
POWER-EFFICIENT EMBEDDED

PROCESSING

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2005

By

Yijun Liu

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 15

1.1 Research goals and contributions 17

1.2 Thesis overview . 18

2 Low power design 20

2.1 Power dissipation sources in CMOS circuits 20

2.2 Dynamic power-saving techniques 22

2.3 Power breakdown of microprocessors 24

2.4 Low power processing techniques 27

2.4.1 Minimizing timing control power 27

2.4.2 Minimizing memory power consumption 27

2.4.3 Increasing code-density . 29

2.4.4 ‘Hard-controlled’ processing 30

2.5 Metrics for power efficiency . 30

2.6 Summary . 32

3 Power-efficient asynchronous design 33

3.1 Introduction to asynchronous logic design 33

3.1.1 Asynchronous timing strategy 34

3.1.2 Delay models . 36

3.1.3 Data encodings . 38

2

3.1.4 Handshake protocols . 39

3.1.5 Asynchronous pipeline latch controllers 41

3.2 Comparison of the power consumption of synchronous and asyn-

chronous designs . 43

3.2.1 Global clock and handshakes 45

3.2.2 Average latency leading to a simple implementation 46

3.2.3 Registers and latches . 47

3.2.4 Zero standby dynamic power consumption 47

3.2.5 Fine-grain clock gating . 49

3.3 Low-power asynchronous design 52

3.3.1 Latch controller selection 52

3.3.2 Data representation . 53

3.3.3 Indication selection . 57

3.4 Summary . 58

4 Low-power arithmetic unit design 59

4.1 Introduction . 60

4.2 Logic style selection . 62

4.3 Data representations . 64

4.4 Adder design . 65

4.4.1 Architecture selection . 65

4.4.2 The design of an asynchronous carry-lookahead adder based

on data characteristics . 66

4.4.3 An asynchronous carry-lookahead adder 71

4.4.4 Completion detector design 73

4.4.5 Experimental results . 73

4.5 Multiplier design . 75

4.5.1 Basic building blocks and architectures 75

4.5.2 Commonly-used algorithms 77

4.5.3 Architecture selection . 80

4.5.4 Input vector characteristics 81

4.6 A low power iterative multiplier 83

4.6.1 A shift-iterative architecture 83

4.6.2 A radix-2 algorithm . 84

4.6.3 Sign-changing Algorithm 86

4.6.4 Circuit implementation . 88

3

4.6.5 Experimental results . 89

4.7 Summary . 90

5 A low-power embedded SRAM macro design 92

5.1 SRAM design overview . 93

5.1.1 Conceptual SRAM structure 93

5.1.2 Low power SRAM design techniques 94

5.1.3 Block partitioning . 95

5.2 Low-swing write techniques . 97

5.3 A dual-rail decoder . 102

5.4 Architecture and timing . 105

5.5 Layout and experimental results 107

5.6 Summary . 108

6 Low-power hierarchical processing 110

6.1 Hierarchical processing . 110

6.2 A hierarchical processing architecture 116

6.2.1 The overall architecture 116

6.2.2 Coupling the CPU and the coprocessor 117

6.3 RISC coprocessor design . 120

6.3.1 Instruction set design . 120

6.3.2 The cost of pipelining . 122

6.3.3 The proposed RISC coprocessor architecture 126

6.3.4 Primary experimental results 129

6.4 Summary . 130

7 The design of a dataflow coprocessor 132

7.1 Introduction to dataflow machines 132

7.1.1 Dataflow graphs . 133

7.2 The proposed dataflow model . 137

7.3 The dataflow coprocessor architecture 141

7.4 Circuit implementation . 144

7.4.1 Controller design . 144

7.4.2 Pipeline control for various stage numbers 145

7.5 An automatic mapping algorithm 146

7.6 Experimental results and comparisons 151

4

7.6.1 Experimental results . 151

7.6.2 Comparisons . 153

7.7 Summary . 159

8 Conclusions 161

8.1 Future work . 163

Bibliography 165

5

List of Tables

3.1 The characteristics of the Amulet3 processor [1] 45

3.2 Power comparison of multipliers using three different data repre-

sentations . 54

3.3 Power and delay comparisons . 56

4.1 Comparison of different adder architectures [2] 66

4.2 Input vectors . 69

4.3 The comparison of different adders 75

4.4 The modified Booth’s algorithm scheme 78

4.5 Characteristics of multiplier architectures 81

4.6 Operand distribution between positive and negative 81

4.7 Numbers of transitions in Booth’s and non-Booth’s multipliers . . 86

4.8 Power comparison of 4 multipliers 89

5.1 Comparisons between the new SRAM and ST macrocell 107

6.1 The coprocessor instruction set 122

6.2 Data size distribution [3] . 129

6.3 The characteristics of the proposed RISC coprocessor components 130

7.1 The structure of an instruction 139

7.2 The characteristics of the dataflow coprocessor 151

7.3 The characteristics of the components 151

7.4 The statistic of energy of the benchmarks 152

6

List of Figures

1.1 Trends in the power consumption of battery-powered chips [4] . . 16

2.1 The power breakdown of a StrongARM processor [5] 25

3.1 A synchronous pipeline circuit . 35

3.2 An asynchronous pipeline circuit 36

3.3 The relations and delay assumptions of asynchronous circuits using

unbounded-delay models . 37

3.4 An asynchronous pipeline using a code-data coding 39

3.5 A dual-rail encoding scheme and its completion detector 40

3.6 Example logic symbols and schematics of symmetric and asym-

metric C-gates . 41

3.7 A 1-of-4 encoding scheme and its completion detector 42

3.8 The validity scheme of a 2-phase protocol 42

3.9 The validity schemes of 4-phase protocols 43

3.10 The schematic of a 2-phase latch controller 44

3.11 A 4-phase latch controller and its STG description 45

3.12 An asynchronous multiplier datapath and its synchronous coun-

terpart . 50

3.13 The pipeline activities of two multipliers 51

3.14 The power consumptions of two multipliers 51

3.15 Transition numbers in different data representations 53

3.16 The capacitance distribution of a CMOS gate 54

3.17 Two schemes for long distance interconnection 56

3.18 Power vs. wire capacitance . 57

4.1 A ripple carry adder . 60

4.2 A 5 × 5-bit array multiplier . 61

4.3 The low voltage swing of a cascaded CPL circuit 63

7

4.4 Comparison of DPL, CPL and CSL 8×8-bit multiplier 64

4.5 A hybrid asynchronous adder which displays average-case latency 67

4.6 A weakly indicating asynchronous carry chain 68

4.7 Average size of the longest carry chain for different word lengths

assuming random data distribution [6] 68

4.8 Longest carry propagate distance distribution 69

4.9 Proportion of longest carry chains exceeding given length 70

4.10 The proposed adder . 71

4.11 Delay comparison of three asynchronous adders 72

4.12 The pass-transistor tree completion detector and sum generation

circuit . 74

4.13 Two 8-2 tree adders using 3-2 adders and 4-2 adders 76

4.14 Two ways of implementing a 4-2 adder 77

4.15 The principle of an improved sign extension algorithm 79

4.16 SBC distributions for the benchmark programs 82

4.17 Proportion of operands having SBC below given number 82

4.18 A shift-iterative architecture . 84

4.19 Two kinds of 8-2 adder trees . 85

4.20 Distributing the higher-order 1s 87

4.21 32-bit split register organization 89

5.1 A conceptual SRAM architecture 93

5.2 A divided word-line approach . 96

5.3 A divided bit-line approach . 97

5.4 ‘Input-sensitive’ RAM cells . 99

5.5 Amrutur’s low write scheme . 100

5.6 Discharge current during read . 101

5.7 Shared Tss scheme to reduce area overhead 102

5.8 A two-level decoder . 103

5.9 Pulsing word-line techniques . 104

5.10 The proposed dual-rail decoder 105

5.11 The architecture and timing of the proposed SRAM 106

5.12 The layout of the proposed SRAM 108

6.1 The running trace segment of a JPEG program 112

8

6.2 The distribution of execution time for instructions in a JPEG pro-

gram . 113

6.3 The running trace segment of a media processing program 114

6.4 The proposed hierarchical processing architecture 116

6.5 The cooperation between the CPU and the coprocessor 118

6.6 The structure of the instruction set 121

6.7 The pipeline operations of the four processors 125

6.8 A conventional 5-stage RISC pipeline architecture 127

6.9 The organization and pipeline architecture of the coprocessor . . . 128

7.1 A dataflow graph for a long equation 134

7.2 Basic dataflow nodes . 135

7.3 A dataflow graph for sum = 1 + 2 + ... + n 136

7.4 A static dataflow architecture . 137

7.5 The comparison of two different synchronization schemes 139

7.6 The state transition diagram of an instruction 142

7.7 The proposed dataflow architecture 143

7.8 The interface of the control FSM 144

7.9 The schematic of the data token counter 145

7.10 An implementation of a pipeline with various stage number 146

7.11 An example of mapping RISC codes to dataflow codes 147

7.12 Two problems of automatic mapping 148

7.13 The actual trace of a converse search 149

7.14 An architecture for reducing duplications 156

7.15 A dataflow diagram for FIR . 158

7.16 The pipeline operations of FIR in RICO and DACO 159

9

Abstract

As more and more transistors and functionality are integrated in single chips,

power consumption has become one of the most important design parameters in

modern embedded circuits. The purpose of the work described in this dissertation

is to identify ways to reduce the power consumption of embedded systems. Low-

power design is a complex task requiring care at all levels of the design hierarchy.

In this dissertation, the focus is mainly on the following low-power techniques:

• Exploring asynchronous logic design for its low-power potential. The power-

efficiencies of asynchronous and synchronous designs are compared. Differ-

ent asynchronous design issues are also discussed in terms of their power-

efficiency.

• Circuit-level optimizations to reduce the power consumption of function

units, including adders and multipliers, and memory. An asynchronous

carry-lookahead adder and a pipelined iterative multiplier are presented,

both of which are designed based on analyses of their input data charac-

teristics. The circuit-level design issues of a low-power embedded SRAM

macro are also presented.

• Architecture-level optimizations to reduce the execution overheads of soft-

programmable processors. A hierarchical processing architecture is pro-

posed based on an analysis of embedded processing programs. A RISC-like

coprocessor has been designed to demonstrate the power-efficiency of a hi-

erarchical processing architecture. A dataflow coprocessor has also been

designed which is more power-efficient and faster than the RISC-like copro-

cessor.

Together these results demonstrate that there is scope for improvements in

power-efficiency at several different levels in the design hierarchy, underlining the

need to treat low-power design as a holistic process.

10

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institution of learning.

11

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instruc-

tions given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the Author.

The ownership of any intellectual property rights which may be described

in this thesis is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third parties

without the written permission of the University, which will prescribe the terms

and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-

tion may take place is available from the head of School of Computer Science.

12

Acknowledgements

The work leading to this dissertation was done during my three years as a post-

graduate student in the APT group in the School of Computer Science at the

University of Manchester, UK. These years have been very stimulating and in-

structive. The friendly people and atmosphere in the group has greatly helped

the work described in the thesis.

First of all I would like to give my deepest thanks to my supervisor, Professor

Steve Furber, whose support and guidance over the post few years have been

invaluable for this work.

Special thanks are due to Dr. Jim Garside, my advisor, for his very beneficial

advice on many different problems. Special thanks are also due to Dr. Steve

Temple and Dr. Viv Woods not only for their patience in proofreading the draft

of the thesis but also for their kind help with CAD tools and my English.

Many thanks to everyone else in the APT group for their support, encourage-

ment and friendship.

I would also like to acknowledge with gratitude the support of an ORS grant

from Universities UK and a research scholarship from the School of Computer

Science.

13

to my family

14

Chapter 1

Introduction

The exponential development of CMOS technology [7] makes it possible to embed

high-performance data processing units in portable and wireless devices such as

cell phones, personal digital assistants (PDAs), multi-media players and sensor

network applications. The high data processing ability allows these devices to

support a wide range of functions and wireless communications, making these

devices popular and necessary for daily life. The worldwide market for digital

signal processing (DSP) has grown to 7.8 billion dollars per annum and is devel-

oping at an annual growth rate of 30%. Of these DSP chips, 71.5% are used in

wireless applications, mostly in cell phones [4]. The rapid growth of the wireless

market also inspires the growth in the functionality of PDAs, digital cameras and

multi-media players. The increasing prominence of portable and wireless devices

has become one of the major impetuses that drives CMOS VLSI design.

Although performance is still a very important issue in the design of wireless

and portable devices, it is not the only concern. Battery life, package size, device

weight and, of course, cost are also important metrics. The power consumption of

the CMOS circuits in these devices has a direct relation to these factors. Wireless

and portable applications call for low-power design.

Figure 1.1 shows the power consumption growth of battery-powered chips pre-

dicted by the International Technology Roadmap for Semiconductors (ITRS) [8].

ITRS predicts that after 2012, the power consumption of battery-powered chips

will be maintained at 3 watts. However, this prediction is not reliable if the

power consumption of VLSI chips is maintained only by CMOS technology scal-

ing (although it is the major contributor) without addressing low-power design

techniques. Moreover, the demand to prolong the operation of portable devices

15

CHAPTER 1. INTRODUCTION 16

2004 2006 2008 2010 2012 2014 2016 2018
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Year

Po
we

r d
iss

ip
at

io
n

pe
r c

hi
p

(w
at

ts
)

Figure 1.1: Trends in the power consumption of battery-powered chips [4]

between charges will never stop. Some new applications bring forward even more

‘critical’ requirements for circuit power-efficiency. For example, sensor network

designers suggest that a small battery (maybe an “AA”-size battery) should power

the whole device life of a sensor node [9]. Low-power techniques are extremely

important in the design of the CMOS circuits in these applications. Low-power

techniques also allow devices to operate without thermal management, resulting

in a cheaper package and smaller size. High power consumption affects the re-

liability of CMOS circuits, so low-power techniques improve the robustness of

devices as well.

As the requirements of portable and wireless devices shift from high perfor-

mance to high portability and long battery life, a rethinking of design flow and

techniques is necessary. For embedded data processing circuits, the ‘performance

first’ CMOS design philosophy needs to be changed. Power consumption concern

should be considered as one of the most important metrics in CMOS circuit de-

sign together with performance and area considerations. This thesis will address

low-power techniques for data processing especially in battery-powered embedded

applications.

The remainder of this chapter presents the research goals and major contri-

butions. It concludes with an overview of the rest of the thesis.

CHAPTER 1. INTRODUCTION 17

1.1 Research goals and contributions

It would be impossible to include all low-power processing design issues in a single

thesis. Instead, low-power asynchronous logic, power-efficient arithmetic units,

low-power memory design and a coprocessor architecture based on the character-

istics of embedded processing applications are the emphases of this thesis. The

key research contributions include:

• Evaluating the contribution of asynchronous logic to the design of low-power

data processing;

• The development of a set of power-efficient arithmetic function units, includ-

ing an iterative pipelined multiplier and an asynchronous carry-lookahead

adder. The design of these functional units begins with the analysis of the

characteristics of input vectors; these guide the power-saving techniques

used in the arithmetic units.

• The design of a low-power embedded SRAM macro, which adopts a novel

dual-rail row decoder and a low-swing write-voltage scheme.

• The development of a hierarchical architecture which aims to reduce the

power consumption of most commonly executed short code segments, such

as small loops and long equation evaluations. Several architectures are

evaluated in terms of power-efficiency, including conventional RISC archi-

tectures and a dataflow architecture using a novel synchronization scheme.

The experimental results demonstrate an order of magnitude of improve-

ment in power-efficiency over current general-purpose processors.

The research described in this thesis has led to the following publications:

• “The design of an asynchronous carry-lookahead adder based on data char-

acteristics”, Proceedings of PATMOS 2005, Springer, Lecture Notes in

Computer Science.

• “A Low Power Embedded Dataflow Coprocessor”, Proceedings of the 2005

International Symposium on VLSI System Design.

• “The Design of a Low-Power Asynchronous Multiplier”, Proceedings of the

2004 International Symposium on Low Power Electronics and Design.

CHAPTER 1. INTRODUCTION 18

• “Minimizing the Power Consumption of an Asynchronous Multiplier”, Pro-

ceedings of PATMOS 2004, Springer, Lecture Notes in Computer Science.

• “A Transistor-Level Delay-Insensitive Register File for Deep Sub-micron

SoC”, Proceedings of the Embedded Systems Show, October, 2004.

• “The Design of a DI adder using 1-of-4 code”, Proceedings of the 15th UK

Asynchronous Forum, Cambridge, January, 2004.

• “A Low-Power Asynchronous multiplier”, Proceedings of the IEE Seminar

on SoC Design, Test and Technology, September, 2003.

1.2 Thesis overview

Chapter 2 reviews the fundamentals of low-power CMOS design. It analyses the

power consumption of conventional processors and gives an overview of low-power

processing techniques.

Chapters 3 to 5 focus on more detailed low-power techniques for low-level

CMOS circuit implementations, including:

Chapter 3 addresses low-power techniques in a specific field — asynchronous

design. It briefly introduces basic asynchronous logic design; it then compares

the power-efficiency of synchronous and asynchronous design; finally, low-power

asynchronous logic techniques are discussed.

Chapter 4 presents the designs of two power-efficient arithmetic units, an

adder and a multiplier, based on the analysis of the input vector characteristics

of arithmetic units.

Chapter 5 addresses the design issues of a low-power embedded RAM macro.

Chapters 6 and 7 discuss architecture-level design issues aiming at reducing

the power consumption of soft programmable embedded processors, including:

Chapter 6 presents an analysis of embedded processing programs and proposes

a hierarchical processing scheme based on a CPU-coprocessor architecture. The

coprocessor can do a lot of the work of a general-purpose processor and is more

flexible than a conventional coprocessor which supports only a limited set of

functions, such as floating-point calculations. The coprocessor need not support

those complex functions of a general-purpose processor, such as a wide range

of addressing modes and instructions, and in this way power overheads due to

complex control and instruction decoding can be avoided. Chapter 6 analyzes

CHAPTER 1. INTRODUCTION 19

the power savings that can be achieved by using different RISC-like architectures

and their performance implications.

Chapter 7 studies the power-efficiency of another less-studied strategy — a

dataflow architecture. Detailed issues of a low-power dataflow architecture are

addressed in this chapter and the advantages and disadvantages of dataflow and

conventional RISC architectures are compared.

Chapter 8 provides the conclusions of the thesis and directions for future work.

Chapter 2

Low power design

This chapter presents a review of circuit-level low-power CMOS design techniques.

The sources of power dissipation in CMOS circuits, fundamental dynamic power

saving techniques and power-efficiency metrics are briefly described. The power

dissipation of conventional data processing units — microprocessors — is analyzed

which gives the direction for further power saving. The chapter also gives a survey

of low-power processing techniques.

2.1 Power dissipation sources in CMOS circuits

There are four sources of power consumption in a CMOS circuit, as described in

the following equation [10]:

Ptotal = Pdynamic + Pleakage + Pshort + Pstatic

where Ptotal is the total power consumption of the circuit, being the sum of four

factors: Pdynamic — the dynamic power consumption, Pleakage — the leakage

power consumption, Pshort — the short-circuit power consumption and, Pstatic —

the static power consumption.

• Dynamic power consumption

The dynamic power consumption of a CMOS circuit results from the charg-

ing and discharging of the capacitances of wires and transistors. The dy-

namic power consumption of a CMOS gate is equal to:

Pdynamic =
1

2
· Cload · V

2

dd · N · f (2.1)

20

CHAPTER 2. LOW POWER DESIGN 21

where Cload is the overall capacitance of its output node and the gate(s) it

drives; Vdd is the supply voltage; N is the average number of transitions

in one clock cycle; f represents the switching frequency of the clock. The

dynamic power consumption of a CMOS gate depends on how frequently

the gate is switched. If a gate does nothing, there is no dynamic power

dissipation. Since CMOS circuits normally run at very high clock frequen-

cies, the dynamic power consumption is the dominant factor in the overall

power consumption of CMOS circuits (This situation may change when

using deep sub-micron CMOS technologies). Methods to reduce dynamic

power consumption are the emphasis of this thesis.

• Leakage power consumption

Leakage power dissipation has two components: the reverse-bias diode leak-

age current at transistor drains and the sub-threshold current through a

turned-off transistor channel. Leakage power dissipation is one of the pro-

portions of overall power dissipation not caused by switching activity. Leak-

age current exists even when a circuit is idle. Therefore, although the leak-

age current of a single transistor is very small, the total effect of the leakage

current can be significant in a big chip. Moreover, the leakage increases

rapidly when the threshold of the devices drops. Deep sub-micron CMOS

circuits normally have very low threshold voltages. Therefore, leakage is

becoming another significant factor of power dissipation in these circuits.

Although minimizing leakage power dissipation is an important aspect of

CMOS power saving, it is a general problem, normally not depending on

the different data being processed. Reducing leakage power consumption

is outside the scope of this thesis. More detailed information on leakage

power reduction can be found elsewhere [11] [12].

• Short-circuit power consumption

Ideally, in a complementary CMOS gate, the pull-up pMOS network and the

pull-down nMOS network should not conduct at the same time. However,

in practice, there is a short period during each switching transition when

both the pMOS and nMOS networks conduct, allowing a current to flow

directly from Vdd to ground. This current is called the short-circuit current.

If the input transition is slow, the duration of the short-circuit current

becomes correspondingly longer, resulting in significant short-current power

CHAPTER 2. LOW POWER DESIGN 22

dissipation. However, good design will avoid slow edges and can keep short-

circuit power dissipation to a small fraction of the dynamic power.

• Static power consumption

For traditional complementary static circuits using full voltage swing, there

is no static power consumption caused by a constant static current flow

because, during any operation, either the pMOS or the nMOS network is

closed. However, in circuits using other CMOS logic styles, a constant static

current may exist; pass-transistor logic and pseudo-nMOS logic are two

examples. For a pass-transistor circuit, the low output voltage-swing of a

pass-transistor gate (such as a weak 1 after an n-pass-transistor) may cause

both the p-transistor network and the n-transistor network after the pass-

transistor gate to conduct, allowing a static current from Vdd to ground. A

pseudo-nMOS logic gate contains a single p-transistor, whose gate is always

connected to ground; when the pull-down nMOS network conducts, a static

current exists between Vdd and ground.

2.2 Dynamic power-saving techniques

Equation 2.1 revealed the three degrees of freedom inherent in dynamic power-

saving techniques: supply voltage, physical capacitance and switching activity.

• Voltage reduction:

Because of its quadratic relationship to power, voltage reduction offers the

most effective means of minimizing power consumption. The power-saving

techniques due to supply voltage reduction are as follows:

– More advanced CMOS technologies need lower supply voltages and

hence using these CMOS technologies contributes to low-power VLSI

design.

– If the speed of a circuit using a standard CMOS supply voltage is

fast enough, the circuit can be powered by a voltage lower than the

standard supply voltage and may still meet the throughput and peak

performance requirements of applications. If the supply voltage is too

low to meet the performance requirements, some dedicated techniques

CHAPTER 2. LOW POWER DESIGN 23

can be used to speed up the circuit, such as parallelism and pipelin-

ing [13].

• Capacitance reduction:

Dynamic power consumption depends on the switched capacitance, thus

minimizing the effective capacitance which is charged and discharged also

results in power saving.

CMOS technology scaling greatly contributes to reducing the power con-

sumption of CMOS circuits. Technology scaling reduces the capacitance of

transistors and wires. It also allows devices to have a low supply voltage

while maintaining their performance because devices have a low threshold

voltage.

Using the same CMOS technology, capacitance can be kept at a minimum

by using simple circuit implementations, more efficient logic styles, fewer

transistors, or shorter interconnect wires.

• Switching activity reduction:

The goal of reducing switching activity is to reduce the average number of

transitions in a clock cycle (N in Equation 2.1). Switching activity reduc-

tion techniques can be separated into two categories: minimizing unwanted

activity and minimizing the required activity.

Ideally, the gates of a CMOS circuit should only switch when performing

useful tasks. However, in real designs, unwanted transitions unavoidably

exist. For example, in a synchronous circuit, all registers are linked to a

global clock signal and their gate loads are forced to charge and discharge in

every clock cycle even when they have no valid inputs. These unnecessary

transitions contribute to make the global clock one of the largest loads in

synchronous circuits. One efficient way to minimize the unnecessary tran-

sitions is by gating off sub-blocks which perform no required activity [14].

Another source of unwanted switching activity is glitches; these are spurious

transitions which occur before a node settles down to its final steady-state

value. One example of a glitch is the sum signals of a carry-propagate

adder. Because of the chain of carry signals, some intermediate states occur

at the outputs of the sum signals and cause a lot of unnecessary switching

activity inside the adder. A more serious situation is when these output

CHAPTER 2. LOW POWER DESIGN 24

glitches are propagated through the whole pipeline and cause a sequence of

unwanted activity. It is difficult to get rid of all glitches in a circuit, but the

number and their effects can be minimized. An efficient way to minimize

the impact of glitches is to isolate them within a pipeline stage by opening

pipeline registers for a short period only when data is to be admitted.

Using a simpler and more efficient implementation to achieve the same

logic function is the basic idea in minimizing the required activity. There

are often many ways to implement a logic function and an efficient way

should be found for power saving. To minimize the power consumption of

an existing CMOS circuit, data representations, signal encoding schemes

and algorithms need to be reconsidered in terms of power-efficiency.

2.3 Power breakdown of microprocessors

Analyzing the power breakdown of processors indicates directions which poten-

tially lead to power savings. Figure 2.1 shows the power breakdown of an embed-

ded low power RISC microprocessor — a StrongARM microprocessor [5], which is

a general-purpose, 32-bit microprocessor with a 16KB instruction cache, a 16KB

write-back data cache, a write buffer, and a memory management unit combined

in a single chip. It implements the ARM V4 instruction set and is designed for

low-power and low-cost applications.

Although Figure 2.1 shows the power breakdown of one particular processor,

it displays a general characteristic of processor power breakdown. There is little

difference in power breakdown between the StrongARM processor and some other

processors, for example, a CISC Pentium-Pro processor [15], a high-performance

RISC processor — Alpha 21264 [16] and an asynchronous RISC ARM — the

Amulet3 processor [17]. The actual power consumptions of the various processors

differs, but their power breakdowns are similar. As can be seen from Figure 2.1,

four parts contribute most to the overall processor power dissipation and may

have the greatest power-saving potential; these are as follows:

• Timing control:

For a synchronous processor, the power consumption of the timing control

is the power dissipated in its global clock. Figure 2.1 shows that the global

clock uses as much as 10% of the overall power, but this includes only the

CHAPTER 2. LOW POWER DESIGN 25

ICACHE: instruction cache
IBOX: instruction unit
DCACHE: data cache
IMMU: instruction memory management unit
EBOX: execution unit
DMMU: data memory management unit
PLL: phase locked loop

ICACHE 27%

IBOX 18%

DCACHE 16%

CLOCK 10%

IMMU 9%

EBOX 8%

DMMU 8%

WRITE BUFFER 2%
Bus Interface 2%

PLL <1%

Figure 2.1: The power breakdown of a StrongARM processor [5]

power dissipated in the main clock distribution network and its drivers. If

the local clock power for every sub-block is extracted and summed, it is as

high as 25% of the total chip power [5]. For some Alpha processors, the

timing control power contributes 40% to the overall power consumption [16].

For asynchronous processors, timing control is accomplished by ‘local hand-

shakes’. The contribution of handshakes and delay-matching circuits to

overall processor power consumption is still very high as discussed in the

next chapter.

• Memory access:

Memory stores instructions and data and, ideally, a processor should have

a large memory to store a lot of instructions and data. A larger mem-

ory implies more power consumption and a longer access latency. Modern

processors usually have large memories which use significant power. The

StrongARM processor with only 32KB on-chip cache uses 43% of the over-

all chip power in its caches, most of which is used by the instruction cache.

A further 17% of the overall power is indirectly used by memory — the

CHAPTER 2. LOW POWER DESIGN 26

memory management units for data and instructions (DMMU and IMMU).

• Instruction operations:

A major part of the hardware involved in the execution of instructions is

the instruction decoder. Modern processors have a wide range of instruc-

tions to make them more ‘friendly’ to programmers and to support these,

the instruction decoder becomes a complex circuit implementation to trans-

late instructions to control signals. Many instructions are rarely used, but

design complexities are still needed to support them. Instruction opera-

tion hardware also includes some other parts, including program counters

and address incrementers. The power used by instruction operations of the

StrongARM is included in the IBOX sector of Figure 2.1, which contributes

18% to the overall power consumption.

• Register file:

Processors refer to register files in almost every clock cycle, reading operands

and writing results, resulting in a high switching activity. Moreover, to

support high performance, register files normally have multiple read and

write ports, resulting in a larger switching capacitance than a similar-sized

single-port SRAM. These two factors make the register file a power-hungry

component. The power used by the register file in Figure 2.1 is included in

the EBOX sector. According to the power data from the Amulet3, 15% of

the chip power is used by its register file [17].

It can also be seen from power analyses of microprocessors that the “real

work” — data processing — uses only a very small proportion of the overall

processor power. This is a common problem in all “soft-programmable” data

processors. In these processors, data processing is guided by a set of ‘commands’

— instructions, so that every data processing operation is accompanied by at least

one instruction. Instructions indicate not only data values but also the addresses

of the data values. Therefore, much more power is dissipated in control flow

than data processing. A pure RISC processor has a fixed instruction-length and

a load-store architecture, which require a larger code size to describe a given task

(poor code-density) and more power for instruction fetching and data transfer

than many CISC processors.

CHAPTER 2. LOW POWER DESIGN 27

2.4 Low power processing techniques

As can be seen from the previous analysis, the most effective way to design a low

power data processor is to minimize execution overheads, including timing control

power, memory (including the register file) power and the number of instructions

needed to describe programs.

2.4.1 Minimizing timing control power

Reducing the clock frequency can minimize timing control power but is not the

choice of many CMOS designers since this approach slows down the processor.

Another way to minimize timing control power is to reduce the switching capac-

itance attached to clock signals.

Clock switching capacitance can be reduced by using more efficient regis-

ters [18] (for example, the registers for PowerPC and StrongARM), or by using

both edges of clock signals to control dual-edge-triggered flip-flops (DETFFs) [19].

Reducing clock switching power can also be done by using a half-swing clocking

scheme at the cost of a longer flip-flop delay [20].

Minimizing clock capacitance can also be achieved by using clock gating [21],

here gating is used to separate a circuit into several blocks, each of which has

its own local timing regenerator with a gating signal. The gating signal can gate

the local timing regenerator off when the corresponding block has no required

activity, so the clock capacitance of the block does not contribute to the overall

capacitance when inactive. The global clock controls only the local timing gen-

erator drivers and thus has a much smaller capacitance than when used to drive

the whole chip. However, clock gating also has some disadvantages which will be

discussed in Section 3.2.1. Asynchronous logic is claimed to have the advantage

of providing natural fine-grain clock gating. Asynchronous and synchronous clock

gating schemes are compared in Section 3.2.1.

2.4.2 Minimizing memory power consumption

A number of low-power memory techniques have been proposed. Among them,

the most important may be the ‘principle of locality’ [3], which directly leads to

memory hierarchy design. Locality is a fundamental property of programs and is

of two types as follows:

CHAPTER 2. LOW POWER DESIGN 28

• Temporal locality — Recently accessed data and instructions are likely to

be accessed again in the near future.

