
ENERGY EFFICIENT

COMPUTER ARCHITECTURE

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

October 1996

By

Henrik Scheuer

Department of Computer Science

2

Table of Contents

Abstract .. 12

Declaration ... 13

Copyright Notice .. 14

The Author ... 15

Acknowledgments .. 16

Chapter 1 Introduction ...17

1.1 Background ..18

1.2 Overview of thesis ...23

Chapter 2 Power consumption in an ARM3-system ...27

2.1 Results from OMI-MAP ..27

2.2 Evaluation of results...30

2.3 Power consumption in RAM..32

2.4 Summary ..33

Chapter 3 Baseline HORN architecture ..35

3.1 Basic architecture...36

3.2 Local storage ..37

3.2.1 Global registers ..38

3.2.2 Local registers ..38

3.2.3 Operand queue ...39

3.3 Branch architecture ..40

3.4 Instruction format...44

3.5 Summary ..47

Chapter 4 Metrics and benchmarks ..49

4.1 Background on metrics ..50

4.2 Evaluation of metrics and discussion...55

4.3 Selection criteria for benchmarks ..59

4.4 Benchmark Suite ..60

4.4.1 Hello ..60

4.4.2 Espresso ...61

3

4.4.3 Flex ..62

4.4.4 Cacti ...62

4.4.5 Fft ...63

4.4.6 Dhrystone ...64

4.4.7 Stcompiler ..65

4.5 Summary ..65

Chapter 5 Energy consumption in caches ...68

5.1 Energy cost...69

5.1.1 RAM-compiler ...69

5.1.2 Fundamental relations ..72

5.1.3 Multi-ported RAM ...80

5.2 Direct mapped cache..81

5.3 N-way set-associative caches...85

5.4 Other cache organizations..87

5.4.1 Sectored caching ..89

5.4.2 Cache Address Tag-caching ..91

5.5 Skewed-associativity..93

5.5.1 Choosing a set of skewing functions ...96

5.6 Replacement algorithms...96

5.7 Cache timing ..98

5.8 Block buffering ..100

5.9 Fetch and Write Back buffers ..104

5.10 Gray-coding fetches/writebacks...106

5.11 Selective writeback ..109

5.12 Summary ..110

Chapter 6 Dual instruction branch ...113

6.1 Improving hit-rate through dual instruction branches..................................113

6.1.1 Effect on effective hit-rate ...114

6.1.2 Performance measurements ...115

6.1.3 Energy efficiency ...120

6.2 Reduction of cache miss penalty through two-instruction CTI122

6.3 Alternative branch and loop architectures ...127

6.4 Two-instruction CTI in a dual-issue implementation129

4

6.5 Summary ..132

Chapter 7 Register file architectures...134

7.1 Introduction..134

7.2 Temporary storage ...135

7.3 Memory mapped registers..136

7.3.1 Number of ports ...138

7.3.2 Total size ..139

7.3.3 Line size ...141

7.3.4 Associativity ..143

7.3.5 Writeback policy ..144

7.3.6 Results ...145

7.3.7 Summary ..152

7.4 Spill/fill ..152

7.4.1 The spill/fill scheme ..154

7.4.2 Statistics ...156

7.4.3 Implementing the spill/fill scheme ..160

7.4.4 Three ways of implementing the spill/fill scheme162

7.4.5 The cache and memory models ...164

7.4.6 Results ...165

7.4.6.1 Model 1, A conservative scheme ..165

7.4.6.2 Model 2, A spill/fill engine ..167

7.4.6.3 Model 3, A spill/fill cache ..169

7.4.7 Summary ..171

7.5 Register windows (SPARC)...172

7.6 Summary ..177

Chapter 8 Instruction fetching ..179

8.1 Introduction..180

8.2 Variable-size instructions in the HORN architecture183

8.3 Instruction fetch mechanisms...186

8.3.1 The alignment architecture ..187

8.3.2 The dual cache line architecture ..191

8.3.3 The eXtra-line architecture ..195

8.4 Summary ..198

5

Chapter 9 Cache design and dimensioning..200

9.1 Background for cache evaluation...201

9.2 Performance and energy efficiency of separate cache configurations.........203

9.3 Unified cache ...213

9.3.1 Performance and energy efficiency of unified cache configurations 214

9.4 Summary ..217

Chapter 10 Conclusions...219

10.1 Summary ..219

10.2 Assessment of work ...223

10.3 Conclusions..225

10.4 Suggestions for future work...226

References... 229

Appendix A Energy Efficiency versus power consumption...................................237

A.1 Separate caches ..237

A.2 Unified cache ...239

Appendix B Energy Efficiency versus cache line size...242

Appendix C Simulation results ...245

6

List of Figures

Figure 3.1 Example of packed arithmetic ...37

Figure 3.2 Example of a go-instruction outside a loop body...................................42

Figure 3.3 Optimal migration of the ‘go’ and ‘leap’ instructions............................43

Figure 3.4 Instruction format...44

Figure 3.5 Instruction encoding...45

Figure 4.1 Energy Efficiency vs. power consumption for existing processors ..59

Figure 5.1 Sense amplifier without static power dissipation71

Figure 5.2 Extract from RAM circuit...73

Figure 5.3 Voltage swing when discharging and precharging bit lines...................74

Figure 5.4 VBitline when precharging to an intermediate voltage..............................75

Figure 5.5 Extract of a bit cell from a multi-ported RAM circuit............................81

Figure 5.6 Block diagram for a direct mapped cache..82

Figure 5.7 ECache,RR vs. cache size and ECache,RR vs. line size...................................84

Figure 5.8 ECache,RW vs. cache size and ECache,RW vs. line size..................................85

Figure 5.9 N-way set-associative cache...86

Figure 5.10 ECache,RR vs. degree of associativity for a 8K-byte cache........................87

Figure 5.11 Sectored cache..89

Figure 5.12 CAT-cache..91

Figure 5.13 2-way set- and skewed-associative caches...94

Figure 5.14 Different mapping functions in different sets...95

Figure 5.15 Cache cycle time versus cache size and organization............................99

Figure 5.16 Cache cycle time versus associativity..100

Figure 5.17 Block Buffering ..101

Figure 5.18 Cache with three block buffers...105

Figure 5.19 Reduction in bit-transitions on the address bus from Gray-coding......107

Figure 6.1 Go-leap structure ..113

Figure 6.2 Example of go-instruction migrating outside loopbody.......................119

Figure 6.3 Doubling the early pipeline stages might eliminate branch penalty.....123

7

Figure 6.4 Replication of instruction alignment structure.....................................125

Figure 6.5 C-code compiled into HORN code and Energy-efficient code............128

Figure 6.6 The principle of a ‘loop’-instruction..129

Figure 7.1 Allocating and de-allocating registers ...138

Figure 7.2 Variation of LPTR during execution, hello..139

Figure 7.3 Variation of LPTR during execution, stcompiler.................................140

Figure 7.4 Cycle time vs. associativity for a 512-byte - 1 ported cache................144

Figure 7.5 Register layout..153

Figure 7.6 Two register (de-)allocation schemes...153

Figure 7.7 Block diagram of register file...155

Figure 7.8 Principle difference between Release 3 and Release 5.........................161

Figure 7.9 Simulated model...162

Figure 7.10 CPI vs. Cache size, Model 1...167

Figure 7.11 CPI vs. data cache size, 32 bytes/line, Model 3...................................170

Figure 7.12 Principle of overlapping register windows in SPARC.........................172

Figure 7.13 Execution time versus recursion depth on a SPARC station 5.............173

Figure 8.1 Branch to a non-aligned instruction ...182

Figure 8.2 The alignment architecture...187

Figure 8.3 Principle operation of 11 byte circular buffer......................................188

Figure 8.4 Dual cache line architecture...192

Figure 8.5 The eXtra-line architecture...196

Figure 9.1 System architecture with separate caches ..204

Figure 9.2 EE and performance versus power consumption, hello.......................206

Figure 9.3 EE and performance versus power consumption, espresso..................207

Figure 9.4 Energy Efficiency versus instruction cache line size, hello.................209

Figure 9.5 Energy Efficiency versus instruction cache line size, espresso............209

Figure 9.6 Unified cache serving both instruction- and data requests...................213

Figure 9.7 EE and performance versus power consumption, hello.......................215

Figure 9.8 EE and performance versus power consumption, espresso..................215

Figure A.1 EE and performance versus power consumption, cacti237

8

Figure A.2 EE and performance versus power consumption, dhrystone237

Figure A.3 EE and performance versus power consumption, fft238

Figure A.4 EE and performance versus power consumption, flex238

Figure A.5 EE and performance versus power consumption, stcompiler239

Figure A.6 EE and performance versus power consumption, cacti239

Figure A.7 EE and performance versus power consumption, dhrystone240

Figure A.8 EE and performance versus power consumption, fft240

Figure A.9 EE and performance versus power consumption, flex241

Figure A.10 EE and performance versus power consumption, stcompiler241

Figure B.1 Energy Efficiency versus instruction cache line size, cacti242

Figure B.2 Energy Efficiency versus instruction cache line size, dhrystone242

Figure B.3 Energy Efficiency versus instruction cache line size, fft243

Figure B.4 Energy Efficiency versus instruction cache line size, flex243

Figure B.5 Energy Efficiency versus instruction cache line size, stcompiler244

9

List of Tables

Table 2.1 Estimated internal ARM3 power consumption28

Table 2.2 Internal ARM3 power consumption (PLA structures are omitted).........29

Table 2.3 Current drawn of blocks in RISC processor [Sato].................................31

Table 2.4 ARM3 RAM dissipation - Pre-charge/Read Cycle.................................32

Table 2.5 ARM3 RAM dissipation - Pre-charge/Write Cycle................................32

Table 3.1 Comparative register requirements...40

Table 3.2 Operand Queue usage and the corresponding instruction sizes...............44

Table 4.1 Performance and power consumption for existing processors..........56

Table 5.1 Dynamic energy consumption in RAM [VLSI]69

Table 5.2 ARM3 RAM dissipation - Pre-charge/Read Cycle.................................78

Table 5.3 ARM3 RAM dissipation - Pre-charge/Write Cycle................................78

Table 5.4 Tag distribution - 8K byte unified cache, Direct mapped, 256 lines.......88

Table 5.5 ∆CPI versus line size and prefetch distance[Uhlig]................................90

Table 5.6 Performance of replacement algorithms..98

Table 5.7 Effect of Block Buffering on cache traffic and energy consumption....103

Table 5.8 Gray-coding...106

Table 5.9 Effect of Gray-coding in a 8Kbyte unified cache with 32-byte lines...108

Table 5.10 Writeback proportion of total I/O..109

Table 5.11 Frequency of ‘dirty’ words per cache line...110

Table 6.1 Effect of prefetching on hit-rate in instruction cache115

Table 6.2 Execution time, dhrystone...117

Table 6.3 Execution time, espresso...117

Table 6.4 Average distance between CTIs..118

Table 6.5 EE for different cache- and memory configurations, dhrystone............121

Table 6.6 EE for different cache- and memory configurations, espresso..............122

Table 6.7 EE for prefetch and branch-prediction schemes - accuracy: 50%.........126

Table 6.8 Prediction accuracy for the ‘predict taken’ model.................................127

10

Table 6.9 EE for prefetch and branch prediction schemes - accuracy: 77.7%127

Table 6.10 Average number of instruction issued per cycle130

Table 6.11 EE for prefetch and branch prediction schemes (dual issue).................132

Table 7.1 LPTR limits ..140

Table 7.2 ajlp offset distribution and frequency..141

Table 7.3 Execution time assuming 100% hit-rate in register cache.....................145

Table 7.4 Stalled cycles due to register cache misses, espresso146

Table 7.5 Stalled cycles due to register cache misses, flex146

Table 7.6 Stalled cycles due to register cache misses, hello147

Table 7.7 Stalled cycles due to register cache misses, stcompiler.........................147

Table 7.8 EE/EE0 for different register cache configurations, espresso................150

Table 7.9 EE/EE0 for different register cache configurations, flex150

Table 7.10 EE/EE0 for different register cache configurations, hello150

Table 7.11 EE/EE0 for different register cache configurations, Stcompiler............151

Table 7.12 Memory access statistics ...156

Table 7.13 References to the 1st level data cache due to the two schemes157

Table 7.14 Program statistics collected for four benchmarks..................................159

Table 7.15 Data cache simulations, cacti - CPIideal=1.048.......................................166

Table 7.16 Data cache simulations, espresso - CPIideal=1.05...................................166

Table 7.17 Data cache simulations, flex - CPIideal=1.17 ..166

Table 7.18 Data cache simulations, stcompiler - CPIideal=1.22166

Table 7.19 Distance between spill/fill and first ld/st/spill/fill167

Table 7.20 Hit-rate in data cache and CPI assuming a separate spill/fill cache169

Table 7.21 Instruction overhead with the spill/fill scheme......................................176

Table 7.22 Overflows in SPARC register file ...176

Table 8.1 Average instruction sizes for the benchmarks184

Table 8.2 Percentage of instructions which straddle cache line boundaries..........185

Table 8.3 Instruction cache miss rate for 4 byte- and variable-size instructions...186

Table 8.4 Percentage of instructions which require two cache accesses190

Table 8.5 Number of fetches from instruction cache into alignment structure190

Table 8.6 Percentage of instructions which cannot be fetched in one cycle193

Table 8.7 Number of fetches from instruction cache into DCL194

11

Table 8.8 Number of fetches from instruction cache into eXtra-line197

Table 8.9 Percentage of instructions which cannot be fetched in one cycle198

Table 9.1 Cache cycle time [ns] for different configurations202

Table 9.2 Simulated configurations ...204

Table 9.3 Reduction in cache accesses due to fetch- and writeback-buffers [%]..206

Table 9.4 Optimal performance configurations...210

Table 9.5 Optimal Energy Efficiency configurations..211

Table 9.6 Optimal performance configurations (cycle time = 15ns).....................212

Table 9.7 Optimal Energy Efficiency configurations (cycle time = 15ns)............212

Table 9.8 Simulated configurations ...214

Table 9.9 Comparison between large unified cache and smaller separate caches.217

Table C.1 Cache configuration measurements, espresso...................................245

12

Abstract

This thesis describes architectural approaches to improve the energy efficiency of RISC-

style microprocessors. By breaking the convention that instructions in RISC architectures

must be of fixed size, the performance and energy efficiency of a RISC microprocessor

can be improved. Special instruction cache architectures are suggested to ensure an issue

rate comparable with that of conventional RISC processors whilst reducing the energy

consumption in the instruction cache considerably.

A high proportion of the energy consumption of a microprocessor system is consumed

within the caches and external RAM. A significant proportion of memory traffic relates

to allocating and de-allocating registers. Register file architectures are proposed to reduce

this traffic. Of the schemes investigated, memory mapped registers held in a small

separate register cache, has proved to perform well and be energy efficient.

A new branch architecture, which has the potential to eliminate or significantly reduce the

miss-prediction penalty of branches through prefetching, will be examined. This scheme,

which also improves the hit-rate, employs a pair of instructions. It allows the potential

branch target to be prefetched into the cache and into the first stages of a shadow pipeline,

before the outcome of the condition evaluation is known and thus reduce or eliminate

branch penalties. The overall effect is improved performance. However due to increased

cache traffic, the scheme is not energy efficient.

In conclusion, the energy efficiency of a RISC microprocessor can be improved by

reducing the average instruction size. The memory traffic can be reduced and the energy

efficiency consequently improved, if the allocation/de-allocation of registers can be

organised such that interaction with the data cache is minimised. The examined branch

architecture may improve performance but is not energy efficient. However, it shows that

the Achilles’ heel for performance is also the Achilles’ heel for energy efficiency.

13

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or institution

of learning.

14

Copyright Notice

(1) Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by

the Author and lodged in John Rylands University Library of Manchester. Details

may be obtained from the Librarian. This page must form part of any such copies

made. Further copies (by any process) of copies made in accordance with such

instructions may not be made without permission (in writing) of the Author.

(2) The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to

the contrary, and may not be made available for the use of third parties without the

written permission of the University, which will prescribe the terms and conditions

of any such agreement.

Further information on the conditions under which disclosures and exploitation may take

place is available from the Head of Department of Computer Science.

15

The Author

The author graduated from the Technical University of Denmark in January 1990 with a

M.SC.EE degree. He joined Advance Computer Research Institute, ACRI, Lyon, France

in February 1990 where he, as part of a small team, carried out a feasibility study for a

supercomputer project. Later, as a part of the architecture group in ACRI, he wrote the

reference model for the ACRI supercomputer architecture. Experience from this work

was fed back as contributions to the architecture. The work involved working closely with

both hardware and software groups. In February 1994 he joined the AMULET group at

Manchester University Department of Computer Science as a research associate. He was

working in the ESPRIT-funded HORN sub-group, which investigates ways to improve

the energy efficiency of microprocessor architectures.

16

Acknowledgments

This work has been supported as part of the ESPRIT project 7249, OMI/HORN. I am

grateful for this support from the CEC and from SGS-Thomson Microelectronics, the

project’s prime contractor. I will especially like to thank Mark B. Hill, Andy Sturges and

Mark Debbage of PACT, Bristol, for their feed-back in response to presentations, sup-

port of software tools and for their openness to queries about the HORN architecture.

Furthermore I would like to thank Henk Muller, PACT for his suggestions on the graph-

ical presentation of the simulation results in Chapter9.

Dr. J.V. Woods, my supervisor, has been a constant source of encouragement. Especially,

I would like to thank him for sending me to all the HORN status-meetings. The feed-back

from these meetings has been very useful to me.

Thanks are due to Dr. Rhodri M. Davies. Rhods experience with software tools and

languages has been valuable and has saved me a lot of time throughout the project.

Furthermore I would like to thank him for his very complete proof-reading of this thesis.

During my time in ACRI, Dr. Peter L. Bird taught me many things about computer

architecture which motivated me to pursue reseach within this field. I would like to thank

him for convincing me that it was a feasible career move and for his encouragement to

finish the work.

Finally, I will like to thank Mr. Alasdair Rawsthorne and Dr. Alan E. Knowles for having

highlighted the opportunity here at Manchester University and for their support,

especially during the difficult phase of settling in a new town and country.

17 Introduction

Chapter 1 Introduction

Microprocessors have conventionally been designed to yield maximum performance.

Different design approaches have been taken and implementation technologies have

improved significantly over the years. Early microprocessors such as the Z80 [Z80] had

operating frequencies of approximately 1MHz. Today, in 1996, microprocessors such as

the Pentium from INTEL runs at speeds of 200MHz [Child] and the Alpha [DEC21064]

from Digital Equipment runs at more than 300MHz. These increases in processor speed

have mainly been made possible through improvements in semiconductor technology and

chip fabrication which have also allowed an increasing proportion of a computer system

to be integrated onto one chip. As chips became larger it became possible to integrate, for

example, larger register files and larger caches. Higher levels of integration also allowed

architectural innovations such as pipelining [Patt] which overlaps phases of instruction

execution and increases performance. Superscalar architectures such as the PowerPC

[Gerosa] also became feasible to implement. These developments have resulted in

constantly increasing performance.

In the drive for improved performance through higher integration little attention has been

paid to power consumption. This thesis shows how architectural features and performance

can be traded against power consumption to improve the performance-energy efficiency.

The meaning of this term will be discussed at length in Chapter 4.

Improved performance-energy efficiency can be obtained by optimizing the architecture

and the chip implementation. This work has examined architectural-level optimizations

only, and the results presented are from a number of architectural models. Some

implementation-related assumptions have been made; the sensitivity of the architectural

results to these assumptions has been reduced as far as possible. The goal is to examine

Introduction18

whether architectural features which improve the performance of an architecture also

improve the performance-energy efficiency.

Based upon the observation that caches in a typical Reduced Instruction Set Computer

(RISC) processor affect both performance and energy consumption, a significant

proportion of this thesis is devoted to an understanding of how cache parameters affect

the performance-energy efficiency of a microprocessor system with the objective of

specifying a performance-energy efficient cache architecture. Register-file and branch

architectures are other key-components in a RISC architecture. Different types of register

file and branch architectures are examined to gain an understanding of how they affect

performance-energy efficiency. Finally the effect of ignoring the dogma, that RISC

architectures must have fixed-size instructions is examined. During this examination a

number of instruction-fetch mechanisms are developed; the ‘eXtra-line architecture’,

described in section8.3.3, is novel and represents a way of eliminating most of the

disadvantages of variable size instructions while retaining the improved cache

performance and performance-energy efficiency of this instruction format.

1.1 Background

Compared to earlier ‘Complex Instruction Set Computer’, (CISC) processors such as the

8080 [Spack] and 68000 [Robin], the first RISC [Patt] architectures reduced the semantic

content of instructions. Consequently, the instruction count increased. However, due to

the simplification of the hardware, higher clock frequencies could be obtained and he

overall effect was adecrease in execution time.

The quality of the compiler is an important factor in designing a efficient computer

system. If the compiler takes account of pipeline length and register structure, the code

can be scheduled to improve performance through optimized register allocation.

19 Introduction

Computer system design is thus a two-branch discipline of providing both fast computer

hardware and software tools which optimize the use of the hardware resources. The trend

being that some increase in hardware complexity is accepted, if a subsequent reduction in

execution time can justify it.

In order to reach the largest market, a wide software base needs to be available implying

that binary compatibility must be preserved across a family of processors. The success of

the Personal Computer (originally from IBM) can, in part, be explained in terms of the

binary compatibility which has been retained through generations of PCs employing the

Intel x86-processor family. Binary compatibility is less of an issue in the high-end

workstation market, which is dominated by RISC architectures. However, some of the

success of Sun’s SPARC workstations is explained by the binary compatibility which

exists between the different models.

As outlined above, microprocessor development has been driven almost solely by the

wish to increase performance; power consumption has rarely been an issue. Improved

packaging and cooling technologies, as well as improvements in the semiconductor

technologies, have been sufficient to allow processor designers to ignore power

consumption when specifying a microprocessor architecture.

It is only recently that computer architects have been forced to pay attention to the power

consumption of microprocessors. At a chip level, the increased power consumption has

implied that an increasing proportion of the chip area is used for power distribution; it has

also implied an increasing number of bonding wires between the chip and the packaging.

At a system level, larger and more expensive power supplies and cooling systems are

required. To minimise these costs a processor architecture must now be optimized to yield

a high performance within the constraints of a limited power consumption.

Introduction20

For example, in order to limit power consumption and thus use a relatively ‘ordinary’

packaging technology, Digital Equipment Corperation accesses the second-level cache in

the Alpha processor in a sequential way: Two cycles to lookup and perform the tag

comparison and, assuming a hit, a third cycle to read from the data storage thus reducing

the power consumption of the processor by 10W (16% of the total power consumption)

[Bensch]. It had become necessary to trade performance against power consumption. A

performance-energy efficiency measure is useful when making such optimizations; i.e

how can the performance remain high while the energy/power consumption is reduced.

Chapter 4shows that the Alpha processor is among the most performance-energy efficient

processors currently available on the market (spring 1996).

There is currently a trend towards portable electronic equipment. Early portable

computers, such as the first portable PC’s, were portable only in that they had handles and

that screen, keyboard etc. could be packed in a convenient way; they were still powered

from the mains. Battery-driven lap-top computers were made possible by significant

improvements in screen and battery technologies. However, battery life-time - or time

between recharges - still leaves much to be desired. In recent years other portable products

such as electronic personal organizers and mobile phones have also been introduced to the

market.

Improvements in the performance-energy efficiency of microprocessors for the portable

battery-driven market is not being driven by the high-end, highest-performance

processor-market. ARM Ltd. has had considerable success with their microprocessors

which have gained a reputation for delivering a ‘reasonably’ high performance for a

relatively low power consumption. Targeting equipment such as portable telephones has

brought considerable commercial success. Other markets include portable computers,

electronic personal organizers and portable digital assistants (PDAs) such as the Apple

21 Introduction

Newton [Culbert]. These products are becoming increasingly compact and do not contain

devices such as cooling fans. A PDA will typically contain no mechanical device such as

a hard disk, but will require significant computing power for complex tasks such as

handwriting recognition. It should be able to perform tasks such as text formatting or

spreadsheet calculations in parallel with the handwriting recognition task. This has to be

done without increasing the power consumption significantly as such an increase implies

a reduction in battery life-time and/or an increase in the weight due to the number, or size,

of batteries. Despite the high performance requirement it is unlikely that the Alpha-

processor will be used in portable equipment where battery life time is a very important

factor, because, although performance-energy efficient, it has a high power consumption.

To improve the performance of systems such as portable computers and PDAsand allow

normal usage of these products for at least a working day (10 hours) theperformance-

energy efficiency of the microprocessor is an important measure. The power consumption

and performance-energy efficiency of the microprocessor are thus key design-parameters

in the product specification along with processor performance and memory size etc.

This performance-energy efficiency measure has been developed only recently.

Consequently there is little literature available on performance-energy efficiency of

microprocessors. Several conferences have ‘low power’ sessions, but papers presented

tend to examine performance-energy efficiency/power efficiency of sub-systems,

especially caches rather than considering the performance and energy consumption of the

entire system. This thesis examines how the performance-energy efficiency of a complete

microprocessor architecture can be optimized by trading architectural features and their

performance against energy consumption.

The work reported in this thesis was carried out within the OMI-HORN project (ESPRIT

project 7249). The goal for the group at Manchester University was to specify ways in

Introduction22

which the performance-energy efficiency of the HORN processor architecture

[HORNV3] [HORNV5] can be improved. As a result much of the work reported centres

around an already defined instruction set architecture. This has had the benefit that tools

such as compilers, assemblers, functional simulators and some relatively complete

libraries were available early in the project.

During the period of the project, some fundamental changes were made in the HORN

architecture. The subsequent changes in the tool chain have allowed detailed comparisons

between the different architectures. In addition extrapolations to other architectures have

been made.

Early in the study it became clear that the power consumption in caches and I/O drivers

are major factors in the total power consumption for a microprocessor chip. A detailed

study of the ARM3-processor indicated that the 4Kbyte, unified, cache in an ARM3

[OMIMAP] processor consumes 46% of the total power consumption of the chip. A

significant proportion of this thesis is therefore devoted to describing how cache

parameters such as size, line size and associativity affect energy consumption, not only in

the cache, but in the entire system.

Another important issue in performance-energy efficiency is execution time. Given that

the project has centred around the HORN-processor, which is a RISC style processor, the

instruction count and instruction format are important factors in the expression for

execution time. Although the HORN-architecture is RISC-style, the instruction format is

unusual in that instructions do not have a fixed size. The implications of this for

instruction issuing and cache performance is analyzed in Chapter 10.

23 Introduction

Furthermore, a number of register-file architectures have been analyzed. Register

allocation handling has a significant influence on both performance and cache access

pattern and hence the performance-energy efficiency of the entire processor system.

1.2 Overview of thesis

Chapter 2 describes the power consumption pattern in the ARM3 processor. It reports the

results presented in a deliverable to the OMI-MAP project [OMIMAP] which show that

the cache consumes a significant proportion of the power in a standard microprocessor.

These results are used as a basis for the rest of the work reported in this thesis. In addition,

section 2.3 summarizes the power consumption in commercially available RAM.

Chapter 3 describes the HORN-processor architecture, which forms the basis of this work.

The instruction format and various register file architectures which have been proposed

throughout the specification phase of the project are presented. The special branch

structure that the HORN architecture employs is also described. Section3.5 describes the

processorsystem, which will be considered the baseline system for the experiments

described in the following chapters.

Chapter 4 discusses how performance-energy efficiency should be measured. The section

divides the ‘architecture space’ into three classes and suggests metrics for each. For

microprocessor architectures such as the HORN-architecture, the metric MIPS2/W was

suggested. However T. Burd, University of California, Berkeley [Burd] has suggested an

even more general measure based upon the energy-delay product which consequently was

adopted. This metric is termed ‘energy-efficiency’ to comply with terms established in the

literature. To establish a basis for comparison, performance and power consumption

measures have been collected for a number of processors. The results are presented in

section 4.2.

Introduction24

Not all applications can be evaluated using this metric. Many digital signal processing

(DSP) applications have a throughput requirement which cannot be traded against lower

energy consumption. The decision to use a metric based on the energy-delay product

throughout the thesis implies that there should be no DSP-applications in the benchmark

suite. Consequently a number of suitable benchmarks have been ported to the HORN

architecture. This work has partly been done by Dr. R.M. Davies of the HORN-group,

Department of Computer Science, Manchester University and partly by the author.

Chapter 5 establishes how energy consumption of a cache scales with the cache

parameters and derives expressions for cache energy consumption. Section5.1.1

summarizes results from a commercially available RAM-compiler. Based on circuit

capacitances extracted from the Amulet2e [Garside]; expressions for energy consumption

in RAM are developed. Sections5.2and5.3 derive expressions for energy consumption

in direct mapped and n-way set-associative caches.

Based upon observations on redundancy in the tag storage of caches, [Seznec2][Wang]

and [Burd] describe a number of cache architectures which can reduce/eliminate this

redundancy. Section5.4 quantifies the degree of redundancy and derives expressions for

two of the organizations, sectored caching [Seznec2] and CAT-caching [Wang]. The

results presented in these sections have been collected as a part of the author’s work.

Section5.5 describes skewed-associativity [Seznec] as a way of improving cache

performance. Within a class of skewing function, it has been investigated whether an

optimal set of functions exist, section5.5.1 concludes that it is not the case. Section5.6

quantifies the effect different replacement algorithms have on the hit rate in the cache.

Section5.7 describes how the cache parameters affect the timing of the cache. The

relationships have been established using the Cacti-tool from Digital Equipment [Wilton].

25 Introduction

Sections5.8 - 5.11 describe techniques to reduce the activity and thereby the energy

consumption within a cache.

Chapter 6 describes the effect of branch architectures on the performance and energy

efficiency of a microprocessor system. Since the introduction of pipelines in processors,

branch instructions have attracted much attention as they disrupt the flow of the pipeline

and therefore affect the performance of the system. Many branch prediction schemes have

been proposed [Patt] to limit this disruption.

Branch instructions may transfer control to locations which are not in the instruction

cache hence affecting the performance negatively. An ability to prefetch the potential

branch targets into the instruction cache is therefore beneficial. The HORN architecture

specifies a branch structure which allows such prefetching. Chapter 6 assesses the value

of the proposed branch instruction architecture both in terms of performance and in terms

of energy efficiency. The section concludes that the dual-instruction branch architecture

suggested in the HORN architecture is not energy efficient. All the work described and

the results reported in Chapter 6 has been undertaken by the author as a part of the HORN

project.

The register file architecture affects the instruction count (and thereby the performance).

An ‘insufficient’ number of registers implies a high number of save-restore instructions,

as ‘old’ register-variables are saved to memory to give room for new variables. The saved

value may later need to be restored. The ability to allocate1 new registers when required

is therefore important. Increasing the number of registers is not always a suitable solution

as more registers require more specification bits in the instructions, resulting in wider

buses and lower instruction cache performance. Performance and energy efficiency must

1. ‘allocate’ in this context means providing a new register. De-allocating is the opposite process,
freeing a register.

Introduction26

thus be traded against the number of registers and the mechanisms to allocate new

registers. Chapter 7 analyzes the different register-file architectures which have been

suggested throughout for the HORN architecture. All the work reported in Chapter 7 has

been carried out by the author.

The HORN architecture specifies variable-size instructions but now the instruction format

requires more than four bytes. Compared to a conventional RISC architecture with fixed-

size instructions such as MIPS R2000 [Farquhar], this ensures that a higher fraction of a

program can reside in a cache of a given size; this implies a higher hit rate in the

instruction cache. However, variable-size instructions introduce the problem that

instructions may straddle cache lines and hence require two cache accesses to be fetched

and issued. Chapter 8 proposes three cache architectures aimed at reducing these

instances and evaluates them for performance and performance-energy efficiency. The

architecture described in section 8.3.3, a novel extension to a block buffering scheme

proposed by [Su], almost eliminates the performance penalty associated with variable size

instructions. Finally, Chapter 9 evaluates the optimal cache configuration for both

performance and energy efficiency. All the results presented in Chapter 9 have been

collected by the author.

Chapter 10 draws together the conclusions resulting from this work, assesses the results

and presents suggestions for future investigations.

27 Power consumption in an ARM3-system

Chapter 2 Power consumption in an ARM3-system

To put the simulation results obtained with the HORN architecture into perspective a ‘low

power’ and popular microprocessor family, the ARM processors are studied in this

chapter.

The reasons for this choice were two-fold. Firstly, the ARM architecture has some

features which resemble features of the HORN-architecture. It was therefore decided to

extrapolate some of the results from this processor family onto the HORN-architecture.

Secondly, the AMULET group at Manchester University has strong links with ARM Ltd.

This has led to several projects amongst which the development of the asynchronous

implementation of the ARM-architecture, in the AMULET-1 chip [Furber2], has attracted

much attention. Furthermore, a number of ESPRIT projects have seen collaboration

between the AMULET group and ARM Ltd. A deliverable to the OMI-MAP P5386

project [OMIMAP] has been particularly useful to this project and some of its main results

will therefore be described here.

2.1 Results from OMI-MAP

The processor analyzed in the OMI MAP project was an ARM3 processor which is an

ARM2 processor core with a 4K-byte, fully-associative, unified on-chip cache with 256

lines of 16 bytes.

Instead of building a 256-entry CAM to form the tag-store which would have resulted in

very high power consumption, ARM split the CAM into four blocks making it 64-way 4-

set associative. This reduces the energy consumption of the overall cache by 21%, as only

one quarter of the total CAM need be activated during cache lookups.

Power consumption in an ARM3-system28

The power estimates were based upon two types of ‘measurements’: Spice simulations

and estimates based upon the total switching capacity within the design.

The system was broken up into 7 major blocks:

1. A3RAM 1K x 32 bits SRAM

2. A3CAM 4 x 64 22 bit contents addressable memories (CAMs)

3. A3PROC ARM2 CPU macrocell

4. A3CTL Main Cache Control Logic

5. A3COP Co-processor interface

6. Cdata Internal databus (32 bits) RAM/PROC/Databus pads

7. PADS Input/output pads

The power consumption of each block is shown in Table2.1 It is clear from the table that

the power consumption in the cache and in particular the RAM is a major factor in the

total power consumption figure. The cache accounts for almost 40% of the total power

a. (based on 1.5µm SPICE data)

b. The numbers in parentheses indicate the power which
is consumed in PLAs within the block.

Table 2.1 Estimated internal ARM3 power consumption

Block

Average Power
Consumptiona

[mW]
Percentage of
Total Power

A3RAM 332 30.0

A3CAM 100 9.0

A3PROC 330 (240)b 29.8

A3CTL 91 8.2

A3COP 112 (64) 10.1

Cdata 50 4.5

PADS 91 8.2

Total 1106 100

29 Power consumption in an ARM3-system

consumption. Reducing the power consumption in the cache will therefore yield a

significant reduction in the total power consumption of the processor.

The OMI-MAP report also comments on the use of PLA1s in the processor

implementation. PLAs are simple to implement, and simple to correct in case of mistakes;

without disturbing the chip layout, something which might be required if the

combinatorial logic was implemented using ‘discrete’ gates.

The report points out that the PLAs have a static power consumption component,

accounting for 70% of the power consumed, implying that the static PLA technique is not

appropriate for low power designs!

Table2.2 shows how the total power consumption drops by 19% if static PLAs are

avoided in the design. It also emphasizes the importance of the power consumption of the

cache blocks since the percentage for A3RAM and A3CAM has increased to 48.4% or

almost half of the total power budget.

1. Programmable Logic Array

a. based on 1.5µm SPICE data

Table 2.2 Internal ARM3 power consumption (PLA structures are omitted)

Block

Average Power
Consumptiona

[mW]
Percentage of
Total Power

A3RAM 332 37.2

A3CAM 100 11.2

A3PROC 162 18.1

A3CTL 91 10.2

A3COP 67 7.5

Cdata 50 5.6

PADS 91 10.2

Total 893 100

Power consumption in an ARM3-system30

It is suggested that the static PLAs are replaced by dynamic PLAs; these use dynamic

AND and OR planes to implement the PLA, with dummy terms to generate self-timing

signals to indicate when a result is valid at which point the PLA is put into its pre-charge

state and the output is latched [OMIMAP].

[OMIMAP] also gives an example of the area- and timing implications of using a dynamic

PLA in the case of the ALU control circuit, A3CTL:

Area:

Dynamic: 452λ x 684λ

Static: 410λ x 579λ

Delay:

Dynamic: 22.2ns

Static: 22.0ns

i.e. the area taken by the A3CTL-block increases by 30%; while the delay through the

block increases by less than one percent when changing from the conventional static PLA

design to a dynamic design.

2.2 Evaluation of results

The ARM3 processor described in the previous section might be considered obsolete and

the value of the power measurements therefore questionable. However, a study of the

R3000 architecture from MIPS [BurdPeters], shows that the power consumption in that

processor is also dominated by the cache. The report describes power consumption

estimates by measuring the amount of switching capacity. It also reports that almost 10%

of the power consumed in the MIPS R3000 is consumed in the register file and that the

power consumption in the tag-storage of the 2-Kbyte instruction and data caches each

31 Power consumption in an ARM3-system

consume another 10% of the total power consumption. Comparing this value with that for

the A3CAM in Table2.2 shows that the proportion of energy/power consumed in the

different blocks is similar in the R3000 and in the ARM3.

The development of the PA-RISC Microprocessor PA/50L [Okada] came to the same

conclusion; that power is mainly consumed in internal memories and external signal

drivers.

[Sato] reports on a tool, ESP, which is used to assess the implications of architectural

changes on the power consumption. Results [Sato] confirm that caches are the dominating

components, see Table2.3.

The power consumption of the main RAM-block in the cache is said to be independent,

to a first degree, of the dimensions of the cache, due to other overheads, such as I/O

buffers and sense amplifiers [BurdPeters]. However the detailed study of the ARM3,

described above, shows that is not necessarily the case.

Table 2.3 Current drawn of blocks in RISC processor [Sato]

Block
Current

[mA]
Activity Rate

[%]

Average
current
[mA]

% of total
current

Instruction cache 30.0 99.6 29.8 38.9

Branch unit 9.1 99.6 9.06 11.8

Increment addr. 0.1 99.6 0.10 0.1

Register file 13.0 97.4 13.64 17.8

ALU 9.1 59.0 5.37 7.0

Data cache 32.5 47.8 15.54 20.2

Address calculator 9.1 30.1 2.74 3.6

Shifter 5.6 6.4 0.36 0.5

Multiply-Add unit 40 0.2 0.08 0.1

Total: 76.8 100

Power consumption in an ARM3-system32

2.3 Power consumption in RAM

As indicated in Tables2.1and2.2, the power consumption of the cache RAM represents

a significant proportion of the total power budget in the ARM3. [OMIMAP] also

investigated where power is consumed within the RAM. The analysis was divided into

two: a ‘pre-charge read cycle’ and a ‘pre-charge write cycle’. This section gives a

summary of the results and their implications for the HORN architecture.

Table2.4 shows the power consumption in the cache RAM during read cycles. It is clear

that the storage itself is the major consumer of power, but I/O buffers and sense amplifiers

represent a significant 37% of the RAM power budget during read cycles. Other blocks

represent only a small percentage of the on-chip RAM power budget.

Table2.5 shows the equivalent results for a write cycle. The power consumed in the RAM

block and in the decode/pre-charge is the same as during the read cycle, see Table2.4. The

Table 2.4 ARM3 RAM dissipation - Pre-charge/Read Cycle

Block
Average power

consumption [mW] Comments
% of total power

in RAM

ARM3 storage 162.3 The main RAM array 40.6

I/O buffers 68.3 CDATA bus 17.1

A3RAMrd8 81.0 32-Sense Amps 20.3

ARM3row128 41.0 Decode+precharge 10.3

Other blocks 47.4 - 11.9

Total 400.0 100

Table 2.5 ARM3 RAM dissipation - Pre-charge/Write Cycle

Block
Average power

consumption [mW] Comments
% of total power

in RAM

ARM3 storage 162.3 The main RAM array 64.9

I/O buffers 0.0 CDATA bus 0.0

A3RAMrd8 0.0 32-Sense Amps 0.0

ARM3row128 41.0 Decode+precharge 16.4

Other blocks 46.7 - 18.7

Total 250.0 100

33 Power consumption in an ARM3-system

significant difference is that the sense amplifiers and the I/O buffers donot consume any

power during a write cycle, resulting in a much lower total power consumption. A write

cycle consumes only 63% of the energy of a read cycle. Note that the average power

dissipation of 332mW quoted in Table2.2 approximates to the average of the dissipation

during read and write cycles. From [OMIMAP] it is not clear why the I/O drivers do not

consume any power during write cycles. It will be assumed that the cost of driving the bit-

lines is ‘hidden’ in ‘Other blocks’.

The results in the two tables indicate that the sense amplifiers are important components

with considerable impact on the power consumption of the cache and, thereby, of the

entire processor.

Note that although the ARM3 cache is organised with 16-byte cache lines, the RAM block

used for the storage of the cache contents is organised with only one (32-bit!) word per

line within the RAM. Short lines/words in the RAM yield a lower energy consumption

per request than longer lines, see Chapter 5.

2.4 Summary

This chapter has reported where power is consumed within the ARM3. These results are

from the OMI-MAP-project and show that a significant proportion of the power is

consumed within the on-chip cache.

The power consumption of the cache has been split into components for the tag-store

which, in the case of the ARM3, is composed of four CAM-cells and for the RAM-block

which stores data. Tables2.4and2.5 have shown that it is the RAM block together with

the sense amplifiers consume the majority of the power. This leads to the conclusion that

reducing the power consumption of the cache will reduce the power consumption of the

Power consumption in an ARM3-system34

entire processor considerably. The results from this chapter are used to extrapolate the

power consumption of the cache architectures proposed in later chapters.

Table 2.2 shows that there are further sub-designs which, if optimised for low power,

could improve the performance-energy efficiency of a microprocessor system. This is

particularly the case for the pad-drivers. Later chapters will show how Gray coding

[Kohavi] can reduce the power consumption of this sub-design and thereby improve the

energy-efficiency of the entire processor further.

35 Baseline HORN architecture

Chapter 3 Baseline HORN architecture

The baseline architecture used throughout this dissertation is the HORN architecture

developed during OMI-HORN, Esprit project 7249.

Key attributes of the HORN architecture are:

1. Modularity

2. Compatibility over a range of products covering a wide range

of processing and communications performance.

3. Support for multiprocessing.

4. Provision for a standard programming model which eases the

porting of operating systems, compilers and programming lan-

guages.

5. 64-bit processor supporting 32-bit operations.

Early releases of the architecture were targeted at the server market; systems with a high

number of CPUs, capable of running multiple processes ‘simultaneously’. This required

optimization of the thread-change-overhead; i.e. minimising the ‘state’ which needed to

be saved and providing efficient ways of saving that state. Efficient inter-processor

communications protocols were also required.

During the development process the target markets for the processor changed. The new

target markets aremultimedia systems such as games, video-decoders and Set-Top Boxes

(STB), but the processor also targets video-servers providing ‘video on demand’. For

these applications the thread changes are expected to be less frequent and the importance

of fast thread changes is reduced.

Baseline HORN architecture36

This chapter describes the basic HORN architecture and summarizes the changes it has

undergone. It does not describe any original work undertaken by the author but has been

included to explain and justify the direction of the investigations described in later

chapters.

Section3.1 gives a general introduction to the HORN-architecture. Sections3.2-3.4

describe the major features which differentiate the HORN architecture from a

conventional RISC, while section3.5 describes the system considered for this thesis.

3.1 Basic architecture

The HORN architecture is fundamentally a RISC [Patt] in that arithmetic and logical

instructions operate on register storage only. Only load and store instructions can access

data in memory.

The processor is a byte-addressed, 64-bit processor, i.e. the internal and external data

buses are 64 bits wide. Few existing programs require64-bit variables and the HORN

processor’s instruction set offers a wide range of operations on sub-ranges: integers of

1,2,4 or 8 bytes and 32- and 64-bit floating point values. Furthermore, to make better use

of the wide data bus, the processor includes a new class of instructions: packed arithmetic.

These ‘packed-arithmetic’ instructions operate on a 64-bit quantity as a collection of

smaller data quantities. Figure3.1 shows an example of packed arithmetic, where eight

bytes are packed into a 64-bit word and added to a similarly ‘composed’ word. The result

is eight one-byte sums packed into a 64-bit word. Note that any overflow or carry from

the eight individual operations is lost.

This technique is potentially very powerful and can be used by the compiler to unroll

loops and hence increase the performance and energy efficiency of the processor. It is

37 Baseline HORN architecture

especially useful for graphics applications where the representation of pixel colours

requires only a limited number of bits.

Memory referencing (load and store) instructions can access 1,2,4 and 8-byte quantities.

References to these quantities need not be aligned, e.g. a reference to a 32-bit datum need

not be aligned on a 4-byte boundary.

Furthermore the HORN architecture has broken away from the convention associated

with the RISC concept, such as fixed-size instructions and has introduced a new type of

control transfer instruction.

3.2 Local storage

During the project the form of local storage (register-file) structure has changed several

times. This section briefly describes the different types of storage and their main

advantages. Later chapters will describe the features of each architecture and evaluate

their potential in a energy efficient implementation.

The register, or local-storage of the architecture was originally divided into three classes:

Global registers, Local registers and a 4-word operand queue.

+

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Byte 8 Byte 9 Byte10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15

Figure 3.1 Example of packed arithmetic

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Byte 8 Byte 9 Byte10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15

+ + + + + + + +

Baseline HORN architecture38

3.2.1 Global registers

Global registers are intended to contain stack pointer(s), global variables and constants.

Early versions of the HORN architecture mapped a block of 16 global registers to memory

through a pointer, GPTR, which could be altered during program execution. This

implemented register renaming; the contents of ‘global-register N’ before an adjustment

of GPTR by ‘M’ could be accessed through ‘global-register M+N’ after the adjustment.

Memory coherency was only ensured after the use of a special form of the ‘adjust-global-

pointer’, ajgp-instruction. Later versions of the architecture considered the global

registers as a conventional register block.

3.2.2 Local registers

The architecture specifies 32 local registers. The local registers were also originally

mapped to memory through a pointer, LPTR. The pointer was intended to be manipulated

during execution of a program to allocate/deallocate registers at procedure entry/exit.

Registers in scope did not need to be coherent with the memory location they mapped.

This scheme will later be referred to as the ‘ajlp-scheme’ after the instruction which

‘adjusted’ the value of LPTR. As for the global registers, coherency was only ensured

after the use of a special form of the ajlp instruction.

These schemes with memory mapped registers are very powerful in environments where

thread-changes are frequent and therefore need to be fast. Saving the state of a register file

(or restoring it) only requires the change of the two pointers, LPTR and GPTR, at the

minimal cost of two instructions lasting only a few cycles.

As the architecture evolved and the product was targeted at multimedia applications,

where there was less need for a fast context switch mechanism, the memory mapped

scheme was replaced by register renaming instructions. These, in addition to renaming the

39 Baseline HORN architecture

registers, also spilled/filled four registers to/from the memory hierarchy thereby

effectively implementing register windows [Weaver]. This scheme will later be referred

to as the ‘spill/fill’-scheme after the instructions ‘spill’ and ‘fill’, which caused the actions

just described. The difference between this and the more familiar SPARC register

windows implementation [Weaver] is that once a register is out of scope in the HORN

architecture, its contents should be visible to memory accessing instructions; this is not a

requirement in the SPARC architecture.

While the spill/fill scheme might be simpler than the pointer schemes described above, it

makes thread and context switches slower; there is now only one way of saving the state

of the register file by spilling it to memory. The ‘state-content’ of the new thread can be

installed using ‘fill’ instructions. This requires many more instructions than were required

with the ‘ajlp’-scheme described above: 32 registers / 4 registers-per-spill/fill = 8

instructions; it may also be much slower, dependent on the exact implementation of the

two schemes.

3.2.3 Operand queue

The HORN processor has a set of temporary operand locations. These are organized as a

four-entry first-in-first-out (FIFO) queue, which is accessed implicitly. The queue can

replace any register reference in any instruction. This reduces the need to use registers for

temporary variables and hence the need, temporarily, to store and later re-load, variables

to/from the rest of the memory hierarchy.

Table3.1 compares the result of compiling an expression into machine instructions in a

conventional RISC and in the HORN processor. The RISC processor accesses six

registers - RA, RB, RC, RD, RE, Rt - while the HORN processor will require only the five

registers - RA, RB, RC, RD, RE. The ‘lifetime’ of the variable in the temporary register ‘Rt’

Baseline HORN architecture40

in the RISC code is very short and it is unlikely that it will be required in future

calculations; it has however increased the use of the register file and the contents of a

register might have to be written to memory to release the space for the Rt value. This

saved value might later need to be re-loaded from memory if it is required in later

computations.

In the HORN architecture this extra register is not required as the temporary results will

be stored in the FIFO-queue and as soon as they are consumed in the following instruction

(RA = Queue + Queue) they will release their storage. It will therefore not be necessary to

store any ‘old’ values to memory or to re-load them later.

Note, that the operand queue is a part of the state of the processor and the contents of the

queue needs to be preserved across interrupts.

3.3 Branch architecture

‘Control Transfer Instruction’ (CTI) is a generic term for any instruction which can alter

the execution flow of a program, such as a branch, jump or call. The actions of this class

of instructions can be split into:

1. Compute the potential target

2. Evaluate a condition - conditional branches only

3. Continue execution from the computed target

Table 3.1 Comparative register requirements

Expression: A = B * C + D * E

RISC-code HORN-code

RA=RB*RC Queue = RB*RC

Rt = RD*RE Queue = RD*RE

RA=RA+Rt RA=Queue + Queue

41 Baseline HORN architecture

Some of the actions are orthogonal in that the potential target can be computed

independently of the evaluation of the condition.

