HIGH-LEVEL MODELLING OF
MICROPIPELINES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE

October 1992

By
Sun-Yen Tan

Department of Computer Science

Contents

Abstract

Acknowledgements

Preface

1 Introduction

1.1 Modelling of micropipelines

1.1.1
1.1.2
1.1.3

The motivation for this research work
The objective of this research work

The experiment design

1.2 An overview of this thesis

2 Asynchronous design

2.1 Some basics of asynchronous systems

2.2 Classification of asynchronous circuits

2.2.1
2.2.2
2.2.3
2.24
2.2.5
2.2.6

Delay-insensitive circuits
Self-timed systemso
Speed-independent circuits
Four-phase handshaking protocol
Two-phase handshaking protocol

Double-rail encoding oL

11

13

14

15
16
16
17
17
18

2.3 Advantages and disadvantageso 27

2.4 Micropipelineso 29
2.4.1 The two-phase bundled data convention 30

2.4.2 Event-driven logic modules 31

2.4.3 A micropipelinestageo 34

2.4.4 Properties of micropipelines 37

2.4.5 The advantages of micropipelines 38

3 Petri net model 40
3.1 Petrimnets 40
3.2 Additional firing rules 0oL 43
3.3 The power of Petrinets. 44
3.4 Petri net models of logic modules for events 46

4 Representations of circuits and models 59
4.1 Definitions for entering circuits and describing the simulation . . . 59
4.1.1 Definitions for entering circuits 60

4.1.2 Simulation descriptiono 62

4.2 The C4++ language oo 64
4.2.1 Function name overloading 64

4.2.2 Freestorageo 65

423 Classes L 65

4.2.4 Object-oriented programming 67

4.3 The Design of C++ classes for representing simulated circuits and

Petrinets 68
4.3.1 The representation of circuit models 73
4.3.2 The construction of Petri net models 73
5 Implementing a micropipeline simulator 76

5.1 Introduction oo 76
5.2 Reading the circuit and simulation descriptions 79

5.3 Constructing the corresponding Petri net model of the simulated

network modelo 79
5.4 Test pattern input Lo 86
5.5 Network simulation L 000 86
5.6 Simulating logic devices o 0oL 91
5.7 Simulating delays oo 92
5.8 Displaying the simulation results 95
Discussion 99
6.1 Simulating micropipelines using Silos IT 99
6.1.1 Test pattern generators and result buffers 100
6.1.2 Event-driven logic modules 101
6.2 The performance of the simulator 101
6.2.1 An environment for simulating micropipelines 101
6.2.2 Error detection oL oL 102
6.2.3 Performance measurements 105
6.2.4 Future developments 106
6.2.5 Advantages and disadvantages 107
6.3 Some implementation problems 00000 108
6.3.1 Modelling transparent latches 109
6.3.2 Modelling data signal low 110
6.3.3 Comparing with Dill’s Petrinets 111
Conclusions and further work 113
7.1 Conclusions 113
7.2 Further work 114

A Some test examples 116

A.1 Two serially connected stages 116
A.2 A micropipeline forking example 0000 120
A.3 A micropipeline forking and joining example 125
A4 Two-bit multiplier example 130
A.5 Four-bit multiplier example 133
A.6 Two 2-bit multiplier stages joining into one 4-bit multiplier stage 135
B Simulating micropipelines using Silos I1 137
B.1 Implementing event-driven modules 139
B.2 Simulating micropipelines 00000 144
Bibliography 152

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

3.1
3.2
3.4
3.5
3.6
3.7
3.8

Four-phase and two-phase handshaking protocols
Two-phase bundled data convention
Block diagrams of event-driven logic modules
A micropipelinestageo Lo
Five serially connected micropipeline stages
A micropipeline stage forks into two micropipeline stages
A micropipeline stage forks into two micropipeline stages which
join into one micropipeline stage
One micropipeline stage selectively connects to one of two mi-
cropipeline stages which call the same micropipeline stage

A micropipeline FIFO 0 0000

A Petrinet example,
The two modified firing rules of Petrinets
An intuitive Petri net model of the circuit of Figure 2.7
Petri net models of a MULLER-C, an XOR and a TOGGLE . . .
Petri net models of a SELECT and a CALL
Petri net models of an ARBITER and a DMULLER-C
Petri net models of Transparent latches and a Multiplexer

Petri net models of a TEST PATTERN GENERATOR, a RESULT
BUFFER and a DELAY

4.1 The circuit example used to illustrate a circuit description.
4.2 Describing circuits within a stage using the Stage object
4.3 The structure of a Network object
4.4 The circuit model represented by C++ classes
4.5 Modelling a TOGGLE module using C++ classes

5.1 The top level flow chart of the micropipeline simulator
5.2 The flow chart of a function for reading circuit and simulation
descriptions e
5.3 The simulated network with the test pattern generator and the
result buffer oo o
5.4 The flow chart of a function for constructing the corresponding
Petri net model of the simulated network
5.5 Construct the corresponding Petri net model of the simulated net-
work (step 1 : Produce the Petri net model of logic modules for
events within stages) L oL
5.6 Construct the corresponding Petri net model of the simulated net-
work (step 2 : Connect the Petri net models within each stage
along each point) oL o
5.7 Construct the corresponding Petri net model of the simulated net-
work (step 3 : Connect the Petri net models of each stage along
each connection device between stages).
5.8 The flow chart of a function for reading and setting test patterns .
5.9 The flow chart of the simulation procedure
5.10 The mapping relation between the Petri net model and the simu-
lated network modelo

5.11 The method of recording the values of the state change time . . .

5.12 The flow chart of the function for displaying test results on the
SCTEETL . v v v v e v e e e e e e e e e e e e e e 95

5.13 Partial waveforms of the circuit shown in Figure 2.4 after simulation 98

6.1 Modelling transparent latches 109
6.2 Modelling data signal flow 110
A.1 An example of two micropipeline stages connected in series 117

A.2 The corresponding Petri net model of the above example of two
micropipeline stages connected in series 119
A.3 A micropipeline stage forks into two micropipeline stages 122
A.4 The corresponding Petri net model of one micropipeline stage fork-
ing into two micropipeline stages 124

A.5 A micropipeline stage forks into two micropipeline stages which

join into a single micropipeline stage 127
A.6 The corresponding Petri net model of the above example 129
A.7 A two-bit multiplier micropipeline stage 131

A.8 The corresponding Petri net model of the above multiplier stage . 132

A.9 A four-bit multiplier micropipeline stage 134
A.10 A complex micropipeline example 136
B.1 The implementation of a dMuller C-element 139
B.2 The simulation waveform of the dMuller C-element 141
B.3 The implementation of a TOGGLE module 141
B.4 The simulation waveform of the TOGGLE module 143
B.5 The schematic of the micropipeline circuit of Figure 2.4 145
B.6 The simulation waveform of the schematic of Figure B.5 146
B.7 The schematic of the a invert micropipeline circuit 148
B.8 The simulation waveform of Figure B.7 149

B.9 The schematic of two serially connected micropipeline stages . . .

B.10 The simulation waveform of Figure B.9

List of Tables

3.1

4.1

The event functions of the Petri net transitions of event-driven

modules 58

The global functions, member functions, and data members of
C++ classes for modelling the Petri net models of logic modules

for events 69

10

Abstract

Asynchronous circuits have the potential to overcome the problems which are en-
countered in synchronous designs, such as clock distribution and skew. The design
of asynchronous circuits has evolved using a modular approach, where a system
is designed as an interconnection of modules. ”Micropipelines”, as expounded
by Sutherland, are composed from a particular set of event-driven asynchronous
self-timed modules. Their operation is based on a two phase bundled data con-
vention. Such micropipeline design methodologies can simplify the design and
reduce the design time and cost.

A micropipeline simulator is required to develop and evaluate micropipeline
designs. The implementation of such a micropipeline simulator is presented in
this thesis. This implementation involves the construction of Petri net models
of the simulated networks, the design of C++ classes for representing circuit
models and Petri net models, the definition of notations for entering the simulated
micropipelines and describing the simulation, and the design of the simulation
procedure and evaluation rules.

Several micropipeline examples are tested to demonstrate that the simulator
works correctly. Comparisons of the simulator with a standard hardware simula-
tor, Silos II, are also presented along with an analysis of the performance of the
micropipeline simulator and a discussion of the problems encountered during the

implementation.

11

DECLARATION

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

12

Acknowledgements

I wish to thank my supervisor, Professor S. B. Furber, for his continuing guidance
and encouragement during this work. This help and advice offered by other

members of the AMULET group is also greatly appreciated.

13

Preface

The author graduated from the National Taipei Institute of Technology of Taiwan
in 1982. Between 1984 and 1991 he worked for the same institute as a teaching
assistant and was in charge of the senior class’s topics of Interface and Peripheral
Practice and research projects. In October 1991, the author commenced full-time
research work for the degree of Master of Science. The research done during this

period is presented in this thesis.

14

Chapter 1

Introduction

Today semiconductor and VLSI techniques are advancing rapidly. However, chip
designs with high performance using synchronous design techniques are con-
strained by their global clocks because of problems such as clock skew, worst-
case delays, and the cost of broadcasting clocks. Asynchronous circuits have the
potential to overcome these problems. They also offer several benefits, such as
ease of design, low power consumption, and high performance. It is believed
that a computer processor can achieve high speed and low power dissipation if
implemented with asynchronous circuit design techniques. Therefore, there has
recently been renewed interest from research groups in this area of logic design.
The first asynchronous microprocessor has been designed by Martin [Martin 89].
Based on their advantages, asynchronous circuits will be in widespread use in
computer system design in the near future.

The design of asynchronous circuits has evolved using the modular approach,
where a system is designed as an interconnection of modules. In the 1988 Turing
Award Lecture, Sutherland expounded a modular approach to building hard-
ware systems based on data-driven asynchronous self-timed logic elements called
micropipelines [Sutherland 89]. This micropipeline design methodology has at-
tracted the attention of researchers, particularly in the department of Computer

Science at Manchester University. The modular approach reduces the design time

15

CHAPTER 1. INTRODUCTION 16

and cost. It is being used to develop high performance and low power micropro-
cessing systems by the AMULET group at Manchester University.

In this research work, this modular approach is considered. The motivation,
objectives, and designs of the experiment of this research work will be described
in the next section. An overview of this thesis will be given in the last section of

this chapter.

1.1 Modelling of micropipelines

1.1.1 The motivation for this research work

When using event-driven logic modules to design micropipelines, an environment
for simulating micropipeline designs is needed in order to study the interactions
between the event-driven logic modules and to check the correctness of the mi-
cropipelines. If the micropipelines are simulated using other simulators, consider-
ation must be given to how each event-driven logic module is designed at gate or
transistor level and how to enter the test patterns. Such issues will increase the
simulation time and difficulty. Designing micropipelines using event-driven logic
modules is like devising a flow chart of a program, which is quite easy. However,
designing event-driven logic modules is not easy. Hazard problems and race con-
ditions must be prevented. To simplify the simulation work and to reduce the
simulation time, a micropipeline simulator is required.

Modelling techniques are necessary for studying micropipelined asynchronous
circuits in order to evaluate high-level specifications, to synthesize low level cir-
cuits, and to simulate the circuits after synthesis. The study of this modelling
technique is very useful to understand the behaviours of micropipelines and each
of the event-driven logic modules. The results of this research work are use-

ful to develop modelling techniques and study mathematical relationships which

CHAPTER 1. INTRODUCTION 17

can support the micropipeline design methodology to build correct and optimum

asynchronous circuits.

1.1.2 The objective of this research work

The goal of this project is to model event-driven logic modules using a standard
high-level language and to implement a micropipeline simulator. Micropipeline
designs will easily be simulated by such a simulator and the flow of events through
the simulated micropipeline circuits can be observed. The test patterns can
conveniently be entered to the simulated network and the simulation results can

be read and saved into an output file for further analysis.

1.1.3 The experiment design

The experiment design of this project is described as follows:

1. Petri nets are used to model the behaviour of each event-driven logic mod-

ule. They are also used to control the simulation execution.

2. C++ classes are designed to represent the simulated circuits and models of

Petri net.

3. The definitions for entering micropipeline circuits and describing the simu-

lation are made.

4. The steps of constructing the corresponding Petri net model of the simulated

network are defined.
5. The simulation procedure is designed.

6. Some micropipeline circuit examples are used to test the designed mi-

cropipeline simulator.

CHAPTER 1. INTRODUCTION 18

7. Some micropipeline circuit examples are simulated using the Silos II stan-

dard hardware simulator.
8. Both simulation results are compared and discussed.

9. Finally, the implementation and the modelling technique are summarized

in the design report.

1.2 An overview of this thesis

The motivation, objective and the experiment design of this research work and
an overview of this thesis are given in this chapter. Chapter 2 will describe some
basics of asynchronous systems, classification, advantages and disadvantages of
asynchronous circuits, and characteristics of micropipelines. The two-phase bun-
dled data convention and event-driven logic modules will also be discussed. A
brief introduction to Petri nets, and some modifications to the standard firing
rules of Petri nets, will be described in Chapter 3. Next, the properties and
power of Petri nets will be examined. Then the Petri net models of event-driven
logic modules will be described. Chapter 4 will define a temporary notation for
describing micropipeline circuits and the simulation work for this research stage
and present the C4++ classes which will be used to represent the circuit model
and the Petri net model. Chapter 5 will present the design and operation of the
micropipeline simulator. The method of constructing the corresponding Petri
net model of the simulated network will be explained. The simulation proce-
dure, which will be used to control the simulation work concurrently, will also be
presented in Chapter 5. Then several micropipeline examples will be tested to
demonstrate that the simulator can work correctly. In Chapter 6, the analysis
of the performance of the micropipeline simulator, the problems which were en-

countered during the implementation, how common errors of micropipelines are

CHAPTER 1. INTRODUCTION 19

discovered when the simulator executes, and a comparison of the simulator with
a standard hardware simulator, Silos 11, will be presented. Then the advantages
and disadvantages of the micropipeline simulator will be summarized. Finally,

Chapter 7 will give a short conclusion and proposals for further research.

Chapter 2

Asynchronous design

Traditional sequential circuits have a global clock to control all the functional
units operating in lock-step. Recently asynchronous design has been the subject
of increasing interest because the system clock causes serious difficulties in the
design of high-performance chips. One limiting factor on the maximum clock
rate is clock skew. A fully asynchronous design does not need a global clock
and there is no problem of clock skew. Although it is more difficult to design
asynchronous circuits than synchronous circuits, some researchers have presented
modelling techniques [Peterson 81], new design methodologies [Sutherland 89,
and synthesis techniques [Meng 89] for analysing asynchronous behaviour, which
have encouraged other researchers to develop asynchronous circuits. The first
design of an asynchronous processor was published by Martin [Martin 89].

Asynchronous logic circuits have several important advantages over their coun-
terparts in clocked logic. An asynchronous logic function is potentially faster be-
cause it works at the average-case delay rather than the worst-case delay. There
is no global clock on asynchronous circuits so that they will not unnecessarily
dissipate power when there is no useful work to do. Therefore, asynchronous
logic can be used to implement systems with lower power dissipation.

In this chapter, the basics of asynchronous systems will first be introduced

briefly. An overview of the current state of asynchronous design methodologies

20

CHAPTER 2. ASYNCHRONOUS DESIGN 21

will then be given, paying particularly attention to the approach expounded by
Sutherland in his 1988 Turing Award lecture.

2.1 Some basics of asynchronous systems

Digital circuits may be split into one of two classifications: synchronous circuits
and asynchronous circuits. Circuits are called asynchronous if they do not contain
a global clock. The operation of a synchronous system is based on a global clock.
Each storage element and subcircuit within synchronous circuits are triggered by
this global clock, i.e., the timing and sequence of synchronous circuits is controlled
by this global clock. The clock period must be greater than the delay of the
slowest combinational path in an entire system when the computation progresses.
Some problems are encountered when using synchronous circuit design with a

global clock:

1. A synchronous circuit is divided into several subcircuits. Each subcircuit
is triggered by the global clock to perform a subcomputation. The clock
period must be larger than the worst-case delay of any subcomputation.

Therefore, synchronous circuits always operate at the worst-case conditions.

2. A clock pulse usually triggers a lot of subcircuits. It is necessary to consider
the driver current and load on the clock driver circuitry. For example,
Greenstreet has pointed out that the clock pulse may completely disappear

within a very long pipeline [Greenstreet 88].

3. It may be necessary to re-analyse the timing and delays of the entire system,
or to re-design completely the system if a functionally equivalent but better

subcircuit is replaced in a system.

CHAPTER 2. ASYNCHRONOUS DESIGN 22

Asynchronous circuits are not clock driven but event driven, where an event
is the completion of subcomputations or operations. Subcomputations in asyn-
chronous circuits are triggered by completion signals of other subcomputations
rather than by a central clock. Therefore, asynchronous circuits have the poten-
tial for overcoming many of the problems with synchronous circuits.

Asynchronous circuits have been studied for almost as long as digital com-
puters exist. Although asynchronous circuits can overcome those problems with
synchronous circuits, most computer systems are still synchronous. Recently
some functional building blocks for events have been published [Sutherland 89].
However, it is more difficult to design asynchronous circuits which are hazard-free
and have no race conditions. Asynchronous systems can consist of such building
blocks. The design of asynchronous systems becomes easier than before.

Each subcircuit of an asynchronous circuit can operate at its own rate. The
limiting factors of their operation are only the abilities of their neighboring subcir-
cuits which produce their input data and consume their output data. Therefore,
a local communications protocol is required when a subcircuit transmits its in-
formation to such neighbouring subcircuits or receives some information from
them. With such a local communication protocol, a transmitter subcircuit must
indicate that the data is available (i.e. a request signal) and a receiver sub-
circuit must reply that the data has been accepted (i.e. an acknowledge signal
). Asynchronous computation starts the next task cycle once the current task
is completed. Since the completion time of each asynchronous operation is task-
dependent, an "average” processing speed can be achieved as opposed to the
worst-case speed in synchronous designs [Meng 89]. A modular design approach,
average-case delays and no global clocks can result in an asynchronous system
design with low cost, faster speed, and low power consumption. A more detailed

definition of an asynchronous system is given in [Gopalakrishnan 90].

CHAPTER 2. ASYNCHRONOUS DESIGN 23

2.2 Classification of asynchronous circuits

Asynchronous circuits can be categorised into several classes by their features
and architectures. A brief description of such a classification scheme is given in

the following subsections.

2.2.1 Delay-insensitive circuits

Delay-insensitive circuits are a special type of asynchronous circuits composed of
protocol-based modules, i.e., a circuit is delay-insensitive if the correct operation
of the circuit does not depend on any assumptions about the delay in wires or
the operators of the circuit. Such circuits do not use a clock signal or knowledge
about delays [Martin 89], which means that there is no assumptions about delays
for delay-insensitive circuits within the system. Any gate or interconnection may
take an arbitrary time to propagate a signal. This property guarantees that
any correctly functioning subcircuits may be composed together and continue
to operate correctly [Brunvand 89]. Therefore, delays-insensitive techniques are
particularly attractive for VLSI synthesis [Martin 91].

The use of delay-insensitive circuits offers several advantages over that of
synchronous circuits. Delay-insensitive circuits are more robust and potentially
faster than their clocked counterparts, since their correct operation does not de-
pend on the worst-case delay assumptions. A delay-insensitive circuit can be
formally derived by program-transformation from a high-level program descrip-

tion [Martin 92].

2.2.2 Self-timed systems

A self-timed system [Seitz 80] is either a self-timed element or a ’legal’ intercon-

nection of self-timed systems. Self-timed elements must be contained within an

CHAPTER 2. ASYNCHRONOUS DESIGN 24

equipotential region, i.e., a region in which wire delays are negligible. Within
such regions, self-timed data communication is implemented by means of a data-
valid wire. For self-timed communication between equipotential regions, where
wires may introduce arbitrary delays, two or four-phase handshaking protocols,
which will be discussed in subsequent subsection, are used. Therefore, it is as-
sumed that a circuit can be decomposed into equipotential regions inside which
delays in wires are negligible if self-timed techniques are considered [Seitz 80].
Self-timed circuits are delay insensitive, i.e., their behaviour does not depend on

any relative delays among physical elements [Unger 69] [Seitz 80] [Meng 89].

2.2.3 Speed-independent circuits

Speed-independent techniques assume that delays in gates are arbitrary, but there
are no delays in wires [Martin 89]. Therefore, speed-independent circuits adhere
to a less strict model, i.e., gates may have an arbitrary propagation delay but
transmission along wires is instantaneous. Some issues of the modelling, specifi-
cation, and verification of speed-independent circuits are illustrated through the
consideration of self-timed queues in [Dill 92]. There are no race conditions and
hazards within speed-independent circuits and such circuits operate at maximum
speed (i.e. they allow two or more signals to be excited simultaneously.). More
detail about the advantages and disadvantages of speed independent circuits is

given in [Miller 65].

