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Abstract

This thesis describes architectural approaches to improve the energy efficiency of RISC-
style microprocessors. By breaking the convention that instructions in RISC architectures
must be of fixed size, the performance and energy efficiency of a RISC microprocessor
can be improved. Special instruction cache architectures are suggested to ensure an issue
rate comparable with that of conventional RISC processors whilst reducing the energy

consumption in the instruction cache considerably.

A high proportion of the energy consumption of a microprocessor system is consumed
within the caches and external RAM. A significant proportion of memory traffic relates

to allocating and de-allocating registers. Register file architectures are proposed to reduce
this traffic. Of the schemes investigated, memory mapped registers held in a small

separate register cache, has proved to perform well and be energy efficient.

A new branch architecture, which has the potential to eliminate or significantly reduce the
miss-prediction penalty of branches through prefetching, will be examined. This scheme,
which also improves the hit-rate, employs a pair of instructions. It allows the potential
branch target to be prefetched into the cache and into the first stages of a shadow pipeline,
before the outcome of the condition evaluation is known and thus reduce or eliminate
branch penalties. The overall effect is improved performance. However due to increased

cache traffic, the scheme is not energy efficient.

In conclusion, the energy efficiency of a RISC microprocessor can be improved by
reducing the average instruction size. The memory traffic can be reduced and the energy
efficiency consequently improved, if the allocation/de-allocation of registers can be
organised such that interaction with the data cache is minimised. The examined branch
architecture may improve performance but is not energy efficient. However, it shows that

the Achilles’ heel for performance is also the Achilles’ heel for energy efficiency.
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Chapter 1 Introduction

Microprocessors have conventionally been designed to yield maximum performance.
Different design approaches have been taken and implementation technologies have
improved significantly over the years. Early microprocessors such as the Z80 [Z80] had
operating frequencies of approximately 1IMHz. Today, in 1996, microprocessors such as
the Pentium from INTEL runs at speeds of 200MHz [Child] and the Alpha[DEC21064]
from Digital Equipment runs at more than 300MHz. These increases in processor speed
have mainly been made possible through improvementsin semiconductor technology and
chip fabrication which have also allowed an increasing proportion of a computer system
to be integrated onto one chip. As chips became larger it became possible to integrate, for
example, larger register files and larger caches. Higher levels of integration aso allowed
architectural innovations such as pipelining [Patt] which overlaps phases of instruction
execution and increases performance. Superscalar architectures such as the PowerPC
[Gerosa] also became feasible to implement. These developments have resulted in

constantly increasing performance.

In the drive for improved performance through higher integration little attention has been
paid to power consumption. Thisthesis shows how architectural features and performance
can be traded against power consumption to improve the performance-energy efficiency.

The meaning of thisterm will be discussed at length in Chapter 4.

Improved performance-energy efficiency can be obtained by optimizing the architecture
and the chip implementation. This work has examined architectural-level optimizations
only, and the results presented are from a number of architectural models. Some
implementation-related assumptions have been made; the sensitivity of the architectural

results to these assumptions has been reduced as far as possible. The goal is to examine
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whether architectural features which improve the performance of an architecture also

improve the performance-energy efficiency.

Based upon the observation that caches in a typical Reduced Instruction Set Computer
(RISC) processor affect both performance and energy consumption, a significant
proportion of this thesis is devoted to an understanding of how cache parameters affect
the performance-energy efficiency of a microprocessor system with the objective of
specifying a performance-energy efficient cache architecture. Register-file and branch
architectures are other key-components in a RISC architecture. Different types of register
file and branch architectures are examined to gain an understanding of how they affect
performance-energy efficiency. Finally the effect of ignoring the dogma, that RISC
architectures must have fixed-size instructions is examined. During this examination a
number of instruction-fetch mechanisms are developed; the ‘eXtra-line architecture’,
described in sectior8.3.3, is novel and represents a way of eliminating most of the
disadvantages of variable size instructions while retaining the improved cache

performance and performance-energy efficiency of this instruction format.

1.1 Background

Compared to earlier ‘Complex Instruction Set Computer’, (CISC) processors such as the
8080 [Spack] and 68000 [Robin], the first RISC [Patt] architectures reduced the semantic
content of instructions. Consequently, the instruction count increased. However, due to
the simplification of the hardware, higher clock frequencies could be obtained and he

overall effect was decrease in execution time.

The quality of the compiler is an important factor in designing a efficient computer
system. If the compiler takes account of pipeline length and register structure, the code

can be scheduled to improve performance through optimized register allocation.

18 Introduction



Computer system design is thus a two-branch discipline of providing both fast computer
hardware and software tools which optimize the use of the hardware resources. The trend
being that some increase in hardware complexity is accepted, if a subsequent reduction in

execution time can justify it.

In order to reach the largest market, a wide software base needs to be available implying
that binary compatibility must be preserved across a family of processors. The success of
the Personal Computer (originally from IBM) can, in part, be explained in terms of the
binary compatibility which has been retained through generations of PCs employing the
Intel x86-processor family. Binary compatibility is less of an issue in the high-end
workstation market, which is dominated by RISC architectures. However, some of the
success of Sun’s SPARC workstations is explained by the binary compatibility which

exists between the different models.

As outlined above, microprocessor development has been driven almost solely by the
wish to increase performance; power consumption has rarely been an issue. Improved
packaging and cooling technologies, as well as improvements in the semiconductor
technologies, have been sufficient to allow processor designers to ignore power

consumption when specifying a microprocessor architecture.

It is only recently that computer architects have been forced to pay attention to the power
consumption of microprocessors. At a chip level, the increased power consumption has
implied that an increasing proportion of the chip area is used for power distribution; it has

also implied an increasing number of bonding wires between the chip and the packaging.
At a system level, larger and more expensive power supplies and cooling systems are
required. To minimise these costs a processor architecture must now be optimized to yield

a high performance within the constraints of a limited power consumption.
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For example, in order to limit power consumption and thus use a relatively ‘ordinary’
packaging technology, Digital Equipment Corperation accesses the second-level cache in
the Alpha processor in a sequential way: Two cycles to lookup and perform the tag
comparison and, assuming a hit, a third cycle to read from the data storage thus reducing
the power consumption of the processor by 10W (16% of the total power consumption)
[Bensch]. It had become necessary to trade performance against power consumption. A
performance-energy efficiency measure is useful when making such optimizations; i.e
how can the performance remain high while the energy/power consumption is reduced.
Chapter &hows that the Alpha processor is among the most performance-energy efficient

processors currently available on the market (spring 1996).

There is currently a trend towards portable electronic equipment. Early portable
computers, such as the first portable PC’s, were portable only in that they had handles and
that screen, keyboard etc. could be packed in a convenient way; they were still powered
from the mains. Battery-driven lap-top computers were made possible by significant
improvements in screen and battery technologies. However, battery life-time - or time
between recharges - still leaves much to be desired. In recent years other portable products
such as electronic personal organizers and mobile phones have also been introduced to the

market.

Improvements in the performance-energy efficiency of microprocessors for the portable
battery-driven market is not being driven by the high-end, highest-performance
processor-market. ARM Ltd. has had considerable success with their microprocessors
which have gained a reputation for delivering a ‘reasonably’ high performance for a
relatively low power consumption. Targeting equipment such as portable telephones has
brought considerable commercial success. Other markets include portable computers,

electronic personal organizers and portable digital assistants (PDAS) such as the Apple
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Newton [Culbert]. These products are becoming increasingly compact and do not contain
devices such as cooling fans. A PDA will typically contain no mechanical device such as
a hard disk, but will require significant computing power for complex tasks such as

handwriting recognition. It should be able to perform tasks such as text formatting or
spreadsheet calculations in parallel with the handwriting recognition task. This has to be
done without increasing the power consumption significantly as such an increase implies
a reduction in battery life-time and/or an increase in the weight due to the number, or size,
of batteries. Despite the high performance requirement it is unlikely that the Alpha-

processor will be used in portable equipment where battery life time is a very important

factor, because, although performance-energy efficient, it has a high power consumption.

To improve the performance of systems such as portable computers andrielzfew

normal usage of these products for at least a working day (10 houperfibrenance-

energy efficiency of the microprocessor is an important measure. The power consumption
and performance-energy efficiency of the microprocessor are thus key design-parameters

in the product specification along with processor performance and memory size etc.

This performance-energy efficiency measure has been developed only recently.
Consequently there is little literature available on performance-energy efficiency of
microprocessors. Several conferences have ‘low power’ sessions, but papers presented
tend to examine performance-energy efficiency/power efficiency of sub-systems,
especially caches rather than considering the performance and energy consumption of the
entire system. This thesis examines how the performance-energy efficiency of a complete
microprocessor architecture can be optimized by trading architectural features and their

performance against energy consumption.

The work reported in this thesis was carried out within the OMI-HORN project (ESPRIT

project 7249). The goal for the group at Manchester University was to specify ways in
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which the performance-energy efficiency of the HORN processor architecture
[HORNV 3] [HORNV5] can be improved. As aresult much of the work reported centres
around an already defined instruction set architecture. This has had the benefit that tools
such as compilers, assemblers, functional simulators and some relatively complete

libraries were available early in the project.

During the period of the project, some fundamental changes were made in the HORN
architecture. The subsequent changesin thetool chain have allowed detailed comparisons
between the different architectures. In addition extrapolations to other architectures have

been made.

Early in the study it became clear that the power consumption in caches and 1/O drivers
are major factors in the total power consumption for a microprocessor chip. A detailed
study of the ARM3-processor indicated that the 4Kbyte, unified, cache in an ARM3
[OMIMAP] processor consumes 46% of the total power consumption of the chip. A
significant proportion of this thesis is therefore devoted to describing how cache
parameters such as size, line size and associativity affect energy consumption, not only in

the cache, but in the entire system.

Another important issue in performance-energy efficiency is execution time. Given that
the project has centred around the HORN-processor, which isa RISC style processor, the
instruction count and instruction format are important factors in the expression for
execution time. Although the HORN-architecture is RISC-style, the instruction format is
unusual in that instructions do not have a fixed size. The implications of this for

instruction issuing and cache performance is analyzed in Chapter 10.
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Furthermore, a number of register-file architectures have been analyzed. Register
allocation handling has a significant influence on both performance and cache access

pattern and hence the performance-energy efficiency of the entire processor system.

1.2 Overview of thesis

Chapter 2 describes the power consumption pattern in the ARM3 processor. It reports the
results presented in a deliverable to the OMI-MAP project [OMIMAP] which show that

the cache consumes a significant proportion of the power in a standard microprocessor.
These results are used as a basis for the rest of the work reported in this thesis. In addition,

section 2.3 summarizes the power consumption in commercially available RAM.

Chapter 3 describes the HORN-processor architecture, which forms the basis of this work.
The instruction format and various register file architectures which have been proposed
throughout the specification phase of the project are presented. The special branch
structure that the HORN architecture employs is also described. Séé&idescribes the
processosystem, which will be considered the baseline system for the experiments

described in the following chapters.

Chapter 4 discusses how performance-energy efficiency should be measured. The section
divides the ‘architecture space’ into three classes and suggests metrics for each. For
microprocessor architectures such as the HORN-architecture, the metrié/\WIREs
suggested. However T. Burd, University of California, Berkeley [Burd] has suggested an
even more general measure based upon the energy-delay product which consequently was
adopted. This metric is termed ‘energy-efficiency’ to comply with terms established in the
literature. To establish a basis for comparison, performance and power consumption
measures have been collected for a number of processors. The results are presented in

section4.2.
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Not all applications can be evaluated using this metric. Many digital signal processing
(DSP) applications have a throughput requirement which cannot be traded against lower
energy consumption. The decision to use a metric based on the energy-delay product
throughout the thesis implies that there should be no DSP-applications in the benchmark
suite. Consequently a number of suitable benchmarks have been ported to the HORN
architecture. This work has partly been done by Dr. R.M. Davies of the HORN-group,

Department of Computer Science, Manchester University and partly by the author.

Chapter 5 establishes how energy consumption of a cache scales with the cache
parameters and derives expressions for cache energy consumption. Settlon
summarizes results from a commercially available RAM-compBesed on circuit
capacitances extracted from the Amulet@aisidg; expressions for engy consumption

in RAM are developed. Sectiobs2 and5.3 derive expressions for emggrconsumption

in direct mapped and n-way set-associative caches.

Based upon observations on redundancy in the tag storage of c&dmedl Wand
and Burd] describe a number of cache architectures which can reduce/eliminate this
redundancySection.4 quantifies the degree of redundancy and derives expressions for
two of the oganizations, sectored cachingegznecand CA-caching Wandg. The

results presented in these sections have been collected as a part of the wotkor

Section5.5 describes skewed-associativi§egnet as a way of improving cache
performance. Whin a class of skewing function, it has been investigated whether an
optimal set of functions exist, sectidn5.1 concludes that it is not the case. Sed&ién
guantifes the diect different replacement algorithms have on the hit rate in the cache.
Section5.7 describes how the cache parameteiectathe timing of the cache. The

relationships have been established using the Cacti-tool from Digital Equipiigan].
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Sectionss.8- 5.11 describe techniques to reduce the activity and thereby thgyener

consumption within a cache.

Chapter 6 describes the effect of branch architectures on the performance and energy
efficiency of a microprocessor system. Since the introduction of pipelines in processors,
branch instructions have attracted much attention as they disrupt the flow of the pipeline
and therefore affect the performance of the system. Many branch prediction schemes have

been proposed [Patt] to limit this disruption.

Branch instructions may transfer control to locations which are not in the instruction
cache hence affecting the performance negatively. An ability to prefetch the potential
branch targets into the instruction cache is therefore beneficial. The HORN architecture
specifies a branch structure which allows such prefetching. Chapter 6 assesses the value
of the proposed branch instruction architecture both in terms of performance and in terms
of energy efficiency. The section concludes that the dual-instruction branch architecture
suggested in the HORN architecture is not energy efficient. All the work described and
the results reported in Chapter 6 has been undertaken by the author as a part of the HORN

project.

The register file architecture affects the instruction count (and thereby the performance).
An ‘insufficient’ number of registers implies a high number of save-restore instructions,
as ‘old’ register-variables are saved to memory to give room for new variables. The saved
value may later need to be restored. The ability to allbcee registers when required

is therefore important. Increasing the number of registers is not always a suitable solution
as more registers require more specification bits in the instructions, resulting in wider

buses and lower instruction cache performance. Performance and energy efficiency must

1. ‘allocate’ in this context means providing a new register. De-allocating is the opposite process,
freeing a register.
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thus be traded against the number of registers and the mechanisms to allocate new
registers. Chapter 7 analyzes the different register-file architectures which have been
suggested throughout for the HORN architecture. All the work reported in Chapter 7 has

been carried out by the author.

The HORN architecture specifies variable-sizeinstructions but now the instruction format
requires more than four bytes. Compared to a conventional RISC architecture with fixed-
size instructions such as MIPS R2000 [Farquhar], this ensures that a higher fraction of a
program can reside in a cache of a given size; this implies a higher hit rate in the
instruction cache. However, variable-size instructions introduce the problem that
instructions may straddle cache lines and hence require two cache accesses to be fetched
and issued. Chapter 8 proposes three cache architectures aimed at reducing these
instances and evaluates them for performance and performance-energy efficiency. The
architecture described in section 8.3.3, a novel extension to a block buffering scheme
proposed by [Su], almost eliminates the performance penalty associated with variable size
instructions. Finally, Chapter 9 evaluates the optimal cache configuration for both
performance and energy efficiency. All the results presented in Chapter 9 have been

collected by the author.

Chapter 10 draws together the conclusions resulting from this work, assesses the results

and presents suggestions for future investigations.
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Chapter 2 Power consumption in an ARM 3-system

To put the simulation results obtained with the HORN architecture into perspective a ‘low
power’ and popular microprocessor family, the ARM processors are studied in this

chapter.

The reasons for this choice were two-fold. Firstly, the ARM architecture has some
features which resemble features of the HORN-architecture. It was therefore decided to
extrapolate some of the results from this processor family onto the HORN-architecture.
Secondly, the AMULET group at Manchester University has strong links with ARM Ltd.
This has led to several projects amongst which the development of the asynchronous
implementation of the ARM-architecture, in the AMULET-1 chip [Furber2], has attracted
much attention. Furthermore, a number of ESPRIT projects have seen collaboration
between the AMULET group and ARM Ltd. A deliverable to the OMI-MAP P5386
project [OMIMAP] has been particularly useful to this project and some of its main results

will therefore be described here.

2.1 Resultsfrom OMI-MAP

The processor analyzed in the OMI MAP project was an ARM3 processor which is an
ARM2 processor core with a 4K-byte, fully-associative, unified on-chip cache with 256

lines of 16 bytes.

Instead of building a 256-entry CAM to form the tag-store which would have resulted in
very high power consumption, ARM split the CAM into four blocks making it 64-way 4-
set associative. This reduces the energy consumption of the overall cache by 21%, as only

one quarter of the total CAM need be activated during cache lookups.
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The power estimates were based upon two types of ‘measurements’. Spice simulations
and estimates based upon the total switching capacity within the design.
The system was broken up into 7 major blocks:

1. A3RAM 1K x 32 bits SRAM
2. A3CAM 4 x 64 22 bit contents addressable memories (CAMS)
3. A3PROC ARM2 CPU macrocell
4. A3CTL Main Cache Control Logic
5. A3COP Co-processor interface
6. Cdata

Internal databus (32 bits) RAM/PROC/Databus pads

7. PADS Input/output pads

The power consumption of each block is shown in Talldt is clear from the table that

Table 2.1 Estimated internal ARM 3 power consumption

Aver age Power
Consumption?® Per centage of
Block [mW] Total Power
A3RAM 332 30.0
A3CAM 100 9.0
A3PROC 330 (240Y 29.8
A3CTL 91 8.2
A3COP 112 (64) 10.1
Cdata 50 4.5
PADS 91 8.2
Total 1106 100

a. (based on 1/m SPICE data)

b. The numbers in parentheses indicate the power which
is consumed in PLAs within the block.

the power consumption in the cache and in particular the RAM is a major factor in the

total power consumption figure. The cache accounts for almost 40% of the total power
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consumption. Reducing the power consumption in the cache will therefore yield a

significant reduction in the total power consumption of the processor.

The OMI-MAP report also comments on the use of PEAn the processor
implementation. PLAs are simple to implement, and simple to correct in case of mistakes;
without disturbing the chip layout, something which might be required if the

combinatorial logic was implemented using ‘discrete’ gates.

The report points out that the PLAs have a static power consumption component,
accounting for 70% of the power consumed, implying that the static PLA technique is not

appropriate for low power designs!

Table2.2 shows how the total power consumption drops by 19% if static PLAs are
avoided in the design. It also emphasizes the importance of the power consumption of the
cache blocks since the percentage for A3BRAM and A3CAM has increased to 48.4% or

almost half of the total power budget.

Table 2.2 Internal ARM 3 power consumption (PLA structuresare omitted)

Aver age Power
Consumption? Per centage of
Block [mW] Total Power
A3RAM 332 37.2
A3CAM 100 11.2
A3PROC 162 18.1
A3CTL 91 10.2
A3COP 67 7.5
Cdata 50 5.6
PADS 91 10.2
Total 893 100

a. based on 1,5m SPICE data

1. Programmable Logic Array
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It is suggested that the static PLAs are replaced by dynamic PLAS; these use dynamic
AND and OR planes to implement the PLA, with dummy terms to generate self-timing
signals to indicate when aresult isvalid at which point the PLA is put into its pre-charge

state and the output is latched [OMIMAP].

[OMIMAP] also givesan example of the area- and timing implications of using adynamic

PLA inthe case of the ALU control circuit, A3CTL:

Area
Dynamic: 452\ X 684\
Static: 410\ x 579\
Delay:
Dynamic: 22.2ns
Static: 22.0ns

i.e. the area taken by the A3CTL-block increases by 30%; while the delay through the
block increases by |ess than one percent when changing from the conventional static PLA

design to adynamic design.

2.2 Evaluation of results

The ARM 3 processor described in the previous section might be considered obsolete and
the value of the power measurements therefore questionable. However, a study of the
R3000 architecture from MIPS [BurdPeters], shows that the power consumption in that
processor is also dominated by the cache. The report describes power consumption
estimates by measuring the amount of switching capacity. It also reports that almost 10%
of the power consumed in the MIPS R3000 is consumed in the register file and that the

power consumption in the tag-storage of the 2-Kbyte instruction and data caches each
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consume another 10% of the total power consumption. Comparing this value with that for
the ASCAM in Table2.2 shows that the proportion of energy/power consumed in the

different blocks is similar in the R3000 and in the ARM3.

The development of the PA-RISC Microprocessor PA/50L [Okada] came to the same
conclusion; that power is mainly consumed in internal memories and external signal

drivers.

[Sato] reports on a tool, ESP, which is used to assess the implications of architectural
changes on the power consumption. Results [Sato] confirm that caches are the dominating

components, see Talf#e3.

Table 2.3 Current drawn of blocksin RISC processor [Sato]

Average
Current | Activity Rate current % of total
Block [MmA] [%] [MmA] current

Instruction cache 30.0 99.6 29.8 38.9
Branch unit 9.1 99.6 9.06 11.8
Increment addr 0.1 99.6 0.10 0.1
Register file 13.0 97.4 13.64 17.8
ALU 9.1 59.0 5.37 7.0
Data cache 32.5 47.8 15.54 20.2
Address calculatof 9.1 30.1 2.74 3.6
Shifter 5.6 6.4 0.36 0.5
Multiply-Add unit 40 0.2 0.08 0.1

Total: 76.8 100

The power consumption of the main RAM-block in the cache is said to be independent,
to a first degree, of the dimensions of the cache, due to other overheads, such as 1/O
buffers and sense amplifiers [BurdPeters]. However the detailed study of the ARMS3,

described above, shows that is not necessarily the case.
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2.3 Power consumption in RAM

As indicated in Tableg.1and2.2, the power consumption of the cache RAM represents
a significant proportion of the total power budget in the ARM3. [OMIMAP] also
investigated where power is consumed within the RAM. The analysis was divided into
two: a ‘pre-charge read cycle’ and a ‘pre-charge write cycle’. This section gives a

summary of the results and their implications for the HORN architecture.

Table 2.4 ARM3 RAM dissipation - Pre-charge/Read Cycle

Aver age power % of total power

Block consumption [mW] Comments in RAM
ARMS storage 162.3 The main RAM array 40.6
I/O buffers 68.3 CDATA bus 17.1
A3RAMrd8 81.0 32-Sense Amps 20.3
ARMS3row128 41.0 Decode+prechge 10.3
Other blocks 47.4 - 11.9

Total 400.0 100

Table2.4 shows the power consumption in the cache RAM during read cycles. It is clear
that the storage itself is the major consumer of power, but I/0 buffers and sense amplifiers
represent a significant 37% of the RAM power budget during read cycles. Other blocks

represent only a small percentage of the on-chip RAM power budget.

Table 2.5 ARM 3 RAM dissipation - Pre-charge/\Write Cycle

Aver age power % of total power

Block consumption [mW] Comments in RAM
ARMBS storage 162.3 The main RAM array 64.9
I/O buffers 0.0 CDATA bus 0.0
A3RAMrd8 0.0 32-Sense Amps 0.0
ARM3row128 41.0 Decode+prechge 16.4
Other blocks 46.7 - 18.7

Total 250.0 100

Table2.5 shows the equivalent results for a write cycle. The power consumed in the RAM

block and in the decode/pre-charge is the same as during the read cycle, seelTabie
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significant difference is that the sense amplifiers and the 1/0O bufferst@@onsume any
power during a write cycle, resulting in a much lower total power consumption. A write
cycle consumes only 63% of the energy of a read cycle. Note that the average power
dissipation of 332mW quoted in Talle2 approximates to the average of the dissipation
during read and write cycles. From [OMIMAP] it is not clear why the 1/O drivers do not
consume any power during write cycles. It will be assumed that the cost of driving the bit-

lines is ‘hidden’ in ‘Other blocks’.

The results in the two tables indicate that the sense amplifiers are important components
with considerable impact on the power consumption of the cache and, thereby, of the

entire processor.

Note that although the ARMS3 cache is organised with 16-byte cache lines, the RAM block
used for the storage of the cache contents is organised with only one (32-bit!) word per
line within the RAM. Short lines/words in the RAM yield a lower energy consumption

per request than longer lines, see Chapter 5.

24 Summary

This chapter has reported where power is consumed within the ARM3. These results are
from the OMI-MAP-project and show that a significant proportion of the power is

consumed within the on-chip cache.

The power consumption of the cache has been split into components for the tag-store
which, in the case of the ARM3, is composed of four CAM-cells and for the RAM-block
which stores data. Tabl@s4and2.5 have shown that it is the RAM block together with

the sense amplifiers consume the majority of the power. This leads to the conclusion that

reducing the power consumption of the cache will reduce the power consumption of the
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entire processor considerably. The results from this chapter are used to extrapolate the

power consumption of the cache architectures proposed in later chapters.

Table 2.2 shows that there are further sub-designs which, if optimised for low power,
could improve the performance-energy efficiency of a microprocessor system. Thisis
particularly the case for the pad-drivers. Later chapters will show how Gray coding
[Kohavi] can reduce the power consumption of this sub-design and thereby improve the

energy-efficiency of the entire processor further.
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Chapter 3 Baseline HORN architecture

The baseline architecture used throughout this dissertation is the HORN architecture

developed during OMI-HORN, Esprit project 7249.

Key attributes of the HORN architecture are:
1. Modularity

2. Compatibility over a range of products covering a wide range

of processing and communications performance.
3. Support for multiprocessing.

4. Provision for a standard programming model which eases the
porting of operating systems, compilers and programming lan-

guages.

5.  64-bit processor supporting 32-bit operations.

Early releases of the architecture were targeted at the server market; systems with a high
number of CPUs, capable of running multiple processes ‘simultaneously’. This required
optimization of the thread-change-overhead; i.e. minimising the ‘state’ which needed to
be saved and providing efficient ways of saving that state. Efficient inter-processor

communications protocols were also required.

During the development process the target markets for the processor changed. The new
target markets amaultimedia systems such as games, video-decoders and Set-Top Boxes
(STB), but the processor also targets video-servers providing ‘video on demand’. For
these applications the thread changes are expected to be less frequent and the importance

of fast thread changes is reduced.
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This chapter describes the basic HORN architecture and summarizes the changes it has
undergone. It does not describe any original work undertaken by the author but has been
included to explain and justify the direction of the investigations described in later

chapters.

Section3.1 gives a general introduction to the HORN-architecture. Sec3i@n3.4
describe the major features which differentiate the HORN architecture from a

conventional RISC, while sectioB.5 describes the system considered for this thesis.

3.1 Basic architecture

The HORN architecture is fundamentally a RISC [Patt] in that arithmetic and logical
instructions operate on register storage only. Only load and store instructions can access

data in memory.

The processor is a byte-addressed, 64-bit processor, i.e. the internal and external data
buses are 64 bits wide. Few existing programs red4irbit variables and the HORN
processor’s instruction set offers a wide range of operations on sub-ranges: integers of
1,2,4 or 8 bytes and 32- and 64-bit floating point values. Furthermore, to make better use
of the wide data bus, the processor includes a new class of instructions: packed arithmetic.
These ‘packed-arithmetic’ instructions operate on a 64-bit quantity as a collection of
smaller data quantities. Figu@1 shows an example of packed arithmetic, where eight
bytes are packed into a 64-bit word and added to a similarly ‘composed’ word. The result
is eight one-byte sums packed into a 64-bit word. Note that any overflow or carry from

the eight individual operations is lost.

This technique is potentially very powerful and can be used by the compiler to unroll

loops and hence increase the performance and energy efficiency of the processor. It is
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ByteO | Bytel | Byte2| Byte3 | Byte4 | Byte5 | Byte6 | Byte7

Byte 8 | Byte9 | BytelO |Byte 11|Byte 12 |Byte 13| Byte 14| Byte 15

erte 0 Byt+e 1 By}e 2 Byie 3 B}L/te 4 Bygre 5 Bytf 6 Bytf 7
Byte 8 | Byte9 | BytelO | Byte 11| Byte 12|Byte 13| Byte 14| Byte 15

Figure 3.1 Example of packed arithmetic
especially useful for graphics applications where the representation of pixel colours

requires only alimited number of bits.

Memory referencing (load and store) instructions can access 1,2,4 and 8-byte quantities.
References to these quantities need not be aligned, e.g. areference to a 32-bit datum need

not be aligned on a 4-byte boundary.

Furthermore the HORN architecture has broken away from the convention associated
with the RISC concept, such as fixed-size instructions and has introduced a new type of

control transfer instruction.

3.2 Local storage

During the project the form of local storage (register-file) structure has changed several
times. This section briefly describes the different types of storage and their main
advantages. Later chapters will describe the features of each architecture and evaluate

their potential in a energy efficient implementation.

Theregister, or local-storage of the architecture was originally divided into three classes:

Global registers, Local registers and a 4-word operand queue.
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3.21 Global registers

Global registers are intended to contain stack pointer(s), global variables and constants.
Early versions of the HORN architecture mapped a block of 16 global registers to memory
through a pointer, GPTR, which could be altered during program execution. This
implemented register renaming; the contents of ‘global-register N’ before an adjustment
of GPTR by ‘M’ could be accessed through ‘global-register M+N’ after the adjustment.
Memory coherency was only ensured after the use of a special form of the ‘adjust-global-
pointer’, ajgp-instruction. Later versions of the architecture considered the global

registers as a conventional register block.

3.22 Local registers

The architecture specifies 32 local registers. The local registers were also originally
mapped to memory through a pointer, LPTR. The pointer was intended to be manipulated
during execution of a program to allocate/deallocate registers at procedure entry/exit.
Registers in scope did not need to be coherent with the memory location they mapped.
This scheme will later be referred to as the ‘ajlp-scheme’ after the instruction which
‘adjusted’ the value of LPTR. As for the global registers, coherency was only ensured

after the use of a special form of the ajlp instruction.

These schemes with memory mapped registers are very powerful in environments where
thread-changes are frequent and therefore need to be fast. Saving the state of a register file
(or restoring it) only requires the change of the two pointers, LPTR and GPTR, at the

minimal cost of two instructions lasting only a few cycles.

As the architecture evolved and the product was targeted at multimedia applications,
where there was less need for a fast context switch mechanism, the memory mapped

scheme was replaced by register renaming instructions. These, in addition to renaming the
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registers, also spilled/filled four registers to/from the memory hierarchy thereby
effectively implementing register windows [Weaver]. This scheme will later be referred
to as the ‘spill/fil’-scheme after the instructions ‘spill’ and *fill’, which caused the actions
just described. The difference between this and the more familiar SPARC register
windows implementation [Weaver] is that once a register is out of scope in the HORN
architecture, its contents should be visible to memory accessing instructions; this is not a

requirement in the SPARC architecture.

While the spill/fill scheme might be simpler than the pointer schemes described above, it
makes thread and context switches slower; there is now only one way of saving the state
of the register file by spilling it to memory. The ‘state-content’ of the new thread can be
installed using ‘fill’ instructions. This requires many more instructions than were required
with the ‘ajlp’-scheme described above: 32 registers / 4 registers-per-spill/fill = 8
instructions; it may also be much slower, dependent on the exact implementation of the

two schemes.

3.23 Operand queue

The HORN processor has a set of temporary operand locations. These are organized as a
four-entry first-in-first-out (FIFO) queue, which is accessed implicitly. The queue can
replace any register reference in any instruction. This reduces the need to use registers for
temporary variables and hence the need, temporarily, to store and later re-load, variables

to/from the rest of the memory hierarchy.

Table3.1 compares the result of compiling an expression into machine instructions in a
conventional RISC and in the HORN processor. The RISC processor accesses Six
registers - R, Rg, Rc, Rp, Re, R; - while the HORN processor will require only the five

registers - R, Rg, R, Rp, Re. The ‘lifetime’ of the variable in the temporary registef ‘R
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Table 3.1 Compar ativeregister requirements

Expression: A=B*C+D*E
RISC-code HORN-code

RA:RB*RC Queue = IB*RC

Ri = Ry*Rg Queue = R*Rg

Ra=RA+R; Ra=Queue + Queue

in the RISC code is very short and it is unlikely that it will be required in future
calculations; it has however increased the use of the register file and the contents of a
register might have to be written to memory to release the space foy ta@& This

saved value might later need to be re-loaded from memory if it is required in later

computations.

In the HORN architecture this extra register is not required as the temporary results will
be stored in the FIFO-queue and as soon as they are consumed in the following instruction
(Ra = Queue + Queue) they will release their storage. It will therefore not be necessary to

store any ‘old’ values to memory or to re-load them later.

Note, that the operand queue is a part of the state of the processor and the contents of the

queue needs to be preserved across interrupts.

3.3 Branch architecture

‘Control Transfer Instruction’ (CTI) is a generic term for any instruction which can alter
the execution flow of a program, such as a branch, jump or call. The actions of this class

of instructions can be split into:
1. Compute the potential @et
2.  Evaluate a condition - conditional branches only

3. Continue execution from the computedyetr
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Some of the actions are orthogonal in that the potential target can be computed

independently of the evaluation of the condition.

In modern, pipelined implementations of RISC architectures (see [Farquhar], [Weaver]
and [DEC21064]) these three actions are usually combined in one ‘branch’, ‘jump’ or
‘call’ instruction. Due to pipelining it is often not possible to compute the succeeding
instruction address fast enough to issue it correctly in the following cycle. Branch delay
slot(s) were introduced [Patt] as a way of reducing or eliminating this penalty. Statistics
showed that between 40 and 60% of delay slots following conditional branches could be
filled and 90% following unconditional branches [Katevenis]. Recent architectures such
as the PowerPC architecture [IBM] specify two versions of CTI's: ‘Branch and Execute’
which executed the instruction following the branch and conventional non-delay-slot
branches rather than filling delay-slots with N@Rstructions. The HP-Precision
Architecture [Mahon] left it as a part of the instruction to specify whether the following

instruction was a delay slot instruction.

The HORN architecture takes a different approach to branching in that it separates the
actions into two classes of instructions, the ‘go’ and the ‘leap’ class. The computation of
the target is split from the evaluation of the condition, thus requiring two instructions per

CTL

The ‘go’ class of instructions sets up the potential target for the branch; there are a variety
of formats covering PC relative offsets, absolute addressing and register relative offsets.

Note that a ‘go-class’ instruction overrides the effect of a previous ‘go-class’ instruction.

Once the potential target has been set up, the condition is evaluated using the ‘leap’ class

of instructions. Leap-instructions evaluate the contents of a register for a number of

1. NOP = No OPeration
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go label
label: - start of loop body

leapZ reg, Naé N-bytes

end of loop bo

Figure 3.2 Example of a go-instruction outside a loop body

conditions ranging from un-conditional to conditions such as ‘zero’, ‘negative’, ‘positive
or zero'. The value to be evaluated must be held in the local storage, see 8e2tion
Furthermore ‘leap’ instructions specifjhen, relative to its positiorthe execution route
should be altered if the condition evaluation is positive. This is implemented by
specifying avariable leap shadow - a number of bytes, potentially covering several

instructions, between the leap instruction and the branch location.

This scheme allows the set up of a target instruction stream in advance and allows
prefetching of instructions into the cache and/or into a shadow pipeline. The value of this
technique will be explored in Chapter 6. Furthermore, in the case of a simple loop the
compiler can migrate the go-class instruction outside the loop body and hence reduce the

number of instructions issued inside a loop, see Fig.2e

This scheme is more flexible than that employed in many commercially available RISC
machines such as the SPARC [Weaver]. In these architectures, the size of the branch
delay slot is fixed at one instruction, and there is often a significant branch penalty
associated with misprediction. With the HORN architecture this mispredicted branch
penalty might be eliminated if it is possible for the compiler to migrate the leap-

instruction far enough back in the instruction stream.

Figure 3.3 illustrates how the leap instruction can migrate to the very top of the loop

body. As the figure illustrates there is now plenty of time to evaluate the outcome of the
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go label
label: leapZ,Q,N

i=i+1
Q=3a*b;

N-bytes branch Shadow
s=s+Q

-a4— Branch or Not

Figure 3.3 Optimal migration of the ‘go’ and ‘leap’ instructions

branch. In either case (taken or not taken) no instructions need be fetched speculatively
and eventually discarded. The example in FigBu&is very optimistic; it will not always

be possible to specify a loop-shadow sufficient to avoid disruption in the pipeline flow.
However it is believed that the scheme will perform at least as well as the conventional

scheme used in SPARC and MIPS.

A very efficient branch prediction scheme has been proposed [Bird] based upon the sign
bit of the displacement for the branch instruction. The scheme yielded a hit-rate of more
than 80% by predicting all backward going branches ‘taken’ and all forward going ‘non-
taken’. A similar scheme would be difficult to implement, given this two instruction

control transfer structure.

It is important to remember that the HORN branch-architecture increases the number of
instructions to be executed, as each branch requires two instructions. However, as shown
above, the ‘go’-instruction might be migrated outside a loop body by compiler
optimizations reducing the overhead. Chapterilbevaluate the value of this two part

CTI-scheme for performance and for energy efficiency.

43 Baseline HORN architecture



3.4 Instruction format

Variable-size instruction formats are not commonly used in RISC architectures. The
fetching and decoding of variable-size instructions have been considered too complicated
and incompatible with the RISC concept. However, while retaining the other
characteristics of a RISC approach, the HORN architecture does exploit variable-size
instructions. Instructions can be 1, 2, 3 or 4 bytes in length, the shorter instructions

implicitly addressing the queue as mentioned in seci@n

The instruction formats used in the HORN architecture are shown on Fsgdieasl3.5.

Byte 3 | Byte 2 Byte 1 Byte O
| Arg3:6 |[ExtOPC:20rff Arg2:6 Argl:6 | Type:2]OPC:fLength:2
I

Figure 3.4 Instruction format

An instruction specifying one, or more, operands from the operand queue releases
corresponding register reference bits (Argl - Arg3 in Fig8r4) in the instruction
format. The usage of the queue is specified in the first bytes, (Length and Type fields, see
Figure 3.5). Table3.2 shows examples of instructions and their corresponding sizes
where a ¥’ denotes that the corresponding operand is to be taken-from/written-to the

operand queue.

Table 3.2 Operand Queue usage and the corresponding instruction sizes

Size

Instruction [bytes]
add R1,R2,R3 4
add *,R1,R2 3
add *,R1* 2
add R1,** 2
add *,** 1
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2 <

K é\F’fo : % ks faooi O% "y
0“0% : . | Opcode {00]
: | OplReg [00] Opcode {01]
| Op2 Reg |01] Opcode]01|
7 Op3Reg [101 Opcode]01|
| Op3 Const [ 1 1| Opcode ] 01 :|
Opoode 1 Op2 Reg ] Opl Rey |oo Opcode {10]
— '
L 1] { Op3Reg ] OplReg {00] Opcode |10}
[“1 Op3 Reg 1 Op2Reg [01] Opcode {10
Opcode [0 ]Op3 Constlj Opl Reg !10! Opcode !10]
S ]OpBConst] Op2Reg |10} Opcode {10}
D Op3Const {11} Opcode |10
[ Op3Reg Opcode1 Op2Reg | OplReg |00} Opcode |11}
[ Op3 Const tOpcode] Op2 Reg ] Opl Reg jO 1 | Opcode |11 [
[ Cpp3 Cons 1 Op1 Reg ] 1 O| Opcode |11}
| Op3 Const_- | 11 |. Opcode |11}
"Bit31 - ' : bit’
Byte 3 Byte 2 Bytel ByteO

Figure 3.5 Instruction encoding

Using this technique, the average instruction size can, with the current compiler
technology, be reduced to 3.12 bytes/instruction, a 23% reduction compared to
conventiona 4-byte RISC instructions, see Chapter 8. Consequently, a cache line of 32
bytes can, on average, contain more than 10 instructions instead of 8 conventional 4-byte
instructions. This reduces the pressure on both the cache and memory system asthe cache
can contain alarger proportion of the program. Consequently, the instruction cache! hit-

rate increases on average by 1.1% (see Table 8.3) corresponding to an average reduction

1. Cache parameters. 8Kbyte, 32 bytes per line, 2-way set-associative, Random replacement
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in 1/0 traffict of 12%; this implies a significant increase in performance and decrease in

power consumption. The exact effect on performance depends on the cache configuration:

. Does the cache block the processor on misses until the entire

line has been fetched?

. Is the requested word forwarded to the execution pipeline

straight away?

. Is the requested word fetched first?

Note that this technique of reducing instruction sizes does not change the semantic content
of the instructions. The number of instructions required for a given program is the same
as for the conventional 4-byte instruction format. In fact, a program can be turned into a
program of 4-byte instructions simply by referencing the queue through its register alias,

register 63.

Other techniques which reduce the program size are described in [Bunda][Fleet] where all
instructions are 16 bits. This gives a smaller code size but increases the number of
instructions as the semantic content of each instruction is reduced. The Thumb-format in
some ARM processors (see Chapter 2 and [Furber]), allows instructions to be encoded
into a 16-bit instruction format which is ‘decompressed’ during execution. A program can
be composed of a number of code fragments, some written in normal ARM code, some in
Thumb code. Thumb code is entered using a special instruction and there is another to
‘return’ to ARM-code. A Thumb-code fragment is guaranteed to contain an even number
of instructions to ensure proper alignment of succeeding conventional instructions. As is
the case in [Bunda] and [Fleet] the semantic content of these compressed instructions is

not the same as the conventional 4-byte instructions as only a subset of the registers and

1. Traffic between the instruction cache and the external memory
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of the opcodes is available. The binary of a program compiled into Thumb format will
therefore typically contain 40% [Furber] more instructions than the corresponding
conventional 4-byte instructions format. Consequently the size of a Thumb binary is
approximately 30% smaller that the equivalent 4-byte-per-instruction binary. With the
instruction formats discussed in [Bunda] and [Furber] individual instructions cannot

straddle cache lines.

Variable-size instructions do introduce the problem of instructions, which may straddle
cacheline boundaries; these require two cache look-upsimplying a potential performance
degradation. Chapter 8 will propose instruction cache architectures which almost

eliminate this problem.

3.5 Summary

This chapter has described the HORN architecture which forms the basis for much of the
work reported in this thesis. The chapter has highlighted the areas where the HORN
architecture differs from most RISC architectures: The register file, the branch
architecture and the instruction format. Furthermore, the concept of packed-arithmetic has

been described.

The work described in this thesis has made extensive use of the tools developed for the
HORN processor. Many of the techniques described in later chapters are closely linked to
this architecture. On two points though, the tools do not explore the options that the

architecture gives:

1. The HORN processor is a 64-hit processor. However, the compiler
developed for the prototype system does not exploit this feature. No
instruction operates on 64-bit quantities nor does any register contain

values which cannot be contained in a 32-hit register. Furthermore
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the architecture specifies a 64-bit address space, but again, no address
is ever accessed which could not be contained in a 32-bit infeger
study carried out in the rest of this thesis will therefore describe the

HORN architecture/processor as if it was a 32-bit processor

Section3.1 stated that data references need not be aligned on corre-
sponding byte boundaries. No instances of this have been encoun-
tered. The rest of this thesis will therefore assume that data references
are aligned on proper byte boundaries. The same assumption is, of

course, not made for the variable length instructions.

Although the architecture manuald@RNV3] and HORNV5] do
not specify it, this work will assume a Harvard architecture [Patt]; i.e.

separate non-overlapping instruction and data memory segments.
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Chapter 4 Metricsand benchmarks

When evaluating a computer architecture some of the questions that arise are: When is an
architecture or a processor implementation performance-energy efficient? What does
performance-energy efficiency mean? In order to answer these questions and make trade-
offs and comparisons a suitable metric is required. [Burd] states that the metric for
performance-energy efficiency differs, dependent on the class of application. There
should therefore be different metrics for different classes of products. All the metrics
considered are based upon other metrics such as performance, measured in MIPS, and
power consumption, measured in Watts. Other measures of performance such as
Specmarks [SPEC91] or Dhrystone [Weicker], would be equally suitable as a measure of

performance and have the advantage of being instruction set insensitive.

The following sections describes how applications can be classified for ‘low power’. The
classification is made by T. Burd from University of California, Berkeley [Burd]. The
metrics proposed are based upon the throughput of a processor, which do not allow

comparisons to be made across different instruction set architectures.

[Burd] uses the term ‘energy-efficiency’ generically to describe the ratio between
performance and energy consumption, i.e. the performance-energy efficiency. Although
the ‘energy-efficiency’ term is not as precise as ‘performance-energy efficiency’ it was
felt that consensus was needed in this field of research. Consequently, this thesis adopts
the term ‘energy-efficiency’ to describe the relation between performance and energy

consumption. Energy-efficiency will be abbreviated EE throughout the rest of this thesis.

To illustrate the importance of choosing the right metric, performance and power
consumption measures have been collected for a range of processors from a number of

sources into a table (see Ta#lé on pag&6).
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Finally, seven benchmarks were ported to the HORN architecture, partly by the author,

partly by his colleague on the HORN-project Dr. Rhodri M. Davies.

4.1 Background on metrics

Performance is generally measured in Million of Instructions Per Second (MIPS) and
energy consumed is measured in Joules. Energy per unit time is power consumption

measured in Watts.

[Burd] divides applications into three classes:

1. Digital Signal Processing (DSP) - class applications, which require a fixed level of
performance, and do not benefit from any further increase in performance. The
challenge in such a system is to deliver the required performance while consuming
as little enagy as possible. The emgrper operation should be minimized. This is
equivalent to ‘power divided by throughput’, which is inversely proportional to

‘MIPS/W’ or ‘SPEC/W’, a figure often quoted in the literatuzévkov].