In modern, pipelined implementations of RISC architectures (see [Farquhar], [Weaver]

and [DEC21064]) these three actions are usually combined in one ‘branch’, ‘jump’ or

‘call’ instruction. Due to pipelining it is often not possible to compute the succeeding

instruction address fast enough to issue it correctly in the following cycle. Branch delay

slot(s) were introduced [Patt] as a way of reducing or eliminating this penalty. Statistics

showed that between 40 and 60% of delay slots following conditional branches could be

filled and 90% following unconditional branches [Katevenis]. Recent architectures such

as the PowerPC architecture [IBM] specify two versions of CTI’s: ‘Branch and Execute’

which executed the instruction following the branch and conventional non-delay-slot

branches rather than filling delay-slots with NOP1-instructions. The HP-Precision

Architecture [Mahon] left it as a part of the instruction to specify whether the following

instruction was a delay slot instruction.

The HORN architecture takes a different approach to branching in that it separates the

actions into two classes of instructions, the ‘go’ and the ‘leap’ class. The computation of

the target is split from the evaluation of the condition, thus requiring two instructions per

CTI.

The ‘go’ class of instructions sets up the potential target for the branch; there are a variety

of formats covering PC relative offsets, absolute addressing and register relative offsets.

Note that a ‘go-class’ instruction overrides the effect of a previous ‘go-class’ instruction.

Once the potential target has been set up, the condition is evaluated using the ‘leap’ class

of instructions. Leap-instructions evaluate the contents of a register for a number of

1. NOP = No OPeration

Baseline HORN architecture42

conditions ranging from un-conditional to conditions such as ‘zero’, ‘negative’, ‘positive

or zero’. The value to be evaluated must be held in the local storage, see section3.2.

Furthermore ‘leap’ instructions specifywhen, relative to its position,the execution route

should be altered if the condition evaluation is positive. This is implemented by

specifying a variable leap shadow - a number of bytes, potentially covering several

instructions, between the leap instruction and the branch location.

This scheme allows the set up of a target instruction stream in advance and allows

prefetching of instructions into the cache and/or into a shadow pipeline. The value of this

technique will be explored in Chapter 6. Furthermore, in the case of a simple loop the

compiler can migrate the go-class instruction outside the loop body and hence reduce the

number of instructions issued inside a loop, see Figure3.2.

This scheme is more flexible than that employed in many commercially available RISC

machines such as the SPARC [Weaver]. In these architectures, the size of the branch

delay slot is fixed at one instruction, and there is often a significant branch penalty

associated with misprediction. With the HORN architecture this mispredicted branch

penalty might be eliminated if it is possible for the compiler to migrate the leap-

instruction far enough back in the instruction stream.

Figure 3.3 illustrates how the leap instruction can migrate to the very top of the loop

body. As the figure illustrates there is now plenty of time to evaluate the outcome of the

go label
label: start of loop body

....

... ...

... ...
leapZ reg, N
... ...
end of loop body
... ...

Figure 3.2 Example of a go-instruction outside a loop body

} N-bytes

43 Baseline HORN architecture

branch. In either case (taken or not taken) no instructions need be fetched speculatively

and eventually discarded. The example in Figure3.3 is very optimistic; it will not always

be possible to specify a loop-shadow sufficient to avoid disruption in the pipeline flow.

However it is believed that the scheme will perform at least as well as the conventional

scheme used in SPARC and MIPS.

A very efficient branch prediction scheme has been proposed [Bird] based upon the sign

bit of the displacement for the branch instruction. The scheme yielded a hit-rate of more

than 80% by predicting all backward going branches ‘taken’ and all forward going ‘non-

taken’. A similar scheme would be difficult to implement, given this two instruction

control transfer structure.

It is important to remember that the HORN branch-architecture increases the number of

instructions to be executed, as each branch requires two instructions. However, as shown

above, the ‘go’-instruction might be migrated outside a loop body by compiler

optimizations reducing the overhead. Chapter 6will evaluate the value of this two part

CTI-scheme for performance and for energy efficiency.

go label

i = i + 1
Q = ai * bi

s = s + Q
... ...
... ...

leapZ,Q,Nlabel:

Figure 3.3 Optimal migration of the ‘go’ and ‘leap’ instructions

Branch or Not
} N-bytes branch Shadow

Baseline HORN architecture44

3.4 Instruction format

Variable-size instruction formats are not commonly used in RISC architectures. The

fetching and decoding of variable-size instructions have been considered too complicated

and incompatible with the RISC concept. However, while retaining the other

characteristics of a RISC approach, the HORN architecture does exploit variable-size

instructions. Instructions can be 1, 2, 3 or 4 bytes in length, the shorter instructions

implicitly addressing the queue as mentioned in section3.2.

The instruction formats used in the HORN architecture are shown on Figures3.4and3.5.

An instruction specifying one, or more, operands from the operand queue releases

corresponding register reference bits (Arg1 - Arg3 in Figure3.4) in the instruction

format. The usage of the queue is specified in the first bytes, (Length and Type fields, see

Figure 3.5). Table3.2 shows examples of instructions and their corresponding sizes

where a ‘*’ denotes that the corresponding operand is to be taken-from/written-to the

operand queue.

Table 3.2 Operand Queue usage and the corresponding instruction sizes

Instruction
Size

[bytes]

add R1,R2,R3 4

add *,R1,R2 3

add *,R1,* 2

add R1,*,* 2

add *,*,* 1

Figure 3.4 Instruction format

OPC:6Type:2Arg1:6Arg2:6ExtOPC:2or4Arg3:6

Byte 3 Byte 2 Byte 1 Byte 0

Length:2

45 Baseline HORN architecture

Using this technique, the average instruction size can, with the current compiler

technology, be reduced to 3.12 bytes/instruction, a 23% reduction compared to

conventional 4-byte RISC instructions, see Chapter 8. Consequently, a cache line of 32

bytes can, on average, contain more than 10 instructions instead of 8 conventional 4-byte

instructions. This reduces the pressure on both the cache and memory system as the cache

can contain a larger proportion of the program. Consequently, the instruction cache1 hit-

rate increases on average by 1.1% (see Table 8.3) corresponding to an average reduction

1. Cache parameters: 8Kbyte, 32 bytes per line, 2-way set-associative, Random replacement

Byte 3 Byte 2 Byte 1 Byte 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

0 0

0 1

1 0

1 1

0 0

0 0

0 1

1 0

1 0

1 1

0 0

0 1

1 0

1 1

Op1 Reg

Op2 Reg

Op3 Reg

Op3 Const

Op1 Reg

Op2 Reg

Op2 Reg

Op1 Reg

Op1 Reg

Op1 Reg

Op1 Reg

Op3 Const

Op1 Reg

Op3 Const

Op2 Reg

Op3 Reg

Op3 Reg

Op3 Const

Op2 Reg

Op3 Const

Op2 RegOp3 Reg

Op3 Const

0

1

0

1

Opcode

Opcode

Opcode

Opcode

Length

Opcode
Type

Arg1
Arg2

Ext.Opcode

Arg3

Figure 3.5 Instruction encoding

bit0bit31

Op3 Const

Baseline HORN architecture46

in I/O traffic1 of 12%; this implies a significant increase in performance and decrease in

power consumption. The exact effect on performance depends on the cache configuration:

• Does the cache block the processor on misses until the entire

line has been fetched?

• Is the requested word forwarded to the execution pipeline

straight away?

• Is the requested word fetched first?

Note that this technique of reducing instruction sizes does not change the semantic content

of the instructions. The number of instructions required for a given program is the same

as for the conventional 4-byte instruction format. In fact, a program can be turned into a

program of 4-byte instructions simply by referencing the queue through its register alias,

register 63.

Other techniques which reduce the program size are described in [Bunda][Fleet] where all

instructions are 16 bits. This gives a smaller code size but increases the number of

instructions as the semantic content of each instruction is reduced. The Thumb-format in

some ARM processors (see Chapter 2 and [Furber]), allows instructions to be encoded

into a 16-bit instruction format which is ‘decompressed’ during execution. A program can

be composed of a number of code fragments, some written in normal ARM code, some in

Thumb code. Thumb code is entered using a special instruction and there is another to

‘return’ to ARM-code. A Thumb-code fragment is guaranteed to contain an even number

of instructions to ensure proper alignment of succeeding conventional instructions. As is

the case in [Bunda] and [Fleet] the semantic content of these compressed instructions is

not the same as the conventional 4-byte instructions as only a subset of the registers and

1. Traffic between the instruction cache and the external memory

47 Baseline HORN architecture

of the opcodes is available. The binary of a program compiled into Thumb format will

therefore typically contain 40% [Furber] more instructions than the corresponding

conventional 4-byte instructions format. Consequently the size of a Thumb binary is

approximately 30% smaller that the equivalent 4-byte-per-instruction binary. With the

instruction formats discussed in [Bunda] and [Furber] individual instructions cannot

straddle cache lines.

Variable-size instructions do introduce the problem of instructions, which may straddle

cache line boundaries; these require two cache look-ups implying a potential performance

degradation. Chapter 8 will propose instruction cache architectures which almost

eliminate this problem.

3.5 Summary

This chapter has described the HORN architecture which forms the basis for much of the

work reported in this thesis. The chapter has highlighted the areas where the HORN

architecture differs from most RISC architectures: The register file, the branch

architecture and the instruction format. Furthermore, the concept of packed-arithmetic has

been described.

The work described in this thesis has made extensive use of the tools developed for the

HORN processor. Many of the techniques described in later chapters are closely linked to

this architecture. On two points though, the tools do not explore the options that the

architecture gives:

1. The HORN processor is a 64-bit processor. However, the compiler

developed for the prototype system does not exploit this feature. No

instruction operates on 64-bit quantities nor does any register contain

values which cannot be contained in a 32-bit register. Furthermore

Baseline HORN architecture48

the architecture specifies a 64-bit address space, but again, no address

is ever accessed which could not be contained in a 32-bit integer. The

study carried out in the rest of this thesis will therefore describe the

HORN architecture/processor as if it was a 32-bit processor.

2. Section3.1 stated that data references need not be aligned on corre-

sponding byte boundaries. No instances of this have been encoun-

tered. The rest of this thesis will therefore assume that data references

are aligned on proper byte boundaries. The same assumption is, of

course, not made for the variable length instructions.

3. Although the architecture manuals [HORNV3] and [HORNV5] do

not specify it, this work will assume a Harvard architecture [Patt]; i.e.

separate non-overlapping instruction and data memory segments.

49 Metrics and benchmarks

Chapter 4 Metrics and benchmarks

When evaluating a computer architecture some of the questions that arise are: When is an

architecture or a processor implementation performance-energy efficient? What does

performance-energy efficiency mean? In order to answer these questions and make trade-

offs and comparisons a suitable metric is required. [Burd] states that the metric for

performance-energy efficiency differs, dependent on the class of application. There

should therefore be different metrics for different classes of products. All the metrics

considered are based upon other metrics such as performance, measured in MIPS, and

power consumption, measured in Watts. Other measures of performance such as

Specmarks [SPEC91] or Dhrystone [Weicker], would be equally suitable as a measure of

performance and have the advantage of being instruction set insensitive.

The following sections describes how applications can be classified for ‘low power’. The

classification is made by T. Burd from University of California, Berkeley [Burd]. The

metrics proposed are based upon the throughput of a processor, which do not allow

comparisons to be made across different instruction set architectures.

[Burd] uses the term ‘energy-efficiency’ generically to describe the ratio between

performance and energy consumption, i.e. the performance-energy efficiency. Although

the ‘energy-efficiency’ term is not as precise as ‘performance-energy efficiency’ it was

felt that consensus was needed in this field of research. Consequently, this thesis adopts

the term ‘energy-efficiency’ to describe the relation between performance and energy

consumption. Energy-efficiency will be abbreviated EE throughout the rest of this thesis.

To illustrate the importance of choosing the right metric, performance and power

consumption measures have been collected for a range of processors from a number of

sources into a table (see Table4.1 on page56).

Metrics and benchmarks50

Finally, seven benchmarks were ported to the HORN architecture, partly by the author,

partly by his colleague on the HORN-project Dr. Rhodri M. Davies.

4.1 Background on metrics

Performance is generally measured in Million of Instructions Per Second (MIPS) and

energy consumed is measured in Joules. Energy per unit time is power consumption

measured in Watts.

[Burd] divides applications into three classes:

1. Digital Signal Processing (DSP) - class applications, which require a fixed level of

performance, and do not benefit from any further increase in performance. The

challenge in such a system is to deliver the required performance while consuming

as little energy as possible. The energy per operation should be minimized. This is

equivalent to ‘power divided by throughput’, which is inversely proportional to

‘MIPS/W’ or ‘SPEC/W’, a figure often quoted in the literature [Zivkov].

2. Server applications, which are characterised by the processor constantly being

busy. For this class of applications the energy-efficiency metric should be based

upon two factors: The execution time and the energy consumption; (an energy-

delay product) as performance can be traded against energy consumption and vice

versa. As it will be explained below this metric is proportional to Energy/Through-

put and Power/Throughput2, which is inversely proportional to MIPS2/W or

SPEC2/W. [Burd] denotes this measure Energy Throughput Ratio, ETR.

3. PC/workstation applications, where the processor is typically busy for some time

T1 followed by some idle time T2. Products such as Personal Digital Assistants

(PDAs), Personal Organisers (POs) also come into this category. Dependent on the

ratio of these times, it may become beneficial to ‘put to sleep’ parts of, or even the

51 Metrics and benchmarks

entire, processor in order to obtain high overall energy efficiency. This is called

‘burst mode’ in [Burd] which defines a metric Microprocessor Energy Throughput

Ratio (METR). Once again this metric is based upon the energy-delay product and

measured in Joules/MIPSinversely proportional to MIPS2/W or SPEC2/W. It is

important to note that the MIPS in this case are the ‘useful’ MIPS, i.e. also the per-

formance of the operating system when no specific application is running. If

T1 >> T2 this is equivalent to ETR. [Burd] argues that if T1 << T2, METR turns

into a ‘Power/Throughput’ metric inversely proportional to MIPS/W.

The HORN Architecture Manual - 5th Edition specifies:

“... first phase concentrating on high volume consumer computing products with low

system cost. Promising areas for initial HORN products are:

a. Multimedia Systems...... integrating DSP, image processing and

communications functions into the general purpose processor.

b. Games....

..... In the second phase, new products will build on this, addressing general purpose

computing areas such as:

c. Multimedia servers....”

Comparing the list of applications with the three classes of systems there is significant

analogy:

Multimedia Systems are typical DSP applications, Games are a typical PC-style

application, which might stay idle for some time, waiting for user input, before becoming

busy again.Multimedia Servers are specific forms of server applications where there are

limits to the trade-offs one can make in the performance. Given that it is a server,

Metrics and benchmarks52

however, an assumption can be made that the system can handle more than one stream of

data at the requested rate, the trade-off that can be made is therefore trading the number

of streams versus power consumption.

It might not be obvious why energy efficiency is a relevant issue for servers. Servers will

typically not be battery driven but cooling and noise might be important issues. If the

processor in the server is energy efficient, cheaper and less noisy cooling technology may

be used resulting in a cheaper and more environmentally friendly product.

Note that there is, in general, a performance requirement associated with applications of

type 1, while this is not necessarily the case for classes 2 and 3.

Let β denote the ratio PIDLE/PBUSY i.e. the power consumption while idle divided by the

power consumption while busy. By having T denote the throughput for a given

application and TAVE denote the average throughput over time [Burd] established the

following relation between ETR and METR:

which is applicable for classes 2 and 3.

Early microprocessors typically hadβ-values of 1.0, while an asynchronous

implementation will yield a much smallerβ-value approaching 0. Modern processors

such as the INTEL Pentium [Child] and the PowerPC 603 from Motorola [Suessmith]

have several power down modes, yielding a range ofβ-values. Note that if T=TAVE, i.e

the processor is busy all the time, METR = ETR.

β is a constant given by the implementation while the architecture ‘determines’ ETR.

T and TAVE are given by the user/application. Thus optimising the MIPS2/W ratio at the

architecture level will minimize the ETR and minimizing the power consumption during

METR ETR 1 β T
TAVE
------------ 1– 

 += T TAVE≥ (EQ 4.1)

53 Metrics and benchmarks

idle periods through various implementation techniques will decreaseβ and therefore also

be a gain. The two factors can thus be considered independently and can be optimized for

separately. Applications of type 2. and 3. can be used to optimize the (micro) architecture,

but that applications of type 1. may not lead to the same results.

This analysis has two consequences for the investigations carried out as a part of this

work. Firstly, it is very easy to find applications/benchmarks of type 2 and 3, which can

help in optimizing the architecture and later the implementation for energy efficiency.

Essentially all the benchmarks normally used for processor performance assessments can

be used as benchmarks. Secondly, it was decided to consider the HORN processor as a

‘normal’ microprocessor where performance improvements obtained through optimizing

the architecture are ‘passed-on’ to the application/user.

This could lead to the conclusion that an ETR or a MIPS2/W metric is the correct metric

for optimizing an architecture for energy efficiency. However, the metrics are only

suitable if the programs/benchmarks used contains the same number of instructions for all

the architectural options explored or, more precisely, the same instruction set architecture

(ISA) [Burd]. As shown in Chapter 6 this work has also explored different instruction set

architectures where ‘MIPS’ is not a suitable metric for performance as the number of

instructions required for a given program compiled for two different architectures may not

be constant. An example of this is the comparison a program compiled for a RISC and a

CISC architecture. The CISC binary will typically contain fewer instructions than the

RISC binary. To measure the effectiveness of two different architectures it is the

execution time of the program which is interesting to the user, not the MIPS-ratio for the

two architectures. Other measures of performance which are instruction set insensitive

such as the Dhrystone [Weicker] or the SPEC[SPEC91] measure could have been chosen.

The SPEC benchmark suite comprises integer and floating point benchmarks denoted

Metrics and benchmarks54

‘SPECInt’ and ‘SPECfp’ and is updated regularly, the year of the release is often

specified. SPECInt92, consequently refers to the integer benchmarks in the SPEC

benchmarks suite from 1992. However, given the difficulties encountered porting

benchmarks (due to incomplete libraries) it was considered infeasible to use the SPEC-

measures. Furthermore, due to the danger of focusing too much on one benchmark, the

Dhrystone performance measure was discarded as well. Simplicity was needed:

An energy efficiency metric should only consider the time taken for a task or program and

the energy consumed during the execution of the task. This leads to a energy-delay or J.sec

metric. Note, that this definitiondoes take account of architectural parallelism as the delay

is the time taken to execute a given task, rather than the cycle time of the processor. Using

the critical path delay as a measure for time, fails to include the effects of architectural

parallelism [Burd].

To allow positive selection the inverse metric: will be used in the comparisons. It

will be called Energy Efficiency, EE. Such a metric can be used to evaluate different

architectures and configurations for energy efficiency but it cannot be used to compare

different benchmarks, even in the same architecture. Note that as the definition of EE is

based upon the energy-delay product it is not suitable for DSP-class applications where

the delay cannot be traded.

It is important to realize that this ‘new’ metric is inversely proportional to ETR and

proportional to MIPS2/W as long as the same ISA is used in the evaluations:

1
J sec⋅

ETR
J

MIPS

J
sec

Inst/10
6

sec sec×

--------------------- W

MIPS
2

for constant no. inst

∝= = (EQ 4.2)

55 Metrics and benchmarks

Furthermore, the metric has the advantage of being independent of the supply voltage:

The power consumption scales with the square of the supply voltage, Vdd [Weste], while

the operating frequency scales linearly with the supply voltage [Weste][RYork2].

Consequently the EE metric is independent of the supply voltage.

4.2 Evaluation of metrics and discussion

It might be considered controversial to choose a metric such as energy efficiency when

the science generally [Zivkov], [Williams], [Lev], [Bensch] quotes measures such as

MIPS/W or SPECInt92/W. However, as explained above, if the goal is to increase the

throughput per unit of energy (the EE), MIPS2/W and SPECInt922/W are more suitable

metrics.

To illustrate the sensitivity of which metric to choose Table 4.1 shows the SPECInt92

measures and power consumption measures from a number of processors [MRP1092],

[Zivkov], [Williams], [Lev], [Bensch], [RYork], the SPECInt92/W and (SPECInt92)2/W.

Note that all ARM measures are based upon the Dhrystone benchmarks! The SPECInt

benchmarks are designed to assess the system performance including I/O operations

rather than just the processor performance. The Dhrystone measure is based upon

compute power and ARM Ltd. considers it a more appropriate measure for the

performance of their processors [RYork]1. A conversion factor between the Dhrystone

and the SPECInt performance measures has been derived for the MIPS R4200 from

1. More information on the performance and power consumption of the ARM610 and ARM710
is available on WWW: http://www.arm.com

EE
1

J sec⋅

1

sec
2

J
sec

---------- MIPS

2

W

for constant no. inst

∝= = (EQ 4.3)

Metrics and benchmarks56

[Zivkov]: 1 SPECint92 = 2.5KDhrystone2.1. This conversion factor has been used to

assess the SPECInt performance of the ARM processors

The processors in Table4.1 can be divided into three bands determined by their power

consumption. Some processors, the Hobbit, the R4200 and the ARM processors, consume

a. Quad-issue full-custom VLSI implementation of the Alpha-architecture

b. SPECInt92 performance for ARM3 estimated by comparing R4200 performance of 137K
Dhrystone [Zivkov] with 16K Dhrystone for ARM3[OMIMAP].

c. The power consumption are estimates based upon [MRP1092]. The ARM610 core is expected
to consume 525mW to deliver the performance of a Hobbit processor [MRP1092]. The
SPECInt92 measure is derived from running the Dhrystone2.1 benchmark on an ARM610 -
25MHz within the department, yielding 31KDhrystone2.1.

d. Personal mail exchange with Mr. R. York, ARM Ltd., 4th of April 1996. ARM710a has an 8K-
byte unified cache. Performance: 52KDhrystone2.1,

e. int: internal clock frequency, ext: externally supplied clock frequency

f. see [Gerosa]
g. A HaL implementation of the SPARC V9 64-bit architecture, integrating a CPU-chip, a memory
management unit and four 64K byte cache chips into a ceramic multi-chip module

h. 64-bit superscalar, 4 instructions per cycle

i. see [Biggs]

Table 4.1Performance and power consumption for existing processors

Processor
Frequency

[MHz] SPECInt92
Power
[Watts]

Alpha-Quada 300 341 50 6.8 2,326

ARM3 20 6.4b 1.1 5.8 38

ARM610c 25 12.0 0.53 22.7 272

ARM710ad 50 20.1 0.32 63.1 1,266

Hobbit 20 11.0 0.4 27.5 302

i486 DX/2 66(int)/33(ext)e 32.2 7 4.6 148

MicroSPARC 50(int) 22.8 4 5.7 130

Pentium 66 64.5 16 4.0 258

PowerPC 66 60.0 9 6.7 402

PowerPCf 80 75.0 2.2 34.1 2,557

R4000SC 100(int)/50(ext) 61.7 12 5.1 317

R4200 80(int)/40(ext) 55.0 1.5 36.7 2,018

R4400SC 150(int)/75(ext) 94.0 15 6.3 592

SPARC V9 MCMg 143 230 50 4.6 1,058

SPARC V9h 167 270 28 9.6 2,592

68040i 33 17.7 1 17.7 313

SPECInt92
W

----------------------------- SPECInt92()
2

W

57 Metrics and benchmarks

little power, less than 2.5W. A number of processors consume between 4W and 16W,

while three processors consume more than 20W.

Using the metric (i.e. the power-delay product) the first group of processors

(excluding the older ARM3) stand out, yielding measures a factor 3 to 6 better than any

of the other processors. However it should be observed that the ‘SPARC V9’ processor

performs very well with this metric despite its 28W power consumption. Using the same

measure, it can be seen that the ‘Hobbit’ obtains its high measure through a very low

power consumption despite a low performance (SPECInt92); whereas the ‘R4200’

architecture gains its position though effective performance, which is comparable to early

486-microprocessors and low power consumption.

Using the energy efficiency metric, (i.e. the energy-delay product), the

ranking changes completely. Now, the high-end processors, together with the R4200 and

the PowerPC1 form a class of their own yielding measures a factor 3 to 10 times better

than any of the other processors. These measures indicate that an ‘Alpha’ processor

delivers eight times more performance per Joule than a ‘Hobbit’ processor or nine times

more than a ‘Pentium’ processor. Although the ‘Alpha’ and other high-end processors are

very power consuming, they are very energy efficient in their computation. Thus an

‘Alpha’ or a ‘SPARC V9’ processor could be the optimal choice if one was to build a

server (defined as above), independently of whether the goal was energy efficiency or

throughput. However, the ‘R4200’ or the 2.2W PowerPC would, despite their lower

performance, also be very energy efficient choices.

The results donot imply that the optimal processor forhand-held equipment is an Alpha

or a ‘SPARC V9’. The degree of utilization might be very low, as is the case for a PDA.

1. The 2.2W version described in [Gerosa]

SPECInt92
W

SPECInt92()2

W

Metrics and benchmarks58

It is therefore important, as shown in section4.1, that a processor has ‘power-down’

modes entered during idle periods. The power consumption during this time should be as

low as possible, see Equation 4.1, to extend battery life time. The ‘Alpha’ does not have

such a feature and will therefore consume 50W independently of its utilization. In contrast

the 2.2W PowerPC does [Suessmith] use dynamic power management where different

parts of the chip can be shut down. Dependent on how much of the chip has been disabled,

stand-by power consumption of a PowerPC-processor is between 2mW and 350mW.

As illustrated in [Culbert], PDA-style products are designed with great attention paid to

weight and size. The power consumption and supply voltage of the processor is important.

For the ‘Apple Newton’ PDA [Culbert], the designers chose to use the ARM610

processor due to its low power consumption, which Apple estimated would give one week

of ‘normal’ use with 4 AAA NICAD battery cells. As mentioned above, the ability to

‘power-down’ the processor is also important. In stand-by mode, the Apple Newton PDA

consumes only 50mW compared with 2W when operating [Culbert], i.e aβ-value of

0.025 in Equation 4.1. A part of this reduction is due to ‘powering-down’ the processor.

If the requirement for battery lifetime was reduced to a working day a ‘486DX2-66’

processor might have been the optimal choice. It has approximately the same energy

efficiency, but provides a performance which is three times higher than that of the

‘ARM610’, see Table4.1.

Choosing the right processor for a portable product involves more than choosing the most

energy efficient processor. Factors such as battery lifetime and required performance

level are important factors as well.

Figure 4.1 presents the results from Table4.1 in a graphical form. The graph can be used

to aid the selection of the optimal processor for a given product. Given a power-budget

59 Metrics and benchmarks

the graph presents a simple way of choosing the most energy efficient processor. The

scale on the ‘Power Consumption’ axis is logarithmic. This helps to differentiate the

processors in the low end of the range. However it makes it more difficult to separate the

‘high-end’ processors.

4.3 Selection criteria for benchmarks

The sections above have highlighted that optimizing a computer architecture or an

implementation of an architecture for energy efficiency has different meanings dependent

on the type of target application.

In section 4.1 it is stated that the goals which are set up for the HORN architecture

[HORNV5] are contradictory when optimizing the architecture for ‘low-power’; as the

architecture aims to address both DSP and microprocessor/server applications. The

section concluded that the work in this dissertation should focus on the improvement of

Figure 4.1 Energy Efficiency vs. power consumption for existing processors

Metrics and benchmarks60

server and microprocessor applications and use the related metrics such as Energy

Efficiency, EE.

The decision to use this metric excludes DSP-class applications from the benchmark

suite, so MPEG and related programs can not be used as benchmarks even though they

are listed as one of the prime targets for the HORN architecture. The benchmarks suite

has therefore been chosen to contain typical benchmarks for the workstation/PC domain.

The HORN architecture has undergone significant changes during this project. The

instruction set architecture and consequently the compiler and linker have been changed

several times. Due to the emphasis on optimizing the architecture for performance the

development of libraries was deferred. This had consequences for this project in that it

was not possible to port a significant number of benchmarks such as the SPEC [SPEC91]

and SLASH [Singh] suites to the HORN architecture.

4.4 Benchmark Suite

This section gives a brief description of each benchmark used in this dissertation. There

will be a short description of the functionality of each benchmark and the characteristics

which justified its inclusion in the benchmark suite for this work.

4.4.1 Hello

Hello is an extended version of the minimal program printing the classical phrase. The

program has been extended to contain a loop which iterates 20 times over a print statement

printing the value of the loop-variable. The benchmark has been included in the suite to

represent the class of small programs or tools, such as the UNIX utility ‘grep’ which is

heavily used to scan text-files.

61 Metrics and benchmarks

The executable program is characterized by being built almost entirely from library

routines and start-up code. It is therefore useful for illustrating the effect of these code-

fragments as they will be found in all the benchmarks mentioned hereafter.

The executable comprises 52.000 instructions and 21.000 data references

The benchmark contains 16 lines of C-code.

4.4.2 Espresso

Espresso [SPEC89] is a program which transforms a boolean truth-table into a form

suitable for a given implementation technology with emphasis on criteria such as speed

and area. The program takes a textual input file and produces an output file in a variety of

formats. The default output format was used.

The executable program comprises a significant number of instructions, 4.6 million, of

which 1.4 million are memory referencing instructions. The code contains a number of

short loops which is illustrated by the fact that 12% of taken branches branched less than

32 bytes1 backwards. The code does contain some I/O procedures, but the majority of the

run-time is spent in the reduction algorithm.

Espresso is the largest binary in the benchmark suite having the largest memory

requirement it therefore has the highest number of compulsory misses [Patt] in the

instruction cache.

The benchmark contains 17,000 lines of C-code.

1. Equivalent to approximately 10 instructions

Metrics and benchmarks62

4.4.3 Flex

Flex is a ‘fast lexical analyzer generator’ which is available as a UNIX tool. The program

contains 10.7 million instructions of which 4.3 million are data referencing instructions.

Compared with Espresso, see section4.4.2, a high percentage of taken branches had very

small offsets. 95% of all taken branches branch to the same cache line (32 bytes). This,

together with the fact that the size of the binary is only 50% of espresso, indicates a high

degree of spatial locality and that high hit-rates can be obtained in instruction caches even

with small cache sizes.

Flex has been included to represent tools commonly available (and used) on workstations.

The benchmark contains 12,000 lines of C-code.

4.4.4 Cacti

Cacti [Wilton] is a cache timing analyzer program developed by Digital Equipment

Coperation; it calculates various timing parameters for a cache specified by the user using

information from a technology file. The user can specify total cache size, cache-line size

and degree of associativity. The program provides information about cycle and access

time to the cache and sub-divides these ‘times’ up into various components in a cache

such as latency through the sense amplifiers in both the data and tag areas in the cache.

The size of the binary is very small. However, due to heavily nested loops, the dynamic

instruction count is 18.9 million instructions of which 2.1 million involved memory

references. Consequently, it is not as memory-intensive program as is for example

espresso, see section4.4.2.

The spatial locality is not as high as for espresso and flex, only 6% of taken branches are

to the same cache line (32 bytes). The hit-rate in the instruction cache is therefore

expected to be lower than for espresso and flex. Furthermore the average basic block size

63 Metrics and benchmarks

in this benchmark is more than twice that of the other benchmarks: 54.3 bytes versus an

average of 27.1 bytes for the rest of the benchmarks.

Cacti has been included in the benchmark suite to represent simulators and tools used in

R&D environments. As the instruction count is very high, the benchmark can be

considered as one used for testing high-end systems.

The benchmark contains 1,500 lines of C-code.

4.4.5 Fft

The Fast-Fourier-Transformation (FFT) benchmark Fourier-transforms 1,024 numbers,

generating 1,024 complex numbers; these complex numbers are then fed to an inverse-fft

process which regenerates the 1,024 original numbers.

The program prints a number of useful time statistics such as the over-all execution time,

the transpose time (i.e the time it takes to perform the Fourier-transformation) and the

initialization time.

As a benchmark, the program is characterized by being sensitive to organization of the

data cache due to the non-linear access of data. For large caches the cache organization is

less important due to the relatively small data-set. It is also characteristic that the array-

elements are accessed very few times. The data cache misses are therefore dominated by

compulsory misses.

The performance of the data cache is such that the hit-rate is high (>95%) even for small

caches as long as the degree of associativity is higher than one.

The binary of this benchmark is very small, less than twice the size of hello and the

performance of the instruction cache is therefore expected to be high (>98%) even for

small configurations. Furthermore, 17% of all taken branches are to the same, current,

Metrics and benchmarks64

instruction cache line. However, the spatial locality is much higher than this number

indicates as a significant proportion of the branches are taken during the initialization of

the code. Once in the core in of the program the spatial locality is much higher.

‘Fft’ has been included in the benchmark suite as signal processing is one of the targets

for the HORN architecture. However, it should be noted that there is no timing

requirement associated with this benchmark as is typical for DSP class applications,

although fft is often a significant part in DSP applications.

The benchmark contains 1,000 lines of C-code and executes 1,104,931 instructions

including 225,796 memory referencing instructions, i.e. a 5:1 ratio.

4.4.6 Dhrystone

Dhrystone2.1 [Weicker] is another small benchmark, performing a precise number of

tasks. The program contains a main loop. This loop is executed N times where ‘N’ is a

parameter given to the program when launched. For all the runs of this benchmark, N was

set arbitrarily to 500. This allows the program to measure the time taken to compute the

precise number of arithmetic operations and on this basis various performance

characteristics were calculated for the machine used to run the program. Computing these

measurements involves timing the calculations which used timing calls not included in the

libraries supplied with the tools for the HORN architecture. The calls to these functions

have therefore been “commented-out” of the source code and the statistics which involved

timing have been omitted.

The binary of the benchmark is small, only 50% larger than hello, and as the data set is

very small, a data cache size of 2Kbytes is sufficient to ensure a hit rate in the data cache

of more than 99%.

65 Metrics and benchmarks

Dhrystone is a classical synthetic benchmark quoted in [Weicker] and has been included

in the benchmark suite for that reason.

The benchmark contains 1.000 lines of C-code, 688,173 instructions including 221,819

memory referencing instructions; i.e. a ratio of 3:1. The program is characterized by short

basic blocks, typically six instructions.

4.4.7 Stcompiler

Stcompiler is a publicly available C-compiler [Ruegg] used to compile the ‘hello.c’

program for measurement purposes. The program has, together with flex, see section

4.4.3, the largest binary in the benchmark suite and due to relatively low spatial locality,

a large cache (>8K bytes) is required to obtain a high hit rate, >98%, in the instruction

cache. Equally, the data cache needs to be large (> 4K bytes) to ensure a hit rate there of

>95%.

The reason for the low hit-rates, particularly in the data cache, is a very high number of

compulsory misses [Patt] due to a very large binary and data set. The benchmark has been

included in the suite to represent the compilers which are common in a development

environment. It contains 13,000 lines of C-code, executes 1,865,924 instructions

including 720,468 memory referencing instructions, i.e. a ratio of 2.6: 1; it is a very

memory intensive benchmark. The program is characterized by short basic blocks:

typically 4.6 instructions

4.5 Summary

This section has shown that, provided DSP-like applications are not targeted, EE is a

suitable metric for evaluating energy-efficient architectural trade-offs. Even though the

HORN architecture specifies DSP-like applications as one of its targets, this work willnot

optimize for this class of application. As stated above, the metrics, when optimizing the

Metrics and benchmarks66

architecture and the implementation for the two classes of applications, are completely

different due to the differences in the nature of the applications. DSP applications require

a constant performance, which due to the nature of the application cannot be traded

against a lower energy consumption. A spreadsheet or a word processor will still work

correctly if some of the performance is traded for a reduction in energy consumption.

To allow comparisons across a range of - not necessarily binary compatible -

architectures, it has been decided to base the architectural investigations in this

dissertation on the metric, even though this implies that it is not possible to

optimize for all the classes of applications that the HORN processor architecture

specifies.

This has had implications for the benchmark suite to be used for the rest of the

investigation described hereafter. The benchmark suite should contain microprocessor

applications such as compilers, filters and games, but it shouldnot include applications

such as MPEG (video compression/decompression) as it belong to a completely different

class of application which, by choosing the as ‘base metric’,may not be able to

execute correctly if the performance requirement is not met.

This does not mean that DSP-applications and products cannot or should not be optimized

for energy efficiency, only that the metric used for such optimizations is not the same as

the one used for optimizing microprocessors and servers. Techniques which can be used

for optimizing a microprocessor might not be the same as for a DSP-processor. This work

has considered the HORN-processor only as a microprocessor and the remaining of this

thesis will therefore investigate only the energy efficiency of microprocessors. DSP-

processors and applications will not be mentioned again.

1
J sec⋅

1
J sec⋅

67 Metrics and benchmarks

Consequently a benchmark suite of eight microprocessor and server benchmarks has been

chosen. Each benchmark has been described briefly, and a motivation for including it in

the benchmark suite has been given.

Energy consumption in caches68

Chapter 5 Energy consumption in caches

As shown in Chapter 2, the cache consumes a significant proportion of the total power of

a typical microprocessor. Understanding the effect that changing cache parameters and

architecture has on cache power consumption is therefore essential when designing an

energy efficient microprocessor system. The cache clearly affects not only the

performance of the processor; it also reduces external memory traffic and thereby the

power consumption of the entire system.

Based on capacitances derived under the OMI-DE-project [Garside2], this project has

derived expressions for energy consumption in a number of cache architectures and

analysed their suitability for an energy efficient processor architecture. Section5.1.1

presents results collected from commercially available tools and a low power sense

amplifier design designed by T. Burd [Burd2].

Based on results extracted from [Garside2], section5.1.2 derives expressions for energy

consumption in RAM. Sections5.2-5.4 apply these results to a number of cache

architectures described in the literature, and evaluate their potential for an ‘energy

efficient processor architecture’. The expressions used have been derived as a part of the

author’s work.

Section5.5 discusses associative caches and evaluates the value of skewed associativity

[Seznec] while section5.6 evaluates the value of different replacement algorithms.

Section5.7 presents results of an analysis of cycle times of different cache organizations.

Sections5.8-5.11 present techniques to reduce cache activity and thereby energy

consumption. The evaluation has been carried out as part of this work.

Section5.12 summarizes the results.

69 Energy consumption in caches

5.1 Energy cost

In this section expressions for the energy consumption of conventional direct-mapped and

set-associative cache configurations will be derived to establish an understanding of the

effect of various cache parameters on power consumption. Other cache architectures,

such as sectored caching [Seznec2] and CAT-caching [Wang], will also be investigated.

An expression for energy consumption of CAT-caches will be derived. Cache

organizations, such as sub-caching [Su], which break up cachelines into sub-lines and

hence reduce the size of the RAM block accessed1, will not be investigated; they are not

considered useful in architectures where cache references are not aligned on fixed byte

boundaries. Throughout this section a 32-bit address- and data-bus is assumed.

5.1.1 RAM-compiler

Conventional cache designs may use static RAM-blocks such as those generated by a

RAM-compiler [VLSI] employing a conventional sense amplifier design. The design of

the sense amplifiers in this technology is such that they have a large static power

dissipation. For RAM-blocks generated by the RAM compiler, the dissipation is therefore

dominated by the sense amplifiers, see [VLSI]. As Table5.1 shows, the line size, ‘ls’ in

1. And thereby the energy consumption per request.

a. Data for longer lines were not available.

Table 5.1 Dynamic energy consumption in RAM [VLSI]

Line size

Lines
32bits/4bytes

[nJ/cycle]
64bits/8bytes

[nJ/cycle]
128bits/16bytesa

[nJ/cycle]

128 4.78 9.55 19.09

256 4.82 9.59 19.17

512 4.86 9.73 19.45

1024 4.86 9.73 19.45

Energy consumption in caches70

bits, is the dominant factor in the expression of energy consumption, and the dynamic

energy consumption per access to the RAM-block can therefore be approximated to:

where K is a proportionality factor equal to:

This is due, in part, to the power consumption of the sense amplifiers, which have been

designed to drive relatively large capacitances. The figures quoted in Table5.1 assume an

input capacitance, CI/O, per bit of ~1pF and an output load of 1pF. Such driving capacities

are not necessary in a cache design where the sense amplifiers have to drive only the input

of a multiplexer. Using sense amplifiers with lower driving capabilities will reduce the

energy consumption proportionally, but it is not clear whether the static power

consumption will scale, see below.

Due to the leakage in the sense amplifiers there is also a static dissipation, PRAM,Static of

~2.5mW per bit which cannot be neglected. For a RAM block with a 32-bit wide data bus

and 1024 lines, cycled at 33MHz, the total power consumption, static and dynamic, can

be calculated [VLSI]:

i.e. a 2:1 ratio. There might be several sense amplifiers per bit dependent on the internal

organization of the RAM, although Equation 5.4 assumes only one sense amplifier per

bit.

The static dissipation associated with the sense amplifiers therefore represents a

significant proportion of the total power consumption of the RAM-block. If the sense

ERAM K ls×≈ (EQ 5.1)

K
19.45 4.86–

128 32–
------------------------------ nJ

bit
------- 0.15nJ

bit
-------= = (EQ 5.2)

PRAM Dynamic(), 4.86mW MHz⁄ 33MHz× 160mW= = (EQ 5.3)

PRAM Static() 2.5mW bit⁄ 32bit× 80mW= = (EQ 5.4)

71 Energy consumption in caches

amplifiers employed a dynamic circuit which is activated, and hence energy consuming,

only when the RAM is accessed, other parameters in the RAM block such as the total size

and line size may dominate the expression for energy consumption.

Figure 5.1 presents a design of a dynamic sense amplifier which does not have any static

power dissipation. Building the sense amplifier and precharge circuit shown in Figure5.1

and described in detail in [Burd2] eliminates the static power consumption in the sense

amplifier almost1 completely. The numbers in parenthesis indicate transistor dimensions:

M1, M3 and M4 form the precharge circuit. When ‘Clk’ is ‘low’ M1 will charge ‘Node

X’ to VDD, and the line ‘bitline’ to VDD-VT through M4. When ‘Clk’ goes ‘high’ M1 and

M4 will be cut off, ‘Node X’ will discharge towards the value ofbitline and ‘Output’ will

switch to the value of the bit in the storage. Note that the threshold voltage of the inverter

should be relatively high for the inverter output to switch to ‘high’ as quickly as possible.

This is achieved by scaling the transistors in the inverter appropriately. Transistor M2

forms a weak feedback to the ‘Node X’ and maintains the value on the Output-node. Note

that, unlike the circuit described in [VLSI], this is a dynamic circuit which requires a

system clock or a similarly derived signal to function.

1. A small static power consumption will remain due to leakage current through the transistors in
the inverter and in the storage element (not shown); however it is considered negligible. [Burd2]

Figure 5.1 Sense amplifier without static power dissipation

Clk

Clk

VDD

Output

bitline

M1 M2

M3

M4

1.4pf for 256 cache lines, see Figure5.5

to the multiplexer

Cload = 30fFX

(9/2)

(7/2)

(6/2) (3/9)

Energy consumption in caches72

Transistors M1, M2, M3 and M4, in the circuit are small and the circuit capacitances are

also very small. The capacitance on thebitline will be dominated by the capacitance of

the storage block. Only the output from the inverter is expected to be energy consuming

in that it will be the only node with a full voltage swing. The output of the sense amplifier

will drive the input to a multiplexer and hence have a very small load. Current technology

[Garside] specifies input capacitances of simple circuits such as multiplexers to be

Cin~20fF. Adding some capacitance for routing, Cload is estimated at 30fF. Given an

architecture where the sense amplifiers are placedbefore the output multiplexer, ‘ls’ sense

amplifiers are required. They will consume:

per request.

Note also that the sense amplifiers should consume energy only during read cycles and as

the normal reference pattern is two read requests per write request, the importance of the

energy consumption of the sense amplifiers is reduced.

However, mixing results extrapolated from widely different technologies, such as [VLSI]

and [Burd2], may lead to wrong conclusions. The rest of this chapter will therefore seek

an understanding of how the cache parameters affect the energy consumption. The results

will be used to extrapolate the results from OMI-MAP to a RAM of any dimension. The

extrapolations are based on the cache implementation in the ARM3 [OMIMAP] and in

Amulet2e [Garside][Garside2].

5.1.2 Fundamental relations

Details on technology issues such as bit-line and word-line capacitances is commercially

sensitive information which can rarely be extracted from data sheets. To understand how

ESense ls 0.03
pF
bit
------- 3V() 2×× ls 0.27

pJ
bit
-------×= = (EQ 5.5)

73 Energy consumption in caches

the energy consumption of a RAM block scales with conventional cache parameters such

as line-size and number of lines it was therefore decided to build an expression for energy

consumption based on capacitances in the cache circuit extracted [Garside] for the

Amulet2e project [Garside2] which uses a 0.6µ, three layer metal, CMOS process.

Figure 5.2 shows a basic static RAM memory cell as used in caches; the line capacitances

shown correspond to a 256 lines x 256 bits (8K bytes) configuration. In addition to the

storage circuit itself, a pre-charge circuit, a sense amplifier and an output multiplexer are

shown. The capacitances shown in Figure 5.2 and those mentioned later in this chapter,

have been extracted from the Amulet2e design [Garside].

The general expression for energy consumption, E, in a CMOS circuit with N nodes is

[Mead]:

Precharge circuit

+ -Sense

WordLine

BitLineBitLine

0.7pF for a 256bit
cache line (~2.7fF/bit)

CBitline = 1.4pF

Figure 5.2 Extract from RAM circuit

Storage
Element

pa
ss

-t
ra

ns
is

to
r

pa
ss

-t
ra

ns
is

to
r

N-bit output

ls bits

l lines

for a cache with
256 lines

CWordline

(~5.5fF/line)

SenseOut

Amplifier

Mux

E 1
2
--- Ti Ci ∆Vi() 2××

i 1=

N

∑= (EQ 5.6)

Energy consumption in caches74

where Ti denotes the number of transitions in the i’th node. Ci denotes the capacitance and

∆V i the voltage swing of the i’th node. The voltage swings on the word- and bit-lines

differ due to the different driving sources. The word-line is driven by a decode circuit, i.e.

a gate output with good driving capabilities and a full logical voltage swing of 3V is

expected. BitLine andBitLine are driven by the storage element, through the pass-

transistors. This part of the circuit will be designed with very small transistors to optimize

silicon area and will therefore have relatively low driving capabilities. Bit-line

capacitances are twice those on the word-line (Figure5.2) implying that voltage change

on the bit-lines will be slower. The sense amplifier is designed to ‘sense’ the value of the

storage element before the full logical voltage swing has been encountered. A bit-line

voltage difference of Vdiff = 0.5V is normally sufficient for the sense amplifier circuit to

detect the value of the cell [Weste] [Burd2]. However it is important to note that the

voltage on the discharging bit-line will keep falling after the logical value of the cell has

been detected, see Figure5.3. The overshoot,δ, can be adjusted by scaling the transistor

sizes in the storage cells [Weste].

Vdiff = 0.5V

Vbitline
Vbitline

Precharge starts

VHIGH

δV

Figure 5.3 Voltage swing when discharging and precharging bit lines

time

Vbitline
Vbitline

Vout time

Discharge

VSenseOut

VPreCharge

‘1’

‘0’

75 Energy consumption in caches

The energy consumed during a cycle (discharge and precharge) is:

However, if the bit lines are not precharged to high, but to an intermediate voltage,

VPreCharge, see Figure5.4, a significant amount of energy can be saved [Weste]. The

access time might suffer, depending on how fast the storage cell can charge/discharge the

bit lines. Discharging one bit line as shown in Figure5.3, sufficiently for a sense

amplifier to detect the value of the cell may be faster than the scheme presented in Figure

5.4. However careful design should minimize this penalty.

The energy consumption throughout the discharge and precharge in such a circuit is:

If symmetry is assumed, i.e , the expression for EBitlines reduces to:

EBitline CBitline Vdiff δ+() 2×= (EQ 5.7)

VPreCharge

Figure 5.4 VBitline when precharging to an intermediate voltage

time

Vout time

Vdiff=0.5V

δ1V

Vbitline

Vbit

Vhigh

δ2V

Discharge

V low

Precharge

VSenseOut
‘1’

‘0’

EBitlines CBitline ∆VBitline() 2
C

Bitline
∆V

Bitline
() 2×+×= (EQ 5.8)

EBitlines 2 CBitline×
Vdiff

2
---------- δ+ 

  2
×= (EQ 5.9)

VPrech earg

VHigh VLow–

2
--------------------------------=

Energy consumption in caches76

The energy consumption of the storage part of the RAM can be approximated to:

By substitution this can be expressed as:

To simplify the calculations in the rest of this thesis it will be assumed that:

in which case Equation 5.11 reduces to:

By scaling the capacitances in Figure5.2, the energy consumption of the upper (storage

part) of the circuit during a read cycle is:

Where ‘ls’ denotes number ofbits per cache line and ‘l’ denotes the number of lines in the

storage block, see Figure5.2.

Scaling this expression shows how the energy consumption changes withl andls:

where

EStorage EWordline EBitlines+= (EQ 5.10)

EStorage Read, CWordline ∆VWordline() 2× 2 C× Bitline ∆VBitine() 2× l×+= (EQ 5.11)

2
Vdiff

2
---------- δ+ 

  2
×

Vdiff() 2

2
--------------------= (EQ 5.12)

EStorage Read, CWordline ∆VWordline() 2× CBitlines Vdiff() 2× l×+=
(EQ 5.13)

EStorage Read, 2.7
fF
bit
------- ls 3V() 2×× 5.5

fF
bit
------- ls 0.5V() 2

l×××+= (EQ 5.14)

EStorage Read, K1 ls× ls l×+∝ (EQ 5.15)

K1

C
Wordline

∆V
Wordline

() 2×

C
Bitline wline⁄ ∆Vdiff() 2×

-- 2.7fF bit⁄ 3V() 2×

5.5fF bit⁄ 0.5V() 2×
-- 18= = = (EQ 5.16)

77 Energy consumption in caches

This expression says that the energy consumption in RAM is more sensitive to changes in

line size,ls, than to changes in number of lines,l, at least for small values ofl. Increasing

the RAM size by increasing the number of lines therefore appears more attractive than

increasing the line size or any combination of the two.