• Spatial locality — Instructions fetched by processors are likely to have ad-

jacent addresses and data are also adjacent to each other.

Locality observations influence memory hierarchy architectures. Modern com-

puters employ a large amount of storage memory and the larger the storage

memory, the slower it is and the more power is needed to access it. The access

latency of a hard disc, the largest capacity memory, is several milliseconds, which

is clearly not compatible with the few nanoseconds occupied by a processor in

executing an instruction. Clearly, a unified memory architecture does not meet

the requirement for high performance and hence a multi-level memory hierarchy

must be used to close the processor-memory performance gap.

A register file can be regarded as the lowest level of a memory hierarchy,

which stores current operands and some temporary variables. A register file is

usually very fast — few hundred picoseconds latency, while its size is normally

relatively small — for example 32 words or 1K bits. The next hierarchy level

may be a small on-chip memory block called a ‘cache’ used to store recently used

instructions and data; this is also fast — several nanoseconds access latency—

and small — several dozens of kilobits. Other levels of memory hierarchy may

be an off-chip cache, a main memory and a hard disc. The latencies of adjacent

levels change by factors of about 10 and the sizes of adjacent levels change by

factors of about 1000.

A memory hierarchy not only increases performance but also reduces power

consumption. Since accessing a smaller memory needs less power, if most of

the data processing operations of a processor are done within a small memory,

significant power can be saved.

Since the concept of memory hierarchy was introduced in the 1940s, improving

the efficiency of memory hierarchy architecture has attracted a lot of researchers.

Bajwa et al. [22] and Lea et al. [23] proposed a hardware addition called a ‘loop

cache’ or ‘loop buffer’ to minimize the power used by refetching instructions in

small loops. The idea of the loop cache scheme was based on two observations as

follows:

• For embedded applications, power consumption due to instruction access is

typically higher than that due to data access because one data access may

CHAPTER 2. LOW POWER DESIGN 29

be accompanied by 3-4 instruction accesses. Hence, reducing instruction

fetching can result in power saving.

• The dynamic execution traces of embedded programs are dominated by

small program loops containing a small number of instructions (32 or fewer).

Based on the principle of locality, embedding a small instruction cache to hold

the small program loops can greatly reduce overall processor power consumption,

since a loop cache can be of a very small size and be situated near the processor.

Loop cache schemes have been reported to reduce by 37.9% the main instruction

cache accesses and to save the same proportion of instruction power without any

delay penalty [23].

Bajwa and Lea’s scheme handles only the innermost small program loops

which do not contain if-else statements. Wu and Hwang improved Lea’s scheme

by proposing a loop cache with a stack-based architecture, which supported nested

loops containing if-else statements [24]. A further 40% reduction in instruction

power was reported compared to Lea’s scheme.

To summarise, a loop cache is another level of memory hierarchy, possibly

below the on-chip instruction cache. The rationale for loop caches is based on a

characteristic of embedded programs — the domination of program loops with a

small number of instructions.

2.4.3 Increasing code-density

Processors with a high code-density use fewer or smaller instructions to describe a

given program, thus the power used by instruction fetching is reduced. Increasing

processor code-density can be achieved in several ways, such as:

• Minimize redundant space and reduce instruction lengths, such as the ARM

Thumb-1, Thumb-2 and MIPS16 instruction sets [25];

• Support more addressing modes and instruction set architectures, such as

memory-memory and register-memory architectures [26], so separate ad-

dress calculation instructions in a load-store (register-register) architecture

can be saved.

However, increasing code-density means more complex instruction decoders,

resulting in more hardware, lower decoding speed and higher decoder power.

CHAPTER 2. LOW POWER DESIGN 30

Therefore, changing an instruction set needs careful consideration of the trade-

offs between these factors.

2.4.4 ‘Hard-controlled’ processing

A carefully designed ‘hard-controlled’ circuit is usually much more power-efficient

than a soft programmable processor. A specifically-tailored ASIC can get rid of

execution overheads such as temporary variable transfer, instruction fetching and

decoding. It executes only useful data processing operations and thus has the

highest power-efficiency. Even in general-purpose processors, the idea of using a

direct hardware implementation to replace a set of instructions to perform a logic

function is also used, an example is the ‘count leading zeros’ (CLZ) instruction

in the ARM V5 instruction set [1]. The problem with ASICs is that, once they

are fabricated, there is little possibility to change functionality.

Reconfigurable processors [27] offer an intermediate approach between ASICs

and general-purpose processors, potentially achieving power efficiency by direct

hardware mapping, while maintaining a higher flexibility than an application-

specific circuit. Although reconfigurable processors are claimed to offer greater

flexibility than ASICs, it is very difficult to design a reconfigurable hardware

architecture having the flexibility and general-purpose processing ability close to

that of a soft programmable processor.

2.5 Metrics for power efficiency

Energy- or power- efficiency is always linked to performance, so a brief introduc-

tion to performance metrics is necessary. Two circuits (or processors), say A and

B, are appointed the same task. If A finishes the task before B, A is regarded as

a faster processor. However, since A and B may have different instruction sets

and are designed for different applications, it may be difficult to find identical

programs that can be executed in both A and B. MIPS (million instructions per

second) is used as a metric to compare the performance of processors; it is the

rate of operations per unit time and is defined as follows:

MIPS =
Number of Instructions executed

Execution time
× 10−6

Some metrics can be used to measure the energy-efficiency of processors. One

CHAPTER 2. LOW POWER DESIGN 31

popular metric is MIPS/watt (MIPS/W) which means how many instructions a

processor can execute with the energy supply of 1 joule. Since

MIPS/watt =
10−6 · instructions/seconds

joules/seconds
=

10−6

joules/instructions

a reciprocal metric of MIPS/watt is energy per instruction which means on aver-

age how much energy a processor needs to execute an instruction. Since

energy per instruction =
joules

instructions
=

joules/seconds

instructions/seconds
= power×delay

an equivalent metric of energy per instruction is power delay product.

MIPS/W and its equivalent metrics are very important in battery-powered

applications and they define with a given battery energy how many tasks pro-

cessors can execute. However, these metrics define only energy-efficiency. Two

processors, A and B, may have the same energy-efficiency but A is faster than B;

these metrics cannot differentiate between the two processors. Another metric—

MIPS2/watt is used to measure the compromise between energy efficiency and

performance. Since

MIPS2/watt =
instructions2/seconds2

joules/seconds

=
1

seconds/instructions · joules/instructions
=

1

energy × delay

Energy delay product (EDP) is a reciprocal metric of MIPS2/watt.

MIPS3/watt is another important metric to measure energy efficiency.

MIPS3/watt =
MIPS

energy · delay
=

1

energy · delay2

Since energy ∝ power ·delay ∝ C ·V 2
dd ·(1/delay) ·delay ∝ V 2

dd and delay ∝ 1/Vdd,

MIPS3/watt is independent of the supply voltage Vdd. Thus it can be used to

evaluate CMOS processors when voltage-scaling is taken into account and to

compare processors using different supply voltages.

The similar metric E × Dn(n ≥ 3) is also used depending on the importance

of the delay increase caused by an energy reduction technique.

CHAPTER 2. LOW POWER DESIGN 32

As an alternative to using these metrics, a fairer way to compare the power-

efficiencies of two processors is to define several ‘standard programs’ (bench-

marks), execute these benchmarks in both processors (which may have different

instructions, so reprogramming may be needed), and then compare the energy

used. Choosing ‘typical’ and ‘fair’ benchmarks is another difficulty. The bench-

marks should represent the common characteristics of the applications for which

the processors are designed.

2.6 Summary

This chapter has presented the sources of power dissipation in CMOS circuits and

techniques to reduce dynamic power consumption. Following the power break-

down of a StrongARM and other processors, this chapter pointed out the four

functions (or components) that contribute most to overall processor power con-

sumption: timing control, memory access, instruction operations and the register

file. The analysis provides the directions leading to the low-power processing tech-

niques to be introduced in the remainder of this thesis — Chapter 4 addresses

how to minimize timing control power; Chapter 5 presents low-power memory

techniques and Chapters 6-7 discuss low-power instruction and register file tech-

niques. This chapter also reviewed existing low-power processing techniques and

addressed the metrics for power-efficiency.

The next chapter will discuss low-power techniques in a specific field — asyn-

chronous logic design.

Chapter 3

Power-efficient asynchronous

design

This chapter explores asynchronous logic design for its low-power potential. A

brief introduction to asynchronous logic design is given in Section 3.1. The power-

efficiencies of synchronous and asynchronous designs are compared in Section 3.2.

Different low-power asynchronous logic techniques are addressed in Section 3.3.

It is impossible to cover the whole field of asynchronous logic design and the

chapter will focus on low-power asynchronous design. More detailed information

on asynchronous design can be found elsewhere [28] [29].

3.1 Introduction to asynchronous logic design

Synchronous logic has dominated digital circuit design for decades because a

global clock assumption makes circuits easier to understand and simpler to design.

As an alternative design methodology, there has been a resurgence of interest

in asynchronous logic design in both industrial and academic circles since the

1990s. Synchronous circuits use a globally-distributed clock signal to provide

timing references and to synchronize data transfers. Asynchronous circuits, on the

other hand, utilise no global signal; dataflow and synchronization are controlled

using locally-generated ‘handshake’ signals. The difference in timing control gives

asynchronous logic inherent properties which may be exploited to advantage:

• Low power consumption:

33

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 34

Asynchronous logic provides a natural fine-grain clock gating, which dis-

sipates power ‘on demand’. When idle, asynchronous circuits can achieve

zero standby dynamic power consumption.

• High operating speed:

Theoretically, the run-time latency of an asynchronous circuit is determined

by the sum of the total local latencies rather than the global worst-case

latency. However, for pipelined designs, the throughput of an asynchronous

circuit depends on the slowest pipeline stage(s). In some operation cycles,

however, it may achieve a lower latency than its synchronous counterparts.

• Avoidance of clock skew problems:

Asynchronous logic replaces a global distributed clock network with multi-

ple locally generated signals which have shorter wire lengths. This reduces

the area and design complexity (as well as power) and avoids the need to

provide the required stability and low skew of a global clock distribution

network.

• Low emission of electro-magnetic noise:

All components in a synchronous circuit switch simultaneously with the

edges of the global clock. This phenomenon concentrates the radiated en-

ergy emission of a circuit at the harmonic frequencies of the clock, thus max-

imising electro-magnetic noise. Asynchronous design works in a different

way. Different parts of a circuit are controlled by discrete local timing sig-

nals and, as a result, asynchronous circuits produce broadband distributed

interference spread across the electromagnetic spectrum at a much lower

level.

In the remainder of this section, a brief introduction to asynchronous logic is

presented, including: asynchronous timing strategies, asynchronous delay models,

data encodings, handshake protocols, and asynchronous pipeline latch controllers.

3.1.1 Asynchronous timing strategy

It takes some time for a gate to generate valid outputs and for a wire to propagate

a digital signal. The period of transfer and evaluation is referred to as ‘delay’ and

the phenomenon of unpredictable results due to the existence of delays is called

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 35

a ‘hazard’. A ‘glitch’ is another phenomenon that should be avoided. Between

two stable valid outputs, a combinatorial circuit may produce many spurious

transient states. These unexpected transient states are referred to as ‘glitches’.

To avoid hazards and glitches, there must be some dedicated timing signals to

indicate when signals are stable and valid. Synchronous design and asynchronous

design differ in the ways they define these timing signals.

A global clock is used as a timing reference in a synchronous design to define

the validity of data items. A synchronous circuit can be viewed as a finite-state

machine with registers holding the current states; it changes from one state to

another on the edges of the global clock. A typical synchronous pipeline circuit

is illustrated in Figure 3.1. The transitions of the global clock signal (the falling

or rising edges) indicate the validity of the outputs from the combinatorial logic

blocks. The clock period must be no shorter than the delay of the slowest logic

block to ensure valid outputs.

Logic

Re
gi

ste
r

Logic

Re
gi

ste
r

Logic

Re
gi

ste
r

Global clock

Figure 3.1: A synchronous pipeline circuit

Asynchronous logic, on the other hand, normally uses Request-Acknowledge

handshake signals to indicate the validity and acceptance of data items. Figure

3.2 illustrates an asynchronous pipeline circuit, in which several pipeline stages

are separated by pipeline registers or latches. The latch controllers (LT) con-

trol the states of the pipeline registers so that a data item can be propagated

through the datapath as soon as possible without overwriting preceding items.

The synchronization between two pipeline stages utilises a handshake protocol,

one commonly used, the 4-phase bundled-data protocol, is shown in the figure.

Other asynchronous handshake protocols are presented in the remainder of this

section.

Using a 4-phase handshake protocol, the communication between the ‘sender’

and the ‘receiver’ proceeds through a sequence of actions as follows:

• The sender puts a valid data item on a bus and issues a logic high on the

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 36

la
tc

he
s

la
tc

he
s

la
tc

he
s

LT LT LT

Logic Logic Logic
Data

Request

Acknowledge

Request

Data

Acknowledge

delay delay delay

Figure 3.2: An asynchronous pipeline circuit

Request wire;

• The receiver accepts the data item when it is ready to do so, then it issues

a logic high on the Acknowledge wire;

• The sender removes the data item and pulls the Request low;

• The receiver then initializes the next communication by pulling low the

Acknowledge signal.

3.1.2 Delay models

To obtain valid data in digital circuits, assumptions must be made regarding wire

and gate delays. All synchronous circuits use a bounded-delay model, where the

delays in both the gates and wires are assumed to be within a bounded range.

However, it becomes more and more difficult to set a bounded-delay range for

a modern VLSI CMOS circuit, where the wire delays are no longer ignorable

compared with gate delays. Asynchronous logic offers more flexible delay models

than synchronous logic and allows unbounded delay assumption on gate or/and

wire delays. In an unbounded-delay model, the delays can be any finite value.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 37

Asynchronous circuits using an unbounded-delay model can be classed as

being speed-independent, quasi-delay-insensitive or delay-insensitive depending

on the delay assumptions made:

• Delay-insensitive (DI) [30]

A delay-insensitive circuit operates correctly in spite of unknown delays in

wires and gates. Although delay-insensitive circuits are the most robust,

the constraints on delay-insensitive circuits are very restrictive [31], and the

strict timing assumptions make their implementation the most expensive

in terms of in hardware and power consumption.

• Quasi-delay-insensitive (QDI) [31]

Quasi-delay-insensitive circuits are delay-insensitive circuits augmented with

isochronic forks [31]. Isochronic forks are sets of interconnecting wires that

have delays whose differences are negligible compared with gate delays.

• Speed-independent (SI) [32]

A speed-independent circuit is an asynchronous circuit that operates cor-

rectly regardless of unknown gate delays, while wire delays are assumed to

be negligible compared with gate delays.

The relation and distinction between DI, QDI and SI circuits are illustrated

in Figure 3.3.

SI DIQDI unboundedunbounded

unbounded

unbounded unbounded +
isochronic fork

Delay assumptionsRelation

smallAsynchronous circuit

gate delay wire delay

SI

QDI

DI

Figure 3.3: The relations and delay assumptions of asynchronous circuits using
unbounded-delay models

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 38

3.1.3 Data encodings

In asynchronous design, timing can either be indicated by some dedicated delay-

matching blocks (such as an inverter chain) or be extracted from data items that

hold extra timing information by using specific data-encoding schemes. Asyn-

chronous logic uses different data-encoding schemes as follows:

• Bundled-data encoding

A bundled-data encoding is also called a single-rail encoding because it

uses a single wire per bit, just as in synchronous circuits. The data items

of a single-rail circuit cannot indicate any timing information themselves; a

delay-matching block is needed to indicate the validity of the outputs from

a bundled-data circuit. A typical asynchronous circuit using a bundled-

data encoding was introduced in Figure 3.2, where the delay in the control

matches the logic delay.

• Code-data encoding

A codeword using a code-data encoding contains both a data value and

timing information. An asynchronous circuit using a code-data encoding

may need no delay-matching blocks and can be delay-insensitive. Examples

of code-data encodings are [30]: Berger encoding and N-of-M encoding.

This section describes two kinds of N-of-M encoding: dual-rail encoding

and 1-of-4 encoding.

With a code-data encoding, timing information can be obtained by inserting

an ‘empty value’ between two ‘valid values’. A completion detector is used

to detect whether data items are ‘empty’ or ‘valid’. A circuit using a code-

data encoding is shown in Figure 3.4, where valid = 1 means the outputs

are valid and, valid = 0 means the outputs are empty. An empty value

separates the current value from the previous one. As can be seen from

a comparison of Figure 3.2 and 3.4, no delay blocks are needed to match

the delays of the combinatorial logic blocks in Figure 3.4; the speed of the

asynchronous circuit is not fixed but self-adaptive and input-relative.

The most commonly used code-data encoding is dual-rail encoding. A dual-

rail encoding uses two wires (d.f and d.t) to represent one bit of data. Figure

3.5 (a) shows a dual-rail encoding scheme. d.f is used for signaling logic 0

and d.t is used for logic 1. Figure 3.5 (b) shows the schematic of a completion

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 39

la
tc

he
s

la
tc

he
s

la
tc

he
s

LT LT LT

Logic Logic Logic
Data

Acknowledge

Valid

Valid

Data

Acknowledge

E V EV

Figure 3.4: An asynchronous pipeline using a code-data coding

detector for 2-bit dual-rail data items which uses a 2-input symmetric C-

gate [33], an important element in asynchronous design, whose schematic

and truth table are shown in Figure 3.6. The output of 1 indicates that

both of its inputs are 1s and the output of 0 indicates both of its inputs are

0s. If the two inputs are not equal, the C-gate will not change the output —

its ‘state’. N-input OR-gates can be used for detecting the states of a 1-of-

N encoding. OR-gates and C-gates are usually used together to construct

completion detector circuits. The C-gate in Figure 3.6 (a) is symmetric

because inputs a and b control both the rising and falling transitions of

the output. A C-gate can also be asymmetric if one or more of its inputs

controls only one transition of its output, as shown in Figure 3.6 (b).

1-of-4 encoding is another N-of-M encoding; it uses four wires (d0, d1, d2,

d3) to represent a two-bit data item. Figure 3.7 shows the encoding scheme

of 1-of-4 encoding and its completion detector. The completion detector is

a 4-input OR-gate.

3.1.4 Handshake protocols

Asynchronous handshake protocols differ in their ways of interpreting handshake

events. Two commonly used handshake protocols are presented here.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 40

0 1
1 0
1 1

(a)

0 0

(b)
not used

valid 1
valid 0

d.t d.f

Valid

d[0].t
d[0].f

d[1].t
d[1].f

empty
C

Figure 3.5: A dual-rail encoding scheme and its completion detector

• 2-phase protocol:

A 2-phase protocol treats rising and falling transitions as having the same

meaning. A 2-phase protocol does not return to zero to initialize another

handshake, so it is also called a ‘non-return-to-zero’ protocol. Figure 3.8

shows the data validity scheme of a 2-phase protocol where a transition on

the Request line indicates the validity of data. After receiving the data,

the receiver sends a transition on the Acknowledge line telling the sender

to release the data and send another data item. Since level-sensitive CMOS

circuits are much easier to implement than transition-based ones, 2-phase

protocols are not very commonly used in asynchronous design.

• 4-phase protocol:

A 4-phase protocol uses levels rather transitions to denote events as shown

in Figure 3.2. 4-phase protocols have return-to-zero transitions, so they are

also called ‘return-to-zero protocols’.

With a 2-phase protocol, data are valid between two adjacent transitions. In

a 4-phase protocol, however, the return-to-zero operations result in several

different data validity schemes — early, broad, late and reduced broad;

these are shown in Figure 3.9.

• Push and pull protocols:

Asynchronous handshake protocols are either push or pull depending on

whether the sender or the receiver initiates the communication. If the sender

initiates the communication in a handshake protocol, the protocol is called

a push protocol; otherwise, it is called a pull protocol.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 41

z−set = a.b
z−reset = a.c

C
c

a
z

b
a
c

z

z−set = a.b
z−reset = a.b

Ca
b z

a

b
z

b

(a) a symmetric C−gate

(b) an asymmetric C−gate

Figure 3.6: Example logic symbols and schematics of symmetric and asymmetric
C-gates

To sum up, three characteristics define an asynchronous protocol: data en-

coding, 2- or 4-phase, push or pull. For example, a protocol can be a 4-phase

bundled-data push or a 2-phase dual-rail push protocol. For 4-phase protocols,

another parameter must be added — data validity; it can be early, broad, late or

reduced broad.

3.1.5 Asynchronous pipeline latch controllers

In asynchronous design, pipeline latch controllers play a very important role in

controlling the handshakes between two consecutive pipeline stages. 2- and 4-

phase handshake protocols were introduced in the last section. These handshake

protocols need to be supported by different pipeline latch controllers.

• 2-phase latch controller:

A 2-phase handshake protocol uses transitions to identify events as illus-

trated in Figure 3.10 which shows a 2-phase latch controller as given by

Sutherland [34]. The 2-phase latch controller is constructed with a C-gate,

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 42

0 0 0 1
0 0 1 0
0 1 0 0

0 0 0 0

1 0 0 0
others

(a)

d3 d2 d1 d0

valid 00
valid 01
valid 10
valid 11

not used

empty

Valid

(b)

d2
d3

d1
d0

Figure 3.7: A 1-of-4 encoding scheme and its completion detector

Request

Acknowledge

Data

Figure 3.8: The validity scheme of a 2-phase protocol

an XOR-gate and a ‘toggle’. The toggle steers events (transitions) to its

outputs alternatively starting with the dot. The XOR-gate and the toggle

together form a 2- to 4-phase protocol converter. The schematic is very neat

and clearly identifies the concept of 2-phase logic. However, the ‘toggle’ is

large and dominates the hardware cost of the controller.

• 4-phase latch controller

4-phase level-sensitive circuits are commonly used in asynchronous designs

and need 4-phase latch controllers. A 4-phase latch controller proposed by

Furber and Day [35] is shown in Figure 3.11 (a) and its STG [36] description

is shown in Figure 3.11 (b). The dashed arrows indicate orderings which

are maintained by the environment; the solid ones represent orderings which

the circuit itself ensures.

One advantage of this controller is that the control signal ‘LT’ can be used

to latch input data in level-sensitive latches which present only half the ca-

pacitive load and use only half the power of their edge-triggered equivalents.

Hence the 4-phase latch controller is good for low power.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 43

Acknowledge

Early

Broad

Reduced broad

Late

Request

Figure 3.9: The validity schemes of 4-phase protocols

Another interesting characteristic of this latch controller is that it is fully

decoupled [35]. This means that two adjacent pipeline stages can be pro-

cessing in parallel and normal level-sensitive latches can be used to con-

struct an asynchronous pipeline with 100% occupancy. Since no bubbles

are in the logic, fully-decoupled latch controllers can be used to construct

asynchronous pipelined circuits with high throughput.

The focus of the next two sections is to use asynchronous design to achieve

power saving: Section 3.2 compares the power-efficiency of synchronous and asyn-

chronous logic design; Section 3.3 addresses low-power asynchronous design. The

remainder of this chapter presents experimental results on the power consumption

of some test circuits to demonstrate and compare the power-efficiency of different

design approaches.

3.2 Comparison of the power consumption of

synchronous and asynchronous designs

The potential advantage of low power consumption is one of the main reasons

why asynchronous logic attracts attention from both industrial and academic

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 44

Aout

Latch

Ain

Rin

Rout

Toggle

Data Data

C

Figure 3.10: The schematic of a 2-phase latch controller

circles. A number of low-power asynchronous designs have been proposed since

the 1990s [37], [38], [39], [40]. However, very few publications [41] [42] have

evaluated the power-efficiency of asynchronous logic design. In this and the next

section, an attempt is made to compare the power-efficiency of asynchronous and

synchronous designs, and to evaluate low-power asynchronous techniques.

Asynchronous circuits using a code-data (or delay-insensitive) encoding may

give an impression of large size, low speed and high power because of the high

logic overheads needed to meet more rigorous timing assumptions. However, not

all asynchronous circuits use code-data encoding schemes; an ARM-compatible

processor — the Amulet3 [39] — demonstrates that asynchronous microproces-

sors using a bundled-data encoding can achieve speed and power-efficiencies com-

parable to their synchronous counterparts. Amulet3 is functionally compatible

with the ARM9TDMI microprocessor, which supports ARM architecture version

4T, the 16-bit Thumb instruction set, interrupts and memory faults. The cir-

cuit characteristics of the processor are shown in Table 3.1 [1]. Amulet3 achieves

roughly the same performance (120 MIPS) as the ARM9TDMI using the same

process technology and supply voltage. Its power-efficiency (780 MIPS/watt) is

also equal to or marginally better than the ARM9TDMI.

As shown above, an asynchronous design can achieve a similar power-efficiency

to its synchronous counterpart. In the remainder of this section, the power-

efficiencies of asynchronous and synchronous circuits are compared.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 45

+

−

Rin+

Ain+

A+ Rout+

Lt+ Aout+

B+

A− Rout−

Aout−Lt−

B−

Rin−

Ain−

− +

−

+

LatchLtAB

Aout Rout

Rin Ain Data

Data

(b)
(a)

C

C

C

C

Figure 3.11: A 4-phase latch controller and its STG description

Table 3.1: The characteristics of the Amulet3 processor [1]

Technology 0.35µm Transistors 113,000 MIPS 120
Metal layers 3 Core area 3 mm2 Power 154 mW
Voltage 3.3 V Clock none MIPS/W 780

3.2.1 Global clock and handshakes

The global clock consumes a large proportion of the overall power in synchronous

processors as discussed in Section 2.3. The reasons are as follows:

• Much effort must be expended in the design of clock systems, including

the drivers and distribution network, to provide a fast and low-skew global

timing system distributed to every corner of a silicon die.

• The global clock signal is the most frequently switched signal in a micro-

processor; it has two transitions per clock cycle.

• A large proportion of the hardware in a microprocessor is attached to the

global clock signal, such as pipeline registers and precharge circuits; these

contribute to a large load on the global clock.

In summary the global clock has the largest active switching capacitance and is

the most power-hungry part of a synchronous microprocessor.

Using asynchronous logic, the global clock signal is replaced by multiple

locally-generated handshake signals. Since each local wire is shorter, and has

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 46

smaller capacitance than the global signal, the overall power used by the timing

control of an asynchronous circuit may be lower than that of its synchronous

counterpart. However, asynchronous timing control also has some unavoidable

power overheads.

• The most commonly used 4-phase protocols need four transitions to transfer

a data item (two transitions on the Request signal and two transitions on the

Acknowledge signal), while a global clock signal needs only two transitions.

• Handshake circuits, including latch controllers and delay-matching blocks,

themselves consume extra power.

• Since no global clock signal exists, there are some unavoidable problems

in asynchronous design. For example, it is very difficult for one pipeline

stage to know the current timing point of another. Dedicated circuits are

needed to exchange information between pipeline stages. The power over-

head caused by these circuits can be quite significant.

According to measurements on Amulet3 [17], the overall power contribution

of latch controllers, delay-matching blocks and timing drivers is 10.5% of the core

power consumption. The proportion consumed by dedicated circuits used to solve

the problems of asynchronous design (mainly due to bypassing techniques to pre-

vent pipeline stalls caused by control- and data-dependence) is about 29% (for

a synchronous design, the proportion is about 15%). So the overall power con-

sumption due to timing control and asynchronous logic overhead is roughly 25%

of the core power consumption of Amulet3. This proportion is not much different

from the clock power proportion of a well-designed synchronous microprocessor,

such as the StrongARM introduced in Section 2.3.

From the analysis above, asynchronous designs are not necessarily more power-

efficient than synchronous designs because they replace the global clock with

locally-generated handshakes.

3.2.2 Average latency leading to a simple implementation

Since, in a synchronous pipelined circuit, the clock rate is determined by the

slowest stage under worst-case conditions and assuming worst-case inputs, a lot

of design effort and hardware additions are needed to speed up the worst-case

latency even though such conditions rarely occur.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 47

For an asynchronous pipelined circuit, the run-time latency is data-dependent,

and the average throughput depends on the average latency in all conditions.

Therefore, it is possible for an asynchronous circuit to allow rare worst-case con-

ditions to have a longer processing delay. If the worst-case conditions do happen,

there will be some performance loss, but as long as the worst-case conditions

are rare, their impact on overall performance will be small. An example is an

asynchronous ripple-carry adder which will be introduced in Section 4.4.2. The

hardware additions designed especially for speeding up the worst-case delay are

avoided. The power overheads due to these additions can also be saved by re-

placing a global clock scheme with asynchronous pipeline techniques.

3.2.3 Registers and latches

One data transfer needs 4 transitions in a 4-phase asynchronous design because of

the superfluous return-to-zero transitions; the redundant transitions can be used

to save power, however.

The fully-decoupled asynchronous latch controllers, introduced in the last

section, can use level-sensitive latches to achieve 100% pipeline occupancy. In a

synchronous design, 100% pipeline occupation can be achieved only by using edge-

triggered registers. Since level-sensitive latches are half the size and have half the

active capacitance of edge-triggered registers, asynchronous logic saves significant

power in the design of register-based circuits. According to an experiment on

improving the power efficiency of a synchronous-style multiplier [43], about 50% of

the total power is dissipated in the pipeline registers. Using asynchronous design,

20% of the multiplier power was saved by replacing edge-triggered registers with

level-sensitive latches [43]. Section 4.6 will give more detailed information on the

multiplier design.

Therefore, asynchronous logic may be more power-efficient in the design of

register-dominated circuits.

3.2.4 Zero standby dynamic power consumption

“The Amulet processors are especially good at doing nothing!” — Professor S. B.

Furber from the APT group in the University of Manchester uses this sentence to

describe the zero standby power consumption in both the Amulet2 [44] and the

Amulet3 processors, both designed using an asynchronous bundled-data encoding

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 48

scheme.

When it runs out of useful work, the Amulet2 processor is set to an idle

state by a ‘halt’ instruction which stalls a signal in the asynchronous control

network. The stall rapidly propagates throughout the control circuit and brings

the whole processor to an inactive state. Since there is no global clock, the

standby power consumption of the Amulet2 processor is zero except for leakage.

When an interrupt occurs, it will activate the blocked control signal and reactivate

the whole processor immediately.

A synchronous microprocessor can also enter a low-power idle state, but only

with considerable effort. The global clock must be gated off to all parts of the

system, except for the interrupt circuit. An interrupt must gate the global clock

back on. Since the global clock still ticks in the idle state and the power overheads

of clock gating are not avoided, the standby power consumption of a synchronous

microprocessor can be quite significant compared to that of an asynchronous

microprocessor.

It can be argued that a synchronous microprocessor can also switch off its os-

cillators and phase-locked loops (PLLs). However, stopped oscillators and PLLs

take a considerable time to stabilize when they are turned back on, compromising

response time when an interrupt occurs. A poor interrupt response is not accept-

able in real-time systems. Some synchronous microprocessors require as much as

10 ms to enter and exit standby state and even fast synchronous microprocessors

have wake-up times of circa 6 µs [45]. Asynchronous microprocessors need only

a few tens of nanoseconds to wake up — several orders of magnitude faster than

synchronous microprocessors.

