous circuits is stimulating

research in design methodologies which can be used to develop efficient asynchronous

VLSI designs which could compete successfully in a market presently dominated by

synchronous circuits.

1.2 Asynchronous VLSI design methodologies

A large number of existing asynchronous design approaches can be classified using the

following three main criteria:

• delay models;

• data representation;

• signalling protocols.

Asynchronous VLSI Circuits

Page 23

1.2.1 Delay models in VLSI circuits

Delay models can be divided into three categories: fixed, bounded and unbounded delay

models. In the fixed delay model, the delay is assumed to have a fixed value. According

to the bounded delay model the delay may have any value in a given interval. In the

unbounded delay model, the delay can have any finite value. Delays in digital circuits

are associated with wires and gates. In principle, a circuit model is defined by its func-

tion and delay models for its wires and components [Birt95, Brzo95a].

Depending on the delay model assumption asynchronous circuits can be classified into

three major groups: delay-insensitive, speed-independent and bounded-delay circuits

[Birt95]:

• In delay-insensitive circuits all delays in gates and wires are allowed to be arbitrary

but finite.

• Gate delays inspeed-independent circuits are arbitrary and finite but signal transmis-

sions along wires are instantaneous. This assumption allows the use of the isochronic

fork [Berk91] where transitions on the forked parts arrive at their destinations at the

same time.

• A bounded-delay circuit uses the bounded delay model to ensure correct data

processing. In this model the delays through the data paths of the circuit are known

and bounded whereas the control logic remains delay-insensitive.

1.2.2 Data representation

Data in asynchronous circuits can be represented using either dual-rail or single-rail data

encoding.

Both delay-insensitive and speed-independent implementations require dual-rail encod-

ing of data where each data bit is represented by two wires: a “zero” propagation wire

Asynchronous VLSI Circuits

Page 24

and a “one” propagation wire. A standard level-sensitive dual-rail data encoding tech-

nique has four states:

• 00 - “initial state; data is not valid”;

• 10 - “transmission of a logical zero”;

• 01- “transmission of a logical one”;

• 11 - “illegal state”.

Once the data has been transmitted the wires must be returned to their initial state. Thus,

the presence of new data is indicated by a transition on one of the propagation wires.

The illegal state is not used in dual-rail data encoding.

The major disadvantage of using the dual-rail data representation compared to single-

rail data encoding, where each wire represents one bit of binary information, is that its

implementation requires twice as many wires and, as a consequence, leads to larger cir-

cuits. Bounded-delay asynchronous circuits allow the use of single-rail data encoding

where combinational logic circuits similar to those used in synchronous designs can be

used directly. This offers a significant reduction in silicon area.

1.2.3 Signalling protocols

Most asynchronous communications are based on using signalling protocols which

define a “handshake” procedure between two computation blocks [Berk93]. A typical

handshake protocol for a bundled-data system between a sender and a receiver is shown

SENDER RECEIVER

Request

Acknowledge

Data

Figure 1.1: Standard handshake signalling protocol

Asynchronous VLSI Circuits

Page 25

in Figure 1.1. According to this signalling scheme two control signals are required:

“request” and “acknowledge”. The request signal is used to initiate an action and the

acknowledge signal indicates the completion of the requested action. These control sig-

nals carry all the necessary timing information to provide for proper data communica-

tion. In the handshake protocol, there are always the initiator of the action which

generates the request and the passive circuit which waits for a request and then generates

the acknowledge. The full and empty circles in Figure 1.1 denote the active and the pas-

sive partners in the handshake procedure respectively.

Two transition signalling schemes can be used to implement an asynchronous signalling

protocol: two-phase (non-return to zero) and four-phase (return to zero) signalling

[Lav93, Birt95]. Figure 1.2 illustrates the two-phase bundled data signalling protocol.

There are two active phases in the communication process: the signal transitions (rising

or falling) on the request and acknowledge wires. An event on the request or the

Figure 1.2: Bundled-data protocol using two-phase transition signalling

Data

Acknowledge

Request

sender’s action receiver’s action

Figure 1.3: Bundled-data protocol using four-phase transition signalling

Request

Data

Acknowledge

Asynchronous VLSI Circuits

Page 26

acknowledge control line terminates the active phase of the sender or the receiver

respectively. During the receiver’s active phase the sender must hold its data unchanged.

Once the receiver generates an acknowledge event new data can be produced by the

sender. In Figure 1.2 solid and dashed lines represent the sender’s and the receiver’s

actions respectively.

A four-phase transition signalling protocol is shown in Figure 1.3. In this protocol the

actions of the receiver and the sender are terminated when both the request and the

acknowledge signals are returned to zero.

Note that the dual-rail data representation requires (2n+1) wires (2n for then-bits of data

and 1 for the acknowledge) to send ann-bit word of data from the sender to the receiver.

A separate request signal is not needed since the presence of new data can be identified

by transitions on then pairs of data wires.

Each signalling protocol has advantages and disadvantages. For example, four-phase

signalling requires twice as many signal transitions as two-phase signalling, dissipating

more energy. Four-phase control circuits are usually smaller than two-phase circuits but

they are more difficult to design [Furb96].

1.2.4 Asynchronous design styles

Delay-insensitive circuits

Molnar, et. al. introduced techniques to implement delay-insensitive circuits which can

be either clock-free or locally clocked (Q-modules) [Mol85]. High-level description lan-

guages such asOccam [Brun89] and atrace-based language [Eber87] were used by

Brunvand and Ebergen respectively to design module-based delay-insensitive circuits.

Specially developed automatic compilation procedures are applied to the high-level

design description in order to implement a delay-insensitive circuit.

Asynchronous VLSI Circuits

Page 27

Quasi delay-insensitive and speed-independent circuits

Martin proposed a methodology for designing so calledquasi delay-insensitive circuits

which differ from speed-independent circuits mainly in the assumption that all forks in

speed-independent circuits are isochronic, whereas quasi delay-insensitive circuits

allow forks to be either isochronic or delay-insensitive. The design process includes two

main steps:

• the developing of the high-level specification using thecommunicating sequential

processes (CSP) [Mart90] language;

• the translation of the high-level specification into a circuit implementation.

Philips research laboratories developed theTangram programming language which is

similar to CSP. A set of tools providing for the compilation of the Tangram program in a

handshake circuit has been implemented [Berk88, Berk91].

Several reports proposed a number of design techniques for speed-independent circuits

[Chu87, Meng89]. These design approaches are based on the high-level circuit specifi-

cation in the form of signal transition graph (STG).

Bounded-delay circuits

Bounded-delay circuits use thefundamental-mode assumption that the environment

must wait for long enough for the output data to stabilize on the circuit outputs. The

principles of fundamental-mode design techniques were developed first by Huffman

[Huff54] and later extended by Unger [Unger69].

A design approach to buildingburst-mode finite state machines was proposed by

Nowick et al. [Nowick91]. According to this approach:

• each state transition can occur under a certain set of input changes (so called aninput

burst) so that no burst from a particular state can be a subset of another burst from the

same state;

Asynchronous VLSI Circuits

Page 28

• any state must be entered with the same set of input values.

The proposed timing mechanism allows the burst-mode finite state machine to be

moved to a new state whenever the output associated with the previous state has

changed enabling the input signals to be changed.

Ivan Sutherland in his 1988 Turing Award lecture described an elegant approach to

building asynchronous pipelines called micropipelines [Suth89]. Micropipelines are

asynchronous, event-driven pipelines based on the bundled-data interface. In micropipe-

lines, the data is treated as a bundle, i.e. when the data produced by the sender is stable

the sender issues a request event to the receiver; the receiver acknowledges the receipt

of the data by sending an acknowledge event (see Figures 1.2 and 1.3). This handshak-

ing mechanism is repeated when further data is produced by the sender.

1.3 Motivation for the chosen design methodologies

As has been shown above there is a great variety of different asynchronous design tech-

niques. In this thesis the micropipeline and handshake circuit design methodologies are

considered for the following reasons:

• An asynchronous version of the ARM6 microprocessor (AMULET1) has been

designed by the AMULET research group at the Department of Computer Science in

the University of Manchester and fabricated by GEC Plessey Semiconductors Lim-

ited. AMULET1 was designed using the micropipeline design approach with two-

phase signalling which offers a good engineering framework for the design of com-

plex asynchronous VLSI circuits [Furb94, Pav94]. A second generation of asynchro-

nous ARM microprocessor called AMULET2 has recently been designed by the

AMULET group. The design of the AMULET2 microprocessor is based on the four-

phase micropipeline framework [Furb96].

• A great deal of engineering work has been carried out in the AMULET group to opti-

mise the design flow of asynchronous circuits initially described in the Tangram lan-

guage [Farn95, EdTR95]. In collaboration with Philips Research Laboratories an

Asynchronous VLSI Circuits

Page 29

effective design environment has been developed and incorporated within the

Cadence design framework usingSIMIC design verification tools [Farn95, Sim94].

As a result, during the design process which goes from the Tangram specification to a

circuit implementation an engineer may replace Tangram synthesised subcircuits

with more efficient hand-developed design solutions.

Therefore, the micropipeline and handshake circuit design styles have been chosen as

the basis of the work described in the rest of this thesis because of substantial design

experience and tools support existing within the AMULET group.

1.4 Micropipelines

As was mentioned above the micropipeline design approach is based on three funda-

mental principles:

• the pipelined organization of the computation;

• transition signalling;

• the bundled-data interface.

The micropipeline approach was described by Sutherland using event controlled ele-

ments which use two-phase transitions [Suth89].

1.4.1 Event controlled logic elements

Figure 1.4 shows an assembly of the most frequently used asynchronous logic modules

for two-phase transition events.

TheExclusive-OR (XOR) element can be used to merge two event streams: if an event

is received on either of the inputs of the XOR gate a response event will be produced on

its output.

The Muller C-element is a memory element which performs a logical AND of input

events. The C-element is sometimes called a “rendezvous” circuit for events since it

Asynchronous VLSI Circuits

Page 30

produces a rising or falling event only when rising or falling events have arrived at both

of its inputs respectively. Note that events can be generated on the inputs of the C-ele-

ment at different times. Thus, if the inputs of the C-element are different its output

remains unchanged and the C-element holds the previous state.

The Toggle element sends a transition alternately to one or other of its outputs when an

event appears on its input. The first event is generated on the output marked with a dot.

TheSelect module is a demultiplexer of events. It steers a transition to one of two out-

puts depending on the logical value on its control input (marked with a ‘diamond’ sym-

bol in Figure 1.4).

TheCall element serves a function which is similar to a subroutine call in programming.

It remembers which one of its two inputs received an event (r1 or r2) and calls the pro-

cedurer. Once the procedure is finished an event is generated on inputd and the Call

element produces a matchingdone event on the corresponding output (d1 or d2).

TOGGLE

SELECT

true false

r1

d1

d2

r2

r

dC
A

LL

g1

d1

g2

d2

r1

r2

A
R

B
IT

E
R

Exclusive-OR

Muller C-element

TOGGLE element

SELECT module ARBITER

CALL element

Figure 1.4: An assembly of basic logic modules for events

C

Asynchronous VLSI Circuits

Page 31

The Arbiter guarantees that both of its outputs are not active at the same time. The arbi-

tration function is in granting service (g1 or g2) to only one request (r1 or r2) at a time.

The other grant is delayed until after an event has taken place on the done wire (d1 or

d2) corresponding to the earlier grant. The behaviour of arbiter circuits is discussed else-

where [Chan73].

There are certain restrictions on the behaviour of the environment which generates

events to these elements. For instance, if two request signals arrive at the inputs of the

XOR gate at nearly the same time the XOR gate produces a spike on its output. This

spike can cause the asynchronous circuit to halt or to go into a metastable state. There-

fore the environment must not allow this to happen. Similarly, the request events to the

Call element must be mutually exclusive, i.e., the next request must be generated for the

Call element only when the previous request has been processed. More about the restric-

tions on the environment behaviour can be found elsewhere [Suth89, Birt95, Brzo95a].

1.4.2 Micropipeline structures

Figure 1.5 illustrates a three-stage micropipeline with processing. In the initial state all

the event registers of the micropipeline are transparent. A data value is sent to the left

event register (Reg1) by the environment. Once a request event is generated on control

line Rin the data is copied into register Reg1 which then signals events on its Rout and

Ain outputs. In this state event register Reg1 holds the data stable until it receives an

acknowledge signal on its Aout input. The request signal generated by register Reg1 is

delayed for enough time to allow the data on the outputs of the following logic block

(Logic1) to be stable. After receiving a request signal on input Rin the second event reg-

Figure 1.5: A micropipeline with processing

Rin Rout

Ain Aout

Event
Reg1

Rin Rout

Ain Aout

Event
Reg2

Logic1

delay Rin Rout

Ain Aout

Event
Reg3

Logic2

delay

Logic3

delay

DataIn DataOut

Rin Rout

Ain Aout

Asynchronous VLSI Circuits

Page 32

ister (Reg2) latches the data, acknowledges it by signalling an event on itsAin output

and generates a request signal on itsRout output for the next event register. As a result,

event registerReg1 is set to the transparent mode where it is ready to accept new data

from the environment. The data processing procedure described above is repeated for

the rest of the micropipeline stages. The output data produced by the micropipeline can

be read by the environment when a request signal is generated on itsRout output. Once

the output data is latched an acknowledge signal is sent to inputAout of the micropipe-

line. Every micropipeline stage works in parallel and sends data to the neighbouring

stage only when the data is ready to be processed.

There are different ways to control the latching and storing of the data in the micropipe-

line registers. For example, event-controlled latches described by Sutherland are con-

trolled by a pair of control signals such as “pass” and “capture” [Suth89]. In the initial

state all the register latches can be either transparent or in the capture mode depending

on the latch transition controlling protocol.

Figure 1.6 illustrates the design of the event latch widely used in the AMULET1 micro-

processor [Furb94, Day95, Birt95]. The design of the latch follows the two-phase transi-

tion signalling protocol shown in Figure 1.2. The XOR gate together with the toggle

element converts the two-phase signalling into a four-phase protocol. This is because

the latch is level-sensitive and is transparent when theEn signal is low and opaque when

En is high (see Figure 1.6).

Initially, the latch is transparent and all the control wires are reset. When a rising event is

sent to inputRin the output of the C-element goes high and the latch is closed, latching

Figure 1.6: AMULET1 event latch structure

to
gg

le

DataIn

DataOut Rout

latchEnC

Ain

Aout

Rin

Asynchronous VLSI Circuits

Page 33

the input data. The toggle element steers the rising event to its ‘dotted’ output. A rising

event on inputAout makes the latch transparent resetting itsenable input (En). A falling

event on the input of the toggle element causes a rising event to be generated on its

‘blank’ output priming the C-element. The operation of the latch is identical when a fall-

ing request signal is subsequently sent to its inputRin. Different latch structures and

their control in two-phase and four-phase micropipelines are discussed elsewhere

[Pav94, Day95, Furb96].

1.5 Handshake circuits

As was shown above many research groups are trying to develop effective CAD tools

which translate the behavioural specification of an asynchronous circuit into silicon.

One such example is the Tangram language developed by Philips Research Laboratories

[Berk88, Berk91, Scha93].

Tangram describes the VLSI circuit as a set of processes which communicate along

channels. The Tangram program is translated into an intermediate format called a hand-

shake circuit. Handshake circuits are composed of handshake components and channels

on which they communicate [Berk93]. Components communicate with each other along

channels using a four-phase signalling protocol. The result of compiling the Tangram

program is a silicon layout with particular performance, power consumption and silicon

area properties. The transparency of the compilation process makes it possible to go

back to the Tangram program level where it is easy to make improvements to the proper-

ties of the target VLSI design.

Consider the Tangram program for a single buffer stage shown in Figure 1.7a. This pro-

gram consists of three parts: anauxiliaries part, which is optional, anexternals part and

a command part [Scha93].

Theauxiliaries part includes preliminary definitions of constants, types, etc. This part is

separated from theexternals part by the symbol ‘|’. In our program theauxiliaries part

declares typeint of 8 bits.

Asynchronous VLSI Circuits

Page 34

Theexternals part defines a list of external channels. The program communicates along

these channels with the environment. An external channel is described using a name and

a direction (the channel description may contain a type definition). The description of an

input or output channel consists of the name and the symbol ‘?’ or ‘!’, which are fol-

lowed by an optional type, respectively. According to the Tangram program (see Figure

1.7a) the buffer communicates with the environment through the input channela and the

output channelb accepting and sending data of typeint.

Thecommand part of a Tangram program describes the behaviour of the program. In the

command part of the Tangram program shown in Figure 1.7a a variablex of typeint is

defined after keywordbegin which opens the scope (keywordend closes the scope).

Note that new names with their types, which are used within the scope, must be defined

only before the symbol ‘|’. The behaviour of the program must be described after the

symbol ‘|’. In the Tangram program of the buffer an input value is received along chan-

nel a and stored in variablex (a?x). During the next step (the sequence of steps is sepa-

rated by the symbol ‘;’) the value of variablex is transmitted via output channelb (b!x).

This procedure is repeated forever which is defined by the commandforever do ... od.

The Tangram program shown in Figure 1.7a is translated into the handshake circuit

illustrated in Figure 1.7b. The circuit contains several channels which connect the active

port (•) of one handshake component to the passive port (°) of another. The communica-

;

TT
x

*
➩�

a b

Figure 1.7: Single buffer stage: a) Tangram program; b) handshake
implementation

c

d e

wx rx

int = type [0..255]
|
(a?int & b!int) .
begin

x: var int
|

forever do
a?x ; b!x

od
end

a) b)

*

Asynchronous VLSI Circuits

Page 35

tion process is started by a handshake on the active end of the channel and completed

when an acknowledge is received from the passive end. The transmission of a new sig-

nal along a channel can start only after the receiver has confirmed the receipt of the pre-

vious transmission.

The environment activates the buffer along the activation channel (marked with➩) of

the component calledrepeater. The repeater performs the repetition operation (com-

mandforever do) along channelc. A sequencer process is triggered by a request signal

on the passive port of thesequencer component which performs the operator “;”. As a

result, the sequencer performs a handshake on channeld first (it is marked with *) and

then a handshake along channele. The output channels of the sequencer activate the cor-

respondingtransferer components marked withT. The left transferer is triggered first

along channeld, fetching the data from inputa and passing it to storage elementx. Once

the left transferer completes the handshake along channeld the right transferer is acti-

vated by a request signal generated on channele. As a result, the data is fetched from

storage elementx and transmitted to outputb.

Figure 1.8 illustrates implementations of the repeater (see Figure 1.8a), the sequencer

(see Figure 1.8b), the transferer (see Figure 1.8c) and the storage element (see Figure

1.8d) [Birt95, EdTR95, FarnTR96].

The inputs and outputs of the repeater are low in the initial state (see Figure 1.8a). When

ar↑ a rising event is generated on the request outputbr, i.e.,br↑. A rising acknowledge

event on inputba of the repeater sets its outputbr to zero. Whenba↓ a new rising request

is produced on outputbr of the repeater. Since the request on channela is never

acknowledged outputaa is grounded.

The order of events on the wires of the sequencer can be described as follows:

(ar↑ br↑ ba↑ x↓ br↓ ba↓ cr↑ ca↑ aa↑ ar↓ x↑ cr↓ ca↓ aa↓)*. (1.1)

Symbol “*” denotes that the sequence of events in parenthesis is repeated an infinite

number of times.

Asynchronous VLSI Circuits

Page 36

The transferer is activated along channel a producing a request for data on channel b.

When the data is ready to be transmitted channel c is activated. The completion of the

data transmission is indicated by an acknowledge signal along channel a.

The storage element shown in Figure 1.8d is implemented using an n-bit register built

from level-sensitive latches. When the data is stable on the DataIn inputs the ar signal

goes high making the register latches transparent. As a result, the data is stored in the

register. Note that the ar signal is buffered to ensure the required drive strength for the

enable signal. After that a rising event is produced on output aa, i.e., aa↑. Once ar↓ the

latches of the register are closed and then aa↓. If the data needs to be read a rising

request signal is produced on input br causing a rising event on output ba. Once the data

Figure 1.8: Handshake components a) repeater; b) sequencer; c) transferer;
d) storage element

aa

ar

br

ba

C

aaar

br

ba
cr

ca

aaar

br

ba cr

ca

n

DataIn DataOut

a)

b)

c)

x

*

a

b

;

a

b c

T

a

b
c

x

Reg

n a b

aa

ar

n

br

ba

DataIn DataOut

d)

B

En

Asynchronous VLSI Circuits

Page 37

is transmitted inputbr is returned to zero setting outputba to low. Designs of other hand-

shake components can be found elsewhere [Scha93, Birt95, FarnTR96].

1.6 Design for testability of asynchronous circuits

Although asynchronous VLSI circuits demonstrate potential advantages which allow

them to be used in designs with low power consumption, high component modularity

and average case performance, their commercial benefits can only be fully exploited if

asynchronous chips can be tested in volume production. The test procedure must guar-

antee a high fault coverage for a given class of faults in the circuit under test within a

given time interval.

The testing of asynchronous circuits for fabrication faults is more complex than that of

synchronous circuits. The major factors that complicate the testing of asynchronous cir-

cuits are [Hulg94]:

• The presence of a large number of state holding elements. This makes the generation

of tests hard or even impossible.

• The difficulty of detecting hazards and races.

• The absence of a global synchronization clock. This decreases the level of controlla-

bility of the states of the asynchronous circuit.

• Logic redundancy, which is introduced into asynchronous circuits to ensure their haz-

ard free behaviour, sacrifices testability. As a result, some stuck-at faults in redundant

parts of the asynchronous circuit cannot be detected by logic testing.

As a consequence, the developing of asynchronous DFT techniques which can facilitate

the testing of asynchronous VLSI circuits is an important problem which must be solved

before their potential can be realized commercially.

Asynchronous VLSI Circuits

Page 38

1.7 Thesis overview

Current results obtained so far in the field of testing asynchronous circuits are discussed

in chapter 2. This includes an analysis of reports devoted to fault modelling in asynchro-

nous VLSI circuits, test generation techniques and design for testability methods for

delay-insensitive, speed-independent and bounded-delay circuits.

A relationship between the power consumption and the testability of CMOS VLSI cir-

cuits is investigated in chapter 3. The method used to evaluate this relationship is based

on elements of information theory. It is shown that design for low power consumption

and design for testability are in direct conflict. The resolution of this conflict lies in sep-

arating the testing issues from the low power issues by giving the circuit distinct operat-

ing and test modes. These results have been submitted to IEEE Transactions on CAD for

publication [Pet95d].

Testable designs of static CMOS C-elements which provide for the detection of single

line stuck-at and stuck-open faults are given in chapter 4. It is shown that driving the

feedback transistors in the proposed testable static C-elements transforms their sequen-

tial functions into combinational ones depending on the driving logic value. This simpli-

fies the testing of asynchronous circuits which incorporate a large number of state

holding elements. The results presented in chapter 4 have been published as a technical

report from the Department of Computer Science, University of Manchester [PeTR95].

A method for designing micropipelines for testability is presented in chapter 5. The test

strategy is based on the scan test technique. The proposed test approach provides for the

detection of all single stuck-at and delay faults in micropipelines and sequential circuits

based on the micropipeline approach. Materials presented in chapter 5 have been pub-

lished in the proceedings of the 5th Great Lakes Symposium on VLSI, USA, [Pet95b]

and the 13th IEEE VLSI Test Symposium, USA, [Pet95c].

Chapter 6 presents two structural approaches to designing asynchronous sequential cir-

cuits for random pattern testability. The testable designs of two-phase and four-phase

sequential circuits are built using either the micropipeline design style or handshake

Asynchronous VLSI Circuits

Page 39

components. The proposed test procedures for such sequential circuits provide for the

separate testing of the combinational logic block and the memory elements. A case

study of the AMULET2e memory controller designed for random pattern testability is

presented to demonstrate the practicality of the proposed design approaches. Finally, a

BIST implementation of a micropipeline is considered. Some of the results described in

chapter 6 have been published in IEE Proceedings “Computer and Digital Techniques”

[Pet95a].

In chapter 7 different implementations of an asynchronous adder are investigated. It is

shown that the choice of single-rail, dual-rail or combined single and dual-rail (hybrid)

data encoding techniques in the adder design brings different trade-offs between the

testability, performance and area overhead. A case study of an asynchronous comparator

demonstrates that a hybrid implementation brings a reasonable compromise between the

area overhead, performance degradation and testing costs. These results have been pub-

lished in the IEE Colloquium on the Design and Test of Asynchronous Systems

[Pet96e].

The design for testability of an asynchronous block sorter is presented in chapter 8. Test-

able structures of the block sorter are implemented using the scan test and BIST design

methodologies.

Finally, chapter 9 gives the principle conclusions from the work described in this thesis

and suggests some directions for future research.

Page 40

Chapter 2 : Testing Asynchronous

Circuits - Related Work

This chapter provides an overview of fault models used to develop tests for fabrication

faults in VLSI circuits and some results reported so far in the field of testing and design

for testability of asynchronous VLSI circuits.

2.1 Fault models

Errors in VLSI circuits can be caused by physical faults such as physico-chemical disor-

ders of the technological process (threshold changes, short circuits, open circuits, etc.)

or changes in the environment conditions in which the VLSI circuits operate [Abrah86,

Russ89]. After fabrication a VLSI circuit must be tested to ensure that it is fault-free.

The testing of VLSI circuits for fabrication faults is implemented by applying a set of

test vectors to their primary inputs and observing test results on their primary outputs. If

the outputs of the circuit under test are different from the specification, the circuit is

faulty.

In order to derive tests for the circuit, the fault model and the circuit descriptive model

must be chosen. Obviously, the lower the level of circuit representation used in test pat-

tern generation, the more accurate the fault model will be. However, for modern VLSI

circuits having millions of transistors on a chip the transistor level description model

increases the test generation time drastically. As a result, the right choice of the fault

model and the level of the circuit representation can bring a reasonable compromise

between the test derivation time and the fault coverage.

Testing Asynchronous Circuits - Related Work

Page 41

2.1.1 Gate-level fault models

The stuck-at fault model. The most widely accepted fault model used to represent differ-

ent fabrication failures in VLSI designs is the stuck-at fault model [MClus86, Russ89,

Weste93]. A stuck-at fault on linea connects it to the power supply voltage (Vdd) or

ground (Vss) permanently. Originally the stuck-at fault model was designed to describe

the fault behaviour of the circuit under test at its gate level representation. Figure 2.1

shows a three-input NAND gate. A stuck-at-0 fault on inputA of the gate (1-SA0) pro-

duces a logic one on its output regardless of the values on the other inputs. This fault is

equivalent to 4-SA1 fault on outputY of the gate. Both faults are detected by applying

an ‘all ones’ test to the inputs. As a result, the fault-free response, which is zero, differs

from the fault response, which is one. Table 2.1 contains test vectors for the detection of

all stuck-at faults in the three-input NAND gate.

Table 2.1: Test set for stuck-at faults in the three input NAND gate

Inputs Output Detected Faults

A B C Y(Fault-free) Y (Faulty)

1 1 1 0 1 1,2,3-SA0; 4-SA1

0 1 1 1 0 1-SA1, 4-SA0

1 0 1 1 0 2-SA1, 4-SA0

1 1 0 1 0 3-SA1, 4-SA0

A

B

C

Y

Figure 2.1: Three-input NAND gate

A

B

C

Y

1

2

3

4

3-SA0

1-SA1

P1

N1

Testing Asynchronous Circuits - Related Work

Page 42

For any circuit the total number of all possible faulty circuits with multiple stuck-at

faults can be estimated as , wheren is the total number of signal nets. In practice,

only the single stuck-at fault model is considered to avoid an incredibly large number of

faulty circuits and to enable fault simulations to be performed in reasonable time.

The bridging fault model. Bridging faults are caused by shorts between signal lines in

the circuit. For instance, a short between lines 1 and 2 of the NAND gate shown in Fig-

ure 2.1 can be modelled in two ways: lines 1 and 2 are connected together using net 1 or

net 2 as an input. These faults can be detected by test (1,0,1) or (0,1,1) respectively. Note

that stuck-at faults can be modelled by shorts. For example, 1-SA1 fault is equivalent to

a short between the source and the gate of transistorP1, whereas 0-SA1 fault is equiva-

lent to a short between the source and the gate of transistorN1 (see Figure 2.1).

The delay fault model. A delay or transition fault alters the signal propagation delay

along the faulty line [Lala85, Agra92]. As a result, signals can arrive at the outputs of

the circuit before or after the time expected. Testing delay faults in asynchronous cir-

cuits is hard due to the absence of a synchronization clock.

2.1.2 Transistor-level fault models

Previous work concerning the accuracy of gate-level fault models has been reported.

Experimental results with test chips indicated that 20.8% of all faulty blocks had no

gate-level stuck-at faults [Panc92]. Other results have shown that 36% of all faults are of

the non-stuck-at variety [ShenM85]. According to these results the application of tests

which provide for the detection of all single gate-level stuck-at faults in the chosen chips

still “pass” faulty circuits. Fault models described at the transistor level are more accu-

rate and, hence, offer a better coverage of fabrication faults in the circuit under test. Line

stuck-at, stuck-open and bridging fault models are used to describe the effects of the

majority of fabrication faults in CMOS designs [Chen84, Abrah86, Russ89, Abra90].

The stuck-at fault model. As was mentioned above the stuck-at fault model assumes that

a fabrication failure causes the wire to be stuck permanently at a certain logical value.

3n 1–

Testing Asynchronous Circuits - Related Work

Page 43

Consider a fragment of a CMOS design (in Figure 2.2a) with possible locations of line

stuck-at faults. For instance, the stuck-at one fault in node 1 (1-SA1) is interpreted as a

break on line 1 with the gate ofn-type transistorN2 connected permanently to the power

supply voltage (in Figure 2.2b). The application of a constant voltage is marked with a

cross.

Fault 2-SA can be represented in three ways:

• the disconnection of transistorN1 from node 2 and setting its source to a logical value

(fault 2’-SA in Figure 2.2b);

• the disconnection of transistorN3 from node 2 and setting its source to a logical value

(fault 2’’-SA in Figure 2.2c);

• the disconnection of transistorN2 from node 2 and setting its drain to a logical value

(fault 2’’’-SA in Figure 2.2d).

Note that fault 2’’’-SA is equivalent to fault 1-SA0 when transistorN2 is permanently

off. Thus, fault 2’’’-SA can be excluded for the sake of simplicity. Notations 3’-SA or

3’’-SA denote a break on the left side of line 3 and setting a permanent logical value on

its right side or a break on the right side of line 3 and setting a permanent logical value

on its left side respectively (compare Figures 2.2b and 2.2c).

2 31
2’

3’1

2’’ 3’’
2’’’

a) b)

c) d)

Figure 2.2: Locations of line stuck-at faults and their interpretation in a fragment of
CMOS design

N1

N2

N3 N4

N1

N2

N3 N4

N1

N2

N3 N4

N1

N2

N3 N4

Testing Asynchronous Circuits - Related Work

Page 44

The basic CMOS inverter shown in Figure 2.3a consists of one of each of the two types

of transistor: a p-type and an n-type transistor [Weste93]. When input x is low the n tran-

sistor is off and the p transistor is on. Output y is connected to the power supply voltage

(Vdd) which corresponds to a logical one. If input x is high the n transistor is on and the

p transistor is off. Output y is connected to ground (Vss) which is a logical zero. Figure

2.3a shows line stuck-at fault locations in the CMOS inverter. For example, fault 1-SA1

of the inverter sets its output y to a constant logical zero. Input x of the inverter must be

set to low to detect this fault, whereupon output y remains low whereas the fault-free

response is high.

Consider fault 2-SA0 in the inverter illustrated in Figure 2.3a. This fault sets transistor

P1 permanently on. If input x is high both transistors P1 and N1 are on. This leads to an

uncertain situation when a logical one or zero can be registered by the test circuitry

depending on the strengths of the transistors. As a consequence, the detection of fault 2-

SA0 cannot be guaranteed by logic testing. Similar observations can be made for fault 3-

SA1.

The stuck-open fault. The stuck-open fault model represents a fault effect caused by a

fabrication failure which permanently disconnects the transistor pin from the circuit

node. Stuck-open faults can be opens on the gates, sources or drains of transistors. In the

presence of a single stuck-open fault (SO) there is no path from the output of the circuit

to either Vdd or Vss through the faulty transistor. For example, in the presence of fault

P1-SO (Figure 2.3a) output y cannot be set high since there is no connection between

Figure 2.3: CMOS inverters: a) inverter with two logically untestable stuck-at faults;
b) testable inverter

y

N1

P1

tp

tn

x x y

N1

P1

P2

N2

1

2

3

4

5

6

7

81

2

3

4

a) b)

Testing Asynchronous Circuits - Related Work

Page 45

Vdd and nodey. This fault can be identified by a set of two test patterns <T1=1,T2=0>

applied sequentially to inputx. As a result, the output of the faulty inverter remains low

whereas the output of the fault-free inverter is high. FaultN1-SO is detectable by a test

set <T1=0,T2=1>.

Figure 2.3b shows a CMOS inverter which is testable for all single stuck-at and stuck-

open faults. Two additional transistors (P1 andN1) controlled by two separate inputs are

inserted into the inverter shown in Figure 2.3a. Table 2.2 contains tests for line stuck-at

faults and transistor stuck-open faults in the inverter. Note that faults 4-SA0 and 5-SA1

are detectable by logic testing. For instance, a test sequence <T1=111,T2=100> applied

to the inputs of the inverter detects fault 4-SA0. The effect of fault 6-SA0 or 7-SA1 is a

‘weak zero’ (0w) or a ‘weak one’ (1w) output signal respectively. These voltage levels

are very close to the corresponding logical 1 and 0 voltage levels since outputy was pre-

viously set to the same logical values. Faults 1-SA1 or 3-SA0 result in a ‘floating zero’

Table 2.2: Tests for stuck-at and stuck-open faults of the inverter in Figure 2.3b

Single
SA0
faults

Single
SA1
faults

Single
SO

faults
Test sequences

Fault-free
output

Faulty out-
put

x tn tp y y

2 8 1 1 0 0 1

8 2 0 1 0 1 0

1,4 P1,P2 1 1 0 0 0

0 1 0 1 0’

3,5 N1,N2 0 1 0 1 1

1 1 0 0 1’

4 1 1 1 0 0

1 0 0 0’ 1

5 0 0 0 1 1

0 1 1 1’ 0

1 6 1 1 1 0 0

0 1 1 0’ 1

7 3 0 0 0 1 1

1 0 0 1’ 0

6 1 1 0 0 0

0 1 0 1 0w

7 0 1 0 1 1

1 1 0 0 1w

Testing Asynchronous Circuits - Related Work

Page 46

(0’) or ‘floating one’ (1’) output signal respectively. The output capacitance of the

inverter can be considered as a dynamic memory element which keeps its precharged

value for a certain time. It is assumed that the time between the application of two test

vectors is small enough not to allow a floating output voltage level to reach the CMOS

threshold level [Wad78, Red86, Weste93]. Hereafter we will treat weak and floating log-

ical values as normal ones. A stuck-at fault on the gate of a CMOS transistor keeps the

transistor on or off permanently depending of the type of fault. Thus, transistor stuck-

open faults in CMOS designs can be represented by their correspondent gate stuck-at

faults. For instance, fault 5-SA0 on the gate of transistorN2 is equivalent to faultN2-SO

(see Figure 2.3b). As a result, testing for stuck-at faults of the inverter illustrated in Fig-

ure 2.3b guarantees the detection of all its stuck-open faults.

The bridging fault model. It has been shown that in CMOS technology a bridging fault

at the transistor level can convert a combinational circuit to a sequential one [Lala85].

This creates extra problems for detecting such faults. Some bridging faults at the transis-

tor level representation of the circuit under test have no logic realizations at the gate

level. Testing for such faults requires the circuit structure to be tested which is not easy

[Russ89].

2.2 Testing delay-insensitive and speed-independent circuits

It has been observed that stuck-at faults in delay-insensitive circuits, where each transi-

tion is confirmed by another, cause the whole circuit to halt; this is called the self-diag-

nostic property of delay insensitive circuits [Dav90]. A stuck-at fault on a line is

equivalent to an infinite signal propagation delay along this line. As a result, a transition

that is supposed to occur does not happen because of a stuck-at fault; this is called an

inhibited transition [Haz92]. A fault that causes an inhibited transition eventually makes

the delay-insensitive circuit deadlock which is easy to detect. A request is issued to the

circuit under test whereafter an acknowledge signal is assumed to arrive within a

bounded time. If the acknowledge signal does not arrive within the specified time, the

circuit is considered to be faulty.

Testing Asynchronous Circuits - Related Work

Page 47

For instance, according to the four-phase protocol (see Figure 1.3) the environment gen-

erates the following inputs:

Req↑; [Ack]; Req↓; [¬Ack]. (2.1)

The circuit responds with:

[Req]; Ack↑; [¬Req]; Ack↓, (2.2)

where ahandshake expansion [exp] denotes the waiting for the Boolean expression

(exp) to become true [Mart89].

As a result, in the presence of a stuck-at fault on any of the control lines (Req or Ack)

either the environment or the faulty circuit will wait forever.

It has been observed that speed-independent circuits are self-checking in the presence of

output stuck-at faults [Beerel92]. Some stuck-at input faults in speed-independent cir-

cuits can cause premature firing. Premature firing is a transition which happens too early

according to the fault-free circuit specification. The detection of such faults requires a

special testability analysis to be carried out [Haz92]. Figure 2.4 illustrates an implemen-

tation of a D-element which sequences two four-phase handshakes [Huz92, Hulg94].

The functioning of the D-element can be described by the following specification:

*[[li]; u↑; [u]; lo↑ [¬li]; ro↑; [ri]; u↓; [¬u]; ro↓; [¬ri]; lo↓] (2.3)

The D-element shown in Figure 2.4 is a speed-independent circuit with two isochronic

forks with inputsli andri respectively. It is easy to show that all output stuck-at faults in

the D-element cause the circuit to halt. Consider an input stuck-at-0 fault on netr2.

C
li

lo

ro

ri

Figure 2.4: D-element

l1

l2 u

r1

r2

Testing Asynchronous Circuits - Related Work

Page 48

According to specification (2.3) outputlo goes low afterri is reset. In the presence of

fault r2-SA0 outputlo is prematurely set to zero by a falling event on netu which must

happen after resetting inputri. Faultl1-SA0 causes a premature firing on outputro. Note

that the D-element demonstrates the self-checking property for any other input stuck-at

faults.

A successful proposal to adapt known test generation algorithms for testing delay-insen-

sitive circuits using the stuck-at fault model has been reported [Haz92]. A technique to

test delay-insensitive circuits was synthesized from a high-level specification. It used

the high-level synthesis method for delay-insensitive circuits that was developed by

Martin [Mart89]. It has been shown that it is possible to derive conditions for inhibited

and premature transitions in the presence of a stuck-at fault [Haz92]. The goal of the

proposed test generation approach is to find a sequence of input events which puts the

faulty circuit in one of the states where it generates a premature transition or halts.

Clearly, it is enough to find a test which causes the circuit to halt in order to detect a

fault. It is more difficult to derive a test for faults which cause only premature firings.

Combinational logic in a synchronous design is a feedback-free network of logic ele-

ments which calculates a function of the primary inputs. There are similar feedback-free

delay-insensitive circuits which make their computations without buffering the result,

although they contain state-holding elements. It was shown that any delay-insensitive

circuit in which:

1) there are no feedback lines at the gate level;

2) each production rule for an up-transition (down-transition) has only positive (nega-

tive) literals in its guard;

can be reduced to a standard combinational logic circuit to ease the testing procedure. It

has been proved that any test which detects all testable faults in this combinational net-

work can also detect all testable faults in the corresponding delay-insensitive circuit.

Testing Asynchronous Circuits - Related Work

Page 49

The standard D-algorithm (see Appendix A) can be extended to obtain test patterns for

stuck-at faults in delay-insensitive combinational circuits. Regular forward and back-

ward propagation techniques can be used for such circuits. The major difference with

combinational circuits is that there are some state-holding elements in delay-insensitive

combinational circuits. It is necessary to take into consideration whether the circuit is in

an up-going or a down-going phase for propagating a fault through a state-holding ele-

ment.

Forward propagation. Let S be a state-holding element. TransformS into by replac-

ing the guard for the down-transition with the negation of the guard for the up-transition.

Gate is a combinational gate and is equivalent toS during the up-phase. Thus, the

propagation of D and is the same forS as for . For instance, ifS is a C-element,

then is an AND gate. During a down-phase,S propagates a faulty signal if the output

of the gate is 1 after the up-phase. TransformS into by replacing the guard for the up-

transition with the negation of the guard for the down-transition. Then is a combina-

tional gate which is equivalent toS during the down-phase, if the output ofS is 1 after

the up-phase. The propagation ofD and is the same forS as for . If S is a C-ele-

ment then is an OR gate.

Backward propagation. TransformS into for the up-phase and for the down-

phase. The backward propagation for these combinational circuits is the same as it was

described before. IfS is a C-element with outputD then all its inputs must be 1 for

detection during an up-phase, and at least one input is 1 for detection during a down-

phase. If the output is then during an up-phase at least one input is 0; during a down-

phase all the inputs are 0.

The design for testability of delay-insensitive circuits has been discussed [Haz92]. It

was shown that each fault in a delay-insensitive circuit can be made testable by means

of ad hoc techniques (see Appendix B). The addition of test points, which can be either

control or observation points, alleviates the testability problems greatly. If a premature

firing is unstable then a control point is needed; if the premature firing is not propagated

to a primary output then an observation point is needed. It was shown how to find a

Su

Su

D Su

Su

Sd

Sd

D Sd

Sd

Su Sd

D

Testing Asynchronous Circuits - Related Work

Page 50

place where a test point must be inserted. For VLSI circuits which are pad-limited, it

was proposed to merge the test points together into a queue. A fully testable design for

such a test queue was derived.

