
STRATEGIES FOR THE

MODELLING AND SIMULATION OF

ASYNCHRONOUS COMPUTER

ARCHITECTURES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

September 1995

By

Georgios Theodoropoulos

Department of Computer Science

Contents

Abstract 15

The author 19

Acknowledgements 22

1 Introduction 23

1.1 Background . 23

1.2 Motivation and Objectives . 23

1.3 Structure of the Thesis . 24

1.3.1 Related Publications . 26

2 The Quest for High Performance 27

2.1 Introduction . 27

2.2 Bit and Instruction Level Parallelism 28

2.3 Reduced Instruction Set Computers 29

2.4 The Limits of Sequential Computation 30

2.5 Parallel Computer Architectures 31

2.5.1 SIMD . 32

2.5.2 MIMD . 33

2.5.2.1 Shared Memory MIMD Architectures 33

2.5.2.2 Distributed Memory MIMD Architectures 35

2

2.5.3 Parallel Programming Models and Languages 36

2.5.3.1 Communicating Sequential Processes 37

2.6 Occam and the Transputer . 38

2.6.1 The Occam Programming Language 38

2.6.1.1 The SEQ and PAR Constructs 40

2.6.1.2 The ALT Construct 41

2.6.1.3 Timers . 42

2.6.1.4 Functions and Procedures 45

2.6.2 The Transputer . 45

2.6.2.1 Configuring Occam Programs 48

2.6.2.2 The T9000 Transputer 49

2.7 Summary . 50

3 Modelling and Simulation 51

3.1 Introduction . 51

3.2 Discrete Event Simulation Modelling 55

3.3 The Need for Parallel Discrete Event Simulation 57

3.3.1 Exploiting Parallelism . 58

3.4 The Logical Process Paradigm . 60

3.4.1 Timing Issues . 61

3.5 Synchronous versus Asynchronous Simulation 63

3.6 Time Driven Logical Process Simulation 64

3.7 Event Driven Logical Process Simulation 65

3.7.1 Conservative Techniques 67

3.7.1.1 Deadlock Avoidance 68

3.7.1.2 Deadlock Detection and Recovery 70

3.7.1.3 Characteristics of Conservative Protocols 70

3.8 Optimistic Synchronization Protocols 71

3

3.8.1 Time Warp . 72

3.8.1.1 Global Virtual Time 72

3.8.1.2 State Saving and Memory Management 73

3.8.1.3 Characteristics of Optimistic Protocols 74

3.9 Modelling and Simulation in Computer Architecture Research . . 74

3.9.1 The Need for Improved Digital System Simulation Perfor-

mance . 78

3.9.1.1 Parallel Digital System Simulation 78

3.10 Summary . 80

4 Asynchronous Systems 81

4.1 Introduction . 81

4.2 Advantages of Asynchronous Systems 82

4.2.1 Clock Distribution Problems 83

4.2.2 Potential for Low Power 83

4.2.3 Potential for High Performance 84

4.2.4 Better Technology Migration Potential 85

4.3 Basic Characteristics of Asynchronous Systems 85

4.3.1 Timing Model . 85

4.3.2 Signalling Protocols . 86

4.3.2.1 Two-phase Signalling 86

4.3.2.2 Four-phase Signalling 87

4.3.3 Data Passing Techniques 88

4.3.3.1 The Four-Wire Technique 88

4.3.3.2 The Three-Wire Technique 88

4.3.3.3 The Two-Plus-Wire Technique 89

4.3.3.4 The Bundled Data Technique 90

4.4 Micropipelines . 90

4

4.4.1 Event Control Elements 91

4.4.2 Event Controlled Storage Element 93

4.4.3 Micropipelines Without Processing 94

4.4.4 Micropipelines With Processing 95

4.5 AMULET . 96

4.6 The AMULET1 Microprocessor 98

4.6.1 The AMULET1 Interface 98

4.6.2 The AMULET1 Internal Organization 100

4.6.2.1 The Address Interface Unit 100

4.6.2.2 The Data Interface Unit 102

4.6.2.3 The Register Bank Unit 103

4.6.2.4 The Execution Unit 104

4.6.2.5 The Primary Decode Unit 105

4.6.3 AMULET2 . 105

4.7 Summary . 106

5 Modelling Asynchronous Systems 107

5.1 Introduction . 107

5.2 Modelling Techniques . 108

5.2.1 CSP-based Modelling Approaches 108

5.3 Modelling Micropipelined Systems with Occam 110

5.3.1 Why Occam . 111

5.3.1.1 The Deadlock Problem 112

5.3.2 The Modelling Philosophy 114

5.3.3 Modelling a Pipeline Without Processing 115

5.3.4 Modelling a Pipeline With Processing 116

5.3.5 Modelling Control Logic 119

5.3.6 Timing Issues . 119

5

5.3.6.1 Synchronous Merge 120

5.3.6.2 Data Dependent Merge 121

5.3.6.3 Arbitrated Merge 122

5.3.6.4 Delay Independence 125

5.4 Summary . 126

6 Occarm: An Occam Model of AMULET1 127

6.1 Introduction . 127

6.2 Occarm General Structure . 128

6.2.1 Non-Bundled Signals . 130

6.3 The Address Interface . 131

6.3.1 The Address Interface Internal Organization 131

6.3.1.1 The PC Loop . 131

6.3.1.2 The PC Pipe . 133

6.3.1.3 The LSM Loop 134

6.3.2 The Address Interface Occam Model 135

6.4 The Data Interface . 137

6.5 Instruction Flow Control . 139

6.5.1 Condition Code Evaluation 140

6.5.2 Branch Execution . 140

6.5.3 Exception Handling . 142

6.5.3.1 Software Interrupts 143

6.5.3.2 Instruction Prefetch Aborts 143

6.5.3.3 Hardware Interrupts 143

6.5.3.4 Data Transfer Aborts 144

6.6 The Primary Decode . 147

6.6.1 The Dec1CtrlA Process . 148

6.6.1.1 Modelling of the Arbitration logic 149

6

6.6.1.2 Detecting Data Aborts 152

6.6.2 The Dec1CtrlB Process . 154

6.7 The Register Bank . 155

6.7.1 Modelling the Register Bank 157

6.8 The Execution Unit Model . 160

6.8.1 The CPSR Model . 161

6.8.2 Decode2 . 162

6.8.3 Decode3 . 164

6.9 The Write Bus Control . 165

6.10 Summary . 166

7 Simulation Issues 168

7.1 Introduction . 168

7.2 The Host Machine: The ParSiFal T-Rack 169

7.3 Monitoring . 171

7.3.1 Monitoring Occarm . 175

7.3.1.1 Debugging . 176

7.3.1.2 Performance Evaluation 177

7.4 Termination . 180

7.5 The Simulator Environment . 182

7.6 Multiprocessor Implementation 183

7.6.1 Mapping Occarm onto the T-Rack 184

7.6.1.1 Balancing the Workload 186

7.6.1.2 Balancing the Communication Load 187

7.6.1.3 The Monitoring Path 190

7.6.1.4 The Generic Simulator Node 191

7.7 Summary . 191

7

8 Validation of the Occarm Model 192

8.1 Introduction . 192

8.2 Benchmark Programs . 193

8.3 Accuracy . 195

8.4 Performance . 204

8.5 Summary . 208

9 Addressing the Time Modelling Problem 209

9.1 Introduction . 209

9.2 Requirements . 210

9.3 The Program Driven Synchronization Protocol (PDSP) 211

9.3.1 The Basis . 211

9.3.2 The Rules . 212

9.3.3 The PDSP Arbiter Process 213

9.3.3.1 Improving PDSP Performance 214

9.3.4 The Limitations . 216

9.4 Applying PDSP to Occarm . 217

9.5 The Address Interface Arbiter . 218

9.5.1 Providing Instruction Lookahead Information 218

9.5.2 The PCch Link . 221

9.5.2.1 Filling of the Datapath 224

9.5.2.2 Register Read Instructions 230

9.5.2.3 Instructions Activating the ALUgo Signal 232

9.5.2.4 Load/Store Multiple Instructions 233

9.5.2.5 The Instruction Lookahead Table 233

9.5.3 The Wch Link . 234

9.5.3.1 Colour Mismatch 235

9.5.3.2 Condition Codes Failure 236

8

9.6 The Primary Decode Arbiter . 238

9.7 The Write Control Arbiter . 242

9.7.1 The DINch Link . 242

9.7.2 The DPch Link . 244

9.8 Performance Evaluation of PDSP 248

9.9 Summary . 249

10 Conclusions and Further Work 250

10.1 Background . 250

10.2 Contribution of the Thesis . 252

10.2.1 Modelling . 252

10.2.2 Simulation . 253

10.3 The Program Driven Synchronization Protocol 255

10.4 Performance . 256

10.5 Occam as an Asynchronous Hardware Description Language . . . 257

10.6 Further Work . 258

10.6.1 Modelling and Simulation 258

10.6.2 Automatic Synthesis . 259

A The ARM6 Programmer’s Model 260

A.1 The Registers . 260

A.2 The Instruction Set . 262

B Modelling the Control Logic of AMULET1 266

Bibliography 277

9

List of Tables

7.1 Communication Load on Occarm Links 186

8.1 Timestamp Drift . 194

8.2 Dhrystone Numbers . 194

8.3 AMULET1 Pipeline Occupancy (Dhrystone (1 loop)) 196

8.4 AMULET1 Pipeline Stalls (Dhrystone (1 loop)) 197

8.5 Asim versus Occarm (Single Transputer Implementation) 206

8.6 Performance of Occarm . 206

9.1 PDSP: Number of Free Stages in the Datapath 226

9.2 Performance of PDSP (Address Interface) 248

10

List of Figures

2.1 The Use of the Occam SEQ and PAR Constructs 40

2.2 The Occam ALT Construct . 41

2.3 Introducing Delays with Occam Timers 42

2.4 Programming Timeout Behaviour 43

2.5 An Example Occam Program . 44

2.6 The Architecture of the T800 Transputer 46

3.1 A Taxonomy of Models . 53

3.2 Abstraction Levels in Digital Systems 75

4.1 The Request-Acknowledge Interface 86

4.2 Two-phase Signalling: Rising and Falling Edges Equivalent. . . . 86

4.3 Two-phase Signalling Protocol . 87

4.4 Four-phase Signalling Protocol . 87

4.5 The Bundled Data Interface . 89

4.6 The Two-phase Bundled Data Protocol 89

4.7 Event Control Modules . 91

4.8 The Capture-Pass Storage Element 93

4.9 Micropipeline Without Processing 94

4.10 Micropipeline With Processing . 96

4.11 The AMULET1 Interface . 99

4.12 The AMULET1 Internal Organization 101

11

4.13 The AMULET1 Processor Physical Layout 102

5.1 Micropipeline Without Processing: The Register Model 116

5.2 Micropipeline With Processing: A High Level View 117

5.3 Micropipeline With Processing: The Register Model 118

5.4 Synchronous Merge . 121

5.5 Data Dependent Merge . 122

5.6 Arbitrated Merge . 123

6.1 Occarm Top Level Process Graph 129

6.2 The Buffer Process . 130

6.3 The Address Interface . 131

6.4 The Address interface Model (AddInt) 136

6.5 The Data Interface Model (DatInt) 138

6.6 The Exception Pipe . 145

6.7 Aborts Modelling . 147

6.8 The Primary Decode Model (Decode1) 148

6.9 Dec1CtrlA Logic . 149

6.10 Detecting the PCcol . 151

6.11 Modelling Dec1CtrlA Arbitration Logic 152

6.12 The Register Bank Internal Organization 155

6.13 The Register Bank Model (RegBank) 158

6.14 The Execution Unit of AMULET1 160

6.15 The CPSR Unit . 162

6.16 CPSR: An Alternative Design . 163

6.17 The First Execution Stage Model (Decode2) 164

6.18 The Second Execution Stage Model (Decode3) 165

6.19 The Write Bus Control Model . 166

12

7.1 The T-Rack . 169

7.2 Event Traces for Debugging . 175

7.3 Collecting Event Traces in Occarm 178

7.4 Terminating Occarm . 180

7.5 The Single transputer Environment of Occarm 182

7.6 Occarm Process Connectivity Table 185

7.7 Modified Occarm Top Level Process Graph 186

7.8 Occarm Graph Mappings . 188

7.9 Mapping Occarm onto the T-Rack 189

7.10 The Generic Simulator Node . 190

8.1 A Section of the Dhrystone Synthetic Benchmark 193

8.2 Decode1: Preemption Count (1 Dhrystone Loop) 199

8.3 Decode1: Preemption Magnitude (1 Dhrystone Loop) 200

8.4 AddInt: Preemption Count (1 Dhrystone Loop) 201

8.5 AddInt: Preemption Magnitude (1 Dhrystone Loop) 202

8.6 WrtCtrl: Preemption Count (1 Dhrystone Loop) 203

8.7 WrtCtrl: Preemption Magnitude (1 Dhrystone Loop) 204

8.8 An Example Process Graph . 205

9.1 The PDSP Arbiter Process . 214

9.2 PDSP: Taking MLL into Account 217

9.3 Providing Instruction Lookahead Knowledge to AddC 219

9.4 The Arrival of Instruction Lookahead Information 220

9.5 The Address Interface - Datapath Loop 223

9.6 Stalling of the Datapath . 224

9.7 PDSP: Providing CPS to AddC 228

9.8 Informing AddC of Colour Mismatches at Decode1 231

9.9 The Instruction Lookahead Table 233

13

9.10 PDSP messages from Ctrl3 to AddC 237

9.11 The Decode1 Arbiter: PCcol due to Aborts 240

9.12 Informing Decode1 of the selected channel 241

9.13 The Memory-WrtCtrl pipeline . 243

9.14 WrtCtrl: Reading data values from memory 244

9.15 Bypassing the register bank . 246

9.16 WrtCtrl: Reading messages from the datapath 246

A.1 The ARM6 Register Organization 261

A.2 The ARM Program Counter and Program Status Word 262

A.3 The ARM6 Program Status Registers 262

A.4 ARM Instruction Formats . 263

B.1 Dec1CtrlB Control Circuit . 267

B.2 The Dec1CtrlB Process . 268

B.3 AddC Control Circuit . 269

B.4 The AddC Process . 270

B.5 Ctrl2 Control Circuit . 271

B.6 The Ctrl2 process . 272

B.7 Ctrl3 Control Circuit . 273

B.8 The Ctrl3 process . 274

B.9 Write Control Circuit . 275

B.10 The WrtCtrl2 process . 276

14

Abstract

Synchronous VLSI design is approaching a critical point, with clock distribution

becoming an increasingly costly and complicated issue and power consumption

rapidly emerging as a major concern. Asynchronous digital design styles promise

to liberate VLSI systems from clock skew problems, offer the potential for low

power and high performance and encourage a modular design philosophy which

makes incremental technological migration a much easier task. The desire to

exploit the potential advantages offered by asynchronous logic has recently fueled

a revival of interest in asynchronous systems.

Modelling and simulation, being at the heart of digital system design, may

perform a catalytic role in the quest for the realization of the potentials offered by

asynchronous logic. Hence, the recurrence of interest in asynchronous design has

been accompanied by an intense research activity aiming at developing techniques

appropriate for modelling and simulating asynchronous systems.

Contributing to this effort, and motivated by the increasing debate regarding

the potential use of CSP for this purpose, this thesis investigates the suitability

of occam, a CSP-based programming language, for the modelling and simulation

of complex asynchronous designs.

A modelling approach is introduced which aims to exploit the strong relation-

ship between the semantics of occam and the structure and operation of asyn-

chronous systems, as well as the parallelism inherent in asynchronous hardware to

achieve the rapid development of asynchronous architectural simulation models,

15

which may be executed on transputer networks to achieve high performance.

The applicability and robustness of the approach is demonstrated by employ-

ing it to construct occarm, an occam model of the AMULET1 asynchronous

microprocessor.

The distributed nature of the proposed modelling approach introduces the

problem of maintaining temporal precision and ensure that the causality principle

is not violated.

The thesis provides a quantitative analysis regarding the timing error intro-

duced in the model if violations of the causality principle are permitted. It then

introduces the Program Driven Synchronization Protocol, a novel conservative,

deadlock avoidance synchronization technique for dealing with causality problems

within the framework of the proposed modelling approach.

Monitoring, debugging, termination and load balancing issues are also dis-

cussed.

16

DECLARATION

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

All trademarks cited within this work are acknowledged by the author.

17

COPYRIGHT AND OWNERSHIP OF INTELLECTUAL

PROPERTY RIGHTS

1. Copyright in text of this thesis rests with the Author. Copies (by

any process) either in full, or of extracts, may be made only in

accordance with instructions given by the Author and lodged in

the John Rynalds University Library of Manchester. Details may

be obtained from the Librarian. This page must form part of any

such copies made. Further copies (by any process) of copies made

in accordance with such instructions may not be made without

the permission (in writing) of the Author.

2. The ownership of any intellectual property rights which may be

described in this thesis is vested in the University of Manchester,

subject to any prior agreement to the contrary, and may not

be made available for use by third parties without the written

permission of the University, which will prescribe the terms and

conditions of any such arrangement.

Further information on the conditions under which disclosures and

exploitation may take place is available from the Head of Department

of Computer Science, University of Manchester.

18

The author

The author obtained a Diploma degree in Computer Engineering and Informat-

ics from the University of Patras, Greece, in July 1989. He was subsequently

awarded a scholarship for graduate studies in Computer Science by the University

of Manchester, U.K. In October 1990, he joined the Department of Computer

Science at the University of Manchester as a research student (ParSiFal group)

and a year later he completed his MSc (Method II-by research). In October

1991 he joined the AMULET group at the Department of Computer Science,

University of Manchester to pursue a Ph.D.

19

στoυς γoνεὶς µoυ, Kωνσταντ ὶνo και X̺υσoὺλα,

στην αλὴϑεια...

—————————–

to my parents, Konstantinos and Chrysoula,

to the truth...

20

“H Iϑὰκη σ’ ὲδωσε τ ’ ω̺αὶo ταξεὶδι.
Xω̺ὶς αυτ ὴν δὲν ϑὰβγαινες στo δ̺òµo.
‘Aλλα δὲν ὲχει να σε δὼσει πιὰ.
Kι’ αν ϕτωχικὴ την β̺εὶς, η Iϑὰκη δὲν σε γὲλασε.
‘Eτσι σoϕòς πoυ ὲγινες, µε τ òση πεὶ̺α,
ὴδη ϑα τo κατὰλαβες η Iϑὰκες τι σηµαὶνoυν.”

K. Kαβὰϕης

—————————–

“Ithaca gave you the lovely journey.
Without her you would never have set out.
But she has nothing more to give you.
And if you find her poor, Ithaca has not deceived you.
Wise as you will have become, so full of experience,
you must have understood already the meaning of Ithacas.”

C. Cavafy.

21

Acknowledgements

I am grateful to my supervisor, Dr. J. V. Woods for his support during the
four years in which the research for this thesis was carried out. Professor S. B.
Furber, as my co-supervisor and director of the AMULET group, has always been
a source of inspiration; for this, for his advice and guidance, and for patiently
providing me with the facilities to carry out the research for this thesis I express
my thanks.

I also wish to thank Dr. P. Capon, for allowing me access to the T-Rack, and
for his invaluable assistance during the implementation of the occam systems
required for the research presented in this thesis. Thanks are also due to all
those who supported the T-Rack the last four years, allowing me to complete my
research.

I would also like to thank all the members of the AMULET group for their
support all these years. In particular, I wish to express my thanks to Rob
Kelly, (now with ICL, Manchester), Paul Day, Nigel Paver and Steve Temple for
always being prepared to discuss and provide answers to my questions regarding
the peculiarities of the AMULET1 architecture; Rob’s help during some crucial
moments of the work was invaluable. David Jackson, Craig Farnsworth, Rahul
Mehra, Rhod Davies, Jim Garside, Oleg Petlin, Steve Nicklin, Dave Gilbert, they
all helped me in a number of occasions and I thank them all. Nigel also provided
his Lapwing Court ‘mansion’, which proved an excellent environment for writing
up this thesis, not least because of his strict “Ph.D policing”; my special thanks.

The many friends I made during my five year stay in Manchester have been an
invaluable source of emotional support and have made the Ph.D a less stressful
task to undertake and Manchester a great place to live; I thank them all.

The research presented in this thesis was funded by a University of Manch-
ester Research Scholarship and by the Mpakalas Foundation, Athens, Greece; I
gratefully acknowledge this support.

22

Chapter 1

Introduction

1.1 Background

This thesis is concerned with methodologies and techniques to support the mod-

elling and distributed simulation of asynchronous computer architectures. The

research presented in this thesis took place in the period 1991-1994 and relates to

work in asynchronous system design undertaken by the AMULET group at the

Department of Computer Science, University of Manchester.

1.2 Motivation and Objectives

Clocked VLSI systems are approaching a critical point, due to certain deficiencies

inherent in the synchronous operation. Asynchronous logic promises to provide

the means to overcome these deficiencies and limitations of the synchronous VLSI

design approach. Hence, recently, there has been a resurgence of interest in

asynchronous design techniques.

The quest for the exploitation of the potential advantages offered by asyn-

chronous logic has revealed a need for modelling and simulation techniques, which

would be appropriate for the asynchronous design style. Thus, the recurrence

23

CHAPTER 1. INTRODUCTION 24

of interest in asynchronous design has fueled intense research activity aiming

to develop techniques appropriate for modelling and simulating asynchronous

systems. CSP, in particular, has attracted the attention of many researchers as

a potential notation for describing asynchronous behaviour. Contributing to the

quest for modelling and simulation techniques suitable for asynchronous design,

and motivated by the increasing debate regarding the potential of CSP for this

purpose, the work described in this thesis investigates the suitability of occam, a

CSP-based programming language, for the modelling and simulation of complex

asynchronous systems.

1.3 Structure of the Thesis

The thesis comprises 10 chapters. Chapters 2, 3, 4 and the first part of chapter

5 provide a theoretical background to the areas directly related to the subject of

the thesis, namely parallelism, simulation modelling, asynchronous systems and

modelling techniques for asynchronous hardware respectively. The remainder of

the thesis, namely the second part of chapter 5 and chapters 6, 7, 8 and 9, describe

the author’s work and contribution.

Chapter 2 provides a short introduction to parallelism as a natural path to

the quest for high performance, with emphasis on the MIMD approach to parallel

computation. The various parallel programming models are mentioned and the

CSP model of computation is discussed. Finally, a more detailed description of

the occam programming language and its associated processor, the transputer, is

provided.

Chapter 3 deals with the issues of modelling and simulation. After a short

introduction to modelling, the chapter concentrates on discrete event simula-

tion modelling, and in particular, its distributed implementation. The various

CHAPTER 1. INTRODUCTION 25

approaches for exploiting parallelism in simulation are mentioned, and the Log-

ical Process Paradigm is described. The causality-related issues arising from

the distributed nature of the Logical Process Paradigm are described and the

techniques that have been developed to address these issues are discussed. The

chapter concludes with a discussion on the role of modelling and simulation in

digital system design.

Chapter 4 discusses issues related to asynchronous design techniques. After a

short discussion on the nature and advantages of asynchronous logic, the chapter

presents some of the most influential asynchronous design techniques and then

proceeds to provide a more detailed description of the Micropipeline design ap-

proach. The final part of the chapter is occupied by a short description of the

Micropipelined AMULET1 microprocessor.

The thesis then moves to the modelling of asynchronous systems. Chapter 5

provides an overview of existing notations and techniques; emphasis is placed on

the techniques that employ CSP-like notations. Advocating the potential use of

occam for the modelling and simulation of asynchronous systems, a methodology

is introduced which employs occam to build parallel models of asynchronous

systems based on the Micropipeline approach. This neglects causality problems,

thus allowing timing errors to occur. It is argued however that the timing

inaccuracy will be acceptable.

Chapter 6 describes how the modelling approach introduced in chapter 5,

has been employed to build an occam model of the AMULET1 asynchronous

microprocessor. Emphasis is given to the aspects of the modelling that proved

to be complex. The chapter also includes a more detailed description of the

operation of the AMULET1 processor, as this defines the functionality of the

model as well.

Chapter 7 addresses issues related to the execution of the occam model on

CHAPTER 1. INTRODUCTION 26

a computer system. Two environments are presented, for the execution of the

model on a single and multiple transputers respectively. Monitoring, termination,

mapping and load balancing issues are discussed.

Chapter 8 presents a validation of the occam model, providing quantitative

results and analysis regarding both, the accuracy and performance of the model.

Chapter 9 introduces the “Program Driven Synchronization Protocol” (PDSP),

a novel approach for eliminating the timing problems raised by the distributed

nature of the proposed modelling philosophy. The concept of “Instruction Looka-

head” is introduced and a set of rules are presented which specify the behaviour of

processes in the occam model so that timing accuracy is ensured. The application

of PDSP onto the occam model of AMULET1 is then described. Finally, some

performance results are given.

Chapter 10 epitomizes the conclusions drawn by the research presented in the

thesis, and indicates a number of areas where further research and development

work is possible.

1.3.1 Related Publications

Different aspects of the research work presented in this thesis have been pre-

sented in the AMULET Modelling Workshop (Windermere, Cumbria, England)

[Theo94], the World Transputer Congress 1994 (Como, Italy) [Theo94a], the

European Simulation Symposium 1994 (Istanbul, Turkey) [Theo94b], the Eurosim

Congress 1995 (Vienna, Austria) [Theo95] the World Transputer Congress 1995

(Harrogate, England) [Theo95a] and the 4th Euromicro Workshop On Parallel

And Distributed Processing (Braga, Portugal) [Theo95b].

Chapter 2

The Quest for High Performance

2.1 Introduction

The principles of computer organization have traditionally been based upon the

processing model described by John von Neumann in the late 1940s, whereby a

computer comprises a single processing unit connected to a single1 memory in

which both, the program code and the data to be operated upon are stored. This

is commonly referred to as the von Neumann model of computation. The opera-

tion of the system consists of sequential fetches of instructions and their operands

from memory, which are then executed, with the result of the execution written

back to memory. The memory addresses of all instructions and data involved

in a computation as well as the instructions their operands and the produced

results are communicated over the single path that connects the processor and

the memory; Backus called this path as the “von Neumann bottleneck” [Back78].

Since the first commercial, general purpose von Neumann computers were

commissioned in the early 1950s, there has been an ever increasing demand for

1The basic memory model, which uses the same physical memory to save both instructions
and data is referred to as the “Princeton Architecture”.

27

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 28

more computational power and speed. Traditionally, this demand has been satis-

fied by enchancing the performance of sequential computers through technological

advances and architectural innovations.

The progression from electromechanical relays, vacuum tubes, William’s tubes

and magnetic drums, to transistor switching devices and solid state memories,

to integrated circuits and eventually to VLSI semiconductor devices has had a

dramatic impact on computational speed. Reduced physical size and shorter

device switching times have resulted in digital systems that can be driven at

extremely high clock rates (e.g. the 21164 EV-5, successor of the Dec’s Alpha

processor, is expected to run at a speed of 300MHz [Gwen94]). Optical technology

promises to reduce gate delays to picoseconds while increasing the bandwidth and

the numbers of interconnections [Huan90].

Advances in technology have been accompanied by architectural novelties.

These include the use of cached store hierarchies, virtual address spaces, arith-

metic optimizations and more efficient instruction sets. Techniques to overcome

the von Neumann bottleneck have also been devised; these include the “Harvard

Architecture” which uses separate instruction and data memories and memory

interleaving, which allows concurrent access to several independent memory mod-

ules [Kraf79] [Ibbe82] [Furb89] [Heud92].

2.2 Bit and Instruction Level Parallelism

A technique which has made a significant contribution to the improvement of

the performance of von Neumann architectures has been the exploitation of

parallelism at bit and instruction levels.

Bit-parallel arithmetic was the first technique to be employed as hardware

components became less expensive.

Bit parallelism was followed by the introduction of multiple functional units

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 29

(stages) which could operate in an overlapped manner. These stages are con-

nected one to the next to form a pipeline; instructions enter at one end of the

pipeline and travel through consecutive stages to exit at the other end. This

arrangement allows an instruction to be (pre)fetched and decoded while the pre-

vious instruction is being executed. The execution unit may also be divided into

a number of stages, with each stage performing a different operation contributing

to the execution of an instruction. Several advanced architectural techniques have

been devised to optimize pipelined operation; these include branching schemes

(e.g. delayed branch), advanced scheduling techniques, register bank management

techniques, superpipelining, superscalar and very long instruction word (VLIW)

systems [Henn91]. Superpipelined machines employ “deeper” pipelines, while

superscalar machines issue more than one instruction per clock cycle in the

pipeline; in VLIW systems the compiler finds operations which can be issued in

the pipeline together and creates a single instruction containing those operations.

In general, the utilization of multiple pipelined units can reduce the average

execution time per instruction and improve throughput significantly; however,

data and control dependencies may cause considerable delays [Kogg81]. Tra-

ditionally, pipelines have been driven by a common external clock. Recently

unconventional techniques have been developed which allow the asynchronous

operation of pipeline stages; these techniques are at the core of the research work

described in this thesis and are discussed in detail in chapter 4.

2.3 Reduced Instruction Set Computers

A milestone in computer architecture research was the development of Reduced

Instruction Set Computers (RISCs).

The quest for high performance and the aim to reduce the “semantic gap”

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 30

between hardware and high level programs had generated a trend towards increas-

ingly sophisticated and complex hardware and instruction sets [Furb89]. Against

this background of increasing complexity the concept of RISC was introduced

in 1980, advocating simplicity and efficiency [Patt80]. RISC systems implement

small instruction sets using simple and fixed instruction formats on load/store

architectures to achieve fast and single cycle execution [Stal88]. They employ

pipelining and hardwired (instead of microcoded) control and rely on optimising

compilers and large cache memories to maximise the use of registers and minimize

references to main memory. The underlying principles of the RISC approach had

already been laid down by IBM in their 801 computer, developed in late 1970s

at IBM’s Thomas J Watson Research Center [Radi83]; the first prototype VLSI

RISC processors were developed in early 1980s at the University of California,

Berkeley [Kate85] and at Stanford University [Henn81]. Since then, and amidst

an ever lasting controversy on the issue of system complexity [Whar92] [Alli92],

several commercial powerful RISC processors have been developed, including the

VL86C010 Acorn RISC Machine (ARM) [Furb89] [VLSI90], the MB86900 SUN

SPARC [Fuji87] [Sun87], the MIPS R2000 [Kane87], AT&T’s CRISP [Ditz87],

AMD’s Am29000 [AMD87], Hewlett-Packard’s HPPA [HP86] and Motorola’s

M88000 [Dobb88]; comprehensive surveys of VLSI implementations of RISC ar-

chitectures may be found in [Furb89] and [Heud92].

2.4 The Limits of Sequential Computation

Technological and architectural advances have yielded a dramatic rise in the

performance of von Neumann machines and computational speed increases of

an order of magnitude every five years have been witnessed. However, this rate

of improvement can not be sustained due to fundamental limitations imposed on

VLSI technology by the laws of physics [Lind93] [Prep94]. One such limitation

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 31

is the speed at which electrical signals can be transmitted over the physical links

which connect the circuit components; this speed cannot be greater than the

speed of light (i.e. about 0.3 metres per nanosecond) [Russ78]. Miniaturization

techniques aim at high package densities and a high degree of integration to

reduce distances between components, but are limited by the heat dissipation

and the quantum effects at sub-micron levels [Mead80]. These two fundamental

constraints impose an ultimate limit to the maximum theoretical performance

that can be achieved by a single von Neumann computer; this performance has

been estimated to be around 3 Gigaflops (3 billion floating point operations per

second) [Wile87].

2.5 Parallel Computer Architectures

Despite the dramatic rise in their performance, sequential von Neumann com-

puters still can not offer the processing rates required for the solution of a wide

range of applications (the so called “Grand Challenge” problems) [Fox89] [Lazo93]

[Kung94]. This has led to the introduction of architectural concepts which

attempt to take advantage of the high level, algorithmic or data-set, parallelism

inherent in many problems. These concepts call for the utilization of multiple

processing elements which can operate in parallel [Hwan84] [Hock88] [Dunc90]

[Mold93] .

Traditionally, parallel computer architectures are classified as either SIMD

(Single Instruction Multiple Data Streams) or MIMD (Multiple Instruction Mul-

tiple Data Streams), following Flynn’s taxonomy [Flyn72]. This taxonomy defines

two more classes of architectures, namely SISD (Single Instruction Single Data

Streams) and MISD (Multiple Instruction Single Data Streams). SISD refers to

conventional, serial von Neumann machines; in these computers at any instant,

one stream of instructions (and therefore, only one instruction processing unit)

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 32

operates on a single data stream. MISD would involve multiple processing units

applying different instructions to a single datum; this theoretical possibility is

generally deemed impractical.

2.5.1 SIMD

Two major classes of SIMD machines exist, namely vector processors and array

processors.

Vector processors utilize multiple pipelined processing elements to apply iden-

tical arithmetic operations to a data stream linearly organised in vector registers.

Vectorising compilers are employed to replace blocks of sequential code by vector

instructions. Examples of successful commercial vector machines are the CRAY-

1 [Russ78], the Control Data Corporation CYBER 200 series [Linc82] and the

Fujitsu VP-200 [Miur84].

Array processors typically employ a central control unit and multiple process-

ing elements which operate in parallel applying the same instruction sequence

on arrays of data in a synchronized fashion. Array machines can achieve high

performance rates with suitable problem classes where the same operation must

be performed on different data sample points. Generally, parallelism must be

expressed explicitly by the programmer, although compiling techniques can also

be used for this purpose. Examples of array processors are the ILLIAC IV

[Hord82], the Burroughs Scientific Processor (BSP) [Aust79], the ICL Distributed

Array Processor (DAP) [Redd79], the Goodyear Aerospace MPP [Batc80] and the

Connection Machine [Hill85].

SIMD machines are well suited to data parallel applications such as weather

forecasting, image processing, finite state analysis and general linear algebra

problems.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 33

2.5.2 MIMD

MIMD architectures employ multiple connected processors which can execute

independent instruction streams. MIMD computers are asynchronous systems

characterized by decentralized hardware control. They offer greater flexibility

than their SIMD counterparts and they support higher level parallelism (subpro-

gram and task levels) which can be exploited by divide and conquer algorithms;

a large problem is split into a number of sub-tasks, which can then be executed

concurrently on different processors.

The degree of coupling between processors categorizes MIMD machines as

either tightly or loosely coupled. In tightly coupled (or shared memory) systems,

processors communicate and synchronize through a global shared main memory.

In loosely coupled (or distributed memory) systems, each processor has its own

local store and communicates with the other processors by exchanging messages

via a network2. Virtual shared memory systems have also been developed, wherein

the memory is physically distributed but it is logically viewed by the programmers

as a single global shared memory: these systems include DDM [Warr88] and KSR-

1 [KSR].

2.5.2.1 Shared Memory MIMD Architectures

In shared memory architectures, performance may be degraded due to store

contention problems which may occur if more than one processor requires access

to the store simultaneously. To reduce this possibility, multiple banks of store

may be used. Another technique uses local cache memories to reduce accesses to

the global memory. This introduces the issue of maintaining coherency among the

multiple copies of the same data that may exist in various processors’ caches at

a given time. Cache coherency protocols, implemented in hardware or software,

2Distributed memory architectures are also referred to as message-passing systems.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 34

may solve this problem but usually reduce the performance of the system [Hill89]

[Sten90].

Various alternatives for connecting multiple processors to shared memory

have been proposed. Small machines with relatively few processors typically

feature a time-shared data bus; processors contest control of this to access the

store. Bus saturation problems make this scheme ineffective for large processor

numbers. Flexible Corporation’s Flex/32, the Encore Computer’s Multimax and

the Sequent Balance machines [Hock88] are examples of bus based architectures.

Crossbar interconnection technology uses a crossbar switch of n2 crosspoints

to connect n processors to n memories. Carnegie Mellon multi-mini-processor

(C.mmp) [Wulf72] was based on this interconnection scheme. Power, pinout,

and size considerations make fully connected networks very expensive because

the complexity grows as the square of the number of processors and memories.

Multistage interconnection networks such as Delta and Omega networks [Pate79]

provide the same connectivity as crossbar networks but at reduced cost3; an

example of a multilevel switching network based machine is the Illinois Cedar

computer [Gajs83] which uses an Omega network to connect clusters of processors

to global memory modules.

Another problem associated with shared memory architectures is the issue

of mutual exclusion, namely preventing a task from accessing a shared data

structure while this is being modified by a different parallel task. Signals [Wirt77],

semaphores [Dijk68], conditional critical regions [Hoar72] [Hans73], and monitors

[Hoar74] are schemes that have been developed to solve the mutual exclusion

problem. Languages based on these concepts have also been developed including

Ada [Barn89] and Modula [Wirt77].

3Delta networks for instance have a cost logarithmic to the number of inputs.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 35

2.5.2.2 Distributed Memory MIMD Architectures

Message passing MIMD machines have principally been constructed in an effort

to provide architectures with the potential to scale up into systems consisting of

many thousands of processors.

In distributed memory architectures4, processors are connected by an inter-

connection network; bus-based configurations also exist (e.g. the PRINGLE

computer [Hock88]) but are not common.

The network that provides for the connection of the processors in a message

passing system can be either static or reconfigurable. In the first case, the

connections between the processors are fixed and permanent. In static networks,

communication between non-neighbouring processors can result in significant

latency as data is queued and forwarded by intermediate nodes to reach its

destination. Various interconnection network topologies have been proposed

to support expandability and scalability and to minimize latency for certain

classes of problems [Sieg85] [Reed87]; these include rings, grid based networks

such as meshes, cylinders, toroids, trees, cube connected cycles, shuffle exchange

networks, and hypercubes.

Reconfigurable topology architectures provide programmable switches that

allow users to select a logical topology which matches a particular application’s

communication pattern. Usually the desired configuration is arranged in advance,

though dynamic reconfiguration is also an available option [Murt91].

Examples of commercial distributed memory MIMD machines are the BBN

Butterfly [Hock88], the Cosmic Cube [Seit85], the ChiP computer [Snyd82] and

the Intel iPSC [Inte86].

Recently, some less conventional MIMD based architectural paradigms have

4The term typically applies to systems in which the nodes are closely connected via very
high speed communication links. Physically distributed computers connected by slow message
passing networks (e.g. ARPANET) are usually excluded.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 36

been developed. Dataflow architectures [Gurd85] and graph reduction machines

[Trel82] are examples of such paradigms.

2.5.3 Parallel Programming Models and Languages

The von Neumann model of computation is typically characterized as control

driven. There is a single thread of control normally passed sequentially from

instruction to instruction thus determining the sequence in which instructions are

executed. The control driven model of computation is supported by conventional

imperative languages such as C [Kern88].

The advent of parallel architectures has resulted in a strong interest in different

computation models which have the potential for parallel execution and new

programming styles and languages to support them.

In the data driven model of computation, an instruction may be executed as

soon as the necessary data are available, without taking into account its textual

position in the program. This model is supported by single assignment languages

such as SISAL [Böhm91] and LUCID [Asch77]. Data flow machines constitute

implementations of the data driven model of computation.

In the demand driven model, an operation is performed only when its result

is required. Functional languages [Glas84] [Read89] such as HASKELL [Huda90]

are well suited for this model, while graph reduction architectures provide for

their efficient implementation.

Logic languages are based on pattern driven models of computation [Alma89].

In Prolog [Cloc81] for instance, the execution of a program consists of a search

for facts (patterns) which satisfy a given query; the facts are organized to form

a search tree which may be searched in parallel (using AND-parallelism or OR-

parallelism).

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 37

The three aforementioned models of computation support fine grain par-

allelism which is the responsibility of the compiler to exploit. However, the

predominant computational model for MIMD architectures, is based upon the

concept of concurrent processes that communicate and synchronize through the

exchange of messages (message passing); this model is well suited to distributed

memory machines though it can also be implemented on shared memory systems.

The process based model of computation exploits the algorithmic parallelism of

programs and calls for their partitioning into a number of different processes which

perform different parts of the overall algorithm5. The parallel processes may then

be mapped onto different processors of the parallel architecture. The detection

of algorithmic parallelism and the mapping of the resulting partitioning onto

the multiple processors of an MIMD machine are two major problems associated

with the process based model of computation. Ideally, the latter task should be

performed automatically, though in general it is the programmer’s responsibility;

chapter 7 discusses how this problem has been tackled within the context of the

research presented in this thesis.

Various process based programming models have been proposed, including

PLITS (Programming Language in the Sky) [Feld79], Linda [Ahuj86], and CSP

(Communicating Sequential Processes) [Hoar78] [Hoar85]. These differ in the

naming convention they use to refer to sender and receiver processes and the

semantics of their communication.

2.5.3.1 Communicating Sequential Processes

The theoretical model of Communicating Sequential Processes is one of the most

elegant schemes which have been proposed for process based parallel computation.

Within the framework of CSP, a program is a collection of sequential processes

5Usually the process structure of an algorithm implemented using message passing is repre-
sented by a graph whose nodes represent the processes and edges represent the communication
paths between them.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 38

which execute asynchronously and concurrently and communicate by exchanging

messages through channels.

The communication is unbuffered, point-to-point and synchronous. A com-

munication requires a rendezvous between the sender and the receiver processes

and will take place only if both these processes have requested participation in

such an activity; otherwise the process that arrives at the rendezvous first has to

block until the corresponding action is reached at the other end of the channel.

A guarded input construct [Dijk75] is available which provides the means for

a receiver process arbitrarily to select to communicate via one of several input

channels depending on the readiness or otherwise of these channels; the choice is

nondeterministic.

2.6 Occam and the Transputer

With the aim of providing a practical realization of the CSP model of computa-

tion, in early 1980s Inmos Limited developed the occam programming language

[Inmo88] and the transputer [Inmo86] [Inmo88a], a microprocessor designed to

support the execution of occam.

2.6.1 The Occam Programming Language

The basic unit of the occam language6 is the process. The concept of the process

can be viewed at many levels within an occam program, the lowest being the

command level. Occam programs are built from three primitive processes namely

6Within the context of this thesis, the term occam refers to the occam2 language. This
is a development of an earlier occam language known as occam1 or proto-occam. The main
difference between the two occam variants is that occam2 allows the transmission of structured
data types along channels, by providing extended channel protocols. Recently, Inmos developed
another variant of occam, referred to as occam3, which supports records and user-defiable data
types [Inmo92]. Tutorial introductions of occam2 may be found in [Kerr87] [Poun87] [Burn88]
[Gold88] [Dows88] and [Gall90].

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 39

assignment, input and output:

• v := e : assign expression e to variable v

• c ! e : output expression e to channel c (send)

• c ? v : input variable v from channel c (receive)

Channels are used to enable the exchange of messages between concurrently

executing processes. The semantics of occam channel communications are based

on CSP. A communication through a channel is unidirectional, unbuffered, point-

to-point, and synchronous; as in CSP, a sender and a receiver have to establish a

rendezvous in order to communicate.

The primitive processes may be combined to form constructs:

• IF : conditional

• WHILE : iterative

• SEQ : sequential

• PAR : parallel

• ALT : alternative

A construct is itself a process and may be used as a component of another

construct. The scope of these constructs is indicated in the text of the program

by indentation (a single unit of indentation being two spaces). The execution of a

compound construct terminates when all the processes within it (i.e. constructs

and primitive processes) have terminated.

IF and WHILE constructs are the standard conditional and iterative com-

mands respectively, encountered in all imperative languages.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 40

SEQ
 P1
 P2
 PAR
 P3
 SEQ
 P4
 P5
 P6
 P7
 :

Figure 2.1: The Use of the Occam SEQ and PAR Constructs

2.6.1.1 The SEQ and PAR Constructs

The mode of process execution is declared using the SEQ and PAR constructs.

Processes which are grouped using SEQ are executed in sequential, textual order.

Processes grouped by means of PAR, are not restricted to any specific order of

execution and may thus be executed in parallel. SEQ and PAR constructs may

be combined to allow the specification of arbitrarily complex execution orderings;

the only restriction is adherence to the communication rules (e.g. parallel output

to the same channel is illegal).

In figure 2.1, processes P1 and P2 will execute sequentially. Upon completion

of P2 the PAR construct is activated which allows processes P3, P6 and any one

of the processes P4 and P5 to execute concurrently; P4 and P5 have to execute

sequentially. Upon the termination of the PAR construct, P7 is executed.

Occam allows the replication of the SEQ and PAR constructs by providing

an extension of their syntax. A replicated SEQ corresponds to the FOR com-

mand, encountered in most imperative languages. The parallel replicator is more

interesting, for with it arrays of parallel, identical processes may be specified.

Priorities among parallel processes executing on the same processor may be

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 41

 BOOL ready:
 CHAN OF BYTE ch1, ch2:
 BYTE any:

 ALT
 ch1 ? any --input guard of process P1
 P1
 ready=TRUE & ch2 ? any --input guard of process P2
 P2
 :

Figure 2.2: The Occam ALT Construct

enforced by the use of the PRI operator (i.e. PRI PAR); the precedence in

this case is declared by the textual order of the processes within the PRI PAR

construct.

The transputer implementation of occam supports two levels of priority, namely

low and high. Low priority processes are time-sliced and are executed only when

there is no active high priority processes. High priority processes are not time

sliced. Both, low and high priority processes are descheduled each time they need

to wait on a channel or a timer communication (see section 2.6.1.3). By default,

occam processes execute at low priority.

2.6.1.2 The ALT Construct

The ALT construct implements the guarded input command of the CSP model.

A guard can be either an input process or an input clause accompanied by a

boolean condition (figure 2.2).

ALT enables a receiver to select for execution one of several alternative chan-

nel input processes; this allows the receiver to communicate with more than

one sender process, receiving randomly ordered messages. The input process

selected for execution is the one whose boolean condition, if any, is TRUE

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 42

VAL Delay IS 15625: --Constant definition
TIMER Clock: --Timer channel declaration
INT Now:

SEQ
 Clock ? Now --Read current clock value
 Clock ? AFTER (Now PLUS Delay) --Deschedule
 --Resume Operation
:

Figure 2.3: Introducing Delays with Occam Timers

and the corresponding sender process at the other end of the channel is first

ready to communicate; if more than one ready sender exists, an arbitrary, non-

deterministic choice is made.

A prioritized ALT is also provided (i.e. PRI ALT), in which case the readiness

of the guards is examined in their textual order.

2.6.1.3 Timers

One of the original target areas of occam was in embedded systems applications,

where support for real time control is required. This support is provided in

occam by means of timers. Timers are syntactically treated as communication

channels which can provide only input. The value returned is the current time

which is represented as an integer value. The duration of the clock tick depends

on the priority level of the process wherein the timer is invoked. In transputer

implementations of occam, for low priority processes, each clock tick represents

64 microseconds; for high priority processes, the clock is incremented every 1

microsecond.

Timers can be used to control the temporal behaviour of occam programs by

forcing processes to delay their execution for a pre-determined period. This is

illustrated in figure 2.3. The timer input statement, when used in conjunction

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 43

VAL Time.Out IS 15625: --Constant definition
TIMER Clock: --Timer channel declaration
INT Now:
BYTE any:
SEQ
 Clock ? Now --Read current clock value
 WHILE (NOT end)
 SEQ
 ALT
 ch1? any --Poll channel ch1
 P1

Clock ? AFTER (Now PLUS Time.Out) -- Timeout?
 P2
:

Figure 2.4: Programming Timeout Behaviour

with the AFTER keyword, causes the timer input to be held up until the current

clock reaches the value specified in the AFTER clause. During this period, the

process remains descheduled. In general, scheduling delays introduced by the

transputer’s scheduler (see section 2.6.2) will slightly extend the period that the

process remains inactive [Gall90]. Furthermore, an extra delay is imposed by the

latency of the process queue of the processor, namely the time from when the

process is rescheduled to the time at which reaches the front of the queue and

starts processing; the maximum latency is estimated to be (2n − 2) ∗ time slice,

where n is the number of processes in the queue when the timer process is

rescheduled [Mitc90]. Therefore, the period that a process may be caused to delay

its execution can only be approximate and non-deterministic and is generally

greater than the delay specified in the AFTER clause.

Used within an ALT construct, a timer may generate time-out behaviour

and thus prevent deadlock situations that might be caused by processes waiting

for input on unresponsive channels. Figure 2.4 depicts a process with time-out

behaviour; if channel ch1 fires before the Time.Out period has elapsed, P1 will be

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 44

ch[0]
Feed.Pipe Pipe.Stage Pipe.StagePipe.Stage Flush.Pipe

ch[1] ch[2] ch[N]ch[N-1]
...

PROC Pipeline(...)
 VAL INT N IS ...: --Size of pipeline
 [N+1] CHAN OF INT ch: --Array of channels
 INT i:
 ...

 --Definition of the Feed.Pipe process

 PROC Feed.Pipe(CHAN OF INT To.Pipe)
 INT x:
 SEQ
 x:=0
 WHILE TRUE
 SEQ
 To.Pipe ! x
 x:=x+1
 :

 --Definition of the Flush.Pipe process

 PROC Flush.Pipe(CHAN OF INT From.Pipe)
 INT x:
 SEQ
 WHILE TRUE
 SEQ
 From.Pipe ? x
 :

 --Definition of the Pipe.Stage process

 PROC Pipe.Stage(CHAN OF INT From.Previous, To.Next)
 INT x:
 SEQ
 WHILE TRUE
 SEQ
 From.Previous ? x
 ...
 To.Next ! x
 :

 --Body of the calling Pipeline process

 SEQ
 PAR
 Feed.Pipe(ch[0])
 PAR i=0 FOR N
 Pipe.Stage(ch[i], ch[i+1])
 Flush.Pipe(ch[N])
:

Figure 2.5: An Example Occam Program

executed, otherwise the timer channel will fire and process P2 will be executed.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 45

2.6.1.4 Functions and Procedures

As in all modular imperative languages, occam allows the definition of functions

(FUNCTION) and procedures (PROC). Procedures encapsulate occam processes;

a call to a procedure instantiates the occam process defined by the body of the

procedure.

To illustrate the structure and philosophy of occam systems, a small example

program is presented in figure 2.5.

Three different processes namely Feed.Pipe, Flush.Pipe and Pipe.Stage are

defined as occam procedures. A replicated PAR construct is used to create a

pipeline of N processes of type Pipe.Stage. Each process in the pipeline inputs

data from the preceding process and outputs data to the succeeding process

after performing some processing on the data. The pipeline may thus produce

an overlapped operation with each component process of the replicated PAR

executing concurrently with every other component process, input and output

being automatically synchronized between processes, and a stream of data passing

through the pipeline. A one-dimensional array of channels ch is declared, along

the elements of which the processes communicate.

2.6.2 The Transputer

To provide the means for the efficient execution of occam based parallel ap-

plications, Inmos accompanied the development of occam with the design and

implementation of a new family of microprocessors, collectively referred to as the

transputer. The most important classes of the family have been the T400 series

and the T800 series; recently Inmos have developed a more advanced type of

transputer, namely the T9000.

The transputer is distinguished from conventional microprocessors in that it is

particularly designed as a building block for distributed memory MIMD systems.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 46

Link Interface

Event

Link Interface

Link Interface

Link Interface

Timers

System Services

4Kbytes

Memory
Interface

32-bit Processor

Floating Point Unit

 SRAM

32 bit bus

Handler

Figure 2.6: The Architecture of the T800 Transputer

Such a system can be constructed from a collection of transputers which operate

concurrently and communicate through serial communication links.

In the transputer, INMOS have implemented on a single chip the main compo-

nents of a traditional von Neumann computer, while at the same time providing

a high level of support for a concurrent, process-based view of computation.

The processing part of the transputer is a 32-bit processor which executes a

small7 range of instructions and addressing modes at a rate of up to 10 MIPS

(for 20MHz implementations). The T800 (figure 2.6) features a microcoded 64

bit floating point unit, providing a sustainable performance of 1-2 MFLOPS. The

devices of the T400 series do not have a floating point unit and give an estimated

performance of 0.1 MFLOPS.

The transputer has two (T400) to four (T800) Kbytes of high speed, on-board

7The transputer is often classified as a RISC, although there is a controversy on the
correctness of this classification.

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 47

static RAM which is used as local memory. Off-chip memory may be accessed

via a 32-bit wide external memory interface which allow data transfer rates of

more than 25 Mbytes per second. In multi-transputer systems, each transputer

has sole use of its own on-chip and off-chip memory and thus does not have to

compete with the other transputers for common memory accesses.

The transputer incorporates four communication links. Each link can transfer

data at over 1 Mbytes/s with automatic handshaking synchronization in each

direction, providing a bidirectional, point-to-point, synchronous connection be-

tween transputers. A transputer may be linked to four other transputers. In

this way networks of transputers of various sizes and topologies may be built up.

Each transputer in a network operates as an independent unit communicating as

and when necessary with the other transputers to which it is linked.

All transputer components operate concurrently; each of the four links and

the floating-point coprocessor (on the T800) can all perform useful work while

the processor is executing other instructions.

The transputer is closely integrated with the occam programming language:

occam reflects the concurrency found in the transputer and provides for control

of the transputer hardware, while the transputer provides efficient support for

the occam model of concurrency and communication.

In occam, concurrency may be specified between transputers or indeed within

a single transputer. To support internal concurrency, the transputer includes

a process queue, with a microcoded scheduler which enables any number of

concurrent processes to be executed together sharing the processor time. The

microcoded scheduler, combined with a minimal context for each active process,

achieve very rapid process switching (typically less than one microsecond).

Examples of T400/T800 transputer based machines are the ESPRIT Supern-

ode Machine [Hock88], the Meiko Computing Surface [Bott86], the Parsytec’s

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 48

GCel and XPlorer machines [Pars], and the T-Rack [Capo86], a 64 transputer

machine which has been implemented at the University of Manchester (the T-

Rack is described in chapter 7).