Asynchronous design can thus achieve near zero standby dynamic power con-

sumption quickly and efficiently with very little overhead.

In a system that spends most of its time in idle state, the standby power

consumption is especially important. An example of this is in ultra low-power

sensor network applications. A microprocessor with a 200 µA standby current will

have a maximum lifetime of 1 year when powered by an AA-size battery even if it

never leaves the standby state. In contrast, the lifetime of a microprocessor that

burns only few µA of leakage current will be completely dominated by battery

self-discharging and the active work to be done. So, ‘being good at doing nothing’

is a very useful contribution for low-power battery-powered systems.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 49

3.2.5 Fine-grain clock gating

Clock gating is an efficient technique to minimize the power consumption of the

global clock. However, in a synchronous microprocessor, clock gating is only

‘block-based’ or very ‘coarse-grain’ due to the following reasons:

• The hardware overhead for fine-grain clock gating is high since many small

circuit blocks must be gated and the power used by these dedicated clock-

gating circuits becomes significant as the granularity of clock gating be-

comes smaller.

• It is very difficult for a complex clock-gating network to ensure that all

disabled blocks power up in time. The modified clocks may generate glitches

and this imposes strict timing constraints on the gating signals and requires

careful timing verification. Avoiding clock skew and glitches is becoming a

greater challenge with the increasing performance of processors, and clock

gating makes the problem even more difficult. Thus, the granularity of

clock gating is a trade-off between power saving and the complexity of the

clock network.

Clock gating is a natural property of asynchronous logic design however. With

reference to the asynchronous pipeline using a code-data encoding as shown in

Figure 3.4, a pipeline stage sends a Request signal to its next stage(s) only when

it finishes its evaluation and generates a result. When the next stage of a pipeline

detects a Request signal, it accepts the inputs and sends an Acknowledge back

to the stage(s) making the Request; it then processes the inputs and relays the

Request signal to the succeeding pipeline stage. The Request signals are sent

forward signaling the availability of input data while the Acknowledge signals

are sent back indicating the availability of ‘spaces’ to hold the input data. Under

the control of Request and Acknowledge signals, data flows automatically in the

asynchronous pipeline; the local handshake scheme ensures that the local clock

signals are generated as needed. This is a natural way to implement fine-grain

clock gating.

Section 4.6 will present the design of an asynchronous iterative multiplier

which achieves significant power saving by using fine-grain clock gating [46]. The

multiplier is shown in Figure 3.12 (a) while its synchronous counterpart is shown

in Figure 3.12 (b). The 32×32-bit iterative multiplier has two pipeline stages, the

first adds 8 partial products together while the second iterates the result, adds

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 50

the value from the first stage, then shifts the sum right 8 bits. The multiplier

uses an iterative architecture to save hardware and normally needs four cycles to

finish a 32 × 32-bit multiplication. An ‘early-termination’ scheme is used which

increases the speed of the multiplier: if the 8 first most-significant bits are all 0

or all 1, one cycle of the multiplication can be reduced by eliminating the partial

products corresponding to these bits; similarly two or three cycles can be reduced

if the next one or two groups of 8 bits are all the same as the first group.

Stage1

Stage2

LT

LT Latches

Registers

shift 8 bits

partial products

Output

Start

Stage1

Stage2

Registers

shift 8 bits

partial products

Output

Registers

Clock

(a) (b)

de
la

y
de

la
y

Figure 3.12: An asynchronous multiplier datapath and its synchronous counter-
part

Figure 3.13 shows the activities of the asynchronous multiplier and its syn-

chronous counterpart when they execute without early termination cycles and

with 3 early termination cycles. Without early termination, as shown in Figure

3.13 (a), the synchronous multiplier has some unnecessary switching activity in

the first and last cycles: In the first cycle, only pipeline stage1 needs to do useful

work, while stage2 should be idle and wait for the data from stage1. In the last

cycle, pipeline stage1 has finished its work, and only stage2 needs to calculate

the final result. However, because in the synchronous multiplier both pipeline

register and shift register are connected to the global clock signal, both stages

operate simultaneously, thus causing unnecessary switching activity. With 3 early

termination cycles, the synchronous multiplier wastes even more energy as shown

in Figure 3.13 (b).

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 51

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�������
�������
�������
�������

�����
�����
�����
�����

��
��
��
��

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Stage2

Stage1

Shift register

Early termination cycles
Shift register

The synchronous multiplier

(a) Without early termination (b) 3 early termination cycles

Necessary activity Unnecessary activity

Stage2

Stage1

The asynchronous multiplier

Figure 3.13: The pipeline activities of two multipliers

1 2 3 4
0

10

20

30

40

50

60

70

80

90

Active multiplier cycles

Po
we

r (
m

W
 @

 1
00

 o
pe

ra
tio

ns
 p

er
 s

ec
on

d)

Asynchronous
Synchronous

Figure 3.14: The power consumptions of two multipliers

Figure 3.14 shows the power comparison between the two multipliers. As

can be seen, the fine-grain clock gating of asynchronous logic greatly reduces the

power consumption of the multiplier. More detailed information on the multiplier

design is given in Section 4.6.

To sum up, the power consumption of asynchronous and synchronous designs

was compared in this section. The comparison shows that asynchronous hand-

shake timing control can be as power-efficient as the global clock timing control

of synchronous design. The comparison also shows that asynchronous design may

have potential advantages for power saving in several areas including saving hard-

ware for speeding up the rare worst-case delays, using level-sensitive latches, zero

standby power consumption and fine-grain clock gating.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 52

3.3 Low-power asynchronous design

In the previous section, the power consumption of asynchronous and synchronous

designs was compared. Here, the power consumption of asynchronous designs

using different handshake protocols, different data representations and indications

are discussed.

3.3.1 Latch controller selection

As discussed earlier, 2-phase logic is rarely used, so only 4-phase latch controllers

are discussed in this section. 4-phase latch controllers can be either “normally-

closed” or “normally-open” depending on when and for how long the latches

they control are transparent (open). A normally-closed (opaque) latch controller

opens the latches only for a short period of time (after receiving Rin+ events and

before sending Ain+ events assuming “early” data validity). A normally-open

latch controller opens the latches when the output side is free.

The selection of a latch controller is a trade-off between performance and

power consumption. If latches are normally open, data items can pass through

the pipeline as soon as they become valid. However, any spurious transitions

or glitches are also propagated through the whole datapath, causing significant

power wastage especially when they occur in the early pipeline stages. If the

latches are normally closed, glitches are isolated from the downstream pipeline.

However, normally-closed latches suffer from the extra delay of opening the gates

once a data item is ready.

To allow a real-time tradeoff between performance and power consumption,

Lewis et al. proposed a reconfigurable latch controller which can be switched

between ‘normally-closed’ and ‘normally-open’ modes at run time [47]. Power

savings of 1.8% and 20% are reported when the normally-closed mode is used at

maximum speed and at low speed respectively. The speed penalty of the normally-

closed mode is from 6.8% to 7.8% depending on the different data validity schemes

of the 4-phase protocols.

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 53

0100 11 10

b.f

b.t

a.t

a.f

b

a
Single−rail

Dual−rail

1−of−4

d.3

d.2

d.1

d.0

Figure 3.15: Transition numbers in different data representations

3.3.2 Data representation

Data representation is an important asynchronous design issue which has a great

impact on power consumption. In this section, three commonly used data repre-

sentations are discussed — single-rail, dual-rail and 1-of-4 encodings.

Consider the average numbers of transitions of these three encoding schemes.

Figure 3.15 shows the transitions of 00 → 01 → 11 → 10 using the three data

representations. The number of transitions in single-rail circuits depends on the

historical bit series, but the average number of transitions per bit transfer is 0.5.

For dual-rail and 1-of-4 encodings, the number of transitions per bit transfer is

fixed — 1 for 1-of-4 encoding and 2 for dual-rail encoding. This analysis gives the

impression that a single-rail circuit uses half the power of its 1-of-4 counterpart

and a 1-of-4 circuit uses half the power of its dual-rail counterpart. However, this

estimated ratio of power consumptions is not accurate in real designs.

To compare the power-efficiencies of the three data representations, three ar-

ray multipliers were designed and tested. Table 3.2 shows the power consumption

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 54

Table 3.2: Power comparison of multipliers using three different data representa-
tions

Data representation single-rail 1-of-4 dual-rail

Transistor number 1456 2593 2216
Power consumption (mW) 0.247 0.696 0.936
Delay — evaluation (ns) 1.21 1.22 1.01
Delay — RTZ (ns) – 0.85 0.67

C in C out

A

Figure 3.16: The capacitance distribution of a CMOS gate

and the delay of the three multipliers which were tested using the same 0.18µm

CMOS technology and supply voltage of 1.8 volts. The throughput of the multi-

pliers is controlled at 100 million operations per second.

As can be seen from the table, the single-rail multiplier uses only 1/3 to 1/4 of

the power of the code-data encoding ones, and the power consumption difference

between the 1-of-4 multiplier and the dual-rail multiplier is only 25.6%, which

is less than expected. To explain the difference, the analysis of a basic gate, as

shown in Figure 3.16, is helpful. If the supply voltage and operating frequency

are constant, the dynamic power consumption of a CMOS circuit depends on two

factors: N — the transitions per time unit and Cload — the overall capacitance

of the circuit. The ratio of transitions of single-rail, 1-of-4 code and dual-rail is

1 : 2 : 4. However, the ratio of overall capacitances is not fixed and depends on

the real circuit implementation.

The overall capacitance of a CMOS gate comprises: Cin and Cout. Cin is

the capacitance of the input node of the gate and Cout is that due to its load

and its output node. Based on the differing proportions of Cin and Cout, these

two capacitances have different impacts on the total power consumption. For

example, if a gate drives a large load, Cout has a significant impact on the total

power consumption; otherwise, the influence of Cin dominates. Since normally a

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 55

single-rail encoding is the simplest of the three encodings, single-rail gates have

the smallest gate capacitance (Cin). A single-rail circuit also has the smallest

number of transitions. These two factors result in a 70% power saving of a single-

rail circuit compared to a code-data one.

The power comparison between a dual-rail circuit and a 1-of-4 circuit is more

complex. Dual-rail encoding is more straightforward than 1-of-4 encoding, so a

dual-rail gate normally contains a smaller number of transistors and uses a smaller

silicon area than its 1-of-4 counterpart. Both these factors result in a smaller

gate capacitance, which partly compensates for the larger number of transitions.

As discussed before, the different sizes of Cin and Cout cause differing impacts

on the total power consumption. When driving large loads, such as powerful

inverters and long wires, the power dissipated via Cout dominates the total power

consumption, so a 1-of-4 gate can save almost half the power when driving large

loads. When driving small loads, the power dissipated via Cin dominates the total

power consumption. Because a dual-rail gate has a smaller gate capacitance and

a larger number of transitions than a 1-of-4 gate, the power saved by using a

1-of-4 encoding becomes less significant.

Several basic gates were tested to compare the power consumption of 1-of-4

and dual-rail encoding schemes. These gates were tested under two circumstances:

normal load and no load conditions. In the normal load case, each gate drives a

load of 4 inverters having the same input capacitance as the gate. These gates

are controlled to run at the speed of 500 million operations per second. The

experimental power consumptions and delays are shown in Table 3.3.

Inversion is ‘transistor-free’ and can be implemented by crossing wires in dual-

rail and 1-of-4 encodings. AND-gates and OR-gates have the same circuit im-

plementation except for the orders of inputs. XOR-gates and XNOR-gates also

have the same implementation. As can be seen from the table, for a 1-of-4 gate,

the large gate capacitance counteracts the small number of transitions. Overall,

1-of-4 circuits are more power efficient (0% — 100%) than dual-rail circuits, but

how much power saving a 1-of-4 gate can achieve depends on the load capacitance

it drives.

The power efficiency advantage of 1-of-4 encoding is especially significant when

wire capacitance dominates the overall capacitance, for example, in a long dis-

tance interconnection. Figure 3.17 shows two interconnection schemes. One

scheme uses dual-rail encoding; the other has dual-rail data inputs and outputs,

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 56

Table 3.3: Power and delay comparisons

AND/OR-gates
1-of-4 dual-rail Ratio

Power (normal load) (µW) 126.5 181.6 1/1.44
Power (without load) (µW) 86.0 89.9 1/1.04
Delay (evaluate) (ns) 0.27 0.24 1/0.89
Delay (RTZ) (ns) 0.32 0.26 1/0.81

XOR/XNOR-gates
1-of-4 dual-rail Ratio

Power (normal load) (µW) 132.0 185.8 1/1.41
Power (without load) (µW) 88.4 100.1 1/1.11
Delay (evaluate) (ns) 0.27 0.24 1/0.89
Delay (RTZ) (ns) 0.33 0.26 1/0.79

but uses an internal dual-rail to 1-of-4 code encoder and decoder. Based on exper-

imental data, the relation between the power increase and the wire capacitance

increase is shown in Figure 3.18. The power overhead of the encoder and decoder

is 99.4 µW at the speed of 500 operations per second. As can be seen, when wire

capacitance is greater than 35 fF (about 150 µm of metal in a 0.18 µm CMOS

technology — not very long), even with encoding and decoding overheads, 1-of-4

encoding is more power efficient than dual-rail encoding. So, even in dual-rail

circuits, it is worth thinking about transferring the dual-rail encoding to 1-of-4

encoding when driving long distance interconnections.

C

C

C

C

aout.t

aout.f

bout.t

bout.f

ain.t

bin.f

bin.t

ain.f

ain.f
bin.f

bin.f
ain.t

ain.f
bin.t

ain.t
bin.t

bout.t

bout.f

aout.t

aout.f

1−of−4Dual−rail

Figure 3.17: Two schemes for long distance interconnection

To conclude, 1-of-4 encoding is more power efficient than dual-rail encoding

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 57

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Capacitance (fF)

Cu
rre

nt
 (u

A@
50

0M
Hz

)

1−of−4 encoding
dual−rail encoding

Figure 3.18: Power vs. wire capacitance

but the power saving depends on the ratio of gate capacitance and load capaci-

tance. 1-of-4 encoding is about 100% more power-efficient than dual-rail encoding

in long distance interconnections.

3.3.3 Indication selection

Indication is a very important concept in speed-independent and delay-insensitive

asynchronous design. An asynchronous design can be either strongly indicating

or weakly indicating [28] defined as follows:

• An asynchronous circuit is strongly indicating if (1) it waits for all inputs

to become valid before it starts to generate valid outputs, and (2) it waits

for all inputs to become empty (normally return-to-zero) before it starts to

issue an empty output.

• An asynchronous circuit is weakly indicating if (1) it starts to generate

valid output before all of the inputs are valid, although it will not generate

a complete valid output until all the inputs are valid, and (2) it starts to

generate empty output before all of the inputs are empty, although it will

not generate a complete empty output until all the inputs are empty.

Strongly indicating circuits are usually slow and power hungry because their

indication constraint is too strict. The rules of weakly indicating circuits are more

CHAPTER 3. POWER-EFFICIENT ASYNCHRONOUS DESIGN 58

flexible as long as their valid/empty outputs indicate their valid/empty inputs,

so weakly indicating circuits are normally faster and more power-efficient than

strongly indicating ones.

3.4 Summary

In this chapter, the power-efficiencies of asynchronous and synchronous logic de-

signs were compared. Replacing a global clock signal by locally generated hand-

shake signals does not necessarily result in a lower power consumption. However,

asynchronous design does have low-power advantages over synchronous design in

some areas, especially in low-performance circuits. This power-efficiency comes

from fine-grain clock gating, avoidance of hardware complexity because of worst-

case delay, level-sensitive latches, zero standby dynamic power consumption and

efficient switching between active and idle states.

Different asynchronous design styles were also compared in terms of power

consumption. Because normally-closed asynchronous pipeline latch controllers

can efficiently block glitches, they are more power-efficient than normally-open

ones at the cost of speed. Single-rail circuits are much lower power than code-

data encoded circuits. Within code-data representations, a 1-of-4 coding circuit is

normally more power-efficient than a dual-rail one, but the power saving depends

on the ratio of gate capacitance to load capacitance. Weakly-indicating circuits

are normally more power-efficient than strongly-indicating ones because of their

small hardware requirements.

The next chapter will present low power techniques for some of the main

components of data processing — arithmetic unit designs.

Chapter 4

Low-power arithmetic unit design

Arithmetic and logic units are the main components that perform data process-

ing. Although arithmetic and logic units contribute only a small proportion of

the overall power consumption of soft-programmable applications, they can use a

significant proportion in stream-based and ‘hard’-controlled applications such as

multimedia and stream-based encryption/decryption circuits. Arithmetic units

also perform other calculations required in control circuits, such as address and

index calculations, thus increasing the power-efficiency of arithmetic and logic

units is very important. Since logic operations such as AND, OR and XOR

are quite simple, the potential for power saving is small and not discussed here.

Floating-point computations and integer divisions can be implemented using inte-

ger addition and multiplication and many embedded data processing systems do

not support floating-point computations or integer division. Hence, this chapter

discusses low-power techniques for integer addition and multiplication only.

Since arithmetic units perform data processing and are normally in the critical

paths, their speeds are extremely important and low-power techniques must have

little or no impact on their performance. The trade-off between speed and power

saving should be very carefully studied before adopting a low-power technique.

Power saving achieved by a significant performance sacrifice is not acceptable.

In this chapter, the energy delay product (EDP) is used to evaluate the power-

efficiency of arithmetic units together with the energy per operation metric.

The remainder of this chapter is organized as follows: Section 4.1 gives a brief

introduction to integer adder and multiplier design; Sections 4.2 and 4.3 discuss

two implementation issues important to power consumption — logic styles and

59

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 60

c 1c n c 0

s n−1 s 1 s 0

a n−1bn−1 a 1b1 a 0b0

c 2...FA FA FA

Figure 4.1: A ripple carry adder

data representations; Section 4.4 presents low-power adders and proposes a carry-

lookahead adder based on input data characteristics; Section 4.5 describes low-

power multiplier techniques; Section 4.6 proposes a low-power integer multiplier;

and Section 4.7 sums up the chapter.

4.1 Introduction

A multi-bit adder can be implemented using a ‘basic building block’ — a single-

bit full adder. The logic function of such a full adder is very simple — it adds

two bits of the same order (a and b) and a carry bit (c) from a lower-order adder

together to generate one sum bit (s) and one carry bit (Cout). The carry bit is

propagated to a higher-order adder. The logic equations of s and Cout are as

follows:

s = abc + abc + abc + abc

Cout = ab + ac + bc

The fundamental problem in constructing a multi-bit adder from a number of

single-bit adders is propagating the carry from the low-order adders to the high-

order ones. The most straightforward approach to solve carry propagation is with

a ripple-carry adder as shown in Figure 4.1. In the figure, s = a + b; a0, b0 and

s0 are the least significant bits; an−1, bn−1 and sn−1 the most significant. The

lowest-order adder normally has a carry input of 0; the carry-out bit of m-th

adder is fed to the carry-in of (m + 1)-th adder.

The critical path of a ripple-carry adder is from a0, b0 or c0 through the

whole carry chain to cn or sn−1, so the worst-case delay of a ripple-carry adder

is n × carrydelayfulladder. Although the slowest adder structure, a ripple-carry

adder uses the least hardware and has a regular architecture, which make it the

cheapest and most power-efficient adder. An n-bit ripple-carry adder has a delay

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 61

of O(n). However, since the constant delay factor of a single-bit full adder is

small, short ripple-carry adders are often used as building blocks to construct

larger adders.

The basic principle of multiplication is also very simple. Given a multiplicand

a = an−1an−2...a0 and a multiplier b = bn−1bn−2...b0, we have c = a × b and

c =
n∑

i=0

a · bi · 2
i

where a · bi · 2
i are called partial products. If the current bit of b (bi) is 1, the

corresponding partial product equals the multiplicand shifted to the left by i bits

(a · 2i); otherwise, the partial product is 0. The function of multiplication is to

sum the partial products. To improve speed, carry-save adders [48] are used to

add partial products to yield a multi-bit partial sum and partial carry. A carry-

propagate adder [48] finally adds the partial sum and the partial carry together to

produce the final result. A multiplier using carry-save adders is shown in Figure

4.2.

0

a4b0 a3b0 a2b0
0

a1b1a2b1

0 0 0

a4b1

a4b2

a3b3 a2b3 a1b3 a0b3

a4b3

a3b4 a0b4

a4b4

p0p1p2p3p4p5p6p9 p8 p7

a0b0a1b0

a0b1a3b1

a3b2 a2b2 a1b2 a0b2

a1b4a2b4

FA FA FA FA

FA FAFAFA

FA FA FA FA

FA FAFAFA

FA FA FA FAcarry−save adders

carry−propagate adder

Figure 4.2: A 5 × 5-bit array multiplier

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 62

4.2 Logic style selection

The selection of logic style has a significant impact on the overall speed and power

consumption of a circuit. As the most commonly-used technology, conventional

static CMOS logic is often used in arithmetic designs. Complementary static logic

(CSL) has advantages in both speed and power consumption. It promises that

all signals within circuits are fully switched. This characteristic not only min-

imises static power consumption but also ensures that CSL circuits have ‘sharp’

transitions, which minimises short-circuit current. Another advantage of CSL

is that the layout for a CSL gate is regular and easy to design because of its

complementary structures. Moreover, CSL has high immunity to electrical noise

and environmental variations. This characteristic is extremely important in sub-

micron VLSI design and is attractive to VLSI designers.

Pass-transistor logic (PTL) is an alternative logic style in arithmetic circuit

design which uses a small number of transistors to construct XOR-gates and

multiplexers, the basic gates for building arithmetic units.

A pure PTL gate is area-efficient because it uses only n-transistors which are

normally half the size of p-transistors. However, n-transistors have a problem in

passing logic 1, which results in a low voltage swing [49]. Low signal swing not

only affects speed but also results in poor noise immunity which deters designers

from using only n-pass transistor logic.

Complementary pass-transistor logic (CPL) uses two n-transistor networks to

increase noise immunity which makes full use of the advantages of n-transistors,

which are faster and smaller than p-transistors. However, CPL has disadvantages

in terms of performance and power-efficiency as follows:

• Since CPL circuits use only n-transistors, the outputs of CPL gates do not

exhibit a full voltage swing. The degraded output signals increase static

power dissipation.

• The low signal swings decrease circuit speed.

• A swing restoration circuit is needed on every output node, which causes

extra delay and power consumption.

The most serious problem of CPL is evident when several gates are cascaded

as shown in Figure 4.3. The voltage swing on X is Vdd − Vtn1 and on Y is

Vdd − Vtn1 − Vtn2, where Vdd is the supply voltage; Vtn1 is the threshold voltage

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 63

of transistor T1 and Vtn2 is the threshold voltage of transistor T2. If the signal

swing of cascaded pass transistors is too low, the circuits become very slow, and

may even fail to switch the subsequent gate (the inverter in the figure).

Vdd

Vdd

Vdd

Vtn2Vdd Vtn1

Vdd Vtn1

out

Y:

X:
B:

C:

A: T1

T2

Figure 4.3: The low voltage swing of a cascaded CPL circuit

Double pass-transistor logic (DPL) avoids the low signal voltage swings of

CPL by adding p-transistors in parallel with n-transistors. Thus, the problems

of low noise immunity and speed degradation caused by reduced voltage swing

can be solved. However, the additional p-transistors result in increased gate

capacitances.

To compare the speeds and power efficiencies of CSL, CPL and DPL cir-

cuits, three 8×8-bit multiplier arrays using CSL, CPL and DPL logic styles were

designed and the comparison results are shown in Figure 4.4 (EDP represents

energy delay product). As can be seen from the figure, the CSL multiplier per-

forms worst in terms of speed and power consumption because it has the biggest

active capacitance. The CPL multiplier has the lowest power consumption. The

DPL multiplier has the best speed. The energy delay product of the CPL mul-

tiplier is almost the same as that of DPL.

However, since the experiments do not measure leakage and static power con-

sumption, DPL may be a better choice in low-power and low-performance em-

bedded systems than CPL because DPL normally has lower leakage and static

power consumption than CPL. The conclusions drawn from these experiments

are compatible with the result of experiments elsewhere [50].

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 64

Power Delay EDP0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ra
tio

DPL
CPL
CSL

Figure 4.4: Comparison of DPL, CPL and CSL 8×8-bit multiplier

4.3 Data representations

A power consumption comparison of different asynchronous data encoding schemes

was made in Section 3.3.3 which showed that data encoding selection has a sig-

nificant impact on the overall power consumption of circuits. The choice of data

representations also has a significant impact on the overall power consumption of

an arithmetic unit.

The two’s complement data representation scheme is the most commonly-used

because it is easy to perform arithmetic operations (such as add and subtract)

and has a unique zero. The less significant bits of a two’s complement number

represent actual data bits; the most significant bits are used to represent the

sign. The most significant series of 0 and 1 bits are called the sign-extension bits.

The sign-extension scheme is the major factor which causes significant transitions

when data switches from positive to negative or vice-versa. For example, changing

from -1(11...1) to 0(00...0) toggles all bits through the entire word-width. There-

fore, the use of a two’s complement representation results in significant switching

activity in applications where most data values are small signed numbers and the

values frequently switch between positive and negative.

A one’s complement data representation has sign-extension problems similar

to the two’s complement approach. Another representation is “sign and magni-

tude” where an n-bit sign and magnitude number uses the least significant n− 1

bits to represent the data, and the most significant bit to represent the sign.

Since only one bit indicates the sign, there is no sign-extension problem when

using this system.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 65

Chandrakasan and Brodersen analyze and compare the power consumption

of a 16-bit bus when it transfers Gaussian data using two’s complement and sign

and magnitude representations [51]. The results show that sign and magnitude

is much more power-efficient than a two’s complement representation, and the

greatest power saving is when the signal dynamic range is smallest (which means

that data are small and sign bits dominate the word-width) and the signal is

highly anti-correlated (which implies that the signal changes frequently between

positive and negative).

However, arithmetic units to support sign and magnitude representation are

difficult to design and adapt to conventional processing systems. The additional

hardware and delay overhead may outweigh the power saving of replacing a two’s

complement representation by a sign and magnitude one. An alternative approach

for power saving may be to design a circuit which supports a two’s complement

interface, while changing the internal data representation to reduce the num-

ber of transitions due to the two’s complement representation. A sign-exchange

algorithm with low hardware and speed overheads is proposed in Section 4.6.

4.4 Adder design

4.4.1 Architecture selection

Selecting an adder architecture is a tradeoff between speed, power consumption

and hardware cost. Ripple-carry adders are efficient in terms of hardware and

power consumption but are slow; however a ripple-carry scheme is often used to

construct small basic blocks for fast and complex adders.

Carry-select adders [52] use hardware duplication to increase speed. A carry-

select adder is subdivided into several blocks each containing two small ripple-

carry adders. One pre-calculates the result with a carry input of 1 and the other

simultaneously pre-calculates the result with a carry input of 0. The carry bit

from a lower-order block controls a multi-bit multiplexer to select the correct

output. Therefore the worst carry chain delay of an n-bit ripple-carry adder is

reduced by parallel calculation. In a carry-select adder, each block pre-calculates

two results, but only one is useful and the discarded result causes power wastage.

Carry-lookahead adders [53] also comprise several blocks, each containing one

small ripple-carry adder and carry lookahead logic. The small ripple-carry adder

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 66

performs normally. The carry lookahead logic generates a carry bit much faster

than the carry rippling from the least significant bit of the block to the most

significant bit. Thus the worst-case carry chain delay of two blocks is reduced to

the overall delay of a small ripple-carry adder and the carry lookahead logic. Since

the ripple-carry adder will eventually generate the carry bit, the carry lookahead

circuit is redundant and uses extra power.

To further improve adder speed, more complex architectures have been pro-

posed, such as carry-skip adders and carry arbitration adders [54].

A lot of research has been done to compare the power consumption of adders

using different architectures [50] [2]. Table 4.1 [2] shows the worst-case delay,

area, power consumption and energy delay product (EDP) of 6 different adder

architectures (using a 2-micron CMOS technology and a 5 volt supply voltage).

Table 4.1: Comparison of different adder architectures [2]

Architectures Delay (ns) Power EDP Area (mm2)
(mW@2MHz) (ratio)

Ripple carry 51.4 0.43 1 0.26
Constant carry skip 28.6 0.49 0.63 0.33
Variable carry skip 22.8 0.50 0.52 0.49
Carry lookahead 22.5 0.58 0.59 0.53
Carry select 18.6 0.69 0.58 0.88
Conditional sum 21.2 0.84 0.81 1.14

As can be seen from the table, generally, the faster an adder is, the greater

the power and area usage. If a given performance constraint can be met, the

simplest architecture is the best choice for power saving. Moreover, under spe-

cific circumstances, custom-designed architectures are needed to achieve the best

power efficiency. For example, if an adder is used to increment a current number

by a small offset, half adders can be used to replace full adders in the high-order

bits.

4.4.2 The design of an asynchronous carry-lookahead adder

based on data characteristics

Asynchronous logic design is claimed to have speed and power advantages over

synchronous logic design because an asynchronous circuit can use simple hardware

to achieve an ‘average latency’ which is smaller than the worst-case delay of

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 67

FA

a b Req_in

c.f
c.t

d.t
d.f

C

FA
+

FA
+

FA
+

...

Req_out

Req_in

...

a

b

a b aa aa

b b

c.t c.f

Req_in

Full adder

sum

Req_in

a b

c.t

d.t

d.f

sum

Req_in

Req_in

c.f b

a

Req_in

Figure 4.5: A hybrid asynchronous adder which displays average-case latency

its synchronous counterparts. Asynchronous ripple-carry adders are commonly-

used examples to demonstrate the average latency of asynchronous design. The

schematic of a precharged asynchronous ripple-carry adder is shown in Figure

4.5 [28].

This is a hybrid asynchronous circuit, which has single-rail inputs and outputs,

but whose carry chain uses dual-rail 4-phase signaling. The carry bits of this adder

are weakly indicating. Therefore, if the two inputs (a and b) of the adder are equal,

the carry-generating circuit can generate a carry output and propagate it to the

high-order adder without waiting for a valid carry input from the low-order adder.

Only when a 6= b does the adder need to wait for a low-order carry input. So there

is only a 50% probability that the adder needs to propagate carries. The carry

chain of the asynchronous ripple-carry adder is shown in Figure 4.6. The weak

indication of the asynchronous full adders makes the carry chain discontinuous —

every node has a 50% chance to break the chain. Thus the worst-case latency of

an addition depends on the longest carry chain segment in the addition. Figure

4.7 plots the average latency of a weakly-indicating asynchronous ripple-carry

adder as a function of its word-length when it is fed with randomly generated

numbers [6]. For a weakly-indicating 32-bit ripple-carry asynchronous adder, the

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 68

Longest carry chain

Figure 4.6: A weakly indicating asynchronous carry chain

5 10 15 20 25 30
1.5

2

2.5

3

3.5

4

4.5

5

5.5

word length

M
ea

n
ca

rry
 p

ro
pa

ga
tio

n
di

st
an

ce

Figure 4.7: Average size of the longest carry chain for different word lengths
assuming random data distribution [6]

average latency is only 5.34 full adder delays, which is smaller than the worst-case

delay of a much more complex synchronous adder.