A test strategy for handshake circuits has been described [Ron93]. This approach is

based on a simple test procedure for which handshake components are enhanced with a

special test operation. As a result, the test generation time for stuck-at faults is linear in

the size of the VLSI circuit. Unfortunately, it does not address the testing issues of the

circuit’s data paths. A partial scan test technique for asynchronous circuits has been

described by Marly Roncken [Ron94]. Taking the digital compact cassette (DCC) error

corrector decoder as an example it was shown how an asynchronous partial scan test

technique can be adapted for a high-level VLSI programming environment. The DCC

error corrector decoder performs in test and normal operation modes. An asymmetric

isochronic fork was used to switch the mode of operation of the circuit. It is assumed

that there is a particular branch on which transitions are guaranteed to move more

quickly along this fork. Unfortunately, the use of the asymmetric isochronic fork does

not allow the change of mode to be implemented using delay-insensitive control logic.

The reported scan solution was designed for testing the error corrector and a controller

which use dual-rail data encoding.

A partial scan test methodology for detecting stuck-at faults in control parts of macro-

module based asynchronous circuits has been described [Khoc95]. The proposed test

strategy is more effective than the conventional full-scan approach since it requires

fewer scan testable memory elements and, also, it demonstrates a high level of fault cov-

erage. In test mode, the scanning of test vectors into the scan path is implemented using

a clock whereas the circuit performs asynchronously in normal operation mode. A scan

latch selection strategy has been introduced which is based on a structural and testability

analysis of the circuit. Once the scan path has been selected the proposed test algorithm

allows the detection of faults in the elements of the control part which are not included

into the scan test path. The remaining network consists of XOR gates and C-elements.

Modifications to the Select block and C-element were introduced in order to fit their

Testing Asynchronous Circuits - Related Work

Page 51

testable implementations to the partial scan environment. Figure 2.5 illustrates a gate

level implementation of the modified C-element which can perform as an AND gate or

an OR gate. The C-element operates as an OR gate if an additional test input (Tst) is

high. The C-element performs the AND function of its inputs by pulsing the global reset

signal (Reset) high. As a result, a network of modified C-elements can be tested in the

same way as a combinational circuit.

2.3 Testing bounded delay circuits

2.3.1 Testing asynchronous sequential circuits

The earliest asynchronous sequential circuits were designed using Huffman finite state

machines [Unger69]. Figure 2.6a illustrates a Huffman finite state machine. This

machine consists of combinational logic (CL), primary inputs (PI), primary outputs

(PO) and feedback state variables. States are stored on feedback loops which may be

constructed using delay elements. The combinational logic is fed by the primary inputs

and the state inputs (SI) which are produced by the feed-back delay elements. After the

application of each input vector to thePI inputs the state machine moves into a new

state changing its state outputs (SO) and generating a new vector on its primary outputs.

The Huffman model shown in Figure 2.6a can be used to design bounded delay asyn-

chronous circuits. Since we need to make sure that the combinational logic has settled in

response to a new input before the present-state entries change, the choice of proper

delay elements is important.

Figure 2.5: Gate level implementation of the modified C-element

A
B C

Reset

Tst

Testing Asynchronous Circuits - Related Work

Page 52

An algorithm for generating tests to detect stuck-at faults in asynchronous sequential

circuits based on the Huffman model has been reported [Putz71]. This algorithm is

based upon an extension of the D-algorithm (see Appendix A). It was assumed that a

stuck-at faultF modifies only the logical function ofS. The basic test strategy proposed

consists of the following steps:

1) transform the detection procedure of faultF in S into the detection of a corresponding

set of faults in an iterative combinational logic circuit derived fromS;

2) extend the D-algorithm to derive a testT for in ;

3) simulate the test inS to verify whether or notT is a test forF.

After cutting feedback lines the original circuitS becomes acyclic as shown in Figure

2.6b. The acyclic circuitCL has primary inputs (PI) primary outputs (PO) and primary

pseudo-inputs (SI) and pseudo-outputs (SO) which are introduced by the cutting points.

If it is necessary to find a test forF in S of lengthr, that is a sequence of lengthr of pri-

mary input patterns which detectsF, thenS is modified into a sequence ofr identical

combinational networks , , with primary inputs , pseudo-inputs ,

F
r

CL
r

F
r

CL
r

Combinational

logic

Delay elements

PI PO

SI SO
(CL)

CL1 CL2 CLr

PI1

SI1

PI2PO1 PO2 PIr POr

SOr

Figure 2.6: Huffman finite state machine a) and its corresponding iterative
combinational circuit b)

a)

b)

CLi 1 i r≤ ≤ PI i SI i

Testing Asynchronous Circuits - Related Work

Page 53

pseudo-outputs and outputs . The pseudo-outputs of are identical to the

pseudo-inputs of (see Figure 2.6b).

The modified D-algorithm is used to find a test for set faults in with the follow-

ing conditions:

1) the derived test cannot be dependent upon any of the pseudo-inputsSI of ;

2) an effect of faultF must be visible at one of the primary outputsPO.

As a result, the test consists of an ordered set ofr input patterns applied to the primary

inputsPI of S. After that the behaviour ofS is simulated while applying the derived set

of patterns. If during the simulation no races or hazards are registered inS, then the test

is accepted as a test for faultF in S.

A set of formal methods has been developed to design testable asynchronous sequential

circuits [Suss84, Li88, Keut91]. For example, it was proposed to add one or at most two

state variables, one extra input and to use one or more observable outputs in order to

make the sequential circuit under test strongly connected and testable through scan-out

features [Suss84, Li88]. An asynchronous sequential network is strongly connected if

any stable state can be reached from any other state. The scan-out technique is applied

directly to the flow table describing the asynchronous sequential circuit to be tested. The

test procedure proposed is based on verifying the flow table of the circuit under test. As

a result, no fault models are used. The use of this approach is limited by the complexity

of the circuit to be tested and becomes impractical for asynchronous VLSI circuits. The

test technique does not guarantee both hazard-free operation and hazard-free robust

path-delay-fault testability of asynchronous circuits.

Some heuristic techniques and procedures to design asynchronous circuits which are

simultaneously hazard-free, robust path-delay-fault testable and hazard-free in operation

have been reported [Keut91]. The synthesis of asynchronous sequential circuits is per-

formed using a high level specification, the signal transition graph. Using an appropriate

delay model it is possible to design asynchronous circuits which are hazard-free. The

SOi POi CLi

CLi 1+

F
r

CL
r

CL
r

Testing Asynchronous Circuits - Related Work

Page 54

test procedure uses scan techniques to apply each pair of test vectors to detect an appro-

priate path-delay-fault in a robust and hazard-free manner. In such asynchronous circuits

every latch can be scanned to increase controllability and observability of its inputs and

outputs. It was shown that there is a negligible area or delay penalty required to achieve

robust path-delay-fault testability. Nevertheless, the test approach imposes strict limita-

tions on the speed at which the circuit can be tested.

A scan test technique for asynchronous sequential logic circuits synthesized from either

a Huffman model or a signal transition graph has been reported [Wey93]. Scan-latches

similar to the LSSD polarity hold latches (see Appendix B) are used to design the mem-

ory elements of the testable sequential circuit. The proposed scan test procedure pro-

vides for the detection of stuck-at faults in the asynchronous sequential circuit, reducing

the test generation problem to one of just testing the combinational circuit.

2.3.2 Testing micropipelines

There are a few works devoted to fault modelling and fault testing problems in micropi-

pelines [Pag92, Khoc94]. Stuck-at faults in thecontrol part, combinationallogic blocks

and latches of the micropipeline have been considered [Pag92].

Faults in the control part

These are faults on the inputs and outputs of the C-elements and the request and

acknowledge lines of the micropipeline (see Figures 1.5 and 1.6). As was shown the

micropipeline moves through at most one step and then halts in the presence of a stuck-

at fault in its control part. Thus, such stuck-at faults can be identified easily during nor-

mal operation mode.

Faults in the processing logic

It was assumed that all the latches of the micropipeline are transparent initially [Pag92].

This allows the processing logic to be treated as a single combinational circuit. To detect

Testing Asynchronous Circuits - Related Work

Page 55

any of the single stuck-at faults in such a circuit test vectors can be obtained using any

known test generation technique [Cheng89, Russ89].

Therefore, the test procedure for the micropipeline consists of two major steps:

1) the micropipeline is emptied, i.e. all the latches are transparent;

2) the test vectors are applied to the inputs of the micropipeline and the responses of the

micropipeline are compared with good responses.

Faults in the latches

It is assumed that the combinational logic obtained after setting the latches in the trans-

parent mode has no redundant faults.

Single stuck-at faults. Any stuck-at fault on the inputs or outputs of the latch is equiva-

lent to the appropriate fault in the combinational logic. A stuck-at fault on the control

lines of the latch (see Figure 1.6) prevents the generation of any events in the latch. This

causes the micropipeline to halt. The absence of activity in the micropipeline can easily

be identified and, hence, there is no need for test generation for such faults.

Single stuck-at-capture faults. A single stuck-at-capture fault in a latch causes a register

bit of the latch to remain permanently in capture position. For example, a stuck-at-1

fault on theenable input of the latch shown in Figure 1.6 sets the faulty latch in capture

mode permanently. As an effect of this fault, the faulty bit can be captured as a constant

logic one or zero. When all the latches of the micropipeline are transparent this fault is

equivalent to an appropriate stuck-at fault on a line of the combinational logic. Thus,

stuck-at-capture faults can be easily detected using standard tests for stuck-at faults in

combinational networks.

Single stuck-at-pass faults. These faults set a register bit of a latch in pass mode perma-

nently. A stuck-at-0 fault on the enable input of the latch illustrated in Figure 1.6 makes

Testing Asynchronous Circuits - Related Work

Page 56

the faulty latch transparent permanently. A two pattern test is required to detect this kind

of fault.

Consider a stuck-at-pass fault on a bit of thek-th latch of the micropipeline. Let the

faulty bit of the latch be connected to line l of the complete combinational network (CN)

obtained by switching all the latches into the pass mode. The test for the faulty bit con-

sists of two patterns, say and , which are applied one after another. Pattern is

the test pattern for a stuck-at-z fault on linel of CN, wherez is a logical value which is

equal to 1 or 0. Pattern is the test vector which forces linel to be set to logic valuez.

These test patterns can be obtained easily by means of standard test generation methods

for combinational circuits.

The test procedure for detecting a stuck-at-pass fault in the micropipeline is the follow-

ing:

1. Apply pattern to the inputs of the micropipeline while all the latches are in the

pass mode. Put thek-th latch in the capture mode. As a result, linel has been set to

logic . The response is observed at the outputs of the micropipeline.

2. Apply pattern to the inputs of the micropipeline. Thus, linel of CN has been

driven to logicz since the faulty bit of the latch is connected to linel of CN; other

lines of the latch are at their logical values corresponding to pattern. This causes

at least one output of the micropipeline to be different from the fault-free response.

Scan testing of micropipelines

An elegant scan test approach has been proposed by Khoche and Brunvand [Khoc94].

The micropipeline can act in two modes: normal operation and scan test mode. The

micropipeline performs to its specification in normal operation mode. In test mode, all

the latches are configured into one shift register where each latch works as an ordinary

master-slave flip-flop. The stage registers of the micropipeline are clocked through the

control lines where theAout input is used as a clock input. The C-elements pass their

negated inputs onto the outputs forming a clocking line for the scan path. As a result, the

P1 P2 P1

P2

P1

z

P2

P1

Testing Asynchronous Circuits - Related Work

Page 57

test patterns are loaded from the scan-in input into all the latches of the micropipeline.

Afterwards the micropipeline is returned to normal operation mode in which only one

request signal is generated. To observe the contents of the register latches the micropipe-

line is set to scan test mode. The contents of all the latches are shifted out to the scan-out

output. The test technique described allows the detection of all the stuck-at faults and

bundling constraint violations in micropipelines. However, this scan test technique has

been developed only for micropipelines which use a two-phase transition signalling pro-

tocol. The proposed scan test interface uses clocks produced by a clock generator which

is not always available in asynchronous VLSI designs.

2.4 Summary

The most widely used fault models chosen to describe fault behaviours of asynchronous

circuits are stuck-at and delay (transition) faults. The more strict the limitations that are

imposed to the delays in the asynchronous circuits, the more thorough the testability

analysis that is required.

Testing asynchronous VLSI designs presents new problems which must be addressed

before their commercial potential can be realized. The logic redundancy which is

involved in the design of asynchronous circuits to ensure their hazard-free behaviour

makes their testing difficult or even impossible. Testing for hazards and races in circuits

without a synchronization clock is not trivial.

The scan test technique has been adapted well to the testing of asynchronous circuits.

However, design for testability problems for asynchronous circuits have not been well

addressed because of the difficulties described above.

Page 58

Chapter 3 : Power Consumption

and Testability of

CMOS VLSI Circuits

After fabrication, a digital circuit must be tested to ensure that it is fault free. This is not

an easy task since the increasing number of logic elements placed on a chip leads to a

reduction in the controllability and observability of the internal nodes of the circuits.

DFT methods have been developed for digital circuits to facilitate their testing for fabri-

cation faults (see Appendix B). Since DFT methods affect the circuit design, this raises

the question: “How do DFT methods affect the power consumption of a circuit?”.

A relationship between the power consumption and the testability of CMOS VLSI cir-

cuits is demonstrated in this chapter. The method used to estimate this correlation is

based on elements of information theory. It is shown that design for low power con-

sumption and design for testability are in direct conflict. The resolution of this conflict

lies in separating the testing issues from the low power issues by giving the circuit dis-

tinct operating and test modes.

3.1 Power consumption of CMOS circuits

The rapid development of CMOS technology makes transistors smaller allowing a chip

to incorporate ever larger numbers of them [Weste93]. CMOS VLSI circuits are increas-

ingly used in portable environments where power and heat dissipation are vital issues.

Examples of such applications are portable calculators, digital watches, mobile compu-

ter systems, etc. As a result, the power dissipation of CMOS VLSI circuits is a growing

concern for design engineers.

Power Consumption and Testability of CMOS VLSI Circuits

Page 59

The power dissipated by CMOS circuits can be divided into three categories [Weste93,

Deng94]:

• static power consumption due to leakage current (PWstat);

• dynamic power dissipation caused by switching transition current (PWsw);

• transient short-circuit current (PWsc).

The total power dissipation of a CMOS circuit can therefore be represented by the fol-

lowing sum:

. (3.1)

In ‘well-designed’ data processing circuits the switching power is typically from 70% to

95% of the total power consumption (if the circuit is badly-designed the proportion of

static and short-circuit power dissipation increases) [Veen84].

The majority of power estimation tools are oriented towards calculating only the aver-

age switching power of CMOS circuits using the following formula [Deng94]:

, (3.2)

wheref is the clock frequency for synchronous circuits or the parameter which estimates

the average circuit activity for asynchronous circuits;Vdd is the power supply voltage;

M is the total number of nodes in the circuit;Ci is thei-th nodal capacitance; is the

transition probability of thei-th node.

3.2 Information theory and digital circuits

Output node capacitances create memories in static CMOS circuits. The circuit itself

can also have state holding elements. Let us consider a circuit with one output. This cir-

cuit has only two possible states: zero and one. The circuit changes its states during the

application of patterns to its inputs. This process can be represented by the Markov

PWtotal PWstat PWsw PWsc+ +=

PWsw f V
2
dd Ptri

Ci⋅()
i 1=

M

∑⋅ ⋅=

Ptri

Power Consumption and Testability of CMOS VLSI Circuits

Page 60

chain shown in Figure 3.1 regardless of whether the circuit is a sequential one or a com-

binational one. The Markov chain contains two states marked by zero and one. The tran-

sition probabilities between the states are placed on the corresponding arcs of the chain

where pi(j) denotes the probability of the transition from state i to state j (i,j=0,1).

The following system of equations describes the behaviour of the Markov chain illus-

trated in Figure 3.1:

,

, (3.3)

,

where P0 and P1 are the probabilities of state 0 and state 1, respectively.

Note that for the Markov chain shown in Figure 3.1

, (3.4)

. (3.5)

Solving system (3.3) the probabilities of states 0 and 1 can be found as

, (3.6)

. (3.7)

Thus, only two transition probabilities p0(1) and p1(0) are required to describe fully the

behaviour of the circuit with one output.

Figure 3.1: Markov chain representing the mechanism of changing the state of a
circuit with one output

p1(1)

p1(0)

p0(1)

p0(0) 0 1

P0 P0 p0 0()⋅ P1 p1 0()⋅+=

P1 P0 p0 1()⋅ P1 p1 1()⋅+=

P1 P0+ 1=

p0 1() p0 0()+ 1=

p1 0() p1 1()+ 1=

P1 p0 1() p0 1() p1 0()+()⁄=

P0 p1 0() p0 1() p1 0()+()⁄=

Power Consumption and Testability of CMOS VLSI Circuits

Page 61

For combinational circuits

, (3.8)

, (3.9)

where . As a result, and .

Figure 3.2 shows six two-input logic blocks and their transition probabilities. It is

assumed that the input signal probabilitiespa and pb are independent. The last three

logic blocks shown in Figure 3.2 are Muller C-elements [Brzo95b].

The logic function of the two-input symmetric C-element (the first C-element) is

, (3.10)

wherea andb are the inputs;ct is the output of the C-element at timet.

p0 1() p1 1() p= =

p1 0() p0 0() q= =

p q+ 1= P1 p= P0 q=

ct a b a ct 1–⋅ b ct 1–⋅+ +⋅=

C

pa

pb

pa

pb

pa

pb

pa

pb

Figure 3.2: Logic elements and their transition probabilities

C
pa

pb +

C
pa

pb

-

p0(1) = pa + pb - papb

p0(1) = papb

p0(1) = pa + pb - 2papb

p0(1) = papb

p0(1) = papb

p0(1) = pb

p1(0) = qaqb

p1(0) = qa

p1(0) = qaqb

Power Consumption and Testability of CMOS VLSI Circuits

Page 62

The output of the symmetric C-element is high or low when both inputs are high or low,

respectively. The C-element preserves its current state when the inputs are different. In

order to calculate the output signal probability of the two-input symmetric C-element

equations (3.6) and (3.7) can be used. As a result,

, (3.11)

. (3.12)

The last two C-elements are asymmetric C-elements which perform different functions:

- for the second C-element:

, (3.13)

- for the third C-element:

. (3.14)

The output of the asymmetric C-element which performs according to function (3.13) is

high if both its inputs are high and low if only inputa is low. It keeps its current state

zero when inputa or b is low and preserves state one if inputa is high. The output of the

asymmetric C-element whose behaviour is described by function (3.14) is low if both its

inputs are low and high if inputb is high. It does not change its current state zero if input

b is low and preserves its state one if inputa or b is high. The state probabilities of the

asymmetric C-elements can easily be found using equations (3.6) and (3.7).

Let us estimate the average information content on the output of a circuit. According to

information theory, the average information content or entropy (H) of a discrete finite

state type source is [Shan64, Rosie66]

, (3.15)

wherePj is the probability of statej; pj(i) is the probability of the transition from statej

to statei.

P1 pa pb⋅ pa pb⋅ qa qb⋅+()⁄=

P0 qa qb⋅ pa pb⋅ qa qb⋅+()⁄=

ct a b a ct 1–⋅+⋅=

ct b a ct 1–⋅+=

H PiHi
i

∑ Pjpj i()
2
pj i()log

i j,
∑–= =

Power Consumption and Testability of CMOS VLSI Circuits

Page 63

Thus, the average output information content of the circuit described by the Markov

process shown in Figure 3.1 is calculated as follows:

, (3.16)

i.e.,

. (3.17)

The average information content on the output of the combinational circuit is equal to

. (3.18)

Let and then

, (3.19)

where

 and .

In order to find an extremum of functionH(x,y) the following system of two equations

must be solved:

,

(3.20)

.

System (3.20) can be modified as

,

(3.21)

.

H P0H0 P1H1+=

H P0p0 0()
2
p0 0() P0p0 1()

2
p0 1()log–log–=

P1p1 0()
2
p1 0() P1p1 1()

2
p1 1()log–log–

H p
2
p 1 p–()

2
1 p–()log–log–=

p0 1() x= p1 0() y=

H x y,() x
x y+
-----------H y()–

y
x y+
-----------H x()–=

H y() y 2 y 1 y–() 2 1 y–()log+log= H x() x 2 x 1 x–() 2 1 x–()log+log=

x∂
∂

H x y,() 0=

y∂
∂

H x y,() 0=

x y+() 2 1 x–()log 2 xlog–() H y() H x()–+ 0=

x y+() 2 1 y–()log 2 ylog–() H x() H y()–+ 0=

Power Consumption and Testability of CMOS VLSI Circuits

Page 64

The only solution of system (3.21) is x=y=0.5. It is easy to show that

.

Thus, the maximum information content can be reached when all the transitions

between the various states of the circuit are equiprobable. This result can easily be gen-

eralised for any number of circuit states.

Figures 3.3 and 3. 4 illustrate graphically the dependencies between the average output

information content (H) and the input signal probabilities pa and pb of the two-input

AND and XOR gate, respectively. Figures 3.5 and 3.6 show graphs Hc(pa,pb) and

Hac(pa,pb) of the two-input symmetric and asymmetric C-elements which perform

according to equations (3.10) and (3.13), respectively. Note that the maximum informa-

tion content is reached when the output transition probabilities of the logic elements are

equal to 0.5. For instance, Hand=1 when papb=0.5. For the XOR gate (see Figure 3.4),

Max H x y,()() H 0.5 0.5,() 1= =

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0
0.2
0.4
0.6
0.8

1

Figure 3.3: Average ouput information content of the two-input AND gate

pa
pb

Hand

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0
0.2
0.4
0.6
0.8

1

Figure 3.4: Average ouput information content of the two-input XOR gate

Hxor

pa
pb

Power Consumption and Testability of CMOS VLSI Circuits

Page 65

Hxor=1 when pa=0.5 or pb=0.5. The maximum value of the average output information

content of the symmetric C-element (see Figure 3.5) never reaches 1 (MAX(Hc)=0.81)

even when its probability of state 1 or 0 is 0.5 (when pa=pb=0.5). In fact, the transition

probabilities of the symmetric C-element can never be equal to 0.5. The average output

information content of the asymmetric C-element described by equation (3.13) reaches

1 at point (pa=0.5; pb=1) (see Figure 3.6). This is because the asymmetric C-element

works as a repeater of the information from its input a when b=1.

3.3 Information content and transition probability

Let us consider the following expression:

. (3.22)

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0
0.1
0.3
0.5
0.7
0.9

Figure 3.5: Average ouput information content of the two-input symmetric C-element

Hc

pa

pb

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0
0.2
0.4
0.6
0.8

1

Figure 3.6: Average ouput information content of the two-input asymmetric C-
element

Hac

pa

pb

2 vlog vln
2ln

--------=

Power Consumption and Testability of CMOS VLSI Circuits

Page 66

It is known that

,

where [Bost84].

Hence,

. (3.23)

Equation (3.23) can be substituted by the following inequality:

(3.24)

since for .

Taking into account equation (3.22) and inequality (3.24), equation (3.17) can easily be

transformed into the following inequality:

. (3.25)

Inequality (3.25) can be simplified bearing in mind the basic relationships between tran-

sition probabilities of the Markov process described by equations (3.4) and (3.5). Hence,

or

. (3.26)

Substituting the probabilities of states 1 and 0 by expressions (3.6) and (3.7), respec-

tively, inequality (3.26) can be written as

, (3.27)

1 v–()ln– v
r

r

r 1=

∞

∑=

0 v 1<≤

vln– 1 v–() r

r

r 1=

∞

∑ 1 v–() 1 v–() r 1–

r

r 1=

∞

∑= =

v 1 v–≥ln–

1 v–() r 1–

r

r 1=

∞

∑ 1≥ 0 v 1< <

H 2 P0p0 0() 1 p0 0()–[] P0p0 1() 1 p– 0 1()[]+≥ln

P+ 1p1 0() 1 p1 0()–[] P1p1 1() 1 p– 1 1()[]+

H 2 P0p0 0() p0 1() P0p0 1() p0 0()+≥ln

P1p1 0() p1 1() P1p1 1() p1 0()+ +

H 2 P0p0 0() p0 1() P1p1 1() p1 0()+[] 2ln⁄≥

H γ
2p0 1() p1 0()
p0 1() p1 0()+
-------------------------------------≥

Power Consumption and Testability of CMOS VLSI Circuits

Page 67

where

 and .

The signal transition probability (Ptr) on the output of the circuit is calculated as fol-

lows:

. (3.28)

The following equation can be derived by substituting state probabilitiesP1 andP0 in

equation (3.28) by expressions (3.6) and (3.7), respectively:

. (3.29)

The comparison of expressions (3.27) and (3.29) allows us to conclude that

. (3.30)

For combinational circuits (see equations 3.8 and 3.9) the following expressions can

easily be obtained:

, , . (3.31)

Therefore, the average output information content and the output signal transition prob-

ability correlate strongly.

Consider the following function:

, (3.32)

where variablesx andy have the same meaning as in equation (3.19).

γ
p0 0() p1 1()+

2ln
-------------------------------------= γ 0≥

Ptr P0p0 1() P1p1 0()+=

Ptr

2p0 1() p1 0()
p0 1() p1 0()+
-------------------------------------=

H γPtr≥

H
2pq

2ln
---------≥ Ptr 2pq= γ 2ln() 1–

=

F x y,() γ x y,() Ptr x y,() 2xy 2 x– y–()
x y+() 2ln

------------------------------------= =

Power Consumption and Testability of CMOS VLSI Circuits

Page 68

In order to find an extremum of functionF(x,y) the following system of two equations

must be solved:

,

(3.33)

.

After trivial manipulations system (3.33) is modified to

,

(3.34)

.

x∂
∂

F x y,() 0=

y∂
∂

F x y,() 0=

Figure 3.7: Graph of function F(x,y)

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0

0.2

0.4

0.6

0.8

x
y

F(x,y)

2y x y+() 2⁄ 1– 0=

Figure 3.8: Graph of function H(x,y)

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0
0.2
0.4
0.6
0.8

1

x
y

H(x,y)

2x x y+() 2⁄ 1– 0=

Power Consumption and Testability of CMOS VLSI Circuits

Page 69

The solution of system (3.34) isx=y=0.5. It can easily be shown that

.

Thus, functionsH(x,y) andF(x,y) exhibit very similar behaviour. The only difference is

thatH(x,y) is always greater than or equal toF(x,y) when . Figures 3.7 and

3.8 illustrate graphs of functionsH(x,y) andF(x,y) respectively.

In order to estimate how close functionsH(x,y) andF(x,y) are, we investigate the fol-

lowing function:

, (3.35)

whereε(x,y) is the absolute error between functionH(x,y) and its approximationF(x,y).

It is trivial to prove that the maximum of functionε(x,y) is reached at the point when

x=y=0.5 (Max(ε(x,y))=0.28). As a result, the maximum absolute error of approximation

F(x,y) can never be more than 28%. Figure 3.9 shows a graph of functionε(x,y).

3.4 Discussion

It has been shown that the testability of a circuit is proportional to its output information

content [Agra81]. This means that the more information the nodes of the digital circuit

carry to its outputs, the more testable the circuit is, and vice versa. The dynamic power

consumption of a CMOS circuit is also proportional to the transition probabilities of its

Max F x y,()() F 0.5 0.5,() 2 2ln() 1–
= =

0 x y, 1≤ ≤

ε x y,() H x y,() F x y,()–=

0.1 0.3 0.5 0.7 0.9 0.1
0.3

0.5
0.7

0.9

0

0.1

0.2

0.3

Figure 3.9: Graph of function ε(x,y)

ε(x,y)

x
y

Power Consumption and Testability of CMOS VLSI Circuits

Page 70

nodes (see equation (3.2)). Hence, the more testable a circuit is, the more dynamic

power it dissipates. The converse statement, that the more power consuming the circuit

is the more testable it is, can be justified only if the increase in the circuit power dissipa-

tion is caused by increased activity in its nodes.

Shen et al. observed that both the random pattern testability and the power dissipation of

a combinational logic network are linked to the signal probabilities of its nodes

[ShenG92]. They proposed probability modification techniques to restructure the com-

binational networks to improve both their transition signal probabilities and their power

dissipations but these delivered insignificant improvements.

Williams and Angell showed that increasing the transition probabilities in the nodes of a

circuit improves its controllability and, therefore, its testability [Will73]. The testability

of the circuit can also be improved by inserting test points at some of its nodes, increas-

ing the observability of the circuit. Improving controllability has a direct power cost due

to the increased number of transitions, whereas improving observability only marginally

increases the power dissipation due to an increased switched capacitance.

Clearly, the power dissipation of a digital circuit is of interest principally when it is in

operation in its intended application. Power consumption during test is not usually

important. An approach which offers a compromise between testability and power con-

sumption is to design the circuit to work in two distinct operating modes. In normal

operation mode, it performs the specified function dissipating minimal or close to mini-

mal switching energy. The circuit is set to test mode to make its testing simple. During

the test, the circuit is tested extensively dissipating more energy.

3.5 Summary

It has been shown that the testability of CMOS VLSI circuits correlates with the switch-

ing power that they dissipate. The mathematical dependencies presented allow us to

conclude that improving the testability features of a CMOS circuit leads to an increase

in its switching power dissipation. As a result, design for testability and design for low

Power Consumption and Testability of CMOS VLSI Circuits

Page 71

power dissipation are in direct conflict. This conflict can be resolved by separating the

testing issues from low power issues so that the circuit can operate in normal operation

and test modes. This is the approach that has been used in the examples considered in

the following chapters.

Page 72

Chapter 4 : Designing C-elements

for Testability

4.1 Introduction

C-elements are used widely in asynchronous VLSI designs. As a result, the correct func-

tioning of C-elements is important for the whole asynchronous system in which they are

used. Brzozowski and Raahemifar showed that the testing of stuck-at faults in different

designs of the C-element is not trivial [Brzo95b]. It has been observed that stuck-at

faults of the C-element fall into one of the following categories:

1) faults that are detectable by logic testing since they halt the circuit or change its func-

tion;

2) faults that are detectable by delay measurements;

3) faults that may result in an oscillation;

4) faults that may destroy the speed-independence of the circuit;

5) faults that are detectable by measuring the current.

The goal of this chapter is to present different CMOS implementations of static symmet-

ric and asymmetric C-elements which provide for the detection of line stuck-at and tran-

sistor stuck-open faults using logic testing. Simulation results for the extracted layouts

of all the CMOS C-element designs considered in this chapter can be found in Appendix

C.

Designing C-elements for Testability

Page 73

4.2 Symmetric C-element CMOS designs

Figure 4.1a shows a symbolic representation of the two-input symmetric C-element with

inputsa, b and outputc. As was mentioned in chapter 1 the symmetric C-element is a

state holding element the output of which is high when its inputs are high and low when

its inputs are low. Any other input combination does not change the state of the C-ele-

ment. There are different ways to implement static symmetric C-elements in CMOS

technology. Figure 4.1b shows a CMOS C-element which performs according to equa-

tion (3.10). For example, whena=1 andb=1 there is a path betweenVss and the input of

inverterinv. As a result, outputc of the C-element is high and feedbackn-type transistor

N5 is on. If the inputs of the C-element are different there is always a connection

betweenVss and the input of inverterinv.

Equation (3.10) can be rewritten in the following form:

. (4.1)ct a b+() ct 1–⋅ a b⋅+=

Figure 4.1: Symmetric C-elements: a) symbol of the two-input C-element; b) and c)
static C-elements; d) pseudo-static C-element

a

b

a

b

c

b

a

b

a

a

b

a

b

c

wk

a

b

a

b

a

ba

b

c

C

a)

b)

c) d)

a

b
c

P1

P2

P3

P4

N1

N2

N3

N4

N5

P5

inv

P1

P2

N1

N2

inv1

inv2
P1

P2

P3

N1

N2 N3 N4

P4

P5

N5

inv

Designing C-elements for Testability

Page 74

A CMOS implementation of the symmetric C-element which performs according to

equation (4.1) is illustrated in Figure 4.1c. This C-element performs in a similar way to

the one shown in Figure 4.1b. Both CMOS implementations of the symmetric C-ele-

ment require 12 transistors.

The symmetric C-element shown in Figure 4.1d is a pseudo-static C-element which per-

forms according to equation (3.10) but in a way similar to that of a dynamic C-element.

The only difference is that the weak feedback inverterinv2 is inserted into the symmet-

ric C-element to create a CMOS memory. If ct-1=0, at=1 andbt=1 then the input of

inverterinv1 is driven to low since the strength ofn-type input stack (transistorsN1 and

N2) is higher than that ofp-type stack of weak inverterinv2. As a consequence, outputc

of the C-element goes high keeping the input of inverterinv1 in low. If the input transis-

tor stacks are disabled by different input signals the current state of the C-element is

kept unchanged. The implementation of the pseudo-static C-element requires 8 transis-

tors.

For test purposes the inputs and the output of the C-element are assumed to be controlla-

ble and observable respectively. It has already been shown in chapter 2 that some single

stuck-at faults in the CMOS inverter are not detectable by logic testing. Therefore, such

faults are not detectable in the CMOS designs depicted in Figure 4.1. There is a funda-

mental problem in the testing of static C-elements for stuck-open faults. Stuck-open

faults in the feedback transistors of the static symmetric C-element transform it into a

dynamic one. For instance, if the output of the weak inverter in the C-element shown in

Figure 4.1d is disconnected from the input of inverterinv1 the faulty C-element still per-

forms according to equation (3.10), but as a dynamic circuit. This kind of fault can be

identified only by ‘slow’ testing which ‘waits’ until the output of the faulty C-element is

discharged completely. This degrades the test performance. CMOS structures of the

symmetric C-element which provide for detection of single line stuck-at and transistor

stuck-open faults are considered in the following sections.

Designing C-elements for Testability

Page 75

4.2.1 Testing for stuck-open faults

The testing of stuck-open faults in the feedback transistors of the static symmetric C-

element is implemented by driving them using an extra input and observing test results

on the gate output. The structure shown in Figure 4.1b is most suitable as the starting

point for the testable implementation. Figure 4.2 illustrates a CMOS design of the sym-

metric C-element where single transistor stuck-open faults are detectable. The C-ele-

ment contains an additional weak inverter (transistorsP6 andN6) the output of which

can be overdriven by a logical value applied to pinm. The proposed implementation of

the symmetric C-element requires 14 transistors.

Tests for the transistor stuck-open faults of the C-element are shown in Table 4.1. If

mi=0 ormi=1 nodem is used to drive feedback transistorsP5 andN5 with a logical zero

or one respectively. If mi=z then nodem is in a high impedance mode. A hyphen in the

column headedmo means that nodem does not carry any diagnostic information since it

is driven by an external logical value. It can be seen from Table 4.1 that faultsP5-SO

and N5-SO, which transform the static behaviour of the symmetric C-element into a

dynamic one, are detectable by sets of two tests with no need for ‘slow’ testing.

Driving the feedback transistors of the symmetric C-element transforms its sequential

function into a combinational one depending on the logical value applied to pinm. Table

4.2 contains the operation modes of the symmetric C-element illustrated in Figure 4.2.

Whenmi=0 ormi=1 the C-element is transformed into an AND or OR gate respectively.

a

b

a

b

c
b

a

b

a

m

wk

wk

P1 P3

P2 P4

P5

N1

N2

N3

N4

N5

N6

N7

P6

P7

Figure 4.2: Locations of stuck-open faults in the static symmetric C-element

Designing C-elements for Testability

Page 76

This transformation of the sequential function of the C-element gives a reduction in the

number of state holding elements in the asynchronous circuit under test and makes its

testing easier. On the other hand, when the circuit (in Figure 4.2) acts as a symmetric C-

element output m can be used as a test point increasing its observability inside the asyn-

chronous circuit.

Table 4.1: Tests for stuck-open faults of the symmetric C-element in Figure 4.2

Stuck-open
faults

Test sequences
Outputs of the
fault-free C-

element

Outputs of the
faulty C-ele-

ment

a b mi c mo c mo

P2,P3,P5,N7 1 1 0 1 - 1 -

1 0 0 0 - 1 -

P1,P4,P5,N7 1 1 0 1 - 1 -

0 1 0 0 - 1 -

N2,N3,N5,P7 0 0 1 0 - 0 -

0 1 1 1 - 0 -

N1,N4,N5,P7 0 0 1 0 - 0 -

1 0 1 1 - 0 -

P6 0 0 z 0 0 0 0

1 1 z 1 1 1 0

N6 1 1 z 1 1 1 1

0 0 z 0 0 0 1

Table 4.2: Operation modes of the C-element in Figure 4.2

Function Inputs Outputs

a b mi ct mo

AND
0 0 0 0 -

0 1 0 0 -

1 0 0 0 -

1 1 0 1 -

OR
0 0 1 0 -

0 1 1 1 -

1 0 1 1 -

1 1 1 1 -

Symmetric
Muller C

0 0 z 0 0

0 1 z ct-1 ct-1

1 0 z ct-1 ct-1

1 1 z 1 1

Designing C-elements for Testability

Page 77

The use of a weak inverter in the symmetric C-element illustrated in Figure 4.2 is not

efficient in terms of power consumption in test mode. For instance, if during the test pin

m is kept to one anda=b=0 then there is a path betweenVdd andVss which increases the

power dissipation of the C-element. The power consumption can be reduced if the weak

inverter is replaced by a tristate inverter which is disabled during the test by an extra

control input. It is easy to show that in this case such a C-element remains testable for

transistor stuck-open faults.

4.2.2 Testing for stuck-at faults

The symmetric C-element illustrated in Figure 4.2 is not testable for line stuck-at faults

since it has inverters which are not fully testable for all single line stuck-at faults (see

chapter 2). The implementation of the symmetric C-element shown in Figure 4.3 incor-

porates inverters which are testable for single stuck-at faults using two additional test

inputstp andtn. Two extra transistors controlled by inputstp andtn are inserted in the

feedback paths of the C-element for testability purposes. In normal operation mode,

whentp=0 andtn=1 the circuit performs in the same manner as the one in Figure 4.3.

It is assumed that all the inputs and outputs of the C-element are controllable and

observable during the test. Table 4.3 contains tests which are derived to detect its single

line stuck-at faults. As was observed previously in chapter 2 the detection of all single

a

b
c

b

a

b

a

m

Figure 4.3: Locations of stuck-at faults in the static C-element

tn

tp

wk

wk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3132

33

34

35

36

wk

wk

37

38

39

40

41

Designing C-elements for Testability

Page 78

Table 4.3: Tests for stuck-at faults of the C-element in Figure 4.3

No. Single stuck-0
faults

Single stuck-1
faults

Test sequences

Outputs
of the

fault free
circuit

Outputs
of the
faulty
circuit

a&b t&tp mi c mo c mo

1 31,32,38,40 8,20,37 11 10 z 1 1 0 0

2 8,20,37 31,32,39,41 00 10 z 0 0 1 1

3 7’,12’,16’,30 2,4,7’’,10,12’’,
14,18

11 10 0 1 - 1 -

10 10 0 0 - 1 -

4 7’’,12’’,16’’ 1,3,10,14,12’,
16’,19

11 10 0 1 - 1 -

01 10 0 0 - 1 -

5 2,5,9’’,11,13’’,
15,22

9’,13’,17’,27 00 10 1 0 - 0 -

01 10 1 1 - 0 -

6 1,6,11,13’,15,
17’,21

9’’,13’’,17’’ 00 10 1 0 - 0 -

10 10 1 1 - 0 -

7 25,26,29,30,
34,36

11 10 z 1 1 1 1

00 10 z 0 0 1 1

8 23,24,27,28,
33,35

00 10 z 0 0 0 0

11 10 z 1 1 0 0

9 4,10,18 16’’ 11 10 0 1 - 1 -

01 11 0 1 - 0 -

10 3,10,19 7’ 11 10 0 1 - 1 -

10 11 0 1 - 0 -

11 17’’ 5,11,22 00 10 1 0 - 0 -

10 00 1 0 - 1 -

12 9’ 6,11,21 00 10 1 0 - 0 -

01 00 1 0 - 1 -

13 14 11 00 1 1 - 1 -

10 00 1 1 - 1 -

10 11 0 1 - 0 -

14 15 00 11 0 0 - 0 -

10 11 0 0 - 0 -

10 00 1 0 - 1 -

15 23,27,33,35 38,40 00 10 z 0 0 0 0

11 11 z 0 0 1 1

16 39,41 26,30,34,36 11 10 z 1 1 1 1

00 00 z 1 1 0 0

17 24,28 00 11 z 0 0 0 0

00 00 z 0 0 1 1

18 25,29 11 00 z 1 1 1 1

11 11 z 1 1 0 0

Designing C-elements for Testability

Page 79

line stuck-at faults in a CMOS design guarantees the detection of all its single stuck-

open faults. For instance, fault 18-SA1 is equivalent to keeping the appropriatep-type

transistor off permanently which means its permanent disconnection fromVdd. As a

result, the proposed CMOS design is testable for both stuck-at and stuck-open faults.

