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Abstract 

 

The intrinsic atomistic variability of nano-scale integrated circuit (IC) technology must be taken 

into account when analysing circuit designs to predict likely yield. These ‘atomistic’ variabilities 

are random in nature and are so great that new circuit analysis techniques are needed which adopt 

a statistical treatment of the variability of device performances.  Monte Carlo (MC) based 

statistical techniques aim to do this by analysing many randomized copies of the circuit. The 

randomization can take into account correlation between parameters due to both intra-die and 

inter-die effects.  A major problem is the computational cost of carrying out sufficient analyses to 

produce statistically reliable results.  

The use of principal components analysis (PCA) and ‘Statistical Behavioural Circuit Blocks 

(SBCB)’ is investigated as a means of reducing the dimensionality of the analysis, and this is 

combined with an implementation of ‘Statistical Blockade (SB)’ to achieve significant reduction 

in the computational costs. The purpose of SBCBs is to model the most important aspects of the 

device’s or circuit building block’s behaviour, to an acceptable accuracy, with a relatively small 

number of parameters.  The SB algorithm applies Extreme Value Theory (EVT) to circuit 

analysis by eliminating randomised parameter vectors that are considered unlikely to produce 

‘rare event’ circuits.  These circuits are needed for circuit yield failure predictions and occur on 

the ‘tails’ of Gaussian-like probability distributions for circuit performances.  

Versions of the circuit analysis program ‘SPICE’ with a Python harness called 

RandomSPICE are used to produce SBCBs by generating and statistically analysing randomized 

transistor-level versions of the sub-blocks for which behavioural models are required.  The 

statistical analysis of circuits employing these sub-blocks is achieved by a new MATLAB harness 

called RandomLA.  The computational time savings that may be achieved are illustrated by the 

statistical analysis of representative circuits.  A computation time reduction of 98.7% is achieved 

for a commonly used asynchronous circuit element.  

Quasi-Monte Carlo (QMC) analysis with ‘low discrepancy sequences (LDS)’ is introduced 

for further computation reduction. QMC analysis using SBCB behavioural models with SB is 

evaluated by applying it to more complex examples and comparing the results with those of 

transistor level simulations. The analysis of SRAM arrays is taken as a case study for VLSI 

circuits containing up to 1536 transistors, modeled with parameters appropriate to 35nm 

technology.   Significantly faster statistical analysis is shown to be possible when the aim is to 

obtain predictions of the yield for fabrication.  Saving of up to 99.85% in computation time was 

obtained with larger circuits.  
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Chapter 1 

 

Introduction 

 

1.1   Introduction to the Research Area 

Variability has always been a problem in electronic circuit design, especially in 

integrated circuit design.  Anticipating the impact of variability on performance is a 

critical aspect of design procedures.  Before nano-scale technology, the variability 

came mainly from imperfect control of the fabrication processes which caused device 

performance to vary from wafer to wafer, and from die to die within each wafer. This 

‘inter-die’ variability could be assumed to have a global nature for each die and was 

catered for in the design process by making sure that the circuit would work when all 

the parameters of each of its devices were at the ‘worst case’ extremes of their 

anticipated values.  The result of a circuit design procedure would therefore be 

analysed with the set of parameters for each copy of a given device, for example a 

MOS transistor, at the ‘worst case corners’ of possible values.  The results from the 

analysis could then be used as feedback in an optimization process leading to the 

finalised circuit.   

As technology scaling has reached the nano-scale region, variability in device 

performance within each die, that is ‘intra-die’ variability, is becoming a much more 

important consideration in the design of integrated circuits [1]. Now that CMOS 

technology has reduced gate sizes to 90nm and below, and some dimensions are 

approaching atomic scales, intrinsic atomic scale variations such as line edge 

roughness and dopant granularity have become the main sources of variation [2]. 
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Those ‘atomistic’ variabilities are random in nature and result in random ‘within-die’ 

fluctuation which cannot be disregarded.  The potential variations are so great that 

traditional variability analysis, based on ‘worst case’ corner-models [3] and guard-

bands for parameter variations, is likely to be very pessimistic in its estimations of 

the effects of the variability.  Consequently, new circuit analysis techniques are 

needed which adopt a statistical treatment of the intra-die variability of device 

performances.   

As the significance of process variations has grown with decreasing device sizes, 

it has become clear that traditional design methodologies, both for analysis and 

optimization, are no longer acceptable [3]. This has led to much interest in statistical 

modelling techniques that can be used to enable statistical analysis and optimization. 

Statistical analysis can take into account parameter variation on all portions of a 

design in a single comprehensive computational procedure, allowing the impact on 

yield to be efficiently estimated.   

Because of the high dimensionality of the parameter space, it is very difficult to 

derive analytical models of large scale ICs for analysis. Sets of ordinary or partial 

differential equations describing specific circuit performance parameters, like timing 

or yield, in terms of the huge number of parameters would be very difficult to derive 

analytically.  Therefore the use of conventional statistical methods, based on the 

analysis of such equations, has restricted applicability for the variability analysis of 

nano-scale ICs.  With Monte Carlo simulations, the integrated circuits are simulated 

directly, and there is no need to derive differential equations that describe the 

dependency of the properties of interest on circuit parameters. The only requirement 

is that the circuit properties that are to be modeled are capable of being described by 

probability density functions (pdf’s) that are dependent on the pdfs of circuit 

parameters and input variables.  Monte Carlo simulation proceeds by generating a 

random sample of the value of each circuit parameter and input variable, based on 

the known pdf’s.  It then simulates the circuit thus obtained, using a package such as 

SPICE, to compute a random sample of the circuit property of interest.  The process 

is repeated many times to obtain a sequence of samples of the property of interest 

from which statistical models can be derived.  For example, the shape of the 
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property’s pdf may be inferred and its mean and standard deviation can readily be 

derived, assuming there are sufficient observations.  In some cases the circuit 

parameters may be assumed to be statistically independent; meaning that there is no 

correlation between the samples of one circuit parameter and any other. This 

assumption may be reasonable for some aspects of atomistic variations. However, 

there is good reason to believe that the variation that occurs in each component will 

be to some extent correlated to that of other devices on the same IC especially when 

they are close to each other.  The effect of this correlation is ‘intra-die’ variation 

which must be given consideration.    

Monte Carlo analyses are particularly suitable to nano-scale IC statistical 

simulation to achieve statistical estimates of properties of interest.  Conclusions may 

be drawn that are representative of the true behaviour of the circuit. To quantify these 

conclusions, statistical averages may be produced based on many randomised 

examples.  The statistical reliability of the conclusions generally improves as the 

number of examples increases, though the rate of improvement can often be 

increased by carefully choosing the examples. For such applications, MC techniques 

are simple, flexible, robust and scalable to exceptionally large numbers of 

parameters.  In principle, they allow arbitrary accuracy given sufficient computation.  

The statistical distribution of circuit performances in response to carefully 

randomised vectors of device parameters may be used for estimating anticipated 

circuit yield, failure probability and other performance measures. 

A major problem is the computational cost of carrying out sufficient simulations 

to produce statistically reliable results for all but the most trivial circuits.  For circuit 

simulation at transistor level, each transistor model may have many parameters and 

there may be a large number of transistors in the circuit or sub-circuit being 

simulated.  A very large number of MC analyses may be required because of the 

large number of parameters.    

 

1.2   Research Motivation and Context for This Project  

The research motivation and context for this PhD project is the EPSRC pilot project: 
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‘Meeting the design challenges of nano-CMOS electronics’ [7].  The aim of the pilot 

study is to propose new design styles that cope better with device variability.  We aim 

to demonstrate that it is possible to produce circuit designs that are optimized or 

improved in their suitability for sub-45 nanometre technology by using statistical 

models of variability, and that the computation costs required for the statistical 

analysis can be made feasible.   

There are five university partners working on the development of various 

elements of statistical simulation using approaches which will be suitable for grid 

implementation.   Their efforts are interlinked [7].  The Device Modelling Group of 

Glasgow University focus on process and device simulation. One outcome of their 

work so far is the RandomSPICE package which is used in this PhD project.  The 

Microsystems Technology Group of Glasgow University develop integrated 

circuit/device simulators, circuit level compact models and parameter extraction 

strategies. Their results include the sets of randomized mosfet parameters that are 

used by the RandomSPICE circuit randomization process.  The Electronic Systems 

Design Group of Southampton University produce behavioural models for standard 

cell libraries.  Their work will be studied to find accurate ways of producing low 

complexity models of sub-circuits with parameters that may be randomised from 

knowledge of their statistical properties, as extracted by RandomSPICE analyses.  

The Mixed-Mode Design Group of Edinburgh have been developing techniques for 

circuit-level noise simulation, and the Intelligent System Group of York University 

have  developed evolutionary circuit and system design techniques. 

The Advanced Processor Technology of Manchester University group has 

traditionally focused on the development and use of statistical analysis tools for use 

in the design and optimization of asynchronous (self-timed) circuits and chip 

multiprocessors.  This has led us to investigate new design techniques that cope 

better with device variability and reliability.  To be able to do this, we firstly need to 

investigate how to estimate the likely effect of the parameter variations predicted by 

device level models on the performance of clocked and self-timed implementation 

styles.  Then we can consider how the ability to obtain these estimates can be used to 

improve future synthesis tools for nano-scale ICs. 
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1.3   Research Approach 

Statistical variability analysis has been available in the commercial package 

‘HSPICE’ for some time.  HSPICE offers an approach to MC simulation that is 

professionally designed and well adapted to the demands of commercial 

manufacturers and circuit design companies.  However it does not cater for all the 

computation reduction techniques we wish to investigate (e.g. Statistical Blockade) 

and is not ideally suited to a research project because it implements proprietary 

approaches and does not have the flexibility needed to investigate new research 

ideas.  NGSPICE is a mixed-signal (analogue and digital) circuit simulator 

combining three open source software packages: SPICE3, Cider and Xspice.  It is 

under continuing development as part of the ‘gEDA’ project [37] for developing a 

full GNU public licensed suite of electronic circuit design (EDA) tools.  It did not 

have any MC simulation facilities when this project began, though rudimentary ones 

have very recently been introduced in version 23 which was released in June 2011 

[37].  Researchers are still contributing to the ‘gEDA’ project, and it is intended that 

the work in this thesis will be relevant to the project. The same analysis engine is the 

basis of many different versions of SPICE including HSPICE and NGSPICE. 

 A software package called ‘RandomSPICE’ [14] was employed initially for the 

randomization process, though an early objective was to adapt this and eventually to 

develop a new randomization package called “RandomLA” (Randomisation for LSI).  

A major consideration was the need to perform the simulations and analyses with 

reasonable computation and to allow the use of parallel computation as provided by 

MATLAB and CONDOR [39] [40] for circuits of realistic complexity.  Hence the 

need for a variety of complexity reduction techniques and the use of NGSPICE are 

explored and evaluated in the thesis.   

 

1.4   Research Hypothesis 

The research hypothesis is that it is possible to analyse circuit designs for sub-45 

nanometre technology by the use of SPICE simulation with statistical models of 
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variability with computation cost significantly reduced from that required if 

traditional MC methods are employed.  

 

1.5   Introduction to the Methodology 

The tools developed by this project may be described as forming a test-harness which 

allows SPICE simulation to be used for particular forms of statistical analysis, based 

on the SPICE simulation of many randomised copies of a circuit.  The randomisation 

must be capable of reflecting both intra-die and inter-die variation of devices and 

other circuit components such as wires.  Intra-die transistor parameter variation can 

be based on published measurements of devices as provided by manufacturers or 

researchers.   Alternatively, the results of 3D device modelling as carried out by our 

collaborators in Glasgow University [20] may be used.  Applying principal 

components analysis (PCA) to such sets of representative parameters reduces their 

dimensionality and provides a convenient way of introducing intra-die correlation. 

The subsequent computation reduction methods to be investigated in this thesis are 

the use of behavioural modelling, a technique known as ‘Statistical Blockade’ based 

on published ideas of ‘extreme value theory’ [15],   and quasi-random parameter 

variation with the use of ‘low discrepancy sequences’.  

 

1.5.1   Behavioural Modelling 

The use of ‘behavioural’ or ‘functional’ models of sub-circuits derived by previous 

statistical analysis of the sub-circuit separately has great potential. For example a 

behavioral NAND gate model could consist of four ‘look-up table’ switches each 

with a statistically variable ‘Tau model’ of delay [16]. SPICE switches are dependent 

sources (such as voltage-dependent current sources) whose input-output relationships 

may be defined by simple look-up tables. These cannot implement delay. However, a 

simple Tau model which introduces a single RC time-constant can introduce delay, 

but with a characteristic exponential rising or falling RC wave-shape that may not be 

appropriate.  The true switching behaviour of each gate output, may be therefore 

modeled by a combination of the switch and the Tau model, with the look-up table 
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elements optimized (by a simple MATLAB procedure within the harness) to match 

the RC waveform to the required switching waveform .  This simple approach is well 

suited to the computational methods adopted by SPICE and the demands of 

simulating asynchronous circuits whose behaviour relies on many ‘C-elements’ 

switching at slightly different instants of time. C-elements are widely used 

asynchronous logic components with a highly non-linear bistable operation.  The 

approach is complementary to the behavioral modelling proposed by Southampton 

University [7].  

 

1.5.2   Statistical Blockade 

Extreme value theory (EVT) offers statistical methods for analysing the behaviour of 

systems in situations that rarely occur.  Such analysis is clearly problematic with 

traditional MC techniques which require a large sample, therefore extensive 

computation, for rare events to be observed.  The Statistical Blockade (SB) algorithm 

applies Extreme Value Theory (EVT) to circuit analysis by eliminating randomised 

parameter vectors that are considered unlikely to produce rare event circuits.  In our 

application, the rare events are the circuit yield failure predictions which are extreme 

in the sense that they are on the ‘tails’ of Gaussian-like probability distributions for 

circuit performances.  Since they are designed to be rare, reliable estimates of these 

failures by conventional MC techniques require very large numbers of randomised 

input vectors. SB performs ‘biased’ or ‘partial’ sampling of the performance 

distributions which is the basis of EVT. Many input vectors are generated, but only 

the ones likely to produce ‘rare events’ are simulated.  The process requires a 

classifier which, in this thesis, will be implemented as a ‘least squares’ trained linear 

estimator combined with a threshold comparator. After a period of initial training, the 

classifier can be trained recursively as the simulation proceeds.  The computational 

complexity involved in introducing the bias, and compensating for it, is much less 

expensive than performing lots of uninteresting circuit simulations.  
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1.5.3   Low-Discrepancy Sampling with Quasi MC Methods 

The term ‘Quasi Monte Carlo’ (QMC)  describes Monte Carlo methods where the 

input vectors are not totally random, but are to a degree deterministic in that they 

conform to ‘low-discrepancy sequences’ [15][21][36].  A low discrepancy sequence 

is a sequence of N-dimensional vectors which covers a finite space more uniformly 

than is achieved by N-dimensional vectors of independent uniformly distributed 

random elements.  It is known that the use of low discrepancy vector sequences can 

achieve significant speed gains over standard Monte Carlo integration techniques by 

reducing the number of input vectors needed for a given accuracy [17].  Similar gains 

are anticipated when QMC is used for statistical circuit simulation. 

 

1.5.4   Originality 

All the techniques introduced above are generally well known and have previously 

been applied in some form to circuit simulation. The originality here is in the way we 

have applied them and the evaluation and insight that has resulted.  Although the 

principles may be known, the implementation of them has required some innovation 

such as: 

(i) The application of PCA to the introduction of correlation. 

(ii) The combination of optimized Tau models and ‘look-up table’ switches in 

behavioural modelling. 

(iii) The implementation of recursive SB using ‘pseudo-inverse’ least squares 

optimization. 

(iv) The application of ‘SOBOL’ LD vector sequences to SPICE simulation 

(though others have been used) and to SB classifier training and the 

implementation of recursive SB.  

 

1.5.5   Software Development 

This work has resulted in the development of four phases of a MATLAB harness for 

SPICE called RandomLA  (LSI circuit analysis) and some supporting MATLAB 

programs not yet integrated into RandomLA.  The harness works equally well for 
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HSPICE and NGSPICE and is adaptable to a parallel implementation.  The four 

phases of  RandomLA are: 

RandomLA-Nonblockade (either MC or QMC)  

RandomLA-Training (either MC or QMC) 

RandomLA-Evaluation (either MC or QMC) 

RandomLA-RecursiveSB  (either MC or QMC) 

All of these versions implement both MC and QMC (with ‘Sobol’ sequences) 

will allow correlation to be introduced, based on PCA, to model intra-die variation.  

All the results presented were generated by these scripts apart from some of those in 

Chapter 4 which required the use of RandomSPICE. 

 

1.5.6   RandomSPICE 

RandomSPICE is a randomisation package developed by collaborators in the EPSRC 

nano-CMOS project [7].  Currently it is supplied to collaborators with two transistor 

models, an nmos and a pmos transistor representing a 35nm technology by Toshiba.  

The parameters of each model have been randomised to produce 200 copies, where 

the variations from copy to copy are based on the results of three-dimensional 

atomistic simulations [18].  The geometrical and quantum physics based simulations 

were carried out [20] to reflect the statistical nature of ‘atomistic’ variations due to, 

for example, the effects of random discrete dopant levels, line edge roughness and 

oxide thickness variations as would be expected to occur from device to device on a 

single die.  Therefore these are intra-die variations.  They are intending to reflect 

truly what will be observed in real circuits.  Intra-die correlation between the 

parameters of adjacent devices should be taken into account.    

 

1.6   Research Aims and Objectives  

The aims of this thesis are to reduce the computational complexity of traditional 

Monte Carlo (MC) methods for modelling the effects of variability in deep sub-

micron CMOS circuits, and to enable a deeper understanding of these effects.   

The first objective was the design and implementation of a statistical simulation 



Chapter 1. Introduction 

 

 23 

method, capable of predicting the effect of parameter variations on the performance 

and yield of a nano-CMOS circuit, by using traditional MC methods with facilities 

for including the effect of inter-die and intra-die correlation in the variability. To 

allow the research to be disseminated in reproducible form, all software was required 

to be compatible with ‘NGSPICE’ and the associated GNU public licensed suite of 

electronic circuit design (EDA) tools.  The software was required to be suitable for 

distributed or parallel computation.  

The second objective was to investigate dimension reduction techniques for MC 

simulation, focusing on the use of Principal Components Analysis (PCA), and the 

use of behavioural modelling for replacing device level analogue sub-circuits by 

computational simpler circuit models. 

The third objective was to investigate two further computation reduction 

methods which are a technique known as ‘Statistical Blockade’ based on published 

ideas of ‘extreme value theory’ [15],  and the use of Quasi MC techniques based on  

the use of ‘low discrepancy sequences’[98] [99] [123].  It was required to be 

discovered to what extent computation reduction can be achieved by these two 

methods both individually and in combination. 

All three objectives were approached within the context of the aims stated 

above, and were designed to achieve the greater understanding and reduced 

computational complexity required, with illustrations of what is achievable. 

 

1.7   Structure of This Thesis 

This thesis contains nine chapters. The first is an introduction to the general research 

area and the research aims. It defines the problem and some terms. The context, 

research hypothesis, aims and objectives are stated with a brief introduction to the 

methodology. Finally, the structure of the following chapters is surveyed.   

The second chapter is a background and literature survey covering the sources 

and classifications of variability.  A discussion of the effect of variability on clocked 

and self-timed circuits is included.   

Chapter 3 describes the current state-of-the-art in statistical simulation 
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techniques for current and next generation integrated circuits.  The widely used 

design tools provided by Synopsis (HSPICE), Cadence (Encounter) and NGSPICE 

are discussed. Their relevance to IC design and simulation is explained with some 

examples. 

 Chapter 4 deals with the use of Monte-Carlo (MC) techniques for the statistical 

analysis-by-synthesis of nano-scale technology. The existing MC features of 

HSPICE and the randomization package called RandomSPICE, which is one of the 

outcomes of the EPSRC Pilot project [7], are outlined and considered for adaptation 

to the requirements of this PhD project.  The reasons for adopting NGSPICE with a 

new harness called RandomLA, are outlined.  Some of the basic features of 

RandomLA are discussed and the use of traditional MC simulation using 

RandomSPICE and RandomLA is illustrated with a sample circuit.   

Chapter 5 discusses two method of reducing the dimensionality of the input 

parameter space to achieve computational efficiency in MC simulations. The first of 

these, principal components analysis (PCA), also provides a convenient way of 

introducing intra-die correlation between parameters.  The second method introduces 

the use of statistical behavioural circuit blocks (SBCB) which substitute functional 

but computationally simpler circuit models for device level analogue sub-circuits 

Chapter 6 introduces the concept of Extreme Value Theory (EVT) and explores 

an algorithm known as ‘Statistical Blockade’ (SB) [28] which applies EVT to 

statistical circuit analysis by eliminating or ‘blocking out’ randomised parameter 

vectors that are classified as being unlikely to produce circuits that fall in the low-

probability tails of the distributions of measurements of interest. The potential for 

using this technique to achieve major computational savings is explored and 

illustrated by examples. 

Chapter 7 investigates the use of Quasi Monte Carlo (QMC) techniques and 

‘low-discrepancy’ sampling to achieve further efficiency improvements, over what 

was achieved in earlier chapters, with Monte Carlo circuit simulation. The effect of 

using a ‘Sobol’ low discrepancy sequence generator to replace the uniformly 

distributed pseudo-random number generator previously used to produce the required 

Gaussian variation is discussed and illustrated by example. 
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Chapter 8 evaluates the results obtained with VLSI SRAM circuits. This chapter 

considers the significance and reliability of the results obtained, how to decide how 

many randomized circuits are needed and how best to populate the transistor model 

sets, taking advantage of QMC and PCA.   

Chapter 9 presents conclusions and suggestions for further work in this area. The 

use of parallel processing for efficiently undertaking the intensive computation 

required will be discussed, taking into account the intrinsically parallel nature of 

massive Monte Carlo simulations.
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Chapter 2 

 

Nano-CMOS Technology and the Causes and Effects 

of Variability in Integrated Circuits 

 

2.1   Introduction 

The International Technology Roadmap for Semiconductors (ITRS) [8] and Moore's 

Law [9] demonstrate how progressive scaling of CMOS integrated circuit technology 

has driven the phenomenal success of the semiconductor industry in delivering 

larger, faster and cheaper integrated circuits.  Scaling is measured in terms of the size 

of each ‘metal–oxide–semiconductor field-effect transistor’ (MOSFET) on the 

integrated circuit; specifically the length of the silicon channel between the source 

and drain terminals of the MOSFET which would, for example,  be 90 nm in ‘90 nm 

CMOS technology’. Considering the current status of nano-CMOS technology, 

integrated circuits with 45nm MOSFETs have been in mass production for some time 

and circuits with sub-10nm MOSFETs are expected to be available in 2016.  This is 

well ahead of the 2006 version of the ITRS road-map [8] which predicted that 22nm 

devices would be scheduled for production only in 2018. Further, 4 nm transistors 

have already been demonstrated experimentally, highlighting silicon's potential for 

scaling beyond the end of the current ITRS prediction [7]. 

Size reduction of MOSFETs brings several advantages, such as the ability to 

pack more and more transistors into a given area of silicon, which results in more 

functionality per unit area. In fabricating chips of a certain complexity, smaller 
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integrated circuits are therefore required and more chips per wafer can then be 

fabricated.  Since the cost of wafers remains more or less constant, this reduces the 

price per chip. It may also be expected that smaller transistors can be made to switch 

faster.  

The main device dimensions of MOSFETs are the transistor length, width, and 

the oxide thickness.  One approach to size reduction is a scaling that requires all 

device dimensions to reduce proportionally. In older technologies, if each of these 

dimensions was scaled by a factor of 0.7, the transistor channel resistance would not 

change, while the gate capacitance would reduce by a factor of 0.7. Hence, the RC 

time-constant which determines the delay of the transistor would reduce by a factor 

of 0.7.  In more recent technologies, this proportionality relationship does not apply 

and the effect of scaling is rather more complicated.  Some of the complications in 

scaling state-of -the art MOSFETs arise because of the delay due to interconnections. 

Along with the advantages gained by reductions of size, some difficulties also 

arise.  MOSFETs whose sizes are below a few tens of nanometers create operational 

problems, since they tend to have higher sub-threshold conduction, increased gate-

oxide leakage, increased junction leakage, lower output resistance, lower trans-

conductance, interconnect capacitance, heat production and process variations.  

When integrated circuits are fabricated, the dimensions and characteristics of the 

MOSFETs will not be exactly as assumed in the design process and there will be 

variations from device to device arising from many different sources.  As MOSFET 

sizes become smaller, these variations have a more and more significant effect on the 

overall behaviour and viability of circuits.  They may cause a particular design of 

MOSFET to be unusable, hence new device architectures may have to be devised.  

Also, the variations in device parameters that will be observed after fabrication must 

be anticipated by the design process. In large-scale circuits, they are too complex to 

be considered in a deterministic manner and therefore the variability must be 

modeled by appropriate statistical processes.  

Variability in the characteristics of fabricated devices, and the need to introduce 

new device architectures, are vital considerations for the current and the next 

generations of nano-CMOS based integrated circuits. Fundamental changes in the 
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way these integrated circuits and systems are designed are now necessary.  Adapting 

to new device architectures and the variability of fabricated device characteristics 

will increase the complexity of integrated circuit design processes.  For example, 

statistical models of the intrinsic parameter variations which cause devices on 

integrated circuits to behave differently from the manufacturer’s specification, and 

from each other, must be used.  Failure to accommodate these manufacturing 

tolerances will challenge the achievable power efficiency, yield and reliability of 

digital circuits.  

In the EPSRC pilot project: ‘Meeting the design challenges of nano-CMOS 

electronics’ [7], the APT (Manchester) group’s role is to study new design styles that 

cope better with device variability and reliability. To be able to devise new design 

styles, we firstly need to investigate how the parameter variations predicted by 

device level models will affect the performance, power requirements and area of 

clocked and asynchronous implementation styles, what this will imply for digital 

microelectronics design, and how these results will affect future synthesis tools. 

 

2.2   CMOS Technology for Integrated Circuits 

2.2.1   MOS Transistors  

MOSFET transistors are the main building blocks used to design large scale 

integrated circuits, both analogue and digital. The traditional metal-oxide-

semiconductor (MOS) structure which can fabricate a field effect transistor (FET) 

consists of a layer of silicon-dioxide sandwiched between a layer of metal on top and 

the semiconductor substrate below, as illustrated in figure 2.1.   The silicon-dioxide 

acts as an insulator, and only a very thin layer is required, often with the thickness of 

a few hundred molecules. ‘Polysilicon gate’ FET's, with highly conductive 

polycrystalline silicon layers replacing the metal layers, are nowadays used in place 

of traditional MOSFETs, though they are generally still referred to as MOSFETs. 

Metal and polysilicon FETs are more correctly referred to as ‘insulated gate field 

effect transistors’ (IGFETs). 
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8.  

Figure 2.1: MOSFET structure 

 

The transistor has a “source” and “drain consisting of semiconductor material 

which has been modified by being “doped” with a different type of material than 

exists in the region under the gate.  The metal or conducting polycrystalline material 

forms the “gate”.   An NPN or PNP type structure exists between the source and 

drain regions and electrical current can flow from the source to the drain depending 

on the degree and polarity of a charge applied to the gate.  Figure 2.2 shows two 

types of MOSFET :  

(a) “N-channel” where the source and drain regions have been doped with N 

type material and the substrate has been doped with P-type material.  

(b) “P channel” where the source and drain regions have been doped with P type 

material and the substrate has been doped with N-type material.  

 

 

 

 

 

                                   (a)                                                          (b) 

 

Figure 2.2: Two types of MOSFET. 
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When either type of MOSFET is operating within a circuit, the source must be 

connected to a supply of charge carriers which travel towards the drain. For an N 

channel MOSFET, the source voltage must be negative with respect to the drain 

voltage to allow charge to flow.  For a P-channel device, the source must have the 

more positive voltage to allow current to flow. The area under the gate is the 

“channel” through which the current flows.  

Either type of MOSFET can be made to act as a switch. Figure 2.3(a) shows an 

N-channel MOSFET with N-type source and P-type substrate connected to ground 

and drain connected to a positive voltage VDD. There are two reverse-biased PN 

junctions between the two N wells and the substrate, therefore no current can flow 

and the MOSFET is turned off.  

 

 

 

 

(a)                                            (b) 

Figure 2.3: Enhancement mode MOSFET (a) turned off, (b) turned on 

 

If a positive charge is applied to the gate as shown in Figure 2.3(b), electrons 

will be attracted from the substrate into the channel region between source and drain. 

If the positive charge is enough, sufficient electrons will be attracted into the channel 

to ensure that there are more electrons than ‘holes’. Then the channel will become N-

type rather than P-type, current will be allowed to flow from source to drain and the 

MOSFET will have been turned on.   The minimum gate voltage needed to ensure 

that the gate has sufficient charge to attract enough electrons to allow current to flow 

is the “threshold voltage” Vth.  This is an N-channel “enhancement mode” MOSFET 

because the charge is applied to the gate to enhance the channel conduction.  A P-

channel enhancement mode MOSFET has P-type source and drain and an n-type 

substrate. The conduction in the channel is now induced by applying a negative 

voltage between gate and substrate to create a negative charge and thus attract P-type 
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charge carriers (holes) into the channel. CMOS technology is based on the use of 

both N-type and P-type enhancement mode MOSFETs.  

 “Depletion mode” MOSFETs acting as normally closed switches, are feasible, 

but not used in CMOS designs.  Figure 2.4 shows an N-channel depletion mode 

MOSFET.  

 

 

 

 

 

(a)                                                               (b) 

Figure 2.4: Depletion mode MOSFET: (a) turned off (b) turned on 

  

A thin layer of semiconductor immediately beneath the gate oxide is doped with 

the same type material as the source and drain.  Current can flow across the channel 

when no charge is applied to the gate, but when a negative charge is applied, the 

electrons beneath the gate oxide will be repelled leaving no free charge carriers.  

Therefore conduction will cease and the transistor turns off.  P-channel depletion 

layer MOSFETs can similarly be fabricated.  Depletion mode MOSFETs are 

commonly used as resistors rather than switches.  A permanently “on” transistor, has 

a much higher resistance than doped semiconductor material, and the value of 

resistance can be determined simply by its dimensions or the number of ions which 

are implanted in the gate region.  

Both enhancement and depletion mode MOSFETs are used in IC design. 