Unfortunately, this simulation does not reflect what is encountered in practice;

here the low average latency of asynchronous adders is based on the assumption

that all input vectors are random numbers. However, in real applications, the

input operands fed to an asynchronous adder are not random and this ‘average

latency’ of asynchronous adders is not generally achieved. Garside demonstrated

the unbalanced distribution of both data processing and address calculations in

the Dhrystone benchmark [6]. In this work, ten sets of input vectors were used to

test the practical average latency of asynchronous adders. The characteristics of

the input vectors and the average latencies of a weakly-indicating asynchronous

adder when using these vectors are shown in Table 4.2.

The vectors are taken from the ALU and address incrementer (discarding

sequential calculations) of an ARM microprocessor running several benchmarks.

Figure 4.8 and Figure 4.9 show the different distributions of the longest carry

propagate distance. For rand, the carry chain lengths congregate in the range 2

to 7, so the average carry propagate distance is about 5.4. For jpeg(d), the carry

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 69

Table 4.2: Input vectors

Average carry
Vectors Description propagate distance

(full adders)
Rand Randomly generated inputs 5.34
Gauss Gaussian samples 14.78
adp(a) Branch calculations of a media program 12.25
adp(d) Data processing of a media program 12.20
espr(a) Branch calculations of an Espresso algorithm 14.90
espr(d) Data processing of an Espresso algorithm 16.96
jpeg(a) Branch calculations of a JPEG program 10.40
jpeg(d) Data processing of a JPEG program 11.83
qsort(a) Branch calculations of a quick sort program 10.44
qsort(d) Data processing of a quick sort program 16.04

chain lengths separate onto the two ends of the X-axis. Many carry chains are

smaller than 8 full adder delays, while many of them exceed 24. This yields a

mean carry propagate distance of 11.8. For jpeg(a), a significant extra peak exists

at the 16 point and a mean carry propagate distance of 10.4 full adder delays. As

can be seen from the comparison, the actual average carry propagate distance of

an asynchronous adder is much bigger than the average carry propagate distance

of 5.3 based on random numbers.

0 5 10 15 20 25 30
0

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

carry chain length

pe
rc

en
ta

ge
 o

f o
pe

ra
tio

ns
 o

cc
ur

rin
g random numbers −−− 5.3

jpeg data processing −−− 10.4
jpeg address calculation −−− 11.8

Figure 4.8: Longest carry propagate distance distribution

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 70

5 10 15 20 25 30
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

carry chain length

pe
rc

en
ta

ge
 a

cc
um

m
ul

at
io

n

random numbers
jpeg data processing
jpeg address calculation

Figure 4.9: Proportion of longest carry chains exceeding given length

An interesting characteristic of Figure 4.8 is that the high percentage dis-

tributions gather at the two ends — the longest carry propagate distances are

either very small or very big. Through further analysis of data processing op-

erations it was found that the short carry chains represent the additions of two

inputs having the same signs (they are both negative or positive). The long carry

chains represent the additions of a small negative number and a positive num-

ber. For example, 0−1 (0xFFFFFFFF+0x00000000) has the longest carry chain

containing 32 full adder delays. If it is assumed that there is a 50% chance of

adding positive numbers and negative numbers, the average latency of an n-bit

asynchronous ripple-carry adder is about n/2 full adder delays.

The reason why a significant proportion of address calculations have a longest

carry propagate distance equal to half the word length is due to compilation

characteristics and the specific CPU architectures. In the tests, the ARM pro-

grams are loaded at the address 0x8000. As is well known, branches dominate the

trace of a program and among branches, jump back instructions having a small

jump distance are the most common. The specific loaded addresses and small

negative offset result in a longest carry chain segment. For example, 0x8010 - 9

(0x00008010+0xFFFFFFF7) has a carry chain that contains 16 full adder delays.

Thus more than 50% of address calculations gather in the area of half of the word

length.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 71

FA FA FAFA

b3 a3 b2 a2 b1 a1 b0 a0 Req_in

c.t
c.fd1.t

d1.f

blockblockblockblockblockblockblockblock

a0

b0

a0

b0

a1

b1

a1

b1

a2

b2

a2

b2

a3

b3

a3

b3

select

d.f

d.t

M
ul

tip
le

xe
r

Detector

select

Req_in

Req_in

Figure 4.10: The proposed adder

4.4.3 An asynchronous carry-lookahead adder

Because long carry delays usually occur when adding a negative and a posi-

tive number, for applications where most operands are positive numbers, asyn-

chronous adders still have a low average latency advantage. However, if an ap-

plication contains many additions of small positive and negative numbers and

the average latency of an asynchronous adder cannot meet a given performance

requirement, hardware additions are needed to speed up the asynchronous adder.

High performance techniques used in synchronous adders can also be used for

asynchronous adders. However, another method can be deduced from the obser-

vation mentioned above. If there is a pair of same-order input bits equal to each

other, a carry output can be generated before the arrival of a carry input and the

carry chain is broken at this node.

A fast asynchronous adder is shown in Figure 4.10. A 32-bit adder is sub-

divided into 8 blocks, each containing a 4-bit asynchronous ripple-carry adder

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 72

and a detector. The detector checks if there is a bit pair that are equivalent.

If not, the carry from the lower-order block is propagated over 4 bits directly

to the high-order block; otherwise, the carry bit is propagated in a conventional

way. This adder is similar to a synchronous carry-lookahead adder; it is efficient

and has low hardware-overhead. It reduces the worst-case delay by a factor of

8 (ignoring the multiplexer delay) and the hardware overhead includes only 7

detectors and multiplexers. Using a precharge logic style, the detector is small

and fast. The hardware overhead is about 25% of the overall transistors in the

adder. The delay of the detector is not on the critical path of the adder since all

the detectors execute in parallel at the beginning of an addition. The delay of a

multiplexer is 0.8 of a full adder delay. The worst-case delay of the 4-4-4-4-4-4-4-4

(8,4) scheme (8 blocks and each block has 4 full adders) is 7× 1 + 7× 0.8 = 12.6

full adder delays. The worst-case delay can be minimized by reorganizing the full

adders and a 5-5-5-5-5-7 scheme is tested for comparison. Figure 4.11 shows the

evaluation speeds (without including the delay of the completion detector) of the

different schemes. As can be seen, the (8,4) scheme is good in terms of speed and

it keeps the detectors at a reasonable size. Using the proposed technique, the

average latency of address calculation is reduced by 44% and the average latency

of data processing is reduced by 53% with a 25% hardware overhead compared

to the ripple-carry adder shown in Figure 4.5.

rand Guass adp(a) adp(d) espr(a) espr(d) jpeg(a) jpeg(d) qsort(a) qsort(d)
0

2

4

6

8

10

12

14

16

18

Benchmarks

m
ea

n
ca

rry
 p

ro
pa

ga
tio

n
di

st
an

ce

5−5−5−5−5−7
4−4−4−4−4−4−4−4
ripple−carry

Figure 4.11: Delay comparison of three asynchronous adders

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 73

4.4.4 Completion detector design

The delays in Figure 4.11 do not include the delays of an asynchronous detector

which indicates the completion of additions. A completion detector can greatly

affect the overall speed because it has a C-gate with a fan-in of n (see Figure

4.5). Nielsen and Sparsø [55] combined strongly indicating and weakly indicating

full adders to minimize the number of nodes which need to be checked. However,

this scheme also increases the possibility of carry dependence, which affects the

average latency of asynchronous adders (a 24.6% performance loss based on the

benchmarks).

A tree-style detector is used in the proposed adder as shown in Figure 4.12 (a);

its delay can be reduced by several inverter delays by interlacing n-pass-transistor

gates and p-pass-transistor gates as shown in Figure 4.12 (b). This tree detector

is fast because it detects the completion of carries in parallel, so for n-bit adders,

it has a log2n-level logic delay. Moreover, the completion signal is propagated

concurrently with the carries, so the delays mostly overlap and the detector’s

contribution to the overall delay is small.

To improve the speed of the completion detector, drivers are added for long

wires. Because the pass transistors in the completion detectors are closed after

return-to-zero phases, the internal nodes after the pass transistors need to be

precharged before the next addition. When using n-pass-transistor gates and p-

pass-transistor gates together, the nodes after the n-transistors are precharged to

1 and those after the p-transistors to 0.

4.4.5 Experimental results

The proposed adder was designed using a 0.18µm SGS-Thomson CMOS technol-

ogy. An asynchronous ripple-carry adder and a synchronous carry-select adder

were also designed for comparison as shown in Table 4.3. The simulations are

schematic-based and wire capacitances are ignored; the supply voltage is 1.8 volts.

The use of a dual-rail internal carry chain not only results in a low average

latency but also reduces unnecessary switching activity caused by glitches from

the carry chain, because carries are not propagated until they are valid. However,

the dual-rail carry chain does not yield low power consumption although it min-

imizes glitches, because after each operation, the carry chain needs to return to

zero, introducing extra transitions. A similar problem occurs with the completion

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 74

npass2pass1

...
...

...
...

(a)
complete

nd1

d1

Local wires can use pass−transistors only.

nd2

d2d3

nd3

d4

nd4
pass1pass2

Long wires need drivers.

(b)

(c)

Sum generation circuitb

b

sum

a

a

c.t

Figure 4.12: The pass-transistor tree completion detector and sum generation
circuit

detector. This is the reason why the asynchronous ripple-carry adder does not

halve the power consumption of the synchronous carry-select adder as expected,

although it uses less than half of the hardware. For this reason, the sum gener-

ation circuit does not use a precharge logic style but instead uses pass-transistor

logic as shown in Figure 4.12 (c).

As can be seen from Table 4.3, the proposed adder is 27% faster than the asyn-

chronous ripple-carry adder in data processing and 19% faster than the ripple-

carry adder in address calculation at the cost of 25% hardware overhead and 15%

power overhead when running these benchmarks. For the worst-case latency, the

proposed adder is more than twice as fast as the ripple carry adder. The pro-

posed adder is also faster than a synchronous carry-select adder in both data

processing and address calculation. For power-efficiency, the proposed adder us-

ing pass-transistor sum circuits is only slightly better than the carry-select adder.

This is due to the return-to-zero operations of the dual-rail carry chain and the

completion detector. Without return-to-zero, the synchronous adder also saves

transitions when the current operand pair is similar to the one it has just finished.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 75

Table 4.3: The comparison of different adders

Adders proposed proposed pass- asynchronous synchronous
precharged transistor ripple-carry carry-select

worst-case delay 1.68 1.68 3.48 1.38
transistor number 1,730 1,690 1,332 3,144

area (ratio) 0.5 0.5 0.4 1
rand delay 1.18 1.18 1.11 1.38

power 0.51 0.45 0.40 0.64
Gauss delay 1.23 1.23 1.69 1.38

power 0.46 0.43 0.37 0.56
data delay 1.28 1.28 1.75 1.38

processing power 0.48 0.42 0.37 0.45
address delay 1.18 1.18 1.45 1.38

calculation power 0.45 0.42 0.35 0.45

4.5 Multiplier design

As described in the first section, a multiplier often has a tree architecture which

contains an array of one-bit full adders. Low-power multiplier techniques usually

focus on two aspects: reducing the overall capacitance and reducing the num-

ber of transitions within the full-adder array. Reducing capacitance is normally

achieved by low-level circuit optimizations and reducing transition numbers usu-

ally employs high-level optimizations, for example, using a more efficient data

representation and multiplication algorithm. The remainder of this chapter will

address these two aspects of low-power design.

4.5.1 Basic building blocks and architectures

Multipliers can be constructed using a number of of basic building blocks such

as 1-bit full adders. Such a full adder has three inputs and two outputs and

hence it is also called a 3-2 adder. Figure 4.2 shows the architecture of an array

multiplier. It is simple but slow because it adds partial products serially and has

a processing delay of O(n).

The long latency of an array multiplier can be reduced to O(logN) using

a tree architecture which adds n partial products in parallel and generates n/2

‘middle variables’ (partial sums). These n/2 partial sums would then be added to

generate n/4 partial sums, and so on; a tree multiplier therefore has a processing

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 76

delay of O(log2N). A Wallace tree architecture [56] uses 3-2 adders to achieve high

performance as shown in Figure 4.13 (a). However, because a Wallace tree uses 3-

2 adders as basic building blocks and a 3-2 adder consumes 3 inputs and generates

2 outputs, it reduces partial products only at the rate of log1.5N . Moreover, a

Wallace tree is difficult to implement because, as can be seen from the figure, the

full adders and the interconnections are arranged irregularly.

CSA CSA

CSACSA

CSA

CSA

4−2 adder 4−2 adder

4−2 adder

(b)(a)

Figure 4.13: Two 8-2 tree adders using 3-2 adders and 4-2 adders

With the intention of reducing architectural complexity, more efficient adder

elements should be created to support more regular tree structures. A 4-2 adder,

having 4 inputs and 2 outputs, can be used to achieve this goal. A binary tree

architecture using 4-2 adders is shown in Figure 4.13 (b). The binary tree ar-

chitecture reduces partial products at the rate of log2N , so it is superior to a

Wallace tree in terms of speed. The binary tree architecture also has the advan-

tage of regularity, which contributes to reductions in area, delay and switching

capacitance of internal wires.

A 4-2 adder can be viewed as a logic component constructed from two 3-2

adders as shown in Figure 4.14 (a). As can be seen from the figure, Cout is not a

function of Cin, so there is no carry propagation along adder rows with the same

order. This is the key idea behind a 4-2 adder. By considering Cin and Cout as

two intermediate variables, the adder consumes 4 inputs and produces 2 outputs.

Although a 4-2 adder can be synthesized by using two 3-2 adders, a faster

and smaller implementation is possible. A DPL (double pass-transistor logic) 4-2

adder as used in the Amulet3 multiplier [57] is shown in Figure 4.14 (b); this is

faster than the one shown in Figure 4.14 (a) and its delay is only 1.5 (instead of

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 77

3−2 adder

3−2 adder

P2 P3 P4P1

PS PC

CinCout

nCinCin

Cout nCout

PC

PS

P4

P3

P2

P1

(b)

(a)

Figure 4.14: Two ways of implementing a 4-2 adder

2) full adder delays.

More complex basic adders can be used, for example a 5-3 adder [58], but be-

cause of their complexity and the large circuit size, these adders are not discussed

here.

4.5.2 Commonly-used algorithms

Modified Booth’s algorithm

Since adder arrays only combine partial products, specific algorithms are needed

to generate these partial products. The simplest algorithm, already mentioned,

scans a multiplier bit by bit and if the current bit is 0, the corresponding partial

product is 0, otherwise it equals the multiplicand. This algorithm generates n

partial products where n is the word length of the multiplier. A more efficient

algorithm called the “modified Booth’s algorithm” [59] generates only n/2 partial

products thus reducing partial product additions by a factor of two.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 78

The mathematical principle behind the modified Booth’s algorithm using a

two’s complement representation is illustrated in equations as follows:

A = B × C

C = −cn−1 · 2
n−1 +

n−2∑

i=0

ci · 2
i (4.1)

C =
n/2−1∑

i=0

(s2i + s2i+1 − 2 · s2i+2) · 2
2i+1 + c0 (4.2)

where B is the multiplicand, C is the multiplier, s0 = 0; sn = cn−1 and s1...sn−1 =

c1...cn−1.

Let ki = s2i + s2i+1 − 2 · s2i+2, so ki is in the set of {−2,−1, 0, 1, 2}. Different

operations on the multiplicand B are based on the different values of ki as shown

in Table 4.4.

Table 4.4: The modified Booth’s algorithm scheme

Bits group (ki) Operation V
000 +0 0
001 +B 0
010 +B 0
011 +2B 0
100 -2B 1
101 -B 1
110 -B 1
111 +0 0

In the table, ‘+0’ indicates the corresponding partial product is 0; ‘+B’ indi-

cates the partial product is B or the multiplicand; ‘+2B’, ‘-B’ and ‘-2B’ indicate

multiplicand weightings. V is a ‘forced carry-in’ to allow the negative (−B,

−2Bx) partial products to be implemented with bitwise inversion (−B = B +1).

Hence, V is added to the least significant bit of the partial product.

Improved sign extension algorithm

When a partial product is negative, it is necessary to extend its sign bits to the

most significant bit (MSB). This requires more adders in a multiplier array and

consumes extra power. An improved sign extension algorithm [60] was proposed

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 79

to reduce the number of the sign bits needing to be extended. This improved sign

extension algorithm is based on the observation of the following equations:

Positive numbers: 00...0 0xxxxx = 11...11 100000 + 1xxxxx

Negative numbers: 11...1 1xxxxx = 11...11 100000 + 0xxxxx

If a 4-2 architecture is used, the ‘triangle’ of 1s (most significant bits) of the

four partial products can be pre-added to a string of ‘10101011’ as shown in

Figure 4.15. The sum of the rest of the 31 least significant bits of the four partial

products is processed as normal. The string of ‘10101011’ can be distributed into

the four partial products. Since the third, the fifth and the seventh bits of the

string are zero, the inverted most significant bits of the second, the third and the

fourth partial products (pp2, pp3 and pp4) are just inserted into the string. For

the first partial product (pp1), if the inversion of its most significant bit is 0, its

sign extension bits are set to ‘11’; otherwise, they are set to ‘100’. Therefore, the

four partial products can be replaced using the following steps:

PP1 30 PP1 0PP1 31

PP2 31 PP2 0PP2 30 ...

PP3 31 PP3 30 PP3 0
...

PP4 31 PP4 30 PP4 0
...

PP1 30 PP1 0PP1 31 ...

PP3 31 PP3 30 PP3 0
...

PP2 31 PP2 0PP2 30 ...

PP4 31 PP4 30 PP4 0
...

1
1

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

...

1 1

+

Figure 4.15: The principle of an improved sign extension algorithm

• If the MSB of the first partial products is 1, put ‘01’ to the left of the first

partial product as extended sign bits; otherwise, put ‘10’ to the left of the

first product as extended sign bits.

• Invert the MSB of the second, the third and the fourth partial products;

put a 1 to the left of the three partial products as their extended sign bits.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 80

With the improved sign extension algorithm, only one sign extension bit (for

pp1, 2 bits) is needed rather than a long sign extension all the way up to the

most significant bit. This scheme saves both hardware and power.

Signed and unsigned algorithm

An unsigned number representation is common in digital signal processing appli-

cations. It is often necessary for a multiplier to support both a two’s complement

representation and an unsigned representation. If a multiplier C is an unsigned

number, its value is defined by the following equation:

C = cn−1 · 2
n−1 +

n−2∑

i=0

ci · 2
i (4.3)

This is different from the definition used by a two’s complement representation

as in Equation 4.1. Fortunately, Equation 4.2 can be modified by only one bit to

support both signed and unsigned numbers. Equation 4.4 shows a modification

of Equation 4.2 by defining sn differently:

C =
n/2−1∑

i=0

(s2i + s2i+1 − 2 · s2i+2) · 2
2i+1 + c0 (4.4)

where sn = cn−1 when C is a signed number and sn = 0 when C is an unsigned

number. s0, s1...sn−1 are left unchanged. In a practical multiplier, a signal Sign

indicates the number format of the operands (1 for a two’s complement format

and 0 for an unsigned format), so sn = cn−1 · Sign. By doing this, the multiplier

supports two data representations by simply controlling a sign bit.

4.5.3 Architecture selection

Callaway et al.[2] compared 4 different multiplier architectures with the results

shown in Table 4.5. As can be seen, an array multiplier is the worst in terms

of both speed and power consumption. A modified Booth’s multiplier is good

for speed but not for power-efficiency. A radix-2 Wallace multiplier is the best

among them in energy delay product (EDP).

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 81

Table 4.5: Characteristics of multiplier architectures

Multiplier Delay (ns) Power EDP Area (mm2)
(mW@10MHz) (ratio)

Array 92.6 43.5 1 4.2
Split array 62.9 38.0 0.59 6.0
Wallace 54.1 32.0 0.43 8.1
Modified Booth’s 45.4 41.3 0.47 8.5

4.5.4 Input vector characteristics

Most published work on low-power multipliers uses randomly-generated vectors

to test the power consumption of the designs (for example [50] and [2]). How-

ever, in a practical multiplier, operands are far from random, so these results

are not representative of the performance with typical data. The best way to

test the power consumption of a multiplier is to base the test operands on real

applications. As this is difficult to do during the design period, an alternative is

to use benchmarks.

To investigate the characteristics of typical multiplier operands, four bench-

mark programs are employed: “go” (an internationally-ranked go-playing pro-

gram), “ijpeg” (a standard JPEG image compression and decompression pro-

gram), “compress” (a file compression program) and “vortex” (an object-oriented

database). A total of 33 million multiplication pairs were taken from these four

benchmarks and it was found that the distribution of inputs was unbalanced in

two respects:

• The distribution of positive and negative operands is highly imbalanced;

table 4.6 shows the statistical results. As can be seen from the table, the

great majority of inputs are positive.

• The ‘Significant Bit Count’ (SBC) is the number of bits at the bottom

of a binary number ignoring all of the high order bits which comprise a

Table 4.6: Operand distribution between positive and negative

Benchmark go ijpeg compress vortex
% positive 87.6% 97.8% 100% 100%
% negative 12.4% 2.2% 0% 0%

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 82

series of 1s or 0s. These high order bits represent the sign of the number

in 2’s complement format. For example: the SBC of 0x00006380 is 15 and

the SBC of -5 (0xFFFFFFB) is 3. Figure 4.16 and Figure 4.17 show the

SBC distributions for the benchmark programs. As can be seen, the SBC

distribution is not balanced. Most inputs have an SBC between 0 and 16

bits.

0 5 10 15 20 25 30
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

compress
go
ijpeg
vortex

Figure 4.16: SBC distributions for the benchmark programs

0 5 10 15 20 25 30
0%

20%

40%

60%

80%

100%

compress
go
ijpeg
vortex
average distribution

Figure 4.17: Proportion of operands having SBC below given number

These two imbalances in the operand distributions are very important factors

in the design of a low-power multiplier. The following section introduces a low-

power multiplier designed to exploit these unbalanced distributions.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 83

4.6 A low power iterative multiplier

From the statistics of multiplier input vectors, on average about 60% of multi-

plication operands have SBCs below 8 bits and more than 90% of operands have

SBCs below 16 bits. These characteristics can be exploited to increase speed as

well as to reduce power consumption in multipliers. This goal can be achieved

using an asynchronous ‘early termination’ algorithm.

The principle of an early termination algorithm is simple — For a m×m-bit

multiplication, if the most significant n bits of the m-bit multiplier are all 1s or

0s, the corresponding n partial products can be discarded and the multiplication

speeds up by n/m. According to the statistical results mentioned above, more

than 90% of multiplications can have their times cut by 50% using the early

termination algorithm.

Tree architectures, however, cannot use an early termination algorithm, since

all partial products are fed in at the same time; a sequential architecture [48]

supports early termination but loses the speed advantage of a tree architecture.

Based on these tradeoffs between speed, area and power consumption, a shift-

iterative architecture is a compromise solution.

4.6.1 A shift-iterative architecture

Figure 4.18 shows a 32-bit multiplier using a shift-iterative architecture. The

multiplier compresses 8 partial products in one cycle so, in the worst case, the

multiplier needs 4 cycles to complete a 32×32-bit multiplication. The multiplier

has a two-stage pipelined datapath, the first is an 8-2 tree adder; the second

pipeline stage contains a 4-2 tree adder and a shift register. After each calculation

cycle, the shift register shifts the results to the right by 8 bits and feeds the shifted

results back to the 4-2 tree adder. With pipeline control, the first stage and the

second stage execute in parallel, increasing speed by a factor of two for the same

hardware cost. If the delay of the shift register can be ignored, the multiplier has

the same speed as a 32-2 tree multiplier.

The early termination algorithm can be implemented using the shift-iterative

architecture as follows: if the most significant 8 bits of a multiplier are all 1s or

0s, one cycle of the multiplication can be sped up and the multiplier moves an

‘early termination cycle’. Early termination cycles do not process data but only

shift the results to the correct position, so they are faster and consume less power

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 84

de
la

y
LC

LC

de
la

y 4−2 adder

pipeline register

shift register

start

8−2 adder

8 partial products

Figure 4.18: A shift-iterative architecture

than normal calculation cycles. Two or three cycles can be sped up if the next

one or two groups of eight bits have the same values as the top group.

4.6.2 A radix-2 algorithm

High-radix algorithms are often used to speed up multipliers by reducing the

number of partial products; an example is the commonly-used modified Booth’s

algorithm as previously described. The modified Booth’s algorithm scans the

multiplier bits in pairs and generates one partial product per pair, thus reducing

the number of partial products by a factor of two. However, previous experiments

have shown that a modified Booth’s multiplier is less power-efficient than a non-

Booth’s multiplier [50][2] as shown in Table 4.5.

Why is the modified Booth’s algorithm not power-efficient even though it

reduces the number of partial products and one-bit full adders? Through analysis,

one reason is identified as follows: with the modified Booth’s algorithm, partial

products have a high probability of being −1× or −2× the multiplicand. These

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 85

inverting operations introduce many transitions into adder trees (similar to the

phenomenon mentioned in Section 4.3). For example, if the multiplicand MD is

equal to 1, −MD and −2×MD switch all of the bits up to the most-significant

bit, causing 32 transitions in each operation. Based on the statistics presented

previously, it is known that most operands are small positive numbers. The

modified Booth’s algorithm causes a lot of switching activity even for a small

multiplication, so it may not be a good algorithm for use in low-power multipliers.

A second reason for questioning its use is that, because of their long output

wires and big fan-out, Booth’s encoders and partial-product generators consume a

lot of power themselves and generate glitches which propagate through the whole

multiplier datapath. Race-free encoding schemes were proposed to ameliorate

this problem [60].

Consequently Booth’s algorithm may not be a good choice in the design of a

low-power multiplier. Although Booth’s encoders and partial-product generators

reduce the number of partial products by a factor of 2, the same result can be

achieved by adding another row of 4-2 adders to an adder tree. As shown in

Figure 4.19, two partial product generators can be replaced by a 4-2 adder and

four AND-gates (or 2-1 multiplexers).

MUX MUXMUX MUX

4−2 adder4−2 adder

encoder
Booth’s 4−2 adder 4−2 adder=

wires
control

Multiplicandmultiplier
multiplier

Figure 4.19: Two kinds of 8-2 adder trees

The speed and area requirements of these two circuits can be compared, taking

a race-free encoding multiplier [60] as an example. A race-free partial-product

generator [60] requires 24 transistors. A compact 4-2 adder using double pass-

transistor logic (Figure 4.14(b)) requires 44 transistors. The 2-1 pass-transistor

multiplexer requires 3 transistors. It appears that the non-Booth’s circuit is

slightly bigger than the race-free encoding circuit (44+3×4 > 24×2). However,

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 86

the race-free encoding circuit has four control wires — NEG, ×1, ×2, Z —

spreading through the whole partial product generator. If the wires are taken

into account, the non-Booth’s circuit is smaller than the race-free encoding circuit.

Even if the non-Booth’s circuit is compared with a small Booth’s encoding circuit

[60], the non-Booth’s circuit incurs a small hardware overhead. Through my

experiments, the non-Booth’s encoding circuit was found to be 18% faster than

the Booth’s encoding circuit because the long control wires put heavy loads on

their drivers and make the Booth’s encoding circuit slow. The regular structure

of the non-Booth’s encoding reduces the possibility of glitches which is also good

for power-efficiency.

A software model was developed in this design to compare the switching activ-

ities of non-Booth’s and Booth’s tree multipliers. The model was used to calculate

the numbers of transitions in 4-2 adders with 10000 positive input numbers having

different SBCs. The results are shown in Table 4.7.

Table 4.7: Numbers of transitions in Booth’s and non-Booth’s multipliers

SBC 8 16 24 32
Non-Booth’s 140978 634928 1362437 2221972
Booth’s 490987 1243814 1874260 2511356
Ratio 1/3.50 1/1.96 1/1.38 1/1.13

As can be seen from Table 4.7, even for random operands, non-Booth’s multi-

pliers are somewhat more power-efficient than Booth’s multipliers. However, for

inputs having a small SBC, non-Booth’s multipliers are significantly better.

4.6.3 Sign-changing Algorithm

The results in Table 4.7 are based on the assumption of positive inputs. Al-

though most inputs are positive for the four benchmark programs previously

described, some applications may have a higher incidence of negative numbers.

The low power advantage of non-Booth’s multipliers would be more convincing

if the power-efficiency could be maintained for negative inputs. To achieve this

goal, an algorithm is needed which can change the signs of both multiplicands

and multipliers if they are negative. A sign-changing algorithm is proposed to

achieve this objective.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 87

The sign-changing algorithm for multipliers is based on the following func-

tions:

a × b = a × b + a + b + 1 (4.5)

a × b = a × b + b − 1 (4.6)

a × b = a × b + a − 1 (4.7)

The sign of an input can be tested by checking its most significant bit (bit

31). If both multiplicand and multiplier are negative Equation 4.5 is used: invert

both multiplicand and multiplier and send them to a non-Booth’s multiplier. For

array or tree multipliers, another row of 4-2 adders is needed to add a and b.

Then the partial sum and the partial carry are generated. A carry-propagate

adder is used to add the partial sum and carry with a carry in of 1 to generate a

final result.

If only one of the operands is negative Equation 4.6 or 4.7 can be used: the

negative operand is inverted. The inverted operand and the positive operand

are sent to a non-Booth’s multiplier. An additional row of 4-2 adders is used

to add the positive operand and 0xFFFFFFFF (the least significant 32 bits of

‘−1’). However, we are left with the problem of adding 0xFFFFFFFF00000000

(the most significant 32 bits of ‘−1’). We could, of course, have a long 4-2 adder

row consisting 64 adders to do this, but this would need a lot of hardware and

consume a lot of power. Instead, the 1s in 0xFFFFFFFF00000000 are distributed

across the significant bits of the 32 partial products. Figure 4.20 illustrates the

principle. This scheme is similar to the sign extension algorithm mentioned before

with only one sign extension bit.

1 x x x x
1 x x x x

1 x x x x

1 x x x x

+
=

x x x x
x x x x

x x x x
x x x x

+ 1 1 1 1 0 0 0 0

Figure 4.20: Distributing the higher-order 1s

Using the sign-changing algorithm, the non-Booth’s multiplier retains its low

power advantage for negative operands but another row of 4-2 adders is needed to

add the two extra numbers. Fortunately, for the pipelined iterative architecture

shown in Figure 4.18, this overhead can be avoided by putting these two extra

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 88

numbers in the shift registers (there are two 62-bit shift registers which hold the

partial products to be sent to a carry-propagate adder) in Figure 4.18 at the

start of a multiplication. For positive inputs, the shift registers are set to zero. In

the first cycle of a multiplication, the 4-2 adder just propagates the two partial

products from the pipeline registers to the shift registers. For negative inputs, in

the first cycle, the 4-2 adder adds the two partial products with the two extra

numbers. Therefore, the implementation of the sign-changing algorithm in the

pipelined iterative architecture needs only two rows of inverters and multiplexers,

which represents a very small hardware overhead.