4.3 Static asymmetric C-elements

Asymmetric C-elements have already been mentioned in chapter 3. Asymmetric C-ele-

ments are used widely to improve the performance of the asynchronous control logic in

micropipelines [Brzo95b, Farn95, Furb96]. These C-elements are set to a particular state

when both signals are one or zero and set to the negated state only by one input. Figures

4.4a and 4.4b demonstrate a symbolic representation and a gate level implementation of

the OR-AND type asymmetric C-element. The OR-AND type asymmetric C-element

illustrated in Figure 4.4b performs according to the following equation:

. (4.2)

Figure 4.4: Static OR-AND type asymmetric C-element: a) symbol; b) gate level
representation; c) CMOS implementation

c

C

a) b)

a

b

c

P1

P2

N1

N2

+

a
b P4

P3

N3

N4

a

b

c

c)

ct a b ct 1–+()⋅=

Designing C-elements for Testability

Page 80

The output of such an asymmetric C-element is set to high when both its inputs are high

and set to low if its input a is low. It keeps its current state when its input a is high and

input b is low. A static CMOS implementation of the OR-AND type asymmetric C-ele-

ment is illustrated in Figure 4.4c.

Figures 4.5a and 4.5b show a symbolic representation and a gate level implementation

of the AND-OR type asymmetric C-element. This C-element performs according to

equation (3.14). The output of the AND-OR type asymmetric C-element is set to high if

its input b is high and set to low when both its inputs are low. It preserves its current

state when input a is high and input b is low. A static CMOS implementation of the

AND-OR type asymmetric C-element is shown in Figure 4.5c.

These two types of asymmetric C-elements were implemented in CMOS technology on

a 1 , double layer metal CMOS process and simulated using SPICE analysis in the

Cadence CAD environment. Simulation results obtained from their extracted layouts

can be found in Appendix C.

Figure 4.5: Static AND-OR type asymmetric C-element: a) symbol; b) gate level
representation; c) CMOS implementation

c

P2

N2

a

b

N1

P1 P3

N4
N3

P4

c)

C

a)

a

b
c

-
a

b

c

b)

µm

Designing C-elements for Testability

Page 81

Testing for stuck-at and stuck-open faults in asymmetric C-elements is not easy. For

instance, such stuck-open faults asN3-SO (in Figure 4.4c) andP3-SO (in Figure 4.5c)

can be identified only by ‘slow’ testing since they transform the correspondent static

asymmetric C-elements into dynamic ones. As was previously mentioned a stuck-at-0

fault on the gate of transistorP4 and stuck-at-1 fault on the gate of transistorN4 of the

asymmetric C-elements are not detectable by logic testing. Thus, extra design effort is

required to make the asymmetric C-elements testable.

4.3.1 Testing for stuck-open faults in asymmetric C-elements

Figures 4.6a and 4.6b illustrate the designs of asymmetric C-elements testable for tran-

sistor stuck-open faults. The main approach to the testing of stuck-open faults in asym-

metric C-elements is the same: the feedback transistors are driven by an external control

Figure 4.6: Static asymmetric C-elements testable for stuck-open faults: a) OR-AND
type asymmetric C-element; b) AND-OR type asymmetric C-element

c

a)

P1

P2

N1

N2

a
b

P2

N2

a

b

N1

P1 P3

N4
N3

P4

P4

P3

N3

N4

b)

P5

N5

m

c

P5

N5

m

wk

wk

wk

wk

Designing C-elements for Testability

Page 82

input m making them controllable. For this purpose an additional weak inverter (transis-

tors P4 and N4) is inserted into the original designs of asymmetric C-elements. Its output

can be overdriven by applying a logical value to its output m. If no logical values are

applied to output m then it can be used as a test point during the test.

Tests for the transistor stuck-open faults of the asymmetric C-elements (in Figure 4.6)

are shown in Tables 4.4 and 4.5. The notation used in these tables has the same mean-

ings as the one used in Table 4.1. It follows from Tables 4.4 and 4.5 that all the stuck-

Table 4.4: Tests for stuck-open faults of the OR-AND type asymmetric C-element

Stuck-open
faults

Test sequences

Outputs of the
fault-free C-

element

Outputs of the
faulty C-ele-

ment

a b mi c mo c mo

P1,P2,N5 1 1 0 1 - 1 -

1 0 0 0 - 1 -

N1,N2,P5 0 1 0 0 - 0 -

1 1 0 1 - 0 -

N3 0 0 1 0 - 0 -

1 0 1 1 - 0 -

P4 0 1 z 0 0 0 0

1 1 z 1 1 1 0

P3,N4 1 1 z 1 1 1 1

0 1 z 0 0 1 1

Table 4.5: Tests for stuck-open faults of the AND-OR type asymmetric C-element

Stuck-open
faults

Test sequences

Outputs of the
fault-free C-

element

Outputs of the
faulty C-ele-

ment

a b mi c mo c mo

P1,P2,N5 1 0 1 1 - 1 -

0 0 1 0 - 1 -

P3 1 1 0 1 - 1 -

1 0 0 0 - 1 -

N1,N2,P5 0 0 1 0 - 0 -

1 0 1 1 - 0 -

N3,P4 0 0 z 0 0 0 0

0 1 z 1 1 0 0

N4 0 1 z 1 1 1 1

0 0 z 0 0 0 1

Designing C-elements for Testability

Page 83

open faults of the asymmetric C-elements are detectable by only five tests which include

two sequential tests each.

The designs of asymmetric C-elements testable for transistor stuck-open faults were

implemented on a 1 , double layer metal CMOS process and simulated usingSPICE

analysis in theCadence CAD environment. Simulation results obtained from their

extracted layouts can be found in Appendix C.

Driving the feedback transistors allows the sequential functions of the asymmetric C-

elements to be changed into combinational ones. Table 4.6 shows the operation modes

of the C-elements illustrated in Figure 4.6. If outputm of the OR-AND type asymmetric

C-element is driven by a logical zero or one then its function is transformed into an

AND gate or a repeater of its inputa respectively. When outputm of the AND-OR type

asymmetric C-element is overdriven by a logical one or zero its sequential function is

transformed into an OR gate or a repeater of its inputb respectively. These properties of

the asymmetric C-elements (in Figure 4.6) can be used to simplify the testing of asyn-

chronous circuits by reducing the number of their state holding elements.

Table 4.6: Operation modes of asymmetric C-elements shown in Figure 4.6

Function of
OR-AND type

C-element

Function of
AND-OR type

C-element
Inputs

Outputs of
OR-AND

type C-ele-
ment

Outputs of
AND-OR

type C-ele-
ment

a b mi ct mo ct mo

AND B-repeater
0 0 0 0 - 0 -

0 1 0 0 - 1 -

1 0 0 0 - 0 -

1 1 0 1 - 1 -

A-repeater OR
0 0 1 0 - 0 -

0 1 1 0 - 1 -

1 0 1 1 - 1 -

1 1 1 1 - 1 -

OR-AND type
asymmetric C-

element

AND-OR type
asymmetric C-

element

0 0 z 0 0 0 0

0 1 z 0 0 1 1

1 0 z ct-1 ct-1 ct-1 ct-1

1 1 z 1 1 1 1

µm

Designing C-elements for Testability

Page 84

4.3.2 Testing for stuck-at faults in asymmetric C-elements

As was mentioned previously the stuck-open testability of CMOS circuits does not

guarantee the detection of all their line stuck-at faults. In order to make the asymmetric

C-elements illustrated in Figure 4.6 testable for line stuck-at faults two additional inputs

tp and tn are required. Figure 4.7 shows a CMOS implementation of the static OR-AND

type asymmetric C-element testable for stuck-at faults. In normal operation mode inputs

tp and tn are set to zero and one respectively and the circuit exhibits the same behaviour

as the one demonstrated in Figure 4.6a.

Table 4.7 contains tests to detect the single line stuck-at faults whose locations are

shown in Figure 4.7. It is presumed that all the inputs and outputs of the asymmetric C-

element are controllable and observable during the test. The C-element illustrated in

Figure 4.7 is testable for its stuck-open faults since it is fully testable for its stuck-at

faults.

The asymmetric C-element testable for single line stuck-at faults was implemented on a

1 , double layer metal CMOS process and simulated using SPICE analysis. Simula-

tion results obtained from its extracted layout can be found in Appendix C.

Figure 4.7: Static OR-AND type asymmetric C-element testable for stuck-at faults

c

P1

P2

N1

N2

a
b P5

P3

N3

N5

P6

N6

tn

wk

wk

tp

m

P7

N7

N4

P41 2

3 4

5

6 7

8 9

10

11
12 13

14

15

16

17 18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

µm

Designing C-elements for Testability

Page 85

Table 4.7: Tests for stuck-at faults of the asymmetric C-element in Figure 4.7

No. Single
stuck-0
faults

Single
stuck-1
faults

Test sequences

Outputs of
the fault-

free circuit

Outputs of
the faulty

circuit

a&b tp&tn mi c mo c mo

1 9,20,24,26
,30,32

15,27 11 01 z 1 1 0 0

2 15,27 19,20,24,2
6,31, 32

00 01 z 0 0 1 1

3 7,23,29 1 11 01 z 1 1 1 1

01 01 z 0 0 1 1

4 6 2,22,28 01 01 z 0 0 0 0

11 01 z 1 1 0 0

5 3,4,25 11 01 0 1 - 1 -

10 01 0 0 - 1 -

6 12,13 1x 01 1 1 - 1 -

0x 01 1 0 - 1 -

7 3,5 01 01 0 0 - 0 -

11 01 0 1 - 0 -

8 12,14,21 00 01 1 0 - 0 -

10 01 1 1 - 0 -

9 1 11 11 0 1 - 1 -

01 11 0 1 - 0 -

10 2 01 01 0 0 - 0 -

11 11 0 0 - 1 -

11 6 00 01 1 0 - 0 -

10 00 1 0 - 1 -

12 7 11 01 1 1 - 1 -

01 00 1 1 - 0 -

13 22,28 00 01 z 0 0 x x

00 11 z 0 0 0 0

00 00 z 0 0 1 1

14 23,29 11 01 z 1 1 x x

11 00 z 1 1 1 1

11 11 z 1 1 0 0

15 25 11 01 1 1 - 1 -

10 00 1 1 - 1 -

00 11 1 1 - 0 -

16 4,13 11 01 0 1 - 1 -

11 00 0 1 - 1 -

01 11 0 1 - 0 -

17 14 00 01 1 0 - 0 -

00 11 1 0 - 0 -

10 00 1 0 - 1 -

Designing C-elements for Testability

Page 86

4.4 Scan testing of C-elements

Scan testing has already become a standard methodology for testing VLSI circuits

[Russ89]. Scan testing presumes that the circuit is set to scan test mode where all its

state holding elements are connected together forming a single scan chain (see Appen-

dix B). As a consequence, the states of all memory elements are controllable and

observable.

The state holding elements of a scan testable circuit must operate at least in two modes:

normal and scan test modes. In normal operation mode, the circuit performs according

to its specification. During the scan test, the test patterns are loaded into the state hold-

ing elements and the test results are shifted out of the circuit. Figure 4.8 illustrates a

CMOS implementation of the pseudo-static symmetric C-element with scan features. It

contains two additional control inputs: clock (Clk) and scan test (T) signals. InputsSin

andSout are used to scan the test pattern in and scan the state bit out of the C-element.

18 5,21 00 01 0 0 - 0 -

10 11 0 0 - 0 -

11 00 0 0 - 1 -

19 8,10,11 11 01 0 1 - 1 -

00 11 0 1 - 0 -

20 9,30 01 01 z 0 0 0 0

11 11 z 0 0 1 1

21 8,11 01 01 0 0 - 0 -

10 01 0 0 - 1 -

22 10 01 01 1 0 - 1 -

23 19,31 11 01 z 1 1 1 1

01 00 z 1 1 0 0

24 16,17,18 01 01 1 0 - 0 -

11 00 1 0 - 1 -

25 17 01 01 z 0 0 0 0

11 01 z 1 1 0 0

26 16,18 10 01 1 1 - 0 -

Table 4.7: Tests for stuck-at faults of the asymmetric C-element in Figure 4.7

No. Single
stuck-0
faults

Single
stuck-1
faults

Test sequences

Outputs of
the fault-

free circuit

Outputs of
the faulty

circuit

a&b tp&tn mi c mo c mo

Designing C-elements for Testability

Page 87

Output Sout of each scan testable C-element (or any other scan testable memory block)

is connected to input Sin of its successor forming the scan chain.

In normal operation mode, when T=0 and Clk=0 the C-element performs as the pseudo-

static C-element depicted in Figure 4.1d. In scan mode, the input transistor stack is disa-

bled by input T set to high. Clock signals are generated on input Clk to shift the test pat-

tern from input Sin into the C-element. When signal Clk goes high the output transistor

stack of the C-element is disabled and nodes c and nc are controlled from input Sin.

Once the clock signal is low the negated bit loaded from input Sin is stored in the C-ele-

ment and is passed to its output Sout. Clock signals generated on input Clk are used to

shift the state bit of the C-element through the scan path to the test circuitry. When

Clk=1 output Sout keeps its current logical value creating a dynamic memory and sup-

Clk

nClk P9

P10

N9

N10

Figure 4.8: Pseudo-static symmetric C-element with scan features

a

b

a

b

c

Sin

nClk

N11

P11

Clk

P2

P3 P4

P5

P6

N1

N2

N4 N5

N6nClk

Clk nClk

Clk P7

P8

N7

N8

Sout

T

nT

nT

N12

P12

T

P1

N3

wk

wk

nc

Designing C-elements for Testability

Page 88

plying inputSin of the following memory element. Clock signals must be kept high for

enough time to guarantee the proper transmission of logical voltage levels.

An analysis of the symmetric C-element shown in Figure 4.8 reveals that it is testable

for single transistor stuck-open faults. Table 4.8 contains tests for detecting the stuck-

open faults of the C-element. Symbol ‘x’ denotes a ‘don’t care’ signal. A hyphen means

that the appropriate output is not used to observe the test results. Note that the funda-

mental problem of testing stuck-open faults in the weak feedback inverter of the pseudo-

static C-element no longer exists since the weak transistors of the scan testable C-ele-

ment participate in the scanning of the test data.

Consider an implementation of the scan testable CALL element in order to demonstrate

how the C-element shown in Figure 4.8 can be used to build more complex scan testable

asynchronous blocks. As was mentioned in chapter 1 the CALL element is an event

driven logic block. It remembers which of its inputs received an event first (R1 or R2)

and acknowledges the completion of the called procedure by an appropriate event on the

Table 4.8: Tests for stuck-open faults of the C-element in Figure 4.8

Single stuck-open
faults

Test sequences

Outputs of the
fault-free C-

element

Outputs of the
faulty C-ele-

ment

a&b T Clk Sin c Sout c Sout

P1-P3,N5,N6 11 0 0 x 1 - 1 -

00 0 0 x 0 - 1 -

P5,P6,P12,N1-N3 00 0 0 x 0 - 0 -

11 0 0 x 1 - 0 -

P7-P10,N4,N11 xx 1 1 1 - x - x

xx 1 0 1 - 0 - 0

xx 1 1 0 - 1 - 0

xx 1 0 0 - 1 - 0

P4,P11,N7-N10 xx 1 1 0 - x - x

xx 1 0 0 - 1 - 1

xx 1 1 1 - 0 - 1

xx 1 0 1 - 0 - 1

N12 00 0 0 x 0 0 0 0

11 1 0 x 0 0 1 1

Designing C-elements for Testability

Page 89

matching output (D1 or D2). The CALL element with scan features shown in Figure 4.9

performs using the two-phase signalling protocol where each signal transition denotes

an event. All the inputs and outputs are initialized to zero.T=0 andClk=0 in normal

operation mode. When a request event occurs on inputRi it primes C-elementCi and

passes through the XOR gate producing a request event on its outputR. Once the

required procedure has completed an appropriate acknowledge event is generated on

input D. As a result, C-elementCi changes state and an acknowledge event is passed to

outputDi (i=1,2). The performance of the CALL element is identical for falling request

events.

If the CALL element shown in Figure 4.9 is incorporated into an asynchronous VLSI

circuit its internal states can be controllable and observable through the scan path. A test

bit sent to inputSin of the C-element is negated on its outputsSout andc (see Figure

4.8). The CALL element is tested by setting test control signalT to one. For instance,

the clocked sequence 01 must be applied to inputSin of the CALL element in order to

set its C-elements to one. The CALL element can perform its specified function when

Figure 4.9: CALL element with scan features

R1

R2

D1

D2

D

R

Sout

Sin
T

C1

C2

Clk

Sin

Sout

T

Clk

Sin

SoutT

Clk

Designing C-elements for Testability

Page 90

signalsT andClk are returned to zero. The state bits of the C-elements are shifted out of

the CALL element and compared with known responses when its inputT is set one and

clocks are produced on its inputClk.

4.5 Summary

The testable structures of the symmetric and asymmetric C-elements presented in this

chapter require different overheads depending on the fabrication faults to be detected.

The designs of testable C-elements have been implemented on a 1 CMOS process

and their extracted layouts have been investigated using SPICE analyses. Table 4.9 con-

tains a summary of cost comparisons of the CMOS C-elements and their testability.

The largest number of transistors is required to implement the scan testable C-element.

This is because scanning the data through the C-element can be implemented only in a

master-slave manner which requires at least two memory elements.

The implementation of the symmetric C-element shown in Figure 4.2 has a layout over-

head of just 17% with one extra control input and guarantees the detection of all its

stuck-open faults. The sequential function of such a C-element can be changed into a

combinational one (AND or OR) which simplifies the testing of other components

incorporated in the asynchronous circuit.

Table 4.9: Summary of costs of the testable C-elements

Design No. of
tran-

sistors

No. of extra
inputs/outputs

Transis-
tor over-

head

Layout
over-
head

Output nodal
capacitance

Testability

Figure 4.2 14 1 17% 17% 2.07 SO

Figure 4.3 20 3 67% 45% 3.21 SA&SO

Figure 4.6a 10 1 25% 19% 2.45 SO

Figure 4.6b 10 1 25% 32% 2.55 SO

Figure 4.7 14 3 75% 41% 2.18 SA&SO

Figure 4.8 24 4 200% 115% 11.22 SO

µm

10
14–× F

Designing C-elements for Testability

Page 91

Compared to the design of the symmetric C-element shown in Figure 2.5 the implemen-

tation of the C-element illustrated in Figure 4.2:

• requires around half as many transistors (14 versus 26);

• uses just one test input to change the operation mode of the C-element;

• guarantees the detection of all the stuck-open faults in its CMOS design.

The asymmetric testable C-elements illustrated in Figures 4.6a and 4.6b guarantee the

detection of all their transistor stuck-open faults and require 19% and 32% layout over-

heads respectively.

Page 92

Chapter 5 : Scan Testing of

Micropipelines

The scan test has become a standard DFT methodology for testing synchronous digital

circuits (see Appendix B). The adoption of well-developed test techniques to the testing

of asynchronous circuits is important because it avoids the costs of developing expen-

sive new test equipment. An asynchronous scan test approach to designing testable two-

phase and four-phase micropipeline structures is considered in this chapter.

5.1 Micropipeline latch control

The design of a micropipeline with processing was considered in chapter 1. The micro-

pipeline illustrated in Figure 1.5 can operate using either a two-phase or a four-phase

signalling protocol. Two-phase and four-phase micropipelines use different latch control

circuits to ensure the correct latching mechanism.

The use of ‘normally closed’ latches is preferable from the power consumption point of

view since no transitions in the data paths can occur unless new data has been latched by

the stage register [Furb94, Birt95]. Figure 5.1 shows an implementation of the normally

closed latch structure which uses two-phase signalling. In the initial state the outputs of

to
gg

le

DataIn

DataOut

Rin Ain

latch
De

Figure 5.1: Two-phase control for a normally closed latch

C

Aout Rout

Scan Testing of Micropipelines

Page 93

the toggle element and the C-element are reset. When the data is stable on the inputs of

the latch a request signal is sent to inputRin setting the data enable input (De) of the

latch to high. As a result, the latch becomes transparent storing the data into its memory.

The toggle element steers a rising event to its dotted output causing the data to be

latched in the latch memory. The second rising event is steered by the toggle element to

its blank output producing a request signal (Rout) for the next stage register and an

acknowledge signal (Ain) for the previous stage of the micropipeline. A rising signal

arriving at inputAout primes the C-element and the latch is ready to repeat the sequence

described above when a falling event is generated on itsRin input.

Designs of the normally closed latch with simple and ‘semi-decoupled’ (see below)

four-phase control are shown in Figure 5.2a and Figure 5.2b respectively [EdTR95].

With the simple latch control the latch can be closed only whenAout goes high, i.e.,

when the next stage of the micropipeline is opened. As a result, the use of the simple

latch control circuit is not cost-effective in four-phase micropipelines since at most

alternate stages can be occupied at any time [Furb96]. In order to increase the decou-

pling between the inputs and outputs of the latch to allow the latch to be closed before

DataIn

DataOut

Rin

Ain
latch

De

Figure 5.2: a) Simple and b) semi-decoupled four-phase control for a normally
closed latch

Aout Rout

C

+

C

DataIn

DataOut

Rin
latch

De
CAout

Ain

Rout

a)

b)

1

2
3

Scan Testing of Micropipelines

Page 94

the output handshake protocol has completed, the semi-decoupled control circuit can be

used (see Figure 5.2b). Initially both C-elements are reset. When the input data is stable

a rising request signal is generated on theRin input. As a result, the latch is opened and

passes the input data to its outputs. A rising acknowledge signal is produced on theAin

output.Rout goes high preventing the output of the asymmetric C-element from going

high. If Rin is reset the latch is closed and the input data is latched in its memory. As a

consequence,Ain goes low and the input data can be changed. The output of the sym-

metric C-element (Rout) is reset whenAout is high (which is when the next stage is

opened). The next control cycle can be repeated whenAout is low enabling the output of

the asymmetric C-element to be set to high. The use of the semi-decoupled control cir-

cuit shown in Figure 5.2b allows the micropipeline to fill all its stages increasing its per-

formance.

Figure 5.3 shows an n-type single-phase latch which can be used for storing the data in

the micropipeline registers. The latch is transparent when the data enable input (De) is

high and it is opaque when the data enable input is low. When transparent, input data is

propagated through the latch to its output. Once the enable signal is reset the data is pre-

vented from flowing to the inverter and the weak data retention circuit. As a result, the

data is stored and any signal changes on the data input will have no effect on the stored

data. Single-phase latch designs are investigated elsewhere [Yuan89, Weste93].

wk

Out

In

De

wk

Figure 5.3: Single-phase static latch

Scan Testing of Micropipelines

Page 95

5.2 Fault model

Stuck-at faults in the control part, combinational logic blocks and latches of the micropi-

peline shown in Figure 1.5 are considered.

Faults in the latch control

As was shown in chapter 2, stuck-at faults in the control part of the two-phase micropi-

peline can be detected during its normal operation mode since they cause the micropipe-

line to halt.

Stuck-at faults in the simple four-phase latch control circuit illustrated in Figure 5.2a

cause the micropipeline to halt. For instance, a stuck-at fault on any input of the C-ele-

ment is equivalent to the corresponding stuck-at fault on its output. As a result, the

handshake protocol is violated causing the micropipeline to deadlock. The same fault

effect is caused by a stuck-at fault on any other wires in the control circuit.

Most stuck-at faults in the semi-decoupled control circuit shown in Figure 5.2b cause

the micropipeline to halt. For example, in the presence of fault 2-SA1 on input 2 of the

asymmetric C-element its output cannot be set to high. As a result, the Ain output of the

control circuit is reset permanently keeping the latch closed. Faults 2-SA0 and 3-SA0

cannot be detected easily since they do not violate the four-phase handshake protocol

but cause premature rising events on the output of the asymmetric C-element. Special

care must be taken to detect these faults.

Faults in the combinational logic blocks

Faults in the combinational blocks of the micropipeline illustrated in Figure 1.5 can be

detected by applying test vectors to their inputs and observing the test results latched in

the corresponding stage registers.

Scan Testing of Micropipelines

Page 96

Faults in the stage registers

Faults in the stage registers can put the faulty register latch permanently in capture (a

stuck-at-0 fault on the data enable input) or pass (a stuck-at-1 fault on the data enable

input) mode (see Figures 5.2 and 5.3). Stuck-at faults on the inputs or outputs of the

stage register are equivalent to stuck-at faults in the corresponding combinational cir-

cuit.

5.3 Scan test design

5.3.1 Scan latch implementation

Figure 5.4 shows a CMOS implementation of a scan latch structure which contains two

latches (and) and a multiplexer.

In normal operation mode (the test control signal Tst is low) the tristate inverter of is

off since the shift clock signal Sc is held at zero (nSc=1). When the data enable signal

(De) is high the input data (Din) passes to the output Dout and is latched by when De

is low.

In scan mode (Tst=0, nTst=1) the enable signal De is low so that the tristate buffer of

is closed. When the clock signal Sc is high (nSc=0) the scan data from the scan-in input

L1 L2

L2

L2

Figure 5.4: CMOS implementation of the scan latch

Din

Dout

Sin

L1

L2

nTst

MX

F

T

Sout

Sc

De

nTst
nSc

Tst

L2

Scan Testing of Micropipelines

Page 97

(Sin) is latched by the latch and passes to the tristate inverter of. While Sc=1,

is opened and the shift data is sent to the scan-out output (Sout) of the scan latch. When

Sc=0 (nSc=1) the scan data bit is latched by and the latch is opened. This proce-

dure is similar to that used for storing the data in a master-slave flip-flop.

In test mode (Tst=1,nTst=0,Sc=0,nSc=1) the scan latch performs as in normal operation

mode. The only difference is that the response bit from the combinational circuit is

stored in whereas the test bit is held unchanged in and stimulates the appropriate

input of the processing logic of the next stage. Note that, during scan mode when the last

test bit is shifted in the scan latch, the Boolean signalTst (nTst) must be set to one (zero)

before the signalSc (nSc) goes down (high) in order to preserve the state of.

The basic and scan versions of the latch structure have been implemented in CMOS

technology on a 1 double layer metal process and simulated using SPICE (see

Appendix C). The basic latch cell used is similar to a single-phase static CMOS latch

which requires 11 transistors (see Figure 5.3). 37 transistors were used for the imple-

mentation of the scan latch. As a consequence, the transistor-count redundancy of the

scan latch is 236% and the area overhead is 258%. This scan latch requires 12% fewer

transistors than the one proposed by Khoche and Brunvand [Khoc94]. Table 5.1 shows

the simulated delays through data paths of the two latch structures. The simulations have

been performed on extracted layouts from the latch designs for worst case conditions:

Vdd=4.6V, slow-slow process corner, temperature C.

Table 5.1: Data path delays for the basic and scan latches

Latch Path Delay
Basic Din to Dout 2.3ns

Scan Din to Dout 4.2ns

Sin to Dout 5.7ns

L1 L2 L2

L2 L1

L2 L1

L1

µm

1000

Scan Testing of Micropipelines

Page 98

5.3.2 Scan register design

A two-bit scan register design for a testable micropipeline is shown in Figure 5.5. Com-

pared with the basic stage register it contains five additional wires: test control (Tst),

scan-in (Sin), scan-out (Sout) and shift clock (Sc).

Normal operation mode (Tst=0, Sc=0). In the initial state the register latches are

closed and the outputs of the latch control circuit are set to zero (reset control lines are

omitted in Figure 5.5). When a request signal is received on the inputRin the data ena-

ble signalDe is set to high by the latch control and the latches are opened. Since the

data enable signal can drive a large number of latches (more than two as shown in Fig-

ure 5.5) outputDe of the latch control is connected to buffer B. A request signal is gen-

erated on outputRout of the latch control block. The data is transmitted from the inputs

Din to the outputsDout of the register. Depending on a particular signalling protocol

used by the latch control the latches are closed (De=0) when the handshake between

one or two neighbouring stage registers has completed.

Scan mode. While Tst=0 andDe=0 the register can be used to scan the data into the

latches from its inputSin. Simultaneously, the scan data comes to the outputSout sup-

plying another scan register. The scan procedure is controlled by clock signals applied to

the inputSc.

Figure 5.5: Scan register

L11

L12

F

TL21

L22

Sin

Sout

Din1

Din2

Dout1

Dout2

F

T

MX

MX

nTstnSc

Tst

Sc

Tst nTst

Sc nSc

Latch
Control

Rin Ain

AoutRout

BDe

L2

L2

L2

Scan Testing of Micropipelines

Page 99

Test mode. During the test (Tst=1,Sc=0) the test vectors are stored in the first latches.

The outputs of these latches are connected through the multiplexers to the outputs of the

stage register. After receiving a request signal on the lineRin the data is stored into the

latches of the register (see Figure 5.5). The test vectors and the test results are saved

in different latches because the data flows through the micropipeline from left to right

while the test vectors must be preserved during the test.

5.4 Scan test control

A testable micropipeline design is shown in Figure 5.6. It comprises a micropipeline and

the scan test control logic (STCL) unit. The stage registers of this micropipeline are built

from scan latches. The scan test control block is used to make an asynchronous test

interface for the micropipeline. It also generates shift clock signalsSc for a unified shift

register. The scan test control can follow either a two-phase or four-phase signalling

protocol depending on its structure. The scan test control can either be a central control

block or can be incorporated inside some of the micropipeline registers. Similar scan

test control units can be used in different parts of the chip to arrange an asynchronous

scan test control interface between different asynchronous blocks.

L1

L2

CL2CL1

Figure 5.6: A micropipeline with scan features

Din

Rin

Ain

Tst

Sin Sout

Rout

Aout

Dout

Sc

STCL

RSin

ASin ASout

RSout

Rin

SoutSin

Reg1

Tst
Ain Aout

Rout
Sc

Rin

SoutSin

Reg2

Tst
Ain Aout

Rout
Sc

Scan Testing of Micropipelines

Page 100

5.4.1 Scan test control for two-phase transition signalling

An example of the scan test control block for two-phase transition signalling is shown in

Figure 5.7. The scan test control block generates the control signals in a manner similar

to that of the control circuitry of the latch illustrated in Figure 5.1. The presence of the

C-element ensures the delay insensitivity of the scan test control block.

Some calculations of the typical delays in the scan test control block have been carried

out using SPICE and are shown in Table 5.2.

5.4.2 Scan test control for four-phase signalling

The implementation of the scan test control block for a four-phase communication pro-

tocol is simpler than that of the scan test control block for two-phase signalling (see Fig-

ure 5.8).

Initially, the C-element is set to zero (nASin=nASout=1). When a rising shift request sig-

nal RSin arrives, the C-element changes its state to one. As a result, a falling event is

Table 5.2: Two-phase scan test control delays

Path Delay
RSin to ASin 7.0ns

RSin to RSout 12.8ns

ASout to C-element primed 1.1ns

Cycle time 20.9ns

Figure 5.7: Scan test control logic for a two-phase micropipeline

To
gg

le

C

RSin

RSout

ASin

ASout

B

Sc

Scan Testing of Micropipelines

Page 101

produced on the negated acknowledge line nASin, the shift clock signal Sc goes high and

a rising event is generated on the request output RSout. If nASout=RSin=0 the C-element

is set to zero. Thus, the signal Sc is reset, rising and falling events are produced on the

control lines nASin and RSout respectively.

The delays of the control signals in the scan test control block are presented in Table 5.3.

The results show that the use of the four-phase scan test control block improves the per-

formance of the shift operation compared to the two-phase scan test control block.

To reduce the number of external pins for the implementation of the testable micropipe-

line the pairs of signals such as Rin and RSin, Ain and ASin, Rout and RSout, Aout and

ASout can be combined using multiplexers. These multiplexers are controlled by a

Boolean signal switching between scan and normal operation mode. Note that, for two-

phase signalling, some of the multiplexers must contain state holding elements.

Table 5.3: Four-phase scan test control delays

Path Delay
RSin↑ to RSout↑ 6.9ns

RSin↑ to nASin↓ 2.5ns

nASout↓ to nASin↑ 2.5ns

nASout↑ to RSout↑ 6.9ns

Cycle time 18.8ns

Figure 5.8: Scan test control logic for a four-phase micropipeline

CRSin

nASout

Sc

nASin

RSout

B

Scan Testing of Micropipelines

Page 102

5.5 Test strategy

The test strategy for detecting stuck-at faults in micropipelines is very similar to that

used in scan testing synchronous circuits. IfSc=0 the micropipeline shown in Figure 5.6

can perform in normal operation mode (Tst=0) or in test mode (Tst=1).

In scan mode (Tst=0, De=0), the test patterns are loaded into the stage registers which

are configured as a unified scan register. The scan path is created by connecting the

inputsSin in series to the outputsSout of all the stage registers. Clock signalsSc for con-

trolling the shift operation are generated internally by the scan test control.

When the test patterns are loaded into the latches the micropipeline is set to test mode

(Tst=1). A request signal is produced on the lineRin of the micropipeline. The responses

from each processing block are stored in the registers.

WhenTst=0 the contents of the latches are shifted to the outputSout of the last stage reg-

ister. The test results are compared with known good ones. Whilst shifting out the test

results to the outputSout a new test pattern is loaded from the inputSin. The test proce-

dure is repeated. Thus, the complexity of testing the micropipeline is reduced to the test-

ing of its processing logic which comprises mostly combinational circuits.

Testing for faults in the scan test control

The scan test control unit of the testable micropipeline is an additional control block

which is not used in normal operation mode. Nevertheless, it must be fault free as it con-

trols the scan path of the micropipeline. A stuck-at fault on any of the lines in the scan

test control block prevents the generation of the control signals on its outputs. This is

because the scan test control is a fully delay-insensitive asynchronous circuit where

every control signal handshakes with others. Such circuits are fully testable for stuck-at

faults [Dav90, Haz92].

Scan Testing of Micropipelines

Page 103

Testing for faults in the control logic

As was mentioned earlier, stuck-at faults on the control lines of the two-phase micropi-

peline and the four-phase micropipeline with simple latch control can be detected easily

since they cause the micropipeline to halt. This happens because a micropipeline is an

event-driven asynchronous circuit [Suth89]. Such stuck-at faults can be identified either

in normal operation mode or during the test. The detection of faults in the semi-decou-

pled latch control circuit of the four-phase micropipeline requires a special test mode.

The testability issues of the semi-decoupled latch control circuit are considered later.

Testing for faults in the processing logic

It is assumed that all the processing blocks between the stages of the micropipeline are

combinational circuits. The internal inputs of each combinational circuit are controllable

and its outputs are observable through the scan path of the micropipeline. Tests for

detecting stuck-at faults in all the processing blocks can be derived using well known

test generation algorithms such as the D-algorithm, PODEM, FAN and others (see

Appendix A).

A test scenario for detecting stuck-at faults in the processing logic of the two-phase

micropipeline, which is similar to that of the four-phase micropipeline, can be described

by the following sequence of steps:

1. Reset the micropipeline. All the state holding elements (except register latches) are

reset.

2. Set the test control signal to zero (Tst=0). All the register latches are connected in a

unified scan register. When a new test bit on theSin input of the micropipeline is sta-

ble a request is generated on theRSin input of the scan test control block. Once

acknowledged another test bit accompanied by the appropriate request signal is pro-

duced on theSin input of the micropipeline until the whole scan path is full. Every

time when the scan data is ready the scan test control generates scan clocks on its out-

put Sc.

Scan Testing of Micropipelines

Page 104

3. Set the micropipeline in test mode (Tst=1). Generate one request signal on theRin

input. This request propagates through all the registers of the micropipeline. As a

consequence, the responses from the processing blocks are saved in the correspond-

ing second latchesL2 in the stage registers. The outputs of the first latchesL1 are held

unchanged which allows them to control the inputs of the appropriate combinational

processing blocks at known values.

4. Tst=0 and repeatStep 2 simultaneously unloading the latch contents out of the scan

register to theSout output and shifting in a new test vector from theSin input of the

micropipeline.

5. The test results are compared with the good ones. If the current test is successful

repeatStep 3. If not, stop the test procedure since the micropipeline is faulty.

6. If, after the required number of tests, no faults have been detected the micropipeline

can be tested for stuck-at faults in the register latches.

Testing for faults in the latches

Two types of stuck-at faults are considered for the register latches: stuck-at-capture and

stuck-at-pass faults.

Stuck-at-capture (stuck-at-pass) faults of the scan latch (see Figure 5.4) can be caused

by stuck-at faults on the control lines of the tristate buffers and inverters which disable

(enable) them permanently. Most of these faults can be detected by shifting an alternat-

ing 0-1 test through the latches unified in one scan register.

A stuck-at-1 fault on the inputnTst of the latch can be identified during test mode

when the faulty scan latch and its predecessor are set to different states. In this case the

state of the faulty latch will be changed. Stuck-at-0 and stuck-at-1 faults on the line

De of latch are detected by driving theDin input with a different logic value to its

current state during test mode and scan mode respectively.

L1

L1

L2

Scan Testing of Micropipelines

Page 105

Stuck-at faults on the data lines of the scan latch shown in Figure 5.4 are detected during

test and scan mode.

Testing delay faults

There is another class of faults in micropipelines which can be detected using the pro-

posed scan test technique. These are delay faults in combinational circuits between the

stage registers of the micropipeline. The output data of each combinational logic block

is latched after a certain delay when the data has arrived at its inputs. A delay fault in

this combinational block will extend path delays. In the presence of such a fault the bun-

dled data interface of the corresponding micropipeline stage will be violated, i.e. the

outputs of the combinational logic will be latched before the output signals in the bundle

are stable.

The algorithm used to detect delay faults in the processing logic of the micropipeline is

similar to that exploited in delay testing of synchronous circuits which has been adapted

by Khoche and Brunvand [Khoc94].

Basically, the pair of test vectors (and) must be applied to the inputs of the com-

binational circuit to detect its path delay faults. According to this test approach three

stage registers (, and) are used to detect delay faults in the combinational

logic . The tests and are stored in the registers and respectively. The

results of the test are saved in the register . When the test patterns are loaded into

the stage registers the combinational circuit is settled (test). The delay fault is tested

by applying a request signal to the inputRin of the micropipeline set in normal operation

mode. This causes the application of the test to the inputs of the logic

(= ()). The data path of the circuit under test is activated. If there is a delay

fault in this path it will cause a delayed response by the combinational circuit whereas

the responses are latched after a fixed time determined by the corresponding delay.

v1 v2

Ri 1– Ri Ri 1+

Fi v3 v1 Ri 1– Ri

Ri 1+

v1

v2 Fi

v2 Fi 1– v3

Scan Testing of Micropipelines

Page 106

5.6 Scan testing of asynchronous sequential circuits

The scan test technique described above can be used to test asynchronous sequential cir-

cuits built using the micropipeline design style.

5.6.1 Sequential circuits based on the micropipeline approach

Figure 5.9 illustrates the general structure of a two-phase sequential circuit. This struc-

ture contains the combinational logic block (CLB) which performs the basic logic oper-

ations, and two registers (Reg1 and Reg2) in the feedback loop which store the state of

the sequential circuit. The sequential circuit works as a micropipeline. In the initial state,

all the latches of Reg1 are set to their initial states and both the C-elements are set to

zero. The input data is generated on the primary inputs (PI) of the circuit by the sender

which sends a rising request signal (Rin) to the sequential circuit. The request signal is

delayed by the delay element for long enough for the output data to stabilize on the pri-

mary (PO) and internal (SO) outputs of the combinational circuit. As a result, a rising

request signal (Rout) is produced for the receiver by the sequential circuit. After receiv-

ing an acknowledge signal (Aout) and storing a new state in Reg2 the circuit generates

an acknowledge signal (Ain) for the sender simultaneously causing the copying of the

contents of Reg2 into Reg1. When a new falling request signal is sent by the sender the

procedure of processing the data is repeated.

Figure 5.9: Two-phase sequential circuit

C

Rin
Rout

Aout
Ain

Ack

Req

Reg2Reg1

Req

Ack

PI PO

SI SO

C

CLB

Scan Testing of Micropipelines

Page 107

The latch control for the two-phase sequential circuit is shown in Figure 5.10. The func-

tioning of this control circuit is similar to the one illustrated in Figure 5.1. There is no

need for the symmetric C-element since the request signal (Req) is controlled externally

by the C-elements of the micropipeline.

Figure 5.11 illustrates an implementation of the sequential circuit which follows a four-

phase signalling protocol. Initially all C-elements are reset. The registers Reg1 and Reg2

are closed. The latches of register Reg1 are set to their initial states. When the input data

is stable a rising request signal is produced on input Rin. The output of the C-element C1

is set to high. This rising event is delayed for long enough for the output data to stabilize

on the PO and SO outputs of the combinational circuit. As a result, the output of the

asymmetric C-element C2 is set to high opening the latches of Reg2. When the latches

are transparent register Reg2 generates a rising acknowledge signal which is passed to

the Rout output of the circuit. When the output data has been read by the environment a

to
gg

le

DataIn

DataOut

Req Ack

latchEn

Figure 5.10: Latch control of the sequential circuit

Figure 5.11: Four-phase asynchronous sequential circuit with normally closed
registers Reg1 and Reg2

Rin

Rout

Aout

Ain

Reg1

Req

Ack

PI PO

SI SOCLB

C4

C1

C2
+

+

Ack

Req

Reg2

C3

1

2
3

Scan Testing of Micropipelines

Page 108

rising event is passed to the Aout input of the sequential circuit setting the output of the

C-element C3 to high. As a consequence, the output of C2 is reset, the latches of Reg2

are closed and Rout goes low. When the acknowledge signal Aout is returned to zero the

output of C4 is set to high making the latches of Reg1 transparent. When the data is

stored in Reg1 the acknowledge signal Ain goes high. Afterwards, the Rin signal is

returned to zero resetting the output of C1 primed by a high signal from the output of

C3. The C-element C4 is reset closing the latches of Reg1 and resetting the Ain output.