2.6.2.1 Configuring Occam Programs

At the top level, an occam program is a network of concurrent communicating

processes, defined as occam procedures. These procedures are independent,

without reference to any shared program variables or data structures; any required

communication takes place by exchanging messages over channels.

The top level occam processes may run time-sliced on a single transputer or

be distributed over a network of transputers to achieve real parallelism.

In the first case, the communication channels are realized by internal (or soft)

links. These are implemented by means of a status word in memory which may

be accessed by both the sending and the receiving processes. Consequently, the

number of internal occam channels is limited only by the size of local memory.

For multi-transputer configurations, channels are placed on one of the four

physical links (hard channels) of the transputer. Hardware links can support

only a single occam channel in each direction; if more than one occam process

needs to access the same link, software multiplexing is required.

In occam, the allocation of processes to processors and channels to hardware

links in the network is the responsibility of the programmer, who must devise

and explicitly specify an appropriate mapping scheme. This allocation is static,

though, in principle it is possible to use occam to code mechanisms for dynamic

placement and running of processes [Waym89].

Occam includes a notation, the occam configuration language, which provides

the means for specifying the adopted mapping of the occam program onto the

transputer network8 [Inmo91a]. A textual configuration description created using

8Providing two different languages, one for the code that describes the functionality of

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 49

this language basically describes the top level of the occam program, annotated

with enough information to map the program on to a transputer network. This

information includes:

• The type of processors in the system.

• Which processes will execute on which processor; one or more processes

may execute on a single transputer.

• The mapping of occam channels to transputer links for inter-transputer

communications

The considerations that need to be taken into account by the programmer

for the mapping of occam programs onto transputer networks are discussed in

chapter 7.

2.6.2.2 The T9000 Transputer

To alleviate the connectivity limitations and the channel mapping problems im-

posed by the four links of the conventional transputer, Inmos have developed

a new family of transputer devices, namely the T9000 processor and the C104

transputer link switch [Inmo91].

The T9000 transputer still possesses four communication links, however it also

incorporates a Virtual Channel Processor which allows the (hardware) multiplex-

ing of an arbitrary number of occam channels onto each of the four links [Inmo93].

The C104 link switch is a wormhole routing device which can direct a packet

arriving on any of its 32 input links to one of the 32 output links, based on the

packet’s header. The combination of T9000 transputers with possibly multistage

different processes and one to specify the configuration of the program, is a typical technique
in distributed systems which require the the explicit specification of configuration by the
programmer. This approach is closely related to the ideas of programming-in-the-large and
the use of a module interconnection language [DeRe76].

CHAPTER 2. THE QUEST FOR HIGH PERFORMANCE 50

C104 switches enables the construction of arbitrarily complex networks without

the need for software harnesses to store and forward messages [Inmo93a].

T9000 also exhibits enchanced performance characteristics, operating at 30MHz

and yielding an instruction throughput of about 50 MIPS and an estimated

floating point performance of 5 MFLOPS.

Recently, some T9000 based machines have been commercially available, in-

cluding the Parsys SN9400SP, SN9500 and SN9800 systems [Pars95].

2.7 Summary

This chapter has presented a short overview of parallelism, as an approach to

satisfy the need for high performance. Emphasis was given on the process-based

model of computation supported by the occam programming language and the

associated processor, the transputer.

The next chapter deals with modelling and simulation; emphasis is placed on

distributed simulation, which is a particular instance of parallel processing.

Chapter 3

Modelling and Simulation

3.1 Introduction

Since the dawn of civilization, people have tried to understand the principles and

behaviour of systems in their environment, with which they have been in constant

contact. An essential tool to this endeavour has been the development of models,

namely simplified representations of the systems under consideration:

“For everything that exists there are three things through which knowl-

edge about it must come; the knowledge itself is a fourth; and as a fifth

we must posit the actual object of knowledge which is the true reality.

We have then:- first, a name; second, a description; third an image;

fourth knowledge of the object . . .There is, for example, something

called a circle, whose name is the very word I just now uttered. In the

second place there is a description of it, made up of nouns and verbs.

The description of the object whose name is round and circumference

and circle would be: that which has everywhere the same distance

between the extremities and the middle. In the third place, there is the

object which is drawn and erased and turned on the lathe and destroyed

51

CHAPTER 3. MODELLING AND SIMULATION 52

- processes which the real circle, in relation to which these other circles

exist, can in no wise suffer, being different from them. In the fourth

place there are knowledge and understanding and correct opinion about

them, all of which must be posited as one thing more, inasmuch as it

is found not in sounds nor in the shapes of bodies but in soul, whereby

it manifestly differs in nature both, from the real circle and from the

aforesaid three. Of these, understanding approaches nearest to the fifth

in kinship and likeness, while the others are more distant . . . Every

circle drawn or turned on a lathe in practice abounds in the opposite

to the fifth-for it everywhere touches the straight, while the real circle,

we maintain, contains in itself neither more nor less of the opposite

nature. The name, we maintain, is in no case stable; there is nothing

to prevent the things now called round from being called straight, and

the straight round; and those who transpose them and use them in the

opposite way will find them no less stable than they are now.” Plato,

Epistle, vii, 342A-343B.

A model is intended to:

• Act as a communication vehicle, making available a description of the

behaviour of a system.

• Enable users to gain insight and understanding regarding the behaviour of

the system and develop theories that account for that behaviour.

• Provide the means for the analysis and evaluation of the system as well as

the prediction of its future behaviour.

Figure 3.1 depicts a taxonomy of the different types of models [Neel87].

Mathematical modelling employs mathematical notations and mathematical

equations to produce a description of the system.

CHAPTER 3. MODELLING AND SIMULATION 53

Models

Physical Symbolic

MathematicalNon-Mathematical

Linguistic Graphical

Static

Dynamic

Analytic Numeric

Simulation

Analytic Numeric

Static

Dynamic

Analogue PrototypesScale Imitation
(e.g. model (e.g. dolls, (e.g. water flow (e.g. functional model engines,

experimental user interface of
an information system)

(e.g. verbal or written

car, ships) cartoons) model of elecrical
phenomena, animals
for medical experiments)

informal descriptions)
(e.g. pictures
graphs, layout
circuit diagrams)

Figure 3.1: A Taxonomy of Models

A system is characterized as static, if its state1 does not change but remains

stable over time (i.e. the system is in equilibrium). The state of a static system

is typically expressed mathematically using algebraic equations.

Systems with dynamic behaviour, i.e. systems whose state changes over time

are typically classified as either continuous (and are referred to as Continuous

Variable Dynamic Systems, CVDS) or discrete2 (or Discrete Event Dynamic

Systems, DEDS).

1State is the collection of variables that contain all the information necessary to describe the
system at any point in time. Thus, state is basically a function of time [Bank86].

2Typically physical systems encountered in nature are treated as continuous while systems
that are the result of human activity are treated as discrete; the latter includes the vast majority
of systems that modern society is concerned with [Ho89].

CHAPTER 3. MODELLING AND SIMULATION 54

In CVDS, state changes occur continuously over time. Such systems are

typically modelled by a set of ordinary/partial differential equations. Continuous

systems are not pertinent to this thesis and are not discussed further; in his

excellent classic book, Dugas [Duga35] chronicles the development of continuous

dynamic systems from Aristotle to Kepler to Newton and to quantum mechanics.

In contrast to CVDS, in discrete systems, state changes (also referred to as

state transitions) are assumed to take place only at a set of discrete instants in

time rather than continuously. The happening whose occurrence causes a state

transition to occur is referred to as an event. The discrete instants in time when

state transitions occur are referred to as event times; the system state between

two event times is called a snapshot.

The behaviour of Discrete Event Dynamic Systems cannot easily be described

by ordinary or partial differential equations3 [Ho89]. Several mathematical nota-

tions and techniques have been developed to allow the mathematical modelling of

DEDS; these include Markov processes [Dynk82], Petri nets [Pete91], Queueing

theory [Bund86] and Finite State Machines [Gill62].

Once a mathematical model has been constructed, it may be solved to provide

answers to questions regarding the behaviour of the modelled system. This

may be achieved analytically, by employing mathematical theory and deductive

reasoning. Analytical approaches provide general solutions, however in practice

only certain forms of equations may be solved. In this case the application of

numerical methods is the alternative option for the solution of the mathemat-

ical model. Numerical methods employ computational procedures to produce

solutions in steps: each step gives the solution for one set of conditions and the

calculation must be repeated to expand the range of the solution [Neel87]. This

stepwise philosophy makes numerical models particularly suitable for execution

3In principle, continuous modelling techniques may be applied to produce continuous
approximations of discrete systems, as well as discrete approaches can produce discrete
approximations of continuous systems [Neel87].

CHAPTER 3. MODELLING AND SIMULATION 55

on computers.

The process of executing a model on a computer system in order to derive

answers to questions regarding the operation of the modelled system is referred

to as computer simulation. A model adapted for simulation on a computer is

known as a computer simulation model, or simply simulation model.

3.2 Discrete Event Simulation Modelling

Mathematical modelling may provide answers regarding certain characteristics of

a discrete system, however it is often unable to capture the dynamic behaviour

and other important aspects of the operation of the system in sufficient detail.

Furthermore, in most real discrete event systems (e.g. stochastic problems),

mathematical models have no simple and practical analytical or numerical so-

lutions [Thes90] [Cars92] [Prit91].

In these cases, discrete event simulation (DES) is the only alternative avail-

able. In discrete event simulation, the computer program (the simulator) is not

intended to solve mathematical equations, but rather encapsulates a detailed de-

scription of the structure and operational rules of the system under consideration;

when executing, the program imitates the system, mimicking its operation.

Typically, a discrete event simulation model designed to run on a conventional

von Neumann computer utilizes three main structures:

• A global clock variable, which keeps track of the progress of the simulation

in terms of logical or simulated time.

• The state variables, which define the state of the system at any particular

point in simulated time.

• The event list, which contains all events which have been scheduled but

have not yet occurred (i.e. have not yet taken effect); a simulation event

CHAPTER 3. MODELLING AND SIMULATION 56

may be viewed as modelling an event in the physical system which causes

a state transition to take place.

Each scheduled event is assigned a timestamp, which denotes the point in

simulated time that the event occurs. The simulator is driven by a main loop

(referred to as the simulation engine), which repeatedly selects from the event

list the event with the smallest timestamp, processes it and removes it from the

event list. The processing of an event involves the execution of a piece of code,

which describes the steps required for the appropriate state transition to occur,

and the generation and scheduling of a number of new events into the simulated

future [Bank86].

Discrete event simulation has several advantages and benefits over mathemat-

ical modelling or prototyping [Thes90] [Prit91] [Shan92] [Cars92]:

• It makes possible the testing and evaluation of systems, in cases in which the

system does not exist, mathematical modelling is impossible and prototypes

are expensive, time consuming or hazardous to build; it is generally easier,

faster and cheaper to implement a simulator than building a prototype.

• It provides a higher degree of flexibility than prototypes as it can easily be

modified. Thus it makes possible the efficient experimentation with new

situations providing answers to “what if” questions which would otherwise

be too costly and time consuming to contemplate. Consequently, it can

reduce dramatically both the cost and duration of a system’s development

phase.

• It allows the representation of systems at any level of detail sufficient to

meet the objectives of the designer, thus providing support to hierarchical

design approaches.

CHAPTER 3. MODELLING AND SIMULATION 57

• It provides for the study of the dynamic behaviour of systems by allowing

the manipulation of time. Time can be compressed or expanded, thus

providing a rapid view at long time horizons in the past or future of the

system under consideration.

• The process of building a discrete event simulation model calls for the

provision of a detailed description of the system, an activity which in itself

may prove invaluable to enchance the designer’s understanding of how the

system operates.

Discrete event simulation modelling is an essential tool in the design, de-

velopment and analysis of discrete event systems and is currently undergoing

a dramatic increase in its range of application and an explosion of innovation

[Ruta91] [Radi92]; innovation includes the exploitation of advanced software

engineering [Fish92] and object oriented approaches [Zeig90] [Rumb91], use of

Artificial Intelligence techniques [Roth89], the exploitation of different concep-

tual modelling frameworks [Zeig76] [Kreu86] [Derr89], and the development of

specialized simulation languages and interactive support environments [SCS85]

[Bart89] [Schr92] [Balm90] [Gord90] [Bank92].

3.3 The Need for Parallel Discrete Event Simu-

lation

Parallel processing technology and the availability of extremely cost effective

multiprocessor machines has had a significant and dramatic impact in the area

of computer simulation.

The application of simulation to ever more complex discrete event problems

has long placed it in the highly computation intensive world. Applications in

CHAPTER 3. MODELLING AND SIMULATION 58

which the computational requirements of simulations far exceed the capabilities

of conventional sequential von Neumann computer systems include health care

systems [Lomo88], training [Stei91], military systems [Wiel89] [Mors90], environ-

ment systems [Ebli89], [Pres90] [Bagr90] [Nico90], flexible manufacturing systems

[Nevi90], automobile traffic modelling [Merr90], aerodynamic simulation [Norr87],

telecommunication networks [Muft90] [Robe92] [Eick91] [Turn92], queueing net-

works [Reed88a] [Fuji89] [Fuji89a] [Chan89] [Ayan89] [Nico93] [Nico93] and Petri

nets [Kuma90] [Thom91] [Nico91] [Bacc93] [Fers93].

The execution of these computationally intensive simulations requires either

modelling at higher levels of abstraction in order to reduce the computational

load4 or more powerful machines5. The former is not considered a satisfactory

approach as it does not allow the required detail to be incorporated in the model

and may thus result to over-simplification of the investigated problem [Unge89].

Therefore, in the last fifteen years, the attention of modellers and simulationists

has been directed to parallel, multiprocessor machines, as they see in them the

potential solution to the demand for increased computational power.

3.3.1 Exploiting Parallelism

Three main approaches for exploiting parallelism at different levels in simulation

problems have been developed and followed6:

• Application Level. This approach assigns independent replications of the

same sequential simulation model (with possibly different input parameters)

4For the simulation of communications systems for instance, processing of an average of 5
million events per minute is typically required [Flec92]; higher abstraction levels aim to reduce
the number of events that need to be processed.

5A third alternative is to apply statistical methods in order to reduce the number of runs
required to make decisions regarding certain characteristics of the simulated system [Ripl87];
these techniques however are at still at an early stage of development [Righ89].

6Righter [Righ89] mentions one more approach, namely applying a parallelizing compiler to
a sequential simulation program. Although this technique is transparent to the user, it exploits
only a small portion of the available parallelism and thus is very rarely used.

CHAPTER 3. MODELLING AND SIMULATION 59

onto different processors7 [Bile85] [Heid86]. This approach can allow the

exploration of large search spaces without the cost that parallelization of

the code would involve (see subsequent sections). As no coordination is

required between processors during the execution, unlimited scalability is

possible. However, distribution of the entire simulation may not always

be possible, due to memory limitations in the individual processors. Fur-

thermore, this approach is not suitable for design environments wherein

experiments must be sequenced, as results of one experiment are used to

determine the experiment that should be performed next.

• Subroutine Level. Following this approach, different dedicated functional

units (simulation engine subtasks or subroutines) are used to implement

specific functions of the sequential simulation (e.g. random number gener-

ation, event list manipulation, state update, statistics collection etc); these

units are then distributed to different processors. Examples of subroutine

level parallel simulation may be found in [Wyat83] [Wyat84] [Comf84]

[Kris85] [Wyat85] [Rees85] [Shep88] [Comf88] [Davi88]. The advantage of

this approach is that it is transparent to the user. However due to the

small number of subtasks in the simulation engine, only a limited amount

of speedup may be achieved with a subroutine level distribution.

• Event Level. Neither of the two distribution levels above makes any

attempt to exploit the parallelism of the physical system being modelled. In

a system with inherent parallelism (and this includes the majority of real life

systems), several state changes occur concurrently; the objective of event

level distribution is the concurrent execution of the corresponding events.

Two main techniques for the distribution of events may be distinguished

based on the manipulation of the event list:

7Fujimoto uses the name replicated trials for this approach [Fuji90].

CHAPTER 3. MODELLING AND SIMULATION 60

1. Centralized. In this technique, the event list is a centralized data

structure maintained by a master processor. The simulation model

is decomposed into functional modules which are then assigned to a

set of slave processors. The master process selects from the event list

the events that can be processed concurrently and distributes them

for execution to the slave processors; new events scheduled by this

execution are inserted back into the centralized event list [Jone86].

For the efficient implementation of this technique, shared memory

multiprocessors are particularly suitable, with the event list being

implemented as a shared data structure accessed by all processors

[Jone89].

2. Decentralized. This technique involves the distribution of the event

list onto the multiple processors, in order to allow the concurrent

execution of events at different points of the simulated time. De-

centralized, event level distribution is the simulation approach with

the greatest potential for high performance and, consequently, has

attracted considerable attention from the research community and has

almost exclusively been employed for practical simulation applications.

However, the distribution of the event list introduces synchronization

problems which have been addressed by a number of researchers; these

problems as well as a brief description of the most influential of the

techniques that have been developed to address them are the subjects

of the subsequent sections.

3.4 The Logical Process Paradigm

Typically, a physical system being modelled is viewed as consisting of a number

of independent, concurrent, interacting, functional entities, which are referred to

CHAPTER 3. MODELLING AND SIMULATION 61

as physical processes (PP).

Decentralized parallel simulation strategies seek to divide the simulation model

into a network of concurrent logical processes (LP), topologically identical to the

physical system, with each logical process corresponding to a functional entity of

the physical system (i.e. a physical process); this approach is referred to as the

Logical Process Paradigm.

Interactions between physical processes are modelled by timestamped mes-

sages exchanged between the logical processes; the timestamp of each message

denotes the point in time when the corresponding event occurs in the physical

process being modelled by the receiving logical process. A logical process will

repeatedly consume and process messages arriving on its input links possibly

generating, as a result, a number of messages on its output links; a new input

message will be accepted only after the processing of the preceding message has

completed. For the calculation of the timestamp of an output message, the

timestamp, as well as the simulated time required for the processing of its parent

input message are taken into account.

Since each message corresponds to an event, each logical process may be

viewed as possessing and processing a portion of the event list of the simulation

model. The distribution of the logical processes onto the different processors of a

multiprocessor machine enables the concurrent execution of events, thus providing

for the exploitation of the parallelism in the physical system.

3.4.1 Timing Issues

The Logical Process Paradigm allows the spatial characteristics of the physical

system to map naturally onto the simulation model. However, this does not hold

for the temporal characteristics of the system, whose mapping onto the simulation

model is not straightforward.

CHAPTER 3. MODELLING AND SIMULATION 62

All physical systems obey the causality principle which defines the relation-

ships between the various system states. More specifically, the causality principle

requires that the cause must always precede the effect in time: state transitions

which have some effect on some other transitions must occur before the latter,

while state transitions that do not affect each other may take place in any order.

Thus, the causality principle imposes a partial ordering on the system’s state

transitions. This ordering of state transitions in the physical system also imposes

an equivalent partial ordering on the corresponding events in the simulation

model. In order to ensure that the simulation model faithfully and accurately

reproduces the behaviour of the simulated physical system, the order in which

logical processes receive, process and generate events must be the same as the

order of the corresponding state transitions in the physical system.

In the physical system, causality is tracked using the physical time (i.e. a

real time clock). In a sequential simulation model, wherein physical time is

modelled by a single global variable, causality is preserved through adherence to

the rule that events are processed in non-decreasing timestamp order [Fuji88]; in

a distributed setting however, in which concurrent processing of events is allowed,

preservation of this fundamental monotonicity property associated with causality

is not straightforward.

The concept of causality between events is one of the fundamental problems

in distributed computation8 and has been addressed by a number of researchers

including Lamport [Lamp78], Schneider [Schn82], Reed [Reed83], Gusella et al.

8Actually, causality has been a fundamental issue in both Greek/western (e.g. [Aris] [Aris-1])
and eastern (e.g. [Kalu75]) thought; in his “Laws”, Plato dealing with causality says: “When

we find one thing changing another, and this in turn another and so on, of these things shall we

ever find one that is the prime cause of change? How will a thing that is moved by another ever

be itself the first of the things that cause change? It is impossible. But when a thing that has

moved itself and that other a third and the motion thus spreads progressively through thousands

upon thousands of things, will the primary source of all their motions be anything else than the

movement of that which has moved itself?...It has been proved most sufficiently that soul is of

all things the oldest since it is the first principle of motion.” [Plat].

CHAPTER 3. MODELLING AND SIMULATION 63

[Guse84], Chandy et al. [Chan85], Christian [Chri89], Dunigan [Duni91], Fidge

[Fidg88] [Fidg91], Basten et al. [Bast94], Rabin [Rabi94] [Rabi94a] and Mizuno

et al. [Mizu95].

With regard to distributed simulation, two main approaches have been devel-

oped to address the causality problem, usually referred to as time driven and event

driven respectively; a further classification applies to these two main approaches

which characterizes a technique as either synchronous or asynchronous9. Before

the time driven and event driven approaches are discussed, a short description of

the synchronous and asynchronous implementations is provided.

3.5 Synchronous versus Asynchronous Simula-

tion

The synchronous framework requires that processes advance together in a lock

step fashion. This is achieved by means of a global clock whose role is to syn-

chronize the logical processes of the simulation model. The global clock may be

implemented either using a centralized approach, with a single dedicated process

to act as a synchronizer [Venk86] [Chri82], or in a distributed, decentralized

fashion, where a more complex structure of dedicated processes is responsible

for synchronizing the logical processes of the model [Peac79] [Baik85] [Conc89]

[Zhan89].

The asynchronous approach allows the processes of the simulation model to

operate asynchronously, advancing at completely different rates. Each process

maintains a local clock variable which contains the current value of the simulated

time10. This value represents the process’s local view of the global simulated

9Synchronous and asynchronous are sometimes referred to as tight and loose respectively
[Peac79].

10In distributed simulations, the domain of the local clock variables is the set of non-negative
integers (i.e. scalar). Other schemes have also been proposed for asynchronous distributed

CHAPTER 3. MODELLING AND SIMULATION 64

time and denotes how far in the simulated time the corresponding process has

progressed.

One emerging theme in parallel simulation research is the study of techniques

which combine aspects of both synchronous and asynchronous operation; these

are usually referred to as time window techniques. These approaches involve

barrier synchronizations to constrain asynchronous operation to be within some

window of global simulated time; once the local clocks of all processes reach the

end of the window, a global synchronization scheme is applied to allow processes

to move to the next window. Usually, the window size is application dependent.

3.6 Time Driven Logical Process Simulation

In time driven simulation, the clock is an autonomous entity capable of increment-

ing per se and is the driving force of the simulation. The simulated time advances

in time increments of fixed constant size (ticks or time steps). Each logical process

must process all events in a particular time step before it is allowed to proceed

with the events of the next time step.

In synchronous time driven simulation [Gilm86], all activity in the current

time step must cease before the processes of the model are allowed to advance

to the next time step. The asynchronous approach permits processes to begin

executing events in the next time step as soon as their source processes (i.e.

their predecessors) have finished the last time step [DeBe88]; the local clocks are

synchronized by sending extra messages from each process to its successors.

Time driven simulation guarantees that the causality principle is not violated.

However, its potential for speedup is limited to situations where the number

of events to be processed by each and every process per time step is high;

systems whereby timestamps have the form of vectors (e.g. [Fidg88] [Fidg91] [Schm88] [Matt88])
or matrices (e.g. [Sari87]) [Rayn95].

CHAPTER 3. MODELLING AND SIMULATION 65

otherwise starvation phenomena will occur as processes remain idle waiting for

the clock to advance to the next time step. This approach is more appropriate

for shared memory machines, as global synchronization is at present neither

easily implementable nor efficient on asynchronous distributed memory machines

[Fuji88].

3.7 Event Driven Logical Process Simulation

In the event driven approach, the driving force of the simulation which triggers

actions is the availability of events to be processed. The simulated clock is a slave

object which is incremented each time an event is executed to accommodate the

duration of that execution.

Simulation may be either synchronous or asynchronous; event driven, time

window techniques have also been developed including Moving Time Window

(MTW) [Soko88] [Soko89] [Soko91], Bounded Lag [Luba88] and Conservative

Time Windows (CTW) [Ayan92].

Like their time driven counterparts, synchronous event driven approaches keep

the processes of the model synchronized using a global synchronization scheme,

but with each update, the global clock is set to the minimum time of the next

event for all processes, rather than the next clock tick [Peac79] [Baik85] [Conc89]

[Zhan89].

In asynchronous event driven simulation, all computation in a logical process is

initiated by the presence of messages on the process’s input links. Upon receipt of

an input message, the process will be activated to act upon the message and, as a

result, update its local clock, which is set to the minimum next event time for that

process. Processes are allowed to consume and execute messages as soon as they

become available, without having to wait for a global clock to tick through periods

of inactivity or for other slower, but unrelated, processes to advance. Events may

CHAPTER 3. MODELLING AND SIMULATION 66

be simulated simultaneously, even if they occur at completely different simulated

times. Consequently, asynchronous event driven simulation has greater potential

for high performance.

However, the concurrent simulation of events at different simulated times

makes the model susceptible to violations of the causality principle. It has

been shown (e.g. Lamport [Lamp78] and Misra [Misr86]) that a distributed

system consisting of logical processes which operate asynchronously and interact

exclusively via timestamped messages, will adhere to the partial ordering imposed

by causality constraints in the physical system, if each logical process consumes

and processes events in non-decreasing timestamp order; this condition is referred

to as the local causality constraint [Fuji88].

Thus, the problem of guaranteeing that the model implements exactly the

same global causal precedence relationships of the physical system, reduces to

ensuring that each logical process obeys the local causality constraint and pro-

cesses messages in non-decreasing timestamp order.

If each process in the distributed model has a single input link (i.e. it receives

messages from just one source process), then adherence to the local causality

constraint is straightforward. Indeed, in single input processes, there is a direct

correlation between order of arrival and order of consumption. Assuming that

the timestamps in the input link are ordered in time then the output timestamps

are also guaranteed to be ordered. Thus on any particular output (and therefore

input) link, messages will be issued in non-decreasing timestamp order.

However, most, if not all, practical simulation models will include multiple

input processes which receive messages from more than one source process; such

processes are usually referred to as merge processes. In this case, the order in

which messages arrive on the different input links does not adhere strictly to

the order in which the corresponding events occur in the physical system; it

CHAPTER 3. MODELLING AND SIMULATION 67

merely depends on the relative real time propagation delays of the messages in

the distributed machine and not on the simulated time timestamps that these

messages carry.

Therefore, in the general case, messages will arrive at the merge processes of

the model in a non-increasing timestamp order. Consequently, immediate con-

sumption and processing of messages by merge processes may result in violation

of the local causality constraint; the processing of an out of order message (i.e.

a message which according to its timestamp should have been processed in the

simulated past) is referred to as a preemption.

Several techniques have been developed to address the preemption problem

in asynchronous event driven simulations and to ensure that the local causality

constraint is not violated. These techniques employ different synchronization

protocols to enable processes to decide when it is safe to consume and process

events.

Asynchronous protocols are traditionally classified into two broad categories,

namely conservative and optimistic11; hybrid approaches with both, conservative

and optimistic behaviour also exist [Luba89a] [Dick90] . Detailed surveys of the

various asynchronous event driven simulation techniques developed to date may

be found in [Righ89] [Fuji90] [Fuji92] [Fuji93] [Fers94] and [Nico94]; the following

sections provide a short presentation of the most influential of them.

3.7.1 Conservative Techniques

Conservative techniques were originally proposed by Chandy and Misra [Chan79a]

and Bryant12 [Brya77]. These techniques allow a logical process to accept and

process an event only if it is absolutely safe to do so, thus strictly avoiding the

11Reynolds has introduced an alternative, more detailed taxonomy [Reyn88] [Reyn89].
However, within the scope of this thesis, the conventional taxonomy that distinguishes between
conservative and optimistic techniques is sufficient.

12Conservative techniques are often referred to as the Chandy-Misra-Bryant (CMB) protocols.

CHAPTER 3. MODELLING AND SIMULATION 68

possibility of a preemption ever occurring.

In order to determine when it is safe to process an event, it is required that

messages from any process to any other process be transmitted in chronological

order according to their timestamps. This ensures that the timestamp of the last

message issued on an input link provides a lower bound on the timestamp of any

subsequent message that will later arrive on the same link; this bound (i.e. the

timestamp of the current message pending processing on an input link or, if no

such message exists, the timestamp of the last message received on that link), is

referred to as the link clock. A merge process repeatedly selects the input link

with the smallest clock and, if there is a message pending, it is consumed and

processed; otherwise the process is forced to block until a message is issued on

the link, as the timestamp of that message might be less than the timestamps of

the messages currently waiting on the other incoming links.

This algorithm guarantees that merge processes will process messages in in-

creasing timestamp order, thus ensuring adherence to the local causality con-

straint. However, deadlocks may occur if a message expected by a blocked process

is not eventually issued; this situation may occur if a cycle of processes is formed,

with each process being blocked due to its waiting for a message from another

process in the cycle [Peac79] [Righ89] [Fuji90].

3.7.1.1 Deadlock Avoidance

In order to address the deadlock problem, Chandy and Misra [Chan79] [Chan79b]

have proposed a deadlock avoidance mechanism, whereby Null messages are used

continuously to advance the output link clocks, even if no events are issued on the

link; Null messages inform the corresponding receiving process of the minimum

potential timestamp of the next event to appear on the link thus preventing it

from indefinitely blocking upon that link. This scheme is based on the assumption

CHAPTER 3. MODELLING AND SIMULATION 69

that each process has the ability to predict its actions in the immediate simulated

future so that it may calculate a lower bound on the next outgoing message

on each of its output links. Each time a logical process finishes processing an

event, it issues to its output links a Null message with that bound; based on

this information the receiving process calculates a new bound for its output links

and so on. The larger the output timestamp bounds that may be predicted by a

process, the smaller the number of Null messages generated and the less the time

that a receiving process blocks upon its input links.

The ability of a process to predict its simulated future is referred to as

lookahead. The most common type of lookahead is the Minimum Timestamp

Increment, which is the minimum processing simulated time for each message

passing through the process [Fuji90]; another form of lookahead is the distance

between two causally related but not necessarily directly connected processes,

namely a lower bound in the amount of simulated time that must elapse for an

unprocessed event to propagate from one process to the other [Ayan89]. Looka-

head is an important aspect of conservative simulation and is essential for both

the correctness and performance of protocols and several mechanisms have been

developed which attempt to exploit the characteristics of the simulated system

to improve lookahead [Nico88] [Lin89] [Wagn89] [Louc90] [Pete93]. Generally,

the lookahead information required for the calculation of timestamps of the Null

messages is application dependent and is explicitly provided to the processes in

advance by the simulation programmer, although attempts for their automatic

calculation have been made [Cota90].

Null messages are used only for synchronization and impose a significant

communication overhead which may dramatically affect the performance of the

simulation [Fuji90]. To address this problem, a number of optimizations have been

proposed which aim to reduce the number of Null messages generated [Holm78]

CHAPTER 3. MODELLING AND SIMULATION 70

[Nico84] [Misr86] [Bain88] [Su89] [DeVr90]; the carrier Null message protocol

[Cai90] [Wood94] attempts to reduce the number of Null messages by using them

to acquire/propagate additional knowledge to the processes in order to enhance

their lookahead. Another approach is to eliminate the need for Null messages by

exploiting the structural characteristics of the application in order to eliminate

the cycles in the model which may cause deadlocks [Lin90].

3.7.1.2 Deadlock Detection and Recovery

Another approach to deal with the deadlock problem is the deadlock detection

and recovery scheme proposed by Chandy and Misra [Chan81], whereby the

simulation proceeds until it deadlocks (the parallel phase), and when deadlock

is detected, it is resolved (the synchronization or interface phase) to enable the

next parallel phase to commence. Distributed deadlock detection algorithms have

been proposed by Dijkstra and Scholten [Dijk80], Misra [Misr86] and Groselj

and Tropper [Gros89]. Various other deadlock detection algorithms have been

proposed which address particular situations: Kumar and Harous [Kuma91]

propose deadlock detection algorithms for simulation of queueing networks, Reed

and Malony [Reed88b] and Fujimoto [Fuji89] have investigated the deadlock

detection problem in shared memory machines, Misra [Misr86] has proposed

alternative algorithms for detecting deadlocks when only a portion of the process

network has deadlock, Groselj and Tropper [Gros88] propose a scheme to be used

for deadlock detection within one processor, and Liu and Tropper [Liu90] propose

algorithms that target specific types of cycles of blocked processes.

3.7.1.3 Characteristics of Conservative Protocols

The major advantage of the conservative techniques is that they are simple and

straightforward to implement. However, the requirement for strict adherence

CHAPTER 3. MODELLING AND SIMULATION 71

to the local causality constraint does not allow full exploitation of the inherent

parallelism of the model. Conservative techniques require static configuration

of the distributed model [Fuji90]; systems with dynamic behaviour generally

can not be easily modelled. Furthermore, conservative protocols rely heavily on

the lookahead, and are thus suitable only for applications with good lookahead

properties. The knowledge required for the exploitation of lookahead must be

explicitly provided by the simulation programmer. This implies that in order

to design a correct and fast synchronization protocol, the programmer must be

familiar with the details of both, the simulated system and the synchronization

protocol; this requirement is considered the most serious drawback of conservative

techniques although research into adding transparency to conservative algorithms

is continuing [Jha93].

With regard to performance of conservative techniques, reported speedups

include 16 on 25 processors of a Sequent Balance and 1900 on a 16384 processor

Connection Machine [Luba89] [Luba89b], 7 on 12 and 9 on 24 iPSC processors

[Chan89], 18 on 31 transputers [Merr90], 8 on 64 and 10 to 20 on 128 iPSC

processors [Su89] and 16 on a 16 processor BBN Butterfly [Fuji89].

3.8 Optimistic Synchronization Protocols

The objective of optimistic approaches is to detect and recover from causality

errors rather than strictly avoid them. The most important and influential

optimistic mechanism is Time Warp (or Virtual Time13) proposed by Jefferson

and Sowizral [Jeff82] [Jeff85] [Jeff85a].

13Jefferson proposed Virtual Time as a paradigm and Time Warp as a mechanism to
implement it, but the two terms are used interchangeably.

CHAPTER 3. MODELLING AND SIMULATION 72

3.8.1 Time Warp

In Time Warp, processes consume and process events as they arrive, without

first deciding whether such an action is safe or not. When a preemption is

detected (i.e. when an event arrives whose timestamp indicates that it should

have been processed in the past - this event is called a strangler in Time Warp),

the process “rolls back” in simulated time and undoes all its actions up to the

point indicated by the timestamp of the strangler. It also sends anti-messages

to successor processes to inform them of the preemption and cancel the effects

of previous erroneous messages issued by the process; upon receipt of an anti-

message, successor processes follow the same procedure, undoing their actions

and generating more anti-messages.

Anti-messages may be sent immediately upon detection of a preemption (ag-

gressive cancellation) or at a later time, after the process has established that the

re-execution of its actions generate different output messages (lazy cancellation) or

different process states (lazy re-evaluation). Lazy cancellation avoids unnecessary

rollbacks and thus improves performance, however, if rollbacks are necessary,

aggressive cancellation will enable them to occur sooner, thus preventing erro-

neous computation from spreading further into the model; it has been shown

that in most cases lazy cancellation tends to perform better that its aggressive

counterpart [Gafn85] [Gafn88] [Lomo88] [Righ89].

3.8.1.1 Global Virtual Time

In order to have the ability to cancel past actions, each process maintains a

record of its past history which is periodically updated; typically, this record

includes past state vectors, processed input events, and previously sent output

messages. For the rollback of the simulation to be feasible, each process must

hold information regarding its history up to last “correct time”, which generally

CHAPTER 3. MODELLING AND SIMULATION 73

is the smallest local clock value amongst all independent processes. This value is

referred to as the Global Virtual Time (GVT); algorithms for the computation of

the GVT have also been developed [Sama85] [Bell90] [Lin90a] [Prei89].

3.8.1.2 State Saving and Memory Management

The periodic need to save and maintain information regarding the past history

of the logical processes has a significant impact on both the performance and

the memory requirements of the simulation [Fuji90] [Akyi93] [Prei92] [Bell92]

[Clea94].

State saving may require the traversal of complex dynamic data structures, a

function which involves a significant amount of computation and can degrade the

performance of the simulation, even if the state vector is of relatively moderate

size. To address this issue, the use of hardware support for speeding up state

saving has been proposed [Fuji89b] [Fuji88a]. This approach however does not

provide a solution to the demand for large amounts of storage to maintain process

history records.

Infrequent state saving can reduce both the time spent during the saving and

the amount of information needed to be stored but increases the cost of rollbacks,

as processes have to roll back further into the simulated past, thus cancelling and

reexecuting more events [Lave83] [Mitr84] [Lin90b].

Another approach to reduce the memory requirements is the frequent com-

putation of GVT; each time the GVT is computed, storage used for history

before the new GVT may be reclaimed (this is referred to as fossil collection

[Jeff85a]). However, the computation of GVT involves global synchronization

and, consequently, frequent update of GVT can degrade performance.

The aforementioned techniques attempt to manage memory so that the simu-

lation does not run out of space; a number of techniques have also been developed

CHAPTER 3. MODELLING AND SIMULATION 74

to address the problem of freeing memory when this situation does indeed occur.

These techniques include message sendback [Jeff85a] [Gafn88], cancellback [Jeff90]

and artificial rollback [Lin92]; the basic idea behind these mechanisms is to

rollback overly optimistic computations and reclaim the memory they use.

3.8.1.3 Characteristics of Optimistic Protocols

Optimistic synchronization approaches can accommodate dynamic creation of

logical processes [Tink89], and are typically more transparent to the simula-

tion programmer. However they are more complex to implement due to the

requirements for effective memory management and are more difficult to debug

than their conservative counterparts [Fuji90]. Reported speedups achieved by

optimistic techniques include 10 to 20 on a 32 processor hypercube machine and

27 using 100 processors of a BBN Butterfly [Fuji90] and 57 on a 64 node hypercube

[Fuji89a].

3.9 Modelling and Simulation in Computer Ar-

chitecture Research

Technological and architectural advances have dramatically increased the size and

complexity of computer system designs. The need to cope with this complexity

and the requirement for shorter development times and reduced cost have assigned

key roles to modelling and simulation in computer architecture research. Mod-

elling and simulation are essential tools for experimenting with alternative ways

of using the available silicon area, verifying the timing behaviour and functional

correctness and measuring the performance of alternative architectural designs.

A digital system may be modelled at different levels of abstraction (figure 3.2)

[Hart87] [Arms89]:

CHAPTER 3. MODELLING AND SIMULATION 75

SILICON LEVEL

CIRCUIT LEVEL

SWITCH LEVEL

REGISTER TRANSFER

CHIP LEVEL

GATE LEVEL

 LEVEL

Figure 3.2: Abstraction Levels in Digital Systems

• Silicon Level. At this level the real geometry of the physical layout of

materials such as diffusion, polysilicon, and metals on the silicon surface

is described. Typically the layout is specified by means of a schematic,

graphical representation, though textual layout formats are also used (e.g.

the “Caltech Intermediate Form” [Mead80]). The layout is a symbolic,

non-mathematical model, a purely morphological description, without any

behavioural information incorporated and therefore can not be used directly

for simulation.

• Circuit Level. At this level the system is expressed in terms of traditional

passive and active electrical circuit components such as resistors, capacitors

and bipolar or MOS/CMOS transistors. The circuit may be specified as a

schematic diagram or via a textual description; the textual version of a

circuit diagram is called a circuit level net list. The circuit net list may

CHAPTER 3. MODELLING AND SIMULATION 76

be specified explicitly or be extracted from the physical layout or circuit

schematics. At circuit level, the input and output of each component in the

model have analogue values. The analogue behavior of the components at

this level is typically expressed in terms of differential equations which may

be solved by a circuit simulator (e.g. SPICE [Nage73]); circuit simulators

typically use as input the circuit net list.

• Switch Level. At this level, the system is described at the same level

of abstraction as in the circuit level, however only digital, rather than

analogue, signal values are considered (i.e. {1,0}, {on, off}, {high, low}).

The same circuit diagram and circuit net list are used, but components

are modelled in a much simpler way, wherein, instead of a precise analogue

behaviour only the digital behaviour is described. Transistors are modelled

as switches, with two states, namely “on” (low impedance) and “off” (high

impedance). A model at switch level, and all levels above that, may be

simulated using a discrete event simulator.

• Gate Level. This is the logic design level, where the implementation of

the system in terms of gates (AND, OR, inverters etc) and flipflops is

described. This description may be provided graphically, by means of a

logic diagram, or textually, using a Hardware Description Language (HDL);

a gate level net list may be automatically extracted from the schematic or

textual specification. The net list may be provided as input to a discrete

event logic simulator. Gate level has traditionally been the main design

level for digital systems.

• Register Transfer Level (RTL). Here, the model of the system is expressed in

terms of higher level components such as registers, counters, multiplexers,

CHAPTER 3. MODELLING AND SIMULATION 77

ALUs, multipliers, shifters, memory blocks etc.; these components are some-

times referred to as functional blocks, assigning the term functional level

modelling to RTL descriptions. Although, in principle, RTL components

may be expressed in terms of an interconnection of lower level primitives

(such as gates) this is not the design approach adopted at this level; rather,

RTL components are primitive behavioural models directly expressed using

a functional HDL. RTL models may be simulated by a functional discrete

event simulator.

• Chip (or Architectural) Level. At this level, the structural primitives of the

model are blocks such as processors, memories, serial and parallel ports,

interrupt controllers etc. Typically, the model boundaries are defined by

the chip boundaries, however this requirement is not restrictive (e.g. when

modelling parallel architectures, where the system consists of more that

one chip). As with the functional blocks in the Register Transfer level, chip

level components are primitive behavioural models and are not specified

hierarchically in terms of lower level blocks. Discrete event simulation is

employed for the execution of chip level models.

A number of Computer Aided Design tools have been developed and are

commercially available [Wern84]. Typically, these tools allow the modelling of

the system at different levels of abstraction (sometimes providing automatic

transformation of the model from level to level), provide a Hardware Description

Language for the behavioural specification of functional blocks and employ a

discrete event simulator for the simulation of the modelled system.

CHAPTER 3. MODELLING AND SIMULATION 78

3.9.1 The Need for Improved Digital System Simulation

Performance

The level of abstraction at which a system is modelled has a direct impact on

the performance of the simulation of the model. Switch and logic level mod-

els typically consist of hundreds of thousands of components, whose simulation

on conventional von Neumann machines is extremely time consuming. The

increasing complexity of architectural designs has also dramatically decreased

the speed of higher level simulators (e.g. Register Transfer and chip level); this

is particularly true in the design of parallel architectures, where the simulation

of the parallel execution of even a small workload can consume large amounts

of CPU time, while in order to obtain a reliable performance evaluation of the

system, large workloads need to be simulated. Long execution times have made

simulation a major and increasing bottleneck in the VLSI design process.

Various approaches have been followed to speed up the simulation of digital

systems. One such approach makes use of special purpose hardware accelerators

to execute the simulation; these can achieve impressive simulation performance,

however, they are expensive and have limited flexibility in terms of simulated

element types and delay models [Avra83] [Agra87] [Blan84]. Another technique is

partial simulation, wherein only parts of the system are tested through simulation;

this can accelerate the overall design process but entails the danger of overlooking

costly design errors.

3.9.1.1 Parallel Digital System Simulation

An alternative approach to speed up simulation, is to employ parallel simula-

tion techniques whereby gates, functional blocks, etc. are modelled as logical

processes, and execute the simulation model on a multiprocessor machine. This

approach has the potential for higher performance as digital systems typically

CHAPTER 3. MODELLING AND SIMULATION 79

have a degree of inherent parallelism, and consequently has received considerable

attention and interest.

Su and Seitz [Su89] have used variations of the conservative deadlock avoid-

ance algorithm (Null messages) for gate level simulations and have achieved a

speedup of 8 on 64 and 10 to 20 on 128 processors of an Intel iPSC machine.

Soule and Gupta [Soul91] have examined gate level simulations using both,

deadlock detection and recovery algorithms and centralized simulation on shared

memory machines achieving a speedup of 16 to 29 on an 64-processor parallel

machine, 6 to 9 on a 14-processor Encore Multimax and 2 to 4 on a 16-processor

DASH respectively.

DeBenectitus et al. [DeBe91] examines gate level simulation, using a conser-

vative algorithm which eliminates cycles in the logic diagram.

Briner [Brin91] and Sporrer and Bauer [Spor93] use Time Warp for switch and

gate level simulations on a 32-processor BBN GP100 machine reporting speedups

from 5 to 12 and 4 to 8 respectively.

Comparison studies of various synchronization protocols for gate level simu-

lation have been performed by Lin et al. [Lin90c], Chung and Chung [Chun91]

and Manjikian and Loucks [Manj93]; those report that optimistic protocols yield

better performance.

Parallel techniques have also been applied for simulation at the architectural

level (parallel architectural simulation).

Yu et al. [Yu89] use time driven algorithms to simulate multistage interconnec-

tion networks, reporting speedups ranging from 8 to 14 on a 16-processor Sequent

machine; Ayani and Rajaei [Ayan90] also simulate multistage interconnection

networks but using a conservative protocol.

Lin et al. [Lin89a], Heidelberger and Stone [Heid90] and Nicol et al. [Nico92]

employ parallel techniques for the simulation of cache memories driven by memory

CHAPTER 3. MODELLING AND SIMULATION 80

reference traces.

Reinhardt et al. [Rein93] use synchronous conservative algorithms to simulate

a shared memory parallel architecture while Bailey and Pagels [Bail91] employ

the deadlock avoidance algorithm for the simulation of bus-based multiprocessors.

Konas and Yew [Kona92] compare the performance of the deadlock avoidance

algorithm with Time Warp and a synchronous technique based on a global clock

for simulating a synchronous multiprocessor system; they conclude that the syn-

chronous, global clock method yields the best performance.

3.10 Summary

This chapter has presented a short overview of modelling and simulation, with

emphasis on distributed simulation. The causality issues arising in distributed

simulations have been discussed and the various techniques that have been de-

veloped to address these issues have been presented. The chapter has concluded

by discussing the role of modelling and simulation in digital system design.

The next two chapters deal with asynchronous hardware systems, and in

particular with issues related to the modelling and simulation of such systems.

Chapter 4

Asynchronous Systems

4.1 Introduction

A digital system is typically designed as a collection of sub-systems, each per-

forming a different computation and communicating with its peers to exchange

information.

Before a communication transaction takes place, the sub-systems involved

need to synchronize, namely to wait for a common control state to be reached,

which guarantees the validity of data exchanged.

In synchronous systems, the synchronization of communicating sub-systems

is achieved by means of a global clock whose transitions define the points in time

when communication transactions can take place. The operation of a synchronous

system proceeds in lockstep, with the different sub-systems being activated to

perform their computations in a strict, predefined order.

Another digital design philosophy allows sub-systems to communicate only

when it is necessary to exchange information. The operation of the system does

not proceed in lockstep, but rather is asynchronous; each sub-system operates

at its own rate synchronizing with its peers only when it needs to exchange

information. This synchronization is not achieved by means of a global clock but

81

CHAPTER 4. ASYNCHRONOUS SYSTEMS 82

rather, by the communication protocol employed.

Asynchronous design techniques have been explored since, at least, the mid

1950s by a number of researchers including Huffman [Huff54], Muller and Bartky

[Mull56], Unger [Unge69], Miller [Mill65], Keller [Kell74] and Seitz [Seit70] [Seit80].

An influential contribution in the field was the Macromodules project at Wash-

ington University, St. Louis, where Molnar and Clark demonstrated the design

simplicity and modularity resulting from asynchronous logic [Clar67] [Clar74].

Some of the early mainframe computers, such as MU-5 and Atlas at Manchester

University [Ibbe78] [Lavi78], were constructed as entirely asynchronous systems.

Despite these efforts, the asynchronous approach has not hitherto been es-

tablished as a major philosophy in digital design due to a number of inherent

difficulties of asynchronous logic. The asynchronous, concurrent, operation of

sub-systems significantly complicates the task of specifying the ordering of com-

putations so that correct functionality is ensured; in synchronous systems the

ordering of operations is fixed by the placement of latches and the global clock.

Furthermore, in synchronous systems, circuit hazards and dynamic states may

easily be dealt with by adjusting the clock period; addressing these problems

in asynchronous systems is somewhat more complicated [Hauc93]. As a result,

synchronous techniques have been favoured by the VLSI design community and

most current digital design is based upon the synchronous approach.

However, recently, there has been an resurgence of interest in asynchronous

design techniques worldwide, due to the several potential benefits that the elim-

ination of global synchronization may offer.

4.2 Advantages of Asynchronous Systems

Four major areas in digital design may benefit by the application of asynchronous

logic, namely clock distribution, power consumption, performance and technology

CHAPTER 4. ASYNCHRONOUS SYSTEMS 83

migration.

4.2.1 Clock Distribution Problems

In a synchronous clocked system, the global clock signal must be distributed

across the silicon to control the operation of the different circuit elements. How-

ever, varied propagation delays prevent the clock signal’s arriving at all circuit

elements at exactly the same time; the difference in arrival times of the clock

signal at different parts of the circuit is referred to as clock skew. Clock skew is

typically accommodated by longer clock periods, which imply a reduced maximum

clock frequency. Advances in VLSI technology have led to a significant decrease

in process feature size and an increase in the number of devices which can be

built on a single chip. As VLSI systems become smaller, denser and faster, clock

skew becomes increasingly severe and accounts for more of the design expense

[Dobb92]. The lack of global synchronization in asynchronous systems eliminates

concerns regarding clock skew.

4.2.2 Potential for Low Power

Power consumption is increasingly a major concern in the rapidly growing market

for portable equipment, where battery life is crucial, and in the design of high

performance RISC processors, where high heat dissipation introduces difficulties

in packaging as well as cooling CMOS VLSI devices [Furb95]. In CMOS, the

power dissipated is proportional to the clock frequency [Eshr89].

Lower voltage VLSI processes can reduce power consumption but not to a

degree sufficient to meet the performance requirements of current and future VLSI

systems1 [Furb95]. Power consumption can be further reduced by activating only

1For example, a decrease in supply voltage from 5V to 3V reduces the power by a factor of
3 while a decrease to 2V reduces power by a factor of 6 [Furb95].

CHAPTER 4. ASYNCHRONOUS SYSTEMS 84

those units of the system that do useful work, i.e. those used in the current com-

putation. Typically, in synchronous systems, the global clock toggles clock lines,

charging and discharging capacitance throughout the silicon area, even in portions

of the circuit unused in the current computation. To address this problem logic

design techniques which gate off clock signals from certain areas of the circuit,

and architectural techniques which attempt to eliminate redundant operations

(such as speculative prefetching) have been developed [Furb95] [May94]. These

approaches, however, compromise the flexibility of the design and increase its

complexity, making global synchronization even more difficult.

In asynchronous systems, circuit components are activated only when neces-

sary, while at other times they remain idle without dissipating significant power.

4.2.3 Potential for High Performance

As already mentioned, the elimination of clock skew removes the limitation

imposed on performance by the need for extended clock periods and hence,

reduced clock frequencies; furthermore, the lower power consumption promised by

asynchronous logic may allow increased supply voltages with decreased heat dissi-

pation and, consequently, increased performance. However, there is a more direct

impact that asynchronous design may have on the performance. Synchronous

systems are optimized for worst-case conditions; the clock period is adjusted

according to the time that might be required for the slowest operation to complete,

even though, in general, the average case will complete in a much shorter time

(e.g. in a ripple-carry adder). Asynchronous systems can be optimized for the

average-case conditions with each operation taking as long as required for any

particular situation.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 85

4.2.4 Better Technology Migration Potential

Asynchronous philosophies allow a system to be designed as a set of sub-systems

communicating via well defined interfaces (see section 4.3.2). Since there is no

global synchronization, components in an asynchronous system may be substi-

tuted by faster ones, without altering other components or the overall structure

of the system, providing the interfaces are compatible; the substitution of a

component may directly affect the performance of the overall system. In a syn-

chronous system, the overall performance depends on the worst-case conditions

and therefore, it is often the case that in order to exploit the speed potential

offered by a new technology, reorganization of the whole system is required to

deal with the new worst-case conditions.

4.3 Basic Characteristics of Asynchronous Sys-

tems

Current asynchronous designs are typically categorised by the timing model they

assume, the signalling protocol they use and the technique they employ for the

transfer of data between two elements.

4.3.1 Timing Model

The timing model defines the assumptions which are made regarding the circuit

and signal delays of the system. Two main categories are typically distinguished:

• Delay insensitive systems guarantee correct functionality regardless of the

delays in circuit elements and the delays in the wires which connect them.

A speed independent system ignores delays in circuit elements but assumes

zero delays in the wiring.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 86

Sender Receiver

Request

Acknowledge

Figure 4.1: The Request-Acknowledge Interface

=

Figure 4.2: Two-phase Signalling: Rising and Falling Edges Equivalent.

• Bounded delay systems base their correct functioning on the assumption

that processing and communication delays are bounded by some predefined

upper limit.

4.3.2 Signalling Protocols

The signalling protocol specifies the sequence of events which must take place in

a communication transaction between two elements of the asynchronous system.

Typically, an asynchronous communication protocol employs two signals, namely

a request and an acknowledge as depicted in figure 4.1. A communication trans-

action between a sending and a receiving element can be considered as having

two or four phases.

4.3.2.1 Two-phase Signalling

Two-phase signalling recognizes and responds to transitions of the voltage on a

wire, regardless of whether the transition is rising or falling; rising and falling

CHAPTER 4. ASYNCHRONOUS SYSTEMS 87

Request

Acknowledge

First
Transaction

Second
 Transaction

Figure 4.3: Two-phase Signalling Protocol

Request

Acknowledge

First
Transaction

Second
 Transaction

Figure 4.4: Four-phase Signalling Protocol

edges are equivalent and carry the same information (figure 4.2). A transition is

referred to as an event; two-phase signalling is also called transition signalling.