Conventional NMOS technology uses both enhancement and depletion mode 

devices; the former as switches and the latter as resistors.  CMOS technology uses 

enhancement mode MOSFETs.   
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2.2.2   MOS Transistor Models 

The design and analysis of ICs requires complex devices such as MOSFETs to be 

represented by circuits consisting of simpler elements.  These are models which are 

needed for the design of the devices themselves as well as the circuits they populate.  

The design of devices requires the use of ‘process models’ which reflect how 

manufacturing processes such as ion implantation, oxide growth, impurity diffusion, 

etching and annealing affect their characteristics. Process models translate the device 

“geometry” into circuit parameters.  The effects of readily identified geometrical 

features and also details such as the doping profiles must be accurately represented. 

Transistor models used for circuit design are called “compact models” because 

ideally they should use as few circuit elements as possible to keep the analyses as 

simple and computationally efficient as possible.  

Enhancement mode MOSFETs can be modeled as simple switches which are on 

or off, in effect acting as variable resistors controlled by capacitor charges. More 

sophisticated models can be used, but this simple approach is useful for logic 

verification and approximate timing simulations.  

Many important aspects of the performance of modern integrated circuits are 

difficult to predict without accurate models of the devices used and their 

interconnections.  Ideally, the models must take into account the circuit layout: 

length, width, interdigitation, proximity to other devices; transient and DC current-

voltage characteristic; parasitic device capacitance, resistance, and inductance 

latencies and temperature effects.  For digital design, large-signal non-linear models 

are required which may be classified as ‘physical’, ‘empirical’ or ‘tabular’ models.  

Physical models are based on device physics and the approximate modelling of 

physical phenomena within a transistor. Parameters are physical properties such as 

oxide thicknesses, substrate doping concentrations, carrier mobility, etc. The 

complexity of modern devices often makes physical models too computationally 

complex for circuit design purposes.  

Empirical models are based on curve fitting to produce functions that recreate 

known responses to particular stimuli and interpolate this behaviour appropriately for 
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any given stimuli.  An empirical model need have no physical basis and can be 

considered in purely mathematical terms.  

Tabular models use look-up tables containing large numbers of values for 

common device parameters such as drain current and device parasitics. The use of 

tabular models can greatly reduce the computational complexity of analysis and 

simulation software.  They can work well in operating conditions whose parameters 

may be interpolated from entries within the table.  However, they tend to be 

unreliable for operating conditions whose parameters fall outside the table and 

require extrapolation.  

Commercial programs for simulating the behaviour of MOS integrated circuits 

generally offer a wide range of different transistor models, often with many 

parameters. The SPICE circuit simulation program [82] is probably the most widely 

used.  The transistor models in SPICE are a hybrid of physical and empirical models. 

Such models require a specification of how their parameters are to be obtained for 

real devices, since there is the danger that totally inappropriate parameters can be 

made to fit measured data for given devices resulting in quite unsuitable models for 

interpolating or extrapolating the data. 

As devices become smaller, new models are needed to accurately represent their 

behaviour.  Simulation packages such as SPICE are continually introducing new 

device models.  A working group called the Compact Model Council [43] has been 

set up to try to standardize such models across different simulators.   This group must 

consider how the next generation of devices will work by identifying technology 

trends and motivations.  The aim must be to have models available before the devices 

themselves become available.  The BSIM models, developed at U. C. Berkeley 

already provide such standardized models which include BSIM3, BSIM4, and 

BSIMSOI. 

The BSIM (Berkeley Short-channel IGFET Model) [42] is a family of MOSFET 

models suitable for integrated circuit design, analysis and simulation. The models 

represent current flow and capacitance as functions of the control voltages on gates, 

sources, drains and substrate and other parameters which include channel dimensions 

and operating temperature. The models are claimed to have features that improve the 



Chapter 2. Nano-CMOS Technology and the Causes and Effects of Variability… 

  

 34 

convergence rates and accuracy of circuit simulations. They are compact semi-

empirical models [47]  comprising sets of equations originally derived from physical 

analysis though subsequently modified empirically to better match available 

measured data.  A ‘two-stage’ modelling approach is used which first pre-processes 

the various temperature and device geometry specifications to produce circuits 

whose elements are suitable for a circuit simulator such as SPICE, and then 

computes the required component values for such circuits. For each semiconductor 

manufacturing process, a single geometry-independent parameter set allows the 

circuit simulator to adapt the model to the dimensions of particular devices. The 

geometry-independent BSIM parameter sets are therefore functions of the 

semiconductor processing only and are referred to as “process” models. The actual 

parameters are extracted using an automated test and data analysis system which 

provides the means of acquiring large amounts of parameter data as required for 

statistical modelling of integrated circuit variability. Software which performs cycles 

of testing and with parameter extraction calculations was developed at U. C. 

Berkeley [48].  

 

2.2.3   CMOS Logic 

N-channel MOSFETs are smaller than P-channel MOSFETs and producing only one 

type of MOSFET on a silicon substrate is cheaper and technically simpler. NMOS 

logic uses N-channel MOSFETs exclusively but has the disadvantage of consuming 

power even when no switching is taking place. In principle, “complementary” MOS 

(CMOS) logic gates only consume power when switching and have the further 

advantage over NMOS that both low-to-high and high-to-low output transitions are 

faster since the load resistors in NMOS logic are replaced by pull-up transistors 

which have low resistance when switched on. In addition, the output signal swings 

the full voltage between the low and high rails. This strong, more nearly symmetric 

response also makes CMOS more resistant to noise. CMOS logic has, since the mid 

1980s, displaced NMOS to become the preferred technology for digital ICs.  

A CMOS gate has a pull-down circuit of N-MOSFETs for connecting the output 
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to “0” (GND) and a pull-up circuit of P-MOSFETs for connecting the output to “1” 

(VDD), as shown in Figure 2.5. One circuit is intended to be ON while the other is 

OFF. Two or more MOSFETs in parallel are ON if any one of them is ON. Two or 

more MOSFETs in series are ON only if all of them are ON. CMOS logic gates can 

be constructed by using appropriate combinations of parallel and series MOSFETs in 

each circuit.  A CMOS inverter, for example, has a ‘pull-up’ circuit consisting of one 

P-MOSFET, and a pull-down circuit with one N-MOSFET.  The output of a CMOS 

logic gate can be in four states as summarised in table 2.5.  The “1” output level 

occurs when the pull-up circuit is on with the pull-down off, and vice versa for the 

“0” output level.  When both pull-up and pull-down circuits are OFF, the output level 

becomes indeterminate or ‘floating’ with only a very high-impedance connection to 

the input. This is referred to as the ‘floating Z’ output state and is used in 

multiplexers, memory elements, and bus drivers. When both pull-up and pull-down 

circuits are simultaneously turned ON, an indeterminate level again results but with 

power being dissipated.  This ‘crowbarred X’ condition is avoided as much as 

possible in a CMOS gate. 

 

Table 2.1: Output states of CMOS logic gate 

 

 

 

 

 

 

 

Figure 2.5: General logic gate using CMOS pull-up and pull-down networks 
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 2.2.4   CMOS Circuit Design 

Particular logic functions can often be implemented with many different 

combinations of AND, OR and other gates.  When designing ICs, there are many 

aspects other than the correct logical operation to consider.  For example, the fan-in 

and fan-out of each gate, and the transistor sizes to be used, must be decided.   Such 

decisions affect the speed, power consumption, area and many other potentially 

important characteristics of the IC being designed. 

Logic circuit design tools can make these decisions automatically.  Such tools 

can search through available libraries of logic cells for the best implementation. The 

resulting circuits are often quite acceptable. However, when there are critical 

requirements, maybe for low power consumption or high speed, customised circuit 

design may be needed for the whole IC or for critical portions of it. Customised 

design effort can also be cost-effective as a means of reducing the surface area 

required for ICs that are expected to be manufactured in large volumes. 

Figure 2.6(a) shows a logic circuit for the Muller C-element. Implementing a 

non-customised ‘gate level’ design would require 26 transistors and four stages of 

gate delay, since the AND and OR gates would be implemented by library cells each 

consisting of a NAND or NOR gate followed by an inverter.   The ‘transistor level’ 

design in Figure 2.6(b) requires only 10 transistors and two stages of gate-delay. This 

example illustrates the advantages to be gained by customised design, at transistor 

level, based on a direct knowledge of the properties of CMOS technology.   

 

 

 

 

 

 

 

(a)                                                                    (b) 

Figure 2.6: Muller C-element: (a) gate-level, (b) transistor-level 
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Either of the schematics in figure 2.6 may be converted to a ‘netlist’ description 

using ‘HDL (hardware description language)’ terminology which caters for ‘gate-

level’ and ‘transistor-level’ schematics. A gate-level netlist is a technology-

independent structure description, because standard logic gates may be referred to 

without the need to specify the implementation technology. The electrical 

characteristics of the gates, speed, fan in, fan out etc. are not yet part of the 

description.  At transistor level, a circuit description will include this type of 

information and specify the size of the transistors and the levels of stray capacitance. 

However, the Verilog HDL language was designed primarily as a gate-level language 

and is not well suited to transistor level descriptions.  

The circuit simulator SPICE uses another common structural language whereby 

internal models represent the electrical characteristics of the MOS devices. SPICE 

calculates appropriate values of, for example parasitic capacitance inherent in the 

MOS transistor, using parameters such as device dimensions that are specified in the 

netlist. Capacitance, resistance and other phenomena can be introduced 

independently from the transistor models by including appropriate statements in the 

SPICE netlist. Thus additional routing capacitance and resistance can be included to 

accurately model the physical characteristics of the circuitry for each gate and the 

interconnections between gates. The SPICE netlist has all the information necessary 

to fully characterize a transistor level circuit description, in terms of its speed, power, 

and connectivity.  

 

2.2.5   CMOS Technologies  

Complementary MOS (CMOS) gates employ both P and N channel MOSFETs  to 

allow a signal which turns on one transistor  to turn off another. This eliminates the 

need for pull-up resistors and the power they would dissipate.  Figure 2.7 shows a 

CMOS inverter and its switch equivalent.  
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Figure 2.7: A CMOS inverter and its switch equivalent 

 

The substrate for the N-channel device is connected to ground, while that for the 

P-channel device is connected to the positive voltage supply. Figure 2.8 shows the 

arrangement of channels for an IC implementation of the inverter.  

 

 

 

 

 

 

Figure 2.8: CMOS inverter in cross-section 

 

In principle CMOS gates consume no power when not changing state since there 

is no resistive path to ground.   Outputs can be made symmetrical in the way they 

switch from 0 to 1 and vice-versa, by making the pull-down and pull-up resistances 

of the N-channel and P-channel transistors equal. This will equalize the delays for 

each direction.  CMOS technology is more complex than NMOS since it requires 

two different types of transistor to be fabricated on a single substrate.  

 

2.2.6   MOSFET Scaling and the Adaptations on Design 

The ITRS Roadmap [8] forecasts a major new technology generation every three 

years. Each new generation is expected to double the number of transistors per unit 
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area and increase their operation speed by a factor S equal to the square root of two.  

Constant field scaling by the factor S multiplies channel length, width, oxide 

thickness, supply voltage and all threshold voltages by S1  with substrate doping 

level increased by the factor S.  Scaling dimensions, voltages and dopant levels in 

this way keeps the electric field strength unaffected and the gate capacitance per unit 

width of channel also remains approximately constant since channel length and oxide 

thickness scale in proportion. If only the gate length is scaled, leaving other 

dimensions, voltages, and doping levels unchanged, this is ‘lateral scaling’ or ‘gate 

shrink’ which can be easily applied to existing masks.  In theory this results in a 

decrease in gate delay by a factor proportional to S squared. In practice, the decrease 

factor will be approximately proportional to S, rather than S squared, because 

‘velocity saturation’ will cause there to be a constant relationship between channel 

current and resistance.  

The improved device density and IC performance improvements over the past 40 

years have been remarkable in providing ever-increasing functionality and speed. 

They have also led to reductions in manufacturing costs since the silicon die area for 

given functionality is reduced.  Therefore, more dies can be fabricated on a silicon 

wafer of fixed size and cost of manufacture.  Smaller die sizes also lead to higher 

yields since a given density of imperfections will affect fewer dies [49].  

As the trends in scaling continue, and MOSFET gate lengths reduce to below 

35nm with gate oxide thickness reduced to the order of 1nm, physical limitations in 

allowable power density and the increasing significance of off-state leakage current 

make state-of-the art IC design an increasingly challenging task. Innovations in 

device structures and materials are now required.  Limitations in the fabricated 

materials are imposing new and increasingly difficult problems.  For example, since 

carrier mobilities are affected by the increased vertical electric fields that occur [50], 

mobility enhancement techniques such as strained-Si [51], [52] and high-mobility 

channel materials [53] are increasingly being called for. Also, gate tunnelling leakage 

becomes significant for oxide thickness below 1 nm [54], hence the need to replace 

oxide/oxy-nitride dielectric layers with a high-permittivity or ‘high-K’ gate 

dielectrics [55].  New device structures include designs based on ‘silicon-on-
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insulator’ (SOI) technology.  This was developed to offer an enhanced trade-off 

between power and performance by reducing source/drain junction capacitance, and 

achieving superior control of ‘short channel effects’ (SCE).  Therefore, SOI is 

beneficial as a low-power technology for ICs with stringent leakage specifications. 

The double-gate FinFET structure [56], [30] has improved electrostatic properties, 

and if the fin gate is made wider and shorter, a tri-gate SOI MOSFET structure is 

formed, which has advantages for manufacturability. These advanced device 

structures have been developed to enable continued transistor scaling beyond current 

limits.  

In addition to the design problems surveyed above, further problems arise due to 

the increased variability in device performance that is inevitable with the parameter 

scaling that occurs with each new technology generation. This variability critically 

challenges the viability of future technology development, manufacturing, and design 

[57]. Therefore, besides the advances in transistor architectures and process control 

briefly mentioned above, improved IC analysis, simulation and design techniques are 

needed to anticipate the effects of variability and eliminate or reduce the failures it 

may cause in current technology.  Further, designers will need to be able to predict 

the effect of future feature size scaling on chip performance to plan their designs in 

such a way that future products may be expected to scale gracefully. 

 

2.2.7   Synchronous and Asynchronous (‘Self-Timed’) Circuits 

2.2.7.1   Introduction 

Technologies at the nano-scale level, including nano-CMOS, are facing great 

challenges due to the effect of parameter variations. Among these are the efficient 

timing control of the required sequences of transitions, and adapting to the 

impossibility of building global clock networks on highly complex chips [4].  

Because of these difficulties, asynchronous (clock-less or ‘self timed’) logic is 

commonly regarded as an ideal and perhaps unavoidable choice for digital circuits in 

the technology of nano-CMOS [4].  The timing issues are discussed in this section, 

firstly for traditional synchronous circuits and then for asynchronous circuits.  



Chapter 2. Nano-CMOS Technology and the Causes and Effects of Variability… 

  

 41 

 

2.2.7.2   Synchronous Circuits 

In synchronous circuits, changes in the logical levels of storage elements are 

intended to be simultaneous with the level change of a single ‘clock’ waveform.  The 

changes cannot occur instantaneously, but they must be complete before the next 

synchronizing level change occurs. The speed of the changes determines the 

minimum time that must elapse between level changes in the clock waveform. This 

sets the maximum allowed clock speed for the synchronous circuit.  Much design 

effort is needed to design the efficient distribution of the required clock signal from a 

common entry point to all parts of an integrated circuit.  The characteristics of clock 

signals and the electrical connections used in their distribution have special 

requirements since they have high fan-out and must operate at the highest speeds of 

any signal within the entire circuit. The clock waveforms must be particularly clean 

and sharp to provide accurate timing.  These attributes are especially sensitive to the 

effects of technology scaling since the resistance of long interconnections becomes 

greater and more variable as line dimensions are decreased.  These effects, combined 

with increasing variability of capacitance, result in uncertainty in the exact arrival 

times and definition of clock waveform events which can severely limit the 

maximum performance of the entire circuit and create hazards and race conditions 

which cause incorrect logical behaviour. The transitions of synchronous circuits are 

controlled by the careful insertion of pipeline registers to ensure that critical timing 

requirements are satisfied and that no race conditions exist. 

The clock distribution connections often dissipate a significant proportion of the 

power consumed by an IC, and significant power can be wasted by clock connections 

to parts of the circuit not being used.  A technique called ‘clock gating’ can turn off 

connections when they are not needed to achieve significant power savings.  

Synchronous circuits have sub-circuits of three types: memory storage elements, 

combinational logic elements, and clocking distribution networks with associated 

circuitry. Interrelationships among these three types of sub-circuit are critical to 

achieving acceptable performance and reliability. While the existence of a single 

universal clock waveform may be assumed at the design state of synchronous ICs, in 
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practice a number of related but different clock signals will be required and 

generated by a structure or network of clock buffers.  Engineering design effort is 

needed to design clock-gating circuitry and to minimize ‘skew’ between the different 

clock signals. Satisfying timing specifications in circuit technologies dominated by 

highly variable wire delays is not an easy task.  Current commercial CAD tools 

employ iterative buffer-insertion-and-resynthesis procedures, but these may not 

converge and often must be based on questionable assumptions about the 

characteristics of the connections. 

 

2.2.7.3   Asynchronous circuits 

Instead of synchronising all transitions to a common clock waveform, asynchronous 

circuits use ‘handshaking’ between elements to achieve the necessary 

synchronization, communication, and sequencing of operations. Register transitions 

are only initiated locally and only when needed.  The stored contents of registers are 

considered to be ‘tokens’ whose values may be changed by combinational circuits 

connecting the outputs of registers to the inputs of other registers.  Combinatorial 

circuit connections are transparent to the handshaking between registers. An 

asynchronous circuit is a static data-flow structure [59].  The basic principle is that a 

given register may store a new value from a data token supplied to it as input, 

obtained from the output from another register referred to as ‘the predecessor 

register’.  But it can do so only if a further register referred to as the ‘successor 

register’ has accepted and stored the data token that the given register was previously 

holding. The states of the predecessor and successor registers are indicated to the 

current register by ‘request’ and ‘acknowledge’ signals respectively. The Muller C-

element, a version of which is shown in Figure 2.6, is the basic unit for the 

implementation of handshaking. By this ‘hand-shaking’ mechanism, data is 

transferred from one register to another via combinational circuits.  The mechanism 

reflects the register transfer level (RTL) description of logic circuits that separates 

the structure and function of a circuit from its implementation. The handshaking 

between the registers controls the flow of tokens with combinational circuit blocks 
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transparent to this handshaking. The term “function block” is used to denote such a 

combinational circuit.   

Whereas synchronous circuits are controlled by a single universal clock 

waveform, asynchronous circuits are controlled by a large number of locally derived 

control pulses that can occur at any time.  The local handshaking ensures that control 

pulses are generated where and when they are needed. The fact that a single strongly 

periodic universal clock waveform is eliminated and replaced by many less periodic 

unsynchronised control signals results in less strongly periodic electromagnetic 

emission and a smoother supply current without the large supply current spikes that 

characterize synchronous circuits. 

Asynchronous circuits offer low power consumption [58] [60] and high 

operating speeds [61] since the operating speed is determined by actual local 

latencies rather than global worst-case latency.  Also, less periodic emission of 

electro-magnetic radiation is to be expected [62]. There are no clock distribution and 

clock skew problems [6] and timing in asynchronous circuits is insensitive to 

variability in circuit and wire delay.  Therefore, asynchronous circuits may be 

expected to be robust to variations in supply voltage, temperature, and fabrication 

process parameters [63]. 

 

2.3   Nano-CMOS Variability and Effects on Integrated Circuits 

2.3.1   Introduction 

When integrated circuits are fabricated, the dimensions and characteristics of the 

MOSFETs will not be exactly as assumed in the design process and there will be 

variations from device to device arising from many different causes.  The ability of a 

device or circuit to vary from copy to copy in a particular way due to a particular 

cause is referred to as ‘variability’.  Before nano-scale technology, the circuit-to-

circuit variability came mainly from imperfect control of the fabrication processes 

which caused the parameters of each device to vary from wafer to wafer, and from 

die to die within each wafer.  As technology has reached the nano-scale region, 

device-to-device or intra-die variability is becoming a much more important 
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consideration [3].  Dimensions are approaching atomic scales and intrinsic atomic 

scale variations such as line edge roughness and dopant granularity are becoming the 

most significant sources of variation [2].  These ‘atomistic’ variabilities must be 

considered random in nature, though there may be correlation between their effects 

on adjacent devices.  They must be understood in statistical terms and taken into 

account at the design stage.  

It is necessary to understand the sources of the variations and to be able to 

analyze the impact they have on performance.   The information thus gained can then 

be taken into account during the design process. Based on their causes, the variations 

are characterized as: ‘process variations’, ‘environmental variations’, ‘modeling 

variations’ and ‘variations due to other sources’. Any of these variations may be: 

inter-die, intra-die variations [3] or a combination of both. Intra-die variability causes 

nominally identical devices within a given circuit to have different characteristics, 

and inter-die variability causes circuit to circuit variability due to nominally identical 

devices on different dies having different characteristics.  Analysing the impact of 

intra-die and inter-die variability on the performance of individual circuits and the 

resulting variability of this performance, and ultimately the ‘yield’,  is the main way 

of judging how well a particular design has been optimized. In nano-CMOS 

technology, ‘atomistic’ variabilities, which are ‘intrinsic’ in the sense that they cannot 

be eliminated by improved circuit design or manufacturing tools [83], are the most 

significant source of both intra-die and inter-die variation.   Such variabilities include 

spatially correlated and uncorrelated variations as will be discussed in the following 

sections. 

 

2.3.2   Sources of Variation  

The four causes of intra-die and inter-die variation that were mentioned in the 

previous section are now defined.  

Process variations are the fluctuations in the physical characteristics of devices, 

such as their geometrical features and distribution of dopant levels, often referred to 

as ‘process parameters’, that are caused by inaccuracies and limitations of the 
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fabrication process [32]. These variations translate to variations in the electrical 

parameters of the devices.  They result from a wide range of imperfections that can 

occur during the fabrication process.  

Environmental variations caused by changes in its immediate surroundings or 

activity can affect the operation of a fabricated IC. Variations in temperature, power 

supply voltages and switching activity, for example, can affect the circuit’s operation.  

Increased temperature can result in performance degradation for both devices and 

interconnects. Leakage currents increase strongly with increases in temperature and 

the power dissipation caused by increasing leakage currents can further increase the 

temperature of an IC.  This positive feedback mechanism can cause thermal run-

away, where the currents and temperatures in a circuit continue to rise until failure 

occurs. Current leakage and temperature analysis must be performed to make sure 

that such thermal run-away will not occur during normal operation [3].  A reduced 

power supply voltage lowers the effective fan-out of devices thus risking malfunction 

of the circuit.  Switching activity changes many properties of an IC from its idle 

state, for example its temperature, power supply integrity and degree of crosstalk due 

to substrate noise coupling. 

‘Modeling variations’ arise from inaccuracies in models which do not perfectly 

reflect the characteristics and switching behaviour of the devices in question. 

Improving the accuracy of models generally results in greater complexity and higher 

computational requirements.  Therefore some compromise is generally called for 

when performing analysis and simulation of complex circuits. 

Other sources of variations include physical effects that cause temporary or 

permanent changes in process parameters. These effects include ‘hot electrons’, 

‘negative bias temperature instability’ (NBTI) and ‘electro-migration’. Hot electron 

and NBTI effects introduce permanent device degradation that increases with time 

causing threshold voltages to change. Electro-migration causes the resistances of on-

chip connections to increase by reducing their physical widths. Increases in 

propagation delay will then occur owing to increased RC values. 
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2.3.3   Classification of Variation 

It is now widely realized that inter-die and intra-die variations must be considered 

separately [3].  Intra-die variation causes nominally identical parameters to vary from 

device to device within each fabricated copy of a circuit. With the statistical 

modelling of atomistic variation, a different set of parameters are, in principle, 

required for each device on a die.  Therefore, very many different random variables 

are needed. The sets of variables will clearly have dependencies within them, but it 

may be considered reasonable to assume that intra-die variations are uncorrelated 

from device to device.   This assumption simplifies the analysis and simulation of 

circuits and may be justified in view of the nature and cause of atomistic variation.   

However, it is clear that there will also be correlation from one set of parameters to 

another especially when the devices in question are close together on the chip.   The 

degree of this correlation, the necessity and feasibility of taking it into account and 

viable methods of estimating, measuring and modelling this intra-die correlation are 

currently open research questions.   The modelling of ‘within die’ variations is now 

receiving much interest in the research literature [84] and the hypothesis that such 

modelling is necessary for accurate analysis and simulation is certainly being 

considered.  The correlation that exists in intra-die variations may be due to both 

systematic properties of the technology and the characteristics of the fabrication 

techniques that are used; for example any recurring imperfections.  Despite the 

increased complexity of analysis and simulation problems incurred by attempting to 

model intra-die variations with correlation, models have already been proposed for 

introducing correlation due to proximity-effects [3].   

Inter-die variations in the parameters of a given device occur from die-to-die, 

wafer-to-wafer and lot-to-lot. Clearly both intra-die and inter-die variations will 

occur in practice, but it is sometimes reasonable to disregard device-to-device 

variability on each chip to concentrate on just inter-die variations which are 

considered more substantial.  These variations are generally considered independent 

and modelled by a small number of random variables which represent a deviation 

from the nominal values of circuit parameters. Typical of inter-die variations that 
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may be modeled are on-chip consistent differences in gate-lengths that occur owing 

to fluctuations in exposure time during fabrication. Also, on-chip consistent metal 

thickness variations between different metal layers may similarly be modelled.   

Where the nominal value of a device parameter is denoted by P0, its inter-die 

variation may be modeled by defining the corresponding parameter for circuit i as:   

                                                P(i) = P0 + ∆P(i)                                                                   (2.1) 

where ∆P(i) is the ith sample of a zero mean random variable of appropriate 

statistical properties. The random variables ∆P(i) are often assumed to have an 

approximately Gaussian probability density function (pdf) with a given variance.  To 

introduce both intra-die and inter-die variability, define parameter P(i,x,y) for a 

device at co-ordinates (x,y) on chip i as:  

                                         P(i,x,y) = P0 + ∆P(i)  + ∆Q(i,x,y)                            (2.2) 

where  ∆Q(i,x,y) introduces random variation that is dependent on  (x,y).  For each i, 

x, y express: 

                                              ∆Q(i,x,y) =  ∆Qs(i,x,y) + ∆R(i,x,y)                                         (2.3) 

with a spatially correlated component ∆Qs(i,x,y) and a statistically independent 

component ∆R(i,x,y), the latter being just a sample of an independent random 

variable  with no correlation with other devices. A viable approach to the definition of  

∆Qs(i,x,y), recommended by A. Srivastava, D. Sylvester and D. Blaauw [3] is to 

divide the surface area of each circuit i into regions for which ∆Qs(i,x,y) may be 

assumed identical (the same random sample used) for all (x,y).  An alternative is to 

define a number of ‘anchor points’ on the chip’s surface and then to define each 

∆Qs(i,x,y) according to the distance between (x,y) and all or some anchor points.  The 

closer (x,y) is to an anchor point (xa,ya) say, the stronger the correlation will be made 

to exist between ∆Qs(i,x,y), and the random value of ∆Qs(i,xa,ya) at the anchor point.  

Intra-die variations can be combinations of wafer-to-wafer variations, layout 

dependent variations, and statistically independent variations. Layout dependent 

variations can arise from lithographic and etching fabrication techniques including 

chemical mechanical polishing (CMP) and optical proximity correction (OPC). 

Atomistic random dopant variation is considered to produce statistically independent 

parameter variations. According to the reference [135], line-edge roughness is 
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statistically independent even for devices close to each other.  Some phenomena such 

as dose concentration vary slowly across locations on the die, and thus exhibit spatial 

intra-die correlation.  Intra-die variation is often assumed to have both a contribution 

with device-to-device correlation and a statistically independent contribution. More 

detail of such variability will be given in Section 2.3.4. Intra-die random variations 

can result from many other sources and strongly influence threshold voltages (Vth) 

and leakage power. Increased Vth variability and lower Vth values can introduce 

higher current leakage and increase the likelihood of functional failure. 

 

 2.3.4   Intrinsic MOSFET Variability 

The variability in MOSFET characteristics that occurs due to imperfections of the 

manufacturing process can be assumed to lie within known constraints and is 

relatively easy to model in analysis, simulation and design processes. However, with 

sub-45nm technologies, atomistic effects are becoming increasingly significant. The 

impact of such effects was small enough to be neglected when the effects of 

manufacturing imperfections were vastly greater.  However, in future devices, they 

will become a major consideration. Novel design techniques will emerge for 

reducing the loss of precision that occurs in the manufacturing process. However, the 

fundamental limitations cannot be overcome, and their importance will increase as 

device sizes continue to reduce [2], [66]. 

Atomistic variability is ‘intrinsic’ to sub-45 nm technology and will always be 

present as a source of intra-die variations regardless of how good the circuit design 

or manufacturing tools can be made. The physical phenomena that cause this 

variability can only be modeled in statistical terms.  Three forms of atomistic 

variability are ‘Random Discrete Dopant Fluctuations’, ‘Gate Line Edge Roughness’, 

and ‘Gate Oxide Thickness Variation’. Figure 2.9 illustrates the physical causes of 

these three forms of variability. 

 

2.3.4.1   Random Discrete Dopant Fluctuations 

Random discrete dopant (RDD) fluctuations result from modern fabrication 
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processes which implant relatively small numbers of dopant atoms into silicon at 

very high energies. Collisions and scattering occur until thermal annealing allows  

 

 

 

           (a)            (b)    (c) 

Figure 2.9: Intrinsic variability 

(a) Random Dopant Fluctuations [64]; (b) Gate Line Edge Roughness [109]; 

(c) Gate Oxide Thickness Variation [44]. 

implanted atoms to replace silicon atoms within the crystal lattice, at the same time 

diffusing their positions still further. It is impossible to precisely control the 

distribution and positioning of the dopant atoms and every device will have a 

different distribution of dopants.   Therefore, threshold voltages determined by the 

concentration of dopant atoms will vary from device to device.  This variation would 

have been less with older technologies because of the averaging effect of having a 

very large number of dopant atoms. Because of the small numbers of atoms involved, 

increasing or decreasing the number of atoms by an integer number cannot be 

considered a continuous process and is termed discrete.  Figure 2.10 illustrates the 

atomic structures of simulated 22nm and 4nm devices with typical random 

distributions of dopant atoms.  The 22nm device is indicative of devices that will 

soon be available, and the 4nm device is close to the limit down-scaling that is ever 

likely to be possible in silicon. 