As a result, the sequential circuit has moved into a new state and it is ready to accept

new input data. The output of C1 can be set to high by a rising request signal arriving at

the Rin input when the output of C3 is reset. The structure of registers Reg1 and Reg2 is

similar to that shown in Figure 1.8d.

5.6.2 Scan test design

The design of the testable two-phase sequential circuit is illustrated in Figure 5.12. It

comprises the sequential circuit with the scan test control logic (STCL) block which

provides an asynchronous interface in scan mode (see Figures 5.7 and 5.8). The stage

registers of such a sequential circuit are built using scan latches shown in Figure 5.4.

The structure of the testable four-phase sequential circuit is similar to that shown in Fig-

ure 5.12. The only difference between them is in the latch control design.

5.6.3 Scan test scenario

When Sc=0, the sequential circuit illustrated in Figure 5.12 can act either in normal

operation mode (Tst=0) or test mode (Tst=1).

If Tst=0 and Sc=0 the sequential circuit is set to scan mode to load the test patterns into

the latches of the stage registers. The scan path is created by connecting the output Sout

of Reg1 to the input Sin of Reg2 (see Figure 5.10). Clocks Sc for controlling the shift

operation are generated internally by the scan test control.

Scan Testing of Micropipelines

Page 109

In test mode, a request signal is produced on the line Rin of the sequential circuit. The

results of testing the combinational logic block are stored in the stage registers.

The contents of the latches are shifted out to the output Sout of Reg2 in scan mode. The

test results are compared with known good ones. Whilst unloading the test results a new

test pattern is loaded from the input Sin of the sequential circuit and the test procedure

can be repeated. The complexity of the testing of the sequential circuit is reduced to the

testing of its combinational block.

Stuck-at faults on any of the lines in the scan test control block are tested during scan

mode. As was mentioned earlier, stuck-at faults on the control lines of the sequential cir-

cuit shown in Figure 5.12 cause the sequential circuit to halt. Faults in the latches are

detected in the same manner described in section 5.5.

Testing for faults in the combinational logic

The internal inputs (SI) of the combinational circuit are controllable and its internal out-

puts (SO) are observable through the scan path. Tests for detecting stuck-at faults in the

Figure 5.12: Two-phase sequential circuit with scan features

Rout
C

Aout
Tst

PI PO

Sin Sout

SI SO

Rin

Ain

STCL

RSin

ASin ASout

RSout

C

Req

Ack

SoutSin

Reg1

Tst

Req

Ack
SoutSin

Reg2

Tst

CLB

Sc

Sc Sc

Scan Testing of Micropipelines

Page 110

combinational logic block can be derived using any known test generation algorithms

for combinational circuits.

The test algorithm can be described as the following sequence of actions:

1. The test pattern is loaded intoReg1 during scan mode.

2. In test mode, when the data is stable on the inputsPI of the sequential circuit, a

request signal is generated on the inputRin. The responses from the outputsSO of the

combinational circuit are stored inReg2.

3. The test results are analysed on the outputsPO of the sequential circuit and an

acknowledge signal is produced on its inputAout.

4. The sequential circuit is set to scan mode to shift the contents ofReg2 out to the out-

put Sout and to load a new test pattern intoReg1.

Testing delay faults

The algorithm used to detect delay faults in the combinational logic of the sequential

circuit is similar to that described in section 5.5. In principle, the pair of test vectors

< , > must be applied to the inputs of the combinational circuit to detect its delay

path fault. The pair < , > is made up of < @ , @ >, where:

• and are the test vectors applied to the inputsPI of the combinational circuit;

• and are the state vectors initially loaded into the state registers (Reg1 and

Reg2 respectively);

• the symbol @ denotes the concatenation of bit vectors.

The test scenario is the following:

1. In test mode, the test pattern is supplied to the inputsPI and a request signal is

generated on the inputRin. The combinational circuit is settled.

V1 V2

V1 V2 v1p v1s v2p v2s

v1p v2p

v1s v2s

v1p

Scan Testing of Micropipelines

Page 111

2. After receiving an acknowledge event on the inputAout the test is copied into the

latchesL2 of Reg1. The test vector is applied to the inputsPI of the sequential

circuit.

3. The test control signalTst is set to zero and a new request event is generated on the

input Rin. As a result, the test vector is applied to theSI inputs of the combina-

tional circuit and the required data path is activated. If there is a delay fault in this

path it will cause a delayed response by the combinational circuit whereas the

responses are latched after a fixed time determined by the corresponding delay.

5.7 Testing faults in four-phase latch control circuits

This section is devoted to the testing of faults in the latch control circuits of the four-

phase micropipeline and sequential circuit designs.

5.7.1 Testing for faults in the semi-decoupled control circuit

As was previously mentioned testing for faults 2-SA0 and 3-SA0 in the latch control cir-

cuit shown in Figure 5.2 is not trivial since they cause premature firings on theAin out-

put.

v2s

v2p

v2s

Out

wkIn1

In2

C

+

In1

In2
Out

In3

Out

wkIn1

In2

In3

Tst

Figure 5.13: Asymmetric C-element: a) symbol; b) CMOS implementation; c)
testable CMOS implementation

a)

b) c)

In3

Scan Testing of Micropipelines

Page 112

Figures 5.13a and 5.13b show the symbol and a CMOS implementation of the asymmet-

ric C-element used in the design of semi-decoupled latch control. FaultsIn2-SA0 and

In3-SA0 keep the corresponding n-type transistors opened permanently. These faults

can be detected by the pair of tests <011;111> applied sequentially. As a result, the fault-

free result is low whereas in the presence of the these faults theOut output is set to high.

The testing of faultsIn2-SA0 andIn3-SA0 in the control circuit of the four-phase micro-

pipeline is difficult due to the low controllability of the inputs of the asymmetric C-ele-

ments.

A simple solution which makes the inputs of the asymmetric C-element more testable is

to convert it into a symmetric C-element. Figure 5.13c illustrates a CMOS design of the

circuit which acts as an asymmetric C-element shown in Figure 5.13b and as a 3-input

C

+

C

+

C

C

+

C

C

Rin(0) Ain(0)

Rout(2) Aout(2)

Tst

Set

Shift
Reg

Clk

Rout(0)

Aout(0)

Ain(1)

Rout(1)

Aout(1)

Ain(2)Rin(2)

Rin(1)

Figure 5.14: Testable 3-stage four-phase semi-decoupled latch control circuit

out1

out0

out2

In

Scan Testing of Micropipelines

Page 113

symmetric C-element. When the Boolean inputTst is set to high or low the circuit oper-

ates as the symmetric or asymmetric C-element respectively. It is easy to show that any

stuck-at faults on the inputs of the symmetric C-element is equivalent to the correspond-

ing stuck-at output faults.

Figure 5.14 demonstrates an example of the semi-decoupled control circuit of the three

stage four-phase micropipeline. In order to test the control circuit for stuck-at faults all

asymmetric C-elements are converted into symmetric ones by setting the BooleanTst to

high. The outputs of the 3-bit shift register are set to high. The control circuit is forced

by the environment to perform at least one handshake along the input and output chan-

nels. As a result, all stuck-at faults on inputs of all the C-elements and all the control

lines are detected since they cause the circuit to deadlock. In normal operation mode, the

asymmetric C-elements which were converted into symmetric ones are set back to their

normal modes by resetting the BooleanTst.

In the circuit shown in Figure 5.14 there is a class of stuck-at faults which must be

detected to ensure that the micropipeline performs according to its specification. These

are faults on theTst inputs of the testable asymmetric C-elements. FaultsTst-SA0 orTst-

SA1 set the circuit shown in Figure 5.13c to perform as an asymmetric or symmetric C-

elements permanently.

In order to detect faultsTst-SA0 andTst-SA1 on theTst inputs of the testable C-elements

the following test algorithm can be used:

1. i=0, wherei is an index for the micropipeline stage to be tested.

2. Tst=1 for testing faultsTsti-SA0.Tst=0 for testing faultsTsti-SA1.

3. Set thei-th output of the shift register to low. Outj=1 (j≠i). As a result, the output of

thei-th NAND gate is set to high.

4. Rin(0)↑

5. If Rout(2)↑ thenAout(2)↑

Scan Testing of Micropipelines

Page 114

6. Rin(0)↓

7. If Tst=1 then in the presence of theTsti-SA0 fault thei-th testable C-element is reset.

Hence, ifRout(2)↓ the circuit is faulty. If theRout output is held unchanged (Rout=1)

the circuit is fault-free.

 If Tst=0 then in the presence of theTsti-SA1 fault the output of thei-th testable C-

element is held unchanged. Hence, ifRout(2)↓ the circuit is fault-free otherwise it is

faulty.

8. If the circuit is faulty, go to step 10, otherwisei=i+1 and go to step 9.

9. If i≤n, wheren is the number of micropipeline stages, then go to step 2. Otherwise,

the circuit is fault-free and go to step 10.

10. End.

Note that during the test when all testable C-elements act as symmetric C-elements the

outputs of the shift register are set to high. The testing of faults on theTsti inputs of the

testable C-elements requires the corresponding output of the shift register to be reset.

This can be implemented by applying a one on theIn input of the circuit shown in Fig-

ure 5.14 after setting the outputs of the register to ones using theSet signal. As a result,

after the application of one clock signalClk to the shift register a zero is shifted to the

first flip-flop of the register. Then theIn input is reset and (i-1) clock signals are applied

to the shift register to reset itsi-th output.

Since the testable C-elements are tested sequentially and the testing of each C-element

requires the application of one return-to-zero request signalRin the shift register can be

clocked by theRin input. It is easy to show that stuck-at faults on the inputs and outputs

of the NAND gates are detected during the test of the control circuit.

Scan Testing of Micropipelines

Page 115

5.7.2 Testing for faults in the control circuit of the four-phase

sequential circuit

The order of events on the inputs and outputs of the control circuit of the four-phase

sequential circuit shown in Figure 5.11 can be written as follows:

Rin↑ Rout↑ Aout↑ Rout↓ Aout↓ Ain↑ Rin↓ Ain↓ (5.1)

Most of stuck-at faults in the control circuit cause the circuit to deadlock which can be

easily identified. For instance, a stuck-at-0 fault on one of the inputs of the C-element

C3 is equivalent to a stuck-at zero fault on its output. In the presence of this fault the

Rout signal is never reset which in turn causes the whole circuit to halt.

In the control circuit (see Figure 5.11) there are faults which cause premature firings on

the outputs of C-elementsC2 andC4. These are 1-SA1, 2-SA1 and 3-SA0 faults. Fault

1-SA1 can be detected once after the resetting of all the C-elements. This fault causes

the Rout signal to go high which must happen only whenRin↑ (see (5.1)). In the pres-

ence of fault 2-SA1Ain goes high just after a rising event on theRin input. This fault

violates the order of events written in (5.1). Fault 3-SA0 causes a premature rising event

on theAin output before a handshake is completed along the output channel (signals

Aout andRout must be returned to zero beforeAin goes high). Faults 2-SA1 and 3-SA0

can be identified by checking the order of events on the control inputs and outputs in the

circuit shown in Figure 5.11.

5.8 A case study of the AMULET2 register destination
decoder

5.8.1 Design and implementation

The AMULET2 microprocessor has a circuit called the “register destination decoder”, a

high-level implementation of which is shown in Figure 5.15 [Pav94].

Scan Testing of Micropipelines

Page 116

The AMULET2 register destination decoder is a four-phase circuit. The decoder accepts

a 16-bit binary vector (In[15:0]) which contains coded information about the availabil-

ity of registers in the register bank of the microprocessor. For instance, a one in thei-th

position of the input vector means that thei-th register must be processed. The output

from the register destination decoder includes:

1) the four-bit address of the least significant ‘one’ in the input vector (RD[3:0]);

2) an active high output (R15) which indicates that the output address is ‘15’;

3) an active low output (nTRM) which indicates that the output register address contains

the address of the most significant ‘one’ in the input vector.

C2

C
1

DFF

Q D

C3

In[15:0]

DCEn

RSReg
Cdn

Load

PenC

RS[15:0]

RS[15:0]

nRd[3:0]

In[15:0] Clr[15:0]

TRM nR15

nTRM R15 Rd[3:0]

nRd[3:0]

RegDe

Rd[3:0]nTRM R15RoutAout

Rin Ain

Cdn

Cdn

Figure 5.15: AMULET2 register destination decoder

+

+

Rd[3:0]

Clr[15:0]

Nor1

Nor2

Scan Testing of Micropipelines

Page 117

Initially, the control inputs and outputs of the decoder are reset and all the C-elements

are in zero states. Theclear down signal (Cdn) is set to low to reset the RS latches of

registerRSReg and to reset the output of the asymmetric C-elementC2.

When theCdn input is high and the input data is stable on theIn inputs of the decoder

theRin signal goes high. As a result, the output of the NAND gate is reset, setting the D-

type flip-flop to state zero and loading the input vector into registerRSReg. A rising sig-

nal from the NAND gate is delayed for long enough for the data stored in registerRSReg

to be processed by the priority encoder (PenC) and then stored into the latches of the

output register (Reg). When the output of the symmetric C-elementC1 has been set to

high theload signal of registerRSReg is reset, indicating the completion of the loading

of the input vector.

Figure 5.16a illustrates a gate level implementation of the RS latch which is used in

RSReg. The NOR gates are configured to operate as a conventional RS latch with an

active low reset input (Cdn). The RS flip-flop is set to high when both theIn andLoad

signals are high. The state of the RS flip-flop can be changed to zero by setting itsClr

input to high.

When the output ofC2 goes to high:

• a rising event is generated on theRout output of the register destination decoder;

• the latches of registerReg are closed (theDe input is reset);

• the data from theTRM output ofPenC is latched in the master latch of the D flip-flop;

C

Figure 5.16: Gate-level implementations of the RS latch using: a) a
conventional RS latch; b) a symmetric C-element

Cdn
Clr

In
Load

Out
In
Load

Clr Out

Cdn

a) b)

Scan Testing of Micropipelines

Page 118

• the address decoder (DC) is enabled (if =0 the outputs of DC are held at zero).

The outputs ofReg can be read by the environment. Concurrently, the address stored in

registerReg is decoded byDC and sent to the inputs of registerRSReg. Thus, the least

significant ‘one’ of the vector stored inRSReg is cleared. The modified vector is sent to

the priority encoderPenC. When a rising event is received at theAout input of the regis-

ter destination decoder the output of the NOR gateNor1 is reset, settingC2 to state zero,

and the address of the least significant ‘one’ is stored in registerReg (De=1). TheRout

output is reset and the output ofNor2 is set to high. The address decoderDC is disabled

and the master latch of the D flip-flop is opened, storing the data from theTRM output of

PenC in its memory.

When theAout signal returns to zero the output ofC2 is set to high and the procedure

described above is repeated until only one RS latch of registerRSReg is in state one.

Then theTRM output ofPenC is set to high. The state of the D flip-flop is changed to

one by a rising event generated on theRout output. As a result, whenAout=1 the output

of C2 is reset (Rout=0) and the output ofNor2 goes high, setting the output ofC3 to

high. Thus, theAin signal goes high. Once theRin signal has returned to zeroC1 goes to

state zero, resetting the output ofC3. When all the control signals have been reset the

register destination decoder accepts new data and repeats the sequence of events

described above.

5.8.2 Design for testability

The detection of stuck-at faults in the register destination decoder is not a trivial task

because of its sequential properties. The scan test technique described in this chapter can

be used to reduce the test complexity of the decoder. For instance, the latches ofReg

(the outputs of which are coupled to the inputs of the address decoder) can be replaced

by scan latches (see Figure 5.4). Thus, the inputs ofDC can be controllable through the

scan latches which are connected into one scan register. The sequential function of the

RS latches ofRSReg can be converted into a combinational one using the following cir-

cuit modification.

En

Scan Testing of Micropipelines

Page 119

RS latch implementation

Figure 5.16b shows the RS latch of registerRSReg implemented using a symmetric C-

element. The C-element is reset by an active lowCdn signal. The operational properties

of such an RS latch are equivalent to these of the latch illustrated in Figure 5.16a.

Table 5.4 shows the state tables for a conventional RS latch (designed from both NOR

and NAND gates) and the C-element performing the same function. In both RS latch

implementations there are illegal input combinations which make the behaviour of the

latch unpredictable. The implementation of the RS latch using the symmetric C-element

does not have any illegal input combinations. However, a simple analysis of the behav-

iour of the C-element which operates as an RS latch shows that the C-element imposes

certain limitations on its input transitions. Suppose both theR andS inputs were previ-

ously set to high or low. Then the changing of the inputs to low or high at nearly the

same time causes opposite signal transitions on the inputs of the C-elements. Thus, the

next state of the C-element depends on how fast a particular input transition completes.

According to the specification of the register destination decoder the inputs to the RS

latch are not changed at the same time. Hence, the circuit shown in Figure 5.16a can be

replaced by the one in Figure 5.16b.

Figure 5.17 illustrates a CMOS implementation of the symmetric C-element with an

active low reset signal (Cdn). When theCdn signal is high this C-element operates in a

Table 5.4: State tables for a conventional RS latch and the C-element performed its
function

Inputs
RS latch designed
from NOR gates

RS latch designed
from NAND

gates
Muller C-element

R S Qt Qt Qt

0 0 Qt-1 - Qt-1

0 1 1 1 1

1 0 0 0 0

1 1 - Qt-1 Qt-1

Scan Testing of Micropipelines

Page 120

similar way to the pseudo-static C-element (see Figure 4.1d). When theCdn input is

reset thep transistor stacks are configured so that if one of the inputs is low the output of

the circuit is reset. As a result, the C-element operates as an AND gate with an output

delay as shown in Figure 5.17. Note that the design of the C-element shown in Figure

5.17 can be derived easily from the testable C-element implementation illustrated in

Figure 4.2.

Thus, the use of the C-element (in Figure 5.17) in the RS latch design allows register

RSReg to be transformed into a set of AND gates reducing the test complexity of the

register destination decoder. In addition, the problem of detecting stuck-at-0 faults in the

feedback wires of the RS latch (in Figure 5.16a) which convert its static function into a

dynamic one no longer exists.

Testing for stuck-at faults

Figure 5.18 illustrates a scan testable implementation of the AMULET2 register destina-

tion decoder. In this design, registerReg (see Figure 5.15) is replaced by registerScan-

Reg with scan latches the implementation of which is illustrated in Figure 5.5 (the latch

control block is not shown). The latches with outputsnTRM andR15 are built from the

single-phase static latch shown in Figure 5.3 since their outputs do not stimulate the

inputs ofDC.

a

b

a

b

c

Cdn
b

a

C
a

b
c

a

b
c

Figure 5.17: CMOS implementation of the symmetric C-element with an active
low reset input

Cdn=0

wk Cdn=1

Scan Testing of Micropipelines

Page 121

Single stuck-at faults in the testable structure of the register destination decoder can be

divided into two groups:

1. Stuck-at faults in the data paths.

2. Stuck-at faults in the control circuit.

The decoder can operate in normal operation (Tst=0) and test mode (Tst=1). In normal

operation mode the circuit shown in Figure 5.18 operates in the same way as was

described in section 5.8.1. In test mode the register destination decoder is tested for most

stuck-at faults in its data and control paths. The testing for faults in normal operation

mode is necessary to guarantee that extra logic elements (such as Nor3, And2, Or1 and

Or2) incorporated into the original design of the register destination decoder are fault-

free.

C2

C
1

DFF

Q D

C3

In[15:0]

DCEn

RSReg
Cdn

Load

PenC

RS[15:0]

RS[15:0]

nRd[3:0]

In[15:0] Clr[15:0]

TRM nR15

nTRM R15 Rd[3:0]

nRd[3:0]

ScanReg
De

Rd[3:0]nTRM R15RoutAout

Rin Ain

Cdn

Cdn

Figure 5.18: AMULET2 register destination decoder with scan features

+

+

Rd[3:0]

Clr[15:0]

Tst

Tst

Sin

Sout

Sout

Sin

Sc
Sc

Nor1

Nor2

Or2

Or1

Nor3

And1

And2

Scan Testing of Micropipelines

Page 122

Testing the register destination decoder in normal operation mode.

1. The circuit is reset and the BooleanTst is set to low.

2. A test of all ones is applied to theIn inputs of the circuit. As a result, the circuit per-

forms 16 handshakes along its output channel clearing ‘ones’ in the vector stored in

registerRSReg. The outputs from registerScanReg are read by the environment.

3. OnceR15 is high and theRout signal has set to high (the latches ofScanReg are

closed) the outputs ofScanReg can be read by shifting its contents out to theSout

output. Concurrently, a new test vector is shifted into registerScanReg.

4. When the test has been shifted into registerScanReg the circuit is set to test mode by

setting the BooleanTst to high. Thus, the test stored in the latches ofScanReg is

applied to the inputs ofDC. TheRd outputs ofScanReg remain unchanged regardless

of thenRd inputs and theDe input (see Figure 5.4).

5. When the control inputs and outputs of the register destination decoder have been

returned to zero it is tested in test mode.

Testing the register destination decoder in test mode.

1. In test mode address decoderDC is enabled (the output ofNor3 is low), register

RSReg is set toload mode (theload input is set to high) and its C-elements operate as

two-input AND gates (the output ofAnd2 is reset). Note that the data input of the D

flip-flop is set to high permanently which allows only one handshake to be completed

on both the input and output channels.

2. When a test vector has been applied to theIn inputs of the register destination

decoderRin goes high, resetting the D flip-flop and setting the output ofC2 to high.

As a result,Rout goes high, the state of the D flip-flop is changed to one and the test

responses from the combinational circuit combined byDC, AND gates ofRSReg and

PenC are latched inScanReg.

Scan Testing of Micropipelines

Page 123

3. The Boolean Tst is reset and the contents of the scan latches of ScanReg are shifted

out while a new test vector is shifted in. Note that the contents of ScanReg can be

read directly from its outputs nTRM, R15 and Rd[3:0].

4. When the test has been shifted in ScanReg the Boolean Tst is set to high and a hand-

shake along the output channel of the circuit can be completed.

5. Once all the control signals of the register destination decoder have been reset a new

test can be applied to its In inputs.

A set of 47 test patterns for the united combinational circuit has been obtained with the

help of automatic test generation program tools developed at Virginia Polytechnic Insti-

tute [LeeTR93].

A fault simulation analysis carried out using the SIMIC fault simulator revealed that all

single stuck-at faults in the data paths and most stuck-at faults in the control circuit can

be detected during the testing of the register destination decoder in normal and test

modes.

Stuck-at-1 faults on the asymmetric inputs of the C-elements C2 and C3 cause prema-

ture rising events on their outputs. These faults can be detected by converting the asym-

metric C-elements into symmetric ones using the technique described in section 5.7. An

extra control input (TCel) is required to switch the operation modes of the testable C-

elements. If TCel=0 the C-elements operate as asymmetric ones, otherwise they operate

as symmetric C-elements.

The test algorithm for detecting stuck-at-1 faults on the inputs of C2 can be described as

follows:

1. Reset the register destination decoder. Tst=0.

2. TCel=1. C2 and C3 operate as symmetric C-elements.

Scan Testing of Micropipelines

Page 124

3. Rin↑. As a result, the output ofC2 is set to high andRout goes high. The state of the

D flip-flop is changed to one since theTRM output ofPenC is set to high by applying

the appropriate test on theIn inputs.

4. Rin↓ andAout↑. The output ofC2 is reset if there are no stuck-at-1 faults on its inputs

and remains high in the presence of these faults.

Stuck-at-1 faults on the asymmetric inputs ofC3 can be tested using the following test

algorithm:

1. Reset the register destination decoder. Tst=0.

2. TCel is set to low. Thus, C-elementsC2 andC3 operate as the asymmetric C-ele-

ments.

3. Rin↑. The state ofC2 is changed to one. The output of the D flip-flop is set to high

since theTRM output ofPenC is set to high by applying the appropriate test on theIn

inputs.

4. Aout↑. The state ofC2 is changed to zero andAin↑.

5. TCel=1. Hence,C2 andC3 operate as the symmetric C-elements.

6. Rin↓

7. Rin↑. The state of the D flip-flop is set to zero, resetting the output ofC3. This is pos-

sible because a rising signal from the output ofAnd1 is delayed for long enough for

the D flip-flop andC3 to change their states. In the presence of stuck-at-1 faults on

the inputs ofC3 theAin output remains high, otherwise theAin output is reset.

Note that the operation modes of the C-elementsC2 andC3 can be tested easily since if

they act as symmetric C-elements the register destination decoder halts in normal opera-

tion mode. If the C-elements act as asymmetric C-elements during the test this can be

identified by a changed order of events on the control lines of the decoder.

Scan Testing of Micropipelines

Page 125

5.8.3 Cost comparisons

The AMULET2 register destination decoder and its testable version have been imple-

mented in CMOS technology on a 1 double layer metal process. Table 5.5 shows

cost comparisons of the AMULET2 register destination decoder without and with testa-

bility features. The performance and dynamic power dissipation have been estimated for

both designs in their normal operation modes with the help ofSIMIC design verification

tools. The performance has been measured by applying a set of 16-bit vectors each of

them containing 15 ‘zeros’ and a ‘one’. As a result, the decoder processes each input

vector by completing one handshake along its input and output channels.

Table 5.5 shows that the testable register destination decoder demonstrates 8% perform-

ance degradation and 11% area overhead compared to the original design without testa-

bility. The power dissipation of the testable design has increased slightly.

5.9 Summary

The scan test technique presented in this chapter supports testing for stuck-at and delay

faults in two-phase and four-phase micropipelines and asynchronous sequential circuits

based on the micropipeline design style. The internal inputs and outputs of the process-

ing logic blocks are fully controllable and observable through the scan path. The test

patterns are scanned in and the test results are shifted out from the stage registers, uni-

fied into one shift register. The scan path of the testable micropipeline is controlled by

a. PD is the performance degradation;
b. AO is the area overhead.

Table 5.5: Cost comparisons for the AMULET2 register destination decoder designs

Design

Performance in
normal opera-

tion mode,
ns/test

PDa,
%

Area, AOb,
%

Power con-
sumption in

normal opera-
tion mode,

nJ/test
Without testability 25.5 n/a 14.6 n/a 33.8

With scan features 27.7 8% 16.2 11% 35.1

µm

10
2–× mm

2

Scan Testing of Micropipelines

Page 126

the scan test control block. Two implementations of the scan test control blocks which

follow two different communication protocols have been presented. The universal struc-

tures of the scan test control blocks allow them to be adapted for arranging either a

global asynchronous shifting of the test data between different parts of the chip or a

local scan path within a particular block.

Testing for stuck-at faults in the control part of the two-phase micropipeline is easier

than for the four-phase micropipeline. The use of asymmetric C-elements in four-phase

micropipelines creates the potential danger of premature firing, the detection of which is

not trivial. Stuck-at faults which cause premature firings in the control part of the four-

phase micropipeline can be detected either by converting asymmetric C-elements into

symmetric ones or by checking the order of events on the control wires.

The proposed testable micropipeline structure greatly simplifies the testing of micropi-

pelines by reducing the test complexity to that of the processing logic. The overall over-

head can be estimated only for a particular case since it depends on the complexity of

the processing logic and the chosen signalling protocol.

A case study of the AMULET2 register destination decoder has demonstrated the practi-

cal feasibility of the scan test technique presented in this chapter. It has been shown how

a symmetric C-element can be used to perform the function of an RS latch. The pro-

posed implementation of the C-element with a reset input allows it to be transformed

into an AND gate, making the testing of the register destination decoder easier. The scan

testable design of the register destination decoder exhibits low area overhead and per-

formance degradation.

Page 127

Chapter 6 : Design for Random

Pattern Testability of

Asynchronous Circuits

Although DFT methods give test engineers a great opportunity to simplify the testing of

VLSI designs, test generation and fault simulation costs are still large and are rising with

the increasing complexity of VLSI devices. As a result, random (or, more correctly,

pseudo-random) testing (see Appendix A) becomes a viable alternative for testing VLSI

circuits for at least two reasons:

• Algorithmic test generation methods for modern VLSI circuits are becoming too

expensive in terms of computational time. The use of pseudo-random pattern genera-

tors (PRPG) for the testing of VLSI circuits does not require any special properties

from the circuit under test except that it does not have illegal input combinations.

• It is possible to build VLSI structures with BIST features (see Appendix B).

In this chapter two-phase and four-phase designs of sequential circuits for random pat-

tern testability and a micropipeline structure with BIST features are considered.

6.1 Asynchronous pseudo-random pattern generator and
signature analyser designs

Clearly, both the pseudo-random pattern generator, which is used to generate stimulus

for the circuit under test, and the signature analyser, which collects the test results, must

operate asynchronously following the signalling protocol of the test object. The designs

of the asynchronous pseudo-random generator and signature analyser can be imple-

Design for Random Pattern Testability of Asynchronous Circuits

Page 128

mented using the corresponding synchronous LFSR and signature analyser described in

Appendix A. Figures 6.1a and 6.1b illustrate the design of an asynchronous LFSR and

signature analyser respectively. Both the synchronous LFSR in Figure 6.1a and the syn-

chronous signature analyser in Figure 6.1b are clocked by the latch control circuits

which can follow either two-phase or four-phase signalling. The two-phase latch control

circuit can be implemented using the circuit shown in Figure 5.1. An example of the

four-phase latch control circuit is shown Figure 6.2. TheRin signal is buffered to guar-

antee the required drive strength of the clock signal (Clk). TheRout andAout signals or

the Rin andAin signals in the latch control circuits of the asynchronous signature ana-

lyser or LFSR can be used by the environment to calculate the number of test vectors

applied to the circuit under test respectively.

Note that the synchronous LFSR and a signature analyser are built using shift registers

with master-slave flip-flops. This allows two different data latching schemes to be used

in four-phase signalling. According to the first data latching scheme the input data must

be stable beforeRin goes high untilAout is set to high. In the second data latching

Figure 6.1: Asynchronous a) pseudo-random pattern generator; b) signature
analyser based on a synchronous LFSR

LFSR

Rin

Ain

n

Out

Rst

Rst

Latch
Control

Rout

Aout

Synch

a)

SA

Rin

Ain

n

Out

Rst

Rst

Latch
Control

Rout

Aout

Synch

b)

m

In

Clk Clk

Figure 6.2: Four-phase latch control

Rin

Ain

B
Rout

Aout

Clk

Design for Random Pattern Testability of Asynchronous Circuits

Page 129

scheme the input data must be stable until a handshake is completed along the input (Rin

andAin control wires) and output channels (Rout andAout control wires), i.e., all the

control signals are returned to zero. In contrast the two-phase latch control circuit allows

the input data to be changed on the inputs of the signature analyser when a rising or fall-

ing event is generated on theRout output (the clock signalClk has already returned to

zero).

Consider the circuit shown in Figure 6.2. WhenRin goes high setting the clock to high

the data is latched in the master latches of the register whereas the slave latches are

transparent. As a result, a new vector is produced on the outputs of the shift register.

When theRin signal is returned to zero the master latches of the register are transparent

whereas the slave latches are opaque. As a consequence, the outputs of the shift register

remain unchanged. Since the LFSR (see Figure 6.1a) does not have inputs it can be used

in both data latching schemes. Clearly, it is important for the signature analyser (see Fig-

ure 6.1b) to have its input data stable only beforeRin goes high. Thus, the input data can

be changed on the inputs of the signature analyser either afterAout is set to high (the

first data latching scheme) or after the completion of a handshake along its control chan-

nels (the second data latching scheme).

An asynchronous pseudo-random pattern generator and signature analyser can be imple-

mented as handshake circuits. Since the generator and signature analyser themselves are

built using the LFSR their handshake implementations are similar to the design of the

handshake storage element illustrated in Figure 1.8d. The pseudo-random generator can

be built either as an autonomous block (see Figure 6.3a) or request-driven handshake

circuit (see Figure 6.3b). The outputs of the signature analyser depend on its inputs and

the initial seed of its LFSR. As a result, the handshake implementation of the signature

analyser must be built as a request-driven block (see Figure 6.3c). Note that initializa-

tion signals for the LFSRs of the generator and signature analyser are not shown in Fig-

ure 6.3.

The autonomous generator shown in Figure 6.3a starts to perform after the activation of

its activation channel. When the sequencer has completed a handshake along its left

Design for Random Pattern Testability of Asynchronous Circuits

Page 130

channel a new vector is ready on the outputs of the LFSR. As a result, the transferer is

triggered by a request along the right channel of the sequencer fetching the data from the

outputs of the LFSR and generating a request for the test object. The circuit under test

accepts the test vector by completing a handshake along the output channel of the gener-

ator. Afterwards the generator produces a new pseudo-random vector on the outputs of

the LFSR and activates its output channel. The request-driven generator illustrated in

Figure 6.3b produces a new test vector only when its control channel is activated by the

circuit under test. Compared to the request-driven generator the use of the autonomous

pseudo-random generator is more effective in terms of performance since it acts in par-

allel with the circuit under test. The signature analyser shown in Figure 6.3c is a request-

driven handshake circuit which is activated when the input data is stable and its control

channel is triggered by the circuit under test. The transferer is used to transmit interme-

diate signatures from the outputs of the four-phase signature analyser (SA) to the envi-

ronment and count the number of tests applied to the inputs of the test object. Note that

Figure 6.3: Handshake implementations of the a) autonomous; b) request-driven
pseudo-random pattern generators; and c) the signature analyser

Out

;

T

*
➩�

*

nLFSR

;
*

LFSR

Control Channel

Data Channel
n

a) b)

Out

;

T

*

nSA

Control Channel

Data Channel
m

c)

Design for Random Pattern Testability of Asynchronous Circuits

Page 131

the signature analyser uses the second data latching mechanism where the input data is

changed on the inputs of the four-phase signature analyser after completing a handshake

along its left passive channel.

Figure 6.4 illustrates the random test interface using the autonomous (see Figure 6.4a)

and the request-driven pseudo-random pattern generator (see Figure 6.4b). The random

testing procedure is started by setting the global start signal (➩) to high. When the

autonomous generator is used the generator (GN) and the circuit under test (CT) operate

in parallel (see Figure 6.4) and their operation is synchronized using a handshake ele-

ment called passivator [FarnTR96].

An implementation of the passivator is shown in Figure 6.5. When channel a is ready to

pass the data (the request signal ar is high) and channel b is ready to accept the input

data (the request br is set to high) the state of the symmetric element is changed to one

setting the acknowledge signals aa and ba to high. The transmission of the data is com-

pleted by resetting the request signals along channels a and b. Note that both ports of the

passivator are passive.

The use of the request-driven generator (see Figure 6.4b) does not require the passivator

since the operation of the generator and signature analyser is controlled by the circuit

under test. Note that the request-driven generator has one passive port. The number of

random test vectors applied to the inputs of the test object is equal to the number of

mGN CT•n n SA r mGN CTn SA r

➩� ➩�

Figure 6.4: Random test interface using a) the autonomous generator; b) the
request-driven generator

Sgn

a) b)

Sgn

C

Figure 6.5: An implementation of the passivator

ar

br

aa

ba

DataIn DataOut
•

a b

Design for Random Pattern Testability of Asynchronous Circuits

Page 132

requests generated on the output channel (Sgn) of the signature analyser. After the

required number of handshakes along channelSgn the signature produced on the output

of the signature analyser is compared with the good one. If they are equal, the circuit is

fault-free, otherwise it is faulty.

As was mentioned in Appendix A an LFSR can be designed to generate all possible

binary vectors on its outputs. Figure A.2b illustrates an implementation of the 4-bit syn-

chronous LFSR which goes through all 16 possible states including the ‘all zeros’ state.

The output sequence of this LFSR has the following unique property:

All possible pairs of 2-bit binary vectors can be found sequentially on the odd or even

outputs of the LFSR [Pet94].

Table 6.1 contains the states of the 4-bit LFSR shown in Figure A.2b. ColumnsT0 and

T1 repeat the outputsQ1 andQ3 respectively. After the period of the LFSR all the possi-

ble combinations of 2-bit vectors can be found easily in the 2-bit output sequence com-

pound by columnsT0 andT1. For instance, the combinations: 11 11, 11 01, 11 10, 11 00

can be found in this sequence.

Lemma 6.1. Let the pseudo-random pattern generator be built using the ()-bit

LFSR which goes through all possible binary states. Everyk-th output of the LFSR is

used as an output of the generator so that it has exactlyn outputs. All possible combina-

tions of anyk n-bit binary vectors chosen sequentially can be found in the output

Table 6.1: State sequence of the 2-bit PRPG

State Q0 Q1 Q2 Q3 T0 T1 State Q0 Q1 Q2 Q3 T0 T1

0 0 0 0 0 0 0 9 1 0 1 0 0 0

1 1 0 0 0 0 0 10 1 1 0 1 1 1

2 0 1 0 0 1 0 11 1 1 1 0 1 0

3 0 0 1 0 0 0 12 1 1 1 1 1 1

4 1 0 0 1 0 1 13 0 1 1 1 1 1

5 1 1 0 0 1 0 14 0 0 1 1 0 1

6 0 1 1 0 1 0 15 0 0 0 1 0 1

7 1 0 1 1 0 1 16 0 0 0 0 0 0

8 0 1 0 1 1 1 17 1 0 0 0 0 0

k n×

Design for Random Pattern Testability of Asynchronous Circuits

Page 133

sequence of the pseudo-random pattern generator after it has passed through all its

states.

1Proof. The prove of this Lemma is trivial fork=1 since the LFSR is assumed to produce

all possible ()-bit binary vectors on its outputs.

Let us prove this Lemma whenk=2. Hence, the LFSR has 2n outputs.

Let the even outputs of the LFSR be the outputs of the generator. Figure 6.6a shows the

mechanism for generating pseudo-random vectors on the even outputs of the LFSR. Let

us choose a certain pair ofn-bit vectors. The first vector from this pair of vectors is read

directly from the even outputs of the LFSR after the application of a clock signal at time

t (see Figure 6.6). Since the LFSR acts as a shift register the second vector is shifted

from its odd outputs after it is clocked at timet+1. As a result, there is a unique 2n-bit

vector which must be generated by the LFSR in order to produce the required pair of

vectors. Since the LFSR can go through all possible states the required vector can

be derived. This proof can be repeated for any other pairs ofn-bit vectors.

The mechanism for generating pseudo-random vectors on the odd outputs of the LFSR

is illustrated in Figure 6.6b. Let us fix a certain pair ofn-bit vectors. The first vector

from this pair is produced on the odd outputs of the LFSR at timet. After the application

of the next clock the contents of the even flip-flops of the LFSR are shifted into the odd

1. The idea of this proof was suggested by Prof. John Brzozowski in private discussions on this
topic.

k n×

q1(t) q2(t) q3(t) qn(t)

qn(t+1)q3(t+1)q2(t+1)q1(t+1)

1 2 3 4 5 6 2n2n-1

q1(t) q2(t) q3(t) qn(t)

qn(t+1)q3(t+1)q2(t+1)q1(t+1)

1 2 3 4 5 6 2n2n-1

a) b)

Figure 6.6: Mechanisms for generating pseudo-random vectors using a) even and
b) odd outputs of the LFSR

2n-2

2
n k+

Design for Random Pattern Testability of Asynchronous Circuits

Page 134

ones (see Figure 6.6b) producing the second vector. The content of the first output is

derived by XORing the outputs of some flip-flops including the last one. Note that the

number of inputs of the XOR gate and the flip-flops which feed its inputs depend on the

derivation polynomial of the LFSR. Regardless the outputs of those flip-flops which are

connected to the inputs of the XOR gate the content of the first flip-flop can be inverted

(when the output of the last flip-flop is a one) or can be unchanged (when the output of

the last flip-flop is a zero). As a result, there is a unique state of the LFSR which allows

the required pair of vectors to be generated on its odd outputs.

A similar proof can be continued easily for anyk more than 2. ❑

This property of the LFSR will be used to design of a micropipeline with BIST features

(see section 6.7).

6.2 Sequential circuit designs

The two-phase and four-phase designs of a asynchronous sequential circuit were dis-

cussed in chapter 5. The use of normally closed registersReg1 andReg2 is preferable

for scan testing since the contents of the state registers can be observed and controlled

along a scan path. If the test data is not shifted in and out of the state registers thenReg2

can be transparent initially. As a result, the sequential circuit latch control is faster than

the control of the circuit with normally closed state registers. There is no need to open

the latches ofReg2 every time the data is ready on the outputs of the combinational cir-

cuit. The data from theSO outputs of the combinational circuit is already stored inReg2

when a rising event is generated on theRout output. Note that the latch control of regis-

tersReg1 andReg2 for the two-phase sequential circuit shown in Figure 5.9 assumes

that both the registers are closed initially.

Figure 6.7 shows the design of a four-phase sequential circuit with the normally closed

Reg1 and the normally transparentReg2. Initially, all C-elements are reset. The latches

of Reg1 are set to their initial states. When a rising signal arrives at theRin input the out-

put of the C-elementC1 goes high. This rising signal is delayed for long enough for the

Design for Random Pattern Testability of Asynchronous Circuits

Page 135

data on the PO outputs to stabilise and the data from the SO outputs to be stored in Reg2.

As a result, the output of the asymmetric C-element C2 is set to high latching the data

from the SO outputs of the combinational circuit in Reg2. Once the data is latched in

Reg2 a rising event is produced on the Rout output. When the output data has been read

by the environment a rising event is produced on the Aout input. The state of the asym-

metric C-element C3 is changed to one. Thus, the latches of Reg1 become transparent

storing the input data in their memory. When the data has been stored in register Reg1

the Ain signal goes high.