2. Server applications, which are characterised by the processor constantly being
busy For this class of applications the apeefiiciency metric should be based
upon two factors: The execution time and the gymeonsumption; (an engy-
delay product) as performance can be traded againgjyec@nsumption and vice
versa. As it will be explained below this metric is proportional to @r&hrough-
put and Power/Throughpﬁ,ltWhich Is inversely proportional to MIBSV or

SPEC/W. [Burd] denotes this measure EgerThroughput Ratio, ETR.

3. PC/workstation applications, where the processor is typically busy for some time
T, followed by some idle time ;I Products such as Personal Digital Assistants
(PDASs), Personal @anisers (POs) also come into this categogpendent on the

ratio of these times, it may become beneficial to ‘put to sleep’ parts of, or even the
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entire, processor in order to obtain high overall gneaficiency This is called
‘burst mode’ in Burd] which defines a metric Microprocessor Enemhroughput

Ratio (METR). Once again this metric is based upon theggralay product and
measured in Joules/MIABversely proportional to MIPBW or SPEG/W. It is
important to note that the MIPS in this case are the ‘useful’ MIPS, i.e. also the per-
formance of the operating system when no specific application is running. If
T, >>T, this is equivalent to ETRBprd] argues that if T<<T,, METR turns

into a ‘Power/Throughput’ metric inversely proportional to MIPS/W
The HORN Architecture Manual - 5th Edition specifies:
“... first phase concentrating on high volume consumer computing products with low

system cost. Promising areas for initial HORN products are:

a. Multimedia Systems...... integrating D$Mage processing and

communications functions into the general purpose processor
b. Games....
..... In the second phase, new products will build on this, addressing general purpose
computing areas such as:
c. Multimedia servers....”

Comparing the list of applications with the three classes of systems there is significant

analogy:

Multimedia Systems are typical DSP applications, Games are a typical PC-style
application, which might stay idle for some time, waiting for user input, before becoming
busy againMultimedia Servers are specific forms of server applications where there are

limits to the trade-offs one can make in the performance. Given that it is a server,
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however, an assumption can be made that the system can handle more than one stream of
data at the requested rate, the trade-off that can be made is therefore trading the number

of streams versus power consumption.

It might not be obvious why energy efficiency is a relevant issue for servers. Servers will
typically not be battery driven but cooling and noise might be important issues. If the
processor in the server is energy efficient, cheaper and less noisy cooling technology may

be used resulting in a cheaper and more environmentally friendly product.

Note that there is, in general, a performance requirement associated with applications of

type 1, while this is not necessarily the case for classes 2 and 3.

Let B denote the ratio|B g/Pgysy i.€. the power consumption while idle divided by the
power consumption while busy. By having T denote the throughput for a given
application and 1,z denote the average throughput over time [Burd] established the

following relation between ETR and METR:

METR = ETR[1+ BD—T——lm} T2T,,.  (EQ4D

l:ITAVE :

which is applicable for classes 2 and 3.

Early microprocessors typically hggtvalues of 1.0, while an asynchronous
implementation will yield a much small@value approaching 0. Modern processors
such as the INTEL Pentium [Child] and the PowerPC 603 from Motorola [Suessmith]
have several power down modes, yielding a rangewaflues. Note that if T=4yg, i.e

the processor is busy all the time, METR = ETR.

[ is a constant given by the implementation while the architecture ‘determines’ ETR.
T and Tyyg are given by the user/application. Thus optimising the MMM Satio at the

architecture level will minimize the ETR and minimizing the power consumption during
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idle periods through various implementation techniques will decfease therefore also
be a gain. The two factors can thus be considered independently and can be optimized for
separately. Applications of type 2. and 3. can be used to optimize the (micro) architecture,

but that applications of type 1. may not lead to the same results.

This analysis has two consequences for the investigations carried out as a part of this
work. Firstly, it is very easy to find applications/benchmarks of type 2 and 3, which can
help in optimizing the architecture and later the implementation for energy efficiency.
Essentially all the benchmarks normally used for processor performance assessments can
be used as benchmarks. Secondly, it was decided to consider the HORN processor as a
‘normal’ microprocessor where performance improvements obtained through optimizing

the architecture are ‘passed-on’ to the application/user.

This could lead to the conclusion that an ETR or a MN®Snetric is the correct metric

for optimizing an architecture for energy efficiency. However, the metrics are only
suitable if the programs/benchmarks used contains the same number of instructions for all
the architectural options explored or, more precisely, the same instruction set architecture
(ISA) [Burd]. As shown in Chapter 6 this work has also explored different instruction set
architectures where ‘MIPS’ is not a suitable metric for performance as the number of
instructions required for a given program compiled for two different architectures may not
be constant. An example of this is the comparison a program compiled for a RISC and a
CISC architecture. The CISC binary will typically contain fewer instructions than the
RISC binary. To measure the effectiveness of two different architectures it is the
execution time of the program which is interesting to the user, not the MIPS-ratio for the
two architectures. Other measures of performance which are instruction set insensitive
such as the Dhrystone [Weicker] or the SPEC[SPEC91] measure could have been chosen.

The SPEC benchmark suite comprises integer and floating point benchmarks denoted
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‘SPECInt’ and ‘SPECfp’ and is updated regularly, the year of the release is often
specified. SPECInt92, consequently refers to the integer benchmarks in the SPEC
benchmarks suite from 1992. However, given the difficulties encountered porting
benchmarks (due to incomplete libraries) it was considered infeasible to use the SPEC-
measures. Furthermore, due to the danger of focusing too much on one benchmark, the

Dhrystone performance measure was discarded as well. Simplicity was needed:

An energy efficiency metric should only consider the time taken for a task or program and
the energy consumed during the execution of the task. This leads to a energy-deday or J
metric. Note, that this definitiotioes take account of architectural parallelism as the delay

is the time taken to execute a given task, rather than the cycle time of the processor. Using
the critical path delay as a measure for time, fails to include the effects of architectural

parallelism [Burd].

To allow positive selection the inverse metr's%e will be used in the comparisons. It

will be called Energy Efficiency, EE. Such a metric can be used to evaluate different
architectures and configurations for energy efficiency but it cannot be used to compare
different benchmarks, even in the same architecture. Note that as the definition of EE is
based upon the energy-delay product it is not suitable for DSP-class applications where

the delay cannot be traded.

It is important to realize that this ‘new’ metric is inversely proportional to ETR and

proportional to MIP&W as long as the same ISA is used in the evaluations:

J
_J = W (EQ 4.2)
ETR = = 0
MIPS  nsy10°  MIPSY, .
_ or constant no. inst
Sec X seC
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1 _ "  MIPS

EE = (EQ 4.3)

1
J J

—_ for constant no. inst

Sec
Furthermore, the metric has the advantage of being independent of the supply voltage:
The power consumption scales with the square of the supply voltage, V y4q [Weste], while
the operating frequency scales linearly with the supply voltage [Weste][RY ork2].

Consequently the EE metric is independent of the supply voltage.

4.2 Evaluation of metricsand discussion

It might be considered controversial to choose a metric such as energy efficiency when
the science generally [Zivkov], [Williamg], [Lev], [Bensch] quotes measures such as
MIPS/W or SPECInt92/W. However, as explained above, if the goal is to increase the
throughput per unit of energy (the EE), MIPS#W and SPECINnt92%/W are more suitable

metrics.

To illustrate the sensitivity of which metric to choose Table 4.1 shows the SPECInt92
measures and power consumption measures from a number of processors [MRP1092],

[Zivkov], [Williams], [Lev], [Bensch], [RY ork], the SPECINt92/W and (SPECInt92)2/W.

Note that all ARM measures are based upon the Dhrystone benchmarks! The SPECInt
benchmarks are designed to assess the system performance including I/O operations
rather than just the processor performance. The Dhrystone measure is based upon
compute power and ARM Ltd. considers it a more appropriate measure for the
performance of their processors [RY ork]!. A conversion factor between the Dhrystone

and the SPECInt performance measures has been derived for the MIPS R4200 from

1. Moreinformation on the performance and power consumption of the ARM610 and ARM710
is available on WWW: http://www.arm.com
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Table 4.1Performance and power consumption for existing processor s

Frequency Power S—PES\'/”tgz _______(SPE(\:A'I“”Z)Z
Processor [MHZ] SPECInt92 | [Watts|

Alpha-Quad 300 341 50 6.8 2,326
ARM3 20 6.4° 1.1 5.8 38
ARM610° 25 12.0 0.53 22.7 272
ARM710d 50 20.1 0.32 63.1 1,266
Hobbit 20 11.0 0.4 27.5 302
i486 DX/2 66(int)/33(ext)® 32.2 7 4.6 148
MicroSFARC 50(int) 22.8 4 5.7 130
Pentium 66 64.5 16 4.0 258
PowerPC 66 60.0 9 6.7 402
PowerP¢ 80 75.0 2.2 34.1 2,557
R4000SC 10Q(int)/50(ext) 61.7 12 5.1 317
R4200 80int)/40(ext) 55.0 1.5 36.7 2,018
R4400SC 15Q(int)/75(ext) 94.0 15 6.3 592
SPRC V9 MCMY 143 230 50 4.6 1,058
SPRC V9" 167 270 28 9.6 2,592
68040 33 17.7 1 17.7 313

a. Quad-issue full-custom VLSI implementation of the Alpha-architecture
b. SPECInt92 performance for ARM3 estimated by comparing R4200 performance of 137K
Dhrystone Zivkov] with 16K Dhrystone for ARM3DMIMAP].

c. The power consumption are estimates based IM&R1092. The ARM610 core is expected
to consume 525mW to deliver the performance of a Hobbit procdéd@P[1092. The
SPECInt92 measure is derived from running the Dhrystone2.1 benchmark on an ARM610 -

25MHz within the department, yielding &Dhrystone2.1.

d. Personal mail exchange with NR. York, ARM Ltd., 4th of April 1996. ARM710a has an 8K-
byte unified cache. Performance: 52KDhrystone2.1,

e. int: internal clock frequencegxt: externally supplied clock frequency

f. see (Gerosa

g. A HalL implementation of the 8RC V9 64-bit architecture, integrating a CPU-chip, a memory
management unit and four 64K byte cache chips into a ceramic multi-chip module

h. 64-bit superscala# instructions per cycle

i. see Biggyg
[Zivkov]: 1 SPECint92 = 2.&%Dhrystone2.1. This conversion factor has been used to

assess the SPECInt performance of the ARM processors

The processors in Tabfel can be divided into three bands determined by their power

consumption. Some processors, the Hobbit, the R4200 and the ARM processors, consume
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little power, less than 2.5W. A number of processors consume between 4W and 16W,

while three processors consume more than 20W.

SPECInt92

Using the W

metric (i.e. the power-delay product) the first group of processors
(excluding the older ARM3) stand out, yielding measures a factor 3 to 6 better than any
of the other processors. However it should be observed that the ‘SPARC V9’ processor
performs very well with this metric despite its 28W power consumption. Using the same
measure, it can be seen that the ‘Hobbit’ obtains its high measure through a very low
power consumption despite a low performance (SPECInt92); whereas the ‘R4200’

architecture gains its position though effective performance, which is comparable to early

486-microprocessors and low power consumption.

Using the energy efficiency metritg,sp#lmgz)2 (i.e. the energy-delay product), the
ranking changes completely. Now, the high-end processors, together with the R4200 and
the PowerP&form a class of their own yielding measures a factor 3 to 10 times better
than any of the other processors. These measures indicate that an ‘Alpha’ processor
delivers eight times more performance per Joule than a ‘Hobbit’ processor or nine times
more than a ‘Pentium’ processor. Although the ‘Alpha’ and other high-end processors are
very power consuming, they are very energy efficient in their computation. Thus an
‘Alpha’ or a ‘SPARC V9’ processor could be the optimal choice if one was to build a
server (defined as above), independently of whether the goal was energy efficiency or
throughput. However, the ‘R4200’ or the 2.2W PowerPC would, despite their lower

performance, also be very energy efficient choices.

The results domot imply that the optimal processor foand-held equipment is an Alpha

or a ‘'SPARC V9'. The degree of utilization might be very low, as is the case for a PDA.

1. The 2.2W version described BErosa
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It is therefore important, as shown in sectidrl, that a processor has ‘power-down’
modes entered during idle periods. The power consumption during this time should be as
low as possible, see Equation 4.1, to extend battery life time. The ‘Alpha’ does not have
such a feature and will therefore consume 50W independently of its utilization. In contrast
the 2.2W PowerPC does [Suessmith] use dynamic power management where different
parts of the chip can be shut down. Dependent on how much of the chip has been disabled,

stand-by power consumption of a PowerPC-processor is between 2mW and 350mW.

As illustrated in [Culbert], PDA-style products are designed with great attention paid to
weight and size. The power consumption and supply voltage of the processor is important.
For the ‘Apple Newton’ PDA [Culbert], the designers chose to use the ARM610
processor due to its low power consumption, which Apple estimated would give one week
of ‘normal’ use with 4 AAA NICAD battery cells. As mentioned above, the ability to
‘power-down’ the processor is also important. In stand-by mode, the Apple Newton PDA
consumes only 50mW compared with 2W when operating [Culbert], B-8adue of

0.025 in Equation 4.1. A part of this reduction is due to ‘powering-down’ the processor.

If the requirement for battery lifetime was reduced to a working day a ‘486DX2-66’
processor might have been the optimal choice. It has approximately the same energy
efficiency, but provides a performance which is three times higher than that of the

‘ARM610’, see Tablet.1.

Choosing the right processor for a portable product involves more than choosing the most
energy efficient processor. Factors such as battery lifetime and required performance

level are important factors as well.

Figure 4.1 presents the results from Tablé in a graphical form. The graph can be used

to aid the selection of the optimal processor for a given product. Given a power-budget
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Energy Efficiency vs Power Consumption
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Figure 4.1 Energy Efficiency vs. power consumption for existing pcessors

the graph presents a simple way of choosing the most energy efficient processor. The
scale on the ‘Power Consumption’ axis is logarithmic. This helps to differentiate the
processors in the low end of the range. However it makes it more difficult to separate the

‘high-end’ processors.

4.3 Selection criteria for benchmarks
The sections above havéghlighted that optimizing a computer architecture or an
implementation of an architecture for energy efficiency has different meanings dependent

on the type of target application.

In section 4.1 it is stated that the goals which are set up for the HORN architecture
[HORNVS5] are contradictory when optimizing the architecture for ‘low-power’; as the
architecture aims to address both DSP and microprocessor/server applications. The

section concluded that the work in this dissertation should focus on the improvement of
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server and microprocessor applications and use the related metrics such as Energy

Efficiency, EE.

The decision to use this metric excludes DSP-class applications from the benchmark
suite, so MPEG and related programs can not be used as benchmarks even though they
are listed as one of the prime targets for the HORN architecture. The benchmarks suite

has therefore been chosen to contain typical benchmarks for the workstation/PC domain.

The HORN architecture has undergone significant changes during this project. The
instruction set architecture and consequently the compiler and linker have been changed
several times. Due to the emphasis on optimizing the architecture for performance the
development of libraries was deferred. This had consequences for this project in that it
was not possible to port a significant number of benchmarks such as the SPEC [SPEC91]

and SLASH [Singh] suites to the HORN architecture.

4.4 Benchmark Suite
This section gives a brief description of each benchmark used in this dissertation. There
will be a short description of the functionality of each benchmark and the characteristics

which justified its inclusion in the benchmark suite for this work.

441 Hello

Hello is an extended version of the minimal program printing the classical phrase. The
program has been extended to contain a loop which iterates 20 times over a print statement
printing the value of the loop-variable. The benchmark has been included in the suite to
represent the class of small programs or tools, such as the UNIX utility ‘grep’ which is

heavily used to scan text-files.
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The executable program is characterized by being built ailmost entirely from library
routines and start-up code. It is therefore useful for illustrating the effect of these code-

fragments as they will be found in all the benchmarks mentioned heresfter.
The executable comprises 52.000 instructions and 21.000 data references

The benchmark contains 16 lines of C-code.

442 Espresso

Espresso [SPEC89] is a program which transforms a boolean truth-table into a form
suitable for a given implementation technology with emphasis on criteria such as speed
and area. The program takes atextual input file and produces an output filein avariety of

formats. The default output format was used.

The executable program comprises a significant number of instructions, 4.6 million, of
which 1.4 million are memory referencing instructions. The code contains a number of
short loops which isillustrated by the fact that 12% of taken branches branched less than
32 bytes® backwards. The code does contain some |/O procedures, but the majority of the

run-time is spent in the reduction algorithm.

Espresso is the largest binary in the benchmark suite having the largest memory
requirement it therefore has the highest number of compulsory misses [Patt] in the

instruction cache.

The benchmark contains 17,000 lines of C-code.

1. Equivalent to approximately 10 instructions
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443 Flex

Flex is a ‘fast lexical analyzer generator’ which is available as a UNIX tool. The program
contains 10.7 million instructions of which 4.3 million are data referencing instructions.
Compared with Espresso, see sectbo#.2, a high percentage of taken branches had very
small offsets. 95% of all taken branches branch to the same cache line (32 bytes). This,
together with the fact that the size of the binary is only 50% of espresso, indicates a high
degree of spatial locality and that high hit-rates can be obtained in instruction caches even

with small cache sizes.

Flex has been included to represent tools commonly available (and used) on workstations.

The benchmark contains 12,000 lines of C-code.

444 Cacti

Cacti [Wilton] is a cache timing analyzer program developed by Digital Equipment

Coperation; it calculates various timing parameters for a cache specified by the user using
information from a technology file. The user can specify total cache size, cache-line size
and degree of associativity. The program provides information about cycle and access
time to the cache and sub-divides these ‘times’ up into various components in a cache

such as latency through the sense amplifiers in both the data and tag areas in the cache.

The size of the binary is very small. However, due to heavily nested loops, the dynamic
instruction count is 18.9 million instructions of which 2.1 million involved memory
references. Consequently, it is not as memory-intensive program as is for example

espresso, see sectid4.2.

The spatial locality is not as high as for espresso and flex, only 6% of taken branches are
to the same cache line (32 bytes). The hit-rate in the instruction cache is therefore

expected to be lower than for espresso and flex. Furthermore the average basic block size
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in this benchmark is more than twice that of the other benchmarks: 54.3 bytes versus an

average of 27.1 bytesfor the rest of the benchmarks.

Cacti has been included in the benchmark suite to represent smulators and tools used in
R&D environments. As the instruction count is very high, the benchmark can be

considered as one used for testing high-end systems.

The benchmark contains 1,500 lines of C-code.

445  Fft

The Fast-Fourier-Transformation (FFT) benchmark Fourier-transforms 1,024 numbers,
generating 1,024 complex numbers; these complex numbers are then fed to an inverse-fft

process which regenerates the 1,024 original numbers.

The program prints a number of useful time statistics such as the over-all execution time,
the transpose time (i.e the time it takes to perform the Fourier-transformation) and the

initialization time.

As a benchmark, the program is characterized by being sensitive to organization of the
data cache due to the non-linear access of data. For large caches the cache organization is
less important due to the relatively small data-set. It is also characteristic that the array-
elements are accessed very few times. The data cache misses are therefore dominated by

compulsory misses.

The performance of the data cache is such that the hit-rate is high (>95%) even for small

caches as long as the degree of associativity is higher than one.

The binary of this benchmark is very small, less than twice the size of hello and the
performance of the instruction cache is therefore expected to be high (>98%) even for

small configurations. Furthermore, 17% of all taken branches are to the same, current,
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instruction cache line. However, the spatial locality is much higher than this number
indicates as a significant proportion of the branches are taken during the initialization of

the code. Once in the core in of the program the spatial locality is much higher.

‘Fft’ has been included in the benchmark suite as signal processing is one of the targets
for the HORN architecture. However, it should be noted that there is no timing
requirement associated with this benchmark as is typical for DSP class applications,

although fft is often a significant part in DSP applications.

The benchmark contains 1,000 lines of C-code and executes 1,104,931 instructions

including 225,796 memory referencing instructions, i.e. a 5:1 ratio.

446 Dhrystone

Dhrystone2.1 [Weicker] is another small benchmark, performing a precise number of
tasks. The program contains a main loop. This loop is executed N times where ‘N’ is a
parameter given to the program when launched. For all the runs of this benchmark, N was
set arbitrarily to 500. This allows the program to measure the time taken to compute the
precise number of arithmetic operations and on this basis various performance
characteristics were calculated for the machine used to run the program. Computing these
measurements involves timing the calculations which used timing calls not included in the
libraries supplied with the tools for the HORN architecture. The calls to these functions
have therefore been “commented-out” of the source code and the statistics which involved

timing have been omitted.

The binary of the benchmark is small, only 50% larger than hello, and as the data set is
very small, a data cache size of Biges is sufficient to ensure a hit rate in the data cache

of more than 99%.
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Dhrystone is a classical synthetic benchmark quoted in [Weicker] and has been included

in the benchmark suite for that reason.

The benchmark contains 1.000 lines of C-code, 688,173 instructions including 221,819
memory referencing instructions; i.e. a ratio of 3:1. The program is characterized by short

basic blocks, typically six instructions.

447  Stcompiler

Stcompiler is a publicly available C-compiler [Ruegg] used to compile the ‘hello.c’
program for measurement purposes. The program has, together with flex, see section
4.4.3, the largest binary in the benchmark suite and due to relatively low spatial locality,

a large cache>BK bytes) is required to obtain a high hit rate, >98%, in the instruction
cache. Equally, the data cache needs to be large (> 4K bytes) to ensure a hit rate there of

>95%.

The reason for the low hit-rates, particularly in the data cache, is a very high number of
compulsory misses [Patt] due to a very large binary and data set. The benchmark has been
included in the suite to represent the compilers which are common in a development
environment. It contains 13,000 lines of C-code, executes 1,865,924 instructions
including 720,468 memory referencing instructions, i.e. a ratio of 2.@ is a very
memory intensive benchmark. The program is characterized by short basic blocks:

typically 4.6 instructions

45 Summary

This section has shown that, provided DSP-like applications are not targeted, EE is a
suitable metric for evaluating energy-efficient architectural trade-offs. Even though the
HORN architecture specifies DSP-like applications as one of its targets, this waorét will

optimize for this class of application. As stated above, the metrics, when optimizing the
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architecture and the implementation for the two classes of applications, are completely
different due to the differences in the nature of the applications. DSP applications require
a constant performance, which due to the nature of the application cannot be traded
against a lower energy consumption. A spreadsheet or a word processor will still work

correctly if some of the performance is traded for a reduction in energy consumption.

To allow comparisons across a range of - not necessarily binary compatible -
architectures, it has been decided to base the architectural investigations in this
dissertation on theJ[+hec metric, even though this implies that it is not possible to

optimize for all the classes of applications that the HORN processor architecture

specifies.

This has had implications for the benchmark suite to be used for the rest of the

investigation described hereafter. The benchmark suite should contain microprocessor
applications such as compilers, filters and games, but it shouldclude applications

such as MPEG (video compression/decompression) as it belong to a completely different
class of application which, by choosing tﬁ%ﬁ as ‘base metric’'may not be able to

execute correctly if the performance requirement is not met.

This does not mean that DSP-applications and products cannot or should not be optimized
for energy efficiency, only that the metric used for such optimizations is not the same as
the one used for optimizing microprocessors and servers. Techniques which can be used
for optimizing a microprocessor might not be the same as for a DSP-processor. This work
has considered the HORN-processor only as a microprocessor and the remaining of this
thesis will therefore investigate only the energy efficiency of microprocessors. DSP-

processors and applications will not be mentioned again.
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Consequently abenchmark suite of eight microprocessor and server benchmarks has been
chosen. Each benchmark has been described briefly, and a motivation for including it in

the benchmark suite has been given.
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Chapter 5 Energy consumption in caches

As shown in Chapter 2, the cache consumes a significant proportion of the total power of
a typical microprocessor. Understanding the effect that changing cache parameters and
architecture has on cache power consumption is therefore essential when designing an
energy efficient microprocessor system. The cache clearly affects not only the
performance of the processor; it also reduces external memory traffic and thereby the

power consumption of the entire system.

Based on capacitances derived under the OMI-DE-project [Garside2], this project has
derived expressions for energy consumption in a number of cache architectures and
analysed their suitability for an energy efficient processor architecture. SBctidn

presents results collected from commercially available tools and a low power sense

amplifier design designed by T. Burd [Burd2].

Based on results extracted from [Garside2], sechidn2 derives expressions for energy
consumption in RAM. Sections.2-5.4 apply these results to a number of cache
architectures described in the literature, and evaluate their potential for an ‘energy
efficient processor architecture’. The expressions used have been derived as a part of the

author’s work.

Section5.5 discusses associative caches and evaluates the value of skewed associativity
[Seznec] while sectiorb.6 evaluates the value of different replacement algorithms.

Section5.7 presents results of an analysis of cycle times of different cache organizations.

Sections5.8-5.11 present techniques to reduce cache activity and thereby energy

consumption. The evaluation has been carried out as part of this work.

Section5.12 summarizes the results.
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5.1 Energy cost

In this section expressions for the energy consumption of conventional direct-mapped and
set-associative cache configurations will be derived to establish an understanding of the
effect of various cache parameters on power consumption. Other cache architectures,
such as sectored caching [Seznec2] and CAT-caching [Wang], will also be investigated.
An expression for energy consumption of CAT-caches will be derived. Cache
organizations, such as sub-caching [Su], which break up cachelines into sub-lines and
hence reduce the size of the RAM block accesseitl not be investigated; they are not
considered useful in architectures where cache references are not aligned on fixed byte

boundaries. Throughout this section a 32-bit address- and data-bus is assumed.

511 RAM-compiler

Conventional cache designs may use static RAM-blocks such as those generated by a
RAM-compiler [VLSI] employing a conventional sense amplifier design. The design of
the sense amplifiers in this technology is such that they have a large static power
dissipation. For RAM-blocks generated by the RAM compiler, the dissipation is therefore

dominated by the sense amplifiers, see [VLSI]. As Talleshows, the line sizds® in

Table 5.1 Dynamic ener gy consumption in RAM [VLSI]

Linesize
32bits/4bytes | 64bits/8bytes | 128bits/16bytes?
Lines | [nJ/cycle] [nJ/cycle] [nd/cycle]
128 4.78 9.55 19.09
256 4.82 9.59 19.17
512 4.86 9.73 19.45
1024 4.86 9.73 19.45

a. Data for longer lines were not available.

1. And thereby the energy consumption per request.
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bits, is the dominant factor in the expression of energy consumption, and the dynamic

energy consumption per access to the RAM-block can therefore be approximated to:

~ EQ5.1
Epay =K x1s (EQ
where K is a proportionality factor equal to:
_19.45-4.86n3 _ nJ (EQ5.2)
K= 28732 bit -~ 2Lt

This is due, in part, to the power consumption of the sense amplifiers, which have been
designed to drive relatively large capacitances. The figures quoted in5SThblesume an

input capacitance, fg per bit of ~1pF and an output load of 1pF. Such driving capacities

are not necessary in a cache design where the sense amplifiers have to drive only the input
of a multiplexer. Using sense amplifiers with lower driving capabilities will reduce the
energy consumption proportionally, but it is not clear whether the static power

consumption will scale, see below.

Due to the leakage in the sense amplifiers there is also a static dissipaiiQrsi&ic of
~2.5mW per bit which cannot be neglected. For a RAM block with a 32-bit wide data bus
and 1024 lines, cycled at 33MHz, the total power consumption, static and dynamic, can

be calculated [VLSI]:

P = 4.86mW/MHz x 33MHz = 160mW (EQ5.3)

RAM, (Dynamic)

P = 2.5mW/ bit x 32bit = 80mwW (EQ 5.4

RAM (Static)

i.e. a 2:1 ratio. There might be several sense amplifiers per bit dependent on the internal
organization of the RAM, although Equation 5.4 assumes only one sense amplifier per

bit.

The static dissipation associated with the sense amplifiers therefore represents a

significant proportion of the total power consumption of the RAM-block. If the sense
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amplifiers employed a dynamic circuit which is activated, and hence energy consuming,
only when the RAM is accessed, other parameters in the RAM block such as the total size

and line size may dominate the expression for energy consumption.

Figure 5.1 presents a design of a dynamic sense amplifier which does not have any static
power dissipation. Building the sense amplifier and precharge circuit shown in Bidure
and described in detail in [Burd2] eliminates the static power consumption in the sense

amplifier almost completely. The numbers in parenthesis indicate transistor dimensions:

M1, M3 and M4 form the precharge circuit. When ‘CIK’ is ‘low’ M1 will charge ‘Node

X' to Vpp, and the linebitline' to Vpp-V1 through M4. When ‘CIk’ goes ‘high’ M1 and

M4 will be cut off, ‘Node X’ will discharge towards the valuebiline and ‘Output’ will

switch to the value of the bit in the storage. Note that the threshold voltage of the inverter
should be relatively high for the inverter output to switch to ‘high’ as quickly as possible.
This is achieved by scaling the transistors in the inverter appropriately. Transistor M2
forms a weak feedback to the ‘Node X’ and maintains the value on the Output-node. Note
that, unlike the circuit described in [VLSI], this is a dynamic circuit which requires a

system clock or a similarly derived signal to function.

DD
Clkgc( M1 (6/2) 39M2| )—
Output

n—to the multiplexer

M3 (7/2) 7 Cpoad= 30fF

cmﬁ ’EI (9/2)
bitline

*—

—_

- 1.4pf for 256 cache lines, see Figses

ik kA

Figure 5.1 Sense amplifier without static power dissipation

1. A small static power consumption will remain due to leakage current through the transistors in
the inverter and in the storage element (not shown); however it is considered negBails@2|[
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Transistors M1, M2, M3 and M4, in the circuit are small and the circuit capacitances are
also very small. The capacitance on bitéine will be dominated by the capacitance of

the storage block. Only the output from the inverter is expected to be energy consuming
in that it will be the only node with a full voltage swing. The output of the sense amplifier
will drive the input to a multiplexer and hence have a very small load. Current technology
[Garside] specifies input capacitances of simple circuits such as multiplexers to be
Cin~20fF. Adding some capacitance for routing,&is estimated at 30fF. Given an
architecture where the sense amplifiers are plaefede the output multiplexer]$ sense

amplifiers are required. They will consume:

= 1sx 0.03F

2 _ pJ EQ55
ESense E{.x (3v)" = |S><O.27b—it (EQ5.5)

per request.

Note also that the sense amplifiers should consume energy only during read cycles and as
the normal reference pattern is two read requests per write request, the importance of the

energy consumption of the sense amplifiers is reduced.

However, mixing results extrapolated from widely different technologies, such as [VLSI]
and [Burd2], may lead to wrong conclusions. The rest of this chapter will therefore seek
an understanding of how the cache parameters affect the energy consumption. The results
will be used to extrapolate the results from OMI-MAP to a RAM of any dimension. The
extrapolations are based on the cache implementation in the ARM3 [OMIMAP] and in

Amulet2e [Garside][Garside2].

5.1.2 Fundamental relations

Details on technology issues such as bit-line and word-line capacitances is commercially

sensitive information which can rarely be extracted from data sheets. To understand how
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the energy consumption of aRAM block scales with conventional cache parameters such
asline-size and number of linesit was therefore decided to build an expression for energy
consumption based on capacitances in the cache circuit extracted [Garside] for the

Amulet2e project [ Garside2] which uses a 0.6, three layer metal, CMOS process.

Figure 5.2 showsabasic static RAM memory cell asused in caches; the line capacitances
shown correspond to a 256 lines x 256 bits (8K bytes) configuration. In addition to the
storage circuit itself, a pre-charge circuit, a sense amplifier and an output multiplexer are
shown. The capacitances shown in Figure 5.2 and those mentioned later in this chapter,

have been extracted from the Amulet2e design [Garside].

The general expression for energy consumption, E, in a CMOS circuit with N nodes is

[Mead]:
1 . 2
E=3 Z T, xC; x (AV)) (EQ5.6)
i=1
BitLine Is bits BitLine
- = — >
- = WordLine
A CWordline ]
/ \ 0.7pF for a 256hit
i e — cache line (~2.7fF/bit)
s 5 )
5 5
& S "1 |llines
IR N -Sfo‘rél{zjég
for a cache with ! !
256 lines

(~5.5fF/line)  |—— Prechargecircuit |——| Y

SenseOut

| Mux

*N-bit output

Figure 5.2 Extract from RAM circuit

73 Energy consumption in caches



¥ Vbitline Vi Vbitline
e Itine
Vprecharge \b|t||ne ,/ ’/

VHIGH
OV
D:*ischarge Precharge stafirts
: -
L VSenseOu'é
A4 1,

Figure 5.3 Voltage swing when dischar ging and precharging bit lines

where T denotes the number of transitions in the i'th nodele@otes the capacitance and
AV; the voltage swing of the i'th node. The voltage swings on the word- and bit-lines
differ due to the different driving sources. The word-line is driven by a decode circuit, i.e.
a gate output with good driving capabilities and a full logical voltage swing of 3V is
expected. BitLine an@itLine are driven by the storage element, through the pass-
transistors. This part of the circuit will be designed with very small transistors to optimize
silicon area and will therefore have relatively low driving capabilities. Bit-line
capacitances are twice those on the word-line (Figugg implying that voltage change

on the bit-lines will be slower. The sense amplifier is designed to ‘sense’ the value of the
storage element before the full logical voltage swing has been encountered. A bit-line
voltage difference of \ = 0.5V is normally sufficient for the sense amplifier circuit to
detect the value of the cell [Weste] [Burd2]. However it is important to note that the
voltage on the discharging bit-line will keep falling after the logical value of the cell has
been detected, see Figuse3. The overshood, can be adjusted by scaling the transistor

sizes in the storage cells [Weste].
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The energy consumed during a cycle (discharge and precharge) is:

2

E = Chgigline * (Vs +9) (EQ5.7)

Bitline

However, if the bit lines are not precharged to high, but to an intermediate voltage,
Vprecharge S€€ Figure5.4, a significant amount of energy can be saved [Weste]. The
access time might suffer, depending on how fast the storage cell can charge/discharge the
bit lines. Discharging one bit line as shown in Figlss3, sufficiently for a sense
amplifier to detect the value of the cell may be faster than the scheme presented in Figure

5.4. However careful design should minimize this penalty.

The energy consumption throughout the discharge and precharge in such a circuit is:

2 2
= Caitline X (AVgigine) * Comi X (AV ) (EQ5.8)

Bitline Bitline

E

Bitlines

: : Visiagn =V :
If symmetry is assumed, Vg, ..\ .qc = w the expression fordgjines reduces to:

_ Vaire | <7
Egitlines = 2 Chitline X 05 * ' (EQ5.9)
A Dischage Prechage
Vhigh | Vbitline

SVI— -~ T =

VPreCharge

5V

4 - - — = — — — =

Vlow T

..............

" TVSenseOUt
0

>

Figure 5.4 Vgiyine When precharging to an inter mediate voltage
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The energy consumption of the storage part of the RAM can be approximated to:

E (EQ 5.10)

Bitlines

EStorage - EWordline+

By substitution this can be expressed as:

_ 2 2 EQ5.1
Estorageread = Cwordiine * (AVwordiine)  * 2 X Cgitiine X (AVgiting X! Q5

To simplify the calculations in the rest of this thesis it will be assumed that:

2
2 % Vaits + 5EF: (Vgiff)
U 7°%0~" —H — (EQ 5.12)

in which case Equation 5.11 reduces to:

2 (EQ 5.13)

E C

2
storageread = Cwordiine X (BVwordiine  + Caittines X Vairr) ¥ |

By scaling the capacitances in Figuse2, the energy consumption of the upper (storage
part) of the circuit during a read cycle is:

fF fF

= 27:= xIsx (3V) “+55.— xIsx (0.5V)*x|  (EQ5.14)

EStorage,Read " bit bit

Where Is denotes number difits per cache line and ‘denotes the number of lines in the

storage block, see Figurg?2.

Scaling this expression shows how the energy consumption changésmdlls:

(EQ 5.15)

E DK1><IS+IS><I

Storage,Read

where

2
K. = CWordline>< (AVWordIine) - 2_7fF/bit><(3V)2 = 18 (EQ5.16)

¢ 5.5fF/bit x (0.5V) 2

2
Bitline/wline < (AVait)
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This expression says that the energy consumption in RAM is more sensitive to changes in
line size|s, than to changes in number of linkst least for small values bfincreasing
the RAM size by increasing the number of lines therefore appears more attractive than

increasing the line size or any combination of the two.

During a read cycle the bit-lines do not need to discharge completely before the sense
amplifiers can detect the voltage difference and determine the value of the memory cell.
The bit-line will therefore only consume energy correspondingyfg=0.5V as shown in
Equation 5.14. During a write cycle, the bit-line is driven by an external source and a total
voltage swing of 3V can be anticipated. However, it will only be the bits in the word on

the line which get overwritten which will experience this magnitude of voltage swing.

The remaining bits will discharge even though they are not accessed but will (dis-)charge
as during a read-cycle. The energy consumption during a write is therefore approximated

to:
(EQ 5.17)

_ g ? O ? 8 ?
EStorage,Wme = Cwordiine* A Vuwordiinel *+ CBitIine/wIinex DAVBitIine,WriteD x|+ CBit”nesx EIAVdiff,IdIeD x|

Substituting the capacitance and voltage values from the Amulet2e project gives the

following expressions:

(EQ 5.18)

fF 2 fF 2 fF 2
EStorage,write = 2.7b—it>< (3V) xlIs+ 5.5b—it><w>< (3Vv) ><I+5.5b—it>< (0.5V) "x (Is—w) x|

where W' signifies the size of the word (in bits) which is written to the storage.

Scaling as before yields:

E OK; xIs+K,xwx|+1x (Is—w) x| (EQ5.19)

Storage,write

E OK,;xIs+1x (Is+wx (K,-1)) (EQ 5.20)

Storage,write
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where K is defined above andKs:

?
— CBitIine/wOl’dIine X EAVB““”&WFHGD _ B5.5fF x (3v) 2 - 36
5 = = =

K > 5
CBitline/wOI’(‘inne X %Avdiff,ldleﬂ 5.5fF x (0.5V)

Inserting w= 32 bits in Equation 5.20 gives:

E OK;xIs+32xK,xI+1x (Is-32) x|

Storage,write

and thus:

E 0K, xIs+1x (K,+1s—32)

Storage,write

(EQ 5.21)

(EQ 5.22)

(EQ 5.23)

Tablesb.2-5.3, show how the energy consumption during a read and a write cycle differs

widely due to the activating of the sense amplifiers. In contrast to the sense amplifiers

used in [VLSI], there is no static power dissipation in the sense amplifiers used by ARM.

The tables show that the sense amplifiers do not consume any power during write cycles.

Table5.2 ARM3 RAM dissipation - Pre-char ge/Read Cycle

Aver age power % of total power
Block consumption [mW] in RAM
The main RAM array| 162.3 40.6 (Xram,R)
/0 buffers 68.3 171 XyoR)
32-Sense Amps 81.0 20.3 (Xgensd
Prechage 29.6 7.4 (XpreR
Other blocks 58.8 14.6  (XotherR)
Total 400.0 100

Table 5.3 ARM3 RAM dissipation - Pre-charge/Write Cycle

Aver age power % of total power
Block consumption [mW] in RAM
The main RAM array| 162.3 64.9 (Xramw)
I/0 buffers 0 0.0 (Xyow)
32-Sense Amps 0 0.0 (Xsensd
Prechage 24.9+4.7 11.8  (Xprew
Other blocks 58.1 23.2  (Xotherw)
Total 250.0 100
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It is therefore clear that an expression for energy consumption in a cache is a sum of two
products: One product for read accesses and one for write accesses:
E

= #readsx E__,+ #writesx E (EQ 5.24)

Cache write

General expressions fordzqand E e are derived through extrapolations from the

numbers in TableS.2-5.3.

The energy consumption in RAM scales as shown in Equation 5.15, while the energy
consumption of 1/O buffers and sense amplifiers scale linearly with the word-size i.e the
number of bits to be read. The energy consumption of the precharge circuit scales with the
length and the number of bitlines i.e. with size of the RAM. As will be shown in Chapter

8, an entire cacheline will be read every time the cache is accessed. It is therefore
necessary to have sense amplifiers on each bit-line-pair in the memory. Due to the nature
of ‘other blocks’ it will be assumed that their energy consumption is not affected - or only
affected in a sub-linear way - by the cache size and line size. This is therefore an overhead

which is carried with every RAM-block.

The numbers quoted are for a 4K-byte cache organized in lines of 4 bytes; a general

expression for Ram readiS therefore:

(EQ 5.25)

E
RAM,Read =X < EStorage L0 +X Oy ESense+ Buffer +X < EPre +X
RAM DXI/O, R Sensel] Pre, R R
E E EPre ARM3 Other,

R
RAM, ARM3 E4K,4bytes Sense + Buffer ARM3

where X, are the percentages shown in teh. The energy consumption in storage
during read-cycles scales as shown in Equation 5.15 and the energy consumption in the
sense amplifiers scales with their number. Equally the energy consumption in the
precharge circuit scales with the number of bit lines to be precharged and with the length

of the bit lines, i.e. it will scale with the size of the storage block. Given that the RAM in
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the ARM3 cache is a 1Kx32bit RAM block, the relations in Equation 5.25 gives the

following expression for kam read
(EQ 5.26)

5 Ky xlIs+lIsxl| .\ Is Isx|

RAM.R Ky x 32+ 1024 x 32

—=+X +X

ERAM Read
170R * Xsense) * 32 PreR “ 30 x 1024 Other R

=X

(X
ERAM, ARM3

Equally the expression fordaw wite iS:
(EQ5.27)

E . E E
RAM Write — Storage Precharge
E Xeamw*g=—— — *Xpgw g — *+ X
RAM Write, ARM3 Storage4K,4bytes

Other, W
Prehage,ARM

which by inserting Equation 5.23 fogiagelS:
(EQ 5.28)

E K1><Is+l><(K2+Is—w) lsx|
T O w10 x (32 X (- D) 8 Tz T 0P

RAM Write

ERAM Write, ARM3

Chapter Zhowed that the power consumption of the in the ARM3-cache RAM-block is
400mW during read cycles, while it is 250mW during write cycles. Equdii@éand
5.28 show how these consumptions will scale when the dimension of the cache RAM

changes.

513 Multi-ported RAM

An example of a multi-ported RAM is shown in Figuseb [Weste]. The voltage swings

on the lines are the same as for the single ported RAM. The capacitances on the bit- and
word-lines are clearly higher than those shown for a single ported RAM, see Bigure

due to the larger cell arkaHowever, if this increase in line capacitances is ignored, an
expression for energy consumption in the multi-ported RAM with N read ports and M

write ports can be approximated to:

E = NxE +MXE (EQ 5.29)

Multiport Read,SinglePort Write,SinglePort

1. Extra pass-transistors make the cell wider and extra word-lines makes it higher
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Figure 5.5 Extract of a bit cell from a multi-ported RAM circuit

The expressions forggaq sngleport @Nd Earite sngleport @re those derived in the previous
section. The approximation made above - ignoring the increase in line capacitances due

to the increase in cell-dimensions - becomes less accurate as ‘N’ and ‘M’ increase.

Notice that M and N are the number of active ports, i.e. a non-active port should be

disabled and hence not consume any energy [VLSI][Garside][Yeung].

5.2 Direct mapped cache

Figure 5.6 shows a block diagram of a M-byirect mapped cache withines ofw
word<, in aS-bit address spaEeThe design is different from conventional cache designs
in that every bit in the line which is read out of the Data Storage is ‘sense amplified’. The

reason for this will be explained in Chapter 8.

There are essentially three different types of accesses to a cache:

1. b =log(M)
2. Each 32 bits
3. The sense amplifiers on the output of the tag storage are not shown
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Figure 5.6 Block diagram for a direct mapped cache

1. Avread access from both the Data Storage andapgeStorage.
Given the measurements from Chapter 2, this is the most power

consuming type of access.

2. A write access to both the Data Storage and to digeSTorage.
This happens when the first word is written to the line follow-

ing a miss.

3. Aread in the &g Storage and a write to the Data Storage. This

is the case when a store-instruction hits in a Data cache.

The energy consumption of the three types of accesses will be dengtedt gy and

ERW.

Following a cache miss, the new tag will be written with the first word of the new line,

I.e. a WW-access. The writing of the remaining words in the new line will be considered
as RW-accesses. Given lorg4 words) cachelines and a high hit-rate, the number of
cycles where there is a write to both the tag- and data storage and hence the frequency of
Eww type accesses is very low. In the expressions for energy consumption of the different

cache architectures to be explored in the following sections, each instance of a WW-type
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operation will - for energy consumption purposes - be replaced by a RW-type access. This
can be seen as a conservative replacement as the RW-type access is more energy-

consuming, see sectidb.l.

The rest of this chapter will derive expressions fgg Bnd E,y for a number of different

cache architectures.

The energy consumption of the cache, in case of a hit, can be expressed as:

E E E +E Eu (EQ 5.30)

Request = RAM,TAG+ Compare RAM,Storage+ ux

As the complexity, and hence the energy consumption of the Mux and the compare circuit
only scales with the log(line size) and log(cache size), the energy consumption of these

circuits is approximated to be constant across the cache configurations considered:

E + Const (EQ 5.31)

E RAM, TAG + RAM,Storage

E

Request —

Each access to RAM has a fixed energy cost proportional to the length of the wires
charged or discharged [Mead], thus th@aver consumption in RAM is largely
proportional to the frequency and type of requests. As with all CMOS designs there is a
leakage current and hence some static power consumption, but it is small enough to be

neglected [Mead)].