 

 

 

 

 

                                 (a)                                                                           (b) 

Figure 2.10: The atomistic structures of stylized transistors illustrating random 

discrete dopant placement [67]: (a) 22nm Device; (b) 4nm Device 
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Clearly, the number of dopant atoms in the channel regions of a device decreases as 

the critical dimensions are scaled down [20]. As the number of dopant atoms 

becomes smaller, a modest variation in this number causes an increasingly large 

variation in device performance since it is ratios of the number of carriers in different 

channels that determine this performance. The locations of these dopant atoms within 

the silicon lattice structure also affect the threshold voltages of devices, and there 

will be increased variability in the distribution patterns from device to device when 

there are fewer dopant atoms [75]. The effects of uneven local dopant distribution are 

not averaged out over large regions as with larger devices and therefore threshold 

voltages will become more variable because the uneven-ness will cause certain 

regions to become active before others [68]. The variation caused by random dopant 

variability will be modeled by the uncorrelated intra-die statistical variable ∆R(i,x,y) 

in equation 2.3 when the parameter P in equation 2.1 is a threshold voltage.  

 

2.3.4.2   Line Edge Roughness 

Line Edge Roughness (LER) occurs at the junctions of channels with other materials 

causing random deviations from ideal straight-line boundaries.  Variable material 

characteristics and tools used in the lithography processes are causes of LER [69], 

[70].  LER occurs in photo-resist (PR) processing depending on the PR type, 

thickness, substrate reflectivity, image contrast and processing conditions.  In nano-

scale poly-silicon gate etching, the degree of LER is strongly dependent on the poly-

silicon grain size and the doping. In fabrication, silicon wafers are spin-coated with 

PR material, exposed to UV light through a photo-mask and then heated to ‘cure’ the 

photo-resist. Wafers are then immersed in a liquid developer to dissolve either the 

exposed or the unexposed areas of photo-resist material.   LER occurs at the 

boundaries of masked areas because larger aggregates in the PR tend to dissolve 

more slowly than smaller grains of material.   The degree of LER that occurs is found 

to be closely related to the grain size and molecular weight of the photo-resist 

material [68].  

In older technologies, the dimensions of MOSFET channels were orders of 

magnitude larger than the roughness, therefore the effects of LER were not 
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significant. In sub-45 nanometre technologies, line-edge variations remain the same 

while other dimensions reduce and therefore the variations become much larger in 

proportion. LER introduces a peak-to-peak variation of about 5 nm in most types of 

lithography used today [71], [72]. If this level of roughness cannot be reduced, LER 

will seriously affect ICs with sub-32 nm channel-length devices and will become the 

main cause of variability in 18nm channel-lengths devices, instead of random dopant 

variability [73].  

LER causes variations in off-state leakage current flow, effective channel lengths 

[74] and threshold voltages [75].  When considering a parameter P defined by 

equation 2.1, variations caused by LER may be modeled by the non-correlated intra-

die statistical variable ∆R(i,x,y) in equation 2.3. 

 

2.3.4.3   Gate Oxide Thickness Variation 

Gate Oxide Thickness Variations (OTV) are vertical deviations in the depth of the 

silicon dioxide layer below the gate of a MOSFET.   Intrinsic atomic scale roughness 

in the silicon-to-silicon dioxide and gate-to-silicon oxide junctions will introduce 

device parameter variability, especially when the thickness of the silicon oxide layer 

is equivalent to only a few atoms [76]. The random OTV on a sub-45nm technology 

chip will make each MOSFET different in respect to the surface roughness limited 

mobility, gate tunnelling current [77] [78] [79], and real [80] or apparent threshold 

voltage [81]. For circuits with device dimensions below 30 nm, the threshold voltage 

variability due to OTV will become comparable to the variability due to random 

discrete dopants [76].  OTV may be modeled by the correlated intra-die statistical 

variable ∆Qs(i,x,y) in equation 2.3. 

 

 2.3.5   Effects of Variability on Performance  

According to A. Srivastava et al [3], probably the most critical form of variability is 

gate-length variability, although this is disputed by some experts who argue that 

dopant variability is more critical [136]. It occurs ‘inter-die’ due to variation in 

exposure time and ‘intra-die’ because of other lithography effects [3].  Intra-die 



Chapter 2. Nano-CMOS Technology and the Causes and Effects of Variability… 

  

 52 

variations in gate-length will have both spatially correlated and uncorrelated 

contributions. 

Device threshold voltages will be dependent on a number of process parameters 

including gate-lengths and channel doping concentration.  Gate-length variation will 

cause comparable amounts of independent inter-die variability and spatially 

correlated intra-die variability, whereas channel random doping variation tends to 

cause uncorrelated random intra-die variability.  

The Device Modelling Group at Glasgow University has observed the effect of 

intrinsic variability on important device parameters for 35nm simulated devices. 

Their results are summarised by Table 2.2, which illustrates the standard deviations 

of variations of the threshold voltages of 35 × 35 nm MOSFETs that are introduced 

by single and combined sources of intrinsic parameter variation [65]. The most 

significant contributor to the variability of Vth at this channel length appears to be 

caused by RDD. The contribution of LER to Vth variability is slightly less than that 

of RDD, and introduces some spatial correlation. The value of Vth used in circuit 

simulation should ideally reflect spatially correlated and uncorrelated variation as 

will be discussed in more detail in Chapter 4.  

 

 

 

 

 

 

 

 

 

Table 2.2: Threshold voltage variability caused by single and combined intrinsic 

parameter fluctuations in a 35 × 35 nm atomistic-simulated MOSFET [65] 

 

Variability of device performance will clearly affect the performance of 

integrated circuits and will reduce parametric yield thus increasing the cost of 

Fluctuation Vth  σVth 

Random Discrete Dopant 133 mV 33.2 mV 

Line Edge Roughness 126 mV 19.0 mV 

Oxide Thickness Variation 122 mV 1.8 mV 

RDD & LER 126 mV 38.7 mV 

LER & OTV 123 mV 33.9 mV 

LER&OTV 113 mV 22.8 mV 
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manufacture and ultimately reducing the benefits of scaling.  Parametric yield is the 

percentage of manufactured working samples that meet the required specification, 

whereas manufacturing yield is the percentage of working samples from a 

manufacturing process that do not necessarily meet the required specification in all 

its aspects. It was observed [3] that for a particular circuit manufactured in an 180nm 

technology, device variability caused the chip leakage current to vary by a factor of 

about 20, and that the usable clock frequency varied by about 30% from chip to chip. 

These large variations caused a large fraction of the circuits to fail to meet power and 

timing constraints, which substantially decreased the parametric yields. Variability 

also affects power dissipation, since the designer must make that the nominal values 

of threshold voltages are high enough to ensure that off-state leakage currents do not 

reduce noise margins beyond safe limits.  Power supply scaling must be done in such 

a way as to guarantee acceptable performance.  

 

2.4   Conclusions 

The ever-reducing dimensions of nano-CMOS technology mean that statistically 

based variability analysis will have an increasingly important role in enabling 

successful circuits to be designed and optimized.  The means of analysing the effect 

of intra-die variability is needed, and can be provided through the use of SPICE 

simulations of randomised versions of a circuit. Asynchronous or self timed circuits 

are known to offer advantages over the more widely used synchronous circuits in 

very small scale technologies. 
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Chapter 3 

 

Analysis of the Effect of Variability on Integrated 

Circuits 

 

3.1   Introduction 

The differences that exist between the ideal parameters of an integrated circuit and 

the parameters that are observed when the circuit is fabricated many times are 

referred to as variability. The words ‘variation’ and ‘variability’ often imply time 

dependent change, but in this context, the primary differences referred to do not 

change with time and occur from component to component on a circuit and from 

realization to realization over a batch of manufactured circuits.  Anticipating the 

impact of such variability on the performance of integrated circuits is always a 

critical consideration during design procedures.   

 

3.2   Effects of Variability 

Variations in the properties of the material and inaccuracies in the manufacturing 

processes must be expected to produce circuit components whose characteristics will 

be different from what was specified. The differences between the parameters of each 

component and their specified target values will vary from component to component 

within a manufactured circuit and from realization to realization within a batch of 

nominally identical copies of the circuit.  If the parameters of a set of nominally 
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identical components on a batch of nominally identical copies of an integrated circuit 

could be measured and analysed as a set of values, differences in these values may, to 

a degree, be explained and modeled according to known deterministic phenomena; 

for example die-to-die variations in physical properties such as dopant levels.  

However, some aspects of the variation from component to component will likely not 

be treatable as deterministic either because a deterministic model would be too 

complicated or because there are effects that can only be considered statistically.  

Statistical models of the variability will consider each parameter to be a sample of a 

random variable whose statistical properties (mean, variance, probability density 

function, correlation properties, etc.) are known or assumed.  Parameters are assumed 

random but related statistically to their nominal target values in ways that may be 

considered totally independent, or may be affected by other considerations, such as 

proximity.   

 

3.2.1   Modelling Variability 

A circuit parameter can be modelled as the sum of a nominal value and a random 

variable. The nominal value is set by the circuit designer and is considered to be a 

deterministic quantity. The random variable represents the statistical variation about 

the nominal value. The nominal value is often referred to as the designable parameter 

and the random variable as a ‘noise’ parameter. The channel dimensions (lengths and 

widths) of MOS devices, resistor and capacitor values, are designable parameters.   

Noise parameters for CMOS circuits are uncontrollable variations in the gate-oxide 

thickness, threshold voltage and channel dimensions of MOS devices.  

 

3.2.2   Simulating Variability 

Due to the differences in the characteristics of manufactured components from the 

designed versions, the overall performance of a batch of integrated circuits will vary 

from copy to copy. Some critical aspect (such as gain or delay) may vary to such an 

extent that some copies must be rejected as the critical parameter falls outside a 

specification.  The circuit design should therefore build in a tolerance for anticipated 
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parameter variation.  To be able to attempt this task, the designer must have some 

idea what degree of variation is to be expected, and its likely effect on the circuit.   

Predicting the effect of anticipated forms and degrees of variation is the role of 

simulation. The expected ‘yield’, i.e. the percentage of successfully functioning 

manufactured circuits can thus be estimated for a given design before any circuits are 

actually fabricated. If the expected yield is unsatisfactory, the design can be 

modified.  Also, the designer can discover the degree to which the complexity and 

cost of an over-specified design can be relaxed without compromising the yield at all 

or too severely.  The more tolerance there is, the more costly will be the design.  

Hence designs must be optimized with respect to the conflicting demands of minimal 

complexity and maximum yield.  

 

3.2.3   ‘Worst case’ Analysis of Variability 

The complexity of combining yield estimation with an iterative design process can 

be computationally prohibitive even for quite modest integrated circuits. 

Traditionally, circuit designs have been verified by modelling the ‘worst-case’ 

conditions of the variable parameters [85], [86].  A circuit designed to work under 

these worst-case conditions, will be expected to achieve a high yield when 

manufactured. Worst-case analysis must determine the values of the parameters in 

these worst-case conditions and then carry out an analysis, normally by simulation, 

to estimate the worst-case circuit behaviour.  Worst-case design is efficient in terms 

of computation and designer effort, and is the most widely-used approach currently 

for circuit design based on statistical analysis. However, it is well known to be too 

pessimistic in its prediction of likely failures, and therefore leads to extremely 

conservative and costly designs. Unnecessary design effort may be caused by 

simulation results that are too pessimistic. Optimizations that simply ensure that a 

deterministic estimation of the performances of  ‘worst case’ versions of a circuit 

meet a given specification,  without considering the statistical nature of the expected 

variation, are likely not to be efficient.  In sub-micron (e.g. sub-45 nm) technology, 

for which there are much higher degrees of variability, such approaches are not even 
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likely to be feasible.   Traditional variability analysis, based on ‘worst case’ corner-

models [3] and guard-bands for parameter variations, is thus likely to be unsuitable 

for estimating the effects of variability as required for the design of circuits in this 

latest technology. 

 

3.3   Worst Case Analysis in Practice  

Worst-case circuit simulation can verify that circuit performances are acceptable 

under worst-case conditions.   The reliability of worst-case design optimization 

methods, as described above, depends on the accuracy of the worst-case analysis 

procedure. It must be ensured that the worst-case analysis is based on realistic 

estimates of the worst-case sets of parameter values and produces the worst-case 

performance values. Most common is the “corners" or “one-at-a-time” technique 

where the value of each parameter is chosen independently, typically ±2 or ±3 

standard deviations from the nominal value, assuming a Gaussian distribution about 

this nominal value.  This technique ignores any correlation that may be expected 

among the parameter variations.   The setting of all parameters to their worst case 

values produces simulation results with measured parameters that lie in the tails of 

their joint probability densities. These measurements will be extremely pessimistic 

[87] as estimates of what will occur in the majority of circuit copies. 

The worst case analysis may be carried out in many different ways and at 

different levels.  One approach is to operate at process level [86] by introducing 

variability into process parameters, such as device dimensions.   The behaviour of 

each resulting component is then modelled to allow circuit simulation to be carried 

out to estimate the required worst-case performance.  An alternative approach is to 

operate at device level (or transistor level) by modelling the ideal components (e.g. 

the transistors) and then introducing variability into the parameters that characterize 

the device models.  The application of the latter method to VLSI design can be 

difficult due to the high dimensionality of the device parameter space and the 

consequent high cost of the simulation. Muller [304] proposed a means of limiting 

the computational complexity by randomizing only those parameters which are 
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capable of causing the most serious variations in the circuit performance with small 

deviations from their nominal (ideal) values. The circuit performance measurements 

are assumed to be linearly dependent on the deviation and thus a ‘gradient’ vector of 

sensitivities to variation around the nominal parameter vector may be computed.  A 

difficulty with this linearised model of sensitivities of circuit measurements to 

parameter variations is that the coefficients may not be accurate for parameters not 

close to the nominal values, which is where the worst-case conditions are likely to 

occur.   Also, any interaction between the degree of variation and the nominal values 

of the designable parameters is not considered.  The possibility of variation in 

different parameters being correlated to some extent is disregarded also. 

 

3.3.1   Illustration of Concept of Worst Case Analysis 

As an illustration of the concept of worst case analysis consider first the design of a 

circuit which has only one type of transistor with one parameter whose value from 

die to die is assumed to vary randomly about its nominal value with an 

approximately Gaussian distribution as illustrated below.   Assume that the mean, µ , 

is the nominal value, and the degree of variation is defined by the standard deviation, 

σ.  If it is assumed that there is no intra-die variation, i.e. that all transistor 

parameters on a single die are identical, and the circuit is designed such that it is 

guaranteed to work when the parameter in question is within ± 3 standard deviations 

of the mean, the Gaussian probability of a die having its parameters outside this 

range falls to 0.2%.  Then 99.8% of the copies of this circuit will be catered for in the 

design process.   Reducing the bounds such that the design process caters for up to 

±2 standard deviations means that the ‘parametric’ yield may reduce, in theory, to 

95.6 %.  This may be an acceptable cost of reducing the complexity of the design. 

With ±1 standard deviations the theoretical yield will be 68.2 %. 

If we now consider the existence of many transistors on each die with intra-die as 

well as inter-die variability, things become more complicated.   Worst case analysis 

could still be valid if the circuit is assumed to fail when a single one of its transistors 

has one of its parameters outside a set of worst case bounds.  However, 
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Figure 3.1: Gaussian probability density function about nominal value (mean µ) of a 

parameter when standard deviation is σ (Reproduced from P.Khurana & M. Jacobs, 

Cadence Design Inc.) 

 

this is not a realistic assumption as there are many circumstances where variations in 

some parameters are less critical than in others, and where large changes in one 

parameter are compensated by complementary changes or the absence of large 

changes in others.  If we are designing for deep sub-micron technology, the device-

to-device variations to be anticipated may be very large and difficult to 

accommodate.  Also, the fact that intra-die and inter-die variations may be correlated, 

for example among devices close together on a die, raises additional complexity.     

 

3.3.2   Corners 

To take a simple example, assume that two independent parameters A & B are both 

nominally 3 with standard deviation (σ) equal to 0.5 and 1 respectively. 

In theory, combinations of A and B, each within ±2σ of its mean, can occur 

anywhere within the rectangle shown in figure 3.2.  If a function F = A+B, its mean 

is 6 and its standard deviation is σ = √(0.5
2
+1

2
) = 1.12 and its minimum and 

maximum values are 9 and 3, or 6 ± 2.68σ.  Therefore, if A and B each lies within ±2 

µ,  

σ=0 

µ-σ µ+σ 
µ+2σ µ-2σ 

µ-3σ µ+3σ 

34.1% 34.1% 

13.8% 13.8% 

2.1% 2.1% 

0.1% 0.1% 
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standard deviations of its mean, F lies between ±2.68 standard deviations of its mean. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Illustration of ‘worst case corners’ for two variables 

 

If F were a circuit parameter dependent on two device parameters A and B, 

designing the circuit to work for A and B each between ±2 standard deviations of its 

mean forces the circuit to be acceptable for F between ±2.68 standard deviations of 

its mean with a success rate (‘yield’) of about 99.6%. If the circuit is only required to 

work for F within ±2 standard deviations of its mean, corresponding to a success rate 

of about 95.6%, clearly the range of A and B for which the circuit must work can be 

relaxed.    This simple example illustrates the mechanism by which forcing circuits to 

work at corners guarantees higher yield than may have been intended but this is at 

greater expense. 

Assume the effect of increasing/decreasing parameter A speeds up/slows down 

transistor A, and similarly for parameter B and transistor B.  If the two transistors are 

in serially connected gates, the slowing down of one gate could be compensated by 

the speeding up the other. Alternatively if they are in parallel, a speeding up of one 

gate may not matter so much if the parallel gate speeds up also.  From a power 

consideration, high power consumption in some parts of the circuit may be 

compensated by lower power consumption in other parts.  These are three examples 
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where the yield will be much greater than would be predicted by worst case 

predictions.  With statistical methods, performance is modelled as a distribution 

rather than a deterministic quantity with ‘worst case limits’.  A circuit is analyzed, 

designed, and tested considering the statistical characteristics of the circuit based on 

the accurate modelling of the variability. 

The size and complexity of circuits being implemented in deep sub-micron 

technology, and the problem of accommodating large parametric variations in, for 

example, threshold voltage (Vt), and gate oxide thickness due to non-systematic 

variations in the manufacturing process, form the background to this research project.  

Designers can no longer afford to ignore the intra-die variation or simplify the 

problem by producing conservative designs which are required to accommodate the 

worst-case corners.  Effects like random dopant fluctuation (RDF) and line edge 

roughness (LER) [23], which can vary greatly from device to device on a single die, 

are becoming dominant as the transistor size is shrinking.   Simplistic conservative 

designs will be extremely expensive or impossible.  More sophisticated tools, such as 

Monte Carlo simulation [24]), as provided by HSPICE, may be useful as described 

below.   

Process corners offer one method of designing integrated circuits taking into 

account expected variability in the technology process.  In VLSI design and 

fabrication, a process corner occurs with all parameters at some maximum or 

minimum value within the range over which the circuit is designed to work correctly.   

Variability occurs for many reasons, including changes in the humidity or 

temperature of the clean room used, and the locations of the dies on a wafer.  With 

CMOS logic, two-letter acronyms are often used to denote process corners with the 

first letter referring to the N-MOS FET, and the second referring to the PMOS FET 

corner. Three corner types exist: typical, fast and slow. Fast corners occur when 

carrier mobilities are higher than normal and slow corners occur when carrier 

mobilities are lower than normal.  Therefore, an ‘SF’ corner is caused by a slow N-

MOS FETs and fast P-MOS FETs. 

Five combinations are of interest: TT (typical-typical), fast-fast (FF), slow-slow 

(SS), fast-slow (FS), and slow-fast (SF).  Combinations TT, FF and SS are called 
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‘even’ corners, since both types of devices are affected in the same way.  Such 

combinations normally produce correctly operating gates which switch at the 

nominal speed (TT), a little faster (FF) or a little slower (SS). Combinations FS and 

SF are called ‘skewed’ corners for which one type of FET will switch faster than the 

other. This can cause gates to function incorrectly and latches to register incorrect 

logic values. 

As well as variability in the parameters of the FETs, there are other on-chip 

parameters that have variability.  On-chip variability (OCV) effects include ‘process, 

voltage and temperature’ (PVT) variability which affects interconnections between 

devices, as well as the devices themselves. 

 

3.4   Introduction to Monte Carlo Simulation  

As will be seen in detail in Chapter 4, Monte Carlo algorithms compute definite 

integrals of functions of vectors (containing many variables) by evaluating the 

function for large sets of randomised vectors covering the space or range of 

integration.  In this thesis, the function will be some circuit parameter, for example a 

delay, as may be estimated by SPICE simulation.  The vectors will contain variables 

such as the parameters of transistors and other components such as wires, which in 

practice will be expected to vary randomly.  The definite integral will be the volume 

of the ‘tail’ of the probability density function (PDF) where some aspect of the 

performance, for example the delay, falls outside some defined limit.  The parameter 

values of transistors and other components will have particular statistical 

distributions and correlations determined by the physics of the fabrication process 

and many other effects, and these must be represented by the choice of vectors 

supplied to the Monte Carlo process.  Therefore repeated SPICE simulations must be 

performed for the randomised vectors to generate the required distribution of circuit 

measurements.   

For the circuits considered in this thesis, the dimensions of the input vectors, i.e. 

the number of variables, will be extremely high.  Each transistor model may have as 

many as 300 parameters, and there may be a very large number of transistors.  
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Although Monte Carlo methods are known to be efficient for very high dimensional 

applications, the computational complexity of this application is likely to prohibitive 

for all but the very simplest circuits.  Therefore it is vital to find ways of reducing 

computational complexity.  There are many possibilities, one of which, proposed by 

Amith Singhee [15], makes use ‘Quasi Monte Carlo’ methods [25] as described 

below.  The SiLVR model, and ‘statistical blockade’, also proposed by Amith 

Singhee [15][21][29] achieve computational savings by different methods. The SilvR 

method falls under the category of response surface models which gain speed by 

sacrificing accuracy.  Monte Carlo techniques are particularly well suited to IC 

design in nano-scale technology. 

Quasi Monte Carlo methods are modified forms of Monte Carlo methods where 

the input vectors are not totally random, but are to a degree deterministic in that they 

conform to  ‘low-discrepancy sequences’ [15][36].  More detail will be given in 

Chapter 6. 

 

3.5   Statistical Static Timing Analysis (SSTA) 

High-performance integrated circuits are traditionally characterized by the clock 

frequency range over which they can operate. Determining this at the design stage 

requires an ability to estimate the delay at different parts of the circuit. Such delay 

estimations must be incorporated into optimization processes at various stages of 

design, such as the logic synthesis stage, the layout (placement and routing) stage, 

and the in-place optimizations that are performed prior to finalisation.  Such 

estimates can be performed by circuit simulation, but this may be too 

computationally demanding in some cases.  Static Timing Analysis (STA) is a 

method of estimating the expected timing behaviour of a digital circuit without 

requiring complex simulation.  STA plays a vital role in efficiently obtaining 

reasonably accurate estimations of circuit timing behaviour. The efficiency arises 

from the use of simplified delay models, though its ability to consider some of the 

logical interactions between signals is limited. Nevertheless, it has been a widely 

used approach for many decades. 
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The word ‘static’ means that the circuit analysis is carried out in an input-

independent manner, and aims to estimate the worst-case delay over all possible 

input combinations. The computational requirement is linearly dependent on the 

number of components.   STA is widely used despite its limitations.  For example, it 

cannot easily take into account within-die correlation due to spatial characteristics.  It 

needs to consider many corners and for high degrees of random variability and its 

conservative estimations are too pessimistic for the design of circuits which are 

economic in their use of circuit resources. 

In recent years, the increased variability of device parameters and the behaviour 

of interconnections between devices have introduced design problems that cannot be 

successfully solved using traditional (deterministic) STA methods. Statistical static 

timing analysis (SSTA) represents the timing behaviour of devices, logic gates and 

interconnections by probability distributions.  It is thus possible to obtain 

distributions of circuit behaviour estimations rather than a single estimation. 

SSTA can model correlations among circuit parameters to compute more 

accurate statistical distributions of circuit measurements, for example of overall 

delay.  There are two main types of SSTA algorithms: path-based and block-based. 

Path-based algorithms [88] sum device and wire delays for specific paths over which 

signals may propagate within the circuit. The paths must be identified prior to 

running the analysis and this is difficult and has the danger of missing paths which 

are critical, or of identifying far more paths than it is feasible to analyse.  Block-

based algorithms [89] [90] generate the required and actual arrival times of signals 

for each component or sub-circuit, working both forwards and backwards from each 

clock signal source. There is now no need for path selection, but statistical estimates 

of maximum or minimum delays are needed that take into account correlation that 

will exist between the delays [91].   These are very difficult to derive.  The main 

reason we prefer Mont Carlo methods rather than SSTA in this thesis is that SSTA 

focuses on just one specific problem.  
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3.6   Integrated Circuits (IC) Design Flow 

Analysis of the effect of variability may be executed at several stages of the IC 

design flow. With deep submicron technology, there is an increasing number of 

previously insignificant effects that are now becoming first order effects. For sub-

wavelength nano-meter processes, effects such as resistance, inductance, crosstalk, 

leakage, and electro-migration become significant.  If they are not taken into account 

in the initial design stages, an additional number of design iterations may be required 

in order to fix problems found very late in the design cycle. Ensuring an expected 

performance with manufacturability, cost scaling and economical use of power and 

area, within a reasonable design cycle time is today’s challenge.  The aspects 

mentioned, and several others, need to be dealt with at all levels of the design flow 

including technology processing, data extraction and library modelling, logic 

synthesis, circuit design, placing and routing, clock distribution, verification, and 

finally testing and assembly. 

 

3.6.1   IC Design Flow 

Design flows are the sequences of actions that are performed, using specific 

automated or semi-automated design tools [12], to accomplish the design of 

integrated circuits.  Design techniques are required for both analogue and digital ICs.  

Analog ICs realize amplifiers, filters, modulators, oscillators,  regulators and phase 

locked loops, for example.   Analogue IC design techniques for power applications 

and signal processing applications tend to be rather different. In both application 

fields, the techniques are more concerned with the physics of the semiconductor 

devices and parameters such as gain, power dissipation, and resistances than is the 

case with digital IC design. The fidelity of analogue signal processing is usually 

critical and consequently analogue ICs are generally less dense in circuitry and 

require transistors which require larger areas of silicon than digital ICs.   

Digital ICs realise microprocessors, memories (RAM, ROM, and flash), FPGAs 

and digital ASICs, for example. Designing digital ICs must achieve logical 

correctness, maximize circuit density, and ensure that connections, especially those 
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carrying clock and timing signal, are routed efficiently.  Digital IC design can be 

considered to have three phases. 

1. System-level phase which creates a functional (or ‘behavioural) 

specification for the required circuit.  The functionality is expressed in the 

form of an input-output model that suppresses the details about gate and 

physical level implementations. This may be done in various ways, for 

example, by developing System-Verilog Transaction Level or C/C++ 

models of what is required, or by using the facilities of languages such as 

MATLAB, SIMULINK or SystemC. The intended input-output 

relationship can be verified using functional simulation. 

2. Register Transfer Language (RTL) description phase which converts the 

functional specification into an RTL description which describes the exact 

behavior of the required digital circuit and its interconnections on the 

chip. At this level, the design is a data-flow model consisting of 

components and their interconnections. The RTL phase is responsible for 

making the chip do what is required.  

3. Physical design phase which begins by converting the RTL description to 

a viable chip description in the form of a gate-level netlist. This is a 

technology independent description of the circuit in terms of standard 

cells such as gates, latches, multiplexors, counters and interconnections 

between them. The synthesis tool must ensure that the netlist meets 

timing, area and power specifications.  A suitable library of logic gate 

realizations must then be adopted and decisions must be taken regarding 

which gates to use, where they are to be placed on the chip and how they 

are to be interconnected.  This ‘library binding’ or ‘technology mapping’ 

process transforms the design into a vendor-specific network based on 

parameterized cells.  Vendors usually provide the physical layout, timing 

models and behavioural models for each cell to allow for checking.  The 

final task is to input the netlist to an automatic ‘Place and Route’ tool to 

generate the physical layout, which is verified and then fabricated as an 

IC chip.  The physical design phase is not intended to affect the 
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functionality, but the way it is executed strongly determines how fast the 

chip will operate and how much it will cost.    

RTL design is the most difficult of the above three phases, and it must include 

functional verification. Simple statements in the functional description often require 

thousands of lines of computer code to be implemented and verified. It is difficult to 

verify that the RTL description correctly caters for all possible cases that may arise. 

Techniques that are used include extensive logic simulation, formal methods, 

hardware emulation and lint-like code checking.  The consequences of an error at this 

stage remaining undiscovered can be catastrophic as was the case with the Pentium 

FDIV bug in 1990 which remained unnoticed until the processor had been in 

production for months.  

The main steps involved in the physical design phase are summarized below in 

more detail.  Iteration between the steps is generally required, with steps repeated 

until all objectives are met simultaneously and design closure is achieved. 

1. Floor-planning which means that RTL description is assigned to regions 

of the chip, input/output pins are assigned and areas are reserved for 

memory elements, cores and other parts of the circuit identified as 

requiring large surface areas. 

2. Logic synthesis to map the RTL description onto a gate-level netlist 

appropriate to the selected technology. 

3. Placement of the gates specified in the netlist onto non-overlapping 

locations on the die. 

4. Iterative refinement of the logic gate placements by repeated logical and 

placement transformations to satisfy performance specifications and 

power constraints. 

5. Clock insertion by introducing clock signal wiring into the design. 

6. Routing to add the ‘wires’ that inter-connect the gates in the netlist. 

7. Post-wiring optimization to remove violations of performance (timing), 

signal integrity and yield requirement. 
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8. Design modifications for manufacturability to make the circuit as easy 

and efficient as possible to deal with. These modifications are sometime 

achieved by adding extra vias or metal diffusion layers.  

9. Final checking to make sure that the mapping to logic was done correctly, 

and that the manufacturing rules have been adhered to. 

10. Tape-out and mask generation to turn the data into photo-masks. 

In recent years the demands of Moore's law development has required 

standalone synthesis, placement, and routing algorithms to be replaced by integrated 

construction and analysis flows[19]. The increasing importance of allowing for 

interconnect delay, leakage power, variability, and reliability are changing design 

procedures in many fundamental ways.  The lack of good predictors for delay has 

called for significant changes in design flows. It is said, with respect to IC design, we  

are now entering the ‘age of integration’ after passing through ages of ‘invention’ and 

‘implementation’.  During the invention age, routing, placement, static timing 

analysis and logic synthesis were invented.  During the age of implementation, these 

independent procedures were improved to cater for rapidly decreasing device sizes. 

With present day technology, the inability to devise meaningful cost functions has 

made it impossible to execute design flows in discrete step.  Hence the age of 

integration begins, where the design steps are based on incremental cost analyzers. 