4.6.4 Circuit implementation

The proposed multiplier was implemented using 4-phase bundled-data asynchro-

nous logic. The asynchronous control circuit uses two latch controllers proposed

in [46]. The latch controllers use level-sensitive latches as pipeline registers and

they are normally closed. Both of these characteristics are good for low power

design.

In the multiplier, the PowerPC603 master-slave register [18] is used for the

shift registers. Although this register is power-efficient, and small level-sensitive

latches are used as pipeline registers, the registers and their drivers consume

about 58% of the total power when a multiplication needs only one normal calcu-

lation cycle. This is because large registers (about 200 register bits) put a heavy

load on the control wires. The long control wires themselves constitute a large

capacitance. If the capacitance of the registers and wires can be decreased, a

power saving can be achieved. Because of the unbalanced SBC distribution, in

most cases, the top 16 bits of pipeline and shift registers stay at 0, so there is no

need to clock them and a ‘split register scheme’ can be used to reduce the register

power. The registers are separated into 3 groups. The first group is Bit32−Bit16,

the second group is Bit15 − Bit8 and the third group is Bit7 − Bit0 as shown in

Figure 4.21.

Two control wires — Pass0 and Pass1 — are used to control how many bits

should be clocked. Because the circuit already has a cycle detector to detect

how many normal calculation cycles a multiplication needs, the only overhead

incurred for splitting the registers is 2 multiplexers. Based on testing the split

registers by simulating the schematic a 12% energy saving is achieved by using

the split register scheme.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 89

B7−B0

Pass0

B31−B16 B15−B8

Pass1

Clock

Figure 4.21: 32-bit split register organization

The split-register technique is similar to a technique used previously in a low

power register bank [61]. However, it has not previously been applied to the

design of latch- or register-based multipliers.

4.6.5 Experimental results

Four different multipliers were implemented for comparison. They are: a syn-

chronous radix-2 multiplier without split registers (S2N), an asynchronous radix-4

Booth’s multiplier without split registers (A4N), an asynchronous radix-2 multi-

plier without split registers (A2N) and an asynchronous radix-2 multiplier with

split registers (A2S). The multipliers were simulated using HSPICE on a 0.18

micron CMOS technology at 1.8 V and 27oC. The input vectors were 1000 pairs

of numbers taken randomly from the 4 benchmarks as introduced before. The

throughput was controlled at 100 million multiplications per second. The results

on power consumption based on a schematics-level simulation are shown in Table

4.8.

Table 4.8: Power comparison of 4 multipliers

Multipliers S2N A4N A2N A2S
Power (mW) 16.17 9.56 7.35 6.47
Ratio 2.2 1.3 1 0.88

As can be seen from the table, asynchronous multipliers consume less than

half the power of their synchronous counterpart. Radix-2 multipliers save 23%

of the power of those using the radix-4 modified Booth’s algorithm, and split

registers save another 12%.

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 90

The A2S multiplier completes a multiplication requiring 4 normal cycles in

6.5 ns, resulting in a throughput of 150 million multiplications per second, this is

the worst case however. It completes a multiplication requiring 3 normal cycles

in 6.0 ns, one requiring 2 normal cycles in 5.2 ns, and one requiring 1 normal

cycle in 4.3 ns. Based on the unbalanced SBC distribution, A2S has an average

throughput of more than 200 million multiplications per second.

To summarise, a new design for a low-power multiplier is proposed based

upon the observations of imbalanced input operands. It uses an area-efficient

pipelined iterative architecture employing asynchronous control and an early-

termination scheme. The new multiplier dissipates power ‘on demand’ — for

small operands, it consumes less power; for large operands, it consumes more

power. The experiments show that asynchronous control reduces the multiplier’s

power consumption by more than half.

A radix-2 non-Booth’s algorithm avoids the inverting operations necessary in

multipliers using the modified Booth’s algorithm, thereby avoiding signal transi-

tions. A sign-changing algorithm is used to ensure that the non-Booth’s multiplier

retains its low-power advantage for negative operands. Compared to a Booth’s

multiplier, the non-Booth’s multiplier has a 23% reduced power dissipation.

The split-register scheme helps the multiplier to save a further 12% of its

power dissipation. The total switching capacitance is decreased by splitting a

large register into several small segments. In most cases, only a small part of the

register is driven by the clock signal on each cycle, thus saving power.

The new asynchronous multiplier demonstrates the low-power advantage of

asynchronous logic resulting from its fine-grain control. Although the multiplier

is an iterative asynchronous multiplier, the non-Booth’s algorithm used here is

equally suited to synchronous multipliers, including array and tree multipliers.

The split datapath scheme is also valid for any register- or latch-based multiplier

with an unbalanced distribution of input operands.

4.7 Summary

The basic design issues of low-power arithmetic unit design, such as logic styles,

data representations and different arithmetic architectures have been discussed

in the chapter. Moreover, the chapter focuses on the designs of two low-power

arithmetic units — an asynchronous carry-lookahead adder and an asynchronous

CHAPTER 4. LOW-POWER ARITHMETIC UNIT DESIGN 91

iterative multiplier using an early-termination scheme. Both of the circuits are

designed to achieve low power consumption by exploiting the specific data char-

acteristics found from the evaluation of benchmarks.

The next chapter will present some low-level design issues of low-power mem-

ories.

Chapter 5

A low-power embedded SRAM

macro design

To meet the requirement for high speed and low power consumption, static

random-access memories (SRAMs) are integrated into data processing circuits.

This avoids long latencies and high power consumption due to input/output (I/O)

pins and long wires for off-chip memory interconnections. On-chip SRAM some-

times dominates the silicon die area and power consumption of an embedded SoC

chip. Therefore, a power-efficient SRAM is extremely important in the design of

a low-power embedded processing circuit.

Low-power SRAM techniques are applied either at the circuit level or at the

architecture level. At the architecture level, the basic principle for memory power

saving is ‘the principle of locality’ as introduced in Section 2.4.2. A low-power

SRAM is usually organized as a hierarchy. Since memory blocks at lower hierarchy

levels are smaller, faster and more power-efficient, high-level low-power memory

techniques focus on more efficient memory hierarchy architectures, which have

a low access rate at high levels in the memory hierarchy (a high ‘hit’ rate for

low levels in the memory hierarchy). This is the basic idea behind many high-

level low-power memory architectures. The low-power SRAM techniques in this

chapter focus on the low circuit level.

This chapter presents the design of a low-power embedded SRAM macro:

Section 5.1 overviews the basic design issues for low-power SRAMs; Section 5.2

describes low-power bit-line write techniques; Section 5.3 proposes a dual-rail row

decoder; Section 5.4 gives the architecture and timing control of the proposed

SRAM macro; Section 5.5 presents layout and experimental results; Section 5.6

92

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 93

summarises the chapter.

5.1 SRAM design overview

5.1.1 Conceptual SRAM structure

A basic SRAM architecture is shown in Figure 5.1. The SRAM contains a large

number of one-bit memory elements, called ‘memory cells’. Due to its high density

and stability in state holding, a 6-transistor memory cell [49] is most commonly

used in on-chip SRAMs. Each memory cell contains a pair of cross-coupled in-

verters which hold state. Two n-transistors are connected to the inverters for

read and write accesses under the control of a word − line signal. The values to

be sent to and read from a memory cell go via the access n-transistors to two

bit-lines — bit and bit.

Write driver

...

REn

Precharge circuit

...

...

bi
tli

ne

bi
tli

ne

wordline

A
dd

re
ss

Ro
w

 d
ec

od
er

Input

Output

wordline

bit bit

Memory cell
array

WEn

Precharge

Memory cell

Sense amplifier & Latches

Figure 5.1: A conceptual SRAM architecture

During a write, the two bit-lines are driven by a complementary new input

value. When the word-line is activated, the new input value is written into

the memory cell by overpowering the previous value held in the cross-coupled

inverters. After the write, the word-line returns to 0, isolating the memory cell

from the bit-lines.

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 94

Since n-transistors are good at passing a logic low (‘0’) and weak at passing

a logic high (‘1’), a precharge bit-line scheme is used for reads. Before each read,

the bit-lines are precharged to 1 and during the read, the word-line becomes 1 to

allow read accesses. Only one of the bit-lines is pulled down by the memory cell;

the other stays high.

The memory cells of an SRAM are organized as an array. Each row of the array

contains m (m is the word-length of the SRAM) memory cells. The word− line

connections of the memory cells in a row are connected to make the memory

cells accessible simultaneously, forming a word of the SRAM. The words of the

SRAM are arranged in a column; the bit-lines of the memory cells in the same

column are connected together to allow them to be accessed via one read and one

write port. At any time, only one word can be accessed under the control of the

1 − of − 2n word-lines (2n is the number of words of the SRAM) generated by a

row decoder.

Specific peripheral circuits for read and write operations are needed to connect

the SRAM to its environment. Since memory cells are optimized to minimize their

size, their drive abilities are weak, resulting in a slow discharge rate for reads. To

speed up the read operation, sense amplifiers are often used to amplify the low

voltage swing of bit-lines.

5.1.2 Low power SRAM design techniques

Various methods [62][63] have been proposed to minimize the power consumption

of SRAMs; many of them are based on a few basic principles: minimizing the

active capacitance and reducing voltage swing.

Minimizing the active capacitance of an SRAM can be achieved by using high-

density memory cells and smaller and more efficient decoders, write drivers, sense

amplifiers and output latches. The capacitances of word-lines and bit-lines can

be minimized by partitioning a unified memory block into a number of smaller

sub-blocks as will be introduced later in this section. A dual-rail decoder having

a smaller active capacitance than conventional SRAM decoders will be described

in Section 5.3.

Equation 2.1 in Section 2.1 defined the dynamic power consumption of a

CMOS circuit, which is directly proportional to C · V 2 where V is its voltage

swing and C the active capacitance. Therefore, a reduction of the voltage swing

can achieve a significant power saving.

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 95

For conventional SRAMs, during a read operation the bit-lines do not range

over the full voltage swing because the driving ability of RAM cells is too weak

to charge the high-capacitance bit-lines. Sense amplifiers are used to amplify the

voltage difference of the bit-lines to obtain a full voltage swing; these not only

increase speed but also reduce the power consumption of read operations. For

write operations, the bit-lines normally switch fully because the signal on the

bit-lines must overpower the memory cell flip-flop with new values. Thus, a write

operation usually consumes more energy than a read in conventional SRAMs if the

number of rows is large. The size of an SRAM also has an effect on performance

since the capacitance of the bit-lines increases with the number of rows in it; the

drive strength of the write drivers must be increased to maintain a given write

speed. This further increases the power consumption of write operations; for

example, the write drivers use 90% of the write power when the number of words

in a column reaches 256 [64]. Therefore minimizing write power is critical in the

design of power-efficient SRAM. Low-power write techniques are presented in the

next section.

5.1.3 Block partitioning

Increasing the SRAM size results in corresponding wire-length increases in both

word- and bit-lines. The RC delay of a long wire grows as the square of the

number of memory cells it connects, and its power consumption grows linearly.

Therefore, long word- and bit-lines result in an increase in physical capacitance

and power consumption and a degradation in speed. An efficient way to mini-

mize the capacitance of long word- and bit-lines is to partition a large memory

block into smaller sub-blocks which will have shorter word- and bit-lines. Since

an SRAM block is a two-dimensional array, it can be divided horizontally and

vertically.

A vertical block partitioning scheme is also known as a Divided WordLine

approach (DWL) [65] which divides a long word-line of a unified SRAM into a

number of segments. The segments are independently activated under the control

of block select signals. Figure 5.2 shows the architecture of a DWL approach

where a w-wordlength SRAM is horizontally divided into k sub-blocks, each of

which has a wordlength of w/k. The row decoder is designed to have two stages

— one stage generates the global word-lines and the other one generates the block

select signals. During each memory access, the active word-line and block select

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 96

signal are ANDed to activate the corresponding local word-line of a sub-block.

Since the local word-lines are only 1/k of the length and connect to 1/k of the

memory cells of the global word-lines without the DWL approach, their RC delay

is reduced to 1/k2 and power consumption is reduced to 1/k.

...Local wordline

...Local wordline

...

...Local wordline

...Local wordline

...

...Local wordline

Global wordline

Global wordlineG
lo

ba
l w

or
dl

in
e

ge
ne

ra
to

r

Block
select

...A
dd

re
ss

A
dd

re
ss

...Local wordline

...

Output

Input

Figure 5.2: A divided word-line approach

Although the length of a global word-line is nearly as long as that in a unified

SRAM, it only connects to k local word-line drivers instead of w memory cells.

Normally, k is much smaller than w, so the global word-lines have a much smaller

capacitance, resulting in lower RC delay and power consumption. To reduce the

RC delay further, the global word-line decoder is normally located in the middle

of the sub-blocks, and the global word-lines use low-capacitance high-level metal

wires.

The concept of DWL can be extended to sub-divide global word-lines and

block select signals when w is very big. A Hierarchical Word Decoding (HWD)

scheme has been proposed [66] to cope with the problem of very high-capacitance

word-lines. The HWD approach divides a long word-line into multi-level shorter

word-line segments, forming a word-line hierarchy. Each wire segment has a

reduced load and wire capacitance, thus improved speed and power-efficiency.

Block partitioning can also be applied in a vertical direction; this approach

is called a Divided Bit-line scheme (DBL), aiming at minimizing the power con-

sumption and increasing the speed of an SRAM by dividing its bit-lines into a

number of shorter segment groups. Figure 5.3 shows a DBL architecture, where

a long bit-line is divided into shorter local bit-lines. The local bit-lines are con-

nected to the global bit-lines via pass-transistor gates, allowing the memory cells

in one column to share the same input/output port. The concept of hierarchy

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 97

mem
cell

mem
cell

mem
cell

mem
cell

Local word−line

Local word−line

Local word−line

Local word−line

Global word−line

G
lo

ba
l b

it−
lin

e

Lo
ca

l b
it−

lin
e

Lo
ca

l b
it−

lin
e

G
lo

ba
l b

it−
lin

e

Figure 5.3: A divided bit-line approach

can also be used to form a hierarchical divided bit-line architecture.

Partitioning an SRAM incurs an area overhead at the boundary of the sub-

blocks in terms of block-select drivers and pass-transistor multiplexers. This area

overhead results in extra length and capacitance in word-lines and bit-lines, which

degrades the performance and power-efficiency gained by partitioning. Therefore,

the sub-blocks must not be too small.

5.2 Low-swing write techniques

The critical problem in low-swing writes is overwriting the memory cell flip-flop

while maintaining the stability of the memory cell during reads. Two general

techniques have been proposed to achieve a low-swing write operation:

• Reduce the bit-line reference voltage;

• Use memory cells which are more ‘input-sensitive’.

For conventional embedded SRAM design, bit-lines are referenced to Vdd by

precharging and, during writes, the write drivers discharge half of the bit-lines

to ground. Thus, the write power can be minimized by reducing the bit-line

reference voltage. Allowersson and Andersson [67] proposed a technique where

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 98

they used a low bit-line reference voltage of 0.5 volts with a supply voltage of 5

volts. When a word-line is activated, a small bit-line differential is propagated to

the internal cell nodes through the access n-transistors. When the word-line is

turned off, the small voltage differential is amplified by the positive feedback of

the cross-coupled inverters. To maintain a stored Boolean value, a lower word-

line voltage is used during reads, thus weakening the access n-transistors and

preventing a spurious discharge of the internal cell nodes. The penalty of this

technique is that when the access n-transistors are gated by a lower voltage, their

read accesses become slower. Mai et al. use the same principle except that they

use a different bit-line reference voltage [68]. They proposed a half-swing pulse-

mode technique which can easily generate the voltage of Vdd/2, so they use Vdd/2

as the bit-line reference voltage. During writes, half of the bit-lines are discharged

to ground and since the bit-lines use only a half-rail swing, 75% of the bit-line

write power can be saved compared to conventional techniques. However, using

a Vdd/2 reference for the bit-lines potentially leads to cell instability during reads

because of the leakage current from logic high internal nodes. This problem can

be solved by an increased internal cell voltage.

An advantage of low-swing write techniques based on reducing the bit-line

reference voltage is that they use RAM cells that are the same as those used in

conventional SRAMs, so no area penalty is incurred in the memory cell arrays.

However, these techniques have disadvantages as follows:

• Special techniques must be used to generate the bit-line reference voltage

and the internal cell voltage.

• Since the bit-line reference voltage is reduced, the differential voltage be-

tween the cell internal nodes is smaller than usual, which inevitably results

in a longer write delay.

An alternative method has been proposed to achieve a low-swing write, using

memory cells with greater input sensitivity. Wang et al. [69] proposed a current-

mode RAM cell as shown in Figure 5.4 (a). This RAM cell is similar to the

conventional 6-transistor RAM cell, except for an equalizing n-transistor — Meq.

During read, the cell-equalization signal weq is kept low, and the RAM cell acts

like a conventional RAM cell. The equalizing n-transistor clears the contents of

the memory cell prior to a write, making it easy for the bit-lines to drive the

internal cell nodes even with a small voltage differential. P-transistors are used

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 99

as access transistors, which results in a very compact cell area. However, since

the gain factor of p-transistors (βp) is smaller than that of n-transistors (βn),

the RAM cell has a long access delay during read and write. If n-type access

transistors are used, the area will be much bigger since each RAM cell would

have 5 n-transistors and this makes regular layout difficult to design.

Another input-sensitive RAM cell is proposed by Kanda et al. [64] as shown

in Figure 5.4 (b). This RAM cell is called a sense-amplifying RAM cell (SAC).

During read, SLC is kept high, making the RAM cell act like a conventional RAM

cell. During writes, SLC is made low and the VSS switch is turned off before

the word-line turns on. Even with a very small voltage differential between the

bit-lines, the cell can switch state because the n-transistor drivers do not draw

current. After the word-line goes low, the VSS switch is turned on and the small

voltage differential is amplified to full swing inside the RAM cell.

nbitlinebitline

wordline

(b)(a)

nbitlinebitline

wordline

weq

Meq
SLC Vss switch

Figure 5.4: ‘Input-sensitive’ RAM cells

The SAC technique is similar to another technique proposed by Amrutur [70]

as shown in Figure 5.5. All the cells in a given row share a virtual ground (vgnd),

which is driven by an AND-gate. During read, the virtual ground is driven low,

making the SRAM act like a conventional SRAM. Before write, the virtual ground

is first driven high to reset the contents of the cells. Then the word-line is pulsed

high, transferring the small swing bit-line signal to the internal cell nodes. After

that, the virtual ground is driven low, causing the cells to complete the full swing.

However, this technique has problems during read. Since all the cells in the row

share the virtual ground, the read current of the cells gathers on the virtual

ground and flows to ground through an n-transistor inside the AND-gate. This

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 100

causes two problems:

• The current is so big that it needs a wide metal wire for the virtual ground,

wider than the RAM cell height;

• The current raises the voltage of the virtual ground, resulting in read in-

stability. One solution for this technique is to distribute the n-transistor of

the AND-gate to each cell in the row, as is done in the SAC scheme.

...

wordline

vgnd

W/R

Read cycle Write cycle

wordline

vgnd

bit/bit_bar

Figure 5.5: Amrutur’s low write scheme

Comparing these techniques, the SAC scheme is used in the design presented

here for low-swing writes because:

• The RAM cell is similar to the conventional 6-transistor RAM cell;

• The write and read delays are relatively short compared to the other tech-

niques;

• The RAM cell maintains a reasonable static noise margin.

Sense-amplifying RAM cell design is very important using the SAC scheme, since

memory cell design is a trade-off between silicon area, read speed and noise mar-

gin. The basic requirement for RAM cells is safe reading. Figure 5.6 (a) il-

lustrates the read current path of a sense-amplifying cell. Let us assume that

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 101

internal node A is low, B is high and the bit-lines are precharged to Vdd − VT

(VT is the n-transistor threshold voltage.). If T2 stays off during read, the state

holding inside the RAM cell will not be affected and read operations are safe.

It is easy to figure out that all the three n-transistors — Taccess, T1, Tss — are in

their linear regions, since they all satisfy the condition: 0 < Vds < Vgs − VT . The

n-transistors — Taccess, T1, Tss — are fabricated using the same nMOS technology

and have the same channel lengths, so their channel impedances are inversely

proportional to their widths. The equivalent circuit of that in Figure 5.6 (a) is

shown in Figure 5.6 (b). From Figure 5.6 (b),

VdsT1 = (Vdd − VT) ×
α 1

W1

α 1

Waccess

+ α 1

W1

+ α 1

Wss

= (Vdd − VT) ×
1

W1

Waccess

+ W1

Wss

+ 1
(5.1)

VgsT2 = VdsT1 (5.2)

where α is a constant defined by the CMOS technology. Transistors normally

have the minimum channel length.

Tss

Taccess

T1 T2

A B

offon
discharge current

R

a.1/

a.1/

a.1/Waccess

W1

Wss

Vdd−Vt

(a) (b)

bit bit
wordline

Figure 5.6: Discharge current during read

The property that guarantees T2 stays off is VgsT2 < VT . Since the width of

Taccess is normally designed to be the minimum, from Equation 5.1, increasing

the width of T1 and reducing the size of Tss can reduce VgsT2, thus increasing

the read margin. However, the contribution to the increased read margin coming

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 102

from reducing the size of Tss is relatively less, and a small size of Tss also results

in a small discharge current and big read delay. This can also be deduced from

Figure 5.6 (b).

Tdischarge ∝ Cbit−line × ∆V × R

Tdischarge ∝ α × (
1

Waccess

+
1

W1

+
1

Wss

) (5.3)

So the selection of the channel width of Tssis also a trade-off between speed

and size.

Another concern in the SAC RAM cell design is how to fit Tss. If each cell

contains a Tss transistor, the area overhead of the RAM cell array is large. Kanda

et al. put one big Tss transistor for every 4 RAM cells. The same scheme is used

in the proposed SRAM macro, but the transistor sizes are changed. Figure 5.7

illustrates the architecture and transistor sizes. The p-transistors and access n-

transistors are set to minimum size. W1 and W2 are set to 2 × Waccess. Wss are

set to 8 × Waccess. From experiments and calculation, the penalty of the SAC

RAM cell includes a 12% area increase, a 25% noise margin decrease and a 7%

read latency increase.

Cell
RAM

Cell
RAM

Cell
RAM

Cell
RAM0.28/0.18 0.28/0.18

0.28/0.18 0.28/0.18
0.56/0.18 0.56/0.18 SLC

wordline

2.24/0.18

Figure 5.7: Shared Tss scheme to reduce area overhead

5.3 A dual-rail decoder

In large SRAMs, there are two kinds of decoders — row decoders and column

decoders. The row decoder activates one of the word-lines in a block, which

connects the RAM cells of this row to the bit-lines. The column decoder controls

a large multiplexer which connects one bit-line column to the peripheral interface.

A small embedded SRAM macro contains only a row decoder since all the RAM

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 103

cells are put inside a single column. Figure 5.8 illustrates a conventional two-

level SRAM row decoder, which has an n-bit input address and activates one

of 2n word-lines. To improve speed, two first-level predecoders are used, which

decode n/2 address bits to drive one of 2n/2 predecode lines. The second-level

decoder is one column of 2-input AND gates. Each of them ANDs two predecode

lines to generate a word-line signal.

n/22

n/2

n/22

1
1 ...

0

n/2

n2 −1

The first−level decoder

wordline

wordline

The second−level decoder

Figure 5.8: A two-level decoder

However, the decoder shown in Figure 5.8 has two problems:

• One of the word-lines is always active;

• Two word-lines may be active simultaneously for a short period when the

address bits change.

To shorten the active duty-cycle of the word-lines and to prevent the word-lines

overlapping, a pulsing word-line technique is needed. A pulsing word-line can be

achieved either by gating the second level AND gates with a pulsed enable signal

as shown in Figure 5.9 (a) or by putting an address transition detection (ATD)

pulse generator on each word-line as shown in Figure 5.9 (b). The drawbacks of

using a pulsed enable signal are:

• The enable signal is a long wire with a big capacitance and its fan-out is

2n;

• The second level AND gates have three n-transistors stacked, which in-

creases the delay.

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 104

0wordline

from predecoder

The second−level decoder

...

(a)

nwordlinefrom predecoder

enable

ATD pulse generator

0wordline
The second−level decoder

...
n2 −1wordline

(b)

2 −1

Figure 5.9: Pulsing word-line techniques

Using the second technique, the pulse generators increase the size of the de-

coder. To overcome the problems mentioned above, a novel dual-rail row decoder

is proposed as shown in Figure 5.10 (a). Here, the pulsed enable signal does not

gate the last-level AND gates but gates the inputs of the address bits and their

complementary bits, giving the address bits a dual-rail format. The fan-out of

the enable signal is therefore 2n, which is much smaller than 2n when n > 4.

The enable signal is generated by an ATD pulse generator under the control of

an asynchronous Request signal. The schematic of an ATD pulse generator is

illustrated in Figure 5.10 (b). The pulse generator detects the rising edges of the

Request signal, and then generates a positive pulse whose width is decided by

the delay element. The predicating circuit in the dashed box prevents the pulse

generator from generating several pulses from one input rising edge.

Since all the signals inside the dual-rail logic are pulsed, it is safe to use

dynamic AND gates inside the decoder as shown in Figure 5.10 (c). Each dynamic

AND gate contains only one p-transistor, which minimizes the size and the power

consumption of the decoder. The circuit in Figure 5.10 (c) generates a word-line

signal and an SLC signal which is gated by the Read signal, since SLC must

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 105

Request
Out

delay

(b) (c)

a

b SLC

wordline

Read

...

... ...decoder

0

2 −1n

1

addressn

address1

dual−rail
coding

Request

ADT pulse generator

(a)

enable

make sure of only one pulse
on every rising edge

Figure 5.10: The proposed dual-rail decoder

stay low during read. The proposed dual-rail decoder is smaller and more power-

efficient than conventional decoders and there is no speed penalty incurred by

the new scheme.

5.4 Architecture and timing

The proposed SRAM is designed to be embedded with an asynchronous micro-

processor, so its interface is designed to communicate with its environment using

a normal 4-phase handshake protocol with a delay-matching scheme. The pro-

posed SRAM is 2Kb (64 × 32 bits), and its architecture is illustrated in Figure

5.11 (a). Delay1 and delay2 are ADT pulse generators with asymmetric delays.

They control the timing of the write enable signal (WEn) and the sense-amplifier

enable signal (REn) respectively. The write and read timing diagrams are shown

in Figure 5.11 (b) and (c) respectively. The acknowledge signal (ACK) is gen-

erated by a dummy column on the critical path of the SRAM. The ACK signal

matches the read and write delays; its rising edges indicate that the current read

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 106

delay1

delay2

ACK

SLC

wordline

WEn

Request

Request

wordline

REn

ACK

Memory cell array

Write driver

Precharge circuit

...

...bitlines

dum
m

y colum
n

D
ual−rail decoder

Request

Address ...

REn

WEnW/R

(c)(b)

(a)

ACK

Sense amplifier & Latches

Precharge

Figure 5.11: The architecture and timing of the proposed SRAM

or write operation is finished and its falling edges mean that precharging has

completed.

One scheme [64] uses a special voltage to generate the bit-line voltage differ-

ential during write but this results in extra design complexity. To avoid a voltage

converter, only one voltage is used in this SRAM macro. Since the discharging

write driver n-transistors are operated in their linear region, the bit-line voltage

changes are directly proportional to the discharge time and the width of the dis-

charging n-transistors (assuming the transistor channel lengths are the minimum

size). We have:

∆V ∝ Tdischarge · W

The voltage differential can be controlled by adjusting the size of the n-transistors

and the pulse width of WEn. Using a 0.18 µm CMOS technology, the capacitance

attached to the bit-lines is 75 fF. To obtain a voltage differential of 0.2 volt, the

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 107

size of the discharge n-transistors is W/L : 1.00µm/0.18µm, and the WEn pulse

width is 0.12 ns. Since the voltage differential only needs to be driven to 0.2 volts,

the write driver size is small compared to conventional SRAM write drivers, which

partly compensates for the area overhead of the sense-amplifying RAM cell array.

5.5 Layout and experimental results

The 2Kb embedded SRAM was designed using SGS-Thomson (ST) 0.18µm tech-

nology and a plot of the SRAM macrocell is shown in Figure 5.12. The circuit

was simulated using HSPICE under typical operating conditions (1.8 V, 27oC)

and the experimental results and comparisons with a commercial SRAM macro

(an ST SRAM macro [71]) are illustrated in Table 5.1. The ST SRAM macrocell

uses the same CMOS technology and supply voltage as the proposed SRAM.

Table 5.1: Comparisons between the new SRAM and ST macrocell

Proposed SRAM ST macrocell Ratio
Area (µm2) 245 × 126 186 × 160 1/0.97
Delay/Write 1ns 2ns 1/2
Delay/Read 1.5ns 2ns 1/1.33
Power/Write 4.62µA/MHz 21.0µA/MHz 1/4.55
Power/Read 4.70µA/MHz 16.1µA/MHz 1/3.42

As can be seen from the table, the new SRAM improves on the power con-

sumption of the ST SRAM macrocell by a factor of almost 4 with only 3% area

overhead. With an asynchronous control circuit, the new SRAM can have dif-

ferent read and write delays. During write the new SRAM is 50% faster than

the ST RAM, and during read the new SRAM is 25% faster. The ST RAM uses

a more compact memory cell which is 11% smaller than the RAM cell used in

this paper. The TSS n-transistors result in a further 12% area overhead, so the

proposed SRAM has a memory cell array 23% bigger than the ST memory cell

array. However, these two RAMs have almost the same total size because the

proposed dual-rail decoder and the small write drivers needed by the low-swing

write compensate for the area overhead of the memory cell array. The decoder

and the peripheral circuits in the proposed SRAM are about 34% smaller than

those in the ST RAM.

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 108

Figure 5.12: The layout of the proposed SRAM

5.6 Summary

This chapter has presented a 64 × 32-bit SRAM for embedded applications us-

ing a novel dual-rail decoder which operates efficiently with a low-swing write

scheme. A factor of 4 improvement in power-efficiency was demonstrated over a

commercial RAM macrocell. The proposed SRAM incurs little area overhead be-

cause the cost of the sense-amplifying cell array is compensated for by the small

decoder and write driver. Different read and write delays are supported using

asynchronous control logic, making the proposed SRAM about 30% faster than

the commercial SRAM macro.

The SRAM macrocell achieves a low-voltage swing write by using the SAC

CHAPTER 5. A LOW-POWER EMBEDDED SRAM MACRO DESIGN 109

scheme. However, the SAC scheme has a limitation. As can be seen from Figure

5.4 (b), the content of a SAC RAM cell becomes unstable (or may change) once

SAC becomes 1. Therefore, the RAM cell has to be rewritten by a new value

once SAC becomes 1, thus all RAM cells in a word must be simultaneously

written and partitioned write operations (for example, only writing one byte) are

not allowed. This problem can be solved by the DWL approaches introduced in

Section 5.1.3 at the cost of area overhead due to local word-line gating circuits.

The next chapter will present architecture-level optimizations for low-power

processing in conventional RISC microprocessors. A hierarchical processing scheme

will be proposed based on analyses of embedded processing characteristics. A

CPU-coprocessor architecture will be implemented and tested to demonstrate

the power-efficiency of hierarchical processing.