The results from sectiod.1.2 indicate that the energy consumption per access to the
RAM blocks, Tag and Storage is a function of the number of cachelliaesl especially

of their total bit-width b andls, see Equations 5.265.28.

Assume an ‘M’-byte cache i.e.:
8M = Isx| (EQ5.32)
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By simple substitution in Equation 5.26 (Is replaced by Is + b) and normalization, the

expression for Egg is proportional to:

Ecacherr 0824 % (Is+b) +1x (Is+b) +10144 (EQ5.33)

The expression for Egyy ismore complex asit includes both aread operation from the Tag

storage and a write operation to the data storage:

E 0824 xb+1xIxb+243xIs+16xIsx|+26250 (EQ5.34)

Cache, RW

whereb = S- log,M.

Substituting | with 8M/Is gives:

O MO
Ecacherr U (103 + 7o g (Is+b) +1268 (EQ5.35)

and

E Ols+ (498+34x1s) x M +1202xb+11.6 xbx M + 38181 (EQ536)
Cache, RW S ( : S) |_S . E .
Ecache rw D (IS+1202x b) + (498 + 34 x s+ 11.6 x b) x% +38181 (EQ537)

Analysing these expressions shows that Egra ) rr increases almost linearly with the size

of the cache, M, and with the line size, Is, except for very small values of Is, Figure 5.7.

Energy consumption of read requests Energy consumption of read requests
in direct mapped caches in direct mapped caches

ansumption

Energy Consumption

Energy C

1 L L 1 L 1 g L
a 3 4

Figure5.7 Ecacnerr VS. cachesize and Ecynerr VS linesize
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Figure 5.8 Ecaenerw VS. cache size and Ecygherw VS. line size

Eram rw increases linearly with the cache size, M, but decreases inversely

proportionally with the line size, Is, see Figure 5.8.

Given the general expressions for energy consumption in a cache, as described in
Equation 5.33 and 5.36, the power consumption of the cache is proportional to the

frequency of access:
(EQ5.38)

0 i O O . 0
- FRedpaaq Writebacks x wgx ECache, RR* ER€Gyypie * Miss x whlx ECache, RW
Cache,Total Cycletime x cycles

P

This has assumed a conventional direct-mapped cache architecture. More sophisticated
cache architectures/technologies such as CAT-caching [Wang] or sectored caching

[Seznec2] will change these equations, see section 5.4.

5.3 N-way set-associative caches

Figure 5.9 shows an N-way set-associative cache comprising N directly addressed sub-
caches, each U/Nth of thetotal cache sizel. Requesting aword impliesaccessing all N sets

in parallel and if thereis a hit the requested word is read from the set with matching tag.

1. The sense amplifiers on the tag storage blocks are not shown
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Figure 5.9 N-way set-associative cache
For a total cache size M-bytes, each di-sets will contairM/N bytes of storage; fdr

lines in each seh is given by:

b = S-log ANE (EQ5.39)
and
_ Nxlsxi (EQ 5.40,
8bitg/byte

The expressions fordzche RrRAN Eache ruAhUS become:

E

oM [ O EQ5.41
Cache,RRDNXDDNx|S+ 1035 (Is+h) + 12685 (EQ 5.41)

and

E

ONx Hs+1202 x b+ (498 +34 x Is+ 116 x b) x ' + 38181 (EQ5.42

Cache, RW N xl|s

As was the case for the direct mapped cache in se&tidnthe expressions are more
sensitive to changints than to changing ‘M’. Figure5.10 shows how the energy
consumption increases for increasing ‘N’ and line sige, The graph also shows that the
expression for energy consumption is much more sensitive to ‘N’ thasi. t& Similar

graph (and similar conclusion) can be drawn fesdre rw
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Figure5.10 Ec,nerr VS. degree of associativity for a 8K -byte cache

This result, with that from sectiob.2, suggests that as the energy expressions are more
sensitive to increased line size and to increased associativity than to increased size of the
cache, a large, direct-mapped cache with short cache lines might be more desirable than

a smaller cache with some form of associativity.

5.4 Other cache organizations

Cache designs, such as the ones described above, associate a set of tag bits with eact
cache line as shown in Figure$ ands.9. For an 8K-byte cache with 32-byte lines the
tags bits occupy approximately 7% of the total chip area taken by the cache, dependent on

the degree of associativity given a 32-bit address space:

TotalLinesize = Linesize + Tagsize (EQ 5.43)

The overhead decreases linearly with increasing line lengths. According to
Equations5.33 ands.36, this overhead translates into energy consumption. As the
number of bits in the address space increases so does the number of bits in the tag store.

For a 32-bit address space, the tag storage represents ‘only’ 7% of the area/energy
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= 6.9%

TagOverhead = Tagsize  _ 32~ 09,8192
BM,ngY_:]eS,DM TotalLinesize  32-1log,8192+32x 8

Line
consumptions of the cache. However, if a 64-bit address space is considered the tag store

would occupy 20% of the area of the cache and consume a significant proportion of total

energy consumed, see for example Equation 5.33.

Several techniques to reduce this overhead have been studied. Sectored caching [Seznec]

and Cache Address Tag (CAT-)caching [Wang] have proved to be most promising.

Both techniques exploit the spatial locality in data and instructions further than the
architectures described in sectidn2- 5.3, where many of the tags stored will be

identical. Statistics collected with the HORN-architecture tools have shown that the

Table 5.4 Tg distribution - 8K byte unified cache, Diect mapped, 256 lines

Number of different tags present in Cache at any tim&

Benchmark | 1 2 3 4 5 6 7 8|9 |10
cacti 0.1(299| 00| 0.2|695| 02| 0.0 - - -
dhry 20| 1.2| 05| 125|829 07| 02| - - -
espresso 0.7 00|579| 282 07 02| 07(20|96/| -
fft 00| 97| 24|829| 24| 24| 01| - - -
flex 0.0 39| 09| 57| 09842 02(48|00| -
hello 13| 08|932| 06| 41| - - - - -
stcompiler | 1.1 | 0.9 13.0| 23.5| 20.5| 18.2| 225| 0.3 | - -

a. Format: ’x’ in column 'y’ indicates that there were onlydifferent tags in the
cache in ‘X’ percent of the cycles. 0.0 indicates that a there werefgratit tags
present less than 0.05% of the cycles while -’ means that there were never 'y’ dif-
ferent tags.

number of different tags present in a unified cache at any time during the execution of a
program is very low, see TalBe4. No benchmark had, at any time, more than 9 different
tags present in the cache and only in very few cases here there more than 8 different tags

present. There is thus great redundancy in the Tag storage; this can be exploited to reduce
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the size, as well as the energy consumption, of the cache.

54.1 Sectored caching

The principle of sectored caching as described in [Seznec] is shown in Figure 5.11.
Instead of associating atag with each line atag is associated with a sector comprising a
number of lines, in this case 8. The larger the sectors the fewer tags and hence a smaller
tag-overhead. The results given in Table 5.4 show that the unified cache only ever
contains 9 different tags. A cache with 16 tags and hence 16 sectors will therefore be
sufficient to supply the need for tag store. In a cache with 256 lines it means that the tag
store can be reduced by 15/16 (93%) resulting in an overall reduction in storage of 6.5%
in a 32-bit address space. This reduction in storage will also imply a reduced energy
consumption per cache access. The saving increases with the number of bitsin the address

space.

Although several sectors may hold the same tag, the schemeis not very flexible since the
number of lines per sector isdefined at design time. This can lead to sectors which are not
fully used and therefore an under utilization of the cache. Thereisclearly atrade-off to be
made between fewer tags - and hence lower energy consumption per request - and more

tags, better utilization and higher hit-rate.

/ [ TagO \
| |
I ISectorO
| I
\ /
[ Tagl
| e em e
! |
! I F
2L < I R N
l | SectorN
| |
| I
\ /

Figure5.11 Sectored cache
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The architecture might also have another application in a low-power environment:
Section5.1 showed how the line size is a significant factor in the expression for energy
consumption of a cache. Keeping a short line size implies lower energy consumption per

access. However, shorter lines do normally imply a significant tag-overhead.

[Uhlig] described a technique where the N lines succeeding a line which missed are
fetched into the instruction cache following a miss. One of the results of the paper is
repeated in TablB.5. The table shows how reducing the line size and increasing the
number of lines prefetched increases the performance of the system: For example, a cache
with 16-byte lines which prefetches one line performs better than a cache with 32-byte

lines without any prefetch.

If a sector is considered as one long cacheline, many of the advantages of a cache with
long lines is maintained and the energy consumption of each request is reduced. The
results in Tablé.5 suggest that fetching a sector, for example 4 short lines, would
perform as well or better than fetching one longer line. The tag overhead associated with
this is small (2 bits per line, 11% for a 8K direct mapped cache) but would involve a lower

energy consumption (energy consumption scales with the line size).

Table 5.5 ACPI versusline size and prefetch distance[Uhlig]

Number of Linesize? [bytes] (M)
lines
prefetched
(N) 16 32 64
0 0.439 0.335 0.297
1 0.305 0.271 -b
2 0.270 - -
3 0.260 - -

a. 8K direct mapped instruction cache

b. “-” denote points which are either not reasonable, or that
shows an increase in CPI
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5.4.2 Cache Address Rg-caching

To decouple the storage of the full tag field from its associated dataitems Cache Address
Tag (CAT-)caching [Wang] has been proposed. The principle of CAT-caching is shown

inFigure 5.12.

This avoids some of the limitations of the sectored cache architecture described above. In
the CAT-cache there is no fixed allocation of tag-bits to individual cachelines. A
cacheline links itself to atag-value in the CAT-cache with a pointer, Ptr in Figure 5.12.

There can be avariable number of cachelines associated with each tag in the CAT-cache.

There is an overhead associated with the CAT-cache in that storage is required for the
pointer, Ptr. However, astheresultsin section 5.4 showed, the number of tags which need
to be stored is very low and consequently |, should be small and the size of the pointer
correspondingly small. The total amount of storage and thereby the energy consumption
of the CAT-cache is therefore smaller than in any of the architectures explored above.
This advantage increases with the number of bits in the address space, S. The amount of

storage in a set-associative cache increases significantly when Sincreases from 32 bitsto,

Ptr CachelLines
CAT-Cache A

1,-lines I'-lines

< 11 }
w’'-words
|

o

By

Figure 5.12 CA-cache

91 Energy consumption in caches



for example, 64 bits. In a CAT-cache this need not be the cagés H#d low as indicated

then the size of the CAT-cache is only a fraction of the size of the Data Storage:

Consider an 8K-byte, direct mapped, unified cache, with 32-byte cache lines. The
simulation results from Tabl®.4 indicated that a nine-line CAT-cache would be
sufficient (b=9). In a 32-bit system, the size of the CAT-cache would be ~0.3% of the size

of the data storage; add to this a 4-bit pointer on every cacheline and the total overhead,

Total Size— SizeOfData
Total Size

, 1S 1.8%. In a 64-bit system the overhead would be 2.3%. These
figures should be compared against the storage overhead in a conventional direct mapped
cache: 7.4% in the 32-bit environment and 20% in a 64-bit environment. These are

significant reductions, which clearly will affect the energy consumption of the cache.

The advantage improves with the number of lines in the cache. Shorter lines will therefore
gain most from CAT-caching. Equation 5.15 on page 76 shows that energy consumption
in RAM is very sensitive to the line size. The CAT-cache is therefore a powerful and

energy efficient architecture.

The architecture might appear to provide a slow cycle time due to the sequential nature of
the look-up. Firstly a direct-addressed lookup in the data area where a pointer is fetched

and secondly a lookup in the CAT-cache from which the tag is extracted.

If the CAT-cache is implemented as a Content Addressable Memory (CAM), the lookup
in the CAM can be done in parallel with the access to the data area, and the encoded
position of the matched tag from the CAM storage can be compared with the pointer from
the data area. However, a CAM cell consumes considerably more power that an ordinary

RAM cell used in the set-associative cache, see Chapter 2.
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The value of the CAT cache therefore depends on the ratio between the energy
consumption in a CAM cell and that in a normal RAM-cell and the relative size of tag-

storage in the two systems.

The figures quoted in Chapter 2, indicate that a block of 64 x 22 CAM cells consume
100mW while a 1024 x 32 RAM block consume 332mW; i.e. an energy consumption
ratio per cell of 5:1. Given that the required number of entriesin the CAT-cache is much
smaller than the number of lines in the cache, the CAT-cache architecture may be an
energy efficient alternative to a conventional cache, depending on the number of

cachelines.

Maintaining a CAT-cacheis complicated, especidly if the thereis an insufficient number
of entriesin the CAT-cache and multiple dirty lines have to be identified and written back
to the main memory. The performance implications of a miss in a CAT-cache have
therefore not been investigated here. Further assessment of the CAT-cache is

recommended as a fruitful areafor future research.

5.5 Skewed-associativity

Cache performance is normally optimized by adjusting parameters such as size, line size
and degree of associativity. The size and the line size are normally chosen relatively
freely, within the constraints of the total chip area available, while the degree of
associativity is often limited by other constraints: the designer may choose a direct-
mapped or a 2-way set-associative cache configuration because it is fast and not very
power consuming, or a fully associative cache because it will yield the best hit-rate.
Unfortunately, a fully associative cache is significantly slower than a 2-way set-
associative cache and typically will be more power consuming. Thismakesit desirableto

use alower degree of associativity and to find other ways of improving the hit rate.
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Figure 5.13 shows the principles of set- and skewed-associativity [Seznec], [Bodin],
[Hilditch]. In the set-associative cache, a given address will be checked against the same
line in each set, while in the skewed associative approach the two skewing furéions,
andPri1, skew the line numbers so that, for a given address, different lines are accessed
in each set. As a consequence of the skewing, two addresses that map to the same line in

‘Set 0’ may not both map to the same line in ‘Set 1'.

Skewed associativity distributes the usage of the cache lines in a set-associative cache
using different line mapping functions. As sectibr8 showed that energy consumption
increases significantly with the number of sets in the cache, the degree of associativity
should be kept low. Consequently, only 2-way skewed-associativity is discussed here

although, in general, a N-way skewed-associative cache can be built.

Consider a cache referencing address, A. When accessing a conventional direct-mapped
or set-associative cache, the bits in A are divided up into three fields, A1(MSB), A2 and
A3 (LSB), where A2 is used to select the lines in the sets, Al is the tag, and A3 is the byte

offset within the line.

In a skewed associative cache Al is split into two partgaAdl AL, where A} contains

the same number of bits as the A2 part, used to select lines. The skewing fuRbii@ns,

Set-associative Skewed-associative

Set 0 Set 1 Ta Set0 .
Ta Tag a

Lineselect

Lineselec Phi0
H—
Phil

Address Address

Y - —
Taé%’(?—>é Tagbits = =

. V Hit Hit
Hit Hit

Figure 5.13 2-way set- and skewed-associative caches
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andPhil, are applied to, Adand A2, to form new, different, line numbers in the different
sets. Figureb.14. shows how the address bits are divided and how the skewing functions

can be implemented using xor-gates.

A simple class of skewing functions, which has been investigated with the aim of
minimizing the delay overhead can be employed if the following criterion is met [Seznec]:

PhiO (address) « Phil (address) = 0 (EQ5.44)

wheree signifies bit-wise ‘and’. This criterion will ensure that bit ‘n” in A2 and,Auill
only be loaded with the input ofie xor-gate each implying minimum effect on the cycle

time of the structure

If the skewing functions employed have inverse functions it is possible to regenerate the
original, physical address when the cache line is written back to memory; in this case the
tag incorporated in the cache line is the same as in a conventional set-associative cache.
If the original address cannot be regenerated, the tag field needs to be extended to contain

both the A1 and A2 parts of the referencing address as for a fully associative cache.

To minimize the delay and the power consumption of the cache it is desirable to keep the
number of tag-bits as low as possible, hence skewing functions which can be reversed

should be chosen.

Tag[t:0] Line[n:0] Offset
Al Al, A2 A3

| [n+1 bitdn+1 bits[ |

Line in setl Line in set0

Figure 5.14 Different mapping functionsin different sets
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Skewed-associativity has an effect equivalent to doubling the ‘conventional’ degree of
associativity, so that a 2-way skewed-associative cache performs as well as a 4-way set-
associative cache [Seznec], for a small overhead in terms of timing. If only simple
skewing functions are considered, the energy consumption of an N-way skewed-
associative cache is estimated to be the same as the corresponding N-way set-associative
configuration. However, as the hit rate is expected to be higher in a skewed-associative

than in a set-associative cache, it is considered more energy efficient.

55.1 Choosing a set of skewing functions

The number of possible skewing functions for an N-way set-associative cache is high.
Here the investigations will be limited to the use of skewing functions built using xor-
gates as illustrated in Figurg14. This class of skewing functions is simple to handle as

it is monadic, and it is therefore simple both to compute the line numbers in the sets in the
skewed-associative cache and to regenerate the memory address if the cache line needs tc

be written back to memory.

Furthermore, to limit the load on each bit in the address paths, each bit in the line field
(A2 in the description above) should be loaded with one xor-gate only; this will minimize
the timing overhead. Work has shown that although some improvement in cache
performance can be obtained by tuning the skewing function for a specific program, the
improvement obtained from skewing is largely independent of the skewing function, for
the class of skewing functions considered, over the range of benchmarks described in

Chapter 4.

5.6 Replacement algorithms

A number of replacement algorithms exist for set-/fully-associative cache configurations.

The most accepted ones are the Random and!l[R&tt] algorithms, where the LRU
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algorithm in general produces the best results. A ‘random’ replacement policy is easy to
implement and requires a minimum of extra hardware whereas a LRU algorithm requires
information for each line regarding the least recently accessed set. This state is very small,
one bit, when targeting a 2-way set-associative cache. For 4-way set-associative
configurations the state can be incorporated into 4 bits [Thakker]. For higher degrees of
associativity the complexity of the LRU algorithm increases rapidly and it is not feasible

to use LRU for higher degrees of associativity. In the case of the 2-way set-associative

cache, the timing overhead for manipulating this ‘state’-information is minimal.

For a skewed-associative cache the relation between the lines and the sets is not as simple
as for the set-associative cache. One address might map tolimesetO and to ‘Ly’ in

setl while another address also maps to ling fh setO but maps to line ‘§ in set1.

To implement a LRU-replacement algorithm it is therefore not enough to compare the
access-pattern between ‘number of sets’-lines. Choosing between the lines selected by a
given address is effectively as ‘bad’ as choosing randomly. For the two-way skewed-
associative caches, however, a replacement policy which has many of the properties of

the LRU-replacement algorithm has been proposed [Seznec]:

“An extra bit is associated with each line in8eThis extra bit is asserted when the

requested word is in sBtand de-asserted when the data is il Set

“On a miss, the extra bit of the line selected inOsistread: when this tag is 1, the

missing line is written in set, otherwise the missing line is written in 86t

This replacement algorithm will be referred to as Pseudo-LRU. Note it has the same

hardware requirement as the LRU algorithm in a set-associative configuration. As

1. Least Recently Used
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Table5.6 shows, the pseudo-LRU replacement algorithm yields a performance better

than the Random replacement algorithm; but not as good as that given by true LRU.

However, the table shows how a 2-wsigwed-associative cache with the pseudo-LRU
replacement algorithm performs better than a 2-savassociative with the true LRU

replacement algorithm.

Table 5.6 Performance of eplacement algorithms

Hit Rate in 4K-byte unified, 2-way skewed-associative cache
with 32-byte cache lines
Replacement
Algorithm cacti | dhry | espresso | fit flex | hello | stcompiler
Random 97.6 | 96.7 97.4 98.8 | 97.3 | 93.7 94.7
Pseudo-LRU | 97.9 | 98.1 97.6 99.0 | 97.3 | 93.6 95.0
LRU? 98.1 | 98.3 97.8 99.1 | 975 | 944 95.3
Hit Rate in 4K-byte unified, 2-way set-associative cache
with 32-byte cache line
LRU 97.6 | 96.7 97.2 98.6 | 96.1 | 92.6 94.4

a. Simulated by attaching a 32-bit timestamp to each line.

5.7 Cache timing

The effect of the cache configuration on the access- and cycle-time of a cache was
investigated using the ‘cacti’ [Wilton]; a cache evaluation package developed by Digital
Equipment Coporation This section will describe how the different cache parameters

such as size, line size and associativity affect the timing of the cache.

Figure 5.15 shows how the cache cycle tideereases for increasing line size and how
the cycle time of a cache increases for increasing cache size and increasing degree of
associativity. This is in line with the relationship explained in sectidn The bit lines

in the cache have relatively poor driving characteristics compared to the word lines (see

1. Cacti has also been ported to the HORN-architecture and is used in the investigations as an ap-
plication benchmark.
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Cycle time vs. Cache configuration
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Figure 5.15 Cache cycle time ver sus cache size and or ganization

Figure 5.5 on page 81) and a reduction in the number of cache lines does therefore

improve the cycle time of the cache.

Increasing the associativity is expected to increase the cycle time although the accesses to
the individual sets becomes faster as the size of each set is reduced. Figure 5.16 shows

how the cycle time of the cache increases for increasing associativity:

In a direct-mapped cache, the lookup in the data memory and the setup of the output
multiplexer can be done in parallel with the tag comparisons. The requested word can
therefore be at the output of the cache at the same time as the hit/miss-signal. For a set-
associative cache this is not possible as the hit/miss signal from the tag comparisons is
required before the output multiplexers can be set up correctly. This explains the very
steep increase in cycle time going from a direct mapped cache to a 2-way set-associative

configuration, see Figure 5.16. The increase in cycle time observed for higher degree of
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associativity is partly due to extra internal routing and partly due to the increase in the

complexity of the output multiplexer.

From Figure5.15 and Figureb.16, it can be seen that long cache lines have little effect
on the cycle time for a constant cache size. In general, a small cache with low degree of

associativity, will yield the shortest cycle time.

5.8 Block buffering

It has been suggested, [Hill], [Su], [Bunda], [Okada] that the introduction of a buffer on
the output of the cache, as shown in Figbré&7, will reduce the number of accesses to

the energy consuming memory blocks. The requesting address will be checked against a
‘Tag Buffer’ holding the tag for the data in the Data buffer and hence determine whether
the requested word is in the ‘Data Buffer’. If the contents of the Tag Buffer matches the
requesting address, the word will be fetched from the buffer and the rest of the cache will

not be activated.
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Effectively the Data Buffer forms a small fully-associative level-0 cache, but as the
energy consumption of the cache scales with the dimensions of the cache there is a
considerable energy-saving associated with the introduction of a small level-O cache as
the cost of fetching a word from the buffer is smaller than that associated with fetching a
word from the Data Memory. It follows - within limits [Bunda] - that the longer the

cacheline, and hence the longer the data buffer, the bigger the saving.

The R4300i architecture has a small, two-instruction, block buffer on the instruction
cache in order to reduce the number of references to the cache itself thus reducing the

energy consumption of the cache [R4300i].

The block buffer ‘cache’ should be of type ‘write through’ to the main cache to avoid the
necessity to implement a coherency protocol, which might be complex and could decrease
the performance. It is important that the Tag Buffer contains all information that would
normally be in the tag of a fully associative cache, i.e all the bits of the address except the

offset-bits, see Figur®.17.

| Tag | Index | Offset |
- _Linesize _ _ __ ]
(%]
Tag Memory g: Data Memory
=
=z
| TagBuffer | | Data Buffer
Y
(_ Vvalid & Match ) MUX <
Hit/Miss Data

Figure 5.17 Block Buffering
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Let ‘N1’ signify the number of accesses served by the memory blocks and ‘N2’ the
number of accesses served by the BuffEgSiaccess EMemaceess 1S the ratio of energy
consumption for an access to the Buffers and an access to the Memory Blocks of the

cache. The reduction in energy consumption can therefore be expressed as:

E
N1 + BufAccess x N2

EMemAccess (EQ 5.45)
(NL+N2)

Reduction = 1.00-—

Note that N1+N2 is greater than the total number of accesses as write operations, which
‘hit’ in the block buffer, will both count towards N1 and N2 due to the write through
approach. The system is not in the same way a ‘read-through’ system in that a read from

the cache only counts towards N1.

EBquccess

The precise value ofE

is difficult to determine without implementing the
MemAccess

architecture. However it should be clear that the ratio is much less than 1.0. A first order
approximation is that the ratio scales with the number of lines in the caches. This is an
optimistic assumption as the line size is an important factor in the expression for energy
consumption, especially for caches with few lines, see Equation 5.15. However, if the
block buffer is simply implemented as a latch-register there is almost no energy

consumption associated with fetching a word for the block buffer. The rest of this thesis

approximates the ratio with:

E
BufAccess _ 1 (EQ 5.46)

EMemACCess NbOfSets x NbOfLinesPer Set

Table5.7 shows the reduction in accesses to the Data and Tag memory blocks and the
corresponding reduction in energy consumption if block buffers are introduced in both

instruction and data caches.
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The table shows how the reduction in cache accesses and hence in energy consumption
increase with the line size in the caches. Both the instruction and the data caches were
4K byte, 2-way set-associative. There is a significant reduction when increasing the line
size from 4 words/16 bytes to 8 words/32 bytes while the reduction is smaller when the
linesizeisincreased further to 16 words/64 bytes. It should be observed that the reduction
intrafficisgreater in theinstruction cache (IC) than in the data cache (DC). There aretwo
results for memory access reduction for the data caches. The principal result indicatesthe
percentage of read requests served by the buffer, while the result in parentheses indicates
the percentage of all accesses served (read or write) which could be served only by the
buffer. Theresultsindicate that thereis ahigh degree of spatial locality in the data aswell
asintheinstructions, consequently thereisasignificant reduction in energy consumption

if block buffers are added to a cache design.

Table 5.7 Effect of Block Buffering on cache traffic and energy consumption

Line size: 16 bytes | Line size: 32 bytes | Line size: 64 bytes
Reduction Reduction Reduction
in Data- and | Reduction | in Data- and | Reduction | in Data- and | Reduction
Tag Memory | inenergy | Tag Memory | inenergy | Tag Memory | in energy
accesses | consumpt. accesses | consumpt. accesses | consumpt.
(%] (%] (%] [%] (%] (%]
cacti DC | 22.6 (40.6) 22.5 27.4 (50.4) 27.0 32.4 (57.3) 315
IC 59.0 58.8 66.5 66.0 67.1 66.1
dhry DC | 14.7 (28.2) 14.6 19.3 (35.8) 19.0 22.3 (38.4) 21.7
IC 64.1 63.9 73.6 73.0 77.0 75.8
espresso | DC | 13.5(237) 134 16.7 (28.5) 16.4 14.1 (23.49) 13.7
IC 61.6 614 70.2 69.6 71.8 70.7
hello DC | 14.6 (29.4) 144 19.8 (40.49) 19.5 21.4 422 20.7
IC 48.6 48.4 50.1 49.7 47.7 46.9
Average | DC 16.4 16.2 20.8 20.5 22.6 219
IC 58.3 58.1 65.1 64.6 65.9 64.9

If an instruction-only block buffer was built into the (unified) cachein an ARM processor,
(16-bytes, 4-words, cachelines,) mentioned in Chapter 2 the power consumption could be

reduced considerably as follows:
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Consider an average benchmark where the ratio between accesses to the data and

instruction cache is 1:4 the reduction in power consumption is:

m . 4 O
E + E x (1—AccessReduc, ., 1) 5% PUnicache t Pproc (EQ 5.47)

Reduction = 1-

PU nicache * Pproc

E% + g X (1-0.583) Ex 432mw + 693mwW
S = 9
Reduction = 1 A32MW + 693mW 17.8%

(EQ 5.48)

Block buffering can also improve processor performance considerably [Su]. The cache(s)
will often be on the critical path in the implementation of a pipelined architecture. The
block buffer provides faster access to instructions and data than if the cache itself needs
to be accessed. The rest of the pipeline can therefore be designed to match or exploit the
cycle time of the block buffers and take a small penalty when the request needs to access

the Data and Tag Memories.

As an integrated part of the cache structure the block buffer is expected to have a minimal
effect on the cache cycle time: The cache cycle time increases proportionally with the
number of lines in the cache [Wilton] and introducing the block bufféght therefore

increase the cycle time by as little as than 0.4% for a cache with 256 lines.

59 Fetch and Write Back buffers

The results presented in Table 5.7 showed that the number of references to the caches
could be reduced considerably by the introduction of a block buffer. A significant
proportion of the remaining cache accesses are related to fetching - and in the data cache
writing back - cache lines. Lines are normally fetched and written back word-by-word i.e.

words are written into the cache storage as they arrive from memory. Alternatively the

1. This effectively increases the number of lines in the cache by one. However it depends strongly
on the implementation strategy
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words arriving from memory can be collected in a ‘Fetch Buffer’ and only when all the
words for a cache line have arrived will the contents of the buffer be written into the cache
memory. Similarly, if a cache line is to be written back to memory, the cache line is
fetched into a ‘Write Back Buffer’ from where the individual words are written back to

memory. This reduces the number of accesses to the energy consuming cache further.

Figure 5.18 shows how these two buffers can be integrated into a cache with a block

buffer. The numbers in parentheses explain the sequence of operations following a cache

miss:

(2) Following a cache miss the victim line in the cache is - if dirty - copied
into the Write Back Bulffer.

(2) The words for the new cache line arrive from external memory at a rate

of one word per cycle. They are temporarily stored in the Fetch Buffer.

'

| Fetch Buffer |
©) * N-words

Cachewith N-word
lines (2

©)
| Block Buffer | [ WriteBack Buffer |  [Lword

(4)¢ 1 word (4)l 1word
Rest of the Pipeline External Memory

N-word % (1 N-words

Figure 5.18 Cache with three block buffers
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3) When all N words have arrived from the external memory, the entire

line is written into the cache and into the block buffer.

(4) The execution pipeline is served from the block buffer and the data

Write Back Buffer is written back to memory simultaneously.

The Write Back Buffer should be only one ‘element’ deep and should block the rest of the
pipeline if a cache miss occurs before it has written all the N-words it contains back to

memory. Thus read-after-write hazards are avoided, and no detection circuit is required.

5.10 Gray-coding fetches/writebacks

Gray-coding [Kohavi] is a set of monadic encoding functions which map N numbers in
such a way that Gray-code representation of ‘X’ and ‘(Xoh)l o N’ differs by exactly
one bit. Tablé.8 shows an example of a Gray-encoding of the numbers from 0 to 7. Note

also the single bit-transition between the representations of ‘7’ and ‘0'.

Table 5.8 Gray-coding

Decimal Binary Gray code
Representation | Representation | Representation
0 000 000
1 001 001
2 010 on
3 on 010
4 100 110
5 101 111
6 110 101
7 111 100

For energy efficient designs this encoding can be used to minimize transitions on the
address and data buses [Su]. It would, however, require compiler knowledge of the use of
Gray coding within the processor. In this thesis only schemes which are invisible to the

program execution, i.e. schemes which do not require re-compilation, are considered.
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Gray-coding has therefore been employed only when fetching/writing-back data between

the cache(s) and the main memory and only on the address bus. Words in the cache line

will then be fetched/written back in a Gray code order rather than in the conventional

sequence. This reduces the number of bit-transitions on the address bus by up to 43% for

an 8-word/32-byte cache line. Note that the number of transitions on the address bus will

be independent of choice of word to be fetched first; this is not the case if words are

fetched sequentially. The reduction in bit-transitions on the address busincreases with the

line size, even though the increase is very small for cache lines longer than 8 words per

line, see Figure 5.19.

By counting the number of bit transitions on the address and data buses, a precise measure

can be obtained of the value of fetching/writing back words from cache linesin a Gray-

code order. The bit-transitions have been counted on a HORN-processor system with an

8K byte direct mapped, unified cache with 32-byte (8-word) cachelines. Table 5.9 shows

the saving in bit-transitions due to fetching and writing back cache lines in Gray-code

order instead of aconventional binary sequential order. Notethat for all benchmarksthere

is a considerable reduction in the number of transitions on the address bus and that the
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Figure 5.19 Reduction in bit-transitions on the address bus from Gray-coding
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Table 5.9 Effect of Gray-coding in a 8Kbyte unified cache with 32-byte lines

No of line | Bittrans. on address bus Bit trans. on data bus

fetches and Reduction
Benchmark | writebacks | Sequential | Gray code | Sequential | Gray code [%0]
cacti 301,974| 5,804,045 3,922,835| 28,530,786 28,578,966 5.6
dhry 17,970 347,041 239,239 1,652,856 1,601,969 7.9
espresso 199,134| 4,525,583| 3,190,439| 15,558,612 14,793,959 10.5
fft 30,005 633,333 453,279| 2,875,630/ 2,370,673 195
flex 580,473 15,278,341 10,863,805| 44,159,598 42,696,315 9.9
hello 5,261 139,460 99,362 470,477 463,459 7.7
stcompiler 131,658, 3,076,063 2,158,687 11,154,112 | 10,833,464 9.5

Average Reduction: 10.1

number of transitions on the data bus is affected minimally by the Gray-coding of the
address bus. The large number of transitions on the data bus masks the reductions in
transitions on the address bus, thus reducing the overall effect of the Gray-coding.
Comparing these results to those published elsewhere [Su], it can be observed that while
the reduction obtained on the address bus is comparable, ~33%, the reduction on the data
bus, < 3% see Tab®9, is much less than the 12% reduction quoted in [Su]. The overall
saving is therefore ‘only’ 10.1%. The difference is difficult to explain, but the high
savings reported in [Su] might be a result of careful opcode and register allocation and

data-layout.

Applying this result to the measuremént$ the ARM processor (Chapter 2) for which
10.2% of the power consumption of the processor is consumed in the I/O-drivers and
pads, suggests that the reduction in bit-transitions is equivalent to 1% of the power budget
of an ARMS. This is not a significant reduction but it should be noted that this reduction
in switching activity on the 1/O interface is likely to migrate to the external memory
system. It is not feasible to quantify this saving, however, due to lack of detailed power

information on memory chips. To quantify the saving in the memory a break-down of the

1. PLA structures omitted
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total power consumption is required indicating the current drawn by the 1/O drivers. This

information is not available in the memory chips studied [Hitachi].

5.11 Selectivewriteback

The write back of dirty cache lines represents a significant proportion of the I/O traffic as
shown in Tablé.10. However, not all words in a cache line which are written back to
memory are altered or ‘dirty’. Therefore, if a ‘dirty’ bit is allocated for each word in a
cache line instead of one for the whole line, the number of memory accesses can be

reduced. Tabl&.11 shows the distribution of ‘dirty’ words in the cache lines before they

Table 5.10 Writeback proportion of total 1/0?

Senchmark | Totel0" X 100%
cacti 3.68
dhry 4.16
espresso 10.5
fft 28.6
flex 21.1
hello 21.2
stcompiler 13.9
Average 14.7

a. Cache parameters: 8Kb Uni-
fied, 32-byte/line, Direct Mapped

were written back to memory following a miss. It shows that 94% of all lines to be written
back to memory contain 7 or 8 dirty words, indicating that most words in ‘dirty’ lines need

to be written back.

Let ‘n’ denote the number of dirty words in a cache line. The total reduction in writeback

due to selective writeback can be calculated as:
8

Reduction = % (8-n) xP(n) (EQ 5.49)

n=1
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Table 5.11 Frequency of ‘dirty’ words per cache line

Number of dirty words per line?

Benchmark 1 2 3 4 5 6 7 8

cacti 0.4 0.2 02| 134 0.1 0.1 0.1| 854
dhry 6.2 4.9 2.5 7.4 15 1.2 1.9 74.4
espresso 0.2 0.1 0.1 0.6 0.2 0.2 0.8| 97.9
fft 0.5 0.4 0.1 0.6 0.1 01| 16.1| 822
flex 0.1 0.1 0.1 0.4 0.1 0.1 0.2| 98.9
hello 5.9 1.8 1.8 5.9 0.5 0.9 14| 820
stcompiler 0.3 0.2 0.3 0.4 0.1 0.2 0.3] 98.1
Average 19 | 11 | 07 | 41 | 04 | 04 | 59 | 884

a. In a 8K byte, direct mapped data cache with 32-byte (8-words) cache lines

l.e only 1.7%, based on the ‘average’ numbers in Talle.

Adding the extra dirty bits, increases the size of the lines in the cache by:

_ WordsPerLine—1 o — 01 10 o (EQ 5.50)
Increase = = WordsperLine  100% = (g5 ~g0* 100%

or 2.7% for a 32-byte cache line (8 words). Given that the energy consumption of the
cache is dominated by the line size as shown in se&tibnthe energy consumption of a
cache request increases. Given that the cache consumes approximately 50% of the power
in the processor, see Chapter 2, and the 1/0 only 11%, the reduction in I/O traffic is not
sufficient for the scheme to be energy efficient. The energy efficiency of a conventional
‘one-dirty-bit-per-line’ policy is better than the selective writeback scheme proposed

above.

5.12 Summary

This chapter has shown where, within a RAM block, energy is consumed. The energy

consumption in conventional RAM blocks, such as those designed by a RAM-compiler,
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Is dominated by the sense amplifiers. The sense amplifiers not only consume significant

energy when active, they also have a static power dissipation which cannot be neglected.

A sense amplifier circuit, proposed by [Burd2] has been introduced and analysed, it has
no static power dissipation and a small dynamic energy consumption. The rest of the
simulations therefore assume that the static power consumption could be eliminated or
reduced to a level which could be ignored. Section 5.1.2 described how the energy
consumption of both the precharge circuit, RAM-storage and the sense amplifiers could
be reduced considerably by pre-charging the bit lines in the storage to an intermediate

voltage only.

Based on these observations a number of cache organizations have been investigated and
expressions for the energy consumption of each has been derived. For al organizations
examined, the line size in the cache data memory is the major factor in the energy
expressions. However, as the address space increases, so does the size and importance of
the energy consumption of the tag-storage and hence the significance of the cache
organization. Sections 5.4.1 and 5.4.2 presented two organizations, sectored caching and
CAT-caching, whose energy consumptions are less sensitive to the number of bitsin the

address spaces.

Timing simulations were presented in section 5.7. These showed that the cache cycle
time increases with size and associativity. The conclusion is therefore to incorporate a
cache which is as small as possible to yield the performance required with alow degree
of associativity. A way of improving the performance of a set-associative cache without
affecting the energy consumption and the timing, skewed-associativity, was presented in

section 5.5.
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Gray-coding external memory accesses and the use of selective writeback were discussed
in sections.10 andb.11 as ways of reducing bit-transitions on the external buses. Gray-
coding, was found to have a small beneficial effect on the number of transitions on
external buses; selective writeback reduces the amount of I/O traffic slightly but increases

the size of the Data Memory, and hence its power consumption, due to the extra dirty bits.

The most efficient way of reducing the cache energy consumption was by the introduction
of block buffering, as described in sectiér8. This proposed the fetching of the ‘current’
cache line into a buffer, effectively a level-0 cache, thus reducing the number of accesses
to the Tag and Data memories themselves, (see Flgdieon pagd01). This
architecture is expected to reduce the power consumption of the caches by between 16%
and 65% dependent on the exact cache configurations; this is equivalent to between 7%
and 19% of the total power dissipation if incorporated into an ARM-processor

[OMIMAP]. This buffer architecture will be explored further in Chapter 8 and Chapter 9.
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Chapter 6 Dual instruction branch

The HORN architecture specifies a two-instruction control-transfer structure, see Chapter
3. It comprises a go-class instruction, specifying the target for the control transfer, and a
leap-class instruction, possibly specifying a condition and a leap-shadow; the leap shadow

indicates the place for the control transfer to take place, see Fégure

go taget Condition

|leap shadow{ PC will be overwritten after
~4— thisinstruction if condition
IS met
tamget: ......

Figure 6.1 Go-leap structure

This chapter will examine how such a control transfer instruction (CTI) architecture
affects the execution time for a benchmark and the energy efficiency, EE, of the

processor.

All the investigations and the results described in this chapter form part of the author’s

research.

The compilers, which have been available throughout the project, have never generated
code which specified any leap-shadow. This work has consequently not investigated the

impact of a variable size leap-shadow on performance and energy efficiency.

6.1 Improving hit-ratethrough dual instruction branches

The total number of instructions in a program with this type of CTI-structure is greater
than in conventional CTI architectures, such as the ones found in the MIPS and SPARC

architectures [Farquhar][Weaver]. This increase in ‘number of instructions to be
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executed’ needs to yield a corresponding reduction in CPI for the structure to be

performance efficient.

For example, the dhrystone benchmark executes 686,646 instructions including 98,763
two-instruction CTIs. However, if a conventional branch architecture had been employed
there would only have been

686, 646 — 98, 763 = 587, 883

instructions to execute. In other words; the two-instruction CTI architecture increases the

number of instructions to be executed by 14%.

For this to be performance efficient, the execution time needs to be reduced by 14%
through improvements in instruction cache hit-rate due to prefetching of the branch

targets into the instruction cache, and reduced or eliminated branch penalties.

Due to the increased cache and I/O traffic and hence increased energy consumption in
both the cache and the I/O systems, the reduction in execution time needs to be even more

significant for the architecture to be energy efficient.

6.1.1 Effect on effective hit-rate

One of the underlying ideas behind the two-part CTI is that a go-instruction will have
ensured that the target for a branch is already in the instruction cache when the branch is
taken after the leap shadow. Compared with a conventional, single-instruction branch, the
go-instruction ensures that the instruction stream achieves a higher hit-rate or, in the worst
case, a reduced cache-miss penalty after branches.6l'Aldrows the effective hit-rate

as seen by the instruction streéon a number of benchmarks with a number of cache
configurations. The first column of each cache size denoted ‘No-prefetch’ shows the hit-

rate in the instruction cache if the effect of the ‘go’-instruction is ignored i.e. no prefetch
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Table 6.1 Effect of prefetching on hit-ratein instruction cache

1K bytes 2K bytes 4K bytes 8K bytes
32 bytes/line 32 bytes/line 32 bytes/line 32 bytes/line
Direct mapped Direct mapped Direct mapped Direct mapped
Eff. Hit Rate | Eff.HitRate | gff HitRate | Eff. Hit Rate
[%] [%] [%] [%]

No No No No
Benchmark | prefetch| Prefetch] prefetch| Prefetch] prefetch | Prefetch] prefetch| Prefetch
cacti 91.9 95.2 93.9 96.3 95.2 97.0 98.3 98.8
dhrystone 91.4 96.4 93.2 97.2 94.0 97.3 98.4 99.3
espresso 95.4 98.1 96.6 96.6 97.7 99.0 98.9 99.5
flex 91.4 96.3 93.7 97.6 97.8 99.2 99.2 99.7
hello 85.4 95.0 88.7 95.8 90.7 96.7 95.6 98.2
stcompiler | 90.2 97.0 92.9 96.3 93.9 98.3 95.7 99.0

Is initiated. It is an approximation to the hit-rate that could be expected with a branch

architecture like that in the SPARC architecture [Weaver].

The second column shows the effective hit-rate that can be expected in an implementation
of the HORN architecture. It is assumed that the potential prefetch initiated by the go-
instruction is transparent to the rest of the program execution and that the prefetch will

have completed before the branch is taken.

From a hit-rate perspective the table shows that there is a significant advantage in
introducing the two-part CTI especially for small caches (less than 8K bytes). For larger
caches the gain is reduced. Furthermore, there is a clear advantage for small benchmarks,
such as hello and dhrystone where the spatial locality is low and where compulsory misses

[Patt] dominate.

6.1.2 Performance measurements

The performance of the two-part CTI has been assessed through a large number of
simulations of the all the benchmarks in the suite, see Chapter 4. This thesis will only

report on the results from two of the benchmarks, dhrystone and espresso. The dhrystone
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benchmark has been chosen because it clearly shows how the value of the two-part CTI
is reduced as the cache size increases; while espresso has been chosen because the resul
from this benchmark are typical for the rest of the benchmark suite. &bknd

Table6.3 show two sets of figures for each benchmark:

1. A column denoted ‘no-Prefetch’. This set of simulations have ignored the go-class
instruction completely and have counted them neither towards the number of
instructions nor towards the execution time. This is an approximation to the
execution time on a system with a conventional branch architecture as used in MIPS

and SPARC.

2. The column denoted ‘Prefetch’ shows the results of simulations including the go-
instructions, which count both towards the total number of instructions executed and
the execution time. It is assumed that a go-instruction will have been placed early
enough in the program execution that it will have prefetched the target before the
branch is taken thus eliminating stalls in the instruction flow. This assumption is
clearly very optimistic, especially for the longer memory latency. Furthermore the
column shows, in parentheses, the percentage reduction in cycle count compared

with the number in the ‘no-Prefetch’ column.

Simulations have been carried out for two memory latencies, 5 and 10 cycles. These
approximate to the latencies that can be expected for systems built with either (fast) static
RAM or (slower) dynamic RAM. The memory model assumes that memory banks are
interleaved so that, after the initial latency of 5 or 10 cycles, the remaining words in the

cache line will be filled at a rate of one word per cycle.