2.2.4 Four-phase handshaking protocol

Two systems may communicate using a four-phase handshaking protocol [Seitz 80]
as shown in Figure 2.1(a). The two control wires which are used to indicate that
the data has been available (i.e. request signal or req) and the data has been

accepted (i.e. acknowledge signal or ack) will return to their initial state after

CHAPTER 2. ASYNCHRONOUS DESIGN 25

. N \/ N

AcknowleM ack+ (4)\ K-) /"”'”—“’L

(8): Four-phase handshaking protocol

Ra:]ueﬁ (1) req+ (1) \ reg

Acknowledge (2) | ack+ %) \ack

(b): Two-phase handshaking protocol

Figure 2.1: Four-phase and two-phase handshaking protocols

they have activated. This handshaking protocol always uses the rising transitions
to initiate operation and the falling transitions to reset signals. The operating
cycle is (1) request active, (2) acknowledge active, (3) request inactive and (4)
acknowledge inactive, i.e., the cycle is req+; ack+; req—; ack—. The request
signal adopting its active level indicates that data is ready for transfer. The ac-
knowledge signal adopting its active level indicates that the transfer is complete.
When the sender detects that the transmission has finished, it will inactivate its
request signal. Then the receiver will inactivate its acknowledge signal. There-
fore, the four-phase handshaking protocol is also called return-to-zero signalling.
Most asynchronous systems use this protocol to synchronize operations between

neighbouring subsystems.

CHAPTER 2. ASYNCHRONOUS DESIGN 26

2.2.5 Two-phase handshaking protocol

In a two-phase handshaking protocol [Seitz 80] which is shown in Figure 2.1(b),
there are also two control wires. One is used to indicate the data is available
(i.e. request signal or req). The other is used to indicate the data has been
accepted (i.e. acknowledge signal or ack). In this signalling scheme, rising
transitions and falling transitions of the control wires have the same meaning.
They are called the request event or the acknowledge event. The phases of the
two-phase handshaking protocol are: (1) request event and (2) acknowledge event.
For example, req+; ack+ is an active two-phase cycle. The next cycle for this
interface would be req—; ack—. The signals do not need to return to their initial
state after they have activated. The opposite transition has the same meaning
and may be used to represent the subsequent event. If the request wire goes to a
"logic high’ level for representing a current request event, the next request event
will be represented by the wire going to a ’logic low’. In this mechanism, it is
the occurrence of a transition rather than a level which carries the information.
Therefore, two-phase signalling is also called non-return-to-zero and transition
signalling or event signalling. Transition signalling is potentially useful as it
allows the transmission of information without requiring that signals return to
their initial state after each event. This removal of redundant signal transitions
improves the efficiency of the communication system with consequential higher
performance. This is also pointed out in [Williams 90]. The circuits working on
this protocol have low power dissipation. Some event-driven logic modules are
presented in [Sutherland 89] which can be used to compose control circuits easily.
Also there is a four-phase to two-phase converter with ”quick return” which has

been published in [Gopalakrishnan 90].

CHAPTER 2. ASYNCHRONOUS DESIGN 27

2.2.6 Double-rail encoding

In this encoding system, an n-bit data value is denoted by 2" 41 code combinations
on 2n wires. It is used to indicate that every bit of a data word has arrived at
a defined logic stage before the evaluation can commence within a truly delay-
insensitive circuit. This means that the timing information must be encoded with
the data. The usual way of achieving this is to use two separate wires to represent
each bit of data, one wire for transmitting the logic 70", the other for transmitting
the logic 717. The arrival of a bit is then denoted by a transition on the relevant
wire. The arrival of each bit can be detected using an XOR gate and the arrival
of the entire word can be detected by the arrival of all the data bits in the word.
This detection can be implemented by a Muller C-element. Because this encoding
technique requires two wires for each data bit, designs using the technique require

about double the chip area needed by an equivalent synchronous circuit.

2.3 Advantages and disadvantages

Asynchronous circuits have the potential to overcome some fundamental problems

encountered in synchronous circuit design. The possible advantages are as follows:

1. New synthesis techniques and design methodologies of asynchronous circuits
have been studied and published, and in some cases the design cost and time

are explicitly reduced.

2. There is no global clock for synchronizing the operation of each subcircuit.
Consequently, asynchronous circuits have better composability. They more

readily allow concurrency due to the absence of global clocks.

3. Asynchronous circuits have low power dissipation. Clock drivers may dissi-

pate most of the power of a synchronous circuit. Power consumption may

CHAPTER 2. ASYNCHRONOUS DESIGN 28

be a significant cost factor due to the costs of packaging for high power

dissipation.

4. Some basic modules which can easily be used to compose asynchronous cir-
cuits have been published [Sutherland 89]. The high-level design of asyn-
chronous systems is then like constructing flow diagram of a program, which

is relatively straightforward.

5. Improving the performance of an asynchronous system can be achieved by
replacing a critical subsystem. Re-designing and re-analysing the entire

system is not necessary.

6. Asynchronous circuits tend to reflect the average-case delay rather than the
worst-case delay. However, the design style may slow down the operating
speed of the circuit. For example, the speed of a circuit which uses a
four-phase handshaking protocol is usually slower than one using a two-
phase handshaking protocol, because the return-to-zero of the four-phase

handshaking protocol increases the operating cycle.

7. Error detection is not difficult in asynchronous circuits, since an asyn-

chronous circuit which contains an execution sequence error usually dead-

locks.

There are also some disadvantages as follows:

1. Asynchronous circuits need more wiring for handshaking between neigh-
bouring subcircuits. Therefore, asynchronous circuits usually need a greater

silicon area.

2. Low-level asynchronous design is harder and more constrained than syn-

chronous design, due to the hazard problem and race conditions.

CHAPTER 2. ASYNCHRONOUS DESIGN 29

Sutherland in his 1988 Turing Award lecture [Sutherland 89] discusses a class
of asynchronous circuits called "micropipelines”. Here, circuits are designed us-
ing a set of functional modules. This greatly simplifies the design process. Mi-

cropipelines will be described in more detail in the next section.

2.4 Micropipelines

Pipelining [Hennessy 90] is an implementation technique whereby multiple in-
structions or data are overlapped in execution. A pipeline is like a production
line, where each step in the pipeline completes a part of the instruction. Each
such step is called a pipe stage or a pipe segment. The throughput of the pipeline
is a measure of how many instructions or data can pass through it per unit time.
The latency of a pipeline is a measure of how long it takes a single instruction
or data to pass through it. When designing pipelines, both the latency and
throughput are important. The time taken for an individual instruction or data
item to traverse the pipeline, i.e. the latency, must be minimised. The number
of instructions or data items processed in a given time i.e., the throughput, must
be maximised. A synchronous pipeline consists of several stages which operate
in lockstep. There is a global clock which is used to define when all stages must
have completed their operations and data is ready to be transferred to the sub-
sequent stages. The minimum clock period of the pipeline is determined by the
time taken for the slowest pipeline stage to complete its operation. The latency
of the pipeline is the clock period multiplied by the number of pipeline stages.
Therefore, the performance is limited by the slowest stage.

Some research into asynchronous pipelines has shown that there is the poten-
tial for high performance and concurrency in asynchronous pipelines [Komori 88]

[Ginosar 90] [Williams 90]. There is no central clock in an asynchronous pipeline.

CHAPTER 2. ASYNCHRONOUS DESIGN 30

Each stage operates at its own rate. Each stage only needs to wait for the op-
eration of the neighboring stages to be complete. The operation of most asyn-
chronous pipelines is based on a four-phase handshaking protocol. Micropipelines
are members of a class of asynchronous pipelines whose operation is based on
a two-phase bundled data convention and are self-timed, event-driven systems
[Sutherland 89]. Their operation is faster than a four-phase protocol would nor-
mally allow. Before introducing micropipelines, a brief description of the two-

phase bundled data convention will be given.

Request
Sender Data Receiver
" Acknowledge
(1) detaavailable (1) dataavailable (
AN N

1

Request) [reqr (2 rea @ rea
Acknowledge (3) / ack+ ©) / ack-

Figure 2.2: Two-phase bundled data convention

2.4.1 The two-phase bundled data convention

A 7two-phase bundled data convention” is a communications system where a
two-phase handshaking protocol is used and an arbitrary number of data wires
must be treated as a bundle together with the request signal wire [Sutherland 89].

In the two-phase handshaking protocol, rising transitions and falling transitions

CHAPTER 2. ASYNCHRONOUS DESIGN 31

of either control wire have the same meaning, i.e., they represent request events
or acknowledge events. In this signalling scheme, the operating cycle is (1) data
available (2) request event, and (3) acknowledge event. The data signals can use
a double-rail encoding or a traditional data representation which is similar to
that used in synchronous circuits, such as the 8-4-2-1 code ... etc. Figure 2.2
illustrates this signalling. When using a two-phase bundled data convention for
transmitting data between two systems, it must be noted that the data signal
delays must be no longer than the request signal delays to the point where the

data signals and the request signal arrive at the receiver.

2.4.2 Event-driven logic modules

Various circuits have been devised for controlling transition signals. These are
called event-driven logic modules in [Sutherland 89]. They are used in next sec-
tion to construct the control circuits of micropipelines. Figure 2.3 shows the block

diagrams of such event modules.

Muller C-element: A C-element [Miller 65] performs the rendezvous function.
A Muller C-element is shown in Figure 2.3(a). It is a very important element
in asynchronous circuit designs. When both of its inputs are in the same
logical state, i.e. it has received an event on both of its inputs, its output
will have the the same state as the inputs, i.e. there is an event on its
output. When the two inputs are different, i.e. only one event has arrived
on either of its two inputs, it retains its previous state and does not change
its output, i.e. there is no event on its output. Thus only when both
of its inputs have received an event, will an event appear at its output.
For three or more inputs, it is required that all of them receive an event
before producing an event at its output. Therefore, such elements are AND
elements for events. Such elements can be used to treat the forking and

joining connection problem of circuits.

CHAPTER 2. ASYNCHRONOUS DESIGN 32

Muller-C: XOR;:
TOGGLE: SELECT:
TOGGLE Bool SELECT
(©) . (d) — .
CALL: ARBITER:
— R1 Gl ——
- —— R1
(e b1 R —) D1—
CALL ARBITER
-~ D2 D~ _ R D2 —
—— R2 G2 ——

Figure 2.3: Block diagrams of event-driven logic modules

XOR circuit: An XOR circuit performs the merge function for events. It is
shown in Figure 2.3(b). Such circuits are also called the OR element for
events. When one of its input changes state, its output also changes state.
Therefore, when it receives an event on either of its two inputs, it will
produce an event on its output. For more than two inputs, XOR performs
the multiple-input OR function for events. Such elements can be used to

treat the uncertain source connection problem of circuits.

TOGGLE circuit: A TOGGLE circuit is shown in Figure 2.3(c). After the
master clear signal activates, the odd events which arrive on its input will
be sent to its dotted output and the even events which arrive on its input
will be sent to its non-dotted output . Such elements can be used to treat

the regularly alternate connection problem of circuits.

CHAPTER 2. ASYNCHRONOUS DESIGN 33

SELECT module: A SELECT module is shown in Figure 2.3(d). An incoming
event which arrives on its input will be sent to the output labelled "true”
or the output labelled "false”, depending on the value of a data input. The
data input is a Boolean value. If the data is true, the incoming event is sent
to the the output labelled "true”. If the data is false, the incoming event
is sent to the the output labelled "false”. The Boolean value must arrive
before the incoming event. Therefore the Boolean data and the incoming
event must be treated as a bundle. Such elements can be used to treat the

selective connection problem of circuits.

CALL module: A CALL module is shown in Figure 2.3(e). It remembers the
event which is most recently received on its input and correctly returns an
event on the output corresponding to the incoming event when the called
procedure has finished. We need to note that the CALL module will operate
properly only if each call completes before a subsequent call occurs. For
this reason, we need an element to treat the concurrency problem and to
ensure that the subsequent event does not happen before the previous call
has finished. In general, such elements can be used to treat the procedure

connection problem of circuits.

ARBITER module: In asynchronous pipelines, if two events from two source
pipes need to join into a single pipe without strict ordering, i.e. such two
events occur simultaneously or nearly simultaneously, an arbitration ele-
ment must be used to decide the ordering of the events. It is such an impor-
tant element in asynchronous pipeline circuit designs that there has been
much research into the design of such modules [Plummer 72] [Pearce 75]
[Calvo 86]. An ARBITER module is shown in Figure 2.3(f). The sequence
of two events without strict ordering can be clearly decided, and then a grant

event for only one of them will be produced on the corresponding output.

CHAPTER 2. ASYNCHRONOUS DESIGN 34

It delays subsequent grants until that the earlier grant has been finished.
Therefore, only one grant at a time is sent. An ARBITER element can be
connected directly to the CALL element to treat the arbitration problem.
Arbiter trees can be used to implement arbiters which have more than two

inputs [Plummer 72].

2.4.3 A micropipeline stage

ao
———e—— Aout

® =

Rin

777777777 L Rout

al

Din—o—D a It
Din—e— | |
e :
b1 i ‘
Din 3 3
om%@ : |

Toggle
| o
ch—‘L 777777777777777 J 7777777
Ain °
a

Figure 2.4: A micropipeline stage

Figure 2.4 is an example of a micropipeline stage. A micropipeline stage con-
sists of control circuits, combinational logic circuits and storage elements. Its
operation is based on the two-phase bundled data convention with rising tran-
sitions and falling transitions of control wires having the same meaning. Both
transitions are called events and could represent request signals or acknowledge
signals. When the data is available on the inputs, there is an event called "re-
quest” on the "Rin” to enable the storage elements to catch this valid data.

After the storage elements hold the predecessor’s data, there is an event called

CHAPTER 2. ASYNCHRONOUS DESIGN 35

7acknowledge” on the "Ain” to inform the predecessor stage that the data has
been accepted and an event called "request” on the "Rout” to enable the succes-
sor stage to catch the data. When the successor stage holds data, it will place an
event on the 7Aout” to clear the storage elements of the current stage and enable
the current stage to catch the subsequent data.

The operation cycle of micropipelines is (1) data available, (2) request event,
and (3) acknowledge event. The return inactive state action is not necessary.
Therefore, the operating speed of micropipelines is faster than that of four-phase
handshaking protocol pipelines. The control circuits are composed from event-
driven logic modules, such as muller-C, toggle, select, call ... etc. In this example,
the combinational logic circuit consists of two OR gates and one AND gate. The
storage element consists of an XOR, a low-activated transparent latch and a
TOGGLE. The control circuit here is only a dmuller-C. It is used to implement
the rule ”if predecessor and successor differ in state then copy predecessor’s state
else hold present state” [Sutherland 89]. This rule allows the data to flow through
the micropipeline stages. Such event-driven logic modules can also be used to
connect micropipeline stages in different configurations. For example, Figure 2.5
shows how five micropipeline stages are connected in series. Figure 2.6 shows a
micropipeline stage that forks into two micropipeline stages. Figure 2.7 shows a
micropipeline stage that forks into two micropipeline stages which subsequently
join into one micropipeline stage. Figure 2.8 shows a micropipeline stage which
selectively connects to one of the two micropipeline stages which call the same

micropipeline stage.

R1 Ry R3 R4 Rs . Rout
D(in) =) B4) B,) B) Ba ——) Bg =) D(ow)
Al A2 A3 A4 A5 Aout

Figure 2.5: Five serially connected micropipeline stages

CHAPTER 2. ASYNCHRONOUS DESIGN 36

o ~_ Rou
i> Bz 'i> D(out)
D(in) =) B,
e R
A28A3 . od
ﬁ} B, |:> D(out)
- %Aout

Figure 2.6: A micropipeline stage forks into two micropipeline stages

R4
— B2
R,&R A
Ri | o e s 4 :@ o Rout
D(in) =) B, —= B, = D(ow)
4
-— (cl -
A1 Ar& Ag Aout
R4
=) B3
Ag

Figure 2.7: A micropipeline stage forks into two micropipeline stages which join

into one micropipeline stage

R> R4

true

select — B2
false—
R1 Lt _ _Rout

. As
D(in) I:> B K cal —= B, =) D(ow)
R3 R4 e d &Aout
AjorAjz
j‘> Bj
A4

Figure 2.8: One micropipeline stage selectively connects to one of two mi-

cropipeline stages which call the same micropipeline stage

CHAPTER 2. ASYNCHRONOUS DESIGN 37

2.4.4 Properties of micropipelines

Micropipelines are one kind of particularly simple and elastic pipeline in which
computations can be implemented by combinational logic functions. If a mi-
cropipeline has no computation in it, it is a FIFO (Figure 2.9). Inserting some

FIFOs in between the stages to accommodate waiting instructions can improve

the performance of pipelines.

catch(c) U pass(p)
b L
datain | data out
T
: . = |::> Storage |::>
datain ! dataout element
T
; pd cd
Toggle |
we |
pass done(pd) catch done(cd)
Rin
O QO
cd pd cd pd
L Storage . Storage
Daa i ¢ p | element pjc P | dlement || pya
in - | Storage 17| Storage 1 out
element E P element ‘j pl v
od pd cd pd Rout
[®) O
Ain Aout

Figure 2.9: A micropipeline FIFO

Within such a FIFO, if the states of all of the Muller C-element which are
used to control the storage elements have both their inputs in different states,
this situation indicates that the FIFO is empty. On the other hand, if the states
of all such Muller C-element are such that both their inputs have the identical

state, this situation indicates that the FIFO is full. To initialize a FIFO or a

CHAPTER 2. ASYNCHRONOUS DESIGN 38

micropipeline in the empty state, all inputs of the Muller C-elements within such
a FIFO or micropipeline can be set to the same state by a master clear signal.
When a micropipeline with or without computations (FIFO) is full, the oc-
currence of the acknowledge event must wait until the second stage has consumed
the data held in the first stage. After it issues an acknowledge, the subsequent
data can effectively enter into it. This means that the input device connected to
the micropipeline cannot change its input data until it has received an acknowl-
edge event for the present data. A similar handshake will occur at the output
end of the micropipeline. Therefore, correct data with average-case speed can be

propagated through the micropipeline.

2.4.5 The advantages of micropipelines

In addition to the advantages of asynchronous circuits, micropipelines have several

further advantages as follows:

1. In micropipelines, the use of a two-phase bundled data convention not only
simplifies the initial system design but also permits rapid mid-life upgrade
of systems as new technology becomes available. Components are easily
replaced by new ones. The system can more readily maintain the charac-

teristic of high performance and low cost.

2. Because event-driven logic modules provide conditional operators, proce-
dure calls, and other elements familiar to programmers, this makes such
modules easy to compose into loops and other structures similar to those
found in programs. The design of control circuits is rather like making
block diagrams of programs. Complex functions are easy to compose from
simple modules which provide basic functions already familiar in program-

ming. More complex systems can be built by composing a hierarchy of

CHAPTER 2. ASYNCHRONOUS DESIGN 39

the basic modules and previously designed compositions. It is very easy to

understand and to realize.

3. The micropipeline design methodology reduces the design time and cost
of complex asynchronous systems. It provides an exciting alternative to
conventional hardware design. The micropipeline design methodology sim-
plifies system design because simple modules and their compositions can be

further used to construct large systems.

4. Returning to the inactivate state is not necessary. Such micropipelines
save time and energy costs on the return transition. Therefore, when mi-
cropipeline techniques and event-driven modules are used to design complex
asynchronous systems, the systems have the property of high performance
and low power dissipation. These techniques and modules are being used

to develop high performance and low power microprocessing systems.

Micropipelines have a few disadvantages as follows:

1. The communication between stages or storage elements in micropipelines is
not fully delay-insensitive if control and data signals are both considered.
The delays in data transmission must be less than the delays in transmitting
the request signal. The combinational logic circuits for computations within
the micropipeline must be carefully decided and designed. High speed elec-
tronics techniques, such as dynamic CMOS techniques, are applied when

designing this part.

2. The data signals must propagate through a micropipeline faster than the
control events through its control circuits. Therefore, special delays are
sometimes required in the control path when significant processing logic is

put between storage elements in the data path.

Chapter 3

Petri net model

The goal of this chapter is to present a Petri net model of each of the event-
driven logic modules. A brief introduction to Petri nets, and some modifications
to the standard firing rules of Petri nets, will be described. The properties and
power of Petri nets will be examined. Finally, Petri net models of the event-driven
logic modules will be discussed. Their operation will be explained in detail. In
Chapter 5 these Petri net models will be used to control the simulation of the

micropipeline models.

3.1 Petri nets

Petri nets [Peterson 77] [Peterson 81| were developed by C. A. Petri in 1962.
They are used to describe the flow of discrete events. A Petri net (' consists of
five parts: a set of places P, a set of transitions 7', an input function 7, an output
function O and a marking function M. It is denoted by C =< P,T.1,0, M >
where

P = {p1,p2,...,pn} is a set of places which represent conditions,

T = {ty,13,....;tn} is a set of transitions which represent events,

40

CHAPTER 3. PETRI NET MODEL 41

I :T — P is an input function which defines predecessor places of a transition,

or P — T'is an input function which defines predecessor transitions of a place,

O : T — P is an output function which defines successor places of a transition,

or P — T is an output function which defines successor transitions of a place
and

M : P — N is a marking function which defines the token number of a place,

N =1{0,1,2,..}.