During a read cycle the bit-lines do not need to discharge completely before the sense

amplifiers can detect the voltage difference and determine the value of the memory cell.

The bit-line will therefore only consume energy corresponding to Vdiff=0.5V as shown in

Equation 5.14. During a write cycle, the bit-line is driven by an external source and a total

voltage swing of 3V can be anticipated. However, it will only be the bits in the word on

the line which get overwritten which will experience this magnitude of voltage swing.

The remaining bits will discharge even though they are not accessed but will (dis-)charge

as during a read-cycle. The energy consumption during a write is therefore approximated

to:

Substituting the capacitance and voltage values from the Amulet2e project gives the

following expressions:

where ‘w’ signifies the size of the word (in bits) which is written to the storage.

Scaling as before yields:

EStorage write, CWordline ∆Vwordline 
  2

× C
Bitline wline⁄

∆VBitline Write, 
  2

× l× C
Bitlines ∆Vdiff Idle, 

  2
× l×+ +=

(EQ 5.17)

EStorage write, 2.7 fF
bit
------- 3V() 2

ls×× 5.5 fF
bit
------- w 3V() 2× l×× 5.5 fF

bit
------- 0.5V() 2

ls w–()× l××+ +=

(EQ 5.18)

EStorage write, K1 ls K2 w l××+× 1 ls w–()× l×+∝ (EQ 5.19)

EStorage write, K1 ls l ls w K2 1–()×+()×+×∝ (EQ 5.20)

Energy consumption in caches78

where K1 is defined above and K2 is:

Inserting w= 32 bits in Equation 5.20 gives:

and thus:

Tables5.2-5.3, show how the energy consumption during a read and a write cycle differs

widely due to the activating of the sense amplifiers. In contrast to the sense amplifiers

used in [VLSI], there is no static power dissipation in the sense amplifiers used by ARM.

The tables show that the sense amplifiers do not consume any power during write cycles.

Table 5.2 ARM3 RAM dissipation - Pre-charge/Read Cycle

Block
Average power

consumption [mW]
% of total power

in RAM
The main RAM array 162.3 40.6 (XRAM,R)

I/O buffers 68.3 17.1 (XI/O,R)

32-Sense Amps 81.0 20.3 (XSense)

Precharge 29.6 7.4 (XPre,R)

Other blocks 58.8 14.6 (XOther,R)

Total 400.0 100

Table 5.3 ARM3 RAM dissipation - Pre-charge/Write Cycle

Block
Average power

consumption [mW]
% of total power

in RAM
The main RAM array 162.3 64.9 (XRAM,W)

I/O buffers 0 0.0 (XI/O,W)

32-Sense Amps 0 0.0 (XSense)

Precharge 24.9+4.7 11.8 (XPre,W)

Other blocks 58.1 23.2 (XOther,W)

Total 250.0 100

K2

C
Bitline wordline⁄

∆VBitline Write, 
  2×

C
Bitline wordline⁄

∆Vdiff Idle, 
  2×

-- 5.5fF 3V() 2×
5.5fF 0.5V() 2×
------------------------------------- 36= = = (EQ 5.21)

EStorage write, K1 ls 32 K× 2 l×+× 1 ls 32–() l××+∝ (EQ 5.22)

EStorage write, K1 ls l K2 ls 32–+()×+×∝ (EQ 5.23)

79 Energy consumption in caches

It is therefore clear that an expression for energy consumption in a cache is a sum of two

products: One product for read accesses and one for write accesses:

General expressions for Eread and Ewrite are derived through extrapolations from the

numbers in Tables5.2- 5.3.

The energy consumption in RAM scales as shown in Equation 5.15, while the energy

consumption of I/O buffers and sense amplifiers scale linearly with the word-size i.e the

number of bits to be read. The energy consumption of the precharge circuit scales with the

length and the number of bitlines i.e. with size of the RAM. As will be shown in Chapter

8, an entire cacheline will be read every time the cache is accessed. It is therefore

necessary to have sense amplifiers on each bit-line-pair in the memory. Due to the nature

of ‘other blocks’ it will be assumed that their energy consumption is not affected - or only

affected in a sub-linear way - by the cache size and line size. This is therefore an overhead

which is carried with every RAM-block.

The numbers quoted are for a 4K-byte cache organized in lines of 4 bytes; a general

expression for ERAM,Read is therefore:

where Xy are the percentages shown in table5.2. The energy consumption in storage

during read-cycles scales as shown in Equation 5.15 and the energy consumption in the

sense amplifiers scales with their number. Equally the energy consumption in the

precharge circuit scales with the number of bit lines to be precharged and with the length

of the bit lines, i.e. it will scale with the size of the storage block. Given that the RAM in

ECache #reads Eread #writes Ewrite×+×= (EQ 5.24)

ERAM Read,

ERAM ARM3,
------------------------------=XRAM R,

EStorage

E4K 4bytes,

--------------------------------× XI O⁄ R, XSense+ 
  ESense Buffer+

ESense Buffer ARM3,+

---× XPre R,
EPre

EPre ARM3,

---------------------------------× X
Other R,+ + +

(EQ 5.25)

Energy consumption in caches80

the ARM3 cache is a 1Kx32bit RAM block, the relations in Equation 5.25 gives the

following expression for ERAM,Read:

Equally the expression for ERAM,Write is:

which by inserting Equation 5.23 for Estorage is:

Chapter 2showed that the power consumption of the in the ARM3-cache RAM-block is

400mW during read cycles, while it is 250mW during write cycles. Equations5.26and

5.28 show how these consumptions will scale when the dimension of the cache RAM

changes.

5.1.3 Multi-ported RAM

An example of a multi-ported RAM is shown in Figure5.5 [Weste]. The voltage swings

on the lines are the same as for the single ported RAM. The capacitances on the bit- and

word-lines are clearly higher than those shown for a single ported RAM, see Figure5.2,

due to the larger cell area1. However, if this increase in line capacitances is ignored, an

expression for energy consumption in the multi-ported RAM with N read ports and M

write ports can be approximated to:

1. Extra pass-transistors make the cell wider and extra word-lines makes it higher

ERAM Read,

ERAM ARM3,
------------------------=XRAM R,

K1 ls ls l×+×
K1 32 1024 32×+×
---× XI O⁄ R, XSense+() ls

32
------× XPre R,

ls l×
32 1024×
------------------------× X

Other R,+ + +

(EQ 5.26)

ERAM Write,

E
RAM Write ARM3,,

---------------------------------- XRAM W,
EStorage

EStorage4K 4bytes,

--------------------------------------× XPre W,
EPrech earg

EPrehage ARM,

------------------------------× XOther W,+ +=

(EQ 5.27)

ERAM Write,

E
RAM Write ARM3,,

---------------------------------- 0.649
K1 ls l K2 ls w–+()×+×

K1 32 1024 32 32 K2 1–()×+()×+×
--× 0.118

ls l×
1024 32×
------------------------× 0.232+ +=

(EQ 5.28)

EMultiport N ERead SinglePort, M EWrite SinglePort,×+×= (EQ 5.29)

81 Energy consumption in caches

The expressions for ERead,Singleport and EWrite,SinglePort are those derived in the previous

section. The approximation made above - ignoring the increase in line capacitances due

to the increase in cell-dimensions - becomes less accurate as ‘N’ and ‘M’ increase.

Notice that M and N are the number of active ports, i.e. a non-active port should be

disabled and hence not consume any energy [VLSI][Garside][Yeung].

5.2 Direct mapped cache

Figure 5.6 shows a block diagram of a M-byte1 direct mapped cache withl lines ofw

words2, in aS-bit address space3. The design is different from conventional cache designs

in that every bit in the line which is read out of the Data Storage is ‘sense amplified’. The

reason for this will be explained in Chapter 8.

There are essentially three different types of accesses to a cache:

1. b = log2(M)
2. Each 32 bits
3. The sense amplifiers on the output of the tag storage are not shown

Figure 5.5 Extract of a bit cell from a multi-ported RAM circuit

Wbit Wbit R1bit R0bitR0bit R1bit

Write
Read1
Read0

Bit lines

W
or

d
lin

es

Energy consumption in caches82

1. A read access from both the Data Storage and the Tag Storage.

Given the measurements from Chapter 2, this is the most power

consuming type of access.

2. A write access to both the Data Storage and to the Tag Storage.

This happens when the first word is written to the line follow-

ing a miss.

3. A read in the Tag Storage and a write to the Data Storage. This

is the case when a store-instruction hits in a Data cache.

The energy consumption of the three types of accesses will be denoted: ERR, EWW and

ERW.

Following a cache miss, the new tag will be written with the first word of the new line,

i.e. a WW-access. The writing of the remaining words in the new line will be considered

as RW-accesses. Given long (> 4 words) cachelines and a high hit-rate, the number of

cycles where there is a write to both the tag- and data storage and hence the frequency of

EWW type accesses is very low. In the expressions for energy consumption of the different

cache architectures to be explored in the following sections, each instance of a WW-type

Tag Storage M-byte Data Storage
l lines

w words per line =

b-bits

==

Hit

l lines

Word
Select

A
ddr[S

-1:S
-1-b]

Mux

Figure 5.6 Block diagram for a direct mapped cache

Addr[S-1:0]

Addr[S-b-1;log2w]

Lineselect

Sense amp.

Output

ls bits per line

sense
amps

83 Energy consumption in caches

operation will - for energy consumption purposes - be replaced by a RW-type access. This

can be seen as a conservative replacement as the RW-type access is more energy-

consuming, see section5.1.

The rest of this chapter will derive expressions for ERR and ERW for a number of different

cache architectures.

The energy consumption of the cache, in case of a hit, can be expressed as:

As the complexity, and hence the energy consumption of the Mux and the compare circuit

only scales with the log(line size) and log(cache size), the energy consumption of these

circuits is approximated to be constant across the cache configurations considered:

Each access to RAM has a fixed energy cost proportional to the length of the wires

charged or discharged [Mead], thus thepower consumption in RAM is largely

proportional to the frequency and type of requests. As with all CMOS designs there is a

leakage current and hence some static power consumption, but it is small enough to be

neglected [Mead].

The results from section5.1.2 indicate that the energy consumption per access to the

RAM blocks, Tag and Storage is a function of the number of cache lines,l, and especially

of their total bit-width,b andls, see Equations 5.26- 5.28.

Assume an ‘M’-byte cache i.e.:

ERequest ERAM TAG, ECompare ERAM Storage, E+ + +
Mux

= (EQ 5.30)

ERequest ERAM TAG, ERAM Storage, Const+ += (EQ 5.31)

8M ls l×= (EQ 5.32)

Energy consumption in caches84

By simple substitution in Equation 5.26 (ls replaced by ls + b) and normalization, the

expression for ERR is proportional to:

The expression for ERW is more complex as it includes both a read operation from the Tag

storage and a write operation to the data storage:

where b = S - log2M.

Substituting l with 8M/ls gives:

and

Analysing these expressions shows that ERAM,RR increases almost linearly with the size

of the cache, M, and with the line size, ls, except for very small values of ls, Figure 5.7.

ECache R, R 824 ls b+() l ls b+() 10144+×+×∝ (EQ 5.33)

ECache RW, 824 b× 1 l b 24.3 ls 1.6 ls l× 26250+×+×+××+∝ (EQ 5.34)

ECache R, R 103 M
ls
-----+ 

  ls b+() 1268+×∝ (EQ 5.35)

ECache RW, ls 498 3.4 ls×+() M
ls
----- 1202 b 11.6 b

M
ls
-----××+×+× 38181+ +∝ (EQ 5.36)

ECache RW, ls 1202 b×+() 498 3.4 ls× 11.6 b×+ +() M
ls
-----× 38181+ +∝ (EQ 5.37)

Figure 5.7 ECache,RR vs. cache size and ECache,RR vs. line size

Energy consumption of read requests
in direct mapped caches

Energy consumption of read requests
in direct mapped caches

85 Energy consumption in caches

ERAM,RW increases linearly with the cache size, M, but decreases inversely

proportionally with the line size, ls, see Figure 5.8.

Given the general expressions for energy consumption in a cache, as described in

Equation 5.33 and 5.36, the power consumption of the cache is proportional to the

frequency of access:

This has assumed a conventional direct-mapped cache architecture. More sophisticated

cache architectures/technologies such as CAT-caching [Wang] or sectored caching

[Seznec2] will change these equations, see section 5.4.

5.3 N-way set-associative caches

Figure 5.9 shows an N-way set-associative cache comprising N directly addressed sub-

caches, each 1/Nth of the total cache size1. Requesting a word implies accessing all N sets

in parallel and if there is a hit the requested word is read from the set with matching tag.

1. The sense amplifiers on the tag storage blocks are not shown

Figure 5.8 ECache,RW vs. cache size and ECache,RW vs. line size

Energy consumption of write accesses
for direct mapped caches

Energy consumption of write accesses
for direct mapped caches

PCache Total,

ReqRead Writebacks w×+ 
  ECache RR,× ReqWrite Miss w×+ 

  ECache RW,×+

Cycletime c× ycles
---∝

(EQ 5.38)

Energy consumption in caches86

For a total cache size ofM-bytes, each ofN-sets will containM/N bytes of storage; forl

lines in each set,b is given by:

and

The expressions for ECache,RR and ECache,RW thus become:

and

As was the case for the direct mapped cache in section5.2, the expressions are more

sensitive to changingls than to changing ‘M’. Figure5.10 shows how the energy

consumption increases for increasing ‘N’ and line size,‘ls’ . The graph also shows that the

expression for energy consumption is much more sensitive to ‘N’ than to ‘ls’. A similar

graph (and similar conclusion) can be drawn for ECache,RW.

TAG
Store

Set 0
l lines

w words =
b-bits

==

l lines

Mux

TAG
Store Set N-1

w words =
b-bits

==

l lines

Hit0
HitN-1

Figure 5.9 N-way set-associative cache

lineselect

lineselect

Output

ls bits ls bits

Hit 0 Hit N-1

l lines

WordSelect

Sense
Amps Amps

Sense

b S M
N
----- 

 
2

log–= (EQ 5.39)

M
N l s× l×

8bits/byte
------------------------= (EQ 5.40)

ECache R, R N
M

N l× s
-------------- 103+ 

  l s b+() 1268+× 
 ×∝ (EQ 5.41)

ECache RW, N ls 1202 b× 498 3.4 l s× 11.6 b×+ +()+
M

N l× s
--------------× 38181+ + 

 ×∝ (EQ 5.42)

87 Energy consumption in caches

This result, with that from section5.2, suggests that as the energy expressions are more

sensitive to increased line size and to increased associativity than to increased size of the

cache, a large, direct-mapped cache with short cache lines might be more desirable than

a smaller cache with some form of associativity.

5.4 Other cache organizations

Cache designs, such as the ones described above, associate a set of tag bits with each

cache line as shown in Figures5.6 and5.9. For an 8K-byte cache with 32-byte lines the

tags bits occupy approximately 7% of the total chip area taken by the cache, dependent on

the degree of associativity given a 32-bit address space:

The overhead decreases linearly with increasing line lengths. According to

Equations5.33 and5.36, this overhead translates into energy consumption. As the

number of bits in the address space increases so does the number of bits in the tag store.

For a 32-bit address space, the tag storage represents ‘only’ 7% of the area/energy

Figure 5.10 ECache,RR vs. degree of associativity for a 8K-byte cache

TotalLinesize Linesize Tagsize+= (EQ 5.43)

Energy consumption in caches88

consumptions of the cache. However, if a 64-bit address space is considered the tag store

would occupy 20% of the area of the cache and consume a significant proportion of total

energy consumed, see for example Equation 5.33.

Several techniques to reduce this overhead have been studied. Sectored caching [Seznec]

and Cache Address Tag (CAT-)caching [Wang] have proved to be most promising.

Both techniques exploit the spatial locality in data and instructions further than the

architectures described in sections5.2 - 5.3, where many of the tags stored will be

identical. Statistics collected with the HORN-architecture tools have shown that the

number of different tags present in a unified cache at any time during the execution of a

program is very low, see Table5.4. No benchmark had, at any time, more than 9 different

tags present in the cache and only in very few cases here there more than 8 different tags

present. There is thus great redundancy in the Tag storage; this can be exploited to reduce

a. Format: ‘x’ in column ‘y’ indicates that there were only ‘y’different tags in the
cache in ‘x’ percent of the cycles. 0.0 indicates that a there were ‘y’ different tags
present less than 0.05% of the cycles while ‘-’ means that there were never ‘y’ dif-
ferent tags.

Table 5.4 Tag distribution - 8K byte unified cache, Direct mapped, 256 lines

Benchmark

Number of different tags present in Cache at any timea

1 2 3 4 5 6 7 8 9 10

cacti 0.1 29.9 0.0 0.2 69.5 0.2 0.0 - - -

dhry 2.0 1.2 0.5 12.5 82.9 0.7 0.2 - - -

espresso 0.7 0.0 57.9 28.2 0.7 0.2 0.7 2.0 9.6 -

fft 0.0 9.7 2.4 82.9 2.4 2.4 0.1 - - -

flex 0.0 3.9 0.9 5.7 0.9 84.2 0.2 4.8 0.0 -

hello 1.3 0.8 93.2 0.6 4.1 - - - - -

stcompiler 1.1 0.9 13.0 23.5 20.5 18.2 22.5 0.3 - -

TagOverhead
8M 32

Bytes
Line
-------------- DM,,

Tagsize
TotalLinesize

32 81922log–

32 81922log– 32+ 8×
-- 6.9%= = =

89 Energy consumption in caches

the size, as well as the energy consumption, of the cache.

5.4.1 Sectored caching

The principle of sectored caching as described in [Seznec] is shown in Figure 5.11.

Instead of associating a tag with each line a tag is associated with a sector comprising a

number of lines, in this case 8. The larger the sectors the fewer tags and hence a smaller

tag-overhead. The results given in Table 5.4 show that the unified cache only ever

contains 9 different tags. A cache with 16 tags and hence 16 sectors will therefore be

sufficient to supply the need for tag store. In a cache with 256 lines it means that the tag

store can be reduced by 15/16 (93%) resulting in an overall reduction in storage of 6.5%

in a 32-bit address space. This reduction in storage will also imply a reduced energy

consumption per cache access. The saving increases with the number of bits in the address

space.

Although several sectors may hold the same tag, the scheme is not very flexible since the

number of lines per sector is defined at design time. This can lead to sectors which are not

fully used and therefore an under utilization of the cache. There is clearly a trade-off to be

made between fewer tags - and hence lower energy consumption per request - and more

tags, better utilization and higher hit-rate.

Tag0

Tag1

TagN

Sector0

Figure 5.11 Sectored cache

SectorN

Energy consumption in caches90

The architecture might also have another application in a low-power environment:

Section5.1 showed how the line size is a significant factor in the expression for energy

consumption of a cache. Keeping a short line size implies lower energy consumption per

access. However, shorter lines do normally imply a significant tag-overhead.

[Uhlig] described a technique where the N lines succeeding a line which missed are

fetched into the instruction cache following a miss. One of the results of the paper is

repeated in Table5.5. The table shows how reducing the line size and increasing the

number of lines prefetched increases the performance of the system: For example, a cache

with 16-byte lines which prefetches one line performs better than a cache with 32-byte

lines without any prefetch.

If a sector is considered as one long cacheline, many of the advantages of a cache with

long lines is maintained and the energy consumption of each request is reduced. The

results in Table5.5 suggest that fetching a sector, for example 4 short lines, would

perform as well or better than fetching one longer line. The tag overhead associated with

this is small (2 bits per line, 11% for a 8K direct mapped cache) but would involve a lower

energy consumption (energy consumption scales with the line size).

a. 8K direct mapped instruction cache

b. “-” denote points which are either not reasonable, or that
shows an increase in CPI

Table 5.5 ∆CPI versus line size and prefetch distance[Uhlig]

Number of
lines

prefetched
(N)

Line sizea [bytes] (M)

16 32 64

0 0.439 0.335 0.297

1 0.305 0.271 -b

2 0.270 - -

3 0.260 - -

91 Energy consumption in caches

5.4.2 Cache Address Tag-caching

To decouple the storage of the full tag field from its associated data items Cache Address

Tag (CAT-)caching [Wang] has been proposed. The principle of CAT-caching is shown

in Figure 5.12.

This avoids some of the limitations of the sectored cache architecture described above. In

the CAT-cache there is no fixed allocation of tag-bits to individual cachelines. A

cacheline links itself to a tag-value in the CAT-cache with a pointer, Ptr in Figure 5.12.

There can be a variable number of cachelines associated with each tag in the CAT-cache.

There is an overhead associated with the CAT-cache in that storage is required for the

pointer, Ptr. However, as the results in section 5.4 showed, the number of tags which need

to be stored is very low and consequently l2 should be small and the size of the pointer

correspondingly small. The total amount of storage and thereby the energy consumption

of the CAT-cache is therefore smaller than in any of the architectures explored above.

This advantage increases with the number of bits in the address space, S. The amount of

storage in a set-associative cache increases significantly when S increases from 32 bits to,

‘w’-words

CAT-Cache
Ptr Cache Lines

Tag

Figure 5.12 CAT-cache

‘l’-lines‘l 2’-lines

Energy consumption in caches92

for example, 64 bits. In a CAT-cache this need not be the case. If l2 is as low as indicated

then the size of the CAT-cache is only a fraction of the size of the Data Storage:

Consider an 8K-byte, direct mapped, unified cache, with 32-byte cache lines. The

simulation results from Table5.4 indicated that a nine-line CAT-cache would be

sufficient (l2=9). In a 32-bit system, the size of the CAT-cache would be ~0.3% of the size

of the data storage; add to this a 4-bit pointer on every cacheline and the total overhead,

, is 1.8%. In a 64-bit system the overhead would be 2.3%. These

figures should be compared against the storage overhead in a conventional direct mapped

cache: 7.4% in the 32-bit environment and 20% in a 64-bit environment. These are

significant reductions, which clearly will affect the energy consumption of the cache.

The advantage improves with the number of lines in the cache. Shorter lines will therefore

gain most from CAT-caching. Equation 5.15 on page 76 shows that energy consumption

in RAM is very sensitive to the line size. The CAT-cache is therefore a powerful and

energy efficient architecture.

The architecture might appear to provide a slow cycle time due to the sequential nature of

the look-up. Firstly a direct-addressed lookup in the data area where a pointer is fetched

and secondly a lookup in the CAT-cache from which the tag is extracted.

If the CAT-cache is implemented as a Content Addressable Memory (CAM), the lookup

in the CAM can be done in parallel with the access to the data area, and the encoded

position of the matched tag from the CAM storage can be compared with the pointer from

the data area. However, a CAM cell consumes considerably more power that an ordinary

RAM cell used in the set-associative cache, see Chapter 2.

TotalSize SizeOfData–
TotalSize

--

93 Energy consumption in caches

The value of the CAT cache therefore depends on the ratio between the energy

consumption in a CAM cell and that in a normal RAM-cell and the relative size of tag-

storage in the two systems.

The figures quoted in Chapter 2, indicate that a block of 64 x 22 CAM cells consume

100mW while a 1024 x 32 RAM block consume 332mW; i.e. an energy consumption

ratio per cell of 5:1. Given that the required number of entries in the CAT-cache is much

smaller than the number of lines in the cache, the CAT-cache architecture may be an

energy efficient alternative to a conventional cache, depending on the number of

cachelines.

Maintaining a CAT-cache is complicated, especially if the there is an insufficient number

of entries in the CAT-cache and multiple dirty lines have to be identified and written back

to the main memory. The performance implications of a miss in a CAT-cache have

therefore not been investigated here. Further assessment of the CAT-cache is

recommended as a fruitful area for future research.

5.5 Skewed-associativity

Cache performance is normally optimized by adjusting parameters such as size, line size

and degree of associativity. The size and the line size are normally chosen relatively

freely, within the constraints of the total chip area available, while the degree of

associativity is often limited by other constraints: the designer may choose a direct-

mapped or a 2-way set-associative cache configuration because it is fast and not very

power consuming, or a fully associative cache because it will yield the best hit-rate.

Unfortunately, a fully associative cache is significantly slower than a 2-way set-

associative cache and typically will be more power consuming. This makes it desirable to

use a lower degree of associativity and to find other ways of improving the hit rate.

Energy consumption in caches94

Figure 5.13 shows the principles of set- and skewed-associativity [Seznec], [Bodin],

[Hilditch]. In the set-associative cache, a given address will be checked against the same

line in each set, while in the skewed associative approach the two skewing functions,Phi0

andPhi1, skew the line numbers so that, for a given address, different lines are accessed

in each set. As a consequence of the skewing, two addresses that map to the same line in

‘Set 0’ may not both map to the same line in ‘Set 1’.

Skewed associativity distributes the usage of the cache lines in a set-associative cache

using different line mapping functions. As section5.3 showed that energy consumption

increases significantly with the number of sets in the cache, the degree of associativity

should be kept low. Consequently, only 2-way skewed-associativity is discussed here

although, in general, a N-way skewed-associative cache can be built.

Consider a cache referencing address, A. When accessing a conventional direct-mapped

or set-associative cache, the bits in A are divided up into three fields, A1(MSB), A2 and

A3 (LSB), where A2 is used to select the lines in the sets, A1 is the tag, and A3 is the byte

offset within the line.

In a skewed associative cache A1 is split into two parts, A11 and A12, where A12 contains

the same number of bits as the A2 part, used to select lines. The skewing functions,Phi0

Set 0 Set 1 Set 0

= = ==

Address

Tagbits

Lineselect

Tag Tag
Tag Tag

Phi1

Tagbits

Lineselect

Address

Set-associative Skewed-associative

Figure 5.13 2-way set- and skewed-associative caches

Hit Hit
Hit Hit

Phi0

95 Energy consumption in caches

andPhi1, are applied to, A12 and A2, to form new, different, line numbers in the different

sets. Figure5.14. shows how the address bits are divided and how the skewing functions

can be implemented using xor-gates.

A simple class of skewing functions, which has been investigated with the aim of

minimizing the delay overhead can be employed if the following criterion is met [Seznec]:

where• signifies bit-wise ‘and’. This criterion will ensure that bit ‘n’ in A2 and A12 will

only be loaded with the input ofone xor-gate each implying minimum effect on the cycle

time of the structure

If the skewing functions employed have inverse functions it is possible to regenerate the

original, physical address when the cache line is written back to memory; in this case the

tag incorporated in the cache line is the same as in a conventional set-associative cache.

If the original address cannot be regenerated, the tag field needs to be extended to contain

both the A1 and A2 parts of the referencing address as for a fully associative cache.

To minimize the delay and the power consumption of the cache it is desirable to keep the

number of tag-bits as low as possible, hence skewing functions which can be reversed

should be chosen.

Tag[t:0] Offset

Figure 5.14 Different mapping functions in different sets

xor xor xor

Line[n:0]

xor

n+1 bits n+1 bits

Line in set0Line in set1

A11 A12 A2 A3

Phi1Phi0

Phi0 address() Phi1 address()• 0= (EQ 5.44)

Energy consumption in caches96

Skewed-associativity has an effect equivalent to doubling the ‘conventional’ degree of

associativity, so that a 2-way skewed-associative cache performs as well as a 4-way set-

associative cache [Seznec], for a small overhead in terms of timing. If only simple

skewing functions are considered, the energy consumption of an N-way skewed-

associative cache is estimated to be the same as the corresponding N-way set-associative

configuration. However, as the hit rate is expected to be higher in a skewed-associative

than in a set-associative cache, it is considered more energy efficient.

5.5.1 Choosing a set of skewing functions

The number of possible skewing functions for an N-way set-associative cache is high.

Here the investigations will be limited to the use of skewing functions built using xor-

gates as illustrated in Figure5.14. This class of skewing functions is simple to handle as

it is monadic, and it is therefore simple both to compute the line numbers in the sets in the

skewed-associative cache and to regenerate the memory address if the cache line needs to

be written back to memory.

Furthermore, to limit the load on each bit in the address paths, each bit in the line field

(A2 in the description above) should be loaded with one xor-gate only; this will minimize

the timing overhead. Work has shown that although some improvement in cache

performance can be obtained by tuning the skewing function for a specific program, the

improvement obtained from skewing is largely independent of the skewing function, for

the class of skewing functions considered, over the range of benchmarks described in

Chapter 4.

5.6 Replacement algorithms

A number of replacement algorithms exist for set-/fully-associative cache configurations.

The most accepted ones are the Random and LRU1 [Patt] algorithms, where the LRU

97 Energy consumption in caches

algorithm in general produces the best results. A ‘random’ replacement policy is easy to

implement and requires a minimum of extra hardware whereas a LRU algorithm requires

information for each line regarding the least recently accessed set. This state is very small,

one bit, when targeting a 2-way set-associative cache. For 4-way set-associative

configurations the state can be incorporated into 4 bits [Thakker]. For higher degrees of

associativity the complexity of the LRU algorithm increases rapidly and it is not feasible

to use LRU for higher degrees of associativity. In the case of the 2-way set-associative

cache, the timing overhead for manipulating this ‘state’-information is minimal.

For a skewed-associative cache the relation between the lines and the sets is not as simple

as for the set-associative cache. One address might map to line ‘L1’ in set0 and to ‘L2’ in

set1 while another address also maps to line ‘L1’ in set0 but maps to line ‘L3’ in set1.

To implement a LRU-replacement algorithm it is therefore not enough to compare the

access-pattern between ‘number of sets’-lines. Choosing between the lines selected by a

given address is effectively as ‘bad’ as choosing randomly. For the two-way skewed-

associative caches, however, a replacement policy which has many of the properties of

the LRU-replacement algorithm has been proposed [Seznec]:

“An extra bit is associated with each line in set0. This extra bit is asserted when the

requested word is in set0 and de-asserted when the data is in set1.”

“On a miss, the extra bit of the line selected in set0 is read: when this tag is 1, the

missing line is written in set1, otherwise the missing line is written in set0.”

This replacement algorithm will be referred to as Pseudo-LRU. Note it has the same

hardware requirement as the LRU algorithm in a set-associative configuration. As

1. Least Recently Used

Energy consumption in caches98

Table5.6 shows, the pseudo-LRU replacement algorithm yields a performance better

than the Random replacement algorithm; but not as good as that given by true LRU.

However, the table shows how a 2-wayskewed-associative cache with the pseudo-LRU

replacement algorithm performs better than a 2-wayset-associative with the true LRU

replacement algorithm.

5.7 Cache timing

The effect of the cache configuration on the access- and cycle-time of a cache was

investigated using the ‘cacti’ [Wilton]; a cache evaluation package developed by Digital

Equipment Coporation1. This section will describe how the different cache parameters

such as size, line size and associativity affect the timing of the cache.

Figure 5.15 shows how the cache cycle timedecreases for increasing line size and how

the cycle time of a cache increases for increasing cache size and increasing degree of

associativity. This is in line with the relationship explained in section5.1. The bit lines

in the cache have relatively poor driving characteristics compared to the word lines (see

a. Simulated by attaching a 32-bit timestamp to each line.

1. Cacti has also been ported to the HORN-architecture and is used in the investigations as an ap-
plication benchmark.

Table 5.6 Performance of replacement algorithms

Replacement
Algorithm

Hit Rate in 4K-byte unified, 2-wayskewed-associative cache
with 32-byte cache lines

cacti dhry espresso fft flex hello stcompiler

Random 97.6 96.7 97.4 98.8 97.3 93.7 94.7

Pseudo-LRU 97.9 98.1 97.6 99.0 97.3 93.6 95.0

LRUa 98.1 98.3 97.8 99.1 97.5 94.4 95.3

Hit Rate in 4K-byte unified, 2-wayset-associative cache
with 32-byte cache line

LRU 97.6 96.7 97.2 98.6 96.1 92.6 94.4

99 Energy consumption in caches

Figure 5.5 on page 81) and a reduction in the number of cache lines does therefore

improve the cycle time of the cache.

Increasing the associativity is expected to increase the cycle time although the accesses to

the individual sets becomes faster as the size of each set is reduced. Figure 5.16 shows

how the cycle time of the cache increases for increasing associativity:

In a direct-mapped cache, the lookup in the data memory and the setup of the output

multiplexer can be done in parallel with the tag comparisons. The requested word can

therefore be at the output of the cache at the same time as the hit/miss-signal. For a set-

associative cache this is not possible as the hit/miss signal from the tag comparisons is

required before the output multiplexers can be set up correctly. This explains the very

steep increase in cycle time going from a direct mapped cache to a 2-way set-associative

configuration, see Figure 5.16. The increase in cycle time observed for higher degree of

Figure 5.15 Cache cycle time versus cache size and organization

Energy consumption in caches100

associativity is partly due to extra internal routing and partly due to the increase in the

complexity of the output multiplexer.

From Figure5.15 and Figure5.16, it can be seen that long cache lines have little effect

on the cycle time for a constant cache size. In general, a small cache with low degree of

associativity, will yield the shortest cycle time.

5.8 Block buffering

It has been suggested, [Hill], [Su], [Bunda], [Okada] that the introduction of a buffer on

the output of the cache, as shown in Figure5.17, will reduce the number of accesses to

the energy consuming memory blocks. The requesting address will be checked against a

‘Tag Buffer’ holding the tag for the data in the Data buffer and hence determine whether

the requested word is in the ‘Data Buffer’. If the contents of the Tag Buffer matches the

requesting address, the word will be fetched from the buffer and the rest of the cache will

not be activated.

Figure 5.16 Cache cycle time versus associativity

101 Energy consumption in caches

Effectively the Data Buffer forms a small fully-associative level-0 cache, but as the

energy consumption of the cache scales with the dimensions of the cache there is a

considerable energy-saving associated with the introduction of a small level-0 cache as

the cost of fetching a word from the buffer is smaller than that associated with fetching a

word from the Data Memory. It follows - within limits [Bunda] - that the longer the

cacheline, and hence the longer the data buffer, the bigger the saving.

The R4300i architecture has a small, two-instruction, block buffer on the instruction

cache in order to reduce the number of references to the cache itself thus reducing the

energy consumption of the cache [R4300i].

The block buffer ‘cache’ should be of type ‘write through’ to the main cache to avoid the

necessity to implement a coherency protocol, which might be complex and could decrease

the performance. It is important that the Tag Buffer contains all information that would

normally be in the tag of a fully associative cache, i.e all the bits of the address except the

offset-bits, see Figure5.17.

Tag Buffer Data Buffer

MUXValid & Match

Tag Index Offset

Tag Memory Data Memory

Hit/Miss Data

Figure 5.17 Block Buffering

Line size

N
b

of
 li

ne
s

Energy consumption in caches102

Let ‘N1’ signify the number of accesses served by the memory blocks and ‘N2’ the

number of accesses served by the Buffers.EBufAccess/EMemAccess is the ratio of energy

consumption for an access to the Buffers and an access to the Memory Blocks of the

cache. The reduction in energy consumption can therefore be expressed as:

Note that N1+N2 is greater than the total number of accesses as write operations, which

‘hit’ in the block buffer, will both count towards N1 and N2 due to the write through

approach. The system is not in the same way a ‘read-through’ system in that a read from

the cache only counts towards N1.

The precise value of is difficult to determine without implementing the

architecture. However it should be clear that the ratio is much less than 1.0. A first order

approximation is that the ratio scales with the number of lines in the caches. This is an

optimistic assumption as the line size is an important factor in the expression for energy

consumption, especially for caches with few lines, see Equation 5.15. However, if the

block buffer is simply implemented as a latch-register there is almost no energy

consumption associated with fetching a word for the block buffer. The rest of this thesis

approximates the ratio with:

Table5.7 shows the reduction in accesses to the Data and Tag memory blocks and the

corresponding reduction in energy consumption if block buffers are introduced in both

instruction and data caches.

Reduction 1.00

N1
EBufAccess

EMemAccess
----------------------------- N2×+

N1 N2+()
--–=

(EQ 5.45)

EBufAccess

EMemAccess

EBufAccess

EMemAccess
----------------------------- 1

NbOfSets N× bOfLinesPerSet
--= (EQ 5.46)

103 Energy consumption in caches

The table shows how the reduction in cache accesses and hence in energy consumption

increase with the line size in the caches. Both the instruction and the data caches were

4K byte, 2-way set-associative. There is a significant reduction when increasing the line

size from 4 words/16 bytes to 8 words/32 bytes while the reduction is smaller when the

line size is increased further to 16 words/64 bytes. It should be observed that the reduction

in traffic is greater in the instruction cache (IC) than in the data cache (DC). There are two

results for memory access reduction for the data caches. The principal result indicates the

percentage of read requests served by the buffer, while the result in parentheses indicates

the percentage of all accesses served (read or write) which could be served only by the

buffer. The results indicate that there is a high degree of spatial locality in the data as well

as in the instructions, consequently there is a significant reduction in energy consumption

if block buffers are added to a cache design.

If an instruction-only block buffer was built into the (unified) cache in an ARM processor,

(16-bytes, 4-words, cache lines,) mentioned in Chapter 2 the power consumption could be

reduced considerably as follows:

Table 5.7 Effect of Block Buffering on cache traffic and energy consumption

Line size: 16 bytes Line size: 32 bytes Line size: 64 bytes

Reduction
in Data- and
Tag Memory

accesses
[%]

Reduction
in energy
consumpt.

[%]

Reduction
in Data- and
Tag Memory

accesses
[%]

Reduction
in energy
consumpt.

[%]

Reduction
in Data- and
Tag Memory

accesses
[%]

Reduction
in energy
consumpt.

[%]

cacti DC 22.6 (40.6) 22.5 27.4 (50.4) 27.0 32.4 (57.3) 31.5

IC 59.0 58.8 66.5 66.0 67.1 66.1

dhry DC 14.7 (28.2) 14.6 19.3 (35.8) 19.0 22.3 (38.4) 21.7

IC 64.1 63.9 73.6 73.0 77.0 75.8

espresso DC 13.5 (23.7) 13.4 16.7 (28.5) 16.4 14.1 (23.4) 13.7

IC 61.6 61.4 70.2 69.6 71.8 70.7

hello DC 14.6 (29.4) 14.4 19.8 (40.4) 19.5 21.4 (42.2) 20.7

IC 48.6 48.4 50.1 49.7 47.7 46.9

Average DC 16.4 16.2 20.8 20.5 22.6 21.9

IC 58.3 58.1 65.1 64.6 65.9 64.9

Energy consumption in caches104

Consider an average benchmark where the ratio between accesses to the data and

instruction cache is 1:4 the reduction in power consumption is:

Block buffering can also improve processor performance considerably [Su]. The cache(s)

will often be on the critical path in the implementation of a pipelined architecture. The

block buffer provides faster access to instructions and data than if the cache itself needs

to be accessed. The rest of the pipeline can therefore be designed to match or exploit the

cycle time of the block buffers and take a small penalty when the request needs to access

the Data and Tag Memories.

As an integrated part of the cache structure the block buffer is expected to have a minimal

effect on the cache cycle time: The cache cycle time increases proportionally with the

number of lines in the cache [Wilton] and introducing the block buffer1 might therefore

increase the cycle time by as little as than 0.4% for a cache with 256 lines.

5.9 Fetch and Write Back buffers

The results presented in Table 5.7 showed that the number of references to the caches

could be reduced considerably by the introduction of a block buffer. A significant

proportion of the remaining cache accesses are related to fetching - and in the data cache

writing back - cache lines. Lines are normally fetched and written back word-by-word i.e.

words are written into the cache storage as they arrive from memory. Alternatively the

1. This effectively increases the number of lines in the cache by one. However it depends strongly
on the implementation strategy

Reduction 1

1
5

4
5
--- 1 AccessReducIcache–()×+ 

  PUniCache PProc+×

PUnicache P+
Proc

--–=
(EQ 5.47)

Reduction 1

1
5

4
5
--- 1 0.583–()×+ 

  432mW× 693+ mW

432mW 693mW+
---– 17.8%= = (EQ 5.48)

105 Energy consumption in caches

words arriving from memory can be collected in a ‘Fetch Buffer’ and only when all the

words for a cache line have arrived will the contents of the buffer be written into the cache

memory. Similarly, if a cache line is to be written back to memory, the cache line is

fetched into a ‘Write Back Buffer’ from where the individual words are written back to

memory. This reduces the number of accesses to the energy consuming cache further.

Figure 5.18 shows how these two buffers can be integrated into a cache with a block

buffer. The numbers in parentheses explain the sequence of operations following a cache

miss:

(1) Following a cache miss the victim line in the cache is - if dirty - copied

into the Write Back Buffer.

(2) The words for the new cache line arrive from external memory at a rate

of one word per cycle. They are temporarily stored in the Fetch Buffer.

Figure 5.18 Cache with three block buffers

Write Back Buffer

Fetch Buffer

Block Buffer

N-words

N-words

N-words

1 word 1 word

1 word

(1)

(2)

(3)

Rest of the Pipeline External Memory

(4) (4)

(3)

Cache with N-word
lines

Energy consumption in caches106

(3) When all N words have arrived from the external memory, the entire

line is written into the cache and into the block buffer.

(4) The execution pipeline is served from the block buffer and the data

Write Back Buffer is written back to memory simultaneously.

The Write Back Buffer should be only one ‘element’ deep and should block the rest of the

pipeline if a cache miss occurs before it has written all the N-words it contains back to

memory. Thus read-after-write hazards are avoided, and no detection circuit is required.

5.10 Gray-coding fetches/writebacks

Gray-coding [Kohavi] is a set of monadic encoding functions which map N numbers in

such a way that Gray-code representation of ‘X’ and ‘(X+1)moduloN’ differs by exactly

one bit. Table5.8 shows an example of a Gray-encoding of the numbers from 0 to 7. Note

also the single bit-transition between the representations of ‘7’ and ‘0’.

For energy efficient designs this encoding can be used to minimize transitions on the

address and data buses [Su]. It would, however, require compiler knowledge of the use of

Gray coding within the processor. In this thesis only schemes which are invisible to the

program execution, i.e. schemes which do not require re-compilation, are considered.

Table 5.8 Gray-coding

Decimal
Representation

Binary
Representation

Gray code
Representation

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

107 Energy consumption in caches

Gray-coding has therefore been employed only when fetching/writing-back data between

the cache(s) and the main memory and only on the address bus. Words in the cache line

will then be fetched/written back in a Gray code order rather than in the conventional

sequence. This reduces the number of bit-transitions on the address bus by up to 43% for

an 8-word/32-byte cache line. Note that the number of transitions on the address bus will

be independent of choice of word to be fetched first; this is not the case if words are

fetched sequentially. The reduction in bit-transitions on the address bus increases with the

line size, even though the increase is very small for cache lines longer than 8 words per

line, see Figure 5.19.

By counting the number of bit transitions on the address and data buses, a precise measure

can be obtained of the value of fetching/writing back words from cache lines in a Gray-

code order. The bit-transitions have been counted on a HORN-processor system with an

8K byte direct mapped, unified cache with 32-byte (8-word) cache lines. Table 5.9 shows

the saving in bit-transitions due to fetching and writing back cache lines in Gray-code

order instead of a conventional binary sequential order. Note that for all benchmarks there

is a considerable reduction in the number of transitions on the address bus and that the

Figure 5.19 Reduction in bit-transitions on the address bus from Gray-coding

Energy consumption in caches108

number of transitions on the data bus is affected minimally by the Gray-coding of the

address bus. The large number of transitions on the data bus masks the reductions in

transitions on the address bus, thus reducing the overall effect of the Gray-coding.

Comparing these results to those published elsewhere [Su], it can be observed that while

the reduction obtained on the address bus is comparable, ~33%, the reduction on the data

bus, < 3% see Table5.9, is much less than the 12% reduction quoted in [Su]. The overall

saving is therefore ‘only’ 10.1%. The difference is difficult to explain, but the high

savings reported in [Su] might be a result of careful opcode and register allocation and

data-layout.

Applying this result to the measurements1 of the ARM processor (Chapter 2) for which

10.2% of the power consumption of the processor is consumed in the I/O-drivers and

pads, suggests that the reduction in bit-transitions is equivalent to 1% of the power budget

of an ARM3. This is not a significant reduction but it should be noted that this reduction

in switching activity on the I/O interface is likely to migrate to the external memory

system. It is not feasible to quantify this saving, however, due to lack of detailed power

information on memory chips. To quantify the saving in the memory a break-down of the

1. PLA structures omitted

Table 5.9 Effect of Gray-coding in a 8Kbyte unified cache with 32-byte lines

Benchmark

No of line
fetches and
writebacks

Bit trans. on address bus Bit trans. on data bus
Reduction

[%]Sequential Gray code Sequential Gray code

cacti 301,974 5,804,045 3,922,835 28,530,786 28,578,966 5.6

dhry 17,970 347,041 239,239 1,652,856 1,601,969 7.9

espresso 199,134 4,525,583 3,190,439 15,558,612 14,793,959 10.5

fft 30,005 633,333 453,279 2,875,630 2,370,673 19.5

flex 580,473 15,278,341 10,863,805 44,159,598 42,696,315 9.9

hello 5,261 139,460 99,362 470,477 463,459 7.7

stcompiler 131,658 3,076,063 2,158,687 11,154,112 10,833,464 9.5

Average Reduction: 10.1

109 Energy consumption in caches

total power consumption is required indicating the current drawn by the I/O drivers. This

information is not available in the memory chips studied [Hitachi].

5.11 Selective writeback

The write back of dirty cache lines represents a significant proportion of the I/O traffic as

shown in Table5.10. However, not all words in a cache line which are written back to

memory are altered or ‘dirty’. Therefore, if a ‘dirty’ bit is allocated for each word in a

cache line instead of one for the whole line, the number of memory accesses can be

reduced. Table5.11 shows the distribution of ‘dirty’ words in the cache lines before they

were written back to memory following a miss. It shows that 94% of all lines to be written

back to memory contain 7 or 8 dirty words, indicating that most words in ‘dirty’ lines need

to be written back.

Let ‘n’ denote the number of dirty words in a cache line. The total reduction in writeback

due to selective writeback can be calculated as:

a. Cache parameters: 8Kb Uni-
fied, 32-byte/line, Direct Mapped

Table 5.10 Writeback proportion of total I/Oa

Benchmark

cacti 3.68

dhry 4.16

espresso 10.5

fft 28.6

flex 21.1

hello 21.2

stcompiler 13.9

Average 14.7

Writeback
TotalIO

--------------------------- 100× %

Reduction 8 n–() P n()×
n 1=

8

∑= (EQ 5.49)

Energy consumption in caches110

i.e only 1.7%, based on the ‘average’ numbers in Table5.11.

Adding the extra dirty bits, increases the size of the lines in the cache by:

or 2.7% for a 32-byte cache line (8 words). Given that the energy consumption of the

cache is dominated by the line size as shown in section5.1, the energy consumption of a

cache request increases. Given that the cache consumes approximately 50% of the power

in the processor, see Chapter 2, and the I/O only 11%, the reduction in I/O traffic is not

sufficient for the scheme to be energy efficient. The energy efficiency of a conventional

‘one-dirty-bit-per-line’ policy is better than the selective writeback scheme proposed

above.

5.12 Summary

This chapter has shown where, within a RAM block, energy is consumed. The energy

consumption in conventional RAM blocks, such as those designed by a RAM-compiler,

a. In a 8K byte, direct mapped data cache with 32-byte (8-words) cache lines

Table 5.11 Frequency of ‘dirty’ words per cache line

Benchmark

Number of dirty words per linea

1 2 3 4 5 6 7 8

cacti 0.4 0.2 0.2 13.4 0.1 0.1 0.1 85.4

dhry 6.2 4.9 2.5 7.4 1.5 1.2 1.9 74.4

espresso 0.2 0.1 0.1 0.6 0.2 0.2 0.8 97.9

fft 0.5 0.4 0.1 0.6 0.1 0.1 16.1 82.2

flex 0.1 0.1 0.1 0.4 0.1 0.1 0.2 98.9

hello 5.9 1.8 1.8 5.9 0.5 0.9 1.4 82.0

stcompiler 0.3 0.2 0.3 0.4 0.1 0.2 0.3 98.1

Average 1.9 1.1 0.7 4.1 0.4 0.4 5.9 88.4

Increase
WordsPerLine 1–
32 WordsPerLine×
--- 100%× 1

32
------ 1

ls
----– 

  100%×= =
(EQ 5.50)

111 Energy consumption in caches

is dominated by the sense amplifiers. The sense amplifiers not only consume significant

energy when active, they also have a static power dissipation which cannot be neglected.

A sense amplifier circuit, proposed by [Burd2] has been introduced and analysed, it has

no static power dissipation and a small dynamic energy consumption. The rest of the

simulations therefore assume that the static power consumption could be eliminated or

reduced to a level which could be ignored. Section 5.1.2 described how the energy

consumption of both the precharge circuit, RAM-storage and the sense amplifiers could

be reduced considerably by pre-charging the bit lines in the storage to an intermediate

voltage only.

Based on these observations a number of cache organizations have been investigated and

expressions for the energy consumption of each has been derived. For all organizations

examined, the line size in the cache data memory is the major factor in the energy

expressions. However, as the address space increases, so does the size and importance of

the energy consumption of the tag-storage and hence the significance of the cache

organization. Sections 5.4.1 and 5.4.2 presented two organizations, sectored caching and

CAT-caching, whose energy consumptions are less sensitive to the number of bits in the

address spaces.