The results show that longer cache lines generally perform better and that prefetching

reduces the execution time significantly, by more than 10% for small caches (less than 8K
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Table 6.2 Execution time®, dhrystone

Ing Memory latency = 5 cycles Memory latency = 10 cycles
nst.
cache | Linesize: 16 bytes | Linesize: 32 bytes | Linesize: 16 bytes | Linesize: 32 bytes
size® No No No No
[bytes] | prefetch | Prefetch | prefetch | Prefetch | prefetch | Prefetch | prefetch | Prefetch
1K 1.165| 1.014] 1.192| 0.982] 1.525| 1.219| 1.443| 1.106
(13%) (18%) (20%) (23%)
2K 1.057| 0.976] 1.062| 0.914| 1.350( 1.157| 1.259| 1.009
(8%) (14%) (14%) (20%)
4K 1.017| 0.965] 1.009| 0.905| 1.285| 1.138] 1.185| 0.995
(5%) (10%) (11%) (16%)
8K 0.695| 0.749] 0.699| 0.738] 0.761| 0.788] 0.745| 0.758
(-8%) (-6%) (-4%) (-2%)

a. cycles divided by 1,000,000
b. 100% hit-rate in the data cache is assumed.
c. Only direct mapped caches have been examined.

bytes). For the largest configurations, the cycle count increases due to the increased

number of instructions in the ‘prefetch’-versions and the fact that prefetching does not

have any significant effect on the hit-rate for those configurations, see séctidn

The same set of simulations has been carried out on a significantly larger benchmark,

espresso. The results are shown in Tél8e

Table 6.3 Execution timeab, espresso

I Memory Latency =5 cycles Memory Latency = 10 cycles
nst.
cache Linesize: 16 bytes | Linesize: 32bytes | Linesize: 16 bytes | Linesize: 32 bytes
size® no- no- no- no-
[bytes] | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch
1K 6.143| 6.076] 5.959| 5.669| 7.581| 6.979] 6.842| 6.101
(1%) (5%) (8%) (11%)
2K 5.525| 5.703] 5.373| 5.385] 6.576| 6.372] 6.011 5.699
(-3%) (-0.2%) (3%) (5%)
4K 4937 5.352] 4.862| 5.139] 5.622| 5.802] 5.287| 5.351
(-8%) (-6%) (-3%) (-1%)
8K 4.376| 4.988| 4.345| 4.881] 4.710| 5211 | 4.554| 4.985
(-14%) (-12%) (-11%) (-9%)

a. cycles divided by 1,000,000

b. 100% hit-rate in the data cache is assumed.

c. Only direct mapped caches have been examined.
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For this benchmark only the smallest (1K and8Kes) cache configurations benefit

from prefetching, and the gain is only significant for the long memory latency. Indeed,
prefetching is disadvantageous for the larger cache configurations. This is due to
espresso’s access pattern which yielded hit-rates of over 95% even for a 2K byte cache

without prefetching; thus prefetching can not improve the hit-rate very much.

The ‘hello.world’ benchmark produces results similar to those for ‘dhrystone’, while

‘cacti’, ‘flex’ and ‘stcompiler’ produce results similar to those reported for ‘espresso’.

The results confirm what might have been expected: as the cache size and thereby the hit-
rate increase, the gain from the go-type instructions is reduced. The exact break-even

configuration is a function of the benchmark.

Furthermore, the ‘go’-instruction can clearly not migrate further up the program than the
previous CTI-structure. From the simulation statistics it can seen that the average distance

between CTI-structures is less than 5 instructions, see &abl&hus go- and the leap-

Table 6.4 Average distance between CTls

Distance
Benchmark | [instructions]
cacti 4.60
dhrystone 4.96
espresso 3.73
flex 4.59
hello 4.59
stcompiler 4.28
Average 4.46

class instructions can not, on average, be separated by more than 4.46 instructions
enough to fetch a full cache line, even for short cache lindsy{#6 = 4vords) and short

memory latency (5 cycles). The assumption that the compiler can migrate the go-

1. An unbroken sequence of instructions is thus composed of 4.46 ‘normal’ instructions plus two
instructions related to the CTI, i.e a sequence of 6.46 instructions
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leapZ loopbody

Leap shadow {

Figure 6.2 Example of go-instruction migrating outside loopbody

instructions so far up the instruction stream that prefetching will always have completed,

is therefore very optimistic.

Future releases of the HORN-compiler are not expected to need to plant a go-instruction
within the same basic block as the leap instruction. In case of simple loops, it is expected
that a the compiler will be able to migrate some go-instructions outside loop-bodies as
shown in Figure6.2 and as explained in Chapter 3. This will reduce the instruction
overhead due to the scheme as the go-instruction will be executed only once, rather than

once per iteration.

An approximation to this, which ignores a go-class instruction if the previous go-class
instruction prefetched the same address, has been implemented and examined.
Eliminating ‘unnecessary’ go-instructions reduces the execution time of the benchmarks
as well as reducing the energy consumption in the cache due to fewer references. This
reduces the completion time for the ‘prefetch’ configurations shown in Babland
Table6.3, but not enough to yield an improvement in performance for the largest, 8K

byte, instruction caches.

The results presented here are therefore believed to show a correct trend although the
exact values might change as the compiler technology improves. The two-instruction CTI
is therefore expected to improve the performance for small caches, but the advantage is

expected to decrease with increasing cache size/hit-rate.
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6.1.3 Energy efficiency

The two-instruction CTI will cause more cache traffic and hence a higher energy

consumption than a conventional branch architecture;
. Cache lines may be fetched without being required.

. The increased number of instructions will cause more cache accesses.

Based on the power consumption figures from ChaptidveZenergy efficiency, (EE), of

different instruction cache configurations has been calcdtated

(EQ 6.1)
1

0. linesize . linesize
+ + —_
gmissx— Cache,Write request x ECache,Read missx ———xE

EE =

O
Mem " Eproccored™ cycles

ECache,Rea@nd E;ache,wmescale with the cache parameters, as shown in Chapter 5.

Table6.5 shows the EE for different instruction cache configurations for the ‘dhrystone
benchmark. The ‘Prefetch’-column shows, in addition to the EE value, the improvement

over the ‘no-Prefetch’-results.

The cache architecture used for these simulations was a simple direct-mapped cache
without any of the energy reducing features to be proposed in Chapter 8. The table shows
clearly that the two-instruction CTI-structure has a positive effect on EE for small caches,
but the EE for larger caches (8K and 16K bytes) is lower for the two-instruction CTI than

for the conventional single-instruction CTI.

This decrease in EE is partly explained by the increased number of instructions for the

two-instruction CTI and partly by the reduced effect prefetching has on the cache

1. The cycle time of the processor is assumed to be constant and thus independent of the instruc-
tion cache configuration. The cycle time is therefore left out of the calculations of EE.
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Table 6.5 EE for different cache- and memory configuratiorf§ dhrystone

nst Memory Latency =5 cycles Memory Latency = 10 cycles
nst.
cache | Line size: 16 bytes | Line size: 32 bytes | Line size: 16 bytes | Line size: 32 bytes
size’ no- no- no- no-
[bytes] | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch
1K 0.320| 0.375] 0.246| 0.283] 0.139| 0.179] 0.15 0.140
(17%) (15%) (29%) (22%)
2K 0.396| 0.426] 0.324| 0.365] 0.182| 0.215] 0.159| 0.192
(8%) (13%) (18%) (21%)
4K 0.401| 0.409| 0.344| 0.365] 0.192| 0.216] 0.177| 0.201
(2%) (6%) (13%) (14%)
8K 1.109| 0.864| 0.990| 0.807} 0.767| 0.656] 0.687| 0.605
(-22%) (-18%) (-14%) (-12%)
16K 1.202| 0.768] 1.180| 0.772} 1.066| 0.706] 1.051| 0.715
(-36%) (-35%) (-34%) (-32%)

a. 100% hit-rate in data cache is assumed
b. Direct mapped

performance of a system with a large instruction cache as it does not improve the hit-rate

significantly.

Table6.6 shows the results for the ‘espresso’ benchmark. In contrast to the ‘dhrystone’
benchmark the EE does not improve, even for small cache configurations, with the new
CTl-structure. The two-instruction CTI improves the EE measure only for the smallest

cache configurations with long memory latency (10 cycles).

For all the benchmarks examined it is characteristic that the highesl €8 are found

for cache sizes larger than the limit where the two-instruction CTl is energy efficient. This
section therefore concludes that if the early specification of the branch target is only used
to increase the performance of the instruction cache, the two-instruction CTI improves the

energy efficiency of systems with small caches, but is in general not energy efficient.
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Table 6.6 EE for different cache- and memory configuratiorf§ espiesso

Inst Memory Latency =5 cycles Memory Latency = 10 cycles
nst.
cache | Line size: 16 bytes | Line size: 32 bytes | Line size: 16 bytes | Line size: 32 bytes
sizé’ no- no- no- no-
[bytes] | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch | Prefetch
1K 0.135| 0.132] 0.124| 0.125] 0.065| 0.070y 0.064| 0.070
(-2%) (0.8%) (8%) (9%)
2K 0.175| 0.158] 0.165| 0.154] 0.093| 0.092] 0.092| 0.094
(-10%) (-7%) (-1%) (2%)
4K 0.223| 0.177] 0.209| 0.173] 0.135| 0.118 0.131| 0.118
(-21%) (-17%) (-13%) (-10%)
8K 0.269| 0.179] 0.258| 0.179] 0.200| 0.146] 0.195| 0.147
(-33%) (-31%) (-27%) (-25%)
16K 0.228| 0.133] 0.225| 0.134] 0.195| 0.121} 0.197| 0.123
(-42%) (-40%) (-38%) (-38%)

a. 100% hit-rate in data cache is assumed
b. Direct mapped.

6.2 Reduction of cache miss penalty tlough two-instruction CTI

In addition to prefetching the target of a branch into the instruction cache, as shown above,
the go-instruction can be used to reduce or eliminate the miss-prediction penalty through

speculative fetching of instructions into the first stage(s) of a shadow pipeline [Hill], see

Figure 6.3.

Once the potential target for a CTI instruction is known, an instruction fetch engine can -
speculatively fetch instructions from the target specified by the ‘go’-instruction. This
may be performed in parallel with the fetching of the instructions between the ‘go’-class

instruction and the ‘leap’-class instruction, see Figbire.

Speculative fetching can not proceed far since the prefetched instructions must not affect
the state of the processor in any way. Consequently, only early stages in a pipeline such
as ‘Instruction Fetch’ and ‘Decode’, (see [Patt]) can be completed before this ‘alternative’

instruction flow must stall and wait for the branch condition to be resolved.
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can be evaluated in this
stage.
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Figure 6.3 Doubling the early pipeline stages might eliminate branch penalty

Once the condition has been resolved there is no branch penalty associated with branching
assuming the condition can be resolved in the ‘Fetch op(erand)’-stage, see@-Rjure

This has the effect of replicating the early stages in the pipeline.

This technique for eliminating or reductthe branch penalty clearly increases the
energy consumption. The instruction cache needs to be dual-ported to be able to serve the
two instruction steams. However, it is clear that the utilization of the second port will be
relatively low. Section 5.1.3 has shown that the energy consumption per access increases

with the number of ports in a RAM block.

Table6.4 showed that the average distance between CTI structures is 4.46 instructions;
i.e the average basic block is 6.46 instructions (4.46 ‘normal’ instructions plus two CTI),
while it is only 5.46 if a single-instruction branch is used. Given the pipeline structure of

Figure 6.3, only two instructions can be fetched from the instruction cache before the

1. This assumes that the potential target of the CTI is in the instruction cache, which the previous
section has shown is not always the case. If the target is the cache, some penalty is faced.
However, for the rest of this section, it will be assumed that the target for the branch is already in
the instruction cache.

2. Inthe case where the target is not in the instruction cache it is not expected that two instructions
can be fetched before the branch is taken. In that case the branch penalty is ‘only’ reduced.
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speculative prefetching must stop. The second port on the instruction cache will therefore

only be utilized:

Utilization = 6%173 x 100% = 31.0% of cycles (EQ6.2)

The number of cache requests, and thereby the energy consumption in the cache thus

increases by 31%.

The issue of cache access is closely linked to the issue of variable-size instructions and
instructions, which might straddle cache line boundaries, see Chapter 3. Chapter 8
proposes cache structures which solve this problem. Replicating one of these structures
might also eliminate the need to make the instruction cache dual-ported and thus increase
the energy consumption in the cache. The Dual Cache Line, DCL, architecture, presented
in section 8.3.2, would be particularly suitable for this purpose. However, it might be
necessary to enhance it to contain three or even four cache lines to enable it to serve its
original purpose (composing instructions which straddle cache lines). This involves a
very complicated structure, see Figuset, which requires four tag compares per cycle,

and which therefore will be relatively energy consuming.

Other techniques for reducing/minimizing the branch penalty are therefore required.
[Patt] has shown that a single branch delay slot can be filled in approximately 50% of all
CTis. In those cases the branch penalty is reduced to O for correctly predicted branches;

i.e. prefetching will not have any effect.

In this calculation the number of cycles to execute a benchmark on the HORN

architecture, with the ‘go’-instruction speculatively prefetching from the potential target,
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Figure 6.4 Replication of instruction alignment structure

has been normalized to 1.0. Asssuming a 100% prediction accuracy, the execution of the

same block with a single-instruction branch is:

_ TSingIeInstBranch _ 546 _
100% Accuracy ~ THORN T 6.46

T 0.85 (EQ6.3)

However, with a branch frequency as shown in Téble a branch prediction accuracy
(pa) of 50%, a branch penalty of one cycle and a misprediction penalty of a further one

cycle; the relative execution time is:

(EQ 6.4)
penalty penalty
Terg =T, +pax taken + (1-pa) Nottaken
50% Accuracy 100% Accuracy BranchFrequency BranchFrequency
= 0.85+05X === + 05 % == = 1.12
5.46 5.46

l.e. a 12% increase in execution time compared to the HORN architecture.

For the following evaluation the energy consumption of the instruction cache is
normalized to 1.0 for the case where there is a 100% prediction accuracy of all branches,

I.e only the instructions which are going to be executed will be fetched. Furthermore, all
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fetches carry the same energy cost. Relative to this ideal scheme, the prefetch scheme will

consume the equivalent two extra cache accesses per branch:

- 2 _ (EQ6.5)
Energygeative (Prefetch) = 1+6._46 =131

while a scheme relying upon branch prediction will consume the equivalent to one extra
cache access per branch which is predicted correctly and two extra cache accesses per

miss predicted branch:

L 1 2 _
ENergypeative (Predict) = 0.85+0.5x sa6 T 05%gs = 1.12 (EQ 6.6)
Based on these results the energy efficiency, EE, for the two schemes can be calculated,

Table 6.7 EE for prefetch and branch-prediction schemes - accuracy: 50%

Prefetch Branch Prediction
Enegy 1.31 1.12
Delay 1.00 1.12
E-_ 1
Energy x Delay 0.76 0.80

resulting in Tableé.7. The bottom line in the table shows that the energy efficiency of the
prefetch scheme is not as good as that of the more conventional scheme relying upon

branch prediction. However, the difference is small.

Various branch prediction schemes can be employed to improve the 50% prediction
accuracy assumed above. A number of branch prediction schemes are described in [Patt]
of which the simplest scheme, which simply assumes that branches will be taken,

performs well for a minimum hardware cost.

Simulations show that prediction accuracies of more than 77% can be obtained with

simple schemes such as ‘predict taken’, see TaBle
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Table 6.8 Pediction accuracy for the ‘predict taken’ model

Prediction Accuracy

Benchmark [%0]
cacti 87.4
dhrystone 77.7
espresso 60.9
fft 79.4
flex 79.4
hello 77.9
stcompiler 81.2

Average 7.7

Recalculating the numbers from Tablg with the prediction accuracy from Talbls8

gives the results in Tab&9. The gap between the prefetch model and the more
conventional branch-prediction model has widened as a result of the improved
performance and reduced energy consumption of the branch-prediction model. The
performance of the single-instruction branch prediction scheme is still less than the

performance of the prefetch scheme.

Table 6.9 EE for prefetch and branch pediction schemes - accuracy: 77.7%

Prefetch Branch Prediction
Enegy 1.31 1.08
Delay 1.00 1.08
.1
Energy x Delay 0.76 0.86

6.3 Alternative branch and loop architectures

According to the results in sectio®.2 an energy-efficient architecture would specify
conventional [Farquhar][Weaver], single-instruction CTIs. By letting the branch
instruction itself contain information about the number of the branch delay slots [Mahon],
some increase in code compactness could be obtained - over the MIPS and SPARC
architectures - as not all branch delay slots can be filled [Patt]. This should lead to a higher

hit-rate in the instruction cache as the cache would contain more ‘useful’ code.
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Furthermore, an energy-efficient instruction set architecture should contain ‘touch’
instructions, which the compiler can use to prefetch instructions and data into the
appropriate caches. However, there should be no link between the touch and the branch
instructions as is the case in the HORN architecture between the go- and the leap-class
instructions. Touch-instructions could be placed early in the instruction stream, even
earlier than the equivalent go-instruction could have been placed, thereby increasing the
chance of having pre-fetched the target for the branch into the instruction cache before the
branch is taken, sdagure 6.5. Comparing the ‘HORN code’ and the ‘Energy-efficient
code’ sequences it is clear that the ‘Energy-efficient code’ contains fewer instructions.
The size of the codes is expected to be the %dﬁmsequently the performance of the
instruction cache should be similar, and the overall performance of the ‘Energy-efficient
code’ would be better than that of the HORN-code. The performance of the processor
might even be better (lower CPI) in the ‘Energy-efficient code’ as the ‘touchl’-instruction
has been migrated further up the code than the corresponding ‘go’ instruction in the

HORN-code, thereby increasing the chance that the code in ‘procA’ is present in the

‘C’-code HORN-code Energy-efficient code

o go L1 touchl @procA
leapnZ Ra,0 = L.7F

if (a == 0) exit(1); go ‘exit’ bnﬁ‘Rﬁ!—l

""" leaplink O  call exi

procA(c,a) L1 L1 ..

...... ) go ‘procA’ ﬂup pararreters

------ setup parameters call procA
leaplink O

A
procs procA: procA

Figure 6.5 C-code compiled into HORN code and Energy-efficient code

1. The ‘Energy Efficient code’ might even be smaller than the HORN-code dependent on how the
literal field in the ‘bnZ’-instruction is encoded. If a range of offset sizes is possible the ‘bnZ'-in-
struction might not need to be larger than the corresponding ‘leapnZ’ instruction in the HORN-
code and the overall size of the code is therefore reduced.
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C-code HORN-code Loop-instruction

for (i=0; i < N; i++) goLl _
s += a[i]*bli]; L1:.... o loop N,_S|*ze _
s += a[i]*bli] % s+= ali]*b[i]
i++ DY i++
cmp Ra,i,N
leapNZ Ra,0

Figure 6.6 The principle of a ‘loop’-instruction

instruction cache when the procedure is called. Furthermore, the ‘touchl’ instruction can

be omitted if it is not expected to improve the performance.

A way of reducing the overhead of the branch instructions further would be to introduce
a ‘loop’ instruction, see Figuré.6, which can eliminate the branch penalty completely
for simple loops. The loop instruction would iterate ‘N’ times over ‘size’ instructions. As
the loop-body contains fewer instructions than the corresponding HORN- (or RISC-)
code the execution time is reduced; by a factor dependent on the values of ‘size’ and ‘N’.

This technique is similar to loop-pipelining described in [Bird2].

6.4 Two-instruction CTI in a dual-issue implementation

Previous sections have shown that a two part CTI is not energy efficient in a single

instruction issue implementation of the HORN-architecture.

Although this thesis, in general, considers multiple instruction issue as an
‘implementation-technique’ which consequently is not investigated in the rest of this
thesis, this section will briefly discuss the value of a two-instruction control transfer

structure in a dual-issue implementation of the HORN-architecture.

The benchmark suite has been analysed for register dependencies and the instruction

stream has been re-organised to try to form instruction packets of two instructions, which
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can be issued in parallel. Register dependencies in the packets were not permitted and
each packet could contain only one memory accessing instruction: ‘load’, ‘store’, ‘spill’

or ‘fill. This avoids coherency problems; for example if there were two ‘fill" operations

in the same instruction packet it would not be obvious which one to execute first and

thereby which register gets which value.

The results presented in Taliel0, show that a packet contains an average of 1.44

instructions. Tabl&.4 showed that the average unbroken sequence comprises 6.46

Table 6.10 Average number of instruction issued per cycle

Average number of
instructionsissued
Benchmark per cycle
cacti 1.43
dhry 1.47
espresso 1.44
fft 1.40
flex 1.44
hello 1.47
stcompiler 1.44
Average 144

instructions. Combining these two results shows that an unbroken dual instruction

sequence would contain:

6.461nstructions

Instructions
14—
Issue

= 4.5|ssues (EQ 6.7)

As there are few restrictions as to where within the sequence the ‘go’-instruction can be
placed it would normally be possible to place it in an unused issue slot. Consequently, it
IS not expected that it will be necessary to introduce more issues than if a conventional -

single instruction - branch architecture were adopted.
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Simulation has shown that the average basic block contains 5.34 issues if a RISC style
(single instruction) branch is assumed. If the two-instruction CTI is assumed the average
number of issues increases to 5.69. There is therefore not the same cycle overhead
associated with the CTl-architecture as was the case for the single instruction issue

considered in sectiorgs1 andb.2.

Section6.2 showed how the information from the go-class instruction can be used to
prefetch the target of the branch and thereby eliminate any need for branch prediction by
fetching from both targets. The instruction fetch architecture presented in Eiglucan
also be used in a dual-issue implementation however, the size and complexity of such a
module may make its implementation impracticable. The energy consumption per cycle
will go up as there will be relatively more cycles where two-instruction packets need to
be fetched. The energy consumption in the instruction cache relative to an ‘ideal’ scheme
with 100% branch prediction accuracy and hence no need for prefetching is:

2 (EQ 6.8)

ENergypeative (Prefetch) = 1+5._69 = 135

l.e. an energy increase of 35% per cycle.

As in section 6.2 the more conventional branch architecture together with a simple
‘branch-taken’ prediction scheme and delay slots will have a relative energy consumption

of:

o _ 2 1 _
ENergypeaiive (Prediction) = 094+ (1-0.77) x§.—3-—4+0.77x§4 = 1.23 (EQ 6.9)

This differs by 12% from the energy consumption of the prefetch scheme which has to be
compensated for by the faster execution under the two-instruction CTI architecture for the

scheme to be energy efficient.
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Relative to the single instruction branch, the execution time of a basic block under the
dual instruction scheme will be 23% higher:

= 2 1 _ EQ 6.10
Toud 779%Acc, = 094+ (1-0.77) % st 077 x g = 1.23 ( )

Table6.9 shows the energies and execution times calculated above and calculates the
energy efficiency, EE. The result shows that the energy efficiency is higher for the

prefetch scheme than for the prediction scheme.

Table 6.11 EE for prefetch and branch prediction schemes (dual issue)

Prefetch Branch Prediction
Enegy 1.35 1.23
Delay 1.00 1.23
E=_ 1
Energy x Delay 0.74 0.66

This discussion therefore concludes that the two instruction CTI architecture would be
significantly faster (23%) and more energy efficient that a simple single-instruction
‘predict taken’ branch scheme in a dual instruction issue implementation of the HORN

architecture.

6.5 Summary

This chapter has shown how the two-instruction control transfer instruction architecture
affects cache performance and thereby the energy efficiency for the processor.
Section6.1.1 showed that the structure had a positive effect on the hit-rate for all

benchmarks.

Subsequent sections assumed that the target of a CTI could always be prefetched into the
instruction cache before it was required. This was clearly a very optimistic assumption
especially considering the short average distance between CTIs presented th4lable

Despite this, the increase in hit-rate is not sufficient to compensate for the increased

132 Dual instruction branch



Instruction count, relative to conventional branch and jJump instructions, to have apositive
effect on execution time and energy efficiency except for small caches and long memory

|atencies.

Section 6.2 analysed the effect of the two-part CTI as away of eliminating or reducing
the branch penalty. It was shown that, although there isagain in performance associated
with fetching instructions from both targets of a branch, thisgain isnot sufficient to offset
the significant increase in energy consumption (and complexity) in the instruction cache.
The architecture is therefore not as energy efficient as a conventiona single instruction
branch architecture. Ways of improving the branch prediction were introduced, but these
further widened the difference between the go-leap-scheme and the traditional RISC

branch scheme in favour of the latter.

This section therefore concludes that two-part control transfer instructions may improve
the performance if instructions from both targets are fetched in parallel as described in
section 6.2. Simply using the information in the go-instructions to improve the hit rate
and/or reduce the miss penalty in the instruction cache is not sufficient to make the
scheme perform better than a conventional single-instruction branch. Despite this
potential performance advantage the scheme is not energy efficient due to the increased

number of instruction cache accesses.

In adual issue implementation the performance advantage of the two-instruction CT1 is
so high that it is not offset by the lower energy consumption of the conventional single-
instruction branch, see section 6.4. Thetwo-instruction CTI would consequently perform
better and be more energy efficient than a single-instruction branch in a dual issue

implementation.
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Chapter 7 Register file architectures

7.1 Intr oduction

Registers are the lowest level in the memory hierarchy, i.e. closest to the processor core.
In a RISC architecture [Patt] all instructions operate on registers. An instruction such as
‘addR1,R2,R3’ will read its input operands from register 2 and register 3 and store the
sum into register 1. In a CISC architecture [Robin] one or more of the operands might
come from a memory location, eventually referenced through a register:

‘add R1,R2,offset(R3)'.

[Tiwari] analysed the power consumption in a 486DX2 processor and found that
instructions which accessed only the register file drew 300mA while instructions which
fetched an operand from the data cache drew 430mA. Instructions which wrote their result
to the cache drew 530mA. Instructions which accessed the cache were shown to consume
significantly more energy than the ‘pure’ register instructions. The access to the large data
cache should therefore be kept at a minimum. This can partly be done by specifying a
register file architecture which minimizes the need to spill/fill registers to/from the data
cache. In either class of architecture the register file will be accessed heavily and should

therefore be designed carefully.

Some architectures do not specify a register file as described above. The Hobbit [Argade]
and Transputer [Transputer] architectures use stacks for temporary storage and the Hobbit
also allows memory-to-memory operations. These ‘local-storage’ architectures will not
be discussed further as their performances are difficult to assess without access to

compilers and simulators.
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There are seldom enough registers to hold all the variables required through the execution
of a program, so data must often to be saved to, and later retrieved from, elsewhere in the
memory hierarchy. Fortunately, variables are not used evenly throughout a program. A
local variable in a function will be required only within the function or its setup and return.
Variables will therefore need to be in scope only at various phases in the execution of a
program rather than throughout the whole program. It is not necessary to keep all
variables in registers, only the ones currently in scope. Consequently, the way an
architecture handles allocation and de-allocation of registers affects not only the
performance of the processor but also the energy efficiency as these processes often

involve memory accesses.

The HORN architecture [HORNV3, HORNV5], which forms the basis for this work, has
undergone several changes of register file architecture during the evolution of the project;

this has provided the opportunity to compare a number of register file architectures.

The first architecture described here uses a model where registers are memory mapped
through a pointer; allocating/de-allocating was performed by adjusting this pointer. A
second architecture, which works by renaming registers in a conventional register file, has
also been investigated. This second scheme uses two instructions, spill and fill, to allocate
and deallocate registers. Finally these two architectures will be compared with the

commercially available SPARC register-window architecture [Weaver].

7.2 Temporary storage

The HORN-architecture specifies three types of local storage: Global registers, local
registers and a four element operand queue. The first two types of register will be
described in depth in the following sections, while this section evaluates the value of the

operand queue for performance and energy efficiency.
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As described in Chapter 3, the HORN-architecture defines a four element first-in-first-out
operand queue (OQ). This is intended to store temporary values which need to be accessed
only once. The chapter also showed how the implicit referencing of this queue can be used

to reduce the size of instructions and how it reduces the need for registers.

As Chapter 8 and Chapter 9 will show, the reduced instruction size increases the
performance of the instruction cache and consequently improves the performance and the
energy efficiency of the entire system. Furthermore, fewer registers will need to be saved
and later restored due to register shortage, implying a further improvement in both

performance and energy efficiency.

The HORN architecture allows the queue to be addressed through special bits in the
instruction format, but it can also be addressed through its register alias (register 63).
Accessing a queue through a register alias would allow OQ’s to be added to many other
architectures. As long as the queue has a significant length (>2) it is expected to have a
positive effect on performance as it effectively represents an extension of the register file,

without increasing the number of bits required to access it.

7.3 Memory mapped registers

As well as the OQ, relea8eof the HORN architecture [HORNV3] specifies two other

types of on-chip storage, register:
. 16 global registers ganized in a conventional register file

. 32 memory mapped local registers

where the 32 local registers are mapped to memory through a pointer, LPTR.
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The value of the LPTR is controlled via an instruction ‘adjust local register pointer’,

‘ajlp’. The instruction can take two formats:

1. ajlp <signed constant>
2. ajlpreg
In the first format, the LPTR is updated by adding the signed constant to the existing value

of LPTR. The mechanism can be used to implement overlapping register windows. The

second format overwrites LPTR with the contents of another register.

The architecture suggests that the memory mapped, local registers reside in a separate

register cache backed up by the first level data cache.

Upon a function call the LPTR is decremented as shown in Figureln this way, a
number of new registers are allocated while another set goes out of scope. The contents
of these newly allocated registers will, by definition, be invalid. It is therafote
necessary to fetch the contents of the addresses from the rest of the memory hierarchy, but
only allocate the new registers. The first access to these registers should therefore be a

write which will make the register ‘dirty’.

When a function returns to its caller it deallocates the registers which were allocated when
it was entered. The deallocated registers will typically reside in the register cache and be
marked ‘dirty’. However, according to the architecture specification, [HORNV3], the
registers needot be written back to memory so this potential write-back should be
avoided whenever possible as it is likelp cause an off-chip reference and hence
increase the energy consumption. It is sufficient just to let the de-allocated registers
remain in the register cache and eventually be written back to memory whenever the

cache line is reallocated later. The write-back can be avoided if, upon de-allocation, lines

1. Assuming a high hit-rate in the register cacheddt@ cache is not likely to contain the line
which is written back from the register cache.
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Newly allocated
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prevent write-back in case

of replacement or flushing. <« PTR+32

Figure 7.1 Allocating and de-allocating registers

between the ‘old’ and the new value of LPTR are marked ‘not-dirty’, see comment in

Figure 7.1.

The architecture specifies that registers are allocated, and deallocated, in multiples of
four. It is possible to (de-)allocate any multiple of four registers, but statistics show that

the majority of changes to LPTR are four or eight (see TaBleon pagd41).

When an ‘ajlp’ instruction is issued with a register reference, i.e the LPTR is going to be
overwritten rather than adjusted, the status of the cache lines should not be touched. This

allows efficient handling of interrupts, process and thread changes.

The following sections describe how a register cache can be designed to yield an energy

effective implementation.

7.3.1 Number of ports

The majority of instructions in the HORN architecture are of RISC style, i.e. two source

registers and one destination register. This implies that the register cache needs to be able
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to handle a similar number of accesses per cycle; it should have two read ports and one
write port. Only a single instruction format fails to match this scheme, the ‘st r1, r2, r3’
instructiont which reads three operands. This, infrequently used, instruction format
could be replaced by two instructions: ‘add rt, r2, r3 followed by st r1,rt,0’ and thus avoid
extra hardware only used by this instruction. The penalty for the original instruction
format might not be obvious in a non-pipelined architecture, but if the implementation is
pipelined it will be necessary to add a fourth port to the register file or risk waiting for the

pipeline to drain before the store instruction can be issued.

As many instructions do not use all three registers ports, it should be possible to disable

the ports which are not required for a given cycle in order to save power [Yeung].

7.3.2 Total size

Figure 7.2 and 7.3 show the value of LPTR during the execution of two of the
benchmarks, hello and stcompiler (LPTR was initialized to 1000). Hello is shown because

it is a small benchmark and the variations are therefore easier to see in the figure.
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Figure 7.2 Variation of LPTR during execution, hello

1. The contents of r1 are written to the address given by adding the contents of r2 to the contents
of r3
2. Eventually on the fly
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Figure 7.3 Variation of LPTR during execution, stcompiler

Stcompiler is chosen, as it is considered more representative of user programs and

because it shows a significant deviation towards the end of the execution.

It appears that for most programs LPTR stabilize after an initialization period. For
espresso, the ‘LPTR’ stabilizes in the intervgJl] = [-60,-136] relative to the initial
address. For flex the equivalent interval is [-28,-116]. As each register window contains
32 registers the total number of registers accessed in the ‘relevant’ parts of the program is

equal to J-1,+32. As it can be seen from Tabld this total does not exceed 128 registers

Table 7.1 LPTR limits

Benchmark | 1, I, | 1,-1,+32
espresso -60 | -136 108
flex -28 | -116 120
hello -10 | -132 154
stcompiler | -30 | -290 292

for the first two benchmarks. This means that if the register cache holds 128 words there
should be no misses in the register cache except the compulsory misses. As shown in
Chapter 5, the energy cost associated with fetching a word from a cache scales with the
size of the cache. The energy cost of a hit in a register cache may therefore be small

compared to the cost of accessing the first level data cache which mayby&e8kor
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more. From an energy perspective, it is sensible to insert a ‘small’ register cache and thus

reduce the number of accesses to the more energy consuming first-level data cache.

For stcompiler, see Figuré.3, LPTR stabilizes very quickly and remains in a narrow
band before descending to a relative offset of almost 300 registers. Finally it climbs back
to an offset of around -100. Note that LPTR does not vary randomly between -30 and -
300. It varies within a ‘band’ of fairly constant width. This also explains why stcompiler

performs well even with small register caches, see Tableon pagd47.

Hello stabilizes in the interval [-10,-132]. As Tal@ld shows, the sum,fl,+32) exceeds
128. The fact that this program performs very well anyway is related to its very restricted

register usage, see Tablk8and7.6.

7.3.3 Linesize

The size of a cache line is closely related to the total size of the cache. As stated earlier
the HORN architecture [HORNV3] uses the ajlp instruction to implement register

windows with a variable sized overlap region.

Table 7.2 ajlp offset distribution and frequency

ajlp offset
Benchmark 4 8 12 16 20 24
espresso 33,156 | 36,988 | 7,024 301 0 8
42.8% | 47.7% | 9.1% 0.4% 0.0% 0.0%
flex 133,859| 20,944 | 7,668 470 0 3700
80.3% | 12.6% | 4.6% 0.3% 0.0% 2.2%
hello 474 1,119 370 0 0 44
23.6% | 55.8% | 18.4% | 0.0% 0.0% 2.2%
stcompiler | 63,796 | 31,176 | 6,124 8 0 363
62.9% | 30.7% | 6.0% 0.0% 0.0% 0.4%
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As can be seen in Table2 the majority of ajlp instructions specify offsets of four or eight
words and the register cache line size should reflect this. However, it is not clear whether
which line size would be optimal. The register cache lines should be made short to allow
as great a flexibility as possible and to minimize the traffic towards the rest of the memory
hierarchy in case of misses. Once the line size has been determined the number of lines is

calculated as:

totalsize (EQ7.1)

lines = — :
linesize

i.e. 32 or 16 lines.

As mentioned above, the line size should be as short as possible, i.e. a register cache with
32 lines/4 words per line performs better than a cache with 4 lines/32words per line.
Similarly a 16/8 cache performs slightly better than a 8/16 cache, see Tdbl&s7. It

was decided to measure performance in terms of ‘stalled cycles’, which is the increase in
the number of cycles required to execute a program due to the register cache. A high
number of stalled cycles implies many fetches or writebacks from/to the rest of the
memory hierarchy. The tables also show the stalled cycles as a percentage of the total

cycle count for the configurations.

The results are optimistic because the model assumes that register cache misses will
always hit the on-chip first level data-cache and that the register cache can always access
the data cache with a rate of one word per cycle. This means that a miss on a line costs
‘number of waits per line’cycles if the cache line to be replaced is clean2amdimber
of-words-perline’ cyclesif the line needs to be written back to the data cache. This model

is accurate for small register cache configurations where capacity misses [Patt] dominate.
In these cases the first-level data cache is likely to hold copies of the missing data and the

register cache can therefore be served from it, implying the low miss-penalty. For large
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configurations compulsory misses dominate. Compulsory misses in the register cache can
result in compulsory misses in the first level data cache as well. The likelihood of this is

dependent on the ratio of line sizes in the register cache and the first-level data cache. If
there is a compulsory miss in the data cache, the penalty for the register cache miss is

clearly higher than stated above.

The hit-rate for all cache configurations greater than or equal to 128 wordsy{@$2is

over 99%, see Tablés4- 7.7.

7.34  Associativity

Although the register cache is not believed to be the component which determines the
cycle time of the processor system; it should be fast to allow zero-detection etc. used by
branch instructions to be carried out in the same cycle, see Chapter 6. Usind,“cacti”

Figure 7.4 shows how the cycle time for a single-ported cache increases with the degree
of associativity. Going from a direct mapped cache to a 2-way set-associative cache

increases the cache cycle time by more than 50%.

Furthermore the variation of LPTR in a very limited address space during the execution
of a program, see Figurgs2and7.3, makes it unlikely that the hit-rate of the register
cache will be improved if the associativity is increased. Furthermore a direct-mapped

cache will consume less energy due to a lower overhead in tag-comparisons.

Although the cycle time may not increase linearly with the number of ports, it is believed
that the trend in the results presented for a single ported cache will not change with the
number of ports; i.e. a direct mapped cache with short lines is the most energy efficient

configuration.

1. a cache timing simulator from Digital [Wilton]
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Figure 7.4 Cycletimevs. associativity for a 512-byte - 1 ported cache

7.35 Writeback policy

The writeback policy should be chosen to optimize for energy-efficiency. Of the two

alternatives:
. Write through

. Copy back

copy back is the most energy efficient, especially when the hit-rate is very high. This
policy ensures that accesses to the rest of the memory hierarchy are kept to a minimum.
The cache should use a ‘Write allocate’ [Patt] strategy, since it is very likely that a write

to a register will be followed by a read from the same register later.

It has been assumed that the memory mapped registers (in or out of scope) are never
accessed through regular load and store instructions. This might be difficult to ensure,
especially at the operating system level. It has therefore been suggested a ‘flush’
instruction should be introduced. This would flush the register cache to the next level in
the memory hierarchy, thereby introducing synchronization points. There should be little

dynamic use of such a flush instruction.
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7.3.6 Reaults

Tables7.4- 7.7 show the number of stalled cycles, i.e. the number of cycles the program
execution was stalled, due to register cache misses. Furthermore the tables show the

number of stalled cycles as a percentage of the execution time, se&.Bable

Table 7.3 Execution time assuming 100% hit-ratein register cache

Benchmark Number of cycles?

espresso 7,179,098
flex 10,092,296
hello 66,145
stcompiler 2,549,324

a. 8Kbyte instruction cache and 8ite data cache,
32 bytes per line, direct mapped. Branch penalties
and stalls due to register dependencies are ignored
The number of stalled cycles gets smaller for larger register cache, but it is a wrong to

conclude that a smaller number of stalled cycles is better for energy efficiency, as will be

explained below.

The register cache is assumed to be empty and ‘clean’ before a program starts executing.
This implies that the first access to each line will cause a compulsory miss [Patt] and
hence add ‘number-of-words-per-line’ cycles to the execution time. Hence if a number in
the tables (Tables 7-47.7) is smaller than the total sizef the cache it means that not all

the lines in the cache have been accessed. By looking at the results presented in
Tables7.4- 7.7, one can see that for the respective benchmarks there were only 224, 192,
144 and 304 stalls for a cache with 32 lines each containing 16 words implying a total size
of 512 words. This mean that the utilization of the cache is very low, 44%, 38%, 28% and

59% and unused lines implies wasted energy.

1. size = #lines * ‘line size’
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As the energy consumption of a cache increases with the cache size, the register cache
should be made as small as possible; comparing Tablwith Tables.4-7.7 it can be
seen that the relative performance penalty for building a 128 wegister cache is very

small, well under 1%. The utilization of the cache lines is high.

Table 7.4 Stalled cycles due tcegister cache misses, esggso

#lines 4 8 16 32
line size [words]

4 834,120 | 111,588 | 18,556 1,384
11.6% 1.6% 0.26% 0.02%

8 157,432 | 23,312 1,560 224
2.2% 0.32% 0.02% 0.0%

16 34,128 2,000 224 224
0.48% 0.03% 0.0% 0.0%

32 3,584 256 256 256
0.05% 0.0% 0.0% 0.0%

Table 7.5 Stalled cycles due taegister cache misses, flex
#lines 4 8 16 32
line size [words]

4 1,964,616/ 291,172 6,084 384
19.6% 2.9% 0.06% 0.0%

8 544,984 | 10,976 512 184
5.4% 0.11% 0.01% 0.0%

16 22,176 544 192 192
0.22% 0.01% 0.0% 0.0%

32 832 224 224 224
0.01% 0.0% 0.0% 0.0%

From Table7.2 it can be seen that the most frequent ajlp-offset is either four or eight
words. This should indicate that the line size should be four or eight words. From
examining Table¥.4-7.7 there does not seem to be any advantage in choosing a line size

of eight words. A line size of four words performs better than one of eight words and as

1. The 128 word configurations are highlighted
2. 512 bytes
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Table 7.6 Stalled cyclesdueto register cache misses, hello

#lines 4 8 16 32
line size [words]

4 41,532 12,164 5,068 144
62.8% 18.4% 7.7% 0.22%

8 15,792 5,824 160 144
23.9% 8.8% 0.24% 0.22%

16 5,920 160 144 144
9.0% 0.24% 0.22% 0.22%

32 192 160 160 160
0.29% 0.24% 0.24% 0.24%

Table 7.7 Stalled cyclesdueto register cache misses, stcompiler

#lines 4 8 16 32
line size [words]

4 835,844 | 246,796 | 69,860 4,416
32.8% 9.7% 2.7% 0.17%

8 346,532 | 96,560 6,232 400
13.6% 3.8% 0.24% 0.02%

16 133,168 8,496 416 304
5.2% 0.33% 0.02% 0.01%

32 18,528 448 320 320

0.73% 0.02% 0.01% 0.01%

the energy consumption in a cache is more sensitive to increasing line size than increasing
total-size the shorter 4-byte cache lines also yield better energy efficiency that 8-byte

cache lines.

To determine the most energy efficient register cache configuration it will be assumed that
all instructions access two source operands from the register cache and write one result

back.

To simplify the energy expressions below, this section will assume that read and write
requests consume the same amount of energy despite the findings in Chapter 5.

Equation5.33 is used to assess the energy consumption in the caches.
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Assuming 100% hit rates in the instruction and data caches, the execution time of a system
where both register- and data references are served from the data cache is proportional to
the number of instructions and will be denotgdThe data cache in such a system needs

to be multi-ported to accommodate both register and load/store references.

If a multi-portedregister cache serves the register references, the cycle count increases
due to misses in the register cache. It is assumed that misses in the register cache will have
a 100% hit-rate in the data cache. The increase in cycle count will be denoted ‘Stall’. The
execution time of such a system is thug+TStall’. Note that the data cache does not need

to be multi-ported in such a configuration.

The energy consumption in a system with just instruction and data cagheanbe

expressed as:

Ey = Ecoot E E (EQ7.2)

Core Icache + Dcache, Multiported

while the energy consumption in a system incorporating a register cache can be expressed

as:

E=E +E +E

Core Icache Dcache, Singleported + ERegCache, Multiported (EQ7.3)

As the energy consumption in the instruction cache and the processor core is independent

of the register file implementation they will be left out of the computation:

E E

0 ~ EDcache Multiport (EQ 7.4)

E=E +E

Dcache, Singleport RegCache, Multiport (EQ 7.5)

Section5.1.3 has shown that the energy consumption in a multi-ported RAM scales with
the number of ports. The energy consumption in a multi-ported cache is therefore

approximated to be:

E = NbPorts x E (EQ 7.6)

Cache, MultiPorted Cache, Singleport
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The data cache in the system which serves all references from the data cache is multi-
ported, it must be able to accommodate four accesses per cycle: three register references
and one Id/st reference. The number of ports should thus be 4. However, the number of

active, and thus energy consuming, ports is less than four.

The data cache in the system with a separate register cache need only be single ported.
The register cache, however, should have three ports (NRRgrtall ports in the
register cache are assumed active, and hence energy consuming, when executing

instruction while only one port will be active when cache misses are being served.

Ey can therefore be calculated as:

E, = Inst X NbPorts

0 Dcache, Multiport Epcache, 1port (EQ7.7)

while E is calculated as:
(EQ 7.8)

E = (Instx NbPortsReg+StaII x1) xE + (LdSt+ Stall) xE

RegCache,1Port Dcache, 1Port

The energy efficiency (EE) of a system with separate register cache relative to a system

with a multi-ported data cache, (g)Ecan thus be expressed as:

EE = x EE, (EQ7.9)

Inserting the expression from B,H and T derived above gives:

(EQ 7.10)
EE = NbportsDcacheMultiPort x EE
(Inst+Stall) x (Instx NbPortsgeg * Sall)  Egegiport , (Ldst+ Stall) x (Inst + Stall) 0
| ns'[2 ED 1Port | nst2

The number of active ports in the multi-ported data cache, NBRattSMmuitipordS thus

an important parameter. On average one in three instructions is a memory referencing
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instruction, see sectioh4. The average number of active ports is thus 3.33; three ports

to serve register references plus 0.33 for the memory referencing instructions.

Only a direct mapped, 8Kyte data cache with 32-byte cache lines will be examined.