A Petri net graph G is a bipartite directed multigraph, because a Petri net
graph has two types of nodes: places and transitions. A circle and a bar represent
a place and a transition respectively. The arcs from places to transitions and
from transitions to places represent the input functions and the output functions
respectively. The movement of a token inside a place depicts the flow of discrete
events.

A Petri net is executed by firing transitions. When a transition is fired, one
token will be removed from each of its input places, and each of its output places
will be assigned a new token. A transition can be fired if it is enabled. A transition
is enabled if there is at least one token inside each of its input places. After firing
a transition, the marking of the Petri net will be changed, i.e. firing an enabled
transition in a marked Petri net with marking g will result in the Petri net with
a new marking . Transition firings can continue as long as there exists at least

one enabled transition. When there are no enabled transitions, the execution

halts.

CHAPTER 3. PETRI NET MODEL 42

Figure 3.1: A Petri net example

Figure 3.1 shows a Petri net example. In this example, there is a set of
places P = {p1,p2,p3,p4,p5}, and a set of transitions T' = {t1,ty,13,t4}. The
relationship between places and transitions in this Petri net can be denoted by

their input and output functions as follows:

I(t1) =A{p1,ps}, 1(t2) ={p2}, 1(is) = {ps,ps}, I(ta) = {pa},
O(t1) = {p2}, O(t2) = {p1,ps}, O(ts) ={pa}, O(ls) = {ps,ps},
I(p) = {2}, I(p2) ={ta}, L(ps) ={ta}, 1(ps) = {5},
I(ps) = {t2, 14},

O(p1) = {t1}, O(pz) ={t2}, Olps) ={ts}, O(ps) = {tu},

(
O(ps) = {t1, 13},

The marking of this Petri net can be denoted by the marking function as

follows:
M(pi)=1, M(p)=0, M(ps)=1 M(ps)=0, M(ps)=1.

The transitions ¢y, t3 are both enabled. However, either transition ¢; or tran-
sition t3 will be fired. If transition ¢; is fired, transition t3 will be disabled.
Similarly, if transition t3 is fired transition ¢; will be disabled. This example

clearly shows the nondeterministic feature of Petri nets.

CHAPTER 3. PETRI NET MODEL 43

Within a Petri net containing a marking p, a set of transitions will be enabled
and may be fired. The result of firing a transition within such Petri net is that
the Petri net will contain a new marking . This new marking x' is called
immediately reachable from p. If 4 is immediately reachable from g and g is
immediately reachable from g, then " is called reachable from s.

Petri nets were designed for and are used mainly for modelling. The conditions
of a system are modelled by places in a Petri net; the events of a system are
modelled by transitions. The holding of a condition is represented by a token in
the place corresponding to the condition. When the transition is fired it removes
the tokens representing the holding of the precondition and creates new tokens

which represent the holdings of the postconditions.

3.2 Additional firing rules

%)
o filter ¢
@ echeck Bool (D) :p Cemp

true@ @ false

Figure 3.2: The two modified firing rules of Petri nets

The standard firing rule of Petri nets is each output place of the firing transi-
tion will be assigned a token if a transition is fired. However, there is an additional
firing rule which will be defined here to model the SELECT module (See 2.4.2
). The additional rule is that only partial output places will be assigned tokens
rather than all output places will be assigned tokens when a transition is fired.
Whether the output place is assigned a token or not is decided by the result of the
corresponding evaluation of the firing transition. There are two use cases of this

additional firing rule. The first use case is shown in Figure 3.2(a). If the transition

CHAPTER 3. PETRI NET MODEL 44

labelled ”e:check Bool” is fired, the token inside the place pl will be removed.
Either the place labelled "true” or "false” will be assigned one token depending
on whether the result of the corresponding evaluation of the transition is true or
false. Therefore, the place labelled "true” will be assign a token if the result is
true. The place labelled "false” will be assign a token if the result is false. The
second use case is shown in Figure 3.2(b). When the transition labelled "filter”
is fired, the token inside the place labelled "temp” will be removed. However,
the place p2 will be assigned one token or not depending on the corresponding
checking result of the firing transition. The place p2 will be assign a token if the
the corresponding checking result is expected. On the other hand, the place p2

will not be assign a token if the the corresponding checking result is not expected.

3.3 The power of Petri nets

Particular Petri nets have properties which may help in the analysis of the mod-
elled system. Some important properties are safeness, boundedness, conservation,
liveness, reachability and coverability, and equivalence and subset [Peterson 81].
Generating the reachability tree, which represents the reachability set of a Petri
net, is the major analysis technique. The above properties may be verified using
this analysis technique.

Petri nets can model the inherent parallelism or concurrency of systems. One
major feature of Petri nets is their asynchronous nature. Petri nets have been
successfully used to model many software and hardware systems. There are ex-
amples of the use of Petri nets to model speed independent asynchronous circuits
[Misunas 73] [Agerwala 79]. The safeness, liveness, and boundedness properties of
Petri nets are used to analysis such circuits. Petri nets have also been used in the
performance evaluation of asynchronous concurrent systems [Ramamoorthy 80].

Petri nets can also be used to describe the high-level specification of self-timed

CHAPTER 3. PETRI NET MODEL

pl
have test pattern ‘

send to B1 input

B1linput full
R(in)

t2
. . p4
execute logic& wait 3

catch B1 & A(in)

B1 output empty ‘ p5
t

walt ‘ A(R2)&A(R3)
p13

t5 P7

R(B4)
t8

execute logic pl5
& wait

t9

catch B2 & A(B2)

B3 output full

45

t1

p3

p2
‘ B1input empty
p6

‘ B1 output full

“ R(B2)&R(B3)

B2 output empty

pll

‘ execute logic& wait

catch B3 & A(B3)

p12
B3 output empty

catch B4 & A(B4) o7
B4 output empty . 16 B4 output full
t10 Rout
t11
Q wait output device
Aout take data
p18
output device
p19 take away data

Figure 3.3: An intuitive Petri net model of the circuit of Figure 2.7

CHAPTER 3. PETRI NET MODEL 46

queues whose operation is based on a two-phase bundled handshaking protocol
[Dill 92]. Modelling a system using Petri nets has three potential advantages: it
is easy to understand, to analyse, and to verify. Petri nets are powerful due to
their ability to represent concurrency and conflicts.

Some subclasses of Petri nets have also been used in the synthesis of asyn-
chronous networks, such as J-nets presented by Joerg [Joerg 90] and Signal Tran-
sition Graphs presented by Chu [Chu 86] [Lavagno 91].

One important reason for choosing Petri nets to model event-driven modules
is that many mathematical tools and theories have been developed which can be
applied to the asynchronous network [Peterson 81]. Intuitively, the behaviour of
the circuit of Figure 2.7 can be describe by the Petri net shown in Figure 3.3.
The flow of tokens which represent events (requests or acknowledges) through

the network closely models the flow of control signals through the actual circuit.

3.4 Petri net models of logic modules for events

After analysing the behaviour of event-driven logic modules, Petri net models of

each event-driven logic module can be constructed.

Muller C-element

The Petri net model of a Muller C-element is shown in Figure 3.4(a). A two-input
Muller C-element is an AND and JOIN element for events. When events on both
inputs arrive, then there is an event on the output. An event arrival can be
denoted by a token inside a place. When both corresponding places of two inputs
contain a token, firing the corresponding transition results in the corresponding
place of the output containing a token, i.e. an event will appear on the output of

the Muller C-element.

CHAPTER 3. PETRI NET MODEL 47

XOR

The Petri net model of an XOR is shown in Figure 3.4(b). A two-input XOR
is an OR and MERGE element for events. When an event arrives either of two
inputs, there will be an event on the output. When a place corresponding to
one of two inputs contains a token, the corresponding transition is enabled, and
firing it results in the corresponding place of the output containing a token, i.e.

an event will appear on the output of the XOR.

Logic Modules Petri nets
Muller-C:

< ol
@ } p3
p2)
el
pl)—%
r
(O
€2

3

XOR:
o

TOGGLE: Cl)pl
| p5 p4
(C) TOGGLE
[]
L L e2 el
p3 p2

Figure 3.4: Petri net models of a MULLER-C, an XOR and a TOGGLE

CHAPTER 3. PETRI NET MODEL 48

TOGGLE module

The Petri net model of a TOGGLE is shown in Figure 3.4(c). A TOGGLE is
an ALTERNATE element for events. If the current input is sent to the dotted
output, then the next input event will be sent to the non-dotted output. If the
current input is sent to the non-dotted output, then the next input event will
be sent to the dotted output. This situation will be cyclic for ever. There are
two places in the Petri net model of the TOGGLE to control the token denoting
events inside the input place and this token will be sent to the dotted output
place or the non-dotted output place. Initially the place labelled ”p4” contains a
token. Therefore, the first input event (denoted by a token inside the input place
labelled "p1”) will cause the transition labelled "el” to fire. Then the dotted
output place labelled "p2” will contain a token. This means the event has been
sent to the dotted output. After this action, the place labelled "p5” contains a
token which can cause a subsequent input event to fire the transition labelled

7e2”, i.e. next time the input event will be sent to the non-dotted output.

SELECT module

The Petri net model of a SELECT module is shown in Figure 3.5(a). A SELECT
module checks its Boolean condition and decides whether the incoming event
will be sent to the output labelled "true” or the output labelled "false”. One
important thing is that the Boolean value must arrive before checking it. For this
reason, there is a "waiting Boolean” place labelled ”p1” in the Petri net model of
a SELECT to indicate that the evaluation of producing the Boolean value may
be started. If this place contains a token, the transition labelled "el, execute
Boolean” will be fired to start the corresponding Boolean evaluation. Therefore,
the correct Boolean value is able to appear on the Bool input of the SELECT

module. Then the place labelled "p7, Bool Available” contains a token. Thus,

CHAPTER 3. PETRI NET MODEL

Logic Modules Petri net
SELECT: waiting Boolean
pl
el p7
execute Bool Available
(a) Boolean
e-Check Bool Value
L », . .
| -
Bod, sELECT 05 06
true false strue sfase
l e4
e3
etrue efalse
p3 p4
true false

CALL:

— R1
=— D1

(b) cALL”

D2
—R2

p3
R2

Figure 3.5: Petri net models of a SELECT and a CALL

CHAPTER 3. PETRI NET MODEL 50

the transition labelled "e-Check Bool Value” can be fired. Depending whether
the Boolean value is true or false, a token is put inside the place labelled ”s-
true” or the place labelled ”s-false”. When the incoming event arrives, one of the
places labelled ”s-true” and ”s-false” will fire the transition labelled ”e-true” or
7e-false”. This will cause to the event appear correctly on the place labelled ”p3,

true” or the place labelled ”p4, false”.

CALL element

The Petri net model of a CALL element is shown in Figure 3.5(b). A CALL
element will remember which of its inputs most recently has received an event, and
will return an event to the matching output terminal after the called procedure
has finished. There are two places, labelled "pT7, s1” and "p8, s2” in Figure 3.5(b)
to memorize the input being served. These are used to return the event which
denotes that the called procedure has finished to the correct matching output.
If an event arrives on the input labelled "R1”, there is a token inside the place
labelled "R1” to denote this situation. The transition labelled 7el” will fire.
Then the places labelled "p7, s1” and "ph, R” are assigned a token each. The
place labelled "p5, R” containing a token denotes that there is an event on its
output labelled "R”. When the called procedure has finished, there is an event
on the input labelled "D”. The place labelled "p6, D” will contain a token to
denote this situation. After firing the transition labelled "e3”, the place labelled
"p2, D17 will contain a token. If an event arrives on the input labelled "R2”,
a similar sequence of operations will happen. The difference is that the places
labelled 7s7, s1”, "p2, D17 and the transitions labelled "el”, ”"e3” will change
to the places labelled 7s8, 2”7, 7p4, D2” and the transitions labelled ”7e2”, 7e4”

respectively.

CHAPTER 3. PETRI NET MODEL 51

ARBITER module

The Petri net model of an ARBITER is shown in Figure 3.6(a). An ARBITER
module decides between two events whose arrival sequence is unknown, producing
a grant event for only one of them even if they arrive at very nearly the same
time. The token inside the place labelled "p7, S” is used to denote the status of
the ARBITER module. It may be ”idle” or "busy”. If the place contains a token,
the ARBITER module is ”idle”. When an event arrives on one of both inputs,
one of the places labelled "pl, R1” and "p4, R4” will contain a token. The token
inside the 7idle” place can fire the corresponding transition labelled "el” or ”e2”.
Then the corresponding place labelled ”p2, G17 or "p5, G27 will contain a token.
This means the event has appeared on the corresponding output. For example, if
an event only arrives on the input labelled "R17, i.e. there is a token inside the
place labelled "pl, R17, the transition labelled "el” will fire and a new token will
be assigned into the place labelled "p2, G17. When the procedure has finished,
there will be an event on the input labelled ”D17, i.e. there will be a token inside
the place labelled ”"p3, D17. After the transition labelled "e2” is fired, the "idle”
place will contain a token again to treat subsequent events.

When two events arrive very close together on both inputs, the places labelled
"pl, R1”7 and "p4, R4” will both contain a token. Since only one token is inside the
7idle” place, only one of the corresponding transitions labelled "el” and ”e3” will
fire and the other will be disabled. The output place of the fired transition will be
assigned a token. It denotes the event has been sent to the corresponding output.
After executing the procedure, there will be a token inside the corresponding
place labelled "p3, D17 or "p6, D2” to enable and fire one of the transitions

labelled 7e2” and "e4”, where after the other event will proceed.

CHAPTER 3. PETRI NET MODEL

Logic Modules

ARBITER:

Gl —
D1 —

— R1
@ ARBITER

D2 —

— R2 G2 -

DMULLER-C:

Petri nets

pl e

0

p3

Figure 3.6: Petri net models of an ARBITER and a DMULLER-C

52

CHAPTER 3. PETRI NET MODEL 53

DMULLER C-element

The Petri net model of a DMULLER C-element is shown in Figure 3.6(b). If
a DMULLER C-element did not receive an event on its non-inverting input, an
event on its non-inverting input can be sent to its output. If a DMULLER C-
element has received an event on its non-inverting input and then it has received
an event on its inverting input, a subsequent event on its non-inverting input can
be sent to its output. If a DMULLER C-element has received an event on its
non-inverting input and then it does not receive an event on its inverting input,
a subsequent event on its non-inverting input must wait and cannot be sent to
its output. Therefore, initially assigning a token inside the place labelled ”p2”
denotes both inputs have the same state. This token can be used to enable the
transition when there is an incoming event on the non-inverting input. Then an
event can be sent to the output, i.e., the place labelled "p3” contains a token.
However, the following event on the non-inverting input must wait for an event on
the inverting input. After an event appears on the inverting input, the transition

can be enabled, fired, and cause the event to appear on the output.

Transparent latches

The Petri net models of a low activated latch and a high activated latch are the
same. They are shown in Figure 3.7(a) and (b) respectively. A transparent latch
will be transparent or holding data, depending on the state of the input labelled
"1t”. When each event arrives, a transparent latch will change its function to
be transparent or holding data. Therefore, a transition and two places, where
the one containing a token always consumes the token inside the other when the
transition is fired, can be used to model the latch. It is important that if an event
arrives on the input labelled ”1t”, i.e. there is a token inside the place labelled " p1,

1t”, the transition labelled ”e:execute” will fire and the corresponding functions

CHAPTER 3. PETRI NET MODEL 54

of the transition which change the action of the latch will be executed.

Logic Modules Petri nets
LLATCH:
pl
It
T O
D Q
- 2 e
(a) T dorl?e execute
HLATCH:
pl
It
: O
® ° 1 p2 e
done execute
MUX2: L
g
s
10—
. p2 e
(C) 11— MUX Q done execute

Figure 3.7: Petri net models of Transparent latches and a Multiplexer

Multiplexer

The Petri net model of a Multiplexer is similar to that of a latch. It is shown in
Figure 3.7(c). When each event arrives, a multiplexer will change the connection
from one of its two input to its output. Therefore, a transition and two places,
where the one containing a token always consumes the token inside the other
when the transition is fired, can be used to model the multiplexer. It is important

that if an event arrives on the input labelled ”sel”, i.e. there is a token inside

CHAPTER 3. PETRI NET MODEL 99

the place labelled ”pl, sel”, the transition labelled "e:execute” will fire and the
corresponding functions of the transition which change the connection from one

of two input of the multiplexer to its output will be executed.

TEST PATTERN GENERATOR

The Petri net model of a TEST PATTERN GENERATOR is similar to that of a
DMULLER-C. It is shown in Figure 3.8(a). The operating cycle of micropipelines
consists of (1) data available, (2) request event, and (3) acknowledge event. Before
and after the cycle, the request output and the acknowledge input will have the
same state. Initially a token inside the place labelled "p2, ack” denotes that
the request output and the acknowledge input have the same state. If there are
tokens inside the test pattern queue, a token is put inside the place labelled ”"p3,
Test pattern available”. The transition labelled "e:send out” will fires, the test
pattern generator reads the front test pattern from the test pattern queue and
sends it on the data input of the simulated network. After firing the transition,
the output place labelled "pl, req” will be assigned a token denoting an event on

the request output of the test pattern generator.

RESULT BUFFER

The Petri net model of an RESULT BUFFER is shown in Figure 3.8(b). It is
very simple and just a transition labelled ”e:enter data into buffer” with one input
place labelled "pl, data waiting” and one output place labelled ”p2, entered into
queue”. If there is some data to be entered into the result buffer, the data must
have been available on the input of the result buffer and there must have been
an event on the request input of the result buffer. This event can be denoted by

a token inside the place labelled "pl, data waiting”. Then the transition will be

CHAPTER 3. PETRI NET MODEL 56

Logic Modules Petri nets

TEST PATTERN GENERATOR:

pl
req
@ -
pattern dataout
generator
p3
‘ ack Test pattern
available p2
ack
RESULT BUFFER:
pl
(b) ‘ req Qdatawa’ting
datain result
g e
buffer enter datainto buffer
‘ ack p2
entered into queue
DELAY:
p3 p4
(C) pl mid mid p2
i | AR 0
| — DELAY — O T\ T\]
el 2 €3
mid mid alow

Figure 3.8: Petri net models of a TEST PATTERN GENERATOR, a RESULT
BUFFER and a DELAY

CHAPTER 3. PETRI NET MODEL 57

enabled and fired to execute the action of entering data into buffer. When this
action has finished, the place labelled "p2, entered into queue” will be assigned

a token, i.e. an event will appear on the acknowledge output of the result buffer.

DELAY circuit

A DELAY circuit is used to retard the event arriving on the input of event-driven
logic modules, which are connected to the output of this DELAY. Its Petri net
model is shown in Figure 3.8(c). It consists of four places and three transitions
which are connected in series. Among all the petri net models of the event-
driven logic modules, there is no numbers of the places and transitions which are
connected in series bigger than four and three respectively. Therefore, the token
through this Petri net model is not faster than others and the purpose of the
delay can be achieved. The four places are labelled "p1,1”, "p3, mid”, "p4, mid”,
and "p2, o” respectively. The three transitions are labelled "el:mid”, ”e2:mid”,
and "e3:allow” respectively. If an event is on the input of a DELAY, i.e. there
is a token inside the place labelled "pl, 1”7, this event will appear on the output
of the DELAY after firing the three transitions. During the firing of these three

transitions, the action which needs this delay has finished.

Table 3.1 lists the event functions of various Petri net transitions of the logic

modules which are executed when the corresponding transitions are fired.

CHAPTER 3. PETRI NET MODEL o8

Table 3.1: The event functions of the Petri net transitions of event-driven modules

The event functions of the Petri net transitions of the logic modules for events

Logic moduley Transition Name Function
Muller-c2 | muller_c2e Check both inputs and change the output state.
Dmuller-C2 | dmuller_c2:e Check both inputs and change the output state.
mxor2:el Change the output state.
Mxor2
mxor2:e2 Change the output state.
Toggle toggleel Change the dotted output state.
toggle:e2 Change the nondotted output state.

Evaluate the logic device connected to the bool
pin of aselect. Obtain correct logic value.

select:e-execute Boolean

Check the logic value on the bool pin:
Select select:e-check Boolean value | if itistrue, the"s-true" place gets atoken
if itisfalse, the"s-false" place gets atoken.

select:e-true Change the output state of the "true" pin.
select:e-false Change the output state of the "false" pin.
call-el Assign the"S1", "R" places atoken and change the

output state of the "R" pin.

Assign the "S2", "R" places a token and change the

cal call:e2 output state of the "R" pin.
call:e3 Change the output state of the"D1" pin.
call:e4 Change the output state of the "D2" pin.
arbiter:el Change the output state of the "G1" pin.
Arbiter arbiter:e2 Return the token to the "s" place.
arbiter:e3 Change the output state of the "G2" pin.
arbiter:e4 Return the token to the "s" place.
Mux2 mux2:execute Consume the token inside the "sel" place.
If thevalue of "It" pinis1, it meansthat the "It" has
gone from 0 to 1. First let [t=0, execute the logic of the
input of the low-activated-latches and then evaluate
these latches. Then change It=1, execute the logic of
the input of the high-activated latches and then
Llatchl llatch1:execute evaluate these |atches.
Hlatchl hlatchl:execute If thevalue of "It" pinisO, it meansthat the "It" has

gonefrom 1 to 0. First let [t=1, execute the logic of the
input of the high-activated-latches and then evaluate
these latches. Then change It=0, execute the logic of
the input of the low-activated-latches and then
evaluate these latches.