Chapter 6

Low-power hierarchical

processing

The low-power processing techniques presented in the previous chapters are mainly

focused on low-level circuits. This chapter presents a high-level architecture to

minimize the power consumption of embedded processing. The chapter starts

with an analysis of embedded processing characteristics; a hierarchical process-

ing concept is then described. To demonstrate the power-efficiency of hierarchical

processing, a hierarchical processing architecture and a RISC coprocessor are de-

signed and analysed in this chapter.

6.1 Hierarchical processing

The purpose of this thesis is to explore techniques to minimize the power con-

sumption of low-performance and cost-efficient embedded data processing systems

which have a very low power budget. Although, as discussed in Chapter 2, high-

performance processors have a similar power breakdown to that of conventional

embedded microprocessors, the latter have characteristics which give potential

for specific power-saving techniques.

The success of a general-purpose processor is determined by the commercial

market, for which performance, binary compatibility with existing software and

programmer friendly interfaces which attract software designers are the most

110

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 111

important design issues. Consequently, the main design philosophy of general-

purpose processors is to maintain existing instruction sets while using the abun-

dance of transistors provided by Moore’s Law to increase the processors’ perfor-

mance. For example, Intel uses hardware to translate external x86 instructions

to internal RISC-like instructions for performance while maintaining compatibil-

ity with x86 software. This approach achieves commercial success, but it is a

power-inefficient approach.

The design considerations for an embedded processor are different because

the characteristics of embedded applications are different from those of PC appli-

cations. Embedded processing systems often deal with continuous data streams

for which average-performance is no longer the most important factor. Instead, a

worst-case latency constraint for real-time processing is more important. There-

fore, if the overall requirements for average throughput and worst-case latency

can be met, efforts which further increase the processor’s performance are not

necessary.

Another difference between PC processors and embedded processors is in the

support for programs. A PC processor is much more general-purpose than an

embedded one, because it is impossible to know exactly what kinds of programs

will be executed in a PC. The processor should therefore have similar processing

abilities for all kinds of programs, requiring a lot of design effort as well as execu-

tion overhead. Embedded processors usually deal only with a very small number

of applications, and among these applications, CPU occupation rates are highly

unbalanced. Embedded processors may spend most of their execution time in

executing only a few loops of a few programs. Consequently, a small number

of important program kernels (program segments which may be small loops or

function calls) have the greatest impact on the success of an embedded processor.

Moreover, since the execution and power-efficiency of these important kernels are

critical for overall performance and power consumption, the kernels are normally

hand-optimized.

Figure 6.1 shows a program segment taken from the main part of an embed-

ded JPEG program. The JPEG program contains 148,040 instructions and needs

13,112,711 clock cycles to finish when running on an ARM9 processor. The pro-

gram segment contains several patterns having a similar shape. The X-axis of

the figure shows the number of clock cycles, and the Y-axis shows the address of

the instructions. A point means an instruction is executing in the corresponding

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 112

clock cycle. If a horizontal line contains more points, the corresponding instruc-

tion is executing more frequently. As can be seen from the figure, the lines in

the red rectangle are the most dense (containing the most points), so the corre-

sponding instructions are the most frequently executed. It can be seen from the

enlarged figure that the number of most frequently executed instruction is only

14. The 14 instructions dominate about 40% of the overall execution time, and

they have the greatest impact on the overall power-efficiency. Figure 6.2 gives the

percentage of execution time the ARM processor spends on each instruction of

the JPEG program. As can be seen from the figure, the instructions have highly

imbalanced executing percentages. Most of the instructions are never executed or

just executed once. It can be deduced from the analysis above that an embedded

processor spends most of its time only in small instruction segments, which can

be either a small loop or a function call.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4
x 104

Clock cycle No.

In
str

uc
tio

n
No

.
In

str
uc

tio
n

N
o.

No. of clock cycles

In
str

uc
tio

n
ad

dr
es

s

Figure 6.1: The running trace segment of a JPEG program

This phenomenon can be further revealed by the analysis of another media

(audio/video) encoding/decoding program as shown in Figure 6.3. The media

processing program contains 14,780 instructions and needs 9,105,576 clocks to

complete when running in an ARM9 processor. The ARM processor spends 76%

of its time in executing only 52 instructions.

Other research work also shows the execution time of an embedded processor is

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 113

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Instruction No.

Pe
rc

en
ta

ge
 o

f e
xe

cu
tin

g

Instruction address

Figure 6.2: The distribution of execution time for instructions in a JPEG program

dominated by small number of instructions. As discussed in Chapter 2, the design

of the ‘loop buffer’ began with the observation that dynamic execution traces of

embedded programs are dominated by program loops containing a small number

of instructions. Lee et al. observed that about 46% of all taken instructions belong

to small loops with a backward jump distance of 32 instructions or fewer [23].

It can be concluded from the analysis above that embedded processing has

three specific characteristics:

• An embedded processor can be less general-purpose than a PC processor.

Although an embedded processor can be used in many applications, once

it is integrated in an embedded system, it may execute only a few hand-

optimized programs, so the complexity of embedded processing instruction

sets can be simplified. However, some features that can significantly im-

prove the performance and power-efficiency for the targeted kernels should

be added. Moreover, an embedded processor needs to support fewer func-

tions than a PC processor, for example, floating-point units are rarely used

in embedded programs so they can be omitted.

• Since the CPU usage rates for different program segments and instructions

are highly unbalanced, an embedded processor should be biased towards

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 114

Time

In
str

uc
tio

n
N

o.
In

str
uc

tio
n

ad
dr

es
s

Figure 6.3: The running trace segment of a media processing program

the most commonly-executed segments and instructions.

• The principle of locality becomes more apparent in embedded processing

applications, especially for instructions.

These characteristics can be employed to achieve power saving by designing

an embedded processor which supports only the most commonly-used instruc-

tions and has a very small instruction memory holding only commonly-executed

program segments. However, this approach is not practical for two reasons:

• Compiler support is still a very important design issue for an embedded pro-

cessor. To assist embedded system programmers, an embedded processor

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 115

should provide an instruction set with abundant instructions. The require-

ment to support a wide range of embedded applications also calls for an

abundant instruction set.

• A embedded program is more than just the set of the most commonly

executed instruction segments. The instructions that are executed only once

still need to be stored in memory, fetched, decoded and executed — they

require the same treatment as the more commonly-executed instructions.

Therefore, there exists a contradiction between execution complexity and

general-purpose functionality and this contradiction cannot be eliminated by a

conventional unified processor architecture in which all tasks are executed in a

single processor. The concept of ‘hierarchical processing’ is introduced to alleviate

this contradiction.

The basic idea of hierarchical processing is to include several levels of pro-

cessing units (processors) in one embedded system where the processors are not

identical but have hierarchical functionalities. More complex processors support

more general-purpose functionality but have more execution overheads, thus con-

suming more power. Simpler processors have a small memory and support only

some commonly used instructions and addressing models, so they can be designed

to be faster and more power-efficient by eliminating execution overhead. The in-

frequently used programs and instructions are executed in complex processors

to allow the embedded system to support general-purpose functionality. The

frequently executed program segments and instructions are executed in simple

processors to minimize overheads.

Although a hierarchical processing scheme can minimize execution overheads

while maintaining general-purpose functionality, it introduces another overhead,

which is the communication between processors. Therefore, efficient and low-

overhead communication is critical in the design of a hierarchical processing

architecture. A multi-level hierarchical processing architecture with a lot of

(instruction-level) communications and data transfers between processors is unde-

sirable. In this research, the hierarchical processing architecture is based on a two-

level CPU-coprocessor architecture, and the communications are not instruction-

level but coarse-grained — a number of instructions are executed between two

communications.

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 116

6.2 A hierarchical processing architecture

6.2.1 The overall architecture

Figure 6.4 shows the proposed hierarchical processing architecture employing two

data processing units in the embedded processing system. One is a conventional

general-purpose embedded processor acting as a main CPU, the other is a simple

processing unit acting as a coprocessor. The main CPU provides abundant in-

structions, supporting various address modes, interrupts, memory faults and off-

chip control. The coprocessor supports a simple instruction set, containing only

the most frequently-used instructions but may include some dedicated hardware

which increases the performance and power-efficiency of some specific embedded

processing applications.

CPU

Mem
Local

DMA

I/O

Global
Memory

Function units

Local
instruction

cache
register file

Local

RISC Coprocessor

Main CPU

Figure 6.4: The proposed hierarchical processing architecture

Although the coprocessor is simple, it has a powerful processing ability when

executing the instructions that it supports. Because the coprocessor no longer

needs to support a full instruction set, it can avoid much of the execution over-

head of a general-purpose processor, thus being power-efficient. The frequently-

executed program segments, such as small loops, long equation evaluations and

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 117

function calls, will be executed in the coprocessor. The infrequently-executed pro-

gram segments and those instructions that cannot be executed in the coprocessor

will be handled by the main CPU.

To maintain functional simplicity and minimize power consumption, the co-

processor has only a very small instruction buffer and cannot fetch instructions

from the main instruction memory when it finishes processing the current task.

Instead, the main CPU will feed program segments into the small instruction

buffer when it wants them to be executed in the coprocessor.

As discussed before, infinite and continuous data stream computing is very

common in embedded processing applications. Normally, for data stream comput-

ing, two large memory arrays are processed and the results are put into another

array. To support stream-based computing efficiently, the coprocessor contains a

small local memory, which may be partitioned into several blocks. Local memory-

memory calculation can be executed within the coprocessor without the assistance

of the main CPU. However, the coprocessor cannot access the memory space out-

side the local memory. To the main CPU, the local memory, the instruction

buffer and the register file of the coprocessor are just parts of its main memory.

The concept of coprocessor in this architecture is a bit different from that

of conventional ones because, on the one hand, the coprocessor may dominate

the actual execution time — it can execute a program segment for a long time

without the assistance of the main CPU and it has a more powerful processing

ability than conventional coprocessors. On the other hand, to support efficient

communication, the coprocessor should be placed close to the main CPU. In this

sense, the coprocessor is more like a powerful function unit of the main CPU.

6.2.2 Coupling the CPU and the coprocessor

Theoretically, the main CPU can process in parallel with the coprocessor, but

the real-time synchronization and resource sharing introduce a lot of execution

complexity and overheads. In the proposed architecture, the main CPU and the

coprocessor execute serially.

As described above, the coprocessor does not have the ability to fetch in-

structions from the main memory by itself. There are two ways to initialize the

instructions of the coprocessor. One is a static approach — all program segments

to be executed in the coprocessor can be loaded into the local instruction buffer

in advance before executing a program. The other is a dynamic approach — all

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 118

instructions are loaded in the main memory and the main CPU starts to execute

a program. When the main CPU finds that a program segment should be exe-

cuted in the coprocessor, it will send all the instructions of the program segment

to the instruction buffer in the coprocessor at run-time.

Each of these approaches has advantages and disadvantages. For the static

approach, if a lot of program segments need to be processed in the coprocessor,

the coprocessor needs to have a large instruction buffer to hold these segments. A

large instruction buffer means low speed and high power. The dynamic approach

requires a smaller instruction buffer because, at one time, only one or a few pro-

gram segments are held in the instruction buffer, thus saving power. However, if

the program segments keep on changing, the overheads due to switching contexts

become significant; fortunately, based on the principle of locality, these situations

are rare. The proposed architecture supports both approaches, but the dynamic

instruction feeding scheme is used more frequently.

Figure 6.5 illustrates the execution of a program in a hierarchical processing

architecture. The program contains some segments to be executed in the main

CPU as well as some to be executed in the coprocessor. Because of the advantages

of asynchronous logic design mentioned in Chapter 3, the two processing units

are proposed to be asynchronous.

execute normal programs
Initialize segment A

Idle Idle
Execute other
segments

to start A
send request

for the first execution segments

Send operands
to segment A request

Idle
Execute

A Idle
Execute

A

CPU

Coprocessor

Time

Acknowledge Acknowledge

Idle

Execute other

Figure 6.5: The cooperation between the CPU and the coprocessor

Before execution, the PC of the main CPU is set to the start address of the

program. The program is then executed in a normal way in the main CPU. After

some time, the main CPU encounters an instruction telling it to initialize the in-

struction buffer of the coprocessor. Actually, the instruction is no different from

other memory data transfer instructions. The main CPU then enters a loop to

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 119

send coprocessor instructions to the local instruction buffer and initial operands

of the local memory and the local register file. It is very inefficient if every data

transfer is handled by the CPU. A more efficient way is to use a Direct Mem-

ory Access (DMA) module to handle the lowest-level memory block movement,

initialization can thus be done by using a few DMA control instructions.

After initialization, the main CPU sends a Request signal to wake up the

coprocessor and enters an idle state waiting for the results from the coprocessor.

The coprocessor then starts executing the program segment. When the copro-

cessor finishes the program segment, it sends an Acknowledge signal to wake up

the CPU and then puts itself into an idle state.

The main CPU continues executing the program until it meets another pro-

gram segment to be executed in the coprocessor. If the program segment is one

previously initialized (the local instruction buffer of the coprocessor may contain

more than one program segments), the CPU does not need to initialize the pro-

gram segment again; it needs only to send the new operands to the register file

or the local memory. Otherwise, it will send the new instructions to the local

instruction buffer of the coprocessor.

The approaches for data transfers between the two processing units are very

flexible. Data transfers can be done either by an I/O handshake module in the

function block or by sharing memory and can be either fine- or coarse-grained.

An example of fine-grained data transfer is an encryption algorithm in which

one data item is processed through a complex mathematic equation where one

output is generated. Examples of coarse-grained data transfer are stream-based

processing applications, which have a lot of input data and output results.

As can be seen from Figure 6.6, the tasks to be processed in the coprocessor

are coarse-grained, which means the coprocessor needs to execute tasks for many

cycles before communicating with the main CPU. If the coprocessor needs to

contact the main CPU every time it finishes one instruction, the communication

overheads will overwhelm the power saving by hierarchical processing, but for

coarse-grained communication, the overheads are assumed to be very low (just

like putting an instruction into cache in a conventional memory hierarchy archi-

tecture).

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 120

6.3 RISC coprocessor design

In the two-level hierarchical processing architecture presented in the last sec-

tion, the main CPU is just an embedded general-purpose processor. Low-power

techniques for general-purpose embedded microprocessors are too broad to be

addressed in this thesis. This section discusses the design of a simple RISC-like

coprocessor.

6.3.1 Instruction set design

The design of an instruction set needs very careful evaluation. Moreover, for em-

bedded processing applications, a successful instruction set design also depends on

the statistics of the behaviours of the targeted program kernels that are executed

frequently. The motivation of the coprocessor design is to minimize execution

overheads and to increase power-efficiency. So ‘simple is good’ is the philosophy

used in the coprocessor design.

The prototype instruction set of the coprocessor includes only three kinds of

instructions: data processing, branch and load/store instructions.

A typical data processing instruction has a ‘three-address’ format with two

source addresses for operands and one destination address for results. These in-

structions normally do not change the condition code bits (to be introduced later).

Comparison instructions are also included in the processing instructions, these

differ from normally data processing instructions in that they do not produce a

result but set condition code bits. A comparison instruction is normally put be-

fore a branch instruction. The coprocessor supports only a very simple immediate

instruction which sends a 10-bit immediate number to a given register.

A branch instruction changes the program counter (PC) depending on the

current condition code bits. The prototype coprocessor has only two condition

code bits — Negative (N) and Zero (Z), ignoring the carry and overflow that

are included in most general-purpose processors, thus the prototype coprocessor

normally is not used to handle arithmetic calculations with a carry input.

The load instruction loads a data item from the local memory to the local

register file. The store instruction, on the other hand, stores a data value from

the local register file to the local memory. Stream-based computations normally

load and store data sequentially from a start address. Autoincrement instructions

improve the code-density if an embedded processing application has a lot of these

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 121

kinds of computations. The prototype coprocessor supports only postincrement

load and store instructions.

All the instructions have an instruction-length of 20 bits. The first 5 bits

represent what kind operation the processor should execute. Since the total

number of instructions is larger than 16, the instruction opcodes need 5 bits. The

unused opcodes can be left for specific data processing applications. Instructions

for division, Hamming distance, Counting Leading Zeros (CLZ) and S-box for

DES algorithm are possible candidates [72]. The last 15 bits of an instruction

are divided into 3 segments with different definitions for different instructions.

The structure of the instruction set is shown in Figure 6.6 and the prototype

instruction set of the coprocessor is shown in Table 6.1.

OPCode −− Rn Rm

Comparison

Comparison
not occupied
second operand register
first operand register

OPCode Rd Rn Rm

Data processing

operation code
destination register
second operand register
first operand register

19 1415 910 45 0

19 1415 910 45 0

OPCode Rd

Immediate

IMM
Destination register
10 bit immediate number

19 1415 910 0

19 1415 910 45 0

19 1415 910 45 0

19 1415 910 45 0

OPCode Rn Rm

Postincrement Load/Store

postincrement load/store
post increment offset
target address register
operand register

immediate A Rm = [Rn]/[Rn]=Rm
Rn = Rn + #A

19 1415 0

OPCode Rd Rn

Shift/Move

shift/mov
destination register

immediate A

if A[4]=0, shift right, else shift left
if A=0, mov; if A=31; mov negative

second operand register

Rd = Rn << #A

Rd = Rn / Rd = −Rn
Rd = Rn >> #A

immediate A Rd = #A

cmp Rn, Rm

Rd = Rn + Rm OPCode

Branch instruction

Direct jump target
not occupied

19 1415 910 0

Branch condition

Rm = [Rn]/[Rn]=Rm

Immediate A PC = #A

OPCode −− Rn Rm

Load/Store

load/store
not occupied
target address register
operand register

−−

OPCode

I/O

I/O, communicate with the CPU

I/O information

I/O instruction
communicate with CPU

Info

Figure 6.6: The structure of the instruction set

As can be seen from Figure 6.6 and Table 6.1, the coprocessor has a very

simple and regular instruction set. ARM processors are known to have a relatively

simple and easily decoded instruction set. Even so, the instruction decoder of the

ARM7TDMI processor has 12 inputs, 91 minterms and 42 outputs and it uses 15%

of the overall core power [73]. In the coprocessor here, the power consumption

due to instruction decoding is much smaller than that of the ARM (in Table 6.3,

it is included in ‘Others’, about 20% of ‘Others’ and 5% of the overall coprocessor

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 122

Table 6.1: The coprocessor instruction set

No. Mnemonic Meaning No. Mnemonic Meaning

0 AND logic AND 16 BAL branch always
1 OR logic OR 17 BEQ branch if equal
2 XOR logic XOR 18 BNE branch if not equal
3 ADD addition 19 BGT greater than
4 SUB subtract 20 BLT less than
5 CMP comparison 21 BGE greater than or equal
6 SM shift/move 22 BLE less than or equal
7 MUL multiplication 23
8 IO CPU communication 24
9 IMM move immediate 25
10 LDR load 26
11 PLDR postincrement load 27
12 STR store 28
13 PSTR postincrement store 29
14 30
15 31

power consumption).

6.3.2 The cost of pipelining

Pipelining is the simplest form of concurrency to improve the performance of a

processor. The simple instruction set of a RISC processor greatly simplifies its

pipeline design and makes it possible to have a high clock rate with single-cycle

execution. Even so, a RISC processor still spends a significant proportion of

its overall core power consumption in pipelining. The power overhead due to

pipelining is mainly caused by the efforts to reduce ‘pipeline hazards’.

Pipeline hazards are situations that prevent the next instruction in an instruc-

tion stream from executing at a designated clock cycle. Hazards have a significant

impact on the performance obtainable from pipelining. There are three kinds of

hazards:

• Structural hazards:

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 123

Structural hazards arise from hardware conflicts when two or more instruc-

tions attempt to access hardware which allow only mutually-exclusive ac-

cess.

• Data hazards:

Data hazards arise when an instruction needs the result of a previous in-

struction that is still being processed in the pipeline (data dependence).

• Control hazards:

Control hazards arise when a branch instruction has been fetched but the

previous instruction that sets the condition code is still being processed.

A number of techniques have been proposed to avoid or reduce pipeline haz-

ards. These techniques belong to three categories:

• To minimize structural hazards, more hardware must be added to reduce

the chance of hardware conflicts. The most commonly accessed part of a

processor is its register file. To avoid structural hazards due to register file

access, register files are normally built to have several input and output

ports. Because of this multi-port architecture, register files are more power

hungry than single-port SRAMs.

• The basic way to minimize data hazards is by using a ‘forwarding’ or ‘by-

passing’ technique. Data hazard stalls normally arise when one instruction

tries to read operands from a register file or memory, but the previous in-

struction has not put the result back to the register file or memory because

of the pipeline architecture. Of course, the instruction can be blocked until

the previous instruction sends the result back. If the previous instruction

can forward its result to the instruction that needs the result, the pipeline

operation will not stall. However, a forwarding technique introduces extra

execution overheads in control and forward path.

• The simplest way to handle branch instructions is to stall instruction prefetch

until the destination address is known. This scheme is simple but loses

performance. A ‘branch prediction’ scheme is normally used to minimize

pipeline branch penalties. The ‘branch prediction’ scheme holds a record

of the former program trace and uses this to predict the branch target of a

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 124

branch instruction. The execution overheads of a branch prediction scheme

come from two factors:

1. Keeping the program trace record and implementing a prediction al-

gorithm;

2. If the previous prediction is wrong, the processor needs to discard

the mistakenly-fetched instructions, introducing extra complexity in

control. This also wastes processing power.

Let us analyze the impact on performance if we discard these techniques. 4

simulators were built to simulate the performance of 4 processors listed as follows:

• P1: a single-port register file, without bypassing, stall branch instructions.

• P2: a three-port register file (two for read, one for write), without bypassing,

stall branch instructions.

• P3: a three-port register file, bypassing, stall branch instructions.

• P4: a three-port register file, bypassing, branch prediction.

Consider the hazards of the following program segment. There is a data de-

pendence between Instruction1 and Instruction2. A control hazard arises between

Instruction3 and Instruction4. The architecture of the RISC coprocessor is shown

in Figure 6.9 (more detailed discussion on the architecture is presented in the next

section). The pipeline operations when the program segment is executed in the

four processors are illustrated in Figure 6.7. As can be seen from the figure P4

is faster than P1.

/* A C program for sum = 0+1+2+3+...+100 */

for(i=0; i<101; i++)

sum = sum + i

/* Assemble codes */

/* i->r0, sum->r1 */

loop:

ADD r0, r0, #1; -- Instruction1:

ADD r1, r1, r0; -- Instruction2: data dependence

CMP r0, #101; -- Instruction3:

BNZ loop; -- Instruction4: control hazard

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 125

Figure 6.7: The pipeline operations of the four processors

From the experimental results, replacing a single-port register file with a 3-

port register file increases the performance by 35%. Using a bypassing scheme

increases the performance by another 37%. Employing a branch prediction strat-

egy (assuming a 100% correct rate) further increases the performance by 16%.

Therefore, if the three pipeline hazard reduction techniques are all be used, the

speed of a processor can be improved by 1.35 × 1.37 × 1.16 = 2.1 times. These

performance impacts differ for different programs and architectures. The analy-

sis is made using a RISC architecture with only 4 pipeline stages and a program

segment having very dense data dependencies. It is estimated that for real pro-

grams, the impact on performance by avoiding these techniques will be smaller

than 50%.

Pipeline hazard reduction techniques increase the performance of a pipelined

RISC processor, but introduce extra power overheads. The following analysis is

based on the power consumption of the Amulet3 processor where the total power

consumption of the register file, branch prediction circuit and bypassing circuit

is about 32% of the whole core power consumption (7% for branch prediction,

13% for the register file and 12% for bypassing) [17]. These data are based on

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 126

the power breakdown of a general-purpose processor. For the coprocessor, if the

overall power consumption is reduced and instruction fetching and decoding are

no longer the most power hungry parts, the power consumption of pipeline hazard

reduction techniques is estimated to be greater than 32% of the overall processor

power consumption.

If these pipeline hazard reduction techniques are skipped and a single-port reg-

ister file is used, overall power consumption can be significantly reduced: through

experiments, using a single-port register file reduces the power consumption of a

register file by 1/3; changing a bypassing scheme with a register locking scheme

reduces the power consumption of a bypassing technique by 70% (this number is

based on testing an asynchronous processor, since there is no global clock timing,

an asynchronous processor needs to use a more complex bypassing scheme than

that of a synchronous processor). Avoidance of branch prediction can save al-

most all the power used by branch prediction. The total power saving by avoiding

pipeline hazard reduction techniques is about 0.07+0.13×0.33+0.12×0.7 = 20%

of the overall core power consumption of Amulet3. For the coprocessor, the power

saving percentage is estimated to be about 33%.

To sum up, pipeline hazards impact on the performance of a pipelined pro-

cessor. The performance penalty can be minimized by using pipeline hazard

reduction techniques and more hardware. However, these techniques and hard-

ware additions introduce extra power overheads. For the coprocessor, avoidance

of these techniques and hardware can achieve a power saving of about 33% of the

overall power consumption at the cost of less than 50% performance loss. The

total power consumption can be further reduced by totally abandoning pipelin-

ing [74], but the power saving is only 5% (mainly due to the drivers of the pipeline

registers) based on simulation and the performance penalty is about another 30%.

Therefore, the proposed coprocessor still uses a pipeline architecture but omits

pipeline hazard reduction techniques (the P1 architecture).

6.3.3 The proposed RISC coprocessor architecture

Figure 6.8 shows a classic 5-stage RISC pipeline architecture. With this archi-

tecture, the execution of an instruction in the processor normally includes five

steps:

• The processor fetches the instruction from the instruction cache.

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 127

Register file

 I−cachePC

ALU

 D−cache
read/write

writeback
Register

Decoder

execute

decode

fetch

write−back

buffer/memory

Figure 6.8: A conventional 5-stage RISC pipeline architecture

• The instruction is decoded and the operands are read from the register file.

• The operands are processed in the ALU and the result is generated.

• The result is stored to the data memory if necessary. Otherwise, the result

is just buffered for one clock cycle to balance the number of pipeline stages.

• The result generated by the instruction is written back to the register file

and any required data is loaded from the data memory.

To improve throughput, these five steps are pipelined and executed in parallel.

In ARM processors, the respective pipeline stages are called instruction fetch (IF),

instruction decode (ID), execute (EXE), buffer/memory (MEM) and write-back

(WB).

Figure 6.9 (a) and (b) show the proposed RISC architecture of the coprocessor

and its pipeline stages. Since the instructions of the coprocessor are very simple,

there is no need to include a dedicated instruction decoding stage. Therefore,

the pipeline architecture includes only 4 pipeline stages: instruction fetch (IF),

register file reading (REG), processing/memory (EXE) and result writing back

(WB). Since the load and store instructions in the coprocessor do not need to

calculate an operand memory address, the memory fetch/store circuits are put

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 128

in parallel with the function units which process data. Both the load and store

instructions can complete in one cycle. The postincrement load and store instruc-

tions can also complete in one cycle by allowing a memory load/store operation

to execute in parallel with an address calculation. The postincrement load may

cause a slight longer latency than other instructions because two results need

to be written back to the register file (one data item from the memory and the

post incremented address), but the latency can be tolerated by an asynchronous

pipeline.

instruction
Local

buffer

Local
register

file

R/
W memory

Local

EXE/MEMIF REG WB

(a)

(b)

Function
block

Figure 6.9: The organization and pipeline architecture of the coprocessor

Unlike the classic 5-stage pipeline architecture, which puts the memory load

and store operations after the ALU, the coprocessor puts it in parallel with the

function units. Since the coprocessor does not allow load/store instructions to

have address calculations, putting the memory load/store circuit in an early

pipeline stage helps to reduce the power consumption used by propagating op-

codes and addresses through more stages in the datapath.

The function block contains the most commonly used function units, including

a shifter, an arithmetic/logic unit and a multiplier, to support the instruction set.

Unlike the ARM processors, in which operands are first shifted then processed,

the coprocessor puts the shifter and other data processing units in parallel. An

instruction cannot execute a shift operation and a data processing operation

together; this approach reduces the complexity of the datapath.

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 129

As mentioned before, embedded processors usually contain some special in-

structions to support efficient execution of important kernels. Some special em-

bedded operations, for example the S-box of DES, cannot be executed efficiently

using conventional instructions. Therefore, the function block may include some

special function units to support these operations.

Word length is another factor in the coprocessor design. A short word length

imposes constraints on embedded applications, such as address space size and

data precision, a long word length may cause a significant waste of datapath

bits. Table 6.2 [3] shows the distribution of data size for the TMS320C540xDSP,

about 90% of operands are 16 bits. Figure 4.17 revealed the same distribution

characteristic, where more than 90% of the operands have a SBC below 16 bits.

An 8-bit datapath offers another choice, but its small address space may make

some applications difficult to be implemented. A 16-bit word length is chosen for

the coprocessor.

Table 6.2: Data size distribution [3]

Data size Memory operand in operation Memory operation in data transfer

16 bits 89.3% 89.0%
32 bits 10.7% 11.0%

6.3.4 Primary experimental results

To demonstrate the power efficiency of the hierarchical processing architecture,

a prototype RISC coprocessor was designed and simulated in a 0.18 µm CMOS

technology. The coprocessor has a 16-bit datapath and a local instruction buffer,

which stores up to 32 instructions. The register file is a single-port SRAM con-

taining 32 16-bit words. Using a supply voltage of 1.8 volts and at a temperature

of 25oC, the energy and delay characteristics of each component are shown in Ta-

ble 6.3; the delays of pipeline controllers and registers are included in the delays

of other components.

Based on the data shown in Table 6.3, if the execution of an instruction con-

tains one instruction fetch, two register file reads, one register write and one

multiplication, the instruction uses 3.3 + 3.1 × 2 + 3.1 + 7.51 + 34.2 = 54.31

pJ energy, which equals 18,400 MIPS/watt. The energy efficiency is based on

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 130

Table 6.3: The characteristics of the proposed RISC coprocessor components

Component Energy per Delay
operation (pJ) (ns)

Instruction buffer (read) 3.3 1.5
Register file (read) 3.1 1.5
Register file (write) 3.1 1.2
16x16-bit Multiplier 34.2 2.61
16-bit Adder/Logic Units 3.17 0.90
Others (including decoder, pipeline latches 7.51 –
and controllers drivers, incrementer,
PC, function block multiplexers.

schematic simulation, which does not fully include wire capacitances. The post-

layout energy efficiency is estimated to be reduced by 2 to 9,200 MIPS/watt.

Compared to the energy efficiency of conventional embedded RISC microproces-

sors (normally around 1,000 MIPS/watt using the same technology and supply

voltage), the power efficiency is very high even when power-hungry multiplication

instructions are considered. Consequently, the coprocessor can at least improve

the power efficiency of a conventional general-purpose embedded processor by a

factor of 5 (2x difference between 16-bit word length and 32-bit word length). If

50% of the instructions of a program can be executed in the coprocessor, 40% of

the overall power can be saved if the hierarchical processing scheme is used.

The primary experimental result demonstrates the hierarchical processing ar-

chitecture proposed in this chapter is power efficient when executing those embed-

ded applications whose computations are contained in several small instruction

segments.