Tables7.8- 7.11 show the variations in EE/gEor a number of register cache

configurations. Changing the data cache from 8K-byte to 4K- or 16K-byte will not change

the internal ordering, but only the actual values and the relative differences.

Table 7.8 EE/EK, for differ ent register cache configurations, espsso

#lines
line size 4 8 16 32
[words]
4 1.47 1.92 1.98 1.97
8 1.19 1.24 1.24 1.22
16 0.71 0.71 0.71 0.69
32 0.38 0.38 0.38 0.37

Table 7.9 EE/EE, for

Table

differ ent register

cache configurations, flex

#lines
line size 4 8 16 32
[words]
4 1.39 1.81 1.88 1.86
8 1.12 1.20 1.20 1.18
16 0.70 0.70 0.69 0.68
32 0.38 0.38 0.38 0.37

7.10 EE/EK for

differ ent register

cache configurations, hello

#lines
line size 4 8 16 32
[words]
4 0.63 1.29 1.59 1.85
8 0.78 1.01 1.19 1.17
16 0.59 0.70 0.69 0.68
32 0.38 0.38 0.37 0.37
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Table 7.11 EE/EE, for differ ent register cache configurations, Stcompiler

#lines
line size 4 8 16 32
[words]
4 0.96 1.52 1.78 1.87
8 0.92 1.12 1.20 1.19
16 0.63 0.70 0.69 0.68
32 0.38 0.38 0.38 0.37

Values in the tables less than 1.0 indicate that it is more energy efficient to omit a register

cache and build a four-ported data cache.

The optimal configurations are highlighted. The optimal cache size is 128 words (512
bytes), and lines should be short, containing just 4 words (16 bytes). The tables show that

short lines are essential as 5& measure decreases with increasing line size.
0

A cache size of only 16 words is included in the tables. This is clearly too small as version
3.0 of the HORN architecture specifies 32 visible local registers at any time, but it is
interesting to see that despite all the extra traffic towards the data cache and the decreased

performance, it yielded a higher EE than many of the configurations with long lines.

The performance measurements, (Tabies- 7.7) clearly indicate an optimal
configuration of 128 words organized with short cache lines. The energy efficiency
measurements also pointed towards a 128 word cache. For the Flex and Stcompiler
benchmarks a 128 word cache was not the optimal configuration, however, the difference
between the chosen and the optimal configurations for these benchmark is very small

(approximately 1%).
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7.3.7 Summary

Section7.3 has, based on a number of benchmarks, determined the cache parameters for

a register cache:

Total size: 128 words (512 bytes)
Line size: 4 words (16 bytes)
Associativity: Direct mapped

Ports: 2 Read and 1 Write
Write back policy: Copy back, blocking

The register cache is likely to ‘receive’ addresses from a very restricted area of the address
space and the Tag-store in the cache is therefore expected to contain multiple identical
values. Implementing the register cache as either a sectored-cache or CAT-cache, see
Chapter 5, with only 2 or 4 tag-values stored would be likely to reduce the energy

consumption of the register cache without affecting the performance.

7.4 Spill/fill

Release 5 of the HORN architecture [HORNV5] changed the register file architecture. It
still specified 16 global registerggd-g15), 32 local registers|Q-131) and a 4 element

operand queue (OQ), but the local registers were not mapped to memory.

This scheme makes use of ‘spill’ and ‘fill’ instructions. These rename registers and spill/
fill four local registers to/from memory. This means that the local and global registers can
all be held in a conventional register file. Since there are 32 + 16 = 48 registers and the
first element of the operand queue is mapped to register 63, there are 15 unused registers
addresses in the instruction format, see Figidr®, which are intended to contain

constants. Alternatively the operand queue could be a part of the register file.
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Figure 7.5 Register layout

The scheme is similar to the ajlp scheme described in s&c8an that aspill instruction
has much the same effect as an ‘ajlp-4’ instruction afitl astruction the effect of

‘ajlp+4’, see Figure7.6.

Initially this was thought to imply a significant performance penalty (20%) over the
register cache architecture, described in se@ti8nas the four memory references will
block the data cache for four cycles hence preventing other memory referencing
instructions from accessing the data cache. This section proposes implementation
schemes which minimize this penalty by overlapping memory references from the spill/

fill activity as far as possible with other instructions. Simulation results will be presented.

HORN Release 3 HORN Release 5
ajlp -4 spill reg
ajlp +4 fill reg

Figure 7.6 Two register (de-)allocation schemes
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In the ajlp-scheme, presented in seclid} the register cache minimized the traffic to the
larger and hence more energy consuming first level data cache. Data was not moved
repeatedly between the two levels in the memory hierarchy as the spill/fill scheme would
require and minimizing ‘unnecessary’ traffic helps to minimize the energy consumption
and increases performance hence optimizing the energy efficiency, EE. Use of the spill/
fill scheme implies that the first-level data-cache traffic will increase significantly, by as

much as 100%, compared to the scheme presented in sé@tion

7.4.1 The spillffill scheme

The semantics of the spill/fill instructions are such that a small offset counter is required
to map the register numbers in instructions to addresses in the register file. The offset is
decremented by four for a spill instruction and incremented by four for a fill. The registers
which are allocated following a spill instruction are undefined. A simple way of
implementing this is to consider the 32 local registers as a circular buffer and every spill/
fill instruction marks the four registers (to be spilled/filled) as being “unavailable” and
sets off a spill/fill engine. Program execution can then continue and the four registers will
be spilled-to/filled-from memory at the same time as other instructions execute, assuming

there are ports available on the register file for the spill/fill engine access its operands.

As energy consumption grows linearly with the number of ports in the register file
[VLSI], it is proposed to have only three ports on the register file. Thus, if an instruction
requires access to the two read ports and another instruction completes writing to the
register file, the ‘spill/fill" engine will have to stall until a register port becomes available.

Here two things can happen:
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1. Aninstruction sequence does not use all three ports to the regis-
ter file all the time and the spill/fill engine will eventually write/

fetch all the data to/from memory

2. Aninstruction tries to access a register which is reserved by the
spill/fill engine. The instruction issuing will stall while the spill/
fill completes and resume once the register has been freed by

the engine. Progress is thus ensured.

To implement this a register scoreboard is necessary. Scoreboarding should be based
upon the physical address in the register file rather than on the register number itself, as
the mapping changes continuously. This implies that the scoreboard architecture becomes
complicated. It is not sufficient only to check three references per cycle. It will also be
necessary to ‘reser¥dour registers while the spill/fill engine should be able to release a

register once it has been spilled/filled, see Figaré Furthermore it will be necessary to

Data

-
Base Address_ »| Spill/fill  |__Addr.
Engine

To/From D-Cache

Reg

#Free Reg

Scoreboard Local regs.

ABlockRegh A A
@

Fill +4 »| Offset| @2
spill: -4 —» @3

Yvy

Srcl! Dst
Src2

Figure 7.7 Block diagram of egister file

1. i.e. mark them as being used
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‘scoreboard’ the spill/fill engine itself. It will be very complicated to let the spill/fill
engine serve a queue of spill/fill instructions. Hence if a spill or fill instruction is ready to
be issued and the spill/fill engine has not completed a previous spillffill instruction, the

issuing of the new instruction should be delayed.

In addition, it is possible that there could be a load or store instruction in the shadow after
the spill/fill instruction. This could lead to congestion of the bus to/from the first level data
cache. To prevent this and more complicated scenarios, it is proposed that load/store

instructions should be prevented from issuing until the spill/fill process has completed.

7.4.2 Statistics

Simulations show that when using this spill/fill mechanism, the memory ﬂralmiight
increase by up to 100% when compared to the ajlp scheme presented in &&ction
Table7.12 shows how the number of memory references may grow from one memory
reference for every nine instructions to one for every three instructions. The conclusion is
that the spill/fill activity seriously affects the cache reference pattern and increases the

memory traffic significantly. The following sections describe different approaches to the

Table 7.12 Memory access statistics

Instructions Instructions
(Id + st + 4 x spill) (Id+st)

. . I [V.5 of HORN [V.3 of HORN

Benchmark | instructions | spill/fill 2 ld+st architecture] architecture]
espresso 7,179,096| 129,456| 1,260,241 4.04 5.70
flex 10,039,395 166,642| 1,878,977 3.94 5.34
hello 67,382 4,089 10,115 2.55 6.66
stcompiler 2,616,691 146,730| 292,224 2.98 8.95

a. The number of spill/fills was determined by counting the number of ajlp instructions in an
instruction trace under a tool generated with the tools for ¢hgidh 3 of the HORN architecture.

An ‘ajlp n’ was converted into ‘n’ spill/fill instructions. This allows a fair comparison of the two
schemes. Relying upon the compiler that came with the introduction of the spill/fill scheme would
not be fair as it also introduced many other optimizations.

1. defined as traffic towards the first level data cache
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implementation of the spill/fill architecture, but it is clear that there will jpe farmance
degradation compared to the ‘ajlp’ scheme. The different implementations will just limit

the penalty.

The spill/fill architecture implies many more copy operations (between the register file

and the first level data cache) than the earlier memory mapped scheme, séelBable
Table 7.13 References to the 1st level data cache dueto the two schemes

128 word 4* #Spill/Fill -
Benchmark | Register Cache? | instructions

espresso 1384 517,824
flex 384 666,568
hello 144 16,356
stcompiler 4,416 586,920

a. Stalled cycles in a 128 word register cache with short
cacheline, 4 words/line, sealles7.4- 7.7.

The two schemes are believed to lead to equivalent cycle times as both will involve adding
an offset to the register numbers. A lookup in a small 128-word direct-mapped cache is
not believed to be significantly slower than a lookup in a 64-word register file. The cache
timing analysis tool Cacti [Wilton] shows a cycle time of 6.02ns for the cache and a

6.01ns cycle time for the register file, a difference of less than 1%.

The number of references to the large first-level data cache goes up in the spill/fill
scheme, but the energy consumption per register reference is clearly lower than if a 128
word cache was accessed. A cache lookup is more energy consuming than a lookup in a
normal register file, due to the overhead of the tag-store, This overhead might be more
than 100%, depending on the size of the cache and number of bits in the tag-store relative

to the size of the normal register file, see Chapter 5.

Given the number of load/store instructions, together with the number of spill/fill and

register file accesses and the size of the data and the register caches, the following ratio
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will be used to assess the most energy consuming architecture:

Ratio = ETotaI,RegCache (EQ7.1)

Total ,Spill/Fill

If the ratio is greater than 1.0 the register cache architecture will consume more energy
than the spill/fill architecture. Note that the expression favours the spill/fill architecture in
that it assumes that the hit-rate in the data cache will be the same for the two architectures.
Simulations have shown that the hit-rate in an 8K-bytes data cache drops from 98.5% to
97.1% for the espresso benchmark when spill/fill references are passed to it as well as the
load- and store instructions. To simplify the expression the energy consumption of read
and write accesses is assumed the %al&ﬁgta,,RegCaChe and Erotal sill/Fin are thus the

sum of the energy consumptions in the different levels of the memory hierarchy for the
two architectures, based upon the number of accesses to each level. The expression for

Ratio is therefore:

(EQ 7.12)
E O E
. . . Dcache [ =pcache [
inst + (miss+wback) gegcache  15128pegcache %1 + S %+ Idst x (B ool
Ratio = = = et =
i g ; U
inst x DE RegFile D+ spillfill x 4 x RegFile + Dcache O+ Idst x %E Dcache E
RegCache O RegCache ERegCache[| RegCache

In section7.3 the optimal size of the register cache was determined to be 128 words
(512bytes). A reasonable data-cache size ibgte with lines of 3dytes. As the energy
consumption per request is proportional to the number of ports, see Chapter 5, and the
register cache needs 3 ports while the data cache only needs ongg@Hregcache

ratio can be approximated to:

E
Cache, Read,8Kbytes,32bLes

E line
3xE

E

Dcache

(EQ 7.13)
RegCache Cache,Read, 512bytes,16pﬁelS

1. Chapter 5 has shown the difference.
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Inserting the expressions fogfne readrom Chapter 5 gives:

E
__Dcache 1473 (EQ7.14)

ERegCache

Equally for Eregfild ERegcache

3xE
Eneqri RAM, Read,128bytes, 4?3.“—65
E egrile |:| Ine (EQ 715}

3xE
RegCache Cache,Read, 512bytes,16t:)i’Lnee's

ERegFiIe 10.29 (EQ 7.16)

ERegCache

Where the register file is composed of 32 words (lines) each of 4 bytes.

From the four benchmarks selected statistics have been collected, see Téble

Table 7.14 Pogram statistics collected for four benchmarks

espresso flex hello stcompiler
instructions 7,179,096| 10,039,395 67,382 2,616,691
ld/st 1,260,241 1,878977 10,115 292,224
spill/Aill 129,456 166,642 4,089 146,730
miss + writeback in a 128
word register cache with 4 346 96 36 1,104
words per line

Inserting the results from Tablel4 into Equatio”.12 above gives:

(EQ 7.17)
Ratio _ 7179096 + 346 x 4 x (1 +0.73) + 1260241 x 0.73 - oo
espresso ~ 7179006 x 0.29 + 129456 x 4 x (0.73 + 0.29) + 1260241 x 0.73 :
(EQ 7.18)
10039395 + 96 x 4 x (1 +0.73) + 1878977 x 0.73 - 230

RatlOfjex = 10039395 x 0.29 + 166642 x 4 x (0.73+0.29) + 1878977 x 0.73
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(EQ 7.19)

67382+ 36 x4 x (1+0.73) +10115% 0.73
67382 x 0.29 + 4089 x 4 x (0.73+0.29) + 10115 % 0.73

RatioheIIO = = 0.82

(EQ 7.20)

2616691 + 1104 x 4 x (1 + 0.73) + 292224 x 0.73

Ratl Ostcompi ler = 2616691 x 0.29 + 146730 x 4 x (0.73 + 0.29) + 292224 x 0.73

=181

The ratios for stcompiler and flex show that the spill-fill scheme will be less energy
consuming for these benchmarks, even if the hit-rate of the first level data cache decreases
and the energy consumption of the cache increases correspondingly. For the espresso and
hello benchmarks the results indicates that a register cache consumes less energy.
However, analysing the expression for ‘Ratio’ the sensitivity to the number of instructions

Is very high, a smalllecrease in the number of instructions wilhcrease the value of

‘Ratio’. As improved versions of the compiler would be expected to decrease the number
of instructions considerably the ratio for these benchmarks is expected to increase to
beyond 1.0. Consequently the spill-fill scheme is in general less energy consuming than

the ‘ajlp’-scheme.

The performance of spill-fill scheme depends much on its implementation. This will be

assessed in the following sections.

7.4.3 Implementing the spill/fill scheme

When more registers are required, ‘n’ registers are spilled to memory through ‘spill’
instructions and the remaining registers are renamed to give ‘room’ for the new registers.
Similarly, registers can be de-allocated usiilt) ‘instructions. The instructions specify a
register containing a source/destination for the contents of the registers coming into scope

from or going out of scope. The HORN architecture manual [HORNV5] encourages an
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implementation to spill and fill to/from a special ‘spill/fill-cache’, which, in many ways,
is similar to the register cache described in sedtiBnnote however that the ‘active’ set
of registers isi0t mapped to memory. A register cache in this architecture is therefore an

extra level in the memory hierarchy as illustrated in Figiu@

The major difference between the two schemes is that the contents of the new spill/fill
cachemust be coherent with the rest of the memory system. This means that loads from
an address used by a spill have to read the data which was spilled, i.e. the contents of the
spill/fill cache. Similarly the spill/fill cache needs to be updated if a store instruction
writes to an address currently held in the spill/fill cache. Thus the total number of cache
accesses to the storage blocks in the architecture increases significantly as twb caches

need to be accessed for each access.

Load instructions that try to access data which has been spilled, or store instructions that
try to write to an address held in the spill/fill cache are expected to be rare; however the
hardware needs to be able to handle such a situation as the architecture does not provide

ways to synchronize the two caches as was the case in the ‘ajlp’-scheme used in release 3

Release 3 Release 5
Ld/st Inst R%g ;ro;n Inst Ld‘St Inst
Reg from Inst A ~odict
egister
\AA File
Register Cache ]
Spill/Fill | g
(Register)
Cache
. Y ] Y
Data Cache Data Cache

Figure 7.8 Principle difference between Release 3 and Release 5

1. The spillffill-cache and the data-cache.
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Reg from Inst | y/st
\A A (Spill/Fill)

Inst’s

Reg File

I

Data Cache

Figure 7.9 Simulated model

of the architecture. The architecture, described in se¢tRyrused a special form of the
ajlp instruction to ensure coherency. The frequency of that instruction type can be used as
an indicator of the need for register-file/memory coherency it suggests that coherency

problem is not significant; it will only appear once per benchmark, at initialization.

Despite this, iis necessary to maintain coherency between the two caches even though
this is not simple to implement. The coherency constraint has been included to make

process swapping simpler.

Despite the performance advantages of separating the spill/fill cache and the first level
data cache, as shown in FigufeB, the following sections will describe two experiments,
which assume an implementation without the spill/fill cache, see Figg@rdBased on the
results from these simulations the value of building a separate spill/fill cache will be

extrapolated.

7.4.4 Three ways of implementing the spill/fill scheme

Assuming the architecture presented above, spill and fill instructions can be handled in

several ways. This work has explored three options:
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. Firstly, a scheme where a spill instruction is converted into four store instructions
and an add instruction to update the base regiBtés implies a severe perform-
ance degradation, high CPI, but yields a simple implementation with a minimum
of ‘special cases’ to be considered. Fill instructions are handled in a similar man-

ner; the fill is converted into four load instructions and a subtract instruction.

. Secondly a scheme employing a spill/fill engine which works in parallel with the
normal pipeline. This architecture allows the program execution to continue under
some restrictions (to be described later) while the spill/fill goes on in the back-

ground. Some extra hardware will be required but the complexity should be low

. Thirdly, an optimistic and potentially expensive scheme utilises a separate spill/
fill-cache which ‘catches’ all the spill- and fill instructions and spills or fills four
registers to or from the spill/fill-cache in one cycle while the base register is

updated in parallel.

For the second scheme, problems may occur if precautions are not taken: WaR and RaW
hazards [Patt] could occur as well as congestion of the port to the data cache. Furthermore
the number of ports to the register file may be a restriction as the spill/fill engine will
require a Read/Write port to operate. However, simple restrictions ensure that these
hazards do not occur. Instructions from the following list will stall until the spill/fill

operation has completed:

1.  Any instruction which accesses local registers 0 to 3 during a spill
2. Any instruction which accesses local registers 28 to 31 during a fill
3. Any load or store instruction

4.  Any spill or fill instruction

It is obvious that a four cycle penalty (the time it takes to complete the first spill/fill

instruction) should be expected when a spill or fill instruction succeeds another.
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These three models will be investigated in the following sections.

745 Thecache and memory models

The underlying cache model for all the simulation results to be presented later assumes
separate instruction and data caches. The instruction caches are assumed to yield a 100%
hit-rate. The data caches are direct-mapped cache organizations with the following

parameters:

. Total size
. Line size
. Number of cycles for first fetch fromfe¢hip memory

. Number of cycles for successive fetches frofrchfp memory

For off-chip references an assumption about the speed of the processor is necessary as
well. For these experiments the cycle time for the processor design is set to 20ns,

equivalent to 50MHz.

A data-sheet for a typical 4Mx1 Toshiba DRAIVI’OSHIBA] provides the following:

. Random access: 70ns
«  Sequential access: 40ng

. Recovery: 60ns

Conservatively the#cycles forifst fetch fom off-chip memotyparameter is set to 4
cycles, the#cycles for ecovery following memorgfeencéto 2 cycles and thgtCycles
for recovery following off-chipefeences to 3 cycles. These numbers will remain the

same for all the simulations.

1. TC514100ASJ/AZIAFT70
2. Page Access mode.
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746 Reaults

For each of the models described, simulations have been run for the following data cache

configurations:

. Total size: 4K bytes, 8K bytes, 16K bytes

. Line size: 32 bytes, 64 bytes, 128 bytes

. Latency for first fetch from memory: 4 cycles
. Latency for successive fetches: 2 cycles

. Recovery: 3 cycles

7.4.6.1 Model 1, A conservative scheme

In this model fill and spill instructions are converted into five instructions: four load or

store instructions and an update of the offset into the register file.

The results collected from espresso, flex, stcompiler and cacti are presented in the tables
below. As a model where only one register can be spilled/filled per cycle is assumed, there
is a lower limit for the system performance:

_ Inst+ (spill +fill) x4 _ 1+ (spill +fill) x4 (EQ 7.21)

CPI =
Ideal I nst I nst

This yields an optimal CPI of 1.048or cacti, 1.05 for espresso, 1.17 for flex and 1.22
for stcompiler. These values have to be compared against the CPI values shown in
Tables7.15- 7.18 below, which show that a 4K-byte or a 8K-byte data cache with 32-

byte lines performs very well, i.e close to B4

Figure 7.10 summarises the relation between cache size and CPI for a cache line

of 32 bytes.

1. See Tabl&.19 for the number of instructions and the number of spill/fill.
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Table 7.15 Data cache simulations, cacti - CRJ,=1.048

Cache

size| 2K bytes 4K bytes 8K bytes 16K bytes | 32K bytes
Line Hit Hit Hit Hit Hit
size Rate Rate Rate Rate Rate
[bytes] | [%] CPI | [%] CPI | [%] CPI | [%] CPI | [%] CPI
32 09.8| 1.049| 100 | 1.049| 100 | 1.049| 100 | 1.049| 100 | 1.049
64 09.8| 1.049| 100 | 1.049| 100 | 1.049| 100 | 1.049| 100 | 1.049
128 99.0| 1.055| 99.2 | 1.052| 99.2| 1.052| 100 | 1.049| 100 | 1.049

Table 7.16 Data cache simulations, esggso - CPJ.,=1.05

Cache

size| 2K bytes 4K bytes 8K bytes 16K bytes | 32K bytes
Line Hit Hit Hit Hit Hit
size Rate Rate Rate Rate Rate
[bytes] | [%] CPI | [%] CPI | [%] CPI | [%] CPI | [%] CPI
32 93.6| 1.147| 956 | 1.115| 97.6 | 1.084| 99.4| 1.058| 100 | 1.057
64 87.2|1.463| 94.2 | 1.169| 96.8 | 1.107| 99.5| 1.060| 100 | 1.050
128 83.8]2.258| 91.9| 1.492| 95.6 | 1.247| 99.2 | 1.073| 100 | 1.050

Table 7.17 Data cache simulations, flex - CRJ,=1.17

Cache

size| 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes
Line Hit Hit Hit Hit Hit
size Rate Rate Rate Rate Rate
[bytes] | [%] | CPI | [%] | CPI | [%] | CPI | [%] | CPI | [%] | CPI
32 94.0| 1.297| 95.8 | 1.256| 97.6 | 1.223| 99.3 | 1.189| 99.7 | 1.181
64 93.7 | 1.397| 95.6 | 1.309| 97.7 | 1.235| 99.2 | 1.194| 99.7 | 1.183
128 91.8|1.788| 94.1| 1.537| 97.6 | 1.233| 99.1 | 1.221| 99.7 | 1.191

Table 7.18 Data cache simulations, stcompiler - CRJ,=1.22

Cache

size| 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes
Line Hit Hit Hit Hit Hit
size Rate Rate Rate Rate Rate
[bytes] | [%] | CPI | [%] | CPI | [%] | CPI | [%] | CPI | [%] | CPI
32 93.5|1.342| 95.4 | 1.308| 98.4 | 1.255| 99.2 | 1.224| 99.4 | 1.219
64 92.9|1.418| 94.6 | 1.366| 98.1 | 1.268| 99.2 | 1.246| 99.4 | 1.242
128 90.9|1.831| 93.4|1.646| 97.6 | 1.337| 99.0 | 1.287| 99.2 | 1.280
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Figure 7.10 CPI vs. Cache size, Model 1

7.4.6.2 Model 2, A spill/fill engine
The performance of the architecture employing a spill/fill engine is given by the distance
between the spill/fill instruction and the first instruction mentioned in the list in

section7.4.4. The shorter the distance, the more cycles the ‘normal’ instruction flow has

Table 7.19 Distance between spill/fill and first Id/st/spill/fill

Distribution [%]
cacti espresso flex stcompiler
(18.9M1/ (4.8M1/ (10.7M1/ (1.87M1/
Distance 0.23MSP) | 0.06MSF) | 0.46MSF) 0.11MSF)
1 11.0 36.4 45.0 25.9
2 1.0 9.9 21.0 10.2
3 1.8 5.6 1.7 16.6
4 1.3 22.4 4.2 9.2
5 2.9 6.9 8.0 3.5
>5 82.0 18.8 20.1 34.6
CPlgeal 1.001 1.03 1.1 1.10
CPlisk,32bytes/line 1.001 1.059 1.153 1.15

a. Format: MI: Millions of Instructions, MSF: Millions of Spills and Fills
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to be stalled. Tablé.19 shows the distribution of distances between a spill/fill instruction
and the instructions mentioned earlier. Distance 1 means successive spill/fill instructions
or a spill/fill immediately followed by a load or a store instruction. As one of the
assumptions is that only one spill or fill can be handled at a time, this class of sequences
imply the full penalty, four cycles, is taken by the first of any two consecutive spill or fill
instructions. It is thereby assumed that the register update will take place in parallel with
one of the spills/fills. In the case of Distance = 2 the penalty is reduced to three cycles.
Distance = 3 implies a penalty of two cycles etc. Assuming a 100% hit-rate in the data-
cache and based on these numbers the ideal CPI-values can be calculated as:

CPI., . = 1+P(Spillfill) (P(1) x4+P(2) x3+P(3) x2+P(4)) (EQ7.22

ideal

The values for CRleg for the four benchmarks are shown in Tah9 together with the

CPI values obtained with a 16K-byte data cache using the model discussed in the previous
section. The results shows an improvement for most of the benchmarks compared to the
scheme presented in sectiod.6.1. These numbers do not allow for the normal ‘loss’ in
performance due to the instruction cache having a hit-rate of less than 100%. From
Table7.19 it can be seen that data-cache misses from loads and stores alone degrade the
performance by only 0.1% for Cacti, 3% for Espresso, 11% for Flex and 10% for

stcompiler.

The number and the sequence of requests to the instruction cache will remain the same as
under model 1, so it can be assumed that the same hit-rate can/will be obtained. Based on
this assumption and the results from model 1; a better estimate for the CPI under this
model can be calculated. The cycle count will be less than under inddpkendent on

the distance from a spill/fill instruction to the next memory referencing instruction:

nbSpillFill

CPI = CPI modell ™ nbinsi

x (P(2) +2xP(3) +3xP(4) +4xP( 25)) (EQ7.23)
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The results for a 16K-byte data cache with 32-byte cache lines are shown i7.I@ble

As compiler technology improves, it is expected that the number of spills and fills will

decrease. In particular a significant decrease in cases where multiple spills/fills are
required, due to better register allocation techniques would be expected. That will reduce
the “Distance = 1” percentage significantly and thereby increase the value of a separate

Spill/Fill Engine.

7.4.6.3 Model 3, A spill/fill cache

A third implementation of the architecture has been modelled so that the effect of a
separate spill/fill cache can also be observed. This model assumes that all spills and fills
are passed to a separate spill/fill-cache which yields a 100% hit-rate and which is special
in that 4 words can be read from/written to simultaneously. These assumptions may seem
optimistic or unjustified, but simulations have indicated that such a cache does not need
to be very large (256 words) to be ‘self-sufficient’ after compulsory misses have been met
and should therefore not put pressure on the rest of the memory hierarchy. Furthermore,
it has been observed that a load or store instruction never accesses the addresses kept ir

the spill/fill-cache and vice versa.Talle20 shows the results of running simulations and

Table 7.20 Hit-rate in data cachg and CPI assuming a separate spill/fill cache

cacti espresso flex stcompiler
Cache 18.9MI/1.1IMR | 4.8MI/ 1.4AMR | 10.7MI/2.5MR | 1.87MI/0.3MR
Size | Hit Rate Hit Rate Hit Rate Hit Rate
[bytes] |  [%] CPI [%] CPI [%] CPI [%] CPI

2K 99.8 |1.001] 939 |1.0794 928 |1.082] 923 | 1.054
4K 99.9 |1.000f 95.8 |1.053| 954 |1.049| 951 |1.033
8K 100.0 [ 1.000| 974 |1.032] 975 |1.025 97.0 |1.020
16K 100.0 [ 1.000| 99.5 |1.007] 99.0 |1.009, 98.2 |1.012
32K 100.0 [ 1.000| 99.9 |1.001] 995 |1.004, 98.8 |1.008

a.Line size = 32 bytes
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not passing the spill/fill entries to the D-cache. Associated with the name of the
benchmark are two numbers ‘X’'MI / 'y’MR, where ‘MI"’ means Millions of Instructions
and ‘MR’ means Millions of data cache References. As it shown, espresso is the most
memory intensive program in that the ratio ‘x/y’ is only 3 while it is 17 for cacti. Note that
MR has nothing to do with ‘MSF’ mentioned in Ta@ld9. The number of references to

the data cache is significantly lower using this model than under the two other models
explored above, as the spill/fill references have been rembigaate 7.11 presents the

data from Tabl&.20 in a graphical form.

Although the optimal data-cache size is still I6)es (as it was for Models 1&2), a
comparable performance can be obtained with a much smaller data-cache, for example
4K bytes. If the assumptions about a ‘close to’ 100% hit-rate in the spill/fill-cache and no
coherency problems hold, then Model 3 is therefore more energy efficient than any of the

others given a fixed performance requirement.

It may therefore be desirable to build a Bytes data-cache and a bites spill/fill-

cache, which ‘in total’ is smaller than one 1Bites data-cache serving all the types of
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Figure 7.11 CPI vs. data cache size, 32 bytes/line, Model 3
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memory requests. The disadvantage of this is that, although coherency problems have
never been encountered, hardwaagto be provided to detect and handle such problems,

for the reasons listed in sectiong.6.1and7.4.6.2.

To obtain the highest possible performance, a special spill/fill cache needs to be able to
handle requests for 4 words in one cycle. This is relatively simple to implement as one
cache line could simply be 4 words wide (dfies) making the access to the cache very
simple and fast. Assuming that the data is aligned on a 16-byte boundary, the data cache

can be accessed through a block-buffer, see secoon pagd.00 and Chapter 9.

As for energy consumption, a separate spill/fill-cache is likely to address only a very
restricted area of the total address space. Many of the tags present in the cache are
therefore likely to be the same. Chapteras suggested cache architectures, sectored
caching and CAT-caching, which will reduce the energy consumption of such caches by

exploiting the high degree of locality.

747 Summary

The spill/fill architecture replaced the ajlp-architecture to make the porting of operating
systems easier. Secti@t has examined the spill/fill architecture and compared it to the
ajlp-architecture described in the previous section. The spill/fill scheme does not perform
as well as the ajlp-scheme due to the increased number of instructions and the increased
number of accesses to the 1st-level data cache. Furthermore, it is in general more energy
consuming than the ‘ajlp’-architecture, see sectign2. Consequently is it not as energy
efficient as the ajlp-scheme either. Secfiof.6.3 presented the most energy-efficient

way of implementing the spill/fill scheme, a separate spill/fill cache.
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7.5 Register windows (SPARC)

The architectures described above are in some ways equivalent to that of SPARC
[Weaver]. The SPARC architecture specifies eight global registers and 24 local registers
arranged in an overlapping configuration. A SPARC register file might contain many
register windows, but only one will be active at any given instant during execution.
Changing a register window is a side-effect of calling/returning-from a subroutine. The
configuration is shown in Figur@.12. An implementation of the SPARC architecture is
free to implement as many register windows as desired for the performance target. If a
program requires more register windows than available, the operating system is invoked

and more windows are allocated by spilling early register windows to memory.

This means that if a program has a deep call tree, there is a high probability that the
operating system needs to be invoked regularly to allocate more register windows and
similarly later to restore them. Invoking the operating system is time consuming as it

typically includes saving and restoring some of the state of the processor, implying a
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degradation of performance, and consequently represents an overhead to the execution
time. To assess the timing implications of invoking the operating system the following

program was written and run on a SPARC-5 workstation:

void proc(int N)
{
if (N > 0)
proc(N-1);
}

void main(int argc, char *argv[])

{
int index;
for (index = 0; index < 10000; index++)
proc(atoi(argv[1]));

Figure 7.13 shows that the execution time does not increase significantly as the recursion
depth increases from one to five but there is a significant overhead going from a depth of
five to six and beyond. This indicates that the SPARC-5 has 7 overlapping windows;

indicating a total of 128 registejrs.

Execution time vs. recursion depth
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Figure 7.13 Execution time ver susrecursion depth on a SPARC station 5

1. 8 global registers + “number of windows” * 16 registers + 8 registers.
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An approach to minimize this overhead is to let the compiler know how many register
windows are available; it may be able to in-line function calls and thereby minimize the

risk of overflowing the register file.

Comparing the energy consumption of a system with a 128-word register file and a system
with a 128-word register cache is not simple. The 128-word register file should be less
energy consuming given that it contains less stdrdgeéerms of access time the two are
comparablé However, the register window scheme is clearly not as flexible as the two
schemes presented in sectidgh8and7.4 and is therefore expected to cause more

memory traffic implying higher energy consumption.

The earlier schemes allow a finer grain use of the register file since register windows can
overlap by multiples of four registers, whereas the SPARC architecture specifies a fixed
overlap of eight registers. [Muldeshows that for performance the optimal organization

of the overlapping register file with 32 active registers is 8 global, 8 local and 8
overlapping registers (see Figurel?) as implemented in SPARC. [Mulder] shows that

a performance penalty of 15% is encountered if the configuration is changed to 8 global,
16 local and 4 overlapping registers, due to the extra load/store instructions which would
be required to save and restore registers. However, that work assumed a fixed
organization with a fixed number of overlapping registers; i.e. a scheme which is not as

flexible as the HORN scheme, described in secti8n

The fact that register spilling/filling is a side effect of the call/return instructions in the
SPARC architecture has a dramatic impact on the number of instructions to be issued and

thereby on the performance of the system. ChaptasShown that calling a subroutine

1. Register file: 128 registers each 32 bit: = 4096 bits

Register cache: 128 registers each 32 bits + 16 tags each 24 bits = 4480 bits

2. The access time to the cache is dominated by the access time to the data storage rather than the
tag storage.
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requires two instructions in the HORN-architecture while it requires only one instruction
in the SPARC instruction set. Furthermore the HORN architecture would normally insert
one or two spill or fill instructions to (de-)allocate registers. In total this means that the
HORN-architecture needs to execute four instructions for the same functionality as the

‘call’- or ‘return’-instructions in a SPARC-architecture.

The general expression for this overhead is:

Overhead = #pill f#ml +_#Ieapl|nk x 100% (EQ 7.24)
#instructions

Where ‘#spill’ and ‘#fill' denote the number of spill- and fill-instructions in the code.
‘#leaplink’ is the number of ‘calls-to’ plus the number of ‘returns-from’ subroutines/

functions.

Note that with every leaplink-instruction there is a ‘go’-class instruction; the overhead, in
terms of instruction count, is ‘number-of-leaplink instructions’. Spill and fill instructions
are pure overhead as they would be side effects of a ‘call’ or ‘rtn’ instruction in the

SPARC instruction set.

Table7.21 shows the instruction overhead of the HORN-architecture scheme compared
to the ‘conventional’ SPARC architecture scheme described above. As the table shows
there is a significant, 5.45%, instruction overhead associated with the HORN-register file
architecture. This overhead will translate into decreasing performance. However, it is not
possible to quantify this decrease as it will depend on whether the ‘number of register
windows’ contained in the SPARC register file is sufficient, or if the operating system

needs to be invoked as described above.

If the operating system do@st need to be invoked, the instruction count overhead

calculated in Tabl&.21 will translate directly into a performance degradation. However,
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Table 7.21 Instruction overhead with the spill/fill scheme

cacti dhry | espresso| flex hello | stcompiler | Aver
Instruction§ | 18,921,879| 686,059| 4,703,874| 10,685,992 51,366 1,873,152
#Call/Return 277,473| 13,490 38,687 145,10 952 51,327
#Spill+#Fill 262,557 27,971 65,692| 473,075 3,013 110,064
Overhead [%]|  2.85 5.50 2.22 5.79 7.72 8.62 5.45

a. Note that these instruction count and spill/fill numbers are significantly lower that those pre-
sented in @ble7.12 and elsewhere in sectidd. This is due to compiler technology improve-
ments between the releases for version 3 and version 5 of the HORN architecture.

if there is an insufficient number of register windows and the operating system does need
to be invoked, it carries a significant penalty. The gradients of the two parts of the curve
in Figure 7.13 show that it takes approximately 18 times longer to allocate registers once
all the register windows have been used. The number and frequency of register file

overflows varies from benchmark to benchmark.

Statistics collected with the SHADE tools [Shade], see TalI2, show that the number
of register file overflows is small for the benchmarks examined. The implication of the

increased time to allocate registers will have very little impact on the overall execution

time.

Table 7.22 Overflows in SRRC register file

cacti dhry espresso fft flex hello
Instructions 14,291,743 8,740,025| 5,543,933| 42,586,229 5,967,239| 242,555
Call/jmpl 508,671 673,218 99,899 772,648 159,851 16,374
Overflows 120 55 274 58 74 28
Overflow
Catjmpl < 199% | 0,02 0.01 0.27 0.01 0.05 0.17

For applications where constant throughput is important it is clear that the SPARC
architecture has disadvantages for scalable problems where the number of overflows
increases with the parameters. The spill/fill architecture might therefore be desirable
when constant throughput is more important than peak-performance as a given problem

scales.
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76 Summary

This chapter has presented a number of register file architectures and evaluated them in
an energy efficiency perspective. The study has shown that a register cache is very energy
efficient and dependent on the compiler may also outperform than the alternative, spill/

fill architecture.

Section7.2 showed how extra local storage, organized as a queue, improves both

performance and energy efficiency.

Section7.3 presented a register file architecture based on the ‘ajlp’ scheme. The results
indicated that a very small cache (128 words if optimizing for performance, 64 words if
optimizing for energy efficiency) ensures almost no traffic between the register cache and
the first level data cache. However, each register reference consumes much more energy

under this scheme than if the instructions accessed a conventional 32 word register file.

Section7.4 presented an alternative to the ajlp-architecture based on two instructions:
spill and fill. The section proposed three ways of implementing the spill/fill mechanisms.
Model 2, the spill-fill engine yields a significant performance increase compared to the
conservative scheme presented as Model 1, but without the complexity overhead required
by Model 3. Also, Model 2 has the advantage that improvements in the compiler
technology will almost certainly improve the performance, which is not necessarily the

case for Model 3.

It is therefore not obvious which model is the most energy efficient. It will be necessary
to evaluate the cost in terms of the extra hardware required to implement Model 2 and as
mentioned, it is very likely that an extra port on the register file will be required. A slightly

larger register file (32 + 4) might be desirable as it will allow the spilling to be done in the
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background. The resulting configuration may consume as much energy as the separate

Spill/Fill cache presented as Model 3.

Section7.4.2 presented results indicating that the spill/fill architecture is not more energy
consuming than a register cache. However, the register cache yields the best performance.
Overall, the energy efficiency of the register cache is better than the architectures

presented in sectioh4.

The energy efficiency of the SPARC style architecture described in sédian very
dependent on the ‘performance’ of the compiler. If the compiler can keep the number of
‘window’ overflows at a minimum, the data cache need not be accessed very often, and
the energy consumption of the register file is therefore comparable to that of the register
cache presented in secti@r8. Given the smaller semantic content of the HORN-
instruction set, the instruction count, and thereby the execution time, is favouring the
SPARC architecture; so the energy efficiency of the SPARC-architecture might be better
than that of the HORN-architecture. However, if the SPARC register file ‘overflows’ the
performance penalty is more severe than that for any of the HORN architectures as a trap
would normally be generated and the operating system invoked. In those cases the
SPARC register file inot considered as energy efficient as the two architectures proposed
in sections/.3and7.4. Table7.13 showed that register file overflows do not happen very

frequently.
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Chapter 8 Instruction fetching

When specifying a processor architecture one of the most fundamental decisions which
must be taken is the instruction set architecture. Following the introduction of the RISC
concept in the early 1980’s [Patt], processor designs have been classified as either RISC
or CISC, see e.g. [Robin]. This chapter describes existing instruction formats and
evaluates the effect the variable-size instruction format described in the HORN
architecture has on the performance of the instruction cache. Furthermore the chapter
presents three instruction fetch mechanisms which address the issue of instructions

straddling cache lines and thus improves the energy efficiency of the instruction cache.

Section8.1 is an introduction to instruction formats in existing processors and their
implications for the rest of the processor architecture. The section describes how
instructions can straddle cache lines in CISC processors and how some Multi-Instruction-
Issue RISC processor architectures have been defined to avoid multiple cache accesses to

assemble instruction packets.

Section8.2 presents statistics collected as a part of this study which justify the use of
variable-size instructions as a way to improve both performance and energy efficiency of

the instruction cache and hence of the processor system.

Section8.3 presents three cache architectures which improve both the performance and
energy efficiency of a RISC design with variable-size instructions. The novel architecture
described in sectiod.3.3 provides a simple, energy efficient way of virtually eliminating

the performance penalties associated with variable-size instructions.
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8.1 Introduction

RISC instruction sets are characterized by few instruction formats. Operands for
arithmetic and logical instructions are always kept in registers while only load and store
instructions access data in main memory. CISC instruction sets, however, typically
specify numerous instruction formats and operands for instructions may be fetched from

the register file or from memory.

These differences imply that the semantic contents of the instructions in the two classes
of architectures are very different. Consequently, a RISC program will typically contain

more instructions than the corresponding CISC program.

There are processor architectures which are not easy to classify as either RISC or CISC.
For example, the Hobbit architecture [Avgade] retains most characteristics of aRISC, but
specifies variable-size instructions, where the size is dictated by the semantic content of
the instruction. In contrast, the Intel 1960 [Wharton] specifies fixed size 4-byte
instructions?, but retains al the characteristics of a CISC: alarge number of instructions,

addressing modes and primitive data types.

Due to their simple instruction formats RISC architectures are typically simpler to
implement than CISC architectures. It is especially simple to pipeline an implementation
of aRISC architecture, whileit may be more complicated for CISC. Consequently, RISCs
typicaly have shorter cycle times and thus yield compl etion times which are comparable
or shorter than those of CISC processors, despite a higher number of instructions
[Johnson]. Furthermore, the performance of CISC processors does not increase as fast

with the semiconductor technology as that of RISC designs [ Segar].

1. Certain instructions may specify a second word containing constants
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In RISCs the single instruction size is typically the size of the data bus. Simple encoding
makes the decoding simple and modular. The uniform instruction size makes the size of
programs relatively large; even simple instructions such as Rig&1’ will require the

same storage as more complicated instructions such aR1aB8@,R3".

In contrast, CISC instructions are usually of variable sizes. Instruction size depends on the
semantic content and varies significantly. For example, the 68000 instructions [Robin]
vary in size from 1 to 5 Worélsrequiring multiple accesses to the memory hierarchy

before an entire instruction can be composed.

CISC processors often make use of micro programming, where the conventional user-
provided codes are re-coded into sequences of micro-instructions. Some implementations
pipeline the execution of the microcode [Johnson], allowing the fetching of the instruction
to be broken into multiple cycles and the words for a given instruction are therefore only
fetched when required. This can result in long pipelines and very high CPI values as the
next instruction can be issued only once it is clear where it starts; i.e. when the size of the

previous instruction has been determined.

Implementations of modern 64-bit RISC architectures such as the DEC Alpha and the
IBM PowerPC601 [CaseZ2] issue multiple instructions simultaneously. The DEC Alpha
architecture also specifies that instruction packets must be aligned at 8-byte boundaries
for an implementation to yield the optimal performance. Traps are generated if an
instruction packet is not properly aligned [DEC21064] thus, although valid programs
might be written composed of instruction packets which straddle cache lines, the
performance of such programs is significantly reduced relative to an equivalent program

with properly aligned instruction packets. In ‘well-assembled’ programs, instruction

1. a word being defined as the size of the data bus.
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Figure 8.1 Branch to a non-aligned instruction

packets to be issued do not straddle cache line boundaries. Branch instructions may target
an instruction in the middle of a packet. Thiswill cause the entire word-aligned packet of
instructions to be fetched, but only the instruction following the branch target will be
issued. Consequently the following packet of instructions is properly aligned, see
Figure 8.1. Similarly ARM has introduced the Thumb-format [Segar] where two 16-bit
instructions are packed into a 32-bit word. A Thumb code fragment is guaranteed to

contain an even number of instructions.

The HORN-architecture, which forms the basis of the work described in this thesis,
cannot easily be characterized as either RISC or CISC. It retains most of the
characteristics of asimple RISC in that all operations operate on registers; other parts of
the memory hierarchy are only accessed through dedicated |oad/store-type instructions.
Conversely, the architecture differs from a traditional RISC architecture in that its
instructions have variable sizes, see Chapter 3. Instructions can be 1, 2, 3 or 4 bytesi.e
less than or equal to the size of the 32 bit! data bus. There are no constraints on how

instructions are aligned with respect to word boundaries; instructions may therefore

1. TheHORN architecture specifiesa 64 bit databus, but as discussed in Chapter 3 thisthesis con-
sidersit a 32-bit processor
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straddle cache lines. Furthermore, as the size of the opcode field varies between 6 and 10

bits, even the opcode may be split across two cachelines.