Note that when Rout goes high the data from the PO outputs must be latched by the

environment. This is because a rising event on the Aout input causes the latches of Reg1

to be transparent changing the SI inputs of the combinational circuit. Thus, the PO out-

puts of the combinational circuit can be changed before the Rout and Ain signals are

reset.

Once the Rin signal has returned to zero the output of C1 is reset. As a result, the output

of C3 is reset closing the latches of Reg1. When the data has latched in Reg1 the Ain sig-

nal is returned to zero enabling the output of C2 to be reset. If both inputs of C2 are reset

its state is changed to zero making the latches of Reg2 transparent. As a result, Rout

goes low. When the Aout signal has returned to zero the sequential circuit is ready to

accept new data and the sequence of events described above is repeated.

Figure 6.7: Four-phase sequential circuit with the normally closed Reg1 and the
normally transparent Reg2

Rin

Rout

Aout

Ain

Reg1

Req

Ack

PI PO

SI SOCLB

C3

C1

+

Ack

Req

Reg2

- C2

Design for Random Pattern Testability of Asynchronous Circuits

Page 136

6.3 Parallel random testing of sequential circuits

6.3.1 Probabilistic properties of an XOR gate

It has already been reported that a 2-input XOR gate can be used to improve the effec-

tiveness of the random testing of synchronous VLSI circuits [Rom89, Souf95].

Consider the XOR gate with two inputs (a and b) and output c shown in Figure 3.2. Let

pa and pb be the probabilities of a one and zero on input a and b respectively. Suppose

that there is no correlation between inputs a and b. Then, according to equation 3.6 the

probability of a one (pc) on output c of the XOR gate can be calculated as follows:

pc = pa + pb - 2papb (6.1)

It is easy to show that if pa=0.5 in equation (6.1) then pc=pa=0.5 regardless of the value

of pb. This probabilistic property of the XOR gate can be described as follows.

If independent and equiprobable random signals are applied to one of the two inputs of

the XOR gate then:

1. The output signals produced by the gate are equiprobable.

2. The probabilistic properties of the output sequence do not depend on the probabilistic

properties of the input sequence applied to the other input.

Clearly, a fault effect can be transmitted easily through the XOR gate since any faulty

signal applied to one of its inputs changes its fault-free output.

6.3.2 Sequential circuit designs for random-pattern testability

The probabilistic properties of the XOR gate can be used for at-speed random testing of

synchronous sequential circuits [Souf95]. In this section asynchronous designs for ran-

dom-pattern testability of sequential circuits are considered.

Design for Random Pattern Testability of Asynchronous Circuits

Page 137

Figures 6.8 and 6.9 show the designs of two-phase and four-phase random pattern testa-

ble sequential circuits. The block of XOR gates performs a bit-wise XOR operation

between theSO outputs of the combinational circuit and additional test inputs (TI). The

outputs of the XOR block are connected to the inputs ofReg2 and test outputs (TO).

During normal operation mode theTI inputs are kept at zero and the sequential circuit

operates according to its specification.

In test mode test vectors generated by the pseudo-random generator are applied to theTI

inputs and thePI inputs. The test results are observed on thePO andTO outputs by the

Figure 6.8: Two-phase sequential circuit with parallel random testing

Rin
Rout

Aout
Ain

Ack

Req

Reg2Reg1

Req

Ack

PI PO

SI
SO

C

CLB

C

TI

TO

XOR

Figure 6.9: Four-phase sequential circuit with parallel random testing

Rin

Rout

Aout

Ain

Reg1

Req

Ack

PI PO

SI
SOCLB

C3

C1

+

Ack

Req

Reg2XOR

TI

TO

- C2

1

2

Design for Random Pattern Testability of Asynchronous Circuits

Page 138

signature analyser. Note that vectors produced by the pseudo-random generator are

equiprobable and independent. Thus, according to the probabilistic properties of the

XOR gate the output vectors produced by the XOR block are equiprobable and inde-

pendent of the probabilistic properties of theSO outputs. As a result, equiprobable and

independent stimuli are applied to the inputs ofReg2 and fault effects from theSO out-

puts can be detected on theTO outputs. After the application of each pseudo-random

test to thePI inputs of the sequential circuit the combinational circuit and registersReg1

and Reg2 are tested concurrently. This random testing procedure is called ‘parallel’

because random test patterns are applied to thePI andSI inputs of the combinational cir-

cuit in parallel.

Stuck-at faults on the inputs and outputs ofReg1 andReg2 are equivalent to the corre-

sponding faults on theSI inputs of the combinational circuit. Stuck-at faults on the

inputs of the XOR block can be easily detected on theTO outputs. As a consequence,

the total test time for detecting stuck-at faults in the data paths of the sequential circuits

(see Figure 6.8 and 6.9) is determined by the random test time of their combinational

circuits.

Number of random patterns required for testing combinational

circuits

There are two important characteristics of random testing:

• the number of patterns which must be produced by the test pattern generator to pro-

duce the desired set of test vectors;

• the probability of detecting all possible faults from the predetermined class of the cir-

cuit’s faults.

The first parameter reflects the practical usability of random testing or simply the ran-

dom pattern testability of the circuit. The second parameter is a characteristic of the

quality of random testing.

Design for Random Pattern Testability of Asynchronous Circuits

Page 139

Suppose that to detect all the stuck-at faults in the predetermined set of the combina-

tional network’s stuck-at faults it is necessary to generate on itsN inputs (N=n+m,

wheren andm are the number ofSI andPI inputs to the combinational circuit respec-

tively) a random test of lengthL.

The test confidence probability threshold () is the probability that all the stuck-at

faults in the circuit will be detected during its random testing. The escape probability

threshold of the test () is the probability that at least one stuck-at fault from

the predetermined set of faults will not be identified.

Thus, the upper bound on the number of random test patterns (L) applied to the inputs of

the combinational circuit can be estimated using the following formula [Savir84,

Wag87]:

, (6.2)

wherepd is the minimal detection probability of a fault from the set of the circuit’s

faults;r is the number of faults which have the minimal detection probabilitypd.

Testing for faults in the control circuits

As was shown in chapters 1 and 5 stuck-at faults on the control lines of the two-phase

sequential circuit illustrated in Figure 6.8 are easy to detect since they cause the circuit

to halt. These faults are detected either in normal operation mode or test mode.

Most stuck-at faults on the control lines in the four-phase sequential circuit shown in

Figure 6.9 violate the communication protocol between the circuit and the environment

causing the circuit to halt. There are some faults which can cause premature firings. For

example, fault 1-SA0 causes a premature falling event on the output ofC2. Fault 2-SA1

causes a premature rising event on the output ofC3.

Fault 1-SA0 cannot be detected by checking the order of events on the control inputs

and the outputs of the circuit. This fault can be detected in test mode by converting the

pt

qt 1 pt–=

L
qt r⁄()ln

1 pd–()ln
--------------------------≥

Design for Random Pattern Testability of Asynchronous Circuits

Page 140

asymmetric C-element C2 into a symmetric one as shown in Figure 6.10. The symbolic

representation of the C-element C2 and its CMOS implementation are illustrated in Fig-

ure 6.10a and 6.10b respectively. When inputs In1 and In2 are low the p-transistor stack

is on and the output of the C-element is reset. If In1=1 the output of the C-element goes

high. When In1=0 and In2=1 the state of the C-element remains unchanged. Figure

6.10c illustrates a CMOS implementation of the C-element which can operate as a sym-

metric C-element (Tst=0) and the asymmetric one (Tst=1) shown in Figure 6.10b.

After the initialization of all control wires C2 is set to test mode (Tst=0) when it operates

as the symmetric C-element. In the fault-free circuit, when the Rin and Aout inputs are

set to high the Ain and Rout signals go high. In the presence of fault 1-SA0 the output of

C2 cannot be set to high. Thus, the Rout output remains unchanged, i.e. Rout=0. In order

to check if C2 acts as the symmetric or asymmetric C-element the Rin signal must be set

to high after the initialization of the circuit. If Rout goes high C2 operates as the asym-

metric C-element, otherwise it acts as the symmetric one.

Fault 2-SA1 can be detected easily since it violates the order of events on the inputs and

outputs of the circuit. After the initialization the Rin signal is set to high. In the presence

of fault 2-SA1 the output of C3 is set to high. As a result, Ain goes high whereas this

must happen only after setting the Aout input to high.

Out

wkIn1

In2
C

In1

In2
Out

Figure 6.10: Asymmetric C-element: a) symbol; b) CMOS implementation; c)
testable CMOS implementation

a)

c)

-

Tst
Out

wkIn1

In2

b)

Design for Random Pattern Testability of Asynchronous Circuits

Page 141

6.3.3 Analysis of the parallel random testing technique

Advantages

• The implementation of the parallel random testing technique does not require the

control structure of the sequential circuit to be changed.

• The total test time depends of the random test time of the combinational logic block

and can be calculated easily.

• The sequential circuit is tested at its normal speed which allows a large number of

random test vectors to be applied to the inputs of its combinational circuit.

Disadvantages

• The parallel random testing technique requiresn extra test inputs andn extra test out-

puts, wheren is the number of theSO outputs.

• The technique introduces a certain level of hardware redundancy which includes the

block of two-input XOR gates, the pseudo-random generator and the signature ana-

lyser incorporated into the testable circuit design.

• The block of XOR gates in the feedback of the sequential circuit requires the intro-

duction of an extra delay matching signal delays through the XOR gates.

6.4 Bit-serial random testing of sequential circuits

The general idea for alleviating the test problem of asynchronous sequential circuit

shown in Figures 5.9 and 6.7 is common for all sequential circuits, i.e. during the test the

whole sequential circuit must be divided into a combinational part and memory ele-

ments which are tested separately.

Design for Random Pattern Testability of Asynchronous Circuits

Page 142

6.4.1 Two-phase sequential circuit design

Figure 6.11 illustrates the design of a testable two-phase sequential circuit. This circuit

contains some additional elements such as a register (Reg3) for collecting the test data

from theSO outputs of the combinational circuit, a block of XOR gates to mix the test

data and the multiplexer to switch the data flow during the test phase. Also there are two

XOR gates, multiplexers and a toggle element to provide the proper control signalling.

C

C

Figure 6.11: Two-phase sequential circuit with bit-serial random testing

Rin

Ain

Aout

Rout

MX

MX

MX

XOR

delay1

To
gg

le

de
la

y2

PI

PO

n

n-1

n

n

n

Sin

Sout

n

n

n

TF

F

T

F

T

OM

OM

SI

SO

CLB

Reg3 ReqAck

Reg2Req Ack

Reg1Req Ack

Design for Random Pattern Testability of Asynchronous Circuits

Page 143

The sequential circuit performs in two modes (normal operation and test mode) which

are set by switching the Boolean signal on the operation mode input (OM). There are

two additional pins (Sin andSout) inserted in the design to scan test patterns intoReg1

for stimulating theSI inputs of the combinational circuit and scan its responses out dur-

ing the test.

Test mode

In test mode, the Boolean signalOM is set to high. The control part of the circuit shown

in Figure 6.11 is reconfigured to provide the desired asynchronous test control interface.

All the latches ofReg1 are set to their initial states whereas all the latches ofReg3, all

the C-elements and the toggle element are set to zero. The primary inputs (PI) of the

combinational circuit and theSin input of the circuit are connected to the outputs of the

two-phase pseudo-random generator. The responses from thePO outputs of the combi-

national circuit and theSout output of the sequential circuit are compressed by the two-

phase signature analyser.

A request signal (Rin) from the generator is delayed for long enough for the output data

to stabilize on the outputs of the combinational logic block. The data from theSO out-

puts of the combinational circuit is mixed with the output data ofReg3 in the block of

two-input XOR gates. The outputs of the XOR gates come through the multiplexer to

the inputs ofReg2 and are latched inReg2. After receiving an acknowledge signal from

Reg2, which is steered by the toggle element, the content ofReg2 is copied intoReg3.

When the data is captured byReg3 it generates an acknowledge signal on its outputAck.

This signal causes the multiplexer to connect the first (n-1) most significant bits ofReg1

and the scan-in inputSin of the circuit to the inputs ofReg2. Simultaneously, a request

signal is produced for the signature analyser on theRout output. The data from the out-

puts of the multiplexer is captured byReg2 when a new request signal appears on its

request inputReq (in fact, this is the acknowledge signal forReg3 which is delayed until

the multiplexer has switched). A new acknowledge signal fromReg2 is steered by the

toggle element and passes to the corresponding input of the symmetric C-element where

Design for Random Pattern Testability of Asynchronous Circuits

Page 144

it waits for an acknowledge signal from the signature analyser. The primary outputs of

the combinational circuit and the scan-out output ofReg3, which is actually thenth bit

of Reg3, are collected by the signature analyser. Once an acknowledge signal is received

on theAout input:

1) the content ofReg2 is copied intoReg1;

2) an acknowledge signal is sent to the generator.

When the generator has finished producing a new test pattern, a new request signal is

generated on theRin input of the circuit and the test procedure described above is

repeated again.

Figure 6.12 illustrates the mechanism for applying random test patterns to the inputs of

the combinational circuit and compressing the responses from its outputs. The proce-

dure for applying test patterns (see Figure 6.12a) assumes that random tests are applied

CLBP
R

P
G

Reg1
n

n-1

Sin

PI PO

SI SO

Reg2XOR Reg3

SA
CLB

PO

SO
SI

PI

n

Sout

Figure 6.12: The mechanism for a) applying test patterns to the inputs of the CLB
and b) compressing the responses from the outputs of the CLB during the test

a)

b)

Reg2

Design for Random Pattern Testability of Asynchronous Circuits

Page 145

both to thePI inputs of the combinational circuit and theSin input of the sequential cir-

cuit. During the test registersReg1 andReg2 are configured to shift a new test bit to

Reg1 after receiving a request signal from the generator. As a result, random test bits are

shifted inReg1 bit-serially from theSin input of the circuit.

The process of collecting and compressing test data from the outputs of the combina-

tional circuit (see Figure 6.12b) consists of two parts. The first one includes the direct

analysis of the responses from thePO outputs of combinational circuit by means of the

external signature analyser. The second part is a signature analyser which compresses

the responses from theSO outputs of the combinational circuit. RegistersReg2, Reg3

and the block of XOR gates are configured in such way that the current contents ofReg3

are mixed (with the help of the XOR operation) with a new response which is produced

on theSO outputs of the combinational circuit. The contents ofReg3 are observed on its

n-th output.

SO15 SO14 SO0

L2
15

L2L2L3
14 0
L3 L3

01415

Sout

L2 L3

L2 L3 L2 L3

L2 L3 L2 L3 L2 L3

SO15 r()

SO14 r()

SO0 r()

SO1 r()
Sout(r)

1 2 15

Figure 6.13: Compressing the test data from the internal outputs of the CLB: a) the
structure of the signature analyser; b) the equivalent schematic of the signature

analyser

a)

b)

L2L3

Design for Random Pattern Testability of Asynchronous Circuits

Page 146

The signature analyser used for collecting the test data from the SO outputs of the com-

binational circuit is illustrated in Figure 6.13. The general structure of this signature

analyser (see Figure 6.13a) is similar to the structure of the BILBO signature analyser

(see Appendix B). The equivalent schematic of such a signature analyser (see Figure

6.13b) shows that the procedure for compressing the test data from the SO outputs of the

combinational circuit is similar to the XOR operation. After receiving each request sig-

nal (r) the input bits are delayed for a different number of steps (request signals) depend-

ing on their position numbers and then XORed.

Normal operation mode

In normal operation mode, the OM input of the sequential circuit is reset. The outputs of

the toggle element and the outputs of Reg3 are held at zero permanently. Initially, all the

C-elements are reset. The latches of Reg1 are set to their initial states. After receiving a

request signal at the Rin input from the sender data is processed by the sequential circuit

in the same way as was described for the circuit shown in Figure 5.9.

6.4.2 Four-phase sequential circuit design

Figure 6.14 shows the design of a four-phase sequential circuit with bit-serial random

testing. This circuit performs in two modes depending on the value applied to the

Boolean signal OM: test (OM=1) and normal operation mode (OM=0).

Test mode

In test mode the OM input is set to high and all C-elements are reset. The latches of

Reg1 are set to their initial states. The latches of Reg3 are reset. Note that registers Reg1

and Reg3 are closed whereas the latches of Reg2 are transparent initially.

When a test vector has been applied to the PI and Sin inputs by the four-phase pseudo-

random generator the Rin signal goes high setting the output of C1 to high. This signal is

delayed for long enough for the output data to stabilize on the PO and SO outputs of the

Design for Random Pattern Testability of Asynchronous Circuits

Page 147

combinational circuit. The data from the SO outputs are mixed with the contents of Reg3

in the block of XOR gates and sent through the multiplexer (MX1) to the inputs of Reg2

to be stored in its latches. The Y1 output of the control circuit (CC) goes high. This sig-

nal is passed through the OR gate to the output of multiplexer MX2 closing the latches

of Reg2. As a result, the latches of Reg3 become transparent since the output of C4 is set

to high by a rising signal produced on the acknowledge output of Reg2. A rising event

from the Ack output of Reg3 sets the Y2 output of CC to high and the output of C4 is

reset.

Figure 6.14: Four-phase sequential circuit with bit-serial random testing

Rin

Aout

RoutMX1

MX2

XOR

delay

PI

PO

n

n-1

n

n

n

Sin

Sout

n

n

TF

T

F

OM

OM

SI

SO

CLB

Reg3 ReqAck

Reg2Ack Req

Reg1Req Ack

C4

+

C6

C1

MX3
F

T

C3

+

n
C5

n

- C2
Ain

1
2

CC

In1

In2

Y1

Y2

C
In2

In1

Y1

Y2

Rin

Design for Random Pattern Testability of Asynchronous Circuits

Page 148

The latches ofReg3 become opaque storing in their memory a current signature of the

data produced on theSO outputs of the combinational circuit. The mechanism for col-

lecting the data form theSO outputs was discussed in the previous section of this chap-

ter.

Note that a high signal from theY2 output ofCC switches multiplexerMX1 so that it

connects the (n-1) less significant outputs ofReg1 and theSin input to the inputs of

Reg2. A falling signal from theAck output ofReg3 resets theY1 output ofCC making

the latches ofReg2 transparent. Afterwards a falling signal from theAck output ofReg2

sets the output ofC5 to high. As a consequence, the latches ofReg2 become opaque

again. Once theAck output ofReg2 is set to high the state ofC6 is changed to one pro-

ducing a rising event on theRout output of multiplexerMX3.

When the data form thePO outputs and theSout output has been collected by the exter-

nal signature analyser theAout signal goes high. The output ofC3 is set to high making

the latches ofReg1 transparent. A rising signal from theAck output ofReg1 is passed to

theAin output of the circuit. Once theRin signal is returned to zero the output ofC1 is

reset changing the state ofC3 to zero. As a result,Reg1 is closed storing a new test vec-

tor which is applied to theSI inputs of the combinational circuit. The mechanism for

producing tests for theSI inputs of the combinational circuit is similar to that described

in the previous section of this chapter.

The Y2 output ofCC is reset changing the state ofC5 to zero. The latches ofReg2

become transparent and a falling event is generated on theAck output ofReg2. Thus,C6

moves to the zero state resetting theRout output of the circuit. If theAout input is reset

the sequential circuit is ready to accept a new test from the generator and the sequence

of events described above is repeated.

Normal operation mode

When the Boolean signalOM is low the sequential circuit performs in normal operation

mode. In the initial state all the C-elements are reset. The latches ofReg1 are set to their

Design for Random Pattern Testability of Asynchronous Circuits

Page 149

initial states. The output of the symmetric C-element of CC is kept high (see Figure

6.14) and the outputs of Reg3 are kept low during normal operation mode. When the

data is ready on the PI inputs and the Rin input is set to high the sequential circuit oper-

ates in the same manner as the circuit shown in Figure 6.7.

6.4.3 Analysis of the bit-serial random test technique

Advantages

The random pattern testable sequential circuits shown in Figures 6.11 and 6.14 have

some important features which simplify their random testing.

Complexity of the test procedure. During the test the combinational part of the sequen-

tial circuit is tested separately from the memory elements which makes the testing of the

circuit much easier.

Test performance. Compared to the scan test approach the bit-serial test procedure does

not require a test pattern to be scanned into the shift register before the testing and the

test data to be scanned out after the application of the test pattern. During the random

testing of the sequential circuits (see Figures 6.11 and 6.14), test patterns are produced

on the SI inputs of their combinational circuits with the help of shifting the contents of

Reg1 by one bit. A new test bit is loaded from the generator after receiving a request sig-

nal. The test data from the SO outputs of the combinational circuit is collected in Reg3

after the application of each new test pattern to the inputs of the combinational circuit.

There is no need to shift all the contents out of Reg3 after applying a new test pattern to

the inputs of the circuit (the test data is compressed and stored into register Reg3 and

observed on its n-th output after the application of each test pattern). In this case the ran-

dom pattern testing of such a circuit is approximately (n-1) times faster then a traditional

scan test method, where n is the number of latches of Reg1.

Number of random test patterns. The analysis of the circuits illustrated in Figures 6.11

and 6.14 shows that the number of random test patterns required to detect all their single

Design for Random Pattern Testability of Asynchronous Circuits

Page 150

stuck-at faults in the data paths is equal to the number of test patterns for detecting all

the stuck-at faults in their combinational parts. This is because of the following proper-

ties:

• all the stuck-at faults on the inputs/outputs of registersReg1 andReg2 are equivalent

to the corresponding faults on theSI inputs of the combinational logic block;

• all the stuck-at faults on the inputs/outputs of the block of XOR gates andReg3 are

detected easily during the test of the combinational circuit (the circuitry which col-

lects the test data from the internal outputs of the combinational circuit (see Figure

6.13) is similar to the BILBO register);

The use of either equiprobable or weighted random test patterns. The bit-serial random

testing allows either equiprobable or weighted random test vectors to be applied to the

inputs of the combinational circuit during its testing.

Random testing using only equiprobable random test patterns is not always the optimal

test procedure for obtaining the minimal (or close to minimal) number of random test

patterns in order to guarantee the detection of all the circuit’s stuck-at faults. In order to

reduce the number of random test patterns, special methods have been derived for

achieving optimal output signal probabilities for generators of weighted pseudo-random

test patterns [Agra76, ChinTR84, Waic89]. The upper bound for the random test length

L can be calculated using formula (6.2).

Disadvantages

Complex circuit control. Two-phase and four-phase implementations of the bit-serial

random testing technique require the initial control circuit of the corresponding sequen-

tial circuit to be changed. The introduction of extra elements into the control circuit can

make its testing more difficult.

A fault simulation analysis of the two-phase and four-phase control circuits was carried

out usingSIMIC design verification tools [Sim94]. It was observed that stuck-at faults

Design for Random Pattern Testability of Asynchronous Circuits

Page 151

on the control lines of the two-phase sequential circuit (see Figure 6.11) are easy to

detect since either they cause the circuit to halt or they change the data flow during the

test which can be identified easily. There are some stuck-at faults in the two-phase con-

trol circuit (on the false inputs of the control multiplexers) which cannot be detected in

test mode. They will manifest themselves during normal operation mode by preventing

any activity on theRout andAin outputs, hence causing the whole circuit to deadlock.

In the four-phase sequential circuit shown in Figure 6.14 most stuck-at faults on the con-

trol lines manifest themselves during the test by causing the circuit to halt. A stuck-at

fault on the control input ofMX1 can be detected easily since it changes the data flow

during the test. Note that stuck-at faults on the control wires which are not involved in

test mode can only be identified during normal operation mode by causing the circuit to

halt.

The stuck-at faults which cause premature firings on the outputs ofC2 andC3 can be

tested in the same manner described in section 6.3.2. Faults 1-SA1 and 2-SA1 cause pre-

mature rising events on the output ofC4. These faults can be detected by converting the

asymmetric C-element into a symmetric one using an additional control input (Tst) as

shown in Figure 5.13. After the initialization the following sequence of steps can be

used to identify these faults:

1. OM=1.

2. Tst is set to high. C4 operates as a symmetric C-element.

3. Rin↑

TheAck output ofReg2 goes high setting the output ofC4 to high. As a result, theY2

output ofCC goes high.

3. Aout↑ andRin↓

The output ofC2 is reset.

Design for Random Pattern Testability of Asynchronous Circuits

Page 152

4. When the Ain output has reset OM=0.

The Multiplexer MX2 is switched connecting the output of C2 to the Req input of

Reg2. Thus, C4 goes to the zero state if it is fault-free and the output of C4 remains

unchanged in the presence of faults 1-SA1 and 2-SA1. Note that the output of C5 is

set to high.

5. OM=1.

Fault-free behaviour. The outputs of CC are reset. The Ack output of Reg2 goes high

changing the state of C6 to one. Afterwards, the output of C5 is reset and the output

of C6 is set to low. As a result, the Rout output goes high and then low.

Faulty behaviour. The outputs of CC remain unchanged (Y1=Y2=1). The output of

C6 is set to high and the Rout signal goes high.

The operation mode of the C-element C4 (symmetric or asymmetric) can be checked by

setting the sequential circuit in test mode and applying the sequence of events described

in section 6.4.2. If C4 operates as the symmetric C-element the whole circuit will halt.

Hardware redundancy. The hardware redundancy of the testable sequential circuits con-

sists of register Reg3, the block of n XOR gates, three multiplexers, the toggle element

and extra control elements to provide for the corresponding signalling. Clearly, the over-

all hardware redundancy of the testable circuit heavily depends on the complexity of its

combinational logic block: the more complex the combinational circuit is, the less

redundancy the testable sequential circuit has. As a result, this method of designing test-

able asynchronous sequential circuits is more effective in terms of hardware redundancy

for complex sequential circuits.

Performance degradation. There is some degradation in the performance of the testable

sequential circuits during normal operation mode. This is caused by the additional cir-

cuits incorporated in the data paths and the control circuit which inevitably slows down

the circuit performance.

Design for Random Pattern Testability of Asynchronous Circuits

Page 153

6.5 Handshake implementations of a sequential circuit for
random pattern testability

6.5.1 The design of a handshake sequential circuit

A sequential circuit can be implemented as the handshake circuit shown in Figure 6.15.

This circuit has one input communication channel (pi) along whichm-bit input data is

sent and one output channel (po) from whichk-bit output data is read by the environ-

ment. The sequential circuit comprises two storage elements (R1 andR2) to store the

states of the circuit and the combinational block (CL) which performs the logic function

producing the outputs and new states for the sequential circuit.

Initially, theR2 storage element is reset into its initial state according to the specification

of the sequential circuit. The handshake circuit is activated along its activation channel

(➩�). As a result, the contents of theR2 storage element is copied intoR1. Afterwards,

the passive port of the combine element (<<>>) is triggered by the corresponding

sequencer.

;

T

R1

*
➩�

R2

T

;
*

*

Figure 6.15: Handshake implementation of a sequential circuit

<<>>

T
CL

T

m

k

n

n

po
pi

Design for Random Pattern Testability of Asynchronous Circuits

Page 154

An implementation of the combine element is shown in Figure 6.16a [FarnTR96]. The

combine element is activated along its channel a which is the passive channel of the fork

(the design of the fork is illustrated in Figure 6.16b). The fork passes a request signal

from channel a to the request outputs of channel a and b in parallel. When the data has

ready on the data inputs of channels b and c rising acknowledge signals are sent to the

fork setting the output of the symmetric C-element to high (see Figure 6.16b). When the

data has been read from the data outputs of the combine element the request wire of

channel a is returned to zero resetting the corresponding request wires of channels b and

c. A handshake along input and output channels of the combine element is completed

when the acknowledge signals of channels b and c are returned to zero.

The combine element reads the data from the outputs of R1 and inputs of the pi channel.

The transferer sends the data from the outputs of the combine element to the inputs of

the combinational circuit. A handshake implementation of the combinational circuit is

illustrated in Figure 6.16c. When the data has arrived at the inputs of the combinational

circuit ar goes high. This signal is delayed for long enough for the output data to stabi-

lize on the outputs b and c. Note that the outputs b and c of the combinational circuit

correspond to the primary and state outputs of the circuit respectively. A handshake

along the input channel is completed when the ar and aa signals are returned to zero.

The output data produced by the combinational circuit is read by activating the corre-

sponding output channels.

When the data is ready to be read from the outputs of the combinational circuit the top

sequencer triggers the fork which activates the corresponding transferers (see Figure

6.15). The data from the primary and the state outputs of the combinational circuit is

transmitted in parallel to the po channel and the R2 storage element respectively. When

the output data is stored in R2 and read by the environment the contents of R2 is copied

to R1. As a result, the sequential circuit generates a request for new data to be sent to its

pi channel.

Design for Random Pattern Testability of Asynchronous Circuits

Page 155

Figure 6.16: Handshake implementations of the a) combine element; b) fork; c)
combinational circuit; d) bitwise XOR operation; e) case element; f) mixer; g)

multiplexer

<<>>

a[n+m-1:0]

b[m-1:0]

c[n-1:0]

c

b

a

ar

aa

ba

br

ca

crCLB
a[n+m-1:0]

b[k-1:0]

c[n-1:0]

CL
a

b

c

c

b

a

a) b)

C

ar

br

cr

ba

ca
aa

a

b

c

XOR

a

c

b

c[n-1:0]

b[n-1:0]
a[n-1:0]

a

c

b

d)c)

CCaa

ar

ca cr

|
a

b

c
@

aa
ba

ca

ar

S
el

ec
t 1

0

br

cr

a

b

cOM

OM

CC

|

R

S Q

ar

ca

cr

aa ba

selbr

nQ

a[n-1:0]

b[n-1:0] MX

0

1

c[n-1:0]
a

b

c

br

ba

f)e)

g)

Design for Random Pattern Testability of Asynchronous Circuits

Page 156

Figure 6.17 shows an example of the Tangram procedureSC performed by the sequen-

tial circuit illustrated in Figure 6.15. According to this procedure the input data is

assumed to be stored by the environment in a variable calledinput. Initially, the variable

r2 is reset by theResetState procedure. Afterwards, the set of commands written

between theforever do andod lines is performed infinitely. Thus, the contents of varia-

bler2 is copied intor1 and new data is read frominput along thepi channel. A new state

vector produced by functionCombFunction1 is written inr2 and the output data pro-

duced by functionCombFunction2 is transmitted from the primary outputs of the com-

binational circuit to thepo channel concurrently. Note that the function of the

combinational circuit shown in Figure 6.16c is the union of combinational functions

CombFunction1 andCombFunction2.

Fault model

In this section two single stuck-at fault models are considered in the design of the hand-

shake sequential circuit:

• the stuck-at output faults on the control lines of its handshake components;

• the stuck-at input and output faults in the circuit data paths.

SC: proc(pi?(0 ..) & po!(0 ..))
begin

input: var (0 ..)

r1, r2: var (0 ..)
ResetState: proc() r2:=0

|
ResetState();
forever do

r1:=r2;
pi?input;
r2:=CombFunction1(input,r1) || po!CombFunction2(input,r1)

od
end

2
m

1– 2
k

1–

2
m

1–

2
n

1–

Figure 6.17: Procedure SC performed by the sequential circuit shown in Figure 6.15

Design for Random Pattern Testability of Asynchronous Circuits

Page 157

As was described in chapter 2 the stuck-at output faults on the control lines of a hand-

shake circuit cause this circuit to halt. The detection of these faults is straightforward. In

order to detect all possible single stuck-at faults in the data paths of the sequential circuit

the parallel and bit-serial random test techniques can be used.

6.5.2 Parallel random testing

Figure 6.18 shows the design of a handshake sequential circuit with parallel random

testing. This circuit has an additional block of XOR gates and the test channel (tc) which

is activated in test mode.

Test mode

Initially the r2 storage element is set into its initial state. The sequential circuit is acti-

vated along its activation channel. As a result, the content of the r2 storage element is

copied into r1. When the data has read from the pi channel and from the outputs of r1

the outputs of the combinational circuit are changed. Afterwards, the output data from

;

T

R1

*
➩�

R2

T

;
*

*

Figure 6.18: Handshake sequential circuit with parallel random testing

<<>>

T
CL

T

m

k

n

n

XOR

n

po
pi

tc

Design for Random Pattern Testability of Asynchronous Circuits

Page 158

the primary outputs of the combinational circuit is read along thepo channel and the

block of XOR gates is triggered by the corresponding transferer.

A handshake implementation of the block of XOR gates is illustrated in Figure 6.16d

[FarnTR96]. If the passive channela of the block is activated the corresponding chan-

nelsb andc generate requests for the input data. When the data has arrived at the data

wires of channelsb andc the block of XOR gates performs a bitwise XOR operation

and produces an acknowledge signal along its passive channela.

Thus, the block of XOR gate reads the data from theSO outputs of the combinational

circuit and a new random pattern test vector is produced on the data outputs of thetc

channel. The results of the bitwise XOR operation are stored into ther2 storage element.

When the data from thePO outputs of the combinational circuit has been read along the

po channel and the data from the outputs of the block of XOR gates has been stored in

r2 the sequential circuit copies the contents ofr2 into r1 and the sequence of events

described above can be repeated.

Thus, the data paths of the handshake sequential circuit shown in Figure 6.18 are tested

in the same manner as was described in section 6.3.

SC_PRT: proc(pi?(0 ..) & tc?(0 ..) & po!(0 ..))
begin

input: var (0 ..)

r1, r2, test: var (0 ..)
ResetState: proc() r2:=0

|
ResetState();
forever do

r1:=r2;
pi?input;
tc?test; r2:=CombFunction1(input,r1)⊕ test ||

po!CombFunction2(input,r1)
od

end

2
m

1– 2
n

1– 2
k

1–

2
m

1–

2
n

1–

Figure 6.19: Parallel random testing procedure SC_PRT

Design for Random Pattern Testability of Asynchronous Circuits

Page 159

Normal operation mode

In normal operation mode the data wires of the tc channel are kept at zero permanently.

As a result, the sequential circuit operates in the same manner as the one illustrated in

Figure 6.15.

Figure 6.19 shows an example of the Tangram program for the parallel random testing

procedure SC_PRT performed by the handshake sequential circuit illustrated in Figure

6.18. Compared to the SC procedure the program SC_PRT has an extra variable called

test. The variables input and test are changed by the environment simultaneously. These

variables can be produced by using either one pseudo-random pattern generator or two

separate generators. In normal operation mode the test variable is reset permanently so

that the SC_PRT procedure is equivalent to the SC program.

6.5.3 Bit-serial random testing

Figure 6.20 illustrates the design of a handshake sequential circuit which is tested using

the bit-serial random testing. This circuit performs in test and normal operation mode

depending on the Boolean signal OM.

The OM input of the sequential circuit controls the case element. An implementation of

the case element is shown in Figure 6.16e [FarnTR96]. If OM=1 or OM=0 a request sig-

nal from the ar input is steered by the select block to the br output or cr output respec-

tively. Acknowledge signals from the ba and ca inputs are passed through the OR gate to

the aa output.

Test mode

In test mode the OM input is set to high. The storage element R2 is set to its initial state.

The storage element R3 is reset. When the sequential circuit shown in Figure 6.20 has

been activated along its activation channel the contents of R2 is copied into R1. After the

data has read along the pi channel and from the outputs of R1 the upper active channel

of the case element is triggered by the corresponding sequencer. As a result, the request

Design for Random Pattern Testability of Asynchronous Circuits

Page 160

signal from the case element is steered by the corresponding pair of sequencers through

the mixer to the transferer.

An implementation of the mixer is illustrated in Figure 6.16f [FarnTR96]. The mixer

has two passive (a and b) and one active (c) channels. When a rising event is generated

on one of the passive channels of the mixer the cr signal goes high. Once acknowledged

by a rising event on the ca input the output of the corresponding C-element is set to high.

The sequence of events is repeated when the control signals are returned to zero. Note

that both the passive channels of the mixer cannot be activated simultaneously.

;

T

*
➩�

T

;

*

Figure 6.20: Handshake sequential circuit with bit-serial random testing

@

XOR

;
*

;
*

R3

|

T

T
R2

CL

R1

OM
|

|

<<>>

Tm

k

n

n

T
T

<<>>

n-1

1

n

*

pi

po

tc

n

n

Design for Random Pattern Testability of Asynchronous Circuits

Page 161

The results of the bitwise XOR operation between the data from theSO outputs of the

combinational circuit and the contents ofR3 are passed through the multiplexer and

copied intoR2.

The design of the multiplexer is illustrated in Figure 6.16g. The multiplexer operates in

a similar way to the mixer shown in Figure 6.16f [FarnTR96]. The difference between

them is in the presence of an additional circuit which controls the multiplexer. When the

data is stable on busa channela is activated. Thus, the RS flip-flop is reset and thesel

signal is set to low connecting busa to the outputs of the multiplexer. If channelb is

activated thesel signal is set to high and the data from busb is transmitted to the outputs

of the multiplexer.

The contents ofR2 are copied to the storage elementR3 which collects the current sig-

nature of the responses produced on theSO outputs of the combinational circuit. When

the data has been stored intoR3 thepo channel is activated along which the test results

from thePO outputs of the combinational circuit and the most significant bit ofR3 are

read by the external signature analyser. Concurrently, a new random test vector is stored

into R2 as a result of combining the (n-1) most significant bits ofR1 and one bit which is

read along the test channel (tc).

When a handshake along thepo channel has completed and the new test vector has been

stored inR2 the contents ofR2 is copied intoR1 and thepi channel is triggered ready to

accept a new random test pattern. Thus, the random test procedure described above can

be repeated.

Figure 6.21 shows an example of the Tangram program for the bit-serial random testing

procedureSC_BST performed by the sequential circuit illustrated in Figure 6.20. In this

program variablesr1 andr3 are used to store new tests applied to theSI inputs and col-

lect current signatures from theSO outputs of the combinational circuit. The 1-bit varia-

ble test is used by thetc channel to shift a new test bit inr1.

In theSC_BST procedure the variablesr2 andr3 are reset after the initialization of the

circuit. The content ofr2 is copied intor1. A new random test pattern is read from the

Design for Random Pattern Testability of Asynchronous Circuits

Page 162

input variable along thepi channel. A new state of the circuit is produced by function

CombFunction1 and stored intor2. The result of functionSignature is stored inr3

(functionSignature is the same function which is performed by the circuit shown in Fig-

ure 6.13). Afterwards, the content of variabletest is read along thetc channel. The (n-1)

most significant bits of variabler1 with the content of thetest variable is stored inr2.

Simultaneously, the results of functionCombFunction2 and the most significant bit ofr3

are sent along thepo channel to the external signature analyser. After this theSC_BST

procedure is repeated.

The data paths of the circuit shown in Figure 6.20 are tested in the same way as was

described in section 6.4. Stuck-at output faults on the control lines of the handshake

sequential circuit which are not involved in test mode are not tested. These faults can be

tested when the circuit performs in normal operation mode.

SC_BST: proc(pi?(0 ..) & tc?(0 .. 1) & po!(0 ..))
begin

input: var (0 ..)

r1, r2, r3: var (0 ..)
test: var (0..1)
ResetStates: proc() r2:=0; r3:=0

|
ResetStates();
forever do

r1:=r2;
pi?input;
r2:=CombFunction1(input,r1);
r3:=Signature(r2,r3);
tc?test;
r2:=<<test.r1.n-1. .. r1.1>> //

po!<<CombFunction2(input,r1).r3.n-1>>
od

end

2
m

1– 2
k

1–

2
m

1–

2
n

1–

Figure 6.21: Bit-serial random testing procedure SC_BST

Design for Random Pattern Testability of Asynchronous Circuits

Page 163

Normal operation mode

The BooleanOM is reset in normal operation mode allowing the lower active channel of

the case element to be controlled from its passive channel. The outputs of the storage

elementR3 are held at zero permanently. As result, the handshake sequential circuit

shown in Figure 6.20 performs in the same manner as the one described in Figure 6.15.

6.6 A case study of the AMULET2e memory controller

An extended version of the AMULET2 microprocessor called AMULET2e has been

implemented to connect the microprocessor to a wide variety of static and dynamic

memories and peripheral chips. Figure 6.22 shows a block diagram of the AMULET2e

microprocessor which incorporates the AMULET2 processor core together with an on-

chip cache and an external memory interface.

The memory interface of the AMULET2e microprocessor includes a memory controller.

The memory controller is a finite state machine which has seven inputs (m=7), four out-

puts (k=4) and 3-bit coded states (n=3). The state table for the AMULET2e memory

controller is shown in Table D.1 in Appendix D.

Two-phase, four-phase and handshake designs of the memory controller have been

implemented in CMOS technology on a 1 double layer metal process and simulated

Figure 6.22: Block diagram of the AMULET2e microprocessor

Cache

memory

Memory
interface

x[6:0]

f[3:0]

Memory
controller

AMULET2

processor

core

Address

Data

adr[29:0]

data[31:0]

ms[7:0]

wr[3:0]

cas[3:0]

read

treq

tack

Reset

µm

Design for Random Pattern Testability of Asynchronous Circuits

Page 164

using SIMIC design verification tools. Simulation results of the three versions of the

memory controller, i.e. the controller without testability features, with bit-serial and par-

allel random testing, implemented as two-phase, four-phase and handshake sequential

circuits can be found in Tables 6.2, 6.3 and 6.4 respectively. The notation used in these

tables is as follows:

PD is the performance degradation, AO is the area overhead, NM and TM is normal

operation mode and test mode respectively.