Timing simulations were presented in section 5.7. These showed that the cache cycle

time increases with size and associativity. The conclusion is therefore to incorporate a

cache which is as small as possible to yield the performance required with a low degree

of associativity. A way of improving the performance of a set-associative cache without

affecting the energy consumption and the timing, skewed-associativity, was presented in

section 5.5.

Energy consumption in caches112

Gray-coding external memory accesses and the use of selective writeback were discussed

in sections5.10 and5.11 as ways of reducing bit-transitions on the external buses. Gray-

coding, was found to have a small beneficial effect on the number of transitions on

external buses; selective writeback reduces the amount of I/O traffic slightly but increases

the size of the Data Memory, and hence its power consumption, due to the extra dirty bits.

The most efficient way of reducing the cache energy consumption was by the introduction

of block buffering, as described in section5.8. This proposed the fetching of the ‘current’

cache line into a buffer, effectively a level-0 cache, thus reducing the number of accesses

to the Tag and Data memories themselves, (see Figure5.17 on page101). This

architecture is expected to reduce the power consumption of the caches by between 16%

and 65% dependent on the exact cache configurations; this is equivalent to between 7%

and 19% of the total power dissipation if incorporated into an ARM-processor

[OMIMAP]. This buffer architecture will be explored further in Chapter 8 and Chapter 9.

113 Dual instruction branch

Chapter 6 Dual instruction branch

The HORN architecture specifies a two-instruction control-transfer structure, see Chapter

3. It comprises a go-class instruction, specifying the target for the control transfer, and a

leap-class instruction, possibly specifying a condition and a leap-shadow; the leap shadow

indicates the place for the control transfer to take place, see Figure6.1.

This chapter will examine how such a control transfer instruction (CTI) architecture

affects the execution time for a benchmark and the energy efficiency, EE, of the

processor.

All the investigations and the results described in this chapter form part of the author’s

research.

The compilers, which have been available throughout the project, have never generated

code which specified any leap-shadow. This work has consequently not investigated the

impact of a variable size leap-shadow on performance and energy efficiency.

6.1 Improving hit-rate through dual instruction branches

The total number of instructions in a program with this type of CTI-structure is greater

than in conventional CTI architectures, such as the ones found in the MIPS and SPARC

architectures [Farquhar][Weaver]. This increase in ‘number of instructions to be

Figure 6.1 Go-leap structure

.....
go target
.....
.....
leapZ Rx,shadow
.....
.....

target:

{leap shadow PC will be overwritten after
this instruction if condition
is met

Condition

Dual instruction branch114

executed’ needs to yield a corresponding reduction in CPI for the structure to be

performance efficient.

For example, the dhrystone benchmark executes 686,646 instructions including 98,763

two-instruction CTIs. However, if a conventional branch architecture had been employed

there would only have been

instructions to execute. In other words; the two-instruction CTI architecture increases the

number of instructions to be executed by 14%.

For this to be performance efficient, the execution time needs to be reduced by 14%

through improvements in instruction cache hit-rate due to prefetching of the branch

targets into the instruction cache, and reduced or eliminated branch penalties.

Due to the increased cache and I/O traffic and hence increased energy consumption in

both the cache and the I/O systems, the reduction in execution time needs to be even more

significant for the architecture to be energy efficient.

6.1.1 Effect on effective hit-rate

One of the underlying ideas behind the two-part CTI is that a go-instruction will have

ensured that the target for a branch is already in the instruction cache when the branch is

taken after the leap shadow. Compared with a conventional, single-instruction branch, the

go-instruction ensures that the instruction stream achieves a higher hit-rate or, in the worst

case, a reduced cache-miss penalty after branches. Table6.1 shows the effective hit-rate

as seen by the instruction streamfor a number of benchmarks with a number of cache

configurations. The first column of each cache size denoted ‘No-prefetch’ shows the hit-

rate in the instruction cache if the effect of the ‘go’-instruction is ignored i.e. no prefetch

686 646, 98 763,– 587 883,=

115 Dual instruction branch

is initiated. It is an approximation to the hit-rate that could be expected with a branch

architecture like that in the SPARC architecture [Weaver].

The second column shows the effective hit-rate that can be expected in an implementation

of the HORN architecture. It is assumed that the potential prefetch initiated by the go-

instruction is transparent to the rest of the program execution and that the prefetch will

have completed before the branch is taken.

From a hit-rate perspective the table shows that there is a significant advantage in

introducing the two-part CTI especially for small caches (less than 8K bytes). For larger

caches the gain is reduced. Furthermore, there is a clear advantage for small benchmarks,

such as hello and dhrystone where the spatial locality is low and where compulsory misses

[Patt] dominate.

6.1.2 Performance measurements

The performance of the two-part CTI has been assessed through a large number of

simulations of the all the benchmarks in the suite, see Chapter 4. This thesis will only

report on the results from two of the benchmarks, dhrystone and espresso. The dhrystone

Table 6.1 Effect of prefetching on hit-rate in instruction cache

1K bytes
32 bytes/line

Direct mapped

2K bytes
32 bytes/line

Direct mapped

4K bytes
32 bytes/line

Direct mapped

8K bytes
32 bytes/line

Direct mapped

Eff. Hit Rate
[%]

Eff. Hit Rate
[%]

Eff. Hit Rate
[%]

Eff. Hit Rate
[%]

Benchmark
No

prefetch Prefetch
No

prefetch Prefetch
No

prefetch Prefetch
No

prefetch Prefetch

cacti 91.9 95.2 93.9 96.3 95.2 97.0 98.3 98.8

dhrystone 91.4 96.4 93.2 97.2 94.0 97.3 98.4 99.3

espresso 95.4 98.1 96.6 96.6 97.7 99.0 98.9 99.5

flex 91.4 96.3 93.7 97.6 97.8 99.2 99.2 99.7

hello 85.4 95.0 88.7 95.8 90.7 96.7 95.6 98.2

stcompiler 90.2 97.0 92.9 96.3 93.9 98.3 95.7 99.0

Dual instruction branch116

benchmark has been chosen because it clearly shows how the value of the two-part CTI

is reduced as the cache size increases; while espresso has been chosen because the results

from this benchmark are typical for the rest of the benchmark suite. Table6.2 and

Table6.3 show two sets of figures for each benchmark:

1. A column denoted ‘no-Prefetch’. This set of simulations have ignored the go-class

instruction completely and have counted them neither towards the number of

instructions nor towards the execution time. This is an approximation to the

execution time on a system with a conventional branch architecture as used in MIPS

and SPARC.

2. The column denoted ‘Prefetch’ shows the results of simulations including the go-

instructions, which count both towards the total number of instructions executed and

the execution time. It is assumed that a go-instruction will have been placed early

enough in the program execution that it will have prefetched the target before the

branch is taken thus eliminating stalls in the instruction flow. This assumption is

clearly very optimistic, especially for the longer memory latency. Furthermore the

column shows, in parentheses, the percentage reduction in cycle count compared

with the number in the ‘no-Prefetch’ column.

Simulations have been carried out for two memory latencies, 5 and 10 cycles. These

approximate to the latencies that can be expected for systems built with either (fast) static

RAM or (slower) dynamic RAM. The memory model assumes that memory banks are

interleaved so that, after the initial latency of 5 or 10 cycles, the remaining words in the

cache line will be filled at a rate of one word per cycle.

The results show that longer cache lines generally perform better and that prefetching

reduces the execution time significantly, by more than 10% for small caches (less than 8K

117 Dual instruction branch

bytes). For the largest configurations, the cycle count increases due to the increased

number of instructions in the ‘prefetch’-versions and the fact that prefetching does not

have any significant effect on the hit-rate for those configurations, see section6.1.1.

The same set of simulations has been carried out on a significantly larger benchmark,

espresso. The results are shown in Table6.3.

a. cycles divided by 1,000,000

b. 100% hit-rate in the data cache is assumed.

c. Only direct mapped caches have been examined.

a. cycles divided by 1,000,000

b. 100% hit-rate in the data cache is assumed.

c. Only direct mapped caches have been examined.

Table 6.2 Execution timeab, dhrystone

Inst.
cache
sizec

[bytes]

Memory latency = 5 cycles Memory latency = 10 cycles

Line size: 16 bytes Line size: 32 bytes Line size: 16 bytes Line size: 32 bytes

No
prefetch Prefetch

No
prefetch Prefetch

No
prefetch Prefetch

No
prefetch Prefetch

1K 1.165 1.014
(13%)

1.192 0.982
(18%)

1.525 1.219
(20%)

1.443 1.106
(23%)

2K 1.057 0.976
(8%)

1.062 0.914
(14%)

1.350 1.157
(14%)

1.259 1.009
(20%)

4K 1.017 0.965
(5%)

1.009 0.905
(10%)

1.285 1.138
(11%)

1.185 0.995
(16%)

8K 0.695 0.749
(-8%)

0.699 0.738
(-6%)

0.761 0.788
(-4%)

0.745 0.758
(-2%)

Table 6.3 Execution timeab, espresso

Inst.
cache
sizec

[bytes]

Memory Latency = 5 cycles Memory Latency = 10 cycles

Line size: 16 bytes Line size: 32 bytes Line size: 16 bytes Line size: 32 bytes

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

1K 6.143 6.076
(1%)

5.959 5.669
(5%)

7.581 6.979
(8%)

6.842 6.101
(11%)

2K 5.525 5.703
(-3%)

5.373 5.385
(-0.2%)

6.576 6.372
(3%)

6.011 5.699
(5%)

4K 4.937 5.352
(-8%)

4.862 5.139
(-6%)

5.622 5.802
(-3%)

5.287 5.351
(-1%)

8K 4.376 4.988
(-14%)

4.345 4.881
(-12%)

4.710 5.211
(-11%)

4.554 4.985
(-9%)

Dual instruction branch118

For this benchmark only the smallest (1K and 2Kbytes) cache configurations benefit

from prefetching, and the gain is only significant for the long memory latency. Indeed,

prefetching is disadvantageous for the larger cache configurations. This is due to

espresso’s access pattern which yielded hit-rates of over 95% even for a 2K byte cache

without prefetching; thus prefetching can not improve the hit-rate very much.

The ‘hello.world’ benchmark produces results similar to those for ‘dhrystone’, while

‘cacti’, ‘flex’ and ‘stcompiler’ produce results similar to those reported for ‘espresso’.

The results confirm what might have been expected: as the cache size and thereby the hit-

rate increase, the gain from the go-type instructions is reduced. The exact break-even

configuration is a function of the benchmark.

Furthermore, the ‘go’-instruction can clearly not migrate further up the program than the

previous CTI-structure. From the simulation statistics it can seen that the average distance

between CTI-structures is less than 5 instructions, see Table6.4. Thus go- and the leap-

class instructions can not, on average, be separated by more than 4.46 instructions1: not

enough to fetch a full cache line, even for short cache lines (16bytes = 4words) and short

memory latency (5 cycles). The assumption that the compiler can migrate the go-

1. An unbroken sequence of instructions is thus composed of 4.46 ‘normal’ instructions plus two
instructions related to the CTI, i.e a sequence of 6.46 instructions

Table 6.4 Average distance between CTIs

Benchmark
Distance

[instructions]

cacti 4.60

dhrystone 4.96

espresso 3.73

flex 4.59

hello 4.59

stcompiler 4.28

Average 4.46

119 Dual instruction branch

instructions so far up the instruction stream that prefetching will always have completed,

is therefore very optimistic.

Future releases of the HORN-compiler are not expected to need to plant a go-instruction

within the same basic block as the leap instruction. In case of simple loops, it is expected

that a the compiler will be able to migrate some go-instructions outside loop-bodies as

shown in Figure6.2 and as explained in Chapter 3. This will reduce the instruction

overhead due to the scheme as the go-instruction will be executed only once, rather than

once per iteration.

An approximation to this, which ignores a go-class instruction if the previous go-class

instruction prefetched the same address, has been implemented and examined.

Eliminating ‘unnecessary’ go-instructions reduces the execution time of the benchmarks

as well as reducing the energy consumption in the cache due to fewer references. This

reduces the completion time for the ‘prefetch’ configurations shown in Table6.2 and

Table6.3, but not enough to yield an improvement in performance for the largest, 8K

byte, instruction caches.

The results presented here are therefore believed to show a correct trend although the

exact values might change as the compiler technology improves. The two-instruction CTI

is therefore expected to improve the performance for small caches, but the advantage is

expected to decrease with increasing cache size/hit-rate.

Figure 6.2 Example of go-instruction migrating outside loopbody

go label

label:
.....
.....
leapZ
.....

....

.....

.....

.....

{Leap shadow
} loopbody

Dual instruction branch120

6.1.3 Energy efficiency

The two-instruction CTI will cause more cache traffic and hence a higher energy

consumption than a conventional branch architecture;

• Cache lines may be fetched without being required.

• The increased number of instructions will cause more cache accesses.

Based on the power consumption figures from Chapter 2,the energy efficiency, (EE), of

different instruction cache configurations has been calculated1:

ECache,Read and ECache,Write scale with the cache parameters, as shown in Chapter 5.

Table6.5 shows the EE for different instruction cache configurations for the ‘dhrystone’

benchmark. The ‘Prefetch’-column shows, in addition to the EE value, the improvement

over the ‘no-Prefetch’-results.

The cache architecture used for these simulations was a simple direct-mapped cache

without any of the energy reducing features to be proposed in Chapter 8. The table shows

clearly that the two-instruction CTI-structure has a positive effect on EE for small caches,

but the EE for larger caches (8K and 16K bytes) is lower for the two-instruction CTI than

for the conventional single-instruction CTI.

This decrease in EE is partly explained by the increased number of instructions for the

two-instruction CTI and partly by the reduced effect prefetching has on the cache

1. The cycle time of the processor is assumed to be constant and thus independent of the instruc-
tion cache configuration. The cycle time is therefore left out of the calculations of EE.

EE
1

miss
linesize

4
--------------------- E

Cache Write,
× request+× E

Cache Read,
miss

linesize
4

---------------------× E×
Mem

E
ProcCore

+ +× 
  cycles×
--=

(EQ 6.1)

121 Dual instruction branch

performance of a system with a large instruction cache as it does not improve the hit-rate

significantly.

Table6.6 shows the results for the ‘espresso’ benchmark. In contrast to the ‘dhrystone’

benchmark the EE does not improve, even for small cache configurations, with the new

CTI-structure. The two-instruction CTI improves the EE measure only for the smallest

cache configurations with long memory latency (10 cycles).

For all the benchmarks examined it is characteristic that the highest EEvalues are found

for cache sizes larger than the limit where the two-instruction CTI is energy efficient. This

section therefore concludes that if the early specification of the branch target is only used

to increase the performance of the instruction cache, the two-instruction CTI improves the

energy efficiency of systems with small caches, but is in general not energy efficient.

a. 100% hit-rate in data cache is assumed

b. Direct mapped

Table 6.5 EE for different cache- and memory configurationsa, dhrystone

Inst.
cache
sizeb

[bytes]

Memory Latency = 5 cycles Memory Latency = 10 cycles

Line size: 16 bytes Line size: 32 bytes Line size: 16 bytes Line size: 32 bytes

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

1K 0.320 0.375
(17%)

0.246 0.283
(15%)

0.139 0.179
(29%)

0.115 0.140
(22%)

2K 0.396 0.426
(8%)

0.324 0.365
(13%)

0.182 0.215
(18%)

0.159 0.192
(21%)

4K 0.401 0.409
(2%)

0.344 0.365
(6%)

0.192 0.216
(13%)

0.177 0.201
(14%)

8K 1.109 0.864
(-22%)

0.990 0.807
(-18%)

0.767 0.656
(-14%)

0.687 0.605
(-12%)

16K 1.202 0.768
(-36%)

1.180 0.772
(-35%)

1.066 0.706
(-34%)

1.051 0.715
(-32%)

Dual instruction branch122

6.2 Reduction of cache miss penalty through two-instruction CTI

In addition to prefetching the target of a branch into the instruction cache, as shown above,

the go-instruction can be used to reduce or eliminate the miss-prediction penalty through

speculative fetching of instructions into the first stage(s) of a shadow pipeline [Hill], see

Figure 6.3.

Once the potential target for a CTI instruction is known, an instruction fetch engine can -

speculatively- fetch instructions from the target specified by the ‘go’-instruction. This

may be performed in parallel with the fetching of the instructions between the ‘go’-class

instruction and the ‘leap’-class instruction, see Figure6.1.

Speculative fetching can not proceed far since the prefetched instructions must not affect

the state of the processor in any way. Consequently, only early stages in a pipeline such

as ‘Instruction Fetch’ and ‘Decode’, (see [Patt]) can be completed before this ‘alternative’

instruction flow must stall and wait for the branch condition to be resolved.

a. 100% hit-rate in data cache is assumed

b. Direct mapped.

Table 6.6 EE for different cache- and memory configurationsa, espresso

Inst.
cache
sizeb

[bytes]

Memory Latency = 5 cycles Memory Latency = 10 cycles

Line size: 16 bytes Line size: 32 bytes Line size: 16 bytes Line size: 32 bytes

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

no-
Prefetch Prefetch

1K 0.135 0.132
(-2%)

0.124 0.125
(0.8%)

0.065 0.070
(8%)

0.064 0.070
(9%)

2K 0.175 0.158
(-10%)

0.165 0.154
(-7%)

0.093 0.092
(-1%)

0.092 0.094
(2%)

4K 0.223 0.177
(-21%)

0.209 0.173
(-17%)

0.135 0.118
(-13%)

0.131 0.118
(-10%)

8K 0.269 0.179
(-33%)

0.258 0.179
(-31%)

0.200 0.146
(-27%)

0.195 0.147
(-25%)

16K 0.228 0.133
(-42%)

0.225 0.134
(-40%)

0.195 0.121
(-38%)

0.197 0.123
(-38%)

123 Dual instruction branch

Once the condition has been resolved there is no branch penalty associated with branching

assuming the condition can be resolved in the ‘Fetch op(erand)’-stage, see Figure6.31.

This has the effect of replicating the early stages in the pipeline.

This technique for eliminating or reducing2 the branch penalty clearly increases the

energy consumption. The instruction cache needs to be dual-ported to be able to serve the

two instruction steams. However, it is clear that the utilization of the second port will be

relatively low. Section 5.1.3 has shown that the energy consumption per access increases

with the number of ports in a RAM block.

Table6.4 showed that the average distance between CTI structures is 4.46 instructions;

i.e the average basic block is 6.46 instructions (4.46 ‘normal’ instructions plus two CTI),

while it is only 5.46 if a single-instruction branch is used. Given the pipeline structure of

Figure 6.3, only two instructions can be fetched from the instruction cache before the

1. This assumes that the potential target of the CTI is in the instruction cache, which the previous
section has shown is not always the case. If the target isnot in the cache, some penalty is faced.
However, for the rest of this section, it will be assumed that the target for the branch is already in
the instruction cache.
2. In the case where the target is not in the instruction cache it is not expected that two instructions
can be fetched before the branch is taken. In that case the branch penalty is ‘only’ reduced.

Instruction Cache

PC
Speculative
Addresses

Decode1 Decode2

Fetch Op

Figure 6.3 Doubling the early pipeline stages might eliminate branch penalty

No penalty if condition
can be evaluated in this
stage.

 Inst. Fetch 1 Inst. Fetch 2

Rest of Pipeline

Dual instruction branch124

speculative prefetching must stop. The second port on the instruction cache will therefore

only be utilized:

The number of cache requests, and thereby the energy consumption in the cache thus

increases by 31%.

The issue of cache access is closely linked to the issue of variable-size instructions and

instructions, which might straddle cache line boundaries, see Chapter 3. Chapter 8

proposes cache structures which solve this problem. Replicating one of these structures

might also eliminate the need to make the instruction cache dual-ported and thus increase

the energy consumption in the cache. The Dual Cache Line, DCL, architecture, presented

in section 8.3.2, would be particularly suitable for this purpose. However, it might be

necessary to enhance it to contain three or even four cache lines to enable it to serve its

original purpose (composing instructions which straddle cache lines). This involves a

very complicated structure, see Figure6.4, which requires four tag compares per cycle,

and which therefore will be relatively energy consuming.

Other techniques for reducing/minimizing the branch penalty are therefore required.

[Patt] has shown that a single branch delay slot can be filled in approximately 50% of all

CTIs. In those cases the branch penalty is reduced to 0 for correctly predicted branches;

i.e. prefetching will not have any effect.

In this calculation the number of cycles to execute a benchmark on the HORN

architecture, with the ‘go’-instruction speculatively prefetching from the potential target,

Utilization
2

6.46
---------- 100%× 31.0%= = of cycles (EQ 6.2)

125 Dual instruction branch

has been normalized to 1.0. Asssuming a 100% prediction accuracy, the execution of the

same block with a single-instruction branch is:

However, with a branch frequency as shown in Table6.4, a branch prediction accuracy

(pa) of 50%, a branch penalty of one cycle and a misprediction penalty of a further one

cycle; the relative execution time is:

i.e. a 12% increase in execution time compared to the HORN architecture.

For the following evaluation the energy consumption of the instruction cache is

normalized to 1.0 for the case where there is a 100% prediction accuracy of all branches,

i.e only the instructions which are going to be executed will be fetched. Furthermore, all

Instruction Cache with ‘n’-byte
cache lines - 1-port

n bytes n bytes n bytes n bytestag1 tag2 tag3 tag4

2n:4 - mux 2n:4 - mux

Decode Stage1 Decode Stage2
DCL1 DCL2

Rest of Pipeline

Mux

Figure 6.4 Replication of instruction alignment structure

T100% Accuracy

TSingleInstBranch

THORN
-------------------------------------- 5.46

6.46
---------- 0.85= = = (EQ 6.3)

T50% Accuracy T100% Accuracy pa
penaltytaken

BranchFrequency
--× 1 pa–()

penaltyNottaken

BranchFrequency
--×+ +=

0.85 0.5
1

5.46
----------× 0.5

2
5.46
----------×+ += 1.12=

(EQ 6.4)

Dual instruction branch126

fetches carry the same energy cost. Relative to this ideal scheme, the prefetch scheme will

consume the equivalent two extra cache accesses per branch:

while a scheme relying upon branch prediction will consume the equivalent to one extra

cache access per branch which is predicted correctly and two extra cache accesses per

miss predicted branch:

Based on these results the energy efficiency, EE, for the two schemes can be calculated,

resulting in Table6.7. The bottom line in the table shows that the energy efficiency of the

prefetch scheme is not as good as that of the more conventional scheme relying upon

branch prediction. However, the difference is small.

Various branch prediction schemes can be employed to improve the 50% prediction

accuracy assumed above. A number of branch prediction schemes are described in [Patt]

of which the simplest scheme, which simply assumes that branches will be taken,

performs well for a minimum hardware cost.

Simulations show that prediction accuracies of more than 77% can be obtained with

simple schemes such as ‘predict taken’, see Table6.8.

Table 6.7 EE for prefetch and branch-prediction schemes - accuracy: 50%

Prefetch Branch Prediction

Energy 1.31 1.12

Delay 1.00 1.12

0.76 0.80

EnergyRelative Prefetch() 1
2

6.46
----------+ 1.31= =

(EQ 6.5)

EnergyRelative Predict() 0.85 0.5 1
5.46
---------- 0.5

2
5.46
----------×+×+ 1.12= = (EQ 6.6)

EE
1

Energy Delay×
---=

127 Dual instruction branch

Recalculating the numbers from Table6.7 with the prediction accuracy from Table6.8

gives the results in Table6.9. The gap between the prefetch model and the more

conventional branch-prediction model has widened as a result of the improved

performance and reduced energy consumption of the branch-prediction model. The

performance of the single-instruction branch prediction scheme is still less than the

performance of the prefetch scheme.

6.3 Alternative branch and loop architectures

According to the results in section6.2 an energy-efficient architecture would specify

conventional [Farquhar][Weaver], single-instruction CTIs. By letting the branch

instruction itself contain information about the number of the branch delay slots [Mahon],

some increase in code compactness could be obtained - over the MIPS and SPARC

architectures - as not all branch delay slots can be filled [Patt]. This should lead to a higher

hit-rate in the instruction cache as the cache would contain more ‘useful’ code.

Table 6.8 Prediction accuracy for the ‘predict taken’ model

Benchmark
Prediction Accuracy

[%]

cacti 87.4

dhrystone 77.7

espresso 60.9

fft 79.4

flex 79.4

hello 77.9

stcompiler 81.2

Average 77.7

Table 6.9 EE for prefetch and branch prediction schemes - accuracy: 77.7%

Prefetch Branch Prediction

Energy 1.31 1.08

Delay 1.00 1.08

0.76 0.86
EE

1
Energy Delay×
---=

Dual instruction branch128

Furthermore, an energy-efficient instruction set architecture should contain ‘touch’

instructions, which the compiler can use to prefetch instructions and data into the

appropriate caches. However, there should be no link between the touch and the branch

instructions as is the case in the HORN architecture between the go- and the leap-class

instructions. Touch-instructions could be placed early in the instruction stream, even

earlier than the equivalent go-instruction could have been placed, thereby increasing the

chance of having pre-fetched the target for the branch into the instruction cache before the

branch is taken, seeFigure 6.5. Comparing the ‘HORN code’ and the ‘Energy-efficient

code’ sequences it is clear that the ‘Energy-efficient code’ contains fewer instructions.

The size of the codes is expected to be the same1. Consequently the performance of the

instruction cache should be similar, and the overall performance of the ‘Energy-efficient

code’ would be better than that of the HORN-code. The performance of the processor

might even be better (lower CPI) in the ‘Energy-efficient code’ as the ‘touchI’-instruction

has been migrated further up the code than the corresponding ‘go’ instruction in the

HORN-code, thereby increasing the chance that the code in ‘procA’ is present in the

1. The ‘Energy Efficient code’ might even be smaller than the HORN-code dependent on how the
literal field in the ‘bnZ’-instruction is encoded. If a range of offset sizes is possible the ‘bnZ’-in-
struction might not need to be larger than the corresponding ‘leapnZ’ instruction in the HORN-
code and the overall size of the code is therefore reduced.

‘C’-code

if (a == 0) exit(1);

procA(c,a)

procA:

HORN-code

go ‘L1’
leapnZ Ra,0
go ‘exit’
leaplink 0

L1:
go ‘procA’
setup parameters
leaplink 0

procA:

Energy-efficient code

bnZ Ra,L1

touchI @procA

setup parameters
call procA

call ‘exit’
L1:

procA:

Figure 6.5 C-code compiled into HORN code and Energy-efficient code

129 Dual instruction branch

instruction cache when the procedure is called. Furthermore, the ‘touchI’ instruction can

be omitted if it is not expected to improve the performance.

A way of reducing the overhead of the branch instructions further would be to introduce

a ‘loop’ instruction, see Figure6.6, which can eliminate the branch penalty completely

for simple loops. The loop instruction would iterate ‘N’ times over ‘size’ instructions. As

the loop-body contains fewer instructions than the corresponding HORN- (or RISC-)

code the execution time is reduced; by a factor dependent on the values of ‘size’ and ‘N’.

This technique is similar to loop-pipelining described in [Bird2].

6.4 Two-instruction CTI in a dual-issue implementation

Previous sections have shown that a two part CTI is not energy efficient in a single

instruction issue implementation of the HORN-architecture.

Although this thesis, in general, considers multiple instruction issue as an

‘implementation-technique’ which consequently is not investigated in the rest of this

thesis, this section will briefly discuss the value of a two-instruction control transfer

structure in a dual-issue implementation of the HORN-architecture.

The benchmark suite has been analysed for register dependencies and the instruction

stream has been re-organised to try to form instruction packets of two instructions, which

C-code

for (i=0; i < N; i++)
s += a[i]*b[i];

....

....

HORN-code
....
go L1

L1:
s += a[i]*b[i]
i++
cmp Ra,i,N

leapNZ Ra,0
.....

Loop-instruction

....
loop N,size
s += a[i]*b[i]
i++
....
....

....

si
ze

Figure 6.6 The principle of a ‘loop’-instruction

Dual instruction branch130

can be issued in parallel. Register dependencies in the packets were not permitted and

each packet could contain only one memory accessing instruction: ‘load’, ‘store’, ‘spill’

or ‘fill’. This avoids coherency problems; for example if there were two ‘fill’ operations

in the same instruction packet it would not be obvious which one to execute first and

thereby which register gets which value.

The results presented in Table6.10, show that a packet contains an average of 1.44

instructions. Table6.4 showed that the average unbroken sequence comprises 6.46

instructions. Combining these two results shows that an unbroken dual instruction

sequence would contain:

As there are few restrictions as to where within the sequence the ‘go’-instruction can be

placed it would normally be possible to place it in an unused issue slot. Consequently, it

is not expected that it will be necessary to introduce more issues than if a conventional -

single instruction - branch architecture were adopted.

Table 6.10 Average number of instruction issued per cycle

Benchmark

Average number of
instructions issued

per cycle

cacti 1.43

dhry 1.47

espresso 1.44

fft 1.40

flex 1.44

hello 1.47

stcompiler 1.44

Average 1.44

6.46Instructions

1.44Instructions
Issue

-------------------------------------- 4.5Issues= (EQ 6.7)

131 Dual instruction branch

Simulation has shown that the average basic block contains 5.34 issues if a RISC style

(single instruction) branch is assumed. If the two-instruction CTI is assumed the average

number of issues increases to 5.69. There is therefore not the same cycle overhead

associated with the CTI-architecture as was the case for the single instruction issue

considered in sections6.1 and6.2.

Section6.2 showed how the information from the go-class instruction can be used to

prefetch the target of the branch and thereby eliminate any need for branch prediction by

fetching from both targets. The instruction fetch architecture presented in Figure6.4 can

also be used in a dual-issue implementation however, the size and complexity of such a

module may make its implementation impracticable. The energy consumption per cycle

will go up as there will be relatively more cycles where two-instruction packets need to

be fetched. The energy consumption in the instruction cache relative to an ‘ideal’ scheme

with 100% branch prediction accuracy and hence no need for prefetching is:

i.e. an energy increase of 35% per cycle.

As in section 6.2 the more conventional branch architecture together with a simple

‘branch-taken’ prediction scheme and delay slots will have a relative energy consumption

of:

This differs by 12% from the energy consumption of the prefetch scheme which has to be

compensated for by the faster execution under the two-instruction CTI architecture for the

scheme to be energy efficient.

EnergyRelative Prefetch() 1 2
5.69
----------+ 1.35= = (EQ 6.8)

EnergyRelative Prediction() 0.94 1 0.77–() 2
5.34
---------- 0.77

1
5.34
----------×+×+ 1.23= = (EQ 6.9)

Dual instruction branch132

Relative to the single instruction branch, the execution time of a basic block under the

dual instruction scheme will be 23% higher:

Table6.9 shows the energies and execution times calculated above and calculates the

energy efficiency, EE. The result shows that the energy efficiency is higher for the

prefetch scheme than for the prediction scheme.

This discussion therefore concludes that the two instruction CTI architecture would be

significantly faster (23%) and more energy efficient that a simple single-instruction

‘predict taken’ branch scheme in a dual instruction issue implementation of the HORN

architecture.

6.5 Summary

This chapter has shown how the two-instruction control transfer instruction architecture

affects cache performance and thereby the energy efficiency for the processor.

Section6.1.1 showed that the structure had a positive effect on the hit-rate for all

benchmarks.

Subsequent sections assumed that the target of a CTI could always be prefetched into the

instruction cache before it was required. This was clearly a very optimistic assumption

especially considering the short average distance between CTIs presented in Table6.4.

Despite this, the increase in hit-rate is not sufficient to compensate for the increased

Table 6.11 EE for prefetch and branch prediction schemes (dual issue)

Prefetch Branch Prediction

Energy 1.35 1.23

Delay 1.00 1.23

0.74 0.66

TDual,77%Acc. 0.94 1 0.77–() 2
5.34
---------- 0.77

1
5.34
----------×+×+ 1.23= = (EQ 6.10)

EE
1

Energy Delay×
---=

133 Dual instruction branch

instruction count, relative to conventional branch and jump instructions, to have a positive

effect on execution time and energy efficiency except for small caches and long memory

latencies.

Section 6.2 analysed the effect of the two-part CTI as a way of eliminating or reducing

the branch penalty. It was shown that, although there is a gain in performance associated

with fetching instructions from both targets of a branch, this gain is not sufficient to offset

the significant increase in energy consumption (and complexity) in the instruction cache.

The architecture is therefore not as energy efficient as a conventional single instruction

branch architecture. Ways of improving the branch prediction were introduced, but these

further widened the difference between the go-leap-scheme and the traditional RISC

branch scheme in favour of the latter.

This section therefore concludes that two-part control transfer instructions may improve

the performance if instructions from both targets are fetched in parallel as described in

section 6.2. Simply using the information in the go-instructions to improve the hit rate

and/or reduce the miss penalty in the instruction cache is not sufficient to make the

scheme perform better than a conventional single-instruction branch. Despite this

potential performance advantage the scheme is not energy efficient due to the increased

number of instruction cache accesses.

In a dual issue implementation the performance advantage of the two-instruction CTI is

so high that it is not offset by the lower energy consumption of the conventional single-

instruction branch, see section 6.4. The two-instruction CTI would consequently perform

better and be more energy efficient than a single-instruction branch in a dual issue

implementation.

Register file architectures134

Chapter 7 Register file architectures

7.1 Intr oduction

Registers are the lowest level in the memory hierarchy, i.e. closest to the processor core.

In a RISC architecture [Patt] all instructions operate on registers. An instruction such as

‘addR1,R2,R3’ will read its input operands from register 2 and register 3 and store the

sum into register 1. In a CISC architecture [Robin] one or more of the operands might

come from a memory location, eventually referenced through a register:

‘addR1,R2,offset(R3)’.

[Tiwari] analysed the power consumption in a 486DX2 processor and found that

instructions which accessed only the register file drew 300mA while instructions which

fetched an operand from the data cache drew 430mA. Instructions which wrote their result

to the cache drew 530mA. Instructions which accessed the cache were shown to consume

significantly more energy than the ‘pure’ register instructions. The access to the large data

cache should therefore be kept at a minimum. This can partly be done by specifying a

register file architecture which minimizes the need to spill/fill registers to/from the data

cache. In either class of architecture the register file will be accessed heavily and should

therefore be designed carefully.

Some architectures do not specify a register file as described above. The Hobbit [Argade]

and Transputer [Transputer] architectures use stacks for temporary storage and the Hobbit

also allows memory-to-memory operations. These ‘local-storage’ architectures will not

be discussed further as their performances are difficult to assess without access to

compilers and simulators.

135 Register file architectures

There are seldom enough registers to hold all the variables required through the execution

of a program, so data must often to be saved to, and later retrieved from, elsewhere in the

memory hierarchy. Fortunately, variables are not used evenly throughout a program. A

local variable in a function will be required only within the function or its setup and return.

Variables will therefore need to be in scope only at various phases in the execution of a

program rather than throughout the whole program. It is not necessary to keep all

variables in registers, only the ones currently in scope. Consequently, the way an

architecture handles allocation and de-allocation of registers affects not only the

performance of the processor but also the energy efficiency as these processes often

involve memory accesses.

The HORN architecture [HORNV3, HORNV5], which forms the basis for this work, has

undergone several changes of register file architecture during the evolution of the project;

this has provided the opportunity to compare a number of register file architectures.

The first architecture described here uses a model where registers are memory mapped

through a pointer; allocating/de-allocating was performed by adjusting this pointer. A

second architecture, which works by renaming registers in a conventional register file, has

also been investigated. This second scheme uses two instructions, spill and fill, to allocate

and deallocate registers. Finally these two architectures will be compared with the

commercially available SPARC register-window architecture [Weaver].

7.2 Temporary storage

The HORN-architecture specifies three types of local storage: Global registers, local

registers and a four element operand queue. The first two types of register will be

described in depth in the following sections, while this section evaluates the value of the

operand queue for performance and energy efficiency.

Register file architectures136

As described in Chapter 3, the HORN-architecture defines a four element first-in-first-out

operand queue (OQ). This is intended to store temporary values which need to be accessed

only once. The chapter also showed how the implicit referencing of this queue can be used

to reduce the size of instructions and how it reduces the need for registers.

As Chapter 8 and Chapter 9 will show, the reduced instruction size increases the

performance of the instruction cache and consequently improves the performance and the

energy efficiency of the entire system. Furthermore, fewer registers will need to be saved

and later restored due to register shortage, implying a further improvement in both

performance and energy efficiency.

The HORN architecture allows the queue to be addressed through special bits in the

instruction format, but it can also be addressed through its register alias (register 63).

Accessing a queue through a register alias would allow OQ’s to be added to many other

architectures. As long as the queue has a significant length (>2) it is expected to have a

positive effect on performance as it effectively represents an extension of the register file,

without increasing the number of bits required to access it.

7.3 Memory mapped registers

As well as the OQ, release3 of the HORN architecture [HORNV3] specifies two other

types of on-chip storage, register:

• 16 global registers organized in a conventional register file

• 32 memory mapped local registers

where the 32 local registers are mapped to memory through a pointer, LPTR.

137 Register file architectures

The value of the LPTR is controlled via an instruction ‘adjust local register pointer’,

‘ajlp’. The instruction can take two formats:

1. ajlp <signed constant>

2. ajlp reg

In the first format, the LPTR is updated by adding the signed constant to the existing value

of LPTR. The mechanism can be used to implement overlapping register windows. The

second format overwrites LPTR with the contents of another register.

The architecture suggests that the memory mapped, local registers reside in a separate

register cache backed up by the first level data cache.

Upon a function call the LPTR is decremented as shown in Figure7.1. In this way, a

number of new registers are allocated while another set goes out of scope. The contents

of these newly allocated registers will, by definition, be invalid. It is thereforenot

necessary to fetch the contents of the addresses from the rest of the memory hierarchy, but

only allocate the new registers. The first access to these registers should therefore be a

write which will make the register ‘dirty’.

When a function returns to its caller it deallocates the registers which were allocated when

it was entered. The deallocated registers will typically reside in the register cache and be

marked ‘dirty’. However, according to the architecture specification, [HORNV3], the

registers neednot be written back to memory so this potential write-back should be

avoided whenever possible as it is likely1 to cause an off-chip reference and hence

increase the energy consumption. It is sufficient just to let the de-allocated registers

remain in the register cache and eventually be written back to memory whenever the

cache line is reallocated later. The write-back can be avoided if, upon de-allocation, lines

1. Assuming a high hit-rate in the register cache, thedata cache is not likely to contain the line
which is written back from the register cache.

Register file architectures138

between the ‘old’ and the new value of LPTR are marked ‘not-dirty’, see comment in

Figure 7.1.

The architecture specifies that registers are allocated, and deallocated, in multiples of

four. It is possible to (de-)allocate any multiple of four registers, but statistics show that

the majority of changes to LPTR are four or eight (see Table7.2, on page141).

When an ‘ajlp’ instruction is issued with a register reference, i.e the LPTR is going to be

overwritten rather than adjusted, the status of the cache lines should not be touched. This

allows efficient handling of interrupts, process and thread changes.

The following sections describe how a register cache can be designed to yield an energy

effective implementation.

7.3.1 Number of ports

The majority of instructions in the HORN architecture are of RISC style, i.e. two source

registers and one destination register. This implies that the register cache needs to be able

LPTR

LPTR+32

LPTR

LPTR+32

Increasing
 addresses

Newly a l loca ted

registers need not be

loaded from memory

Allocation

LPTR

LPTR+32

De-allocationUpon de-allocation lines

between ‘old-LPTR’ and the

new LPTR shou ld be

marked ‘Not -D i r ty ’ to

prevent write-back in case

of replacement or flushing.

Figure 7.1 Allocating and de-allocating registers

‘Old’ LPTR

‘Old’ LPTR

139 Register file architectures

to handle a similar number of accesses per cycle; it should have two read ports and one

write port. Only a single instruction format fails to match this scheme, the ‘st r1, r2, r3’

instruction1 which reads three operands. This, infrequently used, instruction format2

could be replaced by two instructions: ‘add rt, r2, r3 followed by st r1,rt,0’ and thus avoid

extra hardware only used by this instruction. The penalty for the original instruction

format might not be obvious in a non-pipelined architecture, but if the implementation is

pipelined it will be necessary to add a fourth port to the register file or risk waiting for the

pipeline to drain before the store instruction can be issued.

As many instructions do not use all three registers ports, it should be possible to disable

the ports which are not required for a given cycle in order to save power [Yeung].

7.3.2 Total size

Figure 7.2 and 7.3 show the value of LPTR during the execution of two of the

benchmarks, hello and stcompiler (LPTR was initialized to 1000). Hello is shown because

it is a small benchmark and the variations are therefore easier to see in the figure.

1. The contents of r1 are written to the address given by adding the contents of r2 to the contents
of r3
2. Eventually on the fly

Figure 7.2 Variation of LPTR during execution, hello

I1

I2

Register file architectures140

Stcompiler is chosen, as it is considered more representative of user programs and

because it shows a significant deviation towards the end of the execution.

It appears that for most programs LPTR stabilize after an initialization period. For

espresso, the ‘LPTR’ stabilizes in the interval [I1,I2] = [-60,-136] relative to the initial

address. For flex the equivalent interval is [-28,-116]. As each register window contains

32 registers the total number of registers accessed in the ‘relevant’ parts of the program is

equal to I1-I2+32. As it can be seen from Table7.1 this total does not exceed 128 registers

for the first two benchmarks. This means that if the register cache holds 128 words there

should be no misses in the register cache except the compulsory misses. As shown in

Chapter 5, the energy cost associated with fetching a word from a cache scales with the

size of the cache. The energy cost of a hit in a register cache may therefore be small

compared to the cost of accessing the first level data cache which may be 8Kbytes or

Table 7.1 LPTR limits

Benchmark I1 I2 I1-I2+32

espresso -60 -136 108

flex -28 -116 120

hello -10 -132 154

stcompiler -30 -290 292

Figure 7.3 Variation of LPTR during execution, stcompiler

I1

I2

141 Register file architectures

more. From an energy perspective, it is sensible to insert a ‘small’ register cache and thus

reduce the number of accesses to the more energy consuming first-level data cache.

For stcompiler, see Figure7.3, LPTR stabilizes very quickly and remains in a narrow

band before descending to a relative offset of almost 300 registers. Finally it climbs back

to an offset of around -100. Note that LPTR does not vary randomly between -30 and -

300. It varies within a ‘band’ of fairly constant width. This also explains why stcompiler

performs well even with small register caches, see Table7.7, on page147.

Hello stabilizes in the interval [-10,-132]. As Table7.1 shows, the sum (I1-I2+32) exceeds

128. The fact that this program performs very well anyway is related to its very restricted

register usage, see Tables7.3and7.6.

7.3.3 Line size

The size of a cache line is closely related to the total size of the cache. As stated earlier

the HORN architecture [HORNV3] uses the ajlp instruction to implement register

windows with a variable sized overlap region.

Table 7.2 ajlp offset distribution and frequency

ajlp offset

Benchmark
� � ��� ��� ��� ���

espresso 33,156 36,988 7,024 301 0 8

42.8% 47.7% 9.1% 0.4% 0.0% 0.0%

flex 133,859 20,944 7,668 470 0 3700

80.3% 12.6% 4.6% 0.3% 0.0% 2.2%

hello 474 1,119 370 0 0 44

23.6% 55.8% 18.4% 0.0% 0.0% 2.2%

stcompiler 63,796 31,176 6,124 8 0 363

62.9% 30.7% 6.0% 0.0% 0.0% 0.4%

Register file architectures142

As can be seen in Table7.2 the majority of ajlp instructions specify offsets of four or eight

words and the register cache line size should reflect this. However, it is not clear whether

which line size would be optimal. The register cache lines should be made short to allow

as great a flexibility as possible and to minimize the traffic towards the rest of the memory

hierarchy in case of misses. Once the line size has been determined the number of lines is

calculated as:

i.e. 32 or 16 lines.

As mentioned above, the line size should be as short as possible, i.e. a register cache with

32 lines/4 words per line performs better than a cache with 4 lines/32words per line.

Similarly a 16/8 cache performs slightly better than a 8/16 cache, see Tables7.4- 7.7. It

was decided to measure performance in terms of ‘stalled cycles’, which is the increase in

the number of cycles required to execute a program due to the register cache. A high

number of stalled cycles implies many fetches or writebacks from/to the rest of the

memory hierarchy. The tables also show the stalled cycles as a percentage of the total

cycle count for the configurations.

The results are optimistic because the model assumes that register cache misses will

always hit the on-chip first level data-cache and that the register cache can always access

the data cache with a rate of one word per cycle. This means that a miss on a line costs

‘number of words per line’cycles if the cache line to be replaced is clean, and2*‘number-

of-words-per-line’ cyclesif the line needs to be written back to the data cache. This model

is accurate for small register cache configurations where capacity misses [Patt] dominate.

In these cases the first-level data cache is likely to hold copies of the missing data and the

register cache can therefore be served from it, implying the low miss-penalty. For large

l ines
totalsize
l inesize
----------------------= (EQ 7.1)

143 Register file architectures

configurations compulsory misses dominate. Compulsory misses in the register cache can

result in compulsory misses in the first level data cache as well. The likelihood of this is

dependent on the ratio of line sizes in the register cache and the first-level data cache. If

there is a compulsory miss in the data cache, the penalty for the register cache miss is

clearly higher than stated above.

The hit-rate for all cache configurations greater than or equal to 128 words (512bytes) is

over 99%, see Tables7.4- 7.7.

7.3.4 Associativity

Although the register cache is not believed to be the component which determines the

cycle time of the processor system; it should be fast to allow zero-detection etc. used by

branch instructions to be carried out in the same cycle, see Chapter 6. Using “cacti”1,

Figure 7.4 shows how the cycle time for a single-ported cache increases with the degree

of associativity. Going from a direct mapped cache to a 2-way set-associative cache

increases the cache cycle time by more than 50%.

Furthermore the variation of LPTR in a very limited address space during the execution

of a program, see Figures7.2and7.3, makes it unlikely that the hit-rate of the register

cache will be improved if the associativity is increased. Furthermore a direct-mapped

cache will consume less energy due to a lower overhead in tag-comparisons.

Although the cycle time may not increase linearly with the number of ports, it is believed

that the trend in the results presented for a single ported cache will not change with the

number of ports; i.e. a direct mapped cache with short lines is the most energy efficient

configuration.

1. a cache timing simulator from Digital [Wilton]

Register file architectures144

7.3.5 Writeback policy

The writeback policy should be chosen to optimize for energy-efficiency. Of the two

alternatives:

• Write through

• Copy back

copy back is the most energy efficient, especially when the hit-rate is very high. This

policy ensures that accesses to the rest of the memory hierarchy are kept to a minimum.

The cache should use a ‘Write allocate’ [Patt] strategy, since it is very likely that a write

to a register will be followed by a read from the same register later.

It has been assumed that the memory mapped registers (in or out of scope) are never

accessed through regular load and store instructions. This might be difficult to ensure,

especially at the operating system level. It has therefore been suggested a ‘flush’

instruction should be introduced. This would flush the register cache to the next level in

the memory hierarchy, thereby introducing synchronization points. There should be little

dynamic use of such a flush instruction.

Figure 7.4 Cycle time vs. associativity for a 512-byte - 1 ported cache

145 Register file architectures

7.3.6 Results

Tables7.4- 7.7 show the number of stalled cycles, i.e. the number of cycles the program

execution was stalled, due to register cache misses. Furthermore the tables show the

number of stalled cycles as a percentage of the execution time, see Table7.3.

The number of stalled cycles gets smaller for larger register cache, but it is a wrong to

conclude that a smaller number of stalled cycles is better for energy efficiency, as will be

explained below.

The register cache is assumed to be empty and ‘clean’ before a program starts executing.

This implies that the first access to each line will cause a compulsory miss [Patt] and

hence add ‘number-of-words-per-line’ cycles to the execution time. Hence if a number in

the tables (Tables 7.4- 7.7) is smaller than the total size1 of the cache it means that not all

the lines in the cache have been accessed. By looking at the results presented in

Tables7.4- 7.7, one can see that for the respective benchmarks there were only 224, 192,

144 and 304 stalls for a cache with 32 lines each containing 16 words implying a total size

of 512 words. This mean that the utilization of the cache is very low, 44%, 38%, 28% and

59% and unused lines implies wasted energy.

a. 8Kbyte instruction cache and 8Kbyte data cache,
32 bytes per line, direct mapped. Branch penalties
and stalls due to register dependencies are ignored

1. size = #lines * ‘line size’

Table 7.3 Execution time assuming 100% hit-rate in register cache

Benchmark Number of cyclesa

espresso 7,179,098

flex 10,092,296

hello 66,145

stcompiler 2,549,324

Register file architectures146

As the energy consumption of a cache increases with the cache size, the register cache

should be made as small as possible; comparing Table7.3 with Tables7.4-7.71 it can be

seen that the relative performance penalty for building a 128 word2 register cache is very

small, well under 1%. The utilization of the cache lines is high.