6.4 Summary

In this chapter, a hierarchical processing architecture is proposed based on the

analysis of embedded data processing characteristics. When running a typical

embedded data processing program, a processor spends a large proportion of its

time executing a few program kernels containing only a very small number of

instructions. A hierarchical processing scheme copes with these frequently exe-

cuted instructions differently from other instructions. The most frequently used

instructions are executed efficiently in a low-level processing unit which supports a

CHAPTER 6. LOW-POWER HIERARCHICAL PROCESSING 131

small number of instructions, has a simple datapath and takes instructions from

a small instruction buffer. The high-level processing unit is a general-purpose

embedded processor which has a conventional instruction set and functionality.

The instructions that cannot be executed (efficiently) in the coprocessor will be

executed in the high-level CPU, the low-level processing unit therefore improves

power efficiency when executing the most frequently used instructions, while the

high-level processing unit preserves general functionality.

To demonstrate the power-efficiency of the hierarchical processing architec-

ture, a prototype RISC coprocessor was designed and simulated. The coprocessor

is demonstrated to be at least 5 times more power-efficient than a general-purpose

embedded processor. The cost of RISC pipelining techniques in power consump-

tion is also studied in this chapter.

The next chapter will present the design of another coprocessor — one using

an asynchronous dataflow scheme.

Chapter 7

The design of a dataflow

coprocessor

Since Patterson and Ditzel first clearly brought forward the concept of the Re-

duced Instruction Set Computer (RISC) in 1980 [75], considerable research has

been carried out in RISC microprocessors, including a lot of low-power tech-

niques. Since a mature architecture may have little potential for further power

saving, this chapter makes an attempt to explore the power-efficiency of an older

but less-studied (and maybe more interesting) approach — a dataflow architec-

ture [76] [77]. A dataflow coprocessor is designed and studied in this chapter.

The chapter is organized as follows: Section 7.1 gives a brief introduction to

dataflow machines; Section 7.2 proposes a dataflow model used in the coprocessor;

Section 7.3 presents the dataflow architecture; Section 7.4 describes the circuit

implementation of the coprocessor; Section 7.5 proposes an automatic mapping

algorithm translating conventional RISC programs to dataflow ones; Section 7.6

presents the experimental results, and also compares the power and performance

of the RISC coprocessor with the dataflow coprocessor; Section 7.7 concludes the

chapter.

7.1 Introduction to dataflow machines

Computing machines can be referred to as ‘control flow machines’ or ‘dataflow

machines’ depending on the way in which instruction orders are defined:

132

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 133

• The commonly used von Neumann machines belong to ‘control flow’ ma-

chine, in which programs are executed in an order that is specified by pro-

grammers. The execution order of a program in a von Neumann machine

is sequential, in which instructions are fetched from consecutive locations,

unless this sequentiality is changed by some dedicated control instructions

(branches).

• In contrast to control flow machines, a ‘dataflow’ machine executes pro-

grams in an order implied by data interdependencies and space availability.

Dataflow execution offers natural properties for fine-grained instruction-level

parallel processing. The parallelism of a dataflow program is self-scheduling. Ex-

cept for data dependencies, there is no constrained sequentiality, so a dataflow

program allows all forms of instruction parallelism. Synchronization of differ-

ent parallel threads is implicit in the form of data interdependencies. With a

dataflow scheme, parallelism and synchronization eliminate the need for pro-

grammers to use explicit control instructions which manage parallel execution.

These properties have attracted many researchers aiming for high performance.

In this chapter, however, dataflow computing is explored specifically to improve

the power-efficiency of conventional microprocessors. As will be seen later, a

dataflow coprocessor can achieve higher performance than the RISC coprocessor

introduced in the last chapter.

7.1.1 Dataflow graphs

In a dataflow machine, programs are normally described in the form of dataflow

graphs. The evaluation of a complex computation can be regarded as a sequence

of data flowing through some data processing units (or function units), such as

multipliers and adders, and the evaluation can be described by a graph. Figure

7.1 shows a dataflow graph that illustrates the equation x = a+(b×c)+(d×e). As

can be seen from the figure, if a, b, c, d and e are set by initialization, the output

x will be calculated after some time depending on the speed of the multipliers

and adders used. The sequence of the operations is not important. As long as the

function units have valid inputs, they can process the operations. However, if a

stream of data needs to be processed, function units must synchronize with others

to prevent overwriting the data values (data tokens) which are being calculated.

Thus a dataflow operation should satisfy two requirements:

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 134

• Each input port of a function unit should have a valid data token.

• Each output port of a function unit (destination) should be empty, which

means the function unit has finished its former calculation (if any) and is

ready to process new tokens.

c d eba

x

Figure 7.1: A dataflow graph for a long equation

From the example mentioned above, a dataflow graph is constructed from

some basic dataflow ‘nodes’, each representing a basic data processing function.

The input arcs of a node represent the inputs for the respective data processing

function and the output arcs represent the outputs from the respective data

processing function. Normally, a node has two input arcs and one output arc,

but the number of input and output arcs can be changed for different purposes.

A number of basic nodes are connected together to implement different programs

and data flowing through a dataflow graph are referred to as ‘tokens’. If two nodes

are linked together, the node that issues data tokens is called a ‘sender’ and that

accepting data tokens is called a ‘receiver’. Two kinds of dataflow computations

are defined depending on who initializes dataflow operations:

• Data-driven computation — operations are executed in an order determined

by the availability of input data.

• Demand-driven computation — operations are executed in an order deter-

mined by the requirements for data.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 135

In data-driven computation, senders start dataflow operations, similar to a

‘push’ channel in asynchronous logic. In data-demand computation, receivers

start dataflow operations, similar to a ‘pull’ channel in asynchronous logic.

Figure 7.1 includes only basic data processing nodes with two input arcs and

one output arc. The basic data processing node normally has two input arcs and

one output arc, as shown in Figure 7.2(a). However, an output is often sent to

several different locations and hence a ‘fork’ node is also needed, as shown in

Figure 7.2(b). A data processing and a fork node can form a unified node which

has two input arcs and two output arcs as shown in Figure 7.2(c). Since one node

corresponds to an instruction and the duplication of an output is very common,

the combination of a data processing node and a fork node can greatly reduce

the number of instructions required for creating temporary variables.

(b)(a) (c)

(e) (f)

gate

FT

(d)

gate

value

T

gate

B1 B2F

Figure 7.2: Basic dataflow nodes

Conditional and repetition executions are indispensable for basic program

segments such as loops and branches and these operations call for a condition

node called a ‘branch’ as shown in Figure 7.2(d) which contains two input arcs

and two output arcs. The input tokens from the ‘value’ arc are normal data

tokens and those of the ‘gate’ arc are Boolean tokens which control the output

direction of data tokens. If the value of the gate token is 1, the data token is sent

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 136

to the ‘true’ output arc; otherwise, it is sent to the ‘false’ output arc. The branch

node can also be combined with a data processing node as shown in Figure 7.2(e).

If the two output arcs of Figure 7.2(e) are not fixed but are configurable, a

unified node can be constructed as shown in Figure 7.2(f). This node represents

a unified format which combines the functions of data processing, duplication

and conditional control. The unified node can be configured to behave like the

other nodes shown in Figure 7.2. In the unified node, B1 and B2 are Boolean

values that can be set as ‘true’ or ‘false’. A result will be sent to the output arc(s)

whose Boolean value is equal to the gate value. If B1 6= B2, the node is a branch.

If B1 = B2 = gate value, the node is a fork. If B1 = B2 6= gate value, the

node is a ’sink’, which only consumes tokens but never generates tokens. As will

be described in the remainder of this chapter, the unified dataflow node format

results in a very regular dataflow circuit implementation.

The three types of basic nodes — data processing nodes, the branch node and

the fork node — can be used together to describe any deterministic program.

Figure 7.3 shows a dataflow graph of

sum =
n∑

i=0

i

.

i=i+1

sum=sum+i

i == n

T

Initialize

Output

Fork

F F

F

Figure 7.3: A dataflow graph for sum = 1 + 2 + ... + n

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 137

7.2 The proposed dataflow model

Clearly, it is inefficient for a general-purpose data processing unit to have a specific

datapath for every possible computation such as that shown in Figure 7.3; a more

flexible architecture is needed which can support many different computations.

Figure 7.4(a) shows a basic static dataflow architecture [78] and Figure 7.4(b)

illustrates the mapping of the equation x = a + (b × c) + (d × e) onto this

architecture. There are three main components in this architecture — a matching

store, a function block and an interconnect network. The matching store is used

to store instructions and data. The function block contains several function units

where data are processed and an Input/Output module to access main memory

or communicate with a CPU. The interconnect network sends data tokens to the

function units and results back to the specified positions in the matching store.

And

I/OXor Or

3: ?+? out

2: a+? 3

Function Block

Interconnectnetwork...

Matching store

(a)

(b)

0: b x c 2

1: d x e 3

Figure 7.4: A static dataflow architecture

One instruction comprises four segments — an operation code, two operands

and the destination addresses of the result. If an instruction satisfies the two

requirements introduced above (each input arc has a valid token and each output

arc is empty), the instruction becomes ‘active’. However, not every active in-

struction can be processed immediately. The number of active instructions that

need the same processing function, say multiplication, may exceed the number of

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 138

‘free’ function units. Thus some instructions must wait for the execution of other

instructions before they can get a free function unit. The interconnect network

takes charge of selecting the ‘active’ instruction; this is called ‘arbitration’. If an

instruction is selected by the interconnect network, it is said to be ‘fired’.

Examining the dataflow operation in Figure 7.4(b), the question marks in-

dicate empty places for input tokens. At the beginning, both instruction0 and

instruction1 are active because they satisfy the two requirements, while instruc-

tion2 and instruction3 wait for the inputs indicated by question marks. If the

interconnect network selects instruction0 to execute, the output of b × c will be

sent to the empty place in instruction2 and change instruction2 to active. Then

both instruction1 and instruction2 will be sent to the function block and the

outputs will be sent back to the two empty places in instruction3. Finally, in-

struction3 becomes active and will be sent to the function block which generates

the result x. The sequence of instructions may be 0123, 1023 or 0213; this does

not matter and is not detected outside the matching store. The outside envi-

ronment only issues the operands and receives the result. The mapping of the

equation x = a + (b× c) + (d× e) in Figure 7.4(b) differs from that in Figure 7.1;

this illustrates that the mapping of a computation is not unique.

When a stream of data needs to be processed, two important details covered

in the dataflow operations mentioned above have to be addressed— how to define

the validity of a data token and an empty place and how to detect the state of

the destination. Defining the validity of a data token and an empty place is very

simple. If the interconnect network sends a result to an instruction, it also sets a

valid bit corresponding to the operand to 1, indicating a valid data token. When

the instruction is fired, it sets the valid bit back to 0, indicating an empty place.

Detecting the states of destinations is a problem. A straightforward solution

is that the instruction requiring to send a result actively polls its destinations

for their states. However, this is very inefficient because the instruction may

have to repeatedly ask ‘are you empty?’ If the destinations are always occupied

and cannot reply ‘yes’, the instruction will ask forever. This is a power-hungry

dynamic action. A more efficient approach is proposed called a ‘negative solution’.

With a ‘negative solution’, receivers automatically send ‘empty tokens’ or ‘data

demands’ to their senders when they are fired. Senders become active depending

on the data demands from their receivers. Thus, in the ‘negative’ solution, two

kinds of tokens flow inside the processor — data tokens and empty tokens. As

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 139

can be seen from the above, operations in the negative scheme are executed in

an order determined not only by the availability of input data but also by the

requirements for data. Figure 7.5 illustrates the different situations for these two

synchronization schemes, the negative solution is more efficient because only one

communication is needed to indicate an empty space.

Are you free?
No!

No!

Are you free?

...

I am free.

,,,, ,, ,,
,

(b) the negative scheme

(a) the positive scheme

,
,

Figure 7.5: The comparison of two different synchronization schemes

To support the ‘negative’ scheme and the unified format as shown in Figure

7.2 (f), the structure of the coprocessor instructions is as shown in Table 7.1. The

number in the bracket after each field name indicates how many bits are needed

in the respective field. The numbers are based on a 16-bit operand length and a

matching store with 32 instructions.

The function of each field is interpreted as follows:

Table 7.1: The structure of an instruction

OPCode (7) Const1 (1) V1 (1) OP1 (16)
DorG (0) Const2 (1) V2 (1) OP2 (16)

— ConstG (1) VG (1) GV (1)
Source1 (5) SF1 (0) Dest1 (6) DV1 (1)
Source2 (5) SF2 (1) Dest2 (6) DV2 (1)
SourceG (5) SFG (1) ETReq (1) ETGot (2)

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 140

• OPCode defines what kind of operation should be processed. It also de-

fines the types of operands in an instruction — immediate data or memory

addresses for the operands. This will be discussed in Section 7.3. The op-

erations of the dataflow coprocessor are as shown in Table 6.1, but move

immediate and branch instructions are no longer needed.

• DorG defines the output as a data value or a Boolean gate value. 1 indicates

a data value and 0 a Boolean value. This bit does not physically exist in

the coprocessor and is implicit in the opcodes.

• OP1, OP2 and GV are three input values — operand1, operand2 and gate-

value.

• Const1, Const2 and ConstG are three flags (const flags) defining whether

or not the respective input values are constants. If an input has a ‘const’

bit of 1, this input will always be valid and never be set to empty.

• V1, V2 and VG are three flags (operand valid bits) determining whether

the respective input tokens are empty or not. Their const bits are Const1,

Const2 and ConstG respectively.

• Dest1 and Dest2 are two destination addresses for ‘fork’ or ‘branch’. For

a register bank with 32 registers where each register has two data value

positions, these addresses need 6 bits each.

• DV1 and DV2 are two flags attached to the output arcs. The output is only

sent to the address(s) having DV equal to the gate value. If DV 1 = DV 2 =

GV , the instruction is a fork. If DV 1 6= DV 2, the instruction has only one

output. If DV 1 = DV 2 and DV 1 6= GV , the instruction is a ‘sink’, which

only absorbs input data and does not generate output. ‘Sink’ instructions

are not very common in sequential execution, but they happen quite often

at the end of a loop.

• Source1, Source2 and SourceG illustrate the respective addresses of sources

where the empty tokens should be sent.

• SF1, SF2 and SFG are three flags (source flags) determining whether the re-

spective source addresses are valid or not. For example, if SF1 = 0, SF2 =

1, SFG = 0, the instruction only needs to send an empty token to the

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 141

address indicated by Source2. In a real program, an instruction should at

least accept an input token (which means at least one empty token should

be sent), so SF1 is always set to 1 and thus can be eliminated. Actually,

the source flags are equal to the inversion of the const flags. These bits are

duplicated to implement a regular architecture to be introduced in Section

7.3.

• ETReq indicates how many empty tokens an instruction needs to become

active. It equals the number of its output arc(s). 0 means an instruction

needs one empty token to become active; 1 means an instruction needs to

two empty tokens to become active.

• The two-bit number ETGot indicates how many empty tokens one instruc-

tion has. If an instruction satisfies ETGot = ETReq + 1, it has received

enough empty token(s) to become active.

Among these bits, only a few determine the state of an instruction — these are

the ‘condition bits’ (Const1, V1, Const2, V2, ConstG, VG, ETReq and ETGot).

Other bits indicate data values and the destinations of outputs and empty tokens.

If an instruction is to be active, it should satisfy two conditions: V 1 = V 2 =

V G = 1 and ETGot = ETReq +1. When an instruction is fired, it clears ETGot

and those operand valid bits whose const bits are 0.

Figure 7.6 illustrates how the state of an instruction progresses by changing

the values of condition bits. Instruction0 specifies a× b with conditional control;

instruction1 specifies the addition of c and the output of a × b; instruction2

specifies the addition of d and the output of a× b. Assuming that a is a variable

and b is a constant number, the diagram of the state transition of instruction0

is triggered by the events shown in the figure. The order of the numbers in this

figure is <Const1, V1, Const2, V2, ConstG, VG, ETReq, ETGot>.

7.3 The dataflow coprocessor architecture

The dataflow machine is designed to be a coprocessor to handle repeatedly-used

and power-hungry operations such as those introduced in the last chapter. The

dataflow coprocessor has no ability to fetch instructions, the main processor de-

cides what kinds of instructions should be fed to it. The architecture of the

dataflow coprocessor is illustrated in Figure 7.7.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 142

a*b

c+? d+?

GV OP1 OP2

FT

1

2

3

4 The instruction receives an empty token sent by the instruction1.

1

2

3

4

The instruction receives gate value = 1.

The instruction receives input a.

0

1 2

The register becomes active. After some time, it is fired and the result

<0, 0, 1, 1, 0, 0, 0, 1>

<0, 1, 1, 1, 0, 0, 0, 1>

<0, 1, 1, 1, 0, 1, 0, 1>

<0, 0, 1, 1, 0, 0, 0, 0>

Order: <Const1, V1, Const2, V2, ConstG, VG, ETReq, ETGot>

is sent to the T branch. Valid bits and ETGot are set to zero.

Figure 7.6: The state transition diagram of an instruction

This architecture differs from that of Figure 7.4(a). The matching store is

separated into two parts — the Controller and the matching store RAM. Only

the ‘condition bits’ are stored in the Controller because these bits determine the

changes in the instruction states. The other 71 bits of an instruction, which have

no relation to the change of its state, are put in a single 32× 71-bit RAM block.

The Control FSMs (finite state machines) are the basic elements of the Control

and determine the state of an instruction, their logic function is very simple. If

an FSM receives a data token it sets the respective operand valid bit (V1, V2

or VG) to 1. If an FSM receives an empty token it increases ETGot by 1. If

V 1 = V 2 = V G = 1 and ETGot = ETReq + 1 the FSM becomes active and

sends a Request signal to a 32-to-1 arbiter in the interconnect network which

fires the FSM by sending back an Acknowledge signal. This Acknowledge signal

clears the operand valid bits (if the respective const flag is 0) and ETGot, thus

preparing for another execution. The number of Control FSMs in the Controller

depends on the capability of the instructions, in this dataflow prototype, there

are 32 control FSMs. The Acknowledge signals connect to the 32 wordlines of the

matching store RAM and the wordline of the ‘fired’ instruction will be selected.

The scheme of separating the control block and the matching store SRAM not

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 143

Matching
 store

Function
 block

Controller

Reqs

A
rb

ite
r

Acks

Local
memory

M
ux

Figure 7.7: The proposed dataflow architecture

only minimizes the size but also reduces the power consumption because most bits

are in the RAM block which has a compact structure and is very power-efficient.

Supporting only a load-store instruction architecture is one of the major rea-

sons why RISC processors usually have poor code-density. To overcome this

shortcoming, the dataflow coprocessor supports a rich instruction architecture, in-

cluding register-register, register-memory and memory-memory operations. The

current instruction architecture is determined by setting three bits of the OPCode

— IA1, IA2 and IAresult. IA1 = 0 means OP1 is an immediate value; otherwise,

it represents the local memory address of the operand. IA2 also has the same def-

inition. IAresult = 0 means the result is sent to the matching store; otherwise,

the result is sent to the local memory. The result address is defined by Dest1,

DV1, Dest2 and DV1 (totally 14 bits), so the local memory space for results is

16K. The number of pipeline stages can be either 3 or 4. If a local memory read is

needed, the 4 pipeline stages are fetching, memory reading, executing and result

writing; otherwise, the number of pipeline stages is 3 — fetching, executing and

result writing. As will be presented in the next section, using asynchronous con-

trol, the dataflow coprocessor can flexibly switch the number of pipeline stages.

Consequently, the dataflow coprocessor supports rich instruction architectures by

setting only three indicating bits and the execution overhead for supporting these

architectures is very small.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 144

7.4 Circuit implementation

7.4.1 Controller design

The interface of the control FSM is illustrated in Figure 7.8:

set_v2
set_v1

Init

set_vg
empty token

Request

Acknowledge

Control
FSM

Figure 7.8: The interface of the control FSM

After initialization, the values of Const1, Const2, ConstG and ETReq will

not change until the CPU outputs another instruction. Once the function block

sends a data/Boolean token (OP1, OP2 or GV) to an instruction, it will set

the corresponding valid bit (V1, V2 or VG) to 1 by sending a pulse on the

respective set wire (set V1, set V2 or set VG). If the three data tokens are all

valid (V 1 = V 2 = V G = 1), the instruction becomes active and it will set its

Request high. After arbitration, the interconnect network fires the instruction by

pulling Acknowledge high. The Acknowledge signal clears the valid bit(s) which

have the const bit(s) of 0. The matching store reads the respective instruction

out and sends it to be executed. After the return to zero phase, the instruction

waits for the next set of inputs.

Notice that there are three set wires (set V1, set V2 and set VG) for each

register. So, for 32 instructions, the Controller has 96 set wires — a large number.

In fact, it does not matter which data token is valid, only is how many. Provided

a FSM receives 3 data tokens, it will set the respective instruction active, thus

the three set wires can be reduced to a single wire — Datatoken. The schematic

of the counter circuit for the number of data tokens is illustrated in Figure 7.9.

One pulse on Datatoken shifts the data of the three-bit register right by one

bit. If the signal DTV alid becomes 1, all of the three data tokens are valid. The

empty token counter circuit uses a similar design.

The 32 Request signals are sent to a 32-to-1 arbiter which answers only one

request at one time by issuing a logic high on the respective Acknowledge wire;

thus only one of the Acknowledge wires is active at a time. The 32 Acknowledge

wires can be used to control the wordlines of the matching store SRAM and the

content of the respective SRAM row (an instruction) is sent to be executed.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 145

Reg Reg Reg

cl
ea

r

cl
ea

r

cl
ea

r

DTReq2DTReq1 DTReq3

Acknowledge

Datatoken

DTValid

Figure 7.9: The schematic of the data token counter

7.4.2 Pipeline control for various stage numbers

In synchronous circuits, pipelined datapaths usually have a fixed number of

pipeline stages, because, otherwise, it is very difficult to define a proper clock

period that satisfies each pipeline stage. In asynchronous circuits, the opera-

tion of a pipeline is self-scheduling and the number of stages of an asynchronous

pipeline can be changed to meet different operating requirements.

To support rich instruction architectures and result duplication, the number

of pipeline stages is variable in the dataflow coprocessor. For example, the result

of an instruction may be written to one or two positions in the matching store,

and memory-memory operations needs an extra pipeline stage to read operands

from the local memory. The control circuit for a pipeline having variable stages

can be implemented by an asynchronous component called a ‘Select-Box’.

A schematic for the Select-Box is shown in Figure 7.10 (a). The signal marked

by a diamond sign indicates whether the corresponding pipeline state needs to be

executed. The Select-Box just passes Request and Acknowledge signals to and

from the next stage if the diamond signal is 0; otherwise, it waits for the execution

in the corresponding stage and then relays the Request and Acknowledge signals.

Figure 7.10 (b) shows a circuit that uses B rm to decide if a local memory

read is needed before a data processing operation. B rm = 0 indicates that

the operands sent to the data processing block are immediate numbers and no

memory access is needed. If B rm = 1, the data processing block will wait for

the operands taken from the local memory.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 146

M
U

X

1

0

SBox Data
processing

Read
Mem

B_rm

(a)

(b)

Acknowledge
Request

Select

A2

R2

R1 A1

A0

R0

Figure 7.10: An implementation of a pipeline with various stage number

7.5 An automatic mapping algorithm

Since most programmers are familiar only with conventional sequential instruc-

tions, an automatic translation program that changes conventional sequential

programs to the dataflow programs will greatly simplify the programming of the

dataflow coprocessor. An automatic mapping algorithm is proposed in this sec-

tion to achieve this goal.

The main difference between the instructions of the data coprocessor and con-

ventional RISC processors is that the coprocessor’s instruction contains operand

values instead of register addresses and the results are sent to the correspond-

ing position in the matching store. The translation from normal RISC codes

to dataflow codes requires changing register addresses to the actual operand ad-

dresses in the matching store. Figure 7.11 shows an example of changing a con-

ventional ARM code segment to a dataflow code segment that can be executed

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 147

ADD r5, r3, #31

ADD r2, r1, r0

ADD −− −−

ADD −− −− 2 3

MUL −− −− 4

Coprocessor codeARM code

MUL r3, r2, r2

Figure 7.11: An example of mapping RISC codes to dataflow codes

in the coprocessor.

The second ARM instruction uses the result (r2) from the first instruction, so

when changed to a dataflow code, the first instruction should set its destinations

to the addresses of OP1 and OP2 in the second instruction (2 and 3). Following

the same principle, the destination of the second instruction sets its destination

to the address of OP2 in the third instruction (4).

From the example mentioned above, an automatic mapping algorithm can be

implemented by using three steps:

1. Copy the OPCodes and the initialized operand values of RISC instructions

line by line to dataflow instructions. Since the coprocessor supports only a

simple subset of a general-purpose processor instruction set, the OPCodes

of the coprocessor are simpler than those of a microprocessor. Small changes

may be needed to generate the coprocessor’s OPCodes.

2. Find the destination addresses of each instruction by using register ad-

dresses. This can be done by an algorithm called ‘converse search’. Take

the code segment of Figure 7.11 as an example, in the second instruction,

the value in register r2 is used for OP1 and OP2, so we can conversely

search for the instructions putting their results in r2, and set the destina-

tions of the corresponding instructions to the addresses of OP1 and OP2.

However, the converse search has two problems as shown in Figure 7.12.

• As shown in Figure 7.12 (a), the operands of an instruction may be

changed by an instruction behind it if there is a backward branch.

• Some destinations may be superfluous. The only useful instructions

that can change the content of a register are the latest ones. As shown

in Figure 7.12 (b), Instruction1 does not need to send its result to

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 148

(b)

MOV r1, #1 ; r1=1

MUL r2, r1, r1 ; r1=?

MOV r1, #2 ; r1=2

B1:

Jump B1

(a)

ADD r1, #1 ; r1=2

MUL r2, r1, r1 ; r1=2

MOV r1, #1 ; r1=1

Figure 7.12: Two problems of automatic mapping

Instruction3 because Instruction2 is the one that changes the operands

of Instruction3 most recently.

When branches exist, the converse search scheme becomes more complex.

Figure 7.13 illustrates a search trace where an attempt is made to find all in-

structions which send results to a register address (say r2). The structure of

the search trace is a tree. Tree nodes indicate data processing instructions,

trunks indicate sequential program segments and forks indicate branches.

The automatic mapping problem amounts to conversely searching all the

trunks to find the nearest nodes which send their results to a given register

address. Once a node is found in a trunk, this trunk does not need to be

searched further. The black trunks indicate the trace being searched, and

the grey trunks indicate unnecessary trunk searches. If one trunk leads

outside the program segment, the respective operand needs to be initialized

by the outside environment.

A recursive algorithm for searching the instructions that send results to a

given operand address is as follows:

/*AddDest function is used to find all the instructions that

send results to a given Destination. The register address of

this destination in RISC codes is registerNo. The InstNo is

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 149

r2

r2

r2

r2
r2

r2

outside

Figure 7.13: The actual trace of a converse search

the number of the current instruction that is searched. All

searched instructions are put in a VisitedInst list, which

is used to avoid infinite recursion*/

AddDest(Destination, InstNo, registerNO){

/*if the search is out of the program segment, add the

destination in the initialization list*/

if(InstNo == -1){

Add Destination in the initialization list;

return;

}

if(InstNo in VisitedInst list)

return;

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 150

put InstNo in the VisitedInst list;

if(the result of (InstNo-1) instruction is sent to

registerNo){

Add the Destination to the destination list of

(InstNo-1) instruction;

return;

}

AddDest(Destination, InstNo-1, registerNo);

for(all branches (i) which jump to InstNo)

AddDest(Destination, i, registerNo);

}

For example, in the code segment of Figure 7.11, to find which instructions

send results to OP1 of the second instruction, AddDest(3, 2, r2) can be

used, where 3 is the address of OP1 in the matching store, 2 means the

second instruction, r2 means that OP1 is stored in the register address r2

in the microprocessor. The result of this function call is that 3 is added to

the destination list of the first instruction.

3. Rearrange instructions and destinations

Sometimes, there are more than two destinations of an instruction, a fork

instruction must then be added below it to duplicate results. In this circum-

stance, the instructions need to be rearranged and the destinations need to

be updated.

By using the automatic mapping algorithm proposed above, RISC programs

can be automatically translated to programs which can be executed in the dataflow

coprocessor, greatly increasing programming efficiency.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 151

Table 7.2: The characteristics of the dataflow coprocessor

Characteristic Description

Technology ST 0.18µm
Supply voltage 1.8 volts
Design style Asynchronous logic using bundled-data scheme
Datapath width 16-bit
Matching store size 32 × 71-bit
Local memory 1K×16-bit dividing into 4 identical blocks
Function units An ALU with a 16-bit carry-select adder,

a barrel shifter, a 16 × 16 array multiplier,
Inst architectures Load-store, memory-register, register-register

Table 7.3: The characteristics of the components

Component Energy per Delay
operation (pJ) (ns)

Controller 1.36 < 0.3
Interconnect network 7.32 –
Matching store RAM 12.8 1.40 (read)
(1 Read and 1.5 writes) 1.40 (write)
16x16-bit Multiplier 34.2 2.61
16-bit Adder/Logic Units 3.17 0.90
Local memory read 4.18 1.50
Local memory write 9.86 1.50

7.6 Experimental results and comparisons

7.6.1 Experimental results

The dataflow coprocessor was implemented at a schematic level using a SGS-

Thomson 0.18µm CMOS technology, its characteristics are summarized in Table

7.2. The energy and speed characteristics of each component in the coprocessor

are shown in Table 7.3, the delay of the interconnect network is included in the

read and write delays of the matching store SRAM.

Five benchmarks are used to evaluate the power efficiency of the dataflow

coprocessor. These benchmarks are:

• SUM =
∑

100

i=1 i;

• A 5-tap finite impulse response (FIR) filter with 500 inputs;

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 152

• A 5-tap infinite impulse response (IIR) filter with 500 inputs;

• The IDEA encryption algorithm with 500 inputs;

• A 4-point fast Fourier transform (FFT) algorithm with 500 inputs.

Table 7.4 shows the number of instructions needed to execute these benchmarks,

the numbers of activations of different function units and the energy per instruc-

tion of the benchmarks.

Table 7.4: The statistic of energy of the benchmarks

Bench- Inst Match Read Write Add/ Mult Energy/
mark count store mem mem Logic Inst

SUM 4 400 0 0 400 0 24.65
FIR 15 7500 500 500 5000 2500 35.93
IIR 17 8500 500 500 6000 2500 34.60
IDEA 29 14500 3000 0 12500 2000 29.29
FFT 22 11000 2000 2000 9000 2000 32.84
Average – – – – – – 31.46

As can be seen from Table 7.4, the dataflow coprocessor consumes an average

of 31.46 pJ for each instruction, which corresponds to about 31,800 MIPS/W. This

power efficiency is based on a schematic-level simulation and a 16-bit datapath,

the post-fabrication result of a 32-bit dataflow coprocessor is estimated to be

about 10,000 MIPS/W. Using the same supply voltage and under the same test

temperature, the power consumption of a low-power commercial ARM processor

— AT91R40008 [79] — with all peripheral clocks deactivated is 0.73 mW/MHz,

which equals 1,370 MIPS/W. Therefore, the dataflow coprocessor can improve

the power-efficiency of AT91R40008 by a factor of 7.3.