Figure 4.3 illustrates the interaction between a sending and a receiving element

using two-phase signalling. The sender initiates the transaction and issues a

request event to the receiver by causing a transition on the request wire (first

phase); the receiver responds by issuing an event on the acknowledge wire (sec-

ond phase). Rising and falling transitions on the request wire alternate, each

transition initiating a new communication transaction.

4.3.2.2 Four-phase Signalling

In four-phase signalling only one type of transitions (typically rising) is used to

signal events; the other, the falling, is used once the transaction is complete,

to return wires to their initial state. Four-phase signalling is illustrated in figure

4.4. The first two phases of the transaction are similar to the transition signalling

CHAPTER 4. ASYNCHRONOUS SYSTEMS 88

protocol (i.e. request high - acknowledge high) but in this case they are followed

by another two phases which restore the wires to their initial state (i.e. request

low - acknowledge low).

4.3.3 Data Passing Techniques

The request and acknowledge signals are used to regulate the flow of information

between two communicating elements in the asynchronous systems. This infor-

mation is a set of bits, with each bit being either “1” (high) or “0” (low). A

variety of techniques have been developed to encode the value of each bit being

transmitted during a communication transaction.

4.3.3.1 The Four-Wire Technique

The four-wire technique uses two pairs of request-acknowledge signals, one for

each value of the transmitted bit. An event on one request signal denotes a

“1” while an event on the other indicates a “0”. The two request signals are

mutually exclusive; the value of a bit cannot be both “0” and “1” at the same

time. Furthermore, in every transaction there is always an event on one of the

two request wires for each bit; thus, the entire data word has reached the receiver

when an event has been detected for each bit of the word. A new transaction will

not commence until an event has been detected by the sender on an acknowledge

signal for each bit.

4.3.3.2 The Three-Wire Technique

The three-wire technique is similar to the four-wire mentioned above, but uses

one acknowledge wire, instead of two, per pair of request wires. This scheme has

the advantage of using fewer wires per bit of information.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 89

Sender Receiver

Request

Acknowledge

Data

Figure 4.5: The Bundled Data Interface

Request

Acknowledge

Data

Sender’s Action

Receiver’s Action

Figure 4.6: The Two-phase Bundled Data Protocol

4.3.3.3 The Two-Plus-Wire Technique

Another variation of the two aforementioned techniques is the two-plus-wire scheme,

whereby two request wires per bit are used, one for encoding each of the two

values, but the acknowledgements for all bits are combined into a single event

which is transmitted over a single wire. Thus, for an n-bit data word, 2n+1 wires

are required. The two-plus-wire scheme, like both its aforementioned variants,

may use transition or four-phase signalling for the communication of the request

and acknowledge events; if four-phase signalling is employed the protocol is

referred to as dual rail encoding.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 90

4.3.3.4 The Bundled Data Technique

The bundled data technique employs a single pair of request and acknowledge

signals for the entire data word. This scheme is illustrated in figure 4.5. As for

the three techniques mentioned above, transition or four-phase signalling may be

used. Figure 4.6 illustrates the two-phase bundled data protocol. The sender

places the data to be transmitted on the data wires (grey area in figure 4.6)

and then initiates a communication transaction by issuing a request event to

the receiver. Upon detecting the request event, the receiver commences the

processing of the data. When the processing is completed, the receiver issues

an acknowledge event to the sender, whereupon the sender can remove the data

and start preparing the next value; the data must be kept stable until the sender

receives the acknowledgement from the receiver.

Contrary to the three data passing techniques described in sections 4.3.3.1-

4.3.3.3, which are delay insensitive, the bundled data technique is based on the

bounded delay model; all transitions on the data wires must be observed at the

receiver before the request event, i.e. the delay on the data wires must be less

than the delay on the request signal. This requirement is known as the bundled

data delay constraint.

4.4 Micropipelines

In his influential 1988 Turing Award lecture, Ivan Sutherland introduced a new

conceptual framework for designing asynchronous systems [Suth89]. Within this

framework an asynchronous system is designed as a set of “Micropipelines”. A

Micropipeline is a simple, data processing, elastic2 pipeline whose stages operate

asynchronously and communicate using the two-phase bundled data protocol.

2A pipeline is elastic if the amount of data in it may vary in time. The input and output
rates of an elastic pipeline may not be equal.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 91

C SELECT
FalseTrue

TOGGLE

A
R

B
IT

E
R

r1

r2

g1

g2

d1

d2

C
A

LL

r

d

r1

r2

d1

d2

a) Muller-C

e) Call f) Arbiter

c) Select

d) Toggle

b) Xor

Figure 4.7: Event Control Modules

Sutherland also proposed a set of event control blocks for the design of control

circuits in micropipelined systems as well as event controlled storage elements to

be used in such systems.

4.4.1 Event Control Elements

The basic set of event control blocks proposed by Ivan Sutherland is depicted in

figure 4.7:

• The Muller-C element provides the AND function for transition signals

(events). An event is generated on the output side only if an event has

been received on both inputs of the Muller-C.

• The Xor element implements the OR function for transition events. An

event arriving on either input will cause an output event to occur; for correct

operation, events should not be issued simultaneously on both inputs. Xor

is also referred to as merge.

• The Select block implements a conditional test, steering events arriving on

CHAPTER 4. ASYNCHRONOUS SYSTEMS 92

its input to the appropriate output according to a Boolean select signal

(denoted by a diamond in figure 4.7c).

• The Toggle block also steers input events to one of its outputs, however this

is not done on the basis of a Boolean test but alternately, starting with the

output indicated by the bullet (figure 4.7d).

• The Call block is used to allow two separate circuit components to share

access to a single sub-circuit. The two requesting components may issue

request events on r1 and r2 respectively. Simultaneous events on both

request inputs are not allowed; a new input request will be issued only after

the processing of the previous input event has been completed. Upon receipt

of an input request, the Call generates an output request (r); when the

acknowledge signal is issued by the requested sub-circuit (d), Call steers it to

the appropriate requesting component (either d1 or d2). The functionality

provided by the Call element is analogous to a procedure call in software.

• The Arbiter block is used to permit two independent, asynchronous circuit

components mutually exclusive access to a common sub-circuit. Request

events may arrive (on r1, r2 wires) at arbitrary times and it is the responsi-

bility of the arbiter to guarantee that only one request event is let through

(issuing an event on either g1 or g2) and served at each particular moment.

Typically the first request to arrive is granted service (in a fashion similar to

the Call block) while the arbiter, acting like a semaphore, delays subsequent

grants until after the acknowledge signal (d) corresponding to the previous

request has been received. If both input requests arrive simultaneously, an

arbitrary, non-deterministic choice is made.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 93

C

D
in

Pd

P

D
ou

t

Cd

R
eg

is
te

r

Figure 4.8: The Capture-Pass Storage Element

4.4.2 Event Controlled Storage Element

In his “Micropipelines” lecture, Sutherland also introduced the Capture-Pass

latch, a storage element suitable for use in micropipelined systems. A high level

view of the Capture-Pass element is depicted in figure 4.8.

The latch is controlled by two control signals, namely Capture (C) and Pass

(P). Initially the latch is in its transparent state, where the input is connected

through to the output (i.e. Din = Dout). When an event is issued on the Capture

wire (C) the input-output connection is interrupted, the data is “latched”, and

an event is issued on the Cd signal (Capture done) to indicate the change of state

in the latch (i.e from transparent to opaque); the latched data does not change

with subsequent data input changes.

When an event arrives on the Pass wire, the input is connected back through

to the output, thus making the latch transparent again; this change is indicated

by an event on the Pd (Pass done) signal. The Capture-Pass may repeat, with

events arriving alternately on the C and P wires respectively.

Sutherland described various implementations of the Capture-Pass latch, us-

ing inverters and switches suitably connected [Suth89], pp. 727-728.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 94

Rout

Aout

Rin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd C
D

in
Pd

P

D
ou

t

Cd

C

C

C

D
in

Pd

P

D
ou

t

Cd

C

C

D
in

Pd

P

D
ou

t

Cd

C

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

DELAY

DELAYDELAY

DELAY

A1

A2

A3

R1

R2

R3 A4

Figure 4.9: Micropipeline Without Processing

4.4.3 Micropipelines Without Processing

By combining control blocks with event controlled storage elements, Micropipelines

of arbitrary complexity may be constructed. The simplest Micropipeline is a

series of Capture-Pass registers connected together to form a First-In-First-Out

(FIFO) structure. The registers are controlled by a series of Muller-C elements

as depicted in figure 4.9. The small circles on Muller-C elements’ inputs, indicate

those which have been initialized in an active state, even though an event has

not been received yet; thus, as soon as the first event arrives on the other input

wire causes Muller-C to generate an output event.

Initially, when the pipeline is empty, the value of all the wires is Low and

all the registers are transparent. When the first request event arrives on Rin,

it passes through the Muller-C element causing the first Capture-Pass register

to capture the data on the data bus (Din), enter its opaque state, and issue a

“Capture done” event on the Cd wire. This event is sent as an acknowledgement

on the Ain wire to indicate that the data has been latched and, therefore, may

CHAPTER 4. ASYNCHRONOUS SYSTEMS 95

be removed from the data bus.

The “Capture done” event is also sent as the request signal (R1) to the next

register of the pipeline, to indicate the availability of data to be latched by that

register; this is done through a delay unit which is intended to slow down the

request event and give the data enough time to arrive at the register before the

request, thus guaranteeing that the bundled data delay constraint is not violated.

R1 will propagate through the Muller-C element and will force the second

register to latch the data, whereupon Cd will be activated issuing an acknowledge

event back to the first register in the pipeline. This acknowledgement will activate

the Pass control wire (P) of the first register forcing it to become transparent

again. The “Pass done” generated by the first register as a response is directed to

the Muller-C element to enable a subsequent request event on Rin to propagate

through the Muller-C and close the register.

This process continues, with the data propagating through consecutive stages

until it reaches the output of the pipeline (Dout), whereupon a request event on

Rout will be issued; with the arrival of the corresponding acknowledgement on

Aout, the data value will be removed from the pipeline. While Aout is awaited,

further request events arriving on R3 will not be allowed to propagate through

the Muller-C element; thus, any subsequent data values which enter the pipeline

during this time will occupy consecutive registers of the pipeline until the pipeline

becomes full, whereupon no more requests will be able to enter the pipeline until

Aout is issued and the data value at the output is removed.

4.4.4 Micropipelines With Processing

The simple FIFO micropipeline described in the previous section can be enhanced

to perform processing on the data, by interposing the necessary logic (combina-

torial circuits) between adjacent register stages as depicted in figure 4.10. The

CHAPTER 4. ASYNCHRONOUS SYSTEMS 96

Rout

Aout

Rin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd C
D

in
Pd

P

D
ou

t

Cd

C

C

C

D
in

Pd

P

D
ou

t

Cd

C

C

D
in

Pd

P

D
ou

t

Cd

C

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

R
eg

is
te

r

DELAY

DELAYDELAY

DELAY

A1

A2

A3

R1

R2

R3 A4

LO
G

IC

LO
G

IC

LO
G

IC

Figure 4.10: Micropipeline With Processing

operation of the pipeline is similar to that of the simple, non-processing FIFO,

but the request signals in the forward propagation path must be further delayed

to accommodate the extra delays imposed on the datapath by the processing

logic.

4.5 AMULET

With the aim of exploring the potential advantages of asynchronous logic and in

particular, the potential for reduced power consumption, the AMULET group

[AMUL] was established in 1990 by Profesor S. B. Furber in the University

of Manchester. The group has been involved in a number of ESPRIT funded

projects, including OMI-MAP3 (Open Microprocessor systems Initiative - Mi-

croprocessor Architecture Project, ESPRIT project 5386), whose objective was

3The industrial and academic partners of AMULET within OMI-MAP included Acorn
Computer Limited, Advanced RISC Machines Limited, Bull, U.K. Defence Research Agency,
EO Computer Limited, IMEC in Leuven, Inmos Limited, Oxford University, Siemens AG and
Thomson CSF-DOI.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 97

to investigate trends in technology and microprocessor design in order to de-

fine standards for a European computer architecture, OMI-DE/ARM4 (Open

Microprocessor Systems Initiative - Deeply Embedded ARM project, ESPRIT

project 6909), which investigated the utilization of the ARM microprocessor core

in highly embedded applications, OMI-EXACT5 (Open Microprocessor Systems

Initiative - Exploitation of Asynchronous Circuit Techniques project, ESPRIT

project 6143), which is investigating the application of asynchronous design tech-

niques for electronic consumer products, and OMI-HORN6 (Open Microprocessor

Systems Initiative - Highly Optimized Reusable Nucleus project, ESPRIT project

7249), which is investigating the use of low power logic in microprocessor design;

AMULET also participated in the DTI funded TAM-ARM project7 (Transform-

ing Architectural Models) which explored the potential use of bipolar technology

for asynchronous design, and was an active member of the ACiD (Asynchronous

Circuit Design) basic working group.

In order to investigate the suitability of Micropipelines for the design of com-

plex systems, the AMULET group have developed AMULET1, an asynchronous

implementation of the ARM RISC microprocessor, within the OMI-MAP project.

AMULET1 has been designed to offer object code compatibility with the 32-bit

ARM6 processor8. ARM6 is described in [Furb89] [VLSI90]; a short description

of ARM6’s instruction set is provided in appendix A.

4The industrial and academic partners of AMULET within OMI-DE/ARM included
Advanced RISC Machines Limited, Electronica S.p.A., GEC Plessey Semiconductors, Hagenuk,
Hannover University, IRIS, Manchester University and UMIST.

5The industrial and academic partners of AMULET within OMI-EXACT included Philips
Research Laboratories in Eindhoven, Eindhoven University of Technology, IMEC in Leuven,
South Bank University and EDC in Leuven.

6The industrial and academic partners of AMULET within OMI-HORN included ACRI,
Thomson CSF, Oxford University, CTI in Patras, Greece, Inmos Limited, University of Bristol,
Blue Star in UK, ACSET in Belgium and the University of Karlsruhe.

7The industrial partners of AMULET within TAM-ARM include Advanced RISC Machines
Limited and GEC Plessey Semiconductors.

8Actually, a number of architectural features of ARM6 such as coprocessor instructions,
the MLA (multiply with accumulate) instruction and the 26-bit mode of operation, are not
supported by AMULET1.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 98

The design and operation of AMULET1 have been described by Furber, Paver,

Day, Garside and Woods in a number of publications including [Furb92] [Furb93]

[Furb93a] [Furb94] [Furb94a] [Furb95] [Day92] [Day95] [Gars92] [Gars93] [Pave91]

[Pave92] and [Pave92a]; a more complete and detailed description of AMULET1

is provided by Paver in [Pave94].

The next section presents a short overview of AMULET1; a further discussion

of various aspects of AMULET1’s operation which are relevant to this thesis is

provided in chapter 6, as part of the description of AMULET1’s occam model.

4.6 The AMULET1 Microprocessor

AMULET1 was designed in the period 1990-1993 and was implemented using a

mixture of custom datapath and compiled control logic elements. Two silicon

implementations have been developed, one fabricated on a 0.7 micron CMOS

process and yielding a performance of 28kDhrystones9, and the other on a 1.2

micron process yielding a performance of 20kDhrystones; the performance of

AMULET1 is estimated as 70% of the performance of its synchronous counterpart

using the same geometry and operating at 20 MHz. The power consumption of

AMULET1 is similar to that of ARM6 (75mW operating at 10 MHz).

4.6.1 The AMULET1 Interface

The interface via which AMULET1 interacts with its environment is illustrated

in figure 4.11, where a configuration including a memory module and an MMU

(Memory Management Unit) is depicted. The interface includes an output and

an input data bundle for the exchange of data with the memory, two wires to

signal data aborts, two interrupt and one reset signals.

9A description of the Dhrystone benchmark is provided in section 8.2.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 99

AMULET1 Memory

MMU

Initialise

Read Data

Write Data

Control

Dabt0 Dabt1

Interrupts

FIQ IRQ

Address

Write Data

Control

Address

Figure 4.11: The AMULET1 Interface

The output bundle contains a memory address, control information and, in

the case of a write operation, the data to be written to memory. The control

information consists of a number of bits specifying the type of operation being

performed (read or write), the type of information being fetched (instruction or

data), the mode of operation (privilege or user) so that memory protection can

be implemented and whether sequential address access is likely, so that fast page

mode of DRAM may be used.

In the case of read operations, the memory responds to the processor’s request

by issuing a bundle with the requested information (instruction or data).

The definition of the ARM6 architecture includes support for virtual memory.

Each time a data address is issued to memory, the current state of the processor is

preserved until the MMU responds by issuing an abort/no abort signal indicating

whether or not a page fault has occurred. If a fault occurs the exception handling

software is invoked. In AMULET1, the response from the MMU is issued using

a two-plus-wire protocol, (although no acknowledgement event is included in the

transaction, see section 4.3.3.3); if a page fault occurs, the MMU issues an event

CHAPTER 4. ASYNCHRONOUS SYSTEMS 100

on Dabt1 wire (abort), otherwise an event on Dabt0 (no abort) is generated.

In the case of an instruction address causing a page fault, no explicit signalling

is required as the state of the processor is not directly affected; the aborted

instruction is tagged as invalid and the exception handling software is invoked

when the invalid instruction is detected by the processor. The operation of

AMULET1 with regard to aborts is described in section 6.5.

AMULET1 also supports the two level-sensitive interrupt signals specified

by the ARM6 architecture, namely FIQ and IRQ. These are completely asyn-

chronous to the operation of the processor and may be issued at any time.

The reset signal is used to initialize the state of the processor, whereupon

the issuing of sequential instruction addresses to memory, starting from zero,

commences.

4.6.2 The AMULET1 Internal Organization

The internal organization of AMULET1 is depicted in figure 4.12. The processor

consists of five major units, namely the address interface, the data interface, the

execution unit, the register bank and the primary decode. Figure 4.13 illustrates

the layout of the functional units of AMULET1 on the 1.2 micron implementation

of the processor.

4.6.2.1 The Address Interface Unit

The address interface is responsible for providing all address information to mem-

ory. It operates as an autonomous unit, issuing sequential instruction addresses

to maintain a steady flow of prefetched instructions to the processor.

Data transfer and branch target addresses, generated by the execution unit

of the processor, are also issued to memory through the address interface unit,

temporarily interrupting its autonomous operation. For multiple data transfer

CHAPTER 4. ASYNCHRONOUS SYSTEMS 101

Ctrl
2

X pipe
rdgen

A Pipe

MemCP
FIFO

ALU

shift

mux

arb. mux

mux

Wbus
Ctrl.

Address

Control Data Out Data In

CPSR

psrC

Cout

I[31:28], PcPar

pass

Cond

multiply

ImmExt

mux

Primary Decode

Dec
3

Dec
2

Reg
Control

NGen Registers

LSMp

incrementer

PC H. L.

Byte Rep.

mem ctrl

AddC

mux

Ctrl

3 mux

Byte Align

PC Pipe

IPipe

CPSR’

DestCtrl

Address Interface

Data Interface

Register

Execution

Exception

Immediate

Primary

Bank

 Decode
 Pipe

 Pipe

 Unit

DataIn

Dout

Wbus

Figure 4.12: The AMULET1 Internal Organization

CHAPTER 4. ASYNCHRONOUS SYSTEMS 102

RegBank

AddInt DatIntExecute Pipe

Decode2

Decode1

Decode3

Figure 4.13: The AMULET1 Processor Physical Layout

instructions10, the Incrementer module is activated to generate appropriate se-

quential memory addresses.

The address interface is also responsible for providing the execution unit with

the appropriate Program Counter (PC) value (via the PC Pipe), to be used as

the general purpose register R15 for the execution of the current instruction, as

specified by the definition of the ARM architecture. For instructions which have

the potential to abort, the PC value is also copied into the Exception Pipe (XPipe)

to be preserved.

The address interface unit is described in more detail in section 6.3.

4.6.2.2 The Data Interface Unit

All data flow between the processor and the memory subsystem is channeled

through, and controlled by, the data interface. A memory access via the data

10This refers to LDM and STM instructions, see appendix A.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 103

interface may be either a write or a read operation; the latter concerning data

values or instructions.

Read addresses are simply forwarded to the memory. The data interface

keeps a record (in MemCP FIFO) of the type referenced by the address (i.e. data

or instruction), so that the value returned by the memory will be directed (by

DestCtrl module) to its correct destination; instructions are stored in a FIFO

(IPipe) before they are executed, while data values are forwarded to the register

bank via DataIn; this may rotate the data word by byte quantities for non word-

aligned loads and mask out the top 24 bits for byte reads. For instructions which

use immediate values as operands, the Immediate Pipe (ImmPipe) is activated to

extract the immediate value from the instruction word; ImmPipe also performs

sign extensions where required.

For write operations, the write address from the address interface needs to

synchronize with the value to be written before it is forwarded to the memory;

this value originates from the execution unit of the processor.

Before pairing up with their associated addresses, data values pass through

Dout, a three stage pipeline which incorporates control logic performing an op-

tional byte replication operation to enable byte writes to any byte-aligned address.

The operation of data interface is further discussed in section 6.4.

4.6.2.3 The Register Bank Unit

The register bank provides the top level of the memory hierarchy by means of

thirty general purpose and five status registers (Saved Processor Status Registers,

SPSRs). The register bank is the central structure of the processor’s datapath.

The execution of a typical instruction by the processor involves a) reading the

CHAPTER 4. ASYNCHRONOUS SYSTEMS 104

contents of the source registers11 specified by the instruction operands, b) per-

forming the operation dictated by the opcode, and, c) sending the result back to

the register bank to be written in the instruction’s destination register.

The register bank includes mechanisms for dealing with multiple pending write

operations and instruction interdependencies, issues which may cause problems

in an asynchronous environment.

A more detailed description of the operation of the register bank is provided

in section 6.7.

4.6.2.4 The Execution Unit

The execution unit is the computational core of the processor comprising a

multiplier, a shifter and an ALU. It is organized as two major sub-units, referred

to as Decode2 (Dec2-Ctrl2) and Decode3 (Dec3-Ctrl3) which control the operation

of the multiplier/shifter and the ALU respectively. The multiplier involves a shift-

and-add operation using carry-save adders. It operates on two source operands

and yields a partial product and carry output which have to be forwarded to the

ALU for the calculation of the final result. The shifter is based on the ARM6

barrel shifter and is connected to one of the operand buses, in series with the

ALU. The asynchronous ALU performs all the logical and arithmetic operations

specified by the ARM architecture, namely XOR, AND, OR and addition. Results

produced by the ALU can be placed onto the write bus (WBus) to be transferred

to the register bank or to memory via the address interface. The execution unit

shares the write bus with the data interface which uses it to transfer data arriving

from memory. Since values from the execution unit arrive asynchronously with

relation to the incoming data, arbitration is necessary to enable the sharing of

the write bus between the two data streams.

11The maximum number of source registers being accessed at any particular moment is
dictated by the number of output ports in the register bank which in ARM6 is two.

CHAPTER 4. ASYNCHRONOUS SYSTEMS 105

The execution unit also includes logic for the control of the Current Processor

Status Register (CPSR).

Section 6.8 provides a more detailed discussion on the operation of the exe-

cution unit of AMULET1.

4.6.2.5 The Primary Decode Unit

The primary decode constitutes the entry point to the datapath of AMULET1.

This is where instructions arriving from memory are first decoded before they

proceed to be executed. The primary decode produces the signals which control

the operation of the register bank and performs an initial partial decoding for the

execution unit. The primary decode unit is described in section 6.6.

4.6.3 AMULET2

The prototype AMULET1 has demonstrated the feasibility12 of employing asyn-

chronous logic for building large and complex asynchronous systems, but it has

failed to achieve the performance and power efficiency promised by asynchronous

logic.

Thus, the AMULET group have commenced the design of AMULET2, a new

improved version of AMULET1, within OMI-DE/ARM project. The objective

of AMULET2 design is to apply technological improvements (e.g. alternative

latch designs, use of four-phase protocol etc.) and architectural enchancements

(e.g. improved pipeline sizes, incorporation of a “Last Result Register”, branch

12Although the first asynchronous processor was developed by Martin et al. at Caltech
[Mart89a] [Mart89b], and various other asynchronous microprocessor designs were proposed
in the late 1980’s and early 1990’s [Davi89] [Gino90] [Dean92], AMULET1 was the first
Micropipelined processor to address critical and essential issues such as hardware interrupts and
exact exceptions. More recently, following AMULET1’s construction, a number of asynchronous
microprocessors have been developed, including the Counterflow Pipeline Processor, by
Sutherland, Sproull, Molnar et al. at Sun Labs [Spro94], the NSR RISC processor, by Brunvand
et al. at the University of Utah [Brun93] and the TITAC processor, by Naya et al. at Tokyo
Institute of Technology [Nany94].

CHAPTER 4. ASYNCHRONOUS SYSTEMS 106

prediction mechanisms etc.) in order to increase instruction throughput while

reducing power consumption [OMI94].

4.7 Summary

This chapter has discussed issues related to asynchronous hardware systems. The

various approaches to designing asynchronous systems have been presented, and

a description of Sutherland’s “Micropipelines” has been provided. The last part

of the chapter has provided a short description of the AMULET1 asynchronous

microprocessor.

The next chapter concentrates on the modelling and simulation of asyn-

chronous hardware systems.

Chapter 5

Modelling Asynchronous Systems

5.1 Introduction

The revival of interest in asynchronous digital logic has revealed a strong need

for suitable techniques for modelling asynchronous systems.

Recent years have witnessed the development of an increasing number of

different methodologies for the design, automatic synthesis and verification of

asynchronous circuits. Typically, these methodologies employ different notations

and techniques for the specification and description of asynchronous designs. A

detailed description of asynchronous design methodologies is beyond the scope

of this thesis. In depth surveys of existing asynchronous methodologies may be

found in [Broz89] [Gopa90] [Hauc93] [Broz95] and [Davi95] where comprehensive

bibliographies are provided; additionally, the Asynchronous Online Bibliography

(async-bib@win.tue.nl) provides continuous, up to date information regarding

asynchronous research.

The following section provides a short overview of the major and most influ-

ential asynchronous modelling techniques.

107

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 108

5.2 Modelling Techniques

Most, if not all, existing asynchronous modelling techniques are intended for the

automatic generation of asynchronous circuits from high level specifications.

I-Nets, is a graphical notation for describing asynchronous systems, proposed

by Molnar [Moln83]. I-Nets are based on Petri nets with transitions being labeled

with signal names; firing a labeled transition models a change in the corresponding

signal in the circuit. By applying a series of transformations, an I-Net may lead to

an Interface State Graph which may be used to obtain a Karnaugh map and finally

the asynchronous circuit; algorithms for the realization of these transformations

may be found in [Spro86], pp. 7.23-7.27.

Another graphical, Petri net based notation, is the Signal Transition Graphs

(STGs) developed by Chu [Chu85] [Chu86] [Chu86a] [Chu87]. STGs may be

transformed to asynchronous circuits using a procedure similar to that used for

I-Nets; techniques for the transformation of STGs have also been developed by

Lin and Lin [LinK91] [LinK92] [LinK92a], Meng et al [Meng89], Vanbekbergen

et al. [Vanb90] and Yakovlev [Yako92].

State transition diagrams have also been used as a specification notation

for the automatic synthesis of asynchronous finite state machines. Davis et al.

[Coat93] [Davi95a] have developed a collection of tools (known as MEAT) which

generate schematic diagrams at the complex gate-circuit level from state transi-

tion diagrams. A similar approach for the automatic synthesis of asynchronous

finite state machines has been used by Nowick, Dill and Yun [Nowi91] [Nowi91a]

[Yun92] [Yun92a].

5.2.1 CSP-based Modelling Approaches

The “Communicating Sequential Processes” (CSP) model of computation has

attracted the interest of many researchers as a potential means for the modelling

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 109

of asynchronous designs due to the strong relationship between its semantics and

the behaviour and structure of asynchronous systems:

• CSP supports a concurrent, process-based, asynchronous, non-deterministic

model of computation which exactly matches the behaviour of hardware

built using asynchronous logic.

• In CSP, the communication between different modules is point-to-point,

synchronous and unbuffered. This behaviour directly reflects the interac-

tion between subsystems in asynchronous hardware, where a sender and a

receiver rendezvous before physically exchanging data via wires, which are

memoryless media.

Several asynchronous modelling techniques have been developed which use

CSP-based notations.

A research group in Eindhoven University [Eber91] [Rem83] have developed

a formalism called trace theory whereby, starting from high level specifications

expressed in a CSP-like mathematical notation, circuits may be derived via

transformations (which are referred to as commands by Ebergen).

A variant of trace theory has been used by Dill to verify asynchronous circuits

[Dill89].

Udding and Josephs [Jose90] [Jose91] have adopted an algebraic approach

whereby, a system specification expressed in a CSP-like notation may be trans-

formed into a circuit via the use of a set of lemmas and axioms, known as Delay-

Insensitive algebra. Employing this method, a stack, a routing chip and an up-

down counter have been developed.

Martin [Mart86] [Mart89] [Mart90] and Burns [Burn87] have developed compiler-

oriented techniques for the translation of specifications expressed in CSP into

four-phase delay insensitive circuits. Their techniques have been used to develop

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 110

a number of circuits [Mart85] [Mart85a] [Mart85b], including a complete asyn-

chronous microprocessor [Mart89a] [Mart89b].

Akella and Gobalakrishan have extended Martin’s work in a system called

Shipha [Akel91] [Gopa93] which also employs a CSP-based notation but allows

global shared variables.

Van Berkel’s group at Philips Research labs (Eindhoven) have developed

Tangram, a CSP-like language, for the specification of asynchronous systems

[VaBe91]. A Tangram program can be compiled by syntax oriented translation

[VaBe88] [VaBe88a] [Nies88] into an intermediate form, which is referred to as a

handshake circuit [VaBe92]. A handshake circuit is a network of asynchronous

components, the handshake processes, which communicate via channels. Hand-

shake processes are directly mapped onto VLSI implementations.

Brunvand and Sproull [Brun89] [Brun91] [Brun91a] employ an occam-like

language to describe asynchronous systems. An occam-like specification can then

be compiled into an intermediate form using syntax directed translation, which

after peephole optimization can be mapped onto a library of transition signalling

components.

5.3 Modelling Micropipelined Systems with Oc-

cam

Contributing to the quest for suitable modelling notations and techniques for

asynchronous systems, and triggered by the increasing debate regarding the

potential use of CSP for this purpose, part of the research presented in this thesis

investigated the suitability of the occam programming language for modelling

asynchronous systems. The investigation targeted asynchronous systems that are

based on Sutherland’s Micropipelines, however the results may also be applied to

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 111

other asynchronous design methodologies.

5.3.1 Why Occam

There are several factors which advocate the candidacy of occam for the con-

struction of models of asynchronous systems:

• As explained in section 2.6.1, occam forms a practical realization of CSP,

and, consequently, maintains the strong relationship with regard to com-

munication and computation between CSP and asynchronous systems (see

section 5.2.1).

• Occam allows explicit description of parallel as well as sequential compu-

tation. This explicit control of concurrency which extends down to the

command level, along with its simple but powerful syntax and “send” and

“receive” commands, makes occam ideal for describing digital systems;

indeed, occam has been employed for modelling digital systems at vari-

ous levels by a number of researchers including Welch [Welc87], Dowsing

[Dows85], Chiu et al. [Chiu94] (gate level), de Almeida [Alme94] and Neto

[Neto91].

• Occam is primarily a general purpose programming language which may be

executed on a computer (transputer). Thus, a specification developed using

occam is automatically an executable simulation model of the asynchronous

system.

• Occam is a parallel programming language and thus may be used to perform

distributed simulation1. A simulation model written in occam may be dis-

tributed on a transputer network and execute concurrently to achieve high

1Occam has indeed been used as a programming language for building both conservative
and optimistic distributed simulations [Xu89] [Nevi89] [Djan89] [Cai90a] [Alon93].

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 112

performance. Asynchronous hardware systems are an excellent candidate

for distributed simulation. The concurrent operation of the different sub-

systems of an asynchronous system, the inherent parallelism within each

subsystem and the lack of any global synchronization, are characteristics

which support the concurrent execution of events in a simulation model.

In his flashback simulation approach [Suth93], Sutherland attempts to ex-

ploit these characteristics of asynchronous systems and allow “out-of-order”

processing of events to increase simulation speed; however, his simulation

retains its sequential nature, and is intended for execution on conventional

von Neumann computers. In section 3.9.1, the increasing importance of

simulation performance for the design of digital systems was discussed. In

the case of asynchronous hardware, there is one more factor that makes

simulation performance extremely important, namely the need to test the

delay independence of designs with regard to deadlocks.

5.3.1.1 The Deadlock Problem

The concurrent nature of asynchronous hardware systems along with the absence

of global synchronization, introduces a problem, common in asynchronous, paral-

lel structures, namely deadlocks. Deadlock is a high-level issue of the design, and

occurs when the system, as a result of a particular sequence of events, reaches a

state wherein at least one sub-system becomes indefinitely blocked.

In general, the sequence of events in an asynchronous system is non-deterministic.

This is due mainly to the behaviour of the arbiters. As explained in section 4.4.1,

an arbiter will service request events in arrival order. If two requests arrive at

the same time, the choice will be non-deterministic. Asynchronous logic allows

variable delays within the different sub-systems, which will affect the order in

which independent request events arrive at the arbiters of the system. The correct

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 113

functionality of the asynchronous system should not depend on the ordering of

independent streams of events; a correct design should be deadlock free for all

possible combinations of events.

Verifying that a concurrent, asynchronous structure is deadlock free is a com-

plex and difficult issue. Substantial research effort has been invested to develop

formal methods which guarantee deadlock freedom [Sifa80] [Rosc86] [FDR93].

However, existing formal techniques are not yet mature enough to tackle systems

of the complexity of asynchronous computer architectures [Furb94b], although

research is ongoing in this area [Birt94a] [Nick95].

A different approach is to guarantee deadlock freedom by construction, namely,

by applying certain rules during the design of the system [Welc93]. However, the

applicability of this approach for the design of asynchronous systems has not yet

been investigated2.

In practice, it is generally possible to identify, and thus avoid, certain design

decisions that are susceptible to deadlock [Pave94]. However the size, complexity

and the non-deterministic behaviour of asynchronous hardware systems do not

allow intuition to guarantee a deadlock free design.

Simulation can be an invaluable aid for this problem. The approach is to run

the simulation model of the system many times, each time with a different set of

delays in the component sub-systems [Furb95]. Changing the internal delays of

the sub-systems, changes the order in which events are generated. Consequently,

the order in which events from different data streams arrive at the arbiters

also changes. Since delays dictate event orderings, following this approach, the

design can be tested for possible deadlocks. The degree of confidence that a

design is deadlock free is proportional to the number of runs of the simulation

model. The speed of simulation here is crucial; a fast simulator, would allow the

2Such a task, which would attempt to exploit the characteristics of asynchronous hardware
systems in order to establish design rules that guarantee deadlock freedom would be extremely
important and would contribute enormously to asynchronous digital system design.

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 114

delay independence of the system with regard to deadlocks to be rigorously and

extensively tested for a large number of possible combinations of events.

This technique requires a modelling approach which would allow the rapid

production of executable models of the architecture at a high level so that possible

deadlocks are located at an early stage of the design process.

5.3.2 The Modelling Philosophy

The main objective of the modelling philosophy proposed in this thesis is to

exploit:

1. The strong relationship between CSP (and occam) and asynchronous hard-

ware, in order to achieve easy and rapid construction of models.

2. The inherent parallelism of the hardware, in order to achieve high simulation

performance.

The latter may be exploited at any level of abstraction at which the system is

modelled. The former, however, may be exploited only at the Register Transfer,

or higher, level of a Micropipelined system.

Assuming a correct implementation of the communication protocol, at the

Register Transfer Level, a Micropipelined system may be viewed as a network of

concurrent modules communicating via synchronous, unbuffered communication.

The modules are data-driven; each module will start computation as soon as

data is available on its input wires, and will signal when its result has been

computed. At this level, the system may be directly modelled using the “Logical

Process Paradigm” described in section 3.4; the model will consist of a network

of concurrent, communicating occam processes, topologically identical to the

asynchronous system, with each occam process modelling the behaviour of a

different functional module.

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 115

Since the correct operation of an asynchronous system does not depend on a

global clock, simulated time is not required for the synchronization of the occam

processes of the model. Processes are entirely data-driven and self-scheduling;

they are synchronised by the protocol employed in the communication semantics

of occam, in the same way that the communication protocol employed in the

asynchronous system synchronizes the different functional modules. Each process

will always consume event messages as soon as they become available, and will

always wait for subsequent messages if the messages it has generated have been

successfully forwarded.

This methodology provides a natural way for modelling an asynchronous

system based on the similarities between the system’s behaviour and the se-

mantics of occam. This basis, however, is not available for modelling at lower

levels of abstraction. In this case, no assumptions should be made regarding

the correctness of the communication protocol in the system; instead, explicit

modelling of the protocol to verify that it adheres to the bundled data delay

constraint is required. Occam may still be used for the description of low level

circuit elements (event control elements and gates), however simulated time is

essential for the synchronization and the correct operation of the simulation

model.

5.3.3 Modelling a Pipeline Without Processing

Following the modelling philosophy described in the previous sections, a register

in a Micropipeline without processing may be modelled as depicted in figure 5.1.

The request and acknowledge signals in the circuit are used to synchronize

the register with its neighbouring registers in the pipeline. In the model, synchro-

nization between occam processes is performed by the communication protocol

specified by the occam channel. Thus, no extra channels are required for the

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 116

Rout

AoutRin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd

C
R

eg
is

te
r

DELAY

Register
In Out

PROC Register(CHAN OF BUNDLE In,Out)
 SEQ
 WHILE TRUE
 SEQ
 In ? Data
 Out ! Data
:

In Out

Figure 5.1: Micropipeline Without Processing: The Register Model

request and acknowledge signals. The register model makes use of two channels,

for input and output respectively. The register process repeatedly reads data

from its input channel and forwards it to the next process in the pipeline before

it reads the next input value, thus manifesting a behaviour similar to that of the

Micropipeline stage described in section 4.4.3. A multi-stage Micropipeline may

be modelled by means of a parallel replication (PAR) of the register process, as

described in section 2.6.1.4.

5.3.4 Modelling a Pipeline With Processing

At the Register Transfer Level, a general Micropipeline with processing may

be viewed as depicted in figure 5.2. The sending register outputs its contents,

consisting of data and control bits, onto the data bus and produces a request

event (request wires are indicated in the figure by solid lines, while acknowledge

wires are denoted by dotted lines; dotted lines appearing in figures in this thesis

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 117

D
in

D
ou

t

R
eg

is
te

r

D
in

D
ou

t

R
eg

is
te

r

Control Logic

DPE

Figure 5.2: Micropipeline With Processing: A High Level View

hereafter, denote acknowledgement paths). The control bits are used by the

control logic to direct the request event to its correct destination activating, if

necessary, the data processing elements (DPEs, e.g. ALUs, multipliers, shifters

etc.) of the circuit. Data passes through the DPEs and propagates to the next

stage.

This general Micropipeline may be modelled by three occam processes, two

for the registers and one for the control/data processing logic; the control logic

and the DPE may be modelled as one process, with the DPE being a procedure

called by the control process.

The simple register model described in the previous section, is not suitable

for modelling the behaviour of a stage in a Micropipeline with processing. Using

this simple register model would force the control process to act as a buffer,

decoupling the register processes; the sending process would be free to read the

next value from its input channel, without first ensuring that the previous value

had been received by the destination register process. Thus, the control logic

process would introduce an extra pipeline stage in the model, a stage that does

not exist in the physical system. To avoid this situation, the register processes

must be kept tightly coupled and synchronized. This may be achieved by using

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 118

Rout

AoutRin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd

C
R

eg
is

te
r

DELAY

Register

RDin RDout

Ain Aout

PROC Register(CHAN OF BUNDLE RDin,RDout,
 CHAN OF ACK Ain, Aout)
 SEQ
 RDin ? Data
 WHILE TRUE
 SEQ
 PAR -- fork
 RDout ! Data
 Ain ! any
 PAR -- Muller-C
 RDin? ? Data
 Aout ? any
:

RDout

RDin

fork

Figure 5.3: Micropipeline With Processing: The Register Model

two channels for a communication transaction between two register processes,

one for the request/data and one for the acknowledge event3.

Figure 5.3 illustrates the generic occam register model. The model makes use

of two PAR statements, one to model the Muller-C element and one to model

the fork on the Ain/Rout wire. Initially the register is empty. The first value to

appear on the input side will be immediately latched, activating the Cd signal

and issuing an acknowledgment to the source and a request to the destination

register via the Ain/Rout wire. This behaviour is modelled by reading the first

input request message on RDin channel before the register process enters its main

loop. Upon receiving the first input request message, the process enters its main

loop where it simulates first the fork, issuing in parallel an acknowledge to the

3In his PhD thesis [Brun91], Brunvand argues that the incorporation of an extra acknowl-
edgment channel is optional, a matter of style rather than substance; the analysis presented in
this section however shows that the extra acknowledgement channel is essential if the model is
to accurately describe the modelled system.

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 119

source and a request to the destination register via the channels Ain and RDout

respectively, and then the Muller-C, waiting on RDin channel for a new data value

to be latched and on Aout channel for the acknowledgement message indicating

that the value previously issued to the next register process has been received by

that process.

5.3.5 Modelling Control Logic

The control logic is inherently concurrent; different parts of the circuit operate

concurrently while, within each part, events take place in a deterministic sequen-

tial order, i.e. the control logic implements a partial ordering of events. The

simulation model should have the same degree of concurrency as the physical

circuit. The control logic may be implemented as a network of communicating

processes, with the occam PAR and SEQ commands being used within each

process to implement the partial ordering of events of the circuit. The number of

these processes depends on the degree of modularity and fidelity required in the

simulation model.

Adopting a data-driven approach to model asynchronous systems, it is essen-

tial to have a mechanism for modelling the functionality and the non-deterministic

behaviour of arbiters. The occam ALT construct, described in section 2.6.1.2,

provides for the non-deterministic choice of messages from different channels and

therefore may effectively model the behaviour of an arbiter.

5.3.6 Timing Issues

As mentioned in section 5.3.1, an occam description of an asynchronous system

is automatically a simulation model which may be executed on a transputer

network. The modelling methodology does not make use of the simulated time

for the synchronization of the occam processes in the model. However, simulated

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 120

time is still needed as a quantifier, to provide the means for the evaluation of the

simulated asynchronous system. Thus, following the Logical Process Paradigm,

the messages exchanged between occam processes are timestamped, while each

process maintains a local clock to keep track of the simulated time. However, the

distributed nature of occam and the event driven philosophy of the simulation

model introduce the problem of ensuring that preemptions do not occur and the

local causality constrained is not violated.

As explained in section 3.7, in distributed simulations, causality errors occur if

merge processes consume and process input messages in non-increasing timestamp

order. In a Micropipelined system, Micropipelines may be merged in one of the

following ways:

• Synchronous merge.

• Data dependent merge.

• Arbitrated merge.

5.3.6.1 Synchronous Merge

In a synchronous merge, the merge module has to wait for all input data to become

available before it starts its operation. This is the case when a Muller-C element is

used for the corresponding request events (figure 5.4a). In the simulation model,

the corresponding occam control process has to wait for all input channels to

fire. The message with the greatest timestamp is used to advance the local clock

variable of the process and therefore the causality principle is preserved. The

occam process which implements the synchronous merge is illustrated in figure

5.4b.

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 121

PROC Synchronous.Merge(CHAN OF BUNDLE RDin1,RDin2,RDout,
 CHAN OF ACK Ain1,Ain2,Aout)
 -- data.delay : time taken to process the data
 -- ack.delay : time taken for the acknowledge signal to propagate
 SEQ
 WHILE TRUE
 SEQ
 PAR
 RDin1 ? in1.data --Muller-C element
 RDin2 ? in2.data
 --process data
 out.data(timestamp):= max(in1.data(timestamp),in2.data(timestamp))+ data.delay
 RDout ! out.data
 Aout ? ack
 ack(timestamp):= ack(timestamp) + ack.delay
 clock := ack(timestamp)
 PAR
 Ain1 ! ack
 Ain2 ! ack
:

C process data

RDin1

RDin2
RDout

Ain1

Ain2

Aout

Synchronous.Merge Process

a)

b)

Figure 5.4: Synchronous Merge

5.3.6.2 Data Dependent Merge

In a data dependent merge, the functionality of the system dictates the order

in which messages from different source processes should be consumed and pro-

cessed. This situation is implemented in hardware using a combination of a Select

and a Call as depicted in figure 5.5a. The behaviour of the merge process in this

case is similar to that of a process with just a single input channel, hence causality

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 122

PROC Data.Dependent.Merge(CHAN OF BUNDLE RDin1,RDin2,RDout,
 CHAN OF ACK Ain1,Ain2,Aout)
 -- data.delay : time taken to process the data
 -- ack.delay : time taken for the acknowledge signal to propagate
 SEQ
 WHILE TRUE
 SEQ
 IF --Select
 TRUE
 SEQ
 RDin2 ? in.data -- Behaviour of a single input process
 -- process.data
 out.data(timestamp):= in.data(timestamp)+ data.delay
 RDout ! out.message
 Aout ? ack
 ack(timestamp):= ack(timestamp) + ack.delay
 clock := ack(timestamp)
 Ain2 ! ack
 FALSE
 SEQ
 RDin1 ? in.data
 --same as TRUE clause
:

process data

RDin1

RDin2

RDout

Ain1

Ain2

Aout

Data.Dependent.Merge Process

a)

b)

C
A

LL

r

d

r1

r2

d1

d2

S
E

LE
C

T F
al

se
T

ru
e

C

C

Figure 5.5: Data Dependent Merge

is not violated (figure 5.5b).

5.3.6.3 Arbitrated Merge

In an arbitrated merge, the order of request arrival defines the order of consump-

tion. If events from two micropipelines arrive at the same time, an arbitrary

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 123

PROC Arbitrated.Merge(CHAN OF BUNDLE RDin1,RDin2,RDout,
 CHAN OF ACK Ain1,Ain2,Aout)
 -- data.delay : time taken to process the data
 -- ack.delay : time taken for the acknowledge signal to propagate
 SEQ
 clock:=0
 WHILE TRUE
 SEQ
 ALT --arbiter
 RDin1 ? in.data
 SEQ
 -- process data
 out.data(timestamp):= max(in.data(timestamp),clock) + data.delay
 RDout ! out.data
 Ackout ? ack
 ack(timestamp):=ack(timestamp) + ack.delay
 clock:=ack(timestamp)
 Ain1 ! ack

 RDin2 ? in.data
 SEQ
 --process in.data in a similar as above
:

process data

RDin1

RDin2

RDout

Ain1

Ain2

Aout

Arbitrated.Merge Process

(a)

(b)

C
A

LL

r

d

r1

r2

d1

d2
A

R
B

IT
E

R

r1

r2

g1

g2

d1

d2

Figure 5.6: Arbitrated Merge

choice is made. In the asynchronous circuit, arbiters are used to achieve this

behaviour (figure 5.6a).

In the proposed modelling approach, an arbiter is modelled by the occam ALT

construct. The order in which the ALT construct will consume messages in the

simulation model does not adhere strictly to the order in which events arrive at

the corresponding arbiter in the physical circuit; it depends merely on the order in

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 124

which the corresponding input occam channels fire and not on the timestamps of

simulated time that these messages carry. Therefore, messages may be consumed

by the ALT construct in a non-increasing timestamp order, thus violating the

local causality constraint.

This violation does not affect the correct functionality of the model; the very

presence of an arbiter in the design implies that the order of consumption may

be arbitrary. However, it introduces an error in the simulated time and, conse-

quently, in the values obtained during the evaluation of the simulated system.

Despite this error introduced in simulated time, the characteristics of the sim-

ulated asynchronous systems suggest that the inaccuracy of the obtained results

will be limited and indeed tolerable and acceptable at this high level of simulation.

The local clocks of communicating processes will become too skewed (and thus

the timing error due to a preemption large) only if the ALT construct selects the

same source channel a large number of times before accepting a message from

the other one (assuming that both the corresponding source processes produce

request messages). The self-regulating nature of asynchronous systems, with

Micropipelines acting as throttles, will however balance the throughput of the

occam processes preventing, thus, the local clocks from becoming too skewed.

The results presented in chapter 8 confirm this claim; a similar approach

adopted for the simulation of dataflow architectures has also produced similar

results [Neto91]. Chapter 9, discusses an alternative technique for modelling

arbiters, so that preemptions are avoided.

Figure 5.6b presents a description of the operation of an arbitrated merge

process (an arbiter process). The value of the local clock variable is the timestamp

of the acknowledge message forwarded by the arbiter process to the source process

which issued the last request message. If tk is the timestamp of the Rk request

message currently arriving at the arbiter process on one input link, and tk−1 is

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 125

the timestamp of the last request message that arrived at the arbiter process on

the other input link, the following three cases may be distinguished:

1. tk >= clock. This case indicates that the arbiter process has been idle for

tk − clock.

2. tk−1 <= tk < clock. This indicates that when Rk was issued, the arbiter

process was busy processing the Rk−1 message and was thus unable imme-

diately to consume and process it (overload situation for tk − tk−1).

3. tk−1 > tk. This manifests the occurrence of a preemption as Rk should have

been processed before Rk−1. In this case, the current value of the clock

is used by the arbiter process to calculate the timestamp of the output

request message, thus ensuring that messages are issued on the output

channel in increasing timestamp order (i.e. preemptions are prevented from

propagating further in the simulation model).

5.3.6.4 Delay Independence

As explained in section 5.3.1.1, an asynchronous system may be tested for dead-

locks by changing the order in which events are issued to arbiter processes in

the simulation model. In a simulation approach where simulated time is the

synchronizing force, it is the actual simulated time delays within the processes of

the model which need to be modified to change the sequence in which events will

occur in the simulation model.

In the proposed modelling methodology, however, the order in which an arbiter

process consumes messages is completely independent of the timestamps of the

messages. Hence, changing the simulated time delays of the occam processes

would have no effect on the ordering of events in the model. In this case, the

ordering of events may be changed by using occam “Timers” to alter the order in

CHAPTER 5. MODELLING ASYNCHRONOUS SYSTEMS 126

which processes are scheduled as discussed in section 2.6.1.3; this will change the

order that processes execute and produce messages. Although “Timers” do not

allow full control of the process scheduling mechanism, as the time which a process

can be delayed is only approximate, this approach still allows the occam model

to be used for testing the delay independence of the simulated system. By using

different benchmark programs, different paths of the design may be activated.

By altering the order in which occam processes are executed for a particular

benchmark, the probability of an undetected deadlock condition is reduced.

5.4 Summary

This chapter has provided an overview of existing notations and techniques for

modelling asynchronous hardware systems; emphasis has been placed on the

techniques that employ CSP-like notations. A modelling approach has been

introduced which employs occam as a description language. Finally the causality

problems due to the distributed nature of the proposed modelling approach have

been discussed.

The next chapter describes how the proposed modelling approach has been

employed to develop an occam model of the AMULET1 microprocessor.

Chapter 6

Occarm: An Occam Model of

AMULET1

6.1 Introduction

To investigate the suitability and applicability of the approach described in the

previous chapter for modelling large and complex asynchronous hardware sys-

tems, occarm1, an occam simulation model of the AMULET1 processor has been

developed.

When the modelling work commenced, AMULET1 was in the early stages of

the design process. A model of AMULET1 had already been developed using

Asim, the ARM Ltd’s in-house simulation language [ARM]. This is a conven-

tional, sequential, discrete event simulation model which describes AMULET1 at

a mixed gate/Register Transfer level.

The construction of occarm proved a challenging task. The complexity of

AMULET1 introduced a number of design problems which forced the designers

to sacrifice the purely asynchronous operation of the system in a few instances,

1The name of the model is derived from the combination of the words occam and ARM.

127

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 128

in their effort to make the construction of the chip feasible and efficient; this pre-

sented problems to the modelling of the system using an asynchronous language

such as occam.

This chapter discusses the basic functionality and structure of occarm; em-

phasis is given to the modelling techniques developed to address the problems

imposed by the non-asynchronous operation of certain parts of the processor. A

description of the internal organization of the occam processes which model the

major components of AMULET1’s control logic, is provided in appendix B.

6.2 Occarm General Structure

Occarm consists of more than fifteen thousand lines of occam code and describes

AMULET1 at the Register Transfer Level. It executes ARM6 machine code

produced by a standard ARM compiler. Instructions enter the simulator as 32-bit

quantities in hexadecimal format. Instruction decoding is performed by means of

PLA models implemented as two dimensional arrays of boolean values; the model

makes use of a library of occam functions developed to allow instructions to be

treated both as integer values and as one dimensional boolean arrays.

Occarm has been implemented as a hierarchy of occam processes, with each

process modelling a different functional module of AMULET1. Its top level

process structure graph is depicted in figure 6.1.

AddInt and DatInt processes model AMULET1’s address and data interface

units respectively. The datapath is modelled by four processes, namely Decode1,

Decode2, Decode3 and RegBank. Decode1 describes the primary decode unit

while Decode2 and Decode3 model the two major components of the execution

unit of the processor (see section 4.6.2.4). The RegBank process incorporates the

functionality of the register bank. WrtCtrl models the operation of AMULET1’s

write bus control logic (see section 4.6.2.4).