From Table7.2 it can be seen that the most frequent ajlp-offset is either four or eight

words. This should indicate that the line size should be four or eight words. From

examining Tables7.4-7.7 there does not seem to be any advantage in choosing a line size

of eight words. A line size of four words performs better than one of eight words and as

1. The 128 word configurations are highlighted
2. 512 bytes

Table 7.4 Stalled cycles due to register cache misses, espresso

#lines
line size [words]

4 8 16 32

4 834,120 111,588 18,556 1,384

11.6% 1.6% 0.26% 0.02%

8 157,432 23,312 1,560 224

2.2% 0.32% 0.02% 0.0%

16 34,128 2,000 224 224

0.48% 0.03% 0.0% 0.0%

32 3,584 256 256 256

0.05% 0.0% 0.0% 0.0%

Table 7.5 Stalled cycles due to register cache misses, flex

#lines
line size [words]

4 8 16 32

4 1,964,616 291,172 6,084 384

19.6% 2.9% 0.06% 0.0%

8 544,984 10,976 512 184

5.4% 0.11% 0.01% 0.0%

16 22,176 544 192 192

0.22% 0.01% 0.0% 0.0%

32 832 224 224 224

0.01% 0.0% 0.0% 0.0%

147 Register file architectures

the energy consumption in a cache is more sensitive to increasing line size than increasing

total-size the shorter 4-byte cache lines also yield better energy efficiency that 8-byte

cache lines.

To determine the most energy efficient register cache configuration it will be assumed that

all instructions access two source operands from the register cache and write one result

back.

To simplify the energy expressions below, this section will assume that read and write

requests consume the same amount of energy despite the findings in Chapter 5.

Equation5.33 is used to assess the energy consumption in the caches.

Table 7.6 Stalled cycles due to register cache misses, hello

#lines
line size [words]

4 8 16 32

4 41,532 12,164 5,068 144

62.8% 18.4% 7.7% 0.22%

8 15,792 5,824 160 144

23.9% 8.8% 0.24% 0.22%

16 5,920 160 144 144

9.0% 0.24% 0.22% 0.22%

32 192 160 160 160

0.29% 0.24% 0.24% 0.24%

Table 7.7 Stalled cycles due to register cache misses, stcompiler

#lines
line size [words]

4 8 16 32

4 835,844 246,796 69,860 4,416

32.8% 9.7% 2.7% 0.17%

8 346,532 96,560 6,232 400

13.6% 3.8% 0.24% 0.02%

16 133,168 8,496 416 304

5.2% 0.33% 0.02% 0.01%

32 18,528 448 320 320

0.73% 0.02% 0.01% 0.01%

Register file architectures148

Assuming 100% hit rates in the instruction and data caches, the execution time of a system

where both register- and data references are served from the data cache is proportional to

the number of instructions and will be denoted T0. The data cache in such a system needs

to be multi-ported to accommodate both register and load/store references.

If a multi-portedregister cache serves the register references, the cycle count increases

due to misses in the register cache. It is assumed that misses in the register cache will have

a 100% hit-rate in the data cache. The increase in cycle count will be denoted ‘Stall’. The

execution time of such a system is thus ‘T0+ Stall’. Note that the data cache does not need

to be multi-ported in such a configuration.

The energy consumption in a system with just instruction and data caches, E0, can be

expressed as:

while the energy consumption in a system incorporating a register cache can be expressed

as:

As the energy consumption in the instruction cache and the processor core is independent

of the register file implementation they will be left out of the computation:

Section5.1.3 has shown that the energy consumption in a multi-ported RAM scales with

the number of ports. The energy consumption in a multi-ported cache is therefore

approximated to be:

E0 ECore EIcache EDcache Multiported,+ += (EQ 7.2)

E ECore EIcache EDcache Singleported, ERegCache Multiported,+ + += (EQ 7.3)

E0 EDcache Multiport,= (EQ 7.4)

E EDcache Singleport, ERegCache Multiport,+= (EQ 7.5)

ECache MultiPorted, NbPorts ECache Singleport,×= (EQ 7.6)

149 Register file architectures

The data cache in the system which serves all references from the data cache is multi-

ported, it must be able to accommodate four accesses per cycle: three register references

and one ld/st reference. The number of ports should thus be 4. However, the number of

active, and thus energy consuming, ports is less than four.

The data cache in the system with a separate register cache need only be single ported.

The register cache, however, should have three ports (NbPortsReg). All ports in the

register cache are assumed active, and hence energy consuming, when executing

instruction while only one port will be active when cache misses are being served.

E0 can therefore be calculated as:

while E is calculated as:

The energy efficiency (EE) of a system with separate register cache relative to a system

with a multi-ported data cache, (EE0), can thus be expressed as:

Inserting the expression from E,E0, T and T0 derived above gives:

The number of active ports in the multi-ported data cache, NbPortsDcacheMultiPort is thus

an important parameter. On average one in three instructions is a memory referencing

E0 Inst NbPortsDcache Multiport,× EDcache 1port,×= (EQ 7.7)

E Inst NbPortsReg Stall 1×+×() E
RegCache 1Port,

LdSt Stall+() EDcache 1Port,×+×=

(EQ 7.8)

EE
E0 T0×
E T×

------------------ EE0×= (EQ 7.9)

EE
NbPortsDcacheMultiPort

Inst Stall+() Inst NbPortsReg× Stall+()×

Inst
2

EReg1Port
ED1Port

--------------------------- LdSt Stall+() Inst Stall+()×

Inst
2

---+×

-- EE0×=

(EQ 7.10)

Register file architectures150

instruction, see section4.4. The average number of active ports is thus 3.33; three ports

to serve register references plus 0.33 for the memory referencing instructions.

Only a direct mapped, 8Kbyte data cache with 32-byte cache lines will be examined.

Tables7.8 - 7.11 show the variations in EE/EE0 for a number of register cache

configurations. Changing the data cache from 8K-byte to 4K- or 16K-byte will not change

the internal ordering, but only the actual values and the relative differences.

Table 7.8 EE/EE0 for differ ent register cache configurations, espresso

#lines
line size
[words]

4 8 16 32

4 1.47 1.92 1.98 1.97

8 1.19 1.24 1.24 1.22

16 0.71 0.71 0.71 0.69

32 0.38 0.38 0.38 0.37

Table 7.9 EE/EE0 for differ ent register cache configurations, flex

#lines
line size
[words]

4 8 16 32

4 1.39 1.81 1.88 1.86

8 1.12 1.20 1.20 1.18

16 0.70 0.70 0.69 0.68

32 0.38 0.38 0.38 0.37

Table 7.10 EE/EE0 for differ ent register cache configurations, hello

#lines
line size
[words]

4 8 16 32

4 0.63 1.29 1.59 1.85

8 0.78 1.01 1.19 1.17

16 0.59 0.70 0.69 0.68

32 0.38 0.38 0.37 0.37

151 Register file architectures

Values in the tables less than 1.0 indicate that it is more energy efficient to omit a register

cache and build a four-ported data cache.

The optimal configurations are highlighted. The optimal cache size is 128 words (512

bytes), and lines should be short, containing just 4 words (16 bytes). The tables show that

short lines are essential as the measure decreases with increasing line size.

A cache size of only 16 words is included in the tables. This is clearly too small as version

3.0 of the HORN architecture specifies 32 visible local registers at any time, but it is

interesting to see that despite all the extra traffic towards the data cache and the decreased

performance, it yielded a higher EE than many of the configurations with long lines.

The performance measurements, (Tables7.4 - 7.7) clearly indicate an optimal

configuration of 128 words organized with short cache lines. The energy efficiency

measurements also pointed towards a 128 word cache. For the Flex and Stcompiler

benchmarks a 128 word cache was not the optimal configuration, however, the difference

between the chosen and the optimal configurations for these benchmark is very small

(approximately 1%).

Table 7.11 EE/EE0 for differ ent register cache configurations, Stcompiler

#lines
line size
[words]

4 8 16 32

4 0.96 1.52 1.78 1.87

8 0.92 1.12 1.20 1.19

16 0.63 0.70 0.69 0.68

32 0.38 0.38 0.38 0.37

EE
EE0

Register file architectures152

7.3.7 Summary

Section7.3 has, based on a number of benchmarks, determined the cache parameters for

a register cache:

Total size: 128 words (512 bytes)

Line size: 4 words (16 bytes)

Associativity: Direct mapped

Ports: 2 Read and 1 Write

Write back policy: Copy back, blocking

The register cache is likely to ‘receive’ addresses from a very restricted area of the address

space and the Tag-store in the cache is therefore expected to contain multiple identical

values. Implementing the register cache as either a sectored-cache or CAT-cache, see

Chapter 5, with only 2 or 4 tag-values stored would be likely to reduce the energy

consumption of the register cache without affecting the performance.

7.4 Spill/fill

Release 5 of the HORN architecture [HORNV5] changed the register file architecture. It

still specified 16 global registers, (g0-g15), 32 local registers, (l0-l31) and a 4 element

operand queue (OQ), but the local registers were not mapped to memory.

This scheme makes use of ‘spill’ and ‘fill’ instructions. These rename registers and spill/

fill four local registers to/from memory. This means that the local and global registers can

all be held in a conventional register file. Since there are 32 + 16 = 48 registers and the

first element of the operand queue is mapped to register 63, there are 15 unused registers

addresses in the instruction format, see Figure7.5, which are intended to contain

constants. Alternatively the operand queue could be a part of the register file.

153 Register file architectures

The scheme is similar to the ajlp scheme described in section7.3 in that aspill instruction

has much the same effect as an ‘ajlp-4’ instruction and afill instruction the effect of

‘ajlp+4’, see Figure7.6.

Initially this was thought to imply a significant performance penalty (20%) over the

register cache architecture, described in section7.3, as the four memory references will

block the data cache for four cycles hence preventing other memory referencing

instructions from accessing the data cache. This section proposes implementation

schemes which minimize this penalty by overlapping memory references from the spill/

fill activity as far as possible with other instructions. Simulation results will be presented.

g0

g15

Unused

l0

l31
OQ

OQ

Figure 7.5 Register layout

HORN Release 3

ajlp -4

--

--

ajlp +4

HORN Release 5

spill reg

--

--

fill reg

Figure 7.6 Two register (de-)allocation schemes

Register file architectures154

In the ajlp-scheme, presented in section7.3, the register cache minimized the traffic to the

larger and hence more energy consuming first level data cache. Data was not moved

repeatedly between the two levels in the memory hierarchy as the spill/fill scheme would

require and minimizing ‘unnecessary’ traffic helps to minimize the energy consumption

and increases performance hence optimizing the energy efficiency, EE. Use of the spill/

fill scheme implies that the first-level data-cache traffic will increase significantly, by as

much as 100%, compared to the scheme presented in section7.3.

7.4.1 The spill/fill scheme

The semantics of the spill/fill instructions are such that a small offset counter is required

to map the register numbers in instructions to addresses in the register file. The offset is

decremented by four for a spill instruction and incremented by four for a fill. The registers

which are allocated following a spill instruction are undefined. A simple way of

implementing this is to consider the 32 local registers as a circular buffer and every spill/

fill instruction marks the four registers (to be spilled/filled) as being “unavailable” and

sets off a spill/fill engine. Program execution can then continue and the four registers will

be spilled-to/filled-from memory at the same time as other instructions execute, assuming

there are ports available on the register file for the spill/fill engine access its operands.

As energy consumption grows linearly with the number of ports in the register file

[VLSI], it is proposed to have only three ports on the register file. Thus, if an instruction

requires access to the two read ports and another instruction completes writing to the

register file, the ‘spill/fill’ engine will have to stall until a register port becomes available.

Here two things can happen:

155 Register file architectures

1. An instruction sequence does not use all three ports to the regis-

ter file all the time and the spill/fill engine will eventually write/

fetch all the data to/from memory.

2. An instruction tries to access a register which is reserved by the

spill/fill engine. The instruction issuing will stall while the spill/

fill completes and resume once the register has been freed by

the engine. Progress is thus ensured.

To implement this a register scoreboard is necessary. Scoreboarding should be based

upon the physical address in the register file rather than on the register number itself, as

the mapping changes continuously. This implies that the scoreboard architecture becomes

complicated. It is not sufficient only to check three references per cycle. It will also be

necessary to ‘reserve1’ four registers while the spill/fill engine should be able to release a

register once it has been spilled/filled, see Figure7.7. Furthermore it will be necessary to

1. i.e. mark them as being used

Offset
Spill: -4
Fill +4

Spill/fill
Engine

Base Address

Free Reg

Src1 Dst

Addr.
Data

To/From D-Cache

Reg

BlockReg

Figure 7.7 Block diagram of register file

@1
@2
@3

Src2

Local regs.Scoreboard

Register file architectures156

‘scoreboard’ the spill/fill engine itself. It will be very complicated to let the spill/fill

engine serve a queue of spill/fill instructions. Hence if a spill or fill instruction is ready to

be issued and the spill/fill engine has not completed a previous spill/fill instruction, the

issuing of the new instruction should be delayed.

In addition, it is possible that there could be a load or store instruction in the shadow after

the spill/fill instruction. This could lead to congestion of the bus to/from the first level data

cache. To prevent this and more complicated scenarios, it is proposed that load/store

instructions should be prevented from issuing until the spill/fill process has completed.

7.4.2 Statistics

Simulations show that when using this spill/fill mechanism, the memory traffic1 might

increase by up to 100% when compared to the ajlp scheme presented in section7.3.

Table7.12 shows how the number of memory references may grow from one memory

reference for every nine instructions to one for every three instructions. The conclusion is

that the spill/fill activity seriously affects the cache reference pattern and increases the

memory traffic significantly. The following sections describe different approaches to the

1. defined as traffic towards the first level data cache

a. The number of spill/fills was determined by counting the number of ajlp instructions in an
instruction trace under a tool generated with the tools for the Version 3 of the HORN architecture.����������	�
���
�������������������������������������
��
���	�	�!�"#	�	$����� ���&%������������('*),+����-��	�	������-�/.�����������01
����&��� ������.���+��/�����

schemes. Relying upon the compiler that came with the introduction of the spill/fill scheme would
not be fair, as it also introduced many other optimizations.

Table 7.12 Memory access statistics

Benchmark instructions spill/fill a ld+st
[V.5 of HORN
architecture]

[V.3 of HORN
architecture]

espresso 7,179,096 129,456 1,260,241 4.04 5.70

flex 10,039,395 166,642 1,878,977 3.94 5.34

hello 67,382 4,089 10,115 2.55 6.66

stcompiler 2,616,691 146,730 292,224 2.98 8.95

Instructions
ld st 4 spill×+ +()

--
Instructions

ld st+()

157 Register file architectures

implementation of the spill/fill architecture, but it is clear that there will be aperformance

degradation compared to the ‘ajlp’ scheme. The different implementations will just limit

the penalty.

The spill/fill architecture implies many more copy operations (between the register file

and the first level data cache) than the earlier memory mapped scheme, see Table7.13.

The two schemes are believed to lead to equivalent cycle times as both will involve adding

an offset to the register numbers. A lookup in a small 128-word direct-mapped cache is

not believed to be significantly slower than a lookup in a 64-word register file. The cache

timing analysis tool Cacti [Wilton] shows a cycle time of 6.02ns for the cache and a

6.01ns cycle time for the register file, a difference of less than 1%.

The number of references to the large first-level data cache goes up in the spill/fill

scheme, but the energy consumption per register reference is clearly lower than if a 128

word cache was accessed. A cache lookup is more energy consuming than a lookup in a

normal register file, due to the overhead of the tag-store, This overhead might be more

than 100%, depending on the size of the cache and number of bits in the tag-store relative

to the size of the normal register file, see Chapter 5.

Given the number of load/store instructions, together with the number of spill/fill and

register file accesses and the size of the data and the register caches, the following ratio

a. Stalled cycles in a 128 word register cache with short
cacheline, 4 words/line, see Tables7.4- 7.7.

Table 7.13 References to the 1st level data cache due to the two schemes

Benchmark
128 word

Register Cachea
4 * #Spill/Fill -

instructions

espresso 1384 517,824

flex 384 666,568

hello 144 16,356

stcompiler 4,416 586,920

Register file architectures158

will be used to assess the most energy consuming architecture:

If the ratio is greater than 1.0 the register cache architecture will consume more energy

than the spill/fill architecture. Note that the expression favours the spill/fill architecture in

that it assumes that the hit-rate in the data cache will be the same for the two architectures.

Simulations have shown that the hit-rate in an 8K-bytes data cache drops from 98.5% to

97.1% for the espresso benchmark when spill/fill references are passed to it as well as the

load- and store instructions. To simplify the expression the energy consumption of read

and write accesses is assumed the same1. ETotal,RegCache and ETotal,Spill/Fill are thus the

sum of the energy consumptions in the different levels of the memory hierarchy for the

two architectures, based upon the number of accesses to each level. The expression for

Ratio is therefore:

In section7.3 the optimal size of the register cache was determined to be 128 words

(512bytes). A reasonable data-cache size is 8Kbyte with lines of 32bytes. As the energy

consumption per request is proportional to the number of ports, see Chapter 5, and the

register cache needs 3 ports while the data cache only needs one, the EDcache/ERegCache

ratio can be approximated to:

1. Chapter 5 has shown the difference.

Ratio
ETotal RegCache,

ETotal Spill/Fill,
------------------------------------=

(EQ 7.11)

Ratio

inst miss wback+() RegCache lsizeRegCache 1
EDcache

ERegCache
---------------------+

 
 
 

ldst
EDcache

ERegCache
--------------------- 

 ×+××+

inst
ERegFile

ERegCache
--------------------- 

 
spillfill 4×

ERegFile

ERegCache

EDcache

ERegCache
---------------------+

 
 
 

ldst
EDcache

ERegCache
--------------------- 

 ×+×+×

---=

(EQ 7.12)

EDcache

ERegCache

E
Cache Read 8Kbytes 32

bytes
line

-------------,,,

3 E×
Cache Read 512bytes 16

bytes
line

-------------,,,

---≅ (EQ 7.13)

159 Register file architectures

Inserting the expressions for ECache,Read from Chapter 5 gives:

Equally for ERegfile/ERegCache:

Where the register file is composed of 32 words (lines) each of 4 bytes.

From the four benchmarks selected statistics have been collected, see Table7.14.

Inserting the results from Table7.14 into Equation7.12 above gives:

Table 7.14 Program statistics collected for four benchmarks

espresso flex hello stcompiler

instructions 7,179,096 10,039,395 67,382 2,616,691

ld/st 1,260,241 1,878977 10,115 292,224

spill/fill 129,456 166,642 4,089 146,730

miss + writeback in a 128
word register cache with 4
words per line

346 96 36 1,104

EDcache

ERegCache
------------------------ 0.73≅

(EQ 7.14)

ERegFile

ERegCache

3 E
RAM Read 128bytes 4

bytes
line

-------------,,,
×

3 E×
Cache Read 512bytes 16

bytes
line

-------------,,,

---≅ (EQ 7.15)

ERegFile

ERegCache
------------------------ 0.29≅ (EQ 7.16)

Ratioespresso
7179096 346 4 1 0.73+() 1260241 0.73×+××+

7179096 0.29 129456 4× 0.73 0.29+() 1260241 0.73×+×+×
-- 0.94= =

(EQ 7.17)

Ratioflex
10039395 96 4 1 0.73+() 1878977 0.73×+××+

10039395 0.29 166642 4× 0.73 0.29+() 1878977 0.73×+×+×
--- 2.30= =

(EQ 7.18)

Register file architectures160

The ratios for stcompiler and flex show that the spill-fill scheme will be less energy

consuming for these benchmarks, even if the hit-rate of the first level data cache decreases

and the energy consumption of the cache increases correspondingly. For the espresso and

hello benchmarks the results indicates that a register cache consumes less energy.

However, analysing the expression for ‘Ratio’ the sensitivity to the number of instructions

is very high, a smalldecrease in the number of instructions willincrease the value of

‘Ratio’. As improved versions of the compiler would be expected to decrease the number

of instructions considerably the ratio for these benchmarks is expected to increase to

beyond 1.0. Consequently the spill-fill scheme is in general less energy consuming than

the ‘ajlp’-scheme.

The performance of spill-fill scheme depends much on its implementation. This will be

assessed in the following sections.

7.4.3 Implementing the spill/fill scheme

When more registers are required, ‘n’ registers are spilled to memory through ‘spill’

instructions and the remaining registers are renamed to give ‘room’ for the new registers.

Similarly, registers can be de-allocated using ‘fill’ instructions. The instructions specify a

register containing a source/destination for the contents of the registers coming into scope

from or going out of scope. The HORN architecture manual [HORNV5] encourages an

Ratiohello
67382 36 4 1 0.73+() 10115 0.73×+××+

67382 0.29 4089 4× 0.73 0.29+() 10115 0.73×+×+×
-- 0.82= =

(EQ 7.19)

Ratiostcompiler
2616691 1104 4 1 0.73+() 292224 0.73×+××+

2616691 0.29 146730 4× 0.73 0.29+() 292224 0.73×+×+×
--- 1.81= =

(EQ 7.20)

161 Register file architectures

implementation to spill and fill to/from a special ‘spill/fill-cache’, which, in many ways,

is similar to the register cache described in section7.3; note however that the ‘active’ set

of registers isnot mapped to memory. A register cache in this architecture is therefore an

extra level in the memory hierarchy as illustrated in Figure7.8

The major difference between the two schemes is that the contents of the new spill/fill

cachemust be coherent with the rest of the memory system. This means that loads from

an address used by a spill have to read the data which was spilled, i.e. the contents of the

spill/fill cache. Similarly the spill/fill cache needs to be updated if a store instruction

writes to an address currently held in the spill/fill cache. Thus the total number of cache

accesses to the storage blocks in the architecture increases significantly as two caches1

need to be accessed for each access.

Load instructions that try to access data which has been spilled, or store instructions that

try to write to an address held in the spill/fill cache are expected to be rare; however the

hardware needs to be able to handle such a situation as the architecture does not provide

ways to synchronize the two caches as was the case in the ‘ajlp’-scheme used in release 3

1. The spill/fill-cache and the data-cache.

Register Cache

Data Cache
Reg from Inst

Ld/st Inst

Register

Data Cache

Ld/St InstReg from Inst

Release 3 Release 5

Figure 7.8 Principle difference between Release 3 and Release 5

File

Spill/Fill
(Register)
Cache

Reg from Inst

Register file architectures162

of the architecture. The architecture, described in section7.3, used a special form of the

ajlp instruction to ensure coherency. The frequency of that instruction type can be used as

an indicator of the need for register-file/memory coherency it suggests that coherency

problem is not significant; it will only appear once per benchmark, at initialization.

Despite this, itis necessary to maintain coherency between the two caches even though

this is not simple to implement. The coherency constraint has been included to make

process swapping simpler.

Despite the performance advantages of separating the spill/fill cache and the first level

data cache, as shown in Figure7.8, the following sections will describe two experiments,

which assume an implementation without the spill/fill cache, see Figure7.9. Based on the

results from these simulations the value of building a separate spill/fill cache will be

extrapolated.

7.4.4 Thr ee ways of implementing the spill/fill scheme

Assuming the architecture presented above, spill and fill instructions can be handled in

several ways. This work has explored three options:

Reg File

Data Cache

Reg from Inst

Figure 7.9 Simulated model

Ld/St
(Spill/Fill)
Inst’s

163 Register file architectures

• Firstly, a scheme where a spill instruction is converted into four store instructions

and an add instruction to update the base register. This implies a severe perform-

ance degradation, high CPI, but yields a simple implementation with a minimum

of ‘special cases’ to be considered. Fill instructions are handled in a similar man-

ner; the fill is converted into four load instructions and a subtract instruction.

• Secondly, a scheme employing a spill/fill engine which works in parallel with the

normal pipeline. This architecture allows the program execution to continue under

some restrictions (to be described later) while the spill/fill goes on in the back-

ground. Some extra hardware will be required but the complexity should be low.

• Thirdly, an optimistic and potentially expensive scheme utilises a separate spill/

fill-cache which ‘catches’ all the spill- and fill instructions and spills or fills four

registers to or from the spill/fill-cache in one cycle while the base register is

updated in parallel.

For the second scheme, problems may occur if precautions are not taken: WaR and RaW

hazards [Patt] could occur as well as congestion of the port to the data cache. Furthermore

the number of ports to the register file may be a restriction as the spill/fill engine will

require a Read/Write port to operate. However, simple restrictions ensure that these

hazards do not occur. Instructions from the following list will stall until the spill/fill

operation has completed:

1. Any instruction which accesses local registers 0 to 3 during a spill

2. Any instruction which accesses local registers 28 to 31 during a fill

3. Any load or store instruction

4. Any spill or fill instruction

It is obvious that a four cycle penalty (the time it takes to complete the first spill/fill

instruction) should be expected when a spill or fill instruction succeeds another.

Register file architectures164

These three models will be investigated in the following sections.

7.4.5 The cache and memory models

The underlying cache model for all the simulation results to be presented later assumes

separate instruction and data caches. The instruction caches are assumed to yield a 100%

hit-rate. The data caches are direct-mapped cache organizations with the following

parameters:

• Total size

• Line size

• Number of cycles for first fetch from off-chip memory

• Number of cycles for successive fetches from off-chip memory

For off-chip references an assumption about the speed of the processor is necessary as

well. For these experiments the cycle time for the processor design is set to 20ns,

equivalent to 50MHz.

A data-sheet for a typical 4Mx1 Toshiba DRAM1 [TOSHIBA] provides the following:

• Random access: 70ns

• Sequential access: 40ns2

• Recovery: 60ns

Conservatively the ‘#cycles for first fetch from off-chip memory’ parameter is set to 4

cycles, the ‘#cycles for recovery following memory reference’ to 2 cycles and the‘#Cycles

for recovery following off-chip references’ to 3 cycles. These numbers will remain the

same for all the simulations.

1. TC514100ASJ/AZ/AFT70
2. Page Access mode.

165 Register file architectures

7.4.6 Results

For each of the models described, simulations have been run for the following data cache

configurations:

• Total size: 4K bytes, 8K bytes, 16K bytes

• Line size: 32 bytes, 64 bytes, 128 bytes

• Latency for first fetch from memory: 4 cycles

• Latency for successive fetches: 2 cycles

• Recovery: 3 cycles

7.4.6.1 Model 1, A conservative scheme

In this model fill and spill instructions are converted into five instructions: four load or

store instructions and an update of the offset into the register file.

The results collected from espresso, flex, stcompiler and cacti are presented in the tables

below. As a model where only one register can be spilled/filled per cycle is assumed, there

is a lower limit for the system performance:

This yields an optimal CPI of 1.0481 for cacti, 1.05 for espresso, 1.17 for flex and 1.22

for stcompiler. These values have to be compared against the CPI values shown in

Tables7.15- 7.18 below, which show that a 4K-byte or a 8K-byte data cache with 32-

byte lines performs very well, i.e close to CPIideal.

Figure 7.10 summarises the relation between cache size and CPI for a cache line

of 32bytes.

1. See Table7.19 for the number of instructions and the number of spill/fill.

CPIIdeal
Inst spill fill+() 4×+

Inst
-- 1 spill fill+() 4×

Inst
--+= = (EQ 7.21)

Register file architectures166

Table 7.15 Data cache simulations, cacti - CPIideal=1.048

Cache
size 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes

Line
size
[bytes]

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

32 99.8 1.049 100 1.049 100 1.049 100 1.049 100 1.049

64 99.8 1.049 100 1.049 100 1.049 100 1.049 100 1.049

128 99.0 1.055 99.2 1.052 99.2 1.052 100 1.049 100 1.049

Table 7.16 Data cache simulations, espresso - CPIideal=1.05

Cache
size 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes

Line
size
[bytes]

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

32 93.6 1.147 95.6 1.115 97.6 1.084 99.4 1.058 100 1.057

64 87.2 1.463 94.2 1.169 96.8 1.107 99.5 1.060 100 1.050

128 83.8 2.258 91.9 1.492 95.6 1.247 99.2 1.073 100 1.050

Table 7.17 Data cache simulations, flex - CPIideal=1.17

Cache
size 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes

Line
size
[bytes]

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

32 94.0 1.297 95.8 1.256 97.6 1.223 99.3 1.189 99.7 1.181

64 93.7 1.397 95.6 1.309 97.7 1.235 99.2 1.194 99.7 1.183

128 91.8 1.788 94.1 1.537 97.6 1.233 99.1 1.221 99.7 1.191

Table 7.18 Data cache simulations, stcompiler - CPIideal=1.22

Cache
size 2K bytes 4K bytes 8K bytes 16K bytes 32K bytes

Line
size
[bytes]

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

Hit
Rate
[%] CPI

32 93.5 1.342 95.4 1.308 98.4 1.255 99.2 1.224 99.4 1.219

64 92.9 1.418 94.6 1.366 98.1 1.268 99.2 1.246 99.4 1.242

128 90.9 1.831 93.4 1.646 97.6 1.337 99.0 1.287 99.2 1.280

167 Register file architectures

7.4.6.2 Model 2, A spill/fill engine

The performance of the architecture employing a spill/fill engine is given by the distance

between the spill/fill instruction and the first instruction mentioned in the list in

section7.4.4. The shorter the distance, the more cycles the ‘normal’ instruction flow has

a. Format: MI: Millions of Instructions, MSF: Millions of Spills and Fills

Table 7.19 Distance between spill/fill and first ld/st/spill/fill

Distance

Distribution [%]

cacti
(18.9MI/

0.23MSFa)

espresso
(4.8MI/

0.06MSF)

flex
(10.7MI/
0.46MSF)

stcompiler
(1.87MI/
0.11MSF)

1 11.0 36.4 45.0 25.9

2 1.0 9.9 21.0 10.2

3 1.8 5.6 1.7 16.6

4 1.3 22.4 4.2 9.2

5 2.9 6.9 8.0 3.5

>5 82.0 18.8 20.1 34.6

CPIideal 1.001 1.03 1.11 1.10

CPI16K,32bytes/line 1.001 1.059 1.153 1.115

Figure 7.10 CPI vs. Cache size, Model 1

Register file architectures168

to be stalled. Table7.19 shows the distribution of distances between a spill/fill instruction

and the instructions mentioned earlier. Distance 1 means successive spill/fill instructions

or a spill/fill immediately followed by a load or a store instruction. As one of the

assumptions is that only one spill or fill can be handled at a time, this class of sequences

imply the full penalty, four cycles, is taken by the first of any two consecutive spill or fill

instructions. It is thereby assumed that the register update will take place in parallel with

one of the spills/fills. In the case of Distance = 2 the penalty is reduced to three cycles.

Distance = 3 implies a penalty of two cycles etc. Assuming a 100% hit-rate in the data-

cache and based on these numbers the ideal CPI-values can be calculated as:

The values for CPIideal for the four benchmarks are shown in Table7.19 together with the

CPI values obtained with a 16K-byte data cache using the model discussed in the previous

section. The results shows an improvement for most of the benchmarks compared to the

scheme presented in section7.4.6.1. These numbers do not allow for the normal ‘loss’ in

performance due to the instruction cache having a hit-rate of less than 100%. From

Table7.19 it can be seen that data-cache misses from loads and stores alone degrade the

performance by only 0.1% for Cacti, 3% for Espresso, 11% for Flex and 10% for

stcompiler.

The number and the sequence of requests to the instruction cache will remain the same as

under model 1, so it can be assumed that the same hit-rate can/will be obtained. Based on

this assumption and the results from model 1; a better estimate for the CPI under this

model can be calculated. The cycle count will be less than under model1 dependent on

the distance from a spill/fill instruction to the next memory referencing instruction:

CPIideal 1 P Spillfill() P 1() 4 P 2() 3 P 3() 2 P 4()+×+×+×()+= (EQ 7.22)

(EQ 7.23)CPI CPImodel1
nbSpillFill

nbInst
----------------------------- P 2() 2 P 3() 3 P 4() 4 P 5≥()×+×+×+()×–=

169 Register file architectures

The results for a 16K-byte data cache with 32-byte cache lines are shown in Table7.19.

As compiler technology improves, it is expected that the number of spills and fills will

decrease. In particular a significant decrease in cases where multiple spills/fills are

required, due to better register allocation techniques would be expected. That will reduce

the “Distance = 1” percentage significantly and thereby increase the value of a separate

Spill/Fill Engine.

7.4.6.3 Model 3, A spill/fill cache

A third implementation of the architecture has been modelled so that the effect of a

separate spill/fill cache can also be observed. This model assumes that all spills and fills

are passed to a separate spill/fill-cache which yields a 100% hit-rate and which is special

in that 4 words can be read from/written to simultaneously. These assumptions may seem

optimistic or unjustified, but simulations have indicated that such a cache does not need

to be very large (256 words) to be ‘self-sufficient’ after compulsory misses have been met

and should therefore not put pressure on the rest of the memory hierarchy. Furthermore,

it has been observed that a load or store instruction never accesses the addresses kept in

the spill/fill-cache and vice versa.Table7.20 shows the results of running simulations and

a.Line size = 32 bytes

Table 7.20 Hit-rate in data cachea and CPI assuming a separate spill/fill cache

Cache
Size

[bytes]

cacti espresso flex stcompiler

18.9MI/1.1MR 4.8MI/ 1.4MR 10.7MI/2.5MR 1.87MI/0.3MR

Hit Rate
[%] CPI

Hit Rate
[%] CPI

Hit Rate
[%] CPI

Hit Rate
[%] CPI

2K 99.8 1.001 93.9 1.079 92.8 1.082 92.3 1.054

4K 99.9 1.000 95.8 1.053 95.4 1.049 95.1 1.033

8K 100.0 1.000 97.4 1.032 97.5 1.025 97.0 1.020

16K 100.0 1.000 99.5 1.007 99.0 1.009 98.2 1.012

32K 100.0 1.000 99.9 1.001 99.5 1.004 98.8 1.008

Register file architectures170

not passing the spill/fill entries to the D-cache. Associated with the name of the

benchmark are two numbers ‘x’MI / ‘y’MR, where ‘MI’ means Millions of Instructions

and ‘MR’ means Millions of data cache References. As it shown, espresso is the most

memory intensive program in that the ratio ‘x/y’ is only 3 while it is 17 for cacti. Note that

MR has nothing to do with ‘MSF’ mentioned in Table7.19. The number of references to

the data cache is significantly lower using this model than under the two other models

explored above, as the spill/fill references have been removed.Figure 7.11 presents the

data from Table7.20 in a graphical form.

Although the optimal data-cache size is still 16Kbytes (as it was for Models 1&2), a

comparable performance can be obtained with a much smaller data-cache, for example

4K bytes. If the assumptions about a ‘close to’ 100% hit-rate in the spill/fill-cache and no

coherency problems hold, then Model 3 is therefore more energy efficient than any of the

others given a fixed performance requirement.

It may therefore be desirable to build a 4Kbytes data-cache and a 1Kbytes spill/fill-

cache, which ‘in total’ is smaller than one 16Kbytes data-cache serving all the types of

Figure 7.11 CPI vs. data cache size, 32 bytes/line, Model 3

171 Register file architectures

memory requests. The disadvantage of this is that, although coherency problems have

never been encountered, hardwarehas to be provided to detect and handle such problems,

for the reasons listed in sections7.4.6.1and7.4.6.2.

To obtain the highest possible performance, a special spill/fill cache needs to be able to

handle requests for 4 words in one cycle. This is relatively simple to implement as one

cache line could simply be 4 words wide (16bytes) making the access to the cache very

simple and fast. Assuming that the data is aligned on a 16-byte boundary, the data cache

can be accessed through a block-buffer, see section5.8 on page100 and Chapter 9.

As for energy consumption, a separate spill/fill-cache is likely to address only a very

restricted area of the total address space. Many of the tags present in the cache are

therefore likely to be the same. Chapter 5has suggested cache architectures, sectored

caching and CAT-caching, which will reduce the energy consumption of such caches by

exploiting the high degree of locality.

7.4.7 Summary

The spill/fill architecture replaced the ajlp-architecture to make the porting of operating

systems easier. Section7.4 has examined the spill/fill architecture and compared it to the

ajlp-architecture described in the previous section. The spill/fill scheme does not perform

as well as the ajlp-scheme due to the increased number of instructions and the increased

number of accesses to the 1st-level data cache. Furthermore, it is in general more energy

consuming than the ‘ajlp’-architecture, see section7.4.2. Consequently is it not as energy

efficient as the ajlp-scheme either. Section7.4.6.3 presented the most energy-efficient

way of implementing the spill/fill scheme, a separate spill/fill cache.

Register file architectures172

7.5 Register windows (SPARC)

The architectures described above are in some ways equivalent to that of SPARC

[Weaver]. The SPARC architecture specifies eight global registers and 24 local registers

arranged in an overlapping configuration. A SPARC register file might contain many

register windows, but only one will be active at any given instant during execution.

Changing a register window is a side-effect of calling/returning-from a subroutine. The

configuration is shown in Figure7.12. An implementation of the SPARC architecture is

free to implement as many register windows as desired for the performance target. If a

program requires more register windows than available, the operating system is invoked

and more windows are allocated by spilling early register windows to memory.

This means that if a program has a deep call tree, there is a high probability that the

operating system needs to be invoked regularly to allocate more register windows and

similarly later to restore them. Invoking the operating system is time consuming as it

typically includes saving and restoring some of the state of the processor, implying a

Local1

Out1/In2

Local2

Out2/In3

Local3

Out3/In4

Local4

W
indow

2
W

indow
3

n overlapping
registers

local
registers

Figure 7.12 Principle of overlapping register windows in SPARC

173 Register file architectures

degradation of performance, and consequently represents an overhead to the execution

time. To assess the timing implications of invoking the operating system the following

program was written and run on a SPARC-5 workstation:

Figure 7.13 shows that the execution time does not increase significantly as the recursion

depth increases from one to five but there is a significant overhead going from a depth of

five to six and beyond. This indicates that the SPARC-5 has 7 overlapping windows;

indicating a total of 128 registers.1

1. 8 global registers + “number of windows” * 16 registers + 8 registers.

void proc(int N)
{

if (N > 0)
proc(N-1);

}
void main(int argc, char *argv[])
{

int index;
for (index = 0; index < 10000; index++)

proc(atoi(argv[1]));
}

Figure 7.13 Execution time versus recursion depth on a SPARC station 5

Register file architectures174

An approach to minimize this overhead is to let the compiler know how many register

windows are available; it may be able to in-line function calls and thereby minimize the

risk of overflowing the register file.

Comparing the energy consumption of a system with a 128-word register file and a system

with a 128-word register cache is not simple. The 128-word register file should be less

energy consuming given that it contains less storage1. In terms of access time the two are

comparable2. However, the register window scheme is clearly not as flexible as the two

schemes presented in sections7.3 and7.4 and is therefore expected to cause more

memory traffic implying higher energy consumption.

The earlier schemes allow a finer grain use of the register file since register windows can

overlap by multiples of four registers, whereas the SPARC architecture specifies a fixed

overlap of eight registers. [Mulder]shows that for performance the optimal organization

of the overlapping register file with 32 active registers is 8 global, 8 local and 8

overlapping registers (see Figure7.12) as implemented in SPARC. [Mulder] shows that

a performance penalty of 15% is encountered if the configuration is changed to 8 global,

16 local and 4 overlapping registers, due to the extra load/store instructions which would

be required to save and restore registers. However, that work assumed a fixed

organization with a fixed number of overlapping registers; i.e. a scheme which is not as

flexible as the HORN scheme, described in section7.3.

The fact that register spilling/filling is a side effect of the call/return instructions in the

SPARC architecture has a dramatic impact on the number of instructions to be issued and

thereby on the performance of the system. Chapter 5has shown that calling a subroutine

1. Register file: 128 registers each 32 bit: = 4096 bits
Register cache: 128 registers each 32 bits + 16 tags each 24 bits = 4480 bits
2. The access time to the cache is dominated by the access time to the data storage rather than the
tag storage.

175 Register file architectures

requires two instructions in the HORN-architecture while it requires only one instruction

in the SPARC instruction set. Furthermore the HORN architecture would normally insert

one or two spill or fill instructions to (de-)allocate registers. In total this means that the

HORN-architecture needs to execute four instructions for the same functionality as the

‘call’- or ‘return’-instructions in a SPARC-architecture.

The general expression for this overhead is:

Where ‘#spill’ and ‘#fill’ denote the number of spill- and fill-instructions in the code.

‘#leaplink’ is the number of ‘calls-to’ plus the number of ‘returns-from’ subroutines/

functions.

Note that with every leaplink-instruction there is a ‘go’-class instruction; the overhead, in

terms of instruction count, is ‘number-of-leaplink instructions’. Spill and fill instructions

are pure overhead as they would be side effects of a ‘call’ or ‘rtn’ instruction in the

SPARC instruction set.

Table7.21 shows the instruction overhead of the HORN-architecture scheme compared

to the ‘conventional’ SPARC architecture scheme described above. As the table shows

there is a significant, 5.45%, instruction overhead associated with the HORN-register file

architecture. This overhead will translate into decreasing performance. However, it is not

possible to quantify this decrease as it will depend on whether the ‘number of register

windows’ contained in the SPARC register file is sufficient, or if the operating system

needs to be invoked as described above.

If the operating system doesnot need to be invoked, the instruction count overhead

calculated in Table7.21 will translate directly into a performance degradation. However,

Overhead
#spill #fill #leaplink+ +

#instructions
-- 100%×= (EQ 7.24)

Register file architectures176

if there is an insufficient number of register windows and the operating system does need

to be invoked, it carries a significant penalty. The gradients of the two parts of the curve

in Figure 7.13 show that it takes approximately 18 times longer to allocate registers once

all the register windows have been used. The number and frequency of register file

overflows varies from benchmark to benchmark.

Statistics collected with the SHADE tools [Shade], see Table7.22, show that the number

of register file overflows is small for the benchmarks examined. The implication of the

increased time to allocate registers will have very little impact on the overall execution

time.

For applications where constant throughput is important it is clear that the SPARC

architecture has disadvantages for scalable problems where the number of overflows

increases with the parameters. The spill/fill architecture might therefore be desirable

when constant throughput is more important than peak-performance as a given problem

scales.

a. Note that these instruction count and spill/fill numbers are significantly lower that those pre-
sented in Table7.12 and elsewhere in section7.4. This is due to compiler technology improve-
ments between the releases for version 3 and version 5 of the HORN architecture.

Table 7.21 Instruction overhead with the spill/fill scheme

cacti dhry espresso flex hello stcompiler Aver
Instructionsa 18,921,879 686,059 4,703,874 10,685,992 51,366 1,873,152

#Call/Return 277,473 13,490 38,687 145,110 952 51,327

#Spill+#Fill 262,557 27,971 65,692 473,075 3,013 110,064

Overhead [%] 2.85 5.50 2.22 5.79 7.72 8.62 5.45

Table 7.22 Overflows in SPARC register file

cacti dhry espresso fft flex hello

Instructions 14,291,743 8,740,025 5,543,933 42,586,229 5,967,239 242,555

Call/jmpl 508,671 673,218 99,899 772,648 159,851 16,374

Overflows 120 55 274 58 74 28

0.02 0.01 0.27 0.01 0.05 0.17
Overflow
Call/jmpl
----------------------- 100%×

177 Register file architectures

7.6 Summary

This chapter has presented a number of register file architectures and evaluated them in

an energy efficiency perspective. The study has shown that a register cache is very energy

efficient and dependent on the compiler may also outperform than the alternative, spill/

fill architecture.

Section7.2 showed how extra local storage, organized as a queue, improves both

performance and energy efficiency.

Section7.3 presented a register file architecture based on the ‘ajlp’ scheme. The results

indicated that a very small cache (128 words if optimizing for performance, 64 words if

optimizing for energy efficiency) ensures almost no traffic between the register cache and

the first level data cache. However, each register reference consumes much more energy

under this scheme than if the instructions accessed a conventional 32 word register file.

Section7.4 presented an alternative to the ajlp-architecture based on two instructions:

spill and fill. The section proposed three ways of implementing the spill/fill mechanisms.

Model 2, the spill-fill engine yields a significant performance increase compared to the

conservative scheme presented as Model 1, but without the complexity overhead required

by Model 3. Also, Model 2 has the advantage that improvements in the compiler

technology will almost certainly improve the performance, which is not necessarily the

case for Model 3.

It is therefore not obvious which model is the most energy efficient. It will be necessary

to evaluate the cost in terms of the extra hardware required to implement Model 2 and as

mentioned, it is very likely that an extra port on the register file will be required. A slightly

larger register file (32 + 4) might be desirable as it will allow the spilling to be done in the

Register file architectures178

background. The resulting configuration may consume as much energy as the separate

Spill/Fill cache presented as Model 3.

Section7.4.2 presented results indicating that the spill/fill architecture is not more energy

consuming than a register cache. However, the register cache yields the best performance.

Overall, the energy efficiency of the register cache is better than the architectures

presented in section7.4.

The energy efficiency of the SPARC style architecture described in section7.5 is very

dependent on the ‘performance’ of the compiler. If the compiler can keep the number of

‘window’ overflows at a minimum, the data cache need not be accessed very often, and

the energy consumption of the register file is therefore comparable to that of the register

cache presented in section7.3. Given the smaller semantic content of the HORN-

instruction set, the instruction count, and thereby the execution time, is favouring the

SPARC architecture; so the energy efficiency of the SPARC-architecture might be better

than that of the HORN-architecture. However, if the SPARC register file ‘overflows’ the

performance penalty is more severe than that for any of the HORN architectures as a trap

would normally be generated and the operating system invoked. In those cases the

SPARC register file isnot considered as energy efficient as the two architectures proposed

in sections7.3and7.4. Table7.13 showed that register file overflows do not happen very

frequently.

Instruction fetching179

Chapter 8 Instruction fetching

When specifying a processor architecture one of the most fundamental decisions which

must be taken is the instruction set architecture. Following the introduction of the RISC

concept in the early 1980’s [Patt], processor designs have been classified as either RISC

or CISC, see e.g. [Robin]. This chapter describes existing instruction formats and

evaluates the effect the variable-size instruction format described in the HORN

architecture has on the performance of the instruction cache. Furthermore the chapter

presents three instruction fetch mechanisms which address the issue of instructions

straddling cache lines and thus improves the energy efficiency of the instruction cache.

Section8.1 is an introduction to instruction formats in existing processors and their

implications for the rest of the processor architecture. The section describes how

instructions can straddle cache lines in CISC processors and how some Multi-Instruction-

Issue RISC processor architectures have been defined to avoid multiple cache accesses to

assemble instruction packets.

Section8.2 presents statistics collected as a part of this study which justify the use of

variable-size instructions as a way to improve both performance and energy efficiency of

the instruction cache and hence of the processor system.

Section8.3 presents three cache architectures which improve both the performance and

energy efficiency of a RISC design with variable-size instructions. The novel architecture

described in section8.3.3 provides a simple, energy efficient way of virtually eliminating

the performance penalties associated with variable-size instructions.

Instruction fetching180

8.1 Introduction

RISC instruction sets are characterized by few instruction formats. Operands for

arithmetic and logical instructions are always kept in registers while only load and store

instructions access data in main memory. CISC instruction sets, however, typically

specify numerous instruction formats and operands for instructions may be fetched from

the register file or from memory.

These differences imply that the semantic contents of the instructions in the two classes

of architectures are very different. Consequently, a RISC program will typically contain

more instructions than the corresponding CISC program.

There are processor architectures which are not easy to classify as either RISC or CISC.

For example, the Hobbit architecture [Avgade] retains most characteristics of a RISC, but

specifies variable-size instructions, where the size is dictated by the semantic content of

the instruction. In contrast, the Intel i960 [Wharton] specifies fixed size 4-byte

instructions1, but retains all the characteristics of a CISC: a large number of instructions,

addressing modes and primitive data types.

Due to their simple instruction formats RISC architectures are typically simpler to

implement than CISC architectures. It is especially simple to pipeline an implementation

of a RISC architecture, while it may be more complicated for CISC. Consequently, RISCs

typically have shorter cycle times and thus yield completion times which are comparable

or shorter than those of CISC processors, despite a higher number of instructions

[Johnson]. Furthermore, the performance of CISC processors does not increase as fast

with the semiconductor technology as that of RISC designs [Segar].

1. Certain instructions may specify a second word containing constants

Instruction fetching181

In RISCs the single instruction size is typically the size of the data bus. Simple encoding

makes the decoding simple and modular. The uniform instruction size makes the size of

programs relatively large; even simple instructions such as ‘movR1,#1’ will require the

same storage as more complicated instructions such as ‘addR1,R2,R3’.

In contrast, CISC instructions are usually of variable sizes. Instruction size depends on the

semantic content and varies significantly. For example, the 68000 instructions [Robin]

vary in size from 1 to 5 words1 requiring multiple accesses to the memory hierarchy

before an entire instruction can be composed.

CISC processors often make use of micro programming, where the conventional user-

provided codes are re-coded into sequences of micro-instructions. Some implementations

pipeline the execution of the microcode [Johnson], allowing the fetching of the instruction

to be broken into multiple cycles and the words for a given instruction are therefore only

fetched when required. This can result in long pipelines and very high CPI values as the

next instruction can be issued only once it is clear where it starts; i.e. when the size of the

previous instruction has been determined.

Implementations of modern 64-bit RISC architectures such as the DEC Alpha and the

IBM PowerPC601 [Case2] issue multiple instructions simultaneously. The DEC Alpha

architecture also specifies that instruction packets must be aligned at 8-byte boundaries

for an implementation to yield the optimal performance. Traps are generated if an

instruction packet is not properly aligned [DEC21064] thus, although valid programs

might be written composed of instruction packets which straddle cache lines, the

performance of such programs is significantly reduced relative to an equivalent program

with properly aligned instruction packets. In ‘well-assembled’ programs, instruction

1. a word being defined as the size of the data bus.

Instruction fetching182

packets to be issued do not straddle cache line boundaries. Branch instructions may target

an instruction in the middle of a packet. This will cause the entire word-aligned packet of

instructions to be fetched, but only the instruction following the branch target will be

issued. Consequently the following packet of instructions is properly aligned, see

Figure 8.1. Similarly ARM has introduced the Thumb-format [Segar] where two 16-bit

instructions are packed into a 32-bit word. A Thumb code fragment is guaranteed to

contain an even number of instructions.

The HORN-architecture, which forms the basis of the work described in this thesis,

cannot easily be characterized as either RISC or CISC. It retains most of the

characteristics of a simple RISC in that all operations operate on registers; other parts of

the memory hierarchy are only accessed through dedicated load/store-type instructions.