The main reason for the power-efficiency of the dataflow coprocessor is due to

it minimizing the execution overheads compared with a general purpose CPU. For

the FIR benchmark, data processing uses as much as 40% of the overall processor

power consumption — much more than in a general-purpose microprocessor.

The power-saving strategy of the coprocessor design includes four aspects as

follows:

• Principle of locality

The principle of locality is exhibited in embedded processing applications

and the coprocessor exploits it to achieve low power consumption. Firstly,

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 153

the matching store contains only frequently-used code segments assumed to

dominate the dynamic execution trace of embedded programs. Thus, most

of the time, the coprocessor does not need to access a large instruction

cache, instead, it fetches instructions from a 32-word SRAM. Secondly, the

local memory makes the stream-based data processing more power-efficient.

• Specific coprocessor architecture

The coprocessor does not use a conventional RISC-like approach but em-

ploys a dataflow architecture. As will be discussed later, the dataflow ar-

chitecture is more power-efficient than a RISC one under certain circum-

stances. A few specific low-power circuit implementations are also used in

the dataflow coprocessor, such as splitting the controller and the matching

store, a negative synchronization scheme and a single-port matching store.

• A simple instruction set

The coprocessor supports only a small number of the most commonly used

instructions. Therefore, many execution overheads due to fetching and

decoding of an abundant instruction set are saved. Supporting only a small

number of instructions also results in simpler datapath design.

• Asynchronous logic

The coprocessor is designed using asynchronous logic, which offers very flex-

ible control to support various function unit delays and number of pipeline

stages and also provides a fine-grain clock gating. The matching store, the

function units and the local memory are executed in a form of ‘pay as you

go’. Only the useful parts use energy in the execution of an instruction.

To sum up, the dataflow coprocessor proposed in this chapter can minimize

the power consumption of a general-purpose microprocessor by a factor of 5-

10. The power saving comes from minimizing execution overheads, employing a

dataflow scheme, and using a few power efficient circuit implementations.

7.6.2 Comparisons

Two kinds of coprocessors have been presented in the thesis — one uses a conven-

tional RISC architecture but employs a single-port SRAM as the register file and

avoids pipeline hazard reduction overheads (P1 introduced in the last chapter),

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 154

the other one uses a dataflow architecture with simple pipeline control. There

is a natural question — is the dataflow coprocessor more power efficient than a

RISC coprocessor which has a very small loop buffer and supports only a very

simple instruction set? The question is addressed in this section, looking at power

consumption and performance.

Power comparison

Let us review the architectural characteristics of the two coprocessors. The

dataflow coprocessor, ‘DACO’ (DAtaflow COprocessor), has a 16-bit datapath

and a matching store which stores 32 71-bit instructions. The RISC coprocessor,

‘RICO’ (RIsc COprocessor), also has a 16-bit datapath and an instruction buffer

which stores 32 instructions. RICO’s instruction length is 20-bit. Let us assume

that DACO and RICO have exactly the same function blocks, and use the same

amount of energy in data (e.g. arithmetic/logic) processing, memory references

and pipeline control.

Let us first compare how many bits these two coprocessors need to fetch and

store in a typical instruction execution. To execute one instruction, RICO needs

to fetch a 20-bit instruction, access the register file (SRAM) and read two 16-

bit operands. The operands are propagated to the function block and a 16-bit

result is sent back to the register file. So, for a typical instruction, RICO reads

52 bits and writes 16 bits. For DACO to execute one instruction, it reads a 71-

bit instruction and writes a 16-bit result to the matching store. It seems that

DACO uses more energy in fetching and storing than RICO does; however, energy

is not simply proportional to the number of bits read and written because the

coprocessors have two differences:

1. DACO reads a 71-bit word from the matching store SRAM, but RICO

reads a 20-bit word from the instruction buffer and two 16-bit words from

the register file. The power consumption is not directly proportional to the

number of bits read because reading three L-length words uses more energy

than reading one 3L-length word. The power consumption of one reading

operation from a 32 × 71 SRAM is 7.8 pJ (0.18 µm, 1.8 V), whilst the

power consumption of one read from a 32 × 16 SRAM is 3.1 pJ (3.3 pJ for

a 32× 20 SRAM). The reason is that, in a small SRAM, the decoder power

dominates the overall power consumption. Read three L-length words needs

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 155

three decoder operations while read one 3L-length words needs only one

decoder operation.

2. In RICO, the operand values in the register file can be referred to several

times by different instructions. However, DACO’s instructions normally

contain only immediate values, and the result of an instruction may need to

be duplicated and sent to several different addresses in the matching store,

thus DACO may write more bits than RICO. Fortunately, the duplication

operations do not occur frequently in normal data processing algorithms.

Based on benchmark experiment, a rough estimate is that DACO writes

1.5x the number of bits written by RICO and uses 1.5x the write power.

The power consumptions of writing a 16-bit word to the matching store and

the register file are similar using a DWL approach of Figure 5.2 at 3.3 pJ.

Consequently, DACO uses 7.8+3.3×1.5 = 12.75 pJ in instruction fetching and

result storing for every instruction execution, whilst RICO uses 3.3+3.1×2+3.3 =

12.8 pJ, the two energy consumptions are similar.

The problem of result duplication can be alleviated by using a ‘store pool’. If

the result of a DACO instruction needs to be duplicated many times, the result

can be put into in a ‘store pool’ which is very small (4 words is enough) and is

placed at the bottom of the local memory as shown in Figure 7.14. The store

pool acts like the register file of RICO and because of its small size, the store

pool is accessed quickly and power efficiently. Every instruction can refer the

store pool by setting OP1 or OP2 as a local address, and so the duplications can

be avoided.

A significant difference between DACO and RICO instruction sets is that

DACO has a very large instruction-length which allows a more freedom for dif-

ferent low-power techniques, one of which is to use these bits to support abun-

dant instruction set architectures. As discussed in Section 7.3, by setting three

bits of OPCode, DACO supports different instruction set architectures, includ-

ing memory-memory, register-memory and register-register (load-store) architec-

tures. A processor supporting a memory-memory has a high code-density. For

example:

C=A+B

Memory-memory: ADD [C], [A], [B] ;[C] means the address of C

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 156

MUX

Store
pool

Memory
Local

3

0

FFFF

4

Figure 7.14: An architecture for reducing duplications

Load-store: Load r1, [A]

Load r2, [B]

ADD r3, r1, r2

Store [C], r3

From the example above, a memory-memory architecture needs only one in-

struction to describe C = A + B, while a load-store architecture needs 4 instruc-

tions. Supporting only load-store architectures usually makes RISC processors

fetch more instructions to execute a given program than CISC processors, i.e.,

a RISC processor has a low code-density. When executing general programs,

the dynamic usage of load and store instructions is about 43% for ARM proces-

sors [1]. For signal processing applications, stream-based computations occupy

most of the execution time. These computations refer to memory very frequently,

so the percentage of load and store instruction is even greater than 43%. For this

reason, DACO greatly reduces the number of instruction fetches. Based on the

test of a matrix multiplication, a processor with a memory-memory architecture

reduces the number of instruction fetches by about 40% compared to a processor

with a load-store architecture.

A long instruction has another advantage — good support for immediate

values. For RICO, since an immediate value is coded in the 20 bits of instruction,

it is not possible to support 16-bit immediate numbers (from Figure 6.6, RICO

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 157

supports 10-bit immediate numbers). Large immediate values must be assembled

by several instructions. For example:

r2=1111

MOV r3, #87

MOV r2, #1

LSL r2, #10

ADD r2, r2, r3

Normally, RICO will only occasionally use an immediate value larger than

1024, so DACO has only a small advantage in this respect. However, for appli-

cations using a lot of 16-bit immediate numbers, DACO may save a number of

instruction references.

Another difference between RICO and DACO is that DACO does not need

branch instructions thus saving power due to branch instruction fetches. However,

DACO needs to write the results of arithmetic comparisons back to the matching

store, counteracting this power saving. In this respect, RICO and DACO are

estimated to use the same power.

To sum up, DACO uses about (3.3+3.1×2+3.3)×1.4−(7.8+3.3×1.5) = 5.17

pJ less than RICO in one instruction execution (based on an assumption that

the memory reference of RICO is 40% bigger than that of DACO). The power

saving of DACO mainly comes from supporting rich instruction set architectures.

Executing applications with a low data reference rate, DACO and RICO achieve

similar power-efficiency.

Performance comparison

Figure 6.7 compares the performances of different RISC architectures. To save

1/3 of the overall power consumption, RICO uses a single-port SRAM as its

register file and avoids pipeline hazard reduction techniques. The impact of these

approaches is that the performance is reduced by 50%.

DACO also uses a single-port SRAM as its matching store and has data

dependence problems, the impact of data dependence problems can be alleviated

however by the dataflow scheme it uses. Figure 7.15 shows a dataflow diagram

of the FIR program introduced before. As can be seen from the figure, there is a

lot of parallelism in this program and DACO can automatically choose the active

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 158

instructions to execute. If there is an instruction waiting for the results of the

executing instructions, DACO will avoid a pipeline stall by selecting other active

instructions. As long as there are three independent program threads (these

situations are very common in data processing algorithms), DACO will not suffer

from data dependent problems, because DACO has at most four pipeline stages.

 fork fork fork fork Read
 mem

W0 W1 W2 W3 W4

 Write
 mem

Figure 7.15: A dataflow diagram for FIR

Figure 7.16 shows the executing segments of DACO and RICO when they

execute the FIR program. As can be seen from the figure, the executing seg-

ment of RICO is highly regular because of its sequential control. For DACO,

however, the executing segment is irregular because the arbiter randomly selects

active instructions and the executing sequence of instructions is ambiguous. The

experiment shows that DACO is 1.6 times faster than RICO, which can be seen

from the figure. The first reason for this is due to DACO’s dataflow scheme, the

second reason is that DACO reads two operands at the same time but RICO

needs to read the register file twice. Although DACO may need to write results

more than once, this situation is very rare. Therefore, DACO is still faster than

RICO in this scenario.

To sum up, DACO is faster than RICO because DACO can alleviate pipeline

stalls due to the data dependence of one instruction by selecting other active

instructions. How much faster DACO is than RICO depends on the actual pro-

grams. If a program contains more than two independent threads and each thread

has data dependence, DACO can be much faster than RICO. However, DACO is

still not as fast as a RISC coprocessor using pipeline hazard reduction techniques

(such as P4 introduced in the last chapter) because it uses a single-port matching

store and cannot totally avoid data dependence problems.

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 159

register file write
Local memory write

Figure 7.16: The pipeline operations of FIR in RICO and DACO

7.7 Summary

The performance and power consumption of the RISC coprocessor and the dataflow

coprocessor have been compared in this chapter. The advantages of the RISC

architecture and dataflow architecture are as follows:

• Advantages of the RISC architecture

– Easy programming

– Good scalability

• Advantages of the dataflow architecture

– Low power to some extent

– Fast to some extent

– Simple datapath control

Since most people are familiar with conventional programming, the RISC

coprocessor is easier to program. The automatic mapping algorithm proposed in

this chapter should help to alleviate the difficulty of programming the dataflow

coprocessor.

From the analysis presented here, the dataflow coprocessor is more power-

efficient than the RISC coprocessor, the analysis however is based on the as-

sumption that only 32 instructions can be stored in the coprocessors. If more

CHAPTER 7. THE DESIGN OF A DATAFLOW COPROCESSOR 160

frequently-used instructions need to be stored in the dataflow coprocessor, the

size of the matching store must be enlarged and the overall power consump-

tion may be dominated by the matching store. At the same time, if the RISC

coprocessor also enlarges its instruction buffer, the power efficiency of using a

register file will be significant. Although the impact on power consumption due

to a large matching store can be reduced by using a shifting window scheme [80],

it is estimated that the dataflow coprocessor will be power inefficient when the

matching store becomes large enough to store 128 instructions. Fortunately, a

large instruction store is not encouraged in a hierarchical processing architecture.

A prominent advantage of the dataflow architecture is that it can achieve a

reasonable performance using a simple datapath control. For a RISC processor

to improve performance, sophisticated branch prediction techniques and complex

bypass paths are needed, which greatly increase design complexity for datapath

control. For a dataflow processor, good performance is gained by using a dataflow

scheme, there is no need to bypass results from one block to another. Thus, each

block has only one input port and one output port, which requires a simple

datapath control.

A low-power dataflow coprocessor has been designed and tested in this chap-

ter. The coprocessor is shown to improve the power-efficiency over a general-

purpose RISC processor by an order of magnitude. Therefore, in a hierarchical

processing architecture, if 50% of the dynamic instructions are executed in the

coprocessor, the overall power saving will be about 45%. An automatic mapping

algorithm is also proposed in the chapter, which makes it easy to program the

coprocessor.

The next chapter is a conclusion chapter which summarises the low power

techniques which have been presented in the thesis.

Chapter 8

Conclusions

Future embedded processing systems call for low power consumption. The work

discussed in this dissertation has presented and evaluated a range of techniques

for power-efficient embedded processing. The low-power embedded processing

techniques presented in the dissertation focus on three main aspects:

• Clock power consumption is becoming a serious design concern as the size

of embedded processing chips increases. Asynchronous logic design is an

alternative approach which may offer low power consumption. Chapter 3

compares the power-efficiencies of asynchronous and synchronous circuits.

Low-power asynchronous designs are also summarized in the chapter.

• The low power designs presented in Chapter 4 and Chapter 5 are circuit-

level optimizations minimizing the power consumption of essential process-

ing units, including adders, multipliers and memory. Based on a sign-

changing algorithm and an early-termination algorithm, an asynchronous

pipelined iterative multiplier is proposed in Chapter 4. The multiplier is

shown to increase the power-efficiency of a conventional synchronous mul-

tiplier by a factor of 2.5. Chapter 4 also presents the design of an asyn-

chronous adder. Using a carry-lookahead scheme, the adder greatly reduces

the critical delay of a ripple-carry asynchronous adder. The proposed adder

is 27% faster than a ripple-carry asynchronous adder at the cost of 15%

power overhead. The proposed adder is also shown to be faster and lower

power than a conventional synchronous carry-select adder.

Chapter 5 presents low-power techniques for an embedded SRAM. The

161

CHAPTER 8. CONCLUSIONS 162

techniques include low voltage swing bit-line write techniques and a dual-

rail decoder. A 64 × 32-bit SRAM macro was designed and tested in this

chapter. The layout-based simulation results show the proposed SRAM

macro is 1.6x faster and 4x more power-efficient than a commercial SRAM

for only a 3% area overhead cost.

• The low-power techniques presented in Chapters 6 and 7 are architecture-

level optimizations to minimize execution overheads in programmable ar-

chitectures. Based on the analysis of embedded processing programs, a

hierarchical processing scheme is proposed. The basic idea behind this

scheme is that an embedded processing system should include more than

one processing unit arranged in a hierarchy. Complex processing units are

used to maintain general-purpose functionality and simple processing units

are used to execute the most commonly used operations and to increase the

power efficiency of the overall system. A two-level hierarchical processing

architecture and a specific RISC-like coprocessor are presented in Chapter

6. The primary experimental results show that hierarchical processing is

promising in terms of power-efficiency.

Chapter 7 explores the power saving potential of a less-studied approach

— a dataflow architecture. A dataflow coprocessor is designed and tested

in this chapter. Specific low-power techniques are used in the dataflow co-

processor, including an efficient synchronization scheme and some circuit

implementations. The power consumption and performance of the dataflow

coprocessor and a RISC-like coprocessor are compared. The experimental

results show that the proposed dataflow coprocessor exceeds the power ef-

ficiency of an ARM processor by a factor of 7.3. The power saving mainly

comes from the simple functionality of the coprocessor in a hierarchical

architecture.

Although low-power embedded processing is a very broad research field and it

is impossible to address all power-saving techniques in a single thesis, two points

are clear from the research as follows:

• Low power design is a complex task calling for effort at all levels of the

design hierarchy. A power-efficient design results from a lot of comparisons

and evaluations of various different implementations and architectures. It

CHAPTER 8. CONCLUSIONS 163

also requires a lot of trade-offs among many aspects, including performance,

hardware and power consumption.

• Analyzing the specific characteristics of a targeted design is an efficient

approach to find low-power techniques. Through analysis, the most power

hungry components are found and these components point to the directions

that will potentially lead to power savings. Low-power techniques should

be evaluated using real applications or benchmarks which can represent the

characteristics of these applications.

8.1 Future work

Firstly, hierarchical processing gives a promising direction for low-power embed-

ded processing but it also introduces a lot of design complexity, especially for

software support. Although as discussed before, some very important embedded

program segments are hand-optimized, an architecture with software support is

more practical and more easily commercialized. The work presented in this dis-

sertation includes only a hardware architecture and a few software considerations.

However, the design flow shown in Chapter 7 reveals the basic steps and compo-

nents for an automatic software environment:

• A simulator and a compiler for the CPU:

The compiler compiles high-level programs into machine languages. The

compiled programs can be functionally simulated in the simulator.

• An analyzer

The analyzer analyzes the dynamic execution trace of the compiled pro-

grams and the most commonly executed program segments are found. The

power consumption of these segments is evaluated using data stored in a

power library as in Table 7.3. The communication overheads are also ana-

lyzed. Then the decision is made about which segments should be executed

in the coprocessor.

• An automatic translator

This translates the program segments found in the second step into a pro-

gram which can be executed in the coprocessor, such as the automatic

mapping algorithm proposed in Section 7.5.

CHAPTER 8. CONCLUSIONS 164

Designing a software environment to support the hierarchical processing ar-

chitecture proposed in the dissertation is one direction to extend this work.

Secondly, the motivation behind the coprocessor designs in the dissertation

is mainly to demonstrate the power-efficiency of the hierarchical architecture, so

the instruction sets are designed in a straightforward way. Effort has not been

made to optimize them. Another direction to extend this work is to optimize and

evaluate the instruction set of the coprocessor.

Bibliography

[1] S. Furber. ARM system-on-chip architecture. Addison-Wesley, 2000.

[2] T.K. Callaway and E.S. Swartzlander. The power consumption of CMOS

adders and multipliers. in [10].

[3] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative

Approach. 3rd Edition. Morgan Kaufmann Publishers, 2003.

[4] Forward Concepts. DSP/wireless market bulletin.

http://www.fwdconcepts.com/, January 2005.

[5] J. Montanaro, R.T. Witek, K. Anne, and et. al. A 160-MHz, 32-b, 0.5-W

CMOS RISC microprocessor. IEEE Journal of Solid-State Circuits, 31:1703–

1714, November 1996.

[6] J. D. Garside. A CMOS VLSI implementation of an asynchronous ALU. Pro-

ceedings of the IFIP Working Conference on Asynchronous Design Method-

ologies, Manchester, England, pages 181–192, 1993.

[7] G.E. Moore. Cramming more components onto integrated circuits. Electron-

ics, pages 114–117, April 1965.

[8] International technology roadmap for semiconductors report, 2004 update.

http://www.itrs.net/, 2004.

[9] J. Rabaey. Ultra low-power computation and communication enables am-

bient intelligence. Keynote at 2003 Smart Objects Conference in Grenoble,

April 2003.

[10] A. Chandrakasan and R. Brodersen. Low Power CMOS Design. Wiley-IEEE

Press, 1998.

165

BIBLIOGRAPHY 166

[11] Y. Lin, C. Wu, and et. al. Leakage scaling in deep submicron CMOS for

SoC. IEEE Transactions on Electron Devices, 49:1034–1041, June 2002.

[12] N.S. Kim, T. Austin, and et. al. Leakage current: Moore’s law meets static

power. IEEE Transactions on Electron Devices, 36:68–74, December 2003.

[13] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-

processors. IEEE Journal of Solid-State Circuits, 31:1277–1283, September

1996.

[14] Q. Wu, M. Pedram, and X. Wu. Clock-gating and its application to low power

design of sequential circuits. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 47:479–482, March 2000.

[15] P. Bose, M. Martonosi, and D. Brooks. Modeling and analyz-

ing CPU power and performance: metrics, methods and abstractions.

http://www.princeton.edu/˜mrm/tutorial/Sigmetrics2001 tutorial.pdf.

[16] M.K. Gowan, L.L Biro, and D.B. Jackson. Power considerations in the design

of the Alpha 21264 microprocessor. Proceedings of 1998 Design Automation

Conference, pages 726–731, June 1998.

[17] A. Efthymiou. Asynchronous techniques for power-adaptive processing. PhD

Thesis, School of Computer Science, University of Manchester, 2002.

[18] V. Stojanovic and V.G. Oklobdzija. Comparative analysis of master-slave

latches and flip-flops for high-performance and low-power systems. IEEE

Journal of Solid-State Circuits, page 536–548, April 1999.

[19] W.M. Chuang and M. Sachdev. A comparative analysis of dual edge trig-

gered flip-flop. Proceedings of 2000 Conference of Electrical and Computer

Engineering, pages 1034–1041, 2000.

[20] H. Kojima, S. Tanaka, and K. Sasaki. Half-swing clocking scheme for 75%

power saving in clocking circuitry. IEEE Journal of Solid-State Circuits,

pages 432–435, April 1995.

[21] V. Tiwari, D. Singh, S. Rajgopai, G. Mehta, R. Patel, and F. Baez. Reducing

power in high-performance microprocessors. Proceedings of 1998 DAC, pages

1034–1041, 1998.

BIBLIOGRAPHY 167

[22] R. S. Bajwa. et. al. Instruction buffering to reduce power in processors for

signal processing. IEEE transition on VLSI, page 417C424, 1997.

[23] L. H. Lee, W. Moyer, and J. Arends. Instruction fetch energy reduction using

loop caches for embedded applications with small tight loops. Proceedings of

1999 International Symposium on Low Power Electronics and Design, pages

267–269, 1999.

[24] C. Wu and T. Hwang. Instruction buffering for nested loops in low power

design. Proceedings of 2002 IEEE International Symposium on Circuits and

Systems, pages 81–84, May 2002.

[25] ARM Co. Improving ARM code density and performance. www.arm.co.uk,

2003.

[26] C. Pigue, J. Masgonty, and et. al. Low-power design of 8-b embedded Cool-

RISC microcontroller cores. IEEE Journal of Solid-State Circuits, pages

1067–1078, July 1997.

[27] K. Compton. Reconfigurable computing: a survey of systems and software.

ACM Computing Surveys, page 171–210, June 2002.

[28] J. Sparsøand S. Furber (eds). Principles of Asynchronous Circuit Design: A

Systems Perspective. Kluwer Academic Publishers, 2001.

[29] S. Hauck. Asynchronous design methodologies, an overview. Proceeding of

IEEE, pages 69–93, January 1995.

[30] T. Verhoeff. Delay-insensitive codes — an overview. Distributed Computing,

pages 1–8, 1988.

[31] A.J. Martin. The limitations to delay-insensitivity in asynchronous circuit.

Advanced Research in VLSI: Proceedings of the sixth MIT Conference, pages

263–278, 1990.

[32] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. Proceedings

of 1957 International Symposium on the Theory of Switching, pages 204–243,

April 1957.

BIBLIOGRAPHY 168

[33] D.E. Muller. Asynchronous logics and application to information processing.

Proceedings of 1963 Symposium on Application of Switching Theory in Space

Technology, pages 289–297, 1963.

[34] I.E. Sutherland. Micropipelines. Communications of the ACM, pages 720–

738, June 1989.

[35] S. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, pages 247–

253, June 1996.

[36] T.A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic speci-

fication. PhD thesis, MIT, 1987.

[37] V. Ekanayake, C. Kelly, and et. al. Bitsnap: Dynamic significance compres-

sion for a low-energy sensor network asynchronous processor. Proceeding of

11th International Symposium on Asynchronous Circuits and Systems, pages

144–154, March 2005.

[38] A. Martin, S.M. Nystrm, K. Papadantonakis, and et. al. The lutonium:

a sub-nanojoule asynchronous 8051 microcontroller. Proceeding of Ninth

International Symposium on Asynchronous Circuits and Systems, pages 14–

23, May 2003.

[39] S. Furber, D. Edwards, and J. Garside. Amulet3: a 100 MIPS asynchronous

embedded processor. 2000 International Conference on Computer Design,

pages 329–334, September 2000.

[40] L. Nielsen and J. Sparso. Designing asynchronous circuits for low power: an

IFIR filter bank for a digital hearing aid. Proceedings of the IEEE, pages

268–281, February 1999.

[41] L. Nielsen. Low-power asynchronous VLSI design. PhD thesis, Department

of Information Technology, Technical University of Denmark, 1997.

[42] N. Paver and D. Edwards. Is asynchronous logic good for low-power? IEE

Colloquium on Low Power Analogue and Digital VLSI: ASICS, Techniques

and Applications, pages 1–5, June 1995.

BIBLIOGRAPHY 169

[43] Y. Liu and S. Furber. The design of a low-power asynchronous multiplier.

Proceedings of the 2004 International Symposium on Low Power Electronics

and Design, pages 301–306, August 2004.

[44] S. Furber, J. Garside, and et. al. Amulet2e: An asynchronous embedded

controller. Proceedings of the IEEE, pages 243–256, February 1999.

[45] J.L. Hill. System architecture for wireless sensor networks. PhD thesis,

University of California, Berkeley, 2003.

[46] Y. Liu and S. Furber. Minimizing the power consumption of an asynchronous

multiplier. Proceedings of 2004 PATMOS, Springer, pages 289–300, Septem-

ber 2004.

[47] M. Lewis, J.D. Garside, and L.E.M. Brackenbury. Reconfigurable latch con-

trollers for low power asynchronous circuits. Proceedings of 1999 Interna-

tional Symposium on Asynchronous Circuits and Systems, pages 27–35, April

1999.

[48] A.R. Omondi. Computer Arithmetic Systems: Algorithms, Architectures and

Implementations. Prentice Hall, 1994.

[49] N.H. Weste and K. Eshraghian. Principles of CMOS VLSI design: A System

Perspective. Addison-Wesley Publisher, 1992.

[50] L. Bisdounis. Circuit techniques for reducing power consumption in adders

and multipliers. in “Designing CMOS Circuit for Low Power” (D. Soudris,

C. Piguet and C. Goutis eds.), 2002.

[51] A.P. Chandrakasan and R.W. Brodersen. Low Power Digital CMOS Design.

Kluwer Academic Publishers, 1995.

[52] O.J. Bedrij. Carry-select adder. IRE Transactions on Electronic Computers,

pages 340–346, June 1962.

[53] B. Gilchrist, J.H. Pomerene, and S.Y. Wong. Fast carry logic for digital

computers. IRE Transactions on Electronic Computers, EC-4(4):133–136,

November 1955.

[54] D. Goldberg. Computer arithmetic. in [3].

BIBLIOGRAPHY 170

[55] L.S. Nielsen and J. Sparsø. A low-power asynchronous data-path of a FIR

filter bank. Proceedings of 1996 International Symposium on Asynchronous

Circuits and Systems, pages 197–207, 1996.

[56] C.S. Wallace. A suggestion for a fast multiplier. IEEE Transitions on Elec-

tronic Computer, EC-13:14–17, 1964.

[57] J. Liu. Arithmetic and control components for an asynchronous system.

PhD thesis, Department of Computer Science, The University of Manchester,

1997.

[58] J. Gu and C. Chang. Low voltage, low power (5:3) compressor cell for fast

arithmetic circuits. Proceedings of 2003 IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2003.

[59] O.L. Mac Sorley. High-speed arithmetic in binary computers. IRE Proceed-

ings, 49:67–91, January 1961.

[60] R. Fried. Minimizing energy dissipation in high-speed multipliers. Proceed-

ings of 1997 IEEE International Symposium on Low Power Electronics and

Design, pages 214–219, 1997.

[61] V. Zyuban and P. Kogge. Split register file architectures for inherently low

power microprocessor. Proceedings of Power Driven Microarchitecture Work-

shop at ISC98, pages 32–37, 1998.

[62] K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low-power ram circuit

technologies. Proceedings of the IEEE, page 524–543, April 1995.

[63] M. Margala. Low-power sram circuit design. Proceedings of 1999 IEEE

International Workshop on Memory Technology, Design and Testing, pages

115–122, August 1999.

[64] K. Kanda, H. Sadaaki, and T. Sakurai. 90% write power-saving SRAM using

sense-amplifying memory cell. IEEE Journal of Solid-State Circuits, pages

927–933, June 2004.

[65] M. Yoshimito, K. Anami, and et. al. A divided word-line structure in the

static RAM and its application to a 64K full CMOS RAM. IEEE Journal

of Solid-State Circuits, pages 479–485, October 1983.

BIBLIOGRAPHY 171

[66] T. Hirose, H. Kuriyama, and et. al. A 20-ns 4-Mb CMOS SRAM with hier-

archical word decoding architecture. IEEE Journal of Solid-State Circuits,

pages 1068–1077, October 1990.

[67] J. Alowersson and P. Andersson. SRAM cells for low-power write in buffer

memories. Proceedings of 1995 IEEE Symposium on Low Power Electronics,

pages 60–61, October 1995.

[68] K.W. Mai, T. Mori, and et. al. Low-power SRAM design using half-swing

pulse-mode techniques. IEEE Journal of Solid-State Circuits, pages 1659–

1671, November 1998.

[69] J. Wang, P. Yang, and W. Tseng. Low-power embedded SRAM macros

with current-mode read/write operations. Proceedings of 1998 International

Symposium on Low Power Electronics and Design, pages 282–287, August

1998.

[70] B.S. Anrytyr. Design and analysis of fast low power SRAMs. PhD thesis,

Stanford University, 1999.

[71] ST Co. Hemos8dsps4 datasheet. 2002.

[72] J. G. Proakis and D. Manolakis. Digital Signal Processing: Princi-

ples, Algorithms and Applications (3rd Edition). Prentice-Hall Engineer-

ing/Science/Mathematics, 1995.

[73] S. Segars. ARM7TDMI power consumption. IEEE Journal of Micro, pages

12–19, July 1997.

[74] B.A. Warneke and K. Pister. An ultra-low energy microcontroller for smart

dust wireless sensor networks. Proceedings of 2004 IEEE International Solid-

State Circuits Conference, pages 16–18, 2004.

[75] D.A. Patterson and D.R. Ditzel. The case for the reduced instruction set

computer. ACM SIGARCH Computer Architecture News, pages 25–33, Oc-

tober 15 1980.

[76] A.H. Veen. Dataflow machine architecture. ACM Computing Surveys, pages

365–396, December 1986.

BIBLIOGRAPHY 172

[77] J. Gurd and I. Watson. A data driven system for high speed parallel com-

puter. Computer Design, pages 97–106, June 1980.

[78] J.B. Dennis and D.P. Misunas. A preliminary architecture for a basic data-

flow processor. Proceedings of the 2nd Annual Symposium on Computer

Architecture, pages 126–132, December 1974.

[79] Atmel Co. AT91R40008 electrical characteristics.

http://www.atmel.com/dyn/resources/prod documents/doc1795.pdf, 2002.

[80] D.A. Patterson and C.H. Sequin. RISC I: A Reduced Instruction Set VLSI

Computer. Proceedings of the 8th Annual Symposium on Computer Archi-

tecture, pages 443–457, 1981.