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 129

Decode1

Decode2 Decode3

AddIntDatInt

WrtCtrlRegBank

buffer

buffer

buffer

buffer

buffer

AIabt

PCcol

ALx

Wlx

LsmTrm

NGen

R15

Instr

OPa/OPb
CP

Imm

InC2
InC3

Dout

Din
I,R15

RdData

WrtData

Addr

ALUgo

APipe

ALU
result

Dab0

Dabt0

Dabt1

Dabt1

from memory

to memory
addr+data+ctrl

data

from memory

from memory

Bundle

Wire

 (two channels: Req/Data + Ack)

(single channel)

addr+ctrl

Figure 6.1: Occarm Top Level Process Graph

All the registers of AMULET1, have been modelled using the generic reg-

ister model described in section 5.3.4, with interprocess communication being

performed using pairs of request/data and acknowledgement channels.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 130

PROC buffer()
 SEQ
 WHILE TRUE
 SEQ
 in ? data
 out! data
:

Figure 6.2: The Buffer Process

6.2.1 Non-Bundled Signals

To achieve code compatibility with its synchronous counterpart, it was necessary

to include in AMULET1 a number of control signals which are not part of a bun-

dled communication and do not obey the protocol specified by the Micropipelines

framework. These signals are transmitted via simple wires. The modelling of

these signals by simple occam channels may lead to deadlocks in the simulation

model due to:

1. The communication semantics of occam, and

2. The direction of the signals.

In AMULET1 the simple wires are used to send information to previous

stages of the pipeline, thus forming closed paths (loops). The synchronous

communication supported by occam, forces the processes in the loop to block

waiting for each other, a situation that is susceptible to deadlock.

To overcome this problem, in occarm, these signal wires have been modelled

as buffer processes which hold the value of the signal at any particular moment.

The buffer decouples the processes involved in the wire communication, thus

eliminating the deadlock susceptible behaviour. The size of the buffer for each

signal is one; this is adequate since the value on the corresponding wire will change

only once for each interaction of the processes. The buffer process is shown in

figure 6.2.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 131

P
C

 P
ip

e

mux

m
ux

PC HoldingLSM

arbitrating mux

incrementer

MAR

to memory

write bus

Abus

to primary
 decode

PC loopLSM loop

Latches

A
 P

ip
e

(Wbus) R15
(PC+8)

from
 execution unit

Figure 6.3: The Address Interface

6.3 The Address Interface

Before the modelling of the address interface unit is discussed, a description of

its operation is provided.

6.3.1 The Address Interface Internal Organization

The internal organization of the address interface unit of AMULET1 is depicted

in figure 6.3. The unit consists of three main components, namely the prefetching

loop (also referred to as the PC loop), the PC Pipe and the Load/Store Multiple

loop (referred to as the LSM loop).

6.3.1.1 The PC Loop

The PC loop is the instruction prefetching mechanism of AMULET1. It consists

of the Memory Address Register (MAR), the Incrementer and two PC Holding

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 132

Latches, connected to form a ring as illustrated in figure 6.3.

The processor begins execution upon the deactivation of the hardware reset

signal, whereupon MAR’s output byte address is forced to zero. This is the initial

value of the Program Counter (PC) and the first address to be sent to memory.

Subsequently, the PC value circulates around the prefetching loop, incrementing

by four each time it passes through the Incrementer. For each cycle of the PC, the

next sequential address appears at the output of the Memory Address Register

and is sent out to memory, together with the associated control information as

described in section 4.6.1.

This operation may be temporarily interrupted by branch target or data

transfer addresses produced and sent to the address interface by the execution unit

of the processor. These addresses arrive at the address interface asynchronously

with respect to the operation of the prefetching loop. Therefore, arbitration is

required to resolve conflicts, which might occur in the attempt of the respective

event streams to gain control of the Memory Address Register.

Whenever a branch target address is produced by the execution unit, it

appears on the write bus (WBus) of the processor. After an arbitration phase,

it eventually gains control of the multiplexer and is forwarded to the Memory

Address Register. From there, it is sent out to memory and the Incrementer

to become the new PC value of the prefetching loop. The old PC value, which

has been waiting in the PC Holding Latches, is discarded as invalid as it passes

through the control circuitry at the input of the Memory Address Register; the

mechanism used in AMULET1 to discard invalid events is described in section

6.5.

A data transfer address is supplied either by the execution unit on WBus or

from the APipe on the ABus, depending on the instruction and the addressing

mode it uses ([Pave94], Chapter 4). A similar procedure to that of a branch

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 133

operation is followed, but here the data address is not permitted to take control of

the prefetching loop; it is discarded just before entering the Incrementer, allowing

the PC loop to continue its normal operation.

The presence, as well as the number, of the PC Holding Latches have been

dictated by the need to resolve potential deadlock situations; these might arise as

a result of a data transfer request gaining control of the arbiter immediately after

a branch target address has been forwarded to the Memory Address Register,

and before the old PC has been discarded. If no, or only one, holding latch was

included, this sequence of events would prevent the old PC from being discarded

and, consequently, the new PC from circulating around the incrementing loop.

6.3.1.2 The PC Pipe

The ARM instruction set specifies that the PC may be used as an operand. In

the synchronous ARM architecture, the PC is made available to the programmer

as the general purpose register R15 (see appendix A). The value of R15 is taken

directly from the prefetch unit of the ARM, and in most cases is PC+8, where

PC is the current contents of the Program Counter. This value reflects the depth

of the execution pipeline of the ARM6; the three stages of the pipeline (i.e. fetch,

decode and execute) cause the value of R15 to be 8 bytes (i.e. two instructions)

ahead of the address of the instruction being executed.

In the synchronous implementation, the depth of prefetching is deterministic

and the value of R15 at the moment when the instruction reaches the ALU

to be executed, is well defined. In the asynchronous environment of AMULET1

however, the amount of prefetching at any particular moment is nondeterministic.

Consequently, it is not possible to define a relationship between the PC in the

prefetching loop and the value of R15 associated with a particular instruction.

The technique adopted in the design of AMULET1 to overcome this problem,

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 134

and thus to achieve code compatibility with ARM6, is to explicitly supply the

required PC value from the prefetching loop to the execution unit. This is

achieved by means of a two stage micropipeline, the PC Pipe, whose input

and output are connected to the prefetching loop and the processor datapath

respectively. For each cycle of the prefetching loop, a copy of the circulating

value is provided to the PC Pipe, through which it is sent to the primary decode

to pair up with its associated instruction arriving from memory (see section 6.5);

it then accompanies the instruction through the datapath to the execution unit

to be used as the R15 value, if required.

6.3.1.3 The LSM Loop

The LSM loop comprises the Incrementer, the MAR and the LSM register, as

depicted in figure 6.3. It is activated during the execution of load/store multiple

instructions. These instructions provide for the transfer of multiple data values to

and from consecutive memory locations (see appendix A). During their execution

only the initial data transfer address (i.e. the base address) is sent to the address

interface via the write bus. Once the base address gets control of the arbiter,

it is forwarded through MAR to memory. Unlike the transfer of single data

however, the LSM base address is also sent to the Incrementer, to generate the

next sequential transfer address. This address is sent to memory through the

LSM register and the cycle is repeated.

The operation of the LSM loop is controlled by the primary decode (see section

6.6). Before initiating a cycle to produce the next sequential data address, the

address interface waits for a signal from the primary decode. This signal indicates

whether this is the last cycle, in which case no further incrementing takes place,

and for load instructions, whether the value to be loaded is intended to be the new

PC. If a new PC transfer is signalled, then the value being loaded will eventually

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 135

arrive at the address interface to become the new PC value of the PC loop.

To take advantage of cache memories and fast sequential modes of DRAM, the

LSM loop must not be broken during the transfer operation, to ensure that the

data addresses sent out to memory refer to sequential locations. This is achieved

by blocking the PC loop during the transfer and allowing it to resume its operation

when the the last LSM cycle completes. Consequently, no arbitration is required

for the LSM address to gain access of the Memory Address Register.

6.3.2 The Address Interface Occam Model

The asynchronous, time-independent operation of the address interface, as well

as its well-defined handshake interface to its peer functional modules, make its

description using occam straightforward.

The process structure of the address interface occam model (i.e. the AddInt

process) is shown in figure 6.42. Replicated register processes are used to im-

plement the pipelines of the unit, while two extra occam processes, namely

AddC3 and Incrementer, are included to model the functionality of the control

circuits. The interconnection pattern of the processes in the model provides for

the formation of the the PC and LSM loops of the address interface.

The MAReg register process models the Memory Address Register of the

address interface unit, and makes use of two output channels to forward each

new PC value in the PC loop to memory and the Incrementer respectively. The

execution of the AddInt process, and indeed of occarm, commences with the

MAReg register process firing its output channels, and thus issuing address 0; this

causes instruction prefetching to begin at the corresponding memory location.

2Within the context of this thesis, hereafter, in figures which illustrate occam process graphs,
register models are depicted as rectangles, while processes which model control logic are shown
as squares with rounded edges.

3See also figure 4.12.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 136

IncrementerAddC

re
gi

st
er

PC Pipe

register

register

register

register

re
gi

st
er

re
gi

st
er

re
gi

st
er

MAReg PC0

PC1

APipe

LsmTrm

LSMreg

PCch

Wch

to memory to primary decode

from execution unit
(Decode2)

to/from write control

Wlx

from primary decode

(Dec1CtrlA)

(Dec1CtrlB)

PC Holding Latches

Figure 6.4: The Address interface Model (AddInt)

The acknowledgment message to the MAReg process is sent via the Incre-

menter, after the synchronization of the corresponding acknowledge messages

from the memory and the PC loop takes place. The Incrementer process also

incorporates the logic which prevents data addresses from taking control of the

prefetching loop (see section 6.3.1.1).

The PC Pipe has been modelled using two register processes, namely PC0 and

PC1. In AMULET1 the data bus at the input of the PC Pipe is also connected to

the input of the MAR, thus allowing the PC value entering the PC Pipe to appear

also at the input of MAR; the acknowledgement issued from the first register of

the PC Pipe is directed back to the beginning of the prefetching loop to be used as

a request event to the arbiter and, eventually, to the Memory Address Register.

To emulate this behaviour in occarm, the acknowledgement message issued by

PC0 upon receiving a new PC value, carries a copy of this value, allowing the

corresponding channel to be treated as a request/data one.

The main function of the AddC process is to model the arbitration performed

on the PC loop and the write bus data streams; this is achieved by employing

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 137

an occam ALT construct to select arbitrarily one of the PCch and Wch channels

respectively. Messages arriving on the PCch are either forwarded to MARreg or

discarded (e.g. if they immediately follow a branch target address).

The Wlx channel is used to synchronize the address interface process with the

process modelling the write bus control logic (see section 6.9); a signal is issued

on Wlx channel in parallel with the acknowledgement message to the write bus

control process.

The LsmTrm channel connects AddInt with the primary decode model (De-

code1) and is used during load/store multiple operations to transmit the LSM

loop terminating signal, as described in section 6.3.1.3 (see also section 6.6).

6.4 The Data Interface

Figure 6.5 depicts the process graph of the occarm DatInt process, whose struc-

ture directly reflects the organization of the data interface unit of AMULET1

described in section 4.6.2.2.

The synchronization of address messages arriving from the address interface

(AddInt - MAReg) process, and data messages from the execution unit during

write operations, takes place in the MemCtrl process. The synchronized values

are then issued to memory.

The byte replication logic of the data interface, described in section 4.6.2.2,

is incorporated in Dout, and has been modelled by a separate process, namely

DataOut. DataOut is a single input, single output process, whose functionality

may therefore be incorporated into either the source or destination processes.

Such a configuration would eliminate the communication overhead introduced

by the input and output channels of the DataOut process. However, in order to

follow a consistent modelling strategy and maintain the generality and portability

of the register processes, DataOut has been modelled as a separate process, with

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 138

re
gi

st
er

register

register

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

register

DataOut

register

register

DataIn

MemCtrl

Dout

MemCP

MRReg

DestCtrl

DInCtrl

IPipe

from memory

to primary decode

from address interface

from execution unit
(Decode2)

to write control

address+control

address+control+data

instructionsdata

to memory

data

instructions/data

Figure 6.5: The Data Interface Model (DatInt)

the acknowledgment channel bypassing it.

The same methodology has been adopted for the modelling of the DataIn

module, with DInCtrl process incorporating the byte rotating and mask logic

(see section 4.6.2.2).

For each data address sent out to memory, the MemCtrl process sends a mes-

sage containing control information to the Memory Control Pipeline (MemCP).

When the memory receives a read address, it responds by sending the correspond-

ing data to the Memory Read Register (MRReg), which is then forwarded to the

Destination Control (DestCtrl).

Messages arriving from the Memory Read Register, are synchronized with

their corresponding control extracted from MemCP. DestCtrl uses the control

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 139

information to direct incoming data to its correct destination. Instruction mes-

sages are sent through the Instruction Pipe (IPipe) to the primary decode, to

be decoded and forwarded for execution. Data values are directed to the write

control, either to be forwarded and stored in the register bank, or to be sent to

the address interface to interrupt the prefetching loop and be used as the new PC;

the latter takes place in the case of load register and data processing instructions,

with R15 as destination register (see appendix A).

6.5 Instruction Flow Control

Before the modelling of the datapath of AMULET1 is described, it is pertinent to

provide a short description of the flow of information in the AMULET1 processor.

A more detailed discussion of the issues involved may be found in [Pave94], pp.

92-97.

In AMULET1, instructions arriving from memory through the data inter-

face, rendezvous with their associated R15 value extracted from the PC Pipe,

whereupon they enter the datapath for execution.

There are three cases wherein the execution of an instruction which has

entered the processor will not take place:

• The instruction fails its condition codes in the ALU.

• The instruction follows a branch that is taken.

• An exception occurs before the instruction reaches the ALU.

The following sections examine these cases.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 140

6.5.1 Condition Code Evaluation

To minimize the number of the branches in compiled code, all ARM instructions

are conditionally executed4. Their execution depends on the outcome of the com-

parison between the Current Processor Status Register (CPSR) arithmetic flags

(Negative, Zero, Carry and oVerflow) and the condition field of the instruction

word (bits [32:28], see appendix A). Typically the majority of a program’s instruc-

tions will use the “always” condition, which specifies unconditional execution.

The test of the condition flags is performed by the CPSR unit of AMULET1

(see section 6.8), in parallel with the operation of the shifter and multiplier units

in the first stage of the execution pipeline. The result of the comparison is used by

the execution unit to invalidate and discard the corresponding instruction. For

discarded instructions which have locked their destination registers, an invalid

request event is issued to the register bank to unlock them (see section 6.7).

6.5.2 Branch Execution

According to the behaviour described in the previous section, only when a branch

reaches the ALU will a decision be made, as to whether or not it will be taken.

By that time, a number of instructions will have been prefetched and entered

the processor. Since the prefetch unit is completely autonomous and decoupled

from the rest of the processor, the exact number of the prefetched instructions is

nondeterministic and therefore unpredictable5.

However, prefetched instructions following a taken branch, must be discarded

before instructions from the branch target are executed. Therefore, the processor

must distinguish between instructions originating from the branch target, which

4A more detailed analysis and justification of the conditional execution of instructions in
ARM is provided in [Furb89] pp. 229-230

5The depth of the prefetching depends on the precise point that the interruption of the PC
loop by the branch target address takes place.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 141

may thus be executed, and instructions already prefetched when the branch was

taken, which must therefore be thrown away. This is achieved by “colouring” the

state of the processor at any particular moment. The colour of the processor,

referred to as the PCcol, is a single bit flag which changes every time a transfer of

control takes place in the processor. Each instruction address issued to memory,

carries the current operating colour of the processor which will be used to mark

the corresponding fetched instruction.

When a branch is taken, the colour of the processor changes, causing a

change in the colour of instructions subsequently fetched from the branch target.

The colour bit of an instruction which arrives at the datapath for execution,

is compared with the current colour of the processor. If a match is found, the

instruction belongs to the current valid instruction stream and is thus executed,

otherwise it is discarded.

The colour of the processor changes at the ALU, after it has been decided

that the branch passes its condition codes and hence it will be taken. Instruc-

tions subsequently arriving at the ALU, not matching the processor’s colour, are

discarded until an instruction from the new valid instruction stream (i.e. the

branch target) is encountered.

To make the colour mechanism more efficient in terms of time spent and power

consumed during the rejection of invalid instructions ([Pave94], pp. 95-96), each

time the operating colour changes at the ALU, the new colour is also sent to the

primary decode to allow colour checking at the top of the datapath and, thus,

to prevent invalid instructions from entering the execution unit. The colour is

transmitted to the primary decode by means of a simple wire (referred to as the

PCcol signal) with the aid of an arbiter; the arbitration circuitry is described in

section 6.6.1.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 142

6.5.3 Exception Handling

To comply with the definition of the ARM architecture, AMULET1 supports four

types of exact exceptions [Furb89] [VLSI90]:

• Software Interrupts

• Instruction Prefetch Aborts

• Hardware Interrupts, and

• Data Transfer Aborts

In AMULET1, the exception entry routine is initiated by the primary decode

and is completed in three cycles. The first cycle is used to send the exception

vector address to memory. The exception vector address is generated by the

primary decode once it detects the exception, and is forwarded through the ALU

to the address interface to become the new PC of the prefetching loop.

The specification of the ARM architecture requires that the processor should

be able to restart the execution of the interrupted instruction, once the excep-

tion entry routine has been completed and the cause of the exception has been

removed. To make the resumption of the execution of the interrupted program

feasible, the state of the processor when the exception occurred needs to be saved;

this includes the Current Processor Status Register and the return address of the

instruction that was about to execute.

The preservation of the processor status is performed during the remaining

two cycles of the exception entry. The second cycle copies the CPSR from the

ALU into the SPSR of the corresponding exception mode (see appendix A), while

the third cycle is responsible for saving the instruction return address.

Exceptions result in a change of the operating colour of the processor. The

change in colour takes place in the ALU, when it detects the occurrence of

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 143

the exception. Once the colour changes, a similar behaviour to the execution

of branch instructions is exhibited, with prefetched instructions subsequently

arriving at the ALU being discarded while the new colour is propagated back

to the primary decode to prevent instructions from entering the datapath.

6.5.3.1 Software Interrupts

Software interrupts occur when executing the SWI (SoftWare Interrupt) or an

undefined instruction (see appendix A). The interrupt is detected at the primary

decode, by examining the bit pattern of the instruction’s opcode. The execution

of the exception entry routine commences immediately after the detection of the

interrupt with the generation of the exception vector address.

The required return address is obtained from the R15 value of the instruction

extracted from the top of the PC Pipe.

6.5.3.2 Instruction Prefetch Aborts

Instructions which have caused a prefetch abort are marked as such by means

of the prefetch abort flag (Pabt). This is a single control bit, generated by the

memory system and copied into the instruction pipeline together with the aborted

instruction. When the instruction enters the primary decode, the Pabt flag is

detected, causing the instruction data to be ignored and the exception entry

routine to be entered.

As in the case of software interrupts, the return address is a modified version

of the R15 value of the aborted instruction arriving from the PC Pipe.

6.5.3.3 Hardware Interrupts

Hardware interrupts enter the processor via an arbiter in the primary decode and

are detected in the primary decode by examining the level of the interrupt signals

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 144

FIQ and IRQ, just before each new instruction, arriving from the Instruction Pipe,

is allowed to enter the datapath. If an interrupt is detected, the instruction at

the top of the IPipe, waiting to enter the datapath, is usurped and its execution

is replaced by the exception entry routine.

As in the case of software interrupts and instruction prefetch aborts, the return

address is provided by the R15 value of the usurped instruction, extracted from

the PC Pipe. If the instruction immediately preceding the detection of interrupts

is a branch which is taken however, then the execution of the exception entry

routine is postponed until the first instruction from the branch target arrives at

the primary decode.

The postponement of an exception entry following a branch is necessary to

ensure that the R15 value obtained from the PC Pipe is the correct return address

(i.e the branch target address); it is achieved by forcing the exception entry to

adopt the colour of the usurped instruction. This causes the exception entry to

be rejected repeatedly at the ALU until an instruction from the branch target

with the correct colour arrives. To ensure correct operation, the interrupt signals

remain active until the exception entry becomes valid.

Hardware interrupts have not been implemented in the occarm model and

therefore are not discussed further.

6.5.3.4 Data Transfer Aborts

The occurrence of data aborts is initially detected in the ALU rather than in the

primary decode. When a data transfer instruction is executed, the ALU issues

the data transfer address to memory and then it blocks until a response arrives

from the Memory Management Unit (MMU) to indicate whether the transfer

aborted; the MMU’s response is sent by means of the Dabt0 and Dabt1 signals

described in section 4.6.1.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 145

XPipe

XLatch

to primary decode

from address interface

mux

Aborts
Signalling

SELECT
FalseTrue

z1
a1

a2

fire

z2

z1a1

a2

fire

z2

XPr

Dabt0

Dabt1

XLr

XPa

no abort

abort
from memory

ALU control

XPipe control

a) The Exception Pipe (XPipe) b) Aborts Signalling

AIabt

(PC Pipe)

R15

Figure 6.6: The Exception Pipe

If a data abort is signalled, the ALU changes the operating colour of the

processor and sends it back to the primary decode; the detection of the new

colour enables the primary decode to realize that a data abort has taken place

and hence to initiate the exception entry routine (section 6.6.1).

Unlike the three aforementioned exceptions, in the case of data aborts, the

return address can not be taken directly from the PC Pipe. The PC that

happens to be at the top of the PC Pipe, when the data abort is detected by the

primary decode, is not the R15 value of the aborted instruction but rather, it is

associated with the prefetched instruction arriving from the Instruction Pipe at

that particular moment. Since the amount of prefetching is nondeterministic, the

R15 value of the aborted instruction can not be computed from the PC extracted

from the PC Pipe.

To preserve the return address of instructions which may cause a data abort,

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 146

an extra pipeline, referred to as Exception Pipe (XPipe), has been incorporated

into the AMULET1; here, the R15 values of instructions which have the potential

to generate a data abort are stored.

The interaction between the XPipe and the rest of the processor is depicted

in figure 6.6a. Each time the R15 value of a data transfer instruction is extracted

from the top of the PC Pipe, to be sent to the primary decode, it is also copied

into the XPipe. The end of the XPipe (entry point) is controlled by the primary

decode; the PC value is placed on the data bus, but it is latched by the XPipe

only after the decoding of the corresponding instruction indicates that it is a data

transfer instruction, whereupon the primary decode issues a latch request to the

XPipe.

If a data abort occurs, the value at the top of the XPipe which will be the

address of the aborted instruction, is sent via the XLatch to the primary decode

to be used as the return address; if the data transfer is successful, the value is

simply discarded before it enters the XLatch. The exception PC is also discarded

at the initiative of the ALU, if the corresponding instruction will not be executed

as a result of it following a branch or failing its condition codes. The interaction

between the XPipe and the XLatch is controlled by the abort signalling circuitry

which is depicted in figure 6.6b; in the figure, AIabt represents the event issued

by the ALU to signal the discarding of the exception PC.

Figure 6.7 illustrates the interaction between the processes in the occarm

model, with regard to data aborts. The PC from the PC Pipe is sent to the

primary decode (Decode1) and if necessary is forwarded to the XPipe. Two

separate channels are used to read the PC either from the PC Pipe or the XLatch.

Similarly, two pairs of channels are used for the abort signals produced by the

memory, while an extra channel models the AIabt signal issued by the ALU. The

XPtoXL process controls the input to the XLatch either discarding or forwarding

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 147

Memory

register

Decode3

Decode1

XPipe

PCPipe

XPtoXL

XLatchbuffer

buffer

buffer

buffer

buffer

PROC XPtoXL()
 SEQ
 ALT
 Dabt0?signal
 SEQ
 --no abort
 Dabt1?signal
 SEQ
 --abort!!
 AIabt?signal
 SEQ
 --no abort
:Dabt0

Dabt1 AIabt

Dabt0

Dabt1

from address interface

Figure 6.7: Aborts Modelling

the exception PC; it is implemented using an ALT construct which is completely

deterministic since only one of the abort channels will fire for any particular

instruction.

6.6 The Primary Decode

Conceptually, the primary decode unit of AMULET1 may be divided into two

different sections, each one performing a distinct function. In occarm, these

sections are modelled as two separate processes, Dec1CtrlA and Dec1CtrlB; these

form parallel subprocesses of the Decode1 process and are connected together as

depicted in figure 6.8.

Decode1 also incorporates the functionality of the Immediate Pipe of AMULET1,

described in section 4.6.2.2.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 148

register

register

register

ImmExtregister

Dec1CtrlBDec1CtrlA RdGen

ALUgoPCcol

from execution unit

to execution unit

InC2 InC3

PCchRBch

to register bank

to execution unit

to execution unit

XP

to XPipe

LSMPr

RdGa

activate

ImmPipe

to address interface

LsmTrm

from execution unitRGch

R15

I

R15

I

from IPipe

from PCPipe

(Decode2) (Decode3)

(Decode2)

(Decode2)

RegA RegB

Figure 6.8: The Primary Decode Model (Decode1)

6.6.1 The Dec1CtrlA Process

The modelling of the Dec1CtrlA logic demonstrated the power and usefulness

of occam as an asynchronous hardware description language, as it identified

parts of AMULET1, whose correct operation is not guaranteed by well defined

asynchronous interfaces but depend heavily on the timing characteristics and

relevant delays of the particular functional modules involved.

The basic circuitry modelled by the Dec1CtrlA process is depicted in figure

6.9. This, incorporates the logic for discarding instructions based on the colour

information received by the ALU; it is also responsible for issuing the exception

vector address and extracting the return address if an exception occurs.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 149

C

TL
In Out

En

SPCCol

Lreq

Ir

Pack

Icol

PCr

XLr

XLa

Rout Aout

to Dec1CtrlB

Dabt

Data abort request

colour
mismatch

X1

S2

SELECT
False True

SELECT
FalseTrue

ARBITER

r1r2

g1

g2 d1

d2

X2

X3

X4

L1

S1

Cdn

PCackIack

PCcol
from execution unit

from XLatch

to PCPipeto IPipe

Part (a)

Part (b)

Figure 6.9: Dec1CtrlA Logic

6.6.1.1 Modelling of the Arbitration logic

In figure 6.9, part (a) of the circuit includes the arbitration hardware for the

detection of the PCcol signal sent by the ALU6. The detection takes place just

before a new instruction from the IPipe is let through to be decoded and executed.

Instructions from the IPipe (Ir) are synchronized with their associated R15

value (PCr) at the Muller-C element; the Lreq event indicates that the arbiter

has been locked by the instruction stream (the first Lreq is generated by the

reset signal Cdn). The value of SPCcol indicates the current operating colour

of the processor as far as the primary decode is concerned. Whenever a new

6In AMULET1, this logic involves two extra arbiters for the hardware interrupt signals FIQ
and IRQ, but since hardware interrupts are not supported in occarm, these arbiters have not
been included in the figure.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 150

instruction arrives, its colour Icol is compared with the SPCcol (Xor X1); the

bundle constraints guarantee that Icol will have a stable value and the comparison

will have completed before the Muller-C generates its output event. If the

two colours are the same, the instruction is let through to Dec1CtrlB to be

decoded (Select S1); once the decoding is complete and the instruction has

been forwarded to subsequent stages of the datapath for further processing, the

acknowledgement event Pack is generated and sent to IPipe and PC Pipe (Iack

and PCack respectively). If a mismatch is found, the “True” path is followed

and the Pack is immediately generated, thus discarding the incoming instruction.

The Pack signal is also used to unlock the arbiter. At this stage, if a new PCcol

has been issued by the ALU and is pending, it is allowed to take control of the

arbiter, hence changing the SPCcol bit; the arbiter is immediately unlocked to

let more instructions enter the datapath.

An initial attempt to model the arbiter using an ALT statement revealed the

situation illustrated in figure 6.10. A stream of instructions whose colour matches

the current operating colour of the processor (“1”), are forwarded through the

primary decode to be executed. The stream includes a branch instruction which,

passing its condition codes in the ALU, changes the operating colour of the

processor to “0”. The branch target address is sent to the address interface

to initiate prefetching of the new instruction stream while, in parallel, the new

colour is sent back to the primary decode. If the change of the value of the PCcol

wire is detected in the primary decode, while incoming instructions still belong to

the old stream (figure 6.10a), correct operation is ensured; the remaining “old”

instructions will be discarded as invalid while the instructions of the branch target

will be let through to be executed. However, if the detection of the new PCcol

takes place after the first instructions from the branch target have entered the

datapath, then a number of valid instructions will be discarded (figure 6.10b).

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 151

Branch

0

1

1I

I

1 0

Colour

1I

1I

1I

1I

1I

0

Branch

0

1

1I

I

1 0

Colour

1I

0I

0

0I

0I

0I

0I

reject

reject

a) Correct Operation b) Rejecting Valid Instructions

PCcol

PCcol

ALU

Dec1CtrlA Dec1CtrlA

ALU

Figure 6.10: Detecting the PCcol

The timing characteristics of the current design of AMULET1 ensure the

correct operation of the system because the propagation delay on the PCcol wire,

is less than the latency of the “ALU-memory-primary decode” pipeline. Thus,

the primary decode is notified of the new colour before any instruction from the

branch target arrives from the IPipe. However, any attempt to experiment with

alternative designs of the AMULET1 (e.g. decreasing the number of stages in

the pipeline) might alter the balance of the respective propagation delays, thus

affecting the correctness of the system.

Clearly, the asynchronous, nondeterministic nature of occam cannot guarantee

that the PCcol channel will fire before the colour of instructions on the Ir channel

changes. An alternative modelling of the arbitration hardware which guarantees

correct operation is depicted in figure 6.11. This model eliminates the time

dependent behaviour of the PCcol mechanism by keeping a record of the colour

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 152

PROC Dec1CtrlA()

 SEQ
 PAR
 PAR
 Ir? Instruction -- Read Instruction and Control(Icol)
 PCr? PC -- Read PC from PC Pipe
 PRI ALT -- Sample PCcol channel
 PCcol? SPCcol
 SEQ
 SKIP
 TRUE & SKIP
 SKIP
 IF
 Icol<>Previous.Icol -- New instruction stream
 SEQ
 IF

SPCcol=Previous.Icol -- ERROR!! New PCcol should have arrived
 SEQ -- Read it NOW!!!
 PCcol? SPCcol
 TRUE
 SKIP
 Previous.Icol:=Icol
 TRUE
 SKIP
 ...
:

Figure 6.11: Modelling Dec1CtrlA Arbitration Logic

of the last instruction which entered the system (Previous.Icol). If the instruction

stream changes before the PCcol channel has fired, then the process blocks and

waits for the new PCcol; an ALT is still used to sample the PCcol channel so

that the performance of the system remains high.

6.6.1.2 Detecting Data Aborts

The rest of the logic of Dec1CtrlA (part (b) in figure 6.9) deals with the detection

of data aborts. The primary decode needs to distinguish between the different

types of exceptions, ino order to issue the appropriate vector address. Hardware

and software interrupts as well as instruction prefetch aborts are detected directly

by the control logic of primary decode. This is not the case with data aborts

however; these are initially detected by the ALU which changes the operating

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 153

colour of the processor and consequently, the value of the PCcol signal (section

6.5.3.4).

A change in the value of the PCcol, however, is not adequate to inform the

primary decode that a data abort has taken place, for the execution of a branch

involves such a change too. The additional information required for the detection

of data aborts is provided to the primary decode by the request event XLr of the

XLatch (see also figures 6.7 and 6.6). The occurrence of an abort will result in

the exception PC at the top of the XPipe being copied into the XLatch which,

in turn, will generate a request event at its output. When, as a result of a colour

change, PCcol takes control of the arbiter, the L1 latch is enabled to latch the

Xlr event. The latched value is used both as an event (Xor X2) and as a boolean

(Xor X4) to indicate that a data abort has occurred.

Here again, the timing characteristics of the system ensure that the Xlr event

will arrive while the latch is enabled. Occam can not guarantee this behaviour,

for the exact time that the Xlr channel fires is nondeterministic and therefore

unpredictable. A simple ALT involving Xlr (to sample its value) may yield the

wrong result if an abort has occurred but the channel has not fired yet; a polling

mechanism whereby the ALT is included in a loop, might result in a livelock if the

colour change was not due to an abort. To make the construction of the occarm

model feasible, an alternative means is required to provide Dec1CtrlA process

with the necessary information and enable a decision on whether it should perform

a read operation on the Xlr channel. This information may become available from

the ALU, since the reason why the colour of the processor changed is known at

the ALU when the new PCcol is issued. In occarm, the reason for the change is

sent by the ALU as an extra bit accompanying the colour information over the

PCcol channel (“0” and “1” for branches and data aborts respectively).

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 154

6.6.2 The Dec1CtrlB Process

Instructions whose colour matches the value of PCcol, are forwarded, with their

associated R15 values, to the Dec1CtrlB process to be decoded (see figure 6.8).

The decoding is performed by means of a PLA model invoked by Dec1CtrlB,

whereupon the appropriate control messages are produced and sent to their

corresponding destination processes.

The instruction’s R15 value, along with the control information, is sent to the

register bank via PCch and RBch channels respectively. Control messages for

the execution pipeline stages are sent via InC2 (through RegB register) and InC3

channels respectively.

The ALUgo signal synchronizes the primary decode with the execution unit

during the execution of certain multicycle instructions. The signal, which is

issued in the first cycle, informs the primary decode whether the instruction

will be executed and hence whether primary decode should proceed to lock the

registers in the register bank; it also carries the current mode of the processor to

inform the primary decode of the current accessible register set.

If the decoding points to a data transfer instruction, the R15 value of the

instruction is sent to the XPipe via the XP channel.

For multicycle instructions, an acknowledge will not be issued to Dec1CtrlA

until all cycles of the instruction have been completed. For load/store multiple

operations, Dec1CtrlB initiates an interaction with the RdGen process; this in

turn responds by issuing a message either on LSMPr channel to indicate that the

reading/writing of registers is not complete, or on RdGa, to indicate completion.

For each response received by the RdGen process, a message is sent to the address

interface over the LsmTrm channel to indicate the destination of the next output

of the Incrementer (i.e. either LSM or PC loop). Control information provided

by RdGen is forwarded to the execution unit via RGch channel.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 155

A Decode

Registers

B Decode

W Decode

C

C

SELECT
False True

SELECT
False True

SELECT
FalseTrue

. . .

. .
 .

S1

C1

S2

S3

C2

AND1 AND2

IR
eg

O
R

eg

W
R

eg
Lock Fifos

(AFifo, MFifo)

write enableread enable lines
lines

lock??

write data

read addresses

valid

Read Done

Lock Done

C
C3

write

I,R15

from primary

to execution unit

from write control

 (Decode2)

Abus

Abus

 decode

Figure 6.12: The Register Bank Internal Organization

6.7 The Register Bank

The concurrent, asynchronous nature of AMULET1 introduces a number of

hazards to the operation of the processor’s register bank:

• The pipelined execution unit of AMULET1 may result in multiple pend-

ing write operations; the system must keep a record of outstanding write

addresses and ensure that results are written to the correct registers.

• Instructions must be prevented from attempting to read registers pending

alteration. Read operations must be blocked until all the preceding writes

have completed and the corresponding registers contain valid data. The

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 156

synchronization of read and write operations is a complicated issue, for the

asynchronous operation of the processor makes any assumption about their

interaction infeasible.

In AMULET1, the aforementioned issues have been resolved by a novel reg-

ister locking mechanism, namely the lock FIFO [Pave91] [Pave92]. This is an

asynchronous micropipeline which holds the destination register addresses of

pending write operations; these addresses are considered to be “locked”, and

therefore a read operation on any of them stalls until the address is removed from

the lock FIFO as a result of the corresponding write operations being completed7.

Addresses are stored in a fully decoded form as unary values, so that each stage

of the FIFO contains at most a single “1”, whose position indicates the address

of the locked register. The status of a register is determined simply by examining

whether there is a bit set in the corresponding column of the lock FIFO; this is

achieved by OR-ing together the bits of the column.

The organization of the register bank is depicted in figure 6.12. In order

to allow internal results from the ALU to overtake data from the much slower

memory, two lock FIFOs are used, AFifo and MFifo respectively. Decoded

instructions from the primary decode enter the register bank through the IReg

register. If the instruction specifies read registers (Select S1), their addresses

are extracted by the A and B read decoders and are directed to the lock gating

(AND1 and AND2); when the read enable lines are activated as a result of the

corresponding registers being unlocked, the register contents are latched in the

OReg register and forwarded to the execution unit. Once the read operation

is complete, the write path is activated (Muller-C C1). If a write operation

is required (Select S2), the unary representation of the destination address (W

decode) is sent to the appropriate lock FIFO to pair with the data to be written to

7The size of the lock FIFO dictates the maximum number of write operations that may be
outstanding at any particular moment.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 157

the register (Muller-C C2). If the data is invalid, it is discarded while the register

is unlocked (Select S3). The completion of both, read and locking operations frees

IReg to enable further instructions to enter the register bank (Muller-C C3).

6.7.1 Modelling the Register Bank

Any attempt to build a simulation model of the register bank should have the

following objectives:

• To model correctly the interdependencies between the asynchronous read

and write operations. This involves the accurate modelling of the behavior

of the register locking mechanism.

• To exploit the parallelism within the register bank so that high performance

is achieved.

Satisfying the above requirements is not straightforward. The central struc-

ture of the register bank is the lock FIFO, whose operation is based on the exam-

ination of a global state provided by the contents of its stages. The application

of the logical OR on the columns of the lock FIFO creates a global view of the

FIFO which makes the locking mechanism feasible and efficient.

However, within the context of the occam language, the concept of global

variables between parallel processes does not exist and thus the global state of an

occam system is not directly available. Therefore a mechanism is required to allow

the construction of the required global view and thus, make the development of

the model feasible.

A possible technique to achieve this, which has been adopted for the devel-

opment of occarm, is illustrated in figure 6.13, where the complete model of the

register bank is depicted. This technique requires the use of an extra process,

namely ReadLock, whose role is to maintain a copy of the contents of the lock

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 158

register

register

register

register

re
gi

st
er

register

register

register

re
gi

st
er

re
gi

st
er

cell cell cell

.

. .
 .

. . .

ReadLock

ReadCtrl WrtCtrl

Read Write

AFifo MFifo

WrtRegIReg

Mux

read enable

out.bus

write data

from write

write data

write addresses

from primary

I

PC

PC

to execution unit

read addresses

OReg

ReadDone

LockDone

(W decode)(A,B decode)

PC

 control

 decode

(Decode2)

AB

A

B

lock

unlock

read addresses

AB

PROC ReadLock()
 SEQ
 ALT
 lock?address
 SEQ
 --insert into buffer
 unlock?signal
 SEQ
 --remove top of buffer
 IF
 read address waiting
 SEQ
 --send address to READ
 TRUE
 SKIP
 read?address
 IF
 address in buffer
 SKIP
 TRUE
 --send address to READ
:

Figure 6.13: The Register Bank Model (RegBank)

FIFOs at any particular moment and, based on this information, to implement

the register locking.

Each time a destination address enters one of the lock FIFOs, a copy is also

sent to ReadLock by the first register process of the FIFO. To ensure correct

operation, the register process will not issue an acknowledgement message until

the write address has been received by ReadLock. ReadLock incorporates two

circular buffers, one for each of the lock FIFOs, where destination addresses are

stored. Once the write operation is complete, the last register process of the

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 159

FIFO involved issues a message to ReadLock to signal the removal of the write

register address from the lock FIFO, whereupon the relevant entry is removed

from the corresponding circular buffer. This technique allows ReadLock to include

a local copy of the locked addresses at any particular moment. The possession of

this information, enables ReadLock to control the interaction between read and

write operations and ensure that reads and writes take place asynchronously and

concurrently when there is no interdependency.

The functionality of the ReadLock process is built around an ALT construct

(figure 6.13). Read register addresses are sent to ReadLock from the ReadCtrl

decoding process and are compared with the contents of the circular buffers. A

match implies that the register is locked and thus the read operation is stalled

until ReadLock is informed that the register has been removed from the lock

FIFOs; no buffering is required in ReadLock for stalled read addresses as only

one read operation is outstanding in the register bank at any particular moment.

Read register addresses which are not locked, are forwarded to the Read process

which, in turn, sends read enable messages to the register cell processes involved.

Register cells use an ALT to receive either read enable signals from Read or

the new data to be stored from Write. A read enable signal causes a message with

the register’s contents to be output on the out.bus channel. For each instruction,

at most two out.bus channels will be fired to provide input to the multiplexor

process, which directs the messages to their appropriate destinations. The PC

value is sent over a separate channel to ReadLock and it is either discarded or

propagated to the multiplexor process to be output as an operand.

An alternative way to model the register bank would be to abandon the use

of separate lock FIFO processes and replace both, the lock FIFOs and ReadLock

by a single occam process. The functionality of this new process would be similar

to that of ReadLock but with the circular buffers representing the actual lock

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 160

Decode2 Decode3CPSR

Figure 6.14: The Execution Unit of AMULET1

FIFOs; a single ALT would handle all the interactions of the process with its

environment including messages to be written to the registers.

Using this scheme, the implementation of the register locking is straightfor-

ward as the global view required is directly available by the circular buffers.

However, having both read and write operations handled by a single process

introduces a bottleneck which limits the concurrency of the model and degrades

its performance; if a write operation was selected by the ALT, any outstanding

read operation would have to stall and wait for the completion of the write even

in the absence of any interdependency. The mechanism adopted allows read and

write operations to be handled concurrently by different processes, a behaviour

which increases the parallelism of the model and consequently its potential for

high performance.

6.8 The Execution Unit Model

As mentioned in section 4.6.2.4, the execution pipeline comprises two major

stages, namely Decode2, which controls the operation of the shifter and multiplier

units of the processor, and Decode3 which controls the ALU.

Decode2 and Decode3 are bridged by the CPSR (Current Processor Status

Register) unit of the processor as depicted in figure 6.14. This unit incorporates

the logic required for the calculation of the Current Processor Status (CPS),

namely the arithmetic flags and the processor mode information. The hardware

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 161

to evaluate the condition codes of executed instructions is also included in the

CPSR unit.

6.8.1 The CPSR Model

The operation of the CPSR is based on information provided by both the stages

of the execution unit (i.e. Decode2 and Decode3) as depicted in figure 6.15.

The active CPS (flags and mode) is stored in ALatch. The condition evaluation

hardware takes into account these values as well as the condition flags of the

instruction (Imd, provided by Decode2, see section 6.8.2) and the operating

colour of the processor (provided by the Decode3) to make a decision whether

the instruction should be discarded as invalid. The active CPS is also used to

calculate the current mode of the processor. The role of the CPReg register is to

keep a copy of the CPS so that the arithmetic flags provided to the ALU remain

stable while the new flags are being calculated.

The CPSR unit is another part of the AMULET1 where fully asynchronous

operation was traded for efficiency and speed. The input of the CPReg register is

controlled by Decode2 while the data latched by the register are provided by both

Decode2 and Decode3. The timing characteristics of the execution unit allow the

correct operation of the system. However, this situation where the input request

to a register is issued by the previous stage in the pipeline, while the data of

the same bundle is provided by the next stage, can not be described in occam,

for it violates the handshake protocol that provides the basis for asynchronous

micropipelined operation. An alternative implementation of the CPSR, which

emerged as a result of the effort to construct the occarm model, is depicted in

figure 6.16. This implementation achieves a fully asynchronous and thus safer

operation at the expense of an extra latch (the BLatch); this latch is enabled by

the request event of the CPReg register to hold the copy of the CPS required to

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 162

ALatch

Mode

Condition

(MUXs)

CPReg

Evaluation
Hardware

CPSR

new CPS
Imd

ShC

Calculation
Calculation

colour

Rin

Ain Aout

Rout

Pass Pass

ALU output

from Decode2

from Decode3

from Decode3

from Decode3

from Decode2

from Decode3

from Decode2

to Decode3

CPS

Control

enable

to Decode3

CPS+Control

D Q

Figure 6.15: The CPSR Unit

provide stable inputs to the ALU.

The handshake interfaces at the input and output sides of the CPReg register

are clear and well defined making their modelling in occam straightforward.

Within this implementation, the two latches, the logic for the calculation of the

CPS and the condition evaluation hardware, logically form part of Decode3 since

all the information required for these functions is available locally at this stage;

in occarm, this circuitry has been modelled as a sequential piece of occam code

in the Decode3 process.

6.8.2 Decode2

The process structure of the model of the first execution stage is depicted in

figure 6.17. Control information generated by the partial decoding of instructions

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 163

D Q

D Q

ALatch

Mode

Condition

(MUXs)

CPReg

Evaluation
Hardware

CPSR

new CPS

ShC + Imd

Calculation

Calculation

colour

Rin

Ain

Aout Rout

Pass

ALU output

from Decode2

from Decode3

from Decode3

from Decode3

from Decode3

to Decode3

CPS

Control

enable

to Decode3

CPS + Control + Pass

BLatch

(Occarm Decode3 Process)

ShC

Imd

Figure 6.16: CPSR: An Alternative Design

in the primary decode (Dec1CtrlB) arrives to the Dec2Ctrl process. Further

decoding takes place at this process (using a PLA model) and the complete control

information is forwarded to Ctrl2 where it is paired with the operands of the

instruction extracted from the register bank (A and B channels) or the Immediate

Pipe. NGenCtrl process calculates the number of registers to be transferred in

a load/store multiple operation from the bottom sixteen bits of the instruction;

this value is used by the ALU to perform the required base calculations.

The multiplier and/or shifter are invoked as occam functions and the results of

the operation are placed onto the OPa and OPb channels to be sent to Decode3.

The carry required for the correct operation of the shifter is sent by the ALU via

ALx channel.

Data to be written to memory are sent intact to the data interface (to syn-

chronize with their associated memory address from the address interface) via

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 164

register

register

NGen

NGenCtrl

re
gi

st
er

re
gi

st
er

D
ec

2C
tr

l

Ctrl2

from primary decode
(Dec1CtrlB)

from ImmPipe

from register

OPa OPbCP

AP

to APipe

(Decode3)

from primary decode
(Dec1CtrlB)

A

B bank

to next execution stage

RSh

Dec2

to data interface

Dout

ALx

Figure 6.17: The First Execution Stage Model (Decode2)

Dout channel. The CP channel provides input to the CPReg register described

in the previous section. This information includes the carry produced by the

shifter (ShC) and the condition flags of the instruction (Imd, generated and sent

to Decode2 by primary decode). The AP channel provides input messages to the

APipe in the address interface, while Rsh register temporarily stores the shift

value during the first cycle of register based shift operations.

6.8.3 Decode3

Decode3 process is depicted in figure 6.18. Dec3Ctrl makes use of a PLA model

to generate the control information required for the operation of the ALU. The

PLA input is provided by the primary decode as a result of the initial partial

instruction decoding. Ctrl3 is used to invoke the ALU; it also incorporates the

CPSR logic of figure 6.16.

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 165

register

register

Dec3

Dec3Ctrl

register register

register

Ctrl3

RReg

ALUgoPCcolAIabt

OPregCPreg

Dabt1

Dabt0

from primary decode
(Dec1CtrlB)

from previous execution stage

ALx

(Decode2)

from memory

to write control

buffer buffer buffer buffer

register

Figure 6.18: The Second Execution Stage Model (Decode3)

The input operands of the ALU arrive from Decode2 through OPReg while

the results of the ALU operation are forwarded via RReg to the register bank

(write data) and/or the address interface (data address or new PC). ALUgo and

PCcol channels are used to send back to the primary decode the current mode

(Dec1CtrlB) and colour (Dec1CtrlA) of the processor respectively. Abort signals

from memory arrive on Dabt0 and Dabt1 channels while AIabt is fired each time

a data transfer instruction is invalidated and discarded (see section 6.5.3.4).

6.9 The Write Bus Control

WrtCtrl process (figure 6.19) models the arbitration logic which provides access

to the write bus of AMULET1. The arbitration is performed in the WrtCtrl2

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 166

register

WrtCtrl1

WReg

Wlx

from data interface
from

from address interface to address interface

to register bank

WrtCtrl2

execution unit

buffer

DPch

DINch

Figure 6.19: The Write Bus Control Model

process by means of an occam ALT construct on messages arriving from memory

(via DataIn process in data interface) and the execution unit (Decode3 via WReg);

these messages are directed either to the register bank (write data) or the address

interface via WReg register (data addresses arriving from the execution unit or

new PC values sent from either the execution unit or the memory).

The role of the Wlx signal is to synchronize the address interface with the

write bus control logic in order to avoid deadlock situations which might occur

as a result of the write bus getting locked while Wreg is full waiting for an

acknowledgement from the address interface. A new message arriving from the

execution unit will not be forwarded until the address interface issues Wlx to

indicate that Wreg is free.

6.10 Summary

This chapter has described occarm, a model of the AMULET1 asynchronous mi-

croprocessor developed using the proposed modelling philosophy and employing

CHAPTER 6. OCCARM: AN OCCAM MODEL OF AMULET1 167

occam as a description language.

The next chapter discusses issues related to the execution of the occarm model,

and occam models of asynchronous architectures in general, on a multi-transputer

system.

Chapter 7

Simulation Issues

7.1 Introduction

In a sequential environment, the execution and testing of a simulation model

written in a conventional sequential language is a straightforward issue.

This however does not apply to asynchronous parallel models. The extra

dimension that concurrency introduces to distributed systems [Back78] com-

plicates the programming activity and imposes a number of issues which need

to be addressed before any parallel program may be executed. These issues

include monitoring, debugging and terminating the processes of the system;

for multiprocessor configurations, remote I/O, partitioning, mapping and load

balancing issues need also to be addressed. This is particularly true for the

development of occam systems, since the static nature of occam and the lack of a

transputer operating system make the aforementioned tasks the responsibility of

the application developer; recent versions of the occam toolset, however, provide

Virtual Channel support (at added runtime costs).

This chapter discusses how the above issues have been addressed in the context

of the occarm simulation model. Two different environments for occarm have

been developed, one for the execution of the model on a single transputer and

168

CHAPTER 7. SIMULATION ISSUES 169

Backplane bus
Interface

C012

VME/IO

Sun 3/160

Control
Switch

Crossbar switch network

Switch S2Switch S1

To other T-Racks

Monitoring bus

Interface Card

Host Computer

Control Card

0

1

23

10

3

2

1

0

T-1

T63T3T2T1T0

T

console

3232323232

01010101 ...

Figure 7.1: The T-Rack

one which provides for a multi-transputer implementation.

7.2 The Host Machine: The ParSiFal T-Rack

The computer which hosts the occarm simulation model is the ParSiFal T-Rack

[Know87], a reconfigurable, transputer based machine which has been developed

at the University of Manchester as part of the Parallel Simulation Facility project

CHAPTER 7. SIMULATION ISSUES 170

[Capo86] under the U.K Alvey program1 [Logi85]. The T-Rack was developed to

serve as a facility for the parallel simulation of computer architectures.

The basic architecture of the T-Rack is illustrated in figure 7.1. It comprises

sixty four T800 transputers (T0-T63), each with one or two Megabytes of local

dynamic memory. The transputers are housed on sixteen identical boards (four

transputers per board). Each transputer communicates via four asynchronous

bidirectional links numbered from 0 to 3. Two of the four links from each

transputer of the T-Rack (link0 and link1) are permanently hardwired to form a

processor chain known as the necklace.

The off-necklace links (link2 and link3) may be connected by means of a

crossbar switch which is built using twenty six INMOS C004 switch chips housed

on two boards (S1 and S2, also referred to as near and far boards respectively

[Gars89] [Murt91]). Connections within the switch networks may be defined

using a software switch utility allowing the transputers to be connected to form

the configuration required [Jone87]. The switches are statically set before the

application is loaded, though dynamic reconfiguration is also possible [Jone88]

[Murt91]. The crossbar switches also provide for the connection of transputer

links to external devices.

The T-Rack is hosted by a Sun 3/160 workstation [Sun86] containing a Tadpole

Transputer Board [Tadp87] which acts as a “root” node for the T-Rack and is

used for the downloading of code on to the rack and for I/O operations to and

from the host machine. The Tadpole transputer forms part of the necklace (T-1,

see figure 7.1).

The control board is used for switch control functions and for system back-

plane monitoring which is achieved by means of a byte-wide monitoring bus. This

bus provides an alternative route between the T-Rack and the outside world, as a

1The ParSiFal industrial and academic partners also included Logica plc., Inmos Limited,
GEC Research Limited, FEGS Limited, The Polytechnic of Central London and the Engineering
Department of Cambridge University.

CHAPTER 7. SIMULATION ISSUES 171

terminal may be attached to the control board to display monitoring information

[Know89]; the occarm simulator does not make use of this bus.

The existence of the necklace in the T-Rack limits the set of processor graphs

which may be implemented to those which possess a Hamiltonian Cycle [Murt87].

An occam program can execute on the T-Rack if the required processor network,

either contains, or can be modified to contain a Hamiltonian Cycle. The route

taken by the Hamiltonian Cycle through the network corresponds to the necklace

of the T-Rack while the edges not on the Hamiltonian Cycle are mapped on

switched links.

The switching network implements a “split-link” switching policy, whereby

link 2 outputs are connected to link 3 inputs via one switch board, while the

connection between link 2 inputs and link 3 outputs is achieved via the other

switch card2 [Hill86].

7.3 Monitoring

Monitoring the runtime behaviour of the simulation model and collecting infor-

mation regarding the characteristics of the simulated system is one of the main

objectives of the simulation process. Monitoring is essential for the testing and

performance evaluation of the simulated system as well as for the debugging of

both the simulated system and the simulation model.

The inherent properties of distributed asynchronous systems make monitoring

a difficult and complicated issue for which sequential techniques are insufficient

[Riek94]; distributed monitoring is currently an active area of research.

The main problems which are associated with distributed systems and which

an ideal monitoring system should address include the multiple threads of control,

2The split link switching mechanism provides a solution to the Odd Cycle problem which
does not allow the construction of networks that possess an off-necklace closed path (cycle)
which has an odd number of edges [Murt87].