 

3.6.2   Asynchronous Circuit Design Flow with Balsa  

3.6.2.1   The Balsa Development System 

‘Balsa’ [5] is both a framework for synthesizing asynchronous hardware systems and 

a language for describing such systems [5]. It has been developed over a number of 

years by the APT group of the School of Computer Science at the University of 

Manchester.  It is built around a ‘handshake’ circuit methodology and can generate 

gate-level ‘net-lists’ (alpha-numerical descriptions of arrays of logic gates and their 

interconnections) from high-level descriptions of asynchronous circuits expressed in 

the BALSA language. Both dual-rail (QDI) and single-rail (bundled data) circuits [6] 

can be generated.  
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 A Balsa ‘backend’ system allows for implementations in different technologies 

and different asynchronous styles.  The technologies correspond to different cell 

libraries which may be either custom-built or vendor-supplied standard cell libraries. 

At this level, several nano-scale technologies, such as 45nm, 30nm and 18nm, could 

be added to Balsa to implement circuits in nano-technologies. Although variability 

analysis cannot be carried out at the Balsa circuit description level, the gate-level net-

lists of handshake circuits created by Balsa may be analysed at lower-level design 

stages to perform variability analyses.  Figure 3.3 shows the complete design flow 

for asynchronous circuits based on Balsa with the possibilities for simulation at 

various levels. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Asynchronous Circuit Design Flow based on ‘Balsa’  
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3.6.2.2   Analysing Reasons for Failure 

Statistical analyses for failure prediction for the purposes of optimisation may be 

undertaken at the layout (cell) level and at the transistor level. After layout, if the 

timing, power or yield do not meet the design specification, we go back to the Balsa 

behavioral description to change the circuit structure or implementation style and 

then re-compile the circuit.  To decide how to modify the circuit, it will be necessary 

to know why the circuit failed.  

For circuits failing to meet the timing specification, ‘timing files’ and diagrams 

produced by the simulation package may be examined to determine which part of the 

circuit has failed due to excessive delay.  Similarly, simulation results may be 

examined to determine parts of the circuit where dynamic or static leakage current 

and local power consumption is excessive.  Statistical techniques are very useful here 

as alternatives to the more widely used analytical and ‘worst-case’ analysis 

techniques for predicting power dissipation since they take into account fabrication 

variations.  Localised power consumption may be reduced at particular parts of a 

circuit possibly at the expense of switching speed where switching speed is not 

critical.   

When the Encounter simulation meets the design specification, we still need to 

do more precise analysis at the transistor level, using SPICE.  If the SPICE 

simulation does not match the design specification at the transistor level, we may 

need to go back to earlier design stages, maybe to the layout stage or right back to 

the Balsa specification, to further modify the design.  

 

3.6.2.3   Modifying the Balsa Circuit Description to Increase the yield 

Yield predictions based on timing, power consumption and performance are 

references for circuit optimization.  Circuit optimization may be performed at the 

Balsa behavioral description level. With Balsa [5], an asynchronous circuit may be 

implemented with a choice of different styles for some functions.  The choice may be 

made for different purposes, such as reducing area, increasing speed, reducing power 

consumption and increasing robustness.   
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As shown in Figure 3.3, the Balsa description is converted via an intermediate 

‘Breeze’ format to a gate-level net-list in Verilog format and then to ‘design exchange 

format’ (DEF) files which may be exported to ‘GDSII’ files as required for a final 

integrated circuit fabrication.  GDSII is a binary file format representing the required 

layered geometric shapes, text labels and other information needed for IC fabrication. 

‘Layout exchange format’ (LEF) information, as supplied by the circuit manufacturer 

is required for the conversion to DEF.  The DEF format may also be converted to 

SPICE net-lists to allow transistor-level simulation, with statistical parameter 

variation, using HSPICE.  Figure 3.3 illustrates four levels of simulation that may be 

carried out to verify the intermediate results of the design-flow.  These are 

behavioral, functional (gate level), layout and transistor level simulations.  

Behavioral simulation implements the statements of the Balsa description as if 

they were a computer program, without any regard to how they are intended to be 

implemented on a circuit.  Pre-layout gate-level simulation tests just the functionality 

of the logic gates without consideration of timing effects and delays.  Post-layout 

gate-level simulation takes into account the switching delay of gates and the delays 

introduced by the wired connections among gates.  Transistor level simulation 

performs a mathematical analysis on the circuit produced from the Balsa description 

with gates replaced by their actual CMOS circuitry and the MOSFETs within this 

circuitry modeled by standardized circuits composed of resistors, capacitors and 

controlled voltage and/or current sources.   The values of the MOSFET model 

components are the parameters of the model.    

The results of any of these simulations may be fed back to earlier design stages 

to cause adjustments to be made to eliminate problems identified by the simulation 

processes.  Two of these four simulations, i.e. the layout simulation as performed by 

simulation tools provided by the Encounter package, and the ‘SPICE’ transistor level 

simulation, can take into account statistical variations in device parameters.  Some 

detail about these packages will now be given. 
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3.7   Simulation of ICs by EDA Tools 

The simulation of statistical variations in integrated circuit characteristics is feasible 

at the layout (DEF) level using tools provided by the Cadence ‘Encounter’ platform 

and at the switching transistor device level using SPICE in its commercial version, 

HSPICE.   Some details of these simulation facilities are now given. 

 

3.7.1   Encounter 

The Cadence ‘Encounter’ platform [10] is an integrated software package for 

complex and low-power integrated circuit design. It provides a complete design-flow 

from ‘register transition language’ (RTL) specification to GDSII (or equivalent) 

stream format for fabrication and incorporates tools for test design, ‘virtual 

prototyping’ by simulation, partitioning, and timing.  It claims to deliver the required 

CMOS circuitry with accurate verification and ‘signal-integrity-aware routing’.   

Yield prediction and low-power design capabilities have recently been included.   

Statistical variability analysis is made feasible by the provision, by Cadence, of a 

set of library models referred to as the ‘Encounter Library Characterizer’.   This is 

claimed to incorporate the required statistical timing and leakage parameters as 

supplied by major ‘intellectual property’ (IP) vendors. These parameters characterise 

global, local, and random process variations as required for statistical static timing 

analysis (SSTA) and statistical leakage analysis. Timing, noise and power aspects of 

devices are included in the representation.  Although CMOS technologies below 

45nm have not yet been included in this commercial design tool, for our research, 

which focuses on technologies below 45nm, we can still take advantage of the 

'Encounter Library Characterizer by plugging in statistical model parameters that will 

be obtained from research partners.  This should allow the Encounter simulation 

tools to be applied to sub-45 nm technologies to investigate the impact of variability 

on timing, power dissipation and yield. To do this, it will be necessary to build up 

Library Exchange Format (LEF) files containing parameters of cells of size 45nm 

and below. After layout, placing and routing, ‘design exchange format’ (DEF) files 
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would be created, which could be applied to the ‘Design Rule Check’ (DRC) within 

the Cadence Framework, or exported to GDSII files for integrated circuit fabrication. 

The analyses of timing and power efficiency performed by Encounter are carried 

out after the layout procedure and are based on models of cells and their inter-

connection. They are not the most precise analyses possible. More precise circuit 

simulations and analyses may be achieved at transistor level using the simulation 

package ‘HSPICE’.   The use of HSPICE for performing yield, timing and power 

analysis, at transistor level, is discussed in the following section.  

 

3.7.2   Introduction to HSPICE 

HSPICE is a component of the ‘Synopsys’ comprehensive mixed-signal verification 

package [11].  It is widely used for analogue and digital circuit simulation and 

combines validated integrated circuit device models with advanced simulation and 

analysis algorithms. It is useful for predicting the timing characteristics, power 

consumption, and functionality of circuits before they are actually fabricated.  

HSPICE is able to perform statistical ‘Monte Carlo’ type and worst-case ‘corner’ 

type analyses.   Circuit optimization is also provided for the creation of circuits that 

satisfy the design constraints across various processes, voltages and temperatures. 

The circuit optimization features of HSPICE support multi-parameter optimizations 

based on AC, DC, and transient analysis. 

HSPICE’s worst case ‘corner’ analyses can be used to predict guaranteed yield, 

power efficiency, and performance. Parameter variation limits must be known for 

such analysis. To simulate the worst cases, HSPICE sets all variables to their 2-sigma 

or 3-sigma standard deviation ‘worst case’ values. Because several independent 

variables rarely attain their worst-case values simultaneously, this technique tends to 

be overly pessimistic, and lead to over-designing the circuit. However, this analysis 

is often useful as a fast check. 

The ‘yield’ predictions resulting from HSPICE’s Monte Carlo type statistical 

analyses aim to predict the viability of circuit designs in the light of statistically 

modeled parameter variations considered likely to occur in fabricated circuits.  As 
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defined by HSPICE, the ‘yield’ (or ‘parametric yield’) is the percentage of integrated 

circuits that are found to meet the electrical test specification when appropriate 

statistically modeled parameter variations are imposed on a large number of copies of 

a given circuit.  The ‘fabrication yield’ as ultimately measured from samples of real 

fabricated circuits will be affected by other factors, such as wafer defects, not 

modeled by HSPICE.  Monte Carlo analysis requires knowledge of the statistical 

distributions and standard deviations of parameter values likely to occur in 

fabrication. It uses pseudo-random number generators with Gaussian, uniform or 

random limit distributions to simulate the specified statistical variability. A ‘random-

limit distribution’ function is defined by Synopsys [31] as an absolute variation of +/- A from 

the nominal (or mean) value of some parameter where A is a fixed limit value and the choice 

of +A or –A is random.  This may be considered as a binomial distribution about the nominal 

parameter value.  Where there are many parameters, the use of random limit distributions for 

each gives a ‘worst case’ or ‘corner’ simulation, though this is not explicitly stated. The 

results of Monte Carlo analysis may be fed back to earlier stages of a design process 

to try to optimise process yield with the assumption of realistic parameter tolerances. 

HSPICE supports behavioral modelling which according to Chapter 26 of the 

User Guide [31], ‘substitutes more abstract, less computationally intensive circuit 

models for lower level descriptions of analog functions’.  There are several ways of 

defining behavioral models of sub-circuits offered by HSPICE, including the use of a 

version of Verilog, the programming of logic functions in algebraic form, the use of 

sampled waveforms and the use or switches and controllable sources.  

To cater for the demands of modern semiconductor technologies, a new 

approach was recently introduced [31] based on the concept of a ‘Variation Block’ 

which allows both global and local variations to be specified and characterised for 

each parameter of any model.  For global variations, each parameter of all devices 

within a circuit that use a given model is changed by the same random value. There 

is no intra-die variation in this case.  For local variation, a specified parameter is 

varied by a different random value for each device within the circuit.  This is intra-

die variation as described in Section 2.3.3.  The effects of the defined global and 

local variations are added together for each parameter.  The randomised copies of the 
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circuit are saved in files, and once the randomisation process is complete, the 

required series of HSPICE simulations is executed and the measurement results for 

each run are saved. When series of simulations is complete, HSPICE performs a 

statistical analysis of the results and generates the output as specified.  

 A number of sampling methods may be defined by the Variation Block 

including: 

(a) Factorial Sampling for estimating worst case and best case behavior by evaluating 

the circuit response at the extremes of the ranges of values for the parameters  

(b) One-Factor-at-a-Time Sampling where 2m+1 circuit copies are generated and 

analysed when there are m independent variables. For the first copy, there is there is 

no perturbation, then a specified degree of first negative and then positive 

perturbation is applied to each variable in turn.  

(c) Latin Hypercube Sampling is a form of quasi-Monte Carlo analysis which 

reduces the number of randomisations that are needed for a given accuracy. 

The Variation Block replaces older methods of defining the variability of 

integrated circuits within HSPICE and has the advantages of consolidating all 

variation definitions within a single record, distinguishing global and local variability 

and allowing different aspects of variation to be selected.  Local and global variations 

may be defined as functions of device geometry, and local variation may be specified 

as a spatial function of device ‘on-chip’ location. 

As mentioned in Section 2.2.3, spatial variations are due to material properties 

and imperfections of lenses and spin processes.  There are, as yet, no industry-wide 

standards for specifying such process variability, so the Variation Block allows any 

company to implement its own model for each of its technologies based on the 

measurement of test circuits.  

Like device models, Variation Blocks can be encrypted to make them 

inaccessible to designers.  A Variation Block has a general section and three sub-

blocks for specifying global variability, local variability and spatial variability.  Each 

sub-block can add extra information about the characteristics of a particular model.  

Therefore each device may be referred to three times, once in each sub-block, the 

resulting effects being added together.  Within the variation sub-blocks, any number 
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of independent random variables can be defined with a Gaussian distribution 

assumed by default, though other distributions may be specified.  Correlation 

between a given parameter and any other parameters may be introduced by including 

a reference to these other parameters in the definition of the given parameter.  

Dependent variables can thus be defined as functions of more than one independent 

random variable.  For spatial variation, the sub-block needs to know an x and y co-

ordinate for each of the devices.  

The contents of the Variation Block are intended to be created by a foundry. A 

simple example is available in the HSPICE demo directory [31] to illustrate how 

global variations on transistor parameters vth0 and u0 are introduced by the ‘global 

sub-block’ and local variations on these same parameters as a function of device area 

may be introduced by the ‘local sub-block’.  Local variations on the implicit value of 

resistors (relative) are also illustrated.  

 

3.7.3   Introduction to NGSPICE 

NGSPICE is an open-source version of the HSPICE circuit simulator capable of 

performing basic SPICE simulations.  The SPICE netlists for NGSPICE and HSPICE 

are slightly different in the format of commands. NGSPICE is based on three open 

source software packages: ‘SPICE’, ‘Cider’ and ‘Xspice’. ‘Cider’ is a mixed-level 

simulator that adds a device level simulator to the functionality of SPICE.  Cider thus 

improves achievable simulation accuracy, at the expense of greater simulation time, 

with critical devices characterised by tables of technology parameters.  Less critical 

devices may still be characterised by the original SPICE compact models. Xspice is 

an extension to SPICE that allows digital components to be modeled by coded 

functional software and simulated by an embedded event-driven algorithm.  Both 

HSPICE and NGSPICE may be used by the harness developed in this thesis for 

Monte Carlo type circuit simulations. 

 

3.7.4   RandomSPICE 

RandomSPICE is a software package developed by the DMG (Device Modelling 
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Group) in Glasgow University.  DMG are one of the ‘NanoCMOS’ project partners.   

RandomSPICE was designed to be used as a ‘front-end’ to some version of SPICE, 

such as HSPICE or NGSPICE.  Its function is to allow statistical variability analysis 

to be applied to a given circuit realization by ‘randomising’ the parameters of its 

devices.   The effect of variability may be statistically studied by analysing different 

versions of the same circuit and observing the differences in output. 

 

3.7.4.1    The Randomisation 

RandomSPICE allows the repeated SPICE simulation of a given circuit with 

randomised selections of transistor parameters from the given libraries. The software 

application, written in Python, takes a standard SPICE netlist as its input, and 

produces a batch of netlists, each of the MOSFET devices replaced with randomized 

models from the variability-aware libraries.  

 

3.7.4.2   Restrictions 

In the versions of RandomSPICE available for this thesis, the transistor devices were 

restricted to channel-lengths of a single fixed size. Future versions were expected 

include the ability to vary channel-lengths between a set of discrete values.   In 

practice, the channel-widths can be set to an integer multiple of the supplied channel-

length by the expedient of using parallel devices, but this is cumbersome and 

inefficient.   With future revisions, sub-integer multiples may be possible. In reality, 

it is generally possible to create sub-multiple lengths through the use of lithographies 

with RET. A library based on 32-nm minimum channel lengths could include devices 

with 48-nm channel lengths and widths. 

RandomSPICE and its libraries were under development while this thesis was 

being produced. The software application has changed in various ways. Originally, if 

a device with a channel width four times the channel length was specified in the 

supplied netlist, it was replaced in each of the randomised netlists by a parallel sub-

circuit consisting of four square devices each with channel width and length equal. In 

later versions of RandomSPICE, models were created with channel-widths of 1, 2, 4 
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and 8 times the channel length.   Thus the rectangular transistor referred to above 

could be randomized as a single device in each output netlist.  This reduced the 

simulation time significantly for each randomised netlist.  A further highly significant 

improvement was made to RandomSPICE in response to discussions involving the 

work of this thesis.  We found that the original version was not realistic in the way it 

randomized sub-circuits containing several transistors; a logic gate for example.  

Clearly such a sub-circuit would be employed many times in a typical logic circuit. 

The parameters of the devices were appropriately randomized within the sub-circuit, 

but were found to be identical for each copy of the sub-circuit. The problem 

prevented us from using RandomSPICE directly, though the randomized library 

remained useful.  RandomSPICE was later remedied to randomize sub-circuits 

appropriately, but this thesis had by then developed its own harness based on 

MATLAB and HSPICE.  

 

3.7.4.3   RandomSPICE Transistor Model Libraries 

Two ‘variability libraries’ are referred to in this thesis. The first is based on a Toshiba 

35X35nm device, with only the effects of RDD (Random Discrete Dopant) 

simulated. This library has only single width devices.  The second library is based on 

35X35nm high performance models, which include the effects of LER and surface-

roughness in addition to RDD. It has higher accuracy than the first library and 

includes of multi-width models as mentioned in the previous section. Both libraries 

contain 200 NMOS and 200 PMOS devices for each width. 

 

3.7.5   Statistical Analysis with RandomSPICE 

RandomSPICE, as illustrated in the block-diagram below, generates an ensemble of 

circuits, each using randomly different parameters for each nominally identical 

device.  To conform to the original version of RandomSPICE, non-square transistors 

are ‘decomposed’ into sub-circuits containing only square transistors to reduce the 

range of transistors that need to be characterized.  Originally, the RandomSPICE 

documentation did not refer to any distinction between intra-die and inter-die 
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variability and the modelling of correlation between the imposed variations.  A 

representative library containing 201 randomised copies of two 35 nm devices was 

provided, the parameters having been devised by simulating the geometric and 

physical properties of the fabrication technology [32].  The randomised libraries have 

been produced to reflect parameter variation representative of the desired technology.   

Ideally they should also have realistic intra-die device-to-device correlation.  It is 

clear that the concept of RandomSPICE can be used with such custom randomized 

libraries to achieve useful statistical analysis, though the design of the customized 

libraries may have to be modified and extended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Functional block diagram for RandomSPICE 

 

The randomization of nested sub-circuits (or sub-blocks) within a SPICE netlist 

raises interesting problems and opportunities for reducing computational complexity.  
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As mentioned above, RandomSPICE originally made all sub-circuits identical in 

each randomised circuit copy, thus eliminating intra-die variability.  RandomSPICE 

has more recently been given a mechanism for introducing intra-die variability 

between sub-circuits, but at the time of writing this thesis, it still has to be fully 

tested.  The efficient randomization of nested sub-circuits is a problem to be 

addressed by the research collaboration and this PhD project.  The use of 

‘behavioural models’ of sub-circuits, as proposed by Southampton University has 

great promise for reducing the computational complexity of statistical variability 

analysis. A further opportunity for reducing the computation required for 

RandomSPICE analyses of larger circuits is the use of quasi MonteCarlo and extreme 

value theory based approaches, as proposed by Amith Singhee [15][26][27], which 

could be introduced into the randomised libraries of RandomSPICE and the way they 

are used.  

 

3.8   Conclusions 

The need for statistical analysis techniques for current and next generation integrated 

circuits is clear in view of the over-pessimistic predictions of circuit failure that are 

given by traditional ‘worst case’ analysis techniques.  The idea of combining Monte 

Carlo techniques with SPICE circuit simulation is an obvious approach to the 

required statistical analysis, and it has been widely studied. Alternatives such as 

statistical static timing analysis have also been proposed and used successfully.  The 

role of statistical analysis in the design process for integrated circuits is outlined and 

is clearly of great importance.  The context of the research in this thesis is 

asynchronous circuit design and some background is given on this context.  The 

widely used design tools provided by Synopsis (HSPICE), Cadence (Encounter) and 

NGSPICE have been introduced and it is clear that the current version of HSPICE 

already has quite extensive facilities for Monte Carlo type statistical analysis, and 

even a form of quasi Monte Carlo analysis in the form of ‘Latin Hypercube 

Sampling’. The open source version ‘NGSPICE’ did not have any of these facilities 

until recently (June 2011) and even now (January 2012), only rudimentary MC 
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techniques are supported.   Their relevance to IC design and simulation is explained 

with some examples.  The software package ‘RandomSPICE’ developed by Glasgow 

University was designed as a ‘front-end’ to any version of SPICE for statistical 

variability analysis.  This package, and extending its functionality, was the 

inspiration for the work in this thesis. 
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Chapter 4 

 

Monte Carlo Simulation for the Design of Nano-Scale 

Integrated Circuits 

 

4.1   Introduction 

In nano-scale integrated circuits (ICs), the main sources of failure are likely to be due 

to intrinsic atomic scale variations of materials and component dimensions. These 

‘atomistic’ variabilities can only be considered random in nature. Their effects are so 

significant that to design such ICs effectively, new circuit analysis techniques are 

needed.  These new techniques must adopt a statistical rather than a ‘worst case’ 

treatment of the variability of device performances.  Traditional Monte Carlo (MC) 

based statistical analysis may be used for predicting the likely performance, yield and 

failure probability of an IC design, before it is fabricated, by carrying out analogue 

simulations of many possible realizations of it. This is referred to as ‘Monte Carlo 

Simulation’.  MC simulation is flexible, robust to large numbers of device parameters 

and allows arbitrary accuracy given sufficient computational resources.   

 

4.2   Monte Carlo Methods 

As introduced in Section 3.4, Monte Carlo methods use repeated random sampling of 

the behaviour of mathematical equations, or real or simulated systems, to solve 

mathematical problems or to determine the properties of systems [92].  In this thesis, 

the systems are integrated circuits simulated using SPICE.  The transient behaviour 
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of sets of highly complex multidimensional equations describing integrated circuits 

is being analysed by repeated random sampling.  The repeated random sampling 

produces observations to which statistical inference can be applied to obtain 

information about the equations or systems. 

The name Monte Carlo refers to the famous casino in Monaco.  Just as gambling 

requires a random process such as the spinning of a roulette wheel, the throwing of a 

six-sided dice or the dealing of well shuffled playing cards, Monte Carlo methods use 

pseudo-random processes implemented in software.  The term ‘pseudo-random’ 

means that the software process is not truly random.  It is, in theory, deterministic 

because a person who knows the algorithm that is being used can predict precisely 

the variables that will be generated.   However, with a little care, pseudo- random 

variables can be used to simulate realistically the effects that true physical 

randomness would create.  The simulation is not required to be numerically identical 

to the true physical process since the aim is to produce statistical results such as 

averages, expectations and distributions rather than deterministic numerical 

measurements.  The derivation of such results requires a ‘sampling’ of the population 

of all possible modes of behaviour of the system.  

One of the most often quoted applications of Monte Carlo methods is the 

evaluation of multi-dimensional integrals [102].  It may be illustrated by integrating 

sin(x) over 0<x<π by generating a set of N pseudo-random number pairs (xi, yi) 

uniformly covering the area 0<x<π, 0<y<1 as illustrated below: 

     

 

 

     

 

 

 

     

     

Figure 4.1: MC integration of sin(x), 0<x<π 
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If the number of pairs that lie under the sine-wave curve is counted and found to 

be M, the ratio M/N will be an estimate of the ratio of the area under the curve to the 

area of the rectangle, which is π.  Increasing N can make the estimate more accurate.  

Therefore, π × M/N will approach 

                                                           ∫
π

0
)sin( dxx                                                (4.1)                                               

as N tends to infinity.  This example illustrates the simplicity of MC techniques, but 

not their computational advantages in comparison to numerical integration with 

regularly placed rather than randomly placed points in the rectangle.  In fact, there 

are no advantages for a one-dimensional problem.   

Consider a multi-dimensional integration: 
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Here, x is the vector (x1, x2, x3, …, xK),  f is some function of the K variables of x and 

V denotes the region of integration.  Again, f (x) may be evaluated at regularly spaced 

points or uniformly distributed random points in K-dimensional space as a means of 

evaluating the integral.   However, the advantages of the Monte Carlo method with 

randomly distributed points now become apparent.  The problem with regularly 

spaced points is that the number of them, N say, must increase exponentially with the 

dimension K if the error is not to increase exponentially with K. The error with 

regular spacing and a fixed value of N is known to increase as the Kth root of the 

order of magnitude [99].  The error for one-dimensional ‘trapezoidal rule’ integration 

with N regularly spaced points can be shown to be proportional to 1/N
2
 whereas the 

error for the K-dimensional equivalent of the trapezoidal rule has an error 

proportional to 1/N
2/K

.  This is ‘the curse of dimensionality’ [96].   With regular 

sampling and fixed N, as K increases, each dimension must be sampled more and 

more sparsely and less and less efficiently, since more and more points will have the 

same value in a given dimension. Monte Carlo sampling avoids the inefficiency of 

the rectangular grids created by regular sampling by using a purely random set of N 

points uniformly distributed over the K-dimensional region V.   Two illustrations of 

the positions of 1000 points distributed over a cube in 3-dimensions are shown in 
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Figure 4.2.  Figure 4.2(a) illustrates the regularly distributed point-set that would be 

used for trapezoidal integration, and figure 4.2(b) shows a random uniform-

distributed point set as would used for Monte Carlo integration.  

 

 

 

 

 

                     

 

 

 

 

                          (a)                                                                     (b) 

 

Figure 4.2: Point-sets for three-dimensional integration: 

(a) regularly spaced, and (b) uniform random distribution. 

 

The Monte Carlo error has the property that for high dimensions K, its error is 

proportional to 1/(√N) which means that to reduce the error by a factor of 10,  the 

sample size N must be increased by a factor of 100.  This effect is independent of the 

order of magnitude K when the input variables are statistically independent which 

means that there is no correlation between them. It can be simply illustrated by 

comparing the performances of regular sampling and Monte Carlo integration for the 

following integral: 

  ...)...sin(... 121
0 0 0 0

321 dxdxdxdxxxxxI KKK −∫ ∫ ∫ ∫ ++++=
π π π π

             (4.3) 

Figures 4.3(a), (b) and (c) show the error for K = 3, 4 and 5 respectively for both 

regular sampling and uniformly distributed random sampling for a range of values of 

N.  The random sampling has zero correlation from dimension to dimension and from 

sample to sample.  The increasing advantage of independent random sampling over  
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(a) 

(b) 

(c) 

Figure 4.3: Convergence of MC and regular integration for (a)3D integral, (b) 4D 

integral, and (c)5D integral. 
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regular sampling as K increases is clear. 

Much research has been devoted to finding ways of decreasing the Monte Carlo 

error even further to make the technique still more efficient.  One approach has been 

to use variance reduction techniques [95] which are able to reduce the variance of f 

by transforming it to another function whose integral is the same.   Another approach 

is to use ‘quasi-random’ or ‘low-discrepancy’ sampling of the space V.  The use of 

such quasi-random sampling for numerical integration is referred to as “quasi–Monte 

Carlo” integration. Quasi-random sampling based on ‘scrambled nets’ 

[95][21][97][98] [100] has the property that, for ‘well behaved’ functions, the error 

becomes proportional to N
-3/2

 log
K/2N

 which is much less  than the 1/(√N)  for 

traditional Monte Carlo integration. Chapters 5 and 6 will discuss quasi–Monte Carlo 

methods.  Other approaches use ‘recursive stratified sampling’ [105] which breaks 

down a Monte Carlo calculation into a series of Monte Carlo sub-calculations with 

feed-back from each stage to decide how best to continue the series. Thus, the 

calculation is adapted to the application.  In the case of integration, the region of 

integration is progressively divided up into sub-volumes to concentrate the sampling 

into regions where the variance of the function is largest or of most interest.  This 

makes the sampling more efficient.  In the example of the multi-dimensional sin 

function considered above, there would be a higher probability of samples occurring 

at the edges of the function, where the rate of change is greater, than in the central 

part.  The well-known ‘MISER’ algorithm of Press and Farrar [101] is based on this 

approach.   

The ‘Vegas’ Monte Carlo approach of G.P Lepage, inspired by another gambling 

city, is based on ‘importance sampling’.  The idea, when used for integration, is to 

use the probability distribution function (pdf) of the function to determine how 

sampling points can be concentrated in sub-spaces that produce values of the 

function that contribute most to the integral.  Vegas has been amended to incorporate 

stratified sampling as well as importance sampling, and it also uses a form of 

variance reduction in sub-spaces where importance sampling is inappropriate 

because the sampling turns out to be too sparse [103].  From these well-known 

references, and many others on Monte Carlo integration, it is clear that much 
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improvement in efficiency can be gained over the original Monte Carlo approach.   

The ideas proposed for integration have inspired similar ideas for efficiency 

improvement when Monte Carlo techniques are used for simulation, and these prove 

to be especially valuable for integrated circuit simulation where the dimensionality 

and complexity is very high. 

 

4.3   Monte Carlo Simulation 

As introduced in Section 3.4, Monte Carlo simulation is the application of Monte 

Carlo methods to study properties of systems having stochastic components.  It uses 

repeated pseudo-random sampling of input variables to determine the behaviour of 

some physical system as characterized by a computer model.  In this thesis, the 

physical system is an integrated circuit modelled by SPICE, the input variables are 

component values which are variable due to the uncontrollability of manufacturing 

effects referred to in earlier chapters, and the behaviour we are interested in may be 

viability, or otherwise, of the circuit.  With repeated sampling used to simulate the 

fabrication of batches of nominally identical integrated circuits with the specified 

component variation, the estimation of the probability of a circuit being viable, i.e. 

that it works, can be considered an estimate of the expected ‘yield’, i.e. the 

percentage of working circuits within a batch.  The criteria that determine viability 

are many, including correct logical operation, the power consumption and the 

propagation delay in the whole circuit or parts of it.   

As argued in [95], Monte Carlo simulation can sometimes be formulated in 

terms of integration. Monte Carlo simulation and Monte Carlo integration may be 

viewed as two different ways of formulating the same problem.  The direct 

simulation approach provides a more intuitive way of setting up the problem, while 

transforming it into an integration formulation can be useful when studying 

theoretical properties of the estimators obtained, especially when variance reduction 

or quasi–Monte Carlo techniques are used. A comparison of the direct view of 

simulation versus an integration formulation can be summarised as follows: 

The direct simulation approach samples observations of the random vector, X, of 
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inputs to and parameters of the simulated system, and for each vector calculates the 

outputs that are of interest.  We thus obtain a random distribution of each output 

measurement, f(X) say, which is of interest. 