Table 6.2: Two-phase implementations of the AMULET2e memory controller

Design
Performance,

ns/test
PD,
%

Area, AO,
%

Power
consumption,

nJ/test
NM TM NM TM

Without testability 16.8 n/a n/a 10.6 n/a 48.1 n/a

Bit-serial 18.8 33.5 12% 13.4 26% 54.2 73.1

Parallel 17.9 17.9 7% 10.9 3% 50.3 59.4

Table 6.3: Four-phase implementations of the AMULET2e memory controller

Design
Performance,

ns/test
PD,
%

Area, AO,
%

Power
consumption,

nJ/test
NM TM NM TM

Without testability 14.7 n/a n/a 9.9 n/a 50.6 n/a

Bit-serial 17.1 30.4 15% 12.1 22% 63.8 88.2

Parallel 15.6 15.6 6% 10.2 3% 52.9 60.2

Table 6.4: Handshake implementations of the AMULET2e memory controller

Design
Performance,

ns/test
PD,
%

Area, AO,
%

Power
consumption,

nJ/test
NM TM NM TM

Without testability 18.1 n/a n/a 10.0 n/a 53.9 n/a

Bit-serial 22.5 38.7 24% 12.9 29% 69.0 94.2

Parallel 19.3 19.3 7% 10.3 3% 56.5 64.2

10
2–× mm

2

10
2–× mm

2

10
2–× mm

2

Design for Random Pattern Testability of Asynchronous Circuits

Page 165

Comparing different implementations of the memory controller the bit-serial DFT

implementations exhibit the highest performance degradation in normal operation mode

which varies from 12% for the two-phase design to 24% for the handshake implementa-

tion. This is because the control circuits used in the bit-serial DFT designs of the mem-

ory controller have to be changed by adding extra control elements which slow them

down. As a result, the bit-serial DFT designs consume more switching energy demon-

strating the largest power consumption.

The parallel DFT designs of the memory controller have the minimal area overhead

(3%) contributed by the block of three XOR gates. Note that the data for the parallel

DFT designs does not include the area overhead of the internal pseudo-random genera-

tor and signature analyser together with extra test wires required for stimulating the

inputs of the XOR gates and observing the test results from the their outputs. Thus, the

total area overhead of the parallel DFT designs can be much larger.

Figure 6.23: Graph dependencies between the percentage of detected faults and the
number of random tests applied to the inputs of the memory controller without

testability features (graph 1) and the one designed for testability (graph 2)

1.0 1.5 2.0 2.5 3.0 3.5
60

70

80

90

100%

log10L

2

1

Design for Random Pattern Testability of Asynchronous Circuits

Page 166

It can be seen from Tables 6.2, 6.3 and 6.4 the designs of the memory controller with

testability features dissipate more energy than the implementations without testability

(see chapter 3).

Finally, the four-phase designs of the memory controller exhibit the best performance in

both test and normal operation modes whereas the implementations of the two-phase

designs exhibit the lowest performance degradation.

Figure 6.23 shows graphs 1 and 2 which demonstrate the dependencies between the per-

centage of detected faults in the combinational circuit of the memory controller and the

number of random test patterns applied to the inputs of the controller without testability

features and its parallel and bit-serial DFT designs respectively. The fault simulation

analysis was carried out with the help ofSIMIC design verification tools. Note that the

number of tests in Figure 6.23 is represented in a logarithmical scale on the base 10. As

follows from Figure 6.23 the percentage of detected faults in the memory controller and,

hence, its random pattern testability is higher in the second case (graph 1 lies below

graph 2).

In order to calculate the number of equiprobable random tests required for testing the

combinational circuit of the memory controller formula (6.2) can be used. A fault simu-

lation analysis carried out with the help of theSIMIC fault simulator showed that there

are 8 stuck-at faults (r=8) in the combinational part of the controller which have the

minimal detection probability (pd=). As a result, the upper bound of the ran-

dom pattern test length is equal toL=2243 andL=3422 forpt=0.9 andpt=0.99 respec-

tively. According to Figure 6.23 all the stuck-at faults in the combinational circuit of the

controller are detected after the application of 2000 random tests and 1000 random tests

for case 1 and 2 respectively.

1.95 10
3–×

Design for Random Pattern Testability of Asynchronous Circuits

Page 167

6.7 Built-in self-testing of micropipelines

In this section the BIST design of a micropipeline based on the BILBO technique (see

Appendix B) is considered.

6.7.1 Asynchronous BILBO register design

The CMOS implementation of one of the latches from which an asynchronous BILBO

register is built is illustrated in Figure 6.24. The latch design consists of two latches L1

and L2 connected together. The implementation of L1 is similar to the single-phase static

latch shown in Figure 5.3. In addition, latch L1 has an active low set input to set the

Dout1 output to high. Latch L2 is a single-phase static latch which is transparent when

its enable input is low otherwise it is opaque. L2 has an active low reset input which

holds its output at zero regardless of whether it is transparent or opaque.

Initially latch L1 is closed and L2 is opened by a low signal applied to its En input. When

the data is stable on the Din input of L1 the En input is set to high making the latch L1

transparent and L2 opaque. The input data stored in the memory of L1 is passed to the

Figure 6.24: CMOS implementation of the BILBO register latch

L1

L2

Reset

En

Din

Dout1

Dout2

Set

wk

wk

wk

wk

Design for Random Pattern Testability of Asynchronous Circuits

Page 168

Dout1 output and to the data input ofL2. When the enable input is reset latchL1 is closed

andL2 is transparent storing the data fromL1 in its memory. As a result, the data stored

in L1 is passed to theDout2 output of the register latch. The procedure of storing data in

the register latch is similar to that of a master-slave flip-flop. Note that whenEn=0 the

Dout1 output can be set to high by an active low signal applied to theset input ofL1.

An asynchronous implementation of a 4-bit BILBO register is illustrated in Figure 6.25.

TheQi outputs of theLi1 latches (i=0,1,2,3) are used as the outputs of the BILBO regis-

ter. TheDout2 outputs of the register latches (see Figure 6.24) are connected through the

XOR gates to theDin inputs of the corresponding latches. Thescan-in input (Sin) is

coupled through the multiplexer (MX) and one of the inputs of the XOR gate to theDin

input of the first register latch. TheDout2 output of the last register latch is used as a

scan output of the register. The register latches can be enabled byscan anddata enable

clocks applied to theSc input of the register and theDe input of the OR gate respec-

tively. TheDe clocks are generated by the latch control circuit which can operate using

either two-phase or four phase signalling (see chapter 5).

Figure 6.25: Asynchronous BILBO register structure

Sout

Sc

Sin

C1

C2

Ain Aout
Rin De

En

MX
F

T

Set

L01

L02

L11

L12

L21

L22

L31

L32

In0

Q0 Q1

In1 In2 In3

Reset

Rout

Latch Control

Q2 Q3

Design for Random Pattern Testability of Asynchronous Circuits

Page 169

The BILBO register shown in Figure 6.25 can act in four distinct operation modes

depending on the control signalsC1 andC2: normal, shift, LFSR and signature analyser

operation modes. Table 6.5 contains the values for the control signals and the corre-

spond operation modes of the BILBO register.

Normal operation mode. In this modeC1=1 andC2=0. As a result, thereset signal is set

to low holding the outputs of latchesLi2 (i=0,1,2,3) at zero permanently. Theset input is

high. The inputsSin andSc are kept low during this operation mode.

When the input data is stable on theIn inputs of the register the control inputs of the

latch control block are activated by the environment. Thus, clock signals are produced

on theDe output by the latch control circuit. The data is passed to the outputs of theLi1

latches and latched in their memories.

Shift register mode. Control signalsC1 andC2 are reset in the shift register operation

mode of the BILBO register. In this mode theset andreset signals are set to high. The

register latches act as D-type flip-flops configured in a 4-bit shift register. The shift reg-

ister is clocked from theSc input. Note the latch control block is not active in this mode

holding itsDe output at zero permanently.

When the scan data is ready on theSin input it is transmitted through the multiplexer to

the input of the first flip-flop. A clock signal is applied to theSc input of the register. As

a result, the scan data is stored in the first flip-flop and passed to the input of the second

flip-flop. The next bits of the scan data is shifted into the register latches in the same

manner as a normal shift register operates. The shift register passes the scan data on its

Sout output from where the data is read by the environment.

Table 6.5: Operation modes of the BILBO register in Figure 6.25

C1 C2 Set Reset Mode
1 0 1 0 Normal

0 0 1 1 Shift

0 1 0→1 1 LFSR

1 1 0→1 1 SA

Design for Random Pattern Testability of Asynchronous Circuits

Page 170

LFSR operation mode. The BILBO register operates as an LFSR whenC1=0 andC2=1.

In this mode, thereset signal is set to high and theSc input is reset. Note that the data

from theIn inputs of the BILBO register is blocked by a zero signal applied to itsC1

input (the outputs of the corresponding AND gates are reset). Thus, the BILBO register

(see Figure 6.25) can perform as the 4-bit LFSR illustrated in Figure A.2a.

Initially, the set input of the register is reset setting theQi outputs and the outputs of

latchesLi2 (i=0,1,2,3) to high. When the register outputs are stable theset input is set to

high. As a result, the ‘all ones’ state is the initial state of the LFSR. The LFSR generates

a new output vector every time when a new clock signal is produced by the latch control

block on itsDe output.

Signature analyser operation mode. When the control signalsC1 andC2 are set to high

the BILBO register can operate as a signature analyser. In this mode, thereset signal is

set to high and theSc input is reset permanently. Note that the data from theIn inputs of

the register is enabled by a high signal applied to theC1 input. As a result, the BILBO

register is configured as the 4-bit signature analyser shown in Figure A.4.

In the initial state the outputs of the signature analyser are set to high by a low signal

applied to theset input of the BILBO register. When the outputs of the signature ana-

lyser are stable the set signal is set to high. Once the data are ready on theIn inputs the

signature analyser is clocked from theDe output of the latch control block. As a result,

the current contents of the register is mixed with the new input data in the same manner

described in Appendix A.

The design of the asynchronous BILBO register shown in Figure 6.25 is similar to the

one considered in Appendix B. As a consequence, the testability properties of the asyn-

chronous BILBO register towards its stuck-at faults is the same as that of the synchro-

nous one. Note that all stuck-at faults of the BILBO register including faults on either

the control lines or its data paths can be detected when the register is forced to perform

in all its operation modes.

Design for Random Pattern Testability of Asynchronous Circuits

Page 171

6.7.2 Micropipeline structure with BIST features

Figure 6.26 shows a two-stage micropipeline structure with BIST features. The stage

registers of this micropipeline are built from the asynchronous BILBO register illus-

trated in Figure 6.25. The outputs of the micropipeline can be connected to its inputs

depending the Boolean Bist which is high in BIST mode and low in normal operation

mode. The BIST control unit is activated by a high signal applied to the Bist input of the

micropipeline allowing the BIST control signals to be generated. The RSin, ASin, RSout

and ASout control signals are used in an asynchronous interface to shift the data in and

out of the stage registers. These signals have the same meaning as the ones described in

chapter 5.

Normal operation mode

The micropipeline is set to normal operation mode when Bist=0 and RSin= ASout=0. As

a result, the control signals Ci1 and Ci2 (i=1,2) of the control unit are set to high and low

respectively. Its Set and Sc outputs are set high and low respectively. In this mode the

micropipeline acts in the same manner described in chapter 1, section 1.4.

Figure 6.26: A two-stage micropipeline with BIST features

Din

Rin

Ain
Sin Sout

Rout

Aout

Dout

SoutSin

Reg2

Sc

C1

C2

BIST Control Unit

RSin

ASin ASout

RSout

Rin Rout

Ain Aout

SoutSin

Reg1

Sc

C1
C2

Rin Rout

Ain AoutSet Set

C
L1MX

F

T

Bist

C11 C12 C21 C22 Set Sc

C
L2

Design for Random Pattern Testability of Asynchronous Circuits

Page 172

BIST mode

In BIST mode the Boolean signal Bist is set high enabling the control unit to produce

control signals for the stage registers of the micropipeline.

The micropipeline shown in Figure 6.26 can be tested for stuck-at faults using the fol-

lowing test algorithm:

1. Testing for stuck-at faults in the register latches involved in the shift operation. The

shift operation is tested by setting the stage registers into the shift register mode and

applying an alternating test to the Sin input of the micropipeline. Since the stage reg-

isters are united in one shift register the alternating test is passed through all the reg-

ister latches. Note that the shift operation is controlled by clock signals generated on

the Sc output of the control unit.

2. Testing for stuck-at faults in the combinational circuits. The combinational circuit

CL1 is tested when register Reg1 is set to the LFSR mode and Reg2 is set to the sig-

nature analyser mode. The latches of Reg1 and Reg2 are set to high initially (see Fig-

ure 6.25). After the generation of a request signal on the Rin input of the

micropipeline the LFSR applies a new random test vector to the inputs of CL1 and its

responses are collected by the signature analyser. This test procedure is similar to the

one shown in Figure B.5. The Rin input is triggered enough times for the LFSR to

generate on the inputs of CL1 the required number of random test vectors. The

number of random tests can be calculated using formula (6.2). The combinational cir-

cuit CL2 is tested in the same way described above when Reg2 acts as the LFSR and

Reg2 is the signature analyser. The responses from CL2 are passed through the multi-

plexer to the inputs of Reg2. Note that the signatures produced by the signature ana-

lysers are shifted out to the Sout output of the micropipeline every time when the

testing of each combinational circuit has completed.

3. Testing for stuck-at faults on the Din inputs and Dout outputs. Stuck-at faults on the

Dout outputs of the micropipeline can be tested by observing the responses from CL2

during its testing. Stuck-at faults on the Din inputs are tested in normal operation

Design for Random Pattern Testability of Asynchronous Circuits

Page 173

mode (Bist=0). In this mode, the ‘all zeros’ and ‘all ones’ tests are applied to theDin

inputs of the micropipeline (two request signals are applied to theRin input). Note

that the contents ofReg1 are shifted out after the application of each test.

The use of the above test algorithm allows most of stuck-at faults in the micropipeline to

be detected. Note that faultsreset-SA1 in the register latches (see Figure 6.24) cannot be

identified in BIST mode whereas they can be tested in normal operation mode. The test

algorithm is simple:

1. Set the micropipeline in normal operation mode.

2. Set all the latches of the micropipeline to high (Set=1).

3. Set=0 and apply a test to theDin inputs of the micropipeline.

4. Generate one request signal on theRin input.

5. Shift the contents of the stage registers out to theSout output.

In the presence of faultreset-SA1 in thei-th latch of thej-th (j=1,2) stage register the

response bit latched in its (i+1)-th latch will be inverted (see Figure 6.25).

Using the micropipeline structure shown in Figure 6.26 delay faults in its combinational

circuits can be tested. In this case the number of latches in the BILBO registers (see Fig-

ure 6.25) must be doubled by adding one extra D-type flip-flop after each register latch.

Note that the outputs of the extra flip-flops are held at zero during normal operation

mode. The linear feedback of the BILBO register must be changed according to the new

derivation polynomial for the LFSR of the double length. In addition, an NOR gate can

be added to the design of the LFSR (see Figure A.2b) in order to allow the LFSR to go

through all its possible states.

According to Lemma 6.1 the modified LFSR can produce all possible combinations

between any two 2-bit binary vectors chosen sequentially on its outputs when the LFSR

has passed through all its possible states. Thus, any possible pair of test vectors can be

Design for Random Pattern Testability of Asynchronous Circuits

Page 174

generated on the inputs of the combinational circuits during their testing. As a result,

delay faults and stuck-at faults can be detected in the combinational circuits of such a

micropipeline (see chapter 5).

6.7.3 Analysis of the BIST micropipeline structure

The BIST technique for micropipelines presented in this section has advantages and dis-

advantages.

Advantages

• The BIST micropipeline structure shown in Figure 6.26 allows the generation of ran-

dom tests and the collection of the test results on the chip.

• The combinational circuits of the micropipeline are tested separately at the normal

circuit speed making possible the application of a large number of tests to their

inputs.

• The asynchronous BILBO register design described in this section has the same

properties as that of its synchronous counterpart. As a result, the BIST control unit

can be implemented in a similar way to the one for the synchronous BIST design.

• The BIST micropipeline design allows the testing of its combinational circuits either

for stuck-at or delay faults.

Disadvantages

• The implementation of the micropipeline with BIST features requires the use of

BILBO registers. As a consequence, the BIST version of the micropipeline imposes a

certain degree of area overhead which depends on the complexity of its combina-

tional part.

• The performance of the BIST micropipeline is degraded in normal operation mode

since some extra logic elements are added in its data paths. For instance, the input

Design for Random Pattern Testability of Asynchronous Circuits

Page 175

data arriving at theIn inputs of the BILBO register (see Figure 6.25) comes through

extra AND and XOR gates before being latched in theLi1 latches. These extra delays

must be taken into account to ensure the proper bundled data interface.

6.8 Summary

Different asynchronous implementations of the pseudo-random pattern generator and

signature analyser have been proposed in this chapter. These designs allows the syn-

chronous LFSR to be used to build either the generator or signature analyser.

Two structural DFT approaches to designing asynchronous sequential VLSI circuits

have been discussed. During test mode the asynchronous sequential circuit is tested

asynchronously in a manner similar to well-known DFT techniques: the combinational

logic block and all the storage elements are tested independently which simplifies the

test greatly.

The parallel random pattern testing technique described in this chapter uses the probabi-

listic properties of the 2-input XOR gate. According to this technique a block of XOR

gates is placed in the feedback data path of the sequential circuit and random test vectors

are applied to the second inputs of the XOR gates. The outputs of the XOR gates are

observed on the extra test outputs. As a result, the state registers and the combinational

circuit are tested in parallel. The proposed bit-serial random test technique provides for

the bit serial scanning of test patterns into the state registers of the sequential circuit and

the bit serial scanning out of the responses of the combinational logic block from the

internal signature register. This makes the testing faster then a traditional scan test. The

random pattern test length for the testable asynchronous sequential circuit is equal to the

test length of the random testing of the combinational circuit and can be estimated eas-

ily. The hardware redundancy of the proposed approach depends greatly on the com-

plexity of the combinational logic block.

The AMULET2e memory controller has been implemented as two-phase, four-phase

and handshake circuits using both the parallel and bit-serial design for random pattern

Design for Random Pattern Testability of Asynchronous Circuits

Page 176

testability techniques. The results show that the proposed design methods have practical

feasibility which allows them to be used to build various kinds of asynchronous sequen-

tial circuits for random pattern testability.

Finally, the proposed BIST micropipeline design can be used in asynchronous VLSI cir-

cuits where the pseudo-random pattern generator and the signature analyser are placed

on the chip.

Page 177

Chapter 7 : Design for Testability

of an Asynchronous

Adder

There are several different ways to implement an asynchronous adder, and each has par-

ticular testability characteristics. In this chapter the stuck-at fault model is used to

describe fault effects in various adder implementations. We show that stuck-at faults on

the data dependent control lines of the single-rail adder can cause both premature and

delayed firings of its control outputs. The choice of single-rail, dual-rail or combined

single and dual-rail (hybrid) data encoding techniques brings different trade-offs

between the testability, performance and area overhead. A case study of an asynchro-

nous comparator demonstrates that a hybrid implementation brings a reasonable com-

promise between the area overhead, performance degradation and testing costs.

7.1 AMULET1 asynchronous adder

An asynchronous ALU is a major element in the AMULET1 microprocessor. It has been

shown that about 80% of the operations performed by the ALU require different forms

of addition [Gars93]. The correct performance of the adder as the ‘busiest’ part of the

asynchronous ALU is therefore important for the correct functioning of the AMULET1

design as a whole.

Three input bits are used to implement a one-bit addition: two data bits and onecarry-in

bit which is effectively thecarry-out signal from the previous stage of the multi-bit

adder. The complete truth table of a 1-bit full adder is shown in Table 7.1. The perform-

ance of the multi-bit adder depends on the propagation speed of thecarry signal through

Design for Testability of an Asynchronous Adder

Page 178

Table 7.1: Truth table for the full adder

Inputs Outputs

A B Cin Sum Cout

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 7.2: Truth table for
the full adder carry output

Inputs Output

A B Cout

0 0 0

0 1 Cin

1 0 Cin

1 1 1

its stages. Table 7.2 illustrates the truth table for the carry output of the 1-bit full adder.

According to this table thecarry-out signal can be predicted in half of the possible input

combinations. This allows the correctcarry-out signal to be generated without waiting

until acarry-in signal is produced by the previous stage of the adder. This technique has

been used in the implementation of the AMULET1 adder [Gars93].

In the AMULET1 asynchronous adder, addition results are ready when all thecarry-out

signal are ready. The carry chain of the adder is implemented using dual-rail data encod-

ing where the readiness of thecarry-out signal is identified by a transition on one of its

two data wires. Since thecarry-out signal of the AMULET1 adder is data dependent and

F

T

MX1

F

T

MX2

A
B

Cin

Cout

nCVin

nCVout
nStart

Sum
A
B

Cin

nCVin

nStart

Cout

nCVout

Sum

Figure 7.1: Single-rail implementation of an asynchronous 1-bit full adder: a) using
multiplexers; b) using logic gates

hs

G1

G2inv

a) b)

Data part

Control

Design for Testability of an Asynchronous Adder

Page 179

data values which cause long carry propagation paths are relatively rare the adder itself

exhibits average rather than worst case performance [Gars93].

7.2 Single-rail asynchronous adder

Figure 7.1a shows the implementation of a single-rail asynchronous 1-bit full adder

using multiplexers. The adder design consists of distinct data and control parts. The data

path of the adder produces an addition result on itsSum output and generates acarry-out

signal on itsCout output. Note that thecarry-out function is implemented according to

Table 7.2. The control part of the adder is designed to indicate when acarry output is

ready to be read by the environment. When the data is ready on inputsA andB a start

signal is generated on thenStart input which is active low. If the values on theA andB

inputs are equal thestart signal is passed to thecarry-valid output of the adder. If not, an

active lowcarry-valid-in signal is transmitted from thenCVin input through the OR gate

and multiplexerMX2 to thenCVout output. The control part of the adder follows the

four-phase signalling protocol, i.e., when the addition result has been read by the envi-

ronment signalnStart is set to high and then outputnCVout goes high. Figure 7.1b illus-

trates the gate level representation of this asynchronous 1-bit adder with single-rail data

encoding. This adder performs in the same manner as described above.

The design of an asynchronous single-rail 8-bit adder is shown in Figure 7.2. In this

design all the 1-bit full adders are connected together in a chain where thecarry output

and thecarry-valid output of the previous 1-bit adder are connected to thecarry input

and thecarry-valid input of the following 1-bit adder respectively. Thecarry-valid out-

put of the adder (Ack) is produced on the inverted output of the 8-input symmetric C-

element, the inputs of which are connected to the correspondingnCVout outputs of the

1-bit adders. Thecarry-out signal of the last 1-bit adder is used as thecarry output of the

8-bit adder.

The globalstart signal is connected to all of the 1-bit adders. The first adder (Ads0) does

not have astart input since itscarry-valid input is connected to the globalstart signal.

Design for Testability of an Asynchronous Adder

Page 180

The start signal from thenCVin input of adderAds0 is delayed for enough time for the

carry-out signal to be stable before it is passed directly to thenCVout output.

A request for addition is sent by the environment on theReq input of the adder. When

the data is ready on theA andB inputs two acknowledge signals are generated on inputs

AckA andAckB of the two-input symmetric C-element. When the output of the C-ele-

ment is set high an active lowstart signal is transmitted to the corresponding inputs of

all of the 1-bit adders. A rising event on theAck output of the 8-input C-element

acknowledges the completion of the addition. Once the results are read the request sig-

nal is returned to zero on theReq input. As a result, acknowledge signals on inputsAckA

andAckB are set to zero. The two-input C-element is reset and the globalstart signal

goes to high. The handshake procedure is completed when the acknowledge signal on

outputAck of the adder is reset.

Note that a control signal which fires when thecarry-in signal (Cin) is ready can be

implemented separately (for instance, using extra signalsAckC andReqC), or theCin

signal can be transmitted together with one of the operands (A or B) as demonstrated in

Figure 7.2. The choice between these techniques depends on the particular environment

Figure 7.2: Asynchronous 8-bit adder with single-rail data encoding

A

B
Sum

nCVin nCVout

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A0

B0

C
AckA
AckB

Req

Ack

ReqA

ReqB
A1 B1 A2 B2 A7 B7

S0 S1 S2 S7

Cout

Ads0 Ads1 Ads2 Ads7

3

Cin

C

Design for Testability of an Asynchronous Adder

Page 181

in which the adder performs. Hereafter, thecarry-in signal for the adder is assumed to

be transmitted together with one of the operands.

7.3 Testing of a single-rail asynchronous adder

In this chapter, the single stuck-at fault model including stuck-at-input and stuck-at-out-

put faults is considered [Russ89]. In order to test the adder shown in Figure 7.2 a set of

test patterns must be applied to its inputs. The test results are observed on the outputs of

the adder. It is assumed that the inputs of the asynchronous adder are controllable and its

outputs are observable by the environment.

Consider the design of the asynchronous 8-bit adder shown in Figure 7.2. The detection

of stuck-at faults in the data part of each 1-bit adder is trivial since its data inputs and

outputs are controllable and observable during the test. The control part of the 8-bit

adder is illustrated in Figure 7.3. Inputshs are the outputs of the corresponding XOR

gates of the 1-bit adders (see Figure 7.1b). As was mentioned above the control part of

the first adder is simply a delay matching thecarry-valid input to carry-valid output

delay (see Figure 7.3).

Stuck-at faults in the control part of the adder can be divided into three distinct classes:

1. Stuck-at faults which are detectable by logic testing. For instance, stuck-at-0 or

stuck-at-1 faults on theCVout outputs are easy to detect since they violate the hand-

Figure 7.3: Control part of the single-rail 8-bit adder

nStart

hs1

hs2

hs7

nCVout1

nCVout2

G11

G21
inv1

G12

G22
inv2

G17

inv7 G27

delay

Ack
C

nCVout7

Design for Testability of an Asynchronous Adder

Page 182

shake communication protocol between the adder and its environment. Note that a

stuck-at-1 or a stuck-at-0 fault on an input of the symmetric C-element shown in Fig-

ure 7.3 is equivalent to a stuck-at-0 or stuck-at-1 fault on its output respectively.

2. Stuck-at faults which can cause a premature firing on outputAck. A stuck-at-1 fault

on the output of NAND gateG1i (i=1, 2, ... , 7) does not change the logic function of

the control part of the adder but causes a premature firing on the output of gateG2i

whenhsi=1. This fault may or may not cause the environment to latch wrong data

from the outputs of the adder depending on how fast or slow the environment per-

forms. This fault is hard to detect by delay testing due to the absence of synchroniza-

tion clocks.

3. Stuck-at faults which can cause delayed firings on the control output of the adder.

These faults do not change the logic function of the control part of the adder but

reduce its performance. The detection of such faults requires delay testing. For

instance, a stuck-at-1 fault on inputhsi (i=1, 2, ... , 7) causes a delayed response from

the adder.

Let us consider the Boolean function of outputnCVout1:

(7.1)

It is easy to show that

, (7.2)

wherei=1, 2, ... ,7.

Thus, the control part of the adder has logic redundancy. Redundant logic elements are

necessary to ensure the proper timing function of the control part of the adder. This

makes some of its stuck-at faults impossible to detect by logic testing.

nCVout1 nStart hs1⋅ nStart⋅ nStart hs1⋅ nStart+ nStart= = =

nCVouti nStart hsi⋅ nStart+ nStart= =

Design for Testability of an Asynchronous Adder

Page 183

7.3.1 Design for testability of the single-rail asynchronous

adder

In order to make the asynchronous adder shown in Figure 7.2 testable, the logic redun-

dancy of its control part must be removed during the test. Figure 7.4 shows the design of

a testable asynchronous 1-bit adder. It performs in two modes: normal operation mode

and test mode. The mode of the adder is changed by the Boolean signal Tst which is high

in test mode and low in normal operation mode. Input Tst and the output of the XOR

gate (G3) are connected to the inputs of the asymmetric C-element.

Figure 7.5 illustrates a CMOS implementation of the asymmetric C-element. If both

inputs In1 and In2 are high the state of the asymmetric C-element is one. The output

(Out) of the C-element is set to zero when its input In1 is low. The C-element keeps its

current state under the application of any other input combinations. A stuck-at-0 fault on

one of the inputs of the asymmetric C-element prevents its output from being changed

from low to high. A stuck-at-1 fault on input In1 prevents the output of the asymmetric

C-element from being changed from one to zero. To detect a stuck-at-1 fault on input

In2 of the C-element the following pair of tests must be applied to its inputs: (00, 10). If

the state of the C-element is one the circuit is faulty, otherwise it is fault-free.

A
B

Cin

nCVin

nStart

Cout

nCVout

Sum

Figure 7.4: Testable asynchronous 1-bit full adder with single-rail data encoding

Tst

G2

hs
G1

C +

G3

Design for Testability of an Asynchronous Adder

Page 184

The output of the asymmetric C-element controls the NAND gate (G2) which can per-

form either as an NAND gate or as an inverter depending on the value of its control sig-

nal. A CMOS implementation of gateG2 is illustrated in Figure 7.6. If the mode control

signal (Tst) is low the gate performs as a two-input NAND gate. If the BooleanTst is

high, inputb of the gate is blocked and it performs as an inverter of inputa.

In normal operation mode the control part of the 8-bit adder is identical to the circuit

shown in Figure 7.3. A fault analysis of the control part of the adder has been carried out

with the help of automatic test generation program tools designed in the department of

Electrical Engineering at Virginia Polytechnic Institute [LeeTR93]. As a result, 27

redundant stuck-at faults have been identified. The fault coverage of the tests generated

for detecting faults in the control part of the adder is 53%.

In order to set the adder to test mode signalTst and outputshsi of XOR gatesG3i (i=1,

2,..., 7) are set to high. In test mode the control part of the adder is identical to an AND

Figure 7.5: Asymmetric C-element notation

Out

wkIn1

In2

C

+

In1

In2
Out

Figure 7.6: Transistor level implementation of the NAND/INV gate

a

b

Tst
c

Design for Testability of an Asynchronous Adder

Page 185

gate with outputnCVout7 as shown in Figure 7.7. Stuck-at faults in such a circuit can be

detected easily by a standard set of (n+1) tests for ann-input AND gate: one ‘all ones’

test andn ‘running zero’ tests. For the circuit illustrated in Figure 7.7n=7. Note that sig-

nalnStart is a control signal which must be returned to zero after the application of each

test vector. Moreover, the application of 7 ‘running zero’ tests detects whether or not all

gatesG2 of the control part perform as inverters.

To detect stuck-at faults on thenStarti→Ack path (i=1, 2,...,n) in the control part of the

i-th 1-bit adder, the following test algorithm can be used:

1. i=1.

2. Tst=0; hsi=0; hsj=1 (for all j ≠ i).

3. Tst=1. GateG2i performs as a NAND gate whereas gatesG2j (j ≠ i) perform as

inverters (see Figures 7.3 and 7.4).

4. SignalnStart is set to low and then to high.

5. If outputAck has been changed twice, pathnStarti→Ack is fault free, then go to step

6 else go to step 9.

Figure 7.7: Control part of the single-rail 8-bit adder in test mode.

hs1

hs2

hs7

nCVout1

nCVout2

nStart
delay

Ack
C

nCVout7

Design for Testability of an Asynchronous Adder

Page 186

6. i=i+1.

7. If i > n then go to step 8 else go to step 2.

8. The circuit is fault free. Go to step 10.

9. The circuit is faulty. Go to step 10.

10.End.

In summary, the logic testing of the asynchronous adder illustrated in Figure 7.2, which

contains the testable 1-bit adders shown in Figure 7.4, is difficult due to the test com-

plexity of its control part. For instance, 8 test vectors are required to test the data path of

the adder whereas the number of tests required to test the data dependent control part is

almost twice this number.

7.4 Dual-rail implementation of an asynchronous adder

A dual-rail implementation of an asynchronous 1-bit adder is shown in Figure 7.8a. It

contains a single-rail to dual-rail data conversion block (SDC), dual-rail and single-rail

XOR gates and a dual-rail multiplexer.

The single-rail conversion block modifies the single-rail data from inputsA andB into

the dual-rail data format. A gate level implementation of the conversion block is shown

in Figure 7.8b. When signalnStart is high the outputs of the conversion block are kept

low. If the data is ready to be transmitted to the adder signalnStart is set low and the sin-

gle-rail data from inputsA andB is converted into the dual-rail format. Designs of the

dual-rail multiplexer and XOR gate are illustrated in Figures 7.8c and 7.8d respectively.

The use of symmetric C-elements in the design of the XOR gate ensures its delay-insen-

sitivity which, in turn, simplifies its testing. As was mentioned above a stuck-at fault on

the inputs of the symmetric C-element is equivalent to the corresponding stuck-at fault

on its output.

Design for Testability of an Asynchronous Adder

Page 187

The single-rail result (Sum) of addition is produced by XORing signalsCin[1] and

hs[1]. Note that a control part which indicates when thecarry-out signals are ready is no

longer needed. The completion of the addition is identified by a rising transition on one

of thecarry outputs.

An example of the dual-rail implementation of an asynchronous 8-bit adder is shown in

Figure 7.9. The inputs and outputs of the adder are single-rail encoded. When a single-

rail data is ready on inputsA, B andCin acknowledge signalsAckA andAckB are set

high. As a result, signalnStart goes low and addition is started. The output data is ready

if the dual-rail carry outputs (Cout[1] andCout[0]) of all the 1-bit adders are different

which is indicated by a rising transition on outputAck. The actualcarry output is taken

from outputCout7[1] of the last 1-bit adder. After latching the outputs of the adder the

environment returns request signalReq to zero. Acknowledge signals go low and signal

nStart is set high. As a consequence, all the outputs of the adder are set to zero.

Figure 7.8: Implementations of a) a dual-rail asynchronous 1-bit full adder; b) a
conversion element between single-rail and dual-rail data encoding; c) a dual-rail

multiplexer; d) a dual-rail XOR gate.

SDCA

B

A[1:0]
B[1:0]

nStart

A
B

nStart

hs[1:0]

hs[1]
Cin[1] Sum

Cin[1:0]

Cout[1:0]

A[1]

A[0]
B[1]
B[0]

hs[1]

hs[0]

hs[1]

hs[0]

Cin[1]

Cin[0]

A[1]

A[0]

Cout[1]

Cout[0]

A

B

nStart

A[1]

A[0]

B[1]

B[0]

a) b)

c) d)

F

T

MXD

XorD

C

C

C

C

Design for Testability of an Asynchronous Adder

Page 188

A fault analysis of the dual-rail implementation of the 8-bit adder shown in Figure 7.9

was carried out usingSIMIC design verification tools developed by Genashor Corpora-

tion [Sim94, Ashki94]. The results show that the dual-rail adder is fully testable for its

stuck-at faults after the application of 29 test vectors during normal operation mode.

7.5 Hybrid implementation of an asynchronous adder

The implementation of the dual-rail asynchronous adder described in the previous sec-

tion requires more silicon area than that of the single-rail adder but it can be tested in its

normal operation mode. In this section a hybrid implementation of an asynchronous

adder is discussed. The design is called ‘hybrid’ because, firstly, some of the blocks of

the adder perform using dual-rail input data and, secondly, the hybrid adder has a control

part similar to that of the single-rail adder. As a result, the high level implementation of

the hybrid adder is identical to that of the single-rail adder.

The implementation of a hybrid 1-bit full adder is illustrated in Figure 7.10. It converts

the single-rail data from inputsA andB using the conversion block which is controlled

by the active lowstart signal (nStart). Outpuths[1] of the dual-rail XOR gate (XorD)

Figure 7.9: Dual-rail implementation of an asynchronous 8-bit adder

A
B Sum

nStart

Cin0

nStart

A0 B0

C
AckA
AckB

Req

ReqA

ReqB

A1 B1 A7 B7

S0 S1 S7
Add0 Add1

SDCC

C
[1

:0
]

nStart

A
B Sum

Ack

Cout

Cin

3

Cin1
Cout0
Cout1

Cin0
Cin1

Cout0
Cout1

nStart

Add7
A
B Sum

Cin0
Cin1

Cout0
Cout1

C

Design for Testability of an Asynchronous Adder

Page 189

controls the single-rail multiplexer (MX) which connects thecarry input of the adder or

outputA[1] of the conversion block to its output. The control part of the adder uses both

outputs of the dual-rail XOR gate to generate acarry-valid signal which is active high.

Whenhs[0]=1, i.e., inputsA andB are equal, outputCVout of the adder goes high indi-

cating the completion of the addition. When input bitsA andB are differenths[1]=1 and

the symmetric C-element is primed (see Figure 7.10). The output of the C-element is set

to high when inputCVin goes high. As a result, a rising event is generated on theCVout

output of the adder.

As was mentioned above the design of the hybrid asynchronous adder is similar to that

of the single-rail adder shown in Figure 7.2. When the data is ready on the inputs of the

adder signalnStart is set to zero and the input data is converted to the dual-rail format.

The completion of the addition is indicated by a rising event on outputAck of the multi-

input symmetric C-element. When thestart signal is returned to zero the data and con-

trol outputs of the adder are reset. In order to return thecarry-valid output of the hybrid

asynchronous adder to zero all the symmetric C-elements in the control paths of the 1-

bit adders must be set to zero (see Figure 7.10). If allhsi[1] (i=0, 1, ... , 7) were set to

one all C-elements in the control part of the hybrid adder are returned to zero sequen-

tially starting from the first 1-bit adder and finishing in the last one. This is the worst

case performance of the hybrid asynchronous adder.

Figure 7.10: Hybrid implementation of an asynchronous 1-bit full adder

SDCA

B

A[1:0]
B[1:0]

nStart

A
B

nStart
hs[0]

hs[1]

Sum

Cin

Cout
F

T

MX

CVin

CVout

XorD

A[1]

C

Design for Testability of an Asynchronous Adder

Page 190

A fault analysis of the hybrid asynchronous 8-bit adder shows that all its stuck-at faults

are testable and fault detection requires the application of 33 test vectors during its nor-

mal operation mode.

7.6 A case study of an asynchronous comparator

In this section the design of an asynchronous 8-bit comparator is considered. The com-

parator is used as a comparison block for a pair of 8-bit input vectors in an asynchronous

block sorter the implementation of which is described in chapter 8. Figure 7.11 illus-

trates the design of the asynchronous comparator. It contains an asynchronous 7-bit

adder to perform subtraction of the data from inputsA andB as follows

(7.3)

whereA=A[7:1] andB=B[7:1].

The carry input of the adder is generated by ORing the least significant bits of 8-bit

operandsA and , i.e.

. (7.4)

If Cout is low thenA is greater or equal toB otherwiseA is less thanB. Note that the 7-

bit adder of the comparator does not produce the results of subtraction. The comparator

shown in Figure 7.11 performs in a similar way as was described in previous sections for

a multi-bit asynchronous adder.

The 8-bit comparator was designed and implemented using a 1µm double metal CMOS

process with the help ofCadence CAD tools. Several versions of the comparator with

different implementations of its 7-bit adder have been simulated usingSIMIC design

verification tools. Simulation results are shown in Table 7.3. The single-rail adder with-

out testability features is taken as a base for estimating the relative characteristics of the

other adder designs since it requires the minimal silicon area and demonstrates the high-

est performance. The performance of each version of the comparator was calculated in

Cout A B Cin+ +=

B

Cin A 0[] B 0[]∨=

Design for Testability of an Asynchronous Adder

Page 191

normal operation mode by applying an identical set of 128 tests generated by a pseudo-

random pattern generator.

According to the simulation results shown in Table 7.3 the comparator with the dual-rail

adder demonstrates the largest area overhead (138%) compared to the comparator which

uses the single-rail adder without testability features. The comparator with the hybrid

adder shows the lowest performance which is close to that of the dual-rail comparator.

The comparator with the testable single-rail adder demonstrates the minimal area over-

head and performance degradation but requires a special test mode. The use of the

hybrid adder in the comparator brings a compromise between area overhead, perform-

ance degradation and testability. It is easy to test since 100% of its stuck-at faults are

detected in normal operation mode. However, it is 30% slower and its implementation is

almost twice as large as the comparator which uses the single-rail adder without testabil-

ity features.

7.7 Summary

Different designs of an asynchronous adder and their testability properties have been

investigated in this chapter. The single-rail implementation of an asynchronous adder is

least complex in terms of number of gates, and is fast, but it demonstrates low stuck-at

fault testability due to the logic redundancy in its control part. The logic testing of a sin-

Figure 7.11: Asynchronous 8-bit comparator

C
AckA
AckB

Req
ReqA

ReqB

Ack

Cout

3

Asynchronous 7-bit adder

A B
Cout

CVout
Cin

nStart

77

7

A[0]
B[0]

A[7:1]

B[7:1]

inv[7:1]

Design for Testability of an Asynchronous Adder

Page 192

gle-rail asynchronous adder requires a special test mode to be implemented in order to

remove its logic redundancy. As a consequence, stuck-at faults which have not been

detected in normal operation mode can be identified in test mode. The dual-rail and

hybrid implementations of the asynchronous adder are fully testable for stuck-at faults

in normal operation mode but they require more area and exhibit lower performance.

The dual-rail implementation of an asynchronous adder is faster than the hybrid adder

but requires more silicon area. The dual-rail and hybrid adders can be used in asynchro-

nous VLSI designs where performance and area overhead are not critical but testability

in operation normal mode is important. The testable single-rail version of the adder can

be used in asynchronous VLSI circuits which can be tested in both normal operation

mode and test mode.

a. AO is the area overhead
b. PD is the performance degradation

Table 7.3: Simulation results of the comparator using different adder designs

Adder design of the
comparator

Area,
Performance,

ns/test
AOa,

%
PDb,
%

No.
extra
pins

Single-rail
adder

untestable 3.85 24.15 - - -

testable 4.60 24.55 19 2 1

Dual-rail adder 9.17 30.48 138 26 0

Hybrid adder 7.40 31.50 92 30 0

10
2–

mm
2

Page 193

Chapter 8 : The Design and Test of

an Asynchronous

Block Sorter

The design of an asynchronous block sorter and issues relating to its testability are dis-

cussed in this chapter. The sorter takes an input data stream and sends it to the output

sorted in a descending order. The scan test and BIST design methodologies are used to

implement the block sorter for testability.