CHAPTER 7. SIMULATION ISSUES 172

the intrusiveness, the non-determinism and the need to cope with a vast amount

of monitoring data [Riek94] [Joyc87]:

The Multiple Threads of Control

To understand of the system’s behaviour, it is essential to be able to get a global

view of the system (a snapshot) at any particular moment. In sequential pro-

gramming this is straightforward. In distributed simulations however snapshots

are not easily obtainable; to determine the system state, all the different local

process as well as channel states need to be taken into account [Chan85] [Baba93].

The monitoring system should be able to correlate the histories of the different

processes and put them in a global temporal perspective. This is a complicated

issue related to the problem of dealing with causality in a distributed environment,

discussed in section 3.4.

An approach for constructing snapshots of a distributed system, which is

employed by most of the existing monitoring tools, is to collect runtime traces of

appropriate event records and put them in a temporal perspective off line, in a

postmortem way.

Non-Determinism

Distributed asynchronous systems are nondeterministic structures. Multiple ex-

ecutions of the same system may produce different, albeit valid, ordering of

events. This makes the repeatability of an error situation a difficult task, although

systems which achieve a postmortem recreation of the system’s state based on a

transcript file of event records have been developed [Garc84] [Unge86].

CHAPTER 7. SIMULATION ISSUES 173

Intrusiveness

The monitoring system should not mask or affect in any way the behaviour and

characteristics of the simulation model. Hardware monitoring tools are usually

non-intrusive [Riek94]. However, using a software environment for monitoring

alters the behaviour of the distributed system [Mari92]. Indeed, monitoring facil-

ities make use of the host machine’s resources, thus imposing delays in the simula-

tor’s execution; the host machine executes alternately simulation and monitoring

code (e.g. in a time-sliced fashion) and the monitoring messages produced share

the communication network. As already explained in section 5.3.1.1, delaying a

process alters the event timings in the distributed system in an arbitrary way,

thus changing its behaviour3. Clearly, software monitoring also has an impact on

the distributed simulation’s performance.

Although the intrusiveness of software monitoring is recognised, hitherto no

precise model has been developed for the quantification of these effects [Riek94];

generally efforts are focused in finding ways to minimize the influence of the

monitoring on the simulation system (e.g. [Sega86]).

Dealing with Monitoring Data

This involves the generation, transportation, representation and analysis of event

records.

Monitoring messages may be generated using either a time driven or an event

driven approach [McLa92]; in the former, the monitoring system scans, at regular

intervals, event records from the simulation model (time sampling), while in the

latter the simulation model detects and reports to the monitoring system event

records on its own initiative. In software monitoring, the detection of events to be

reported is achieved by means of probes, small pieces of code which are inserted

3In a sequential environment, a program can be stopped and resumed without the elapsed
time between the two actions affecting its behaviour.

CHAPTER 7. SIMULATION ISSUES 174

into the simulation model’s code triggering the generation of monitoring messages

each time they are executed4 (this process is referred to as instrumentation of the

simulation model). Typically, probes are inserted in the model’s source code5

manually, though some monitoring tools exist which attempt this automatically

[Mohr90] [Lump92].

Typically6, in distributed simulation, monitoring information needs to be

transported for processing to a remote node of the distributed system; this

is particularly true for transputer based systems as only the root transputer

of the network has access to the file system of the host machine. The mon-

itoring data are generated in a copious volume and their transportation can

have a significant negative impact on both the computational resources and

the communication network of the distributed system. To address this problem

several transport strategies have been developed, the most important of which

are immediate transport, which sends the monitoring data as soon as they are

generated (e.g. [Bemm90] [Leu92]) and store and unload, whereby the data are

stored in a buffer before they are transported; in the latter, the buffer may flush

its contents when it becomes full, upon request, when the communication load is

low or when the simulation is complete (store and unload afterwards) [Riek94].

Once the monitoring messages have been collected, they must be analysed to

extract the information which will enable the user to draw conclusions regarding

the behaviour of the simulated system. This is not an easy task as the monitoring

4A probe is always inserted next to (before or after) the instruction it monitors.
5This process is referred to as source code instrumentation as opposed to object code

instrumentation wherein the probes are inserted into the object code at compile time by
an instrumenting compiler; schemes which have the probes inserted in the operating system
(instrumenting kernel) also exist for monitoring the activities of the simulation model which
invoke the kernel functions [Malo90] [Rudo89] [Bemm90] [McLa92].

6Quoting Riek “no entirely distributed monitoring tool has yet been developed (i.e. a
complete parallel program that will gather and use the monitored information). In the existing
monitors, the runtime information is used at a different place from where it was generated”
[Riek94].

CHAPTER 7. SIMULATION ISSUES 175

Processprocess_name:instruction instruction_type was executed at timeclock

Processprocess_name:variablevariable_namehas the valueval at timeclock

Processprocess_name:sending valueval to processproc on channelchanat timeclock

Processprocess_name:receiving valueval from processproc on channelchanat timeclock

(a) Execution event trace

(b) Data event trace

(c) Parallelity event traces

Figure 7.2: Event Traces for Debugging

data represents an enormous amount of information7, usually at a fairly low level

of abstraction, which also encapsulates a high degree of parallelism implicitly

contained in the event records; representing the monitoring data in an appropriate

way is crucial to enable to user deal with it. This is an active area of research

related to the Human Computer Interaction field. In existing tools the monitoring

data is presented to the user in the form of textual traces and pictures (graphical

visualizations) although tools are currently under development which employ

sound too [Zaba92].

7.3.1 Monitoring Occarm

Occam architectural models of micropipelined systems are distributed asynchronous

structures and consequently their monitoring imposes the problems described in

the previous section.

The simulation of an asynchronous architecture has two main objectives:

1. The testing and debugging of the architecture.

7Different techniques such as event record filtering [Holl93], event record clustering [Mohr90]
or event abstraction [Bast94] have been proposed to reduce the amount of monitoring
information in distributed systems.

CHAPTER 7. SIMULATION ISSUES 176

2. The evaluation of the architecture’s performance.

7.3.1.1 Debugging

For the debugging of the architecture (as well as the simulation model) it is

necessary to monitor both the flow of control and the flow of data in each of

the different occam processes in the model; this is achieved by collecting traces

regarding the execution and data events of the processes respectively [Riek94]

(figure 7.2a,b).

For the detection of deadlocks, it is essential to know the state of the channels

in the system when the deadlock occurred. For this purpose, the parallelity

events, which correspond to communication actions, need to be monitored (figure

7.2c). These will appear in pairs, one for the sending and one for the receiving

process. The probe in the sending process code, is inserted before the output

command while the receiving probe follows the input command. The absence of

one parallelity event from a pair in the final trace indicates the occurrence of a

deadlock.

In occarm, monitoring is performed by means of a parallel network of occam

monitoring processes (known as reactive processes [Mari92]), one for each of the

top level processes (the active processes) of the occarm model8.

Monitoring messages are issued to the reactive processes in an event driven

fashion. Probes, in the form of a procedure call, have been inserted (manually)

in the source occam code of the active processes. Each time the procedure

which implements the probe is called, it constructs the corresponding monitoring

message and sends it to the monitoring process. Since probes will be invoked in

different parallel sections of the active process, several monitoring messages are

8Within the ParSiFal project, a number of experimental graphical tools were developed
which illustrate or monitor different aspects of an occam parallel program [Step86] [Step88];
these however were not used in connection with occarm due to their limited capabilities and
the need for portability of the occarm simulation environment.

CHAPTER 7. SIMULATION ISSUES 177

issued simultaneously. Thus, for the communication between an active and the

corresponding reactive process, a channel array is used (monitor, see figure 7.3);

for the current implementation of occarm the total size of the monitoring channel

array is fifty (50).

The monitoring process acts as a multiplexor, employing an ALT construct

to gather the messages issued by the corresponding active process on the channel

array; in order to reduce the effects of the ALT bottleneck, the channel array is

buffered to decouple the processes involved.

Monitoring processes support both immediate and store and unload transport

policies. The latter makes use of a circular buffer to store only the recent history

of the active process. If no monitoring message arrives for a user-defined time

interval (i.e. in the case of deadlock), the monitoring process flushes the contents

of the history buffer.

The store and unload transport option is particularly useful as in most, if not

all, cases the most recent history of the processes is sufficient to identify the cause

of errors or deadlocks. Since the monitoring messages do not propagate further

into the system, the communication overhead of the store and unload policy is

minimal (see section 8.4).

7.3.1.2 Performance Evaluation

When analysing the performance of asynchronous pipelines, measures of special

importance and interest are the occupancy as well as the stall and idle periods of

the pipeline.

The occupancy of a N stage pipeline is defined as the percentage of time the

pipeline has 1, 2, . . . , N elements in it [Furb94c].

In a synchronous pipeline, the clock frequency defines the period that any

element stays in the pipeline; thus for the calculation of the occupancy only the

CHAPTER 7. SIMULATION ISSUES 178

Monitoring

monitor[]

Process

. .
 .

Occarm MonitoringProcess

monitor[]

Process

. .
 .

A

Occarm
Process

B

Figure 7.3: Collecting Event Traces in Occarm

entry (arrival) times of elements are required.

In asynchronous micropipelines however, the times that a particular data

bundle enters and leaves the pipeline are arbitrary. Therefore, the calculation

of occupancy in this case requires knowledge of both, the entry and exit times

of bundles in the pipeline. A bundle enters a pipeline when the corresponding

data is latched by the first register of the pipeline; thus the entry time is rep-

resented by the timestamp of the acknowledgement (Ain) signal issued by this

register. Similarly, the exit time of a bundle is the value of the timestamp of the

Acknowledgment signal to the last register of the pipeline.

The values of the two timestamps required for the calculation of the duration

of a message’s staying in the pipeline are not directly available, for they are pos-

sessed by different occam processes and occam does not support global variables.

To overcome this problem a solution has been devised whereby request messages

exiting the pipeline carry with them an extra timestamp denoting the time of

their entry. Using this information, the calculation of the pipeline occupancy by

the control process at the output side is straightforward.

In occarm, control processes maintain a set of occupancy tables, one for each

of their input pipelines. The occupancy table is a circular buffer which contains

CHAPTER 7. SIMULATION ISSUES 179

the input and output timestamps of messages passing through the correspond-

ing pipeline, thus providing a (postmortem) global view of the pipeline at any

particular moment.

Each time the control process at the output side issues an acknowledgement

message to a pipeline (i.e. each time a message exits the pipeline), it also invokes

a probe procedure (the calculate.occupancy()) to calculate the current occupancy

values for the pipeline; idle periods are also calculated at that point by the probe.

Contrary to the debugging traces which are sent immediately to the corre-

sponding monitoring process, the type and quantity of monitoring values con-

cerning the performance characteristics of the architecture permit active occarm

processes to calculate and store them locally; this eliminates the extra com-

munication overhead that their transport would impose. The stored values are

unloaded by the occarm control processes upon their receiving the termination

signal (see section 7.4).

Stalls. An asynchronous pipeline will stall if the rate that request events are

issued to the pipeline is greater than the rate that events propagate through the

pipeline or the rate that events exit the pipeline (i.e. the rate that events are

consumed and processed at the output side).

Stall situations refer to the input side of the pipeline. They may be detected by

examining the delay between the sending of a Request event (Rin) to the pipeline

and the issuing of the corresponding acknowledgement signal (Ain) by the first

register of the pipeline: a stall situation has occurred if timestamp(Rin) <

timestamp(Ain). The duration of the stall is timestamp(Ain)−timestamp(Rin);

clearly the minimum stall period is equal to the propagation delay of the first

register in the pipeline.

Monitoring information regarding pipeline stalls is collected by the occarm

CHAPTER 7. SIMULATION ISSUES 180

Memory

MemCtrl

DestCtrl

IPipe

Dec1CtrlA Dec1CtrlB

Decode2

Decode3

WrtCtrl

ReadLock

MRReg

ReadCtrl

WrtCtrl

LockFifos

Write

Read

RegistersIncrementer

PCPipe

AddC

XPipe

sink PC

sink data

sink PCcol/R15 sink ALUgo

sink

sink data

sink PC values
 values

from memory

values events

register addresses

from Reg. bank

ALUgo

PCcol

Figure 7.4: Terminating Occarm

control processes at the input side and is unloaded upon detection of the termi-

nation signal.

7.4 Termination

Detection of termination in a distributed parallel environment was brought to

prominence in 1980 by Francez [Franc80] and by Dijkstra and Scholten [Dijk80]

and since then has constituted one of the basic problems in distributed computing.

The fundamental problem in detecting termination is the difficulty of constructing

a global state of the distributed system (see section 7.3). Several termination

detection algorithms have been developed; these differ in the way they ensure

correctness9 and the assumptions they make about the semantics and behaviour

9The detection algorithm has to report termination in finite time (liveness); if such a report
occurs, then the underlying distributed system must have indeed terminated (safety) [Brze93].

CHAPTER 7. SIMULATION ISSUES 181

of the communication links in the distributed system10. Typically, termination

mechanisms consist of a termination detector, superimposed on the distributed

system, which either monitors the activity of the processes or uses a deadlock

detection/breaking approach [Brze93].

A simulation model of an asynchronous architecture has completed its opera-

tion, and thus must terminate, if it has executed all the instructions of a particular

benchmark program. Within the ARM development environment used in the

AMULET project [ARM], ARM programs notify their completion by writing a

special End Of Program (EOP) character to a particular address in memory.

The above mechanism may be exploited for the termination of the occarm

model too; upon receiving EOP, the memory process issues a KILL message which

then propagates through the model, progressively killing the occam processes. A

possible route for the KILL message which has been adopted for the termination

of occarm is depicted in figure 7.4. The KILL signal enters occarm by means of

the Acknowledgment message issued to the MemCtrl process by the memory for

the EOP, and is then forwarded to Dec1CtrlA (through the IPipe) and to the

Incrementer (on the corresponding Acknowledgment message) to terminate the

datapath and address interface respectively. To cope with closed paths (loops)

in the model and allow the KILL message to reach all processes in the loop,

certain processes forward the KILL signal but do not terminate immediately;

they continue their operation sinking subsequent messages until they receive the

KILL for a second time. These processes include MemCtrl and the Incrementer,

which sink PC values from the PC loop, DestCtrl, which sinks messages sent from

memory before EOP, Dec1CtrlA, for PCcol signals and prefetched instructions,

Dec1CtrlB, for ALUgo signals, Decode2, which sinks data from the register bank,

and the Write process in the register bank, which sinks register addresses arriving

10These assumptions distinguish between synchronous or asynchronous communication, FIFO
or not, atomicity of communication actions etc.

CHAPTER 7. SIMULATION ISSUES 182

Occarm

Monitoring

I/O Process

Trace Files Memory File

. . .

Results File
ê@êd

åÿÎãÑä

äPãûÿ

Memory

Process
Processes

monitor[]

monitor[]

monitor[]

from.memory[]

to.memory[]

Request.out

Data.in

T-1

Host (Sun 3/160)

Model

Figure 7.5: The Single transputer Environment of Occarm

from the lock fifos.

7.5 The Simulator Environment

The single-transputer simulator environment is depicted in figure 7.5.

The Memory process models the memory control logic of the processor; the

memory itself is implemented as a binary file to achieve compatibility with the

existing ARM development environment [ARM]. The operation of the simulator

CHAPTER 7. SIMULATION ISSUES 183

consists of reading instructions from the memory file, executing them and, possi-

bly, writing results back into it; for compatibility reasons, messages regarding the

correct operation of the simulated architecture produced by benchmark programs,

are written to a separate text file, one character at a time.

Within the INMOS occam toolset environment, only one occam process may

have access to the host machine’s file system [Inmo91a]. In the occarm simulator

environment this role is served by the I/O process via which, all interactions with

the outside world are performed. The I/O process employs an ALT construct

to allow the multiplexing of system and monitoring messages arriving from the

Memory and Monitoring processes respectively.

Event traces arriving from the monitoring processes are distributed to different

trace files according to their “process name” field (see figure 7.2); the existence

of a separate trace file for each process provides a view of the parallelism of the

system and thus facilitates the postmortem debugging task.

7.6 Multiprocessor Implementation

As discussed in section 5.3.1, one of the advantages of using occam as a specifica-

tion language for asynchronous architectures, is the ability to exploit the inherent

parallelism of the simulated architecture, and thus to achieve higher performance,

by executing the simulation model on a multiprocessor machine.

In order to exploit this potential, a multi-transputer configuration of occarm

on the T-Rack has been developed.

CHAPTER 7. SIMULATION ISSUES 184

7.6.1 Mapping Occarm onto the T-Rack

Mapping a parallel program onto a parallel machine11 is one of the fundamental

and most difficult problems in parallel processing12 and a detailed discussion of

the mapping problem would exceed the scope of this thesis. The excellent paper

by Norman and Thanisch [Norm93] provides a comprehensive list of references

concerning the subject.

The mapping problem has been investigated within the context of parallel sim-

ulation too, for both conservative [Nand92] [Bouk94] and optimistic approaches

[Reih90a] [Glaz92].

The static nature of the occam language requires that the mapping of the

occam process graph on the transputer network is specified in advance by the

application developer, though a number of tools have been developed to automate

various steps of this task [Boil87] [Murt87] [Lau88] [Theo91] [Theo94c]. The

mapping scheme should ideally take into account the following considerations13

[Murt91]:

• The limitations imposed by the four links of the transputer: each node of

the top level process graph should have at most four neighbours14.

• The limitations imposed by the interconnection network of the machine.

11The mapping problem is essentially a graph embedding problem, and may be described
as follows: Given two graphs G1 (the program) and G2 (the multiprocessor machine), find a
function f : G1 → G2, such that certain performance criteria are satisfied.

12Actually, the mapping of a parallel program onto a parallel machine is only a particular
manifestation of the more general mapping problem which stems from the very nature of
Computer Science: Computer Science deals not with the objects themselves but, rather, with
the representation of objects. This representation involves the reconciliation of conflicts between
the logical structure of objects and the physical medium wherein the objects are dealt with; this
accommodation takes the form of mapping problems [Rose94].

13As discussed in section 2.6.2.2, the T9000 transputer with the message forwarding facilities
of the associated C104 link switch device eliminates most of these considerations; however
for systems which are based on older generation transputers (this covers the vast majority of
existing transputer based machines, including the ParSiFal T-Rack) these considerations have
to be taken into account.

14More formally, the degree of each node in the graph should not be greater that four, with
an edge in the graph representing a bidirectional link.

CHAPTER 7. SIMULATION ISSUES 185

Decode1

Decode2

Decode3

DatInt

AddInt

RegBank

WrtCtrl

Memory

I/O.Process

Decode1 Decode2 Decode3 DatInt AddInt RegBank WrtCtrl Memory I/O.Process

**

*

*

*

* *

*

*

*

*

* *

*

*
* *

* *
*

*

*

*
*

*

*

*

*

*

*

*
*
**

*
* **

: Merge into one link

Figure 7.6: Occarm Process Connectivity Table

Typically, transputer networks are not fully connected and therefore process

graphs have to be transformed to match the underlying structure; the aim

here is proximity, namely placing communicating processes as close to each

other in the network as possible.

• The computation and communication load should be evenly balanced over

the transputers and the links of the system respectively.

Based on the above considerations, the first step for mapping occarm onto

the T-Rack is the modification of the the top level process graph of occarm as

depicted in figure 6.1 so that each node has at most four neighbours.

To address this issue the Process Interconnection Table (PIT) depicted in

figure 7.6 has been devised. The number of asterisks in a row of the table

represents the number of neighbour processes of that particular process. Merging

two columns together, effectively adds one more level of abstraction to the process

hierarchy, assigning the corresponding processes to the same processor and forcing

the two channels to share the same link.

CHAPTER 7. SIMULATION ISSUES 186

1

3

4

5

2

-16

A B

C

D

E

FGH I

J

Decode1 + Decode2

Decode3 + DatInt
AddInt

RegBank
WrtCtrl
Memory
I/O.Process

Occarm Process Node

1
2
3
4
5
6
-1

Figure 7.7: Modified Occarm Top Level Process Graph

Link No. of Multiplexed Channels

A 13
B 9
C 4
D 6
E 3
F 6
G 2
H 8
I 3

Table 7.1: Communication Load on Occarm Links

7.6.1.1 Balancing the Workload

The criterion adopted for the selection of the level of the occarm process hierar-

chy, each of whose process has at most four neighbours, is the maximization of

processor utilization; namely, to occupy as many processors as possible.

Following this criterion the merges presented in figure 7.6 have been applied

to occarm, deriving as a result the alternative graph of figure 7.7; this graph

represents the15 lowest level in the process hierarchy which satisfies the four-link-

per-transputer limitation.

15A possible alternative would be to merge columns 4 and 5, and 7 and 8 (placing onto the
same processors DatInt/AddInt and WrtCtrl/Memory respectively), instead of columns 3 and
4. This arrangement would require five, instead of seven, processors.

CHAPTER 7. SIMULATION ISSUES 187

7.6.1.2 Balancing the Communication Load

The new top level occarm process graph possesses more than one Hamiltonean

cycle, thus allowing an equivalent number of possible mappings on the T-Rack.

For the selection of the appropriate mapping, the criterion which has been

followed is to balance the communication load. In the T-Rack the communication

performance of a hardwired link is approximately double that of a switched link16.

Consequently, the objectives of the communication load balancing policy are to:

• Use as few switched links as possible, and

• Place onto hardwired links as many (multiplexed) channels as possible.

The latter is based on the assumption that on average, during the execution

of benchmark programs, all channels in the system will have similar traffic levels.

The pipelined structure of asynchronous architectures provides a basis to this

assumption; indeed instructions, as they execute, propagate through successive

stages of the pipeline thus activating most, if not all, channels on their path.

Thus in the initial stages of the design process, when no data regarding the

behaviour of the simulated architecture is available (as was the case with the

AMULET1, when occarm was developed), the above mapping criterion provides

a reasonable option. Once a detailed performance analysis of the architecture

has been performed, the mapping of the simulator may be altered accordingly;

in this case, a possible criterion would be to map onto the fast links as many as

possible of the channels which are part of the architecture’s critical path.

The communication load on the links of the top level occarm process graph

is given in table 7.1. Figure 7.8 presents alternative mappings of the graph onto

the T-Rack; a . . . c are examples of mappings which are not feasible due to the

16The performance of a hardwired unidirectional link is reported as being 1.72 Mbytes per
second, with that of a switched link being 0.87 Mbytes per second [Murt91], pp 63-65; this is
due to the increased latency of acknowledgment messages imposed by the C004 link switches.

CHAPTER 7. SIMULATION ISSUES 188

-1 123 4 56

-1 413 5 26

A

BC D E

F
G

H

I

B

C

D

E

F

G

I

B
C

D E

FG

IAH B

-1 631 2 54
A H

??

??

B
C

D

E

F

G

IAH

J

J

J

??

??

J

J

-1 352 1 46
D

E

G

B

C

FI A

H

J

-1 325 1 46

-1 132 4 56

D

E

G

B

C

F

I A

H

J

D EG
B

C

F

I

A

H

J

-1 413 2 56

-1 213 5 46

D

E

G B

C

F

IAHJ G

??

??a)

b)

c)

d)

e)

f)

g)

h)

Necklace
Switched Links

Figure 7.8: Occarm Graph Mappings

CHAPTER 7. SIMULATION ISSUES 189

-1

213 5 46

Necklace
Switched Links

T1T0

T-1

T2 T3 T4 T5 T6 T7

T8

T63

F F

F

F

Monitoring Path

...

to/from Host

Monitoring InformationMemory Requests out / Data In

F : Forward Process

Figure 7.9: Mapping Occarm onto the T-Rack

limited link connectivity of the T-Rack. The remaining mappings, namely d . . . h,

illustrate the different feasible ways to map occarm onto the T-Rack. From these,

mapping h satisfies the communication balancing criteria specified above and

therefore has been selected for occarm. This mapping uses the minimum possible

number of switched links (namely 4) while allocating the maximum total number

of channels onto the necklace (namely 36); mapping e makes use of 5 switched

links while mappings d, f and g place onto the necklace 30, 28 and 30 channels

respectively.

The selected mapping h, has also the advantage that the maximum number

of channels from the Decode3-Memory path (namely links F, H and I) are placed

on the necklace. This is the path followed by the data transfer addresses and the

corresponding abort signals during the execution of data transfer instructions. As

explained in section 6.5.3.4, after sending the data transfer address to memory,

Decode3 blocks until the corresponding abort signal is issued; therefore, in order

to prevent stall and/or starvation phenomena in the simulation model, it is

CHAPTER 7. SIMULATION ISSUES 190

Mux Distributor

M
ux

Mux

M
ux

D
is

tr
ib

ut
or

Distributor

D
istributor

Occarm
Process

A

MonitorMonitor

Occarm
Process

B

A B

to/from other transputer

to/from other transputer

to/from otherto/from other
 transputer transputer

Demultiplexor

. . .

buffers

North

South

West East

Distributor

Ti

Figure 7.10: The Generic Simulator Node

essential that Decode3 receives the abort message as soon as possible.

7.6.1.3 The Monitoring Path

To minimize the communication overhead imposed by the monitoring messages,

the characteristics of the T-Rack may be exploited. As explained in section

7.5, the I/O process receives messages from both the Memory and the moni-

toring processes. Since the Tadpole transputer, where the I/O process resides,

is connected to both ends of the necklace, the interaction with the Memory

process may take place via one end of the necklace, with the monitoring messages

following the other direction towards the other end of the necklace. This scheme

is depicted in figure 7.9, where the complete mapping of occarm onto the T-Rack

is presented; transputers T0-T5 host the simulation model, while transputers

T6-T63 are simply used to forward monitoring information.

CHAPTER 7. SIMULATION ISSUES 191

7.6.1.4 The Generic Simulator Node

Figure 7.10 depicts a generic node of the distributed implementation of the sim-

ulator. Typically this will include a number of active processes together with the

corresponding monitoring modules. Extra multiplexing/demultiplexing processes

are included to allow the sharing of the transputer links; to prevent deadlock

situations (which for example might occur if one of the transputer links is blocked

by a message destined for a particular process, while this process is blocked

waiting for a message that may follow the former on the link), extra buffering has

been incorporated into the demultiplexing modules (i.e. the distributor process).

In practice, not all of the modules depicted in figure 7.10 will be included in

a typical node.

7.7 Summary

This chapter has discussed issues related to the execution of the occarm model

onto the T-Rack, a 64 transputer machine. Techniques to deal with the problems

of monitoring, termination, mapping and load balancing have been presented;

the techniques that have been presented regarding the monitoring of the occarm

model are general and can be applied to any asynchronous architectural model

which is based on the same philosophy as occarm.

The next chapter presents a set of results obtained from the execution of

occarm on the T-Rack. These results are used for the validation of occarm.

Chapter 8

Validation of the Occarm Model

8.1 Introduction

The last two chapters have described the occarm simulation model and the asso-

ciated environment which provides for the execution of occarm on the ParSiFal

T-Rack. This chapter presents a set of quantitative results which provide the

basis for the validation of occarm.

Simulation model verification and validation is a complicated1 albeit impor-

tant issue and is currently an active area of research. An overview of existing val-

idation and verification approaches may be found in [Whit89], [Cars89], [Sado89],

[Sarg92], [Sarg94], [Balc94] and [Balc94a].

The validation of occarm has been performed by comparing results produced

by occarm with those produced by the Asim simulation model and concerns two

different characteristics of occarm, namely :

• The accuracy of timing.

• The performance.

1Yucesan et al. [Yuce92] have shown that the verification of certain properties of discrete
event simulation models is an NP-complete problem.

192

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 193

 ...
 time();
 for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)
 {

 Proc_5();
 Proc_4();

 Int_1_Loc = 2;
 Int_2_Loc = 3;
 strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING");
 ...
 } /* loop "for Run_Index" */
 time();
 ...
 Proc_4 ()
 {
 Boolean Bool_Loc;

 Bool_Loc = Ch_1_Glob == 'A';
 Bool_Glob = Bool_Loc | Bool_Glob;
 Ch_2_Glob = 'B';
 } /* Proc_4 */
 ...
 Proc_5 ()
 {
 Ch_1_Glob = 'A';
 Bool_Glob = false;
 } /* Proc_5 */
 ...

Figure 8.1: A Section of the Dhrystone Synthetic Benchmark

8.2 Benchmark Programs

Within the AMULET project, for the verification and evaluation of the AMULET1

processor, the ARM validation programs [ARM] as well as the Dhrystone bench-

mark [Weic84] are used. The former are “toy” benchmarks which invoke different

instruction types to test different parts of the design. Dhrystone is a synthetic

benchmark which has traditionally2 been used for the evaluation of computer

architectures.

The main body of the Dhrystone program consists of a loop as depicted in

figure 8.1. Using this benchmark, the performance of the simulated architecture

2A discussion on the different benchmarks used in connection with computer architecture
research may be found in [Henn90] pp. 45-48.

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 194

Model Tbefore Tafter

Value(ns) Drift(ns) Error(%) Value(ns) Drift(ns) Error(%)

Occarm (Single) 39036 10313 20.9 114432 28834 20.13
Occarm (Multi) 39274 10075 20.42 116090 27176 18.97

Asim Tbefore= 49349ns
Asim Tafter = 143266ns

Benchmark: Dhrystone (1 loop)

Table 8.1: Timestamp Drift

Model Dhrystone Number Error (%)

Occarm (Single) 13263.30 24.57
Occarm (Multi) 13018.30 22.26

Asim Dhrystone Number= 10647.69

Table 8.2: Dhrystone Numbers

is expressed in terms of the “Dhrystone number” which denotes the number of

times that the loop is executed during a period of one second (“Dhrystones”).

The “Dhrystone number” is calculated by sampling the current clock value before

(Tbefore) and after (Tafter) the execution of the loop and employing the formula:

Dhrystone.Number =
109 ∗ Number.Of.Runs

Tafter − Tbefore

The clock values in the above formula refer to either real or simulated time

depending on whether Dhrystone is executed on the physical processor or within

a simulator respectively.

The functional correctness of occarm has been verified by (meta-)executing

the complete set of the ARM validation programs.

For the validation of occarm, Dhrystone has been used for the following two

reasons:

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 195

• Dhrystone, like all synthetic benchmarks, tries to match the average be-

haviour (i.e. the average frequency of operations and operands) of a large

set of real programs; thus, the results obtained may be considered repre-

sentative of the average behaviour of occarm too.

• Dhrystone is the benchmark that has typically been used for the evaluation

of the AMULET1.

Within the ARM development environment used in the AMULET project,

the “time()” function in the Dhrystone code (figure 8.1) is compiled as a write

request to a particular address in memory; the memory responds by issuing a

value which denotes the time that the write request is issued to memory. In

occarm, this value is the timestamp of the request message to memory.

8.3 Accuracy

The accuracy of timing in occarm has been tested by comparing the results

produced by occarm with those obtained from Asim (see chapter 6). These are the

results that are used for the performance evaluation of AMULET1, namely the

Dhrystone number, as well as the occupancy and stall periods of the AMULET1

pipelines (see section 7.3.1). Since the calculation of these values is based on the

simulated time, they are particularly suitable to be used as a means for measuring

the degree of timing accuracy of occarm.

C
H

A
P

T
E

R
8
.

V
A

L
ID

A
T

IO
N

O
F

T
H

E
O

C
C

A
R

M
M

O
D

E
L

196

Pipe (Figure) Size Occupancy (%)
1 Item 2 Items 3 Items 4 Items 5 Items

Single Multi Asim Single Multi Asim Single Multi Asim Single Multi Asim Single Multi Asim

IPipe(6.5) 5 25.35 21.66 14.78 35.53 33.04 26.07 27.13 30.71 37.37 11.00 14.35 19.71 0 0 0
PCPipe(6.4) 2 37.72 34.47 31.10 47.62 53.31 60.68
XPipe(6.7) 3 37.13 36.88 40.30 9.24 9.43 10.59 0.55 0.92 1.20
Dec1.RegB(6.8) 1 74.60 77.04 52.43
Dec1.RegA(6.8) 1 7.99 7.85 5.04
Dec2.OP(6.17) 1 89.62 90.44 69.06
Dec2.Rsh(6.17) 1 0 0 0
NGen(6.17) 2 10.05 10.36 3.53 3.95 3.87 0
RB.OReg(6.13) 1 50.91 52.27 40.75
RB.Wreg(6.13) 1 78.40 79.62 63.35
RB.Ireg(6.13) 1 47.20 50.10 61.80
RB.Afifo(6.13) 3 37.24 37.48 36.17 1.09 1.10 2.56 0 0 0
RB.Mfifo(6.13) 4 22.63 22.45 22.90 3.04 3.27 2.91 0.69 0.65 0.77 0 0 0
Dec3(6.8,6.18) 3 27.70 25.65 NA 52.26 52.36 NA 12.95 15.36 NA
CPreg(6.18) 1 57.67 57.83 65.62
OPreg(6.18) 1 56.21 56.42 55.41
MemCP(6.5) 5 56.75 57.55 60.21 7.88 7.76 2.87 0 0 0 0 0 0 0 0 0
MRReg(6.5) 1 32.64 33.30 22.39
MAReg(6.4) 1 57.29 57.49 42.17
Dout(6.5) 3 10.31 10.48 13.09 0.43 0.44 0.09 0 0 0
PCHLat(6.4) 2 95.65 95.67 90.11 0.60 0.77 0.76
LSMreg(6.4) 1 6.79 6.70 4.42
APipe(6.4) 2 5.17 5.30 7.65 0.17 0.16 0.20
WReg(6.19) 1 14.31 15.23 18.71
DataIn(6.5) 1 8.23 7.64 5.94
RReg(6.18) 1 29.25 29.14 23.76
ImmPipe(6.8) 2 40.17 41.32 27.63 13.15 14.30 4.13

NA: Not Available

Table 8.3: AMULET1 Pipeline Occupancy (Dhrystone (1 loop))

C
H

A
P

T
E

R
8
.

V
A

L
ID

A
T

IO
N

O
F

T
H

E
O

C
C

A
R

M
M

O
D

E
L

197

Total Number Stall Period (ns)
Pipe (Figure) of Messages Average Min Max

Single Multi Asim Single Multi Asim Single Multi Asim Single Multi Asim

IPipe(6.5) 992 1018 1079 12 12 12 12 12 12 12 12 12
PCPipe(6.4) 992 1018 1075 81.24 83.44 68.85 12 12 12 700 753 956
XPipe(6.7) 251 254 244 14.35 12.08 12.88 12 12 12 80 35 107
Dec1.RegB(6.8) 973 985 954 29.47 32.16 23.48 12 12 12 214 227 180
Dec1.RegA(6.8) 147 147 144 36.10 35.73 46.21 12 12 12 69 73 98
Dec2.OP(6.17) 973 985 953 58.35 61.12 67.33 12 12 12 322 325 409
Dec2.Rsh(6.17) 0 0 0 0 0 0 0 0 0 0 0 0
NGen(6.17) 117 117 113 12 12 12 12 12 12 12 12 12
RB.OReg(6.13) 973 985 953 43.51 44.16 25.53 12 12 12 134 197 182
RB.Wreg(6.13) 1034 1046 1012 12 12 12.70 12 12 12 12 12 15
RB.Ireg(6.13) 1034 1046 1012 16.03 17.03 50.89 12 12 12 170 178 393
RB.Afifo(6.13) 458 465 454 12 12 12 12 12 12 12 12 12
RB.Mfifo(6.13) 178 181 172 12 12 12 12 12 12 12 12 12
Dec3(6.18) 880 892 860 12.45 13.57 39.05 12 12 12 65 118 189
CPreg(6.18) 879 891 859 32.40 15.10 40.62 12 12 12 150 150 201
OPreg(6.18) 879 891 859 14.35 14.86 27.44 12 12 12 75 148 190
MemCP(6.5) 1156 1182 1258 12 12 12 12 12 12 12 12 12
MRReg(6.5) 1156 1182 1240 16.42 16.45 12 12 12 12 45 40 12
MAReg(6.4) 1343 1372 1421 29.56 29.03 42.51 12 12 21 128 114 92
Dout(6.5) 166 166 163 12 12 12 12 12 12 12 12 12
PCHLat(6.4) 991 1017 1079 12 12 12 12 12 12 12 12 12
LSMreg(6.4) 111 111 109 13.02 13.7 21.66 12 12 12 14 19 25
APipe(6.4) 73 73 73 12 12 12 12 12 12 12 12 12
WReg(6.19) 342 345 331 12 12 12 12 12 12 12 12 12
DataIn(6.5) 186 189 179 12 12 15.76 12 12 14 12 12 27
RReg(6.18) 716 725 700 12 12 12.53 12 12 12 12 12 26
ImmPipe(6.8) 499 507 482 12.26 12.53 12 12 12 12 29 35 12

Table 8.4: AMULET1 Pipeline Stalls (Dhrystone (1 loop))

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 198

In order to make the results obtained from the two different models compa-

rable, care has been taken during the implementation of occarm to ensure that

the propagation delays (in simulated time) incorporated in the occam processes,

exactly match those of Asim. For modules described in Asim at the Register

Transfer Level, this is straightforward; for Asim gate level descriptions3, the

equivalent occarm delays have been calculated by taking into account the prop-

agation delays of all the circuit elements on the corresponding path4. Results

from both, the single and multiple transputer configurations (referred to in the

result tables as Single and Multi respectively) of occarm on the T-Rack have been

obtained. These represent two different and arbitrary process schedulings, thus

providing an indication of the effect that different process schedulings may have

on the timing inaccuracy.

Table 8.1 illustrates the clock values Tbefore and Tafter of the Dhrystone

program as produced by occarm, while table 8.2 presents the Dhrystone numbers

obtained from the aforementioned values; in these tables, the values “Drift” and

“Error” refer to the comparison between the corresponding results from occarm

and Asim.

Tables 8.3 and 8.4 present the comparative results regarding the occupancy

and the stall periods of the pipelines5 of AMULET1 respectively.

As shown in table 8.2, the timing error with regard to Dhrystone values

is 24.57% and 22.26% for the single and multiple transputer configurations of

occarm respectively. These values may be considered reasonable and indeed

acceptable at this level of simulation and at an early stage of the design pro-

cess [WooJ94]; the same applies for the values obtained regarding the pipeline

occupancy and stall periods, since, as it can be seen in tables 8.3 and 8.4, the

3This refers to modules that are described in terms of logic gates, latches and Event Control
Blocks.

4These delays correspond to the CMOS implementation of AMULET1.
5A register is a pipeline of size one.

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 199

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4
P

re
em

pt
io

n
C

ou
nt

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4

P
re

em
pt

io
n

C
ou

nt

a) Single Transputer Implementation

b) Multi Transputer Implementation

Figure 8.2: Decode1: Preemption Count (1 Dhrystone Loop)

disparities between the occarm and Asim results are insignificant.

It is important to note that the discrepancies between the results obtained

from occarm and the Asim model are due, not only to the timing error introduced

into the message timestamps by the occurrence of preemptions in occarm, but

also, to the change in the system’s behaviour that these preemptions cause.

Preemptions in the arbiter processes change, not only the order, but also the

type and number of events in the model. A preemption in the address interface

(AddInt process) which involves a branch target address from the datapath (Wch

channel, see section 6.9) affects the number of addresses issued to memory and

consequently, the number of invalid instructions which will enter the system.

Similarly, a preemption in Decode1 arbiter process means that a different number

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 200

a) Single Transputer Implementation

b) Multi Transputer Implementation

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

250

300

350

400

450

500
A

cc
um

ul
at

ed
 E

rr
or

 (
ns

)

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

250

300

350

400

450

500

A
cc

um
ul

at
ed

 E
rr

or
 (

ns
)

Figure 8.3: Decode1: Preemption Magnitude (1 Dhrystone Loop)

of invalid instructions will enter the datapath. This explains the disparities

between the number of messages which enter each of the pipelines in the different

models (see table 8.4).

In order to examine how preemptions are distributed over time, the number of

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 201

a) Single Transputer Implementation

b) Multi Transputer Implementation

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4
P

re
em

pt
io

n
C

ou
nt

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4

P
re

em
pt

io
n

C
ou

nt

Figure 8.4: AddInt: Preemption Count (1 Dhrystone Loop)

times that a preemption is detected6 (the preemption count) and the correspond-

ing accumulated preemption magnitude (in nanoseconds) for each arbiter process

have been sampled at regular intervals7. Figures 8.2 - 8.7 present the obtained

values in the form of impulse graphs. These figures indicate that preemptions

take place at a low frequency, with the corresponding accumulated preemption

magnitude being relatively small (ranging from less than 25ns to 475ns). Most

of the preemptions occur in the AddInt process; this may be explained by the

6A preemption in an arbiter process is detected each time a message is received with
timestamp less than the timestamp of the last message on the other input link.

7In the current implementation of occarm, the sampling period is 10000ns (simulated time).
However, the distributed and event-driven nature of occarm allows reports to be generated only
after the report boundary instant has been crossed. in the impulse graphs, “accumulated error”
refers to the total preemption magnitude within a sampling period.

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 202

a) Single Transputer Implementation

b) Multi Transputer Implementation

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

250

300

350

400

450

500

A
cc

um
ul

at
ed

 E
rr

or
 (

ns
)

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

250

300

350

400

450

500
A

cc
um

ul
at

ed
 E

rr
or

 (
ns

)

Figure 8.5: AddInt: Preemption Magnitude (1 Dhrystone Loop)

fact that the activity of the address interface (i.e number of messages arriving on

the input channels of AddC process) is higher, thus increasing the probability of

preemptions.

An interesting aspect with regard to preemptions which emerged from the

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 203

a) Single Transputer Implementation

b) Multi Transputer Implementation

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4
P

re
em

pt
io

n
C

ou
nt

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

1

2

3

4

P
re

em
pt

io
n

C
ou

nt

Figure 8.6: WrtCtrl: Preemption Count (1 Dhrystone Loop)

obtained results is that although locally, within each arbiter process, the accu-

mulated timing error increases as the simulation progresses, the error which is

incorporated in the timestamps of the messages in the model does not necessarily

follow this pattern; certain individual messages may even have timestamps that

exactly match the time that the corresponding events would occur in the absence

of preemptions. This is illustrated in figure 8.8, where an example process graph

with two arbiter processes (P1 and P2) is depicted. Assuming zero propagation

delays within the processes, if no preemptions occur, messages would be sent to

process P3 in the order a, b, c, d, e, f, with timestamps 3, 5, 7, 10, 13 and 15

respectively. If preemptions occur, a possible sequence of messages to P3 could

be d, a, b, f, c, e, with timestamps 10, 10, 10, 15, 15 and 15 and with timing

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 204

a) Single Transputer Implementation

b) Multi Transputer Implementation

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

A
cc

um
ul

at
ed

 E
rr

or
 (

ns
)

0 20000 40000 60000 80000 100000 120000
Simulated Time (ns)

0

50

100

150

200

250

A
cc

um
ul

at
ed

 E
rr

or
 (

ns
)

Figure 8.7: WrtCtrl: Preemption Magnitude (1 Dhrystone Loop)

error 0, 7, 5, 5, 8, 0 and 2 respectively.

8.4 Performance

With regard to performance, occarm and the Asim model are not directly com-

parable, since each describes the AMULET1 architecture at a different level,

and the supporting machines (namely the T-Rack and any SPARC workstation)

are intrinsically very different. Nevertheless, a comparative examination of the

performance of the two models may provide an indication of the impact that

the use of the occam model may have to the duration (and cost) of the design

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 205

a

P1P2

P3

3

f 15

b 5

c 7

d 10

e 13

Figure 8.8: An Example Process Graph

cycle, within the boundaries of existing technology. Within the single transputer

configuration (i.e. on a single 20MHz, T414 transputer), occarm requires on

average8 1.72 minutes to execute one Dhrystone loop9 when no monitoring traces

are generated; as illustrated in table 8.5, this time is longer than that required

by the Asim model executing on an IPX Sun workstation10 by a factor of 1.16.

This is a reasonable and expected performance, for the execution of the occarm

processes on a single transputer is performed not in a parallel but rather in a time

sharing fashion and the large number of processes in the model11 make the context

switching overhead in the transputer significant.

Table 8.6 presents the performance of occarm for both, its single and multiple

transputer configurations and for the different policies employed for the trans-

portation of monitoring data (see section 7.3.1).

When no monitoring traces are generated, the distribution of occarm on to

the seven transputers of the T-Rack yields a speedup of 1.69.

The “store and unload” transport policy allows a speedup of 2.26 to be

8The performance results presented in this section represent the average (i.e. the mean

[Grah94], page 384) value derived from (10) runs of the simulators in question.
9This corresponds to the execution of 20 ARM machine instructions per second.

10The elapsed time for the Asim model has been obtained by taking into account the user

and sys values provided by the Bourne shell “time” command.
11The current implementation of occarm consists of approximately 120 parallel processes.

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 206

Model Elapsed Time (minutes)

Occarm(Single) 1.72
Asim 1.48

Benchmark: Dhrystone (1 loop)

Table 8.5: Asim versus Occarm (Single Transputer Implementation)

Transport Policy Elapsed Time (minutes) Speedup
Occarm (single) Occarm (multi)

Tracing Off 1.72 1.02 1.69
Store and Unload 4.22 1.87 2.26
Immediate Transport 9.75 7.21 1.35

Benchmark: Dhrystone (1 loop)

Table 8.6: Performance of Occarm

achieved since, in this mode of operation, the performance of occarm on a single

transputer drops by a factor of 2.45 compared to 1.83 in the multi transputer

implementation. This difference in the performance drop may be attributed to

the fact that the activation of the monitoring processes severely increases the

frequency and, consequently, the overhead of context switching on the single

transputer. The distribution of the monitoring processes onto multiple trans-

puters alleviates this phenomenon as the context switching overhead is also

distributed.

When the “immediate transport” policy is employed, the performance of both

the single and multiple transputer configurations of occarm drops dramatically by

5.67 and 7.07 respectively, allowing a speedup of only 1.35. This behaviour may

be attributed to the operation of the I/O process. As explained in section 7.5, the

I/O process acts as a multiplexor for messages arriving from both the Memory

and the Monitoring processes. This introduces a major bottleneck in the system,

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 207

which imposes the ultimate limit on the performance of the simulator. The large

number of monitoring messages generated by the “immediate transport” policy

occupy a large proportion of I/O process activity, thus reducing the rate at which

instructions and data are supplied to the model; as a consequence, the processes

of the model remain idle for substantial periods.

The speedups achieved by the distribution of occarm onto the multiple trans-

puters of the T-Rack may be considered acceptable and reasonable [Birt94], but

not satisfactory. The poor speedup achieved may be attributed to a number of

factors related to the characteristics of both the simulated architecture and the

machine that hosts the simulator.

• Amdahl’s law [Amda67] specifies that the maximum possible speedup de-

pends on the inherent parallelism of the executed system which may po-

tentially be exploited12. In the case of AMULET1, the requirement for

instruction compatibility with the synchronous ARM, has resulted in an

asynchronous design with a very complex pipeline structure and, indica-

tively, limited parallelism. The performance of AMULET1 itself is 70% of

the performance of of the synchronous ARM [Furb94]. The complexity of

the AMULET1 architecture makes an analysis of the inherent parallelism

of the design a complicated task which, as yet, has not been undertaken.

• Asynchronous architectures are communication bound systems and there-

fore the efficiency of the communication system is crucial. The complex

irregular interconnection pattern of AMULET1’s functional modules and

the extra multiplexing/demultiplexing processes required to cope with the

connectivity constrains of the Transputer and the T-Rack introduce major

12The estimation of the maximum possible speedup of a distributed simulation is currently
an active area of research. Techniques which have been suggested for this purpose include the
employment of a critical path analysis of a trace from a given simulation [Berr85] [Som89], and
the treatment of the process graph as a queueing network model [Wagn89].

CHAPTER 8. VALIDATION OF THE OCCARM MODEL 208

bottlenecks in the system which severely reduce the communication effi-

ciency.

As explained in section 7.3.1, most of the time the simulation model will op-

erate under the “store and unload” transport policy which permits the maximum

speedup.

8.5 Summary

This chapter has presented a set of quantitative results regarding both, the

accuracy and performance of the occarm simulation model. The accuracy of the

model has been measured by comparing the results obtained from occarm with

those provided by the Asim model; the results have been obtained by executing

the Dhrystone benchmark on the two models. The distribution of preemtions

over time and their effects on the messages’ timestamps in the model have also

been discussed.

The next chapter introduces an approach for eliminating occurance of pre-

emptions within the framework of the proposed modelling approach.

Chapter 9

Addressing the Time Modelling

Problem

9.1 Introduction

The results presented in the previous chapter confirm that the timing error

introduced into the occarm simulation model by the lack of any synchronization

between the parallel processes may be considered acceptable at this level of

simulation and at the early stages of the simulation process.

Greater accuracy is needed, however, if the model is to serve as a tool for a

more extensive and elaborate evaluation of the performance characteristics of the

asynchronous architecture.

The requirement to test the architecture for potential deadlocks by modifying

the delays in the system (see section 5.3.1.1) makes the accuracy requirement

even more intense. Using the real time transputer clocks to change the relative

scheduling of the occam processes, has the major drawback that small run time

delays cannot guarantee the intended effects and behaviour in the model, as

these delays are only approximate. Furthermore, run time delays have a direct

209

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 210

effect on the performance of the simulator. Thus, large delays which would

guarantee the planned process scheduling, would also affect the performance of

the simulator; experiments with occarm have shown that the drop in performance

can be significant.

This chapter describes a technique that has been developed to enforce time

accuracy in occam models of asynchronous architectures.

9.2 Requirements

As discussed in chapter 5, the rationale behind using occam for modelling asyn-

chronous architectures is the exploitation of the close relationship between the

language semantics and the characteristics of the asynchronous system. Once the

occam simulation model is constructed, any attempt to introduce time accuracy

into it must preserve this modelling philosophy.

Furthermore, any complexity added to the model as a result of the synchro-

nization protocol should be minimal. One of the purposes served by the occam

model is to provide a description of the architecture’s specification and operation;

this information should not be obscured by extra functionality which is related

only to the accurate operation of the model and not to the simulated architecture

per se.

Any attempt to employ one of the existing synchronization protocols surveyed

in chapter 3, would force it to depart from the modelling philosophy which

provided its original basis. Therefore, to meet the aforementioned requirements,

a novel synchronization protocol has been devised, namely the Program Driven

Synchronization Protocol (PDSP). This is a conservative protocol which is based

on a combination of the exploitation of the characteristics of the simulated system

and the employment of Null messages to achieve deadlock avoidance, while main-

taining the philosophy of the model intact. It seeks to enable the development

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 211

of accurate arbiter models involving only the processes required for this purpose.

The processes of the model remain entirely data driven.

9.3 The Program Driven Synchronization Pro-

tocol (PDSP)

9.3.1 The Basis

Von Neumann computer architectures, synchronous or asynchronous, are deter-

ministic systems; they accept as input instructions which they execute sequen-

tially in a specific and predefined order. Each instruction defines the steps that

are required for its execution as well as the behaviour of each functional module

of the architecture. Consequently, the kind and sequence of events that occur in

the system are determined at any time by the executing instructions.

This ability to predict events in the architecture, based on the information

provided by the program under execution, forms the basis of the Program Driven

Synchronization Protocol; by examining the instructions being executed, the

arbiter processes of the simulation model can determine whether an event is

expected on a particular input link and thus whether their blocking upon this

link would result in a deadlock.

The key concept in the Program Driven philosophy is the “Instruction Looka-

head Set” which is defined as follows:

Definition 1 The Instruction Lookahead Set (ILS)of a link λ is the set of

instructions1 whose execution will potentially result in an event occurring on λ:

ILSλ = {Instruction I: I generates an event on link λ}.

The Instruction Lookahead Set of any particular link in the system is directly

1An instruction I is referred to as an ILSλ instruction if and only if I ∈ ILSλ.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 212

defined by the architecture’s specification and thus, may become available to

the arbiter processes of the simulation model in advance. Based on the ILS of

their input links, arbiter processes may directly make decisions regarding the

potential arrival of messages, provided of course that they are also informed of

the instructions being executed in the system.

9.3.2 The Rules

Based on the Instruction Lookahead Set defined above, the behaviour of arbiter

processes with regard to message consumption may be specified as follows:

Rule 1 An arbiter process Π is allowed to block and wait for an event on its

input link λ during the execution of an instruction I if and only if I ∈ ILSλ.

The above rule ensures that arbiter processes block only for instructions that

are likely to generate the corresponding events. However, depending on the status

of the system, during the instruction’s execution such an event might not occur;

in this case Null messages are required otherwise the arbiter process will become

blocked and the simulation model will deadlock. The following rule is concerned

with the production of Null messages:

Rule 2 A Null message will be sent to link λ of the arbiter process Π if and only

if Π expects an event on λ based on the ILSλ, and for the current state of the

system the event will not be generated.

The two rules above, specify the behaviour of arbiter processes and their

peers, when their interaction depends on the executed instructions. However, not

all events in an asynchronous system occur in an instruction dependent fashion.

Indeed, certain parts of the system may operate autonomously, irrespective of

which instructions are being executed; the PC loop in the AMULET1 processor

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 213

is an example of such an autonomous unit. In this case it is the state of the

simulated system that dictates the behaviour of the arbiter process:

Rule 3 An arbiter process Π is allowed to block and wait for an event on its

input link λ which fires in an instruction independent way, if and only if the state

of the system guarantees that a message will be issued on λ.

9.3.3 The PDSP Arbiter Process

The basic functionality of an arbiter process with regard to the Program Driven

Synchronization Protocol is depicted in figure 9.1.

Upon receiving a message on one of its links (e.g. msg1 message on In1) the

arbiter invokes the Select process to determine whether the processing of this

message would cause a preemption.

If there is a pending message msg2, already received from the other input,

then the message with the minimum timestamp is selected to be processed and

forwarded to the arbiter process’s output; if both timestamps have the same

value, the selection is made in a random fashion to emulate the behaviour of the

corresponding hardware arbiter.