The integration formulation of simulation samples the “source of randomness” U 

as a vector of independent uniformly distributed random numbers.  This is 

transformed into a vector of observations X with the appropriate multivariate 

distribution (e.g. Gaussian) and covariance matrix C by calculating: 

                                                        X = A g (U)                   (4.4) 

where g is the appropriate ‘inverse cumulative distribution function’ (‘norminv’ for 

Gaussian) and A is a matrix such that: 

                                                          A
T
A = C                     (4.5) 

The covariance matrix C expresses the inter-dependency that exists between different 

elements of X and may be derived from simple assumptions about the effects of 

proximity as explained in Chapter 2 of [3].  There are many ways of deriving A for a 

given covariance matrix C, the best known and fastest being Cholesky 

decomposition, provided as a MATLAB function.  In fact, A is not unique and an 

alternative, preferred in this thesis despite its greater computational complexity, is to 

calculate: 

[ ] 2
1

332211 ... Λ== VvvvvA NNλλλλ               (4.6) 

where λ1 λ2 … λN are the eigenvalues and v1, v2, …, vN are the corresponding 

eigenvectors of C.   C must be positive semi-definite to be a covariance matrix.  V is 

the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues as supplied by 

the MATLAB function: 

                                             [V  Λ] = eig(C)        (4.7) 

In comparison to the Cholesky decomposition, the eigenvalue/eigenvector method is 

more intuitive, and a recent paper by J. Keiner and U. Waterhouse [134] gives a more 

efficient way of performing the same transformation. 

Calculating the distribution, between limits, of f(Ag(U)) = h(U) say for an output 

measurement of interest,  f say, can now be seen as a process of  integration over the 

range of the multidimensional vector U.  The integration formulation simply re-
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expresses the simulation in terms of input vectors, U, of uncorrelated uniformly 

distributed random elements which are transformed into input-vectors X intended to 

be representative of the observations expected of true inputs and parameters.  This 

approach has the immediate advantage of being able to model correlation between 

elements such as may occur intra-die on integrated circuit devices or inter-die from 

sample to sample within a batch of integrated circuits.  

The direct approach is clearly applicable when actual component or parameter 

measurements are available, or when they have been synthesised for example for the 

transistor set provided by RandomSPICE [13].  The randomization is then achieved 

by selecting randomly from the sets of parameters provided. Although a pseudo-

random modelling process of physical effects is generated the RandomSPICE 

parameters, it could have been obtained by direct measurement of real devices.  Then 

a model of the parameter variation is not needed since the true natural physical 

variation, with its inherent distribution and correlation, will be fed directly into the 

series of simulations. 

However, even when real sets of parameters are available, instead of using them 

directly, it may be advantageous to produce a model of them as the transformation of 

a smaller set of independent uniformly distributed random variables. Then the 

integration form of simulation may be adopted, based on models derived from real 

data.  The models may be derived by employing Principal Components Analysis 

(PCA) to extract a smaller set of statistically independent parameters that may be 

transformed back to the complete set with little distortion.  The dimensionality may 

thus be reduced, and each of the independent parameters may be modelled as the 

transformation of a uniformly distributed random variable.  When the independent 

variables are Gaussian, it is straightforward to model each of them as a transformed 

uniform random variable.  The transformation to Gaussian is achieved by the 

Gaussian inverse cumulative distribution function (ICDF) available as the function 

‘norminv’ provided by MATLAB. Transformations to independent random variables 

with distributions other than Gaussian may be achieved by replacing ‘norminv’ by a 

different ICDF, many of which are also available in MATLAB; for example binomial 

(binoinv), Chi-squared (chi2inv), extreme value - limit distribution (evinv),  
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exponential (expinv), Gamma (gaminv), Geometric (geoinv), Generalized Pareto 

(gpinv),  Poisson (poissinv), Rayleigh (raylinv) and Student's t (tinv) .  Multivariate 

versions of these functions, allowing correlation to be introduced, are also widely 

available.  With the different distributions, essentially the same methodology with 

respect to statistical static delay estimation as used with Gaussian, Pareto and low 

discrepancy sequences in this thesis, can remain valid. However this is not trivial, 

and is beyond the scope of this thesis. 

  Apart from the likely reduction in dimensionality, this transformation of a direct 

simulation approach to an integration-like formulation allows a much larger set of 

randomised devices to be generated than are available in the original set.  Hence 

more simulations may be run with different sets of parameters based on parameters 

obtained by measuring real devices. 

Applying this approach to the transistor parameter sets provided by 

RandomSPICE allowed the number of device parameters to be drastically reduced 

without loss of accuracy, and allowed the restriction of having just 201 examples of 

each device to be overcome.  This application turned out to be less impressive than it 

could have been due to the device parameters being already model-based rather than 

true measurements.  However, the principle of the approach is demonstrated. 

Viewed in either formulation, Monte Carlo simulation samples the probability 

distribution of all the input variables and system parameters to produce many 

repeated versions of the system.  These are in turn analysed to determine how certain 

key output measurements vary due to the input variability. A histogram of each key 

output measurement gives an estimate of its likely distribution, the estimate 

becoming more and more reliable as the number of simulations increases. Since the 

number of simulations must be restricted for practical reasons, the accuracy of these 

results is also limited by practicality. Where valid assumptions can be made about the 

shape of the distribution, for example that it is Gaussian or Chi-squared, a maximum 

likelihood fit to the histogram can be made on such assumptions.  

Such a fit would produce a value of mean and variance thus allowing a pdf as 

shown below to be drawn.  Assuming the measurement to be a delay that is required 

to be less than D for viability, and a Gaussian distribution, the yield of the circuit can 
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now be estimated as the area under the pdf ‘tail’ from D to infinity which may be 

derived from the ‘complementary error function’ evaluated at D. 

       

 

 

 

 

 

 

 

  

Figure 4.4: Gaussian probability density function of a circuit propagation delay and 

delay threshold D 

 

The accuracy of this estimation will depend on the number of simulations which 

must be limited.    Unfortunately, the effect of the limitation will be most serious over 

the tails of the distribution, which is the part we are most interested in.  For example, 

for a Gaussian pdf, the probability of being more than three standard deviations 

greater than the mean is Q(3) = 0.5×erfc(3/√2) where erfc is the traditional Gaussian 

‘complementary error function’.  Q(3) is about 0.0013 meaning that if 1000 circuits 

are simulated we can only expect to find one value of the key output in this region.  

There would need to be many more than one value to have a chance of reasonable 

accuracy.  This illustrates the need for complexity reduction techniques when 

applying Monte Carlo simulation to Integrated Circuit variability, and such 

techniques will be considered in the next Chapter.  

In general, Monte Carlo methods proceed as follows: 

1. The characteristics of the input vectors are determined. 

2. Random vectors are generated with appropriate distributions and inter-correlation 

either directly or by transforming independent uniformly distributed random 

vectors. 

3. A deterministic computation is performed to simulate the behaviour of the system 

  

Pdf(d) 

d 

D 
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for each of the randomized input-vectors. 

4. For each key output measurement, its pdf is estimated in the best way possible, 

given the inevitable limitations in the amount of data available. 

5. Deductions about the probability of certain events are made from the estimated 

pdf. 

 

4.4   Monte Carlo Simulation Applied to Integrated Circuits 

The procedure of an IC’s Monte Carlo simulation is demonstrated in Figure 4.5, 

where the circuit used is a C-element mentioned in Chapter 2 and the output delay is 

analysed.    The procedure described is as follows:  

1. Find statistical distribution for each parameter.  

2. Sample statistical process to produce a value for each parameter.  

3. Parameterize one circuit and simulate it. 

4. Repeat for many copies of circuit and obtain the statistical distribution of a 

specific measurement. 

 

4.4.1   Using HSPICE Directly 

As mentioned in Section 3.7.2, Randomisation is possible using the HSPICE package 

itself. For statistical MC simulation using HSPICE directly, an appropriate model for 

each of the components in a particular processing technology is ideally formed by the 

foundry. These models include the anticipated statistical distribution of different 

important technological parameters for each component.  For a MOSFET these 

parameters include the threshold voltage, the channel-width, channel-length and 

oxide thickness. Since the anticipated variations in these parameters originate from 

many random sources, the Central Limit Theorem predicts that the variations will 

have close to a Gaussian distribution.  Only a mean and standard deviation (σ) is then 

required to characterise each element of variation. When designing circuits for a 

given technology, the designer often specifies the mean value for a certain parameter 

for which the manufacturer gives the standard deviation.  For the research of this 

thesis, such support for 35nm MOSFET technology had not been released by any 
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foundry, therefore the statistics of the devices from the 35nm MOSFET model set 

included in RandomSPICE [13] was vital. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Transistor level MC simulation to C-element circuit 

 (a) statistical distribution for each parameter, (b) sampling parameter value, (c) 

circuit simulation, (d) obtain output delay statistical distribution. 

 

Monte Carlo analysis has been available in HSPICE for some time and is based 

on two approaches: 
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(1) defining random variables (with specified distribution, mean and standard 

deviation) as global parameters within an HSPICE netlist 

(2) defining random variables (with specified distribution, mean and standard 

deviation) as model parameters when constructing ‘model files’ for the required 

devices 

The Variation Block concept introduced in Section 3.7.2 allows variation 

modelling to be introduced based on Principal Components.  Independent random 

variables A1, A2, … may be introduced and used as principal components.   Other 

variations may then be defined as functions of these principal components [31].  

 

4.4.2   Using NGSPICE 

HSPICE offers an approach to MC simulation that is professionally designed and 

well adapted to the demands of commercial manufacturers and circuit design 

companies.  However it is less suited to the demands of the current research project 

because it implements proprietary known approaches and does not have the 

flexibility needed to investigate research ideas.  Specifically it performs the MC 

simulations in way that does not allow ideas such as ‘Statistical Blockade’ (to be 

introduced in the next chapter) to be conveniently implemented.  Also, it is normally 

available on a single machine, with a fixed license.  Its latest version can employ the 

facilities of a multi-core processor, but as a predefined commercial product rather 

than a research tool.  Hence the investigation of parallel and distributed versions of 

Monte Carlo circuit analysis envisaged here is not currently possible, and would 

likely be very expensive to set up. 

In this thesis, a Monte Carlo analysis harness was implemented as a MATLAB 

program that makes repeated calls to the HSPICE circuit simulation package, but 

does not rely on any of its MC analysis facilities.  An immediate benefit of this 

approach, apart from its flexibility as a research tool, is that the open source version 

of SPICE, known as NGSPICE, may be used in place of the commercial version 

HSPICE.   

As introduced in Section 3.7.3, NGSPICE is a mixed-signal (analogue and 
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digital) circuit simulator combining three open source software packages: SPICE3, 

Cider and Xspice.  NGSPICE is under continuing development as part of the ‘gEDA’ 

project for developing a full GNU Public Licensed suite of electronic circuit design 

(EDA) tools.  SPICE3 has become the most popular engine for circuit simulation 

since the invention of SPICE at the University of Berkeley California around 1970.  

This same engine is the basis of many different versions of SPICE including HSPICE 

which has been extensively augmented with features for commercial use.  Cider 

introduces highly developed and accurate device simulation to SPICE3 based on the 

use of ‘BSIM’ device models [45].  XSPICE augments SPICE3 by providing code 

modelling support and the simulation of digital components through event-driven 

‘finite state machines’.  Many people have contributed and are still contributing to 

this project and contributions are always invited.  The gEDA project has already 

produced and is still developing a full suite of EDA tools for electrical circuit design, 

schematic capture, simulation, prototyping, and production.  

The analysis features of NGSPICE, though not as comprehensive as HSPICE, are 

adequate for the current research and distributing its capability to fellow researchers. 

It is possible that some of the ideas thus investigated will influence the further 

development of both NGSPICE and maybe HSPICE also.  The version of NGSPICE 

used in this thesis did not include any MC analysis or randomisation facilities, 

though the very latest version NGSPICE23 [37] has now introduced some 

rudimentary features that may prove useful in future.   

 

4.4.3   Using RandomSPICE 

The origins of the approach presented in this thesis lie in RandomSPICE [13] that 

produces SPICE netlists for randomised copies of a given circuit or sub-circuit.  The 

randomization is achieved by selecting nmos and pmos transistor models at random 

from a set of about 201 of each type produced by Glasgow University [13].   

RandomSPICE produces a specified number of circuit files, and there normally have 

to be very many.  To make use of RandomSPICE, it was necessary to design a 

harness for applying SPICE to simulate the files one by one, extract the required 
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information from the SPICE output files produced, collate the results, present the 

data in a suitable form, and finally extract statistical information from the data.   

Some useful preliminary results were obtained by this method such as the graphs 

shown below for a ‘binary full adder’ circuit, showing the effect of the predicted 

variation in the transistor parameters.  A deficiency in the early version of 

RandomSPICE, where devices were not truly randomised for sub-circuits that are 

repeatedly called in a certain circuit, led to the need for an alternative approach. 

A Binary Full Adder (BFA) circuit is used here to demonstrate MC circuit 

simulation based on the use of RandomSPICE. The BFA circuit is shown as figure 

4.6(b), with the hierarchy from transistor to logic gate shown in Figure 4.6(a). 

The circuit netlist, before randomization with RandomSPICE, is presented in 

Table 4.1. In this netlist, an identical NMOS model with name ‘atomn’ and an 

identical PMOS model with name ‘atomp’ are used for the four transistors (two 

NMOS and two PMOS) in each NAND gate as defined by the sub-circuit 

NAND2x1:RAND.  This sub-circuit is used nine times identically in the BFA circuit. 

 

 

 

 

 

 

 

(a) NAND gate - building block, transistor circuit and symbol 

 

 

 

 

 

 

(b) BFA circuit represented with NAND gates 

Figure 4.6: Binary Full Adder (BFA) circuit 
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*.GLOBAL vdd 

.SUBCKT NAND2X1:RAND Z A B vdd 

MMN1 Z A net3 0 atomn L=35e-9 W=70e-9 

MMN2 net3 B 0 0 atomn L=35e-9 W=70e-9 

MMP1 Z B vdd vdd atomp L=35e-9 W=70e-9 

MMP2 Z A vdd vdd atomp L=35e-9 W=70e-9 

.ENDS NAND2X1:RAND 

 

.SUBCKT BFA InA InB CIN S COUT vdd 

XI1 OUT1 InA InB vdd NAND2x1:RAND 

XI2 OUT2 InA OUT1 vdd NAND2x1:RAND 

XI3 OUT3 InB OUT1 vdd NAND2X1:RAND 

XI4 OUT4 OUT2 OUT3 vdd NAND2X1:RAND 

XI5 OUT5 OUT4 CIN vdd NAND2x1:RAND 

XI6 OUT6 OUT4 OUT5 vdd NAND2x1:RAND 

XI7 OUT7 OUT5 CIN vdd NAND2x1:RAND 

XI8 S OUT6 OUT7 vdd NAND2x1:RAND 

XI9 COUT OUT1 OUT5 vdd NAND2X1:RAND 

.ENDS BFA 

 

XBFA InA InB CIN S COUT vdd BFA 

Vdd vdd 0 1.2 

VA InA 0 1.2 

VB InB 0 0 

Vin CIN 0 0  PULSE(0 1.2 0.05n 0.1p 0.1p 0.1n 0.2n) 

.TRAN 0.00002n 0.2n 

.PRINT TRAN V(CIN) V(S) V(COUT) 

*.PLOT V(CIN) V(S) V(COUT) 

.END 

 

Table 4.1: Netlist for BFA circuit BFA_1.cir 

 

After running RandomSPICE for this BFA netlist, a number of randomised copies 

is obtained with all the transistors given randomised model parameters. Each 

randomised copy is titled differently as BFA_1.cir, BFA_2.cir, … The netlist for one 

of the randomised circuit copies is shown in Table 4.2. Within each copy, each 

NAND gate is given a different name (NAND2x1_1, NAND2x1_2 to NAND2x1_9) 

and, within each NAND gate, each transistor model is selected at random from the 

201 of each type that are available.  The NMOS transistor models are labelled NCH0, 

NCH1, …, NCH200 and the PMOS transistors are labelled PCH0, PCH1, …, 

PCH201. For example, NCH80 & NCH85 are chosen at random for the two square 

NMOS transistors in the sub-circuit NAND2x1_1 within BFA_1.net.  Different 

NMOS transistors will be chosen for NAND2x1_2 within BFA_1.net, and for all 

other NAND sub-circuits within this copy of BFA.  For the second BFA copy, the 
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randomization process is repeated but with different choices of NMOS transistor 

model in all cases.   

Since the model database only provides square BSIM4 transistors, 

RandomSPICE is required to split any non-square transistors into several square 

ones. For example, in the netlist, the PMOS transistor has a width that is twice its 

length and RandomSPICE splits it into two PMOS transistors with same size of 

35nm technology for the width and length, and gives them different model 

parameters.   

 

BFA_1.cir 

***BINARY FULLADDER (BFA) HSPICE-RandomSPICE netlist  

* Random seed: 1234789535 

***Zheng 

*.Global vdd 

.SUBCKT BFA_1 InA InB CIN S COUT vdd  

XI1 OUT1 InA InB vdd NAND2x1_1 

XI2 OUT2 InA OUT1 vdd NAND2x1_2 

XI3 OUT3 InB OUT1 vdd NAND2X1_3 

XI4 OUT4 OUT2 OUT3 vdd NAND2X1_4 

XI5 OUT5 OUT4 CIN vdd NAND2x1_5 

XI6 OUT6 OUT4 OUT5 vdd NAND2x1_6 

XI7 OUT7 OUT5 CIN vdd NAND2x1_7 

XI8 S OUT6 OUT7 vdd NAND2x1_8 

XI9 COUT OUT1 OUT5 vdd NAND2X1_9 

.ENDS BFA_1 

 

XBFA_1 InA InB CIN S COUT vdd BFA 

Vdd vdd 0 1.2 

VA InA 0 1.2 

VB InB 0 0 

Vin CIN 0 0  PULSE(0 1.2 0.05n 0.1p 0.1p 0.1n 0.2n) 

.TRAN 0.00002n 0.2n 

.PRINT TRAN V(CIN) V(S) V(COUT) 

*.PLOT V(CIN) V(S) V(COUT) 

.PROBE 

.OPTION POST 

 

Table 4.2: Randomised netlist for BFA_1.cir 

 

For the non-square PMOS transistors within each NAND gate within each BFA 

copy, a sub-circuit consisting of two square PMOS transistors is required, each being 

chosen at random from the choice of PMOS models available. A netlist for one of the 

nine NAND sub-circuits defined for the first randomized circuit copy, BFA_1.cir, is 
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shown in Table 4.3.   

Any number of such netlists could be generated according to the requirement of 

simulation accuracy. For each BSIM4 transistor model, there are up to 300 

parameters which must be provided to SPICE by a ‘.MODEL NCHXXX NMOS’ or 

‘.MODEL PCHXXX PMOS’ statement where XXX denotes the NMOS or PMOS 

randomized model number. 

 

.SUBCKT NAND2x1_1 Z A B vdd  

MMN1 Z A net3 0 NCH80 L=3.5e-08 W=3.5e-08 

MMN2 net3 B 0 0 NCH85 L=3.5e-08 W=3.5e-08 

XMMP1 Z B vdd vdd SUBMMP1 

XMMP2 Z A vdd vdd SUBMMP2 

*DD13 B vdd DP 1.02e-13 

*DD15 0 A DN 1.02e-13 

.SUBCKT SUBMMP1 SUBMMP1_0 SUBMMP1_1 SUBMMP1_2 SUBMMP1_3  

M_SUBMMP1_1 SUBMMP1_0 SUBMMP1_1 SUBMMP1_2 SUBMMP1_3 PCH63 L=3.5e-08 

W=3.5e-08 

M_SUBMMP1_2 SUBMMP1_0 SUBMMP1_1 SUBMMP1_2 SUBMMP1_3 PCH40 L=3.5e-08 

W=3.5e-08 

.ENDS SUBMMP1 

.SUBCKT SUBMMP2 SUBMMP2_0 SUBMMP2_1 SUBMMP2_2 SUBMMP2_3  

M_SUBMMP2_1 SUBMMP2_0 SUBMMP2_1 SUBMMP2_2 SUBMMP2_3 PCH121 L=3.5e-08 

W=3.5e-08 

M_SUBMMP2_2 SUBMMP2_0 SUBMMP2_1 SUBMMP2_2 SUBMMP2_3 PCH77 L=3.5e-08 

W=3.5e-08 

.ENDS SUBMMP2 

.ENDS NAND2x1_1 

 

Table 4.3: Netlist for NAND2x1_1 within BFA_1.cir 

(uses models NCH80 & NCH85, PCH63,PCH40,PCH121 & PCH77) 

 

By executing the MATLAB harness developed in Manchester University for 

RandomSPICE, the required series of Monte Carlo simulations may be executed and 

the results can be statistically analysed.  

In table 4.2, the netlist statement: 

Vin CIN 0 0  PULSE(0 1.2 0.05n 0.1p 0.1p 0.1n 0.2n) 

specifies the parameters of an input pulse applied to the ‘carry in’ port, and the 

statement: 

.PRINT TRAN V(CIN) V(S) V(COUT) 

specifies the type of analysis and the output voltages that are required to be 

statistically analysed. 
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The graphs in figure 4.7 show the statistical variation that occurs to the BFA 

‘carry out’ signal over 100 RandomSPICE-randomised circuits.  Figure 4.7 (a) plots 

the series of waveforms produced. Figure 4.7(b) plots the zoomed rising edge 

waveforms which are used for analysing the delay (propagation) time of the carry-

out signal.  Figure 4.7 (c) is the distribution histogram of the delay time.  Figure 

4.7(d) is the result of fitting a Gaussian pdf to the delay distribution, from which can 

be obtained a mean and standard deviation, and thus an error function specifying the 

probability of the delay exceeding a given value. 

 

 

 

 

 

 

 

 

 

 

                              (a)                                                                   (b) 

 

 

 

 

 

 

 

 

                            (c)                                                                      (d) 

 

Figure 4.7: MC simulation results for delay time of carry out signal in BFA circuit 
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The histograms used in this thesis are from two sources: firstly, a standard 

histogram function provided by MATLAB which allows the number of bins to be 

specified, and secondly, the statistical analysis package ‘dfittool’, part of the 

MATLAB statistical analysis toolbox, which varies the number of bins according to 

the number of data points and the nature of the distribution.  For the standard 

histograms in the thesis, e.g. in figure 4.7 (c), the number of bins is always fixed at 

twenty.  The ‘dfittool’ does not allow the number of bins to be selected by the 

programmer. Hence, with ‘dfittool’ the number of bins will be variable and therefore 

different from the twenty bins used elsewhere. There is no loss of accuracy caused by 

the difference in the number of bins. 

 

4.4.4   Using a New Harness 

A new MATLAB harness, named ‘RandomLA’ (Random LSI circuit Analysis) was 

designed to test improved MC analysis approaches and to be self-contained and 

suitable for parallel or distributed implementation to analyse very large integrated 

circuits.  MATLAB now offers very convenient and powerful facilities for parallel 

processing on multi-core machines and distributed processing on clusters of ‘worker’ 

machines each capable of running NGSPICE.  The use of the ‘Condor’ distributed  

computing package [106] is ideal for this application, since the large number of 

randomized circuits that are generated by a host running the Harness can be sent to 

any machine capable of running a version of SPICE and conveying the manageable 

amount of data produced back to the host once each simulation is complete. 

To perform a Monte Carlo simulation using the facilities developed for this 

thesis, the Harness requires a “seed” circuit to be defined as an ‘augmented netlist’  

The seed is a normal netlist with two very simple innovations.  Firstly, any parameter 

or input variable may be replaced by a random variable whose distribution and 

statistical parameters (mean, standard deviation) are given in place of the actual 

circuit parameter.  Parameters may be resistor values, capacitor values, transistor 

parameters, input waveform specifications such as rise and fall times, and there are 

other possibilities. Secondly, any circuit parameter can be specified as involving 

some combination of other parameters.   
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The Harness generates R copies of the seed circuit each with randomized 

parameters replacing the statistical parameters, but calculated according to their 

specification.  Assuming there are N parameters to be randomized, it is convenient to 

refer to the parameters for the circuits as:  

{x11, x12,..., x1N} 

{x21, x22,..., x2N} 

…. 

{xR1, xR2,..., xRN} 

and thus define an R by N matrix XMAT.  These circuits may be generated one by one 

in a single core implementation or in batches of an appropriate number for a parallel 

or distributed version.  There is no need for a large reservoir of randomized circuits 

as produced by RandomSPICE.  The Harness initiates the required executions of 

SPICE, sends them the appropriate randomised netlists and receives the outputs 

when they become available.   

Assume for each of R randomised circuits we require one measurement, of delay 

say, and that these are referred to as {D1, D2, …, DR}.  These measurements must be 

extracted from the numerical SPICE outputs by parsing them using ‘regular 

expressions’ available in MATLAB.  Given sufficient circuits, it may now be 

possible to derive reasonable statistical estimates from the measurements.  If a 

particular distribution, such as Gaussian or Chi-squared can be assumed, the assumed 

distribution can be fitted to the data in a maximum likelihood manner and inferences 

can then be drawn from the distribution.  In the case of delay, assuming it appears 

reasonable to fit a Gaussian pdf to the measurements, its mean and standard 

deviation may then be deduced.  Likely to be of most interest will be the tail of this 

distribution, and this is certainly the case if the application is to estimate the 

percentage of circuits for which the delay is likely to exceed some threshold.  The 

user must decide where to define start of the ‘tail’, normally in standard deviations 

above the mean.  The Harness can now calculate the probability of a measurement 

being in the tail (using the Normal ‘error function’ erfc) and likely to make the 

circuits non-viable.  Hence, the likely percentage of failures, or ‘yield’ may be 

estimated.   
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The simple mechanism of a ‘seed’ circuit is illustrated by the example in Table 

4.4.  The value of capacitor C1 is specified as an independent Gaussian random 

variable (default) with mean and standard deviation equal to 4.8×10
-15

 and 24.4×10
-15 

Farads, respectively. 

 

.SUBCKT SWNAND2 Y A B VDD 

SWP1 VDD X VDD A SW OFF 

SWP2 VDD X VDD B SW OFF 

SWN1 X ND1 A 0 SW OFF 

SWN2 ND1 0 B 0 SW OFF 

R1 X Y 1K 

C1 Y 0 [[4.8e-15, 2.44e-16]] 

 

Table 4.4 A ‘seed’ netlist with randomisation of capacitor C1 

 

If the final line in the above illustration is replaced by: 

• C1 Y 0 [[4.8e-15, 0.244e-15]+ [3.5*C2]+[1.4*C3] …] 

then the random value of C1 is defined as the sum of three or more random variables.  

The first one is independent as before.  The second one is a constant times the value 

of a different component C2   Similarly for the third one, and there may be as many 

as required.   Randomising device parameters is also straightforward and requires the 

instantiation of devices in the seed to refer to a suitable model with one or more 

parameters replaced by a mean and standard deviation as for the capacitor C1 value 

in Table 4.4 

When processing the seed, the Harness produces as many randomised versions of the 

device parameters as there are instantiations, and each is given an index.  Therefore, 

for the BFA circuit in figure 4.4, an instantiation of a model NCH within the seed: 

MMN1 Z A net3 0 NCH L=3.5e-08 W=7.0e-08 

would be replaced by: 

MMN1 Z A net3 0 NCHxx L=3.5e-08 W=7.0e-08 

where xx is an index number, and a randomized version of the ‘.model’ NCH would 

be produced and labeled NCHxx.  Spatially dependent correlation may be introduced 

by associating devices with particular (x,y) locations on the chip.  The degree of 

correlation between the parameters of these devices can now be made dependent on 
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the distances between the devices. 

It is useful to consider how the BFA circuit considered in Section 4.4.2 above can 

now be analysed using the new harness.  The seed circuit is, in this case, identical to 

the original netlist presented in Table 4.1, except that one or more transistor 

parameters are given statistical characteristics within [[…]] brackets, rather than 

direct values. The statistical characteristics for the distribution, mean and standard 

deviation for each parameter of each model were, for this example, obtained by 

analysing the variation of each transistor parameter in each of the two Toshiba 

(PMOS and NMOS) data-sets provided by Glasgow University.  Correlation is not 

included in this example, and is better illustrated for behavioural modelling as 

introduced in Chapter 5.  The randomisation process applied to the seed will generate 

the required randomised models and appropriate indexing for the instantiations.  

Observe that a .MODEL parameter list is generated for each randomized 

transistor which generates a lot of data when there are many transistors each with 

many parameters.  The results of the simulation specified above are given in figure 

4.8.  They demonstrate that the harness works, and is a useful vehicle for the 

investigations which follow in the next chapters. 

 

.SUBCKT NAND2X1X1 Z A B vdd  

MMN1 Z A net3 0 NCH01 L=3.5e-08 W=3.5e-08 

MMN2 net3 B 0 0 NCH02 L=3.5e-08 W=3.5e-08 

MMP1 Z B vdd vdd PCH03 L=3.5e-08 W=3.5e-08 

MMP2 Z A vdd vdd PCH04 L=3.5e-08 W=3.5e-08 

.ENDS NAND2X1X1 

              … 

.SUBCKT NAND2X1X9 Z A B vdd  

MMN1 Z A net3 0 NCH33 L=3.5e-08 W=3.5e-08 

MMN2 net3 B 0 0 NCH34 L=3.5e-08 W=3.5e-08 

MMP1 Z B vdd vdd PCH35 L=3.5e-08 W=3.5e-08 

MMP2 Z A vdd vdd PCH36 L=3.5e-08 W=3.5e-08 

.ENDS NAND2X1X9 

.SUBCKT BFA InA InB CIN S COUT vdd  

XI1 OUT1 InA InB vdd NAND2X1X1 

XI2 OUT2 InA OUT1 vdd NAND2X1X2 

XI3 OUT3 InB OUT1 vdd NAND2X1X3 

XI4 OUT4 OUT2 OUT3 vdd NAND2X1X4 

XI5 OUT5 OUT4 CIN vdd NAND2X1X5 

XI6 OUT6 OUT4 OUT5 vdd NAND2X1X6 

XI7 OUT7 OUT5 CIN vdd NAND2X1X7 

XI8 S OUT6 OUT7 vdd NAND2X1X8 

XI9 COUT OUT1 OUT5 vdd NAND2X1X9 

.ENDS BFA 



Chapter 4. Monte Carlo Simulation for the Design of Nano-Scale Integrated Circuits 

  

 106 

XBFA InA InB CIN S COUT vdd BFA 

Vdd vdd 0 1.2 

VA InA 0 1.2 

VB InB 0 0 

Vin CIN 0 0  PULSE(0 1.2 0.05n 0.1p 0.1p 0.1n 0.2n) 

.TRAN 0.0005n 0.23n 

.PRINT TRAN V(CIN) V(COUT) 

 

Table 4.5(a): Netlist from seed in Table 4.1 with randomisation of transistor models 
 

.MODEL NCH01 NMOS 

... 