Consume the token inside the "It" place.

Test pattern generator:send out Send data to the output. Change the output state of
generator the"req" pin.

Get the output data of previous stages and enter
Output buffer | buffer:enter datainto buffer | them into the queue of the result buffer.

Change the output state of the "ack” pin.

Delay delay:mid Enable the subsequent transition.

delay:allow Send the input event to the output. Change delay time.
Point point Enable the subsequent transitions.
Line line Send the input state to the output.

Check the corresponding latch of the input place
Select bool filter holding data or not. If not, remove the token.

If al the input places of this transition have a
token, enable the subsequent transition.

Chapter 4

Representations of circuits and
models

This chapter will define a temporary notation for describing micropipeline
circuits and the simulation work for this research stage and present the C++

classes which will be used to represent the circuit model and the Petri net model.
4.1 Definitions for entering circuits and describ-

ing the simulation

Chapter 3 has provided Petri net models of event-driven logic models. Before
such Petri net models can be used to model micropipelines and then the mod-
elled micropipelines can be simulated, consideration must be given to how mi-
cropipeline circuits can be entered and how the simulation work of the modelled
micropipelines can be specified. This section will define two sets of descriptions.
One will be used to enter micropipeline circuits. The other will be used to spec-
ify the simulation work, i.e. how the test patterns are entered into the modelled
micropipeline circuits and then how the test results are read from the modelled
micropipeline circuits. These two kinds of definitions will be described in the

next subsections.

29

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 60

4.1.1 Definitions for entering circuits

In this subsection a simple method for entering the simulated circuits will be

defined. Its format and definitions are shown as follows:

1. Format:
(1) {stage} {:} {space} {stagename} {,}

(2) {device function keyword} {:} {space} {pointname} {,}
[{space} {pointname} {,}]*

(3) {network} {:} {space} {networkname} {,}

stage: identifies the start of a new micropipeline stage.

device function keyword: denotes logic functions using a group of

abbreviations.

For example: a two-input AND gate is denoted by ”and2”.
a three-input OR gate is denoted by "or3”.

network: identifies the start of the inter-stage network description.

pointname: represents input and output terminals to a device.

The ”device function keyword”s of the related logic devices are as follows:

(o
(b) ltlatchl: denotes a one-bit "low” activated latch.
(c) htlatchl: denotes a one-bit "high” activated latch.
(d) and2: denotes a two-input AND gate.

(e) fulladderl: denotes a one-bit full adder.

mux2: denotes a 2:1 multiplexer.

(f) nor3: denotes a three-input NOR gate.

(g) muller-c2: denotes a two-input Muller C-element.

(h) nmuller-c2: denotes a Muller C-element with two inputs and one
inverted output.

(i) dmuller-c2: denotes a Muller C-element with one inverted input and

one non-inverted input.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 61

select: denotes a "SELECT” logic module for events.
call: denotes a "CALL” logic module for events.

arbiter: denotes an "ARBITER” logic module for events.
or2: denotes a two-input OR gate.

input ———¢ tp5
—@
input izéi AND tp7
tp3 OR :D—Qi Output

input ——¢
. tpd D—"
input ——& *

Figure 4.1: The circuit example used to illustrate a circuit description.

(a) The circuit of Figure 4.1 can be described as follows:
or2: tpl, tp2, tpb,
or2: tp3, tp4, tp6,
and2: tp5, tp6, tp7,

input: tpl,
input: tp2,
input: tp3,
input: tp4,

output: tp7,

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 62

(b) The micropipeline stage of Figure 2.4 can be described as follows:

stage: latch,
ltlatchl: 1t, c, y,
or2: al, a2, a,
or2: bl, b2, b,
and2: a, b, c,
dmuller-c2: ri, w, dmyl,
mxor2: dmyl, ao, 1t,
toggle: 1t, ai, w,
rin: ri,
ain: ai,
rout: dmyl,
aout: ao,
input: al,

input: a2,
input: bil,
input: b2,
output: vy,

network: project,

4.1.2 Simulation description

The simulator needs an input file for describing how the test pattern generators
and output buffers are connected to the simulated network. The following formats
can be used to write Simulation descriptions and test patterns. They are saved

into an input file.

1. Format:

(1) {command} {:} {space} {pointname} {,}
[{space} {pointname} {,}]*

(2) {zxv} {:} {space} {test pattern} {,}
[{space} {test pattern} {,}]*
{expected test result} {,}
[{expected test result} {,}]*

command: defines which "Rin”, 7Ain”, "Rout”, ” Aout” are connected

to the test pattern generator and the result buffer.

xVv: sets test pattern vectors and expected test results.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 63

Commands:

e defrin: defines the Rin of the simulated network.

e defain: defines the Ain of the simulated network.

e definput: defines the Din of the simulated network.

e defrout: defines the Rout of the simulated network.

e defaout: defines the Aout of the simulated network.

e defoutput: defines the Dout of the simulated network.

o defformat: defines the order of the test pattern vectors and the

expected test results.
o deftest: starts to set test pattern vectors and expected test results.

endtest: indicates the end of the simulation.

2. Examples: the following simulation description can be used to simulate the
circuit shown in Figure 2.4. The last digit in each test pattern vector is the
expected output at the point labelled ”y” when a set of "al”, "a2”, "bl”
and "b2” is entered into the simulated network.

defrin: latch#ri,

defain: latch#ai,

definput: latch#al, latch#a2, latch#bl, latch#b2,

defrout: latch#dmyl,

defaout: latch#ao,

defoutput: latch#y,

defformat: latch#al, latch#a2, latch#bl, latch#b2, latch#y,

deftest:

xv: 0000 0
xv: 00 01 0
xv: 0010 0
xv: 0011 0
xv: 0100 0
xv: 0101 1
xv: 0110 1
xv: 0111 1
xv: 1000 0
xv: 1001 1
xv: 1010 1
xv: 1011 1
xv: 1100 0
xv: 1101 1
xv: 1110 1
xv: 1111 1

endtest:

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 64

4.2 The C++4 language

The C++ programming language [Lippman 90] [Stroustrup 91] [Ellis 90] was de-
veloped at AT&T Bell Laboratories in the early 1980°s by Bjarne Stroustrup. It
provides users with a programming environment of data abstractions and object-
oriented design. It is an extension of the C language. C++ is a strongly typed
language. All initializations and assignments of values and both the argument
list and the return type of every function call will be checked at compile time
to make sure the types of these values and function call are correctly matched.
C++ provides pointer types which can be used to create linked lists. C++ has
some useful properties, such as user-defined data types, classes, function name
overloading and free storage. To model the micropipeline circuit models and Petri
net models of each event-driven logic module, each data item within such models,
such as devices, terminals, places, and transitions, must be represented by a data
type. The abstract class data type of C++ is easily able to represent these data
items. The free storage feature of C++ conveniently supports the management
such of data items. The object-oriented nature of C++ supports potential fu-
ture development of this modelling research. This is why C+4 was chosen to be
the modelling tool for this research work. These useful features will briefly be

described in the following subsections.

4.2.1 Function name overloading

Function name overloading allows multiple function instances that provide a com-
mon operation on different argument types to share a common name. Overloading
allows a set of functions that perform a similar operation to be collected under
a common mnemonic name. In C+4, two or more functions can be given the
same name provided that their signatures are unique, in either the number or

the types of their arguments. Function name overloading relieves the problem of

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 65

lexical complexity and makes the program more readable.

4.2.2 Free storage

Storage allocation that occurs at compile time is referred to as static memory
allocation. The allocation of memory at run time is referred to as dynamic mem-
ory allocation. C++ free storage allows a program to do memory allocation at
run time. A new operator handles dynamic memory allocation. Free store mem-
ory is allocated by applying the operator new to a type specifier, including that
of a class name. FEither a single object or an array of objects can be allocated.
Deallocation is achieved by applying the operator delete to a pointer addressing
the dynamic object. The numbers of devices and terminals within various mi-
cropipeline circuits are different. The numbers of places and transitions within
the corresponding Petri net models of various micropipeline circuits are also dif-
ferent. Therefore, variable size lists are used to manage these data items. A
linked list with variable size is implemented by using this property of dynamic
allocation and the pointer types. Any required memory locations can be newly
created using the new operator for any data items at run time when such data
items are met. It is also used to store the input data whose size is not known in

advance.

4.2.3 Classes

In C++, a class is a user-defined data type which is an aggregate of named
data elements, possibly of different types, and a set of operations designed to
manipulate that data. Typically, a class is used to introduce a new data type
into the program. A well-designed class can be used as easily as a predefined
data type. A C++ class has four associated attributes: data members, member

functions, specifications of the levels of program access, such as private, protected,

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 66

or public, and a class tag name. A class definition consists of two parts: the
class head, composed of the keyword class and tag name, and the class body,
enclosed by braces and terminated with a semicolon. A class tag name represents
a new data type. Within the class body, the data members, member functions,
and levels of information hiding are specified. Information hiding is a formal
mechanism for restricting user access to the internal representation of a class
type. In general, only the member functions of a class are permitted to access
the class data members. If the data representation of the class is changed, only
the class member functions, rather than user programs, need to be modified. If
there is an error in the manipulation of a class data member, only the small set
of class member functions, rather than an entire program, need to be examined.

Members declared within a public section become public members; those de-
clared within a private or protected section become private or protected members.
A public member is accessible from anywhere within a program. A protected
member behaves as a public member to a derived class; it behaves as a private
member to the rest of the program. A private member can be accessed only by
the member functions and friends of its class.

A member function is designated the class destructor by giving it the tag
name of the class prefixed with a tilde ”~”. It is the deallocation function and is
invoked whenever an object of its class goes out of scope or the operator delete
is applied to a class pointer.

An initialization member function, called a constructor, is implicitly invoked
each time a class object is defined or allocated by the operator new. A constructor
is specified by giving it the class name.

A class object or reference accesses its data members or member functions

”» N

using the class object selector A pointer to a class object accesses data

members or member functions of the pointed class object using the class pointer

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 67

selector 7— >”. One important use of the C++ class mechanism is referred to as
an abstract data type. Another important use of the class mechanism is to define
subtype relationships.

Each device of a circuit has some input and output terminals. Each termi-
nal of a circuit may be connected to several devices. Similarly, each place of a
Petri net is connected to several transitions and each transition of a Petri net is
connected to several places. Such elements within a circuit and a Petri net can
easily be represented by the objects of various classes. The implementation of

communications between these elements can be simplified by this data type.

4.2.4 Object-oriented programming

Inheritance and dynamic binding are two primary features of object-oriented pro-
gramming. Inheritance is implemented through the mechanism of class deriva-
tion. An inheritance hierarchy defines a type/subtype relationship between class
types. Class inheritance allows the members of one class to be used as if they
were members of a second class. Dynamic binding is provided by virtual class
functions. A member function is made virtual by preceding its declaration in the
class body with the keyword virtual. This technique is not applied at this design
stage. However it is being considered for future use to reduce the linkages be-
tween objects which are used to represent the elements within circuits and Petri

nets at subsequent design stages.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 68

4.3 The Design of C++4 classes for representing
simulated circuits and Petri nets

To model event-driven logic modules and implement a simulator, some classes
have been defined. Their global functions, member functions, and data members

are shown in Table 4.1. A brief introduction is as follows:

Device and Point class The circuit within a stage consists of devices and ter-
minals. The Device class is defined for denoting the device elements. The
Point class is defined for denoting the terminal elements. The data member
labelled "name” within each Device object is used to represent the logic
function of the represented device. The data member labelled ”val” within
each Point object is used to represent the logic value which the terminal
has. Each Device object has some pointers pointing to Point objects which
represent the terminals connected to this device object. Similarly, each
Point object also has some pointers pointing to Device objects which rep-
resent the devices connected to this point object. To represent different
devices, each Device object also has some other data members to denote
the data which the particular device needs. For example, each Device ob-
ject has a pointer to point to the Place objects and Event (i.e. transition)
objects in the corresponding Petri net model if the represented device is
an event-driven module. Each Device object has a queue to store the test
patterns or the test results if the represented device is a test pattern gen-
erator or a result buffer. To access conveniently these two kinds of objects,
the Deviceliist class and the PointList class are also defined. All the Device
objects and all the Point objects within a stage will be stored as linked lists
individually. The related global functions and member functions are used

to manage their data members.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS

Table 4.1: The global functions, member functions, and data members of C++

classes for modelling the Petri net models of logic modules for events

class name
Device Point Stage Network Place Event
setPoint setDevice setPreEvent setPrePlace
getPoint getDevice getPreEvent getPrePlace
changePoint changePreEvent changePrePlace
display setPostEvent setPostPlace
'?J:(g?én setPlace getPostEvent getPostPlace
getPlace changePostEvent changePostPlace
changePlace display display
setEvent addPlacelist addEventList
getEvent remove_from Placelist | remove from_EventList
changeEvent
Device Point Stage Network Place Event
disp set disp display disp disp
setpoicnt get display disp satToken setDevice
getpoicnt disp setTopDevPtr | setTopStgPtr getToken getDevice
setplaceCount | getdevent SetTopPoiPtr setTopDevPtr | removeToken getDeviceCount
getplaceCount | setdevent getTopDevPtr | setTopPoiPtr setDevice setPrePlacePtr
seteventCount | setdevicePtr getTopPoiPtr getTopStgPtr getDevice setbotPrePlacePtr
geteventCount| setbotdevicePtr | getDeviceCount | getTopDevPtr | setPreEventPtr getPrePlacePtr
setpinPtr getdevicePtr getPointCount | getTopPoiPtr | sethotPreEventPtr getbotPrePlacePtr
setbotpinPtr | getbotdevicePtr getStageCount | getPreEventPtr setPostPlacePtr
getpinPtr insertTimeQ getDeviceCount | getbotPreEventPtr setbotPostPlacePtr
getbotpinPtr | removeTimeQ getPointCount | setPostEventPtr getPostPlacePtr
setplacePtr getrearTimeQ sethotPostEventPtr getbotPostPlacePtr
setbotplacePtr | getTimeQCount getPostEventPtr setPrePlaceCount
":\G ﬁrcrt]iti)er: getplacePtr getbotPostEventPtr setPostPlaceCount
getbotplacePtr setPreEventCount getPrePlaceCount
seteventPtr setPostEventCount getPostPlaceCount
setboteventPtr getPreEventCount
geteventPtr getPostEventCount
getboteventPtr
setState
getState
changeState
insertQ
removeQ
getQCount
getstagename
setstagename
setdelayTime
getdelayTime
name pointName stageName networkName | placeName eventName
stagename val TopDevPtr TopStagePtr Token deviceCount
poicnt devent TopPoiPtr TpoDevPtr deviceCount devicePtr
placeCount | TimeQCount deviceCount TopPoiPtr devicePtr botdevicePtr
eventCount | devicePtr pointCount StageCount botdevicePtr prePlacePtr
stateCount botdevicePtr deviceCount preEventPtr botprePlacePtr
Qcount frontTimeQ pointCount botpreEventPtr postPlacePtr
delayTime rearTimeQ ostEventPtr botpostPlaceptr
Data) P
Member | P nRtr botpostEventptr prePlaceCount
botpinPtr preEventCount postPlaceCount
placePtr postEventCount
botplacePtr
eventPtr
boteventPtr
statePtr
botstatePtr
frontQ

rearQ

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 70

PointList

DeviceList PointList
object
point2

PointList
object
point3

PointList
object
point7

PointList
object
point6

icel i Deviceli § DeviceLi DevicelList L
Pobis dbject dbject % 0
devices deviceb ; devic devices :
) Point object
Device
object tpl
input <iiC v
- Device | @
f . * object
Point object o .
Device - .I ! T OR
object tp2 | Point object ™. o 3
input =i) Point object P
N Device | Device
object object

AND T~ /7 output

Device -
object —
input <t

~ Pointobject

Point object

Point object

Figure 4.2: Describing circuits within a stage using the Stage object

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 71

Stage class The circuits within a stage are stored in a Stage object. There are
two important data members in each Stage object. One is the TopDevPtr,
a pointer pointing to the top position of the device list which contains
all Device objects within this stage. The other is the TopPoiPtr, a pointer
pointing to the top position of the point list which contains all Point objects
within this stage. Figure 4.2 shows how the stage of Figure 4.1 is denoted
by the related C++ classes. The Stagelist class is necessary in order to
access Stage objects conveniently. All Stage objects are stored in a list.

TopStageList is the top position of the stage object list.

Network class A pipeline network consists of several stages and some device
elements between stages. In a Network object, in addition to the pointer,
TopStagelist, it is also necessary to point to a device list which contains
the devices between stages and a point list in which the terminals con-
nect to such devices. Therefore, there are another two pointers, i.e. the
TopDeviceList and the TopPointList, in a Network object pointing to the
top positions of the device list and the point list. Figure 4.3 shows the

structure of a Network object.

Place class and Event class The objects of these two kinds of classes are used
to represent the places and the transitions in a Petri net respectively. Each
Place object has two pointers which point to transition lists containing the
predecessor and successor transitions. Each Place object has a pointer to a
device list which contains all the devices pointing to this place. Similarly,
each Event object has two pointers which point to place lists containing
the predecessor and successor places. Each Event object has a pointer to a
device list which contains all the devices pointing to this transition. Some
global and member functions of the Device, Place, and Event classes are

used to handle the above pointers to establish the correct mapping relations.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS

line:
B1#d5, B2#el

line:
B1#d6, B2#e2

line:
B1#d7, B2#e3

line:
B1#d8, B2#e4

. line:
B1#d8, B3#1

line:
> B1#d8, B3#2

Rin

line:
B1#d7, B3#3
L line:
B1#d7, B3#f4
line:
B1#a3, B2#b1
line: -
B1#a3, B3#cl

muller-C: B2#b2
B3#C2A Bl#ad

al

——e dl
Input o g% B1
——e d4

~—e32

Ain

Figure 4.3: The structure of a Network object

aNetwork

D-O-O-OO0O-0OC

00,

> Bl#ds

B2#el

B1#d6

B2#e2

Bl#d7

OO

B2#3

B1#d8 -

B2#ed <

B3#1 ~

B3#2 <

B3#3 = >

B34 < >

Bl#a3 <17

B2#b1

B3#cl
B2#b2

B3#c2

Bl#ad =

TopS$tageList

Rin
——e bl
. e%
R ———
P ooz B2
)
a3e Rout W’bZ
i —
d7 e Output
d8e———9
ate—([T
Aout
Rin
®cl
.1
Thput 9
i3 g3
® {4
Ain 2
H
ngr

e7 &—— Output
P

Aout

Rout

76— Output

72

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 73

Rin Aout
dmuller-c2
dmyl(jx / Rout
) al XOR
input ﬁo\ a
OR
2 It
input @/ y
c
o1 AND ——)—— I_latch1 output
input
b
b2 OR
Toggle
input @ o

Figure 4.4: The circuit model represented by C++ classes

4.3.1 The representation of circuit models

The micropipeline circuit shown in Figure 2.4 can be represented by the C++
classes described in the previous section as shown in Figure 4.4. The rectangle
boxes denote devices, i.e. Device objects. The circles denote terminals, i.e. Point
objects. The arrows denote the interconnections between devices and terminals.

The arrow directions denote the input and output relations.

4.3.2 The construction of Petril net models

The Petri net model can be constructed using the global functions and member
functions of the C++4 classes shown in Table 4.1. Some functions are used to
establish the mapping from places to transitions or from transitions to places.
Some functions are used to establish the mapping from Petri net models to device

models. For example, the logic module TOGGLE can be modelled as shown in

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 74

Figure 4.5. The first step is to create five Place objects which are pointed to by
five Place pointer variables p1, p2, p3, p4, and p5 (See the Petri net model of
the TOGGLE module). The second step is to create two Event objects which
are pointed to by two Event pointer variables el, €2 and used to denote the
transitions of the Petri net model of the TOGGLE module. The third step is
to establish the mapping from Petri net places to the device, from Petri net
transitions to the device, from the device to Petri net places, from the device
to Petri net transitions, from Petri net transitions to Petri net places, and from
Petri net places to Petri net transitions. The fourth step is to assign initially one
token into the place pointed to by variable p4. The last step is to add these Place

objects and Event objects to the place list and the event list respectively.