If however, no pending message exists, but a positive prediction (based on the

Instruction Lookahead) is made regarding its potential arrival, the arbiter process

blocks and waits until this second message arrives. The arrival of this message

provides the arbiter process with the information required to proceed with its

operation and enable Select to make a decision, namely the next timestamp on

its other input link.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 214

PROC PDSP_Arbiter()
 PROC Select(msg1, msg2)
 SEQ
 IF
 msg2_pending=TRUE
 SEQ
 IF
 timestamp(msg1)<timestamp(msg2)
 SEQ
 process(msg1)
 msg1_pending:=FALSE
 timestamp(msg1)>timestamp(msg2)
 SEQ
 process(msg2)
 msg2_pending:=FALSE
 timestamp(msg1)=timestamp(msg2)
 SEQ

make_random_selection(msg1,msg2)
 msg2_pending=FALSE
 SEQ
 IF
 msg2_expected=TRUE
 SEQ
 In2?msg2
 msg2_pending:=TRUE
 msg2_expected=FALSE
 SEQ
 process(msg1)
 msg1_pending:=FALSE
 :
 WHILE TRUE
 SEQ
 IF
 msg1_pending=TRUE
 SEQ
 Select(msg1,msg2)
 msg2_pending=TRUE
 SEQ
 Select(msg2,msg1)
 TRUE
 SEQ
 ALT
 In1?msg1
 msg1_pending:=TRUE
 In2?msg2
 msg2_pending:=TRUE
:

Figure 9.1: The PDSP Arbiter Process

9.3.3.1 Improving PDSP Performance

The basic algorithm described in the previous section (figure 9.1) enables arbiter

processes to receive and process messages arriving on their input links in increas-

ing timestamp order, always selecting the message with the smallest timestamp;

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 215

this guarantees the accurate, preemption-free operation of the simulation model.

However, this process does not ensure that the concurrency of the simulated

system is sufficiently exploited to increase the potential of the model for high

performance. Indeed, as soon as it predicts that a message is expected on one

of its input links (e.g. In2), the arbiter process will stop accepting any messages

arriving on its other input link In1 until the expected message on In2 arrives. As

a consequence, all the processes which are part of the path that leads to In1 will

block and wait, and the pipelines at the output side of the arbiter process will

starve; during this time, large parts of the simulator will remain idle.

A solution to this problem is to provide arbiter processes with some indication

as to when, in the simulated future, an expected message will actually arrive. This

information will enable them to consume a number of events occurring on In1

link before they block on In2 increasing thus the concurrency of the simulation

model. This information can be obtained by taking into account the propagation

delays in the architecture being simulated. An event generated by an instruction

will propagate through a number of pipeline stages before it reaches an arbiter.

The path followed by the event is completely defined by its parent instruction;

the latency of the path however at any particular time, depends on the number

of elements in the micropipelines involved and thus, it is non-deterministic.

Consequently, it is not feasible to know in advance the exact time required for

an event to propagate through a given micropipeline. However, there is a lower

bound to this time, namely the latency of the micropipeline when, at the moment

of the event’s entry, it is empty. Based on this observation, the Minimum Latency

Lookahead, may be defined:

Definition 2 The Minimum Latency Lookahead of a link λ MLLλ, is de-

fined as the total propagation delay of the path leading to λ, when the pipelines of

the path are empty:

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 216

MLLλ =
∑

i

di

di: Propagation delay of the i-th pipeline stage in the path.

The Instruction Lookahead Set of a link informs the corresponding arbiter

process whether a message should be expected on that link; the Minimum Latency

Lookahead reveals when in the simulated future the expected message may arrive.

Based on the Minimum Latency Lookahead, the following rule may be specified:

Rule 4 An arbiter process Π will not process a message µ1 received on its input

link λ1 but instead it will block and wait for a message µ2 expected on its other

input link λ2, if and only if the timestamp of µ2 as predicted by the MLLλ2
is

less than or equal to the timestamp of µ1.

Rule 4, combined with the ALT statement in the main loop of the PDSP

arbiter process, will enable arbiter processes to process messages with appropriate

timestamps as soon as they arrive.

Figure 9.2 depicts the functionality of the arbiter process when the MLL is

taken into account.

9.3.4 The Limitations

The Program Driven Approach is based on the exploitation of the Instruction

Lookahead properties of the simulated architecture. Such an exploitation pre-

supposes that arbiter processes have knowledge as to which instructions are

being executed. If this knowledge is not directly available, then an appropriate

mechanism needs to be devised to provide arbiter processes with this information.

Generally the functionality of the architecture being modelled will make the

development of such a mechanism feasible. Otherwise the instruction lookahead

properties of the system can not be exploited and the PDSP rules can not apply.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 217

PROC PDSP_Arbiter()
 PROC Select(msg1, msg2)
 SEQ
 IF
 msg2_pending=TRUE
 SEQ
 IF
 timestamp(msg1)<timestamp(msg2)
 SEQ
 process(msg1)
 msg1_pending:=FALSE
 timestamp(msg1)>timestamp(msg2)
 SEQ
 process(msg2)
 msg2_pending:=FALSE
 timestamp(msg1)=timestamp(msg2)
 SEQ
 make_random_selection(msg1,msg2)
 msg2_pending=FALSE
 SEQ
 IF
 msg2_expected=TRUE
 SEQ
 IF
 timestamp(msg1)< MLL_timestamp(msg2)
 SEQ
 process(msg1)
 msg1_pending:=FALSE
 timestamp(msg1) >= MLL_timestamp(msg2)
 SEQ
 In2?msg2
 msg2_pending:=TRUE
 msg2_expected=FALSE
 SEQ
 process(msg1)
 msg1_pending:=FALSE
 :
 WHILE TRUE
 SEQ
 IF
 msg1_pending=TRUE
 SEQ
 Select(msg1,msg2)
 msg2_pending=TRUE
 SEQ
 Select(msg2,msg1)
 TRUE
 SEQ
 ALT
 In1?msg1
 msg1_pending:=TRUE
 In2?msg2
 msg2_pending:=TRUE
:

Figure 9.2: PDSP: Taking MLL into Account

9.4 Applying PDSP to Occarm

In order to demonstrate its applicability, the Program Driven Synchronization

Protocol was employed to develop models of the arbiter processes in occarm

which would provide accurate modelling of time.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 218

As already mentioned, occarm makes use of three arbiter processes, namely

AddC, Dec1CtrlA and WrtCtrl, which form part of the address interface, primary

decode and write bus control units of the AMULET1 respectively.

9.5 The Address Interface Arbiter

As described in section 6.3.2, the AddC process employs arbitration to allow

addresses arriving from the datapath on the Wch channel to break the PC loop

and gain access to the MAReg. The Instruction Lookahead Set of the Wch

channel is2:

ILSWch={B, BL, SWI, LDR, STR, LDM, STM, Data Processing with PC as

Dest. Reg.} .

The other input of the arbiter, namely the PCch, forms part of the PC loop

and is fed with PC addresses from the PC Pipe. The operation of the PC loop is

autonomous and independent of the operation of the rest of the processor. Thus,

on the PCch channel there will be a continuous, instruction independent flow of

messages.

9.5.1 Providing Instruction Lookahead Information

AddC is an example of an arbiter process which has no direct knowledge regarding

executing instructions. An address produced by AddC is sent to memory following

the path from AddC, through MAReg and DataInt (MemCtrl) to memory. If it is

an instruction address, the instruction message from memory enters the processor

following the path from memory through DataInt (IPipe) to Decode1.

AddC is not in the path followed by the instruction and therefore has no direct

information as to which instructions have entered the system; in order to apply

PDSP a mechanism is required to provide AddC with this information.

2See appendix A.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 219

AddC

re
gi

st
er

MAReg

Wch

from WrtCtrl

re
gi

st
er

MRReg

PCch

Memory to IPipe

from PC Pipe

MemCtrl

Memory Addresses

Instructions

Figure 9.3: Providing Instruction Lookahead Knowledge to AddC

A neat and efficient solution is to take advantage of the hidden links in the

above paths, namely the contra flow of the acknowledgement messages. Acknowl-

edgement messages are sent from register to register through control processes

in the model. In the first path above, an address message produced by AddC

will propagate to memory and from there to MRReg; MRReg will generate an

acknowledgement message which will follow the flow back to AddC (figure 9.3).

This acknowledgement message can be used to carry the corresponding instruc-

tion to AddC; no communication overhead is generated as the acknowledgement

messages would be sent anyway.

Clearly, after issuing an instruction address to memory, AddC will receive

and process a number of PC messages arriving on the PCch link from the PC

Pipe before it receives the acknowledgement with the corresponding instruction.

However, during this period no preemption will occur. Indeed, the acknowledge-

ment message carrying an ILSWch instruction from memory will arrive at the

AddC, just before the first or the second PC value following this instruction’s

address on the PCch channel is received by the AddC process. This is illustrated

in figure 9.4. The acknowledgment carrying an instruction Ik will be issued

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 220

PCk

PCk+1

PCk+2

PCk+3

 ??

Ik

Ik+1

Ik+2

PCk

Wk-i

PCk+1

PCk+2

 ??

Ik

 ??

Ik+1

Values forwarded
to MAReg Acknowledgements

AddC MAReg

Values forwarded
to MAReg Acknowledgements

AddC MAReg

a) b)

Figure 9.4: The Arrival of Instruction Lookahead Information

by MAReg in response to its receiving, from AddC, the next memory address

message immediately after the instruction’s address PCk. If, after PCk, AddC

selects and forwards a message from Wch channel (namely message Wk−1), then

Ik will reach AddC immediately before this process is ready to receive address

PCk+1 (figure 9.4a); otherwise Ik will arrive after PCk+1 has been forwarded

to MAReg and before PCk+2 is processed (figure 9.4b). The value of PCk+2 is

PCk + 8. Therefore, it is the R15 value which, according to the PC+8 rule,

will rendezvous with Ik in Decode1 before they both enter the datapath (see

section 6.5). Since the corresponding message Wk on the Wch channel will be

generated as a result of the execution of Ik, its timestamp tWk
will be equal

to: max(tPCk+2
, tIk

) + ddatapath, where tIk
is the timestamp of the instruction

when it reaches Decode1 and ddatapath is the total propagation delay within of the

datapath. Therefore, tPCk+2
< tWk

.

With the AddC process informed of the instructions entering the system,

the application of of PDSP with regard to the prefetching loop arbiter becomes

feasible. Indeed this information may be used by AddC in order to make decisions

regarding the potential arrival of messages on its input links.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 221

9.5.2 The PCch Link

The PCch channel carries the acknowledgement signal from the PC Pipe. As

already mentioned, this signal is issued in a continuous, instruction independent

fashion, each time the current PC circulating in the PC loop is latched by the

first register of the PC Pipe (the PC0 register, see section 6.3.2). The issuing

of the acknowledgement signal closes the prefetching loop, thus triggering a new

cycle. Therefore, a message on the PCch channel will be expected by AddC, if a

new PC value has been forwarded to be incremented and sent to the PC Pipe.

However, if the PC Pipe is full when the request signal to the PC0 register

is issued, the circulating PC value will not enter the PC Pipe until at least one

element from the PC Pipe is removed; this will empty PC0 register, enabling it

to latch the pending PC value and consequently to issue the acknowledgement

signal on the PCch channel.

The PC Pipe becomes full as a result of the datapath being stalled. The role of

the PC Pipe is to provide the processor’s datapath with the R15 values required

for the execution of instructions (see section 6.3.1.2); its output is connected to

the first stage of the datapath, namely the primary decode. If, for any reason,

the datapath stalls, instructions will start to backlog filling the datapath up to

the primary decode; consequently, further instructions with their associated PC

values will be prevented from entering the datapath. As a result, the PC Pipe

will become full and will remain so for as long as the datapath is stalled. During

this period no further PC values will be allowed to enter the PC Pipe and thus

no acknowledgment signal will be issued on the PCch channel.

This behaviour of the system may lead to deadlock situations in the simulation

model when the PDSP algorithm is employed. This is due to the fact that not

only the input, but also the output links of the datapath are connected to the

address interface, thus forming closed communication paths as illustrated in figure

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 222

9.5. If, therefore, the datapath stalls as a result of its waiting to interact with

the AddC process, and this process is blocked waiting for an acknowledgement

message from the PC Pipe which however will never arrive because the PC Pipe

has become full as a result of the datapath’s stall, a deadlock will occur.

This situation may arise when, as a result of the execution of the ILSWch

instruction, a message with timestamp tW is produced by the datapath on Wch

link. Obeying the PDSP algorithm, AddC receives this message but does not

process it immediately. Instead, it turns its attention to serving the PCch channel,

continuously reading acknowledgement messages arriving from the PC Pipe; this

operation will continue for as long as the timestamp tPC of the message on the

PCch is less that tW .

Each acknowledgement message received on the PCch channel carries the

PC value which has just entered the PC Pipe. This value is forwarded by the

AddC to subsequent stages of the PC loop, to be incremented and eventually

channelled through the PC Pipe to the datapath. If, during this operation of

the AddC process, the datapath stalls, then the PC Pipe will eventually fill up

and, as a result, will be unable to issue any more acknowledgement messages

to AddC. If, before the PC Pipe fills up, an acknowledgement message with

timestamp tPC greater than tW is issued on the PCch channel, the operation

of the simulator will proceed smoothly and without any implications. AddC

will process the pending message from the Wch link, since it has the smallest

timestamp; this will unblock the datapath enabling thus more instructions to

enter it and, consequently, allowing the PC Pipe to output its contents.

If however no message with timestamp greater than tW is received from the

PCch channel before the PC Pipe fills up, the simulator will deadlock: AddC

will remain blocked waiting for the next acknowledgment which will never arrive

since the datapath will remain blocked and the PC Pipe full.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 223

LsmTrm

PCch

Wch

R15

Datapath

PC Pipe

AddC

...

 (W)

(PC)

PC loop

Figure 9.5: The Address Interface - Datapath Loop

It is essential therefore that the AddC process be able to decide whether it

should wait for yet another message from the PCch or whether the PC Pipe has

become full and thus no more messages will be sent on the PCch link.

During the execution of an ILSWch instruction, the datapath may stall in the

following cases:

• If the datapath fills up; this will occur as a result of Ctrl3 and WrtCtrl

processes waiting for the abort/no abort and Wlx signals respectively.

• If the ILSWch instruction is followed by register read operations which refer

to locked registers.

• If the ILSWch instruction is followed by instructions which activate the

ALUgo signal.

• During the execution of load/store multiple instructions.

Figure 9.6 illustrates the blocking of the datapath, as a result of the afore-

mentioned cases.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 224

AddC

register

re
gi

st
er

RRegLsmTrm

Wch

datapath

Wlx

Ctrl3

RegBank

WrtCtrl

Decode1

WReg

. . .

ALUgo

 stagesI

R15

from IPipe

from PC Pipe

Dabt0

Dabt1

Aborts
 from memory

Block due to Aborts

Block due to Wlx

Block due to ALUgo

Block due to a

 or load/store multiple

register read

Figure 9.6: Stalling of the Datapath

9.5.2.1 Filling of the Datapath

Address values produced by the datapath as a result of the execution of ILSWch

instructions are forwarded to the AddC process through the WrtCtrl process (see

figure 9.6). As explained in section 6.9, after forwarding the address message to

AddC (via WReg register), WrtCtrl will block until both the acknowledgement

from the Wreg and the Wlx signal from AddC are issued, whereupon WrtCtrl

will continue its operation producing an acknowledgement message to the RReg

register.

The acknowledgment from the WReg register will be issued as soon as it

latches the address message, in parallel with the propagation of this message to

AddC via the Wch channel. The Wlx channel however will not fire until AddC

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 225

has processed the address message and has forwarded it to the Memory Address

Register (see section 6.3.2); during this period, WrtCtrl will remain suspended,

thus blocking the exit of the datapath.

For ILSWch instructions which activate the abort signals from memory, WrtC-

trl will be suspended in a similar fashion, the datapath however will block before

that point, due to Ctrl3’s waiting to receive those signals from memory (figure

9.6).

The execution of instructions generates a flow of messages towards the exit

of the datapath. Thus if either WrtCtrl or Ctrl3 are blocked, the datapath will

gradually fill up and eventually stall.

The execution of a single-cycle instruction in a micropipelined architecture

consists of the decoded instruction word being propagated to consecutive stages

of the datapath, with each stage performing a different, predefined operation to

produce an intermediate result. Thus, at any time a single-cycle instruction will

occupy only one stage of the datapath. For multi-cycle instructions, a separate

message will be generated and forwarded down the datapath for each cycle.

Hence, as a general rule, the datapath pipeline will become full if the total

number of cycles of the instructions which have entered the datapath after an

ILSWch and are being executed is equal to the number of stages left in the

datapath. Table 9.1 presents the number of stages in the datapath for different

ILSWch instructions.

As described in section 9.5.1, the AddC process is informed of the instructions

which have entered the processor at any particular moment. However, not all

instructions which enter the datapath will eventually be executed; instructions

with colours not matching the operating colour of the processor or instructions

which fail their condition codes will be discarded as invalid (see section 6.5).

An instruction which is discarded will free the registers of the datapath which

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 226

ILSWch Instruction No. of Stages

B N + 1
BL N + 1
SWI N + 1
LDR N
STR N
LDM N
STM N

Data. Proc. R15 N + 1

For the current implementation of AMULET1, N=3.

Table 9.1: PDSP: Number of Free Stages in the Datapath

it would otherwise occupy, thus allowing more instructions to enter the datap-

ath. Therefore, in order to enable the AddC process to determine whether the

datapath has become full and as a result has stalled, it is necessary to provide

this process with information regarding which of the instructions which enter the

datapath are executed; AddC is aware of both the colour and the condition field

of instructions entering the datapath as these form part of the instruction word

which is provided to AddC.

Condition Codes Failure

In AMULET1, the test of the condition flags is performed by the CPSR unit

which, in the occarm model, has been incorporated in the functionality of the

Ctrl3 process (see section 6.8.1).

As already mentioned, an ILSWch instruction which has the potential to cause

a memory abort will keep Ctrl3 process blocked until AddC lets the address

message from Wch channel through to memory (figure 9.6). As a result, during

this period, none of the instructions following the ILSWch instruction in the

datapath will be able to enter Ctrl3, and possibly be rejected due to their failing

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 227

their condition codes. Therefore, in order to determine whether the datapath

is full, AddC must take into account all instructions which enter the datapath

irrespective of their colour.

For ILSWch instructions which do not activate the abort signal however, Ctrl3

does not block waiting for memory’s response. As soon as the memory address

produced by Ctrl3 as a result of the execution of the ILSWch instruction is

forwarded to the RReg register process (i.e. as soon as the RReg has issued

the corresponding acknowledgment message), Ctrl3 is free to receive subsequent

instructions and, possibly, reject them.

The operation of Ctrl3 will proceed until an instruction is encountered whose

execution produces a result to be forwarded to RReg. Since RReg is blocked

waiting for the acknowledgment from AddC (through WrtCtrl), the production

of the result will block Ctrl3 as well. Henceforth, no further instructions will

enter Ctrl3 until AddC processes the pending address message and issues an

acknowledgment.

The Current Processor Status (CPS) at the time of the execution of the current

ILSWch instruction may be sent to AddC with the address message; knowledge

of the CPS will enable AddC to decide which of the subsequent instructions in

the datapath will fail their condition codes.

However, it is possible that the execution of a valid instruction which enters

Ctrl3 and passes its condition codes will involve the modification of CPS. If

the execution of such an instruction also generates a result to RReg, then it

is not necessary to provide AddC with the new CPS; since RReg is unable

to produce an acknowledgement message, Ctrl3 will block and thus no further

instructions will be discarded by this process. For instructions which change the

CPS without producing a result though3, it is essential explicitly to provide AddC

with the updated CPS as Ctrl3 will be free to process and possibly discard more

3These instructions are: TST, TEQ, CMP, CMN, MSR and MRS - see appendix A

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 228

Instruction flow

CPS to AddC

Ctrl3

S2={I : The execution ofI produces a result to RReg}
S1={TST, TEQ, CMP, CMN, MSR, MRS}

I S1∈

I ILSWch∈

I S1∈

I S2∈

I S1∈

I S1∈

I

I

I

0

1

0

0

1

1

1

1

1

1

Instruction Valid bit
1: valid

0: invalid

Stop issuing CPS

I S1∈

Figure 9.7: PDSP: Providing CPS to AddC

instructions, taking into account the new CPS.

In order to provide the new CPS to AddC, an alternative communication path

between this process and Ctrl3 is required, for the existing one through WrtCtrl

will be blocked. Hence, an extra path connecting the two processes is required

in the model; since this communication is not included in AMULET1, buffering

is necessary to decouple the processes and ensure that deadlocks due to their

synchronization do not occur.

The interaction between AddC and Ctrl3 with regard to the CPS is illustrated

in figure 9.7. A message with the current CPS will be issued by Ctrl3 for

each valid instruction which follows an ILSWch instruction, until an instruction

(valid or invalid) whose execution produces a result to be forwarded to RReg is

encountered.

Typically, the number of consecutive valid instructions which follow an ILSWch

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 229

without generating a result will be small. Therefore the communication overhead

in occarm due to the extra messages sent to AddC by Ctrl3 will be insignificant.

Colour Mismatch

As described in section 6.5, instructions may be discarded due to a colour mis-

match either in the ALU (Ctrl3 process) or in the primary decode unit (Decode1

process).

In order to determine the state of the datapath at any particular moment, it

is essential for AddC to have information regarding the exact point where each

of the invalid instructions is discarded. Such information is required by AddC

only for instructions which immediately follow valid ILSWch instructions. This

is necessary, as:

• Instructions which are discarded at Decode1 do not enter the datapath at

all.

• Instructions which pass Decode1 may block the datapath before reaching

Ctrl3 to be discarded (see sections 9.5.2.2-9.5.2.4) and,

• Instructions which do reach Ctrl3 to be discarded may still block the data-

path if they produce a (invalid) result.

However, since the PCcol signal arrives at Decode1 in a nondeterministic

fashion, the exact moment when instructions start being discarded in Decode1 is

not directly available to AddC and thus must be explicitly provided by Decode1.

The most efficient way to provide a remote process (namely AddC) with a

single piece of information (namely the point of arrival of the PCcol signal) is by

means of a single message. However, such a scheme is not feasible in the occarm

model. This message would have to be sent by Decode1 after the arrival of the

PCcol signal; since this is nondeterministic, such is the generation of the message

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 230

to AddC. Hence, if the blocking of AddC upon waiting for the message precedes

the issuing of the message by Decode1, a deadlock may occur: the operation of

the PC loop will stop and thus no more R15 values will be provided to Decode1

and eventually this process will block; if this happens before the PCcol has arrived

the simulator will deadlock.

The alternative technique is to have Decode1 providing AddC with infor-

mation regarding the outcome of colour checking, for each of the instructions

involved, by issuing a separate message for each instruction. The generation

of these messages commences as soon as Decode1 recognizes a valid ILSWch

instruction which has the potential to activate PCcol (figure 9.8). AddC, in turn,

blocks as soon as it detects that the ILSWch instruction has entered the datapath

and thus no deadlock may occur. The transmission of the messages will stop as

soon as the first instruction to be discarded by Decode1 is encountered or, in

the case of the ILSWch instruction being invalidated in Ctrl3, upon arrival of the

corresponding PCcol Null message from Ctrl3 (see section 9.6).

Similar to the communication between AddC and Ctrl3 regarding the CPS,

an extra communication link with buffering is required to inform AddC of colour

mismatches in Decode1.

9.5.2.2 Register Read Instructions

As explained in section 6.7, instructions attempting to read registers which are

locked, will block until the registers are written and their addresses removed

from the corresponding lock fifos; the blocking of read instructions is achieved

by means of the register bank’s read lock logic which, in occarm, is modelled

by the ReadLock process (see figure 6.13). While a read instruction is blocked

and pending, the register bank will be unable to process any subsequent read

operations; since every instruction which enters the datapath issues a read request

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 231

Message to AddC

Ctrl3
I ILSWch∈

I

I

1

1

1

1

1

1

1

1

0

1

Instruction Colour

PCcol

Stop issuing messages

I

I

I

I

Dec1CtrlA

I

I

0

I

Instruction flow

Figure 9.8: Informing AddC of Colour Mismatches at Decode1

to the register bank, instructions will backlog and the datapath will stall.

Write data are sent to the register bank through the write bus control logic

(WrtCtrl process). However, during the execution of an ILSWch instruction,

WrtCtrl remains blocked until the Wlx message from the AddC arrives; during

this time, no further write data messages will be able to reach the register

bank and unlock the corresponding registers. Thus, if the ILSWch instruction is

followed by an instruction which attempts to read registers with pending writes,

and the corresponding write data has not been forwarded to the register bank

before WrtCtrl blocks, the datapath will stall imposing a limit to the number

of consecutive PC messages that AddC may process during the execution of the

PDSP algorithm.

Write data originate either from the datapath or the memory. If the write

instruction which locks the register(s) follows the ILSWch in the datapath, the

read instruction will definitely block at the register bank, for the result of the

write instruction (write data or read memory address) will not be able to pass

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 232

through WrtCtrl.

If the write instruction precedes the ILSWch however, and the write data

originates from memory, then AddC can have no direct knowledge as to whether

the data had been forwarded to the register bank before the blocking of the

WrtCtrl took place; data and instructions from memory follow different paths

(via DataIn and IPipe respectively, see section 6.4) and the order the respective

messages arrive to WrtCtrl is non-deterministic. This knowledge however is

possessed by WrtCtrl. Indeed, WrtCtrl may keep a record of the number of

data values from memory that have been forwarded to the register bank since

the last ILSWch instruction. This number is sent to AddC with the ILSWch

message to be compared against the respective record, maintained by AddC, of

the number of write operations preceding the current ILSWch instruction. Based

on this information AddC may decide which of the write operations have been

completed and thus which of the registers remain locked.

9.5.2.3 Instructions Activating the ALUgo Signal

The ALUgo signal is issued by Ctrl3 process to inform Decode1 of the validity

of certain multicycle instructions4. It is activated by Ctrl3 as a response to the

request message generated by Decode1 during the first cycle of the instruction.

Decode1 blocks until the ALUgo message arrives; if it is positive (i.e. the in-

struction is valid), the next cycle of the instruction commences, otherwise the

instruction is discarded so that it does not lock any registers (see section 6.6.2).

If the multicycle instruction follows an ILSWch instruction, and the datapath

stalls before the request message from Decode1 reaches Ctrl3 ALUgo will not be

issued and thus Decode1 will remain blocked.

Since AddC is informed of the state of the datapath at any particular moment,

4These instructions are: LDM, STM, any data processing instruction with Rd=R15 and S
bit set (user mode), SWI and MSR that write to the CPSR (bit 22 (Pd) = 0).

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 233

Ik

Ik+1

Ik+2

 ?? 0

1

2

3

4

. . .

Ik+3

R15 in PC Pipe

R15 / Instructions in the Datapath

Instruction no.of.pcs

or Datapath

R15 in PC loop

Figure 9.9: The Instruction Lookahead Table

the decision as to whether the ALUgo signal is issued is straightforward.

9.5.2.4 Load/Store Multiple Instructions

As described in sections 6.6.2 and 6.3.1.3, during the execution of LDM/STM

instructions Decode1 interacts directly with AddC via the LsmTrm channel (see

figures 6.8 and 6.4). During this interaction, which starts upon the arrival at

Decode1 of the corresponding ALUgo message and lasts until the operation of

the LSM loop in AddC is complete, Decode1 will remain blocked not allowing

any further instructions to enter the datapath.

Here too, the blocking of the datapath is directly detectable by AddC based on

the information possessed by this process, and thus no further action is required.

9.5.2.5 The Instruction Lookahead Table

The main structure maintained by arbiter processes to make use of PDSP is the

Instruction Lookahead Table (ILT). This may be implemented as a circular buffer

and contains all the information required by the arbiter process to make decisions

regarding the potential arrival of messages on its input links.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 234

In the case of AddC, a new entry is appended to ILT each time a new

instruction address (PC value) is let through to MAReg, to be forwarded to

memory and the PC loop. Each entry of the ILT corresponds to an instruction

and includes a field (no.of.pcs) that specifies the number of acknowledgement

messages that have been received on the PCch channel after the corresponding

instruction has been forwarded to MARreg (figure 9.9). For each new entry,

no.of.pcs is initialized to 0; the existence of such an entry indicates that a message

is expected on PCch. Each time a new PC value is let through to MAReg,

no.of.pcs of all entries in the ILT is incremented by one.

The no.of.pcs field provides information regarding the relevant position of

instructions in the system. Indeed, since the size of the PC Pipe is two, if

no.of.pcs >= 3, the instruction has definitely entered the datapath. If no.of.pcs =

1 the instruction may be in the datapath or not (i.e. its R15 value may still

be in the PC Pipe) depending on the number of preceding instructions. If

no.of.pcs = 2, the instruction has entered Decode1 and the behaviour described

in sections 9.5.2.3 - 9.5.2.4 is taken into account.

The Instruction Lookahead Table also enables AddC to predict future events

on its Wch input link; an event is expected if ILT contains an entry with an

ILSWch instruction.

9.5.3 The Wch Link

Messages arriving on Wch channel are primarily sent to AddC from the datapath

(through WrtCtrl) as a result of the execution of ILSWch instructions and carry

either branch target or data transfer addresses.

For data transfer operations whose destination register is R15, a second mes-

sage will be sent over Wch, namely the new value of the Program Counter from

memory.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 235

According to the PDSP algorithm, when AddC detects an ILSWch instruction

it blocks until it receives the corresponding messages on Wch. If however the

ILSWch instruction will not be executed or the memory fails to respond (i.e. an

abort occurs), the expected messages will never be issued, thus leaving AddC

blocked and causing the simulator to deadlock.

There are two reasons why an instruction may not be executed, namely if its

colour does not match that of the processor or if it fails its condition codes.

9.5.3.1 Colour Mismatch

All instructions whose execution may change the operating colour of the processor

- either by explicitly writing a new value to the PC (i.e. the branch target address)

or by causing an abort - belong to the Instruction Lookahead Set of the Wch

channel. Thus, an ILSWch instruction will suffer a colour mismatch only if it

follows another ILSWch which has changed the processor’s colour.

For instructions which explicitly change the PC, the new colour is provided

to the AddC with the branch target address. Since AddC is also informed of the

colour of subsequent instructions entering the system as well as of instructions

which enter the datapath, the decision as to whether an ILSWch instruction will

be discarded is straightforward.

If however the colour changes due to an abort, AddC has no direct knowledge

regarding this change; Ctrl3 will receive the abort signal from memory and will

change the PCcol rejecting subsequent instructions. In this case a Null message

must be sent by Ctrl3 to inform AddC of the occurrence of an abort and enable

it to decide which of the following ILSWch instructions will be executed. If no

such instruction exists, the Null message is simply ignored by AddC; however it

still needs to be issued since Ctrl3 can have no knowledge regarding the existence

of subsequent ILSWch instructions in the datapath or their possible rejection by

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 236

Decode15.

Thus, for ILSWch instructions which may abort, AddC waits for two messages

on Wch link, namely the memory address and a message regarding the abort

status; if R15 is included in the destination register list of the instruction, the

second message expected by AddC will be either the new value of the PC arriving

from memory or, in the case of abort, a Null message from Ctrl3.

9.5.3.2 Condition Codes Failure

As described in section 9.5.2.1, when a valid ILSWch instruction which does

not activate the abort signal is executed, AddC is provided by Ctrl3 with all

the CPSR-related information required to predict the fate of subsequent valid

instructions regarding their condition codes; this is performed via a dedicated

path and lasts until a result is produced by Ctrl3 and forwarded to RReg register.

The generation of the result to the RReg register has a dual effect:

• Firstly, as explained in section 9.5.2.1, initially it blocks Ctrl3 preventing it

from receiving any more instructions and thus eliminating the need for

further informing AddC of possible changes in the CPSR. This role is

performed for as long as RReg is unable to produce an acknowledgment

message to Ctrl3.

• Secondly, it informs Ctrl3 that the last address message produced by this

process has been selected and processed by AddC. Indeed, the acknowledge-

ment message from RReg will not be issued until this register receives an

acknowledgement from WrtCtrl; this in turn will be generated upon receipt

of the Wlx signal.

5The Null message could be sent by Ctrl3 upon the arrival of the first ILSWch instruction
after the abort. If however no such instruction reached Ctrl3 (i.e. they are all discarded in
Decode1) then the Null message would never be sent and AddC would remain blocked.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 237

CPS to AddC

S2 = {I : The execution ofI produces a result to RReg}
S1 = {TST, TEQ, CMP, CMN, MSR, MRS}

I ILS1Wch∈

1

Stop issuing CPS

I

0

1

0

I S2∈ 1

I S1∈ 1

I S1∈ 1

I S1∈ 1

?

I ILS2Wch∈

I ILS2Wch∈

I ILS2Wch∈

0

0

I ILS2Wch∈

0

0

I

I ILS2Wch∈ 0 NULL to AddC

I ILS2Wch∈

I ILS2Wch∈

NULL to AddC

ILS1Wch= { I : I does not activate aborts and

ILS2Wch= { I : No message is sent to AddC ifI is ivalidated in Ctrl3}

Ctrl3

Instruction flow

Instruction Valid bit
1: valid

0: invalid

 if invalidated in Ctrl3,I still produces a message to AddC}

Figure 9.10: PDSP messages from Ctrl3 to AddC

Once the acknowledgement from RReg is received, no further CPSR-related

messages are sent to AddC. Thus, for subsequent ILSWch instructions which

fail their condition codes, Null messages are required to be sent by Ctrl3 to

inform AddC of this event. These messages may be redundant when they refer

to instructions for which AddC may already have been informed of their fate (i.e.

instructions reaching Ctrl3 immediately after the receipt of the acknowledgement

from RReg); however Null messages are still required as Ctrl3 can have no

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 238

knowledge as to which these instructions might be. Once a Null message is sent

to AddC, no more messages of this kind will be issued for ILSWch instructions

subsequently invalidated in Ctrl3, until a valid instruction is executed.

This pattern will be followed until the next ILSWch to produce a result is

encountered, whereupon the production of CPSR-related messages to AddC as

described in section 9.5.2.1 will commence. This is illustrated in figure 9.10 where

a complete picture if the interaction between Ctrl3 and AddC is provided.

It is interesting to note that when Null messages are produced by Ctrl3, the

path leading to AddC via Wch is unblocked and thus these messages will be

forwarded without affecting the behaviour of the system by filling registers that

would be otherwise occupied by system’s messages.

9.6 The Primary Decode Arbiter

As described in section 6.6.1, arbitration is employed by primary decode (De-

code1) to detect the PCcol signal from the ALU. Accurate modelling of this ar-

biter in occarm would ensure that the number of instructions discarded as invalid

by the Dec1CtrlA process is equal to the respective number in AMULET1. PCcol

is activated each time the processor’s colour changes as a result of instructions

which modify R15 or abort. Thus the Instruction Lookahead Set of the PCcol

channel is:

ILSPCcol={B, BL, SWI, LDR, STR, LDM, STM, Data Processing with PC

as Dest. Reg.}

which is the same as the ILSWch.

As the Dec1CtrlA process constitutes the datapath’s entry point, it has im-

mediate knowledge of the instructions entering the system and consequently of

the potential of the PCcol to be activated. Thus, the application of Rule 1 of the

PDSP (section 9.3.2) is straightforward.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 239

However, it is essential to ensure that the blocking of Dec1CtrlA does not

affect the operation of the AddC process to avoid deadlocks. This is due to

the fact that ILSPCcol = ILSWch and Dec1CtrlA, Ctrl3 and AddC processes

are connected together in a closed loop (see figure 9.6); if Dec1CtrlA blocks

while Ctrl3 is waiting to interact with AddC before it activates the PCcol signal,

and AddC expects an acknowledgement from Dec1CtrlA (through the PC Pipe),

PCcol will never be issued and occarm will deadlock.

For branches, software interrupts and data processing instructions, the PCcol

message is issued by Ctrl3 in parallel with the new PC value (branch target

address) sent to AddC. Thus, since there is no interdependency between the

interactions of Ctrl3 with Dec1CtrlA and AddC, the blocking of Dec1CtrlA will

not lead to deadlock. If the instruction fails its condition codes, a Null message is

sent by Ctrl3 over PCcol channel; Dec1CtrlA will not block until the next valid

ILSPCcol instruction is encountered.

For instructions which cause a colour change only if they abort however, PCcol

will not be issued until after Ctrl3 has received the abort signals from memory.

Thus, to avoid deadlocks, Dec1CtrlA should not block until the data address

which is produced as a result of the ILSPCcol/Wch instruction, has been processed

by AddC and forwarded to memory.

This situation is illustrated in figure 9.11, where I1 is an ILSPCcol instruction

which may abort (e.g. LDR). The execution of this instruction results in a

message WI1 being sent to AddC with timestamp tWI1
. If Dec1CtrlA blocks

waiting for PCcol, and no acknowledgement from the PC Pipe with timestamp

tAckk
> tWI1

is encountered by AddC, the PC Pipe will stall and the system will

deadlock.

Since Dec1CtrlA has no immediate knowledge as to when the PC loop is in-

terrupted (i.e. an acknowledgement with timestamp tAckk
> tWI1

is encountered),

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 240

AddC

Ctrl3

WrtCtrl

Dec1CtrlA

PCcol

Instructions

from PC Pipe

Dabt0

Dabt1

Aborts
 from memory

PCk+1

PCk

PCk+2

IkIk+1Ik+2

I2

PC2

I1

PC1

W

Ackk+1

Ackk

Ackk+2

from IPipe

R15 Values to PC PipePC loop

to memory

.

I
1

Figure 9.11: The Decode1 Arbiter: PCcol due to Aborts

a technique needs to be devised to provide it with this information.

A possible approach would be to provide this information with the PC value

forwarded by AddC immediately after the interrupt, i.e with PCk+1 (figure 9.11).

This technique would not involve any extra communication overhead, however,

it does not guarantee the prevention of preemptions. Indeed, if tIk
> tPCcol, then

by the time Dec1CtrlA receives PCk+1 a preemption will have already occured.

Thus, it is essential to provide Dec1CtrlA with information regarding the fate of

Ackk before the entry of Ik into the datapath takes place.

This may be achieved by means of an extra (buffered) link directly connecting

AddC and Dec1CtrlA as depicted in figure 9.12. Each time AddC selects the next

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 241

PCch
R15

PC Pipe

...

AddC Dec1CtrlA

PC loop

Buffer

Wch

to memory

Wch selected??

Figure 9.12: Informing Decode1 of the selected channel

address to be forwarded to memory, it issues a message to inform Dec1CtrlA of the

selection’s result; the production of messages commences as soon as AddC detects

an ILSPCcol instruction and stops upon selection of the address message on Wch

channel. Similarly, for each instruction received after an ILSPCcol, Dec1CtrlA

also waits for the corresponding message from AddC before it decides whether it

should let the instruction enter the datapath or block and wait for PCcol.

It is important to note that the size of the instruction pipe (IPipe) guarantees

that once a data address is forwarded by AddC to MAReg it will reach memory

irrespective of the state of the datapath [Pave94] pp. 128-131. Thus, blocking

Dec1CtrlA has no effect on the behaviour of the system and, consequently, the

issuing of the abort signals by memory.

If the ILSPCcol instruction does not abort, a Null message is sent over the

PCcol channel by Ctrl3. If the instruction fails its condition codes, Dec1CtrlA

is informed by means of a Null message sent from AddC over the extra link.

This is due to the fact that Dec1CtrlA will have to receive an unknown number

of messages issued on the extra link before AddC became aware that the the

ILSPCcol instruction was discarded.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 242

For load/store multiple instructions no special messages are required to be sent

from AddC, for no more instructions will enter the datapath until the load/store

multiple operation is complete; the Dec1CtrlA process will block and wait for

PCcol as soon as its interaction with RdGen process completes (see section 6.6.2).

9.7 The Write Control Arbiter

Within the write control unit of AMULET1, arbitration is used to enable data

values originating from either the datapath or the memory to gain access to the

write bus (see section 6.9); in occarm, an ALT statement is employed to provide

arbitration on the corresponding channels, namely DPch and DINch respectively

(see figure 6.19). The Instruction Lookahead Sets of these channels are:

ILSDPch={B, BL, SWI, LDR, STR, LDM, STM, Data Processing}

ILSDINch={LDR, LDM}

9.7.1 The DINch Link

DINch channel will fire as a result of a message’s having previously been sent

to WrtCtrl process over DPch channel. Indeed, addresses of data to be loaded

from memory are forwarded from the datapath (Ctrl3) to the address interface

(AddC) via WrtCtrl. Thus the prediction as to whether a data value is expected

from memory is straightforward.

For an LDR instruction, a single message will be issued from memory. If the

instruction aborts, a data value, albeit invalid, will still arrive on DINch channel

so there is no need for extra Null messages.

In the case of load multiple operations however (LDM), more than one message

will be issued from memory; the number of these messages will be equal to the

number of registers to be loaded. According to the AMULET1 specification,

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 243

re
gi

st
er

re
gi

st
er

DestCtrl

D
In

C
tr

l

Memory

MRReg

DataIn

WrtCtrl

from execution unit

DINch

DPch

Figure 9.13: The Memory-WrtCtrl pipeline

during the first cycle of the LDM instruction, Ctrl3 process outputs the base

address and then blocks until the abort/no abort signal arrives from memory

[Pave94], pp. 86-90; hence during this time no message will be sent over the

DPch channel6 and thus WrtCtrl will continuously accept and process messages

arriving on DINch.

The abort/no abort signal is issued as soon as the last transfer address arrives

at memory, whereupon Ctrl3 is free to proceed with its operation executing

further instructions and producing results on the DPch channel. Consequently, as

soon as the abort/no abort signal is issued, the continuous processing of messages

from DINch by WrtCtrl must stop otherwise preemptions might occur. WrtCtrl

should accept and process sufficient data messages to allow the last data address

to reach memory.

The pipeline between the memory and WrtCtrl consists of two registers,

namely MRRreg and DataIn (figure 9.13). Hence, if N is the number of registers

to be loaded, then the last address will reach memory as soon as WrtCtrl processes

the (N-2)th message from DINch; it is at this point that the abort signal will be

activated to free Ctrl3. Any attempt to block WrtCtrl before the processing of the

(N-2)th message has completed will result to deadlock as the abort will never be

issued while processing (N-1)th message before taking into account DPch channel

6Actually, if writeback is specified, one more message will be sent from Ctrl3 on DPch
channel.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 244

PROC PDSP.WrtCtrl()
 SEQ
 ...
 --DINch.selected=TRUE
 IF
 instruction=LDM
 SEQ i=1 FOR N-2
 SEQ
 DINch?message
 --process and forward message
 instruction=LDR
 SEQ
 DINch?message
 --continue normal PDSP operation
 ...
:

Figure 9.14: WrtCtrl: Reading data values from memory

may result into a preemption.

The functionality of WrtCtrl with regard to DINch link is depicted in figure

9.14.

9.7.2 The DPch Link

As explained in the previous section, in AMULET1 there is a regular flow of

messages arriving at the write control from the datapath, while messages from

memory will be issued only occasionally, as a result of the former.

Consequently, the WrtCtrl process will normally be ready to accept messages

from the DPch channel. However, there is a possibility that such messages will

never arrive and as a result the system will deadlock. This may happen only if

there are data messages from memory pending, and may be due to:

• The register bank being stalled as a result of an instruction that attempts to

read a locked register which is to be written by one of the pending messages

on the DINch link.

• The emptying of the datapath. This may occur if no more instructions

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 245

enter the datapath due to the following:

1. The address interface stops issuing instruction addresses to memory.

As soon as an address whose contents are to be written to R15 is issued

to memory7, the operation of the PC loop stops until the corresponding

data arrives from memory (through Write control) to become the new

circulating value of the PC loop.

2. Instructions issued from memory are prevented from reaching the in-

struction pipe (IPipe). Both instructions and data values from memory

enter the processor via the MRReg register. If the number of pending

data values from memory is equal to the number of registers in the

pipeline which connects the memory to the WrtCtrl (i.e. two, namely

MRRreg and DataIn, see figure 9.13) then the following instructions

will be unable to enter MRReg and consequently to reach Decode1.

In order to resolve the first of the aforementioned issues, namely the stalling

of the register bank, the WrtCtrl process needs to have knowledge regarding the

instructions which have entered the datapath. A possible technique to provide

WrtCtrl with this information is depicted in figure 9.15. An extra buffered link

(namely, the RBBch) has been introduced whereby Decode1 (DecCtrlA) sends a

message to WrtCtrl each time a new valid instruction enters the datapath.

The functionality of WrtCtrl regarding the acceptance of messages from the

datapath is depicted in figure 9.16. An ALT statement enables WrtCtrl to read

messages arriving either from Decode1 (new instructions) or the Ctrl3 (produced

as a result the execution of ILSDPch instructions). If a message regarding the

entry of a particular ILSDPch instruction into the datapath is received by WrtCtrl

before the corresponding result from Ctrl3, then an entry is appended to the

7In the case of an LDM, the operation of the PC loop will stop upon issuing to memory the
base address.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 246

registerRReg

datapath Ctrl3

WrtCtrl

Decode1
I

R15

from IPipe

from PC Pipe

Buffer

Memory

DINch

DPch

. . .

Instruction Entered
 the Datapath

RBBch

Figure 9.15: Bypassing the register bank

PROC PDSP.WrtCtrl()
 SEQ
 ...
 --DPch.expected=TRUE
 PRI ALT
 DPch?result.message --from Ctrl3
 SEQ
 --process and forward message
 --if corresponding entry exists in ILT, delete it
 RBB?instruction --from Decode1
 SEQ
 IF
 corresponding.message.from.DPch.already.processed
 SEQ
 --ignore instruction
 TRUE
 SEQ
 --append entry in ILT of DPch channel.
 ...
:

Figure 9.16: WrtCtrl: Reading messages from the datapath

Instruction Lookahead Table of the DPch channel; otherwise it is simply ignored.

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 247

This scheme, whereby messages from Ctrl3 may be received before WrtCtrl is

informed of their potential arrival ensures a higher degree of parallelism in the

model. As WrtCtrl will receive and process messages from Ctrl3 as soon as they

become available, without it having to block first for the corresponding messages

from Decode1, the PRI ALT ensures that messages from Ctrl3, which are crucial

as they form part of the operation of the simulated system, are treated with

higher priority.

For ILSDPch instructions which are discarded in Ctrl3, a Null message is

issued by this process to inform WrtCtrl of this event.

Regarding the emptying of the datapath due to the loading of R15 (case 1

above), WrtCtrl needs to be informed that no more instructions are going to enter

the datapath before the corresponding message from DINch channel is processed

and forwarded to AddC. This may be achieved by having the AddC process issue

a Null message to Dec1CtrlA immediately after the operation of the PC loop

stops; this message is then forwarded directly to WrtCtrl by Dec1CtrlA. It is

important to note that the Null message will reach Dec1CtrlA; after the PC loop

interruption the PC Pipe will become empty thus ensuring the propagation of

the Null message.

This mechanism can not be employed to deal with the blocking of MRReg

(case 2 above) as AddC has no knowledge regarding the number of pending data

values. Furthermore, the PC Pipe will be occupied by PC values pending the

pairing with the corresponding instructions which will not arrive until MRReg is

freed; thus no information can reach Dec1CtrlA through this path.

AddC however possess a record (in the ILT) of all the instructions which have

been sent to the instruction pipe immediately before the last data address was

issued to memory. Indeed, the acknowledgement message which will be issued

by the MAReg in response to its receiving the data address will carry the last

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 248

Model Elapsed Time (minutes)

OccarmALT 1.72
OccarmPDSP 2.15
OccarmPDSP−MLL 1.93

Benchmark: Dhrystone (1 loop)

Table 9.2: Performance of PDSP (Address Interface)

instruction which has been issued by memory; if the corresponding data value

blocks the MRReg, no more instructions will reach the instruction pipe.

This information may be made available to the WrtCtrl process by means of

a single message, namely the Wlx signal which is issued as soon as the acknowl-

edgement from the MAReg is received. Based on this information, WrtCtrl is able

to decide the maximum number of messages it should expect from the datapath.

Not all the instructions included in the ILT of AddC will enter the datapath

however; some may be discarded as invalid at Dec1CtrlA. Therefore, in order

to avoid deadlocks that might occur as a result of WrtCtrl waiting for discarded

instructions, a Null message is sent by Dec1CtrlA upon receipt of PCcol to inform

WrtCtrl of the point, after which invalid instructions will be discarded.

9.8 Performance Evaluation of PDSP

In order to get an indication of the potential impact of PDSP to the performance

of the simulator, the algorithms described in section 9.5 have been implemented

and incorporated into occarm to develop an accurate model of AddC process.

The performance results obtained are illustrated in table 9.2. The application

of PDSP onto the AddC arbiter process of the occarm model, when no attempt

is made to exploit the Minimum Latency Lookahead (i.e. using the algorithm of

figure 9.1). has increased the time required by the model to execute one Dhrystone

CHAPTER 9. ADDRESSING THE TIME MODELLING PROBLEM 249

loop by 0.43 minutes, thus resulting in a 25% decrease of the performance of the

simulator.

Some preliminary experiments have indicated that by exploiting MLL a per-

formance improvement of at least 10% can be achieved, reducing the time required

for the accurate execution of one Dhrystone loop by 0.22 mins.

Work is still to be done to implement and incorporate into occarm all the

algorithms described in this chapter so that a detailed performance evaluation

and confirmation of correctness of PDSP is possible.

9.9 Summary

This chapter has presented the Program Driven Synchronization Protocol, a novel

approach for dealing with the causality problems introduced by the distributed

nature of the proposed modelling philosophy. This is a conservative, deadlock

avoidance approach whose objective is to exploit the ability of arbiter processes

to predict events in the simulated future based on the instructions executed in the

model. The feasibility and robustness of this approach has been demonstrated

by applying its concepts to the occarm simulation model.

Chapter 10

Conclusions and Further Work

“T ὶ φὴς; Nǫφǫ̀λης αρ’ ὰλλως ǫὶχoµǫν πòνoυς πǫρὶ;”

Eυριπὶδης, Eλǫ̀νη.

“What are you saying? It was only for a cloud that we struggled so much?”

Euripides, Helen.

10.1 Background

Synchronous VLSI design is approaching a critical point, with clock distribution

becoming an increasingly costly and complicated issue and power consumption

rapidly emerging as a major concern. Asynchronous digital design styles promise

to liberate VLSI systems from clock skew problems, offer the potential for low

power and high performance and encourage a modular design philosophy which

makes incremental technological migration a much easier task.

The desire to exploit the potential advantages offered by asynchronous logic

has recently fueled a revival of interest in asynchronous systems. Micropipelines,

one of several design techniques that have been proposed, offer a good engineering

framework for the design of asynchronous systems. AMULET1, the first asyn-

chronous Micropipelined implementation of a commercial RISC processor, has

250

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 251

demonstrated the feasibility of employing asynchronous logic to build large and

complex systems.

Modelling and simulation, being at the heart of digital system design, may

perform a catalytic role in the quest for the realization of the potential offered

by asynchronous logic. Hence, the recurrence of interest in asynchronous design

has been accompanied by intense research activity aimed at developing notations

and techniques appropriate for modelling and simulating asynchronous systems.

The concurrent, asynchronous, process-based model of computation of CSP,

with the support for non-deterministic behaviour, and the point-to-point, syn-

chronous and unbuffered inter-process communication are particularly suitable for

describing the concurrent, non-deterministic behaviour of asynchronous hardware

systems and provide a natural and convenient means for the rapid construction

of asynchronous hardware models. Hence, CSP and occam have long and exten-

sively been advocated as potential notations for the description of asynchronous

hardware and various CSP-based and occam-like notations have already been

employed for this purpose. However all the work undertaken so far in this area,

has placed emphasis on producing specifications to be used as input to silicon

compilers for the automatic synthesis of asynchronous circuits. As a consequence,

the notations developed, and the modelling approaches used have been intended

to match the particular approach employed for the silicon compilation process.

However, if the benefits of using CSP for describing asynchronous systems

are to be exploited and taken advantage of, it is essential to use a standard

specification language, that would be easily and widely available.

Occam may well serve this purpose: it is based on CSP, it is an executable

programming language with well defined syntax and semantics, it is widely used

and commercially supported, and is expected to be supported by a wide range

of hardware platforms [Ofal]. Furthermore, occam is a parallel language which

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 252

may be executed on multiprocessor systems and thus has the potential for high

performance.

The goal of the research presented in this thesis was to investigate the suitabil-

ity of occam for the modelling and simulation of complex asynchronous hardware

systems.

10.2 Contribution of the Thesis

The research presented in this thesis is the first one to investigate the use of

the standard occam language for the description of asynchronous, micropipelined

architectures. There were a number of challenges presented by this endeavour:

• A modelling approach had to be developed, which would provide the frame-

work for the construction of occam models.

• A number of important problems related to the execution of occam models

needed to be resolved.

The research presented in this thesis has addressed all these issues.

10.2.1 Modelling

A factor which is crucial for the exploitation of the advantages offered by CSP is

the availability of a consistent and generic modelling framework. This thesis has

introduced such a framework. This framework exploits the connection between

the semantics of occam and the behaviour of asynchronous hardware systems

as well as the parallelism inherent in asynchronous hardware to facilitate the

development of parallel architectural simulation models. Within this framework,

the system is modelled as a network of concurrent, communicating, data-driven

occam processes, with each process modelling either a register or a piece of

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 253

control circuitry; a generic register model has been introduced for the first time,

which accurately and faithfully represents the actions and parallel behaviour of

event-driven registers. The suitability and robustness of the modelling framework

introduced in this thesis has been demonstrated by building occarm, an occam

model of the AMULET1 asynchronous microprocessor.