8.1 Design of the asynchronous block sorter

The design of the asynchronous block sorter is shown in Figure 8.1. It consists of a head

cell, 64 sorting cells and a tail cell which are connected in a chain [Farn95, FarnTR96].

All these blocks are fully asynchronous and operate autonomously.

The head takes 16-bit vectors from its input and passes 17 bit vectors to the first sorting

cell. An extra boolean flag is added by the head to the input data. The first 63 input vec-

tors have zero flags and only the last 64-th input vector has a boolean flag set to one.

Flag one means the end of the block. The head contains an asynchronous modulo-63

counter which counts the number of input vectors passing through it. After completing

63 handshakes the head takes the last input vector and changes its boolean flag to one.

When 64 input vectors have been passed through the head to the first sorting cell the

head is ready to take a new block of input vectors.

Each sorting cell of the block sorter compares the 8 most significant bits of each new

input vector1 with a value stored in a register within the cell. Afterwards, each cell

1. According to the specification of the block sorter

The Design and Test of an Asynchronous Block Sorter

Page 194

passes the minimum vector to its output and stores the maximum one in its internal reg-

ister. As a result, the set of 64 input vectors are stored in 64 sorting cells in a descending

order.

The sorted block of 64 17-bit vectors are sent to the tail. The tail strips the boolean flag

off its input value. The Tangram program for the asynchronous four-stage block sorter

and handshake implementations of its basic components can be found in Appendix E1.

All the sorting cells of the block sorter are identical. A block diagram of the sorting cell

is shown in Figure 8.2. When a new block of input data is sent by the head to the sorting

cells, the first 17-bit input vector of the block is passed from theDin inputs to the inputs

of multiplexerMX1 and registerReg2. Note that the first vector of each new block of

1. By courtesy of Craig Farnsworth.

Figure 8.1: High level design of the block sorter

Cell63 Tail
16 17 17

Din Dout

17 17 17 16
Head Cell0 Cell1

Figure 8.2: Block diagram of the sorting cell

MX1

MX2

R
eg

1

R
eg

2

CMP L

17

17

17

17

17

17

17 8

17
8

F

T

Din

Dout

The Design and Test of an Asynchronous Block Sorter

Page 195

data is always stored in registerReg1 first. A new input vector is latched by register

Reg2.

The 8 most significant bits of registersReg1 and Reg2 are compared by comparator

CMP. The design of the comparator was considered in chapter 7. In particular, the com-

paratorCMP was designed using the hybrid implementation of its asynchronous adder.

The result of the comparison is stored in latchL which controls multiplexerMX2. If the

value stored inReg1 is greater than or equal to the current value ofReg2 then the state of

latchL is zero and the vector written inReg2 is sent through multiplexerMX2 to the out-

put of the cell. If the value ofReg1 is less than the value written inReg2 then the state of

latch L is changed to one. As a result, the contents ofReg1 are passed through multi-

plexer MX2 to its outputs. The contents ofReg2 are copied intoReg1 and the cell is

ready to write a new vector intoReg2 in order to compare it with the contents ofReg1.

The sorting procedure described above is repeated.

8.2 Testing the block sorter

8.2.1 Fault model

To design the asynchronous block sorter for testability we assume the stuck-at fault

model. In particular we consider two types of stuck-at faults:

• gate level stuck-at output faults inside the control circuits of the block sorter;

• gate level stuck-at faults (including stuck-at input and output faults) inside the data

processing blocks of the sorter.

Stuck-at faults on the control wires of the sorter are detected during its normal operation

mode since they violate the handshaking protocol causing the whole circuit to halt

[Dav90, Ron94]. The detection of stuck-at faults on the data paths of the circuit requires

more care to be taken since they may or may not manifest themselves by producing

wrong responses on the outputs of the block sorter.

The Design and Test of an Asynchronous Block Sorter

Page 196

8.2.2 Testable implementation of the sorting cell

The testing of data paths inside sorting cells is difficult since the controllability and

observability of their internal nodes are different and dependent on the position of each

cell in the chain. The testability of the block sorter can be increased by making the states

of the registers inside the sorting cells controllable. One of the approaches to increase

the controllability of the memory elements of the circuit under test is scan testing.

In principle, the scan testing technique assumes that all the registers of the testable

design can be transformed into a shift register to scan the test vectors in and scan the test

results out. As can be seen from the design of the sorting cell (Figure 8.2) the main data

processing block which must be tested is the comparator. The full scan test implementa-

tion of the sorting cell requires the use of master-slave registers instead ofReg1 and

Reg2 which effectively doubles their sizes. These registers would be used just to scan

the test vectors in since the test results are not stored in them (Figure 8.2). Thus, the use

of scannable registers is not efficient to test the sorting cell.

The structure shown in Figure 8.3 uses the system data paths of the sorting cell to send

test vectors to registersReg1 andReg2. The state of latchL can be observed on an addi-

tional outputCmpRes. An extra multiplexerMX3 is required to send either test or nor-

Figure 8.3: Testable sorting cell

MX1

MX2

R
eg

1

R
eg

2

CMP L
8

17

17

17 8

17
8

F

T

MX3

Din[16:9]

Dout[16:0]

CmpRes

Din[8:0]

OpMode

F

T

Tdat[7:0]

17

17

The Design and Test of an Asynchronous Block Sorter

Page 197

mal 8-bit input vectors to the registers of the cell depending on the mode of operation.

An additional boolean signalOpMode, which is high in test mode, controls multiplexer

MX3.

In test mode multiplexerMX3 passes 8-bit test vectors to the inputs of multiplexerMX1

and registerReg2. The first and the second test vectors are written in the corresponding

latches of registersReg1 and Reg2 respectively. The data on busDin[8:0] remains

unchanged since it is not used to test the comparator. After the application of the pair of

test vectors the test result is stored in latchL and can be observed on its outputCmpRes.

Thus, stuck-at faults inside the comparator can be detected during test mode.

The sorting cell is set to normal operation mode (OpMode=0) to test the rest of the cir-

cuit. Two blocks of tests are required to detect stuck-at faults on the data paths of the

sorting cell:

• a block of ‘all ones’ tests;

• a block of ‘running one’ tests which starts with ‘all zeros’ test.

The first block of tests detects all stuck-at zero faults on the data paths involved in trans-

ferring the data to the outputs of the cell except the internal bus which connects the out-

puts ofReg2 with the inputs of multiplexerMX1. The second block of tests detects the

rest of the stuck-at faults which have not been identified by the previous test block.

Since the test blocks must be applied to the inputs of the block sorter the size of each test

block must be equal to the number of the sorting cells, i.e., 64.

8.2.3 Design for testability of the block sorter

Figure 8.4 illustrates the scan testable implementation of the asynchronous block sorter.

The operation mode of the circuit is changed asynchronously along a two-phase

ChMode2 channel. The mechanism for changing the operation mode of the block sorter

will be discussed later.

The Design and Test of an Asynchronous Block Sorter

Page 198

In normal operation mode, the two blocks of test vectors described above are applied to

inputsDin of the sorter. As a result, stuck-at faults on the control lines and the data paths

of the block sorter are tested including the head and the tail of the block sorter. The next

step is to test internal gate stuck-at faults of the comparator inside each sorting cell.

In test mode, test patterns are sent to the block sorter by the scan-in block. When a new

test has been scanned into the scan-in block it is applied to each sorting cell in parallel

since all cells are identical. The test results are mixed by a 64-input XOR gate and

observed on its outputMixCmp. In the presence of a single stuck-at fault inside the com-

parator of any sorting cell the outputMixCmp will be changed to one during the test.

OutputMixCmp remains zero all the time during the test for the fault free block sorter.

8.3 Procedure for changing the operation mode

As was mentioned earlier a handshake circuit is a network of handshaking components

which communicates via its channels. Each channel consists of a set of at least two

wires (a request and an acknowledge wire) along which a four-phase communication

protocol is performed. If the component performs a particular data processing operation

an additional wire or a set of wires can be included to pass the data in and out. A trans-

mission of signals along a channel can be made only after the receiver has confirmed the

receipt of the previous transmission.

Figure 8.4: Scan testable design of the block sorter

Head Cell0 Cell1 Cell63 Tail
16 17

81

17 17 17 17 16

Scan-in

Din Dout

MixCmp

CmpRes

Tdat[7:0]

CmpRes CmpRes

Tdat[7:0]Tdat[7:0]

ChMode2

Scan-in
Block

The Design and Test of an Asynchronous Block Sorter

Page 199

States of asynchronous circuits are difficult to control since they operate autonomously.

All the cells of the asynchronous block sorter are fully autonomous blocks which can be

in any state during their operation. In order to set the sorter to test or normal operation

mode one must be sure that the circuit cells are empty, i.e., the sorter has processed the

current block of input data and ready to take a new one. The procedure for changing the

operation mode of the circuit must be asynchronous since the cells of the sorter enter

their empty states asynchronously and at different times.

An arbiter can be used to identify the situation when the circuit is empty. The arbiter

takes a request for changing the operation mode of the circuit and waits until the circuit

goes to the empty state. When it happens the arbiter serves the request and changes the

operation mode of the circuit. A symbolic representation and four-phase high level

design of the arbiter are shown in Figure 8.5a and 8.5b respectively. The arbiter has two

passive (a andb) and two active (c andd) channels. If a request has arrived at thear

input of the arbiter first the corresponding request signal is generated on itscr output

(see Figure 8.5b). After the completion of a handshake along channelsa andc a new

request generated on thebr input can be served along channeld.

A gate level implementation of the four-phase arbiter is illustrated in Figure 8.5c.

Request signals generated on theR1 andR2 inputs are stored in the RS flip-flop imple-

Arbiter

R1

R2

G1

G2

D1

D2

aa

ar

br

ba

ca
cr

dr
da

R1

R2

D1

D2 G2

G1

Vdd

Vdd

A

a b

c d

Figure 8.5: Four-phase arbiter: a) symbol; b) high level; and c) gate level
implementations

a)

b)

c)

g1

g2

g3

g4

The Design and Test of an Asynchronous Block Sorter

Page 200

mented using two NAND gates (g1 andg2). The sources of the topp-type transistors in

CMOS implementations of the two-input NOR gatesg3 andg4 are connected to the out-

puts of gatesg2 andg1 respectively (these connections are marked withVdd on gatesg3

andg4). Initially, all the inputs of the arbiter are reset. As a result, the outputs of the RS

flip-flop are high and theG1 andG2 outputs are low. If a rising event is generated first

on theR2 input of the arbiter the output ofg2 is reset preventing the output of NOR gate

g3 from being set to high (thep-stack ofg3 is disabled). TheG2 output is set to high.

When theD2 input has set to high the output ofg4 is reset andG2 goes to low. After-

wards, theR2 signal is returned to zero setting the outputs of the RS flip-flop to high.

When theD2 input is reset the arbiter is ready to serve another request. A request gener-

ated on theR1 input is served in a similar way as a request on theR2 request.

A fragment of the chain of the 64 sorting cells is shown in Figure 8.6. Each sorting cell

contains an arbiter (A) which is placed after the repeater (*). The left communication

channel of the arbiter serves requests when the cell is empty and ready to process a new

data item. The right channel is used for changing the operation mode of the circuit.

In normal operation mode, the sorting cells enter their empty states sequentially starting

from the first cell in the chain. Therefore, each cell which has changed its operation

mode to test mode must generate a request to its right neighbour cell. The sorting cells

are tested concurrently in test mode. Thus, a request to set the operation mode of the

cells to normal mode must be applied to all the cells in parallel. This requires the use of

a multiplexer (Mx) to steer the proper request signals to each sorting cell (see Figure

8.6).

Initially, the Boolean signalModeReq is low and storage elementV, which is the same as

the one shown in Figure 1.8d but without the control signals in its output channelb, is

reset. Operation mode signalOpMode is low and the case element (@) is switched to

normal mode where its passive port is connected to its active portNormCh2. The sorting

cells are activated along their activation channels marked with➩. SignalModeReq is

set to high in order to change the operation mode of the block sorter to test mode. As a

result, a request signal is generated on inputGReq. The arbiter of the first cell waits until

The Design and Test of an Asynchronous Block Sorter

Page 201

a handshake is completed on its left channel to activate its right channel. When the first

cell is empty the output of the storage elementV is set to one (OpMode=1). The case ele-

ment connects its passive port to its active portTestCh. An acknowledge signal is gener-

ated on outputLAck0 of the first cell which generates a request signal for the multiplexer

of the second cell. When the second cell is empty the arbiter activates its right channel in

order to change the operation mode of the cell. Once the second cell is set to test mode it

produces a request on its outputLAck1 for the third cell. The procedure for changing the

operation mode for the rest of the cells is repeated until the last cell is set to test mode.

An acknowledge signal generated on outputLAck63 of the last cell indicates that signal

GReq can be returned to zero. When signalLAck63 is returned to zero all the sorting

cells can be tested.

The design of the multiplexer of thei-th sorting cell is illustrated in Figure 8.7. When

ModeReq=1 the multiplexer connects theLAck signal from the (i-1) cell to thecr output.

;

*

V

@

A
OpMode

TestCh

NormCh2
NormCh1

Rst

➩�

0

;

*

V

@

A
OpMode

TestCh

NormCh2
NormCh1

Rst

Mx

➩�

;

*

V

@

A
OpMode

TestCh

NormCh2
NormCh1

Rst

Mx

➩�

1

63

LAck1LAck0

GReq

LAck63

ModeReq

Figure 8.6: Procedure for changing the operation mode of the sorting cells

The Design and Test of an Asynchronous Block Sorter

Page 202

If the signalModeReq is reset a request from theGReq input is passed to thecr output of

the multiplexer. Note that acknowledge signals are passed from theca input of the mul-

tiplexer to itsLAcki output.

The block sorter is set to normal operation mode when boolean signalModeReq=0. As a

result, the multiplexers of the sorting cells are switched to pass a request signal from

input GReq to the right channels of their arbiters in parallel. When the cells are empty

the Boolean signalOpMode is set to low andGReq goes to high. Once acknowledged by

a rising event on outputLAck63 of the last cell signalGReq can be returned to zero.

WhenGReq=0 and theLAck signals of all the sells are returned to zero the block sorter

can operate in normal mode. Note that the use of acknowledge signalLAck63 ensures

the correct fulfilment of the procedure for setting the sorting cells to normal operation

mode since all the cells operate in parallel during the test.

In the presence of a stuck-at fault on inputGReq or a stuck-at-1 fault on theModeReq

input of a multiplexer the corresponding cell will not be set to normal mode which even-

tually causes the block sorter to halt. A stuck-at fault on theLAck input or a stuck-at-0

fault on theModeReq input of a multiplexer prevent the corresponding sorting cell from

being set to test mode. These faults can be easily identified by causing the block sorter to

halt.

The BooleanModeReq is a two-phase signal which is high in test mode and low in nor-

mal operation mode. Since the whole circuit operates using four-phase signalling a

mechanism for converting the two-phase signal into a four-phase one is required (see

Figure 8.8). In the initial state the toggle element is reset and the inputs of the circuit are

Mx

LAcki-1

c

Mx
cr

ModeReq

ca

T

F

Figure 8.7: Implementation of the multiplexer

LAcki

GReq
LAcki-1

GReq

LAcki

ModeReq

The Design and Test of an Asynchronous Block Sorter

Page 203

low. A rising event on the ModeReq input is transmitted to the GReq output which is a

request for changing the operation mode of the circuit. An acknowledge signal on the

LAck63 input changes the dotted output of the toggle element to one. As a result, the

output of the XOR gate goes low and the GReq signal is returned to zero. When the

acknowledge signal LAck63 has returned to zero the toggle element steers a rising event

to its output ModeAck. Thus, the two-phase signalling protocol is completed along chan-

nel ChMode2 after the completion of the four-phase signalling protocol along channel

ChMode4.

8.4 Test application

8.4.1 Scan testing

Test vectors for the sorting cells are generated by the scan-in block, the handshake

implementation of which is shown in Figure 8.9. The scan-in procedure is activated

along the activation channel marked with ➩. This signal is steered by the two sequenc-

ers and triggers the passive port of the modulo-8 counter (#8). The modulo-8 counter

has been implemented according to the methodology described in [Kess94]. The counter

activates the passive port of the bit-serial shifter (BS) 8 times.

A four-phase implementation of the asynchronous shifter is illustrated in Figure 8.10.

When the test bit is stable on the scan-in input the Rin signal goes high. As a result, the

test bit is shifted into the shift register SReg. After the completion of handshakes along

the input and output control channels the bit-serial shifter is ready to shift a new data bit.

Figure 8.8: Mechanism for converting a two-phase signalling along channel
ChMode2 into a four-phase signalling along channel ChMode4

Toggle

GReq

LAck63

ModeReq

Reset

ModeAck





ChMode2



ChMode4

The Design and Test of an Asynchronous Block Sorter

Page 204

Once the test vector is shifted into the shifter BS the counter completes a handshake

along the left channel of the bottom sequencer (see Figure 8.9). As a result, the contents

of the shift register SReg are copied into the 8-bit storage element (V8). Thus, the top

sequencer activates the transferrer which passes the contents of the storage element to

the Scan-out channel. If the environment is ready to accept the data from the Scan-out

channel the data from the outputs of the storage element is transmitted to the outputs of

the scan-in block.

When a handshake has completed along the Scan-out channel the scan-in block activates

its Scan-in channel and the procedure of scanning in a new test vector is repeated. The

8-bit storage element is used in the scan-in block to reduce the power dissipation of the

block sorter during the scanning in procedure. In the absence of this buffer the fre-

Figure 8.9: Handshake implementation of the scan-in block

#8

BS
1 8

Scan-in

Scan-out

*

➩�

V8
T;

;

8

SReg

Scan-in

Rin Rout

Ain Aout

8

Scan-out
1

Figure 8.10: Four-phase bit-serial shift register

B

The Design and Test of an Asynchronous Block Sorter

Page 205

quently changing outputs of shift registerSReg would drive a large capacitance made by

the test inputs of the 64 sorting cells during the shifting in operation.

Figure 8.11 shows an example of theScanIn procedure written in the Tangram language.

The procedure has the variabletestbit, which is used to store a new data bit to be

scanned in, and variablesscantest andv8 used to store the scan test vector. Thescan_in

input channel is activated 8 times to shift the scan data from thetestbit variable into the

scantest variable (for 8 do command). Once the shift operation is completed the content

of thescantest variable is copied into thev8 variable. As a result, the content of thev8

variable is transmitted along thescan_out channel to the environment.

The test vectors for the comparator have been obtained using a set of automatic test gen-

eration program tools developed at Virginia Polytechnic Institute [LeeTR93]. A set of

18 pairs of 8-bit test vectors has been generated which detects all single stuck-at faults at

the gate level representation of the comparator (see Figure 7.11).

8.4.2 Built-in self testing

In the design of the block sorter with BIST features the scan-in block of the scan testable

block sorter (see Figure 8.4) is substituted by the pseudo-random pattern generator. The

ScanIn: proc(scan_in?(0 .. 1) & scan_out!(0 ..))
begin

testbit: var (0 .. 1)

scantest, v8: var (0 ..)
|

forever do
for 8 do

scan_in?testbit;
scantest:=<<testbit.scantest.7.scantest.1>>

od
v8:=scantest;
scan_out!v8

od
end

2
8

1–

2
8

1–

Figure 8.11: Procedure ScanIn performed by the circuit shown in Figure 8.9

The Design and Test of an Asynchronous Block Sorter

Page 206

request-driven pseudo-random generator shown in Figure 6.3b was used in this BIST

design. Note that the scan-in input used in the scan testable design is no longer needed in

the implementation of the block sorter with BIST features.

An exact fault simulation analysis of the comparator illustrated in Figure 7.11 was car-

ried out with the help of theSIMIC fault simulator. As a result, three hard-to-detect

faults have been found (r=3) which have the minimal random pattern detection proba-

bility (pd=). In order to calculate the upper bound of the random pattern test

(L) formula (6.2) can be used. The calculation results showed thatL=1741 andL=2920

for pt=0.9 andpt=0.99 respectively. The fault simulation results demonstrated that the

application of 1000 pairs of 8-bit random test vectors is enough to detect all stuck-at

faults inside the comparators of the sorting cells.

8.5 Simulation results and cost comparisons

The scan testable and BIST versions of the block sorter were designed usingCadence

CAD tools and simulated usingSIMIC design verification tools developed by Genashor

Corporation [Sim94], [Ashki94].

8.5.1 Scan testable design

According to the scan test approach described above all test vectors are scanned into

registerSReg of the scan-in block. The outputs of the scan-in block are shared by all the

sorting cells under test. The use of the system data paths of each cell in test mode

reduces the cost of the scan procedure. Since the sorting cells are identical the test vec-

tors can be applied to their inputs in parallel which makes the test procedure more effec-

tive. Note that the scan-in block is a fully asynchronous circuit which performs

autonomously. This means that while the first test is sent to registersReg1 of the sorting

cells (see Figure 8.3) the scan-in block can shift the second test in. As a result, the total

test application time is reduced.

1.95 10
3–×

The Design and Test of an Asynchronous Block Sorter

Page 207

According to the simulation results shown in Table 8.1 the minimum application time of

one pair of tests to each cell is 251ns. The area overhead for the scan testable design is

15.9% compared with the original version of the block sorter without testability fea-

tures. In normal operation mode, the overall performance of the testable block sorter is

degraded by 4% since extra components such as multiplexers and control handshake

components are added to the original design. The average dynamic power consumption

is equal to 28.4nJ per input vector in normal mode which is 7% more than that of the

original version. In test mode the average dynamic power consumption of the testable

sorter is equal to 27.8nJ per pair of tests.

A maximum of 8 extra pins are required to implement the scan testable sorter:

• 2 pins for the signalsModeReq andModeAck of the two-phase channelChMode2;

• 3 pins to implement theScan-in channel and 3 pins for the channel along which the

test results are observed.

The number of extra pins for the implementation of theScan-in channel and the result

observation channel can be reduced by sharing some of the system channels using select

blocks and multiplexers. As a result, the number of extra pins is reduced to 2.

8.5.2 Built-in self test design

The scan-in block in the BIST version of the block sorter was replaced by the asynchro-

nous pseudo-random pattern generator based on the 16-bit LFSR. The following deriva-

tion polynomial was used to design the LFSR:

.

Although the generator produces a new test vector at the time when a new request

arrives at its input the generation time of a random test vector is less than the time

required to shift a test into the scan-in block which operates autonomously. The simula-

tion results shows that the application time of a pair of random test vectors to each sort-

ing cell is 92ns which is 2.73 times less than that of the scan testable version. The area

f X() 1 X
3

X
4

X
5

X
16

+ + + +=

The Design and Test of an Asynchronous Block Sorter

Page 208

overhead of the BIST design is 15.4% compared with the original version of the block

sorter. In test mode, the average dynamic power consumption of the BIST sorter is equal

to 30nJ per pair of tests.

The maximum number of extra pins required to implement the BIST design is 5 since

there is no need for the Scan-in channel. Thus, the minimum number of extra pins is

equal to 2. Simulation results of the BIST version of the block sorter can be found in

Table 8.1.

8.6 Summary

It has been demonstrated how the asynchronous scan testing and BIST techniques can

be applied to design testable asynchronous circuits with regular structures. A case study

of an asynchronous block sorter has been presented. The sorter has been designed using

handshake components and post-optimized to achieve a minimal silicon area after its

compilation. The structural regularity of the block sorter makes it possible to test all of

its sorting cells in parallel sharing a common source of test vectors. This increases the

test performance of the circuit. The operation mode of the testable block sorter is

changed asynchronously using a two-phase communication channel.

a. NT is the number of transistors
b. T1 is the minimum application time of one input vector in normal operation mode
c. PD is the performance degradation
d. T2 is the minimum application time of a pair of test vectors in test mode
e. SA is the silicon area
f. AO is the area overhead
g. NEP is the number of extra pins
h. PC is the average power consumption per test in normal mode (NM) and test mode (TM)

Table 8.1: Simulation results and cost comparisons

Block
Sorter

NTa

k
T1b

ns
PDc

%
T2d

 ns

No.
pairs

of
tests

SAe AOf

%

NEPg PCh

nJ

Max Min NM TM

Original 109.1 66.7 n/a n/a n/a 14.50 - - - 26.5 -

Scan test 126.7 69.7 4 251 18 16.81 15.9 8 2 28.4 27.8

BIST 126.5 69.7 4 92 1000 16.77 15.7 5 2 28.4 30.0

mm
2

The Design and Test of an Asynchronous Block Sorter

Page 209

Single stuck-at output faults on the control paths and all single stuck-at faults on the data

paths of the sorter have been considered. The block sorter is tested for faults on its con-

trol lines during normal operation since these faults cause the whole circuit to halt.

Stuck-at faults on the control wires, which are not used in test mode, and on the data

paths along which the data is transferred are detectable in normal mode by applying two

blocks of test vectors. The test mode of the block sorter has been designed to test stuck-

at faults inside the comparators of the sorting cells and to reduce the test application

time.

Two different test circuits have been described. Each testable implementation of the

block sorter imposes different penalties. Compared to the scan testable block sorter, the

BIST version demonstrates approximately the same area overhead and average power

consumption per test, fewer extra pins and a lower application time for a pair of tests.

However, the number of random tests which must be applied to the test inputs of each

sorting cell is much higher than the number required for scan testing. As a consequence,

the total test application time is higher when random testing is used.

Fault simulation results reveal 100% testability of both single stuck-at output faults at

the high level representation of the block sorter and all stuck-at faults inside data

processing blocks of its sorting cells.

Page 210

Chapter 9 : Conclusions and

Future Work

9.1 Conclusions

A resurgence of interest in asynchronous VLSI circuits has been engendered by their

potential ability to eliminate the clock skew problem, achieve average case perform-

ance, provide component modularity and to reduce power consumption.

Two asynchronous design methodologies have been considered in this thesis: micropi-

pelines and handshake circuits. The micropipeline approach creates a powerful design

framework for implementing complex asynchronous circuits such as microprocessors.

Handshake circuits can be designed easily from their high level specifications written in

the Tangram language.

Major silicon producers such asIntel, Philips, Sun Microsystems, etc. have already

started to use asynchronous design methodologies in order to build chips with new prop-

erties which could compete in a market traditionally dominated by synchronous circuits

[Berk94, SproTR94]. However, the testability issues of asynchronous VLSI circuits

must be addressed before their commercial potential can be realized. Traditional fault

models such as stuck-at and stuck-open models can be used to describe the fault behav-

iour of an asynchronous circuit.

The testing of asynchronous circuits is aggravated by the following main factors:

• the presence of a large number of state holding elements in asynchronous circuits

makes test generation harder;

Conclusions and Future Work

Page 211

• the absence of any synchronization clock decreases the controllability of the states of

the asynchronous circuit;

• logic redundancy introduced into the asynchronous design in order to ensure its haz-

ard-free behaviour makes the detection of some faults difficult or even impossible.

Asynchronous DFT techniques are required to reduce the otherwise high costs of test

generation and test application and to increase the coverage of faults in asynchronous

VLSI circuits. Before choosing a particular DFT method one must estimate:

• the impact on the original design (increase in silicon area, effect on performing calcu-

lations, testability of extra logic, etc.);

• the complexity of the DFT implementation;

• the effect on test pattern generation (reduction in CPU time, improved fault coverage,

etc.).

One promising application area for asynchronous VLSI circuits is in portable designs

since they have a potential for low power consumption. As was shown in this thesis the

DFT methodology and design for low power are in direct conflict, i.e., more testable cir-

cuits dissipate more power. The resolution of this lies in the separation of the circuit’s

normal operation and test modes. However, the presence of extra logic elements incor-

porated into the testable circuit design increases its overall power dissipation in normal

operation mode. As a result, the dynamic power dissipation of the testable design must

be taken into account when the circuit operates in its normal operation mode.

Testable CMOS designs for symmetric and asymmetric C-elements have been consid-

ered in this thesis. The proposed structures for C-elements provide for the detection of

line stuck-at faults and transistor stuck-open faults. The testable CMOS implementa-

tions of the C-elements allow them to operate as:

• an AND or OR gate for the symmetric C-element;

Conclusions and Future Work

Page 212

• an AND gate or repeater for the OR-AND type of asymmetric C-element;

• an OR gate or repeater for the AND-OR type of asymmetric C-element.

Thus, the use of these C-elements reduces the test complexity of the asynchronous cir-

cuit by changing the sequential functions of the C-elements into combinational ones

during the test. A scan testable CMOS implementation of the symmetric C-element has

also been discussed.

The scan test technique is widely used to design testable synchronous circuits. In this

thesis, the scan test methodology has been used to design micropipelines for testability.

The stuck-at fault and delay fault models were considered. Table 9.1 shows comparison

results for the testability of different micropipeline structures. Testing for stuck-at output

faults in the control parts of micropipelines is trivial since they cause the faulty micropi-

peline to halt while it performs in normal operation mode. Stuck-at input faults in the

control circuits of either two-phase micropipeline or four phase micropipeline with sim-

ple latch control can be detected in normal operation mode. However, the testing for

stuck-at input faults in the control part of the four-phase micropipeline with semi-decou-

pled latch control requires the use of a special DFT technique presented in this thesis.

Table 9.1: Testability of micropipeline structures

Micropipeline
design

Control paths Data paths

DFT is not required
for:

DFT is required for:
DFT is required

for:
Two-phase stuck-at input and output

faults
- 1. Stuck-at input and

output faults.
2. Delay faults.

Four-phase (simple
latch control)

stuck-at input and output
faults

- 1. Stuck-at input and
output faults.
2. Delay faults.

Four-phase (semi-
decoupled latch con-

trol)

stuck-at output faults stuck-at input faults 1. Stuck-at input and
output faults.
2. Delay faults.

Conclusions and Future Work

Page 213

Some stuck-at faults on the inputs of asymmetric C-elements used in four-phase designs

cause premature firings on their outputs which are difficult to detect. These faults can be

identified by

• checking the order of events on the control lines of the circuit under test;

• applying a special test sequence of events to the control inputs;

• converting the asymmetric C-element into a symmetric one during the test.

Test vectors for detecting stuck-at faults in the combinational circuits of the micropipe-

lines can be derived using any known test generation technique. Testing for delay faults

in the data paths is important since they violate the bundled-data interface between the

stages of the micropipeline.

Asynchronous designs for a pseudo-random pattern generator and signature analyser

which operate according to either two-phase or four-phase transition signalling have

been proposed.

Two structural (parallel and bit-serial) designs for random pattern testability of asyn-

chronous sequential circuits have been described. The single stuck-at fault model has

been considered. The testable sequential circuit designs have been implemented as two-

phase and four-phase circuits. In addition, handshake implementations of testable

sequential circuits have been discussed. The test complexity of sequential circuits

designed using these DFT techniques is reduced to the complexity of testing just their

combinational parts. Stuck-at faults in the control part of the testable two-phase sequen-

tial circuit cause the faulty circuit to halt in normal operation or test mode which is easy

to detect. A technique for testing stuck-at faults in the control of the four-phase sequen-

tial circuit has been presented.

An asynchronous implementation of the BILBO technique has been demonstrated on a

micropipeline design with BIST features. The micropipeline can operate following

either two-phase or four-phase transition signalling. The proposed BIST micropipeline

Conclusions and Future Work

Page 214

allows single stuck-at faults and delay faults to be detected in its combinational logic

blocks during the test.

A testability analysis have been carried out on designs of an asynchronous adder imple-

mented using single-rail, dual-rail and combined single-rail and dual-rail (hybrid) data

encoding techniques. Each adder design brings different trade-offs between testability

for stuck-at faults, performance and area overhead.

It has been observed that stuck-at faults in the control part of the single-rail adder can

cause the adder to halt or cause premature and delayed firings. The detection of prema-

ture and delayed firings requires the adder to be set into a special test mode.

The hybrid implementation of an asynchronous adder does not require a special test

mode since all its stuck-at faults can be detected in normal operation mode and it dem-

onstrates a reasonable area overhead and performance degradation.

The scan test and BIST versions of an asynchronous block sorter designed as a hand-

shake circuit have been investigated. The testable implementations of the block sorter

require a low area overhead and exhibit 100% testability for stuck-at faults in its high

level representation. A novel technique for changing the state of the sorter has been

described.

9.2 Future work

The results presented in this thesis have revealed difficulties in the testing of asynchro-

nous circuits which create the ground for new research in this area.

9.2.1 Testing control circuits

Automatic test generation for stuck-at input faults in quasi-delay insensitive and speed-

independent control circuits of high complexity is still a problem.

Also, there is the problem of identifying stuck-at input faults which cause premature fir-

ings in a circuit. Creating software which, when applied to the circuit during its design,

Conclusions and Future Work

Page 215

could identify this kind of fault seems to be an important task. As a result of using this

software the regions in the circuit which have these faults could be identified at an early

stage of the design process. Thus, the identified parts of the circuit could be redesigned

in order to eliminate the hard-to-detect faults.

In addition, an investigation of possible DFT techniques which could facilitate the test-

ing for bridging and transistor stuck-open faults in order to increase the fault coverage

for fabrication faults in asynchronous control circuits seems to be an important field of

research. Testable CMOS designs of C-elements described in this thesis can be used to

detect these faults.

Testing asynchronous control circuits specified at high level using languages such as

communicating sequential processes (CSP) [Mart90] or graphs such assignal transition

graphs (STG) [Chu87] is another interesting field of future research.

9.2.2 Testing microprocessors

Two generations of asynchronous RISC processor (AMULET1 and AMULET2) have

been designed by the AMULET research group. Problems related to the testing of asyn-

chronous circuits have been largely ignored. As a consequence, the commercial useful-

ness of the AMULET designs, which requires effective test procedures to be applied to

chips manufactured in high volume, remains low.

I believe that the design of a testable asynchronous microprocessor will bring the next

generation of AMULET design to the stage where industrial potential together with aca-

demic research can make a breakthrough in the low power microprocessor market.

Page 216

Appendix A : Testing of

Synchronous VLSI

Circuits

A.1 Test generation methods

A test procedure includes three basic steps: test generation, test application and response

evaluation. During test generation input patterns are derived to sensitize faults and prop-

agate fault effects to the observable outputs of the circuit under test. Test generation

techniques can be divided into two major groups: algorithmic test generation methods

and random (pseudo-random) testing.

A.1.1 Algorithmic test generation

Most of the reported test generation methods produce test sequences by means of ana-

lysing the topological structure of the circuit under test. Such well-known path sensitiza-

tion algorithms as the D-algorithm [Lala85, Feug88], PODEM [Ben84] and FAN

[Chen89] have successfully been used for automatic test generation for VLSI circuits.

The concept of the path sensitization technique is illustrated in Figure A.1. The test der-

ivation algorithm for a stuck-at-1 fault on lined includes three sequential steps marked

by circled numbers. During the first step lined is set to low. On the second step, a low

level signal is applied to inputa to justify the previous step. On the last step, the fault

effect of the stuck-at-1 fault on lined is propagated to outpute of the circuit by setting

line b to low. As a result, test pattern 00 is derived to detect the stuck-at-1 fault on lined.

Note that in Figure A.1 the logic value before the slash is the correct value for the fault-

Appendix A : Testing of Synchronous VLSI Circuits

Page 217

free circuit; the value after the slash is the fault response of the circuit in the presence of

the stuck-at fault.

As shown above, the process of path sensitization consists of three basic operations: jus-

tification, implication and propagation [Chen89]. Step 2 of the above example is justifi-

cation for generating a logic 0 on noded. In general, when a value is assigned to a

certain node, it may imply other signals for some lines of the circuit. The aim of the

implication procedure is to cause forward propagation of the result of the justification

step. For example, a low signal can be set on lined by setting a one on lineb (see Figure

A.1). In this case the effect of the fault on lined cannot be propagated through the NOR

gate to outpute. Therefore, the result of the justification step can be propagated only if a

low signal is applied to inputa. The effect of the propagation process (step 3) is to move

the fault effect through a sensitized path to an output of the circuit.

The D-algorithm is one of the classical test generation methods which derives tests for

detecting stuck-at faults at the gate level circuit representation [Lala85, Chen89]. The

set of five elements {0, 1, , , } for describing signals is used to facilitate the path

sensitization process: means unknown, represents a signal which is one in the

fault-free circuit and zero in a faulty circuit; is the complement of . The D-algo-

rithm consists of three parts: fault excitation and forward implication, D-propagation,

backward justification. On the first step the minimal input conditions are selected in

order to produce an error signal (or) on the output (faulty node) of the logic ele-

ment. The forward implication process is performed in order to determine the outputs of

those gates whose inputs are specified. The goal of the D-propagation step is to propa-

gate the fault effect to primary outputs by means of assigning logical values to corre-

a

b

c
d

e
1

2

3

Stuck-at-1

0

0/1

1/0

0

Figure A.1: Path sensitization technique

1

X D D

X D

D D

D D

Appendix A : Testing of Synchronous VLSI Circuits

Page 218

sponding internal lines and primary inputs. In backward justification, node values are

justified from primary inputs. If there is a conflict in one of the nodes the backwards

consideration from the conflict node to the primary inputs is reiterated until the fault

effect (or) reaches at least one of the primary outputs.

Not all the stuck-at faults inside the circuit can be detected by path sensitization algo-

rithms. Logic redundancy is the reason why these faults cannot be detected. For exam-

ple, a stuck-at-1 fault on nodec of the circuit shown in Figure A.1 is undetectable since

there is no sensitization path from the fault site to outpute. As a result, in the presence

of the redundant stuck-at-1 fault on nodec the faulty circuit produces correct results.

Clearly, the combinational circuit shown in Figure A.1 performs according to the fol-

lowing Boolean function: . This function is redundant and equivalent to

which is not redundant.

Thus, algorithmic test generation techniques allow both the generation of test vectors for

the detection of stuck-at faults in the gate-level representation of VLSI circuits and the

identification of redundant faults which are not detected by logic testing.

A.1.2 Random pattern testing

In random testing methods input patterns can be generated by a linear feedback shift

register (LFSR), a shift register with connections from some of the stages to the input of

the first element through an XOR gate [Need91]. A LFSR allows the generation of long

repetitive pseudo-random sequences, segments of which have properties similar to ran-

dom patterns [Davi81, Wag87]. Pseudo-random sequences are more suitable for testing

digital circuits than truly random ones due to the possibility of repeating them for simu-

lation purposes.

LFSRs which generate pseudo-random sequences of maximal length can be described

by their primitive polynomials. Ifn is the number of stages of the maximum-length

LFSR then the length of its output sequence is equal to . Tables of primitive

polynomials can be found elsewhere [MClus86, Russ89].

D D

a b b+⋅ a b+

M 2
n

1–=

Appendix A : Testing of Synchronous VLSI Circuits

Page 219

Figure A.2a shows a four-bit LFSR which is designed using the following primitive pol-

ynomial . The pseudo-random sequences of maximal period

() are generated on the register outputs. The initial state of the LFSR is

 = . Note that the state of ‘all zeros’ is illegal for the LFSR

shown in Figure A.2a since it stays in this state forever.

It is well known that for 100% testing of combinational circuits all binary input combi-

nations must be applied to their inputs. This approach is called exhaustive testing. Fig-

ure A.2b illustrates a modified version of the four-bit LFSR which cycles through all

possible 16 states including the ‘all zeros’ state. The use of the extra NOR gate forces

the LFSR to go through all its original states plus the ‘all zeros’ state which is produced

by the LFSR after passing the state 0001. The output sequence generated by such an

LFSR is shown in Table A.1. A modified version of a maximal-length LFSR can be used

for exhaustive testing [MClus86].

A.2 Response evaluation techniques

The main goal of response evaluation is to detect any wrong output of the circuit under

test. There are two basic approaches for achieving this goal: a good response generator

and compact testing.

ϕ X() 1 X
3

X
4

+ +=

M 15=

Q0 Q1 Q2 Q3, , ,() 1 1 1 1, , ,()

Figure A.2: Four-bit pseudo-random pattern generator

DFF

D Q0

DFF

D Q1

DFF

D Q2

DFF

D Q3

Clk

Rst

DFF

D Q0

DFF

D Q1

DFF

D Q2

DFF

D Q3

Clk

Set

S S S S

a) b)

R R R R

Appendix A : Testing of Synchronous VLSI Circuits

Page 220

A.2.1 Good response generation

Any faulty response can be detected by comparing good responses with output signals

produced by the test object. For instance, all good responses can be stored in a ROM.

After applying each test pattern to the circuit under test its output is compared with the

good one. If they are different the comparator will activate an error signal. Good

responses can easily be obtained by means of software-simulation of the VLSI circuit as

a part of the design verification stage [Russ89]. In comparison test technique, test pat-

terns are applied to the inputs of the circuit under test and a golden unit simultaneously

and the responses of both units are compared by the comparator.

A.2.2 Signature analysis

The main drawback of the response evaluation technique is the necessity to operate with

a large amount of output data during the testing of a VLSI circuit. In compact testing,

the output data is compressed into a compact form during the test. After the test is com-

plete the response of the circuit under test is compared with the compressed response of

the golden unit.