CHAPTER 4. REPRESENTATIONS OF CIRCUITS AND MODELS 75

// The implementation of the Petri net model of a TOGGLE
void Petri_toggle(Devicex d) {

// variable declaration
Place *pl, *p2, *p3, *p4, *pb; Event *el, *e2;

// step 1: new places declaration

pl = new Place("toggle:i"); p2 = new Place("toggle:dot");
p3 = new Place("toggle:non-dot"); p4 = new Place("toggle:s1");
p5 = new Place("toggle:s2");

// step 2: new events declaration

el = new Event("toggle:el"); e?2 new Event("toggle:e2");
// step 3: establish mapping device from Petri net places
pl->setDevice(d); p2->setDevice(d); p3->setDevice(d);
p4->setDevice(d); p5->setDevice(d);

el->setDevice(d); e2->setDevice(d);

// establish mapping Petri net places from a device
setPlace(d, pl); setPlace(d, p2); setPlace(d, p3);
setPlace(d, p4); setPlace(d, p5);

// establish mapping Petri net transitions from a device
setEvent(d, el); setEvent(d, e2);

// establish mapping Petri net transitions from Petri net places
setPostEvent (pl, el); setPostEvent(pl, e2); setPreEvent(p2, el);
setPreEvent(p3, e2); setPreEvent(p4, e2); setPostEvent(p4, el);
setPreEvent(p5, el); setPostEvent(p5, e2);

// establish mapping Petri net places from Petri net transitions
setPrePlace(el, pl); setPrePlace(el, p4); setPostPlace(el, p2);
setPostPlace(el, p5); setPrePlace(e2, pl); setPrePlace(e2, p5);
setPostPlace(e2, p3); setPostPlace(e2, p4);

p4->setToken(); // step 4: initial token
// step 5: add places and transitions to PlaceList and EventList
addPlacelList(pl); addPlaceList(p2); addPlaceList(p3);

addPlaceList(p4); addPlaceList(p5);
addEventList(el); addEventList(e2); }

Figure 4.5: Modelling a TOGGLE module using C++ classes

Chapter 5

Implementing a micropipeline
simulator

This chapter will present the design and operation of the micropipeline simulator.
The construction of the corresponding Petri net model of the simulated network
will be described. The simulation procedure which will be used to control the
simulation work will also be presented in this chapter. Several micropipeline

examples will be tested to demonstrate that the simulator works correctly.

5.1 Introduction

The representation of a circuit model using C++ classes and the method for en-
tering a simulated network using the description language have been described
in Chapter 4. The Petri net models of event-driven logic modules have also been
described in Chapter 3. This chapter will present the micropipeline simulator
which is implemented using C++ classes and show how Petri net models of the
behaviours of event-driven logic modules are used to control the simulation exe-
cution. The simulator design can be divided into three sections: user interface,
model description and simulation control. The user will input the logic devices

and networks for simulating via the user interface. The user interface can also be

76

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 7

used to input the simulation commands and monitor the progress of the simula-
tion. The definitions for entering circuits and describing the simulation described
in Chapter 4 are used to support this input function.

The model description is an internal representation of the design which is
suitable for use by the simulator. It is necessary to consider the input pins, the
output pins, and the relationship between them, i.e. the truth table. The class
structure of the C++ language can be used to represent each device and the
pointers to link one device to others within a pipeline stage. The pointers can
also be used to link one stage to other stages.

The simulation control is an execution sequence. When the simulation is exe-
cuted, the test pattern data can flow through a network based on the organisation
of connections in the network. When execution terminates, the results will be
saved in a file, which can be compared with expected values to observe whether
the simulated network is correct or not. Also the values of the state change times
of each terminal can be recorded and saved into a file during the simulation. Then
they can be displayed as waveforms. A simulation procedure is designed to sched-
ule the Petri net transitions which are enabled to generate the control sequences.
After the simulator reads the simulation network described by the user interface,
it constructs not only a circuit model but also a Petri net model. Similarly, we
can use the classes and pointers of C++ to build this Petri net model during the
simulation.

The top level flow chart of the micropipeline simulator is shown in Figure
5.1. It denotes that the simulation work can be divided into five parts: reading
the simulated network, constructing the corresponding Petri net model of the
network, reading the test patterns, executing the simulation action of the network
and displaying the test results of the simulation. Each of these stages will be

introduced in the following subsections.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR

Read simulated network

Construct the corresponding
Petri net of the network

|

Read and set test patterns

Execute the smulation
action of the network

Display the test results
of the smulation

Figure 5.1: The top level flow chart of the micropipeline simulator

78

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 79

5.2 Reading the circuit and simulation descrip-
tions

The program whose flow chart is shown in Figure 5.2 can read circuit and sim-
ulation descriptions from an input file and construct a network model using the
objects of the Device class and the Point class. Figure 5.3 shows a simulated
network model, which is the micropipeline circuit shown in Figure 2.4, and the
descriptions described in Chapter 4 are executed by the above program. A test
pattern generator has been connected to the input end of the simulated network,

and a result buffer to the output end.

5.3 Constructing the corresponding Petri net
model of the simulated network model

The construction of the corresponding Petri net model of the simulated network
can be divided into three steps. The first step is to produce the corresponding
Petri net models of each event-driven logic module within each stage of the sim-
ulated network. The corresponding Petri net models of each event-driven logic
module have been described in Chapter 3. The second step is to merge the cor-
responding Petri net models of each event-driven logic module within each stage
of the simulated network along each point within the simulated network. Finally,
merge the corresponding Petri net models of each stage within the simulated
network along with each event-driven logic module between stages.

The program whose flow chart is shown in Figure 5.4 is used to construct the
corresponding Petri net model of the simulated network. Let us illustrate this
with an example to show how it works. When the corresponding Petri net model

of the circuit shown in Figure 2.4 is constructed, the result of the first step is

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR

80

Read simulated network

read description data of the
simulated network from afile
and savethem in astring list

to the stage list

|

reset all counters
for anew network

|

take the next string
ie. anetwork name

|

add thelast stage _ set thedevicelist of all the

declare anew Network object
for denoting this network

|

take the top string
of the string list

take the |ast character
of the string

check
Is the character
2

no
ERROR

points of the current stage yes
add the last stage

to the stage list

check
Isthe string

the network
"network:"?

counter adds one

reset all counters
for anew stage

set the devicelist of dl the
points of the current stage

|

the stage counter
adds one

take the next string
ie. astage name

|

take the next string declare anew Stage object
) ie. adevicename for denoting this stage

The string is adevice name.
Declare anew Device object
for denoting this device.

|

check
Isthe string
"stage:"?

take the next string
ie. adevice name

|
take the next string and take
the last character of this string

check
Isthe point
counter >0 2

check
Is the character
o

ERROR

the point counter adds one

I

Thisstring is a point name.
Declare anew Point object
for this point.

Does there exist this
point in the poin
list?

declare anew Point object
for denoting this point

|
add this point to the point list

add this point to the
point list of the device

yes Isthere other string?

Figure 5.2:

scriptions

and isthe last character
of thelast string’,’

add this device to the device list

reset the device's point
counter for anew device

check
Isthere other
string?

move the top
pointer to next string

add the devices between stages and
stages to the device list of the network

add the last stage to the stage list
\

The flow chart of a function for reading circuit and simulation de-

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 81

Rin // Aout
line l line
dmuller-c2
test pattern bi2
enerator f
g () ~ Rout Ain

dmy1,
gol m

al
XOR output

output input
/ 2 butfer
line OR It .
a2 line
output input «p/ . y . z a
AND ——(—— I_latchl output input

line

line

output input j} o bi
line ;
line
w
go2 Aout
Ain

line

a Rout

Figure 5.3: The simulated network with the test pattern generator and the result
buffer

shown in Figure 5.5. A Petri net model of each of the event-driven modules within
each stage will be produced. Next the simulator progresses to the second step,
and the corresponding Petri net model of each stage of the simulated network is
constructed as shown in Figure 5.6. As the last step, the corresponding Petri net
model of the simulated network is produced. Figure 5.7 shows this corresponding
Petri net model.

The simulator controls the tokens which denote events flowing through the
Petri net model to complete the simulation execution. The next issue is how the

test patterns are put into the test pattern generator.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 82

Construct the corresponding Petri
net of the simulated network

take the stage list of the network
let a pointer point to the top
|

no

Does the pointer
point to astage?

take the top stage

|

take the device list of the stage
let a pointer point to adevice

let the pointer move \
to the next device

no let the pointer move

Does the pointer
to the next stage

point to adevice

take the top device

Check
Isthis device
aselect?

check™ ! N no
Isthis device Isthis device
amuller-c2?

admuller-c22 Isthis device
ulfer-

generate the Petri generate the Petri generate the Petri generate the Petri generate the Petri generate the Petri
net of this device net of this device net of this device net of thisdevice net of this device net of thisdevice
generate the Petri generate the Petri generate the Petri generate the Petri generate the Petri generate the Petri
net of thisdevice net of thisdevice net of this device net of thisdevice net of this device net of thisdevice

check
Isthis device
amux2?2

check
Isthis device

ec]
Isthisdevice

check
Isthis device
aain?

Isthis device
abuffer2

generate the Petri generate the Petri generate the Petri generate the Petri generate the Petri
net of thisdevice net of thisdevice net of this device net of thisdevice net of this device

| | | |

take the stage list of the network
let a pointer point to the top

merge the Petri nets of
the stages along the
devices between stages

Are there points

Does the pointer
he point Queue?

point to a stage?

read apoint from Queue
merge the Petri nets of
connecting to this point l
take the point list of the stage
let apointer point to a point
let the pointer move \
to the next point

take the top stage

let the pointer move

Does the pointer
to the next stage

point to apoint?

take the top point

check
Does this point conne
to alatch?

check
Does this point conne:
to the deviceswhich
have Petri nets?

Does this point conne
to the boolean pin o
select?

merge the Petri nets of merge the Petri nets of merge the Petri nets of insert the paint Queue waiting

i is Dol i is poi i is noi other points finishing merging
connecting to this point connectmg‘ to this point connecting to this point Petri nets

Figure 5.4: The flow chart of a function for constructing the corresponding Petri

net model of the simulated network

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 83

O O o
() s

Rout Rin

dmuller-c2:e

req dmy

<>/ E send out xa xb
test pattern available 2 i > xor2:el xor2:e2 Ain

ack O

Aout O

done
datawaiting
Ilatch:execute
enter datainto buffer
)

i entered into buffer

2 sl

toggle:e2 toggle:el Rin

nondot dot O

Rout

O

Figure 5.5: Construct the corresponding Petri net model of the simulated network

(step 1 : Produce the Petri net model of logic modules for events within stages)

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 84

Rout

Aout

point

xb

test pattern available xor2:e2 Ain

point

entered into buffer
Ain Ilatch:execute
enter datainto buffer

data waiting

point

point

nondot

Figure 5.6: Construct the corresponding Petri net model of the simulated network

(step 2 : Connect the Petri net models within each stage along each point)

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 85

Rout Rin

point
‘ dma dmb
) (e
point dmuller-c2:e
req . dmy point

test pattern available

o

point
point

It
done
entered into buffer
Ain . Ilatch:execute
enter datainto buffer
i data waiting
e ()

toggle:e2 ‘ ‘ toggle:el line
Rin
e D)

Rout

point

Figure 5.7: Construct the corresponding Petri net model of the simulated network
(step 3 : Connect the Petri net models of each stage along each connection device

between stages)

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 86

5.4 Test pattern input

Before the simulator starts the simulation work, it needs to read the test patterns
from an input file. This work is done by the program whose flow chart is shown in
Figure 5.8. It is very simple in that the simulator simply reads the test patterns
from an input file and saves them into an array, and then follows the order
specified by the simulation description command, ”defformat” to insert these test
patterns into the test pattern queue of the corresponding test pattern generator
from that array. After finishing this test pattern input, the simulation work can

be executed under the simulation procedure.

(Read and et test patterns)

read test patterns from afile
and save them into an array

|

insert test patterns into the test
pattern Queues of test pattern
generators

Figure 5.8: The flow chart of a function for reading and setting test patterns

5.5 Network simulation

During the simulation work, the simulator needs a waiting fire queue in order
to dispatch concurrently the transitions of the Petri net model which are en-
abled. The simulation procedure which can be used to control the simulation

work concurrently is as follows:

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 87

Simulation procedure:

1. Check whether the test pattern generators have test patterns or not.

(a) If there are some test patterns, then

Check whether the place labelled "test pattern available” in the Petri

net model has a token or not.

i. If there is a token inside the place, then

Go to next step.

ii. If there is no token inside the place, then
Put a token inside the place and
Check whether the transitions pointed to by this place are enabled

or not.

A. If there are some transitions which are enabled, then

Insert the enabled transitions into the waiting fire queue.
B. If there is no transition which can be enabled, then
Go to next step.
(b) If there is no test pattern, then

Go to next step.
2. Check whether the waiting fire queue contains transitions or not.

(a) If there are some transitions in the waiting fire queue, then
Read the front one and fire it(if it is disabled, go to next step.),
Execute the actions of the devices,
Remove a token from each predecessor place and

Add a token into each successor place which is pointed by this fired

transition.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 88

Check whether the transitions pointed by each successor place are

enabled or not.
i. If there are some transitions which can be enabled, then
Insert the enabled transitions into the waiting fire queue.
ii. If there is no transition which can be enabled, then
Go to next step.
(b) If there is no transition in the waiting fire queue, then

Go to next step.

3. Check whether there is no transition which can be fired and whether the
test pattern generators still have some test patterns but the simulator is
not able to put a token inside the place labelled "test pattern available” (
check deadlock).

(a) If a deadlock has happened, then
Abort the simulation execution.

(b) If no deadlock happens, then

Repeatedly execute the above steps until there is no test pattern and

no enabled transitions in the waiting fire queue.

The simulation procedure is implemented by the program whose flow chart is

shown in Figure 5.9.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR

Deadlock

abort the execution
of the simulation

Figure 5.9:

Execute the simulation
action of the network

—Arethere test pattern
in the test pattern generators
of the simulated network

|sthere atoken inside the
labeled "test pattern available

assign atoken inside this place

check

Are there transitions which are
pointed by this place and

enabled?

insert the transitions which are enabled
into the wait_fire_event_queue

ves check

empty?

read atransition from the
wait_fire_event_queue

|

fire thistransition and evaluate the
devices which are pointed by this
transition

remove the tokens of the previous places
assign a token inside each post place
pointed by this transition

Insert the enabled transitions into the
wait_fire_event_queue

Isthere asituation:
There are test patterns but they

can not send out. And thereis
no transition which can fire,

check
Are there no test patterns?

and Isthewalit_fire_event_queue
empty?

The flow chart of the simulation procedure

89

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 90

The mapping relation between the corresponding Petri net model and the sim-
ulated network model is shown in Figure 5.10. It shows how the Petri net model
works to control the simulation execution. The tokens inside places flow through
the Petri net model and therefore let the simulator simulate the behaviour of
the simulated network. When the related transitions are fired, the corresponding
devices will be evaluated and then produce the new output values, which will
be saved into the output terminals. For example, when the transition labelled
"dmuller-c:e” is fired, the dmuller-c device pointed by this transition will check
both logic values of its input pins and produce the correct output value, which
will be used to set the output point, i.e. the event has arrived the output of the

dmuller-c module from its input.

poi

dmuller-c:e

Figure 5.10: The mapping relation between the Petri net model and the simulated

network model

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 91

The event functions of various Petri net transitions of the logic modules were
described in Chapter 3. They will be executed when the corresponding transitions

are fired.

5.6 Simulating logic devices

Within a micropipeline stage, the transparent latches are very important de-
vices. They hold the correct logic values which are available for successor stages.
Therefore, correctly modelling the behaviours of the transparent latches and let-
ting them hold the correct values during the simulation is an important considera-
tion. One point connected to the "1t” pin of a low-activated latch (a low-activated
latch holds data if ”It” = 1) may be connected to other high-activated latches (
a high-activated latch holds data if ”1t” = 0) or low-activated latches simulta-
neously. To satisfy this situation, a state variable which denotes that the latch
is transparent or holding data is necessary in each latch device model. When
the "llatchl:execute” or the "hlatchl:execute” transition of the Petri net model
of a low-activated or high-activated latch is fired, the latch models pointed to by
this transition will check their ”1t” pins. At the same time, the internal state
variable denoting that the latch is transparent or holding data contains the last
state. Consequently, the corresponding event function of the "llatchl:execute” or

the "hlatchl:execute” transition must be executed obeying the following rule.

The evaluation rule for transparent latches:

1. If ”1t” = 1, i.e. the ”1t” has changed from 0 to 1, the simulator must first
evaluate the logic values of the input points of all the low-activated latches
connected to the same ”1t” point and then evaluate the low-activated latch

model letting the output points of all the low-activated latches connected

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 92

to the same ”1t” point have correct output values.

2. Then the simulator changes the internal state variable denoting that the

latch is transparent or holding data to its new condition.

3. Next the simulator can evaluate the logic values of the input points of
all the high-activated latches connected to the same ”1t” point, change the
internal state variable denoting that the latch is transparent or holding data
to its new condition and evaluate the high-activated latch models letting
the output points of all the high-activated latches connected to the same

"1t” point have correct output values.

If ”1t” = 0, i.e. the "1t” has changed from 1 to 0, the positions of the low-
activated latches and high-activated latches will have to be interchanged in the
above evaluation rule, i.e. the simulator will first consider all the high activated
latch actions and then the low-activated latch actions.

Before the simulator evaluates the logic values of the input points of a latch,
it is necessary to look for all of the logic devices located on between the input
point of the latch and a test pattern generator or another latch which holds data.
At this search stage, all the met logic devices must be saved into the device stack
and their input points must be saved into the point queue. The point queue
is used to continue this search. When this search is complete, the device stack
will contain all the logic devices which need to be evaluated. After these logic
devices are orderly evaluated, the correct logic value will appear on the latch’s

input point.

5.7 Simulating delays

In addition to obtain the logic values of each point within the simulated network

by correctly evaluating each device, it is also necessary to simulate the delay

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 93

time of the simulated network. For this purpose, there exists a time queue in
each object of the Point class. The time queue is used to store the time values
when the logic value of the point is changed. In each object of the Device class,
the values of the delay time have been set. When these Device objects denoting
devices are evaluated, the delay time will be added to the time values which are
read from the input points of the device and these time values (sum) will be
inserted into the time queues within the output points of the device. Figure
5.11 illustrates how the simulation of the delay time works. To get the correct
delay time simulation, the values of the delay time of each logic device must be
correctly set. These parameters can be found in the TTL or CMOS data books
or technical reports of event-driven logic modules.

When the simulation work is complete, the simulator can show the waveforms
by reading the time queues within each Point object.

It is necessary to check whether the data signals are slower than the control
signals. To implement this part, the simulator needs to calculate the sums of
the delay times of the data signal paths and the control signal paths. When
the simulator evaluates a latch model, it is necessary to go back to find every
device which holds fixed values. The device may be another latch, a test pattern
generator or a constant. Then the last state change time of the device is read
to add to all the values of the delay times of all devices which are located on
the data signal paths and the control signal paths respectively. If the sum of the
delay times of all the devices located on the data signal paths is bigger than that
located on the control signal paths, an error message will be generated, i.e. the
simulated network has some design errors. We can also use similar methods to

check fan-in, fan-out, throughput ... and so on.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 94

ri

time Queue
Rin Aout
196
45
dmuller-c2 time Queue
tplh=36ns -
tphl=34ns _— a0
L 210
time Queue
a1 Rout
273
81
XOR
tplh=12ns otherinp=0
tphl=10ns octher inp=0
tplh=20ns otherinp=1
tphl=13ns otherinp=1
a
time Queue " timeQueue
input — 293 y
190 c 253?
40 \ time Queue time Queue
AND }
b tplh=4.5ns —~ - | latchl — output
. tphi=6 ns 122 tplh=16ns from D 26329
time Queue tphl=14ns fromD
input — ' P
lz?oo time Queue Toggle
W — tp=16ns inp=0)
tp=20ns inp=1 time Queue
239 | | -
A I
ai

Figure 5.11: The method of recording the values of the state change time

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 95

Display the test results
of the ssimulation

the t%ﬂste(r:gwlt yes display thetest results

on the screen or
Queue empty? save them into afile

no

read test result from the
L test result Queues of
output buffer

and save them into an array

Figure 5.12: The flow chart of the function for displaying test results on the

screen

5.8 Displaying the simulation results

When the simulation work is complete, the test results will be displayed on the
screen and saved into an output file. Figure 5.12 shows the flow chart of the
program which can be used to display the test results on the screen. The simulator
only needs to read the test results from the output buffers and save them into
an array and then display these test results on the screen and store them into
an output file. The circuit of Figure 2.4 and the simulation descriptions and test
patterns shown in Section 4.1.2 can be used to test the simulator. The simulation
work is controlled by the corresponding Petri net model shown in Figure 5.7 and
the simulation procedure (See Section 5.5). When all the test patterns are sent
out and there is no enabled transition inside the waiting fire queue, the simulation

is complete. The following test results will be obtained.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 96

The results of latch#y are:

test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:
test_result:

No errors.

P R, R, O, PR, O R, P, R, OO0 0O

The simulation is correct.

If there are some mismatch errors, the error positions will be displayed. During

the simulation, all the values of the state change time will be recorded in each

Point object. The following values of the state change time are read from the

time queues within each point object.