Instructions which straddle cache lines are not a significant problem for the Hobbit
processor [Avgade], where instructions can be of 2, 6 or 10 bytes. More than 80% [Slater]
of instructions are of the smallest, 2-byte, format which can always be fetched in one
cycle, given any sensible cache line size. Furthermore, the operands for the larger
instructions are typically fetched from memory. Due to the sequential process of fetching
the data operands for these larger instructions their performance is reduced. The

importance of fetching afull instruction per cycleisreduced as well [Avgade].

8.2 Variable-sizeinstructionsin the HORN architecture

The HORN instruction format differs from that normally associated with a RISC
architecture. There are few restrictions on the size or ordering of instructions and an
instruction may therefore straddle cache lines. For example, thefirst byte of aninstruction
may be in one cache line while the remaining bytes are in another. This would normally
require two accesses to the instruction cache and a cross-bar network to compose the
instruction, with a consequent negative effect on both performance and energy
consumption. The number of instructions which would require two cache accesses is a
function of the instruction sizes and of the length of the instruction cache lines. The
architecture specifies that the variable-size instructions should not affect the instruction

flow/performance.

Table 8.1 showsthe average instruction sizefor the programsin the benchmark suite. The

average instruction size is approximately 3 bytes implying 10 instructions per cache line
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of size 32 bytes. Hence every 10th or #atistruction may require two cache lookups i.e

a 10% degradation in performance relative to a format where such problems do not arise.

Table 8.1 Averageinstruction sizesfor the benchmarks

Average instruction size

Benchmark [bytes]
cacti 3.45
dhry 3.15
espresso 2.93
fft 3.10
flex 3.06
hello 3.1

stcompiler 3.05
Average 3.12

The results in Tabl8.2, however, show that in practice instructions straddle cache lines
less frequently. The results for a 32-byte cache line show that, on average, only 6.65% of
instructions cross cache line boundaries. This difference is due to short basic blocks: non-
broken sequences of instructions which branch before crossing the cache line boundary.
Only cacti is significantly different; as explained in Chapter 4, this benchmark is
characterized by very long basic blocks and is therefore expected to encounter the

problem more frequently.

Table8.2 shows that the frequency of instructions straddling cache lines is very sensitive
to the size of the cache line. This suggests that cache line should be made as long as
possible. However, Chapter 5 has shown that the energy consumption of a cache is also

sensitive to the line size. There is a trade-off to be made.

Taking an energy efficiency perspective, the ‘double accesses’ are doubly degrading in
that they both increase the number of energy-consuming cache accesses, and also reduce

performance as the number of cycles for a program to execute is increased with the

1. corresponding to 10% or 9% of all instructions.
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Table 8.2 Percentage of instructions which straddle cache line boundaries

Cachelinesize
Benchmark | 16 bytes | 32 bytes | 64 bytes
cacti 15.0 8.94 4.62
dhry 14.4 6.92 3.02
espresso 134 6.57 3.36
fft 12.8 5.50 2.13
flex 12.0 6.71 3.40
hello 13.6 5.72 3.40
stcompiler 12.5 6.20 2.29
Aver age 134 6.65 3.17

resulting effect on energy consumption. The EE of the cache design is therefore
significantly lower than if instructions could not straddle cache line boundaries, 12%
lower for a 32-byte cache line:

1 1
EE = — = . = 0.88EE, (EQ81
Erota X time  (LOBBSE, o) * (1.0665time) o :

As the cache-line size increases, the miss rate decreases but past a certain point the
decrease in miss-rate is insufficient to compensate for the increase in 1/O traffic caused by
the longer cache lines. Furthermore, the energy consumption per access increases with the
line size, see Chapter 5. Choosing long cache lines merely because they reduce the
problem of instructions straddling cache line boundaries may not be an energy efficient

strategy.

The reasoning above suggests that the use of variable-size instructions is not an energy
efficient strategy. Tabl8.3, however, shows that the miss-rate in the instruction cache is
reduced, and the performance consequently improved, when a program is compiled for
variable-size instructions rather than for the conventional 4-byte RISC style. For six of the
benchmarks the variable-size instructions reduce the overall miss-rate in the instruction

cache despite increasing the number of references to the cache caused by instructions
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Table 8.3 Instruction cache missratefor 4 byte- and variable-size instructions.

Miss Rate?
[%] I mprovement
Benchmark | 4 bytelnst | Var SizeInst [%0]
cacti 1.9 1.4 26.3
dhry 0.88 1.3 -80.7
espresso 0.94 0.77 13.5
fft 0.60 0.33 45.0
flex 0.84 0.35 58.3
hello 4.20 2.94 30.0
stcompiler 3.25 1.64 49.5

a.Cache parameters:. 8K bytes, 32-byte cache lines, 2-way
set-associative, random replacement.

which straddle cache lines. For the dhry benchmark, however, the increase in instruction
cache references and the cache reference pattern change so much that the miss-rate for the

4-byte instruction format is lower than that for the variable-size instruction format.

Eliminating or reducing the penalties of instructions straddling cache lines will lead to an
improvement in energy efficiency due to reduced execution time. The following section
will describe architectures which reduce the performance penalty signifiaadtlgduce

the number of cache accesses; i.e. architectures which will reduce both the energy
consumption and the execution time; thus improve the energy efficiency of the entire

processor system.

8.3 Instruction fetch mechanisms

Section8.2 showed that reducing the size of instructions improves the hit rate of the
instruction cache, but Tab&2 and Equation 8.1 showed that the number of cache
references increases and the energy efficiency decreases due to the double accesses tha

are required for the instructions which straddle cache lines.

Furthermore it is important to remember that, although the instances of instructions

straddling cache lines may be infrequent (for long cache lines), the implementation must
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accommodate this type of access. Three instruction cache architectures have therefore
been proposed and analyzed to reduce or eliminate the disadvantages of variable-size

instruction while retaining the advantages of improved hit rate.

8.3.1 Thealignment architecture

Instruction Cache

Address

;ST T T T T vn.—bygs ————— I
ontro
Xbar: | n:m cross-bar

Instruction
Fetch
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byt
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Figure 8.2 The alignment architecture
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The first architecture explored is shown in Fig8r2, here n-bytes are fetched into a m-
byte circular buffer, where m > n. The n:m cross-bar facilitates the insertion of n-bytes
from the cache line into any position in the circular buffer. The instruction fetch engine
then fetches instructions from the head of the circular buffer through a head-pointer; while
keeping track of the size of instructions it can fetch complete instructions from any
position in the buffer. A tail-pointer indicates the last valid byte in the buffer. When the
difference between the head-pointer and the tail-pointer is ‘Srtfal'succeeding n-bytes
should be fetched from the cache and inserted into the buffer at the position specified by
the tail pointer. This will overwrite some parts of data from preceding words dependent

on the values of ‘m’ and ‘n’, see Figue3. Besides providing a solution to the issue of

1. to be quantified later
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Figure 8.3 Principle operation of 11 byte circular buffer

cache-line straddling instructions, the number of energy consuming accesses to the cache
is reduced; the cache can also be made simpler by omitting the output multiplexer if the
contents of the entire cache line is fed directly into the input cross bar structure, see

Figure8.2. However, if ‘n’ is less than the line size of the cache, some level of

multiplexing is required.

To determine ‘n’ and ‘m’, the worst-case scenario must be considered. The structure has
been introduced to ensure a high issue rate; i.e. the number of instructions causing two
cache accesses is reduced as much as possible. The worst-case scenario is where thret
bytes of a four-byte instruction are left in the buffer, lacking the last byte before it can be
issued. The circular buffer therefore needs to ensure that the three bytes remain in the
buffer while the succeeding ‘n’-bytes are brought in from the cache. The following

relation must therefore be satisfied:
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To limit the amount of overfetching the difference should be kept at as low as possible i.e:

m=n+3 (EQ 8.3)

The results presented in sect®2 showed that basic blocks are rarely as long as 32
bytes, which indicates that ‘n’ should be kept relatively small. Large values of ‘n’ will
reduce the number of energy-consuming fetches from the cache but will make the cross-
bar more complex. Moreover, the larger ‘n’ the greater the probability of overfetching; i.e
that a control transfer instruction will force the m-byte register to be flushed before all the

bytes in it have been used.

Given this architecture, two cache lookups for a single instruction will be required only
when the target instruction of a CTI straddles two cache lines. Simulation shows that the
number of instructions requiring two cache accesses can be reduced dramatically.
Table8.4 shows the percentage of instructions which require two cache accesses to be
composed, for different line sizes in the instruction cache, assunwrie size.
Comparing these numbers to those in T&8akeit is clear that the performance penalty of
variable-size instructions has been reduced significantly by introducinglitgysnent
architecture. The performance penalty associated with variable-size instructions has been
reduced from 6.7% to less than 0.5% for a 32-byte cache line. Furthermore it removes the

performance incentive to build long cache lines which are energy consuming.

As shown in Chapter 5 the reduction in cache accesses translates into a reduction in
energy consumption of the cache, as the energy consumed is proportional to the number
of accesses. However, controlling and maintaining the structure with its cross-bars and

finite state machines will be energy consuming.

From an implementation perspective, the choice of ‘n’ is between four bytes (a word) or

the size of a cache line (16, 32 or 64 bytes). Taldeshows the number of fetches from

189 Instruction fetching



Table 8.4 Percentage of instructions which require two cache accesses

Cachelinesize
Benchmark | 16 bytes | 32 bytes | 64 bytes
cacti 0.57 0.47 0.06
dhry 0.17 0.01 0.002
espresso 0.50 0.31 0.15
fft 0.52 0.32 0.21
flex 2.10 1.31 0.46
hello 2.43 0.57 0.19
stcompiler 1.30 0.39 0.20
Average 1.08 0.48 0.21

the instruction cache into the structure for different values &f see Figurd.2. The

number of requests to the cache is reduced significantly when an entire cache line is
fetched into the structure rather than just 4 bytes. Fetching 16 bytes, or more, at a time
reduces the number of requests to the cache by at least 70%. However, there is a trade-off

to be made; as ‘m’, and thereby the cache-line size, increases, so does the amount of

external memory traffic from the cache.

Table 8.5 Number of fetchesfrom instruction cacheinto alignment structure

Quantity fetched into Alignment structure

n=4 bytes n=16 bytes | n=32 bytes | n= 64 bytes
Benchmark I nst Fetch |R®| Fetch | R | Fetch | R | Fetch | R
cacti 18,852,828| 17,157,588 9 | 5,370,467| 72 | 3,460,167| 82 | 2,336,587| 88
dhry 688,173 598,134| 13| 211,585| 69 | 144,929| 79 | 107,785 84
espresso 4,630,599] 3,874,383| 16 | 1,361,445 71| 928,084| 80 | 707,870| 87
fft 1,104,931] 912,559| 17 | 287,090| 74| 181,509| 84 | 117,849| 89
flex 10,688,269] 9,169,008 14 | 3,326,01 | 69 | 2,407,401| 77 | 1,858,854 83
hello 52,175 45,060 | 14 15,989| 69 10,695| 80 8,904 | 83
stcompiler 1,865,924] 1,614,804 13| 593979| 68| 428,284| 77| 332,242| 82
Average 14 70 80 85

a. _
R = Inst — Fetches x 100%

Evaluating the cycle-time of this architecture is difficult, without reference to a detailed

design. Fetching an instruction which is fully contained within the buffer is expected to

Inst

1. m=n+3
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be fast; if, however, it is necessary to fetch a second word from the cache, there is a
significant timing overhead in fetching the word and passing it through the cross bar

before the full instruction can be fetched through the multiplexers.

The energy consumption of the structure is equally difficult to assess. As shown in
Table8.5 there is a significant reduction in the number of requests to the cache and as the
cache normally consumes a significant percentage of the power budget, see Chapter 2, this
should yield some reduction in the total power budget. The energy consumption in the
alignment structure is not negligible however. The m-byte storage block cannot be an
integral part of the cache storage as it is controlled by instruction fetch engine and separate
control logic rather than the program counter. The circuit surrounded by a dotted line in
Figure8.2 must therefore be considered a separate block adding to the overall size of the

design.

In summary, the alignment architecture promises a performance and energy efficient

solution to the problem of instructions which straddle cache lines.

8.3.2 Thedual cachelinearchitecture

Despite its advantages the ‘alignment architecture’ described in s8c3idnfails to
exploit any spatial locality, which might exist within the ‘n’-bytes, brought into the
circular buffer. Once an instruction word is in the circular buffer, all information about
the program counter value is lost. Loop bodies which are short enough to reside in a single
cache line will be fetched repeatedly. To eliminate or reduce this ‘overfetching’ the ‘Dual-

Cache-Line’ (DCL) architecture was developed.

Figure8.4 shows the principle of the DCL architecture. The scheme works as follows: an
instruction cache line is fetched into the ‘Cacheliheegister and its associated tag

placed in the ‘Tag 1’ register. The tag-latches need to contain all the bits from the address,
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Figure 8.4 Dual cachelinearchitecture

which are not used to access the byte within the line; this is equivalent to the number of
bits in the tag-store of a fully associative cache. As long as the PC maps to that cache line,
instructions are fetched from the ‘CacheLine 1’ register. When the byte-offset of the PC
comes close to the end of the cache line the succeeding cache line is fetched into the
‘CachelLine2’ register and the associated tag placed in the ‘Tag 2’ register. Therefore,
when an instructiomnay cross the cache line boundary of ‘Cachellihéhe remaining

bytes of the instruction will already be in the ‘CacheLmeegistell. This works on a

cyclic basis so that when the program execution approaches the end of ‘Caéhékine
successor will be fetched into the ‘CachelLineegister. Note that if the successor is
already in the alternate ‘CacheLine’ register no requests to the instruction cache are
required. This reduces the performance penalty associated with variable-size instructions,
as did the alignment architecture described above. In addition dual cache requests are
reduced even further due to the detection of spatial locality, see §&bl&his is
particularly true for the longer cache lines of 32 obgtes. Furthermore, if a branch is

taken and the target is in either ‘Cachellner ‘CacheLine2’ no cache access will be

1. Assuming the request hit in the instruction cache.
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Table 8.6 Percentage of instructions which cannot be fetched in onecycle

Cachelinesize
Benchmark | 16 bytes | 32 bytes | 64 bytes
cacti 0.6 0.5 0.06
dhry 0.8 0.3 0.1
espresso 1.2 0.2 0.06
fft 0.5 0.3 0.1
flex 2.0 0.8 0.09
hello 1.2 0.3 0.1
stcompiler 1.0 0.2 0.1
Average 1.04 0.37 0.09

initiated. The two registers ‘CachelLifieand ‘CachelLing’ effectively form a small,
dual-ported fully-associative level-0 instruction cache with two lines and a LRU

replacement algorithm.

The DCL architecture requires more storage than the Alignment-architecture; ‘2x(8n+32-
log,M)’ vs. ‘8x(n+3)’ latches registers are required, where ‘M’ is the cache size in bytes

and ‘n’ is the line size in bytes.

Compared to the alignment architecture presented in se®oh, this architecture
eliminates the need for the large cross-bar, see Rggreéhe output from the cache is
simply latched into the ‘CacheLinE or ‘CachelLine2’ as required. The output
multiplexer can be made of separate 2n:1 multiplexers which will allow any bytes in the

output to be selected from any position within the two registers.

The architecture is in many ways similar to the technique used in the Mll-architectures
[Conte] and in the HPA7100LC [Case] to ensure a high content of instructions in a
multi-instruction-issue architecture, where instructions for an instruction packet can come

from multiple - not necessarily successive - cache lines.

1. Dual instruction issue processor

Instruction fetching
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Table8.7 shows how the number of requests to the instruction cache itself is reduced by
74% or more when instructions are fetched from one - or both of the two registers,

‘CacheLinel’ and ‘CacheLine’.

If the numbers in Tabl8.7 are compared to those in Ta8Ib it is clear that this DCL
architecture shows a greater reduction in the number of requests to the cache itself than

the alignment architecture described in sec8dl.

Table 8.7 Number of fetches from instruction cacheinto DCL

Cachelinesize

16 bytes 32 bytes 64 bytes
Benchmark Inst Fetch | R®| Fetches | R Fetch R
cacti 18,921,879 5,333,913| 72| 3,205,773 83 | 2,031,377 89
dhry 688,173] 119,181| 83 75,772| 89 52,811 | 92
espresso 4,822,863 1,247,040 74| 706,542| 85| 444,593| 91
fft 1,104,931 278,167| 75| 150,505| 86 82,148| 93
flex 10,688,269 3,133,591| 71| 2,016,871 81| 1,144,008 89
hello 52,173 13,876| 73 8,618| 83 5,891 89
stcompiler 1,865,924 534,206| 71| 347,720| 81| 234,804| 87
Average 74 84 90
a. R = Inst—Fetch 0

Inst

From an energy perspective, this architecture reduces the number of energy consuming
cache references. The two extra cache line registers can be built as a simple static latch
circuit where the energy cost of reading is negligible compared to that of a RAM-access.
There is an overhead relative to the alignment architecture in that two tag-comparators are
required to compare each incoming address to the contents of the tag-latches, ‘Tag 1’ and
‘Tag 2’ in Figure8.4. The number of bits in these tag-registers might be higher than in the
tag-store in the cache. These two comparators will clearly consume energy, but it is
expected to be minimal. The energy consumption of the design compared to a
conventional cache is therefore approximately proportional to the reduction in references

to the cache, see Tal8e/.
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In summary, the DCL-architecture provides a way of assembling instructions which
straddle cache lines. Due to the increased detection of spatial locality the number of cache
references is reduced further than for the alignment architecture presented above.

Consequently it is a more energy efficient architecture.

8.3.3 TheeXtra-linearchitecture

The results in sectioB.3.2 showed that spatial locality could be exploited by introducing
a small level-0 cache formed by two registers. The number of references to the highly
energy consuming main cache was reduced by 74% or more. Spatial locality was detected

by keeping tags together with the cachelines when these were fetched from the cache.

The DCL architecture compared the tag of the incoming value of the program counter
with the contents of the ‘Tag’ fields. However, for the majority of references such tag
comparisons are not necessary as the accesses are sequential. Most tag comparisons cal
be replaced by a simple circuit which detects if the new program counter value maps to
the same line as the previous one. Tag comparisons will therefore be necessary only when
a control transfer instruction has been taken and the program counter consequently

overwritten. Occurrences of this are simple to detect.

If the cache-line registers presented in se@i@R2 are replaced by a single register, the
architecture in Figur&.5 evolves. This may appear similar to the block buffering
described in Chapter 5, [Su] and [Okada]. However, it represents a novel extension to the
block buffering scheme as the output multiplexer is wider than a cache line and thereby
permits cache-line straddling instructions to be assembled. Furthermore, tag comparisons

are only carried out when required, see above.

Note that the output multiplexer is considerably simpler to control than that of the DCL-

architecture as the ordering of the bytes for an instruction is always the same. The latches
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Figure 8.5 The eXtra-line architecture

in this architecture are ‘Master-Slave’ type, i.e. one value can be read out of the register

while another value is being latched.

When an instruction, which straddles cache lines, is issued the first bytes will already be
in the register. The control circuit will detect that the following line needs to be fetched

for the instruction to be issued. This line will be fetched from the instruction cache and,
while the instruction is sent off into the rest of the processor through the multiplexer, the

newly fetched cache line will be latched into the register.

The control overhead for this architecture is minimal. The program counter circuit needs
to detect whether an address does not map to the same line as the previous instruction and
whether an instructiomay straddle cache lines. The latter is very simple to detect from
bit-changes in the least significant bits of the program counter and the bits of the

instructions which indicate the size.

Compared to the architectures previously described, see s8cidnand.3.2, this
approach represents the smallest hardware overhead in terms of storage and control logic.
There is a need to store only the amount of data equivalent to one cache line. The tag

information is only required after taken branches; i.e. there is no need to perform a tag
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comparison for all requests. The ‘tag’ associated with the cache line held in the latch
register, see Figui@5, has been drawn with dotted lines as the tag need not be an integral
part of the cache/eXtra-line architecture. The program counter unit can simply track
branch instructions and only perform a comparison between the PC-value before and after
the branch to detect if a new line needs to be fetched into the register. This makes the
energy consumption per access to the structure lower than for any of the architectures

described in sectioB.3.1 and.3.2.

Table8.8 shows the number of fetches from the cache and the reduction in cache traffic.
As for the architectures described in previous sections, the benefit increases with the line
size. Comparing it to the DCL architecture from sec8d2, the average number of

cache requests per instruction is 2.7% higher for this architecture.

Table 8.8 Number of fetches from instruction cacheinto eXtra-line

Cacheline/eXtra-linesize

8 bytes 16 bytes 32 bytes 64 bytes
Benchmark | Inst. Fetch | R*| Fetch | R | Fetch | R | Fetch | R
cacti 18,921,879| 9,085,543| 52 | 4,952,058 74 | 2,941,767 84 | 2,040,187| 89
dhry 688,173| 330,385| 52| 203,445| 70| 136,593| 80 86,120| 87
espresso | 4,822,863| 2,107,520 56 | 1,227,371| 75| 792,147| 84 | 562,239| 88
fft 1,104,931 489,042 56| 284,313| 74| 174,21 | 84 99,540 91
flex 10,688,269| 5,104,123| 52 | 3,156,604 70 | 2,140,844 80 | 1,446,826| 86
hello 52,173| 25,419| 51 15,469 70 10,677 80 6,727 | 87
stcompiler| 1,865,924 914,678 51| 562,533 70| 387,996/ 79| 252,164| 86
Average 53 72 82 88
a. —

R = Inst — Fetch x 100%

Inst

Like the DCL architecture, this provides both a significant performance improvement and

reduces the energy consumption. The former results from the problem of instructions

Instruction fetching
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straddling cache Iinésbeing almost eliminated, see TalBl®; the latter from the

Table 8.9 Percentage of instructions which cannot be fetched in onecycle

Cachelinesize

Benchmark 8 bytes 16 bytes 32 bytes 64 bytes
cacti 0.8 0.2 0.1 0.06
dhry 3.1 1.7 1.1 0.16
espresso 2.4 1.1 0.8 0.08
fft 1.8 0.5 0.3 0.10
flex 2.7 2.0 0.8 0.1
hello 3.8 1.2 0.7 0.10
stcompiler 2.9 1.1 0.3 0.17

Average 2.5 11 0.59 0.11

reduction in he frequency of accesses to the highly energy consuming RAM-structures.

As the eXtra-line can be an integral part of the storage block in the cache the routing
overhead is significantly lower for this architecture than for the DCL-architecture where
a full cache line needs to be routed to either the CachélLan¢he CacheLing register.

This will imply lower energy consumption and a smaller overall design. These advantages
are expected to offset the slightly higher number of references to the cache memory in the

eXtra-line architecture and thus yield a more energy efficient architecture overall.

84 Summary
This chapter has proposed three ways of reducing the performance penalty caused by
instructions which straddle cache line boundaries and hence might require two accesses

to the instruction cache, with consequent degradation in performance.

1. and hence would require two cache lookups - in two cycles
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All the strategies have the advantage that they reduce the number of references to the
instruction cache. The energy consumption in RAM (mainly in caches) is a significant
factor in the energy consumption of an entire microprocessor. Reducing the number of
requests to the cache reduces the energy consumption of the cache proportionally and
hence improves the energy efficiency. The energy consumption in the extra blocks
introduced in the architectures described in section 8.3.1 - 8.3.3, i.e. in the latches and
control circuits, is considered small compared to the energy consumed within the cache
even though it must be clear that the structure in the DCL architecture is more energy
consuming than the eXtra-line architecture due to the tag comparisons and routing
overhead. The dlight increase in number of cache references moving from the DCL-
architecture to the eXtra-line architecture is therefore expected to be offset by the smaller

routing overhead, fewer tag comparisons and smaller multiplexers.
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Chapter 9 Cache design and dimensioning

The results presented in section 8.3 showed the effect of adding each of three instruction
fetch mechanismsto theinstruction cache to compensate for the problemswhich variable-

size instructions introduce.

The resultsin Tables 8.5, 8.7 and 8.8 show that longer cache lines reduce the number of
references to the instruction cache and therefore its energy consumption. However,
Chapter 5 has shown that energy consumption per cache request increases with the line
size. Furthermore, the 1/O-activity and thereby the number of stalled cycles, the energy
consumption in the 1/0O subsystem and the energy consumption in the external RAM
increase with increasing line size. The optimal cache line size is therefore a compromise
between these parameters. the energy consumption per cache access and the number of
accesses to the cache. To assess the value of the architectural features the following
sections will determine the performance and energy efficiency of systems specifying

different cache configurations.

This chapter describes the results from a large number of simulations aiming at
determining the optimal cache system for a HORN-processor system. Section 9.1
describes the system considered and presents expressions for performance and power
consumption used to calculate the energy efficiency for each of the simulated
configurations. Section 9.2 presents the results of alarge number of simulations aimed at
determining the cache parameters for the most energy efficient and best performing
configurations of systems containing separate instruction and data caches. Section 9.3
presents the result from a set of similar smulations but using a unified cache. Section 9.4

summarizes the results.
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9.1 Background for cache evaluation

Consider a simple system comprising the processor and a number of 8-bit Hitachi
HM65256B memory modules [Hitachi]. The modules are organized in banks of 4 chips
and are interleaved to allow the fetching of one 32-bit word per cycle, after some initial
latency. The initial latency is given by the ratio of the access time of the RAM and the
cycle time of processor. The RAM modules have an access time ofti@hs cycle

time of 190ns.

Each memonypank consumes - 200mW = 0.8W, worst case when active ard.3mW

= 2mW when idle [Hitachi]. The power consumption in the processor core is assumed
equal to that of an ARM3 core, i.e. 453mW at 12MHz, see Chapter 2. The power
consumption of the system comprising the processor core, the cache and the external

RAM is therefore expressed as:
P (EQ 9.1)

Mem

Psystem = I:)Core-'- PCache(s) +

The power consumption of the processor core scales with the cycle time:

Cycletime
p o YO MCARME (EQ 9.2)
Core CyCl etime Core,ARM3

The power consumption in the cache(s) is proportional to the frequency of accesses:

(EQ 9.3)
o - 1
Cache™ cycles x cycletime

x (reqxE + (NbWback + misses) x linesize x E

Cache, RR Cache,RW)

where ‘nbWback’ denotes the number of dirty lines written back to external memory and
‘misses’ denotes the number of cache lines fetched from external memory. The

expressions for g cne RrRAND Boache rwAre as derived in Chapter 5.

1. Other manufacturers such as Toshib® SHIBAZ have faster RAMs, however they are
more power consuming
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By definingmemBusy as the percentage of all cycles during which the memory is busy:

memLat x (NbWback + misses) x linesize (EQ9.4)

memBusy = cycles

the power consumption in the external memory is expressed as:

memBusy[]

e Ea 0} 0002w (EQ9.5)

— 0
Pvem = memBusy x 0.8W + NbBanks X 71 —

WherenbBanks denotes the number of banks in the external memory system.

The cache timing analysing tool Cacti [Wilton] was used to calculate cycle times for the
different cache configurations, see Chapter 5; the cache was assumed to be the speed
limiting component in implementation of the architecture [Juan]. Taldleshows the

cycle times computed by Cacti for direct mapped (DM) and a number of set-associative

configurations.

Table 9.1Cache cycle time [ns] for diffeznt configurations

Line size [bytes]
16 32 64

Cache
size
[bytes] | DM | 2-way | 4-way| DM | 2-way | 4-way| DM | 2-way | 4-way
4K 7.02| 9.29| 9.63] 6.66| 9.45| 10.14] 6.49| 10.13| 11.32
8K 7.80| 9.78| 10.15] 7.21| 9.97| 10.47] 6.99| 10.44| 11.54
16K 8.58| 10.43| 11.04] 8.00| 10.74| 11.17| 7.62| 11.14| 11.97
32K 9.45| 11.53| 11.81] 8.91| 11.41| 12.14] 8.51| 12.01| 13.01
64K 10.8| 12.85| 13.12]| 9.82| 12.69| 13.23| 9.50| 13.10| 14.15

Associativity: Associativity: Associativity:

These cycle times are clearly much faster than any cache technology available when the
ARM3 was designed. Extrapolating these numbers onto the results from the ARM3 might
therefore seem inappropriate as the ARM3 technology might not scale as easily.
However, lacking more detailed information on the ARM3 technology it was decided to

use the timing information obtained from Cacti.
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The number of external memory banks required is therefore a function of the cycle time

of the processor (given by the cycle time of the cache) and the memory chips:

T
NbBanks = —FAM - | 190ns (EQ 9.6)
Cache Tcache

The number of cycles required to execute a program is calculated as:
(EQ9.7)

10

cycles = inst + (misses+ nbWback) Deache * %memLat + linesize 0

Dcache

+ misses x UmemLat + linesize

d .
lcache X O \cache— 1T BranchesPenalties

wherememLat is the memory latency in cycles given as the ratio of the cache cycle-time

and the RAM access-time of 100ns mentioned above.

A pipeline as shown in Figu&3 has been assumed. All branches are predicted taken. As
described in Chapter 6 this implies a one cycle penalty for correctly predicted branches
and a two cycle penalty for branches which are predicted wroBginchPenalties

represents this penalty.

The performance of the processor is calculated as:

Performance = —5L « 1 (EQ9.8)
cycles Cycletime

and, as shown in sectidnl, the EE can be calculated as:

EE = (Performance) 2

= EQ 9.9
Power Consumption (EQ9.9)

System

9.2 Performance and energy efficiency of separate cache
configurations

Consider the system architecture shown in Fi§ute Using Equation 9.8 to quantify

performance and Equation 9.1 to quantify power consumption, a large number of cache
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HM65256B Banks

Execution Unit(s

FetchBufer WriteBack Bufer On chip
Instruction Data
Cache Cache
eXtra-line Block Buffer
Register File

Figure 9.1 System arhitecture with separate caches

configurations have been simulated, see TaldleThe power consumption, performance

and energy efficiency of each configuration has been calculated.

The instruction cache (Icache) architecture is the eXtra-line architecture described in

section8.3.3 combined with a fetch buffer as described in seét@nThe Fetch Buffer,

separate from the ‘eXtra-line’, will allow the prefetching of instructions, see s&:8on

while instructions can continue to be fetched from the eXtra-line. Furthermore, writing a

Table 9.2 Simulated configurations

Parameter Values simulated
Cache architecture Icache: eXtra-line
Dcache: Block Buffering
Cache size [bytes] Icache: 8K, 16K, 32K, 64K
Dcache: 4K, 8K, 16K, 32K
Line size [bytes] Icache: 16, 32, 64, 128§
Dcache: 8, 16, 32, 64, 128

Associativity

Direct Mapped,
2-way skewed-associativity

Replacement StrateE;)

Pseudo-LRU

a. See [Seznec]

b. When ‘associativity’ = 2-way skewed-associative

204

Cache design and dimensioning



whole line into the cache in one operation will consume less energy than writing N words
one per cycle, as the overhead of tag-comparisons are eliminated/reduced. There is no

need for a Write-Back Buffer as there will be no dirty linesin the instruction cache.

The data cache (Dcache) should contain a Block Buffer and a Write-Back Buffer as it
greatly improves the performance of the cache and thereby of the system. The Block
Buffer can also serve as a Fetch Buffer and thus reduce the energy consumption further
without affecting performance. The words for the new cache line will be latched in the
Block Buffer and only when all words have arrived will the entire line be written into the
data cache. Individual writes are dealt with in a write through manner as described in
section 5.9 to avoid the need for a coherency protocol. Thus the number of buffersis

limited to two in each of the separate caches.

The value of reducing the number of cache references through the Fetch and Write-Back
Buffers over the system just comprising the Block Buffer or the eXtra-line varies
depending on the performance and hence on the parameters of the specific cache
configurations; it is clear however that the value increases with the line sizein the caches,
see Table 9.3. Throughout these cal culationsit has been assumed that al wordsinaWrite-
Back Buffer will have been written back to external memory before the next data cache

miss is encountered.

The total power consumption of the system is an important measure. The power
consumption for each configuration has therefore been calculated and the configurations
sorted accordingly. This allows energy efficiency, EE, and performance to be plotted
against the power consumption. The results for two benchmarks are shown Figures 9.2

and 9.3, while those for the remaining benchmarks are shown in Appendix A.
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Table 9.3 Reduction in cache accesses due to fetch- and writeback-buffers|[%]

Instruction cache? Data cache

linesize: [bytes] line size: [bytes]
Benchmark | 16 32 64 128 8 16 32 64 128
cacti 6.34 | 115 | 178 | 248 0.12 | 0.24 | 0.41| 0.69 | 104
dhry 5,72 | 122 | 21.0| 283} 0.77 | 207 | 40 | 115 | 16.3
espresso 530 | 10.8| 195 | 33.1| 1.83| 4.13 | 852 | 16.4 | 29.2
fft 198 | 452 | 9.74| 16.8] 897 | 175 | 28.4 | 39.3 | 51.0
flex 264 | 533 | 11.1 | 221| 2.76 | 6.44 | 13.1| 24.1 | 41.7
hello 16.5| 31.2 | 454 | 576 286 | 5.85| 109 | 18.2 | 27.8
stcompiler | 11.8 | 22.4 | 39.1 | 57.7)| 252 | 591 | 12.2 | 22.2 | 36.5

a. Both the instruction and the data cache were 8K bytes and direct mapped
The graphs are ‘performance against power consumption’ plots where constant energy
efficiency, EE, levels are shown with dotted lines. The energy efficiency levels increases
towards the top-left. The difference between the energy efficiency contours, the EE stride,

is shown at the right of each graph. Each graph highlights the most/least energy efficient
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Figure 9.2 EE and performance ver sus power consumption, hello

1. Key to read the configurations:
I(Cache size [bytes], Line size [bytes], associativity) = Instruction Cache
D(Cache size [bytes], Line size [bytes], associativity) = Data Cache
associativity: DM = Direct Mapped; 2sk = 2-way skewed-associative
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Figure 9.3 EE and performance ver sus power consumption, espresso
and best/worst performing configurations as well as the most/least power consuming
configurations. Note that the most energy efficient configurations are often smaller than
the best performing configurations. However, the common characteristic is that the most

energy efficient configurations have shorter cache lines than the best performing ones.

The graphs show that the most energy efficient configurations are between 4% and 23%
more energy efficient than the best performing one. The typical difference is
approximately 10%. For some® of the benchmarks the optimal energy-efficient
configuration consumes significantly less power (reduction greater than 30%) than the
best performing configuration. Consequently, the performance for the most energy

efficient configurationsis also lower than that of the best performing configurations.

1. Especialy espresso, flex and stcompiler
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The graphs clearly highlight the most energy efficient configurations. The graphs for
espresso, flex and hello show that energy efficiency values ‘close to’ (within 5%) the
optimal value can be obtained across a wide range of power consumptions. This means
that a designer can choose the configuration which meets the system requirements for

performance and power consumption while maintaining a high energy efficiency.

Consequently, if the performance of the most energy efficient configuration is too low,

the graphs can be used to choose the most energy efficient configuration which will meet
a performance requirement. Equally, if the power budget for the product does not permit
the implementation of the most energy efficient configuration, the graphs can be used to
choose the most energy efficient and best performing configurations within the power

budget.

All the graphs show that the most power consuming configurations are small direct
mapped caches with long cache lines, while the least power consuming configurations

specify very large, 2-way skewed-associative instruction caches with long lines.

The data caches in the optimal configurations are smaller than the associated instruction
cache and have shorter lines. The exception is for the FFT benchmark, see Appendix A,
this benchmark differs from the rest of the benchmarks in that it is characterised by a very

large and regular data set.

As Tables8.4and9.3 suggest that there is a significant gain from the use of long cache
lines in both instruction and data caches, the energy efficiency has been plotted against
the line size in the instruction cache for different instruction cache sizes. The data cache
was fixed at the configuration found to be the most energy efficient, see F&ggRres
and9.3 and Appendix A. The results are shown in FigQrs9.4 and in Appendix B. It

Is characteristic that the line size in the optimal instruction cache configuration is the
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optimal line size for almost any instruction cache size. This is due to the basic block
characteristics for the benchmarks described in Chapter 4 and se8t@r-urthermore,
the trend is that it is ‘less damaging’ to the energy efficiency if the line size is increased

rather than reduced.

Tables9.4 andd.5 present the best performing and most energy efficient configurations.
Table9.4 indicates that a 16K choice for both instruction and data caches would be near
optimal. For energy efficiency the optimal sizes are smaller, 8K or 16K bytes. This is not

a surprise despite the finding in Chapter 5 that the energy consumption of the cache
increases with the size and the line size. The eXtra-line architecture ensures that accesses
to the cache itself are rare and the power consumption in the cache is therefore not as

significant as the results in Chapter 2 may have suggested. The results also show that

Table 9.4 Optimal performance configurations

Instruction cache - eXtra-line | Data cache - Block Buffer
Size Line size Size | Line size

Benchmark | [bytes] [bytes] Assoc. | [bytes] | [bytes] | Assoc.
cacti 16K 128 DM 16K 128 DM
dhry 16K 128 DM 8K 32 DM
espresso 32K 64 DM 32K 64 DM
fft 16K 128 DM 16K 64 DM
flex 16K 64 DM 16K 32 DM
hello 16K 128 DM 16K 128 DM
stcompiler 16K 64 DM 16K 64 DM

cache lines should be long, although no line size can be identified as optimal; 64 bytes per
line appears to be a good compromise. Again, the tables show that the line sizes should
be shorter when optimizing for energy efficiency rather than for performance. When
optimizing for performance it is clear that the caches should be direct-mapped to yield a
cycle-time as fast as possible, see sed&i@ron pag®8. In contrast, when optimizing for

energy efficiency, where the optimal caches are generally smaller with shorter lines, half
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Table 9.5 Optimal Energy Efficiency configurations

Instruction cache - eXtra-line | Data cache - Block Buffer
Size Line size Size | Line size

Benchmark | [bytes] [bytes] Assoc. | [bytes] | [bytes] | Assoc.
cacti 16K 64 DM 4K 64 DM
dhry 16K 64 DM 8K 32 DM
espresso 8K 32 2sk 8K 8 2sk
fft 8K 64 DM 32K 64 DM
flex 8K 32 2sk 8K 8 2sk
hello 16K 64 DM 16K 64 DM
stcompiler 16K 32 2sk 16K 64 2sk

of the benchmarks obtain higher energy efficiency with a skewed-associative

configuration.

Table 9.4 and 9.5 also show that the optimal data caches are often smaller than the
instruction caches for the same benchmark and are usually smaller than the largest ones
simulated. The line sizes for the optimal data cache configurations are often shorter than
those in the instruction cache and shorter than the longest ones simulated. It is a general
result that the skewed-associative configurations neither perform as well, nor are as

energy efficient, as the direct-mapped caches due to the slower cache access time.

However, if the cache lookup is not the time critical stage in a pipeline (for example due

to slow functional units or register files) the cycle time of the processor is given by the

delay through these stages independently of the cache configuration. If the cycle time of
the entire processor is fixed at e.g. 15ns (66MHz), slower than any cache configuration
reported above, the results change, see Taemd9.7. The optimal configuration is

now a 2-way skewed-associative configuration for both performance and energy

efficiency. Optimal performance is obtained with large instruction cachesbyp#k,

128 bytes/line and large data caches: 38kes. The optimal line size in the data cache

varies but it is clear that it is longer than for the simulations presented in
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Table 9.6 Optimal performance configurations (cycle time = 15ns)

Instruction cache - eXtra-line | Data cache - Block Buffer
Size Line size Size | Line size

Benchmark | [bytes] [bytes] Assoc. | [bytes] | [bytes] | Assoc.
cacti 64K 128 DM 32K 8 DM
dhry 64K 128 2sk 32K 32 2sk
espresso 64K 128 2sk 32K 128 2sk
fft 64K 128 2sk 32K 32 2sk
flex 64K 128 2sk 32K 16 2sk
hello 64K 128 2sk 32K 32 2sk
stcompiler 64K 128 2sk 32K 16 2sk

Table 9.7 Optimal Energy Efficiency configurations (cycle time = 15ns)

Instruction cache - eXtra-line | Data cache - Block Buffer

Size Line size Size | Line size
Benchmark | [bytes] [bytes] Assoc. | [bytes] | [bytes] | Assoc.
cacti 32K 64 2sk 4K 8 2sk
dhry 32K 64 2sk 4K 8 2sk
espresso 16K 32 2sk 4K 8 2sk
fft 8K 64 2sk 32K 32 2sk
flex 16K 64 2sk 8K 8 2sk
hello 16K 32 2sk 8K 16 2sk
stcompiler 32K 64 2sk 4K 8 2sk

Tables9.4and9.5. The results also show that the most energy efficient instruction cache
configurations now are larger than was the case for the most energy efficient
configurations as shown in Tal8e while the data cache configurations in general are

smaller than those shown in Tabl&.

The optimal configurations might well be too large to implement on a chip. A choice of
the most energy efficient configuration must therefore consider implementation
feasibility. The tables in Appendix C present the results of cache configurations simulated
and these can be used to choose the best configuration given the constraints of silicon area

and power consumption.
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Appendix C also showsthe power consumption in the caches as a percentage of the power
consumption in the entire system. This ratio varies dramatically dependent on the cache
configuration. For the optimal configurations thisratio is between 25% and 30%. Asthe
percentage of the power consumed in the external RAM is aso very low (less than 10%)
further improvement in the energy efficiency of the processor system might obtained by

examining other blocks than the cache.

9.3 Unified cache

A unified cache (combined instruction- and data cache) often implies a significant
performance penalty when compared to separate caches as each data reference causes
contention at the cache port. However, as the number of instruction references to the
cache can be greatly reduced due to the instruction cache architectures discussed in
section 8.3, the available cache bandwidth can be used to serve data references, see

Figure 9.6.

The probability of contention in a conventional unified cache, which serves instruction
and data requests from the same port, is equal to the probability of a memory referencing

instruction. Chapter 4 showed that approximately one in four instructions is a memory

Data Address

— Cache
Instructio'r!
Address |
| eXtra-ling/DCL | Mux
I nstruction Data

Figure 9.6 Unified cache serving both instruction- and dataequests
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referencing (load/store-type) instruction. The probability of contemdQyention, at the

cache port is therefore:

Peontention = Pinstrer X Pmemrer = 1.0%0.25 = 0.25 (EQ 9.10)

I.e 25%. By introducing the eXtra-line architecture, see seéi®s3, the number of
instruction references to the cache was reduced by 88% for long cache lines. The

probability of contentionPq,nentions at the cache port is therefore reduced to:

F)contention = I:)instref X I:)memref = (1'0_0'88) x0.25 = 0.03 (EQo.1)

i.e a 3% probability of contention. This is a small penalty compared to the 25% probability
of contention in a conventional unified cache. The system thus behaves almost as well as

a dual-ported unified cache, but with a much reduced energy budget.

The hit rate of the unified cache will typically be lower [Patt, chap. 8.3] than that of a
system comprised of separate instruction and data caches. In order to perform as well as
separate caches the unified cache will therefore have to be larger than the largest of the

two separate caches.

9.3.1 Performance and energy efficiency of unified cache configurations

Using Equation 9.8 to quantify performance and Equation 9.1 to quantify power

consumption, a large number of unified cache configurations have been simulated, see

Table 9.8 Simulated configurations

Parameter Values simulated
Cache architecture eXtra-line, see Figur@.6
Cache size [bytes] 4K, 8K, 16K, 32K, 64K
Line size [bytes] 16, 32, 64, 12§
Associativity Direct Mapped,
2-way skewed-associativity
Replacement Stratef)y Pseudo-LRU

a. When ‘associativity’ = 2-way skewed-associative
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Table 9.8, and the power consumption, performance and energy efficiency of each of

them have been calculated. The results for two of the benchmarks are presented in

Figures 9.7-9.8 while the results for the remaining benchmarks are shown in

Appendix A.2.
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Comparing these graphs to the graphs in se&i®drand AppendiX.1 shows that the
performance of the best performing unified configurations is 8% lower than that obtained
with separate caches. Moreover the energy efficiency of the most energy efficient
configuration is 24% lower than that obtained with separate caches. This suggests that

future processors concerned with energy efficiency should specify separate caches.

There are however other reasons for building a unified cache: A unified cache retains the
same memory model as if no cache was present, the cache is simply a ‘buffer’ between
the processor core and the rest of the memory hierarchy; separate caches require more
control such as bus-arbitration. Furthermore, self-modifying code is simple to handle in a
unified cache, whereas it requires special handling in separate caches. Also if code and
data segments are not distinct, a cache line may contain both instructions and data.
Consequently there may be replication of data in the two caches which may imply a higher
energy efficiency in the unified configuration than in the separate caches. The HORN
compiler lays-out code such that code and data segments are distinct, se8 & dimn

separate caches are feasible.