+vth0     = [[2.2870E-01, 1.0E-02]] 

... 

.MODEL NCH02 NMOS 

... 

+vth0     = [[2.2870E-01, 1.0E-02]] 

… 

.MODEL PCH01 PMOS 

... 

+vth0     = [[-2.2870E-01, 1.0E-02]] 

. 

.MODEL PCH01 PMOS 

... 

+vth0     = [[-2.2870E-01, 1.0E-02]] 

... 

.END 

 

Table 4.5(b): Randomised transistor models showing randomized parameter ‘vth0’  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: MC simulation results for delay time of carry out signal in BFA circuit 

with randomisation of transistor parameters 
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4.5   Introducing intra-die correlation 

This section describes how correlation may be introduced into the random variables 

generated by the RandomLA software as the parameters for the randomised circuit 

copies.  The correlation may be due to the intra-die proximity of components, or 

other causes.  The parameters may be values of components such as resistors and 

capacitors, they may be device parameters, or they may be elements of principal 

component vectors which are ultimately transformed to device parameters.  Define a 

matrix Xmat of ‘column’ vectors Xj, each containing M parameters: 

 

[ ]Rmat XXXXX K321=                            (4.8) 

 

where 
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X j

M

                 (4.9) 

 

Each column-vector, Xj, of parameters is for a different randomised circuit copy.  

Within Xmat, there is row-to-row correlation due to inter-dependencies between 

devices or the parameters of individual devices.  Column-to-column correlation is 

not of interest since it is assumed that the random vector generated for each circuit is 

independent of all others as required for efficient MC analysis. (In the software 

‘RandomLA’ rows and columns are interchanged, therefore it is column-to-column 

correlation that is calculated). 

To model intra-die correlation between parameters due to proximity, let 

parameter i be defined for a point Pi = (ai, bi) on the chip.  So P1 = (a1,b1) is for 

parameter 1,  P2 = (a2,b2) is for parameter 2, and so on.  Note that ai is the 

measurement along the x-axis and bi is the measurement along the y-axis for each 

point Pi.  The Euclidean distance between any two points Pi and Pm , in units of 

nano-meters, is: 
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                    mibbaaPPd mimimi  and any for          )()(),( 22 −+−=         (4.10) 

 

The ‘exponential model’ of intra-die correlation defined in the paper by B. 

Hargreaves, H. Hult and S. Reda [84], models the correlation k(i,m) between 

parameters i and m as: 

k(i,m) = exp[-λd(Pi,Pm)]     

 that is: 

                                         
),(),( PmPidemik λ−=                                     (4.11) 

 

This is assumed to be the Pearson correlation coefficient defined as: 

 

                                          
mi

mi rowrow
mik

σσ
),cov(

),( =                                    (4.12) 

 

where σi = standard deviation of parameter i , σm = standard deviation of parameter 

m, and ‘cov’ means covariance.  This means that: 

 

                     ),cov(   and   ),cov( mmmiii rowrowrowrow == σσ            (4.13) 

 

A value for lambda (λ) may be calculated from measurements of actual device 

parameters, or manufacturer’s data.  Clearly k(i,i) =1 since the Euclidean distance 

d(Pi,Pi) between Pi and Pi (the same point) is zero.  If, in 35 nm technology, it may 

be assumed that at a distance of 200 nm the correlation reduces to some small value, 

α say, 

 

      exp(-λ.200) = α                                               (4.14) 

 

it follows that  

λ  =  -(1/200)loge(α)                                          (4.15) 
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Assuming α = 0.01, we find that: 

 

  λ =  4.61/200  =  0.023                                      (4.16) 

 

Therefore, if we have a location Pi = (ai, bi) on the chip for each element i, a value of 

correlation k(i,m) between rows i and m may be modelled.  Hence, we obtain a ‘row-

to-row’ (parameter-to-parameter) correlation matrix: 
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To provide an example, assume that there are four capacitors at P1, P2, P3 and P4 

whose means and std-deviation are specified in the seed file ( [[ …]] ) as m1, m2, m3, 

m4 and s1, s2, s3, s4 respectively.  Let: 
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We need to generate, for each Monte Carlo randomised circuit j, a random variable 

x(1, j), x(2, j), x(3, j) and x(4, j) as the value for each capacitor to obtain the 

parameter vector: 
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To generate random variables for each capacitor with the right amount of intra-die 

correlation, we first need to deduce, from K, an appropriate row-to-row covariance 

matrix, which is as follows: 

 

C = [ c(i,m) ]  where  c(i,m) = k(i,m) × si × sm                       (4.20) 

 

Then find matrix A such that A
T
.A= C using the ‘Choleski Decomposition’ or the 

‘eigenvector-eigenvalue method’ described in Section 4.3 of this thesis.  Finally, 

generate a multivariate (4-element) correctly correlated Gaussian random vector as 

follows: 

 

rAmX j .+=                                                   (4.21) 

 

where r is a 4 by 1 vector of independent pseudo-random Gaussian variables of zero 

mean and unit variance.  Either of the following MATLAB statements can generate 

the vector r: 

 

r = randn(4,1)    or    r  = norminv(rand(4,1))                    (4.22) 

 

We can do this repeatedly for each randomised circuit j, producing many column-

vectors Xj.  

Introducing intra-die variability into the parameters of transistor devices is 

possible using the same approach as used for component values.  In such 

applications, it is useful to partition a large correlation matrix into a number of 

smaller ones, each catering for one type of parameter or principal component.  This is 

possible when there can be assumed no correlation between the different types or 

principal components; of course this is guaranteed for principal components as will 

be seen in Chapter 5.  Clearly, a different value of λ can be used for each partition. 

Note that the unit of λ depends on that of the distance measure d(Pi,Pj) which, in 

this thesis, is always nanometers (nm).  The approach outlined above works for λ = 0 
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which is the case where all parameters of a certain type are assumed to be 100% 

correlated.  This can be useful for testing theories about the effects of intra-die 

correlation.   

 

4.5.1   Results from introducing intra-die correlation into a CMOS NAND 

gate  

Consider the CMOS NAND gate shown in Figure 4.6(a) whose on-chip layout is 

assumed to be as shown in Figure 4.9. 
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Figure 4.9: CMOS NAND gate on-chip layout assumption 

 

There are four transistors, and we will assume that just one parameter, ‘vth0’, of the 

transistor model is subject to statistical variation.  Hence, there are just four 

statistically varying parameters.  Assuming the exponential model of intra-die 

correlation quoted above with λ = 0.007, the parameter-parameter correlation matrix 

is found to be as follows: 
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K                                      (4.23) 
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Assuming the ‘ngNAND.seed’ file specifies the standard deviation of all four 

parameters to be the same, which is 0.01, the correlation matrix can be converted to 

the following parameter-to-parameter covariance matrix C: 

 


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
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



=

4-1e      5-7e      5-4.6e    5-6.1e     

 5-7e      4-1e        5-5e       5-7e     

 5-4.6e      5-5e      4-1e      5-7e     

 5-6.1e      5-7e      5-7e      4-1e     

C                            (4.24) 

 

It is convenient to use MATLAB notation, for example 6.1e-5 representing 6.1×10
-5

, 

to represent the matrix entries.  Computing a matrix A such that A
T
.A = C now allows 

suitably correlated randomised parameter vectors Xj to be generated as outlined 

above.  The timing delay results of MC analysis of 500 randomised circuits when λ = 

0.007 are represented by the histogram shown in Figure 4.10(a), to which was fitted 

the Gaussian pdf shown in Figure 4.10(b). 

 

 

 

 

 

 

 

 

 

                    (a)  Histogram                                         (b) Gaussian pdf fitting 

Figure 4.10: Gaussian pdf fitted to data for 500 NAND gate circuits (lambda = 

0.007) 

 

For this 500 circuit random training run with λ=0.007, the mean and standard 

deviation of the overall delay were found to be 6.337e-12 and 0.0633e-12 seconds 
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respectively. 

Repeating this procedure for same circuit and layout with lambda = 1, which 

means that there is almost no intra-die correlation, the parameter-parameter 

correlation matrix K and covariance matrix C became as follows: 
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Calculating matrix A such that A
T
.A = C gave: 
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=

0.01        0         0         0  

 0      0.01-      0        0   

 0         0        0    0.01- 

 0         0       0.01-     0 

A                             (4.26) 

 

This is not the expected diagonal matrix, but perfectly acceptable where the four 

parameters are essentially uncorrelated.  The results of MC analysis of 500 

randomised circuits (when λ =1) are represented by the histogram shown in Figure 

4.11(a), to which was fitted the Gaussian pdf shown in Figure 4.11(b). 

 

 

 

 

 

 

 

 

     (a)  Histogram                                                    (b) Gaussian pdf fitting 

Figure 4.11: Gaussian pdf fitted to data for 500 NAND gate circuits (lambda = 1) 
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For this 500 circuit random training run with λ = 1, the mean and standard deviation 

of the overall delay were found to be 6.344e-12 and 0.05233e-12 seconds 

respectively.  In comparison to the case where λ=0.007, the mean remains 

approximately the same, and the standard deviation reduces by about 17.3 %. 

 

4.5.2   Results from the analysis of a binary full adder with behavioural 

models of gates  

Consider the binary full adder (with seed file swbfan.seed) shown in Figure 4.6(b) 

whose on-chip layout is assumed to be as shown in Figure 4.12.   

 

 

 

 

 

 

 

 

Figure 4.12:  On-chip layout assumption for BFA circuit represented with NAND 

gates 

 

With one delay parameter for each behavioural gate, there are nine parameters in 

total.  Assuming the exponential model of intra-die correlation with λ = 0.007, the 

parameter-parameter correlation matrix K is found to be as follows: 
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





=

 1        0.5     0.37        0.5    0.25     0.12    0.056     0.061      0.03   

 0.5       1      0.5       0.37     0.21     0.12    0.061     0.056      0.03   

 0.37      0.5       1         0.5      0.37     0.24     0.12      0.11      0.059   

 0.5      0.37      0.5          1        0.5     0.24      0.11      0.12     0.059   

 0.25     0.21     0.37         0.5       1       0.46      0.21      0.25       0.12   

 0.12    0.12     0.24      0.24      0.46       1       0.46      0.46       0.25   

 0.056   0.061     0.12     0.11       0.21     0.46        1         0.5        0.46   

 0.061   0.056     0.11     0.12      0.25     0.46       0.5        1          0.46   

 0.03    0.03    0.059    0.059     0.12     0.25     0.46       0.46       1       

K     (4.27) 

 

Knowing the standard-deviations of the parameters allows K to be converted to a 

parameter-to-parameter covariance matrix C.  Matrix A may be computed such that 

A
T
.A = C, and finally the vectors Xj of 500 random circuits may be generated and 

analysed using ngSPICE to produce the histogram and fitted Gaussian pdf shown in 

Figure 4.13 (a) and (b) .  The mean is 8.64e-12 and standard deviation is 0.345e-12 

seconds. 

 

 

 

 

 

 

 

 

 

(a)  Histogram                                                    (b) Gaussian pdf fitting 

Figure 4.13: Gaussian pdf fitted to data for 500 BFA circuits (lambda = 0.007) 

 

Repeating the same procedure with λ=10 (no correlation) and 500 training circuits 

produces the histogram and Gaussian pdf shown in Figure 4.14 (a) and (b) whose 

mean is 8.647e-12 and standard deviation is 0.318e-12 seconds.  Once again, in 
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comparison to the correlated case where λ=0.007, the mean remains approximately 

the same. The standard deviation reduces from 0.345e-12 to 0.318e-12, that is by 

about 7.8 %.  

 

 

 

 

 

 

 

 

 

(a)  Histogram                                                    (b) Gaussian pdf fitting 

Figure 4.14: Gaussian pdf fitted to data for 500 BFA crts (lambda = 10) 

 

 

4.6   Conclusions 

The ever-reducing dimensions of nano-CMOS technology mean that statistically 

based variability analysis will have an increasingly important role in enabling 

successful circuits to be designed and optimized.  The means of analysing the effect 

of inter-die and intra-die variability is needed, and can be provided through the use of 

SPICE simulations of randomised versions of a circuit.  This ‘Monte-Carlo’ type of 

analysis requires a randomization procedure and such a procedure is provided by the 

professional version of SPICE, which is HSPICE.   Powerful though this is, it lacks 

access and flexibility for research purposes, and the use of RandomSPICE with a 

MATLAB harness provides a useful alternative.   The author has developed a new 

MATLAB-based Harness for this purpose, with better functionality. It has been 

briefly described in this chapter, and will be the basis of research described in 

subsequent chapters. An immediate advantage of this approach is that the open 

source version of SPICE, known as NGSPICE, may be used and the work of this 

thesis may be useful as a contribution to the GNU ‘gEDA’ project. 
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Although the Monte Carlo error has the nice property that its convergence rate of 

1/√N does not depend on the dimension, this rate is often considered quite slow. For 

example, to reduce the error by a factor of 10, one must increase the sample size n by 

100 (on average). For this reason, a lot of work has been done on finding ways of 

improving the Monte Carlo error. 

The computational complexity required to perform traditional Monte-Carlo type 

analysis on larger circuits becomes prohibitive and ways of reducing this complexity 

must be found.  ‘Quasi Monte Carlo’ techniques and adaptations of ‘Extreme Value 

Theory’ can achieve complexity reduction and appear worthy of further exploration.  

The use of simplified ‘behavioural’ models of commonly used sub-circuits is another 

way of reducing computational complexity.   

Monte Carlo algorithms compute definite integrals of functions of vectors 

(containing many variables) by evaluating the function for large sets of randomised 

vectors covering the space or range of integration.  In this thesis, the function will be 

some circuit parameter, for example a delay, as may be estimated by SPICE 

simulation.  The vectors will contain variables such as the parameters of transistors 

and other components such as wires, which, in practice, will be expected to vary 

randomly.  The definite integral will be the volume of the ‘tail’ of the probability 

density function (PDF) where some aspect of the performance, for example the delay, 

falls outside some defined limit.  The parameter values of transistors and other 

components will have particular statistical distributions and correlations determined 

by the physics of the fabrication process and many other effects, and these must be 

represented by the choice of vectors supplied to the Monte Carlo process.  Therefore, 

repeated SPICE simulations must be performed for the randomised vectors to 

generate the required distribution of circuit measurements.   

For the integrated circuits envisaged by the work in this thesis, the dimensions of 

the input vectors, i.e. the number of variables, will be extremely high.  Each 

transistor model may have as many as 300 parameters, and there may be a very large 

number of transistors.  Although Monte Carlo methods are known to be efficient for 

very high dimensional applications, the computational complexity of this application 

is likely to prohibitive for all but the very simplest circuits.  Therefore, it is vital to 
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find ways of reducing computational complexity.  There are many possibilities, one 

of which, proposed by Amith Singhee [15], makes use ‘Quasi Monte Carlo’ methods 

[25] as described in Chapter 7.  The ‘statistical blockade’, also proposed by Amith 

Singhee [15][21][29] achieve computational savings by different methods, which is 

described in Chapter 6. The Principal Component Analysis Monte Carlo method and 

Statistical Behavioural Circuit Block are also investigated in this thesis as ways of 

reducing the computation in statistical analysis by reducing the dimensions of the 

problem space, as described in Chapter 5.  

Before starting a simulation study, it is important to make sure the random 

number generator to be used is reliable and has been tested appropriately. Two 

examples of generators that are known to be reliable are L’Ecuyer’s MRG32k3a [93], 

and Matsumoto and Nishimura’s Mersenne-Twister [94]. The latter is implemented 

in MatLab®7 and will be employed in this project.  It has a repetition period of  

2
19937

 -1 which means that about 10
6000 

uniformly distributed independent random 

numbers may be generated before the sequence starts to repeat.  The uniform random 

variables are transformed to Gaussian by the inverse cumulative Gaussian 

distribution function ‘norminv’ provided by MATLAB.  Special care must be taken 

for distributed implementations since the pseudo-random number generator’s starting 

point must not be allowed to be the same for each ‘worker’ machine, as it may be by 

default. 
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Chapter 5 

 

Dimension Reduction of Monte Carlo Circuit 

Simulation 

 

5.1   Introduction 

The assertion that the error resulting from MC analyses is proportional only to the 

square root of the sample size does not mean that the same sample size is appropriate 

to any circuit no matter how complicated it is.  There are clearly advantages in 

reducing the dimensionality of analysis problems including the simplification of the 

computational complexity of the analyses.  This chapter deals with two methods of 

reducing the dimensionality of Monte Carlo analysis.  The first is Principal 

Components Analysis (PCA) which transforms the random variables required to 

characterize a circuit to a reduced number of statistically independent variables.  

PCA is also useful as a means of introducing intra-die and inter-die correlation.  The 

second is the use of statistical behavioural circuit blocks (SBCB) which substitute 

functional but computationally simpler circuit models for device level analogue sub-

circuits.  Both these techniques are well known and provided in user form by the 

commercial version of SPICE, which is HSPICE.  However, they are not yet 

available with the current open source version, i.e. NGSPICE, and the aim of this 

chapter is to apply them in new ways which may be suitable for inclusion in the 

ongoing NGSPICE open source project [37].  
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5.2   Principal Component Analysis (PCA) 

 

5.2.1   Introduction to the Concept 

PCA is a technique for transforming samples of M variables into samples of a smaller 

number of variables by exploiting interdependency or correlation among the M 

variables.  Referring to a set of R parameter-vectors (‘feature-vectors’) in an M 

dimensional vector-space, the transformation converts each parameter-vector to a 

lower dimensional vector in such a way that no information, or little information, is 

lost.  This means that the original vectors, Xi for i = 1, ….. , R, can be reconstructed 

from the transformed vectors either exactly or with a small error.  The elements of 

the transformed (reduced dimensional) vectors are the coefficients (or ‘loadings’) of 

‘principal component’ (PC) vectors. PC vectors are eigenvectors of the M×M 

covariance matrix C which are normalized and statistically independent.  If there is 

no interdependency among the elements of the original R vectors, PCA cannot reduce 

the number of variables without significant loss of information. 

 

5.2.2   Performing the Analysis 

Taking the summed squared differences between the elements of an original 

component (‘feature’) vector and a reconstructed one as a measure or the error or 

loss of information incurred by PCA, of all possible linear transformations to a lower 

dimensional space PCA is optimal in minimising this error over all vectors.  Further, 

the PC vectors are conveniently ordered in the sense that the first one has the highest 

variance and accounts for as much variability as possible.  Each succeeding PC 

vector has lower variance, and therefore less importance, but has the highest variance 

possible while being uncorrelated to all the previous ones. 

PCA may be carried out by eigenvalue/eigenvector decomposition of the M by 

M covariance matrix of the original vectors data matrix which is defined as: 

               ∑
=

−−
−

==
R

k

jjkiikijij mxmx
R

ccC
1

  ))((
1

1
      where][                 (5.1) 
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In this expression, xik is the ith element of vector Xk with mi denoting the mean of xik 

for each variable i over all R vectors, i.e. the mean of row i of matrix [xik] for 

k=1,2,…, R. Therefore, C is the covariance matrix of variations from the mean of 

each parameter, and is unaffected by the means themselves.  The means of columns 

are not subtracted from columns.   If the eigenvectors of C are u1, u2, …, uM, with 

corresponding eigenvalues  λ1, λ2, …, λM, these are easily calculated by the 

MATLAB statement ‘[U, D] = eig(C)’.  This statement produces the matrix: 

     U = [u1 u2 … uM]            (5.2) 

composed of all the eigenvectors as columns, and matrix D whose diagonal elements 

are λ1, λ2, …, λM with all other elements being zero.   It follows from the definitions 

of eigenvectors and eigenvalues (Cuk = λkuk for all k) that: 

                             CU = UD       ∴       U
T
CU  =  D                                (5.3) 

since eigenvectors are all orthogonal to each other and normal (i.e. of unit length) 

meaning that U
T
 is always the inverse of U.  Therefore, C = UDU

T
 meaning that  

                               C = λ1 (u1 u1
T
)  + λ2 (u2 u2

T
)   + …+ λM (uM uM

T
)                  (5.4) 

If matrix X is transformed to Y as follows: 

                        Y = U
T
. X                                             (5.5) 

then: 

                        X = U . Y                                                (5.6) 

If any of the eigenvalues λ1, λ2, …, λM are zero and we remove their corresponding 

eigenvectors and corresponding rows of Y in equation 5.5, the remaining 

eigenvectors are principal components which can represent all the original data, 

without any loss of accuracy. Equation 5.6 will reconstruct the original vector exactly 

from the non-square matrix Y of reduced dimensional PC coefficient (loading) 

vectors. Taking this idea further, we can remove elements of Y with their 

eigenvectors when the corresponding eigenvalues are small on the grounds that if 
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they do not significantly affect C they should not significantly affect X either.  It may 

be shown that C will always be a positive semi-definite symmetric matrix (i.e. 

positive definite or singular), therefore all eigenvalues will be real and positive, or 

zero. 

The above outline of PCA hides the obvious difficulty of deciding what error is 

incurred by removing components with non-zero eigenvalues which are considered 

small, and how small an eigenvalue must be to be considered negligible.  Such 

considerations of PCA are application specific and best related to the specific 

objective and how the error is to be quantified.  They will be considered later. 

 

5.2.3   Application of PCA to Modelling Statistical Variation 

Assume we have a database of sets of randomised BSIM4 device parameters which 

have been published by a manufacturer or indeed generated on the basis of 

theoretical calculations as carried out by the originators of RandomSPICE.  We will 

take the RandomSPICE Toshiba NMOS database as the example.  For each device 

there is a set of 201 randomised parameter lists each with 300 parameters. Many of 

the parameters are zero or fixed in this database, but in general they need not be.   

The author’s MATLAB PCA script computes the 300 by 300 element covariance 

matrix C for the parameter sets after subtracting the mean for each parameter.  The 

300 eigenvectors and eigenvalues of C are calculated and then the original mean-

subtracted data is transformed by projecting each vector on to the set of 300 

eigenvectors.  As a check, reversing this transformation produces the original data 

but with the expected rounding error which causes a mean-squared difference of 

around 10
-20

 between original and reconstructed parameters.  The first ten ordered 

eigenvalues are plotted in figure 5.1 and are seen to fall off rapidly in magnitude.  

Since the curve levels off at around six, it seems reasonable to delete all but the first 

six eigenvalues and eigenvectors to obtain the required reduced dimensional  PC 

coefficient vectors.  Figure 5.2 shows how the mean squared difference between 

original (mean subtracted) data and reconstructed data varies with the number of 

eigenvectors.  This shows how the approximation improves with the number of 
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eigenvectors and that the mean squared error falls to around 10
-20

 when this number 

reaches about six.  The modelling technique used by Glasgow University [41] 

explains this result.  The leveling off at six principal components makes it reasonable 

to take this number for our continuing experiments.  Similar results and graphs were 

obtained for the PMOS data provided by RandomSPICE.   

 

 

 

 

 

 

 

 

 

Figure 5.1: Values of first ten ordered eigenvalues for Toshiba NMOS data 

 

 

 

 

 

 

 

 

Figure 5.2: Mean square difference between original (mean-subtracted) data and 

PCA approximated data as number of eigenvectors increases 



Chapter 5. Dimension Reduction of Monte Carlo Circuit Simulation 

  

 124 

Only seven parameters of the BSIM4 transistor model used to produce this 

illustration of PCA, as provided by Glasgow University’s RandomSPICE database 

[13], vary among the models in the set.  The seven parameters are those required for 

modelling random discrete dopant effects (as in references [65] and [75]) and are as 

follows: 

1. RDWMIN: Lightly-doped drain resistance per unit width at high Vgs and zero Vbs for 

RDSMOD=1. RDSMOD is the parameter of bias-dependent source/drain resistance model 

selector. 

2. NFACTOR: Subthreshold swing factor. 

3. DSUB: DIBL coefficient exponent in subthreshold region. 

4. A1: First non-saturation effect parameter. 

5. A2: Second non-saturation factor. 

6. VOFF: Offset voltage in subthreshold region for large W and L. 

7. LPE0: Lateral non-uniform doping parameter at Vbs=0. 

This PCA analysis needed some consideration of numerical stability because of the 

wide variation of parameter values.  There is clearly correlation among the seven 

varying parameters listed above which can be eliminated by PCA to the advantage of 

Monte Carlo simulation.   

 

5.2.4   Applying PCA to Reduce Dimensionality in MC Simulation 

PCA clearly has value in reducing the dimensionality of the randomization required 

for MC analysis. It is now possible to randomize the principal component coefficient 

vectors rather than the complete list of device parameters, and then transform these 

back to a set of parameters to be recognized by SPICE for each device.  An 

independent randomization may clearly be performed for each device, where the 

effects of inter-die or intra-die variability are not required to be modeled. 

However, the modelling of intra-die variability is afforded in a convenient way 

by the use of PC coefficient vectors, and the correlation introduced by proximity on 

the die can be conveniently applied to these.  Inter-die variability can also be 

introduced in this way.  The approach is to determine a set PCs for each device 

model and then to introduce correlation into the corresponding PC coefficient vectors 
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for each device within a circuit or sub-circuit, according to the exponential model 

outlined in Section 4.5 of the previous chapter. The correlation matrix should be 

partitioned into a number of smaller ones, each catering for one principal component 

which will be independent of all the others.  If the device model has six PCs, there 

will be six partitions, one for each PC.  A different value of λ can be used for each 

partition. 

 

5.3   Behavioural Modelling 

5.3.1   Introduction to the concept 

The idea of behavioural modelling is to substitute functional but computationally 

simpler circuit models for device level analogue sub-circuits.   The simpler circuits 

emulate, as closely as possible, the input-output behaviour of the sub-circuits they 

replace.  Their use can reduce the computational complexity of SPICE simulations 

especially for large and complex integrated circuits. SPICE provides specific 

behavioural modelling options that are suitable for the ‘mixed signal’ simulation of 

digital circuits.  The aim is to allow analogue effects to be taken into account but 

without the computational cost of a full device-level analogue simulation. The 

options include the use of controlled voltage or current sources which can be 

configured to emulate operational-amplifiers, switches, logic gates, delay lines and 

many other devices whose outputs can be represented by or approximated by 

continuous functions of the inputs and also time. SPICE allows such functions to be 

specified in many forms, including the use of look-up tables for the waveforms 

required and the input-output relationships.  Rectangular digital waveforms may be 

defined as inputs and outputs with the specification of clock rise and fall times, on-

off periods, and voltage or current levels.  Controlled sources can be used to model 

gate-switching action either with close to ideal fast switching or some specific linear 

or non-linear behaviour which depends on nodal voltages and currents elsewhere in 

the circuit.   
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5.3.2   How SPICE Implements Behavioural Model Components 

All forms of SPICE are fundamentally based on nodal analysis which characterises 

linear circuits in the Laplace transform domain as Y(s)V(s) = I(s), The vector I(s) 

represents all independent current sources, V(s) is the vector of voltages at 

connection points (nodes) and Y(s) is the nodal admittance matrix with elements 

determined by circuit components. For transient analysis, the equation is solved as a 

multivariate differential equation in finite difference form.  The required time-span is 

split up into time-steps and a solution is required at each step.  Where there is non-

linearity, for example due to semiconductor junctions, time-varying characteristics 

and switching devices, a Newton-Raphson (or Raphson-Newton) iterative approach 

must be used at each time-step to take into account the effects of the dependencies of 

variables and component values on others, and of time itself. Convergence to a set of 

nodal voltages for each time-step must occur before moving onto the next time-step. 

If the time-steps are too large, the simulation may be inaccurate and even fail to 

converge, and if they are too small the computation time may become prohibitively 

long.  All versions of SPICE adjust the time-step automatically according to the 

progress of the simulation. The step is reduced when values are changing quickly and 

increased when changes are slow.   

The equation Y(s)V(s) = I(s) is essentially Kirchhoff’s Law which makes the sum 

of all sources of current flowing into each node equal to zero.  Each element of 

Y(s)V(s)  is an ideal voltage-dependent current source (VCCS) and hence such 

sources can be represented directly.  All other components, devices and sources must 

be modelled using the elements of Y(s) and I(s).  A voltage source must be modelled 

by a current source and a resistor, and a junction by a VCCS and resistance.  The 

models are non-linear and vary with circuit conditions and time.  The more accurate 

the models, the more complicated the analysis generally.   

HSPICE provides a host of devices which it represents in circuit and time-

dependent nodal analysis form in proprietary ways.  It provides highly versatile 

dependent voltage and current sources referred to as E-elements, F, G and H-

elements [31]. These can be included as fundamental building blocks in models for 
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MOS and bipolar transistors, diodes, analogue operational amplifiers and a large 

variety of other circuits.  

 

5.3.3   Using E, F, G or H Elements with Look-up Tables 

Each of the E, F G and H elements can model behaviour which is a linear or non-

linear function of controlling-node voltages or branch currents. These elements have 

many possible functions including ‘behavioural’ voltage or current sources 

(according to HSPICE documentation) and ideal delay elements.  Ideal delay 

elements would be very useful in behavioural simulation, but their use in SPICE for 

MC analysis raises problems which will be discussed later.  Behavioural models of a 

2-input AND gate (X=A.B) and a 2-input NAND gate (X=A nand B) gate using G 

and E Elements to model ideal switching behaviour are presented in Tables 5.1 and 

5.2.  The logic functions are implemented by lookup table. Figure 5.3 shows the 

response of the NAND gate as defined by Table 5.2 to a voltage pulse with finite 

(10ns) rise-time and fall time. 

 

g 0 X and(2) A 0 B 0 

+0.0   0.0ma 

+0.5   0.1ma 

+1.0   0.5ma 

+4.0   4.5ma 

+5.0   5.0ma 

Table 5.1:  Netlist for 2-input AND gate (X=A.B) using g-element 

 

e X 0 nand(2) A 0 B 0 

+0.0   5.0v 

+0.5   4.8v 

+1.0   4.5v 

+4.0   0.5v 

+5.0   0.0v 

Table 5.2: Netlist  for 2-input NAND gate (X=A nand B) using e-element 
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Figure 5.3: Response of 2-input NAND gate as defined in Table 5.2 

 

The use of these ideal voltage dependent elements provides a good way to build up 

behavioural models suitable for augmenting with delay modelling for statistical 

timing analysis.  It is also useful to employ voltage-controlled resistors (one of the g-

element options) to implement a switch-level MOSFET. 