Show waves:

the
the

the
the
the
the
the
the

wave
wave

wave
wave
wave
wave
wave
wave

of
of

of
of
of
of
of
of

latch#lt is 180
latch#lt is 320

latch#lt is 4980
latch#lt is 5120
latch#c is 1520
latch#c is 2480
latch#c is 2800
latch#c is 3760

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

the
the
the
the
the

wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave
wave

wave
wave
wave
wave
wave

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

of
of
of
of
of

latch#c is 4080
latch#y is 1620
latch#y is 2580
latch#y is 2900
latch#y is 3860
latch#y is 4180
latch#al is 2440
latch#a2 is 1160
latch#a2 is 2440
latch#a2 is 3720
latch#a is 1180
latch#bl is 520
latch#bl is 1160
latch#bl is 1800
latch#bl is 2440
latch#bl is 3080
latch#bl is 3720
latch#bl is 4360
latch#b2 is 200
latch#b2 is 520
latch#b2 is 4360

latch#b2 is 4680
latch#b is 220

latch#b is 1180
latch#b is 1500

97

The waveforms shown in Figure 5.13 are transferred from the values of the

state change time read from the time queues within each point object.

CHAPTER 5. IMPLEMENTING A MICROPIPELINE SIMULATOR 98

180 320

1520 2480 2800 3760 4080
, |
1620 2580 2900 3860 4180
a |
2440
< | |
1160 3720

2440

520 1160 1800 2440 2080 3720 4360

220 1180 1500

Figure 5.13: Partial waveforms of the circuit shown in Figure 2.4 after simulation

There are several other examples which are tested. They are two micropipeline
stages connected in series, a micropipeline stage forking into another two mi-
cropipeline stages, a micropipeline stage forking into two micropipeline stages
which join into another micropipeline stage, a two-bit multiplier micropipeline
stage, a four-bit multiplier micropipeline stage, and two 2-bit multiplier mi-
cropipeline stages joining into one 4-bit multiplier micropipeline stage. All of

them are presented in Appendix A.

Chapter 6

Discussion

The aim of this chapter is to analyse the performance of the micropipeline
simulator which has been implemented and tested by running some examples
in Chapter 5 and to discuss some problems encountered during the implemen-
tation. The simulator is able to send the test patterns flowing through those
micropipelines and obtain the correct results. In addition, some design errors in
the micropipelines can be discovered through the simulation easily. The first part
of this chapter will examine the simulation results of the micropipelines of Figures
2.4 and A.1 using a standard hardware simulator, Silos II. Then the performance
of the simulator will be discussed. From the comparison of the results and simu-
lations, the modelling technique will be examined again and the advantages and
disadvantages of the micropipeline simulator will be summarized. The compar-
ison of the Petri net models used in this project for modelling the behaviours
of the event-driven logic modules and controlling the simulation executions of
micropipelines with that used in [Dill 92] for describing the specifications of the

self-timed queues will also be discussed.
6.1 Simulating micropipelines using Silos 11

The micropipelines in Figures 2.4 and A.1 have been simulated as described in

Appendix B. From the results of the experiment, there are two issues which will be

99

CHAPTER 6. DISCUSSION 100

explained in the following subsections. These are two reasons strongly in favour

of the implementation of the micropipeline simulator.

6.1.1 Test pattern generators and result buffers

The waveforms of the simulation results shown in Appendix B clearly exhibit
the operations of these two micropipelines. However, The ”Aout” signals of the
output end of these micropipelines cannot be given automatically. They must
be given by the user via the test vectors. Similarly, Silos Il cannot automati-
cally check the ”Ain” signals of the input end of these micropipelines to send
the "Rin” signal when the next test vector is available. Therefore, when simulat-
ing micropipelines using Silos II, the user must ensure that the operation of the
simulated micropipeline circuit has finished and send the ”Aout” signal to the
simulated circuit via the test vector. Then the user can send the next test vector
and the "Rin” signal to the simulated circuit. If the ”Aout” signal is sent to the
simulated circuit too early, incorrect simulation results will be obtained. If the
simulation environment is not ideal, a lot of time will be spent attempting various
situations during the simulation. This does not mean that Silos II is not an ideal
simulator. It only means that simulating micropipelines using such a simulator
is not convenient. To simulate micropipelines using Silos II conveniently, a test
pattern generator and a result buffer using a two-phase bundled data conven-
tion are required. If these two devices are implemented, then the simulation of
micropipelines using Silos II will become easy. However, this implementation is
not very simple. An interface for entering the test vectors to the test pattern

generator and exporting the test results from the result buffer is also needed.

CHAPTER 6. DISCUSSION 101

6.1.2 Event-driven logic modules

It is quite easy to design asynchronous circuits and micropipelines using event-
driven logic modules. However, these event-driven logic modules are not available
within the libraries of Solo 2030. Therefore, before simulating micropipelines, it
is necessary to implement the schematics of these event-driven logic modules.
However, the design of the event-driven logic modules is not easy. These designs
must be done by professional engineers. It is not always the case that those who
are interested in micropipelines are interested in and familiar with the design of
event-driven logic modules. Consequently, simulating micropipelines using Silos
IT can be made convenient, but the library problem of event-driven logic modules

must be solved.

6.2 The performance of the simulator

The micropipeline simulator makes simulating micropipelines very easy. It also
provides some error detection abilities. Most importantly it can connect a test
pattern generator and a result buffer to the simulated network. Therefore, test
patterns can be very easily input to the simulated network from the test pattern
generator and simulation results can also very easily be exported from the result
buffer of the simulated network. This section will analyse the performance of the

simulator.

6.2.1 An environment for simulating micropipelines

An environment for simulating micropipelines has been constructed. Designed
micropipelines are able to be run conveniently within the simulator. The designed
circuits do not need to be composed from actual components. The flow of the

events through the circuits can be recorded during the simulation. It is very

CHAPTER 6. DISCUSSION 102

helpful for checking the correctness of the designed micropipelines. Comparing
both results of the simulation tests which are done in Chapter 5 and Appendix
B individually, it is clear that the micropipeline simulator is able to do basic
functional simulations of the micropipeline circuits. The test patterns can easily
be read from an input file and sent into the test pattern generator which is
specified to be connected to the simulated network. The test results can also easily
be read from the result buffer, which is specified to be connected to the simulated
network, and saved into an output file. The event-driven logic modules have been
modelled using Petri nets and the C++ classes. Therefore, it is not necessary to
consider the design issues of the event-driven modules. The simulation of various
micropipeline circuits has been demonstrated. The simulation problems which
are encountered in Silos II are not met in this micropipeline simulator.
However, the micropipeline simulator is not perfect. This is the first design
stage of the simulator. There are many simulation functions which are not imple-
mented yet. Nevertheless, the simulator’s basis is Petri nets and the C++ lan-
guage whose mathematical theory and object-oriented programming techniques

can result in the simulator having a wide development potential.

6.2.2 Error detection

One benefit of using the simulator is that design errors within the designed mi-
cropipeline circuits can be found by this modelling technique. The design errors
which may occur are errors of delay time, data computation, deadlock, infinite
loop, and fan-out. They will be described in the following subsections respec-

tively.

CHAPTER 6. DISCUSSION 103

Delay time errors

It is possible that a micropipeline contains delay time errors, since micropipelines
are not fully delay-insensitive circuits. The delay time error means that the data
signal delays are longer than the request signal delays. The storage elements
within each stage will catch the data appearing on their inputs when the request
events arrive such storage elements. However, if the delays of the data paths
are very long, then the storage elements could catch the incorrect data. Such
errors affect the correctness of the designed micropipelines. Therefore, discovering
delay time errors is a very important mission of the simulator. The method for

discovering delay time errors has been described in Section 5.7.

Data computation errors, deadlock errors, and infinite loop errors

Three situations may happen if the connections of the control circuits of the
simulated network contain errors. One is that the events can still flow through
the erroneous network and there is no impact on the two-phase bundled data
convention within this network. This means that such errors may be the design
errors of the data computations within some stages. To discover such mistakes in
micropipelines, running adequate test patterns is necessary. The second is that
the events are not able to flow completely through the erroneous network. This
means that some connections between stages and modules violate the two-phase
bundled data convention or there are some disconnections between stages and
event-driven modules within the control circuits. In this case, the deadlock will
happen during the simulation. Once the deadlock happens, there is no enabled
transition within the corresponding Petri net model of the simulated network.
The simulator will abort the simulation work and print out the devices which
are pointed to by the last firing transitions. Therefore, it is easy to find such

deadlock errors in the simulation. The third is that there are some infinite loops

CHAPTER 6. DISCUSSION 104

within stages or around some stages and new events are not able to get into the
micropipeline network, i.e. infinite loop errors happen. The reason is that the
terminal conditions of the control circuits are incorrectly designed. However, find-
ing such errors is as difficult as finding infinite loop errors in a software program.
This problem is not considered during the implementation because the input to

the simulator is the designed circuits rather than behavioural specifications.

Fan-out errors

It is impossible for a device to produce an infinite output current. Thus, there is a
limitation of each device (i.e. the "fan-out”), which represents how many output
devices a device is able to connect to. For example, in the two-bit multiplier
micropipeline stage of Figure A.8, there are three 2-input XOR circuits. One
connects all the transparent latches (including high activated latches and low
activated latches) and one connects all the 2-to-1 multiplexers. It is necessary
to check whether such two XOR circuits have sufficient output currents which
are able to support all the transparent latches or all the 2-to-1 multiplexers and
cause the incorrect output voltages of such two XOR circuits.

All these parameters can be set in the Device objects of the circuit model
which is constructed by the micropipeline simulator. Therefore, the ”fan-out”
will be checked when the events or data values arrive each Point object during
the simulation. If the simulated network contains such errors, they will be printed
out when the simulation is complete. Hence, such errors can be found easily using

the micropipeline simulator.

CHAPTER 6. DISCUSSION 105

6.2.3 Performance measurements

There are two important parameters for a pipeline, which are the throughput
and the latency. These two parameters can be measured using this modelling
technique. The methods of measuring them are described in the following sub-

sections.

Throughput

Figure 5.11 has shown a method for recording the values of the state change
time. Whichever micropipeline stage within the simulated network is needed to
measure its throughput, the following procedure can be applied. First, the occur-
rence time of the earliest "Rin” event which is recorded in the time queue of the
Point object for denoting the input terminal of the "Rin” signals must be found.
Suppose that it is denoted by ¢;. Second, the occurrence time of the last ”Rin”
event must be found. Suppose that it is denoted by ¢5. Third, the occurrence
number of "Rin” events which are recorded in the time queue of the Point object
for denoting the input terminal of the "Rin” signals must be found. Suppose that
it is denoted by n. Thus, the throughput can be obtained by
n/ (ta—t),

i.e. the throughput is equal to the frequency of the "Rin” signals. The through-
put can also be obtained from measuring the frequency of the "Rout” signals.
Measuring the throughput of the different stages only needs changing the Point
objects of the above description, where the time queues contain the ¢;, ¢, and
the n can be found. Not only the throughput of each stage but also the entire

simulated network can be measured using the same method.

CHAPTER 6. DISCUSSION 106

Latency

A similar method can be used to measure the latency of a micropipeline stage
within the simulated network. First, the occurrence time of the earliest "Rin”
event which is recorded in the time queue of the Point object for denoting the
input terminal of the "Rin” signals must be found. Suppose that it is denoted by
t1(1). Second, the occurrence time of the corresponding ”"Rout” event which is
recorded in the time queue of the Point object for denoting the output terminal
of the "Rout” signals must be found. Suppose that it is denoted by 3(1). Third,
the subsequent time pairs of "Rin” and corresponding "Rout” must continually
be found. They are denoted by ¢1(2), t2(2), t1(3), t2(3), ... and so on. Fourth, the
occurrence number of "Rin” events which are recorded in the time queue of the
Point object for denoting the input terminal of the "Rin” signals must be found.
Suppose that it is denoted by n. Then, the latency can be obtained by
(X (R(0) =t())) [/ n,

i.e. the latency is equal to the average of the occurrence time difference of the
corresponding "Rout” event and the "Rin” event. Measuring the latency of the
different stages only needs changing the Point objects of the above description,
where the time queues contain the ¢;, t; and the n can be found. Not only the
latency of each stage but also the entire simulated network can be measured using

the same method.

6.2.4 Future developments

Many debugging functions and the graphical 1/O interface are not implemented
yet because this simulator is an experimental prototype. However, a user friendly
interface for entering the simulated network and powerful libraries which should
contain the standard logic elements and various event-driven logic modules will

be considered in next design stage. The internal data representations are the

CHAPTER 6. DISCUSSION 107

objects of the C4++ classes. Any required data which need to be observed during
the simulation can easily be added into the related objects in the future. When
adding new information to the related C++ classes, the problems of memory
space will be considered. Unnecessary information will be removed. Pointers are
used to link an object to others in the circuit models and Petri net models within
the simulator. However, object-oriented techniques will be considered to reduce
the linkages between the objects. These interesting issues are pointed out here.

The author hopes they can be followed by other interested researchers.

6.2.5 Advantages and disadvantages

This section will summarize the advantages and disadvantages of the simulator

and the modelling technique. The advantages are illustrated as follows:

e The simulator provides an environment for simulating micropipelines. Thus,
the test patterns can easily be entered into the simulated network and the

test results can also be displayed on the screen or saved into an output file.

e The values of the state change times can be recorded in the time queues
within each Point object during the simulation. Thus, the errors and the
performance of the simulated network can be obtained from analysing such

time values.

e The event-driven logic modules have been modelled by Petri nets and C++
classes, denoted by some abbreviations. Users do not need to encounter the
design problems of the event-driven modules and can immediately begin

simulation work on their micropipeline designs.

e This modelling technique and the simulator are useful for learning about
micropipelines. The corresponding Petri net model of each micropipeline

circuit can be constructed. Therefore, analysing the micropipeline becomes

CHAPTER 6. DISCUSSION 108

very easy. The flow of tokens through the Petri net model is like the flow of
events through the actual micropipeline circuit. It is very helpful for those
who want to understand the operation of micropipelines. Therefore, the

simulator is also a good demonstration tool for micropipelines.
The disadvantages are also illustrated as follows:

e The simulator has no user friendly interface for entering the simulated net-

work and displaying the simulation results.
e The simulator has no library of standard logic elements.

e The problems of memory space are not considered in this modelling tech-

nique.

e The design errors of micropipelines are not considered in this modelling

technique.

6.3 Some implementation problems

There are three implementation problems worth explaining in this section. They
are modelling transparent latches, modelling data signal flow, and comparing
with Dill’s Petri nets [Dill 92]. The author has spent a lot time debugging the
first problem and solving it during the implementation. Therefore, it is partic-
ularly emphasized here to remind other researchers. There are two methods for
modelling the data signal flow. One is the forward-set-up method. The other
is the backward-look-for method. The backward-look-for method is used
in the project. Petri nets are used to describe the specification of the self-timed
queues in [Dill 92]. The use of Petri nets there is different from that used in this

project. These issues will be discussed in the next subsections individually.

CHAPTER 6. DISCUSSION 109

6.3.1 Modelling transparent latches

It

S

@ o Ty & Top-e T3z-e Ty o

a b C d e
I.t=0
oo b
b o —o— - —o— ——
a b c d e
I.tzl
S
© o e —e - —o—
a b C d e

Figure 6.1: Modelling transparent latches

Figure 6.1(a) shows four transparent latches connected in series with their
”1t” inputs connected to the point labelled "1t”. Figures 6.1(b) and 6.1(c) show
the states of the latches when It is equal to 0 (logic "low”) and 1 (logic "high”
) respectively. The rectangle boxes within the transparent latches denote the
internal states of the latches, i.e., the previous logic values. If It is equal to 1,
i.e., It has gone from 0 to 1, the states of the four latches are changed from their
states in Figure 6.1(b) to the states in Figure 6.1(c). Latch Tj holds the original
data of point a, i.e., b = original a. Latch 75 holds the original data of point c,
i.e., d = original c. Point ¢ will be equal to b, i.e., the original value on point
a will appear on point ¢. Similarly, the original value on point ¢ will appear on
point e. The data have propagated through these four latches. When the value
of It becomes 0, i.e., It has gone from 1 to 0, the states of the four latches are
changed from the state shown in Figure 6.1(c) to the state of Figure 6.1(b). Latch

T3 holds the original data of point b, i.e., ¢ = original b. Latch T, holds the

CHAPTER 6. DISCUSSION 110

original data of point d, i.e., e = original d. Point d will be equal to c, i.e., the
most original value on a will appear on point d. To correctly model such latches,
it is necessary to obey the evaluation rule for transparent latches which
has been described in Section 5.6. This evaluation rule for transparent latches
has been tested by the examples of A4, A.5, and A.6. When these examples are

simulated, the correct results are obtained.

6.3.2 Modelling data signal flow

lt1

I

—eo— T1 —ebl I1t3

al I
[t2 :D+ T3 —*—

I a3 b3

e T, —ep2

Figure 6.2: Modelling data signal flow

Figure 6.2 shows three transparent latches. Their ”It” inputs are connected
to point 71t1”, point ”1t2”, and point ”1t3” respectively. The forward-set-up
method is that if any element controlled by events, such as multiplexers, trans-
parent latches, and test pattern generators, changes its output values, these new
output values must be sent to each reachable point within the simulated network.
The reachable points include all the points whose positions are located between
such element and isolated elements. The isolated elements are transparent latches
which hold previous data values and multiplexers whose outputs are connected to
other inputs, i.e., their inputs (reachable points) are not connected to their out-

puts (unreachable points). The logic devices between such element of changing

CHAPTER 6. DISCUSSION 111

its output values and those isolated elements will be orderly evaluated. Then each
reachable point will contain the correct value. For example, if latch 77 changes
its output value (i.e. the value of point b1l) and latch 735 holds the fixed value,
point a3 is a reachable point and latch T3 is an isolated element. Thus, the AND
gate will be evaluated and then point a3 will contain the correct value.

The backward-look-for method is that if any element controlled by events
receives an event, it is necessary to go back from the element’s inputs to look
for each element holding fixed values, such as latches, test pattern generators,
and constant elements. All logic devices between the element and those elements
holding fixed values must be evaluated. Then the element is also evaluated and
the correct output values will be set into its output points. For example, if latch
T5 receives an event and latches T} and T, hold fixed values, going back to look
for each element holding fixed values from point a3 is made. Thus, latches T}
and T, are found. Next, the AND gate will be evaluated to get the correct value
of point a3. Then latch T3 will be evaluated to obtain the correct output value
of point b3.

However, whether either of the above two methods is used, the evaluation

rule for transparent latches must be obeyed when the latch is evaluated.

6.3.3 Comparing with Dill’s Petri nets

Dill’s Petri net models are used to describe the behavioural specifications of the
self-timed queue whose operations are based on a two-phase handshaking protocol
[Dill 92]. Sufficient tokens inside the places within Dill’s models are used to
represent that the events (request or acknowledge) may arise. The tokens
flowing through his Petri net models are like the conditions changing, and firing
a transition gives rise to events propagating through the behaviour models rather

than the actual circuits. In this modelling technique, the tokens inside the places

CHAPTER 6. DISCUSSION 112

within the Petri net models constructed by the micropipeline simulator are used
to represent events (request or acknowledge). The tokens flowing through the
Petri net models are like the events flowing through the control circuits of the
micropipelines. Dill’s use of Petri nets is similar to the ”"dual” [Peterson 81] of
the Petri net model used here. However, both Petri net models make different
contributions to modelling two-phase handshaking asynchronous circuits. In this
research, the data signal delay problem has also been considered. The Petri
net model is used to model fully event-driven logic modules and to control the

simulation execution of the micropipeline simulator.

Chapter 7

Conclusions and further work

7.1 Conclusions

From this experiment, it is believed that asynchronous circuits that use this
two-phase handshake protocol will have the property of high performance and
low power. Micropipelines consist of event-driven modules and event-controlled
storage elements that are designed for two-phase transition signalling. The design
time and cost will be reduced when micropipeline techniques and event-driven
modules are used to design complex asynchronous systems. These techniques and
modules are being used to develop microprocessing systems of high performance
and low power.

A basic micropipeline simulator based on Petri net models has been imple-
mented in this research work. The implementation of the simulator clearly proves
that Petri net models are usetul for studying the behaviour of micropipelines and
discovering the design problems. It can also be emphasized that the C++ classes
are useful for modelling asynchronous systems. Another benefit of using C++
language is that it is not possible to know how many devices and terminals a sim-
ulated network has in advance. However, the free storage of the C+4 provides
the ability of the dynamic memory allocation. It makes the implementation of

variable size lists for any input data, such as devices, stages, places, transitions ...

113

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 114

etc., very easy. Therefore, the contributions of this research work are illustrated

as follows:

o It provides a better environment for simulating micropipelines.

e The modelling technique is useful for learning about micropipelines. Partic-
ularly, the corresponding Petri net models of micropipelines clearly demon-

strate the behaviour of events through the actual micropipeline circuits.

e The modelling technique can be used to discover some mistakes of mi-
cropipelines, such as whether data signal delays are longer than control

signal delays.

e The modelling technique can also be used to measure the performance of

micropipelines, such as throughput and latency.

7.2 Further work

Modelling techniques are necessary for studying micropipeline asynchronous cir-
cuits in order to evaluate high-level specifications, to synthesize low level circuits,
and to simulate the circuits after synthesis. To achieve a perfect micropipeline
simulator for designing such circuits, the author would continue to improve the
simulator’s functions and make it able to do simulations and analyses of more
complex micropipeline systems. For this purpose, establishing a library of logic
devices and designing a user-friendly interface are required.