Despite these other considerations, a significant reason for building a unified cache is
chip-area. It is often claimed that a unified cache of size ‘X’ performs better that two
separate caches of size ‘X/2’. From this premise it may be argued that if data/instruction
collisions have been almost eliminated due to the structures presented in Chapter 8 then
the overall performance for a given ‘total cache size’ would be better in a unified
configuration than in a configuration of separate caches. Results collected for this work
show that this is not necessarily the case, mainly due to the faster cycle time of the smaller

caches, see Table 9.9
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Table 9.9 Comparison between large unified cache and smaller separate caches

Unified Performance Separate Performance

Benchmark | Configuration [MIPS] Configuration? [MIPS]
Cacti 16K,128,DM 2 114 8K,128,DM/8K,64,DM°® 109
Dhry 16K,64,DM 104 8K,128,DM/8K,64,DM 99
Espresso 16K,32,DM 8l 8K,64,DM/8K,32,DM 90
Fft 16K,64,DM 92 8K,128,DM/8K,64,DM 94
Flex 16K,32,2sk 75 8K,64,DM/8K,32,DM 86
Hello 16K ,32,2sk 63 8K,64,DM/8K,64,DM 67
Stcompiler | 16K,32,DM 64 8K,32,2sk/8K ,32,2sk 67

Average 85 87

a Instruction cache with eXtra-line and data cache with Block Buffer

b. Format: Total cache size [bytes], Line size [bytes], Associativity (DM: Direct Mapped; 2sk:
2-way skewed-associative)
c. Format: Instruction cache/Data cache

9.4 Summary

Based on the equations derived in Chapter 5, section 9.1 derived expression for
performance, power consumption and energy efficiency for a HORN-processor system.
Section 9.2 presented the most energy efficient instruction configurations of separate
instruction and data caches as well as the best performing configurations for a range of
benchmarks. The results showed that the optimal configurations were smaller than the
largest ones simulated and that the best performing instruction cache configurations were
16K bytes in size with long cache lines of 64 or 128 bytes. It was demonstrated that the
most ener gy efficient cache configurations are smaller and have shorter lines than the best
performing cache configurations. The optimal cache configurations are mostly direct
mapped for both performance and energy efficiency as they yield the fastest cache and

hence processor cycletime.

Larger caches lead to longer cycle times, see Chapter 5, and thereby lower overall
performance. Furthermore, large caches consume more energy per access than small

caches. Long cache lines maximize the effect from the DCL- or eXtra-line architectures

Cache design and dimensioning
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where there is a high degree of spatia locality, as is the case in instruction caches. For
data caches the spatial locality is lower and shorter cache lines are therefore beneficial.
The worst performing and least energy efficient configurations are consequently:

instruction cacheswith very short cache lines and data caches with very long cachelines.

Theresults (shownin Appendix C) have shown that the caches do not dominate the power
budget when the eXtra-line and block-buffer architectures are introduced. Future energy
effective processors which specify eXtra-line or block-buffer cache architectures should

therefore address other blocks in the processor system.
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Chapter 10 Conclusions

Thisthesis hasinvestigated how the careful specification of amicroprocessor architecture
can improve both the performance and energy efficiency of the final product. It has
identified the blocks in the design which most affect these two measures and has
investigated a number of architectures to improve them. This final chapter summarizes
the conclusions from each chapter, draws further conclusions, assesses the work and
suggests areas for future research with the goal of optimizing the energy efficiency of

Mi Croprocessor systems.

10.1 Summary

Chapter 2, ‘Power consumption in an ARM3-systepresentsresultsfrom an earlier study
which measured the power consumption of various blocks in the ARM3 microprocessor.
The study identified the cache as the most power consuming block in the implementation.
The conclusion that an energy efficient processor architecture should specify an energy

efficient cache architecture was used as a basis for much of the work reported here.

Chapter 3, ‘Baseline HORN arhitectue’ presented the processor architecture which has
formed the basis of this work and the changes it has undergone during the project. These
changes, and the subsequent changesin compiler and functiona simulator, have provided

opportunities for evaluating a number of architectures at a detailed level.

In order to compare architectural features a suitable metric needed to be established.
Chapter 4, ‘Metrics and benchmarkslivided processor applications into three classes
and presented suitable metricsfor each. Based on thisit was decided to analyzethe HORN

architecture as a conventional microprocessor, even though this excluded some
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applications which the architecture was defined to address. The benchmark suite was

chosen accordingly.

In view of the identification of on-chip RAM, notably the cache, as the most power
consuming block, Chapter Energy consumption in cachesstablished how energy
consumption in caches scales with the traditional cache parameters such as size, line size
and degree of associativity. A number of ‘newer’ cache architectures were also analyzed.
The effect the cache parameters had on the cache timing was also analyzed and the
conclusion was drawn that the line size and degree of associativity should be kept low to
reduce energy consumption. It was shown that to minimize the cycle time of the cache and
thus improve the cycle time of the processor, the number of cache lines should be kept as
low as possible as should the degree of associativity. There was therefore a trade-off to be
made between the cycle time and energy consumption of the cache, as shorter cache lines
implied lower energy consumption but longer cycle time. Similarly, although a high
degree of associativity was found to yield a better hit-rate, it also produced a higher

energy consumption.

As the HORN architecture breaks some of the dogmas associated with RISC architectures
and introduces novel features such as dual-instruction branches, memory mapped
registers and variable-size instructions; Chaptédd@al instruction branch, Chapter 7,
‘Register ile architectues’ and Chapter 8|nstruction fetching’have investigated the

effect of these architectural choices on performance and for energy efficiency.

Chapter 6 evaluated the effect of splitting the actions of a branch instruction into two: a
‘go’ instruction which sets up the target and a ‘leap’-instruction which evaluates the
condition and specifies the branch shadow. This structure was proposed to reduce or

eliminate the branch penalty and improve the hit-rate in the instruction cache.
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The chapter showed that if the early specification of the target for the branch is exploited
to prefetch from the target into a shadow pipeline, the performance can be improved.
However, due to the increased number of cache accesses, the scheme is not energy

efficient in a single instruction issue implementation.

The chapter also examined the performance and energy efficiency of the scheme in a dual
iIssue configuration. In such an implementation, the performance advantage of the two-
instruction branch is so significant that the scheme is more energy efficient than a

conventional single-instruction branch, despite a higher energy consumption

Chapter 7,/Register fle architectues’ evaluated the effect different register file
architectures have on performance and energy efficiency. It also examined the
introduction of the special operand queue, which was intended to reduce the need to use
the limited number of registers to hold temporary values. This was shown to have a

positive effect on both performance and energy efficiency.

Furthermore, the chapter compared the performance and energy efficiency of three

schemes:
. a scheme where registers are mapped to memory through a,pointer
. a scheme which implemented register windows through separate instructions

. a register window scheme used in th&BE architecture.

The results suggest that the first two schemes are less performance- and energy-efficient
than the SPARC scheme due to the increased instruction count. However, the first two
schemes ensure a more constant performance, which might be essential for some
applications, as the register-file in these schemes cannot overflow. Of the first two
schemes, it was demonstrated that the memory mapped scheme was more energy efficient

than the conceptually simpler spill/fill scheme, due to lower instruction count and fewer
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accesses to the data cache. This, despite the larger and hence more energy consuming

register ‘file’.

Chapter 8;Instruction fetching’addressed the issue of variable-size instructions. It was
shown that reducing the average size of instructions has a positive effect on instruction
cache performance, but can reduce the overall performance of the processor if the issue
of instructions straddling cache lines is not addressed. The chapter proposed three

instruction cache architectures:

. The Alignment architecture

. The Dual Cache Line (DCL) architecture

. The eXtra-line architecture

These can almost eliminate the problem, and the instruction format therefore affects the
performance positively due to an improved hit rate in the instruction cache. Furthermore
the suggested architectures have the effect of significantly reducing the number of
references and thus the energy consumption in the cache. Consequently the variable-size
instruction format is considered both performance and energy efficient. Furthermore, the
ratio of the power consumption in the cache to the total power consumption of the entire
system is reduced, implying that further improvements in energy efficiency should be

obtained by tuning other parts of the architecture.

It was demonstrated that of the three architectures the DCL-architecture produced the
lowest the number of accesses to the cache, but the energy consumption of individual
requests and the cycle time of the eXtra-line architecture is expected to be lower and the

energy efficiency consequently better.

Chapter 9 discussed the optimal cache configuration for an energy efficient

implementation of the HORN architecture. Numerous cache configurations were
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simulated and the power consumption, performance and energy efficiency for each
configuration was computed. The results showed that the most energy efficient cache
configurations are smaller than the best performing configurations, but even more
significantly, they have shorter cache lines both in the instruction and in the data cache.
Furthermore, the best performing configurations are direct mapped for all the
benchmarks, while the most energy-efficient configurations for some of the benchmarks
are skewed-associative. As Chapter 8 showed how the number of references to the
instruction cache was reduced significantly (88% for long 64-byte cache lines) Chapter 9
assessed an architecture where both the instruction and data streams were fed from one
cache without most of the performance penalty of the conventional unified cache.
However this architecture did not perform as well as the separate caches nor was it as

energy efficient.

10.2 Assessment of work

The work reported in thisthesis has been theoretical. No hardware has been implemented
nor have any low-level transistor models been developed. The results are therefore based
upon a number of extrapolations from other processor designs such as the ARM3 and
upon numerous simulators developed either specifically for this project or for
commercially available products. The validity of these extrapolations and especialy of
the use of multiple extrapolations in the same expression may be questioned; only an

implementation of the suggested architectures can provide a definite answer.

Most previous research into energy efficient computer architecture has explored
subsystems, notably caches. Thisthesis has considered awhole processor system and has

highlighted the tension between performance and energy efficiency at that level. The
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project has successfully identified a number of features which future computer

architectures concerned with energy efficiency can exploit:

. Two instruction branch structures such as the ones described for the HORN
architecture may improve performance but degrade thgeréiciency If
instructions are not prefetched into a shadow pipeline, the single instruction

branch used in most RISCs performs better and is morgyeegcient.

. The use of a queue for storage of temporary results allows the semantic con-
tent of instructions to be coded in less space. Instruction sizes are reduced
without increasing the total number of instructions in a program. This
increases the performance of the instruction cache and thus thg efier

ciency of the entire processor system.

. The DCL and eXtra-line cache architectures reduce thggnensumption
in caches significantlyithout afecting the performance negativelyhey
also provide déctive solutions to assembling instructions which straddle
cache lines. The combination of the variable-size instructions and these
cache architectures thus provides a feature that future RISC architectures

should exploit.

. The register file schemes which have been proposed for the HORN archi-
tecture have been shownt to perform as well as the established overlap-
ping register window architecture used InARE, due to the increased
instruction count. Howevethe work has shown that a compiler can exploit
a variable-size overlap of register windows and thus yield a better utiliza-
tion of the available on-chip storage, reducing the number of register win-

dow overflows. The performance and gyeefiiciency would consequently
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improve. This could be investigated furthbut it should be emphasized
that the specification of the size of the overlap should be in the call /return

instructions rather than in a separate instruction.

. The results do not point to any ‘golden’ cache configurations. The most
enegy eficient cache configurations have a higher degree of associativity
and they are often smaller than the best performing configurations. The
graphs in chaptéd have shown that there may be a significant variation in

enegy efficiency even within a narrow band of performance.

10.3 Conclusions

This work has shown that the energy efficiency of a microprocessor is affected by early
decisions in the specification of a processor architecture such as the instruction set. It is
therefore clear that future processors concerned with energy efficiency should optimize
for this metric in all the stages of the specification and implementation processes.
‘Performance against power consumption’ graphs with constant energy-efficiency levels
shown are useful when carrying out such optimizations as they clearly show how

architectural changes affect all three measures.

Optimizing for energy efficiency may result in a similar architecture as when optimizing
for performance but while optimizing for performance tends to increase power
consumption, optimizing for energy efficiency will tend to keep the power consumption
down. Given a power budget below that required for optimal performance, the energy-
efficiency metric should point to a configuration/architecture which is not the best

performing, but where the amount of computation per energy unit is highest.

As implementation technologies are expected to keep improving and allow processors to

be clocked with ever increasing frequencies and hand-held and portable equipment is
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expected to operate longer, battery technologies will be put under ever increasing
pressure. Optimizing for energy efficiency throughout the process of specifying and
implementing a microprocessor will ensure the best compromise between high
performance and long battery life. This work has successfully proposed a number of ways
to improve the energy efficiency of a processor and has identified schemes which may

increase the performance but which have a negative effect on the energy efficiency.

10.4 Suggestions for futue work

There is still considerable scope for research into energy efficient computer architectures
and much work can be done to develop further the ideas presented here. Furthermore the

following areas are suggested as fruitful topics for future investigation:

. Block buffers in the data cache:The simulations in Chapter 9 assumed a
write-through strategy in the block Ibeif of the data cache. Changing the
write-through strategy to copy-back will reduce the gneonsumption in
the data cache further due to a reduced number of writes to the cache mem-
ory. In order to avoid a negativefeft on performance the dirty block
buffer should be copied to a new ‘writebackfeuf while a new line is
fetched from the cache memory into the blockidrufThe contents of the
writeback-bufer could then be written back to the cache in the following

cycle. The performance level of the write-through scheme is thus retained.

. The data path This work has shown that some improvement in ggner
consumption can be obtained if cache lines are fetched from and written to
external memory in a Gray-coded ordether than the traditional sequen-
tial order This can be explored further if a compiler can be developed

which can lay-out code and data in such a way that the number of bit-transi-
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tions on the data bus is minimized. Careful allocation of opcodes might also
reduce the number of bit-transitions. These changes would not only reduce
the power consumption in the I/O system, but also on the data-path within

the processomVithout further work it is not clear if this is feasible.

. The pipeline: This work has not determined whether pipelining is gner
efficient. Increasing the pipeline length might allow an increase in the clock
frequency of the processor and thereby the peak-performance. Hpowever
given that the penalty from branches and register dependencies might
increase with a longer pipeline and the ggeronsumption per instruction

thus increase, thefett on the engy eficiency is not clear

. If the efect of increasing pipeline length is to decreasegneficiency,
replicating the structures suggested in Chapter 8 should be considered. This
will allow prefetching of instructions as described in Chapter 6 without
increasing the engy consumption. This would eliminate the branch pen-

alty completely and thus improve both performance andygrediciency.

. Unified cache The architecture evaluated in sectiér8 can be expanded
to serve data references through a blockebudt the same time as instruc-
tions as served from the eXtra-line. This will reduce the number of refer-
ences to the cache further and hence yield higherggwdiciency
measures. The work should establish if a unified configuration can yield

enegy-efliciency levels comparable with those found for separate caches.

Finally, many of the results presented in this thesis have been based upon simulations and
extrapolations. Implementation of the cache architectures proposed in Chapter 8, would
verify the extrapolations and allow more precise models to be written for the use of future

work.
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It is the author’s hope that the work reported in this thesis will help designers of future

microprocessors to improve the energy efficiency of their products.

Thisisnot the end. It isnot even the beginning of the end. But it is, perhaps, the end of the
beginning.

Winston Chur chill
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Appendix A Energy Efficiency versus power
consumption

A.1 Separate caches
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Appendix B Energy Efficiency versus cache line size
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Appendix C Simulation results

This appendix presents the results of the simulations described in section 9.2. Due to the
large number of configurations and hence results to report only the results for one of the
benchmarks, espresso, will be shown here. The results for the remaining benchmarks are

available from the author.

Table C.1Cache configuration measuements, eSpesso

Instruction "
Dat h = — U

conﬁgﬁ:]aetion cori‘igtfrziioi g?"é % % % '%' Z g—' ggﬂ EE'U ggu
[total size, [total size, —3| 23 mé ) 3 1S
line size, line size, I 2 EN'T' g g §:~U
associativity] | associativity] = | == B
8K,16,DM 4K,8,DM 11.5 70.6 | 418.7 7.8 59| 628 | 313
8K,16,DM 4K,16,DM | 12.6 719 | 409.9 7.8 71| 59.2 | 33.7
8K,16,DM 4K,32,DM | 139 69.0 | 341.8 7.8 9.4 | 536 | 37.0
8K,16,DM 4K,64,DM | 16.6 60.4 | 219.6 78| 135 | 449 | 416
8K,16,DM 4K,128,DM | 21.8 45.2 93.7 78| 182 | 343 | 475
8K,16,DM 8K,8,DM | 12.1 76.8 | 487.7 8.3 45 | 579 | 37.6
8K,16,DM 8K,16,DM | 13.2 80.2 | 4854 7.8 52| 564 | 384
8K,16,DM 8K,32,DM | 14.3 775 | 419.3 7.8 6.7 | 522 | 41.2
8K,16,DM 8K,64,DM | 16.7 705 | 2974 7.8 9.6 | 44.7 | 45.7
8K,16,DM 8K,128,DM | 21.7 58.3 | 156.6 78| 135 | 345 | 52.0
8K,16,DM 16K,8,DM | 12.2 73.3 | 442.7 9.3 38| 516 | 44.6
8K,16,DM 16K,16,DM | 13.2 79.2 | 474.6 8.6 39| 515 | 446
8K,16,DM 16K,32,DM | 14.8 83.7 | 472.8 8.0 4.1 | 49.2 | 46.7
8K,16,DM 16K,64,DM | 16.9 84.9 | 425.6 7.8 43 | 441 | 51.6
8K,16,DM 16K,128,DM | 21.1 79.9 | 302.3 7.8 57| 354 | 589
8K,16,DM 32K,8,DM | 13.0 68.3 | 3574 | 104 30| 430 | 54.0
8K,16,DM 32K,16,DM | 139 74.6 | 3994 94 31| 443 | 52.6
8K,16,DM 32K,32,DM | 15.0 78.4 | 409.2 8.9 31| 436 | 533
8K,16,DM 32K,64,DM | 16.8 81.3 | 393.0 8.6 28| 404 | 56.8
8K,16,DM 32K,128,DM | 194 80.3 | 3324 8.7 24| 346 | 63.0
8K,16,2-skew 4K ,8,2-skew 9.2 726 | 5714 9.8 36| 647 | 318
8K,16,2-skew 4K ,16,2-skew 9.7 749 | 576.3 9.8 35| 613 | 352
8K,16,2-skew 4K ,32,2-skew | 10.7 74.3 | 517.2 9.8 41 | 559 | 40.1
8K,16,2-skew 4K ,64,2-skew | 12.1 711 | 4171 | 101 45 | 475 | 47.9
8K,16,2-skew 4K,128,2-skew | 14.3 552 | 2131 | 11.6 83| 352 | 56.5
8K,16,2-skew 8K,8,2-skew 9.4 73.7 | 578.9 | 10.0 31| 624 | 345
8K,16,2-skew 8K,16,2-skew | 10.0 | 76.2 | 5823 | 98| 30| 59.8 | 37.1
8K,16,2-skew 8K,32,2-skew | 10.6 75.5 | 537.5 | 10.0 29| 551 | 419
8K,16,2-skew 8K,64,2-skew | 11.8 72.0 | 4408 | 104 30| 476 | 494
8K,16,2-skew 8K,128,2-skew | 13.2 63.3 | 3025 | 11.8 31| 374 | 595
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
8K,16,2.kew | 16K, 82-skew | 9.1 | 69.6 | 532.8 | 110 | 25| 584 | 39.1
8K,16,2-skew 16K,16,2-skew 9.8 73,5 | 5506 | 104 24 | 57.0 | 40.7
8K,16,2-skew 16K,32,2-skew | 10.2 71.6 | 502.1 | 10.7 23 | 532 | 445
8K,16,2-skew 16K,64,2-skew | 11.2 69.4 | 429.7 | 111 19| 46.7 | 514
8K,16,2-skew | 16K,128,2-skew | 12.7 634 | 3165 | 12.2 1.8 | 37.7 | 60.6
8K,16,2-skew 32K,8,2-skew 9.3 64.0 | 4413 | 121 22 | 521 | 457
8K,16,2-skew 32K,16,2-skew 9.7 67.1 | 4625 | 115 21| 520 | 459
8K,16,2-skew 32K,32,2-skew | 10.3 67.9 | 4452 | 114 20| 494 | 486
8K,16,2-skew 32K,64,2-skew | 11.0 64.2 | 376.2 | 121 19| 441 | 4.1
8K,16,2-skew | 32K,128,2-skew | 12.2 50.0 | 2844 | 132 15| 36.1 | 624
8K,32,DM 4K,8,.DM | 12.3 74.8 | 453.7 7.7 70| 61.7 | 31.2
8K,32,DM 4K,16,DM | 13.9 81.3 | 475.8 7.2 79 | 58.3 | 33.8
8K,32,DM 4K,32,DM | 154 77.9 | 395.1 72 | 102 | 52.7 | 37.2
8K,32,DM 4K,64,DM | 18.3 67.8 | 250.8 72 | 140 | 442 | 41.8
8K,32,DM 4K,128,DM | 23.9 50.2 | 1055 7.2 | 185 | 338 | 47.7
8K,32,DM 8K,8DM | 124 82.0 | 5418 8.3 54| 56.3 | 38.3
8K,32,DM 8K,16,DM | 13.6 85.9 | 5405 7.8 6.2 | 548 | 39.1
8K,32,DM 8K,32,DM | 159 88.5 | 492.8 7.2 75 | 509 | 41.6
8K,32,DM 8K,64,DM | 18.6 80.0 | 345.0 72 | 103 | 436 | 46.1
8K,32,DM 8K,128,DM | 24.0 65.5 | 178.6 72 | 139 | 337 | 524
8K,32,DM 16K,8,DM | 125 78.3 | 489.6 9.3 46 | 50.0 | 454
8K,32,DM 16K,16,DM | 13.7 84.9 | 527.9 8.6 48 | 498 | 454
8K,32,DM 16K,32,DM | 154 90.0 | 527.3 8.0 50| 475 | 476
8K,32,DM 16K,64,DM | 18.0 92.7 | 477.0 7.6 52| 425 | 52.3
8K,32,DM 16K,128,DM | 22.7 87.7 | 338.2 75 6.5 | 340 | 59.5
8K,32,DM 32K,8,DM | 135 72.8 | 3920 | 104 37| 414 | 549
8K,32,DM 32K,16,DM | 145 79.8 | 440.9 9.4 38| 427 | 535
8K,32,DM 32K,32,DM | 15.6 84.2 | 453.7 89 38| 419 | 543
8K,32,DM 32K,64,DM | 17.6 87.3 | 434.8 8.6 34| 387 | 57.9
8K,32,DM 32K,128,DM | 204 86.3 | 366.2 8.7 30| 330 | 64.0
8K,32,2-skew 4K ,8,2-skew 9.3 75.0 | 604.2 | 10.0 42| 629 | 329
8K,32,2-skew 4K ,16,2-skew 9.8 77,5 | 609.8 | 10.0 41| 595 | 364
8K,32,2-skew 4K ,32,2-skew | 10.8 76.8 | 545.9 | 10.0 47 | 541 | 41.2
8K,32,2-skew 4K ,64,2-skew | 12.5 74.7 | 446.1 | 10.1 50| 46.0 | 490
8K,32,2-skew 4K,128,2-skew | 14.9 572 | 2199 | 116 88| 339 | 57.3
8K,32,2-skew 8K,8,2-skew 9.7 77.7 | 625.1 | 10.0 36 | 60.6 | 357
8K,32,2-skew 8K,16,2-skew | 10.1 78.9 | 616.8 | 10.0 36| 580 | 383
8K,32,2-skew 8K,32,2-skew | 11.0 79.7 | 579.7 | 10.0 34 | 534 | 43.2
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
8K,32,2-skew 8K,64,2-skew 12.5 75.6 | 470.2 | 104 35| 46.0 | 505
8K,32,2-skew 8K,128,2-skew | 13.7 66.5 | 3220 | 11.8 35| 36.0 | 605
8K,32,2-skew 16K ,8,2-skew 9.4 734 | 574.2 | 110 3.0 | 56.6 | 40.3
8K,32,2-skew 16K,16,2-skew | 10.1 775 | 5934 | 104 29| 552 | 419
8K,32,2-skew 16K,32,2-skew | 10.6 75.5 | 5403 | 10.7 27 | 515 | 458
8K,32,2-skew 16K,64,2-skew | 11.6 731 | 4601 | 111 23 | 45.1 | 52.6
8K,32,2-skew | 16K,128,2-skew | 13.2 66.8 | 3376 | 12.2 21| 36.3 | 61.6
8K,32,2-skew 32K ,8,2-skew 9.6 67.3 | 4732 | 121 26 | 505 | 46.9
8K,32,2-skew 32K,16,2-skew | 10.1 70.6 | 496.2 | 115 25| 503 | 47.1
8K,32,2-skew 32K,32,2-skew | 10.7 715 | 4772 | 114 24 | 478 | 498
8K,32,2-skew 32K,64,2-skew | 11.4 67.6 | 4023 | 121 22 | 425 | 552
8K,32,2-skew | 32K,128,2-skew | 12.7 62.0 | 3025 | 13.2 1.8 | 348 | 634
8K,64,DM 4K,8,.DM | 13.0 76.3 | 447.0 7.7 83| 584 | 33.2
8K,64,DM 4K,16,DM | 15.0 83.8 | 468.8 7.0 9.3 | 555 | 352
8K,64,DM 4K,32,DM | 16.6 80.7 | 393.6 70| 11.3 | 504 | 38.3
8K,64,DM 4K,64,DM | 19.6 70.1 | 251.3 70| 150 | 427 | 424
8K,64,DM 4K ,128,DM | 25.2 51.9 | 106.8 70| 19.2 | 331 | 477
8K,64,DM 8K,8,DM | 13.2 83.6 | 5314 8.3 6.8 | 53.1 | 40.1
8K,64,DM 8K,16,DM | 14.4 87.7 | 5325 7.8 74 | 51.7 | 409
8K,64,DM 8K,32,DM | 16.8 90.5 | 488.7 7.2 85| 483 | 432
8K,64,DM 8K,64,DM | 19.9 83.2 | 347.3 70| 114 | 418 | 46.8
8K,64,DM 8K,128,DM | 255 67.8 | 180.6 70| 148 | 327 | 525
8K,64,DM 16K,8,DM | 13.3 79.8 | 480.0 9.3 59| 473 | 46.8
8K,64,DM 16K,16,DM | 145 86.7 | 519.2 8.6 6.1 | 470 | 469
8K,64,DM 16K,32,DM | 16.3 92.1 | 521.3 8.0 6.2 | 448 | 49.0
8K,64,DM 16K,64,DM | 19.0 95.0 | 474.3 7.6 6.3 | 40.3 | 534
8K,64,DM 16K,128,DM | 23.8 89.6 | 338.2 7.5 7.3 | 325 | 60.1
8K,64,DM 32K,8,DM | 14.2 74.1 | 385.3 | 104 49 | 394 | 55.7
8K,64,DM 32K,16,DM | 15.2 814 | 434.2 9.4 50| 405 | 545
8K,64,DM 32K,32,DM | 16.5 86.0 | 448.3 89 50| 39.7 | 55.2
8K,64,DM 32K,64,DM | 185 89.2 | 4309 8.6 45 | 36.8 | 58.7
8K,64,DM 32K,128,DM | 21.3 88.2 | 3644 8.7 40| 315 | 64.6
8K,64,2-skew 4K ,8,2-skew 9.4 74.0 | 5795 | 104 47 | 59.2 | 36.2
8K,64,2-skew 4K,16,2-skew | 10.0 76.2 | 582.7 | 104 46 | 56.0 | 394
8K,64,2-skew 4K ,32,2-skew | 10.9 75.6 | 522.7 | 104 50| 51.1 | 439
8K,64,2-skew 4K ,64,2-skew | 12.8 74.1 | 429.1 | 104 56 | 43.7 | 50.7
8K,64,2-skew 4K ,128,2-skew | 15.4 58.2 | 219.7 | 116 9.0 | 32.7 | 583
8K,64,2-skew 8K,8,2-skew 9.8 765 | 5976 | 104 | 41| 570 | 388
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
8K,64,2.kew | 8K,16,2-5kew | 102 | 77.6 | 5884 | 104 | 4.1 | 546 | 41.2
8K,64,2-skew 8K,32,2-skew | 11.1 78.3 | 5535 | 104 39| 504 | 45.7
8K,64,2-skew 8K,64,2-skew | 12.8 774 | 468.1 | 104 40 | 436 | 523
8K,64,2-skew 8K,128,2-skew | 14.4 679 | 321.0| 118 39| 344 | 617
8K,64,2-skew 16K,8,2-skew | 10.0 75.2 | 5675 | 110 37| 534 | 430
8K,64,2-skew 16K,16,2-skew | 10.7 79.4 | 587.3 | 104 35| 521 | 444
8K,64,2-skew 16K,32,2-skew | 11.2 77.3 | 5358 | 10.7 33| 486 | 480
8K,64,2-skew 16K,64,2-skew | 12.2 74.8 | 4575 | 111 28 | 428 | 54.3
8K,64,2-skew | 16K,128,2-skew | 13.8 68.3 | 3374 | 12.2 25| 346 | 62.8
8K,64,2-skew 32K,8,2-skew | 10.1 68.9 | 468.7 | 12.1 3.2 | 478 | 490
8K,64,2-skew 32K,16,2-skew | 10.6 72.3 | 4916 | 115 31| 476 | 493
8K,64,2-skew 32K,32,2-skew | 11.3 731 | 4736 | 114 29 | 453 | 51.8
8K,64,2-skew 32K,64,2-skew | 12.0 69.2 | 4005 | 121 28 | 404 | 56.8
8K,64,2-skew | 32K,128,2-skew | 13.3 63.3 | 3021 | 13.2 22 | 332 | 645
8K,128,DM 4K,8,.DM | 13.7 75.9 | 419.7 7.7 | 10.1 | 555 | 344
8K,128,DM 4K,16,DM | 15.7 834 | 4421 70| 109 | 52.8 | 36.3
8K,128,DM 4K,32,DM | 175 81.4 | 379.2 6.9 | 125 | 483 | 39.1
8K,128,DM 4K,64,DM | 204 70.8 | 245.6 69 | 157 | 414 | 429
8K,128,DM 4K ,128,DM | 25.9 525 | 106.3 6.9 | 194 | 326 | 48.0
8K,128,DM 8K,8,DM | 13.9 82.9 | 494.9 8.3 86 | 504 | 41.0
8K,128,DM 8K,16,DM | 15.2 87.0 | 498.0 7.8 9.2 | 49.1 | 417
8K,128,DM 8K,32,DM | 17.6 90.0 | 461.3 72| 101 | 46.1 | 438
8K,128,DM 8K,64,DM | 20.7 82.9 | 3323 70| 125 | 403 | 47.2
8K,128,DM 8K,128,DM | 26.4 68.6 | 178.3 6.9 | 152 | 320 | 52.7
8K,128,DM 16K,8,DM | 13.9 78.9 | 4471 9.3 78 | 45.0 | 47.2
8K,128,DM 16K,16,DM | 15.2 85.8 | 484.5 8.6 80 | 44.7 | 47.3
8K,128,DM 16K,32,DM | 17.1 91.3 | 488.9 8.0 8.0 | 428 | 49.3
8K,128,DM 16K,64,DM | 19.8 94.3 | 4484 7.6 80| 386 | 534
8K,128,DM 16K,128,DM | 24.5 89.1 | 323.7 7.5 85| 31.6 | 60.0
8K,128,DM 32K,8,DM | 14.8 73.1 | 360.8 | 104 6.6 | 37.8 | 55.6
8K,128,DM 32K,16,DM | 15.9 80.5 | 406.8 9.4 6.8 | 388 | 54.5
8K,128,DM 32K,32,DM | 17.2 85.1 | 421.1 89 6.8 | 380 | 55.2
8K,128,DM 32K,64,DM | 19.2 88.3 | 406.5 8.6 6.1 | 354 | 585
8K,128,DM 32K,128,DM | 22.0 87.3 | 346.1 8.7 54| 305 | 64.2
8K,128,2-skew 4K ,8,2-skew 89 65.9 | 4894 | 11.8 6.1 | 55.8 | 38.1
8K,128,2-skew 4K ,16,2-skew 9.3 67.6 | 489.8 | 11.8 6.0 | 53.0 | 41.0
8K,128,2-skew 4K ,32,2-skew | 10.2 67.0 | 4416 | 118 6.2 | 486 | 45.1
8K,128,2-skew 4K ,64,2-skew | 11.8 65.7 | 365.0 | 11.8 6.6 | 419 | 51.5




Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = :3: EQA Egﬂ EE-U Egﬂ
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
8K,128,2-skew 4K,128,2-skew 15.3 56.9 | 2074 | 11.8 9.7 | 31.8 | 585
8K,128,2-skew 8K,8,2-skew 9.2 67.9 | 502.0 | 11.8 5.6 | 539 | 405
8K,128,2-skew 8K,16,2-skew 9.6 68.7 | 4940 | 118 55| 518 | 42.7
8K,128,2-skew 8K,32,2-skew | 10.3 69.3 | 4655 | 11.8 52| 479 | 46.9
8K,128,2-skew 8K,64,2-skew | 11.8 68.5 | 396.5 | 11.8 51| 418 | 53.1
8K,128,2-skew 8K,128,2-skew | 14.8 67.6 | 3086 | 118 48 | 334 | 619
8K,128,2-skew 16K ,8,2-skew 9.8 700 | 501.2 | 11.8 49 | 506 | 444
8K,128,2-skew 16K,16,2-skew | 10.0 702 | 4925 | 11.8 49 | 494 | 45.7
8K,128,2-skew 16K,32,2-skew | 10.7 704 | 4640 | 118 46 | 464 | 49.1
8K,128,2-skew 16K,64,2-skew | 12.1 704 | 4110 | 118 41| 411 | 548
8K,128,2-skew | 16K,128,2-skew | 14.3 68.0 | 323.7 | 12.2 35| 335 | 63.0
8K,128,2-skew 32K,8,2-skew | 10.6 68.6 | 443.7 | 121 45| 456 | 49.9
8K,128,2-skew 32K,16,2-skew | 10.9 704 | 455.1 | 11.8 44 | 455 | 50.1
8K,128,2-skew 32K,32,2-skew | 11.4 705 | 4349 | 118 42 | 433 | 525
8K,128,2-skew 32K ,64,2-skew | 12.4 68.9 | 3819 | 121 39| 389 | 57.2
8K,128,2-skew | 32K,128,2-skew | 13.7 63.0 | 290.1 | 13.2 32| 322 | 64.6
16K,16,DM 4K,8,.DM | 11.7 68.8 | 4044 8.6 48 | 58.0 | 37.2
16K,16,DM 4K,16,DM | 124 70.0 | 3944 8.6 6.1 | 54.7 | 39.2
16K,16,DM 4K,32,DM | 13.7 67.0 | 328.2 8.6 8.6 | 49.7 | 41.7
16K,16,DM 4K,64,DM | 16.2 58.3 | 210.1 86 | 129 | 421 | 45.0
16K,16,DM 4K,128,DM | 20.9 43.0 88.7 86| 180 | 326 | 494
16K,16,DM 8K,8,DM | 12.7 78.7 | 487.1 8.6 34| 535 | 43.2
16K,16,DM 8K,16,DM | 13.1 78.1 | 465.3 8.6 42 | 51.8 | 44.0
16K,16,DM 8K,32,DM | 14.1 75.3 | 401.8 8.6 57| 481 | 46.2
16K,16,DM 8K,64,DM | 16.4 68.3 | 284.6 8.6 89 | 415 | 49.6
16K,16,DM 8K,128,DM | 20.9 55.9 | 149.0 86| 131 | 325 | 544
16K,16,DM 16K,8,DM | 13.1 77.3 | 454.9 9.3 26 | 47.7 | 49.6
16K,16,DM 16K,16,DM | 14.3 83.8 | 4905 8.6 28 | 475 | 49.7
16K,16,DM 16K,32,DM | 15.0 835 | 464.1 8.6 30| 452 | 51.7
16K,16,DM 16K,64,DM | 16.7 82.6 | 407.7 8.6 34 | 406 | 56.0
16K,16,DM 16K,128,DM | 20.7 77.4 | 289.8 8.6 50| 329 | 621
16K,16,DM 32K,8DM | 14.1 718 | 367.3 | 104 20| 399 | 58.1
16K,16,DM 32K,16,DM | 15.0 78.8 | 4124 9.4 20| 410 | 56.9
16K,16,DM 32K,32,DM | 16.2 83.0 | 425.0 8.9 21| 404 | 576
16K,16,DM 32K,64,DM | 18.2 86.2 | 408.6 8.6 19| 374 | 60.7
16K,16,DM 32K,128,DM | 20.9 85.2 | 346.6 8.7 16| 32.1 | 66.3
16K,16,2-skew 4K ,8,2-skew 9.0 712 | 5619 | 104 25| 619 | 356
16K,16,2-skew 4K,16,2-skew 95| 734 | 5646 | 104 | 25| 58.6 | 38.9




Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = :3: EQA Egﬂ EE-U Egﬂ
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
16K,16,2-skew 4K ,32,2-skew lO.Z 72.8 | 506.4 | 10.4 31| 535 434
16K,16,2-skew 4K ,64,2-skew | 12.2 715 | 4168 | 104 39| 456 | 504
16K,16,2-skew 4K,128,2-skew | 14.8 56.9 | 2184 | 116 78 | 34.1 | 58.2
16K,16,2-skew 8K,8,2-skew 94| 736 | 5790 | 104 | 20| 59.7 | 38.3
16K,16,2-skew 8K,16,2-skew 9.8 74.6 | 569.7 | 104 20| 57.2 | 40.8
16K,16,2-skew 8K,32,2-skew | 10.6 75.3 | 5355 | 104 19| 52.8 | 45.3
16K,16,2-skew 8K,64,2-skew | 12.2 746 | 4549 | 104 22| 457 | 521
16K,16,2-skew 8K,128,2-skew | 13.8 | 655 | 311.3 | 11.8 251 36.0 | 615
16K,16,2-skew 16K ,8,2-skew 9.5 72.3 | 5499 | 110 15| 56.0 | 42.6
16K,16,2-skew 16K,16,2-skew | 10.2 76.3 | 568.2 | 104 14| 546 | 440
16K,16,2-skew 16K,32,2-skew | 10.7 74.3 | 5185 | 10.7 14| 51.0 | 47.7
16K,16,2-skew 16K,64,2-skew | 11.7 719 | 4420 | 111 12 | 448 | 54.0
16K,16,2-skew | 16K,128,2-skew | 13.2 65.7 | 326.1 | 12.2 11| 36.2 | 62.7
16K,16,2-skew 32K,8,2-skew 9.7 66.2 | 453.8 | 12.1 13| 50.0 | 48.7
16K,16,2-skew 32K,16,2-skew | 10.2 69.5 | 4756 | 115 1.2 | 49.9 | 48.9
16K,16,2-skew 32K,32,2-skew | 10.8 70.3 | 4579 | 114 12| 474 | 514
16K,16,2-skew 32K,64,2-skew | 11.4 66.5 | 387.3 | 121 11| 423 | 56.6
16K,16,2-skew | 32K,128,2-skew | 12.7 60.9 | 2919 | 132 09| 347 | 644
16K,32,DM 4K,8,.DM | 124 76.1 | 468.3 8.0 56 | 589 | 355
16K,32,DM 4K,16,DM | 13.2 77.7 | 458.1 8.0 6.9 | 554 | 37.7
16K,32,DM 4K,32,DM | 14.6 74.2 | 3785 8.0 9.4 | 50.1 | 40.6
16K,32,DM 4K,64,DM | 17.3 64.2 | 238.2 80| 136 | 421 | 443
16K,32,DM 4K,128,DM | 22.4 47.1 98.8 80| 186 | 325 | 49.0
16K,32,DM 8K,8,DM | 13.0 85.7 | 564.5 8.3 40 | 53.7 | 423
16K,32,DM 8K,16,DM | 14.0 87.7 | 550.7 8.0 49 | 522 | 429
16K,32,DM 8K,32,DM | 151 844 | 471.7 8.0 6.5| 483 | 453
16K,32,DM 8K,64,DM | 17.6 76.1 | 3285 8.0 96 | 414 | 489
16K,32,DM 8K,128,DM | 22.6 61.7 | 168.3 80| 137 | 322 | 54.1
16K,32,DM 16K,8,DM | 13.2 81.9 | 509.9 9.3 32| 477 | 491
16K,32,DM 16K,16,DM | 14.3 89.0 | 551.9 8.6 34| 474 | 49.2
16K,32,DM 16K,32,DM | 16.2 94.5 | 553.2 8.0 36| 451 | 51.2
16K,32,DM 16K,64,DM | 18.1 93.5 | 4829 8.0 4.0 | 40.3 | 55.7
16K,32,DM 16K,128,DM | 22.5 87.3 | 337.8 8.0 55| 324 | 62.1
16K,32,DM 32K,8,DM | 14.2 76.1 | 4079 | 104 25| 395 | 58.0
16K,32,DM 32K,16,DM | 15.2 83.6 | 460.2 94 26| 406 | 56.8
16K,32,DM 32K,32,DM | 164 88.4 | 4754 89 26 | 399 | 57.6
16K,32,DM 32K,64,DM | 18.4 91.7 | 4555 8.6 23| 36.8 | 60.9
16K,32,DM 32K,128,DM | 214 90.6 | 383.8 8.7 20| 314 | 66.6
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
16K,32,2-skew 4K ,8,2-skew 8.§ 725 | 5958 | 10.7 28 | 615 | 357
16K,32,2-skew 4K ,16,2-skew 9.3 74.8 | 598.6 | 10.7 28 | 58.2 | 39.1
16K,32,2-skew 4K ,32,2-skew | 10.3 74.1 | 534.6 | 10.7 34 | 528 | 43.7
16K,32,2-skew 4K ,64,2-skew | 12.1 72.7 | 4369 | 10.7 43| 449 | 509
16K,32,2-skew 4K,128,2-skew | 15.2 58.6 | 226.8 | 11.6 82| 332 | 58.6
16K,32,2-skew 8K,8,2-skew 9.2 75.0 | 6146 | 10.7 23 | 593 | 384
16K,32,2-skew 8K,16,2-skew 9.6 76.1 | 6044 | 10.7 23| 56.7 | 41.0
16K,32,2-skew 8K,32,2-skew | 10.4 76.8 | 566.7 | 10.7 22 | 521 | 457
16K,32,2-skew 8K,64,2-skew | 12.1 75.9 | 476.1 | 10.7 26 | 449 | 52.6
16K,32,2-skew 8K,128,2-skew | 14.1 68.6 | 3342 | 118 27 | 35.2 | 62.1
16K,32,2-skew 16K,8,2-skew 9.6 75.9 | 601.0 | 11.0 1.7 | 554 | 429
16K,32,2-skew 16K,16,2-skew | 10.1 77.9 | 603.0 | 10.7 17 | 540 | 444
16K,32,2-skew 16K,32,2-skew | 10.8 78.1 | 5649 | 10.7 1.6 | 50.3 | 48.1
16K,32,2-skew 16K,64,2-skew | 11.9 755 | 4788 | 11.1 14 | 440 | 54.6
16K,32,2-skew | 16K,128,2-skew | 13.5 68.9 | 351.0 | 122 12| 354 | 634
16K,32,2-skew 32K ,8,2-skew 9.8 69.5 | 4933 | 121 15| 494 | 49.1
16K,32,2-skew 32K,16,2-skew | 10.3 729 | 5170 | 115 14 | 49.2 | 494
16K,32,2-skew 32K,32,2-skew | 10.9 73.8 | 4969 | 114 1.3 | 46.7 | 52.0
16K,32,2-skew 32K,64,2-skew | 11.6 69.8 | 4188 | 121 1.3 | 415 | 57.2
16K,32,2-skew | 32K,128,2-skew | 13.0 63.8 | 3135 | 13.2 10| 339 | 65.0
16K,64,DM 4K,8,DM | 13.3 795 | 4744 1.7 6.5 | 57.1 | 36.3
16K,64,DM 4K,16,DM | 14.3 81.8 | 469.8 7.6 7.8 | 53.7 | 385
16K,64,DM 4K,32,DM | 15.7 78.3 | 389.9 76 | 10.1 | 487 | 41.2
16K,64,DM 4K,64,DM | 18.6 67.6 | 246.0 76 | 143 | 41.2 | 445
16K,64,DM 4K ,128,DM | 23.9 495 | 102.7 76 | 190 | 320 | 489
16K,64,DM 8K,8,DM | 135 87.5 | 565.6 8.3 49 | 516 | 435
16K,64,DM 8K,16,DM | 14.9 91.9 | 567.5 7.8 56| 502 | 4.1
16K,64,DM 8K,32,DM | 16.4 89.6 | 490.1 7.6 7.3 | 46.7 | 46.0
16K,64,DM 8K,64,DM | 19.0 80.5 | 3414 76 | 104 | 403 | 494
16K,64,DM 8K,128,DM | 24.2 65.1 | 174.9 76 | 143 | 316 | 54.1
16K,64,DM 16K,8,DM | 13.7 83.6 | 510.8 9.3 41 | 458 | 50.1
16K,64,DM 16K,16,DM | 14.9 91.0 | 554.1 8.6 43 | 455 | 50.2
16K,64,DM 16K,32,DM | 16.8 96.8 | 557.2 8.0 45 | 434 | 52.2
16K,64,DM 16K,64,DM | 19.7 99.9 | 507.0 7.6 48 | 389 | 56.3
16K,64,DM 16K,128,DM | 24.4 93.1 | 355.0 7.6 6.2 | 314 | 624
16K,64,DM 32K,8,DM | 14.7 77.6 | 409.0 | 104 33| 380 | 58.7
16K,64,DM 32K,16,DM | 15.8 85.4 | 462.2 9.4 34| 391 | 575
16K,64,DM 32K,32,DM | 17.1 90.4 | 4785 8.9 34| 383 | 58.3
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
16K,64,DM 32K,64,DM 19.5 93.8 | 459.1 8.6 31| 354 | 615
16K,64,DM 32K,128,DM | 22.2 92.7 | 387.7 8.7 27 | 30.3 | 67.1
16K ,64,2-skew 4K ,8,2-skew 8.9 720 | 5793 | 111 31| 586 | 383
16K,64,2-skew 4K ,16,2-skew 9.4 74.0 | 5796 | 111 30| 555 | 415
16K,64,2-skew 4K ,32,2-skew | 10.4 73.3 | 5184 | 111 36 | 505 | 459
16K ,64,2-skew 4K ,64,2-skew | 12.2 71.8 | 4238 | 111 43 | 431 | 526
16K,64,2-skew 4K,128,2-skew | 15.6 50.6 | 2273 | 116 83| 322 | 594
16K,64,2-skew 8K,8,2-skew 9.3 74.3 | 595.0 | 111 26 | 56.5 | 41.0
16K ,64,2-skew 8K,16,2-skew 9.7 75.2 | 5842 | 111 26 | 541 | 434
16K,64,2-skew 8K,32,2-skew | 10.5 759 | 5478 | 111 24 | 498 | 478
16K,64,2-skew 8K,64,2-skew | 12.2 75.0 | 461.8 | 111 28 | 43.0 | 54.2
16K ,64,2-skew 8K,128,2-skew | 14.6 69.9 | 3348 | 11.8 30| 339 | 631
16K ,64,2-skew 16K ,8,2-skew 9.9 76.6 | 5926 | 111 20| 529 | 451
16K,64,2-skew 16K,16,2-skew | 10.2 76.9 | 5816 | 111 20| 515 | 465
16K ,64,2-skew 16K,32,2-skew | 10.9 771 | 5455 | 111 19| 48.1 | 50.1
16K,64,2-skew 16K,64,2-skew | 12.4 771 | 4791 | 111 1.7 | 42.2 | 56.1
16K ,64,2-skew | 16K,128,2-skew | 14.1 704 | 3526 | 12.2 15| 340 | 644
16K ,64,2-skew 32K,8,2-skew | 10.2 71.0 | 4922 | 121 1.9 | 47.2 | 50.9
16K,64,2-skew 32K,16,2-skew | 10.8 745 | 516.0 | 115 1.8 | 470 | 51.2
16K,64,2-skew 32K,32,2-skew | 11.4 754 | 4966 | 114 1.7 | 44.7 | 53.6
16K ,64,2-skew 32K ,64,2-skew | 12.1 71.3 | 4195 | 121 1.6 | 39.8 | 58.6
16K,64,2-skew | 32K,128,2-skew | 13.5 65.2 | 3150 | 13.2 1.3 | 327 | 66.0
16K,128,DM 4K,8,.DM | 13.8 79.5 | 457.0 7.7 78 | 55.0 | 37.2
16K,128,DM 4K,16,DM | 14.9 82.7 | 458.2 7.5 88 | 519 | 39.3
16K,128,DM 4K,32,DM | 16.4 79.1 | 382.3 75| 110 | 472 | 41.8
16K,128,DM 4K,64,DM | 19.2 68.3 | 243.6 75| 147 | 40.3 | 45.0
16K,128,DM 4K,128,DM | 24.4 50.1 | 102.9 751 19.1 | 31.7 | 49.2
16K,128,DM 8K,8,DM | 14.1 87.4 | 5422 8.3 6.2 | 497 | 441
16K,128,DM 8K,16,DM | 154 91.8 | 5455 7.8 6.9 | 484 | 447
16K,128,DM 8K,32,DM | 17.1 90.6 | 478.9 7.5 84 | 451 | 465
16K,128,DM 8K,64,DM | 19.7 814 | 3364 75| 11.0 | 39.3 | 49.7
16K,128,DM 8K,128,DM | 24.9 65.9 | 1745 75| 146 | 31.1 | 54.3
16K,128,DM 16K,8,DM | 14.2 83.4 | 489.9 9.3 54| 442 | 504
16K,128,DM 16K,16,DM | 155 908 | 5320 | 8.6 56 | 439 | 50.6
16K,128,DM 16K,32,DM | 17.4 96.7 | 536.7 8.0 571|419 | 524
16K,128,DM 16K,64,DM | 20.3 99.9 | 490.9 7.6 59| 37.7 | 56.4
16K,128,DM 16K,128,DM | 25.2 94.0 | 350.2 75 70| 30.7 | 624
16K,128,DM 32K,8,DM | 15.2 77.3 | 393.7 | 104 45| 369 | 58.6
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = :3: EQA Egﬂ EE-U Egﬂ
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
16K,128,DM 32K,16,DM 16.5 85.2 | 445.0 94 46 | 379 | 57.6
16K,128,DM 32K,32,DM | 17.6 90.2 | 4614 8.9 46 | 37.1 | 58.3
16K,128,DM 32K,64,DM | 19.7 93.6 | 444.0 8.6 42 | 344 | 614
16K,128,DM 32K,128,DM | 22.7 925 | 376.6 8.7 36| 295 | 66.8
16K,128,2-skew 4K ,8,2-skew 85 66.7 | 526.3 | 12.2 34 | 56.6 | 40.0
16K,128,2-skew 4K,16,2-skew 8.9 68.6 | 526.6 | 12.2 34| 535 | 431
16K,128,2-skew 4K ,32,2-skew 9.8 68.0 | 4719 | 12.2 39| 489 | 47.2
16K,128,2-skew 4K ,64,2-skew | 11.5 66.5 | 386.3 | 12.2 47 | 41.8 | 535
16K,128,2-skew 4K,128,2-skew | 15.3 572 | 2143 | 12.2 88 | 31.3 | 59.9
16K,128,2-skew 8K,8,2-skew 8.8 68.9 | 5406 | 12.2 29| 545 | 426
16K,128,2-skew 8K,16,2-skew 9.2 69.8 | 531.3 | 12.2 29| 522 | 449
16K,128,2-skew 8K,32,2-skew 9.9 704 | 4989 | 12.2 27 | 482 | 49.1
16K,128,2-skew 8K,64,2-skew | 11.5 695 | 4214 | 12.2 3.0 | 417 | 55.2
16K,128,2-skew 8K,128,2-skew | 14.5 68.6 | 3245 | 12.2 31| 330 | 63.9
16K,128,2-skew 16K ,8,2-skew 9.4 71.1 | 5396 | 12.2 23 | 51.1 | 46.7
16K,128,2-skew 16K,16,2-skew 9.6 714 | 529.7 | 12.2 22| 498 | 48.0
16K,128,2-skew 16K,32,2-skew | 10.3 715 | 4974 | 12.2 21| 465 | 514
16K,128,2-skew 16K,64,2-skew | 11.7 715 | 4378 | 12.2 1.9 | 409 | 57.2
16K,128,2-skew | 16K,128,2-skew | 14.4 715 | 3537 | 12.2 1.6 | 33.1 | 65.2
16K,128,2-skew 32K ,8,2-skew | 10.5 714 | 4869 | 12.2 20| 458 | 522
16K,128,2-skew 32K,16,2-skew | 10.5 71.6 | 487.2 | 12.2 20 | 455 | 525
16K,128,2-skew 32K,32,2-skew | 11.1 717 | 4646 | 12.2 19| 433 | 548
16K,128,2-skew 32K ,64,2-skew | 12.4 717 | 4159 | 12.2 17| 38.7 | 59.6
16K,128,2-skew | 32K,128,2-skew | 13.8 66.1 | 3159 | 132 14 | 319 | 66.8
32K,16,DM 4K,8,DM | 12.2 68.0 | 380.1 94 33| 508 | 45.9
32K,16,DM 4K,16,DM | 12.8 68.9 | 370.1 94 46 | 481 | 47.3
32K,16,DM 4K,32,DM | 14.0 65.7 | 308.5 9.4 72 | 44.1 | 487
32K,16,DM 4K,64,DM | 16.2 56.7 | 198.0 94| 11.8 | 38.0 | 50.2
32K,16,DM 4K,128,DM | 20.4 41.2 835 94| 174 | 30.3 | 52.3
32K,16,DM 8K,8,DM | 13.3 77.7 | 4545 9.4 1.8 | 465 | 51.7
32K,16,DM 8K,16,DM | 13.7 77.0 | 4344 9.4 26 | 452 | 52.2
32K,16,DM 8K,32,DM | 14.6 74.1 | 376.4 94 43 | 423 | 534
32K,16,DM 8K,64,DM | 16.6 66.8 | 267.9 9.4 7.7 | 37.1 | 55.2
32K,16,DM 8K,128,DM | 20.8 54.0 | 1405 94| 123 | 29.7 | 58.0
32K,16,DM 16K,8,DM | 14.8 819 | 453.7 94 12| 417 | 57.1
32K,16,DM 16K,16,DM | 14.9 82.7 | 457.9 9.4 1.3 | 41.3 | 57.3
32K,16,DM 16K,32,DM | 15.6 824 | 434.1 94 16| 395 | 589
32K,16,DM 16K,64,DM | 17.3 814 | 383.2 94 21| 357 | 622
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = :3: EQA Egﬂ EE-U Egﬂ
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
32K,16,DM 16K,128,DM 213 76.0 | 274.2 94 40 | 29.3 | 66.6
32K,16,DM 32K,8,DM | 159 771 | 3734 | 104 07| 352 | 641
32K,16,DM 32K,16,DM | 17.1 85.0 | 421.8 9.4 0.8 | 36.0 | 63.2
32K,16,DM 32K,32,DM | 17.5 85.1 | 414.8 94 08 | 353 | 63.9
32K,16,DM 32K,64,DM | 18.8 85.2 | 385.7 94 0.7 | 328 | 66.5
32K,16,DM 32K,128,DM | 21.8 85.1 | 3331 9.4 07| 284 | 710
32K,16,2-skew 4K ,8,2-skew 8.9 66.0 | 4895 | 115 20| 56.9 | 41.1
32K,16,2-skew 4K,16,2-skew 9.4 67.8 | 4906 | 115 19| 541 | 440
32K,16,2-skew 4K ,32,2-skew | 10.2 67.1 | 4420 | 115 26 | 496 | 478
32K,16,2-skew 4K ,64,2-skew | 11.8 65.9 | 366.8 | 11.5 35| 427 | 53.8
32K,16,2-skew 4K,128,2-skew | 15.5 575 | 2138 | 11.6 7.3 | 326 | 60.1
32K,16,2-skew 8K,8,2-skew 9.2 68.0 | 5024 | 115 15| 55.0 | 435
32K,16,2-skew 8K,16,2-skew 9.6 68.8 | 494.1 | 115 15| 528 | 45.7
32K,16,2-skew 8K,32,2-skew | 10.3 694 | 465.6 | 11.5 15| 489 | 49.6
32K,16,2-skew 8K,64,2-skew | 11.8 68.7 | 398.7 | 115 1.9 | 42.7 | 555
32K,16,2-skew 8K,128,2-skew | 14.5 66.3 | 3029 | 11.8 22| 34.1| 63.7
32K,16,2-skew 16K ,8,2-skew 9.8 70.0 | 501.0 | 115 10| 51.7 | 47.3
32K,16,2-skew 16K,16,2-skew | 10.0 70.3 | 4924 | 115 1.0 | 505 | 485
32K,16,2-skew 16K,32,2-skew | 10.7 704 | 4640 | 115 09| 473 | 517
32K,16,2-skew 16K,64,2-skew | 12.1 704 | 411.0 | 115 09 | 419 | 57.2
32K,16,2-skew | 16K,128,2-skew | 14.0 66.6 | 3169 | 12.2 08| 342 | 649
32K,16,2-skew 32K,8,2-skew | 10.4 671 | 4342 | 121 09 | 46.6 | 525
32K,16,2-skew 32K,16,2-skew | 10.9 704 | 455.0 | 115 09 | 464 | 52.7
32K,16,2-skew 32K,32,2-skew | 11.4 705 | 4349 | 115 08| 442 | 55.0
32K,16,2-skew 32K ,64,2-skew | 12.2 674 | 3738 | 121 0.8 | 39.7 | 59.5
32K,16,2-skew | 32K,128,2-skew | 13.4 61.7 | 283.6 | 13.2 06| 329 | 664
32K,32,DM 4K,8,DM | 12.0 73.7 | 452.8 89 38| 546 | 416
32K,32,DM 4K,16,DM | 12.8 75.0 | 4410 89 52| 514 | 434
32K,32,DM 4K,32,DM | 14.1 714 | 362.8 8.9 8.0 | 466 | 454
32K,32,DM 4K,64,DM | 16.6 61.3 | 226.6 89| 128 | 395 | 47.7
32K,32,DM 4K,128,DM | 21.2 44.4 92.6 89| 184 | 30.8 | 50.8
32K,32,DM 8K,8,DM | 13.2 85.5 | 5554 8.9 21| 49.7 | 48.1
32K,32,DM 8K,16,DM | 13.6 84.8 | 528.8 89 30| 482 | 488
32K,32,DM 8K,32,DM | 14.7 814 | 4521 89 49 | 447 | 505
32K,32,DM 8K,64,DM | 17.0 73.0 | 3134 8.9 85| 386 | 52.9
32K,32,DM 8K,128,DM | 21.6 58.6 | 158.9 89| 132 | 30.3 | 56.5
32K,32,DM 16K,8,DM | 14.2 87.3 | 536.4 9.3 14| 441 | 545
32K,32,DM 16K,16,DM | 15.0 91.7 | 562.2 8.9 16| 438 | 54.7
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = :3: EQA Egﬂ EE-U Egﬂ
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
32K,32,DM 16K,32,DM 15.§ 914 | 5304 8.9 19| 416 | 56.5
32K,32,DM 16K,64,DM | 17.6 90.3 | 462.8 8.9 24| 372 | 604
32K,32,DM 16K,128,DM | 21.8 83.9 | 3229 89 45| 30.0 | 655
32K,32,DM 32K,8DM | 15.3 810 | 4289 | 104 09| 36.6 | 625
32K,32,DM 32K,16,DM | 16.4 89.4 | 486.2 94 09| 376 | 615
32K,32,DM 32K,32,DM | 17.8 94.8 | 505.1 89 09| 36.8 | 623
32K,32,DM 32K,64,DM | 19.3 94.8 | 466.6 8.9 0.8 | 340 | 65.2
32K,32,DM 32K,128,DM | 22.6 94.8 | 398.3 8.9 0.8 | 29.0 | 70.2
32K,32,2-skew 4K ,8,2-skew 8.7 69.7 | 556.3 | 114 21| 585 | 394
32K,32,2-skew 4K ,16,2-skew 9.2 71.7 | 5566 | 114 21| 554 | 425
32K,32,2-skew 4K ,32,2-skew | 10.1 710 | 4984 | 114 2.8 | 50.5 | 46.7
32K,32,2-skew 4K ,64,2-skew | 11.8 69.6 | 409.1 | 114 36| 431 | 532
32K,32,2-skew 4K,128,2-skew | 15.6 503 | 2254 | 11.6 78| 323 | 59.9
32K,32,2-skew 8K,8,2-skew 9.1 719 | 571.3 | 114 16| 564 | 420
32K,32,2-skew 8K,16,2-skew 9.5 728 | 561.0 | 114 16 | 54.0 | 44.3
32K,32,2-skew 8K,32,2-skew | 10.3 735 | 5263 | 114 16| 49.8 | 486
32K,32,2-skew 8K,64,2-skew | 11.9 726 | 4442 | 114 20| 431 | 549
32K,32,2-skew 8K,128,2-skew | 14.6 69.5 | 3315 | 118 23| 340 | 63.7
32K,32,2-skew 16K ,8,2-skew 9.7 74.2 | 569.2 | 114 1.1 | 529 | 46.1
32K,32,2-skew 16K,16,2-skew 9.9 745 | 5586 | 114 11| 515 | 474
32K,32,2-skew 16K,32,2-skew | 10.6 74.6 | 524.2 | 114 1.0 | 48.1 | 50.9
32K,32,2-skew 16K,64,2-skew | 12.1 746 | 4608 | 114 09 | 423 | 56.8
32K,32,2-skew | 16K,128,2-skew | 14.0 69.8 | 348.1 | 12.2 09 | 342 | 65.0
32K,32,2-skew 32K,8,2-skew | 10.2 704 | 485.0 | 121 09| 473 | 518
32K,32,2-skew 32K,16,2-skew | 10.8 739 | 508.2 | 115 09 | 471 | 52.0
32K,32,2-skew 32K,32,2-skew | 11.4 748 | 4893 | 114 09 | 447 | 544
32K,32,2-skew 32K,64,2-skew | 12.1 70.8 | 413.7 | 121 0.8 | 39.9 | 59.2
32K ,32,2-skew | 32K,128,2-skew | 13.4 64.7 | 310.8 | 13.2 0.7 | 328 | 66.5
32K,64,DM 4K,8,DM | 124 77.9 | 488.6 8.6 40 | 54.7 | 41.3
32K ,64,DM 4K,16,DM | 13.2 79.3 | 476.1 8.6 54| 514 | 433
32K,64,DM 4K,32,DM | 14.6 755 | 391.2 8.6 80 | 466 | 454
32K,64,DM 4K,64,DM | 17.2 64.7 | 243.2 86 | 127 | 395 | 47.9
32K ,64,DM 4K,128,DM | 22.0 46.7 90.1 86| 179 | 309 | 512
32K,64,DM 8K,8,DM | 13.7 90.7 | 601.3 8.6 24| 49.7 | 479
32K,64,DM 8K,16,DM | 14.1 89.9 | 572.3 8.6 32| 481 | 48.7
32K ,64,DM 8K,32,DM | 15.2 86.3 | 4885 8.6 50| 446 | 504
32K,64,DM 8K,64,DM | 17.6 771 | 337.0 8.6 85| 385 | 53.0
32K,64,DM 8K,128,DM | 22.4 61.7 | 169.5 86 | 13.0 | 30.3 | 56.8
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Table C.1Cache configuration measuements, espesso

Instruction "
— T

conﬁgﬁrz;ion coDri‘tigLfrZ(tzirc])i gg % %‘ = %I EQA gg'u EE-U EQ-U
[total size, [total size, |~ 3| &3 (-,U)é & B TS
line size, line size, pY g s’“m g g §:U
associativity] associativity] = | = g
32K,64,DM 16K,8,DM 14.5 89.3 | 559.3 9.3 16| 439 | 544
32K,64,DM 16K,16,DM | 15.6 97.4 | 608.6 8.6 18| 436 | 54.7
32K,64,DM 16K,32,DM | 16.4 97.1 | 573.9 8.6 21| 414 | 56.5
32K,64,DM 16K,64,DM | 18.4 958 | 4994 | 8.6 26| 369 | 60.5
32K,64,DM 16K,128,DM | 22.8 88.9 | 346.6 8.6 45| 29.8 | 65.7
32K,64,DM 32K,8,DM | 154 829 | 446.0 | 104 11| 364 | 62.6
32K,64,DM 32K,16,DM | 16.5 91.5 | 506.1 9.4 11| 37.3 | 61.6
32K,64,DM 32K,32,DM | 17.9 97.1 | 525.9 89 11| 365 | 623
32K,64,DM 32K,64,DM | 20.2 | 100.7 | 503.3 8.6 1.0 | 33.7 | 65.3
32K,64,DM 32K,128,DM | 234 99.6 | 423.8 8.7 09| 287 | 704
32K ,64,2-skew 4K ,8,2-skew 85 675 | 5356 | 121 24 | 56.9 | 40.7
32K ,64,2-skew 4K,16,2-skew 9.0 69.3 | 5356 | 121 24 | 53.8 | 43.8
32K ,64,2-skew 4K ,32,2-skew 9.8 68.7 | 479.3 | 121 30| 491 | 478
32K ,64,2-skew 4K ,64,2-skew | 11.5 67.2 | 3922 | 121 40| 419 | 541
32K ,64,2-skew 4K,128,2-skew | 15.3 579 | 2188 | 121 82| 315 | 60.3
32K ,64,2-skew 8K,8,2-skew 8.8 69.6 | 5499 | 121 19| 548 | 43.3
32K ,64,2-skew 8K,16,2-skew 9.2 70.5 | 5402 | 121 19| 525 | 45.6
32K ,64,2-skew 8K,32,2-skew | 10.0 71.2 | 5071 | 121 1.8 | 484 | 49.8
32K ,64,2-skew 8K,64,2-skew | 11.5 70.3 | 4280 | 121 23| 419 | 559
32K ,64,2-skew 8K,128,2-skew | 14.6 69.3 | 320.2 | 121 25| 331 | 644
32K ,64,2-skew 16K ,8,2-skew 9.4 719 | 5485 | 121 13| 514 | 474
32K ,64,2-skew 16K,16,2-skew 9.7 721 | 5384 | 121 1.3 | 50.0 | 48.7
32K ,64,2-skew 16K,32,2-skew | 10.3 72.3 | 5054 | 121 1.2 | 46.8 | 52.0
32K ,64,2-skew 16K,64,2-skew | 11.8 723 | 4446 | 121 11| 411 | 57.8
32K,64,2-skew | 16K,128,2-skew | 14.4 715 | 3554 | 12.2 1.0 | 33.3 | 65.8
32K ,64,2-skew 32K,8,2-skew | 10.5 721 | 4946 | 121 1.1 | 46.0 | 52.9
32K ,64,2-skew 32K,16,2-skew | 10.6 723 | 4951 | 121 11| 458 | 53.1
32K ,64,2-skew 32K,32,2-skew | 11.1 724 | 4719 | 121 1.1 | 435 | 554
32K ,64,2-skew 32K,64,2-skew | 12.4 725 | 4222 | 121 1.0 | 389 | 60.2
32K ,64,2-skew | 32K,128,2-skew | 13.8 66.2 | 317.2 | 13.2 08| 319 | 67.3
32K,128,DM 4K,8,.DM | 12.3 77.7 | 491.6 8.7 43 | 54.7 | 409
32K,128,DM 4K,16,DM | 13.1 79.1 | 478.7 8.7 57| 514 | 429
32K,128,DM 4K,32,DM | 144 75.3 | 392.8 8.7 84 | 465 | 451
32K,128,DM 4K,64,DM | 17.1 64.5 | 2435 87| 13.0| 394 | 476
32K,128,DM 4K ,128,DM | 21.8 46.5 99.0 87| 182 | 30.8 | 51.0
32K,128,DM 8K,8,DM | 135 90.5 | 606.1 8.7 28 | 49.7 | 476
32K,128,DM 8K,16,DM | 14.0 89.7 | 576.5 8.7 36| 48.1 | 483
32K,128,DM 8K,32,DM | 15.1 86.1 | 4915 8.7 53| 445 | 50.1
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32K,128,DM 8K,64,DM 17.3 76.9 | 338.1 8.7 88 | 384 | 52.8
32K,128,DM 8K,128,DM | 22.3 615 | 169.7 87| 133 | 30.1 | 56.6
32K,128,DM 16K,8,DM | 14.3 90.2 | 570.2 9.3 19| 439 | 54.2
32K,128,DM 16K,16,DM | 15.4 97.3 | 6135 8.7 21| 435 | 544
32K,128,DM 16K,32,DM | 16.3 97.0 | 578.1 8.7 24| 41.3 | 56.3
32K,128,DM 16K,64,DM | 18.2 95.7 | 502.5 8.7 29 | 36.8 | 60.3
32K,128,DM 16K,128,DM | 22.6 88.7 | 347.8 8.7 48 | 29.6 | 65.6
32K,128,DM 32K,8DM | 154 838 | 4541 | 104 14| 36.3 | 624
32K,128,DM 32K,16,DM | 16.6 925 | 5155 9.4 14| 372 | 614
32K,128,DM 32K,32,DM | 18.0 98.1 | 535.7 8.9 14| 36.4 | 622
32K,128,DM 32K,64,DM | 20.0 | 100.7 | 506.6 8.7 13| 336 | 65.1
32K,128,DM 32K,128,DM | 235 | 100.6 | 431.0 8.7 11| 28,6 | 70.3
32K,128,2-skew 4K ,8,2-skew 7.9 62.8 | 4975 | 13.2 25| 557 | 418
32K,128,2-skew 4K,16,2-skew 84 64.3 | 495.2 | 13.2 25| 528 | 44.8
32K,128,2-skew 4K ,32,2-skew 9.2 63.7 | 4435 | 132 31| 48.2 | 48.7
32K,128,2-skew 4K ,64,2-skew | 10.7 62.3 | 3628 | 13.2 40 | 412 | 54.8
32K,128,2-skew 4K,128,2-skew | 14.2 536 | 201.7 | 13.2 8.1 | 310 | 60.9
32K,128,2-skew 8K,8,2-skew 8.2 64.6 | 508.7 | 13.2 19| 53.7 | 44.3
32K,128,2-skew 8K,16,2-skew 8.6 65.4 | 498.6 | 13.2 20| 515 | 46.5
32K,128,2-skew 8K,32,2-skew 9.3 65.9 | 4674 | 13.2 19| 475 | 50.6
32K,128,2-skew 8K,64,2-skew | 10.7 65.1 | 3948 | 13.2 23 | 41.1 | 56.6
32K,128,2-skew 8K,128,2-skew | 13.6 64.2 | 303.8 | 13.2 25| 325 | 649
32K,128,2-skew 16K,8,2-skew 8.8 66.5 | 505.4 | 13.2 14| 50.4 | 48.3
32K,128,2-skew 16K,16,2-skew 9.0 66.8 | 495.7 | 13.2 14 | 49.1 | 495
32K,128,2-skew 16K,32,2-skew 9.6 66.9 | 465.3 | 13.2 13| 459 | 528
32K,128,2-skew 16K,64,2-skew | 10.9 66.9 | 4094 | 13.2 12| 404 | 58.4
32K,128,2-skew | 16K,128,2-skew | 13.5 66.8 | 330.8 | 13.2 1.0 | 32.7 | 66.3
32K,128,2-skew 32K,8,2-skew 9.8 66.8 | 455.8 | 13.2 12| 451 | 53.7
32K,128,2-skew 32K,16,2-skew 9.8 66.9 | 455.9 | 13.2 12| 449 | 539
32K,128,2-skew 32K,32,2-skew | 10.3 67.0 | 4345 | 132 1.2 | 42.7 | 56.1
32K,128,2-skew 32K,64,2-skew | 11.6 | 67.0 | 3889 | 13.2 10| 382 | 60.8
32K,128,2-skew | 32K,128,2-skew | 14.0 67.0 | 320.1 | 13.2 09| 314 | 67.7
64K,16,DM 4K,8,.DM | 13.2 60.9 | 280.0 | 10.8 2.7 | 40.7 | 56.6
64K,16,DM 4K,16,DM | 13.9 615 | 273.2 | 10.8 38| 388 | 574
64K,16,DM 4K,32,DM | 14.8 58.6 | 2322 | 10.8 6.2 | 364 | 574
64K,16,DM 4K,64,DM | 16.5 505 | 1548 | 10.8 | 10.7 | 32.7 | 56.6
64K,16,DM 4K,128,DM | 19.6 36.6 68.3 | 10.8 | 16.6 | 27.5 | 55.9
64K,16,DM 8K,8,DM | 14.5 69.0 | 328.0 | 10.8 14| 37.1 | 615
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64K,16,DM 8K,16,DM 14.§ 68.4 | 3153 | 10.8 21| 36.3 | 616
64K,16,DM 8K,32,DM | 15.6 65.8 | 278.1 | 10.8 36| 346 | 618
64K,16,DM 8K,64,DM | 17.1 50.3 | 205.0 | 10.8 6.8 | 314 | 61.8
64K,16,DM 8K,128,DM | 20.4 479 | 1126 | 108 | 115 | 26.4 | 62.0
64K,16,DM 16K,8,DM | 16.0 725 | 329.1 | 10.8 09 | 337 | 654
64K,16,DM 16K,16,DM | 16.1 73.1 | 3316 | 108 1.0 | 334 | 65.6
64K,16,DM 16K,32,DM | 16.7 728 | 317.0 | 10.8 13| 322 | 66.5
64K,16,DM 16K,64,DM | 18.1 719 | 2849 | 10.8 17| 29.7 | 68.6
64K,16,DM 16K,128,DM | 21.3 67.1 | 2116 | 108 36| 263 | 712
64K,16,DM 32K,8,DM | 185 74.8 | 303.3 | 10.8 05| 292 | 70.3
64K,16,DM 32K,16,DM | 18.1 75.0 | 310.7 | 10.8 05| 29.7 | 69.8
64K,16,DM 32K,32,DM | 184 75.1 | 306.4 | 10.8 05| 20.2 | 70.3
64K,16,DM 32K,64,DM | 19.6 75.2 | 288.2 | 10.8 05| 275 | 720
64K,16,DM 32K,128,DM | 22.2 75.1 | 254.2 | 10.8 05| 242 | 753
64K,16,2-skew 4K ,8,2-skew 9.2 60.0 | 390.2 | 12.8 1.6 | 49.1 | 49.3
64K,16,2-skew 4K,16,2-skew 9.7 615 | 390.2 | 12.8 15| 469 | 51.6
64K,16,2-skew 4K ,32,2-skew | 10.4 60.9 | 355.6 | 12.8 21| 435 | 544
64K,16,2-skew 4K ,64,2-skew | 11.9 50.8 | 300.2 | 12.8 30| 382 | 589
64K,16,2-skew 4K,128,2-skew | 15.1 524 | 1819 | 128 6.7 | 30.1 | 63.2
64K,16,2-skew 8K,8,2-skew 9.6 61.7 | 399.1 | 12.8 11| 475 | 513
64K,16,2-skew 8K,16,2-skew 9.9 624 | 393.0| 128 1.2 | 45.8 | 53.0
64K,16,2-skew 8K,32,2-skew | 10.6 62.8 | 372.7 | 12.8 11| 429 | 56.0
64K,16,2-skew 8K,64,2-skew | 11.9 622 | 3242 | 128 15| 38.0 | 60.5
64K,16,2-skew 8K,128,2-skew | 14.6 614 | 2575 | 128 19| 310 | 67.1
64K,16,2-skew 16K,8,2-skew | 10.1 634 | 3979 | 128 0.7 | 449 | 544
64K,16,2-skew 16K,16,2-skew | 10.3 | 63.6 | 391.8 | 128 | 0.7 | 44.0 | 55.3
64K,16,2-skew 16K,32,2-skew | 10.9 63.7 | 371.8 | 128 07| 416 | 57.8
64K,16,2-skew 16K,64,2-skew | 12.2 63.7 | 3336 | 12.8 07| 373 | 621
64K,16,2-skew | 16K,128,2-skew | 14.6 63.7 | 277.2 | 12.8 06| 311 | 68.3
64K,16,2-skew 32K,8,2-skew | 11.1 63.6 | 365.2 | 12.8 06| 410 | 584
64K,16,2-skew 32K,16,2-skew | 11.1 | 638 | 3654 | 128 | 0.6 | 40.8 | 58.6
64K,16,2-skew 32K,32,2-skew | 116 | 638 | 351.0 | 128 | 0.6 | 39.1 | 60.3
64K,16,2-skew 32K,64,2-skew | 12.8 63.9 | 319.2 | 128 05| 355 | 639
64K ,16,2-skew | 32K,128,2-skew | 14.7 62.1 | 261.7 | 13.2 05| 30.0 | 69.6
64K,32,DM 4K,8,DM | 12.7 68.5 | 370.8 9.8 32| 469 | 49.9
64K,32,DM 4K,16,DM | 134 69.5 | 361.2 9.8 45| 444 | 51.2
64K ,32,DM 4K,32,DM | 145 66.1 | 3014 9.8 7.1 | 409 | 52.0
64K,32,DM 4K,64,DM | 16.6 56.7 | 193.5 98| 11.8 | 357 | 525
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64K ,32,DM 4K ,128,DM ZO.E 40.9 81.6 98 | 176 | 289 | 534
64K ,32,DM 8K,8,DM | 14.0 78.9 | 445.6 9.8 1.7 | 426 | 55.8
64K ,32,DM 8K,16,DM | 14.3 78.2 | 426.1 9.8 25| 415 | 56.1
64K ,32,DM 8K,32,DM | 15.2 75.0 | 3694 9.8 42 | 39.0 | 56.9
64K ,32,DM 8K,64,DM | 17.2 67.3 | 262.9 9.8 7.7 | 345 | 57.8
64K ,32,DM 8K,128,DM | 21.1 54.0 | 137.7 98 | 124 | 28.1 | 59.5
64K ,32,DM 16K,8,DM | 15.6 83.4 | 446.9 9.8 1.0 | 38.2 | 60.8
64K ,32,DM 16K,16,DM | 15.7 84.2 | 451.2 9.8 1.2 | 378 | 61.0
64K ,32,DM 16K,32,DM | 16.4 83.9 | 428.3 9.8 15| 36.2 | 62.3
64K ,32,DM 16K,64,DM | 18.1 82.8 | 378.9 9.8 20| 328 | 65.1
64K ,32,DM 16K,128,DM | 21.8 77.0 | 271.7 9.8 40| 27.2 | 68.8
64K ,32,DM 32K,8,DM | 174 81.6 | 3838 | 104 06| 323 | 67.1
64K ,32,DM 32K,16,DM | 18.0 86.7 | 417.7 9.8 06 | 33.0 | 66.3
64K ,32,DM 32K,32,DM | 18.3 86.8 | 411.0 9.8 06| 324 | 670
64K ,32,DM 32K,64,DM | 19.7 86.9 | 3829 9.8 0.6 | 30.2 | 69.2
64K ,32,DM 32K,128,DM | 22.7 86.8 | 3319 9.8 06| 261 | 73.3
64K ,32,2-skew 4K ,8,2-skew 8.7 63.5 | 4655 | 12.7 1.8 | 531 | 45.1
64K ,32,2-skew 4K,16,2-skew 9.1 65.0 | 4646 | 12.7 1.7 | 505 | 47.8
64K ,32,2-skew 4K ,32,2-skew 9.9 64.4 | 4189 | 12.7 24 | 464 | 51.2
64K ,32,2-skew 4K ,64,2-skew | 11.5 63.1 | 3479 | 12.7 32| 401 | 56.7
64K ,32,2-skew 4K,128,2-skew | 14.9 54.6 | 1995 | 12.7 7.2 | 30.8 | 62.0
64K ,32,2-skew 8K,8,2-skew 9.0 65.3 | 476.0 | 12.7 13| 513 | 474
64K ,32,2-skew 8K,16,2-skew 9.3 66.0 | 4675 | 12.7 1.3 | 49.3 | 494
64K ,32,2-skew 8K,32,2-skew | 10.1 66.5 | 4403 | 12.7 1.3 | 45.7 | 53.0
64K ,32,2-skew 8K,64,2-skew | 11.5 65.7 | 3759 | 12.7 1.7 | 40.0 | 58.3
64K ,32,2-skew 8K,128,2-skew | 14.3 64.9 | 294.0 | 12.7 20| 321 | 659
64K ,32,2-skew 16K ,8,2-skew 9.5 67.2 | 4735 | 12.7 08| 482 | 510
64K ,32,2-skew 16K,16,2-skew 9.8 67.4 | 465.2 | 12.7 08| 471 | 521
64K ,32,2-skew 16K,32,2-skew | 10.4 67.5 | 4386 | 12.7 08| 44.2 | 55.0
64K ,32,2-skew 16K,64,2-skew | 11.7 67.5 | 389.1 | 12.7 0.7 | 39.2 | 60.1
64K ,32,2-skew | 16K,128,2-skew | 14.3 674 | 3179 | 127 07| 321 | 67.2
64K ,32,2-skew 32K,8,2-skew | 10.6 674 | 4301 | 12.7 0.7 | 435 | 55.8
64K ,32,2-skew 32K,16,2-skew | 10.6 67.5 | 4303 | 12.7 0.7 | 434 | 56.0
64K ,32,2-skew 32K,32,2-skew | 11.1 67.6 | 4114 | 12.7 0.7 | 414 | 58.0
64K ,32,2-skew 32K,64,2-skew | 12.3 67.7 | 3706 | 12.7 06| 37.2 | 622
64K ,32,2-skew | 32K,128,2-skew | 14.3 65.0 | 295.7 | 13.2 05| 309 | 68.6
64K ,64,DM 4K,8,.DM | 125 72.2 | 416.9 9.5 34| 491 | 476
64K ,64,DM 4K,16,DM | 13.2 73.3 | 405.5 9.5 47 | 46.3 | 49.0
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64K,64,DM 4K ,32,DM 14.2 69.7 | 336.2 9.5 73| 425 | 50.2
64K,64,DM 4K,64,DM | 16.7 50.6 | 212.8 95| 120 | 36.7 | 51.3
64K ,64,DM 4K,128,DM | 20.9 42.9 884 95| 175 | 294 | 53.0
64K,64,DM 8K,8,DM | 138 | 83.3 | 503.6 9.5 19| 445 | 536
64K,64,DM 8K,16,DM | 14.2 82.6 | 480.5 9.5 27| 432 | 54.1
64K ,64,DM 8K,32,DM | 15.2 79.2 | 4141 9.5 44 | 405 | 55.2
64K,64,DM 8K,64,DM | 17.3 70.9 | 290.9 9.5 79| 355 | 56.6
64K,64,DM 8K,128,DM | 21.4 56.6 | 1494 95| 125 | 286 | 58.9
64K ,64,DM 16K,8,DM | 154 88.2 | 503.6 9.5 1.2 | 39.7 | 59.1
64K,64,DM 16K,16,DM | 15.6 | 89.1 | 508.6 9.5 13| 39.3 | 59.3
64K,64,DM 16K,32,DM | 16.4 88.8 | 4815 9.5 16| 375 | 60.8
64K ,64,DM 16K,64,DM | 18.1 87.6 | 423.0 9.5 22 | 338 | 64.0
64K,64,DM 16K,128,DM | 22.1 81.3 | 299.2 9.5 41| 278 | 68.1
64K,64,DM 32K,8DM | 16.8 836 | 4154 | 104 0.7 | 33.3 | 66.0
64K ,64,DM 32K,16,DM | 18.0 91.8 | 467.9 9.5 08| 341 | 65.2
64K,64,DM 32K,32,DM | 184 91.9 | 460.0 9.5 08 | 334 | 65.9
64K,64,DM 32K,64,DM | 19.8 92.0 | 426.9 9.5 0.7 | 310 | 68.3
64K ,64,DM 32K,128,DM | 23.0 919 | 3674 9.5 06 | 26.7 | 72.7
64K ,64,2-skew 4K ,8,2-skew 8.3 63.0 | 4746 | 131 19| 533 | 448
64K ,64,2-skew 4K,16,2-skew 8.8 645 | 4729 | 131 19| 50.6 | 475
64K ,64,2-skew 4K ,32,2-skew 9.6 63.9 | 4252 | 131 26 | 464 | 51.0
64K ,64,2-skew 4K ,64,2-skew | 11.1 625 | 3505 | 131 35| 400 | 56.5
64K ,64,2-skew 4K,128,2-skew | 146 | 539 | 199.0 | 13.1 76| 305 | 619
64K ,64,2-skew 8K,8,2-skew 8.7 64.8 | 485.2 | 131 14 | 515 | 47.1
64K ,64,2-skew 8K,16,2-skew 9.0 65.5 | 476.2 | 131 15| 494 | 49.1
64K ,64,2-skew 8K,32,2-skew 9.7 66.0 | 4479 | 131 14| 457 | 529
64K ,64,2-skew 8K,64,2-skew | 11.2 65.2 | 3808 | 131 1.9 | 39.9 | 58.3
64K ,64,2-skew 8K,128,2-skew | 14.0 64.3 | 2956 | 131 22| 318 | 66.0
64K ,64,2-skew 16K,8,2-skew 9.2 66.7 | 4826 | 131 | 0.9 | 483 | 50.8
64K ,64,2-skew 16K,16,2-skew 9.4 66.9 | 4740 | 131 09| 471 | 519
64K ,64,2-skew 16K,32,2-skew | 10.1 67.0 | 446.2 | 131 09 | 442 | 54.9
64K ,64,2-skew 16K,64,2-skew | 11.4 67.0 | 3947 | 131 08| 391 | 60.1
64K ,64,2-skew | 16K,128,2-skew | 14.0 67.0 | 321.2 | 131 07| 319 ]| 674
64K ,64,2-skew 32K,8,2-skew | 10.2 66.9 | 437.3 | 131 | 0.8 | 435 | 55.7
64K ,64,2-skew 32K,16,2-skew | 10.3 | 67.1 | 4375 | 13.1| 0.8 | 433 | 55.9
64K ,64,2-skew 32K,32,2-skew | 10.8 67.2 | 4179 | 131 08| 41.3 | 58.0
64K ,64,2-skew 32K ,64,2-skew | 12.0 67.2 | 3756 | 131 0.7 | 370 | 62.3
64K ,64,2-skew | 32K,128,2-skew | 14.4 66.6 | 308.2 | 13.2 0.6 | 30.7 | 68.7
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64K,128,DM 4K ,8,DM 11.; 69.9 | 4235 9.9 39| 510 | 452
64K,128,DM 4K,16,DM | 12.2 70.9 | 410.7 9.9 53| 48.0 | 46.7
64K,128,DM 4K,32,DM | 134 67.4 | 3379 9.9 8.1 | 43.7 | 48.2
64K,128,DM 4K,64,DM | 15.7 576 | 2110 99| 129 | 37.3 | 49.8
64K,128,DM 4K,128,DM | 19.9 414 86.3 99| 185 | 295 | 52.0
64K,128,DM 8K,8,DM | 12.7 80.7 | 513.7 9.9 22 | 463 | 51.5
64K,128,DM 8K,16,DM | 13.1 80.0 | 488.9 9.9 31| 449 | 520
64K,128,DM 8K,32,DM | 14.1 76.7 | 418.8 9.9 49 | 418 | 53.3
64K,128,DM 8K,64,DM | 16.2 68.6 | 290.6 9.9 86 | 36.3 | 55.1
64K,128,DM 8K,128,DM | 20.3 54.7 | 147.2 99| 133 | 289 | 57.8
64K,128,DM 16K,8,DM | 14.3 855 | 512.7 9.9 14| 41.2 | 57.3
64K,128,DM 16K,16,DM | 144 86.4 | 517.7 9.9 1.6 | 40.8 | 57.6
64K,128,DM 16K,32,DM | 15.1 86.0 | 488.8 9.9 19| 388 | 59.2
64K,128,DM 16K,64,DM | 16.9 849 | 427.0 9.9 25| 348 | 627
64K,128,DM 16K,128,DM | 20.8 78.7 | 298.5 9.9 45| 283 | 67.2
64K,128,DM 32K,8DM | 16.3 84.7 | 439.1 | 104 09| 343 | 648
64K,128,DM 32K,16,DM | 16.7 89.0 | 474.0 9.9 09| 352 | 63.9
64K,128,DM 32K,32,DM | 17.1 89.2 | 465.6 9.9 09| 344 | 646
64K,128,DM 32K,64,DM | 185 89.2 | 430.7 9.9 09| 318 | 67.3
64K,128,DM 32K,128,DM | 21.6 89.2 | 368.6 9.9 08| 27.3 | 72.0
64K ,128,2-skew 4K ,8,2-skew 7.6 58.7 | 4525 | 14.3 20 | 535 | 445
64K ,128,2-skew 4K,16,2-skew 8.0 509 | 4485 | 14.3 20| 50.8 | 47.2
64K ,128,2-skew 4K ,32,2-skew 8.7 50.3 | 4026 | 14.3 2.6 | 46.6 | 50.8
64K ,128,2-skew 4K ,64,2-skew | 10.2 58.0 | 3308 | 14.3 35| 40.0 | 56.5
64K ,128,2-skew 4K,128,2-skew | 13.4 50.0 | 186.1 | 14.3 75| 304 | 622
64K ,128,2-skew 8K,8,2-skew 7.9 60.2 | 4605 | 14.3 15| 51.7 | 46.8
64K ,128,2-skew 8K,16,2-skew 8.2 60.8 | 450.6 | 14.3 1.6 | 49.6 | 48.8
64K,128,2-skew 8K,32,2-skew 8.9 612 | 4226 | 14.3 15| 459 | 526
64K ,128,2-skew 8K,64,2-skew | 10.2 60.5 | 3585 | 14.3 19| 39.9 | 582
64K ,128,2-skew 8K,128,2-skew | 12.8 50.6 | 277.2 | 143 22 | 31.8 | 66.0
64K,128,2-skew 16K ,8,2-skew 84 61.8 | 455.7 | 14.3 10| 485 | 50.4
64K ,128,2-skew 16K,16,2-skew 8.6 62.0 | 4470 | 143 10| 474 | 516
64K ,128,2-skew 16K,32,2-skew 9.2 62.1 | 420.1 | 14.3 09 | 444 | 54.7
64K,128,2-skew 16K,64,2-skew | 10.4 62.1 | 3709 | 143 09 | 39.2 | 59.9
64K ,128,2-skew | 16K,128,2-skew | 12.8 62.0 | 301.0 | 14.3 08| 319 | 67.3
64K ,128,2-skew 32K ,8,2-skew 9.3 62.0 | 4120 | 14.3 09| 436 | 555
64K,128,2-skew 32K,16,2-skew 9.4 62.1 | 4119 | 143 0.9 | 435 | 55.7
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Table C.1Cache configuration measuements, espesso

Instruction
cache Datacache |2 =3
: . X ! o | z2M| =53 80 8P| S0
configuration configuration | 2 2| T3 | =3 ig S8 | 28 | =8
[total size, [total size, — 3| L3 (-,U)Q ) 3 H| &
line size, line size, 3 2 s"’m g g 5
associativity] associativity] = | = - = g
64K ,128,2-skew 32K,32,2-skew 9.8 62.2 | 3930 | 143 08| 414 | 578
64K ,128,2-skew 32K,64,2-skew | 11.0 62.2 | 3526 | 14.3 08| 371 | 622
64K ,128,2-skew | 32K,128,2-skew | 13.3 62.2 | 2914 | 143 0.6 | 30.6 | 68.7
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