10.2.2 Simulation

An important issue, which the advocates of CSP and occam, as modelling no-

tations for asynchronous systems, have largely overlooked and neglected, and

which is addressed for the first time by the research presented in this thesis, is

simulation, namely the execution of the occam model on a computer system. The

research presented in this thesis has concluded that there are two major issues

that need to be taken into account, if an occam model is to be used for simulation:

• The exploitation of the relationship between CSP/occam and asynchronous

hardware systems, implies a data-driven operation of the processes of the

model. The execution of a model consisting of data-driven processes which

describe the modelled hardware at the Register Transfer (or higher) level is

straightforward. This however is not true for models at lower levels of ab-

straction. One can certainly use CSP/occam to produce textual descriptions

of gates and event processing blocks. However, the data-driven operation

of an occam model whose concurrent processes model gates and event pro-

cessing blocks with level sensitive inputs (i.e. Select) may lead to deadlocks

or incorrect results. In this case, the simulated time is needed to act as the

synchronization agent in the model; this results in a conventional, discrete

event simulation activity where the relationship between CSP/occam and

asynchronous hardware is no longer the basis of the operation of the model.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 254

• Even at the Register Transfer, or higher, level, the exploitation of the rela-

tionship between CSP/occam and asynchronous hardware systems, trades

temporal accuracy for ease of modelling. Although the topological charac-

teristics of the modelled hardware system map naturally onto the model, the

temporal characteristics do not, a situation that may lead to causality errors

in the model. This is a problem inherent in any decentralized, distributed

simulation approach. In occam architectural models, causality errors are a

consequence of adopting a data-driven approach to model arbiters, using

the occam ALT construct. Although, causality errors have no impact on

the correct operation of the model, they introduce an error in the simulated

time and consequently, affect the accuracy of the evaluation of the simulated

system. The research presented in this thesis has a dual contribution to this

area:

– Firstly, it has attempted to quantify the inaccuracy introduced by

causality errors, using the occam model of the AMULET1 micropro-

cessor as a testbed.

– Secondly, it has introduced the Program Driven Synchronization Pro-

tocol, a novel synchronization protocol which attempts to eliminate

causality errors, within the proposed modelling framework.

In his PhD thesis, Brunvand mentions that occam-like “programs written to

be translated into a circuit may just as well be compiled into object code and

executed on ordinary computers. The system may then be simulated by running

the compiled program like any other program” [Brun91]; the execution of an

occam model on a computer system however is a much more complicated endeav-

our. The distributed nature of occam and the characteristics of the development

tools associated with the language impose a number of issues that need to be

resolved if the model is to serve as a simulation tool rather that just a simple

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 255

textual description. These issues include debugging, monitoring and terminating

the simulation; for distributed, multi-processor implementations, mapping and

load balancing issues also need to be considered. Within the research presented

in this thesis, a number of techniques and mechanisms have been developed

which address all the aforementioned issues in the context of occam asynchronous

architectural models.

10.3 The Program Driven Synchronization Pro-

tocol

Addressing the causality problems introduced by the distributed nature of the

proposed modelling philosophy, this thesis has introduced the Program Driven

Synchronization Protocol (PDSP). This is a general theoretical framework for

the development of accurate arbiter processes which eliminate preemptions, while

preserving the data-driven philosophy of the modelling approach.

PDSP is based on the conservative, deadlock avoidance approach. It exploits

the characteristics of the simulated architectures to enable arbiter processes pre-

dict their simulated future based on the instructions executed by the model;

the term “Instruction Lookahead” has been introduced to refer to this concept.

The exploitation of Instruction Lookahead ensures that Null messages are issued

only when necessary, and are directed only to arbiter processes. This philosophy

constitutes a significant departure from the conventional, Chandy/Misra/Bryant-

based, conservative, deadlock avoidance protocols where all processes in the model

are required to handle and generate a regular flow of Null messages throughout

the model.

The success of PDSP depends on the ability to exploit the “Instruction Looka-

head” properties of the simulated architecture. The application of the PDSP

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 256

to the occarm simulation model has demonstrated that such an exploitation is

feasible, even for systems of the AMULET1’s complexity.

The work with occarm has demonstrated that the application of PDSP may

require the development of appropriate algorithms to provide arbiter processes

with the necessary knowledge and enable them to make decisions regarding the

arrival of messages on their input channels. The design of such algorithms requires

an extensive knowledge of the operation of the simulated architecture. This may

be considered the major drawback of PDSP; however this is a problem typical of

the conservative framework and not specific to PDSP. The algorithms per se are

simple to implement and their impact on the model’s philosophy and complexity

is minimal.

10.4 Performance

The simulation of digital systems in general, and computer architectures in par-

ticular, has long been categorized among the highly computation intensive appli-

cations. The same is true for the simulation of asynchronous digital systems. For

the testing and evaluation of the AMULET1 design, for instance, more than 4

million instruction cycles were simulated [Pave94], a number which corresponds

to many hours of simulation. Hence, a parallel approach to simulation, such as

the one described in this thesis, could contribute significantly in reducing the

duration and cost of the design cycle. However, the performance achieved by the

multi-processor implementation of occarm is far from satisfactory. This deficiency

has been attributed to the particular characteristics of the testbed architecture

(AMULET1) and the transputer technology used for the research described in

this thesis.

The asynchronous architectures currently under development are generally

characterized by a higher degree of parallelism and more regular interconnection

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 257

patterns than AMULET1. These characteristics coupled with the communication

efficiency promised by the T9000 transputer will possibly allow the potential for

high performance offered by the modelling approach presented in this thesis to

be realized.

10.5 Occam as an Asynchronous Hardware De-

scription Language

CSP-based parallel languages, with the static, process-based model of computa-

tion they support, provide a natural and convenient means for the expression of

the behaviour and structure of asynchronous computer systems. Occam in par-

ticular, with its support for explicit control of concurrency even at the command

level, and its simple “send” and “receive” commands is particularly suitable for

describing digital systems.

Occam can describe asynchronous control circuits at a level which is very

close to their implementation; consequently it may provide guidance for the

realization of the design (e.g. an IF statement will correspond to a Select block, a

PAR of input commands will be implemented using a Muller-C block etc). This

characteristic may also be exploited for the automatic derivation of circuits from

occam specifications as suggested in the next section.

Furthermore, the parallel, distributed nature of occam forces the designer

to think in “asynchronous terms” and to perceive its design as a distributed,

asynchronous structure where a global state does not exist. The work with

occarm has suggested that this may be the most important advantage of using

occam for asynchronous architectural modelling. Indeed, the construction of

occarm exposed behaviour patterns of AMULET1, thitherto unknown (e.g. the

behaviour of the PCcol signal), whose operation was time-dependent rather than

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 258

asynchronous.

On the negative side, occam lacks several data structures (and protocols for

that matter) that would be extremely useful in a distributed simulation endeavour

(e.g. records). Furthermore, for the manipulation of hardware circuit models,

efficient and easy means for treating numbers as booleans (and the reverse) are

extremely important, an area where occam is weak.

Another disadvantage of occam, as suggested by the programming effort

of the research presented in this thesis, is its rigid and verbose layout format

(reminiscent of FORTRAN) and the semantic significance of indentation which

makes both, the development and debugging of programs time consuming and

frustrating tasks.

Occam2.1 and the new development system in support of the T9000 transputer

alleviate some of the aforementioned deficiencies (e.g. records).

10.6 Further Work

The research presented in this thesis suggests a number of areas where further

research and development work may be undertaken.

10.6.1 Modelling and Simulation

The work described in this thesis was based on a particular case example, namely

the AMULET1 architecture. The ideas and techniques produced as a result of this

work should be applied on different asynchronous designs so that their validity

and generality may be established.

In particular, the feasibility and applicability of PDSP as a general synchro-

nization protocol should be examined by employing it to devise preemption free

arbitration algorithms in more existing asynchronous architectures. Furthermore,

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 259

the remaining algorithms, described in chapter 9, should be implemented to allow

a more extensive performance evaluation of PDSP to be performed. Work in this

direction has already commenced.

Tools for the postmortem analysis of the monitoring data would also be par-

ticularly desirable. The analysis could be indented to the generation of graphical

representations of the system’s behaviour (e.g. waveforms) or the automatic

detection of deadlocks based on the collected traces of parallelity events.

10.6.2 Automatic Synthesis

CSP-type specifications are being increasingly used for the automatic synthesis

of digital circuits. Occam may also be used for this purpose. Already, subsets

of occam and occam-like languages have been used for the automatic synthesis

of both synchronous [Page91] and asynchronous [Brun91] circuits. A silicon

compiler could be developed, which would accept, as input, RTL asynchronous

architectural occam models, built following the approach presented in this thesis,

and automatically generate the equivalent gate-level circuit descriptions using

syntax directed translation. The output of the compiler could be a netlist which

could then be simulated (using a sequential albeit time-accurate discrete event

simulation) or fed into a CAD tool to be implemented.

Appendix A

The ARM6 Programmer’s Model

This appendix provides a short description of the programming model of the

ARM6 processor. A more detailed description of the processor and its program-

ming may be found in [Furb89] [VLSI90]. The information presented in this

appendix is based on that given in [Furb89] [Furb95] and [Pave94]; figures A.1

and A.2 have been kindly provided by N. Paver.

ARM6 is a 32-bit RISC processor. The data types supported by the processor

are bytes (8 bits) and words (32 bits) which are transferred by means of a 32-bit

data bus; memory addresses make use of a separate 32-bit address bus.

ARM6 supports six modes of operation, namely USER (for normal program

execution), FIQ and IRQ (for dealing with interrupt handling), SVC (protected

supervisor for the operating system) and ABT (for dealing with data and in-

struction prefetch aborts) and UND (entered when an undefined instruction is

executed).

A.1 The Registers

The ARM6 processor has a total of 37 registers consisting of 31 general purpose

32-bit registers and 6 status registers.

260

APPENDIX A. THE ARM6 PROGRAMMER’S MODEL 261

R0

R2
R3
R4
R5
R6
R7
R8
R9

R10

R1

R11
R12
R13

R14 (Link Register)
R15 -PC and PSR

R13
R14

R13
R14

SVC

SVC

IRQ

IRQ

R8
R9
R10
R11
R12
R13
R14

FIQ

FIQ

FIQ

FIQ

FIQ

FIQ

FIQ

R13
R14

ABT

ABT

R13
R14

UND

UND

Figure A.1: The ARM6 Register Organization

The 31 general purpose registers are organized into a set of partially overlap-

ping banks as depicted in figure A.1. At any time, 16 general purpose registers

are visible to the programmer, namely R0 - R15. The visible registers depend on

the processor mode while the rest (referred to as banked registers) are switched

on to support IRQ, FIQ, SVC, ABT and UND modes. R15 contains both the

program counter and the program status register, as illustrated in figure A.2. R14

is used as the subroutine link register and receives a copy of R15 when a Branch

and Link instruction is executed.

The status registers consist of the Current Processor Status Register (CPSR),

which is visible in every mode, and a set of Saved Processor Status Registers

(SPSRs), one for each of the non-user modes (figure A.3).

APPENDIX A. THE ARM6 PROGRAMMER’S MODEL 262

N Z C V I F M1 M0PROGRAM COUNTER (PC)

31 30 29 28 27 26 25 2 1 0

Processor Mode
00 - User Mode
01 - FIQ Mode
10 - IRQ Mode
11 - Supervisor Mode

Program Counter
(Word Aligned)

FIQ Disable
0 - Enable
1 - Disable

IRQ Disable
0 - Enable
1 - Disable

Overflow
Carry/Not Borrow/

Rotate Extend
Zero
Negative/ Signed

Less Than

Figure A.2: The ARM Program Counter and Program Status Word

USER Mode
FIQ
Mode

SVC
Mode

ABT
Mode

IRQ
Mode

UND
Mode

SPSR_irqCPSR
SPSR_svc SPSR_abt

SPSR_und
SPSR_fiq

Figure A.3: The ARM6 Program Status Registers

A.2 The Instruction Set

The ARM instruction set is based on the load/store model; no memory to memory

operations are supported. Instructions are exactly one word and data operations

are performed on word quantities. An unusual feature of the ARM processor,

is that the entire instruction set is conditionally executable; the execution of an

instruction may or may not take place depending on the value of the CPSR.

The instruction formats used by ARM6 are illustrated in figure A.4. Seven

classes of instructions may be distinguished.

The first class contains data processing instructions. These perform arithmetic

APPENDIX A. THE ARM6 PROGRAMMER’S MODEL 263

xx x x x xx x x x x

1

Opcd

CP

Rd

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

00 I S Rn Rd Operand 2

000000 Rn Rs 1001 Rm

0001 xxx1xx1

01 I P B W L Rn Rd Offset

011

100

101

110

1110

1110

1111

L

U N W L

U S W L

x x x x x x x x x x xx x x x x

Rn Register list

offset

Rn CRd CP# offset

ignored by ARM

CRd CP#

Rd CP#

x x x

CRm

CRm

CP

CP

CRnCPop

P

P

0

1L CRn

U

A S

Data Processing

Multiply

Undefined

Single Data Transfer

Undefined

Block Data Transfer

Branch

Co-Proc Data Transfer

Co-Proc Data Op

Co-Proc Register Transfer

Software Interrupt

Figure A.4: ARM Instruction Formats

or logical operations on one or two operands. The first operand is always a register

(Rn), while the other operand may be a shifted register or a rotated 8-bit immedi-

ate value, depending on the value of the I bit in the instruction word. The status

flags of the processor may be updated according to the result of the operation if

the S bit has been set. Possible results are written on a destination register (Rd),

a certain set of instructions do not produce any result; there are CMP (compare),

CMN (compare negated), TST (bit test, equivalent to AND) and TEQ (test

equal, equivalent to EOR). The remaining data processing instructions, which

do produce a result, include the logical operations AND, EOR, ORR, BIC

(bit clear), MOV (move), MVN (move not), and the arithmetic operations

ADD, ADC (add with carry), SUB, SBC (subtract with carry), RSB (reverse

subtract), RSC (reverse subtract with carry), MUL (multiply, result is the least

significant 32 bits of a 32x32 product) and MLA (multiply accumulate, as MUL

with the result initialized). All the ARM data operations (except the multiplies)

allow an arbitrary shift to be applied on one of the operands before the operation

is performed, so there are no separate shift instructions.

The second class of instructions are used to load (LDR) or store (STR) byte

APPENDIX A. THE ARM6 PROGRAMMER’S MODEL 264

and word data values from and to memory. The memory address used in the

transfer is calculated by adding to (if U bit is set) or subtracting from a base

register (Rn) an offset, which may be either a register (optionally shifted) or a

12-bit immediate value. The offset may be modified either before (pre-indexed, P

bit set) or after (post-index) the base is used as a transfer address. The instruction

also supports optional auto increment/decrement of the base register, depending

on the value of the W bit.

The instructions of the third class specify transfers of blocks of data between

memory and any subset of the currently visible registers; LDM specifies a mul-

tiple load and STM a multiple store operation. The registers to be transferred

are specified by the programmer by means of a 16-bit register list field, with

each bit corresponding to a register. As in the single data transfer operation, the

transfer addresses are determined by the base register (Rn) and the pre/post (P)

and increment/decrement (U) bits. The registers are transferred in a sequential

manner, with the highest in the list transferred last (R15, if specified, will always

be transferred last). Multiple register transfer instructions are intented to provide

an efficient mechanism for saving or restoring context, or for moving large blocks

of data around main memory.

The fourth class includes instructions which specify branches. The control

transfer address is calculated by shifting an offset left by two bits, and adding the

result to the program counter, any overflow being ignored; the offset is a signed

2’s complement 24-bit number. Thus, the branch can reach an address within

+/- 32 Mbytes. Two branch variants are provided, namely simple branch (B)

and branch with link (BL); the type of branch depends on the value of the L

bit in the instruction word. Branch with link writes the old PC into the link

register (R14) in the register bank, for subsequent use as a subroutine return

address. The PC value written into R14 is adjusted to allow for the prefetch, and

APPENDIX A. THE ARM6 PROGRAMMER’S MODEL 265

contains the address of the instruction following the branch and link instruction.

The CPSR is not saved with the PC. To return from a subroutine the contents

of R14 are restored as the new PC value (i.e. by performing a move R14 to R15

operation).

A fifth instruction class contains the software interrupt instruction (SWI)

which is used to enter supervisor mode in a controlled manner. The instruction

causes the software interrupt trap to be taken, an operation that effects the

mode change. The PC is forced to a fixed value (&08) and the CPSR is saved in

SPSRsvc.

The sixth class includes the MSR and MRS instructions which provide access

to the CPSR and SPSR registers. MRS allows the contents of the CPSR or

SPSR mode to be moved to a general register, while MSR allows the contents of

a general register to be moved to the CPSR or SPSR mode register.

Finally, the instructions of the last class are used to support external copro-

cessors.

Appendix B

Modelling the Control Logic of

AMULET1

This appendix illustrates the internal organization of the occarm processes that

model the control circuitry of AMULET1. Emphasis is given to the use of the SEQ

and PAR occam constructors in order to describe the partial orderings of events

specified by the circuit. Five major processes have been selected to be presented,

namely Dec1CtrlB (primary decode, see section 6.6.2), AddC (address interface,

see section 6.3.2), Ctrl2 (execution unit, see section 6.8.2), Ctrl3 (execution unit,

see section 6.8.3), and WrtCtrl (write bus control unit, see section 6.9).

The circuit schematics presented in the appendix have been produced within

the Compass Design Automation environment and have been kindly provided by

Paul Day.

266

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 267

C
om

pa
ss

 D
es

ig
n

A
ut

om
at

io
n

pl
ot

 [l
a]

D
ec

1C
tr

lB
 b

y
te

m
pl

es
 o

n
26

-O
ct

-0
0

at
 9

:0
7

A
.M

.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

Figure B.1: Dec1CtrlB Control Circuit

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 268

SEQ
 P1
 P2 --IF
 TRUE
 SEQ
 PAR
 P3
 P4
 P5
 P6
 P7
 P8
 P9
 FALSE --LDM/STM
 SEQ
 WHILE done=FALSE
 SEQ
 P12
 ALT --deterministic
 LSMPr?
 SEQ
 PAR
 P4
 P14
 P13
 RdGA?
 SEQ
 done:=TRUE
 P10
 P11
:

Figure B.2: The Dec1CtrlB Process

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 269

P1

P2.1

P2.3

P2.4

P2.6
P2.2

P2.5

Figure B.3: AddC Control Circuit

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 270

SEQ
 ALT --ARBITER
 PCr?
 P1 --PC loop
 Wr?
 P2.1 --IF
 FALSE
 SEQ
 P2.2 --data transfer
 TRUE
 SEQ
 P2.3 --IF
 TRUE
 SEQ
 WHILE Ntrm=FALSE -- LSM loop
 SEQ
 P2.4
 P2.5
 FALSE
 SEQ
 P2.6 --data transfer: Apipe
:

Figure B.4: The AddC Process

A
P

P
E

N
D

IX
B

.
M

O
D

E
L
L
IN

G
T

H
E

C
O

N
T

R
O

L
L
O

G
IC

O
F

A
M

U
L
E

T
1

271

P1

P5.1

P5.2

P2 P3 P4

P5.3

P5.4

P5.5

P5.6
P5.7

P5.8

P5.9

Figure B.5: Ctrl2 Control Circuit

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 272

SEQ
 P1
 PAR
 P2
 P3
 P4
 SEQ --P5
 P5.1 --IF
 TRUE
 P5.2 --IF
 TRUE
 SEQ
 PAR
 P5.3
 SEQ
 P5.9 --Multiplier
 P5.4 --Shifter
 PAR
 P5.5
 P5.6
 FALSE
 SKIP
 FALSE
 SEQ
 PAR
 P5.3
 SEQ
 P5.8
 P5.4 --Shifter
 PAR
 P5.5
 P5.6
 P5.7
:

Figure B.6: The Ctrl2 process

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 273

P1

P2

P3.1

P3.2

P3.3

P3.4

P3.5

P4

P5

Figure B.7: Ctrl3 Control Circuit

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 274

SEQ
 P1 --input and CPSR
 PAR
 P2
 SEQ --P3
 P3.1 --ALU
 PAR
 P3.4
 P3.3
 SEQ
 P3.2
 P3.5
 P4
 P5
:

Figure B.8: The Ctrl3 process

A
P

P
E

N
D

IX
B

.
M

O
D

E
L
L
IN

G
T

H
E

C
O

N
T

R
O

L
L
O

G
IC

O
F

A
M

U
L
E

T
1

275

P2

P3

P4

P6

P7

P8

WrtCtrl1

P1

P5

P9

Figure B.9: Write Control Circuit

APPENDIX B. MODELLING THE CONTROL LOGIC OF AMULET1 276

ALT
 Dr? --from data interface
 SEQ
 P1 --IF
 TRUE
 SEQ
 P2 --IF
 TRUE
 PAR
 P3
 P9
 FALSE
 SKIP
 FALSE
 SEQ
 P4
 P7
 Wr? --from execution unit
 SEQ
 PAR
 SEQ
 P5 --IF
 TRUE
 PAR
 P3
 P9
 FALSE
 SKIP
 SEQ
 P6 --IF
 TRUE
 SEQ
 P4
 FALSE
 SKIP
 P8
:

Figure B.10: The WrtCtrl2 process

Bibliography

[AMD87] “Am29000 User’s Manual”, Advanced Micro Devices, 1987.

[AMUL] “The AMULET Group”, World Wide Web Home Page, URL:
http://www.cs.man.ac.uk/amulet/index.html

[OMI94] “Report on the Integer Macrocell Revision”, ESPRIT Project 6909 -
OMI/DE - ARM, Deliverable 7.4.2, University of Manchester, May
1994.

[Agra87] Agrawal, P., et al., “MARS: A Multiprocessor Based Multipro-
grammable Accelerator”, IEEE Design and Test of Computers, 4, 10,
October 1987, pp. 28-36.

[Ahuj86] Ahuja, S., Carriero, N., Gelernter, D., “Linda and Friends”, IEEE
Computer, August 1986, pp. 26-34.

[Akel91] Akella, V., Gopalakrishnan, G., “Hopcp: A Concurrent Hardware De-
scription Language”, Technical Report UUCS-TR-91-021, Department
of Computer Science, University of Utah, 1991.

[Alli92] Allison, A., “Is RISC Really Doomed?”, Microprocessor Report, Issue
47, October 1992.

[Alma89] Almasi, G. S., Gottlieb, A. J., “Highly Parallel Computing ”. The
Benjamin/Cummings Publishing Company Inc., 1989.

[Alme94] Almeida, F. A., Welch, P. H., “A Parallel Emulator for a Multiproces-
sor Dataflow Machine”, Proceedings of the World Transputer Congress
1994, Como, September 1994, pp. 259-272.

[Alon93] Alonso, J. M., et al., “Conservative Parallel Discrete Event Simulation
in a Transputer-Based Multicomputer”, Proceedings of the World
Transputer Congress 1993, Aachen, September 1993, pp. 636-650.

[Aris] Aristotle, “Physics”, English Translation: Loeb Classical Library,
Harvard University Press.

[Aris-1] Aristotle, “Metaphysics”, English Translation: Loeb Classical Library,
Harvard University Press.

277

BIBLIOGRAPHY 278

[Arms89] Armstrong, J. R., “Chip Level Modelling with VHDL”, Prentice Hall
International, 1989.

[Akyi93] Akyildiz, I. F., et al., “The Effect of Memory Capacity on Time Warp
Performance”, Journal of Parallel and Distributed Computing, 18, 4,
August 1993, pp. 411-422.

[Amda67] Amdahl, G. M., “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”, Proceedings AFIPS
1967 Sping Joint Computer Conference, Atlantic City, April 1967, pp.
483-485.

[Asch77] Aschcroft, E. A., Wadge, W. W., “LUCID: A Nonprocedural Language
with Iteration”, Communications of the ACM, 20, 7, July 1977, pp.
519-526.

[Aust79] Austin, J.H., “The Burroughs Scientific Processor”, Infotech State of
the Art Report: Supercomputers, Vol. 2, 1979, pp. 1-31.

[Avra83] Avramovici, M., Levendel, Y. M., Memon, P. R., “A Logic Simulation
Engine”, IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 2, 2, April 1983.

[Ayan89] Ayani, R., “A Parallel Simulation Scheme based on the Distance
Between Objects”, Proceedings of the 1989 SCS Multiconference on
Distributed Simulation, SCS Simulation Series, March 1989, pp. 113-
118.

[Ayan90] Ayani, R., Rajaei, H., “Parallel Simulation of a Generalized Cube
Multistage Interconnection Networks”, Proceedings of the 1990 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
January 1990, pp. 60-63.

[Ayan92] Ayani, R., Rajaei, H., “Parallel Simulation using Conservative Time
Windows”, Proceedings of the 1992 Winter Simulation Conference,
December 1992, pp. 709-717.

[ARM] ARM Ltd, Fulbourn Road, Cherry Hinton, Cambridge, CB1 4JN,
England.

[Baba93] Babaoglou, O., Marzullo, K., “Consistent Global States of Distributed
Systems: Fundamental Concepts and Mechanisms”, Technical Re-
port UBLCS-93-1, Laboratory for Computer Science, University of
Bologna, January 1993.

[Bacc93] Baccelli, F., Canales, M., “Parallel Simulation of Stochastic Petri Nets
Using Recurrence Equation”, ACM Transactions on Modeling and
Computer Simulation, 3, 1, January 1993, pp. 20-41.

BIBLIOGRAPHY 279

[Back78] Backus, J., “Can Programming be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs”, Communi-
cations of the ACM, 21, 8, August 1978, pp. 613-641.

[Bagr90] Bagrodia, R. L., Liao, W. T., “Parallel Simulation of the Sharks World
Problem”, Proceedings of the 1990 Winter Simulation Conference,
December 1990, pp. 191-198.

[Baik85] Baik, D., Zeigler, B. P., “Performance Evaluation of Hierarchical
Distributed Simulators”, Proceedings of the 1985 Winter Simulation
Conference, December 1985, pp. 421-427.

[Bail91] Bailey, “Measuring the Overhead in Conservative Parallel Simulations
of Multicomputer Programs”, Proceedings of the 1990 Winter Simu-
lation Conference, December 1990, pp. 627-636.

[Bain88] Bain, W. L., Scott, D. S., “An Algorithm for Time Synchronization in
Distributed Discrete Event Simulation”, Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
July 1988, pp. 30-33.

[Balc94] Balci, O., “Validation, Verification and Testing Techniques Through-
out the Life Cycle of a Simulation Study”, Proceedings of the 1994
Winter Simulation Conference”, December 1994, pp. 215-220.

[Balc94a] Balci, O., “Principles of Simulation Model Validation Verification
and Testing” Technical Report TR-94-24, Departmnet of Computer
Science, Virginia Tech, Virginia, USA, 1994.

[Balm90] Balmer, D. W., Paul, R. J., “Integrated Support Environments for
Simulation Modelling” Proceedings of the 1990 Winter Simulation
Conference, December 1990, pp. 243-249.

[Bank86] Banks, J., Carson, J. S., “Introduction to Discrete Event Simulation”,
Proceedings of the 1986 Winter Simulation Conference, December
1986, pp. 17-23.

[Bank92] Banks, J., “Simulation Languages and Simulator Environments”,
Proceedings of the 1992 Winter Simulation Conference, December
1992, pp. 88-96.

[Barn89] Barnes, J. G. P., “Programming in Ada”, Addison Wesley, 1989.

[Bart89] Barton, R. R, Schruben, L. W., “Graphical Methods for the Design
and Analysis of Simulation Experiments”, Proceedings of the 1989
Winter Simulation Conference, December 1989, pp. 51-61.

BIBLIOGRAPHY 280

[Bast94] Basten T., et al. “Time and the Order of Abstract Events in
Distributed Computations”, Technical Report TR-94-01, University
of Waterloo, Canada, February 1994.

[Batc80] Batcher, K.E., “The Design of a Massively Parallel Processor”, IEEE
Transactions on Computers,29, 9, September 1980, pp. 836-840.

[Bell90] Bellenot, S., “Global Virtual Time Algorithms”, Proceedings of the
1990 SCS Multiconference on Distributed Simulation, SCS Simulation
Series, January 1990, pp. 122-127.

[Bell92] Bellenot, S., “State Skipping Performance with the Time Warp
Operating System”, Proceedings of the 6th Workshop on Parallel and
Distributed Simulation (PADS92), SCS, January 1992, pp. 53-64.

[Bemm90] Bemmerl, T., et al., “TOPSYS: Tools for Parallel Systems”, Technical
Report TUM-I9047, SFB-Bericht Nr. 342/25/90 A, Institute fur
Informatik der Technischen Universitat Munchen, January 1990.

[Berr85] Berry, O., Jefferson , D., “Critical Path Analysis of Distributed Sim-
ulation”, Proceedings of the SCS Distributed Simulation Conference,
SCS Simulation Series, 1985, pp. 57-60.

[Bile85] Biles, W. E., Daniels, D. M., O’Donnel, T. J., “Statistical Considera-
tions in Simulation on a Network of Microcomputers”, Proceedings of
the 1985 Winter Simulation Conference, December 1985, pp. 388-393.

[Birt94] Birtwistle, G., Private Communication, 1994.

[Birt94a] Birtwistle, G., Liu, Y., “Specification of the Manchester AMULET1:
Top Level Specification”, Technical Report, Computer Science Depart-
ment, University of Calgary, December 1994.

[Birt95] “Asynchronous Digital Circuit Design”, Editors Birtwistle, G., Davis,
A, Springer Verlang, 1995.

[Blan84] Blank, T., “A Survey of Hardware Accelerators Used in Computer
Aided Design”, IEEE Design and Test of Computers, 1, 8, August
1984, pp. 21-39.

[Böhm91] Böhm, A. P. W., et al., “SISAL 2.0 Reference Manual”, Technical
Report Cs-91-118, Department of Computer Science, Colorado State
University, 1991.

[Boil87] Boillat, J. E., et al., “An Analysis and Reconfiguration Tool for
Mapping Parallel Programs onto Transputer Networks”, Proceedings
of the 7th Occam Users group, September 1987, pp. 186-194.

BIBLIOGRAPHY 281

[Bott86] Bottomley, R., “The Meiko Computing Surface: A Configurable
Supercomputer”, IEE Colloquium: The Transputer: Applications and
Case Studies, IEE Digest, 1986/91, 23rd May 1986.

[Bouk94] Boukerche, A., Tropper, C., “A Static Partitioning and Mapping
Algorithm for Conservative Parallel Simulations”, Proceedings of the
8th Workshop on Parallel and Distributed Simulation (PADS94), SCS,
July 1994, pp. 164-172.

[Brin91] Briner, J. Jr., “Fast Parallel Simulation of Digital Systems”, SCS
Advances in Parallel and Distributed Simulation, 23, January 1991,
pp. 71-77.

[Broz89] Brozowski, J. A., Ebergen, J. C., “Recent Developments in the Design
of Asynchronous Circuits”, Research Report CS-89-18, Computer
Science Department, University of Waterllo, May 1989.

[Broz95] Brozowski, J. A., Seger, C-J., H., “Asynchronous Circuits”, Springer
Verlang, 1995.

[Brun89] Brunvand, E., Sproull, R. F., “Translating Concurrent Programs into
Delay-Insensitive Circuits”, Proceedings of ICCAD, 1989, pp. 262-265.

[Brun91] Brunvand, E., “Translating Concurrent Communicating Programs
into Asynchronous Circuits”, Ph.D Thesis, Carnegie Mellon Univer-
sity, 1991.

[Brun91a] Brunvand, E., Starkey, M., “An Integrated Environment for the Design
and Simulation of Self Timed Systems”, Proceedings of VLSI 1991,
August 1991. pp. 4a.2.1-4a.3.1.

[Brun93] Brunvand, E., “The NSR Processor”, Proceedings of the 26th Hawaii
International Conference on System Sciences (HICSS 1993), January
1993, pp. 428-435.

[Brya77] Bryant, R. E., “Simulation of Packet Communication Architecture
Computer Systems”, Technical Report MIT-LCS-TR-188, Laboratory
for Computer Science, Massachusetts Institute of Technology, USA,
1977.

[Brze93] Brzezinski, J., Helary, J. M., Raynal, M., “Distributed Termination
Detection: General Model and Algorithms”, Technical Report 1964,
INRIA, March 1993

[Bund86] Bunday, B. D., “Basic Queueing Theory”, Edward Arnold, 1986.

BIBLIOGRAPHY 282

[Burn87] Burns, S. M., Martin, A. J., “Synthesis of Self-Timed Circuits by
Program Transformations”, Technical Report 5253:TR:87, Computer
Science Department, Caltech,1987.

[Burn88] Burns, A., “Programming in Occam 2”, Addison Wesley, 1988.

[Cai90] Cai, W., Turner, S. J., “An Algorithm for Discrete Event Simulation:
The Carrier Null Message Approach” Proceedings of the 1990 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
January 1990, pp. 3-8.

[Cai90a] Cai, W., Turner, S. J., “Experimental Studies of Conservative
Distributed Discrete Event Simulation on Transputer Networks”,
Proceedings of the 12th Occam User Group Technical Meeting, IOS
Press, 1990, pp. 138-147.

[Capo86] Capon, P.C., Gurd, J. R., Knowles, A. E., “ParSiFal: A Parallel
Simulation Facility”, IEE Colloquium: The Transputer: Applications
and Case Studies, IEE Digest, 1986/91, 23rd May 1986.

[Cars89] Carson, J. S., “Verification and Validation: A Consultan’s Per-
spective”, Proceedings of the 1989 Winter Simulation Conference,
December 1989, pp. 552-558.

[Cars92] Carson, J. S., “Modelling”. Proceedings of the 1992 Winter Simulation
Conference, December 1992, pp. 82-87.

[Chan79] Chandy, K. M., Holmes, V., Misra, J., “Distributed Simulation of
Networks”, Computer Networks, 3, 1, January 1979, pp. 105-113.

[Chan79a] Chandy, K. M., Misra, J., “Distributed Simulation: A Case Study
in the Design and Verification of Distributed Programs”, IEEE
Transactions on Software Engineering, 5, 5, September 1979, pp. 440-
452.

[Chan79b] Chandy, K. M., Misra, J., “Deadlock Absence Proofs for Networks
of Communicating Processes”, Information Processing Letters, 9, 4,
November 1979, pp. 185-189.

[Chan81] Chandy, K. M., Misra, J., “Asynchronous Distributed Simulation via
a Sequence of Parallel Computations”, Communications of the ACM,
24, 11, November 1981, pp. 198-205.

[Chan85] Chandy, K. M., Lamport, L., “Distributed Snapshots: Determining
Global States of Distributed Systems”, ACM Transactions on Com-
puter Systems, 3, 1, February 1985, pp. 63-75.

BIBLIOGRAPHY 283

[Chan89] Chandy, K. M., Sherman, R., “The Conditional Event Approach to
Distributed Simulation”, Proceedings of the 1989 SCS Multiconference
on Distributed Simulation, SCS Simulation Series, March 1989, pp.
93-99.

[Chiu94] Chiu, P. P. K., Ku, K. M., “Simulation of Logic Circuits Using
a Network of Transputers”, Proceedings of the World Transputer
Congress 1994, Como, September 1994, pp. 273-284.

[Chri89] Christian, F., “probabilistic Clock Synchronization”, Distributed
Computing, 3, 3, March 1989, pp. 146-158.

[Chri82] Christopher, T., et al., “Structure of a Distributed Simulation Sys-
tem”, IEEE COMPSAC 1982, IEEE Computer Society Press, pp.
548-589.

[Chu85] Chu, T. A., Leung, C. K. C., Wanuga, T. S., “A Design Methodology
for Concurrent VLSI systems”, Proceedings of ICCD 1985, 1985, pp.
407-410.

[Chu86] Chu, T. A., “On the Models for Designing VLSI Asynchronous Digital
Systems”, INTEGRATION, the VLSI Journal, 4, 1986. pp. 99-113,

[Chu86a] Chu, T. A., Glasser, L. A., “Synthesis of Self-timed Control Circuits
from Graphs : An Example”, Proceedings of ICCD 1986, 1986, pp.565-
571.

[Chu87] Chu, T. A., “Synthesis of Self-timed VLSI Circuits from Graph-
Theoretic Specifications”, Ph.D Thesis (MIT/LCS/TR-393), M.I.T.,
June 1987.

[Chun91] Chung, M., Chung, Y., “An Experimental Analysis of Simulation
Clock Advancement in Parallel Logic Simulation on an SIMD Ma-
chine”, SCS Advances in Parallel and Distributed Simulation, 23,
January 1991, pp. 125-132.

[Clar67] Clark, W. A., “Macromodular Computer Systems”, Proceedings of
the 1967 AFIPS Spring Joint Computing Conference, April 1967 pp.
335-336.

[Clar74] Clark, W. A., Molnar C. E., “Macromodular Computer Systems.
Computers”, Chapter 3, In Biomedical Research, Editors Stacy R.
W., Waxman B.D, Academic Press, 1974.

[Clea94] Cleary, J., et al., “Cost of State Saving and Rollback”, Proceedings of
the 8th Workshop on Parallel and Distributed Simulation (PADS94),
SCS, July 1994, pp. 94-101.

BIBLIOGRAPHY 284

[Cloc81] Clocksin, W. F., Mellish, C. S., “Programming in Prolog”, Springer
Verlag, 1981.

[Coat93] Coates, B., Davis, A., Stevens, K. S., “Automatic Synthesis of Fast
Compact Self-timed Control Circuits”, Proceedings of the IFIP Work-
ing Conference on Asynchronous Design Methodologies, Manchester,
England, 1993.

[Comf84] Comfort, J. C., “The Simulation of a Master-Slave Event Set Proces-
sor”, Simulation, 42, 3, March 1984, pp. 117-124.

[Comf88] Comfort, J. C., Gopal, P. R., “Environment Partitioned Distributed
Simulation with Transputers”, Proceedings of the 1988 SCS Multicon-
ference on Distributed Simulation, SCS Simulation Series, July 1988,
pp. 103-108.

[Conc89] Conception, A. I., “A hierarchical Computer Architecture for Dis-
tributed Simulation”, IEEE Transactions on Computers 38, 2, Febru-
ary 89, pp. 311-319.

[Cota90] Cota, B. A., Sargent, R. G., “A Framework for Automatic Lookahead
Computation in Conservative Distributed Simulations”, Proceedings
of the 1990 SCS Multiconference on Distributed Simulation, SCS
Simulation Series, January 1990, pp. 56-59.

[Davi89] David, I., Ginosar, R., Yoeli, M., “Self-Timed Implementation of a
Reduced Instruction Set Computer”, Technical Report 732, Technion
and Israel Institute of Technology, October 1989.

[Davi88] Davis, C. K., Sheppard, S. V., Lively, W. M., “Automatic Develop-
ment of Parallel Simulation Models in Ada”, Proceedings of the 1988
Simulation Conference, December 1988, pp. 339-343.

[Davi95] Davis, A., Nowick, S. M., “Asynchronous Circuit Design: Motivation,
Background and Methods”, In [Birt95], pp. 1-49.

[Davi95a] Davis, A., Nowick, S. M., “Synthesizing Asynchronous Circuits:
Practice and Experience”, In [Birt95], pp. 104-150.

[Day92] Day, P., “A Micropipelined Multiplier”, Proceedings of the ACiD-
WG/EXACT Workshop on Asynchronous Data Processing, Veld-
hoven, The Netherlands, December 1992.

[Day95] Day, P., “Investigations into Micropipeline Latch Design Styles”, to
be published in IEEE Transactions in VLSI.

BIBLIOGRAPHY 285

[DeBe88] DeBenectitus, E. P., Ackland, B. D., “Circuit Simulation on a Hyper-
cube”, Proceedings of the 1988 SCS Multiconference on Distributed
Simulation, SCS Simulation Series, July 1988, pp. 89-93.

[DeBe91] DeBenectitus, E. P, Ghosh, S., Yu. M. L., “A Novel Algorithm for
Discrete Event Simulation”, Computer, 24, 6, June 1991, pp. 21-33.

[DeRe76] DeRemer, F., Kron, H. H., “Programming-in-the-Large versus
Programming-in-the-Small”, IEEE Transactions on Software Engi-
neering, 2, 2, February 1976, pp. 114-121.

[Dean92] Dean, M. E., “STRiP: A Self-Timed RISC Processor Architecture”,
Ph.D Thesis, Stanford University, 1992.

[Derr89] Derrick, E. J., Balci, O., Nance, R. E., “A Comparison of Selected
Conceptual Frameworks for Simulation Modelling”, Proceedings of the
1989 Winter Simulation Conference, December 1989, pp. 711-718.

[DeVr90] DeVries, R. C., “Reducing Null Messages in Misras Distributed
Discrete Event Simulation Method”, IEEE Transactions on Software
Engineering, 16, 1, January 1990, pp. 82-91.

[Dick90] Dickens, P. M., Reynolds, P. F., “SRADS With Local Rollback”, Pro-
ceedings of the 1990 SCS Multiconference on Distributed Simulation,
SCS Simulation Series, January 1990, pp. 161-164.

[Dijk68] Dijkstra, E.W., “The Structure of THE Multiprogramming System”,
Communications of the ACM, 11, 5, May 1968, pp. 341-346.

[Dijk75] Dijkstra, E.W., “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”, Communications of the ACM, 18, 8, August
1975, pp. 453-457.

[Dijk80] Dijkstra, E. W., Scholten, C. S., “Termination Detection for Diffusing
Computations”, Information Processing Letters, 11, 1, August, 1980.

[Dill89] Dill, D. L., “ACM Distinguished Dissertations: Trace Theory for
Automatic Hierarchical Verification of Speed-Independent Circuits”,
MIT Press, 1989.

[Ditz87] Ditzel, D. R., McLellan, H. R., Berenbaum, A. D., “The Hardware
Architecture of the CRISP Microprocessor”, Proceedings of the 14th
Annual Symposium on Computer Architecture, 1987, pp. 309-319.

[Djan89] Djanhaguir, A. H., Geffroy, J. C., “Use of Occam for Validation of
Distributed Event Driven Simulation”, Proceedings of the 10th Occam
User Group Technical Meeting, Enschede, April 1989, pp. 213-221.

BIBLIOGRAPHY 286

[Dobb92] Dobberpuhl, D., et al., “A 200 MHz 64b Dual-Issue CMOS Micropro-
cessor”, IEEE Journal of Solid-State Circuits, 27, 11, November 1992,
pp. 155-1565.

[Dobb88] Dobbs, C., Reed, P., Ng, T., “Supercomputing on a Chip: Genesis of
the 88000”, VLSI System Design, May 1988, pp. 24-33.

[Dows85] Dowsing, R. D., “Simulating Hardware Structures in occam”, Software
and Microsystems, 4, 4, August 1985, pp. 77-84.

[Dows88] Dowsing, R. D., “Introduction to Concurrency Using Occam”, Van
Nostrand Reinhold, 1988.

[Duga35] Dugas, R., “A History of Mechanics”, English Translation of the
Original 1935 French Edition, Central Book Company, New York,
1955.

[Dunc90] Duncan, R., “A survey of Parallel Computer Architectures”, Com-
puter, February 1990, pp. 5-16.

[Duni91] Dunigan, T. H., “Hypercube Clock Synchronization”, Technical Re-
port TM-11744, Oak Ridge National Laboratory, February 1991.

[Dynk82] Dynkin, E. B., “Markov Processes and Related Problems of Analysis”,
Cambridge University Press, 1982.

[Eber91] Ebergen, J. C., “A Formal Approach to Designing Delay-Insensitive
Circuits”, Distributed Computing, 5, 3, March 1991, pp. 107-119.

[Ebli89] Ebling, M., et al., “An Ant Foraging Model Implemented on the Time
Warp Operating System”, Proceedings of the 1989 SCS Multiconfer-
ence on Distributed Simulation, SCS Simulation Series, March 1989,
pp. 151-163.

[Eick91] Eick, S. G., et al., “Synchronous Relaxation for Parallel Simulations
with Applications to Circuit-Switched Networks”, Proceedings of the
5th Workshop on Parallel and Distributed Simulation (PADS91), SCS,
January 1991, pp. 151-163.

[Eshr89] Eshraghian, K., Weste, N., “Principles of CMOS Design A Systems
Perspective”, Addison Wesley, 1989.

[FDR93] FDR
User Manual (available via anonymous ftp at ftp.comlab.ox.ac.uk),
Formal Systems Europe, 3 Alfred Street, Oxford, 1993.

[Feld79] Feldman, J. A., “High Level Programming for Distributed Comput-
ing”, Communications of the ACM, 22, 6, June 1979, pp. 353-368.

BIBLIOGRAPHY 287

[Fers93] Ferscha, A., Chiola, G., “Distributed Simulation of Timed Petri Nets:
Exploiting the Net Structure to Obtain Efficiency”, Proceedings of the
14th International Conference on Application an and Theory of Petri
Nets, Lecture Notes in Computer Science, 691, 1993, pp. 146-165.

[Fers94] Ferscha, A., Tripathi, S. K., “Parallel and Distributed Simulation if
Discrete Event Systems”, Technical Report CS.TR.3336, University of
Maryland, August 1994.

[Fidg88] Fidge, C. J., “Timestamps in Message Passing Systems that Preserve
the Partial Ordering”, In Proceedings of the 11th Australian Computer
Science Conference, Brisbane, Australia, February 1988, pp. 55-66.

[Fidg91] Fidge, C. J., “Logical Time in Distributed Computing Systems”, IEEE
Computer, 24, 8, August 1991, pp. 28-33.

[Fish92] Fishwick, P. A., “Integrating Modeling in Simulation, Software Engi-
neering and AI”, in [Radi92], pp. 773-774.

[Flec92] Fleckenstein, C. J., et al., “Multiprocessing”, in [Yovi92], pp. 255-324.

[Flyn72] Flynn, M., “Some Computer Organizations and their Effectiveness”,
IEEE Transactions on Computers, 21, 9, September 1972, pp. 948-960.

[Fox89] Fox, G. C., “Parallel Computing Comes of Age: Supercomputer
Level Parallel Computations at Caltech”, Concurrency: Practice and
Experience, 1, 1, John Wiley, September 1989, pp. 63-104.

[Franc80] Francez, N., “Distributed Termination”, ACM TOPLAS, 2, 1, 1980,
pp. 42-55.

[Fuji88] Fujimoto R., “Applications: Distributed Simulation”, in [Reed88],
Chapter 6, pp. 240-267.

[Fuji88a] Fujimoto R., Tsai, J., Gopalakrishnan, G., “Design and Performance
of Special Purpose Hardware for Time Warp”, Proceedings of the 15th
Annual Symposium on Computer Architecture, June 1988, pp. 401-
408.

[Fuji89] Fujimoto R., “Performance measurements of Distributed Simulation
Strategies”, Transactions of the Society for Computer Simulation, 6,
2, April 1989, pp. 88-132.

[Fuji89a] Fujimoto R., “Time Warp on a Shared Memory Multiprocessor”,
Transactions of the Society for Computer Simulation, 6, 3, July 1989,
pp. 211-239.

BIBLIOGRAPHY 288

[Fuji89b] Fujimoto R., “The Virtual Time Machine”, Proceedings of the 1989
International Symposium on Parallel Algorithms and Architectures”,
June 1989, pp. 199-208.

[Fuji90] Fujimoto R., “Parallel Discrete Event Simulation”, Communications
of the ACM, 33, 10, October 1990, pp. 31-53.

[Fuji92] Fujimoto R., Nicol, D., “State of the Art in Computer Simulation”,
Proceedings of the 1992 Winter Simulation Conference, December
1992, pp. 246-254.

[Fuji93] Fujimoto R., “Parallel and Distributed Discrete Event Simulation:
Algorithms and Applications”, Proceedings of the 1993 Winter Simu-
lation Conference, December 1993, pp. 106-114.

[Fuji87] “MB86900 High Performance 32-bit RISC SPARC Data Sheet”,
Fujitsu Microelectronics Inc., 1987.

[Furb89] Furber, S. B., “VLSI RISC Architecture and Organization”, Marcel
Dekker, Inc., 1989.

[Furb92] Furber, S. B., “Micropipelines - A Case Study”, Proceedings of
the ACiD-WG/EXACT Workshop on Asynchronous Data Processing,
Veldhoven, The Netherlands, December 1992.

[Furb93] Furber, S. B., “AMULET1 - An Asynchronous ARM Processor”,
Symposium Record of Hot Chips V, Stanford University, August 1993.

[Furb93a] Furber, S. B., et al., “A Micropipelined ARM”, Proceedings of VLSI
‘93 (Best Paper Award), September 1993, pp. 5.4.1-5.5.8.

[Furb94] Furber, S. B., “AMULET1: A Micropipelined ARM”, IEEE CompCon
‘94, Invited Paper, March 1994.

[Furb94a] Furber, S. B., “The Design and Evaluation of an Asynchronous
Microprocessor”, Proceedings of ICCD 1994, October 1994, pp. 217-
220.

[Furb94b] Furber, S. B., Talk at the AMULET Modelling Workshop, Winder-
mere, Cumbria, England, July 1994.

[Furb94c] Furber, S. B., Private Communication.

[Furb95] Furber, S. B., “Computing Without Clocks”, In [Birt95], pp. 211-262.

[Gafn85] Gafni, A., “Space Management and Cancellation Mechanisms for
Time Warp”, Technical Report, TR-85-3-41, Department of Computer
Science, University of Southern California, 1985.

BIBLIOGRAPHY 289

[Gafn88] Gafni, A., “Rollback Mechanisms for Optimistic Distributed Simu-
lation Systems”, Proceedings of the 1988 SCS Multiconference on
Distributed Simulation, SCS Simulation Series, July 1988, pp. 61-67.

[Gajs83] Gajski, D. et al., “Cedar-A large scale multiprocessor”, IEEE Pro-
ceedings of the 1983 International Conference on Parallel Processing,
1983, pp. 524-529.

[Gall90] Galletly, J., “Occam2”, Pitman, 1990.

[Garc84] Garcia-Molina, H., Germano, F., Hohler, W. H., “Debugging a
Distributed Computing System”, IEEE Transactions on Software
Engineering, 10, 2, February 1984, pp. 210-219.

[Gars89] Garside J. D., “T-Rack Switch Card”, ParSiFal Internal Document
PSF/MU/WP5/89/3, Department of Computer Science, University
of Manchester, February 1989.

[Gars92] Garside, J. D., “Micropipeline Structures”, Proceedings of the ACiD-
WG/EXACT Workshop on Asynchronous Data Processing, Veld-
hoven, The Netherlands, December 1992.

[Gars93] Garside J. D., “A CMOS VLSI Implementation of an Asynchronous
ALU”, Proceedings of the IFIP Working Conference on Asynchronous
Design Methodologies, Manchester, England, 1993.

[Gill62] Gill, A., “Introduction to the Theory of Finite State Machines”,
McGraw Hill, 1962.

[Gilm86] Gilmer, J. B., Hong, J. P., “Replicated State Space Approach for
Parallel Simulation”, Proceedings of the 1986 Winter Simulation
Conference, December 1986, pp. 430-433.

[Gino90] Ginosar, R., Michell, N., “On the Potential of Asynchronous Pipelined
Processors”, Technical Report UUCS-90-015, VLSI Systems Research
Group, University of Utah, 1990.

[Glas84] Glaser, H., Hankin, C., Till, D., “Principles of Functional Program-
ming”, Prentice Hall International, 1984.

[Glaz92] Glazer, D. W., “Load Balancing Parallel Discrete Event Simulations”,
Ph.D. Thesis, Department of Computer Science, McGill University,
1992.

[Gold88] Goldsmith, M., Jones, G., “Programming in occam 2”, Prentice Hall
International, 1988.

BIBLIOGRAPHY 290

[Gopa90] Gopalakrishnan G., Jain P., “Some Recent Asynchronous System
Design Methodologies”, Technical Report UU-CS-TR-90-016, Depart-
ment of Computer Science, University of Utah, October 1990.

[Gopa93] , Gopalakrishnan, G., Akella, V., “Specification, Simulation, and
Synthesis of Self-Timed Circuits”, Proceedings of the 26th Hawaii
International Conference on System Sciences (HICSS 1993), January
1993. pp. 399-408.

[Gord90] Gordon, R. F., et al., “Hierarchical Modelling in a Graphical Simula-
tion System”, Proceedings of the 1990 Winter Simulation Conference,
December 1990, pp. 499-503.

[Grah94] Graham, R. L., Knuth, D. E., Patashnik, O., “Concrete Mathematics”,
Addison Wesley, 1994.

[Gros88] Groselj, B. Tropper, C., “The Time of Next Event Algorithm”, Pro-
ceedings of the 1988 SCS Multiconference on Distributed Simulation,
SCS Simulation Series, July 1988, pp. 25-29.

[Gros89] Groselj, B. Tropper, C., “A Deadlock Resolution Scheme for Dis-
tributed Simulation”, Proceedings of the 1989 SCS Multiconference
on Distributed Simulation, SCS Simulation Series, March 1989, pp.
108-112.

[Gurd85] Gurd, J.R. et al., “The Manchester Prototype Dataflow Computer”,
Communications of the ACM, 28, 1, January 1985, pp. 34-52.

[Guse84] Gusella, R., Zatti, S., “Tempo: A Network Time Controller for a
Distributed Berkeley Unix System”, Distributed Processing Technical
Communication Letter, IEEE, SI-6, June 1984, pp. 7-15.

[Gwen94] Gwennap, L., “Digital Leads the Pack with 21164”, Microprocessor
Report, 8, 12, September 1994, pp. 1, 6-10.

[HP86] “Precision Architecture and Instruction Reference Manual”, Hewlett-
Packard Company, 1986.

[Hans73] Hansen, B. P., “Operating Systems Principles”, Prentice Hall Inter-
national, 1973.

[Hart87] “Hardware Description Languages”, Advances in CAD for VLSI,
Volume 7, Hartenstein, R. W., (Editor), North Holland, 1987.

[Hauc93] Hauck, S., “Asynchronous Design Methodologies: An Overview”,
Technical Report UW-CSE-93-05-07, University of Washington, April
1993.