Although Petri net theory [Peterson 81] is available, it is still necessary to
develop the mathematical theory for the corresponding Petri net models of mi-
cropipeline designs. Then design errors of micropipelines can be found through

analysing their corresponding Petri net models.

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 115

Within micropipeline circuits data signal delays should be shorter than re-
quest signal delays. Special delays are sometimes required in the control path
when significant processing logic is put between storage elements in the data
path. However, careful partitioning of the logic functions of the system into sev-
eral stages can improve on the system to have the optimum performance. The
performance of micropipeline designs can be evaluated using this modelling tech-
nique. Therefore, it is worth studying how the micropipeline designs can be

converted into their optimum counterparts using this modelling technique.

Appendix A

Some test examples

Chapter 5 describes the implementation of a micropipeline simulator. In this
Appendix there are several examples which will be used to test this simulator.
They include two micropipeline stages connected in series, a micropipeline stage
forking into two micropipeline stages, a micropipeline stage forking into two mi-
cropipeline stages which join one single micropipeline stage, a two-bit multiplier
micropipeline stage, a four-bit multiplier micropipeline stage, and two 2-bit mul-
tiplier micropipeline stages joining into one 4-bit multiplier micropipeline stage.
These examples and their simulations will be described in the following sections

individually.

A.1 Two serially connected stages

The network shown in Figure A.1 consists of two stages and can be described as
follows.

stage: stgl,
llatchil: 1t, c, vy,
or2: al, a2, a,
or2: bl, b2, b,
and2: a, b, c,
dmuller-c2: ri, w, dmyl,
mxor2: dmyl, ao, 1t,
toggle: 1t, ai, w,

rin: ri,
ain: ai,
rout: dmyl,

116

APPENDIX A. SOME TEST EXAMPLES 117
aout: ao,
input: al,
input: a2,
input: bil,
input: b2,
output: vy,
stage: stg2,
llatchil: 11t, cc, yy,
not: aa, cc,
dmuller-c2: rri, ww, ddmyl,
mxor2: ddmyl, aao, 1llt,
toggle: 11t, aai, ww,
rin: rri,
ain: aai,
rout: ddmyl,
aout: aao,
input: aa,
output: yy,
network: project,
line: stgl#y, stg2t#aa,
line: stgl#dmyl, stg2#rri,
line: stg2#aai, stgl#ao,
Rin i o Aot Rin_m P Aot
c c
Rout
dmyl L dmyr] | o
Din—{111 a It E
Din——7 c Y Dout Din aa « yy
Din L T)) {>%+ ! I
Din—e— b ’7 ’7
b2 ToggIL: Toggl(i
]]
a aal

Figure A.1: An example of two micropipeline stages connected in series

APPENDIX A. SOME TEST EXAMPLES

118

The following simulation description can be used to enter the test patterns

and simulate the circuit of Figure A.1.

definput: stgl#al, stgl#a2, stgl#bl, stgl#b2,
defrin: stgl#ri,

defain: stgl#ai,

defoutput: stg2#yy,

defrout: stgl#ddmyl,

defaout: stgl#aao,

defformat: stgl#al, stgl#a2, stgl#bl, stgl#b2, stgl#yy,
deftest:

Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
endtest:

0

[l ol el L N e B e B o BN o BN o RN o N e

1

P P, PP OO0 O, PP REPOOOO

P P O O FR,r PP OO Rk, Pk OOk, =, OO

PR O, O, O O O Ok O O

SO OO PP OO O P, OO, P, FP P =

The corresponding Petri net model of the network of Figure A.1 is shown in

Figure A.2.

APPENDIX A. SOME TEST EXAMPLES 119

Rout Rin point Aout Rin

dmuller-c2:e

test pattern
available

entered into bufferl

llatch:execute Ilatch:execute

enter datainto buffer

datawaiting

point

toggle:e2

Rin

nondot

Figure A.2: The corresponding Petri net model of the above example of two

micropipeline stages connected in series

APPENDIX A. SOME TEST EXAMPLES 120

The results of the simulation are as follows:

The test results:

<
<

O OO PP O OO P, OO, P, P P =

A.2 A micropipeline forking example

The network shown in Figure A.3 consists of three micropipeline stages. They are
connected to be that one stage is forked into another two stages. This network

can also be described by the following descriptions:

stage: stgl,
llatchil: 1t, c, vy,
or2: al, a2, a,
or2: bl, b2, b,
and2: a, b, c,
dmuller-c2: ri, w, dmyl,
mxor2: dmyl, ao, 1t,
toggle: 1t, ai, w,
rin: ri,

APPENDIX A. SOME TEST EXAMPLES 121

ain: ai,
rout: dmyl,
aout: ao,

input: al,
input: a2,
input: bil,
input: b2,
output: vy,

stage: stg2,
llatchi: 11t, cc, yy,
not: aa, cc,
dmuller-c2: rri, ww, ddmyl,
mxor2: ddmyl, aao, 1llt,
toggle: 11t, aai, ww,
rin: rri,
ain: aai,
rout: ddmyl,
aout: aao,
input: aa,
output: yy,

stage: stg3,
llatchi: 11t3, cc3, yy3,
not: aa3, cc3,
dmuller-c2: rri3, ww3, ddmyl3,
mxor2: ddmyl13, aao3, 11t3,
toggle: 11t3, aai3, ww3,
rin: rri3,
ain: aai3,
rout: ddmyil3,
aout: aao3,
input: aa3,
output: yy3,

network: project,
line: stgl#y, stg2#aa,
line: stgl#y, stg3#aa3,
line: stgl#dmyl, stg2#rri,
line: stgl#dmyl, stg3#rri3,
muller-c2: stg2#aai, stg3#aai3, stgl#ao,

APPENDIX A. SOME TEST EXAMPLES 122
Rin i aa0
* 3 Aout
C
ddmy1 Rout
ri a0 Aout 114
Rin . . Din
fa {>%—QCC— T ——L Dout
C
Rout Toggl(i
d —
a1 R
= -
. al
Din — a It Rin i3
Din —&— . . Aout
a2 [y
e T
Din bl Dout
Din —&— b c
Toggle
° Rout
ddmy1.
we J ™
Ain a
11t3
aal3 3
° {>%—£CS— T —L Dout
Din
’7
Toggle
L]
,
Ain ww3$ i3

Figure A.3: A micropipeline stage forks into two micropipeline stages

APPENDIX A. SOME TEST EXAMPLES

123

The following simulation descriptions can be used to enter the test patterns

and simulate the circuit of Figure A.3.

definput: stgl#al, stgl#a2, stgl#bl, stgl#b2,

defrin: stgl#ri,
defain: stgl#ai,

defoutput: stg2#yy,

defrout: stgl#ddmyl,
defaout: stgl#aao,

defoutput: stg3#yy3,

defrout: stg3#ddmyl3,

defaout: stg3#aao3,

defformat: stgl#al, stgl#a2, stgl#bl, stgl#b2,
stgl#tyy, stg3#yy3,

deftest:

Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
endtest:

0

Lol ol Sl S i @ A @ B @ BN @ B @ I @ I @]

1

P B, PP PP OO0 O, P FEP P OOOO

P P OO kR, PP OOk, KPPk OO K, =, OO

PR O, O O, OFr O, O O O

O OO kP O OO PP OO OCO K, P P, P =

O O O P OO O FHFHF OO O, P K~ =

The corresponding Petri net model of the network of Figure A.3 is shown in

Figure A.4.

APPENDIX A. SOME TEST EXAMPLES 124

Rin dma dmb Aout

dmuller-c2e

O+ @ O .
Rout| buffer
dmuller-c2:e
enter data
e e
datawaiting

test pattern
available

Ainl

enteredinto,
buffer

enter deta
into buffer

Rout datawaiting

Figure A.4: The corresponding Petri net model of one micropipeline stage forking

into two micropipeline stages

APPENDIX A. SOME TEST EXAMPLES 125

The results of the simulation are as follows:

The test results:

yy yy3

O O O+ OO O OO O I P =
O O O O OO O OO OO KFH»r K, KK~

A.3 A micropipeline forking and joining exam-
ple

The network shown in Figure A.5 consists of four micropipeline stages. They are
connected in such a way that one stage is forked into two other stages and then
these two stages are joined into the fourth stage. The following descriptions can

be used to describe this network.

stage: stgl,
llatchl: 1t, a, yi,
llatchl: 1t, b, y2,
nor2: al, a2, a,
nor2: bl, b2, b,

APPENDIX A. SOME TEST EXAMPLES 126

dmuller-c2: ri, w, dmyl,
mxor2: dmyl, ao, 1t,
toggle: 1t, ai, w,
rin: ri,
ain: ai,
rout: dmyl,
aout: ao,
input: al,
input: a2,
input: bil,
input: b2,
output: yli,
output: y2,

stage: stg2,
llatchil: 11t, cc, yy,
not: aa, cc,
dmuller-c2: rri, ww, ddmyl,
mxor2: ddmyl, aao, 1llt,
toggle: 11t, aai, ww,
rin: rri,
ain: aai,
rout: ddmyl,
aout: aao,
input: aa,
output: yy,

stage: stg3,
llatchl: 11t3, cc3, yy3,
not: aa3, cc3,
dmuller-c2: rri3, ww3, ddmyl3,
mxor2: ddmyl3, aao3, 11t3,
toggle: 11t3, aai3, ww3,
rin: rri3,
ain: aai3,
rout: ddmyil3,
aout: aao3,
input: aa3,
output: yy3,

stage: stg4,
llatchi: 11t4, cc4, yy4,
and2: cl1, c2, cc4,
dmuller-c2: rri4, ww4, ddmyl4,
mxor2: ddmyl4, aao4, 11t4,
toggle: 11t4, aai4, ww4,
rin: rri4,

APPENDIX A. SOME TEST EXAMPLES

ain:

aout:

aai4,
rout: ddmyi4,

aao4,

input: ci,

input: c2,
output: yy4,
network: project,

line:
line:
line:
line:

muller-c2: stg2#aai, stg3#aai3, stgl#ao,

line: stgl#yy, stgd#cl,

line: stg3#yy3, stgd#c2,

muller-c2: stg2#ddmyl, stg3#ddmyl13, stgd#rri4,

stgl#yl, stg2#aa,
stgl#y2, stg3#aa3,

stgl#dmyl, stgl#rri,
stgl#dmyl, stg3#rri3,

line: stg4#aaid, stg2#aao,
line: stg4#aai4d, stg3#aao3,

Rin

i

E=Y

Aout

¥ Dout

127

Aout

al
Din a
Din —e—

a2

pin—8t b
Din

b2

e
J Rout
ai

Toggle
.

]

Rout

aal

aa03

Aout

Rout

Din ¢

yy3 Dout

ww4

y14 Rout

cod Y4 pout
T

Toggle
.

agi4

Figure A.5: A micropipeline stage forks into two micropipeline stages which join

into a single micropipeline stage

APPENDIX A. SOME TEST EXAMPLES

128

The following descriptions can be used to simulate the circuit of Figure A.5.

definput: stgl#al, stgl#a2, stgl#bl, stgl#b2,

defrin: stgl#ri,

defain: stgl#ai,

defoutput: stgi#yy4,

defrout: stgd#ddmyl4,

defaout: stgd#aao4,

defformat: stgl#al, stgl#a2, stgl#bl, stgl#b2, stgl#yy4,
deftest:

Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
Xv:
endtest:

0

Lol o el e @ B @ B @ B @ B @ I @]

1

P PP, O OO0 O, P, P, P OOO O

P P OO Fr,r PP OO R, P, OOk, KFP» O O

P OFPrP OFPrP OFP,P OFP, O FPr OFr Ok O

B R B, O, PR P, O, R EPEOO0OO0COO

APPENDIX A. SOME TEST EXAMPLES

129

The corresponding Petri net model of the network of Figure A.5 is shown in

Figure A.6. When the simulation is complete, the correct results are obtained as

expected.

dmuller-c2:e

stage 4

dmb
dmuller-c2.e

muller-c2:e dmuller-c2:e

muller-c2:e

test pattern
avalable

- dmuller-c2:e

llatch:execute

stage 3=

We
—— point @) Rou
- 0/ \@=
B 5, Ny V.
nondot () () w

s
“‘ togglerel
() Orin

Aout

entered into buffer

enter datainto buffer

datawaiting ‘

point
line

Figure A.6: The corresponding Petri net model of the above example

APPENDIX A. SOME TEST EXAMPLES 130

A.4 Two-bit multiplier example

The two bit multiplier micropipeline stage [Day 91] is shown in Figure A.7. It is
more complex than previous examples. The corresponding Petri net model of this

circuit is shown in Figure A.8. The simulation descriptions are shown as follows:

definput: multiplier#Bl, multiplier#BO,
multiplier#Al, multiplier#AO,

defoutput: multiplier#sum3, multiplier#sum?2,
multiplier#suml, multiplier#sumO,

defrin: multiplier#dmal,

defain: multiplier#xal,

defrout: multiplier#xbl,

defaout: multiplier#dmbl,

defformat: multiplier#Bl, multiplier#BO,
multiplier#Al, multiplier#AO,
multiplier#sum3, multiplier#sum?2,
multiplier#suml, multiplier#sumO,

deftest:

XV:

(@]

P P, PP PP OO0 00O, P, P EP OOO O

XVv:
XVv:
XVv:
XV:
XV:
XV:
XV:
XV:
XV:
XV:
XV:
XV:
XV:

o S o e R e B e Bl e B o RN o R e

XV:

R =, OO, PP OO K, KPP OOKkE =, OO
PR O, O, OFr OFr O O O O
H O O O O O O O O O O O O O O O
Ok OO, I O O O OO O O O O o
O, P O, OPFPr OFr k1 OO OO OO o
R O P O O OO O, OFr O O OO O

[

XV:
endtest:

APPENDIX A. SOME TEST EXAMPLES

Rin

dmal

dmbl

Aout

dmy1l

;Qf

sel

fyo3 ¢

131

* o
fy23

mux —e7—

—{ci n3

cout3
i

T
di fa3
4D74'7 full adder foout3
d
xb2
L —r
(I — fy13 jm fi’m;{ um3
mux —e—— T T T
xy2
o sel
| e SELECT e ! |
true false fy02 ¢—— fy12
It mux —e— T T
xbl > W2 —{fcinZ cout2
fa2
Rout b3 4D74.7 fulladder fcout2
+sel Itr Ll fy22 A{be fsum2—£ um2
mux —e— T T
7 B'3 [l
o —&——
AR I
. sel
0
! ! |
s It fyOle—— fyll
I—‘ mux —e+ T T
2 y2 B'2 feinl coutt
0 mux —e— T T
sh3 fal
L])& fulladder feoutl
T s It I—‘ = fy21 Ebl fsuml—£ .
g yl B'1 mux. —eT— T T
mux —e— T T F
B T =]
. sel
- o 1= I |
t fy00 ¢—— fy10
I mux ——e——
B0 yo B0 . T ino T couo
mux —e— T T 20
4} ;’30—’ shl
f0 fcoutO
| = fulladder
Tsel It
A0 VO din s0 ;L b0 fsumo! 0
mux —e— T T —e T mux fy20 T - sum
N
T
Al
vl el sal

T1
T2

Figure A.7: A two-bit multiplier micropipeline stage

APPENDIX A. SOME TEST EXAMPLES 132

. . ! dma dmb

I nt

ire Q ® i

point /‘\ Aout line Ain
dmuller-c2e O
(D=
send out
Ain ot
. ack " . . point
ine

test pattern point . st °
avallable .

i
x T i i .
entered into buffer|
xa xb xa| . ul i

enter datainto
mid

datawaiting|

temp

Figure A.8: The corresponding Petri net model of the above multiplier stage

The test results are shown as follows:

The test results:

sum3 sum2 suml sumO

(0x0) 0 0 0 0
(o0x1) 0 0 0 0
(0x2) 0 0 0 0
(0x3) 0 0 0 0
(1x0) 0 0 0 0
(1x1) 0 0 0 1
(1x2) 0 0 1 0
(1x3) 0 0 1 1
(2x0) 0 0 0 0
(2x1) 0 0 1 0
(2x2) 0 1 0 0
(2x3) 0 1 1 0
(3x0) 0 1 1 0
(3x1) 0 0 1 1
(3x2) 0 1 1 0
(3x3) 1 0 0 1

APPENDIX A. SOME TEST EXAMPLES 133

A.5 Four-bit multiplier example

The four bit multiplier micropipeline stage [Day 91] is shown in Figure A.9.
The following test patterns can be used to test the simulator using almost the
same Petri net model as Figure A.9 to simulate its behaviour. When the simula-

tion is complete, the correct results are obtained as expected.

definput: multiplier#B3, multiplier#B2,
multiplier#Bl, multiplier#BO,
multiplier#A3, multiplier#A2,
multiplier#Al, multiplier#AO,

defoutput: multiplier#sum7, multiplier#sumé,
multiplier#sumb, multiplier#sum4,
multiplier#sum3, multiplier#sum?2,
multiplier#suml, multiplier#sumO,

defrin: multiplier#dmal,

defain: multiplier#xal,

defrout: multiplier#xbl,

defaout: multiplier#dmbl,

defformat: multiplier#B3, multiplier#B2,
multiplier#Bl, multiplier#BO,
multiplier#A3, multiplier#A2,
multiplier#Al, multiplier#AO,
multiplier#sum7, multiplier#sum6,
multiplier#sum5, multiplier#sum4,
multiplier#sum3, multiplier#sum2,
multiplier#suml, multiplier#sumO,

defformat: B3, B2, B1, BO, A3, A2, Al, A0,
Sum7, sumé6, Sum5, sum4, Sum3, sum2, Sumil, sumO,

deftest:

xv: 11011101 10101001 (13 x 13 = 169)
xv: 10011001 01010001 (9x 9= 81)
xv: 11111111 11100001 (15 x 15 = 225)
xv: 00000000 00000000 (x 0= 0)
xv: 00010001 00000O0O01 (1 x 1= 1)
xv: 10001000 01000000 (X 8= 64)
xv: 11001001 01101100 (12 x 9 =108)
xv: 01010001 00000101 (5x 1= 5)

endtest:

APPENDIX A. SOME TEST EXAMPLES 134

It
=
9 fy27 i
fy07 Y
RN dmal dmbl Aot Vb mux el T —efein?

far
T) fulladder foou?
L fy17] I —L sum’
[_mux —e— T f

b7 foum T
=

fy26| couté

[mux —eF T Tcmﬁ

a6
L [)—t——+— fulladderfoouts

L el 0T are
FH mux —e1— T b fsumé T T
Tsa

fy05 ¢—t— fy2s

mux —e— T
fcins

fe5
1)+ fulladderfoouts
T

cout?

2

dmy1 1 dma2 gmb2

4

064

=

o

couts

 will

b5 fsum!

;{ sums

L fy15

e
Tse(

- fy24
mux —e—

T
T = “I —{cw n
20
-
7 4D7—%L fulladder foout4 t
T

Tse‘ it L. fy14 fb4 fs“’“"—{ amd
mux —e1—

2 | -

. y :

T sel

fyo3l | fy23

sl "I—‘ mux —et— T
20 fcin3
-~ y4 B'4
mux —e— T T -
5 f3
|)t fulladderfoous
T

T s It I—‘ Ll 13 1 b3 fsum% am
B3 mux —e—
- ¥3 B3 s

M= I

T sl It fy02 e—— fy12
mux —e+ T
B2
—-— y2 B2 fein2
D!