Conversely, the architecture differs from a traditional RISC architecture in that its

instructions have variable sizes, see Chapter 3. Instructions can be 1, 2, 3 or 4 bytes i.e

less than or equal to the size of the 32 bit1 data bus. There are no constraints on how

instructions are aligned with respect to word boundaries; instructions may therefore

1. The HORN architecture specifies a 64 bit databus, but as discussed in Chapter 3 this thesis con-
siders it a 32-bit processor

Inst1 Inst2

Inst3 Inst4
Inst5 Inst6

Inst7 Inst8
Inst9 Inst10

Inst11 Inst12

NOP Inst8

Inst9 Inst10

Inst11 Inst12

Branch
Target

x0000:
x0010:

x0110:

x1000:

x1010:

x0100:
x0110:

x1000:

x1010:

Sequential Execution Execution from branch target

Figure 8.1 Branch to a non-aligned instruction

Memory
address

Memory
address

Instruction fetching183

straddle cache lines. Furthermore, as the size of the opcode field varies between 6 and 10

bits, even the opcode may be split across two cachelines.

Instructions which straddle cache lines are not a significant problem for the Hobbit

processor [Avgade], where instructions can be of 2, 6 or 10 bytes. More than 80% [Slater]

of instructions are of the smallest, 2-byte, format which can always be fetched in one

cycle, given any sensible cache line size. Furthermore, the operands for the larger

instructions are typically fetched from memory. Due to the sequential process of fetching

the data operands for these larger instructions their performance is reduced. The

importance of fetching a full instruction per cycle is reduced as well [Avgade].

8.2 Variable-size instructions in the HORN architecture

The HORN instruction format differs from that normally associated with a RISC

architecture. There are few restrictions on the size or ordering of instructions and an

instruction may therefore straddle cache lines. For example, the first byte of an instruction

may be in one cache line while the remaining bytes are in another. This would normally

require two accesses to the instruction cache and a cross-bar network to compose the

instruction, with a consequent negative effect on both performance and energy

consumption. The number of instructions which would require two cache accesses is a

function of the instruction sizes and of the length of the instruction cache lines. The

architecture specifies that the variable-size instructions should not affect the instruction

flow/performance.

Table 8.1 shows the average instruction size for the programs in the benchmark suite. The

average instruction size is approximately 3 bytes implying 10 instructions per cache line

Instruction fetching184

of size 32 bytes. Hence every 10th or 11th1 instruction may require two cache lookups i.e

a 10% degradation in performance relative to a format where such problems do not arise.

The results in Table8.2, however, show that in practice instructions straddle cache lines

less frequently. The results for a 32-byte cache line show that, on average, only 6.65% of

instructions cross cache line boundaries. This difference is due to short basic blocks: non-

broken sequences of instructions which branch before crossing the cache line boundary.

Only cacti is significantly different; as explained in Chapter 4, this benchmark is

characterized by very long basic blocks and is therefore expected to encounter the

problem more frequently.

Table8.2 shows that the frequency of instructions straddling cache lines is very sensitive

to the size of the cache line. This suggests that cache line should be made as long as

possible. However, Chapter 5 has shown that the energy consumption of a cache is also

sensitive to the line size. There is a trade-off to be made.

Taking an energy efficiency perspective, the ‘double accesses’ are doubly degrading in

that they both increase the number of energy-consuming cache accesses, and also reduce

performance as the number of cycles for a program to execute is increased with the

1. corresponding to 10% or 9% of all instructions.

Table 8.1 Average instruction sizes for the benchmarks

Benchmark
Average instruction size

[bytes]

cacti 3.45

dhry 3.15

espresso 2.93

fft 3.10

flex 3.06

hello 3.11

stcompiler 3.05

Average 3.12

Instruction fetching185

resulting effect on energy consumption. The EE of the cache design is therefore

significantly lower than if instructions could not straddle cache line boundaries, 12%

lower for a 32-byte cache line:

As the cache-line size increases, the miss rate decreases but past a certain point the

decrease in miss-rate is insufficient to compensate for the increase in I/O traffic caused by

the longer cache lines. Furthermore, the energy consumption per access increases with the

line size, see Chapter 5. Choosing long cache lines merely because they reduce the

problem of instructions straddling cache line boundaries may not be an energy efficient

strategy.

The reasoning above suggests that the use of variable-size instructions is not an energy

efficient strategy. Table8.3, however, shows that the miss-rate in the instruction cache is

reduced, and the performance consequently improved, when a program is compiled for

variable-size instructions rather than for the conventional 4-byte RISC style. For six of the

benchmarks the variable-size instructions reduce the overall miss-rate in the instruction

cache despite increasing the number of references to the cache caused by instructions

Table 8.2 Percentage of instructions which straddle cache line boundaries

Benchmark

Cache line size

16 bytes 32 bytes 64 bytes

cacti 15.0 8.94 4.62

dhry 14.4 6.92 3.02

espresso 13.4 6.57 3.36

fft 12.8 5.50 2.13

flex 12.0 6.71 3.40

hello 13.6 5.72 3.40

stcompiler 12.5 6.20 2.29

Average 13.4 6.65 3.17

EE
1

ETotal time×
-------------------------------- 1

1.0665ETotal 0,() 1.0665time0()×
--- 0.88EE0= = = (EQ 8.1)

Instruction fetching186

which straddle cache lines. For the dhry benchmark, however, the increase in instruction

cache references and the cache reference pattern change so much that the miss-rate for the

4-byte instruction format is lower than that for the variable-size instruction format.

Eliminating or reducing the penalties of instructions straddling cache lines will lead to an

improvement in energy efficiency due to reduced execution time. The following section

will describe architectures which reduce the performance penalty significantlyand reduce

the number of cache accesses; i.e. architectures which will reduce both the energy

consumption and the execution time; thus improve the energy efficiency of the entire

processor system.

8.3 Instruction fetch mechanisms

Section8.2 showed that reducing the size of instructions improves the hit rate of the

instruction cache, but Table8.2 and Equation 8.1 showed that the number of cache

references increases and the energy efficiency decreases due to the double accesses that

are required for the instructions which straddle cache lines.

Furthermore it is important to remember that, although the instances of instructions

straddling cache lines may be infrequent (for long cache lines), the implementation must

a.Cache parameters: 8K bytes, 32-byte cache lines, 2-way
set-associative, random replacement.

Table 8.3 Instruction cache miss rate for 4 byte- and variable-size instructions.

Benchmark

Miss Ratea

[%] Improvement

4 byte Inst Var Size Inst [%]

cacti 1.9 1.4 26.3

dhry 0.88 1.3 -80.7

espresso 0.94 0.77 13.5

fft 0.60 0.33 45.0

flex 0.84 0.35 58.3

hello 4.20 2.94 30.0

stcompiler 3.25 1.64 49.5

.

Instruction fetching187

accommodate this type of access. Three instruction cache architectures have therefore

been proposed and analyzed to reduce or eliminate the disadvantages of variable-size

instruction while retaining the advantages of improved hit rate.

8.3.1 The alignment architecture

The first architecture explored is shown in Figure8.2, here n-bytes are fetched into a m-

byte circular buffer, where m > n. The n:m cross-bar facilitates the insertion of n-bytes

from the cache line into any position in the circular buffer. The instruction fetch engine

then fetches instructions from the head of the circular buffer through a head-pointer; while

keeping track of the size of instructions it can fetch complete instructions from any

position in the buffer. A tail-pointer indicates the last valid byte in the buffer. When the

difference between the head-pointer and the tail-pointer is ‘small’1 the succeeding n-bytes

should be fetched from the cache and inserted into the buffer at the position specified by

the tail pointer. This will overwrite some parts of data from preceding words dependent

on the values of ‘m’ and ‘n’, see Figure8.3. Besides providing a solution to the issue of

1. to be quantified later

Figure 8.2 The alignment architecture

Instruction Cache

n:m cross-bar

m-byte circular buffer

four m:1 multiplexers

Instruction

n-bytes

m-bytes

4-bytes

Instruction

Size

Address

Control

Control

Xbar:

Mux:

PC

Fetch
Engine

Instruction fetching188

cache-line straddling instructions, the number of energy consuming accesses to the cache

is reduced; the cache can also be made simpler by omitting the output multiplexer if the

contents of the entire cache line is fed directly into the input cross bar structure, see

Figure8.2. However, if ‘n’ is less than the line size of the cache, some level of

multiplexing is required.

To determine ‘n’ and ‘m’, the worst-case scenario must be considered. The structure has

been introduced to ensure a high issue rate; i.e. the number of instructions causing two

cache accesses is reduced as much as possible. The worst-case scenario is where three

bytes of a four-byte instruction are left in the buffer, lacking the last byte before it can be

issued. The circular buffer therefore needs to ensure that the three bytes remain in the

buffer while the succeeding ‘n’-bytes are brought in from the cache. The following

relation must therefore be satisfied:

Figure 8.3 Principle operation of 11 byte circular buffer

�����

�����
�����

�����

�����

�����

�����

�����

�����

Head

Tail

Head

Tail

Head

Tail
1st byte in word

2nd byte in word

5th byte in word

6th byte in word

8th byte in word

No room for next word Fetched word inserted in
a circular way

New Tail

In
st

ru
ct

io
n

In
st

ru
ct

io
n

In
st

ru
ct

io
n

�

=Inst =Empty or inst. already issued = Byte just fetched

m n 3+≥ (EQ 8.2)

Instruction fetching189

To limit the amount of overfetching the difference should be kept at as low as possible i.e:

The results presented in section8.2 showed that basic blocks are rarely as long as 32

bytes, which indicates that ‘n’ should be kept relatively small. Large values of ‘n’ will

reduce the number of energy-consuming fetches from the cache but will make the cross-

bar more complex. Moreover, the larger ‘n’ the greater the probability of overfetching; i.e

that a control transfer instruction will force the m-byte register to be flushed before all the

bytes in it have been used.

Given this architecture, two cache lookups for a single instruction will be required only

when the target instruction of a CTI straddles two cache lines. Simulation shows that the

number of instructions requiring two cache accesses can be reduced dramatically.

Table8.4 shows the percentage of instructions which require two cache accesses to be

composed, for different line sizes in the instruction cache, assuming n= line size.

Comparing these numbers to those in Table8.2 it is clear that the performance penalty of

variable-size instructions has been reduced significantly by introducing thisalignment

architecture. The performance penalty associated with variable-size instructions has been

reduced from 6.7% to less than 0.5% for a 32-byte cache line. Furthermore it removes the

performance incentive to build long cache lines which are energy consuming.

As shown in Chapter 5 the reduction in cache accesses translates into a reduction in

energy consumption of the cache, as the energy consumed is proportional to the number

of accesses. However, controlling and maintaining the structure with its cross-bars and

finite state machines will be energy consuming.

From an implementation perspective, the choice of ‘n’ is between four bytes (a word) or

the size of a cache line (16, 32 or 64 bytes). Table8.5 shows the number of fetches from

m n 3+= (EQ 8.3)

Instruction fetching190

the instruction cache into the structure for different values of ‘n’1, see Figure8.2. The

number of requests to the cache is reduced significantly when an entire cache line is

fetched into the structure rather than just 4 bytes. Fetching 16 bytes, or more, at a time

reduces the number of requests to the cache by at least 70%. However, there is a trade-off

to be made; as ‘m’, and thereby the cache-line size, increases, so does the amount of

external memory traffic from the cache.

Evaluating the cycle-time of this architecture is difficult, without reference to a detailed

design. Fetching an instruction which is fully contained within the buffer is expected to

1. m= n + 3

a.

Table 8.4 Percentage of instructions which require two cache accesses

Cache line size

Benchmark 16 bytes 32 bytes 64 bytes

cacti 0.57 0.47 0.06

dhry 0.17 0.01 0.002

espresso 0.50 0.31 0.15

fft 0.52 0.32 0.21

flex 2.10 1.31 0.46

hello 2.43 0.57 0.19

stcompiler 1.30 0.39 0.20

Average 1.08 0.48 0.21

Table 8.5 Number of fetches from instruction cache into alignment structure

Quantity fetched into Alignment structure

Benchmark Inst

n=4 bytes n=16 bytes n=32 bytes n= 64 bytes

Fetch Ra Fetch R Fetch R Fetch R

cacti 18,852,828 17,157,588 9 5,370,467 72 3,460,167 82 2,336,587 88

dhry 688,173 598,134 13 211,585 69 144,929 79 107,785 84

espresso 4,630,599 3,874,383 16 1,361,445 71 928,084 80 707,870 87

fft 1,104,931 912,559 17 287,090 74 181,509 84 117,849 89

flex 10,688,269 9,169,008 14 3,326,011 69 2,407,401 77 1,858,854 83

hello 52,175 45,060 14 15,989 69 10,695 80 8,904 83

stcompiler 1,865,924 1,614,804 13 593,979 68 428,284 77 332,242 82

Average 14 70 80 85

R
Inst Fetches–

Inst
------------------------------------ 100%×=

Instruction fetching191

be fast; if, however, it is necessary to fetch a second word from the cache, there is a

significant timing overhead in fetching the word and passing it through the cross bar

before the full instruction can be fetched through the multiplexers.

The energy consumption of the structure is equally difficult to assess. As shown in

Table8.5 there is a significant reduction in the number of requests to the cache and as the

cache normally consumes a significant percentage of the power budget, see Chapter 2, this

should yield some reduction in the total power budget. The energy consumption in the

alignment structure is not negligible however. The m-byte storage block cannot be an

integral part of the cache storage as it is controlled by instruction fetch engine and separate

control logic rather than the program counter. The circuit surrounded by a dotted line in

Figure8.2 must therefore be considered a separate block adding to the overall size of the

design.

In summary, the alignment architecture promises a performance and energy efficient

solution to the problem of instructions which straddle cache lines.

8.3.2 The dual cache line architecture

Despite its advantages the ‘alignment architecture’ described in section8.3.1 fails to

exploit any spatial locality, which might exist within the ‘n’-bytes, brought into the

circular buffer. Once an instruction word is in the circular buffer, all information about

the program counter value is lost. Loop bodies which are short enough to reside in a single

cache line will be fetched repeatedly. To eliminate or reduce this ‘overfetching’ the ‘Dual-

Cache-Line’ (DCL) architecture was developed.

Figure8.4 shows the principle of the DCL architecture. The scheme works as follows: an

instruction cache line is fetched into the ‘CacheLine1’ register and its associated tag

placed in the ‘Tag 1’ register. The tag-latches need to contain all the bits from the address,

Instruction fetching192

which are not used to access the byte within the line; this is equivalent to the number of

bits in the tag-store of a fully associative cache. As long as the PC maps to that cache line,

instructions are fetched from the ‘CacheLine 1’ register. When the byte-offset of the PC

comes close to the end of the cache line the succeeding cache line is fetched into the

‘CacheLine2’ register and the associated tag placed in the ‘Tag 2’ register. Therefore,

when an instructionmay cross the cache line boundary of ‘CacheLine1’ the remaining

bytes of the instruction will already be in the ‘CacheLine2’ register1. This works on a

cyclic basis so that when the program execution approaches the end of ‘CacheLine2’ its

successor will be fetched into the ‘CacheLine1’ register. Note that if the successor is

already in the alternate ‘CacheLine’ register no requests to the instruction cache are

required. This reduces the performance penalty associated with variable-size instructions,

as did the alignment architecture described above. In addition dual cache requests are

reduced even further due to the detection of spatial locality, see Table8.6. This is

particularly true for the longer cache lines of 32 or 64bytes. Furthermore, if a branch is

taken and the target is in either ‘CacheLine1’ or ‘CacheLine2’ no cache access will be

1. Assuming the request hit in the instruction cache.

Instruction

32 2n:1-mux

Tag1 Tag2 CacheLine 2CacheLine1

Figure 8.4 Dual cache line architecture

Instruction

====

Tag(PC)
Control

Overload

PC
fetch

cache

OR

Hit

Instruction fetching193

initiated. The two registers ‘CacheLine1’ and ‘CacheLine2’ effectively form a small,

dual-ported fully-associative level-0 instruction cache with two lines and a LRU

replacement algorithm.

The DCL architecture requires more storage than the Alignment-architecture; ‘2x(8n+32-

log2M)’ vs. ‘8x(n+3)’ latches registers are required, where ‘M’ is the cache size in bytes

and ‘n’ is the line size in bytes.

Compared to the alignment architecture presented in section8.3.1, this architecture

eliminates the need for the large cross-bar, see Figure8.2; the output from the cache is

simply latched into the ‘CacheLine1’ or ‘CacheLine2’ as required. The output

multiplexer can be made of separate 2n:1 multiplexers which will allow any bytes in the

output to be selected from any position within the two registers.

The architecture is in many ways similar to the technique used in the MII-architectures

[Conte] and in the HPPA7100LC1 [Case] to ensure a high content of instructions in a

multi-instruction-issue architecture, where instructions for an instruction packet can come

from multiple - not necessarily successive - cache lines.

1. Dual instruction issue processor

Table 8.6 Percentage of instructions which cannot be fetched in one cycle

Cache line size

Benchmark 16 bytes 32 bytes 64 bytes

cacti 0.6 0.5 0.06

dhry 0.8 0.3 0.1

espresso 1.2 0.2 0.06

fft 0.5 0.3 0.1

flex 2.0 0.8 0.09

hello 1.2 0.3 0.1

stcompiler 1.0 0.2 0.1

Average 1.04 0.37 0.09

Instruction fetching194

Table8.7 shows how the number of requests to the instruction cache itself is reduced by

74% or more when instructions are fetched from one - or both of the two registers,

‘CacheLine1’ and ‘CacheLine2’.

If the numbers in Table8.7 are compared to those in Table8.5 it is clear that this DCL

architecture shows a greater reduction in the number of requests to the cache itself than

the alignment architecture described in section8.3.1.

From an energy perspective, this architecture reduces the number of energy consuming

cache references. The two extra cache line registers can be built as a simple static latch

circuit where the energy cost of reading is negligible compared to that of a RAM-access.

There is an overhead relative to the alignment architecture in that two tag-comparators are

required to compare each incoming address to the contents of the tag-latches, ‘Tag 1’ and

‘Tag 2’ in Figure8.4. The number of bits in these tag-registers might be higher than in the

tag-store in the cache. These two comparators will clearly consume energy, but it is

expected to be minimal. The energy consumption of the design compared to a

conventional cache is therefore approximately proportional to the reduction in references

to the cache, see Table8.7.

a.

Table 8.7 Number of fetches from instruction cache into DCL

Benchmark Inst

Cache line size

16 bytes 32 bytes 64 bytes

Fetch Ra Fetches R Fetch R

cacti 18,921,879 5,333,913 72 3,205,773 83 2,031,377 89

dhry 688,173 119,181 83 75,772 89 52,811 92

espresso 4,822,863 1,247,040 74 706,542 85 444,593 91

fft 1,104,931 278,167 75 150,505 86 82,148 93

flex 10,688,269 3,133,591 71 2,016,871 81 1,144,008 89

hello 52,173 13,876 73 8,618 83 5,891 89

stcompiler 1,865,924 534,206 71 347,720 81 234,804 87

Average 74 84 90

R
Inst Fetch–

Inst
------------------------------- 100%×=

Instruction fetching195

In summary, the DCL-architecture provides a way of assembling instructions which

straddle cache lines. Due to the increased detection of spatial locality the number of cache

references is reduced further than for the alignment architecture presented above.

Consequently it is a more energy efficient architecture.

8.3.3 The eXtra-line architecture

The results in section8.3.2 showed that spatial locality could be exploited by introducing

a small level-0 cache formed by two registers. The number of references to the highly

energy consuming main cache was reduced by 74% or more. Spatial locality was detected

by keeping tags together with the cachelines when these were fetched from the cache.

The DCL architecture compared the tag of the incoming value of the program counter

with the contents of the ‘Tag’ fields. However, for the majority of references such tag

comparisons are not necessary as the accesses are sequential. Most tag comparisons can

be replaced by a simple circuit which detects if the new program counter value maps to

the same line as the previous one. Tag comparisons will therefore be necessary only when

a control transfer instruction has been taken and the program counter consequently

overwritten. Occurrences of this are simple to detect.

If the cache-line registers presented in section8.3.2 are replaced by a single register, the

architecture in Figure8.5 evolves. This may appear similar to the block buffering

described in Chapter 5, [Su] and [Okada]. However, it represents a novel extension to the

block buffering scheme as the output multiplexer is wider than a cache line and thereby

permits cache-line straddling instructions to be assembled. Furthermore, tag comparisons

are only carried out when required, see above.

Note that the output multiplexer is considerably simpler to control than that of the DCL-

architecture as the ordering of the bytes for an instruction is always the same. The latches

Instruction fetching196

in this architecture are ‘Master-Slave’ type, i.e. one value can be read out of the register

while another value is being latched.

When an instruction, which straddles cache lines, is issued the first bytes will already be

in the register. The control circuit will detect that the following line needs to be fetched

for the instruction to be issued. This line will be fetched from the instruction cache and,

while the instruction is sent off into the rest of the processor through the multiplexer, the

newly fetched cache line will be latched into the register.

The control overhead for this architecture is minimal. The program counter circuit needs

to detect whether an address does not map to the same line as the previous instruction and

whether an instructionmay straddle cache lines. The latter is very simple to detect from

bit-changes in the least significant bits of the program counter and the bits of the

instructions which indicate the size.

Compared to the architectures previously described, see section8.3.1 and8.3.2, this

approach represents the smallest hardware overhead in terms of storage and control logic.

There is a need to store only the amount of data equivalent to one cache line. The tag

information is only required after taken branches; i.e. there is no need to perform a tag

Inst

Overload

Instruction cache with
n-byte cache lines

n-byte latch register

Figure 8.5 The eXtra-line architecture

n-bytesn-bytes

Tag

Select

Control

PC
Fetch

 2n:4-mux

Inst size

Instruction fetching197

comparison for all requests. The ‘tag’ associated with the cache line held in the latch

register, see Figure8.5, has been drawn with dotted lines as the tag need not be an integral

part of the cache/eXtra-line architecture. The program counter unit can simply track

branch instructions and only perform a comparison between the PC-value before and after

the branch to detect if a new line needs to be fetched into the register. This makes the

energy consumption per access to the structure lower than for any of the architectures

described in section8.3.1 and8.3.2.

Table8.8 shows the number of fetches from the cache and the reduction in cache traffic.

As for the architectures described in previous sections, the benefit increases with the line

size. Comparing it to the DCL architecture from section8.3.2, the average number of

cache requests per instruction is 2.7% higher for this architecture.

Like the DCL architecture, this provides both a significant performance improvement and

reduces the energy consumption. The former results from the problem of instructions

a.

Table 8.8 Number of fetches from instruction cache into eXtra-line

Benchmark Inst.

Cache line/eXtra-line size

 8 bytes 16 bytes 32 bytes 64 bytes

Fetch Ra Fetch R Fetch R Fetch R

cacti 18,921,879 9,085,543 52 4,952,058 74 2,941,767 84 2,040,187 89

dhry 688,173 330,385 52 203,445 70 136,593 80 86,120 87

espresso 4,822,863 2,107,520 56 1,227,371 75 792,147 84 562,239 88

fft 1,104,931 489,042 56 284,313 74 174,211 84 99,540 91

flex 10,688,269 5,104,123 52 3,156,604 70 2,140,844 80 1,446,826 86

hello 52,173 25,419 51 15,469 70 10,677 80 6,727 87

stcompiler 1,865,924 914,678 51 562,533 70 387,996 79 252,164 86

Average 53 72 82 88

R
Inst Fetch–

Inst
------------------------------- 100%×=

Instruction fetching198

straddling cache lines1 being almost eliminated, see Table8.9; the latter from the

reduction in he frequency of accesses to the highly energy consuming RAM-structures.

As the eXtra-line can be an integral part of the storage block in the cache the routing

overhead is significantly lower for this architecture than for the DCL-architecture where

a full cache line needs to be routed to either the CacheLine1 or the CacheLine2 register.

This will imply lower energy consumption and a smaller overall design. These advantages

are expected to offset the slightly higher number of references to the cache memory in the

eXtra-line architecture and thus yield a more energy efficient architecture overall.

8.4 Summary

This chapter has proposed three ways of reducing the performance penalty caused by

instructions which straddle cache line boundaries and hence might require two accesses

to the instruction cache, with consequent degradation in performance.

1. and hence would require two cache lookups - in two cycles

Table 8.9 Percentage of instructions which cannot be fetched in one cycle

Cache line size

Benchmark 8 bytes 16 bytes 32 bytes 64 bytes

cacti 0.8 0.2 0.1 0.06

dhry 3.1 1.7 1.1 0.16

espresso 2.4 1.1 0.8 0.08

fft 1.8 0.5 0.3 0.10

flex 2.7 2.0 0.8 0.11

hello 3.8 1.2 0.7 0.10

stcompiler 2.9 1.1 0.3 0.17

Average 2.5 1.1 0.59 0.11

Instruction fetching199

All the strategies have the advantage that they reduce the number of references to the

instruction cache. The energy consumption in RAM (mainly in caches) is a significant

factor in the energy consumption of an entire microprocessor. Reducing the number of

requests to the cache reduces the energy consumption of the cache proportionally and

hence improves the energy efficiency. The energy consumption in the extra blocks

introduced in the architectures described in section 8.3.1 - 8.3.3, i.e. in the latches and

control circuits, is considered small compared to the energy consumed within the cache

even though it must be clear that the structure in the DCL architecture is more energy

consuming than the eXtra-line architecture due to the tag comparisons and routing

overhead. The slight increase in number of cache references moving from the DCL-

architecture to the eXtra-line architecture is therefore expected to be offset by the smaller

routing overhead, fewer tag comparisons and smaller multiplexers.

Cache design and dimensioning200

Chapter 9 Cache design and dimensioning

The results presented in section 8.3 showed the effect of adding each of three instruction

fetch mechanisms to the instruction cache to compensate for the problems which variable-

size instructions introduce.

The results in Tables 8.5, 8.7 and 8.8 show that longer cache lines reduce the number of

references to the instruction cache and therefore its energy consumption. However,

Chapter 5 has shown that energy consumption per cache request increases with the line

size. Furthermore, the I/O-activity and thereby the number of stalled cycles, the energy

consumption in the I/O subsystem and the energy consumption in the external RAM

increase with increasing line size. The optimal cache line size is therefore a compromise

between these parameters: the energy consumption per cache access and the number of

accesses to the cache. To assess the value of the architectural features the following

sections will determine the performance and energy efficiency of systems specifying

different cache configurations.

This chapter describes the results from a large number of simulations aiming at

determining the optimal cache system for a HORN-processor system. Section 9.1

describes the system considered and presents expressions for performance and power

consumption used to calculate the energy efficiency for each of the simulated

configurations. Section 9.2 presents the results of a large number of simulations aimed at

determining the cache parameters for the most energy efficient and best performing

configurations of systems containing separate instruction and data caches. Section 9.3

presents the result from a set of similar simulations but using a unified cache. Section 9.4

summarizes the results.

Cache design and dimensioning201

9.1 Background for cache evaluation

Consider a simple system comprising the processor and a number of 8-bit Hitachi

HM65256B memory modules [Hitachi]. The modules are organized in banks of 4 chips

and are interleaved to allow the fetching of one 32-bit word per cycle, after some initial

latency. The initial latency is given by the ratio of the access time of the RAM and the

cycle time of processor. The RAM modules have an access time of 100ns1 and a cycle

time of 190ns.

Each memorybank consumes 4x200mW = 0.8W, worst case when active and 4x0.5mW

= 2mW when idle [Hitachi]. The power consumption in the processor core is assumed

equal to that of an ARM3 core, i.e. 453mW at 12MHz, see Chapter 2. The power

consumption of the system comprising the processor core, the cache and the external

RAM is therefore expressed as:

The power consumption of the processor core scales with the cycle time:

The power consumption in the cache(s) is proportional to the frequency of accesses:

where ‘nbWback’ denotes the number of dirty lines written back to external memory and

‘misses’ denotes the number of cache lines fetched from external memory. The

expressions for ECache,RR and ECache,RW are as derived in Chapter 5.

1. Other manufacturers such as Toshiba [TOSHIBA2] have faster RAMs, however they are
more power consuming

PSystem PCore P+
Cache s()

PMem+= (EQ 9.1)

PCore

cycletimeARM3

cycletime
--- PCore ARM3,×= (EQ 9.2)

PCache
1

cycles cycletime×
-- req ECache RR, nbWback misses+() linesize× ECache RW,×+×()×=

(EQ 9.3)

Cache design and dimensioning202

By definingmemBusy as the percentage of all cycles during which the memory is busy:

the power consumption in the external memory is expressed as:

WherenbBanks denotes the number of banks in the external memory system.

The cache timing analysing tool Cacti [Wilton] was used to calculate cycle times for the

different cache configurations, see Chapter 5; the cache was assumed to be the speed

limiting component in implementation of the architecture [Juan]. Table9.1 shows the

cycle times computed by Cacti for direct mapped (DM) and a number of set-associative

configurations.

These cycle times are clearly much faster than any cache technology available when the

ARM3 was designed. Extrapolating these numbers onto the results from the ARM3 might

therefore seem inappropriate as the ARM3 technology might not scale as easily.

However, lacking more detailed information on the ARM3 technology it was decided to

use the timing information obtained from Cacti.

Table 9.1Cache cycle time [ns] for different configurations

Cache
size

[bytes]

Line size [bytes]

16 32 64

Associativity: Associativity: Associativity:

DM 2-way 4-way DM 2-way 4-way DM 2-way 4-way

4K 7.02 9.29 9.63 6.66 9.45 10.14 6.49 10.13 11.32

8K 7.80 9.78 10.15 7.21 9.97 10.47 6.99 10.44 11.54

16K 8.58 10.43 11.04 8.00 10.74 11.17 7.62 11.14 11.97

32K 9.45 11.53 11.81 8.91 11.41 12.14 8.51 12.01 13.01

64K 10.8 12.85 13.12 9.82 12.69 13.23 9.50 13.10 14.15

memBusy
memLat nbWback misses+()× linesize×

cycles
--=

(EQ 9.4)

PMem memBusy 0.8W× nbBanks 1
memBusy
nbBanks
--------------------– 

 × 0.002W×+= (EQ 9.5)

Cache design and dimensioning203

The number of external memory banks required is therefore a function of the cycle time

of the processor (given by the cycle time of the cache) and the memory chips:

The number of cycles required to execute a program is calculated as:

wherememLat is the memory latency in cycles given as the ratio of the cache cycle-time

and the RAM access-time of 100ns mentioned above.

A pipeline as shown in Figure6.3 has been assumed. All branches are predicted taken. As

described in Chapter 6 this implies a one cycle penalty for correctly predicted branches

and a two cycle penalty for branches which are predicted wrongly.BranchPenalties

represents this penalty.

The performance of the processor is calculated as:

and, as shown in section4.1, the EE can be calculated as:

9.2 Performance and energy efficiency of separate cache
configurations

Consider the system architecture shown in Figure9.1. Using Equation 9.8 to quantify

performance and Equation 9.1 to quantify power consumption, a large number of cache

nbBanks
TRAM

TCache
----------------- 190ns

TCache
-----------------= = (EQ 9.6)

cycles inst misses nbWback+() Dcache memLat linesizeDcache 1–+ 
 ×+=

+ missesIcache memLat linesizeIcache 1–+ 
 × BranchesPenalties+

(EQ 9.7)

Performance
inst

cycles
---------------- 1

Cycletime
--------------------------×= (EQ 9.8)

EE
Performance() 2

PowerConsumptionSystem
--= (EQ 9.9)

Cache design and dimensioning204

configurations have been simulated, see Table9.2. The power consumption, performance

and energy efficiency of each configuration has been calculated.

The instruction cache (Icache) architecture is the eXtra-line architecture described in

section8.3.3 combined with a fetch buffer as described in section5.9. The Fetch Buffer,

separate from the ‘eXtra-line’, will allow the prefetching of instructions, see section3.3,

while instructions can continue to be fetched from the eXtra-line. Furthermore, writing a

a. See [Seznec]

b. When ‘associativity’ = 2-way skewed-associative

Table 9.2 Simulated configurations

Parameter Values simulated

Cache architecture Icache: eXtra-line

Dcache: Block Buffering

Cache size [bytes] Icache: 8K, 16K, 32K, 64K

Dcache: 4K, 8K, 16K, 32K

Line size [bytes] Icache: 16, 32, 64, 128

Dcache: 8, 16, 32, 64, 128

Associativity Direct Mapped,
2-way skewed-associativitya

Replacement Strategyb Pseudo-LRU

Instruction
Cache

eXtra-line

Memory
Banks

FetchBuffer

Figure 9.1 System architecture with separate caches

HM65256B

Data
Cache

Block Buffer

WriteBack Buffer

Off chip

On chip

Execution Unit(s)

Register File

Cache design and dimensioning205

whole line into the cache in one operation will consume less energy than writing N words

one per cycle, as the overhead of tag-comparisons are eliminated/reduced. There is no

need for a Write-Back Buffer as there will be no dirty lines in the instruction cache.

The data cache (Dcache) should contain a Block Buffer and a Write-Back Buffer as it

greatly improves the performance of the cache and thereby of the system. The Block

Buffer can also serve as a Fetch Buffer and thus reduce the energy consumption further

without affecting performance. The words for the new cache line will be latched in the

Block Buffer and only when all words have arrived will the entire line be written into the

data cache. Individual writes are dealt with in a write through manner as described in

section 5.9 to avoid the need for a coherency protocol. Thus the number of buffers is

limited to two in each of the separate caches.

The value of reducing the number of cache references through the Fetch and Write-Back

Buffers over the system just comprising the Block Buffer or the eXtra-line varies

depending on the performance and hence on the parameters of the specific cache

configurations; it is clear however that the value increases with the line size in the caches,

see Table 9.3. Throughout these calculations it has been assumed that all words in a Write-

Back Buffer will have been written back to external memory before the next data cache

miss is encountered.

The total power consumption of the system is an important measure. The power

consumption for each configuration has therefore been calculated and the configurations

sorted accordingly. This allows energy efficiency, EE, and performance to be plotted

against the power consumption. The results for two benchmarks are shown Figures 9.2

and 9.31, while those for the remaining benchmarks are shown in Appendix A.

Cache design and dimensioning206

The graphs are ‘performance against power consumption’ plots where constant energy

efficiency, EE, levels are shown with dotted lines. The energy efficiency levels increases

towards the top-left. The difference between the energy efficiency contours, the EE stride,

is shown at the right of each graph. Each graph highlights the most/least energy efficient

1. Key to read the configurations:
I(Cache size [bytes], Line size [bytes], associativity) = Instruction Cache
D(Cache size [bytes], Line size [bytes], associativity) = Data Cache
associativity: DM = Direct Mapped; 2sk = 2-way skewed-associative

a. Both the instruction and the data cache were 8K bytes and direct mapped

Table 9.3 Reduction in cache accesses due to fetch- and writeback-buffers [%]

Instruction cachea

line size: [bytes]
Data cache

line size: [bytes]

Benchmark 16 32 64 128 8 16 32 64 128

cacti 6.34 11.5 17.8 24.8 0.12 0.24 0.41 0.69 10.4

dhry 5.72 12.2 21.0 28.3 0.77 2.07 4.0 11.5 16.3

espresso 5.30 10.8 19.5 33.1 1.83 4.13 8.52 16.4 29.2

fft 1.98 4.52 9.74 16.8 8.97 17.5 28.4 39.3 51.0

flex 2.64 5.33 11.1 22.1 2.76 6.44 13.1 24.1 41.7

hello 16.5 31.2 45.4 57.6 2.86 5.85 10.9 18.2 27.8

stcompiler 11.8 22.4 39.1 57.7 2.52 5.91 12.2 22.2 36.5

Figure 9.2 EE and performance versus power consumption, hello

E
E

 stride =
 40

Cache design and dimensioning207

and best/worst performing configurations as well as the most/least power consuming

configurations. Note that the most energy efficient configurations are often smaller than

the best performing configurations. However, the common characteristic is that the most

energy efficient configurations have shorter cache lines than the best performing ones.

The graphs show that the most energy efficient configurations are between 4% and 23%

more energy efficient than the best performing one. The typical difference is

approximately 10%. For some1 of the benchmarks the optimal energy-efficient

configuration consumes significantly less power (reduction greater than 30%) than the

best performing configuration. Consequently, the performance for the most energy

efficient configurations is also lower than that of the best performing configurations.

1. Especially espresso, flex and stcompiler

Figure 9.3 EE and performance versus power consumption, espresso

E
E

 stride =
 60

Cache design and dimensioning208

The graphs clearly highlight the most energy efficient configurations. The graphs for

espresso, flex and hello show that energy efficiency values ‘close to’ (within 5%) the

optimal value can be obtained across a wide range of power consumptions. This means

that a designer can choose the configuration which meets the system requirements for

performance and power consumption while maintaining a high energy efficiency.

Consequently, if the performance of the most energy efficient configuration is too low,

the graphs can be used to choose the most energy efficient configuration which will meet

a performance requirement. Equally, if the power budget for the product does not permit

the implementation of the most energy efficient configuration, the graphs can be used to

choose the most energy efficient and best performing configurations within the power

budget.

All the graphs show that the most power consuming configurations are small direct

mapped caches with long cache lines, while the least power consuming configurations

specify very large, 2-way skewed-associative instruction caches with long lines.

The data caches in the optimal configurations are smaller than the associated instruction

cache and have shorter lines. The exception is for the FFT benchmark, see Appendix A;

this benchmark differs from the rest of the benchmarks in that it is characterised by a very

large and regular data set.

As Tables8.4and9.3 suggest that there is a significant gain from the use of long cache

lines in both instruction and data caches, the energy efficiency has been plotted against

the line size in the instruction cache for different instruction cache sizes. The data cache

was fixed at the configuration found to be the most energy efficient, see Figures9.2

and9.3 and Appendix A. The results are shown in Figures9.5,9.4 and in Appendix B. It

is characteristic that the line size in the optimal instruction cache configuration is the

Cache design and dimensioning209

Figure 9.4 Energy Efficiency versus instruction cache line size, hello

Figure 9.5 Energy Efficiency versus instruction cache line size, espresso

Cache design and dimensioning210

optimal line size for almost any instruction cache size. This is due to the basic block

characteristics for the benchmarks described in Chapter 4 and section8.3.3. Furthermore,

the trend is that it is ‘less damaging’ to the energy efficiency if the line size is increased

rather than reduced.

Tables9.4 and9.5 present the best performing and most energy efficient configurations.

Table9.4 indicates that a 16K choice for both instruction and data caches would be near

optimal. For energy efficiency the optimal sizes are smaller, 8K or 16K bytes. This is not

a surprise despite the finding in Chapter 5 that the energy consumption of the cache

increases with the size and the line size. The eXtra-line architecture ensures that accesses

to the cache itself are rare and the power consumption in the cache is therefore not as

significant as the results in Chapter 2 may have suggested. The results also show that

cache lines should be long, although no line size can be identified as optimal; 64 bytes per

line appears to be a good compromise. Again, the tables show that the line sizes should

be shorter when optimizing for energy efficiency rather than for performance. When

optimizing for performance it is clear that the caches should be direct-mapped to yield a

cycle-time as fast as possible, see section5.7 on page98. In contrast, when optimizing for

energy efficiency, where the optimal caches are generally smaller with shorter lines, half

Table 9.4 Optimal performance configurations

Benchmark

Instruction cache - eXtra-line Data cache - Block Buffer

Size
[bytes]

Line size
[bytes] Assoc.

Size
[bytes]

Line size
[bytes] Assoc.

cacti 16K 128 DM 16K 128 DM

dhry 16K 128 DM 8K 32 DM

espresso 32K 64 DM 32K 64 DM

fft 16K 128 DM 16K 64 DM

flex 16K 64 DM 16K 32 DM

hello 16K 128 DM 16K 128 DM

stcompiler 16K 64 DM 16K 64 DM

Cache design and dimensioning211

of the benchmarks obtain higher energy efficiency with a skewed-associative

configuration.

Table 9.4 and 9.5 also show that the optimal data caches are often smaller than the

instruction caches for the same benchmark and are usually smaller than the largest ones

simulated. The line sizes for the optimal data cache configurations are often shorter than

those in the instruction cache and shorter than the longest ones simulated. It is a general

result that the skewed-associative configurations neither perform as well, nor are as

energy efficient, as the direct-mapped caches due to the slower cache access time.

However, if the cache lookup is not the time critical stage in a pipeline (for example due

to slow functional units or register files) the cycle time of the processor is given by the

delay through these stages independently of the cache configuration. If the cycle time of

the entire processor is fixed at e.g. 15ns (66MHz), slower than any cache configuration

reported above, the results change, see Tables9.6and9.7. The optimal configuration is

now a 2-way skewed-associative configuration for both performance and energy

efficiency. Optimal performance is obtained with large instruction caches: 64Kbytes,

128 bytes/line and large data caches: 32Kbytes. The optimal line size in the data cache

varies but it is clear that it is longer than for the simulations presented in

Table 9.5 Optimal Energy Efficiency configurations

Benchmark

Instruction cache - eXtra-line Data cache - Block Buffer

Size
[bytes]

Line size
[bytes] Assoc.

Size
[bytes]

Line size
[bytes] Assoc.

cacti 16K 64 DM 4K 64 DM

dhry 16K 64 DM 8K 32 DM

espresso 8K 32 2sk 8K 8 2sk

fft 8K 64 DM 32K 64 DM

flex 8K 32 2sk 8K 8 2sk

hello 16K 64 DM 16K 64 DM

stcompiler 16K 32 2sk 16K 64 2sk

Cache design and dimensioning212

Tables9.4and9.5. The results also show that the most energy efficient instruction cache

configurations now are larger than was the case for the most energy efficient

configurations as shown in Table9.5 while the data cache configurations in general are

smaller than those shown in Table9.5.

The optimal configurations might well be too large to implement on a chip. A choice of

the most energy efficient configuration must therefore consider implementation

feasibility. The tables in Appendix C present the results of cache configurations simulated

and these can be used to choose the best configuration given the constraints of silicon area

and power consumption.

Table 9.6 Optimal performance configurations (cycle time = 15ns)

Benchmark

Instruction cache - eXtra-line Data cache - Block Buffer

Size
[bytes]

Line size
[bytes] Assoc.

Size
[bytes]

Line size
[bytes] Assoc.

cacti 64K 128 DM 32K 8 DM

dhry 64K 128 2sk 32K 32 2sk

espresso 64K 128 2sk 32K 128 2sk

fft 64K 128 2sk 32K 32 2sk

flex 64K 128 2sk 32K 16 2sk

hello 64K 128 2sk 32K 32 2sk

stcompiler 64K 128 2sk 32K 16 2sk

Table 9.7 Optimal Energy Efficiency configurations (cycle time = 15ns)

Benchmark

Instruction cache - eXtra-line Data cache - Block Buffer

Size
[bytes]

Line size
[bytes] Assoc.

Size
[bytes]

Line size
[bytes] Assoc.

cacti 32K 64 2sk 4K 8 2sk

dhry 32K 64 2sk 4K 8 2sk

espresso 16K 32 2sk 4K 8 2sk

fft 8K 64 2sk 32K 32 2sk

flex 16K 64 2sk 8K 8 2sk

hello 16K 32 2sk 8K 16 2sk

stcompiler 32K 64 2sk 4K 8 2sk

Cache design and dimensioning213

Appendix C also shows the power consumption in the caches as a percentage of the power

consumption in the entire system. This ratio varies dramatically dependent on the cache

configuration. For the optimal configurations this ratio is between 25% and 30%. As the

percentage of the power consumed in the external RAM is also very low (less than 10%)

further improvement in the energy efficiency of the processor system might obtained by

examining other blocks than the cache.

9.3 Unified cache

A unified cache (combined instruction- and data cache) often implies a significant

performance penalty when compared to separate caches as each data reference causes

contention at the cache port. However, as the number of instruction references to the

cache can be greatly reduced due to the instruction cache architectures discussed in

section 8.3, the available cache bandwidth can be used to serve data references, see

Figure 9.6.

The probability of contention in a conventional unified cache, which serves instruction

and data requests from the same port, is equal to the probability of a memory referencing

instruction. Chapter 4 showed that approximately one in four instructions is a memory

Cache

M
ux

Data

Data Address

Instruction
Address

eXtra-line/DCL Mux

Instruction Data

Figure 9.6 Unified cache serving both instruction- and data requests

Cache design and dimensioning214

referencing (load/store-type) instruction. The probability of contention,Pcontention, at the

cache port is therefore:

i.e 25%. By introducing the eXtra-line architecture, see section8.3.3, the number of

instruction references to the cache was reduced by 88% for long cache lines. The

probability of contention,Pcontention, at the cache port is therefore reduced to:

i.e a 3% probability of contention. This is a small penalty compared to the 25% probability

of contention in a conventional unified cache. The system thus behaves almost as well as

a dual-ported unified cache, but with a much reduced energy budget.

The hit rate of the unified cache will typically be lower [Patt, chap. 8.3] than that of a

system comprised of separate instruction and data caches. In order to perform as well as

separate caches the unified cache will therefore have to be larger than the largest of the

two separate caches.

9.3.1 Performance and energy efficiency of unified cache configurations

Using Equation 9.8 to quantify performance and Equation 9.1 to quantify power

consumption, a large number of unified cache configurations have been simulated, see

a. When ‘associativity’ = 2-way skewed-associative

Table 9.8 Simulated configurations

Parameter Values simulated

Cache architecture eXtra-line, see Figure9.6

Cache size [bytes] 4K, 8K, 16K, 32K, 64K

Line size [bytes] 16, 32, 64, 128

Associativity Direct Mapped,
2-way skewed-associativity

Replacement Strategya Pseudo-LRU

Pcontention Pinstref Pmemref× 1.0 0.25× 0.25= = = (EQ 9.10)

Pcontention Pinstref Pmemref× 1.0 0.88–() 0.25× 0.03= = = (EQ 9.11)

Cache design and dimensioning215

Table 9.8, and the power consumption, performance and energy efficiency of each of

them have been calculated. The results for two of the benchmarks are presented in

Figures 9.7-9.8 while the results for the remaining benchmarks are shown in

Appendix A.2.

Figure 9.7 EE and performance versus power consumption, hello

Figure 9.8 EE and performance versus power consumption, espresso

Cache design and dimensioning216

Comparing these graphs to the graphs in section9.2 and AppendixA.1 shows that the

performance of the best performing unified configurations is 8% lower than that obtained

with separate caches. Moreover the energy efficiency of the most energy efficient

configuration is 24% lower than that obtained with separate caches. This suggests that

future processors concerned with energy efficiency should specify separate caches.

There are however other reasons for building a unified cache: A unified cache retains the

same memory model as if no cache was present, the cache is simply a ‘buffer’ between

the processor core and the rest of the memory hierarchy; separate caches require more

control such as bus-arbitration. Furthermore, self-modifying code is simple to handle in a

unified cache, whereas it requires special handling in separate caches. Also if code and

data segments are not distinct, a cache line may contain both instructions and data.

Consequently there may be replication of data in the two caches which may imply a higher

energy efficiency in the unified configuration than in the separate caches. The HORN

compiler lays-out code such that code and data segments are distinct, see section3.5, so

separate caches are feasible.

Despite these other considerations, a significant reason for building a unified cache is

chip-area. It is often claimed that a unified cache of size ‘X’ performs better that two

separate caches of size ‘X/2’. From this premise it may be argued that if data/instruction

collisions have been almost eliminated due to the structures presented in Chapter 8 then

the overall performance for a given ‘total cache size’ would be better in a unified

configuration than in a configuration of separate caches. Results collected for this work

show that this is not necessarily the case, mainly due to the faster cycle time of the smaller

caches, see Table 9.9

Cache design and dimensioning217

9.4 Summary

Based on the equations derived in Chapter 5, section 9.1 derived expression for

performance, power consumption and energy efficiency for a HORN-processor system.

Section 9.2 presented the most energy efficient instruction configurations of separate

instruction and data caches as well as the best performing configurations for a range of

benchmarks. The results showed that the optimal configurations were smaller than the

largest ones simulated and that the best performing instruction cache configurations were

16K bytes in size with long cache lines of 64 or 128 bytes. It was demonstrated that the

most energy efficient cache configurations are smaller and have shorter lines than the best

performing cache configurations. The optimal cache configurations are mostly direct

mapped for both performance and energy efficiency as they yield the fastest cache and

hence processor cycle time.

Larger caches lead to longer cycle times, see Chapter 5, and thereby lower overall

performance. Furthermore, large caches consume more energy per access than small

caches. Long cache lines maximize the effect from the DCL- or eXtra-line architectures

a. Instruction cache with eXtra-line and data cache with Block Buffer

b. Format: Total cache size [bytes], Line size [bytes], Associativity (DM: Direct Mapped; 2sk:
2-way skewed-associative)

c. Format: Instruction cache/Data cache

Table 9.9 Comparison between large unified cache and smaller separate caches

Benchmark
Unified

Configuration
Performance

[MIPS]
Separate

Configurationa
Performance

[MIPS]

Cacti 16K,128,DMb 114 8K,128,DM/8K,64,DMc 109

Dhry 16K,64,DM 104 8K,128,DM/8K,64,DM 99

Espresso 16K,32,DM 81 8K,64,DM/8K,32,DM 90

Fft 16K,64,DM 92 8K,128,DM/8K,64,DM 94

Flex 16K,32,2sk 75 8K,64,DM/8K,32,DM 86

Hello 16K,32,2sk 63 8K,64,DM/8K,64,DM 67

Stcompiler 16K,32,DM 64 8K,32,2sk/8K,32,2sk 67

Average 85 87

Cache design and dimensioning218

where there is a high degree of spatial locality, as is the case in instruction caches. For

data caches the spatial locality is lower and shorter cache lines are therefore beneficial.