 

5.3.4   Tau Models of Devices 

The Tau Model of a transistor has long been used as a simple behavioural model in 

many transistor optimisation tools for designing integrated circuits, such as 

TILOS[46], COP[104] and EPOXY[118].  They are commonly used for both 

synchronous and asynchronous circuits [16].  It uses an ideal switch with simple RC 

circuitry to introduce delay, α, as determined by the transistor’s gate dimensions and 

the technology.    In its simplest form, each transistor is modelled as an ideal switch 

with appropriate on/off resistance, and source, gate and drain capacitance is 

introduced by discrete capacitors again each being determined from the gate 
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dimensions.   The gate delays between inputs A and B and the output X of a CMOS 

2-input ‘pull-down’ circuit as referred to in Section 2.2.3 may be modelled [16] by 

the RC circuit below Figure 5.4: 

 

 

 

 

 

                   

Figure 5.4: Tau model for CMOS ‘pull down’ sub-circuit 

 

The following expressions are obtained where α↑AX and α↑BX are the delays in the 

response to rising A and B transitions respectively: 

α↑AX   =  R1C1 + (R1 + R2)C2 

α↑BX = (R1 +R2) C2 

Such simple behavioural models are known to be convenient for predicting the 

performances of synchronous and asynchronous digital circuits and for guiding 

designers towards working efficient circuits.  Optimisation techniques based on such 

models have been used to determine ideal sizes for the CMOS transistor devices that 

constitute a complex circuit [16].   

Lookup tables as exemplified in Table 5.1 and 5.2, and ‘tau models’ are very 

simple, but each has its limitation.  Look-up tables can model limited and non-linear 

‘slew rates’ but not delay, whereas tau models are either restrictive if simple RC 

transition timing models are used, or complicated with more accurate ones. A single 

RC time-constant gives delay, but with a characteristic exponential rising or falling 

waveform that cannot be changed except by introducing other RC components.   

Here we propose the combination of these two techniques to produce better 

behavioural models that are still quite simple.  The tau model is used to produce the 



Chapter 5. Dimension Reduction of Monte Carlo Circuit Simulation 

  

 130 

required delay and the look-up table then modifies the wave-shape with appropriately 

chosen entries. 

Taking the α↑BX = (R1+R2)C2 delay as an example,  if this is applied to the look-

up table model in Table 2, the result is the output waveform plotted in Figure 5.5 

which is affected both by delay and wave-shaping according to the look-up table.   
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Figure 5.5: Effect of combining look-up table and simple tau model 

(a) excitation applied to B (red), (b) output with look-up table alone (blue), (c) effect 

of tau model on excitation(green), (d) effect of combined model on output(black) 

 

A simple MATLAB curve fitting procedure chooses the RC time-constant and 

the look-up table for a given wave-shape as may be obtained from a SPICE analysis 

of the device for which a behavioural model is required.  

The Tau and delay model proposed in this thesis may be used for statistical static 

timing analysis as described in Section 3.5. In many ways, it is similar to the 

‘Composite Current Source’ (CCS) modelling technique provided as part of the 

‘Liberty’ software produced by Synopsys [124].  It is also similar to the ‘Effective 

Current Source Model’ (ECSM) provided by CADENCE Design Systems Ltd [125].   

CCS and ECSM use very similar modelling techniques and are supported by 
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comprehensive libraries of cell and interconnect models [126] that are based on 

industry-supplied data. Although the commercial details of these models are not 

openly available, the modelling approach that is used appears to be based on, or is 

similar to, the ‘Blade and Razor’ current source based model, published in 2003 by J. 

F. Croix and D. F. Wong [127], and a U.S. patent by Cadence Design Systems [128] 

in 2004. There have been many other publications inspired by the original idea of 

using voltage-controlled current sources with passive delay circuits to model the 

behaviour of interconnections and cells with respect to their timing delay, noise 

generation, power consumption and statistical variability characteristics [129] [130] 

[131] [132].   

The basic idea of current based delay models is to produce computationally 

simple circuit elements that consume timing waveforms and produce output timing 

waveforms that have approximately the right shape and delay profile when driving a 

further circuit element.  This is essentially the idea of the ‘tau and delay’ modelling 

approach in the thesis except that voltage-controlled voltage sources (VCVS) are 

used in this thesis rather than voltage-controlled current sources (VCCS).   

According to R. Goyal and N. Kumar of Cadence Design Systems Inc. [125], 

current source based delay models represent their outputs as ‘look-up’ tables of 

current against time.  In principle, a different waveform is required for each 

combination of input waveform slew-rate and output load characteristics, though 

interpolation between defined data-sets allows reasonable accuracy to be achieved 

with reasonable resources.  The model parameters are therefore determined from the 

input waveform and the load seen by the driver cell.  The load depends strongly on 

the interconnect network between the driver and the driven cells and, according to 

Goyal and Kumar [125], interconnect delay dominates other delays in sub 90nm 

technology, with wiring delay accounting for at least 75% of the overall delay [127].  

It is argued [131] that non-linearised Thévenin or voltage-source based driver cell 

models cannot easily be adapted to accurately modelling the effect of loads with 

highly non-linear characteristics.  Voltage-controlled current source modelling is 

therefore preferred for modelling the non-linear aspects of the input-output 

relationships of cells and their interconnections.  It is often pointed out (e.g. [124] ) 



Chapter 5. Dimension Reduction of Monte Carlo Circuit Simulation 

  

 132 

that VCCS based models can easily be converted to VCVS based models and vice-

versa, but the fundamental differenced lies in the way the commercial libraries have 

been defined to model the required non-linearities in the source-load 

interconnections. 

The ‘tau and delay’ based VCVS approach in this thesis is based on the concept 

of ‘tau modelling’ as published by Steven M. Burns [16] and the direct use of 

dependent voltage and current source elements provided by HSPICE with their 

capacity for behavioural modelling.  Both VCVS and VCCS elements are provided 

by HSPICE, but the choice was made arbitrarily since we did not attempt to study the 

effect of non-linear loading by devising or utilising libraries.  The dominance of 

interconnection delay in sub-micron technologies offers some justification for this 

approach.   

The waveform matching approach used in this thesis produces behavioural 

models that generate specified wave shapes with the appropriate delay.  It could have 

been used to generate a library of such models.  However, it was used to produce a 

single model of each cell type derived from the output waveforms obtained from 

transistor level simulations of the cell (using RandomSPICE based transistor models 

provided by Glasgow University).  Each single cell is characterised by parameters 

which may be randomised in Monte Carlo analysis runs to simulate the effect of 

statistical circuit variation.  The statistical characteristics of the randomisation 

(distribution, mean, standard deviation.) that were used to provide the illustrations 

were derived from transistor level simulations performed using RandomSPICE  with 

the supplied Toshiba 35nm transistor parameters.  In principal, a different VCVS 

model is needed for each different delay, but the required adjustments to the VCVS 

parameters are small and in practice the same voltage source parameters were used 

for each delay.   

 

5.3.5   Using Verilog-A in SPICE for Behavioural Modelling. 

Verilog-A is a widely used mathematical language for analogue behavioral 

descriptions that characterize the high-level behaviour of circuits and their structure 
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and components.  Circuits can be defined at a level of abstraction appropriate for 

behavioural analysis, architectural design, and verification of functionality.  Versions 

of the Verilog-A language are supported by HSPICE and NGSPICE to allow a 

mixture of Verilog-A descriptions and SPICE netlists to be used to define behavioural 

or mixed transistor-level and behavioural simulation to be carried out.   Verilog-A 

defined modules are loaded into the simulator with a ‘⋅HDL’ netlist command and are 

instantiated in the same manner as HSPICE subcircuits.  The use of Verilog-defined 

functionality is clearly a useful tool for behavioural modelling and must be 

mentioned here, though it became beyond the scope of the thesis as presented.  

    

5.3.6   Behavioural Models for MC Simulation 

SPICE offers a large number of different ways of defining and randomising 

behavioural models and we have suggested yet another alternative.  Unfortunately, 

the most sophisticated version of SPICE, HSPICE, often does not specify how 

certain features are implemented and they are offered as proprietary items.  The open 

source NGSPICE, though based on the same long-established analysis engine, does 

not have many of these features.   

All dependent sources in HSPICE have ‘ideal’ delay as an option, which is most 

useful in behavioural models.  Ideal delay is trivial in digital circuits but 

unachievable exactly in analogue circuits.  Ideal delay does not change the shapes of 

waveforms, as the tau-model must do. But it must be implemented by an iterative 

procedure which HSPICE does not disclose to users.   

The use of ideal delay for behavioural modelling has been investigated and 

appears viable until it is used for MC analysis.  Randomising the delays, as 

implemented by transmission lines, even within quite modest circuits with less than 

100 devices, causes SPICE to make increasingly slow progress and eventually to 

‘hang’ (apparently).  Investigations revealed that it was not the models, but the step-

size selection that was to blame.  MATLAB randomizes all parameters, which may 

include ideal delays, with high numerical precision. Hence the relative timing of 

events on a single chip will vary almost continuously, and delayed switching events 
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may become very close together.  The time-step adaptation algorithm will try to 

model the very small timing differences and thus generate exceedingly small time-

steps.  Simply quantizing the Monte Carlo variation (say to two decimal places) 

eliminated this problem.   Therefore, in practice, the randomization should ideally be 

done with reference to the anticipated time-step size but the effect on the results of 

the statistical analysis must then be investigated.   

The modelling of delay by a linear time-invariant circuit, essentially a filter, with 

a ‘look-up table’ switch to modify the wave-form eliminated this problem in the 

examples we tried.  It may be argued that a circuit approach is closer to how the 

delay within devices is produced anyway.  Hence the modified tau-modelling 

approach has been adopted for the statistical behavioural circuit blocks to be 

described in the next sub-section.  Matching MC randomization of behavioural 

model parameters to the step-adaptation algorithm of SPICE is a matter deserving 

further investigation as there may be great economies and insights to be gained. 

 

5.3.7   Statistical Behavioural Circuit Blocks (SBCB)  

A statistical behavioural circuit block (SBCB) as proposed in this thesis is a 

behavioural model of a device such as a transistor, or a circuit building block such as 

a gate or an adder, based on a combination of lookup table and tau modelling and the 

use of Verilog A.    Its purpose is to model the most important aspects of the device’s 

or circuit building block’s behaviour, to an acceptable accuracy, with a relatively 

small number of parameters.  It is intended to be especially suitable for modelling 

asynchronous circuits derived from BALSA because the models do not rely as 

heavily as some approaches on the non-linear processing aspects of SPICE for 

achieving convergence when there is lots of feedback. The delay is implemented by a 

linear RC circuit which eliminates convergence problems encountered with MC 

analysis due to difficulties with the SPICE time-step adjustment.    

The statistical characteristics of SBCBs are derived by applying traditional MC 

analysis to true or accurately modeled devices or building blocks.  The distributions, 

means and standard deviations of the behavioural model parameters that produce 
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 RandomSPICE variability analysis 

Original SPICE netlist 

RandomSpice 

Simulation 1 Simulation 2 Simulation N 

Alternative versions of each 

transistor model, 35nm tech. 

    (200PMOS   200NMOS) 

Netlist 1 Netlist N Netlist 2 

Extract required waveforms from each simulation 

Analyse each waveform to produce a modified tau-model 

Calculate distribution, mean & std dev for each modified tau-model parameter 

Building up behavioral models 

…  

…  

outputs matching the true or accurately modeled device or building block outputs are 

then known and characterise the random variables which are generated to produce 

randomized copies of the SBCBs.  SBCBs are used to replace the true or accurately 

modelled sub-blocks to reduce the dimensionality and therefore the complexity of the 

analysis.   

The accurately modeled RandomSPICE generated PMOS and NMOS devices 

were used to generate SBCB models of sub-circuits containing these devices.  The 

training procedure is illustrated in Figure 5.6.  

 

                       

 

 

 

 

 

Figure 5.6: Flow chart for building up SCSB circuit blocks 
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Consider the parameterization of a SBCB for a 2-input NAND gate in 35nm 

technology. By employing RandomSPICE [12] with the 35nm randomized transistor 

models provided [6], [7], a set of randomised copies of the NAND gate, described 

with the netlist in Table 5.3, is produced.  By analysing each of these circuits using 

NGSPICE a delay distribution, as illustrated in Figure 5.7, is obtained. Having 

decided that a Gaussian distribution is appropriate by a standard test, available in 

MATLAB, fitting a Gaussian probability density function (pdf) to this distribution 

allows estimates of its mean and standard deviation to be derived, as illustrated in 

Figure 5.7.   

The SBCB delay model of the NAND gate, as illustrated in Figure 5.8, consists 

of the basic logic functionality implemented as a delay-free element with a modified 

tau model applied to the input. The basic ‘tau’ time constant will be the required 

delay which MC randomization will vary according to the statistics obtained above.  

Strictly, the look-up table parameters of the modified tau model are dependent on the 

delay, and should ideally be calculated for all the waveforms generated during the 

training.  In practice as the waveforms are so similar, just one look-up table was 

produced and used for all delays.  The MATLAB matching procedure could have 

been applied to all of them at little computational cost.  Similar SBCB models may 

be produced for other logic gates, and circuit building blocks.   

 

 

 

 

 

Table 5.3: 2-input NAND gate circuit netlist with transistor model. 

 

 

 

...... 

MMN1 Z A net3 0 atomn W=35e-9 L=35e-9 

MMN2 net3 B 0 0 atomn W=35e-9 L=35e-9 

MMP1 Z B vdd vdd atomp W=70e-9 L=35e-9 

MMP2 Z A vdd vdd atomp W=70e-9 L=35e-9 

...... 
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Figure 5.7: MC simulation on a 2-input NAND gate implemented with 35nm CMOS  

. 

 

 

 

 

 

 

 

 

 

Figure 5.8: NAND SBCB model 
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randomized circuits 
Zoomed output Z falling edge 
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Variance:         5.96957e-26 

Sigma              2.44327e-13 
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When many logic gates and other building blocks within an integrated circuit 

(IC) are replaced by randomized samples of behavioral models, the dimensionality of 

the required parameter set will be greatly reduced since the large number of transistor 

model parameters will have been replaced by a much smaller number of SBCB 

parameters.  When the IC is analysed by MC techniques, the computational 

complexity of each SPICE simulation will then be greatly reduced.  

 

5.3.8   Improving the Accuracy of SBCB  

As mentioned above, the look-up table parameters of the modified tau model are 

dependent on the delay, and should ideally be calculated for all the waveforms 

generated during the training.   

 

5.4   Conclusions 

This chapter deals with two methods of reducing the dimensionality of Monte Carlo 

analysis.  The first is Principal Components Analysis (PCA) which is also useful as a 

means of introducing intra-die and inter-die correlation.  The second is the use of 

statistical behavioural circuit blocks (SBCB) which substitute functional but 

computationally simpler circuit models for device level analogue sub-circuits.  The 

concept of PCA is outlined and it has been applied, using MATLAB functions, to 

greatly reduce the dimensionality of a database of transistor parameters with small 

loss of accuracy.   

Behavioural models are more problematic than may be anticipated. 

Randomizing ideal delays, even within quite modest circuits, causes SPICE to make 

increasingly slow progress and eventually to ‘hang’.  To understand the cause, it is 

necessary to understand how SPICE operates, though the exact details of how ideal 

delay is modeled is not clear.  There are several ways of doing it with the facility of 

the timing event simulator.  The step-size selection algorithm is to blame and this 

may point to a fundamental problem with the use of SPICE for MC simulation and 

even simulating large asynchronous circuits (maybe).  The modelling of delay by a 

linear time-invariant ‘tau’ circuit, essentially a filter, with a ‘look-up’ table to modify 
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the wave-shape, seems to eliminate this problem for the examples we have 

considered.  However matching the MC randomization of behavioural model 

parameters to the step-adaptation algorithm of SPICE is a matter deserving further 

investigation. 
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Chapter 6 

 

Computation Reduction by Extreme Value Theory 

 

 6.1   Introduction  

Extreme Value Theory (EVT) [26] is a branch of statistics concerned with the 

estimation of probabilities which are ‘extreme’ in the sense that the range of values 

of interest is many standard deviations from the mean of an assumed probability 

distribution. The theory is based on a comparison between pdf estimations that would 

be obtained for an infinite or very large sample size and for pdf estimations obtained 

for a much smaller set of specially selected values.  The specially selected values are 

those for which some classifier predicts ‘extreme’ outcomes whose deviation from 

the mean exceeds a certain threshold.  In some fields, this is referred to as a ‘Peak 

Over Threshold’ (POT) based approach [108]. This chapter concerns the application 

of EVT, in the form of an algorithm called ‘Statistical Blockade’, to statistical circuit 

analysis.  The potential for achieving major computational savings will be 

demonstrated. 

 

6.2   Statistical Blockade 

EVT is concerned with the faster statistical analysis of ‘rare events’ which occur in 

the far tails of probability distributions. An algorithm known as ‘Statistical Blockade’ 

(SB) [28] applies EVT to circuit analysis by eliminating or ‘blocking out’ 

randomised parameter vectors that are classified as being unlikely to produce circuits 
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that fall in the low-probability tails. The intention is that only the ones likely to 

produce ‘rare events’ are analysed.  In our application, the rare events are the circuit 

yield failure predictions which are extreme in the sense that they are on the ‘tails’ of 

Gaussian-like probability distributions for circuit quantities such as overall delay.  

Because they are designed to be rare, reliable estimates of these failures by 

conventional MC techniques require very large numbers of randomised parameter 

vectors.  

  

 

 

 

 

 

 

Figure 6.1: Illustration of ‘rare events’ in distribution tail (as in [28]) 

In the context of circuit simulation, the idea of SB is to try to concentrate on 

parameter vectors that are likely to generate the ‘rare events’ of failing circuits, and 

block out or disregard the ones that are unlikely to produce such failing circuits. 

Many input vectors are generated, but only the ones likely to produce ‘rare events’ 

are simulated.  This partial sampling of the performance distributions is the basis of 

EVT. The computational complexity involved in introducing the bias, and 

compensating for it, is much less expensive than performing lots of uninteresting 

circuit simulations. The ‘blockade filter’ is a standard classifier as used in machine 

learning and data mining. It is trained by simulating a relatively small ‘training set’ 

of randomized circuits’ and is further refined as more and more simulations are 

carried out. Statistical blockade, with this recursive updating, is intended to make 

estimation of rare event statistics computationally feasible [107].  

The idea is similar to ‘importance sampling’ which was mentioned in Section 

4.2, as one way of directing MC sampling effort toward the most important regions 

of the  domain of input variables.  There are some important differences, however 
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and the proposers of Statistical Blockade [109] are adamant that it is fundamentally 

different from importance sampling.  

Importance Sampling, as introduced in Section 4.2, can be used to predict failure 

probabilities [110], and has recently [109] been applied to the modelling of ‘rare’ 

failures in arrays of SRAM cells.  It addresses the problem of having too small a 

number of observations of ‘rare events’ by changing the probability distribution of 

the underlying random variables so that events of interest occur more often. The bias 

thus introduced is appropriately corrected.  The concept of ‘mixture importance 

sampling’  [95][111][113] was proposed for this purpose. SPICE simulations are used 

at device level to estimate the probability of a single value of the performance metric 

exceeding a defined threshold. An estimate of the distribution tail is not computed 

and all performance metrics are combined in the computation of failure probability. 

Traditional ‘importance sampling’ algorithms  cannot produce separate probability 

estimates for each metric except by re-runs of the simulations and D.E. Hocevar et al 

[112] advise against importance sampling in high dimensions because of its 

computational complexity.  

The Statistical Blockade approach addresses the problem of generating enough 

‘tail’ points to obtain statistical confidence for circuit failure rate estimation without 

prohibitive computational complexity.  The aim is to obtain accurate estimations of 

the ‘tails’ of probability distributions.  The approach  suggested by EVT and adopted 

by ‘Statistical Blockade’, as proposed by Amith Singhee et al. [15] [28] [29], and 

implemented in modified form in this thesis, may be summarised as follows: 

(1) Generate a limited set of representative randomised parameter vectors, sufficient 

for the training of a classifier which is able to predict when other parameter vectors 

are likely to produce circuits with a property of interest that is more than a given 

number of standard deviations from the mean.     

(2) Generate a sufficiently large number of representative randomised parameter 

vectors to ensure that some are likely to produce circuits whose properties of interest 

fall within the tails of their distribution.  This number will be far more that could be 

simulated with feasible computational complexity. 

(3) Block out parameter vectors that are classified as being unlikely to produce 
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circuits that fall in the low-probability tails.  

(4) Simulate only the circuits whose parameters are considered likely to produce 

‘rare events’.  

(5)  Perform ‘partial sampling’ of the achieved performance distributions, according 

to the basic theory of EVT. 

 

   

6.3   Classification Techniques for Machine Learning 

The classifier is critical to the success of SB and requires a form of supervised 

learning as often used in the general field of Machine Learning[30]. To construct a 

classifier, a set of classified training examples, consisting of objects and their 

associated classes is required.  The examples are called ‘labeled examples’, and the 

set of labeled examples provided for training the classifier is called the training set. 

Once a classifier has been trained, its effectiveness may be determined by employing 

a second set of labeled examples called the ‘test set’.  The test set must be different 

from the training set.  The percentage of test examples from the test set that are 

correctly classified becomes the ‘classification rate’ and the percentage of test 

examples misclassified is the ‘misclassified rate’.  Support vector machines (SVMs) 

[113][114] are supervised learning methods that may be used for classification and 

regression.  

The classifier used in the author’s implementation of Statistical Blockade 

consists of a linear estimator followed by a threshold decision maker.  Such simple 

‘classifiers’ are commonly used in machine learning and data mining. In this context 

the classifier will be referred to as a ‘blockade filter’.  It may be considered a type of 

vector support machine (VSM). 

 

6.4   A Linear Estimator for Statistical Blockade  

To produce a training set for the SB classifier, a set of R randomized circuits is 

produced and analysed using SPICE to obtain measurements of features of interest, 

such as delay and  power consumption, which constitute the ‘labels’ of the circuits.   

Assume that each circuit has N parameters: 
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                  xr1, xr2, …, xrN                                                  (6.1) 

where r is the circuit index in the range 1, 2, …, R, and that one measurement  

feature, Dr say, is of interest for each circuit r. 

The required linear estimator for Statistical Blockade will ideally be required to 

estimate (or predict) the value of Di for any circuit i from its known set of parameters 

xr1, xr2, …, xrN to eliminate the need to use SPICE to analyse that circuit.  This will 

result in a great saving of computation time since the implementation of a linear 

estimator is very simple indeed.  If all circuits could be ‘analysed’ in this simple way, 

the time saving would be enormous, but this is not the expectation.  The expectation 

is that the estimator will predict whether the feature of interest Di for a particular 

circuit i lies within the main body of the probability distribution for this feature, or 

whether it is likely to be in the tail.  If it is predicted to be in the main body, the 

circuit need not be analysed as many like it will have already been analysed. But if it 

is likely to be in the tail, the circuit is of great interest and must be analysed.  Issues 

of predictions that turn out to be false, either as false positives or false negatives, 

must of course be addressed, and will be. 

The linear estimator when applied to the parameters of circuit i is defined as: 

 

                             Wi = a0  +  a1 xi1  +  a2 xi2  +  ...  +   aN xiN                                (6.2) 

        

where a0, a1, a2,..., aN  are the estimator’s coefficients that must be trained before the 

estimator can be used effectively.  The training requires a training set of R circuits, as 

mentioned above, that have all been accurately analysed, using SPICE, to a obtain 

the true parameter of interest Dr for each circuit r.  Express the estimates Wr for each 

circuit r for r=1, 2,…, R and the true measurements Dr for r=1, 2,…, R , obtained 

from SPICE, in vector form: 
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The requirement of the training procedure is to choose the estimator’s coefficients a0, 

a1, a2,..., aN  to make W as close as possible to D over the whole training set. 

Since, 

                             W1 = a0  +  a1 x11  +  a2 x12  +  ...  +   aN x1N  

                             W2 = a0  +  a1 x21  +  a2 x22  +  ...  +   aN x2N 

                             W3 = a0  +  a1 x31  +  a2 x32  +  ...  +   aN x3N 

                                             :             :                  

                         WR = a0  +  a1 xR1  +  a2 xR2  +  ...  +   aN xRN                                   (6.4) 

 

It follows that  

                                                          W = X a                                                        (6.5) 

where: 

  

    

 

 

 

 

                                                                                                                                                                                           

                                                                                                                               (6.6) 

                                                                                                                                                                                                      

Hence the requirement is that the vector of coefficients, a, must be chosen such that 

W = X.a is made close as possible to D.  If X were a non-singular square matrix it 

would be possible to make W = X.a exactly equal to D by taking 

 

              a = X 
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Here X
-1

 is the inverse of X which is easily calculated in MATLAB.  However X will 

in general not be square and it will not be possible to find a coefficient vector a 

which exactly satisfies: 

           X.a  =  D                                          (6.8)    

But it is possible to make X.a close to D by choosing vector a such that the sum of 

the squared differences between the elements of W and the corresponding elements 

of D are minimised over all possible choices of elements for a .   Multiplying both 

sides of equation (6.8) by X
T
 (transformed) gives: 

 

                  X
T.
.D = X

T
.X .a                                              (6.9) 

and noting that since the dimensions of X and X
T
 are R by (N+1)  and (N+1) by R , 

X
T
.X  will be a square matrix of dimension N+1 by N+1.  When this matrix is non-

singular, we can write: 

                a = (X
T
 X)

-1
 X

T
 D                                          (6.10) 

or: 

                a = X
#
.D                                                      (6.11) 

where the N+1 by R matrix X
#
 is defined as the ‘pseudo-inverse’ of  the R by N+1 

matrix X: 

                   X
#
 = (X

T
 X)

-1
 X

T
            (6.12) 

Clearly, it cannot be expected that defining vector a by equation (6.11) satisfies 

equation (6.8) except when X is square or, in general when R<N+1.  Neither of these 

cases are of interest here as they mean that there are too few training circuits (R 

training circuits for N parameters) to make the learning worthwhile.  But let  

 

                E = ||Xa - D||2                                                   (6.13) 

                   =  (Xa - D)
T
(Xa - D)                                     (6.14) 

                      ∑
=

−=
R

i

ii DW
1

2)(                                          (6.15) 

 This is sum of squared differences between elements of W = X.a and the 

corresponding elements of D and is a useful measure of the difference between X.a 

and D, or in other words the estimation error. 
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For any vector x of length M say, the ‘norm’ is:  

                                 x 2 =    x
T
 x  =  x1

2
  + x2

2
  + x3

2
  +   … +  xM

2  
          (6.16) 

Multiplying out equation (6.14) gives: 

 

       E    =   a
T
X

T
Xa - a

T
X

T
D - D

T
Xa + D

T
D 

                                           =   a
T
X

T
Xa -  2a

T
X

T
D + D

T
D                                  (6.17) 

To find the value of the estimator coefficient vector a that gives the minimum value 

of E and therefore the best possible estimation, we partially differentiate E with 

respect to each coefficient of a and then set each of the N+1 expressions to zero.  In 

vector notation, it may be verified that the resulting gradient vector:   

 

        ∇E   =   əE/əa    =    2 X
T
X a  -  2 X

T
D 

                                              =  0                                                                       (6.18) 

to minimise  E, where 0 is the N+1 by 1 zero vector.  Therefore, to minimise E,  

 

                                                      X
T
X a   =   X

T
D                                            (6.19) 

which means that: 

                                                           a  =  [(X
T
X)

-1
X

T
] D  

                                                          =  X
#
 D                                                    (6.20) 

MATLAB provides the function ‘pinv’ for calculating the pseudo-inverse and 

computes it in a robust way using singular value decomposition.  Therefore ‘pinv’ 

can be relied upon for very large matrices. 

 

6.5    Application of the Linear Estimator 

The linear estimator outlined above, together with a threshold detector will form the 

classifier as required for implementing Statistical Blockade.  In N+1-dimensions, the 

linear estimator may be seen as a hyperplane which divides the parameter space into 

2 regions as illustrated in Figure 6.2 for two dimensions: 
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Figure 6.2: Linear classifier dividing 2-D parameter space (x1, x2) into ‘tail’ region 

(red) and ‘body’ (green) where threshold is T. 

 

As will be seen, the estimator may be refined recursively as more and more 

simulations are carried out and results of simulations are fed back and used as 

additional training data to update the estimator.   This is illustrated in Figure 6.3 for a 

2D classifier with estimator updated recursively and becoming more and more 

accurate for the tail. 

 

 

 

 

 

 

 

 

Figure 6.3: Effect of recursive adaptation of estimator coefficients. 

 

This simple classifier should work well with Highly Replicated Circuits (HRCs), 

where the HRC components could be standard cells.  The author’s SPICE harness 

RandomLA introduced in Section 4.4.3 has been modified with an implementation of 

Statistical Blockade.  As before, it requires a “seed” circuit with N parameters {x1, x2, 

a0+a1x1+a2x2 = T 

x1 

x2 
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..., xN} which may be capacitor values, transistor parameters, etc.  There is a training 

facility, an evaluation facility and an execution facility.  The training facility 

generates R randomised copies of the seed circuit,  each with randomized parameters.  

It then runs SPICE for all of these training circuits to obtain the measurements of 

interest for each circuit.  We consider just one measurement here, and refer to it as Di 

for each circuit i.  This allows vector D and matrix X as defined by equations (6.3) 

and (6.6) respectively to be populated. 

The pseudo-inverse method as described above is then used to calculate the 

coefficients, a, of the linear estimator.  An appropriate pdf is fitted to the Di 

measurements, the mean and standard deviation are determined and then a theshold 

value is specified to mark the ‘start of the tail’.  This threshold should be defined on 

the conservative side of any ‘yield threshold’ values that will determine the viability 

of circuits.  This will allow for limitations in the linear estimator at the cost of having 

to SPICE-analyse slightly more circuits than necessary.  It is now possible to 

calculate an initial probability of the measurement of interest (Di) of a randomized 

circuit being in the tail.  The complementary error function, erfc, available in 

MATLAB, is used when the distribution is assumed to be Gaussian.  This initial 

probability is not expected to be very accurate as it is obtained just from the 

measurements of the training set.  This terminates the initial training phase. 