BIBLIOGRAPHY 291

[Heid86] Heidelberger, P., “Statistical Analysis of Parallel Simulations”, Pro-
ceedings of the 1986 Winter Simulation Conference, December 1986,
pp. 290-295.

[Heid90] Heidelberger, P., Stone, H., “Parallel Trace Driven Cache Simulation
by Time Partitioning”, Proceedings of the 1990 Winter Simulation
Conference, December 1990, pp. 734-737.

[Heud92] Heudin, J. C., Paneto, C., “RISC Architectures”,, Chapman & Hall,
1992.

[Henn81] Hennessy, J. L., Jouppi, N. P., Baskett, F., Gill, J., “MIPS: A VLSI
Processor Architecture”, Proceedings of the CMU Conference on VLSI
Systems and Computations, 1981, pp. 337-346.

[Henn90] Hennessy, J. L., Patterson, D. A., “Computer Architecture A Quanti-
tative Approach”, Morgan Kaufmann Publishers Inc., 1990.

[Henn91] Hennessy, J. L., Jouppi, N. P., “Computer Technology and Archi-
tecture: An evolving Interaction”, IEEE Computer 24, 9, September
1991, pp. 18-29.

[Hill86] Hill, G., “Backplane Design for the T-Rack”, ParSiFal Internal
Document, Inmos Ltd., 1986.

[Hill89] Hill, M. D., Larus, J. R., “Cache Considerations for Programmers of
Multiprocessors”, Technical Report TR-CS-891, Computer Sciences
Department, University of Wisconsin, Madison, November 1989.

[Hill85] Hillis, W. D., “The Connection Machine”, MIT Press, 1985.

[Ho89] Ho, Y. C., “Dynamics of Discrete Event Systems” Proceedings of the
IEEE, 77, 1, January 1989, pp. 3-6.

[Hoar72] Hoare, C.A.R., “Towards a theory of parallel programming”, in C.A.R.
Hoare and R.H. Perrot, (Editors), “Operating Systems Techniques”,
Academic Press, 1982.

[Hoar74] Hoare, C.A.R., “Monitors: An Operating System Structuring Con-
cept”, Communications of the ACM, 17, 10, October 1974, pp. 549-
557.

[Hoar78] Hoare, C.A.R., “Communicating Sequential Processes”, Communica-
tions of the ACM, 21, 8, August 1978, pp. 666-677.

[Hoar85] Hoare, C.A.R., “Communicating Sequential Processes”, Prentice Hall
International, 1985.

BIBLIOGRAPHY 292

[Hock88] Hockney, R.W., Jesshope, C.R., “Parallel Computers 2”, Adam Hilger,
1988.

[Holl93] Hollingsworth, J., Miller, P. B., “Dynamic Control of Performance
Monitoring on Large Scale Parallel Systems”, report accessible by
anonymous ftp in grilled.cs.wisc.edu: technical papers/w3search.ps.Z.

[Holm78] Holmes, V., “Parallel Algorithms on Multiprocessor Architectures”,
Ph.D. Dissertation, Computer Science Department, University of
Texas, Austin, 1978.

[Hord82] Hord, R. M., “The ILLIAC IV, The First Microcomputer”, Computer
Science Press, Rockville, 1982.

[Hwan84] Hwang, K., Briggs, F.A., “Computer Architecture and Parallel
Processing”, McGraw Hill, 1984.

[Huan90] Huang, A., “Optical Computing”, Lecture Notes, Sun Annual Lecture,
Department of Computer Science, University of Manchester, June
1990.

[Huda90] Hudak, P., Wadler, P., “Report on the Programming Language
Haskell”, Version 1.0, Department of Computer Science, Yale Uni-
versity, April 1990.

[Huff54] Huffman, D. A.,“The Synthesis of Sequential Switching Circuits”,
Journal of the Franklin Institute, 257, 3, March 1954, pp. 161-190.

[Ibbe78] Ibbett, R. N., Capon, P. C., “The Development of the MU-5 Computer
System”, Communications of the ACM, 21, 1, January 1978, pp. 13-24.

[Ibbe82] Ibbett, R. N., “The Architecture of High Performance Computers”,
Macmillan, 1982.

[Inmo86] “IMS T800 Architecture”, Technical Note 6, Inmos Limited, 1986.

[Inmo88] “Occam 2 Reference Manual”, Prentice Hall International, 1988.

[Inmo88a] “Transputer Reference Manual”, Prentice Hall Inc., 1988.

[Inmo91] “The T9000 Transputer Products Overview Manual”, Inmos Limited,
1991.

[Inmo91a] “Occam2 Toolset User Manual”, Inmos Limited, 1991.

[Inmo92] “Occam3 Reference Manual”, Inmos Limited, 1992.

[Inmo93] “The T9000 Transputer Hardware Reference Manual”, Inmos Limited,
1993.

BIBLIOGRAPHY 293

[Inmo93a] “Networks Routers and Transputers”, May, M. D., Thomson, P. W.,
Welch, P. H., (Editors), IOS Press, Inmos Limited, 1993.

[Inte86] “Intel iPSC System Overview”, Order Number 310610-001, Intel
Scientific Computers, 1986.

[Jeff82] Jefferson, D., Sowizral, H., “Fast Concurrent Simulation Using the
Time Warp Mechanism, Part I: Local Control”, Technical Report N-
1906-AF, RAND Corporation, December 1982.

[Jeff85] Jefferson, D., Sowizral, H., “Fast Concurrent Simulation Using the
Time Warp Mechanism”, Proceedings of the SCS Distributed Simula-
tion Conference, SCS Simulation Series, 1985, pp. 63-69.

[Jeff85a] Jefferson, D., Sowizral, H., “Virtual Time”, ACM Transactions on
Programming Languages and Systems, 7, 3, July 1985, pp. 404-425.

[Jeff90] Jefferson, D., “Virtual Time II: Storage Management in Distributed
Simulation”, Proceedings of the 9th Annual ACM Symposium on
Principle of Distributed Computing, August 1990, pp. 75-89.

[Jha93] Jha, V., Bagrodia, R. L., “Transparent Implementation of Conserva-
tive Algorithms in Parallel Simulation Languages”, Proceedings of the
1993 Winter Simulation Conference, December 1993, pp. 677-686.

[Jone86] Jones, D. W., “Concurrent Simulation: An Alternative to Distributed
Simulation”, Proceedings of the 1986 Winter Simulation Conference,
December 1986, pp. 417-423.

[Jone89] Jones, D. W., et al., “Experience with Concurrent Simulation”,
Proceedings of the 1989 Winter Simulation Conference, December
1989, pp. 756-764.

[Jone87] Jones, P., “An Extractor/Loader For the MU T-Rack”, ParSiFal In-
ternal Document PSF/MU/87/WP4/PJ/1, Department of Computer
Science, University of Manchester, 1987.

[Jone88] Jones, P., Murta, A., “Support for Occam Channels via Dynamic
Switching in Multi-Transputer Machines”, Occam and the Transputer-
Research and Applications, Editor Askew, C., IOS 1988, pp. 101-112.

[Jose90] Josephs, M. B., Udding, J. T., “Delay-Insensitive Circuits: An
Algebraic Approach to their Design”, Lecture Notes in Computer
Science, 458, 1990, pp. 342-366.

[Jose91] Josephs, M. B,. Udding, J. T., “An Algebra for Delay-Insensitive Cir-
cuit”, Proceedings of the Workshop on Computer-Aided Verification,
Editors Kurshan, R., Clarke, E. M., AMS-ACM, 1991, pp. 147-175.

BIBLIOGRAPHY 294

[Joyc87] Joyce, J., et al., “Monitoring Distributed Systems”, ACM Transac-
tions on Computer Systems, 5, 2, May 1987, pp. 121-150.

[KSR] Kendall Square Research Corporation, 170 Tracer Lane, Waltham,
MA 02154-1379, USA.

[Kalu75] Kalupahana, D. J., “Causality: The Central Philosophy of Bud-
dhism”, University Press of Hawaii, 1975.

[Kane87] Kane, G., “MIPS R2000 Architecture”, Prentice Hall International,
1987.

[Kate85] Katevenis, M. G. H., “Reduced Instruction Set Computer Architec-
tures for VLSI”, ACM Doctoral Dissertation Award 1984, The MIT
Press, 1985.

[Kell74] Keller, R. M., “Towards a Theory of Universal Speed-Independent
Modules”, IEEE Transactions on Computers, 32, 1, June 1974, pp.
21-33.

[Kern88] Kerninghan, B. W., Ritchie, D. M., “The C Programming Language”,
Prentice Hall International, 1988.

[Kerr87] Kerridge, J., “Occam Programming, a Practical Approach”, Blackwell
Scientific, 1987.

[Know87] Knowles, A. E., “ParSiFal - A Parallel Simulation Facility based
on the Transputer”, Presented at the School of High Performance
Architectures and Algorithms, Primorsko, Bulgaria, 1987.

[Know89] Knowles, A. E., Illiev, M. S., “Monitoring Facilities on the ParSiFal
T-Rack”, Proceedings of the ConPar’88, Cambridge University Press,
1988.

[Kogg81] Kogge, P. M., “The Architecture of Pipelined Computers”, McGraw
Hill Inc., 1981.

[Kona92] Konas, P., Yew, P. C., “Synchronous Parallel Discrete Event Simu-
lation on Shared Memory Multiprocessors”, Proceedings of the 6th
Workshop on Parallel and Distributed Simulation (PADS92), SCS,
January 1992, pp. 12-21.

[Kraf79] Kraft, G. D., Toy, W. N., “Mini/Microcomputer Hardware Design”,
Prentice Hall International, 1979.

[Kreu86] Kreutzer, W., “System Simulation: Programming Styles and Lan-
guages”, Addison Wesley, 1986.

BIBLIOGRAPHY 295

[Kris85] Krishnamurthi, M., Chandrasekaran, U., Sheppard, S. V., “Two Ap-
proaches to the Implementation of a Distributed Simulation System”,
Proceedings of the 1985 Winter Simulation Conference, December
1985, pp. 435-443.

[Kuma90] Kumar, D., Harous, S., “An Approach Towards Distributed Simula-
tion of Timed Petri Nets” Proceedings of the 1990 Winter Simulation
Conference, December 1990, pp. 428-435.

[Kuma91] Kumar, D., Harous, S., “Deadlock detection and Recovery Based
Distributed Simulation: A Performance Study” Proceedings of the
1991 Winter Simulation Conference, December 1991, pp. 608-617.

[Kung94] Kung, H. T., “Will Emerging High Speed Networks Provide a Solution
to Parallel Architectures?”, Lecture in the Sixth International School
For Computer Science Researchers, July 1994, Lipari, Sicily.

[Lamp78] Lamport, L., “Time, Clocks and the Ordering of Events in Distributed
Systems” Communications of the ACM, 21, 7, July 1978, pp. 558-565.

[Lau88] Lau, F. C. M., Shea, K. M., “Mapping a Process Network onto a
Processor Network”, in “Occam and the Transputer-Research and
Applications”, Editor Askew, C., IOS 1988, pp. 91-100.

[Lave83] Lavenberg, S., Muntz, R., “Performance Analysis of a Rollback
Method for Distributed Simulation”, Performance 1983, Elsevier
Science Pub., North Holland, 1983, pp. 117-132.

[Lavi78] Lavington, S. H., “The Manchester Mark I and Atlas: A Historical
Perspective”, Communications of the ACM, 21, 1, January 1978, pp.
4-12.

[Lazo93] Lazowska, E. D. Statement at the U.S. House of Representatives Sub-
committee on Science, Hearing on the High Performance Computing
and High Speed Networking Act of 1993, H.R. 1757.

[Leu92] Leu, E., Schiper, A., “ParaRex: A programming Environment
Integrating Execution Replay and Visualization” in “Environments
and Tools for Parallel Scientific Computating”, Editors Dongarra, J.,
Tourancheeau, B., Elsevier Science Publishers, 1992, pp. 155-170.

[Lin89] Lin, Y. B., Lazowska, E., “Exploiting Lookahead in Parallel Simu-
lation” Technical Report 89-10-6, Department of Computer Science,
University of Washington, 1989.

[Lin89a] Lin, Y. B., Baer, J. L., Lazowska, E., “Tailoring a Parallel Trace
Driven Simulation Technique to Specific Multiprocessor Cache Co-
herence Protocols”, Proceedings of the 1989 SCS Multiconference on

BIBLIOGRAPHY 296

Distributed Simulation, SCS Simulation Series, March 1989, pp. 191-
196.

[Lin90] Lin, Y. B., Lazowska, E., Baer, J. L., “Conservative Parallel Simula-
tion for Systems with No Lookahead Prediction”, Proceedings of the
1990 SCS Multiconference on Distributed Simulation, SCS Simulation
Series, January 1990, pp. 144-149.

[Lin90a] Lin, Y. B., Lazowska, E., “Determining the Global Virtual Time in a
Distributed Environment”, Technical Report 90-01-02, Department of
Computer Science, University of Washington, 1990.

[Lin90b] Lin, Y. B., Lazowska, E., “Reducing the State Saving Overhead
for Time Warp Parallel Simulation”, Technical Report 90-02-03,
Department of Computer Science, University of Washington, 1990.

[Lin90c] Lin, Y. B., Lazowska, E., Bailey, M. L., “Comparing Synchronization
Protocols for Parallel Logic Level Simulation”, Proceedings of the 1990
International Conference on Parallel Processing, August 1990, pp. 223-
227.

[Lin92] Lin, Y. B., “Memory Management Algorithms for Optimistic Parallel
Simulation”, Proceedings of the 6th Workshop on Parallel and Dis-
tributed Simulation (PADS92), SCS, January 1992, pp. 43-52.

[LinK91] Lin, K. J., Lin, C. S., “Automatic Synthesis of Asynchronous
Circuits”, Proceedings of DAC, 1991, pp. 296-301.

[LinK92] Lin, K. J., Lin, C. S., “A Realization Algorithm of Asynchronous
Circuits from STG”, Proceedings of EDAC, 1992, pp.322-326.

[LinK92a] Lin, K. J., Lin, C. S., “On the Verification of State-Coding in STGs”,
Proceedings of ICCAD 1992, 1992, pp.118-122.

[Linc82] Lincoln, N. R., “Technology and Design Tradeoffs in the Creation of
a Modern Supercomputer”, IEEE Transactions on Computers, 31. 5.
May 1982, pp. 363-376.

[Lind93] Lindsay, D., “The Limits of Chip Technology”, Microprocessor Report,
7, 1, January 1993, pp. 21-24.

[Liu90] Liu, L. Z., Tropper, C., “Local Deadlock Detection in Distributed Sim-
ulations” Proceedings of the 1990 SCS Multiconference on Distributed
Simulation, SCS Simulation Series, January 1990, pp. 64-69.

[Logi85] “Proposal to the Alvey Directorate for a Parallel Simulation Facility”,
Logica U.K Ltd., April 1985.

BIBLIOGRAPHY 297

[Lomo88] Lomow, G., et al., “A Performance Study of Time Warp”, Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, SCS
Simulation Series, July 1988, pp. 50-55.

[Louc90] Loucks, W. M., Preiss, B. R., “The Role of Knowledge in Distributed
Simulation”, Proceedings of the 1990 SCS Multiconference on Dis-
tributed Simulation, SCS Simulation Series, January 1990, pp. 9-16.

[Luba88] Lubachevsky, B. D., “Bounded Lag Distributed Discrete Event Simu-
lation”, Proceedings of the 1988 SCS Multiconference on Distributed
Simulation, SCS Simulation Series, July 1988, pp. 183-191.

[Luba89] Lubachevsky, B. D., “Scalability of the Bounded Lag Distributed Dis-
crete Event Simulation”, Proceedings of the 1989 SCS Multiconference
on Distributed Simulation, SCS Simulation Series, March 1989, pp.
100-107.

[Luba89a] Lubachevsky, B. D., Shwartz, A., Weiss, A., “Rollback Sometimes
Works . . . If Filtered”, Proceedings of the 1989 Winter Simulation
Conference”, December 1989, pp. 630-639.

[Luba89b] Lubachevsky, B. D., “Efficient Distributed Event Diven Simulations
of Multiple Loop Networks”, Communications of ACM, 32, 1, January
1989, pp. 111-123.

[Lump92] Lumpp, J. E., et al., “Specification and Identification of Events for
Debugging and Performance Monitoring of Distributed Multiproces-
sor Systems”, Proceedings of the 10th International Conference on
Distributed Computing Systems, IEEE, 1992, pp. 476-483.

[Malo90] Malony, A, Nichols, K., “Standards Working Group Summary”, in
“Performance Instrumentation and Visualization”, Editors Simmons,
M., Koskela, R., Addison Wesley, 1990.

[Manj93] Manjikian, N., Loucks, W. M., “High Performance Parallel Logic
Simulation on a Network of Workstations”, Proceedings of the 7th
Workshop on Parallel and Distributed Simulation (PADS93), SCS,
May 1993, pp. 76-84.

[Mari92] Marinescu, D. et al., “Models for Monitoring and Debugging Tools for
Parallel and Distributed Software”, Journal of Parallel and Distributed
Computing, Academic Press, June 1992, pp. 171-184.

[Mart85] Martin, A. J., “Distributed Mutual Exclusion on a Ring of Processes”,
Science of Computer Programming, 5, 1985, pp. 265-276.

BIBLIOGRAPHY 298

[Mart85a] Martin, A. J., “The design of a Self-timed circuit for Distributed
Mutual Exclusion”, Proceedings of the 1985 Chapel Hill Conference
on VLSI, Computer Science Press, 1985., pp. 247-260.

[Mart85b] Martin, A. J., “A Delay-Insensitive Fair Arbiter”, Technical Report
5193:TR:85, Computer Science Department, Caltech, 1985.

[Mart86] Martin, A. J., “Compiling Communicating Processes into Delay-
Insensitive VLSI Circuits” Distributed Computing, 1, 4, April 1986,
pp. 226-234.

[Mart89] Martin, A. J., “Formal Program Transformations for VLSI Circuit
Synthesis”, UT Year of Programming Institute on Formal Develop-
ments of Programs and Proofs, Editor Dijkstra, E.W., Addison Wesley,
1989.

[Mart89a] Martin, A. J., et al., “Design of an Asynchronous Microprocessor”,
Advanced Research in VLSI 1989, Proceedings of the Decennial
Caltech Conference on VLSI, 1989, pp. 351-373.

[Mart89b] Martin, A. J., “The first asynchronous Microprocessor” Technical
report CS-TR-89-06, Computer Science Department, Caltech, 1989.

[Mart90] Martin, A. J., “Synthesis of Asynchronous VLSI Circuits”, Formal
Methods for VLSI Design, Editor Staunstrup, J., North Holland, 1990.

[Matt88] Mattern, F., “Virtual Time and Global States of Distributed Sys-
tems”, Proceedings of the International Workshop in Parallel and
Distributed Algorithms, Gers, France, October 1988, pp. 215-226.

[May94] May, D., Invited Lecture, World Transputer Congress 1994, Como,
Italy, September 1994.

[McLa92] McLaren, R., “Instrumentation and Performance Monitoring of
Distributed Systems”, Proceedings of the 5th Distributed Memory
Computing Conference, IEEE, 1992, pp. 1180-1186.

[Mead80] Mead, C. A., Conway, L. A., “Introduction to VLSI Systems”, Addison
Wesley, 1980.

[Meng89] Meng, T. H. Y., Brodersen, R. W., Messerschmidtt, D. G., “Automatic
Synthesis of Asynchronous Circuits from High-Level Specifications”,
IEEE Transactions on CAD, 8, 11, November 1989, pp. 1185-1205.

[Merr90] Merrifield, B. C., Richardson, S. B., Roberts, J. B. G., “Quantitative
Studies of Discrete Event Simulation Modelling of Road Traffic”, Pro-
ceedings of the 1990 SCS Multiconference on Distributed Simulation,
SCS Simulation Series, January 1990, pp. 188-193.

BIBLIOGRAPHY 299

[Mill65] Miller, R. E., “Sequential Circuits”, Chapter 10, In “Switching
Theory”, Wiley, New York, 1965.

[Misr86] Misra, J., “Distributed Discrete-Event Simulation”, ACM Computing
Surveys, 18, 1, March 1986, pp. 39-65.

[Mitr84] Mitra, D., Mitrani, I., “Analysis and Optimum Performance of
Two Message Passing Parallel Processors Synchronized by Rollback”,
Performance 1984, Elsevier Science Pub., North Holland, 1984, pp.
35-50.

[Mitc90] Mitchell, D. A. P., et al., “Inside the Transputer”, Blackwell Scientific
Publications, 1990.

[Miur84] Miura, K., Uchida K., “FACOM Vector Processor VP-100/VP-200”,
High Speed Computation, ed J. S. Kowalik , NATO ASI Series, F7,
Springer Verlag, 1984.

[Mizu95] Mizuno, M., Raynal, M., Zhou, J. Z., “Sequential Consistency in
Distributed Systems: Theory and Implementation”, Research Report
2437, INRIA, France, May 1995.

[Mohr90] Mohr, B., “Performance Evaluation of Parallel Programs in Parallel
and Distributed Systems, Proceedings of the ConPar’90 - VAPP IV,
Lecture Notes in Computer Science, 475, 1990, pp. 176-187.

[Mold93] Moldovan, D. I., “Parallel Processing, From Applications to Systems”,
Morgan Kaufmann Publishers Inc., 1993.

[Moln83] Molnar, C. E., Fang ,T-P., “Synthesis of Reliable Speed-Independent
Circuit Modules: I. General Method for Specification of Module-
Environment Interaction and Derivation of a Circuit Realization”,
Technical Report 297, Computer Systems Laboratory, Institute for
Biomedical Computing, Washington University, St. Louis, 1983.

[Mors90] Morse, K., “Parallel Distributed Simulation in Mosim”, in Proceedings
of the 1990 International Conference on Parallel Processing, Volume
3, August 1990, pp. 210-217.

[Muft90] Muftah, H. T., Sturgeon, R., P.,, “Distributed Discrete Event Simula-
tion for Communication Networks”, IEEE Journal on Selected Areas
in Communications, 8, 9, December 1990, pp. 1723-1734.

[Mull56] Muller, D. E., Bartky, W. S., “A Theory of Asynchronous Circuits”,
Digital Computer laboratory 75, University of Illinois, November 1956.

[Mull57] Muller, D. E., Bartky, W. S., “A Theory of Asynchronous Circuits”,
Digital Computer laboratory 78, University of Illinois, March 1957.

BIBLIOGRAPHY 300

[Murt87] Murta, A., “Tools for the Automated Configuration of a Transputer
Network”, MSc Thesis, University of Manchester, October 1987.

[Murt91] Murta, A. D., “Support for Transputer Based Program Development
via Run Time Link Reconfiguration”, Ph.D Thesis, Department of
Computer Science, University of Manchester, 1991.

[Nage73] Nagel, L.W., Pederson, D. O., “SPICE (Simulation Program with
Integrated Circuit Emphasis)”, University of California, Berkeley,
Electronics Research Laboratory, Memorandum ERL-M 382, April
1973.

[Nand92] Nandy, B., Loucks, W. M., “An Algorithm for Partitioning and
Mapping Conservative Parallel Simulation onto Multicomputers”,
Proceedings of the 6th Workshop on Parallel and Distributed Sim-
ulation (PADS92), SCS, January 1992, pp. 139-146.

[Nany94] Nanya, T., et al., “TITAC: Design of a Quasi-delay-Insensitive
Microprocessor”, IEEE Design and Test of Computers, 11, 2, February
1994, pp. 50-63.

[Neel87] Neelamkavil, F., “Computer Simulation and Modelling”, John Wiley
& Sons, 1987.

[Neto91] Neto, G. A., “Distributed Simulation Using Relaxed Timing”, Techni-
cal Report UMCS-91-2-1, Department of Computer Science, Univer-
sity of Manchester, 1991.

[Nevi89] Nevison, C., “Discrete Event Simulation Using Occam”, Proceedings
of the 10th Occam User Group Technical Meeting, Enschede, April
1989, pp. 222-230.

[Nevi90] Nevison, C., “Parallel Simulation of Manufacturing Systems: Struc-
tural Factors”, Proceedings of the 1990 SCS Multiconference on
Distributed Simulation, SCS Simulation Series, January 1990, pp. 17-
19.

[Nick95] Nicklin, S., Ph.D. Thesis, to be submitted, Department of Computer
Science, University of Manchester.

[Nico84] Nicol, D. M., Reynolds, P. F., “Problem Oriented Protocol Design”,
Proceedings of the 1984 Winter Simulation Conference, December
1984, pp. 471-474.

[Nico88] Nicol, D. M., “Parallel Discrete Event Simulation of FCFS Stochastic
Queueing Networks”, SIGPLAN Notes, 23, 9, September 1988, pp.
124-137.

BIBLIOGRAPHY 301

[Nico90] Nicol, D. M., Riffe, S. E., “A Conservative Approach to Parallelizing
the Sharks World Problem”, Proceedings of the 1990 Winter Simula-
tion Conference, December 1990, pp. 186-190.

[Nico91] Nicol, D. M., Roy, S., “Parallel Simulation of Timed Petri Nets”,
Proceedings of the 1991 Winter Simulation Conference, December
1991, pp. 574-583.

[Nico92] Nicol, D. M., et al., “Massively Parallel Algorithms for Trace Trace
Driven Simulation”, Proceedings of the 6th Workshop on Parallel and
Distributed Simulation (PADS92), SCS, January 1992, pp. 3-11.

[Nico93] Nicol, D. M, Heidelberger P., “Parallel Algorithms for Simulating
Continuous Time Markov Chains”, Proceedings of the 7th Workshop
on Parallel and Distributed Simulation (PADS93), SCS, January 1993,
pp. 3-11.

[Nico94] Nicol, D. M., Fujimoto, R., “Parallel Simulation Today”, Annals of
Operations Research, 53, December 1994, pp. 249-286.

[Nies88] Niessen, C., Van Berkel, C. H., Rem, M., Saeijs, R. W. J. J.,
“VLSI Programming and Silicon Compilation: A Novel Approach from
Philips Research”, Proceedings of ICCD, 1988, pp. 150-151.

[Norm93] Norman, M. G., Thanisch, P., “Models of Machines and Computation
for Mapping in Multicomputers”, ACM Computing Surveys, 25, 3,
September 1993, pp. 263-302.

[Norr87] Norrie, C., “Supercomputers for Superproblems: An Architectural
Introduction”, IEEE Computer, 17, 3, March 1984.

[Nowi91] Nowick, S. M., Dill, D. L., “Synthesis of Asynchronous State Machines
Using a Local Clock”, Proceedings of 1991 ICCD, 1991, pp. 192-197.

[Nowi91a] Nowick, S. M., Dill, D. L., “Automatic Synthesis of Locally-Clocked
Asynchronous State Machines”, Proceedings of ICCAD 1991, 1991,
pp. 318-321.

[Ofal] “Occam For All, A Case for Support”, available at URL:
http://www.hensa.ac.uk/parallel.

[Page91] Page, I., Luke, W., “Compiling Occam into FPGAs”, in FPGAs,
Editors Moore, W., Luk, W., Abingdon EE&CS Books, 1991, pp.271-
283.

[Pars] Parsytec Computer GmbH, Juelicher Strasse 338, 52070 Aachen,
Germany.

BIBLIOGRAPHY 302

[Pars95] “Small Systems”, Parsys Bulletin No. 1, Parsys Ltd, March 1995.

[Pate79] Patel, J. H., “Processor-memory Interconnection for Multiprocessors”,
Proceedings of the 6th International Symposium on Computer Archi-
tecture, 1979, pp. 168-177.

[Pave91] Paver, N. C., “Condition Detection in Asynchronous Pipelines”, UK
Patent no 9114513, October 1991.

[Pave92] Paver, N. C., et al., “Register Locking in an Asynchronous Micropro-
cessor”, Proceedings of ICCD 1992, October 1992, pp. 351-355.

[Pave92a] Paver, N. C., “Micropipelines - Implementation”, Proceedings of
the ACiD-WG/EXACT Workshop on Asynchronous Data Processing,
Veldhoven, The Netherlands, December 1992.

[Pave94] Paver, N. C., “The Design and Implementation of an Asynchronous
Microprocessor”, Ph.D Thesis, Department of Computer Science,
University of Manchester, 1994.

[Patt80] Patterson, D. A., Ditzel, D. R., “The Case for the Reduced Instruction
Set Computer”, ACM Computer Architecture News, 8, 6, October
1980, pp. 25-32.

[Peac79] Peacock, J. K., Wong, J. W., Manning, E. G., “Distributed Simulation
Using a Network of Processors”, Computer Networks, 3, 1, January,
1979, pp. 44-56.

[Pete91] Peterson, J. L., “Petri Net Theory and the Modelling of Systems”,
Prentice Hall, 1991.

[Pete93] Peterson, G. D., Chamberlain, R. D., “Exploiting Lookahead in
Synchronous Parallel Simulation”, Proceedings of the 1993 Winter
Simulation Conference, December 1993, pp. 706-712.

[Plat] Plato, “Laws” English Translation: Loeb Classical Library, Harvard
University Press.

[Poun87] Pountain, R., May, D., “A Tutorial Introduction to Occam Program-
ming”, BSP Professional Books, 1987.

[Prei89] Preiss, B. R., “The Yaddes Distributed Discrete Event Simulation
Specification Language and Execution Environment”, Proceedings
of the 1989 SCS Multiconference on Distributed Simulation, SCS
Simulation Series, March 1989, pp. 139-144.

BIBLIOGRAPHY 303

[Prei92] Preiss, B. R., “On the Trade off between Time and Space in Optimistic
Parallel Discrete Event Simulation”, Proceedings of the 6th Workshop
on Parallel and Distributed Simulation (PADS92), SCS, January 1992,
pp. 33-42.

[Prep94] Preparata, F. P., “Parallel Computation Models and Basic Tech-
niques”, Lecture in the Sixth International School For Computer
Science Researchers, July 1994, Lipari, Sicily.

[Pres90] Presley, M. T., Reiher, P. L., Bellenot, S., “A Time Warp Implemen-
tation of Sharks World”, Proceedings of the 1990 Winter Simulation
Conference, December 1990, pp. 199-203.

[Prit91] “Principles of Modelling”, Panel Session, Chair Pritsker, A. A. B.,
Proceedings of the 1991 Winter Simulation Conference, December
1991, pp. 1199-1208..

[Radi83] Radin, G., “The 801 Minicomputer”, IBM Journal of Research and
Development, 27, 3, 1983, pp. 237-246.

[Rabi94] Rabin, M., “Compiling Programs for Practical Parallel Computers”,
Lecture in the Sixth International School For Computer Science
Researchers, July 1994, Lipari, Sicily.

[Rabi94a] Rabin, M., “Clock Construction in Fully Asynchronous Parallel
Systems and PRAM Simulation”, Lecture in the Sixth International
School For Computer Science Researchers, July 1994, Lipari, Sicily.

[Radi92] “Discrete Event Simulation Modelling: Directions for the 90s”, Panel
Session, Chair Radiya, A., Proceedings of the 1992 Winter Simulation
Conference, December 1992, pp. 773-782.

[Rayn95] Raynal, M., Singhal, M., “Logical Time: A Way to Capture Causality
in Distributed Systems”, Research Report 2472, INRIA, France, May
1995.

[Read89] Reade, C., “Elements of Functional Programming”, Addison Wesley,
1989.

[Redd79] Reddaway, S.F., “The DAP approach”, Infotech State of the Art
Report: Supercomputers, Vol. 2, 1979, pp. 311-329.

[Reed83] Reed, D. A., “Implementing Atomic Actions on Decentralize Data”,
ACM Transactions on Computer Systems, 1, 1, February 1983, pp.
3-23.

[Reed87] Reed, D. A., Grunwald, D. C., “The Performance of Multicomputer
Interconnection Networks”, IEEE Computer, June 1987, pp. 63-73.

BIBLIOGRAPHY 304

[Reed88] Reed, D. A., Fujimoto, R., “Multicomputer Networks: Message-Based
Parallel Processing”, MIT Press, 1988.

[Reed88a] Reed, D. P., Malony, A. D., McCredie, B. D., “Parallel Discrete Event
Simulation Using Shared Memory”, IEEE Transactions on Software
Engineering, 14, 4, April 1988, pp. 541-553.

[Reed88b] Reed, D. P., Malony, A. D., “Parallel Discrete Event Simulation: The
Chandy-Misra Approach”, Simulation Algorithm”, Proceedings of the
1988 SCS Multiconference on Distributed Simulation, SCS Simulation
Series, July 1988, pp. 8-13.

[Rees85] Reese, R. M., “A Software Development Environment for Distributed
Simulation”, Proceedings of the SCS Distributed Simulation Confer-
ence, 1985, pp. 37-40.

[Reih90] Reiher, P.L., et al., “Cancelation Strategies in Optimistic Execution
Systems”, Simulation Algorithm”, Proceedings of the 1990 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
January 1990, pp. 112-121.

[Reih90a] Reiher, P.L., Jefferson, D., “Dynamic Load Management in the Time
Warp Operating System”, Transactions of the Society for Computer
Simulation, 7, 2, June 1990, pp. 91-120.

[Rein93] Reinhardt, S. K., et al., “The Winscosin Wind Tunnel: Virtual Pro-
totyping of Parallel Computers”, in ACM SIGMETRICS Conference
on Measurement and Modelling of Computer System, 21, June 1993,
pp. 48-60.

[Rem83] Rem, M, Snepscheut, J. L. A., Udding, J. T., “Trace Theory and the
Definition of Hierarchical Modules”, Proceedings of the 3rd Caltech
Conference on VLSI, 1983, pp. 225-239.

[Reyn88] Reynolds, P. F., “A Spectrum of Options for Parallel Simulation”,
Technical Report IPC-TR-88-007, University of Virginia, September
1988. Also in Proceedings of the 1988 Winter Simulation Conference,
December 1988, pp. 325-332.

[Reyn89] Reynolds, P. F., Weight, C. F., Filder, J. R., “Comparative Analysis
of Parallel Simulation Protocols”, Technical Report IPC-TR-89-011,
University of Virginia, December 1989.

[Riek94] RieK, M., Tourancheau, B., Vigouroux, X. F., “Monitoring of Dis-
tributed Memory Multicomputer Programs”, Technical Report UT-
CS-93-204, University of Tenessee, October 1993.

BIBLIOGRAPHY 305

[Righ89] Righter, R., Warland, J. C., “Distributed Simulation of Discrete Event
Systems”, Proceedings of the IEEE, 77, 1, January 1989, pp. 99-113.

[Ripl87] Ripley, B. D., “Stochastic Simulation”, Wiley, 1987.

[Robe92] Roberts, J. W., editor, “Performance Evaluation and Design of Mul-
tiservice Networks”, Publication of the Commission of the European
Communities, Luxembourg, 1992.

[Rosc86] Roscoe, A. W., Dathi, N., “The Pursuit of Deadlock Freedom”, Tech-
nical Monograph PRG-57, Programming Research Group, Computing
Laboratory, Oxford University, November 1986.

[Rose94] Rosenberg, A. L., “An Overview of Mapping Problems”, Lecture in
Sixth International School For Computer Science Researchers, July
1994, Lipari, Sicily.

[Roth89] Rothenberg, J., “Tutorial: Artificial Intelligence and Simulation”,
Proceedings of the 1989 Winter Simulation Conference”, December
1989, pp. 33-34.

[Rudo89] Rudolf, D. C., Reed, D. A., “Crystal: Intel iPSC/2 Operating System
Instrumentation”, Proceedings of the 4th Conference on Hypercube
Concurrent Computers and Applications, 1989, pp. 249-252.

[Rumb91] Rumbaugh, J., et al., “Object Oriented Modelling and Design”,
Prentice Hall International, 1991.

[Russ78] Russell, R. M., “The CRAY-1 Computer System”, Communications
of the ACM, 21, 1, January 1978, pp. 63-72.

[Ruta91] Rutan, A. H., “Advances in Computer Simulation”, Proceedings of
the 24th Annual Simulation Symposium, IEEE 1991, pp. 2-6.

[SCS85] “Catalogue of Simulation Software”, SCS Simulation, 45, 4, April
1985, pp. 196-209.

[Sado89] Sadowski, R. P., “The Simulation Process: Avoiding the Problems
and Pitfalls”, Proceedings of the 1989 Winter Simulation Conference”,
December 1989, pp. 72-79.

[Sama85] Samadi, B., “Distributed Simulation, Algorithms and Performance
Analysis” Ph.D. Thesis, Department of Computer Science, University
of California, Los Angeles, 1985.

[Sarg92] Sargent R. G., “Validation and Verification of Simulation Models”,
Proceedings of the 1992 Winter Simulation Conference”, December
1992, pp. 104-114.

BIBLIOGRAPHY 306

[Sarg94] Sargent R. G., “Validation and Verification of Simulation Models”,
Proceedings of the 1994 Winter Simulation Conference”, December
1994, pp. 77-87.

[Sari87] Sarin, S. K., Lynch, L., “Discarding Obsolete Information in a
Replicated Data Base System”, IEEE Transactions on Software
Engineering, 13, 1 January 1987, pp. 39-46.

[Schm88] Schmuck, F., “The Use of Efficient Broadcast in Asynchronous
Distributed Systems”, Technical Report TR88-927, Cornell University,
1988.

[Schn82] Schneider, F. B., “Synchronization in Distributed Programs”, ACM
Transactions in Programming Languages and Systems, 4, 2, April
1982, pp. 51-64.

[Schr92] Schruben, L. W., “Graphical Model Structures for Discrete Event
Simulation”, Proceedings of the 1992 Winter Simulation Conference,
December 1992, pp. 241-245.

[Shan92] Shannon, R. E., “Introduction to Simulation”, Proceedings of the 1992
Winter Simulation Conference, December 1992, pp. 65-73.

[Sega86] Segall, Z., Rudolph, L., “PIE: A Programming and Instrumentation
Environment For Parallel Processing”, IEEE Software, November
1985, pp. 22-37.

[Seit70] Seitz, C. L., “Asynchronous Machines Exhibiting Concurrency”,
Conference Record of the Project MAC Conference on Concurrent
Systems and Parallel Computation, 1970.

[Seit80] Seitz, C. L., “System Timing”, Chapter 7, In [Mead80].

[Seit85] Seitz, C. L., “The Cosmic Cube”, Communications of the ACM, 28,
1, January 1985, pp. 22-33.

[Shep88] Sheppard, S. V., Davis, C. K., Chandra, U., “Parallel Simulation
Environments for Multiprocessor Architectures”, Proceedings of the
1988 SCS Multiconference on Distributed Simulation, July 1988, pp.
109-114.

[Sieg85] Siegel, H. J., “Interconnection Networks fo Large Scale Parallel
Processing: Theory and Practice”, Lexington Books, 1985.

[Sifa80] Sifakis, J., “Deadlocks and Livelocks in Transition Systems”, Lecture
Notes in Computer Science, 88, 1980, pp. 587-599.

BIBLIOGRAPHY 307

[Snyd82] Snyder, L., “Introduction to the Highly Parallel Computer”, IEEE
Computer, January 1982, pp. 47-55.

[Soko88] Sokol, L. M., Briscoe, D. P., Wieland, A. P., “MTW: A Strategy for
Scheduling Discrete Simulation Events for Concurrent Simulation”,
Proceedings of the SCS Multiconference on Distributed Simulation,
SCS Simulation Series, July 1988, pp. 34-42.

[Soko89] Sokol, L. M., Stucky, B. K., Hwang, V. S., “MTW: A Control
Mechenism for Parallel Discrete Simulation” Proceedings of the
1989 International Conference on Parallel Processing, August 1989,
Pennsylvania, pp. 250-254.

[Soko91] Sokol, L. M., Weissman, J. B., Mutchler, P. A., “MTW: An Empirical
Performance Study”, Proceedings of the 1991 Winter Simulation
Conference”, December 1991, pp. 557-563.

[Som89] Som, T. K., Cota, B. A., Sargent R. G., “On Analysing Events to
Estimate the Possible Speedup of Parallel Discrete Event Simulation”,
Proceedings of the 1989 Winter Simulation Conference”, December
1989, pp. 729-737.

[Soul91] Soule, L., Gupta, A., “An Evaluation of the Chandy-Misra-Bryant
Algorithm for Digital Logic Simulation”, ACM Transactions on
Modelling and Computer Simulation, 1, 4, October 1991, pp. 308-347.

[Spor93] Sporrer, C., Bauer, H., “Corolla Partitioning for Distributed Logic
Simulation of VLSI Circuits”, Proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS93), SCS, May 1993, pp.
85-92.

[Spro86] Sproull, R. F., Sutherland, I. E., “Asynchronous Systems Volume I:
Introduction”, SSA 4706, Sutherland, Sproull and Associates, Inc.,
1986.

[Spro94] Sproull, R. F., Sutherland, I. E., Molnar C. E., “The Counterflow
Pipeline Processor Architecture”, IEEE design and Test of Computers,
11, 3, March 1994, pp. 48-59.

[Stal88] Stallings, W., “Reduced Instruction Set Architecture”, Proceedings of
the IEEE, 76, 1, January 1988, pp. 38-55.

[Stei91] Steinman, J., “SPEEDES: Synchronous Parallel environment for
Emulation and Discrete Event Simulation”, Proceedings of the 5th
Workshop on Parallel and Distributed Simulation (PADS91), SCS,
January 1991, pp. 95-103.

BIBLIOGRAPHY 308

[Sten90] Stenström, P., “A Survey of Cache Coherence Schemes for Multipro-
cessors”, Computer, 23, 6, June 1990, pp. 12-24.

[Step88] Stephenson, M., Boudillet, O., “A Graphical tool for the Modeling and
Manipulation of Occam Software and Transputer Hardware Topolo-
gies”, in “Occam and the Transputer-Research and Applications”,
Editor Askew, C., IOS 1988, pp. 139-144.

[Step86] Stepney, S., “Prototype of GRAIL-Occam Screen Display”, ParSiFal
Internal Document PSF/GEC/WP3/86/10, 1986.

[Su89] Su, W. K., Seitz, C. L., “Variants of the Chandy-Misra Distributed
Discrete-Event Simulation Algorithm”, Proceedings of the 1989 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
March 1989, pp. 38-43.

[Sun86] Sun Microsystems Inc., “Sun 3 Architecture: A Sun Technical
Report”, Sun Microsystems Europe Inc., Ascot, Berkshire, 1986.

[Sun87] “The SPARC Architecture Manual”, Sun Microsystems Inc., 1987.

[Suth89] Sutherland I. E., “Micropipelines”, Communications of the ACM, 32,
1, January 1989, pp. 720-738.

[Suth93] Sutherland I. E., “Flashback Simulation”, Research Report SunLab
93:0285, Sun Microsystems Laboratories, Inc., August 1993.

[Tadp87] Tadpole Technology PLC., “Transputer System Card TP-TSC”,
Preliminary Product Description, Tadpole Technology PLC, 1987.

[Theo91] Theodoropoulos, G, “Specification of Replicated Structures in a
Graphical Environment for a Transputer based Machine”, MSc Thesis,
University of Manchester, October 1991.

[Theo94] Theodoropoulos, G., “An occam model of the AMULET1”, In
Proceedings of the AMULET Modelling Workshop, Windermere,
Cumbria, England, July 1994.

[Theo94a] Theodoropoulos, G., Woods J.V., “Building Parallel Distributed
Models for Asynchronous Computer Architectures”, Proceedings of
the World Transputer Congress 1994, Como, September 1994, pp. 285-
301.

[Theo94b] Theodoropoulos, G., Woods J.V., “Distributed Simulation of Asyn-
chronous Computer Architectures: The Program Driven Conservative
Approach”, Proceedings of the European Simulation Symposium 1994,
Volume 2, Istanbul, Turkey, October 1994, pp. 230-234.

BIBLIOGRAPHY 309

[Theo94c] Theodoropoulos, G., West, A., “Graphical Configuration of Trans-
puter Systems: The Graphical Configuration Assistant”, Proceed-
ings of the 1994 Transputer Research and Applications Conference
(NATUG-7), Athens, Georgia, October 1994.

[Theo95] Theodoropoulos, G., Woods J.V., “Analysing the Timing Error in
Distributed Simulations of Asynchronous Computer Architectures”,
Eurosim Congress ’95, Vienna, Austria, September 1995, to appear.

[Theo95a] Theodoropoulos, G., Woods J.V., “Dealing with Time Modelling
Problems in Parallel Models of Asynchronous Computer Archi-
tectures”, World Transputer Congress 1995, Harrogate, England,
September 1995, to appear.

[Theo95b] Theodoropoulos, G., Woods J.V., “Simulating Asynchronous Archi-
tectures on Transputer Networks”, 4th IEEE Euromicro Workshop On
Parallel And Distributed Processing, Braga, Portugal, January 1996,
to appear.

[Thes90] Thesen, A., Travis, L. E., “Introduction to Simulation”, Proceedings
of the 1990 Winter Simulation Conference, December 1990, pp. 14-21.

[Thom91] Thomas, G. S., Zahorjan, J., “Parallel Simulation of Performance Petri
Nets: Extending the Domain of Parallel Simulation”, Proceedings of
the 1991 Winter Simulation Conference, December 1991, pp. 564-573.

[Tink89] Tinker, P. A., Agre, J. R., “Object Creation, Messaging, and State
Manipulation in an Object Oriented Time Warp System”, Proceedings
of the 1989 SCS Multiconference on Distributed Simulation, SCS
Simulation Series, March 1989, pp. 79-84.

[Trel82] Treleaven, P.C., Brownbridge, D.R., Hopkins, R.P., “Data-Driven and
Demand-Driven Computer Architecture”, ACM Computing Surveys,
14, 1, January 1982, pp. 93-143.

[Turn92] Turner, S, Xu, M., “Performance Evaluation of the bounded Time
Warp Algorithm”, Proceedings of the 6th Workshop on Parallel and
Distributed Simulation, SCS Simulation Series, January 1992, pp. 117-
128.

[Unge86] Unger, B., et al., “A Distributed Software Prototyping and Simulation
Environment: Jade”, Proceedings of SCS Multiconference on Intelli-
gent Simulation Environments, SCS Simulation Series, 1986, pp. 63-71.

[Unge89] Unger, B., “The Impact of Parallel Processing”, in “How Technology
Limits Simulation Methodology”, Panel Session, Chair Pegden, C.
D., Proceedings of the 1989 Winter Simulation Conference, December
1989, pp. 686-691.

BIBLIOGRAPHY 310

[Unge69] Unger, S. H., “Asynchronous Sequential Switching Circuits”, Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

[VLSI90] “Acorn Risc Machine (ARM) Family Data Manual”, VLSI Technology
Inc., Prentice Hall International, 1990.

[VaBe88] Van Berkel, C. H., Rem, M., Saeijs R. W. J. J., “VLSI Programming”,
Proceedings of ICCD, 1988, pp. 152-156.

[VaBe88a] Van Berkel, C. H., Rem, M., Saeijs, R. W. J. J., “Compilation of Com-
municating Processes into Delay-Insensitive Circuits”, Proceedings of
ICCD, 1988, pp. 157-162.

[VaBe91] Van Berkel, C. H., Kessels, J., Roncken, M., Saeijs, R. W. J. J, Schalij,
F., “The VLSI-Programming Langauge Tangram and its Translation
into Handshake Circuits”, Proceedings of EDAC, 1991, pp. 384-389.

[VaBe92] Van Berkel, C. H., “Handshake circuits: An Intermediary Between
Communicating Processes and VLSI”, Ph.D thesis, Eindhoven Uni-
versity of Technology, 1992.

[Vanb90] Vanbekbergen, P., et al., “Optimized Synthesis of Asynchronous
Control Circuits from Graph-Theoretic Specifications” Proceedings of
ICCAD 1990, 1990, pp. 184-187.

[Venk86] Venkatesh, K., Radhakrishnan, T., Li, H. F., “Discrete Event
Simulation in a Distributed System”, IEEE COMPSAC 1986, IEEE
Computer Society Press, pp. 123-129.

[Wagn89] Wagner, D. B., Lazowska, E. D., “Parallel Simulation of Queueing Net-
works: Limitations and Potentials”, Proceedings of the International
Conference on Measurement and Modeling of Computer Systems,
Berkeley, USA, May 1989, pp. 146-155.

[Warr88] Warren, H. D., Haridi, S., “The Data Diffusion Machine - A scalable
Shared Virtual Memory Architecture for Parallel Execution of Logical
Programs”, Proceedings of the 1988 International Conference on Fifth
Generation Computer Systems, 1988, pp. 943-952.

[Waym89] Wayman, R., “Transputer Development Systems”, in Transputer
Applications, Harp, G. (Editor), Pitman, 1989, pp. 31-83.

[Weic84] Weicker, R. P., “Dhrystone, A Synthetic Systems Programming
Benchmark”, Communications of the ACM, 27, 10, October 1984, pp.
1013-1030.

BIBLIOGRAPHY 311

[Welc87] Welch, P. H., “Emulating Digital Logic Using Transputer Networks
(Very High Parallelism = Simplicity = Performance)”, Lecture Notes
in Computer Science, 258, (PARLE’87), 1987 pp. 357-373.

[Welc93] Welch, P. H., Justo, G., Willock, C., “High-Level Paradigms for
Deadlock-Free High-Performance Systems”, Proceedings of the World
Transputer Congress 1993, September 1993, pp. 981-1004.

[Wern84] Werner, J., Beresford, R., “A System Engineer’s Guide to Simulators”,
VLSI Design, February 1984, pp. 27-31.

[Whar92] Wharton, J., “Why RISC is Doomed”, Microprocessor Report, 6, 11,
August 1992, , pp. 14-17.

[Whit89] Whitner, R., and Balci, O., “Guidelines for Selecting and Using
Simulation Model Verification Techniques”, Proceedings of the 1989
Winter Simulation Conference, December 1989, pp. 559-568.

[Wiel89] Wieland, F., et al., “Distributed Compat Simulation in Time Warp:
The Model and its Performance”, Proceedings of the 1989 SCS
Multiconference on Distributed Simulation, SCS Simulation Series,
March 1989, pp. 14-20.

[Wile87] Wiley, P., “A Parallel Architecture Comes of Age at Last”, IEEE
Spectrum, June 1987, pp. 46-50.

[Wirt77] Wirth, N., “Modula: A Language for Modular Multiprogramming”,
Software Practice and Experience, 7, 1, January 1977, pp. 3-35.

[Wood94] Wood, K. R., Turner, S. J., “A Generalized Carrier-Null Method for
Conservative Parallel Simulation”, Proceedings of the 8th Workshop
on Parallel and Distributed Simulation (PADS94), SCS, July 1994,
pp. 50-57.

[WooJ94] Woods, J. V., Private Communication, 1994.

[Wulf72] Wulf, W.A., Bell, C.G., “C.mmp - A multi-mini-processor”, Proceed-
ings of the AFIPS Fall Joint Computing Conference, 41, part 2, 1972,
pp. 765-777.

[Wyat83] Wyatt, D. L., Sheppard, S., Young, R. E., “An Experiment in
Microprocessor-Based Distributed Digital Simulation”, Proceedings of
the 1983 Winter Simulation Conference, December 1983, pp. 271-277.

[Wyat84] Wyatt, D. L., Sheppard, S., “A Language Directed Distributed Dis-
crete Simulation System”, Proceedings of the 1984 Winter Simulation
Conference, December 1984, pp. 463-464.

BIBLIOGRAPHY 312

[Wyat85] Wyatt, D. L., “Simulation Programming on a Distributed System:
A Preprocessor Approach”, Proceedings of the SCS Distributed
Simulation Conference, SCS Simulation Series, 1985, pp. 32-36.

[Xu89] Xu, M., Pin, N., “An Irregular Distributed Simulation Problem with a
Dynamic Logical Process Structure”, Proceedings of the 11th Occam
User Group Technical Meeting, Edinburgh, September 1989, pp. 213-
221.

[Yako92] Yakovlev, A. V., “On Limitations and Extensions of STG Model
for Designing Asynchronous Control Circuits”, Proceedings of ICCD
1992, pp. 396-400.

[Yovi92] Yovits, M. C., editor, “Advances in Computers”, Vol. 35, Academic
Press, 1992.

[Yu89] Yu, Q., Towsley, D., Heidelberger, P., “Time Drivel Parallel Simu-
lation of Multistage Interconnection Networks”, Proceedings of the
1989 SCS Multiconference on Distributed Simulation, SCS Simulation
Series, March 1989, pp. 191-196

[Yuce92] Yucesan, E., Jacobson, S., “Building Correct Simulation Models is
Difficult”, Proceedings of the 1992 Winter Simulation Conference,
December 1992, pp. 783-789.

[Yun92] Yun, K. Y., Dill, D. L., Nowick, S. M., “Synthesis of 3D Asynchronous
State Machines”, Proceedings of ICCD 1992, 1992, pp. 346-350.

[Yun92a] Yun, K. Y., Dill, D. L., Nowick, S. M., “Practical Generalizations
of Asynchronous State Machines”, Technical Report CSL-TR-92-544,
Computer Systems Laboratory, Stanford University, July 1992.

[Zaba92] Zabala, E., Taylor, R., “Process and Processor Interaction”, in
“Environments and Tools for Parallel Scientific Computing”, Editors
Dongarra, J., Tourancheeau, B., Elsevier Science Publishers, 1992, pp.
55-72.

[Zeig76] Zeigler, B. P., “Theory of Modelling and Simulation”, John Wiley and
Sons, 1976.

[Zeig90] Zeigler, B. P., “Object Oriented Simulation with Hierarchical, Modu-
lar Models: Intelligent Agents and Endomorphic Systems”, Academic
Press, 1990.

[Zhan89] Zhang, G., Zeigler, B. P., “DEVS-Scheme Supported Mapping of
Hierarchical Models onto Multiple Processor Systems”, Proceedings
of the 1989 SCS Multiconference on Distributed Simulation, SCS
Simulation Series, March 1989, pp. 57-60.