The worst performing and least energy efficient configurations are consequently:

instruction caches with very short cache lines and data caches with very long cache lines.

The results (shown in Appendix C) have shown that the caches do not dominate the power

budget when the eXtra-line and block-buffer architectures are introduced. Future energy

effective processors which specify eXtra-line or block-buffer cache architectures should

therefore address other blocks in the processor system.

Conclusions219

Chapter 10 Conclusions

This thesis has investigated how the careful specification of a microprocessor architecture

can improve both the performance and energy efficiency of the final product. It has

identified the blocks in the design which most affect these two measures and has

investigated a number of architectures to improve them. This final chapter summarizes

the conclusions from each chapter, draws further conclusions, assesses the work and

suggests areas for future research with the goal of optimizing the energy efficiency of

microprocessor systems.

10.1 Summary

Chapter 2, ‘Power consumption in an ARM3-system’ presents results from an earlier study

which measured the power consumption of various blocks in the ARM3 microprocessor.

The study identified the cache as the most power consuming block in the implementation.

The conclusion that an energy efficient processor architecture should specify an energy

efficient cache architecture was used as a basis for much of the work reported here.

Chapter 3, ‘Baseline HORN architecture’ presented the processor architecture which has

formed the basis of this work and the changes it has undergone during the project. These

changes, and the subsequent changes in compiler and functional simulator, have provided

opportunities for evaluating a number of architectures at a detailed level.

In order to compare architectural features a suitable metric needed to be established.

Chapter 4, ‘Metrics and benchmarks’ divided processor applications into three classes

and presented suitable metrics for each. Based on this it was decided to analyze the HORN

architecture as a conventional microprocessor, even though this excluded some

Conclusions220

applications which the architecture was defined to address. The benchmark suite was

chosen accordingly.

In view of the identification of on-chip RAM, notably the cache, as the most power

consuming block, Chapter 5,‘Energy consumption in caches’ established how energy

consumption in caches scales with the traditional cache parameters such as size, line size

and degree of associativity. A number of ‘newer’ cache architectures were also analyzed.

The effect the cache parameters had on the cache timing was also analyzed and the

conclusion was drawn that the line size and degree of associativity should be kept low to

reduce energy consumption. It was shown that to minimize the cycle time of the cache and

thus improve the cycle time of the processor, the number of cache lines should be kept as

low as possible as should the degree of associativity. There was therefore a trade-off to be

made between the cycle time and energy consumption of the cache, as shorter cache lines

implied lower energy consumption but longer cycle time. Similarly, although a high

degree of associativity was found to yield a better hit-rate, it also produced a higher

energy consumption.

As the HORN architecture breaks some of the dogmas associated with RISC architectures

and introduces novel features such as dual-instruction branches, memory mapped

registers and variable-size instructions; Chapter 6,‘Dual instruction branch’, Chapter 7,

‘Register file architectures’ and Chapter 8,‘Instruction fetching’ have investigated the

effect of these architectural choices on performance and for energy efficiency.

Chapter 6 evaluated the effect of splitting the actions of a branch instruction into two: a

‘go’ instruction which sets up the target and a ‘leap’-instruction which evaluates the

condition and specifies the branch shadow. This structure was proposed to reduce or

eliminate the branch penalty and improve the hit-rate in the instruction cache.

Conclusions221

The chapter showed that if the early specification of the target for the branch is exploited

to prefetch from the target into a shadow pipeline, the performance can be improved.

However, due to the increased number of cache accesses, the scheme is not energy

efficient in a single instruction issue implementation.

The chapter also examined the performance and energy efficiency of the scheme in a dual

issue configuration. In such an implementation, the performance advantage of the two-

instruction branch is so significant that the scheme is more energy efficient than a

conventional single-instruction branch, despite a higher energy consumption

Chapter 7,‘Register file architectures’ evaluated the effect different register file

architectures have on performance and energy efficiency. It also examined the

introduction of the special operand queue, which was intended to reduce the need to use

the limited number of registers to hold temporary values. This was shown to have a

positive effect on both performance and energy efficiency.

Furthermore, the chapter compared the performance and energy efficiency of three

schemes:

• a scheme where registers are mapped to memory through a pointer,

• a scheme which implemented register windows through separate instructions

• a register window scheme used in the SPARC architecture.

The results suggest that the first two schemes are less performance- and energy-efficient

than the SPARC scheme due to the increased instruction count. However, the first two

schemes ensure a more constant performance, which might be essential for some

applications, as the register-file in these schemes cannot overflow. Of the first two

schemes, it was demonstrated that the memory mapped scheme was more energy efficient

than the conceptually simpler spill/fill scheme, due to lower instruction count and fewer

Conclusions222

accesses to the data cache. This, despite the larger and hence more energy consuming

register ‘file’.

Chapter 8,‘Instruction fetching’ addressed the issue of variable-size instructions. It was

shown that reducing the average size of instructions has a positive effect on instruction

cache performance, but can reduce the overall performance of the processor if the issue

of instructions straddling cache lines is not addressed. The chapter proposed three

instruction cache architectures:

• The Alignment architecture

• The Dual Cache Line (DCL) architecture

• The eXtra-line architecture

These can almost eliminate the problem, and the instruction format therefore affects the

performance positively due to an improved hit rate in the instruction cache. Furthermore

the suggested architectures have the effect of significantly reducing the number of

references and thus the energy consumption in the cache. Consequently the variable-size

instruction format is considered both performance and energy efficient. Furthermore, the

ratio of the power consumption in the cache to the total power consumption of the entire

system is reduced, implying that further improvements in energy efficiency should be

obtained by tuning other parts of the architecture.

It was demonstrated that of the three architectures the DCL-architecture produced the

lowest the number of accesses to the cache, but the energy consumption of individual

requests and the cycle time of the eXtra-line architecture is expected to be lower and the

energy efficiency consequently better.

Chapter 9 discussed the optimal cache configuration for an energy efficient

implementation of the HORN architecture. Numerous cache configurations were

Conclusions223

simulated and the power consumption, performance and energy efficiency for each

configuration was computed. The results showed that the most energy efficient cache

configurations are smaller than the best performing configurations, but even more

significantly, they have shorter cache lines both in the instruction and in the data cache.

Furthermore, the best performing configurations are direct mapped for all the

benchmarks, while the most energy-efficient configurations for some of the benchmarks

are skewed-associative. As Chapter 8 showed how the number of references to the

instruction cache was reduced significantly (88% for long 64-byte cache lines) Chapter 9

assessed an architecture where both the instruction and data streams were fed from one

cache without most of the performance penalty of the conventional unified cache.

However this architecture did not perform as well as the separate caches nor was it as

energy efficient.

10.2 Assessment of work

The work reported in this thesis has been theoretical. No hardware has been implemented

nor have any low-level transistor models been developed. The results are therefore based

upon a number of extrapolations from other processor designs such as the ARM3 and

upon numerous simulators developed either specifically for this project or for

commercially available products. The validity of these extrapolations and especially of

the use of multiple extrapolations in the same expression may be questioned; only an

implementation of the suggested architectures can provide a definite answer.

Most previous research into energy efficient computer architecture has explored

subsystems, notably caches. This thesis has considered a whole processor system and has

highlighted the tension between performance and energy efficiency at that level. The

Conclusions224

project has successfully identified a number of features which future computer

architectures concerned with energy efficiency can exploit:

• Two instruction branch structures such as the ones described for the HORN

architecture may improve performance but degrade the energy efficiency. If

instructions are not prefetched into a shadow pipeline, the single instruction

branch used in most RISCs performs better and is more energy efficient.

• The use of a queue for storage of temporary results allows the semantic con-

tent of instructions to be coded in less space. Instruction sizes are reduced

without increasing the total number of instructions in a program. This

increases the performance of the instruction cache and thus the energy effi-

ciency of the entire processor system.

• The DCL and eXtra-line cache architectures reduce the energy consumption

in caches significantly, without affecting the performance negatively. They

also provide effective solutions to assembling instructions which straddle

cache lines. The combination of the variable-size instructions and these

cache architectures thus provides a feature that future RISC architectures

should exploit.

• The register file schemes which have been proposed for the HORN archi-

tecture have been shownnot to perform as well as the established overlap-

ping register window architecture used in SPARC, due to the increased

instruction count. However, the work has shown that a compiler can exploit

a variable-size overlap of register windows and thus yield a better utiliza-

tion of the available on-chip storage, reducing the number of register win-

dow overflows. The performance and energy efficiency would consequently

Conclusions225

improve. This could be investigated further, but it should be emphasized

that the specification of the size of the overlap should be in the call /return

instructions rather than in a separate instruction.

• The results do not point to any ‘golden’ cache configurations. The most

energy efficient cache configurations have a higher degree of associativity

and they are often smaller than the best performing configurations. The

graphs in chapter9 have shown that there may be a significant variation in

energy efficiency even within a narrow band of performance.

10.3 Conclusions

This work has shown that the energy efficiency of a microprocessor is affected by early

decisions in the specification of a processor architecture such as the instruction set. It is

therefore clear that future processors concerned with energy efficiency should optimize

for this metric in all the stages of the specification and implementation processes.

‘Performance against power consumption’ graphs with constant energy-efficiency levels

shown are useful when carrying out such optimizations as they clearly show how

architectural changes affect all three measures.

Optimizing for energy efficiency may result in a similar architecture as when optimizing

for performance but while optimizing for performance tends to increase power

consumption, optimizing for energy efficiency will tend to keep the power consumption

down. Given a power budget below that required for optimal performance, the energy-

efficiency metric should point to a configuration/architecture which is not the best

performing, but where the amount of computation per energy unit is highest.

As implementation technologies are expected to keep improving and allow processors to

be clocked with ever increasing frequencies and hand-held and portable equipment is

Conclusions226

expected to operate longer, battery technologies will be put under ever increasing

pressure. Optimizing for energy efficiency throughout the process of specifying and

implementing a microprocessor will ensure the best compromise between high

performance and long battery life. This work has successfully proposed a number of ways

to improve the energy efficiency of a processor and has identified schemes which may

increase the performance but which have a negative effect on the energy efficiency.

10.4 Suggestions for future work

There is still considerable scope for research into energy efficient computer architectures

and much work can be done to develop further the ideas presented here. Furthermore the

following areas are suggested as fruitful topics for future investigation:

• Block buffers in the data cache:The simulations in Chapter 9 assumed a

write-through strategy in the block buffer of the data cache. Changing the

write-through strategy to copy-back will reduce the energy consumption in

the data cache further due to a reduced number of writes to the cache mem-

ory. In order to avoid a negative effect on performance the dirty block

buffer should be copied to a new ‘writeback-buffer’ while a new line is

fetched from the cache memory into the block buffer. The contents of the

writeback-buffer could then be written back to the cache in the following

cycle. The performance level of the write-through scheme is thus retained.

• The data path: This work has shown that some improvement in energy

consumption can be obtained if cache lines are fetched from and written to

external memory in a Gray-coded order, rather than the traditional sequen-

tial order. This can be explored further if a compiler can be developed

which can lay-out code and data in such a way that the number of bit-transi-

Conclusions227

tions on the data bus is minimized. Careful allocation of opcodes might also

reduce the number of bit-transitions. These changes would not only reduce

the power consumption in the I/O system, but also on the data-path within

the processor. Without further work it is not clear if this is feasible.

• The pipeline: This work has not determined whether pipelining is energy

efficient. Increasing the pipeline length might allow an increase in the clock

frequency of the processor and thereby the peak-performance. However,

given that the penalty from branches and register dependencies might

increase with a longer pipeline and the energy consumption per instruction

thus increase, the effect on the energy efficiency is not clear.

• If the effect of increasing pipeline length is to decrease energy efficiency,

replicating the structures suggested in Chapter 8 should be considered. This

will allow prefetching of instructions as described in Chapter 6 without

increasing the energy consumption. This would eliminate the branch pen-

alty completely and thus improve both performance and energy efficiency.

• Unified cache: The architecture evaluated in section9.3 can be expanded

to serve data references through a block buffer at the same time as instruc-

tions as served from the eXtra-line. This will reduce the number of refer-

ences to the cache further and hence yield higher energy-efficiency

measures. The work should establish if a unified configuration can yield

energy-efficiency levels comparable with those found for separate caches.

Finally, many of the results presented in this thesis have been based upon simulations and

extrapolations. Implementation of the cache architectures proposed in Chapter 8, would

verify the extrapolations and allow more precise models to be written for the use of future

work.

Conclusions228

It is the author’s hope that the work reported in this thesis will help designers of future

microprocessors to improve the energy efficiency of their products.

This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the
beginning.

Winston Churchill

229

References

[Argade] P.V Argade et al., “Hobbit: A High-Performance, Low Power

Microprocessor”, Proceedings of CompCon ‘94 pp. 88-95, IEEE

Computer Society Press, San Francisco, March 1994

[Bensch] B.J. Benschneider et.al, “A 300-MHz 64-bit Quad-Issue CMOS RISC

Microprocessor”, IEEE Journal of Solid State Circuits, Vol. 30 No 11

November 1995

[Biggs] T. Biggs et al., “A 1 Watt 68040-Compatible Microprocessor”,

Proceedings of IEEE Symposium on Low Power Electronics, San

Diego, 1994

[Bird] P.L.Bird, U.W.Pleban, N.P Topham and Henrik Scheuer: “Semantics

Driven Computer Architecture”, Parallel Computing’91, Ed. D.Evans,

G. Joubert and H.Liddell, North Holland, 1992

[Bird2] “The Interaction of Compilation Technology and Computer

Architecture”, Editor D. Lilja and P.L.Bird, Kluwer Academic

Publisher

[Bodin] F. Bodin, A. Seznec, “Skewed associativity enhances performance

predictability”, IRISA, Campus Universitaire de Beaulieu, 35042

Rennes, France; Internal Publication No. 909

[Bunda] J. Bunda, D. Fussell, W. C. Athas, “Energy-Efficient Instruction Set

Architecture for CMOS Microprocessors”, Proceedings of the 28th

Annual Hawaii International Conference on System Sciences, 1995, pp

298-305

[Burd] T.D.Burd and R.W. Brodersen, “Energy Eff ic ient CMOS

Microprocessor Design”, Proceedings of the 28th Annual Hawaii

International Conference on System Science, 1995, vol.1. page 288-

297, IEEE Computer Society Press.

230

[Burd2] Tom Burd, “Low-Power CMOS Library Design Methodology”, M.Sc

Thesis; Department of Electrical Engineering and Computer Science,

University of California, Berkeley, 1993

[BurdPeters] T.Burd and et.al, “A Power Analysis of a Microprocessor: A Study of

the MIPS R3000 Architecture”. Technical report, University of

Ca l i fo rn ia , Berke ley, ava i lab le on the in te rne t : h t tp : / /

infopad.eecs.brekeley.edu/~burd/gpp/r3000/total.html

[Case] S.Case, “Low-End PA7100LC Adds Dual Integer ALUs”,

Microprocessor Report, November 18, 1992

[Case2] B. Case, “ IBM Del ivers First PowerPC MicroProcessor”,

Microprocessor Report, Volume 6, Number 14, October 28, 1992

[Child] Mark Child et. al. “First Looks, 200MHz Pentium PCs: Ultimate speed”

PC Magazine, August 1996, Vol. 5 Issue 8.

[Culbert] M. Culbert, “Low Power Hardware for a High Performance PDA”,

Proceedings of CompCon’94 pp. 144-147, IEEE Computer Society

Press, San Francisco, March 1994

[Conte] T.M. Conte, K.N. Menezes, P.M. Mills, B.A. Patel, “Optimization of

Instruction Fetch Mechanisms for High Issue Rates”, Proceedings of

ISCA ‘95 pp 333-344.

[DEC21064] DECchip 21064-AA Microprocessor, “Hardware Reference Manual”,

Order Number: EC-N0079-72, Digital Equipment Corporation,

Maynard, Massachusetts, USA.

[DeRosa] J.A. DeRosa and H.M. Levy, “An Evaluation of Branch Architectures”,

ACM 0084-795/87/0600-0010, 1987

[Farquhar] E.Farquhar and P. Bunce, “The MIPS Programmer’s Handbook”,

Morgan Kaufmann, San Francisco, CA, 1994, ISBN 1-55860-297-6

[Fleet] P. Fleet, “The SH Microprocessor: 16-Bit Fixed Length Instruction Set

Provides Better Power and Die Size”, Proceedings of IEEE,

Compcon’93

231

[Furber] S.B.Furber, “ARM Systems Architecture”, Chapter 7: “The Thumb

Instruction Set”, Addison-Wesley

[Furber2] S.B. Furber et al., “AMULET1: A Micropipelined ARM”, Proceedings

of CompCon’94, IEEE Computer Society Press, San Francisco, March

1994

[Garside] Personal communication with Dr. J. D. Garside, Manchester University,

Department of Computer Science, 10th of October, 1995.

[Garside2] J.D Garside et al., “The AMULET2e Cache System”, Proceedings:

Async’96, Aizu-Wakamatsu, March, 1996

[Gerosa] G.Gerosa et.al, “A 2.2W, 80MHz Superscalar RISC Microprocessor”,

IEEE Journal of Solid-State circuits, vol. 29, December 1994

[Hilditch] S. Hilditch and S. Furber: “Hash Cache: Fully-Associative Cache

Performance from a 4-way Associative cache”, 'Internal unpublished

report', Manchester University Department of Computer Science

[Hill] Mark D. Hill et al. “Design decisions in SPUR”, Computer, pages 8-22

November 1986

[Hitachi] Hitachi IC Memory Data Book, 1989

[HORNV3] SGS-Thomson Microelectronics, Chameleon Architecture Manual, 3rd

Edition, March 1994; INMOS Document Number: 72-TRN-253-02,

Available under Non-Disclosure Agreement

[HORNV5] SGS-Thomson Microelectronics, Chameleon Architecture Manual, 5rd

Edition, October 1994; INMOS Document Number: 72-TRN-253-04,

Available under Non-Disclosure Agreement

[IBM] IBM Corporation. “IBM RT PC Hardware Technical Reference,

Volume 1.” IBM, September 1986, SV21-8024

[Johnson] Mike Johnson, “Superscalar Microprocessor design”, Prentice Hall

Inc., 1991, ISBN 0-13-875634-1.

232

[Juan] T.Juan et.al., ”The Difference-bit Cache”, Proceedings of 23rd

International Symposium on Computer Architecture, Pennsylvania,

1996, pp 114-120.

[Katevenis] M.G.H Katevenis, “Reduced Instruction Set Computer Architectures

for VLSI”. The MIT Press, Cambridge, Massachusetts, 1985

[Kohavi] Z. Kohavi, “Switching and Finite Automata Theory”, New York,

McGraw-Hill, 1970

[Lev] L.A.Lev et al., “A 64-b Microprocessor with Multimedia Support”,

IEEE Journal of Solid-State Circuits. vol. 30, No. 11, November 1995

[Mahon] M.J. Mahon et.al., “Hewlett-Packard Precision architecture” Hewlett-

Pacard Journal, No. 37, p. 4-22, August 1986

[Mead] C. Mead and L. Conway, “Introduction to VLSI systems”, Addison

Westley, 1980

[MHill] Personal communication with Mark B. Hill, PACT, at HORN-meeting,

21st and 22nd of March, 1996 in Karlsruhe

[MRP1092] “Hobbit Enables Personal Communicators”, Microprocessor Report,

October 28, 1992

[Mulder] H. Mulder and M.J. Flynn, “Processor Architecture and Data

Buffering”, IEEE Transaction on Computers Vol. 41 No 10, October

1992.

[Okada] T. Okada et.al, “A PA-RISC Microprocessor PA/50L For Low-Cost

Systems”, Proceedings of IEEE CompCon’94, pp 47-52, IEEE

Computer Society Press, San Francisco, March 1994

[OMIMAP] Manchester University with contributions from Advanced RISC

Machines, “Low Power Technologies - Preliminary Report”, January

1992, OMI/MAP P5386 Deliverable 4.2.1.

[Patt] D.A Patterson, J. L. Hennesey, “Computer Architecture A Quantitative

Approach”, Morgan Kaufman Publishers Inc., 1990

233

[R4300i] World Wide Web page for the R4300i processor:

http://www.mips.com/r4300i/Prod_Overview.book.html#prefetching

[Robin] P.R. Robinson, “Mastering the 68000 Microprocessor”, TAB Books

Inc, No 1886, 1985, ISBN 0-8306-1886-4

[RS6000] “The PowerPC Architecture: A Specification for a New Family of RISC

Processors” Second Edition, Morgan Kaufmann Publishers, ISBN 1-

55860-316-6

[Ruegg] J.Ruegg, Sozobon Limited, 1991. Public domain software available

from the author.

[RYork] Personal communication with Mr. R. York, ARM Ltd. Friday, April 5th

1996.

[RYork2] Richard York, “Branch Prediction Strategies for Low Power

Microprocessor Design”, M.Sc-thesis. Department of Computer

Science, Manchester University, 1994

[Sato] T. Sato et al., “Power and Performance Simulator: ESP and its

Application for 100MIPS/W Class RISC Design”, IEEE Symposium on

Low Power Electronics, San Diego, 1994

[Segar] S.Segar et al, “Embedded Control Problems, Thumb, and the

ARM7TDMI”, IEEE Micro October 1995, page 22 - 30.

[Seznec] A. Seznec, “A case for two-way skewed-associative caches”,

Proceedings of 20th International Symposium on Computer

Architecture, San Diego, 1993

[Seznec2] A Seznec, “Decoupled Sectored Caches: Conciliating low tag

implementation cost and low miss ration”, Proceedings of 21st

International Symposium on Computer Architecture, Chicago, 1994

[Shade] SPARC Performance Analysis Tools - Shade User’s Manual, 4th

Edition, Sun Microsystems Laboratories Inc, 1992

234

[Singh] J.P. Singh, W.D. Weber and A. Gupta, “Splash: Stanford Parallel

Applications for Shared Memory”, Technical Report, Computer

Systems Laboratory, Stanford University, 1991

[Slater] M.Slater, “AT&T Sampling Low-Power “Hobbit” processor”,

Microprocessor Report, Volume 6 Number 2, February 12, 1992

[SPEC89] SPEC, “SPEC Benchmark Suite Release 1.0,” October 2, 1989

[SPEC91] SPEC, “The SPEC Benchmark Suite”. SPEC Newsletter 3, p3-4, 1991.

[Sprack] L. Spracklen, “Z80 and 8080 Assembly Language Programming”,

Hayden Book Company INC, ISBN: 0-8104-5167-0

[Su] C.L. Su, A. M. Despain, “Cache Designs for Energy Efficiency”,

Proceedings of the 28th Annual Hawaii International Conference on

System Sciences, 1995

[Suessmith] B.W. Suessmith and George Paap III, “PowerPC 603 Microprocessor

Power Management”, Communications of the ACM, June 1994, pp 43-

46

[Thakker] S.S. Thakker, “A High Performance Virtual Memory Management Unit

for a supermini computer”, Ph.D Thesis, Department of Computer

Science, Manchester University, April 1982

[Tiwari] V. Tiwari et al. “Compilation Techniques for Low Energy: An

Overview”, IEEE Symposium on Low Power Electronics, San Diego,

1994

[TOSHIBA] Information about Toshiba’s Dynamic RAM products can be found on

the internet: http://www.toshiba.com/taec/components/mem1.html

[TOSHIBA2] Information about Toshiba’s Static RAM products can be found on the

internet: http://www.toshiba.com/taec/components/mem4.html

[Transputer] INMOS, “The Transputer Databook”, Second Edition, 1989; INMOS

document number: 72-TRN-203-01.

235

[Uhlig] R.Uhlig, et al., “Instruction Fetching: Coping with Code Bloat”,

Proceedings of 22th International Symposium on Computer

Architecture, Santa Margherita, Ligure, Italy, 1995, pp 345-355

[VLSI] VLSI Technology INC., “1-micron cell compiler library, Rev. 2.0 April

1991”, sections: ‘CRAM02’ and ‘VDPRAM300’

[VLSI2] VLSI Technology INC, VSC350 Library, April 1991.

[Wang] H. Wang, T Sun and Q Yang, “CAT - Cache Address Tags - A Technique

for Reducing Area Cost of On Chip Caches”, Proceedings of 22th

International Symposium on Computer Architecture, Santa Margherita,

Ligure, 1995

[Weaver] D.L Weaver and T. Germond, “Sparc Architecture Manual”, Prentice

Hall, 1994, ISBN: 0-138-250-014

[Weicker] R.P. Weicker, “Dhrystone: A Synthetic Systems Programming

Benchmark”. Communications of the ACM 27(10): 1013-1030,

October 1984

[Weste] N. H. E. Weste & K. Esthraghian, “Principles of CMOS VLSI Design,

A system perspective”, 2nd Edition, Addison Westley, 1985

[Wharton] J.H Wharton, “ In te l Unvei ls Radical New CPU fami ly” ,

Microprocessor Report, Volume 2 Number 4, April 1988

[Williams] T. Williams, N.Patkar, G.Sheen, “SPARC64: A 64-b 64-Active-

Instruction Out-of-Order-Execution MCM Processor”, IEEE Journal of

Solid-State Circuits. vol. 30, NO. 11, November 1995

[Wilton] S.J.E Wilton and N.P. Jouppi; “An Enchanced Access and Cycle Time

Model for On-Chip Caches”, Research Report 93/5, Digital Equipment

Coperation, Western Research Laboratory, Palo Alto, California, USA

[Yeung] N. Yeung, B. Zivkov, G. Ezer, “Unif ied Datapath: An Innovative

Approach to the Design of a Low-Cost, Low-Power, High Performance

Microprocessor”, Proceedings of CompCon 1994, IEEE Computer

Society Press, San Francisco, March 1994

236

[Zivkov] B. Zivkov, B. Ferguson and M. Gupta, “R4200: A High-Performance

MIPS Microprocessor for Portables”. Proceedings of CompCon’94

page 18-25, IEEE Computer Society Press, San Francisco, March 1994

[Z80] “Z80 Microprocessor Family User’s Manual”, Zilog Inc.

237

Appendix A Energy Efficiency versus power
consumption

A.1 Separate caches
E

E
 stride =

 100

Figure A.1 EE and performance versus power consumption, cacti

E
E

 stride =
 70

Figure A.2 EE and performance versus power consumption, dhrystone

238

E
E

 stride =
 60

Figure A.3 EE and performance versus power consumption, fft

E
E

 stride =
 50

Figure A.4 EE and performance versus power consumption, flex

239

A.2 Unified cache

E
E

 stride =
 40

Figure A.5 EE and performance versus power consumption, stcompiler

Figure A.6 EE and performance versus power consumption, cacti

240

Figure A.7 EE and performance versus power consumption, dhrystone

Figure A.8 EE and performance versus power consumption, fft

241

Figure A.9 EE and performance versus power consumption, flex

Figure A.10 EE and performance versus power consumption, stcompiler

242

Appendix B Energy Efficiency versus cache line size

Figure B.1 Energy Efficiency versus instruction cache line size, cacti

Figure B.2 Energy Efficiency versus instruction cache line size, dhrystone

243

Figure B.3 Energy Efficiency versus instruction cache line size, fft

Note, measurements for 16 byte lines are missing due to software problems

Figure B.4 Energy Efficiency versus instruction cache line size, flex

244

Figure B.5 Energy Efficiency versus instruction cache line size, stcompiler

.

245

Appendix C Simulation results

This appendix presents the results of the simulations described in section 9.2. Due to the

large number of configurations and hence results to report only the results for one of the

benchmarks, espresso, will be shown here. The results for the remaining benchmarks are

available from the author.