-

S

fyos

coutd

il

3
&
s
4
@
I
4
4
M
4

S

cout3

i il

-
=

cout2

mux —e— T T

f

a2
4D74.7 fulladder feout2
T

Ll 22 l Imz mm—t am2

yl B'1 mux —e—
mux —e— T T — ”" L~
sb2

0 sel
0
s It T l
50 fyoLd—— fy11
y0 g mux —e+— T
o —e— Mux—=* T T Hsbl —+:cm1
sh0
fal
4D74'7 fulladder feoutl
Terminate - it
I l fbl
A0 T vo din Ll fy21) J fsum1
T

mux —e

&
L

-

=

coutl

—
e
]

T

+
E
-
4

Sel I o s
AL T v ‘I sal) fywkﬁT fy10 !

el mux —e— T

-~ —— T T —
’ﬁ mux 20 —tfcw no

fa0
[1 fulladider foout0

e v2 l b0 fsumo
B fy20 sumo
mux —e— T T T ux T T

cout0

)
%]
ol 8
1

—

TT0 T0

Ly wql T17
o 4 Mmux —e— T T T o 2 12|

Figure A.9: A four-bit multiplier micropipeline stage

APPENDIX A. SOME TEST EXAMPLES 135

A.6 Two 2-bit multiplier stages joining into one
4-bit multiplier stage

The network whose block diagram is shown in Figure A.10 is also tested. It
consists of three micropipeline multiplier stages. They are connected in such
a way that two 2-bit micropipeline multiplier stages are joined into one 4-bit

micropipeline multiplier stage. The simulation descriptions are shown as follows:

definput: mimultiplier#mlBl, mimultiplier#milBO,
mimultiplier#miAl, mimultiplier#mi1AO,
m2multiplier#m2B1, m2multiplier#m2BO,
m2multiplier#m2A1, m2multiplier#m2A0,
defrin: mimultiplier#mldmal, m2multiplier#m2dmal,
defain: mimultiplier#mlxal, m2multiplier#m2xal,
defoutput: m3multiplier#m3sum7, m3multiplier#m3sumé,
m3multiplier#m3sumb, m3multiplier#m3sum4,
m3multiplier#m3sum3, m3multiplier#m3sum2,
m3multiplier#m3suml, m3multiplier#m3sumO,
defrout: m3multiplier#m3xbl,
defaout: m3multiplier#m3dmbl,
defformat: mimultiplier#mlBl, mimultiplier#miBO,
mimultiplier#mlAl, mimultiplier#mlAQ,
m2multiplier#m2B1, m2multiplier#m2B0,
m2multiplier#m2Al, m2multiplier#m2A0,
m3multiplier#m3sum?7, m3multiplier#m3sumé,
m3multiplier#m3sumb, m3multiplier#m3sum4,
m3multiplier#m3sum3, m3multiplier#m3sum2,
m3multiplier#m3suml, m3multiplier#m3sumO,
deftest:
xv: 1
XV:
XV:
XV:
XV:
XV:

RO O

XVv:

H R, OO O KR O K
cCo oo ok, oo
O Ok O Bk =
O, kP OO Pk =
OO0 00Ok O K
cCo oo ok, oo
B B O B O
e loleleleleolo e
OO0 00Ok OO
e loleleoleleoleo el
cCo oo ok, oo
OO 00 OO0 O -
CoO o0 o0 OO RO
e loleleoleleoleo el
OO0 00O R O R

xv: O
endtest:

APPENDIX A. SOME TEST EXAMPLES

terst
pattern

generator

Rout

o7
05
o3

02
ol

Figure A.10: A complex micropipeline example

]

Rin
milbl
m1b0

mlal
mla0

Ain

Rin
m2bl
m2b0

m2al
m2a0

Aout Ain

2 bit multiplier

2 bit multiplier

Rout

mif3
mif2
mifl
mifo

Aout

Rout

m2f3
m2f2
m2f1
m2f0

Aout

Rin
h mab3

4 m3b2

m3bl

m3b0
ma3a3
m3a2

4

}i

m3al
m3a0

»—— Ain

4 bit multiplier

After the simulation, the test results are shown as follows:

(3x1)
(2x1)
(3x3)
(0x0)
(0x1)
(1x0)
(3x%0)
(1x1)

C T T T I I

(3x1)
(2x1)
(3x3)
(0x0)
(0x1)
(1x0)
(2x1)
(0x1)

O O O O O O O O

O O O O O O O

O O O O O O O O

The test results:

O O O O O+ O O

O O O O O O O =

O O O O O O+~ O

O O O O O O O O

O O O O O+ O =

Rout

m3f7
m3f6
m3f5

m3f3
m3f2
m3fl
m3f0

Aout

m3f7 m3f6 m3f5 m3f4 m3f3 m3f2 m3f1l m3f0

136

Rin

i7

i6

:5 output
13 buffer
i2

i1

i0

Ain

Appendix B

Simulating micropipelines using

Silos 11

Silos II simulator will be used to simulate several micropipeline examples in
this appendix. Before starting the simulation a short introduction to Solo 2030

and STL will be given as follows:

Solo 2030

Solo 2030 is a CAD system for VLSI chip designs. It provides an environment for
chip design including design entry, simulation, and physical layout. It contains
a set of cell libraries (logic gates, I/O cell, ... etc.) and compilers for ROM,
RAM, PLA, Multiplier, dual-port RAM, and 2901 datapath megacells, i.e, Solo
2030 has all the features required to handle large complex designs. Solo 2030
includes the industry-standard Silos Il and the associated STL simulation and
test language. Silos II can be used to simulate a design schematic, generate a
waveform from the results, and measure waveform timing characteristics. When
simulating a design schematic, a file containing test vectors and a file containing
the simulation control are needed. These two files can be generated by STL. More

detail about Solo 2030 is given in [European 91].

137

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 138

STL Language

STL (Simulation and Test Language) is a high-level language for the generation
of simulation test vectors. It is designed to work with other tools in the Cadence
system and is well integrated with the Cadence simulation environment. Let us
briefly introduce some STL instructions which will be used in next section. For

more details, consult the Solo 2030 Reference Manual.

stlinit initialises STL.
settarget specifies the simulator.
defpin describes pin names, specifies the pin type, such as in, out or clk.

defformat defines the order and the number base of the signals in which the

signals appear in the xv statement below.

deftiming specifies the resolution of the simulation, the subdivision of a clock

cycle, and the duration of a clock cycle.

defstrobe defines the strobe windows to the test equipment for the input and
output signals, in terms of the subdivisions of a clock cycle from the def-

timing statement.
deftest indicates the start of the simulation.
7:” identifies the start of a comment.

xv defines the test vectors.

endtest indicates the end of the simulation.

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 139

B.1 Implementing event-driven modules

To simulate the micropipeline circuit shown in Figure 2.4, a dMuller C-element
and a TOGGLE are required. The speed of the circuits is not considered in this
experiment. Attention is aimed at the function and behaviour of the modules.
The event logic modules can be replaced by their high-speed counterparts if such
counterparts are available. Therefore, these two event-driven logic modules are
simply implemented by some inverters, transparent latches, and XORs. They are

described as follows:

Q
| o
LD QZ
. <
i2 .—-—DO—H» oo x
" OR INV
RESETZ \
resct P [

Figure B.1: The implementation of a dMuller C-element

dMuller C-element

Figure B.1 shows a dMuller C-element’s schematic which is implemented by six
inverters, an XOR, and a high activated transparent latch. The output of the
high activated transparent latch is equal to its input if the "LD” is logic "high”.
The output of the XOR is logic "low” if both its inputs are equal. The inverter
connected to the output of the XOR is used to invert the XOR’s output. There-
fore, the output of the latch is equal to its input if both inputs of XOR are equal.
The four inverters are used to delay the ”il” signal, i.e., the ”il1” signal should

not be faster than the checking signal and the latch will hold the previous state

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 140

if both inputs of the XOR are different. The inverter between ”i2” and the in-

put of the XOR is to implement the inverted input of the dMuller C-element.

This dMuller C-element has been simulated using the following STL program.

The simulation result indicates that the function of such dMuller C-element is

correct. Its simulation waveform is shown in Figure B.2.

stlinit
settarget
defpin
defpin
defpin
defpin
defformat
deftiming
defstrobe
defstrobe
deftest
XV

XV

XV

XV

XV

XV

XV

XV

XV

XV

XV

XV
endtest

silos
reset
i1

i2

o

in
in
in
out

reset 11 12 o
0.01ns 1ns bns

in
out

reset
1

O O O O L K 1B 1B KB R

edge
window

[
[

P Ok, Ok, OO0 K, P, KFP», O O

(R
N

Ok kP OO P, OFr O O K-

"h.o..." reset 11 12
A AL
)

0

0

0

1

1

1

0

1

0

0

0

0

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 141

reset

Figure B.2: The simulation waveform of the dMuller C-element

VDDLOG PREZ Q
= N m [P dotted
) cK TAB22
>

CLRZ QZz
i B oD T—B e
jEZ—B N ? I nondotted
TAB22
CK
I—i>O—I7>
INV ¢ Rz Qz

reset I

Figure B.3: The implementation of a TOGGLE module

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 142

TOGGLE module

Figure B.3 shows a TOGGLE module’s schematic which is implemented by one
inverter, two edge-trigger T-type FFs (flip-flop), and a logic "high” element.
A T-type FF with logic "high” input will change its output state if there is a
positive edge appearing on its "CK” input. An inverter connected to the "CK”
input of the T-type FF makes it possible that the T-type FF with logic "high”
input changes its output state if there is a negative edge appearing on its "CK”
input. Therefore, after changing the "reset” signal to logic "high”, all rising
transitions will change the state of the "dotted” output and all falling transitions
will change the state of the "non-dotted” output. This TOGGLE module has

been simulated using the following STL program.

stlinit

settarget silos

defpin reset in
defpin 1 in

defpin dotted out
defpin nondotted out
defformat reset i dotted nondotted
deftiming 0.01ns 1ns 5ns

defstrobe in edge "h.o..." reset i
defstrobe out window ", ...%" dotted nondotted
deftest ;reset 1 dotted nondotted

XV 0 0 0 0

XV 1 0 0 0

XV 1 1 1 0

XV 1 1 1 0

XV 1 0 1 1

XV 1 0 1 1

XV 1 1 0 1

XV 1 1 0 1

XV 1 0 0 0

XV 1 0 0 0

XV 1 1 1 0

XV 1 1 1 0

XV 1 0 1 1

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 143

XV 1 0 1 1
XV 0 1 0 0
XV 0 1 0 0
XV 0 0 0 0
XV 0 0 0 0
XV 0 1 0 0
XV 0 1 0 0
XV 0 0 0 0
XV 0 0 0 0
endtest

The simulation result indicates that the function of such TOGGLE module is

correct. Its simulation waveform is shown in Figure B.4.

dotted

nondotted

Figure B.4: The simulation waveform of the TOGGLE module

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 144

B.2 Simulating micropipelines

A simple micropipeline stage

The schematic of the micropipeline circuit of Figure 2.4 is shown in Figure B.5.

After this schematic is entered to the Cadence 2030 system, the following STL

program can be used to generate the two simulation files for the Silos II simulator

simulating it. The simulation result is shown in Figure B.6.

stlinit
settarget
defpin
defpin
defpin
defpin
defpin
defpin
defpin
defpin
defpin
defpin
defformat
deftiming
defstrobe
defstrobe
deftest
XV

XV

XV

XV

XV

XV

XV
endtest

silos
reset
d1

d2

d3

d4
Rin
Aout
Rout
Ain
dout

in
in
in
in
in
in
in
out
out
out

reset d1 d2 d3 d4 Rin Aout Rout Ain dout
0.01ns 1ns bns

in
out

reset
0

[Y T A Y

edge "%h...." reset d1 d2 d3 d4 Rin Aout
window "....%" Rout Ain dout

dl d2 d3 d4 Rin Aout Rout Ain dout
0O 0 O 0 O X X X

O N = = = e
O O O B B =
[ErY ST Y
O O O = B =
O O Br B O
O B, B B» O O
b4 b4 b4 b4 e
Dobd b4 b4 b e
Dobd b4 b4 b4

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 145

Rin

di

d2

d3

d4

Ain

OR2

OR2

AN2

B

reset

—1 11

reset i1 i2 dmuller
C-element

(0]

4

LD+

Nt
XOR
INV
.0
LAT

R

reset i

Toggle

dotted nondotted

S

4 Aout

X 10 e

p Rout

Figure B.5: The schematic of the micropipeline circuit of Figure 2.4

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 146

reset

di

d2

d3

a4

Rin

Ain

Rout

dout

Aout

Figure B.6: The simulation waveform of the schematic of Figure B.5

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT

147

The schematic of another micropipeline stage whose combinational logic cir-

cuit consists of one inverter is shown is Figure B.7. It can be simulated using the

following STL program and the simulation result is shown in Figure B.8.

stlinit
settarget
defpin
defpin
defpin
defpin
defpin
defpin
defpin
defformat
deftiming
defstrobe
defstrobe
deftest
XV

XV

XV

XV

XV

b4

b4
endtest

silos
reset
di
Rin
Aout
Rout
Ain
dout

in
in
in
in
out
out
out

reset d1 Rin Aout Rout Ain dout
0.01ns 1ns bns

in
out

reset
0

[T = = =

edge

dl Rin Aout Rout Ain dout

SO O O, = = O

"%...." reset d1 Rin Aout
window "....%" Rout Ain dout

0 0 X X X

O O, =, = O
O, Br =, O O
Fa i T -]
Fa i T B]
Fa i T -]

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 148

—1 1t

(0]

resst i1 i2 dmuller
C-element

#

W
Rin XOR
INV
P SR
INV LD + + D
LAT

< te

Ain 4

reset I T—+

reset

dotted

:

Toggle

nondotted

o

4 Aout

+———Jp dout

p Rout

Figure B.7: The schematic of the a invert micropipeline circuit

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 149

reset

di

Rin

Ain ! K

Rout

dout

Aout

Figure B.8: The simulation waveform of Figure B.7

Ringh—————=—
d<1-4> F <a<1>> - di
<d<2>> - a2

— ®— Rin

e Aout —= ! \atchl Aout —=——@ Aout
I —— L. c
<d<4>> o a3 lateh Ain dout —=—1 dout

Tow reset
Ain @——=— Ain Rout

Pp— = reset Rout
Reset l P Rout

dout —®—

dout = (d1+d2)(d3+d4) dout = d1

Figure B.9: The schematic of two serially connected micropipeline stages

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 150

Two serially connected micropipeline stages

The schematic of two micropipeline stages of Figure A.l is shown in Figure B.9.
It consists of the circuits of Figures B.5 and B.7. The following STL program

can be used to simulate it and the simulation result is shown in Figure B.10.

stlinit

settarget silos

defpin reset in
defpin d<1:4> in
defpin Rin in
defpin Aout in
defpin Rout out
defpin Ain out
defpin dout out

defformat reset d:hex Rin Aout Rout Ain dout
deftiming 0.01ns 1ns 5ns

defstrobe in edge "%h...." reset d Rin Aout
defstrobe out window "....%" Rout Ain dout
deftest

; reset d<1:4> Rin Aout Rout Ain dout
XV 0 0x0 0 0 X X X
XV 1 OxF 0 0 X X X
XV 1 OxF 1 0 X X X
XV 1 OxF 1 1 X X X
XV 1 0x3 1 1 X X X
XV 1 0x3 0 1 X X X
XV 1 0x3 0 0 X X X

endtest

APPENDIX B. SIMULATING MICROPIPELINES USING SILOS IT 151

reset

d<l:4> ¢ F y 3

Rin

\ \‘\ /
. Al \ g
Ain v

latch.Rout

latchl.Ain

Rout

dout P

Aout

Figure B.10: The simulation waveform of Figure B.9

Bibliography

[Agerwala 79|

[Brunvand 89]

[Calvo 86]

[Chu 86]

[Day 91]

[Dill 92]

Agerwala Tilak.: Special Feature: Putting Petri Nets to
Work, IEEE Computer, Vol. 12, No. 12, Dec. 1979, pp. 85-94.

Brunvand, Erik and Sproull, F. Robert: Translating Con-
current Communicating Programs into Delay-Insensitive Cir-
cuits, Carnegie Mellon University, Apr. 1989, Technical Re-
port CMU-CS-89-126.

Calvo, J. and Acha, J.L.. and Valencia, M.: Asynchronous
Modular Arbiter, IEEE Transactions on Computers, Vol. c-

35, No. 1, Jan. 1986, pp. 67-70.

Chu, Tam-Anh: On the Models for Designing VLSI Asyn-
chronous Digital Circuits, INTEGRATION, the VLSI Jour-
nal, Vol. 4, No. 2, Jun. 1986, pp. 99-113.

Day, Paul: A 4-Bit Asynchronous Multiplier Circuit, Draft
copy, AMULETT Group, Department of Computer Science,

University of Manchester, Apr. 1991.

Dill, David L. and Nowick, Steven M. and Sproull, Robert
F.: Specification and Automatic Verification of Self-Timed
Queues, Formal Methods in System Design, Vol. 1, Jul. 1992,
pp- 29-60, Kluwer Academic Publishers.

152

BIBLIOGRAPHY

[European 91]

[Ellis 90]

[Ginosar 90]

153

Solo 2030 User Guide, European Silicon Structures, 1991.

Ellis, Margaret A. and Stroustrup, Bjarne: The Annotated
C++ Reference Manual, Addison-Wesley, 1990.

Ginosar, Ran and Michell, Nick: On the Potential of
Asynchronous Pipelined Processors, Computer Architecture

News, Vol. 18, No. 4, Dec. 1990, pp. 27-34.

[Gopalakrishnan 90] Gopalakrishnan, Ganesh and Jain, Prabhat: Some Recent

[Greenstreet 88]

[Hennessy 90]

[Joerg 90]

[Komori 88|

Asynchronous System Design Methodologies, Department of
Computer Science, University of Utah, Oct. 1990, Technical
Report UU-CS-TR-90-016.

Greenstreet, Mark R. and Steiglitz, Kenneth: Throughput
of Long Self-Timed Pipelines, Department of Computer Sci-
ence, Princeton University, Technical report CS-TR-190-88,
Nov. 1988.

Hennessy, John L. and Patterson, David A.: Computer Ar-
chitecture — A Quantitative Approach, Morgan Kaufmann

Publishers Inc., 1990.

Joerg, Werner B.: A subclass of Petri nets as design abstrac-

tion for parallel architectures, Computer Architecture News,

Vol. 18, No. 4, Dec. 1990, pp. 67-77.

Komori, Shinji and Takata, Hidehiro and Tamura, Toshiyuki
and Asai, Fumiyasu and Ohno, Takio and Tomisawa, Os-
amu and Yamasaki, Tetsuo and Shima, Kenji and Asada,
Katsuhiko and Terada, Hiroaki: An Elastic Pipeline Mech-
anism by Self-Timed Circuits, IEEE Journal of Solid-State

BIBLIOGRAPHY

[Lavagno 91]

[Lippman 90]

[Martin 89]

[Martin 91]

[Martin 92]

[Meng 89]

[Miller 65]

154

Circuits, Vol. 23, No. 1, Feb. 1988, pp. 111-117.

Lavagno, L. and Keutzer, K. and Sangiovanni-Vincentelli,
A.: Algorithms for Synthesis of Hazard-free Asynchronous
Circuits, 28th ACM/IEEE Design Automation Conference,
1991, pp. 302-308.

Lippman, Stanley B.: C4++ Primer, Addison-Wesley, 1990.

Martin, J. Alain and Burns, Steven M. and Lee, T. K.
and Borkovic, Drazen and Hazewindus, Pieter J.: The First
Asynchronous Microprocessor: The Test Results, Computer

Architecture News, Apr. 1989.

Martin, Alain J.: Synthesis of Asynchronous VLSI Circuits,
Department of Computer Science, California Institute of

Technology, Aug. 1991.

Martin, Alain J.: Asynchronous Datapaths and the Design of
an Asynchronous Adder, Formal Methods in System Design,
Vol. 1, Jul. 1992, pp. 117-137, Kluwer Academic Publishers.

Meng, Teresa H.-Y. and Brodersen, Robert W. and Messer-
schmitt, David G.: Automatic Synthesis of Asynchronous
Circuits from High-Level Specifications, IEEE Transactions
on Computer-Aided Design, Vol. 8, No. 11, Nov. 1989, pp.
1185-1205.

Miller, Raymond E.: Switching Theory Vol. II: Sequential
Circuits and Machines, John Wiley, 1965.

BIBLIOGRAPHY

[Misunas 73]

[Pearce 75|

[Peterson 77]

[Peterson 81]

[Plummer 72]

[Ramamoorthy 80]

[Seitz 80]

[Stroustrup 91]

[Sutherland 89]

155

Misunas, David: Petri Nets and Speed Independent Design,
Communications of the ACM, Vol. 16, No. 8, Aug. 1973, pp.
474-481.

Pearce, R.C. and Field, J.A. and Little, W. D.: Asyn-
chronous Arbiter Module, IEEE Transactions on Computers,

Vol. ¢-24, Sep. 1975, pp. 931-932.

Peterson, James L.: Petri Nets, Computing Surveys, Vol. 9,
No. 3, Sep. 1977, pp. 223-252.

Peterson, James L.: Petri Net Theory and the Modeling of

Systems, 1981, Prentice-Hall.

Plummer, William W.: Asynchronous Arbiters, IEEE Trans-

actions on Computers, Vol. ¢-21, Jan. 1972, pp. 37-42.

Ramamoorthy, C.V. and Ho, Gary S.: Performance Evalua-
tion of Asynchronous Concurrent Systems Using Petri Nets,
IEEE Transactions on Software Engineering, Vol. SE-6, No.
5, Sep. 1980, pp. 440-449.

Seitz, Charles L.: System Timing, In ”Introduction to
VLSI Systems” edited by Carver Mead and Lynn Conway,
Addison-Wesley, 1980.

Stroustrup, Bjarne: The C+4 Programming Language, Sec-
ond Edition, Addison-Wesley, 1991.

Sutherland, E. Ivan: Micropipelines, Communications of the

ACM, Vol. 32, No. 6. Jun. 1989, pp. 720-738.

BIBLIOGRAPHY

[Unger 69]

[Williams 90]

156

Unger, Stephen H.: Asynchronous Sequential Switching Cir-

cuits, Wiley-Interscience, 1969.

Williams, Ted: Latency and Throughput Tradeoffs in Self-
Timed Speed-Independent Pipelines and Rings, Computer
Systems Laboratory, Stanford University, Aug. 1990, Tech-
nical Report CSL-TR-90-431.