The most widely used compact testing method is signature analysis [Lala85, Russ89]. In

the signature analysis technique, the output data are compressed using a signature ana-

lyser built using a LFSR. The first practical realization of the signature analysis tech-

Table A.1: State sequence of the four-bit LFSR shown in Figure A.2b

State Q0 Q1 Q2 Q3 State Q0 Q1 Q2 Q3

0 0 0 0 0 9 1 0 1 0

1 1 0 0 0 10 1 1 0 1

2 0 1 0 0 11 1 1 1 0

3 0 0 1 0 12 1 1 1 1

4 1 0 0 1 13 0 1 1 1

5 1 1 0 0 14 0 0 1 1

6 0 1 1 0 15 0 0 0 1

7 1 0 1 1 16 0 0 0 0

8 0 1 0 1 17 1 0 0 0

Appendix A : Testing of Synchronous VLSI Circuits

Page 221

nique as a method of detecting errors in output data steams produced by digital circuits

was pioneered by Hewlett Packard Ltd. [Hew77]. The compact forms produced by sig-

nature analysis are called signatures.

In compact testing, two kinds of signature analysers are used: serial and parallel signa-

ture analysers [MClus86]. A four-stage serial signature analyser and a four-stage paral-

lel signature analyser are shown in Figure A.3 and Figure A.4 respectively. A serial

signature analyser treats only one response (Y) bit at every clock whereas a parallel sig-

nature analyser compacts responses from multiple output streams (Y0, Y1, Y2, Y3).

The probability of a signature analyser failing to detect an error can be evaluated as

, wheren is the number of flip-flops of the LFSR [Hew77, MClus86]. For the

16-bit signature analyser used by Hewlett Packard . This confirms the

high quality of the signature analysis technique.

Figure A.3: Four-stage serial signature analyser

DFF

D Q0

DFF

D Q1

DFF

D Q2

DFF

D Q3

Clk

Rst

R R R R

Y

P 1 2
n⁄≈

P 1.5
5–×10=

Figure A.4: Four-stage parallel signature analyser

Clk

Rst

Y0

DFF

D
Q2

R

DFF

D
Q0

R

DFF

D
Q1

R

DFF

D
Q3

R

Y1 Y2 Y3

Page 222

Appendix B : Design for Testability

of Synchronous VLSI

Circuits

B.1 What is design for testability?

Design for testability (DFT) can be defined as a design philosophy that leads to decreas-

ing the cost of testing digital circuits and to increasing the fault coverage or fault isola-

tion.

There are two key concepts in DFT techniques: controllability and observability

[Lala85, MClus86, Cort87, Russ89, Turin90]. Controllability refers to the ease of pro-

ducing certain logic values on internal nodes of the circuit via its primary inputs.

Observability refers to the ease with which the values of the circuit nodes can be deter-

mined via its primary outputs. The degree of controllability of the circuit can be

increased by means of incorporating in it some additional logic elements and control ter-

minals. The easiest way to increase observability is to add some extra output terminals.

DFT techniques can be divided into three major groups: ad hoc strategies, structured

approaches and built-in self-test techniques [Russ89].

B.2 Ad-hoc techniques

The ad-hoc strategy is used to help designers of VLSI circuits to alleviate testing prob-

lems. Test engineers, using their experience, have developed a number of recommenda-

tions for enhancing the testability of VLSI circuits. Practical guidelines for designing

testable circuits can be found elsewhere [Ben84, Turin90]. All these recommendations

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 223

can be divided into two groups: guidelines which 1) make test pattern generation easier;

2) simplify test application and fault isolation.

It is known that primary access to subcircuits of a VLSI design is extremely limited. In

this case the use of multiplexers and demultiplexers can improve the controllability and

observability characteristics of the VLSI circuit. Demultiplexers and multiplexers incor-

porated into the VLSI circuit allow the test engineer to manipulate the data streams

inside the circuit using a special mode of operation (test mode).

Shift registers can be used to make internal nodes in the VLSI circuit more accessible

either for controllability or observability as shown in Figure B.1. A serial-in, parallel-

out shift register is used to set the circuit into a predefined state (see Figure B.1a). Figure

B.1b shows a parallel-in, serial-out shift register which is used to store test information

from internal nodes and to scan it out to a primary output of the VLSI circuit.

The addition of extra gates to block signal paths can be used to partition a VLSI design

into smaller subcircuits, provide facilities to break feedback paths, break up long coun-

ter chains and provide initialisation of stored-state devices for simplifying test genera-

tion. This technique has been described in detail [Ben84].

Clk

Reset

Test control
signals

Clk

Reset

Test observation

signals

ScanIn

ScanOut

Figure B.1: Using shift registers for improving (a) control access; (b) observation
access

S
hi

ft
re

gi
st

er

S
hi

ft
re

gi
st

er

a) b)

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 224

B.3 Structural DFT approaches

Structural DFT techniques ensure the desired degree of controllability and observability

at the structural level of a VLSI circuit. Most of these structured approaches rely on the

concept that, if the latch variables can be controllable and observable within a sequential

circuit, then the test generation problem can be reduced to the testing of just the combi-

national logic. There are four main formal structural DFT methods: the scan path

[MClus86, Russ89], the level-sensitive scan design (LSSD) [Rice82, Lala85, Russ89],

the scan/set method [Russ89] and the random access scan technique [Ben84, MClus86].

In this Section the scan path and the LSSD design styles will be considered.

B.3.1 Scan path

The scan path approach assumes that during the test all the memory elements of the

sequential circuit are configured into a long shift register called the scan path. All the

memory elements of the circuit can be controlled and observed by means of shifting in

and shifting out test data along the path. The selection of the input source for the storage

elements can be achieved using multiplexed data flip-flops [MClus86] or two-port flip-

flops with two data inputs and two clocks [Russ89].

A scan path technique can be used to partition a VLSI structure into a number of less

complex subcircuits by organizing the scan path to pass through a number of combina-

tional networks. The sequential depth of such a circuit is much less than the depth of the

original one which alleviates the test problem considerably. To test the scan path itself,

flush and shift tests are applied. The flush test consists of all zeros and all ones. The shift

test exercises the memory elements of the scan path through all of their possible combi-

nations of initial and next states.

B.3.2 Level-sensitive scan design

The LSSD design approach is based on two main concepts: level sensitivity, and a scan

path. The first assumes that: 1) all changes in the circuit are controlled by the level of a

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 225

clock signal; 2) the steady state response of the sequential circuit to an input state

change is independent of the rise and fall times and propagation delays of signals within

the circuit. The second concept of the LSSD technique assumes that the circuit must

incorporate a scan path.

Shift register latches (SRL) are used to implement all memory elements in LSSD cir-

cuits. Figure B.2 shows the symbolic representation of an SRL and its implementation

in NAND gates. In the normal mode of operation clockC3 is not activated and clockC1

is used to write data to latchL1. Output data can be taken fromL1 or, if clock C2 is

used, fromL2. In test mode non-overlapping clocksC3 andC2 are used to shift data

from outputL2 of the previous SRL into latchL1 (clockC3) with consequent copying of

the data from outputL1 into latchL2 (clockC2).

The basic LSSD configuration is illustrated in Figure B.3. In this structure the pair of

non-overlapping clocksC1 andC2 is used to store the system data from the combina-

tional logic (CL) in the SRLs (normal operation mode). In test mode two sequences of

clocksC3 andC2 are applied to control and observe the states of all the SRLs by means

of transmitting the test data through the scan path (dotted line). Note that both theL1

andL2 latches participate in the system function and during the test.

The basic algorithm for testing with the LSSD structure shown in Figure B.3 can be

written as follows:

1) Verify the operation of all the SRLs by applying flush and shift tests.

Data input (DI)
System clock (C1)
Scan input (SI)
Shift clock (C3)

System/Shift clock (C2)

L1

L2

DI

SI

C2

C1
C3

L1

L2

L1

L2

a) b)

Figure B.2: Polarity hold latch a) symbolic representation; b) implementation in
NAND gates

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 226

2) Load a test into the SRLs. The test is loaded from the scan-in port of the circuit and

shifted in serially by means of clocks C3 and C2 alternatively activated.

3) Generate a test pattern on the primary inputs of the circuit and turn clock C1 on and

off. As a result, the response of the combinational network is stored in the L1 latches.

4) Pulse the system clock C2 to rewrite the contents of the L1 latches into the L2 latches.

5) Pulse two sequences of clocks C3 and C2 to scan out the contents of the SRLs. Mean-

while a new test pattern can be loaded into the SRLs.

The test procedure described above is continued until the combinational logic has been

tested. The responses of the circuit are observed at the primary outputs and the scan-out

port. Test generation can be fully automatic since the tests must be produced just for the

combinational part of the LSSD circuit.

Primary

Primary

L1

L1

L1

L2

L2

L2

C
om

bi
na

tio
na

l L
og

ic

Scan path

C1

C2

C3
ScanIn

ScanOut

Figure B.3: LSSD structure

Inputs

Outputs

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 227

B.4 Built-in self-test

In built-in self-test (BIST) VLSI designs the test patterns are generated by a circuit

included on the chip and the response analysis is also fulfilled by on-chip circuitry.

There are two possible realizations of self-testing:InSitu and ExSitu self-testing

[Russ89].InSitu self-test structures use system registers to generate and compact test

data whereas theExSitu design uses registers external to the system function to generate

tests and analyse the responses of the circuit.

Built-in logic block observer

A classical example of InSitu self-test is the built-in logic block observation (BILBO)

technique [Lala85, MClus86]. This technique is based on the use of a BILBO register

which can be reconfigured to act as a pseudo-random pattern generator or as a signature

analyser within a VLSI circuit. The BILBO technique uses signature analysis in con-

junction with a scan path technique. The structure of a basic 4-bit BILBO element is

shown in Figure B.4. The function of the BILBO element is controlled by linesB1 and

B2. The storage elements areD-type flip-flops. The inputs of the BILBO element are

usually fed by the outputs of the preceding combinational circuit, the outputs are con-

nected to the inputs of the following combinational network.

Z1 Z2 Z3 Z4
B1

B2

SDI

Q1 Q2 Q3 Q4

SDO

MX

DFF1

Figure B.4: Basic BILBO element

DFF2 DFF3 DFF4

Appendix B : Design for Testability of Synchronous VLSI Circuits

Page 228

The BILBO register can perform in four modes:

1. B1=B2=1,System operation mode. The BILBO is configured as a set ofD flip-flops to

store the system states of a VLSI circuit.

2. B1=B2=0,Shift register mode. The BILBO functions as a long shift register forming a

scan path.

3. B1=1, B2=0, LFSR with multiple inputs. If all the inputs of the BILBO are fixed the

BILBO element shown in Figure B.4 is configured into a 4-stage pseudo-random pattern

generator (see Figure A.2). Otherwise the BILBO functions as the 4-bit parallel signa-

ture analyser as illustrated in Figure A.4.

4. B1=0, B2=1, Reset mode. The BILBO register is reset.

Figure B.5 shows how the BILBO technique can be used to test a VLSI circuit. Initially

one BILBO register works as a generator to stimulate the combinational circuit to be

tested. The second BILBO is used as a signature analyser to compress the responses of

the circuit under test. After a certain number of clocks the BILBO register that contained

the signature is reconfigured into a scan path register and the content is shifted out to

B
IL

B
O

B
IL

B
OCombinational

circuit 1

Generator Signature analyser

Figure B.5: Self-testing structure with BILBOs

Combinational

circuit 2

B
IL

B
O

B
IL

B
OCombinational

circuit 1

Combinational

circuit 2

Signature analyser Generator

Page 229

compare with the signature of the golden unit. The roles of the BILBOs are reversed to

test the next combinational circuit.

Page 230

Appendix C : Testable

Asynchronous Cells

This Appendix contains symbols, schematics and layouts for some cells designed for a

testable asynchronous library. The presented designs have been implemented in CMOS

technology on a 1 double layer metal process usingCadence design tools and simu-

lated usingSPICE. In addition, nodal capacitances for inputs and outputs of the testable

cells calculated from their extracted layouts can be found in this Appendix.

Table C.1 contains the names of the testable cells and their meanings with the corre-

sponding figures where they can be found in this thesis.

Table C.1: Names of the testable cells and their meanings

Cell name Meaning Figure

MullerC2_stat Symmetric C-element 4.1b

tst_C2 Symmetric C-element testable for stuck-open faults 4.2

tst_safC2 Symmetric C-element testable for stuck-at faults 4.3

static_asy_mullc_nb OR-AND type asymmetric C-element 4.4

static_asy_mullc_pb AND-OR type asymmetric C-element 4.5

tst_stat_asyC2_nb OR-AND type asymmetric C-element testable for stuck-
open faults

4.6a

tst_stat_asyC2_pb AND-OR type asymmetric C-element testable for stuck-
open faults

4.6b

tst_saf_asyC2_nb OR-AND type asymmetric C-element testable for stuck-
at faults

4.7

tst_scanC2 Symmetric C-element with scan features 4.8

scan_latch Scan latch 5.4

µm

Appendix C : Testable Asynchronous Cells

Page 231

!Format Type= Olod= Part=
Load 3.48916e-14 'a'
Load 3.84306e-14 'b'
Load 4.5572e-14 'c'
Load 1.23073e-13 '6'

Library "olegs":
MullerC2_stat

Load Information
Area in microns squared = 27.500 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 232

!Format Type= Olod= Part=
Load 3.47469e-14 'a'
Load 4.41205e-14 'b'
Load 2.0685e-14 'c'
Load 6.37769e-14 'm'
Load 2.20468e-13 '7'

Library "olegs":
tst_C2

Load Information
Area in microns squared = 32.250 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 233

!Format Type= Olod= Part=
Load 3.43293e-14 'a'
Load 3.63979e-14 'b'
Load 2.6494e-14 'tn'
Load 2.94618e-14 'tp'
Load 2.53265e-13 '5'
Load 7.54418e-14 'm'
Load 4.6622e-14 'c'

Library "olegs":
tst_safC2

Load Information
Area in microns squared = 39.750 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 234

!Format Type= Olod= Part=
Load 2.78007e-14 'A'
Load 2.12099e-14 'B'
Load 7.43324e-14 'Y'
Load 9.72582e-14 '_Y'

Library "amuletBeta":
static_asy_mullc_nb

Load Information
Area in microns squared = 20.250 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 235

!Format Type= Olod= Part=
Load 3.05323e-14 'A'
Load 2.83495e-14 'B'
Load 6.74812e-14 'Y'
Load 1.8269e-13 'nY'

Library "amuletBeta":
static_asy_mullc_pb

Load Information
Area in microns squared = 20.000 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 236

!Format Type= Olod= Part=
Load 1.92116e-14 'A'
Load 1.76288e-14 'B'
Load 2.14553e-14 'C'
Load 6.6082e-14 'Y'
Load 1.72007e-13 '3'

Library "olegs":
tst_stat_asyC2_nb

Load Information
Area in microns squared = 24.000 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 237

!Format Type= Olod= Part=
Load 1.96295e-14 'A'
Load 1.6364e-14 'B'
Load 7.45002e-14 'Y'
Load 2.54551e-14 'C'
Load 2.1555e-13 '3'

Library "olegs":
tst_stat_asyC2_pb

Load Information
Area in microns squared = 26.500 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 238

!Format Type= Olod= Part=
Load 1.91955e-14 'A'
Load 1.86423e-14 'B'
Load 2.41143e-14 'Tn'
Load 2.20991e-14 'Tp'
Load 1.33867e-13 'Y'
Load 3.67942e-14 'C'

Library "olegs":
tst_saf_asyC2_nb

Load Information
Area in microns squared = 28.500 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 239

!Format Type= Olod= Part=
Load 5.73717e-14 'Clk'
Load 1.70802e-14 'Sin'
Load 3.64919e-14 'T'
Load 1.67269e-14 'a'
Load 1.70992e-14 'b'
Load 6.40658e-14 '9'
Load 3.75031e-14 '15'
Load 1.14159e-13 'data'
Load 1.31744e-13 'c'
Load 4.72416e-14 'Sout'

Library "olegs":
tst_scanC2

Load Information
Area in microns squared = 50.500 * 47.5

Symbolic

Appendix C : Testable Asynchronous Cells

Page 240

!Format Type= Olod= Part=
Load 2.44456e-14 'Den'
Load 3.62464e-14 'Din'
Load 4.35459e-14 'Sc'
Load 3.0921e-14 'Sin'
Load 6.41734e-14 'Tst'
Load 3.77203e-14 'nSc'
Load 6.03244e-14 'nTst'
Load 5.85086e-14 '28'
Load 1.32663e-13 '9'
Load 1.77719e-13 '26'
Load 1.01841e-13 '15'
Load 1.24835e-13 '6'
Load 8.01637e-14 '13'
Load 7.03852e-14 'Dout'
Load 1.05183e-13 '25'

Library "olegs":
scan_latch

Load Information
Area in microns squared = 88.500 * 47.5

Symbolic

Page 241

Appendix D : AMULET2e memory

controller

Table D.1: State table for the AMULET2e memory controller

x6 x5 x4 x3 x2 x1 x0
current
state

f3 f2 f1 f0
next
state

DRAM refresh
- - - - 1 1 - 000 0 0 0 0 001

- - - - 1 1 - 001 0 0 0 0 010

- - - - 1 1 - 010 0 0 1 0 011

- - - - 1 1 - 011 1 0 1 0 100

- - - - 1 1 - 100 1 0 1 0 101

- - - - 1 1 - 101 1 0 0 0 110

- - - - 1 1 - 110 1 0 0 0 111

- - - - 1 1 - 111 0 0 0 0 000

DRAM access
- - - - 1 0 0 000 0 0 0 0 001

- - - - 1 0 1 000 1 1 0 0 101

- - - - 1 0 - 001 0 0 0 0 010

- - - - 1 0 - 010 0 1 0 0 011

- - - - 1 0 - 011 1 1 0 1 100

- - - - 1 0 - 100 1 1 0 0 101

- - - - 1 0 - 101 1 1 1 0 110

- - - - 1 0 - 110 1 1 1 0 000

Tidy
- - - - 1 0 - 000 0 0 0 0 000

Static cycles
0 0 0 0 0 0 - 000 1 1 0 0 000

0 1 0 0 0 0 - 000 1 1 0 0 011

1 - 0 0 0 0 - 000 1 0 0 0 001

1 - 1 - 0 0 - 000 1 0 0 0 010

1 - - 1 0 0 - 000 1 0 0 0 010

0 - 1 - 0 0 - 000 1 1 0 0 100

Appendix D : AMULET2e memory controller

Page 242

Inputs:

x6 - setup signal;

x5 - hold signal;

x4 and x3 - timing/DRAM size signals;

x2 - DRAM memory signal;

x1 - refresh cycle signal;

x0 - sequential memory address signal.

Outputs:

f3 - memory strobe;

f2 - read/write strobe;

f1 - column address strobe;

f0 - control signal for the address multiplexer.

0 - - 1 0 0 - 000 1 1 0 0 100

- 1 - - 0 0 - 001 1 1 0 0 011

- 0 - - 0 0 - 001 1 1 0 0 000

- - - - 0 0 - 010 1 1 0 0 100

- - 1 - 0 0 - 100 1 1 0 0 101

- 0 0 1 0 0 - 100 1 1 0 0 000

- 1 0 1 0 0 - 100 1 1 0 0 011

- 0 - 0 0 0 - 101 1 1 0 0 000

- 1 - 0 0 0 - 101 1 1 0 0 011

- - - 1 0 0 - 101 1 1 0 0 110

- 0 - - 0 0 - 110 1 1 0 0 000

- 1 - - 0 0 - 110 1 1 0 0 011

- - - - 0 0 - 011 1 0 0 0 000

Table D.1: State table for the AMULET2e memory controller

x6 x5 x4 x3 x2 x1 x0
current
state

f3 f2 f1 f0
next
state

Page 243

Appendix E : Asynchronous Block

Sorter

E.1 Tangram program of the four-stage block sorter

byte = type [0..255]
& word = type <<byte, byte>>
& boolword = type <<bool, word>>
& stages = const 4
|
(ip?word & a!boolword & b!boolword & c!boolword & d!boolword & e!boolword &
op!word).

begin

head = proc(ip?word & op!boolword).
begin

new: var word
|

forever do
for (stages - 1) do ip?new; op!<<true,new>> od
;ip?new; op!<<false,new>> {last value mark true}

od
end

{tail strips off the boolean and outputs a word as required}

& tail = proc(ip?boolword & op!word).
begin

new: var boolword
|

forever do
ip?new; op!new.1 {removes the boolean by outputting only the word}

od
end

& sortcell = proc(ip?boolword & op!boolword).
begin

new, value: var boolword

Appendix E : Asynchronous Block Sorter

Page 244

& sort : proc().
if (new.1).0>(value.1).0 then op!value; value:=new else op!<<true,new.1>> fi

& ipnew : proc().
ip?new
|
forever do

ip?value; ipnew();
do (new.0) then sort() ;ipnew() od;
sort();
op!<<false,value.1>>

od

end

{main program}
|
head(ip,a) || sortcell(a,b) || sortcell(b,c) || sortcell(c,d) || sortcell(d,e) || tail(e,op)

{the end}
end

Appendix E : Asynchronous Block Sorter

Page 245

E.2 Handshake implementations of the basic components of

the block sorter

E.2.1 Handshake implementation of the head cell

E.2.2 Handshake implementation of the sorting cell

(see next page)

*

;

T

op (a)

Figure E.1: Head cell

;

N#

;

<<>>

T

0

<<>>

|

1

|| Vip (ip)

T T

➩�

Appendix E : Asynchronous Block Sorter

Page 246

ne
w

ne
w

ne
w

va
l

va
l

va
l

<<
>>

<<
>>

<<
>>

>>
<<

>>
<<

| | |

>>
<<

>>
<<

>>
<<

>>
<<

T T

<<
>>

<<
>>

<<
>>

<<
>>

T

|

|

0

TT

<<
>>

1

T

|

|

@

;

* ;

;

;

;

<

;

T
V

T

|

do

;

ca
ll

 ip
ne

w

ip
ne

w

ip
ne

w so
rtso

rt

ca
ll

 s
or

t

a

b

Figure E.2: Sorting cell

➩
�

Appendix E : Asynchronous Block Sorter

Page 247

E.2.3 Handshake implementation of the tail cell

RUN

*

;

T V
T

>><<b

op

Figure E.3: Tail cell

➩�

Page 248

References

[Abra90] M. Abramovici, M. Breuer, A. D. Friedman, “Digital Systems Testing
and Testable Design”, Computer Science Press / Freeman, New York,
1990.

[Abrah86] J. A. Abraham, W. K. Fuchs, Fault and error models for VLSI”, Proceed-
ings of the IEEE, vol.74, no.5, May, 1986, pp. 639-654.

[Agra76] P. Agrawal, V. D. Agrawal, “On Monte Carlo testing of logic tree net-
works”, IEEE Trans. on Computers, C-25(6), 1976, pp. 664-667.

[Agra81] V. D. Agrawal, “An information theoretic approach to digital fault test-
ing”, IEEE Trans. Computers, Vol. C-30, No. 8, Aug., 1981, pp. 582-587.

[Agra92] P. Agrawal, V. D. Agrawal, S. C. Seth, “A new method for generating
tests for delay faults in non-scan circuits”, Proc. the Fifth Int. Conf. on
VLSI Design, Bangalore, India, January 1992, pp. 4-11.

[Ashki94] A. Ashkinazy, D. Edwards, C. Farnsworth, G. Gendel, S. Shikand, “Tools
for validating asynchronous digital circuits”, Proc. Int. Symp. on
Advanced Research in Asynchronous Circuits and Systems (Async94),
Nov. 1994, pp. 12-21.

[Beerel92] P. A. Beerel, T. H.-Y. Meng, “Semi-modularity and testability of speed-
independent circuits”, Integration, The VLSI Journal, 13(3), Sept., 1992,
pp. 301-322.

[Beerel93] P. A. Beerel, T. Meng, “Automatic gate level synthesis of speed-inde-
pendent sircuits”, Proc. IEEE/ACM Int. Conf. on CAD, IEEE Computer
Society Press, Nov. 1993, pp. 261-267.

[Ben84] R. G. Bennetts, “Design of testable logic circuits”, Addison-Wesley Pub-
lishers Limited, 1984.

[Berk88] C. H. Kees van Berkel, C. Niessen, M. Rem, R. W. J. J. Sages, “VLSI
programming and silicon compilation”, Proc. ICCD'88, Rye Brook, New
York, 1988, pp. 150-166.

[Berk91] C. H. Kees van Berkel, J. Kessels, M. Roncken, R. Saeijs, F. Schalij,
“The VLSI programming language Tangram and its translation into hand-
shake circuits”, Proc. European DAC, 1991, pp. 384-389.

[Berk93] C. H. Kees van Berkel, “Handshake circuits. An asynchronous architec-
ture for VLSI programming”, Int. Series on Parallel Computation 5,
Cambridge University Press, 1993.

[Berk94] C. H. Kees van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, A.
Peeters, “Asynchronous circuits for low power: A DCC error corrector”,
IEEE Design & Test of Computers, Vol. 11, No. 2, 1994, pp. 22-32.

References

Page 249

[Birt95] G. Birtwistle, A. Davis (Eds), “Asynchronous digital circuit design”,
Springer, 1995.

[Bost84] L. Bostock, S. Chandler, “Pure mathematics”, Stanley Thornes (Publish-
ers) Ltd., 1984.

[Brun89] E. Brundvand, R. F. Sproull, “Translating concurrent programs into
delay-insensitive circuits”, Int. Conf. on CAD, ICCAD-89, IEEE Com-
puter Society Press, 1989, pp. 91-97.

[Brzo95a] J. A. Brzozowski, C-J. H. Seger, “Asynchronous circuits”, Springer-Ver-
lag New York, Inc., 1995.

[Brzo95b] J. A. Brzozowski, K. Raahemifar, “Testing C-elements is not elemen-
tary”, Proc. 2nd Working Conf. on Asynchronous Design Methodologies,
South Bank University, London, May 30-31, 1995, pp.150-159.

[Chan73] T. J. Chaney, C. E. Molnar, “Anomalous behavior of synchronizer and
arbiter circuits”, IEEE Transactions on Computers, C-22(4), April, 1973,
pp. 421-422.

[Chen84] H. H. Chen, R. G. Mathews, J. A. Newkirk, “Test generation for MOS
circuits”, 1984 International Test Conference, October, 1984, pp. 70-79.

[Cheng89] K.-T. Cheng, V. D. Agrawal, “Unified methods for VLSI simulation and
test generation”, Kluwer Academic Publishers, USA, 1989.

[ChinTR84] C. Chin, E. J. McCluskey, “Weighted pattern generation for built-in self-
test”, Stanford University, Centre for Reliable Comput., Technical Report
84-249, Aug., 1984.

[Chu87] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications”, PhD thesis, Massachusetts Institute of Technology.,
1987.

[Cort87] J. Max Cortner, “Digital test engineering”, John Wiley & Sons, Inc.,
USA, 1987.

[Dav90] I. David, R. Ginosar, M. Yoeli, “Self-timed is self-diagnostic”, TR-UT-
84112, Department of Computer Science, University of Utah, Salt Lake
City, UT, USA, 1990.

[Davi81] R. David, P. Thevenod-Fosse, “Random testing of integrated circuits”,
IEEE Transactions on Instrumentation and Measurement, Vol.IM-30(1),
March, 1981, pp. 20-25.

[Day95] P. Day and J. Viv. Woods, “Investigation into micropipeline latch design
styles”, IEEE Trans. VLSI Systems, vol. 3, no. 2, June 1995, pp. 264-
272.

[Deng94] A.-C. Deng, “Power analysis for CMOS/BiCMOS circuits”, Proc. of Int.
Workshop on Low Power Design, Napa, Calif., USA, Apr. 24-27, 1994,
pp. 3-8.

[Dob93] D. W. Dobberpuhl and et al. “A 200-MHz 64-bit dual-issue CMOS
microprocessor”, Digital Technical Journal, 4 (4), 1993, pp. 35-50.

References

Page 250

[Eber87] J. C. Ebergen, “Translating programs into delay-insensitive circuits”,
PhD thesis, Eindhoven University of Technology, 1987.

[Eber91] J. C. Ebergen, “A formal approach to designing delay-insensitive cir-
cuits”, Distributed Computing, 5(3), 1991, pp. 107-119.

[EdTR95] D. Edwards, C. Farnsworth, “Exploitation of asynchronous circuit tech-
nologies”, Tech. Report EXACT/MU/Nov/C4, Nov. 1995.

[Farn95] C. Farnsworth, D. A. Edwards, Jianwei Liu, S. S. Sikand, “A hybrid
asynchronous system design environment”, Proc. 2nd Working Conf. on
Asynchronous Design Methodologies, South Bank University, May 30-
31, 1995, pp. 91-98.

[FarnTR96] C. Farnsworth, “Tangram optimizations”, Technical Report, Department
of Computer Science, University of Mancheter, Manchester, UK, to
appear in 1996.

[Feug88] R. J. Feugate, “Introduction to VLSI testing”, Prentice Hall, New Jersey,
USA, 1988.

[Furb94] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, J. V. Woods,
“AMULET1: A micropipelined ARM”, Proc. IEEE Computer Conf.,
March 1994.

[Furb96] S. B. Furber, P. Day, “Four-phase micropipeline latch control circuits”, to
be published in IEEE Transactions on VLSI Systems, June, 1996.

[Gars93] J. D. Garside, “A CMOS VLSI implementation of an asynchronous
ALU”, IFIP WG 10.5 Working Conference on Asynchronous Design
Methodologies, Editors S. Furber, D. Edwards, Manchester, 1993.

[Hauck95] S. Hauck, “Asynchronous design methodologies: An overview”, Proc.
IEEE, Vol. 83, No. 1, Jan. 1995, pp. 69-93.

[Haz92] P. Hazewindus, “Testing delay-insensitive circuits”, Ph.D. thesis,
Caltech-CS-TR-92-14, California Institute of Technology, 1992.

[Hew77] “A designer's guide to signature analysis”, Hewlett-Packard Ltd., Appli-
cation Note 222, 1977.

[Huff54] D. A. Huffman, “The synthesis of sequential switching circuits”, J. Fran-
klin Institute, 1954.

[Hulg94] H. Hulgaard, S. M. Burns, G. Borriello, “Testing asynchronous circuits:
A survey”, TR-FR-35, Department of Computer Science, University of
Washington, Seattle, WA, USA, 1994.

[Kess94] J. L. W. Kessels, “Calculational derivation of a counter with bounded
response time and bounded power dissipation”, Distributed Computing,
8(3), 1994.

[Keut91] K. Keutzer , L. Lavagno, A. Sangiovanni-Vincentelli, “Synthesis for test-
ability techniques for asynchronous circuits”, Int. Conf. on Computer-
Aided Designs, 1991, pp. 326-329.

References

Page 251

[Khoc94] A. Khoche, E. Brunvand, “Testing micropipelines”, Proc. Int. Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems
(Async94), Utah, Nov. 1994, pp. 239-246.

[Khoc95] A. Khoche, E. Brunvand, “A partial scan methodology for testing self-
timed circuits”, Proc. 13th IEEE VLSI Test Symposium, Princeton, New
Jersey, USA, May 1995, pp. 283-289.

[Lala85] P. K. Lala, “Fault tolerant and fault testable hardware design”, Prentice-
Hall Int., Inc., London, UK, 1985.

[Lav93] L. Lavagno, A. Sangiovanni-Vincentelli, “Algorithms for synthesis and
testing of asynchronous circuits”, Kluwer Academic Publishers, 1993.

[LeeTR93] H. K. Lee and D. S. Ha, “On the generation of test patterns for combina-
tional circuits”, Technical Report No. 12_93, Dept. of Electrical Eng.,
Virginia Polytechnic Institute and State University, 1993.

[Li88] T. Li, “Design for VLSI asynchronous circuits for testability”, Int. J.
Electronics, Vol. 64, No. 6, 1988, pp. 859-868.

[MClus86] E. J. McCluskey, “Logic design principles: with emphasis on testable
semicustom circuits”, Prentice/Hall International Inc., 1986.

[Mart89] A. J. Martin, “From communicating processes to delay-insensitive cir-
cuits”, Tech. Report, Department of Computer Science, California Insti-
tute of Technology, Caltech-CS-TR-89-1, 1989.

[Mart90] A. J. Martin, “Programming in VLSI: from communicating processes to
delay-insensitive VLSI circuits”, In C. A. R. Hoare, editor, UT Year of
Programming Institute on Concurrent Programming, Addison-Wesley,
1990.

[Mead80] C. Mead, L. Conway, “Introduction to VLSI systems”, Addison-Wesley
Publishing Company, 1980.

[Meng89] T. H.-Y. Meng, R. W. Brodersen, D. G. Messershmitt, “Automatic syn-
thesis of asynchronous circuits from high-level specifications”, IEEE
Transactions on CAD, 8(11), Nov., 1989, pp. 1185-1205.

[Mol85] C. E. Molnar, T.-P. Fang, F. U. Rosenberger, “Synthesis of delay-insensi-
tive modules”, In Henry Fuchs, editor, 1985 Chapel Hill Conf. on VLSI,
Computer Science Press, Inc., 1985, pp. 67-86.

[Need91] W. M. Needham, “Designer's guide to testable ASIC devices”, Van Nos-
trand Reinhold, New York, USA, 1991.

[Nowick91] S. M. Nowick, D. L. Dill, “Automatic synthesis of locally-clocked asyn-
chronous state machines”, In Proc. Int. Conf. on CAD, Nov. 1991.

[Pag92] S. Pagey, G. Venkatesh, S. Sherlekar, “Issues in fault modelling and test-
ing of micropipelines”, First Asian Test Symposium, Hiroshima, Japan,
Nov. 1992.

References

Page 252

[Panc92] A. Pancholy, J. Rajski, L. J. McNaughton, “Emperical failure analisys
and validation of fault models in CMOS VLSI circuits”, IEEE Trans.
Design and Test of Computers, vol. 9, no. 2, March, 1992, pp. 72-83.

[Park89] E. S. Park, M. R. Mercer, T. W. Williams, “A statistical model for delay-
fault testing”, IEEE Design and Test of Computers, vol. 6, no. 1, Febru-
ary, 1989, pp. 45-55.

[Pav94] N. C. Paver, “The design and implementation of an asynchronous micro-
processor”, PhD Thesis, University of Manchester, Manchester, UK,
June 1994.

[PeTR95] O. A. Petlin, S. B. Furber, “Designing C-elements for testability”, Tech-
nical Report UMCS-95-10-2, Department of Computer Science, Univer-
sity of Mancheter, Manchester, UK, 1995.

[Pet94] O. A. Petlin, “Random testing of asynchronous VLSI circuits”, MSc The-
sis, University of Manchester, 1994.

[Pet95a] O. A. Petlin, S. B. Furber, A. M. Romankevich, V. V. Groll, “Designing
asynchronous sequential circuits for random pattern testability”, IEE
Proc.- Comput. Digit. Tech., Vol. 142, No. 4, July 1995.

[Pet95b] O. A. Petlin, S. B. Furber, “Scan testing of asynchronous sequential cir-
cuits”, Proc. 5th Great Lakes Symposium on VLSI, New York, March
1995, pp. 224-229.

[Pet95c] O. A. Petlin, S. B. Furber, “Scan testing of micropipelines”, Proc. 13th
IEEE VLSI Test Symposium, Princeton, New Jersey, USA, May 1995,
pp. 296-301.

[Pet95d] O. A. Petlin, S. B. Furber, “Power consumption and testability of CMOS
VLSI circuits”, submitted to IEEE Transactions on CAD.

[Pet95e] O. A. Petlin, C. Farnsworth, S. B. Furber, “Design for testability of an
asynchronous adder”,Proc. of IEE Colloquium on Design and Test of
Asynchronous Systems, London, UK, 28 Feb., 1996, pp. 5/1- 5/9.

[Putz71] G. R. Putzolu, J. P. Roth, “A heuristic algorithm for the testing of asyn-
chronous circuits”, IEEE Transactions on Computers, C-20(6), June
1971, pp. 639-647.

[Red86] M. K. Reddy, S. M. Reddy, “Detecting FET stuck-open faults in CMOS
latches and flip-flops”, IEEE Design & Test of Computers, vol. 3, no. 5,
Oct. 1986, pp. 17-26.

[Rice82] R. Rice, “Tutorial: VLSI Support Technologies-Computer-Aided Design,
Testing and Packaging”, IEEE Computer Society, Los Alamitos, Calif.,
1982, pp. 228-308.

[Rom89] A. M. Romankevich, V. V. Groll, “On random pattern testability of digital
circuits”, Proc. 12th Int. Conf. on Diagnostic Support of Digital Systems,
Praha, Czech Republic, Sept. 1989, pp. 217-218.

References

Page 253

[Ron93] M. Roncken, R. Saeijs, “Linear test times for delay-insensitive circuits: a
compilation strategy”, IFIP WG 10.5 Working Conference on Asynchro-
nous Design Methodologies, Editors S. Furber, D. Edwards, Manchester,
1993, pp. 13-27.

[Ron94] M. Roncken, “Partial scan test for asynchronous circuits illustrated on a
DCC error corrector”, Proc. Int. Symp. on Advanced Research in Asyn-
chronous Circuits and Systems (Async94), Nov. 1994, pp. 247-256.

[Rosie66] A. M. Rosie, “Information and communication theory”, Blackie & Son
Ltd., 1966.

[Russ85] G. Russell, D. J. Kinniment, E. G. Chester, M. R. McLauchlan, “CAD for
VLSI”, Van Nostrand Reinhold (International), 1985.

[Russ87] G. Russell, “Computer aided tools for VLSI system design”, Peter Per-
egrinus Ltd., 1987.

[Russ89] G. Russell, I. L. Sayers, “Advanced simulation and test methodologies
for VLSI design”, Van Nostrand Reinhold (International), 1989.

[Savir84] J. Savir, P. H. Bardell, “On random pattern test length”, IEEE Trans. on
Computers, vol. C-33(6), June, 1984, pp. 467-474.

[Scha93] F. Schalij, “Tangram manual”, Technical report UR 008/93, Philips
Research Laboratories Eindhoven, P.O. Box 80.000, 5600 JA Eindhoven,
The Netherlands, 1993.

[Shan64] C. E. Shannon, W. Weaver, “The mathematical theory of communica-
tion”, The University of Illinois Press, Urbana, 1964.

[ShenG92] A. Shen, A. Ghosh, S. Devadas, K. Keutzer, “On average power dissipa-
tion and random pattern testability of CMOS combinational logic net-
works”, ICCAD-92: IEEE/ACM Int. Conf. on CAD, Santa Clara, CA,
Nov., 1992, pp.402-407.

[ShenM85] J. Shen, W. Maly, F. Ferguson, “Inductive fault analysis of MOS inte-
grated circuits”, IEEE Trans. Design and Test of Computers, vol. 2, no. 6,
Dec., 1985, pp. 13-26.

[Sim94] “SIMIC: design verification tool”, User's Guide, Genashor Corporation,
N.J., 1994.

[Souf95] M. Soufi, Y. Savaria, B. Kaminska, “On the design of at-speed testable
VLSI circuits”, Proc. 13th IEEE VLSI Test Symposium, Princeton, New
Jersey, USA, May 1995, pp. 290-295.

[SproTR94] R. F. Sproull, I. E. Sutherland, C. E. Molnar, “Counterflow pipeline proc-
essor architecture”, Technical Report SMLI TR-94-25, Sun Microsys-
tems Labs, Inc., April, 1994.

[Suss84] A. K. Susskind, “A technique for making asynchronous sequential cir-
cuits readily testable”, 1984 Int. Test Conf., 1984, pp. 842-846.

[Suth89] I. E. Sutherland, “Micropipelines”, Communications of the ACM, Vol.
32, no. 6, pp. 720-738, June 1989.

References

Page 254

[Turin90] J. L. Turino, “Design to test: a definitive guide for electronic design,
manufacturing, and service”, Van Nostrand Reinhold, New York, USA,
1990.

[Unger69] S. H. Unger, “Asynchronous sequential switching circuits”, Wiley-Inter-
science, New York, NY, 1969.

[Veen84] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuit and
its impact on the design of buffer circuits”, IEEE J. Solid-State Circuits,
Vol. 19, Aug., 1984, pp. 468-473.

[Wad78] R. L. Wadsack, “Fault modelling and logic simulation of CMOS and
MOS circuits”, Bell System Tech. Journal, vol. 57, May-June 1978, pp.
1449-1474.

[Wag87] K. D. Wagner, C. K. Chin, E. J. McCluskey, “Pseudorandom testing”,
IEEE Trans. on Computers, C-36(3), March, 1987, pp. 332-343.

[Waic89] J. A. Waicukauski, E. Lindbloom, F. B. Eichelberger, “A method for gen-
erating weighted random test patterns”, IBM J. Res. and Dev., 1989, no.
2, pp. 149-161.

[Weste93] N. H. E. Weste, K. Eshraghian, “Principles of CMOS VLSI design: A
systems perspective”, Addison-Wesley Publishing Co., 1993.

[Wey93] Chin-Long Wey, Ming-Der Shieh, D. Fisher, “ASCLScan: a scan design
for asynchronous sequential logic circuits”, Proc. IEEE Int. Conf. on
Computer-Aided Design, 1993, pp. 159-162.

[Will73] T. W. Williams, J. B. Angell, “Enhancing testability of large scale inte-
grated circuits via test points and additional logic”, IEEE Trans. Comput-
ers, Vol. C-22, No. 1, Jan., 1973, pp. 46-60.

[Yuan89] J. Yuan, C. Svensson, “High-speed CMOS circuit technique”, IEEE Jour-
nal on Solid-State Circuits, vol. 24, no. 1, Feb., 1989, pp. 62-70.