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

8K,16,DM 4K,8,DM 11.9 70.6 418.7 7.8 5.9 62.8 31.3

8K,16,DM 4K,16,DM 12.6 71.9 409.9 7.8 7.1 59.2 33.7

8K,16,DM 4K,32,DM 13.9 69.0 341.8 7.8 9.4 53.6 37.0

8K,16,DM 4K,64,DM 16.6 60.4 219.6 7.8 13.5 44.9 41.6

8K,16,DM 4K,128,DM 21.8 45.2 93.7 7.8 18.2 34.3 47.5

8K,16,DM 8K,8,DM 12.1 76.8 487.7 8.3 4.5 57.9 37.6

8K,16,DM 8K,16,DM 13.2 80.2 485.4 7.8 5.2 56.4 38.4

8K,16,DM 8K,32,DM 14.3 77.5 419.3 7.8 6.7 52.2 41.2

8K,16,DM 8K,64,DM 16.7 70.5 297.4 7.8 9.6 44.7 45.7

8K,16,DM 8K,128,DM 21.7 58.3 156.6 7.8 13.5 34.5 52.0

8K,16,DM 16K,8,DM 12.2 73.3 442.7 9.3 3.8 51.6 44.6

8K,16,DM 16K,16,DM 13.2 79.2 474.6 8.6 3.9 51.5 44.6

8K,16,DM 16K,32,DM 14.8 83.7 472.8 8.0 4.1 49.2 46.7

8K,16,DM 16K,64,DM 16.9 84.9 425.6 7.8 4.3 44.1 51.6

8K,16,DM 16K,128,DM 21.1 79.9 302.3 7.8 5.7 35.4 58.9

8K,16,DM 32K,8,DM 13.0 68.3 357.4 10.4 3.0 43.0 54.0

8K,16,DM 32K,16,DM 13.9 74.6 399.4 9.4 3.1 44.3 52.6

8K,16,DM 32K,32,DM 15.0 78.4 409.2 8.9 3.1 43.6 53.3

8K,16,DM 32K,64,DM 16.8 81.3 393.0 8.6 2.8 40.4 56.8

8K,16,DM 32K,128,DM 19.4 80.3 332.4 8.7 2.4 34.6 63.0

8K,16,2-skew 4K,8,2-skew 9.2 72.6 571.4 9.8 3.6 64.7 31.8

8K,16,2-skew 4K,16,2-skew 9.7 74.9 576.3 9.8 3.5 61.3 35.2

8K,16,2-skew 4K,32,2-skew 10.7 74.3 517.2 9.8 4.1 55.9 40.1

8K,16,2-skew 4K,64,2-skew 12.1 71.1 417.1 10.1 4.5 47.5 47.9

8K,16,2-skew 4K,128,2-skew 14.3 55.2 213.1 11.6 8.3 35.2 56.5

8K,16,2-skew 8K,8,2-skew 9.4 73.7 578.9 10.0 3.1 62.4 34.5

8K,16,2-skew 8K,16,2-skew 10.0 76.2 582.3 9.8 3.0 59.8 37.1

8K,16,2-skew 8K,32,2-skew 10.6 75.5 537.5 10.0 2.9 55.1 41.9

8K,16,2-skew 8K,64,2-skew 11.8 72.0 440.8 10.4 3.0 47.6 49.4

8K,16,2-skew 8K,128,2-skew 13.2 63.3 302.5 11.8 3.1 37.4 59.5

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

246

8K,16,2-skew 16K,8,2-skew 9.1 69.6 532.8 11.0 2.5 58.4 39.1

8K,16,2-skew 16K,16,2-skew 9.8 73.5 550.6 10.4 2.4 57.0 40.7

8K,16,2-skew 16K,32,2-skew 10.2 71.6 502.1 10.7 2.3 53.2 44.5

8K,16,2-skew 16K,64,2-skew 11.2 69.4 429.7 11.1 1.9 46.7 51.4

8K,16,2-skew 16K,128,2-skew 12.7 63.4 316.5 12.2 1.8 37.7 60.6

8K,16,2-skew 32K,8,2-skew 9.3 64.0 441.3 12.1 2.2 52.1 45.7

8K,16,2-skew 32K,16,2-skew 9.7 67.1 462.5 11.5 2.1 52.0 45.9

8K,16,2-skew 32K,32,2-skew 10.3 67.9 445.2 11.4 2.0 49.4 48.6

8K,16,2-skew 32K,64,2-skew 11.0 64.2 376.2 12.1 1.9 44.1 54.1

8K,16,2-skew 32K,128,2-skew 12.2 59.0 284.4 13.2 1.5 36.1 62.4

8K,32,DM 4K,8,DM 12.3 74.8 453.7 7.7 7.0 61.7 31.2

8K,32,DM 4K,16,DM 13.9 81.3 475.8 7.2 7.9 58.3 33.8

8K,32,DM 4K,32,DM 15.4 77.9 395.1 7.2 10.2 52.7 37.2

8K,32,DM 4K,64,DM 18.3 67.8 250.8 7.2 14.0 44.2 41.8

8K,32,DM 4K,128,DM 23.9 50.2 105.5 7.2 18.5 33.8 47.7

8K,32,DM 8K,8,DM 12.4 82.0 541.8 8.3 5.4 56.3 38.3

8K,32,DM 8K,16,DM 13.6 85.9 540.5 7.8 6.2 54.8 39.1

8K,32,DM 8K,32,DM 15.9 88.5 492.8 7.2 7.5 50.9 41.6

8K,32,DM 8K,64,DM 18.6 80.0 345.0 7.2 10.3 43.6 46.1

8K,32,DM 8K,128,DM 24.0 65.5 178.6 7.2 13.9 33.7 52.4

8K,32,DM 16K,8,DM 12.5 78.3 489.6 9.3 4.6 50.0 45.4

8K,32,DM 16K,16,DM 13.7 84.9 527.9 8.6 4.8 49.8 45.4

8K,32,DM 16K,32,DM 15.4 90.0 527.3 8.0 5.0 47.5 47.6

8K,32,DM 16K,64,DM 18.0 92.7 477.0 7.6 5.2 42.5 52.3

8K,32,DM 16K,128,DM 22.7 87.7 338.2 7.5 6.5 34.0 59.5

8K,32,DM 32K,8,DM 13.5 72.8 392.0 10.4 3.7 41.4 54.9

8K,32,DM 32K,16,DM 14.5 79.8 440.9 9.4 3.8 42.7 53.5

8K,32,DM 32K,32,DM 15.6 84.2 453.7 8.9 3.8 41.9 54.3

8K,32,DM 32K,64,DM 17.6 87.3 434.8 8.6 3.4 38.7 57.9

8K,32,DM 32K,128,DM 20.4 86.3 366.2 8.7 3.0 33.0 64.0

8K,32,2-skew 4K,8,2-skew 9.3 75.0 604.2 10.0 4.2 62.9 32.9

8K,32,2-skew 4K,16,2-skew 9.8 77.5 609.8 10.0 4.1 59.5 36.4

8K,32,2-skew 4K,32,2-skew 10.8 76.8 545.9 10.0 4.7 54.1 41.2

8K,32,2-skew 4K,64,2-skew 12.5 74.7 446.1 10.1 5.0 46.0 49.0

8K,32,2-skew 4K,128,2-skew 14.9 57.2 219.9 11.6 8.8 33.9 57.3

8K,32,2-skew 8K,8,2-skew 9.7 77.7 625.1 10.0 3.6 60.6 35.7

8K,32,2-skew 8K,16,2-skew 10.1 78.9 616.8 10.0 3.6 58.0 38.3

8K,32,2-skew 8K,32,2-skew 11.0 79.7 579.7 10.0 3.4 53.4 43.2

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

247

8K,32,2-skew 8K,64,2-skew 12.2 75.6 470.2 10.4 3.5 46.0 50.5

8K,32,2-skew 8K,128,2-skew 13.7 66.5 322.0 11.8 3.5 36.0 60.5

8K,32,2-skew 16K,8,2-skew 9.4 73.4 574.2 11.0 3.0 56.6 40.3

8K,32,2-skew 16K,16,2-skew 10.1 77.5 593.4 10.4 2.9 55.2 41.9

8K,32,2-skew 16K,32,2-skew 10.6 75.5 540.3 10.7 2.7 51.5 45.8

8K,32,2-skew 16K,64,2-skew 11.6 73.1 460.1 11.1 2.3 45.1 52.6

8K,32,2-skew 16K,128,2-skew 13.2 66.8 337.6 12.2 2.1 36.3 61.6

8K,32,2-skew 32K,8,2-skew 9.6 67.3 473.2 12.1 2.6 50.5 46.9

8K,32,2-skew 32K,16,2-skew 10.1 70.6 496.2 11.5 2.5 50.3 47.1

8K,32,2-skew 32K,32,2-skew 10.7 71.5 477.2 11.4 2.4 47.8 49.8

8K,32,2-skew 32K,64,2-skew 11.4 67.6 402.3 12.1 2.2 42.5 55.2

8K,32,2-skew 32K,128,2-skew 12.7 62.0 302.5 13.2 1.8 34.8 63.4

8K,64,DM 4K,8,DM 13.0 76.3 447.0 7.7 8.3 58.4 33.2

8K,64,DM 4K,16,DM 15.0 83.8 468.8 7.0 9.3 55.5 35.2

8K,64,DM 4K,32,DM 16.6 80.7 393.6 7.0 11.3 50.4 38.3

8K,64,DM 4K,64,DM 19.6 70.1 251.3 7.0 15.0 42.7 42.4

8K,64,DM 4K,128,DM 25.2 51.9 106.8 7.0 19.2 33.1 47.7

8K,64,DM 8K,8,DM 13.2 83.6 531.4 8.3 6.8 53.1 40.1

8K,64,DM 8K,16,DM 14.4 87.7 532.5 7.8 7.4 51.7 40.9

8K,64,DM 8K,32,DM 16.8 90.5 488.7 7.2 8.5 48.3 43.2

8K,64,DM 8K,64,DM 19.9 83.2 347.3 7.0 11.4 41.8 46.8

8K,64,DM 8K,128,DM 25.5 67.8 180.6 7.0 14.8 32.7 52.5

8K,64,DM 16K,8,DM 13.3 79.8 480.0 9.3 5.9 47.3 46.8

8K,64,DM 16K,16,DM 14.5 86.7 519.2 8.6 6.1 47.0 46.9

8K,64,DM 16K,32,DM 16.3 92.1 521.3 8.0 6.2 44.8 49.0

8K,64,DM 16K,64,DM 19.0 95.0 474.3 7.6 6.3 40.3 53.4

8K,64,DM 16K,128,DM 23.8 89.6 338.2 7.5 7.3 32.5 60.1

8K,64,DM 32K,8,DM 14.2 74.1 385.3 10.4 4.9 39.4 55.7

8K,64,DM 32K,16,DM 15.2 81.4 434.2 9.4 5.0 40.5 54.5

8K,64,DM 32K,32,DM 16.5 86.0 448.3 8.9 5.0 39.7 55.2

8K,64,DM 32K,64,DM 18.5 89.2 430.9 8.6 4.5 36.8 58.7

8K,64,DM 32K,128,DM 21.3 88.2 364.4 8.7 4.0 31.5 64.6

8K,64,2-skew 4K,8,2-skew 9.4 74.0 579.5 10.4 4.7 59.2 36.2

8K,64,2-skew 4K,16,2-skew 10.0 76.2 582.7 10.4 4.6 56.0 39.4

8K,64,2-skew 4K,32,2-skew 10.9 75.6 522.7 10.4 5.0 51.1 43.9

8K,64,2-skew 4K,64,2-skew 12.8 74.1 429.1 10.4 5.6 43.7 50.7

8K,64,2-skew 4K,128,2-skew 15.4 58.2 219.7 11.6 9.0 32.7 58.3

8K,64,2-skew 8K,8,2-skew 9.8 76.5 597.6 10.4 4.1 57.0 38.8

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

248

8K,64,2-skew 8K,16,2-skew 10.2 77.6 588.4 10.4 4.1 54.6 41.2

8K,64,2-skew 8K,32,2-skew 11.1 78.3 553.5 10.4 3.9 50.4 45.7

8K,64,2-skew 8K,64,2-skew 12.8 77.4 468.1 10.4 4.0 43.6 52.3

8K,64,2-skew 8K,128,2-skew 14.4 67.9 321.0 11.8 3.9 34.4 61.7

8K,64,2-skew 16K,8,2-skew 10.0 75.2 567.5 11.0 3.7 53.4 43.0

8K,64,2-skew 16K,16,2-skew 10.7 79.4 587.3 10.4 3.5 52.1 44.4

8K,64,2-skew 16K,32,2-skew 11.2 77.3 535.8 10.7 3.3 48.6 48.0

8K,64,2-skew 16K,64,2-skew 12.2 74.8 457.5 11.1 2.8 42.8 54.3

8K,64,2-skew 16K,128,2-skew 13.8 68.3 337.4 12.2 2.5 34.6 62.8

8K,64,2-skew 32K,8,2-skew 10.1 68.9 468.7 12.1 3.2 47.8 49.0

8K,64,2-skew 32K,16,2-skew 10.6 72.3 491.6 11.5 3.1 47.6 49.3

8K,64,2-skew 32K,32,2-skew 11.3 73.1 473.6 11.4 2.9 45.3 51.8

8K,64,2-skew 32K,64,2-skew 12.0 69.2 400.5 12.1 2.8 40.4 56.8

8K,64,2-skew 32K,128,2-skew 13.3 63.3 302.1 13.2 2.2 33.2 64.5

8K,128,DM 4K,8,DM 13.7 75.9 419.7 7.7 10.1 55.5 34.4

8K,128,DM 4K,16,DM 15.7 83.4 442.1 7.0 10.9 52.8 36.3

8K,128,DM 4K,32,DM 17.5 81.4 379.2 6.9 12.5 48.3 39.1

8K,128,DM 4K,64,DM 20.4 70.8 245.6 6.9 15.7 41.4 42.9

8K,128,DM 4K,128,DM 25.9 52.5 106.3 6.9 19.4 32.6 48.0

8K,128,DM 8K,8,DM 13.9 82.9 494.9 8.3 8.6 50.4 41.0

8K,128,DM 8K,16,DM 15.2 87.0 498.0 7.8 9.2 49.1 41.7

8K,128,DM 8K,32,DM 17.6 90.0 461.3 7.2 10.1 46.1 43.8

8K,128,DM 8K,64,DM 20.7 82.9 332.3 7.0 12.5 40.3 47.2

8K,128,DM 8K,128,DM 26.4 68.6 178.3 6.9 15.2 32.0 52.7

8K,128,DM 16K,8,DM 13.9 78.9 447.1 9.3 7.8 45.0 47.2

8K,128,DM 16K,16,DM 15.2 85.8 484.5 8.6 8.0 44.7 47.3

8K,128,DM 16K,32,DM 17.1 91.3 488.9 8.0 8.0 42.8 49.3

8K,128,DM 16K,64,DM 19.8 94.3 448.4 7.6 8.0 38.6 53.4

8K,128,DM 16K,128,DM 24.5 89.1 323.7 7.5 8.5 31.6 60.0

8K,128,DM 32K,8,DM 14.8 73.1 360.8 10.4 6.6 37.8 55.6

8K,128,DM 32K,16,DM 15.9 80.5 406.8 9.4 6.8 38.8 54.5

8K,128,DM 32K,32,DM 17.2 85.1 421.1 8.9 6.8 38.0 55.2

8K,128,DM 32K,64,DM 19.2 88.3 406.5 8.6 6.1 35.4 58.5

8K,128,DM 32K,128,DM 22.0 87.3 346.1 8.7 5.4 30.5 64.2

8K,128,2-skew 4K,8,2-skew 8.9 65.9 489.4 11.8 6.1 55.8 38.1

8K,128,2-skew 4K,16,2-skew 9.3 67.6 489.8 11.8 6.0 53.0 41.0

8K,128,2-skew 4K,32,2-skew 10.2 67.0 441.6 11.8 6.2 48.6 45.1

8K,128,2-skew 4K,64,2-skew 11.8 65.7 365.0 11.8 6.6 41.9 51.5

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

249

8K,128,2-skew 4K,128,2-skew 15.6 56.9 207.4 11.8 9.7 31.8 58.5

8K,128,2-skew 8K,8,2-skew 9.2 67.9 502.0 11.8 5.6 53.9 40.5

8K,128,2-skew 8K,16,2-skew 9.6 68.7 494.0 11.8 5.5 51.8 42.7

8K,128,2-skew 8K,32,2-skew 10.3 69.3 465.5 11.8 5.2 47.9 46.9

8K,128,2-skew 8K,64,2-skew 11.8 68.5 396.5 11.8 5.1 41.8 53.1

8K,128,2-skew 8K,128,2-skew 14.8 67.6 308.6 11.8 4.8 33.4 61.9

8K,128,2-skew 16K,8,2-skew 9.8 70.0 501.2 11.8 4.9 50.6 44.4

8K,128,2-skew 16K,16,2-skew 10.0 70.2 492.5 11.8 4.9 49.4 45.7

8K,128,2-skew 16K,32,2-skew 10.7 70.4 464.0 11.8 4.6 46.4 49.1

8K,128,2-skew 16K,64,2-skew 12.1 70.4 411.0 11.8 4.1 41.1 54.8

8K,128,2-skew 16K,128,2-skew 14.3 68.0 323.7 12.2 3.5 33.5 63.0

8K,128,2-skew 32K,8,2-skew 10.6 68.6 443.7 12.1 4.5 45.6 49.9

8K,128,2-skew 32K,16,2-skew 10.9 70.4 455.1 11.8 4.4 45.5 50.1

8K,128,2-skew 32K,32,2-skew 11.4 70.5 434.9 11.8 4.2 43.3 52.5

8K,128,2-skew 32K,64,2-skew 12.4 68.9 381.9 12.1 3.9 38.9 57.2

8K,128,2-skew 32K,128,2-skew 13.7 63.0 290.1 13.2 3.2 32.2 64.6

16K,16,DM 4K,8,DM 11.7 68.8 404.4 8.6 4.8 58.0 37.2

16K,16,DM 4K,16,DM 12.4 70.0 394.4 8.6 6.1 54.7 39.2

16K,16,DM 4K,32,DM 13.7 67.0 328.2 8.6 8.6 49.7 41.7

16K,16,DM 4K,64,DM 16.2 58.3 210.1 8.6 12.9 42.1 45.0

16K,16,DM 4K,128,DM 20.9 43.0 88.7 8.6 18.0 32.6 49.4

16K,16,DM 8K,8,DM 12.7 78.7 487.1 8.6 3.4 53.5 43.2

16K,16,DM 8K,16,DM 13.1 78.1 465.3 8.6 4.2 51.8 44.0

16K,16,DM 8K,32,DM 14.1 75.3 401.8 8.6 5.7 48.1 46.2

16K,16,DM 8K,64,DM 16.4 68.3 284.6 8.6 8.9 41.5 49.6

16K,16,DM 8K,128,DM 20.9 55.9 149.0 8.6 13.1 32.5 54.4

16K,16,DM 16K,8,DM 13.1 77.3 454.9 9.3 2.6 47.7 49.6

16K,16,DM 16K,16,DM 14.3 83.8 490.5 8.6 2.8 47.5 49.7

16K,16,DM 16K,32,DM 15.0 83.5 464.1 8.6 3.0 45.2 51.7

16K,16,DM 16K,64,DM 16.7 82.6 407.7 8.6 3.4 40.6 56.0

16K,16,DM 16K,128,DM 20.7 77.4 289.8 8.6 5.0 32.9 62.1

16K,16,DM 32K,8,DM 14.1 71.8 367.3 10.4 2.0 39.9 58.1

16K,16,DM 32K,16,DM 15.0 78.8 412.4 9.4 2.0 41.0 56.9

16K,16,DM 32K,32,DM 16.2 83.0 425.0 8.9 2.1 40.4 57.6

16K,16,DM 32K,64,DM 18.2 86.2 408.6 8.6 1.9 37.4 60.7

16K,16,DM 32K,128,DM 20.9 85.2 346.6 8.7 1.6 32.1 66.3

16K,16,2-skew 4K,8,2-skew 9.0 71.2 561.9 10.4 2.5 61.9 35.6

16K,16,2-skew 4K,16,2-skew 9.5 73.4 564.6 10.4 2.5 58.6 38.9

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

250

16K,16,2-skew 4K,32,2-skew 10.4 72.8 506.4 10.4 3.1 53.5 43.4

16K,16,2-skew 4K,64,2-skew 12.2 71.5 416.8 10.4 3.9 45.6 50.4

16K,16,2-skew 4K,128,2-skew 14.8 56.9 218.4 11.6 7.8 34.1 58.2

16K,16,2-skew 8K,8,2-skew 9.4 73.6 579.0 10.4 2.0 59.7 38.3

16K,16,2-skew 8K,16,2-skew 9.8 74.6 569.7 10.4 2.0 57.2 40.8

16K,16,2-skew 8K,32,2-skew 10.6 75.3 535.5 10.4 1.9 52.8 45.3

16K,16,2-skew 8K,64,2-skew 12.2 74.6 454.9 10.4 2.2 45.7 52.1

16K,16,2-skew 8K,128,2-skew 13.8 65.5 311.3 11.8 2.5 36.0 61.5

16K,16,2-skew 16K,8,2-skew 9.5 72.3 549.9 11.0 1.5 56.0 42.6

16K,16,2-skew 16K,16,2-skew 10.2 76.3 568.2 10.4 1.4 54.6 44.0

16K,16,2-skew 16K,32,2-skew 10.7 74.3 518.5 10.7 1.4 51.0 47.7

16K,16,2-skew 16K,64,2-skew 11.7 71.9 442.0 11.1 1.2 44.8 54.0

16K,16,2-skew 16K,128,2-skew 13.2 65.7 326.1 12.2 1.1 36.2 62.7

16K,16,2-skew 32K,8,2-skew 9.7 66.2 453.8 12.1 1.3 50.0 48.7

16K,16,2-skew 32K,16,2-skew 10.2 69.5 475.6 11.5 1.2 49.9 48.9

16K,16,2-skew 32K,32,2-skew 10.8 70.3 457.9 11.4 1.2 47.4 51.4

16K,16,2-skew 32K,64,2-skew 11.4 66.5 387.3 12.1 1.1 42.3 56.6

16K,16,2-skew 32K,128,2-skew 12.7 60.9 291.9 13.2 0.9 34.7 64.4

16K,32,DM 4K,8,DM 12.4 76.1 468.3 8.0 5.6 58.9 35.5

16K,32,DM 4K,16,DM 13.2 77.7 458.1 8.0 6.9 55.4 37.7

16K,32,DM 4K,32,DM 14.6 74.2 378.5 8.0 9.4 50.1 40.6

16K,32,DM 4K,64,DM 17.3 64.2 238.2 8.0 13.6 42.1 44.3

16K,32,DM 4K,128,DM 22.4 47.1 98.8 8.0 18.6 32.5 49.0

16K,32,DM 8K,8,DM 13.0 85.7 564.5 8.3 4.0 53.7 42.3

16K,32,DM 8K,16,DM 14.0 87.7 550.7 8.0 4.9 52.2 42.9

16K,32,DM 8K,32,DM 15.1 84.4 471.7 8.0 6.5 48.3 45.3

16K,32,DM 8K,64,DM 17.6 76.1 328.5 8.0 9.6 41.4 48.9

16K,32,DM 8K,128,DM 22.6 61.7 168.3 8.0 13.7 32.2 54.1

16K,32,DM 16K,8,DM 13.2 81.9 509.9 9.3 3.2 47.7 49.1

16K,32,DM 16K,16,DM 14.3 89.0 551.9 8.6 3.4 47.4 49.2

16K,32,DM 16K,32,DM 16.2 94.5 553.2 8.0 3.6 45.1 51.2

16K,32,DM 16K,64,DM 18.1 93.5 482.9 8.0 4.0 40.3 55.7

16K,32,DM 16K,128,DM 22.5 87.3 337.8 8.0 5.5 32.4 62.1

16K,32,DM 32K,8,DM 14.2 76.1 407.9 10.4 2.5 39.5 58.0

16K,32,DM 32K,16,DM 15.2 83.6 460.2 9.4 2.6 40.6 56.8

16K,32,DM 32K,32,DM 16.4 88.4 475.4 8.9 2.6 39.9 57.6

16K,32,DM 32K,64,DM 18.4 91.7 455.5 8.6 2.3 36.8 60.9

16K,32,DM 32K,128,DM 21.4 90.6 383.8 8.7 2.0 31.4 66.6

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

251

16K,32,2-skew 4K,8,2-skew 8.8 72.5 595.8 10.7 2.8 61.5 35.7

16K,32,2-skew 4K,16,2-skew 9.3 74.8 598.6 10.7 2.8 58.2 39.1

16K,32,2-skew 4K,32,2-skew 10.3 74.1 534.6 10.7 3.4 52.8 43.7

16K,32,2-skew 4K,64,2-skew 12.1 72.7 436.9 10.7 4.3 44.9 50.9

16K,32,2-skew 4K,128,2-skew 15.2 58.6 226.8 11.6 8.2 33.2 58.6

16K,32,2-skew 8K,8,2-skew 9.2 75.0 614.6 10.7 2.3 59.3 38.4

16K,32,2-skew 8K,16,2-skew 9.6 76.1 604.4 10.7 2.3 56.7 41.0

16K,32,2-skew 8K,32,2-skew 10.4 76.8 566.7 10.7 2.2 52.1 45.7

16K,32,2-skew 8K,64,2-skew 12.1 75.9 476.1 10.7 2.6 44.9 52.6

16K,32,2-skew 8K,128,2-skew 14.1 68.6 334.2 11.8 2.7 35.2 62.1

16K,32,2-skew 16K,8,2-skew 9.6 75.9 601.0 11.0 1.7 55.4 42.9

16K,32,2-skew 16K,16,2-skew 10.1 77.9 603.0 10.7 1.7 54.0 44.4

16K,32,2-skew 16K,32,2-skew 10.8 78.1 564.9 10.7 1.6 50.3 48.1

16K,32,2-skew 16K,64,2-skew 11.9 75.5 478.8 11.1 1.4 44.0 54.6

16K,32,2-skew 16K,128,2-skew 13.5 68.9 351.0 12.2 1.2 35.4 63.4

16K,32,2-skew 32K,8,2-skew 9.8 69.5 493.3 12.1 1.5 49.4 49.1

16K,32,2-skew 32K,16,2-skew 10.3 72.9 517.0 11.5 1.4 49.2 49.4

16K,32,2-skew 32K,32,2-skew 10.9 73.8 496.9 11.4 1.3 46.7 52.0

16K,32,2-skew 32K,64,2-skew 11.6 69.8 418.8 12.1 1.3 41.5 57.2

16K,32,2-skew 32K,128,2-skew 13.0 63.8 313.5 13.2 1.0 33.9 65.0

16K,64,DM 4K,8,DM 13.3 79.5 474.4 7.7 6.5 57.1 36.3

16K,64,DM 4K,16,DM 14.3 81.8 469.8 7.6 7.8 53.7 38.5

16K,64,DM 4K,32,DM 15.7 78.3 389.9 7.6 10.1 48.7 41.2

16K,64,DM 4K,64,DM 18.6 67.6 246.0 7.6 14.3 41.2 44.5

16K,64,DM 4K,128,DM 23.9 49.5 102.7 7.6 19.0 32.0 48.9

16K,64,DM 8K,8,DM 13.5 87.5 565.6 8.3 4.9 51.6 43.5

16K,64,DM 8K,16,DM 14.9 91.9 567.5 7.8 5.6 50.2 44.1

16K,64,DM 8K,32,DM 16.4 89.6 490.1 7.6 7.3 46.7 46.0

16K,64,DM 8K,64,DM 19.0 80.5 341.4 7.6 10.4 40.3 49.4

16K,64,DM 8K,128,DM 24.2 65.1 174.9 7.6 14.3 31.6 54.1

16K,64,DM 16K,8,DM 13.7 83.6 510.8 9.3 4.1 45.8 50.1

16K,64,DM 16K,16,DM 14.9 91.0 554.1 8.6 4.3 45.5 50.2

16K,64,DM 16K,32,DM 16.8 96.8 557.2 8.0 4.5 43.4 52.2

16K,64,DM 16K,64,DM 19.7 99.9 507.0 7.6 4.8 38.9 56.3

16K,64,DM 16K,128,DM 24.4 93.1 355.0 7.6 6.2 31.4 62.4

16K,64,DM 32K,8,DM 14.7 77.6 409.0 10.4 3.3 38.0 58.7

16K,64,DM 32K,16,DM 15.8 85.4 462.2 9.4 3.4 39.1 57.5

16K,64,DM 32K,32,DM 17.1 90.4 478.5 8.9 3.4 38.3 58.3

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

252

16K,64,DM 32K,64,DM 19.2 93.8 459.1 8.6 3.1 35.4 61.5

16K,64,DM 32K,128,DM 22.2 92.7 387.7 8.7 2.7 30.3 67.1

16K,64,2-skew 4K,8,2-skew 8.9 72.0 579.3 11.1 3.1 58.6 38.3

16K,64,2-skew 4K,16,2-skew 9.4 74.0 579.6 11.1 3.0 55.5 41.5

16K,64,2-skew 4K,32,2-skew 10.4 73.3 518.4 11.1 3.6 50.5 45.9

16K,64,2-skew 4K,64,2-skew 12.2 71.8 423.8 11.1 4.3 43.1 52.6

16K,64,2-skew 4K,128,2-skew 15.6 59.6 227.3 11.6 8.3 32.2 59.4

16K,64,2-skew 8K,8,2-skew 9.3 74.3 595.0 11.1 2.6 56.5 41.0

16K,64,2-skew 8K,16,2-skew 9.7 75.2 584.2 11.1 2.6 54.1 43.4

16K,64,2-skew 8K,32,2-skew 10.5 75.9 547.8 11.1 2.4 49.8 47.8

16K,64,2-skew 8K,64,2-skew 12.2 75.0 461.8 11.1 2.8 43.0 54.2

16K,64,2-skew 8K,128,2-skew 14.6 69.9 334.8 11.8 3.0 33.9 63.1

16K,64,2-skew 16K,8,2-skew 9.9 76.6 592.6 11.1 2.0 52.9 45.1

16K,64,2-skew 16K,16,2-skew 10.2 76.9 581.6 11.1 2.0 51.5 46.5

16K,64,2-skew 16K,32,2-skew 10.9 77.1 545.5 11.1 1.9 48.1 50.1

16K,64,2-skew 16K,64,2-skew 12.4 77.1 479.1 11.1 1.7 42.2 56.1

16K,64,2-skew 16K,128,2-skew 14.1 70.4 352.6 12.2 1.5 34.0 64.4

16K,64,2-skew 32K,8,2-skew 10.2 71.0 492.2 12.1 1.9 47.2 50.9

16K,64,2-skew 32K,16,2-skew 10.8 74.5 516.0 11.5 1.8 47.0 51.2

16K,64,2-skew 32K,32,2-skew 11.4 75.4 496.6 11.4 1.7 44.7 53.6

16K,64,2-skew 32K,64,2-skew 12.1 71.3 419.5 12.1 1.6 39.8 58.6

16K,64,2-skew 32K,128,2-skew 13.5 65.2 315.0 13.2 1.3 32.7 66.0

16K,128,DM 4K,8,DM 13.8 79.5 457.0 7.7 7.8 55.0 37.2

16K,128,DM 4K,16,DM 14.9 82.7 458.2 7.5 8.8 51.9 39.3

16K,128,DM 4K,32,DM 16.4 79.1 382.3 7.5 11.0 47.2 41.8

16K,128,DM 4K,64,DM 19.2 68.3 243.6 7.5 14.7 40.3 45.0

16K,128,DM 4K,128,DM 24.4 50.1 102.9 7.5 19.1 31.7 49.2

16K,128,DM 8K,8,DM 14.1 87.4 542.2 8.3 6.2 49.7 44.1

16K,128,DM 8K,16,DM 15.4 91.8 545.5 7.8 6.9 48.4 44.7

16K,128,DM 8K,32,DM 17.1 90.6 478.9 7.5 8.4 45.1 46.5

16K,128,DM 8K,64,DM 19.7 81.4 336.4 7.5 11.0 39.3 49.7

16K,128,DM 8K,128,DM 24.9 65.9 174.5 7.5 14.6 31.1 54.3

16K,128,DM 16K,8,DM 14.2 83.4 489.9 9.3 5.4 44.2 50.4

16K,128,DM 16K,16,DM 15.5 90.8 532.0 8.6 5.6 43.9 50.6

16K,128,DM 16K,32,DM 17.4 96.7 536.7 8.0 5.7 41.9 52.4

16K,128,DM 16K,64,DM 20.3 99.9 490.9 7.6 5.9 37.7 56.4

16K,128,DM 16K,128,DM 25.2 94.0 350.2 7.5 7.0 30.7 62.4

16K,128,DM 32K,8,DM 15.2 77.3 393.7 10.4 4.5 36.9 58.6

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

253

16K,128,DM 32K,16,DM 16.3 85.2 445.0 9.4 4.6 37.9 57.6

16K,128,DM 32K,32,DM 17.6 90.2 461.4 8.9 4.6 37.1 58.3

16K,128,DM 32K,64,DM 19.7 93.6 444.0 8.6 4.2 34.4 61.4

16K,128,DM 32K,128,DM 22.7 92.5 376.6 8.7 3.6 29.5 66.8

16K,128,2-skew 4K,8,2-skew 8.5 66.7 526.3 12.2 3.4 56.6 40.0

16K,128,2-skew 4K,16,2-skew 8.9 68.6 526.6 12.2 3.4 53.5 43.1

16K,128,2-skew 4K,32,2-skew 9.8 68.0 471.9 12.2 3.9 48.9 47.2

16K,128,2-skew 4K,64,2-skew 11.5 66.5 386.3 12.2 4.7 41.8 53.5

16K,128,2-skew 4K,128,2-skew 15.3 57.2 214.3 12.2 8.8 31.3 59.9

16K,128,2-skew 8K,8,2-skew 8.8 68.9 540.6 12.2 2.9 54.5 42.6

16K,128,2-skew 8K,16,2-skew 9.2 69.8 531.3 12.2 2.9 52.2 44.9

16K,128,2-skew 8K,32,2-skew 9.9 70.4 498.9 12.2 2.7 48.2 49.1

16K,128,2-skew 8K,64,2-skew 11.5 69.5 421.4 12.2 3.0 41.7 55.2

16K,128,2-skew 8K,128,2-skew 14.5 68.6 324.5 12.2 3.1 33.0 63.9

16K,128,2-skew 16K,8,2-skew 9.4 71.1 539.6 12.2 2.3 51.1 46.7

16K,128,2-skew 16K,16,2-skew 9.6 71.4 529.7 12.2 2.2 49.8 48.0

16K,128,2-skew 16K,32,2-skew 10.3 71.5 497.4 12.2 2.1 46.5 51.4

16K,128,2-skew 16K,64,2-skew 11.7 71.5 437.8 12.2 1.9 40.9 57.2

16K,128,2-skew 16K,128,2-skew 14.4 71.5 353.7 12.2 1.6 33.1 65.2

16K,128,2-skew 32K,8,2-skew 10.5 71.4 486.9 12.2 2.0 45.8 52.2

16K,128,2-skew 32K,16,2-skew 10.5 71.6 487.2 12.2 2.0 45.5 52.5

16K,128,2-skew 32K,32,2-skew 11.1 71.7 464.6 12.2 1.9 43.3 54.8

16K,128,2-skew 32K,64,2-skew 12.4 71.7 415.9 12.2 1.7 38.7 59.6

16K,128,2-skew 32K,128,2-skew 13.8 66.1 315.9 13.2 1.4 31.9 66.8

32K,16,DM 4K,8,DM 12.2 68.0 380.1 9.4 3.3 50.8 45.9

32K,16,DM 4K,16,DM 12.8 68.9 370.1 9.4 4.6 48.1 47.3

32K,16,DM 4K,32,DM 14.0 65.7 308.5 9.4 7.2 44.1 48.7

32K,16,DM 4K,64,DM 16.2 56.7 198.0 9.4 11.8 38.0 50.2

32K,16,DM 4K,128,DM 20.4 41.2 83.5 9.4 17.4 30.3 52.3

32K,16,DM 8K,8,DM 13.3 77.7 454.5 9.4 1.8 46.5 51.7

32K,16,DM 8K,16,DM 13.7 77.0 434.4 9.4 2.6 45.2 52.2

32K,16,DM 8K,32,DM 14.6 74.1 376.4 9.4 4.3 42.3 53.4

32K,16,DM 8K,64,DM 16.6 66.8 267.9 9.4 7.7 37.1 55.2

32K,16,DM 8K,128,DM 20.8 54.0 140.5 9.4 12.3 29.7 58.0

32K,16,DM 16K,8,DM 14.8 81.9 453.7 9.4 1.2 41.7 57.1

32K,16,DM 16K,16,DM 14.9 82.7 457.9 9.4 1.3 41.3 57.3

32K,16,DM 16K,32,DM 15.6 82.4 434.1 9.4 1.6 39.5 58.9

32K,16,DM 16K,64,DM 17.3 81.4 383.2 9.4 2.1 35.7 62.2

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

254

32K,16,DM 16K,128,DM 21.1 76.0 274.2 9.4 4.0 29.3 66.6

32K,16,DM 32K,8,DM 15.9 77.1 373.4 10.4 0.7 35.2 64.1

32K,16,DM 32K,16,DM 17.1 85.0 421.8 9.4 0.8 36.0 63.2

32K,16,DM 32K,32,DM 17.5 85.1 414.8 9.4 0.8 35.3 63.9

32K,16,DM 32K,64,DM 18.8 85.2 385.7 9.4 0.7 32.8 66.5

32K,16,DM 32K,128,DM 21.8 85.1 333.1 9.4 0.7 28.4 71.0

32K,16,2-skew 4K,8,2-skew 8.9 66.0 489.5 11.5 2.0 56.9 41.1

32K,16,2-skew 4K,16,2-skew 9.4 67.8 490.6 11.5 1.9 54.1 44.0

32K,16,2-skew 4K,32,2-skew 10.2 67.1 442.0 11.5 2.6 49.6 47.8

32K,16,2-skew 4K,64,2-skew 11.8 65.9 366.8 11.5 3.5 42.7 53.8

32K,16,2-skew 4K,128,2-skew 15.5 57.5 213.8 11.6 7.3 32.6 60.1

32K,16,2-skew 8K,8,2-skew 9.2 68.0 502.4 11.5 1.5 55.0 43.5

32K,16,2-skew 8K,16,2-skew 9.6 68.8 494.1 11.5 1.5 52.8 45.7

32K,16,2-skew 8K,32,2-skew 10.3 69.4 465.6 11.5 1.5 48.9 49.6

32K,16,2-skew 8K,64,2-skew 11.8 68.7 398.7 11.5 1.9 42.7 55.5

32K,16,2-skew 8K,128,2-skew 14.5 66.3 302.9 11.8 2.2 34.1 63.7

32K,16,2-skew 16K,8,2-skew 9.8 70.0 501.0 11.5 1.0 51.7 47.3

32K,16,2-skew 16K,16,2-skew 10.0 70.3 492.4 11.5 1.0 50.5 48.5

32K,16,2-skew 16K,32,2-skew 10.7 70.4 464.0 11.5 0.9 47.3 51.7

32K,16,2-skew 16K,64,2-skew 12.1 70.4 411.0 11.5 0.9 41.9 57.2

32K,16,2-skew 16K,128,2-skew 14.0 66.6 316.9 12.2 0.8 34.2 64.9

32K,16,2-skew 32K,8,2-skew 10.4 67.1 434.2 12.1 0.9 46.6 52.5

32K,16,2-skew 32K,16,2-skew 10.9 70.4 455.0 11.5 0.9 46.4 52.7

32K,16,2-skew 32K,32,2-skew 11.4 70.5 434.9 11.5 0.8 44.2 55.0

32K,16,2-skew 32K,64,2-skew 12.2 67.4 373.8 12.1 0.8 39.7 59.5

32K,16,2-skew 32K,128,2-skew 13.4 61.7 283.6 13.2 0.6 32.9 66.4

32K,32,DM 4K,8,DM 12.0 73.7 452.8 8.9 3.8 54.6 41.6

32K,32,DM 4K,16,DM 12.8 75.0 441.0 8.9 5.2 51.4 43.4

32K,32,DM 4K,32,DM 14.1 71.4 362.8 8.9 8.0 46.6 45.4

32K,32,DM 4K,64,DM 16.6 61.3 226.6 8.9 12.8 39.5 47.7

32K,32,DM 4K,128,DM 21.2 44.4 92.6 8.9 18.4 30.8 50.8

32K,32,DM 8K,8,DM 13.2 85.5 555.4 8.9 2.1 49.7 48.1

32K,32,DM 8K,16,DM 13.6 84.8 528.8 8.9 3.0 48.2 48.8

32K,32,DM 8K,32,DM 14.7 81.4 452.1 8.9 4.9 44.7 50.5

32K,32,DM 8K,64,DM 17.0 73.0 313.4 8.9 8.5 38.6 52.9

32K,32,DM 8K,128,DM 21.6 58.6 158.9 8.9 13.2 30.3 56.5

32K,32,DM 16K,8,DM 14.2 87.3 536.4 9.3 1.4 44.1 54.5

32K,32,DM 16K,16,DM 15.0 91.7 562.2 8.9 1.6 43.8 54.7

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

255

32K,32,DM 16K,32,DM 15.8 91.4 530.4 8.9 1.9 41.6 56.5

32K,32,DM 16K,64,DM 17.6 90.3 462.8 8.9 2.4 37.2 60.4

32K,32,DM 16K,128,DM 21.8 83.9 322.9 8.9 4.5 30.0 65.5

32K,32,DM 32K,8,DM 15.3 81.0 428.9 10.4 0.9 36.6 62.5

32K,32,DM 32K,16,DM 16.4 89.4 486.2 9.4 0.9 37.6 61.5

32K,32,DM 32K,32,DM 17.8 94.8 505.1 8.9 0.9 36.8 62.3

32K,32,DM 32K,64,DM 19.3 94.8 466.6 8.9 0.8 34.0 65.2

32K,32,DM 32K,128,DM 22.6 94.8 398.3 8.9 0.8 29.0 70.2

32K,32,2-skew 4K,8,2-skew 8.7 69.7 556.3 11.4 2.1 58.5 39.4

32K,32,2-skew 4K,16,2-skew 9.2 71.7 556.6 11.4 2.1 55.4 42.5

32K,32,2-skew 4K,32,2-skew 10.1 71.0 498.4 11.4 2.8 50.5 46.7

32K,32,2-skew 4K,64,2-skew 11.8 69.6 409.1 11.4 3.6 43.1 53.2

32K,32,2-skew 4K,128,2-skew 15.6 59.3 225.4 11.6 7.8 32.3 59.9

32K,32,2-skew 8K,8,2-skew 9.1 71.9 571.3 11.4 1.6 56.4 42.0

32K,32,2-skew 8K,16,2-skew 9.5 72.8 561.0 11.4 1.6 54.0 44.3

32K,32,2-skew 8K,32,2-skew 10.3 73.5 526.3 11.4 1.6 49.8 48.6

32K,32,2-skew 8K,64,2-skew 11.9 72.6 444.2 11.4 2.0 43.1 54.9

32K,32,2-skew 8K,128,2-skew 14.6 69.5 331.5 11.8 2.3 34.0 63.7

32K,32,2-skew 16K,8,2-skew 9.7 74.2 569.2 11.4 1.1 52.9 46.1

32K,32,2-skew 16K,16,2-skew 9.9 74.5 558.6 11.4 1.1 51.5 47.4

32K,32,2-skew 16K,32,2-skew 10.6 74.6 524.2 11.4 1.0 48.1 50.9

32K,32,2-skew 16K,64,2-skew 12.1 74.6 460.8 11.4 0.9 42.3 56.8

32K,32,2-skew 16K,128,2-skew 14.0 69.8 348.1 12.2 0.9 34.2 65.0

32K,32,2-skew 32K,8,2-skew 10.2 70.4 485.0 12.1 0.9 47.3 51.8

32K,32,2-skew 32K,16,2-skew 10.8 73.9 508.2 11.5 0.9 47.1 52.0

32K,32,2-skew 32K,32,2-skew 11.4 74.8 489.3 11.4 0.9 44.7 54.4

32K,32,2-skew 32K,64,2-skew 12.1 70.8 413.7 12.1 0.8 39.9 59.2

32K,32,2-skew 32K,128,2-skew 13.4 64.7 310.8 13.2 0.7 32.8 66.5

32K,64,DM 4K,8,DM 12.4 77.9 488.6 8.6 4.0 54.7 41.3

32K,64,DM 4K,16,DM 13.2 79.3 476.1 8.6 5.4 51.4 43.3

32K,64,DM 4K,32,DM 14.6 75.5 391.2 8.6 8.0 46.6 45.4

32K,64,DM 4K,64,DM 17.2 64.7 243.2 8.6 12.7 39.5 47.9

32K,64,DM 4K,128,DM 22.0 46.7 99.1 8.6 17.9 30.9 51.2

32K,64,DM 8K,8,DM 13.7 90.7 601.3 8.6 2.4 49.7 47.9

32K,64,DM 8K,16,DM 14.1 89.9 572.3 8.6 3.2 48.1 48.7

32K,64,DM 8K,32,DM 15.2 86.3 488.5 8.6 5.0 44.6 50.4

32K,64,DM 8K,64,DM 17.6 77.1 337.0 8.6 8.5 38.5 53.0

32K,64,DM 8K,128,DM 22.4 61.7 169.5 8.6 13.0 30.3 56.8

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

256

32K,64,DM 16K,8,DM 14.3 89.3 559.3 9.3 1.6 43.9 54.4

32K,64,DM 16K,16,DM 15.6 97.4 608.6 8.6 1.8 43.6 54.7

32K,64,DM 16K,32,DM 16.4 97.1 573.9 8.6 2.1 41.4 56.5

32K,64,DM 16K,64,DM 18.4 95.8 499.4 8.6 2.6 36.9 60.5

32K,64,DM 16K,128,DM 22.8 88.9 346.6 8.6 4.5 29.8 65.7

32K,64,DM 32K,8,DM 15.4 82.9 446.0 10.4 1.1 36.4 62.6

32K,64,DM 32K,16,DM 16.5 91.5 506.1 9.4 1.1 37.3 61.6

32K,64,DM 32K,32,DM 17.9 97.1 525.9 8.9 1.1 36.5 62.3

32K,64,DM 32K,64,DM 20.2 100.7 503.3 8.6 1.0 33.7 65.3

32K,64,DM 32K,128,DM 23.4 99.6 423.8 8.7 0.9 28.7 70.4

32K,64,2-skew 4K,8,2-skew 8.5 67.5 535.6 12.1 2.4 56.9 40.7

32K,64,2-skew 4K,16,2-skew 9.0 69.3 535.6 12.1 2.4 53.8 43.8

32K,64,2-skew 4K,32,2-skew 9.8 68.7 479.3 12.1 3.0 49.1 47.8

32K,64,2-skew 4K,64,2-skew 11.5 67.2 392.2 12.1 4.0 41.9 54.1

32K,64,2-skew 4K,128,2-skew 15.3 57.9 218.8 12.1 8.2 31.5 60.3

32K,64,2-skew 8K,8,2-skew 8.8 69.6 549.9 12.1 1.9 54.8 43.3

32K,64,2-skew 8K,16,2-skew 9.2 70.5 540.2 12.1 1.9 52.5 45.6

32K,64,2-skew 8K,32,2-skew 10.0 71.2 507.1 12.1 1.8 48.4 49.8

32K,64,2-skew 8K,64,2-skew 11.5 70.3 428.0 12.1 2.3 41.9 55.9

32K,64,2-skew 8K,128,2-skew 14.6 69.3 329.2 12.1 2.5 33.1 64.4

32K,64,2-skew 16K,8,2-skew 9.4 71.9 548.5 12.1 1.3 51.4 47.4

32K,64,2-skew 16K,16,2-skew 9.7 72.1 538.4 12.1 1.3 50.0 48.7

32K,64,2-skew 16K,32,2-skew 10.3 72.3 505.4 12.1 1.2 46.8 52.0

32K,64,2-skew 16K,64,2-skew 11.8 72.3 444.6 12.1 1.1 41.1 57.8

32K,64,2-skew 16K,128,2-skew 14.4 71.5 355.4 12.2 1.0 33.3 65.8

32K,64,2-skew 32K,8,2-skew 10.5 72.1 494.6 12.1 1.1 46.0 52.9

32K,64,2-skew 32K,16,2-skew 10.6 72.3 495.1 12.1 1.1 45.8 53.1

32K,64,2-skew 32K,32,2-skew 11.1 72.4 471.9 12.1 1.1 43.5 55.4

32K,64,2-skew 32K,64,2-skew 12.4 72.5 422.2 12.1 1.0 38.9 60.2

32K,64,2-skew 32K,128,2-skew 13.8 66.2 317.2 13.2 0.8 31.9 67.3

32K,128,DM 4K,8,DM 12.3 77.7 491.6 8.7 4.3 54.7 40.9

32K,128,DM 4K,16,DM 13.1 79.1 478.7 8.7 5.7 51.4 42.9

32K,128,DM 4K,32,DM 14.4 75.3 392.8 8.7 8.4 46.5 45.1

32K,128,DM 4K,64,DM 17.1 64.5 243.5 8.7 13.0 39.4 47.6

32K,128,DM 4K,128,DM 21.8 46.5 99.0 8.7 18.2 30.8 51.0

32K,128,DM 8K,8,DM 13.5 90.5 606.1 8.7 2.8 49.7 47.6

32K,128,DM 8K,16,DM 14.0 89.7 576.5 8.7 3.6 48.1 48.3

32K,128,DM 8K,32,DM 15.1 86.1 491.5 8.7 5.3 44.5 50.1

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

257

32K,128,DM 8K,64,DM 17.5 76.9 338.1 8.7 8.8 38.4 52.8

32K,128,DM 8K,128,DM 22.3 61.5 169.7 8.7 13.3 30.1 56.6

32K,128,DM 16K,8,DM 14.3 90.2 570.2 9.3 1.9 43.9 54.2

32K,128,DM 16K,16,DM 15.4 97.3 613.5 8.7 2.1 43.5 54.4

32K,128,DM 16K,32,DM 16.3 97.0 578.1 8.7 2.4 41.3 56.3

32K,128,DM 16K,64,DM 18.2 95.7 502.5 8.7 2.9 36.8 60.3

32K,128,DM 16K,128,DM 22.6 88.7 347.8 8.7 4.8 29.6 65.6

32K,128,DM 32K,8,DM 15.4 83.8 454.1 10.4 1.4 36.3 62.4

32K,128,DM 32K,16,DM 16.6 92.5 515.5 9.4 1.4 37.2 61.4

32K,128,DM 32K,32,DM 18.0 98.1 535.7 8.9 1.4 36.4 62.2

32K,128,DM 32K,64,DM 20.0 100.7 506.6 8.7 1.3 33.6 65.1

32K,128,DM 32K,128,DM 23.5 100.6 431.0 8.7 1.1 28.6 70.3

32K,128,2-skew 4K,8,2-skew 7.9 62.8 497.5 13.2 2.5 55.7 41.8

32K,128,2-skew 4K,16,2-skew 8.4 64.3 495.2 13.2 2.5 52.8 44.8

32K,128,2-skew 4K,32,2-skew 9.2 63.7 443.5 13.2 3.1 48.2 48.7

32K,128,2-skew 4K,64,2-skew 10.7 62.3 362.8 13.2 4.0 41.2 54.8

32K,128,2-skew 4K,128,2-skew 14.2 53.6 201.7 13.2 8.1 31.0 60.9

32K,128,2-skew 8K,8,2-skew 8.2 64.6 508.7 13.2 1.9 53.7 44.3

32K,128,2-skew 8K,16,2-skew 8.6 65.4 498.6 13.2 2.0 51.5 46.5

32K,128,2-skew 8K,32,2-skew 9.3 65.9 467.4 13.2 1.9 47.5 50.6

32K,128,2-skew 8K,64,2-skew 10.7 65.1 394.8 13.2 2.3 41.1 56.6

32K,128,2-skew 8K,128,2-skew 13.6 64.2 303.8 13.2 2.5 32.5 64.9

32K,128,2-skew 16K,8,2-skew 8.8 66.5 505.4 13.2 1.4 50.4 48.3

32K,128,2-skew 16K,16,2-skew 9.0 66.8 495.7 13.2 1.4 49.1 49.5

32K,128,2-skew 16K,32,2-skew 9.6 66.9 465.3 13.2 1.3 45.9 52.8

32K,128,2-skew 16K,64,2-skew 10.9 66.9 409.4 13.2 1.2 40.4 58.4

32K,128,2-skew 16K,128,2-skew 13.5 66.8 330.8 13.2 1.0 32.7 66.3

32K,128,2-skew 32K,8,2-skew 9.8 66.8 455.8 13.2 1.2 45.1 53.7

32K,128,2-skew 32K,16,2-skew 9.8 66.9 455.9 13.2 1.2 44.9 53.9

32K,128,2-skew 32K,32,2-skew 10.3 67.0 434.5 13.2 1.2 42.7 56.1

32K,128,2-skew 32K,64,2-skew 11.6 67.0 388.9 13.2 1.0 38.2 60.8

32K,128,2-skew 32K,128,2-skew 14.0 67.0 320.1 13.2 0.9 31.4 67.7

64K,16,DM 4K,8,DM 13.2 60.9 280.0 10.8 2.7 40.7 56.6

64K,16,DM 4K,16,DM 13.9 61.5 273.2 10.8 3.8 38.8 57.4

64K,16,DM 4K,32,DM 14.8 58.6 232.2 10.8 6.2 36.4 57.4

64K,16,DM 4K,64,DM 16.5 50.5 154.8 10.8 10.7 32.7 56.6

64K,16,DM 4K,128,DM 19.6 36.6 68.3 10.8 16.6 27.5 55.9

64K,16,DM 8K,8,DM 14.5 69.0 328.0 10.8 1.4 37.1 61.5

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

258

64K,16,DM 8K,16,DM 14.8 68.4 315.3 10.8 2.1 36.3 61.6

64K,16,DM 8K,32,DM 15.6 65.8 278.1 10.8 3.6 34.6 61.8

64K,16,DM 8K,64,DM 17.1 59.3 205.0 10.8 6.8 31.4 61.8

64K,16,DM 8K,128,DM 20.4 47.9 112.6 10.8 11.5 26.4 62.0

64K,16,DM 16K,8,DM 16.0 72.5 329.1 10.8 0.9 33.7 65.4

64K,16,DM 16K,16,DM 16.1 73.1 331.6 10.8 1.0 33.4 65.6

64K,16,DM 16K,32,DM 16.7 72.8 317.0 10.8 1.3 32.2 66.5

64K,16,DM 16K,64,DM 18.1 71.9 284.9 10.8 1.7 29.7 68.6

64K,16,DM 16K,128,DM 21.3 67.1 211.6 10.8 3.6 25.3 71.2

64K,16,DM 32K,8,DM 18.5 74.8 303.3 10.8 0.5 29.2 70.3

64K,16,DM 32K,16,DM 18.1 75.0 310.7 10.8 0.5 29.7 69.8

64K,16,DM 32K,32,DM 18.4 75.1 306.4 10.8 0.5 29.2 70.3

64K,16,DM 32K,64,DM 19.6 75.2 288.2 10.8 0.5 27.5 72.0

64K,16,DM 32K,128,DM 22.2 75.1 254.2 10.8 0.5 24.2 75.3

64K,16,2-skew 4K,8,2-skew 9.2 60.0 390.2 12.8 1.6 49.1 49.3

64K,16,2-skew 4K,16,2-skew 9.7 61.5 390.2 12.8 1.5 46.9 51.6

64K,16,2-skew 4K,32,2-skew 10.4 60.9 355.6 12.8 2.1 43.5 54.4

64K,16,2-skew 4K,64,2-skew 11.9 59.8 300.2 12.8 3.0 38.2 58.9

64K,16,2-skew 4K,128,2-skew 15.1 52.4 181.9 12.8 6.7 30.1 63.2

64K,16,2-skew 8K,8,2-skew 9.6 61.7 399.1 12.8 1.1 47.5 51.3

64K,16,2-skew 8K,16,2-skew 9.9 62.4 393.0 12.8 1.2 45.8 53.0

64K,16,2-skew 8K,32,2-skew 10.6 62.8 372.7 12.8 1.1 42.9 56.0

64K,16,2-skew 8K,64,2-skew 11.9 62.2 324.2 12.8 1.5 38.0 60.5

64K,16,2-skew 8K,128,2-skew 14.6 61.4 257.5 12.8 1.9 31.0 67.1

64K,16,2-skew 16K,8,2-skew 10.1 63.4 397.9 12.8 0.7 44.9 54.4

64K,16,2-skew 16K,16,2-skew 10.3 63.6 391.8 12.8 0.7 44.0 55.3

64K,16,2-skew 16K,32,2-skew 10.9 63.7 371.8 12.8 0.7 41.6 57.8

64K,16,2-skew 16K,64,2-skew 12.2 63.7 333.6 12.8 0.7 37.3 62.1

64K,16,2-skew 16K,128,2-skew 14.6 63.7 277.2 12.8 0.6 31.1 68.3

64K,16,2-skew 32K,8,2-skew 11.1 63.6 365.2 12.8 0.6 41.0 58.4

64K,16,2-skew 32K,16,2-skew 11.1 63.8 365.4 12.8 0.6 40.8 58.6

64K,16,2-skew 32K,32,2-skew 11.6 63.8 351.0 12.8 0.6 39.1 60.3

64K,16,2-skew 32K,64,2-skew 12.8 63.9 319.2 12.8 0.5 35.5 63.9

64K,16,2-skew 32K,128,2-skew 14.7 62.1 261.7 13.2 0.5 30.0 69.6

64K,32,DM 4K,8,DM 12.7 68.5 370.8 9.8 3.2 46.9 49.9

64K,32,DM 4K,16,DM 13.4 69.5 361.2 9.8 4.5 44.4 51.2

64K,32,DM 4K,32,DM 14.5 66.1 301.4 9.8 7.1 40.9 52.0

64K,32,DM 4K,64,DM 16.6 56.7 193.5 9.8 11.8 35.7 52.5

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

259

64K,32,DM 4K,128,DM 20.5 40.9 81.6 9.8 17.6 28.9 53.4

64K,32,DM 8K,8,DM 14.0 78.9 445.6 9.8 1.7 42.6 55.8

64K,32,DM 8K,16,DM 14.3 78.2 426.1 9.8 2.5 41.5 56.1

64K,32,DM 8K,32,DM 15.2 75.0 369.4 9.8 4.2 39.0 56.9

64K,32,DM 8K,64,DM 17.2 67.3 262.9 9.8 7.7 34.5 57.8

64K,32,DM 8K,128,DM 21.1 54.0 137.7 9.8 12.4 28.1 59.5

64K,32,DM 16K,8,DM 15.6 83.4 446.9 9.8 1.0 38.2 60.8

64K,32,DM 16K,16,DM 15.7 84.2 451.2 9.8 1.2 37.8 61.0

64K,32,DM 16K,32,DM 16.4 83.9 428.3 9.8 1.5 36.2 62.3

64K,32,DM 16K,64,DM 18.1 82.8 378.9 9.8 2.0 32.8 65.1

64K,32,DM 16K,128,DM 21.8 77.0 271.7 9.8 4.0 27.2 68.8

64K,32,DM 32K,8,DM 17.4 81.6 383.8 10.4 0.6 32.3 67.1

64K,32,DM 32K,16,DM 18.0 86.7 417.7 9.8 0.6 33.0 66.3

64K,32,DM 32K,32,DM 18.3 86.8 411.0 9.8 0.6 32.4 67.0

64K,32,DM 32K,64,DM 19.7 86.9 382.9 9.8 0.6 30.2 69.2

64K,32,DM 32K,128,DM 22.7 86.8 331.9 9.8 0.6 26.1 73.3

64K,32,2-skew 4K,8,2-skew 8.7 63.5 465.5 12.7 1.8 53.1 45.1

64K,32,2-skew 4K,16,2-skew 9.1 65.0 464.6 12.7 1.7 50.5 47.8

64K,32,2-skew 4K,32,2-skew 9.9 64.4 418.9 12.7 2.4 46.4 51.2

64K,32,2-skew 4K,64,2-skew 11.5 63.1 347.9 12.7 3.2 40.1 56.7

64K,32,2-skew 4K,128,2-skew 14.9 54.6 199.5 12.7 7.2 30.8 62.0

64K,32,2-skew 8K,8,2-skew 9.0 65.3 476.0 12.7 1.3 51.3 47.4

64K,32,2-skew 8K,16,2-skew 9.3 66.0 467.5 12.7 1.3 49.3 49.4

64K,32,2-skew 8K,32,2-skew 10.1 66.5 440.3 12.7 1.3 45.7 53.0

64K,32,2-skew 8K,64,2-skew 11.5 65.7 375.9 12.7 1.7 40.0 58.3

64K,32,2-skew 8K,128,2-skew 14.3 64.9 294.0 12.7 2.0 32.1 65.9

64K,32,2-skew 16K,8,2-skew 9.5 67.2 473.5 12.7 0.8 48.2 51.0

64K,32,2-skew 16K,16,2-skew 9.8 67.4 465.2 12.7 0.8 47.1 52.1

64K,32,2-skew 16K,32,2-skew 10.4 67.5 438.6 12.7 0.8 44.2 55.0

64K,32,2-skew 16K,64,2-skew 11.7 67.5 389.1 12.7 0.7 39.2 60.1

64K,32,2-skew 16K,128,2-skew 14.3 67.4 317.9 12.7 0.7 32.1 67.2

64K,32,2-skew 32K,8,2-skew 10.6 67.4 430.1 12.7 0.7 43.5 55.8

64K,32,2-skew 32K,16,2-skew 10.6 67.5 430.3 12.7 0.7 43.4 56.0

64K,32,2-skew 32K,32,2-skew 11.1 67.6 411.4 12.7 0.7 41.4 58.0

64K,32,2-skew 32K,64,2-skew 12.3 67.7 370.6 12.7 0.6 37.2 62.2

64K,32,2-skew 32K,128,2-skew 14.3 65.0 295.7 13.2 0.5 30.9 68.6

64K,64,DM 4K,8,DM 12.5 72.2 416.9 9.5 3.4 49.1 47.6

64K,64,DM 4K,16,DM 13.2 73.3 405.5 9.5 4.7 46.3 49.0

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

260

64K,64,DM 4K,32,DM 14.4 69.7 336.2 9.5 7.3 42.5 50.2

64K,64,DM 4K,64,DM 16.7 59.6 212.8 9.5 12.0 36.7 51.3

64K,64,DM 4K,128,DM 20.9 42.9 88.4 9.5 17.5 29.4 53.0

64K,64,DM 8K,8,DM 13.8 83.3 503.6 9.5 1.9 44.5 53.6

64K,64,DM 8K,16,DM 14.2 82.6 480.5 9.5 2.7 43.2 54.1

64K,64,DM 8K,32,DM 15.2 79.2 414.1 9.5 4.4 40.5 55.2

64K,64,DM 8K,64,DM 17.3 70.9 290.9 9.5 7.9 35.5 56.6

64K,64,DM 8K,128,DM 21.4 56.6 149.4 9.5 12.5 28.6 58.9

64K,64,DM 16K,8,DM 15.4 88.2 503.6 9.5 1.2 39.7 59.1

64K,64,DM 16K,16,DM 15.6 89.1 508.6 9.5 1.3 39.3 59.3

64K,64,DM 16K,32,DM 16.4 88.8 481.5 9.5 1.6 37.5 60.8

64K,64,DM 16K,64,DM 18.1 87.6 423.0 9.5 2.2 33.8 64.0

64K,64,DM 16K,128,DM 22.1 81.3 299.2 9.5 4.1 27.8 68.1

64K,64,DM 32K,8,DM 16.8 83.6 415.4 10.4 0.7 33.3 66.0

64K,64,DM 32K,16,DM 18.0 91.8 467.9 9.5 0.8 34.1 65.2

64K,64,DM 32K,32,DM 18.4 91.9 460.0 9.5 0.8 33.4 65.9

64K,64,DM 32K,64,DM 19.8 92.0 426.9 9.5 0.7 31.0 68.3

64K,64,DM 32K,128,DM 23.0 91.9 367.4 9.5 0.6 26.7 72.7

64K,64,2-skew 4K,8,2-skew 8.3 63.0 474.6 13.1 1.9 53.3 44.8

64K,64,2-skew 4K,16,2-skew 8.8 64.5 472.9 13.1 1.9 50.6 47.5

64K,64,2-skew 4K,32,2-skew 9.6 63.9 425.2 13.1 2.6 46.4 51.0

64K,64,2-skew 4K,64,2-skew 11.1 62.5 350.5 13.1 3.5 40.0 56.5

64K,64,2-skew 4K,128,2-skew 14.6 53.9 199.0 13.1 7.6 30.5 61.9

64K,64,2-skew 8K,8,2-skew 8.7 64.8 485.2 13.1 1.4 51.5 47.1

64K,64,2-skew 8K,16,2-skew 9.0 65.5 476.2 13.1 1.5 49.4 49.1

64K,64,2-skew 8K,32,2-skew 9.7 66.0 447.9 13.1 1.4 45.7 52.9

64K,64,2-skew 8K,64,2-skew 11.2 65.2 380.8 13.1 1.9 39.9 58.3

64K,64,2-skew 8K,128,2-skew 14.0 64.3 295.6 13.1 2.2 31.8 66.0

64K,64,2-skew 16K,8,2-skew 9.2 66.7 482.6 13.1 0.9 48.3 50.8

64K,64,2-skew 16K,16,2-skew 9.4 66.9 474.0 13.1 0.9 47.1 51.9

64K,64,2-skew 16K,32,2-skew 10.1 67.0 446.2 13.1 0.9 44.2 54.9

64K,64,2-skew 16K,64,2-skew 11.4 67.0 394.7 13.1 0.8 39.1 60.1

64K,64,2-skew 16K,128,2-skew 14.0 67.0 321.2 13.1 0.7 31.9 67.4

64K,64,2-skew 32K,8,2-skew 10.2 66.9 437.3 13.1 0.8 43.5 55.7

64K,64,2-skew 32K,16,2-skew 10.3 67.1 437.5 13.1 0.8 43.3 55.9

64K,64,2-skew 32K,32,2-skew 10.8 67.2 417.9 13.1 0.8 41.3 58.0

64K,64,2-skew 32K,64,2-skew 12.0 67.2 375.6 13.1 0.7 37.0 62.3

64K,64,2-skew 32K,128,2-skew 14.4 66.6 308.2 13.2 0.6 30.7 68.7

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

261

64K,128,DM 4K,8,DM 11.5 69.9 423.5 9.9 3.9 51.0 45.2

64K,128,DM 4K,16,DM 12.2 70.9 410.7 9.9 5.3 48.0 46.7

64K,128,DM 4K,32,DM 13.4 67.4 337.9 9.9 8.1 43.7 48.2

64K,128,DM 4K,64,DM 15.7 57.6 211.0 9.9 12.9 37.3 49.8

64K,128,DM 4K,128,DM 19.9 41.4 86.3 9.9 18.5 29.5 52.0

64K,128,DM 8K,8,DM 12.7 80.7 513.7 9.9 2.2 46.3 51.5

64K,128,DM 8K,16,DM 13.1 80.0 488.9 9.9 3.1 44.9 52.0

64K,128,DM 8K,32,DM 14.1 76.7 418.8 9.9 4.9 41.8 53.3

64K,128,DM 8K,64,DM 16.2 68.6 290.6 9.9 8.6 36.3 55.1

64K,128,DM 8K,128,DM 20.3 54.7 147.2 9.9 13.3 28.9 57.8

64K,128,DM 16K,8,DM 14.3 85.5 512.7 9.9 1.4 41.2 57.3

64K,128,DM 16K,16,DM 14.4 86.4 517.7 9.9 1.6 40.8 57.6

64K,128,DM 16K,32,DM 15.1 86.0 488.8 9.9 1.9 38.8 59.2

64K,128,DM 16K,64,DM 16.9 84.9 427.0 9.9 2.5 34.8 62.7

64K,128,DM 16K,128,DM 20.8 78.7 298.5 9.9 4.5 28.3 67.2

64K,128,DM 32K,8,DM 16.3 84.7 439.1 10.4 0.9 34.3 64.8

64K,128,DM 32K,16,DM 16.7 89.0 474.0 9.9 0.9 35.2 63.9

64K,128,DM 32K,32,DM 17.1 89.2 465.6 9.9 0.9 34.4 64.6

64K,128,DM 32K,64,DM 18.5 89.2 430.7 9.9 0.9 31.8 67.3

64K,128,DM 32K,128,DM 21.6 89.2 368.6 9.9 0.8 27.3 72.0

64K,128,2-skew 4K,8,2-skew 7.6 58.7 452.5 14.3 2.0 53.5 44.5

64K,128,2-skew 4K,16,2-skew 8.0 59.9 448.5 14.3 2.0 50.8 47.2

64K,128,2-skew 4K,32,2-skew 8.7 59.3 402.6 14.3 2.6 46.6 50.8

64K,128,2-skew 4K,64,2-skew 10.2 58.0 330.8 14.3 3.5 40.0 56.5

64K,128,2-skew 4K,128,2-skew 13.4 50.0 186.1 14.3 7.5 30.4 62.2

64K,128,2-skew 8K,8,2-skew 7.9 60.2 460.5 14.3 1.5 51.7 46.8

64K,128,2-skew 8K,16,2-skew 8.2 60.8 450.6 14.3 1.6 49.6 48.8

64K,128,2-skew 8K,32,2-skew 8.9 61.2 422.6 14.3 1.5 45.9 52.6

64K,128,2-skew 8K,64,2-skew 10.2 60.5 358.5 14.3 1.9 39.9 58.2

64K,128,2-skew 8K,128,2-skew 12.8 59.6 277.2 14.3 2.2 31.8 66.0

64K,128,2-skew 16K,8,2-skew 8.4 61.8 455.7 14.3 1.0 48.5 50.4

64K,128,2-skew 16K,16,2-skew 8.6 62.0 447.0 14.3 1.0 47.4 51.6

64K,128,2-skew 16K,32,2-skew 9.2 62.1 420.1 14.3 0.9 44.4 54.7

64K,128,2-skew 16K,64,2-skew 10.4 62.1 370.9 14.3 0.9 39.2 59.9

64K,128,2-skew 16K,128,2-skew 12.8 62.0 301.0 14.3 0.8 31.9 67.3

64K,128,2-skew 32K,8,2-skew 9.3 62.0 412.0 14.3 0.9 43.6 55.5

64K,128,2-skew 32K,16,2-skew 9.4 62.1 411.9 14.3 0.9 43.5 55.7

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

262

64K,128,2-skew 32K,32,2-skew 9.8 62.2 393.0 14.3 0.8 41.4 57.8

64K,128,2-skew 32K,64,2-skew 11.0 62.2 352.6 14.3 0.8 37.1 62.2

64K,128,2-skew 32K,128,2-skew 13.3 62.2 291.4 14.3 0.6 30.6 68.7

Table C.1Cache configuration measurements, espresso

Instruction
cache

configuration
[total size,
line size,

associativity]

Data cache
configuration

[total size,
line size,

associativity]

S
ystem

 P
ow

er
[W

att]

P
erform

ance
[M

IP
S

]

E
nergy E

ff.
[M

IP
S

2/W
]

T
C

ycle
[ns]

P
ram

/P
total

[%
]

P
proc /P

total
[%

]

P
cache /P

total
[%

]