An evaluation facility is provided for plotting the estimated measurement of 

interest against its known true value (calculated by SPICE) for a set of randomized 

circuits which are different from the training set.  The scatter graph shown in Figure 

6.4 was obtained by plotting estimated values of overall delay against the true values 

for the behavioural model of a binary full adder circuit as presented in Section 6.8, 

when the estimator has nine parameters.  There were 300 training circuits and 300 

different evaluation circuits.  The value of ‘Pearson’ correlation obtained between 

estimated and true values of delay is clearly high and was found to be 0.9993.  With a 

sample size of 300, the ‘p-value’ was found to be about 0.001 which means that the 

probability of getting this value of correlation by chance for a sample of 300 circuits 

is less than 0.1%.  The 95% confidence limits on this statistic, as calculated by the 

MATLAB function ‘corrcoef’  was found to be about 0.9993 to 0.9994. 
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Figure 6.4: Evaluation of 9th order linear estimator of delay in a BFA 

 

6.6   Execution Phase of Statistical Blockade  

The circuit yield failure predictions are expected to be ‘rare’ in the sense that they are 

on the ‘tails’ of probability distributions for circuit quantities such as overall delay.  

Reliable estimates of these failures by conventional Monte Carlo techniques require 

very large numbers of randomised input vectors.  For example, a 0.2% failure rate 

means that a failure may be expected only about twice in 1000 simulations. There are 

not enough failures, for a reliable estimate of such a small probability.    

The SB approach is to concentrate on parameter vectors  that are likely to 

generate the ‘rare events’ of failing circuits, and ‘filter out’ (‘blockade’) or disregard  

the vectors  that are likely to produce good circuits.  The bias introduced in the input 

data must be taken into account in the analysis.  It is argued that the computational 

complexity involved in introducing the bias, and compensating for it, is much less 

expensive than performing many  SPICE simulations.   The complete implementation 

strategy is represented by the block diagram in Figure 6.5. It is initiated by firstly 

supplying a ‘seed’ netlist which specifies the basic circuit with its sub-blocks and 

then indicating which parameters are to be randomized and supplying the statistics 

(mean, standard deviation, etc.) of the required randomization for each parameter.   
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Figure 6.5: Complete SB procedure as implemented by RandomLA. 
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The subsequent actions are based on a standard classification technique used in 

machine learning and data mining [30].  The basic idea is to simulate an initial 

training set of circuits using a relatively small set of circuit copies with randomised 

parameter vectors.   An estimator and classifier are then initially trained on this data 

as explained in the previous section.  The classifier is subsequently refined as more 

and more simulations are carried out. The classifier is a type of ‘vector support 

machine’ and it is ‘recursive’ as results of simulations are fed back to an updating 

procedure.  The classifier becomes the ‘blockade filter’.  The complete 

implementation can be divided into four parts: 

(i) The initial training and evaluation of the linear estimator as described above. 

(ii) The generation of a much large set of randomized versions of the circuit, and the 

use of a classifier to allow the program to ‘block’ the versions that are not likely 

to be within the tail.  The classifier consists of the linear estimator followed a 

‘threshold detector’ which compares the estimated value of any measurement of 

interest with a ‘start of tail’ parameter. Only the circuit copies with a 

measurement of interest that is estimated to fall within the tail of the so far 

estimated distribution will be unblocked and submitted to SPICE. 

(iii) The ‘recursive’ refinement of the estimated distribution and the coefficients of 

the linear estimator as more and more SPICE simulations are carried out. The 

effect of the biased sampling (i.e. selecting more ‘tail’ circuits than would 

naturally occur) is corrected, to a degree, using the estimations for the ‘blocked 

circuits’ on the assumption that inevitable inaccuracies in these estimations will 

not be as critical in the ‘body’ of the distribution as they would be in the tail. The 

effect of such inaccuracies is, anyway, reduced by the Pareto fitting described in 

the next paragraph.  When a sufficient number of non-blocked 'tail' has been 

analysed, a second estimator may calculated, again using the ‘pseudo-inverse’ 

technique outlined in Section 6.4.  The second estimator will more accurate than 

the original estimator for the tail and may be used for more accurate blocking. 

Further recursion is clearly feasible with a third stage and so on.   The use of 

recursion can allow the defined ‘start of tail’ parameter to be gradually moved 

further away from the mean: typically from 2 to 3 and then to 4 or more standard 
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deviations. Through recursion, we can thus get more accuracy in more extreme 

parts of the tail. Computational savings are possible by updating rather than 

recalculating the estimator coefficients from scratch with the recursion, but this 

feature is not currently implemented.  

(iv) The fitting of a Pareto Distribution (PD) to the measurements obtained from the 

non-blocked ('statistical tail’) versions of the circuit.  This is necessary because, 

the Gaussian (or other pdf) assumption will be least reliable for the tails and 

dominated by values occurring, or estimated to occur, within the body of the pdf.  

Also, as already mentioned, the non-tail circuit values are estimated which 

introduces some inaccuracies in the general pdf shape.  Few measurements will 

occur in the ‘far tail’ even when large numbers of circuits are generated.  

Therefore the use of PD fitting to the rarely occurring 'tail circuits' allows the 

prediction of likely yield without the very large number of circuit simulations 

that would be required with traditional MC analysis.   

 

6.7   Fitting a Pareto Distribution 

Fitting Pareto distributions to the tails of Gaussian distributions is a commonly used 

procedure.   The pdf of a Pareto distribution with parameters k and θ is given by 

equation 6.22 and plotted in figure 6.6:   
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Figure 6.6: PDF of Pareto distribution 

 
θ  determines the start of the tail, and k determine the shape of the distribution. 

Taking θ as defined for the blockade filter, maximum likelihood estimation calculates 

k to be: 

 

                              

   

                                         

where there are NU unblocked measurements D1, D2, …, DNU 

It can now be deduced that the Pareto-estimated failure probability, conditional on 

the measurement being in the tail, is as follows: 

 

 

 

 

Therefore, from the Pareto distribution we can estimate probability of delay being 

greater than some threshold T, conditional on it being in the tail and we call this the 

‘Pareto probability’.   The absolute failure probability is: 
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                      (Pareto probability) × (probability of being in the tail)                (6.24) 

 

The probability of being in tail is estimated from the Gaussian pdf fitted to the 

training circuits during the RandomLA training phase.  Figure 6.7 illustrates Pareto 

fitting to a set of measurements whose training distribution and histogram are also 

shown. 

 

 

 

 

 

 

 

 

 

Figure 6.7: Illustration of Pareto fitting procedure. 

 

 

6.8   Measurements and Evaluations 

To illustrate the computation time savings that may be achieved when synchronous 

and asynchronous circuits employing SBCB blocks are statistically analysed by MC 

techniques with SB, a frequently used handshaking component in the asynchronous 

control circuits produced by the BALSA design package [5] mentioned in Chapter 2, 

i.e. a C-element [11], was considered. The intention was to compare the speed and 

accuracy achievable with that of straightforward MC analysis. A binary full adder, 

using NAND gates as building blocks, and a 4-Phase Bundled Data Muller Pipeline 

and a Muller 'ring', each using the C-element as building blocks, were also used as 

test circuits. The use of SB to analyse the switching delay of the output of a single C-

element was found to reduce the computation time by about 98.5%, when the start of 

the distribution tail was defined to be two standard deviations (2σ) from the mean.  

The accuracy of the linear estimator obtained with the start of tail defined 2σ 

from the mean is illustrated by the scatter-graph in Figure 6.8. It is from applying SB 

to 1000 copies of binary full adder circuit. The blue points represent the 
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measurements which are in tail and not blocked.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Accuracy of linear estimator . Tail defined to start at 9e-12s. 

Classification errors out of 1000: wrong to block: 4, wrong not to block: 2. 

 

To obtain accurate predictions of behaviour further from the mean, recursion was 

employed to refine the accuracy of the original estimator using the results of non-

blocked simulations. Figure 6.9(b) shows the effect of recalculating the estimator 

from the tail points, shown in Figure 6.9(a), as identified by the original 2σ estimator. 

The experiment is applying recursion to the tail points obtained from blocking 1000 

copies of the 4-Phase Bundled Data Muller Pipeline circuit shown in Figure 6.11.  

 

 

 

 

 

 

 

 

(a) Original                                                 (b) Refined 

Figure 6.9: Refining linear estimator by recursion 
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The estimated failure probability distributions shown in figures 6.10(a) and (b) 

were obtained for the behavioural model of a single C-element, as shown in figure 

2.6, with parameters for each behavioural gate model extracted from the transistor-

level simulations outlined in Section 4.4.3, based on the 35nm transistor model set 

provided by RandomSPICE.  The seed file is ‘ngswnandceln.seed’.   Figure 6.10(a) 

was obtained by traditional MC analysis, and plots the yield failure probability 

against yield threshold, showing how the failure probability reduces as the 

permissible delay increases.  The threshold value is measured in seconds relative to a 

reference delay 200 ps from the start of the analysis where the trigger occurs at 100 

picoseconds from the start.  The graphs show the distribution tails only, which are 

assumed to start at two standard deviations (i.e. 2 ×0.657 ps) from the mean which is 

29.7 ps relative to 200 ps.  Therefore the graphs show a time-scale from 31 ps ( 

relative to 200 ps) and extending over 5 standard deviations.  The graph shown in 

Figure 6.10(b) was obtained from MC analysis with SB and a Pareto fit to the tail 

assumed to start at two standard deviations from the mean.  Referring to equation 

6.23,  θ was set to 31 ps and k (= 126.9) was calculated according to equation 6.24 

from the unblocked measurements of delay. Figure 6.10(b) may be seen to be close to 

figure 6.10(a) as obtained from traditional MC analysis with much greater 

computation.  To assess the quality of fit, the two graphs are shown on the same axes 

in figure 6.10(c).    

It may be seen that the maximum difference in yield threshold delay between the 

two graphs for any yield failure probability is about 0.06 ps seconds, which is about 

0.1 standard deviations.  A more useful measure of difference is the maximum 

difference in yield failure probability. This cannot accurately be deduced from the 

graphs, but a re-sampling of the data plotted in one of the two graphs (since the 

sampling instants are different) revealed that this maximum difference occurred at a 

yield threshold of 31.23 ps, and is equal to a probability difference of 0.002. This 

represents a discrepancy of approximately 14.2 % from the probability 0.0129 

predicted by the non-SB Monte Carlo simulation being used as a reference.   

Since a possible source of this discrepancy is the quality and suitability of the 

Pareto fit, some investigations were carried out.  It was observed that one source of 
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the discrepancy was the difference in mean and standard deviation of the Gaussian  

fits to the delay measurements produced on the one hand by the non-SB MC 

simulations (‘meanNB’ and ‘sigmaNB’), and on the other by the Training procedure 

(‘meanTR’ and ‘sigmaTR’).  These are used to determine the ‘start of tail’ parameter 

at two standard deviations from the mean.  The more accurate estimations ‘meanNB’ 

and ‘sigmaNB’ are available for producing the comparisons since a computationally 

expensive non-SB will have been carried out for test purposes.  But in reality, only 

the less accurate ‘meanTR’ and ‘sigmaTR’ estimates (based on far fewer randomised 

circuits) will be available to the SB version, and were therefore used in the 

comparison. 

 

 

 

 

 

 

 

 

                        (a) Without SB                                              (b) With SB 

 

 

 

 

 

 

 

 

      (c) Comparison of (a) and (b)                       (d) More accurate comparison  

Figure 6.10: Failure probability for a ‘C-element’ realisation from 500 versions: (a) 

without SB, (b) with SB (2σ from mean), (c) Comparison of (a) and (b), and (d) 

Comparison with more accurate estimates of mean and std-dev used for Pareto-SB. 
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As a test, ‘meanTR’ and ‘sigmaTR’ were relaced by ‘meanNB’ and ‘sigmaNB’, 

thus eliminating two sources of discrepancy and allowing the suitability of the Pareto 

fit to be seen more clearly in Figure 6.10(d)).  It was found that the two graphs did 

indeed become closer, the maximum discrepancy being 0.00061 in a non-SB yield 

probability measurement of 0.0136, i.e. a 4.5 % discrepancy.  A conclusion from this 

investigation is that the Pareto fit is capable giving a reasonable approximation to a 

Gaussian tail, incurring error likely to be less than that resulting from other statistical 

estimates. Also, we concluded that there is scope for increased accuracy in the SB 

estimations, for example by updating the estimates of mean and standard deviation as 

statistical analysis proceeds, or perhaps by not relying on these measurements for 

defining the start of tail.  

With a more accurate estimator, the ‘start of tail’ parameter may then be 

redefined as two or even three standard deviations from the mean to obtain even 

greater time saving since even fewer circuits need to be analysed.  This increases the 

possibility of finding measurements yet further from the mean, i.e. ‘rarer events’, in 

reasonable computational time, and allows a yet more accurate estimation of the 

statistics of the ‘far tail’.  

Table 6.1 summarises the computation time-savings that were obtained by 

applying SB to the statistical variability analysis of three of the circuits mentioned 

above.  The computation was carried out on a standard desk-top PC with a dual core 

2.8 GHz Intel processor.  A MATLAB program that harnesses an implementation of 

SPICE carried out the randomisation, implementation of SB and statistical analysis.  

It may be seen that the most significant computation time saving, 98.7 %, was 

achieved for a 4-Phase 3-stage Bundled Data Muller pipeline 'ring', figure 6.11, with 

the start of the tail defined at two standard deviations from the mean. This table 

disregards the time taken for the linear estimator training phase which is, in fact, just 

a small proportion of the overall simulation time.  
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Figure 6.11: 4-Phase 3-stage Bundled Data Muller pipeline 'ring'. 

 

 

 

 

 

 

6.9   Conclusions 

Statistical blockade, with a linear estimator and recursive updating, has the potential 

to simplify the estimation of rare event statistics as required when estimating circuit 

failure probabilities and anticipated fabrication yield. This should make the 

simulation of much larger circuits computationally feasible.  A MATLAB 

implementation of a SPICE harness has been developed to implement SB in three 

phases: initial training, initial evaluation and execution with recursive 

training/adaptation.  Some experiments have been performed to show that the basic 

approach can be made to work and that there are demonstrable benefits even for 

simple circuits. The approach remains compatible with the use of the open source 

Circuit Binary Full AddAdder 

9 parameters 

 

C-element 

12 parameters 

 

Muller Pipeline Ring   

21parameters 

 Start of tail 1.5σ 2σ 1.5σ 2σ 1.5σ 2σ 

1000 circuit without SB 215.99s 221.34s 250.05s 288.51s 949.59s 1003.9s 

1000 circuit with SB 6.75s 3.96s 7.63s 4.24s 27.17s 13.15s 

Time saving 96.9% 98.2% 96.94% 98.5% 97.1% 98.7% 

Table 6.1: Time Saving Illustrated by Comparing Simulations with SB to 

Simulations without SB. 
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NGSPICE and the use of parallel programming.    

Further computational savings are possible by updating rather than recalculating 

the estimator coefficients from scratch, at each stage of the SB recursion, but this 

feature is not currently implemented. Also, the nature and degree of the inaccuracy 

introduced into pdf shapes by the fact that SB estimates non-tail circuit values, 

remains to be investigated. It is argued that such inaccuracy is not likely to be critical 

as the pdf estimations serve mainly as a guide to allow the tails of distributions to be 

investigated accurately.  Nevertheless it would be useful to know how accurate the 

pdf shapes thus obtained really are.    

It is possible that quasi-Monte Carlo techniques can be combined with statistical 

blockade by replacing the pseudorandom generator with a low-discrepancy sequence 

generator.  This idea will be addressed in the next chapter.     
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Chapter 7 

 

Computation Reduction by Quasi Monte Carlo 

Techniques 

 

 

7.1   Introduction 

This chapter investigates the use of ‘low-discrepancy’ sampling to achieve further 

efficiency improvements, over what was achieved in earlier chapters, with Monte 

Carlo circuit simulation. Low-discrepancy sampling is the basis of ‘quasi Monte 

Carlo’ (QMC) techniques as often applied to multi-dimensional integration, therefore 

this  approach to circuit simulation may be referred to as ‘quasi–Monte Carlo’ 

simulation.  QMC methods are modified Monte Carlo methods where the input 

vectors are not totally random, but are to a degree deterministic in that they conform 

to ‘low-discrepancy sequences’ [15][36].  A low discrepancy sequence is a sequence 

of N-dimensional vectors which covers a finite space more uniformly than is 

achieved by N-dimensional vectors of independent uniformly distributed random 

elements.  The discrepancy of a sequence of vectors is a measure of how the number 

of points they define in a multi-dimensional cube varies with the position and size of 

the cube.  If the discrepancy is low, the same sized cube will always contain 

approximately the same number of points wherever it is located, and the number of 

points will be proportional to the volume of the cube.  A sequence of vectors of 

independent uniformly distributed random elements does not give low discrepancy 

when the dimensionality is high.  It is known that the use of low discrepancy vector 
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sequences can achieve significant speed gains over standard Monte Carlo integration 

techniques by reducing the number of input vectors needed for a given accuracy [38].  

Similar gains are anticipated when QMC is used for statistical circuit simulation. 

 

7.2   Quasi-Monte Carlo Simulation 

The Monte Carlo simulation procedure for circuits as adopted in this thesis may be 

formulated as simply estimating the statistics of some function D say of the random 

vector x which characterizes the expected variation of parameters within the circuit.  

It is most commonly assumed that the parameters are Gaussian distributed, meaning 

that the multivariate pdf of x will be: 

 

       

where N is the dimension of x, m is the vector of mean values and C is the N by N 

covariance matrix which specifies any inter-dependency between elements of x.  For 

a set of R vectors xk , C is defined by equation 5.1.  If C is the unity matrix, the 

variations in all parameters of x are independent.  Otherwise, if C is expressed in the 

form  

                                                        C = L
T
. L                                                      (7.2) 

either using Cholesky decomposition or the eigenvalue/eigenvector approach 

introduced in Chapter 4 (or otherwise), the MATLAB statement: 

                                                       Y = L . randn(N,R)                                (7.3) 

generates R vectors of multivariate Gaussian random numbers with the required pdf .   

To obtain independent normally distributed random vectors, MATLAB transforms 

the vectors u1, u2 , . . . , uR generated by its uniform pseudo-random generator as 

follows: 

                  vk = φ-1
(uk)                                 (7.4) 

where φ is the cumulative pdf of the required distribution.  For Gaussian, φ-1
 is 

provided as a function ‘norminv’, and a very large number of other distributions are 

also catered for.   

The QMC method can now be investigated by replacing the u1, u2, . . . , uR 
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vectors by low discrepancy vectors  chosen to more effectively sample the [0,1]
N
 

hypercube. 

It must be remembered that the vectors obtained from a ‘pseudorandom number 

generator’ (PRNG) should have a very long repetition period, orders of magnitude 

larger than the total number required. To reduce the possibility of having unwanted 

correlation among QMC vectors, it is standard practice to divide the generated 

sequence into sub-streams and to allow the next sub-stream to be started by skipping 

all intermediate values [95].  

 

7.3   Low-Discrepancy Sequences 

Low-discrepancy sequences or ‘quasi-random’ or ‘sub-random’ sequences, are 

commonly used to replace uniformly distributed random sequences. They are not 

random or pseudo-random, but they have properties that allow them to be used as 

random sequences, their lower discrepancy being an advantage.  

Figure 7.1 was obtained for two and three-dimensional vectors that may be used 

for Monte Carlo integration, for example. Figure 7.1 (a) and (c) show 1000 points 

that were generated using the standard MATLAB uniform pseudorandom number 

generator. Figure 7.1(b) and (d) show 1000-point “deterministic” sequences from the 

‘Sobol’ algorithm [95] as provided by MATLAB. It may be seen that the coverage is 

more ‘uniform’ or even for the Sobol’ sequences and this would be more evident if 

we could somehow visualise higher dimensional versions. With uniform, there is 

more ‘discrepancy’ than with Sobol in the way the random points are laid out from 

one region to the other. The degree of discrepancy may be quantified and measured.  

A comprehensive discussion on uniformity and discrepancy is given in [22]. The 

classic problem is to distribute the points within a hypercube (call it a hyper-box) 

such that any smaller hypercube within it contains a number of points proportional to 

its hyper-volume. This problem of ‘measure theory’ was solved by Roth [33].   

Discrepancy is defined as the worse deviation that occurs in the percentage of points 

in any sub-volume divided by the exact percentage of points that would occur for a 

perfectly even distribution. 
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                                   (c)                                                           (d) 

Figure 7.1: Distributions of point-sets, (a) 2D pseudo-random points, (b) 2D Sobol’ 

points, (c) 3D pseudo-random points, (d) 3D Sobol’ points. 

 

Assume a set of points {xi} are scattered throughout an N-dimensional unit 

hyper-box, whose volume is equal to 1. Let h be a smaller hypercube as illustrated in 

Figure 7.2. The discrepancy of the sequence {xi} with i = 1,2, …, R is defined by: 
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where r(h) is the number of points (vector tips) that lie within ‘h’ and V(h) is the 



Chapter 7. Computation Reduction by Quasi Monte Carlo Techniques  

 

 166 

z 

y 

x 

volume of this smaller hyper-cube. DR is the maximum discrepancy over all hyper-

cubes ‘h’ that fit within the N-dimensional unit hyper-box. This concept is associated 

with theories of worst-case clustering and spatial gaps [95]. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 7.2: 3-dimensional hypercube and sub-hypercube with scattered points. 

 

Uniformly distributed sequences within N-dimensional unit hyper-boxes have the 

property: 

                                         0lim =
∞→ R

R
D                                                    (7.6) 

A sequence of R vectors with ‘discrepancy constant’ KR is a sequence which satisfies 

the condition:   

                                        
R

R
KD

N

RR

)(log
≤                                             (7.7) 

The constant KR is a measure of how good the sequence is; the lower the better. 

Researchers are still devising new sequences with ever lower constant values of KR 

for high-dimensional hyper-boxes. Thompson explored the use of ‘Halton sequences’ 

[119] for the integration of a three-dimensional exponential function, and found that 

the constant KR for 300 vectors was about 6.5. 
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 Van der Corput devised one-dimensional low-discrepancy sequences (LDS) in 

1935 [119].  In 1960, Halton published the first method for constructing an LDS in 

arbitrary dimensions [120], thus extending a previous method by Hammersley [69] 

which uses one-dimensional Van der Corput sequences.  However, Halton sequences 

have poor uniformity in high dimensions because of an undesirable feature of the 

Van der Corput sequence for large bases.  Therefore, Halton sequences are not 

suitable for our application. Sobol sequences [121] and Faure sequences [119] are 

both much better than Halton sequences and allow the practical use of QMC for large 

dimensional simulations. Both these sequences generalize the Van der Corput one-

dimensional concept.  

Halton (1960), Faure (1982), Sobol (1967), and Niederreiter (1987), are the best 

known low-discrepancy sequences, but new ones were still being proposed in 1997 

[122].   The generation process sub-divides the unit hyper-box into smaller hyper-

cubes of constant volume with all faces parallel to the faces of the hyper-box. A 

number of points are put into each hypercube, the grid is refined, and the process 

continues with smaller hyper-cubes. 

Faure and Sobol sequences generate all pseudo-random numbers from just one 

prime number base and reorder the basic QR vectors within each dimension. 

Reordering eliminates possible correlations in high-dimensions. The Halton sequence 

uses a different prime base to generate the quasi-random numbers for each 

dimension.  The base specifies the Galois field over which the required primitive 

polynomials are generated; for Sobol sequences this is always two.  The higher the 

base, the higher the computational time and the longer the cycle period. For a Faure 

sequence the base is taken as the smallest prime number greater than or equal to the 

number of dimensions. 

As reported by Galanti & Jung [123], start-up problems can occur with all 

methods especially in high-dimensions. To eliminate such problems, Faure suggests 

discarding the first (b
4
 - 1) points, where b is the base.  As reported by Galanti & 

Jung, generating Faure sequences is much slower than generating Halton and Sobol 

sequences.  Sobol sequences are simpler and faster to generate than Faure sequences 

due to the use of base 2 for all dimensions.  However, the reordering mechanism is 
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more complex and requires the coefficients of irreducible primitive modulo 2 

polynomials. Galanti & Jung reported that Sobol sequences remain effective at very 

high dimensions. Thus, they outperform both Faure and Halton sequences in this 

respect. 

 

7.4   MC and QMC Convergence rates 

As mentioned in Section 4.2, traditional Monte Carlo methods with statistically 

independent input vectors are argued to have a convergence rate proportional to R
-½

 

which is independent of dimensionality N.  Quasi-Monte Carlo (QMC) methods are 

claimed to have a much better rate of convergence approaching proportionality with 

R
-1

 in optimal cases [115]. A theoretical upper bound for the convergence rates of 

multivariate low discrepancy sequences is reported to be proportionality to (ln R)
N
/R 

[115],  where N is the number of dimensions. QMC performance therefore decreases 

with the dimensionality N.  

 

7.5   Implementation of QMC Circuit Simulation 

Uniformly distributed numbers in the interval (0, 1) can be generated as pseudo-

random numbers or quasi-random numbers and the variables for all other 

distributions may be derived from these by means of the appropriate cumulative 

distribution function inversion. In practice the range must be restricted from (0,1) to 

(α, 1-α) for small positive α otherwise Gaussian variables very far from the mean 

may occur with QMC and cause numerical instability. Examining a Gaussian pdf 

graph reveals that taking α=10
-6

 or 10
-11

 restricts the transformed variables between  

5 or 7 standard deviations respectively from the mean. 

The MATLAB functions ‘haltonset’ and ‘sobolset’ are provided for constructing 

initial sequences of N-dimensional quasi-random vectors with the required 

properties. To avoid the undesirable effects of any correlations, especially in the 

initial segments, the random sequence obtained can be required to skip, leap over, or 

scramble values in the sequence as generated. Scrambling reduces correlations while 

also improving uniformity. These sequences use different prime bases to form 



Chapter 7. Computation Reduction by Quasi Monte Carlo Techniques  

 

 169 

successively finer uniform partitions of the unit interval in each dimension.  Latin 

hyper-cube sequences, as used by SPICE, are generated  by the ‘lhsdesign’ function. 

Strictly, these are not LD sequences, but they nevertheless produce uniform samples 

of a sort. 

As suggested in Section 7.2, the idea is to use a low discrepancy sequence 

generator to replace the uniform random number generator as the source of 

randomisation in both the training and the recursive SB phases of RandomLA.  The 

choice of LDS will be ‘Sobol’.  First, we present an example that compares the effect 

of using QMC rather than MC for training the linear estimator.  Then we investigate 

the effectiveness of QMC for MC simulation with and without Statistical Blockade. 

To provide comparison for training, an SRAM32X1 array circuit was taken as an 

example that is described in more detail in Chapter 8.  The convergence of the linear 

estimator training using MC and QMC was analysed and compared.  As shown in 

Figure 7.3(b), the QMC training converges more quickly and smoothly to an 

estimator producing the minimum ‘variance of difference’ attainable, approximately 

9×10
-31

, than MC training with pseudo-random vectors, which is shown in figure 

7.3(a).   The measure is just the variance of the prediction error.  With QMC training, 

the variance becomes close to optimum with about 300 training circuits, whereas the 

number needed for MC is about 700 training circuits.  The reason for this improved 

training is probably the more reliable coverage of QMC, for a given number of 

circuits (sample size) across the whole domain of parameters which gives us more 

‘tail’ circuits, even without the advantages of Statistical Blockade. 
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                        (a)                                                                     (b) 

Figure 7.3: Error analysis of linear estimators in RandomLA training phase,  

                  (a) MC simulation, and (b) QMC simulation. 

 

Figure 7.4 shows the yield predictions obtained by MC and QMC analysis with 

and without Statistical Blockade and Pareto fitting for the ‘binary full adder’ circuit 

in figure 4.6. There are 36 transistors, and each was randomized based on two PCA 

components giving 72 parameters for the ‘transistor-level’ statistical analysis.  The 

non-blockade analysis was carried out, with MC randomization only, on 3000 

circuits which took 3497.1 seconds. The results were taken as a bench-mark for 

comparison with both MC-SB and QMC-SB, though a bench-mark close to this 

could have been obtained with about 700 fewer circuits using non-Blockade QMC.  

Both MC and QMC Statistical Blockade were applied using 300 training circuits in 

both cases. The estimator order, as always, was equal to the number of parameters, 

i.e. 72 in this case. The analysis time for recursive SB with MC and QMC was 146.6 

s and 120.6 s respectively, achieving close to 99% savings in each case. With 

statistical variation from run to run, depending on how many circuits are blocked, it 

is not uncommon for QMC-SB to take longer than MC-SB when the same number of 

circuits are specified.  Where the criterion is accuracy and reliability, QMC reduces 

the required sample size.   For a given sample size, the advantages of QMC with SB 

over ‘non-SB’ are not as striking as those of MC-SB over MC without SB.  More 

analysis is needed on this matter. As in Section 6.8, the effects of the difference in 
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mean and standard deviation produced by the non-SB simulations and the Training 

procedure can be seen in Figure 7.4.  If better estimates were available, the graphs 

would be closer.  For QMC, the maximum discrepancy in yield failure estimates 

between SB and non-SB is a probability difference of about 0.003 or 0.3 %. For MC 

the discrepancy was less, i.e. about 0.1%.  Further comparisons will be presented in 

the next chapter. 

 

 

 

 

 

 

                            

                

                        

(a) (b) 

Figure 7.4: (a) MC-SB compared to MC-non-SB for BFA (3000 circuits),  

                      (b) QMC-SB compared to MC-non-SB for BFA (3000 circuits). 

 

7.6   Conclusions 

This chapter concerns the use of Quasi Monte Carlo (QMC) techniques and ‘low-

discrepancy’ sampling to achieve further efficiency improvements, over what was 

achieved in earlier chapters, with Monte Carlo circuit simulation. The effect of using 

a ‘Sobol’ low discrepancy sequence generator to replace the uniformly distributed 

pseudo-random number generator previously used to produce the required Gaussian 

parameter variation has been discussed and illustrated by example. There is a clear 

advantage in the convergence of the estimator training.  Further analysis is needed to 

establish the advantages for simulation with Statistical Blockade.  The interaction 

between the advantages of QMC and those of SB is clearly significant.  The gains are 

not orthogonal.  
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Chapter 8  

 

Results and Evaluation with SRAM Arrays 

 

 8.1   Introduction 

Large amounts of static random access memory (SRAM) are nowadays seen in 

integrated circuits.  In sub-45nm MOSFET technology, the increase in fabrication 

variation will inevitably produce increased failure rates. Statistical testing must be 

performed on the designs of arrays before they are fabricated. With hundreds of 

millions of SRAM cells typically on a single die, the reliability of a design must be 

accurately estimated for output measurements up to six standard deviations from the 

mean [116]. The design procedure is expensive and is said to account for up to one 

third of the total production costs [117]. This illustrates the need for statistical 

analysis with the computation saving aimed for in this thesis.  The use of RandomLA 

will be illustrated by applying the techniques it implements to statistical yield 

estimation for SRAM circuits, using MC and QMC analysis.  

 

8.2   Description of the Simulations and Evaluation 

The circuits used to test the simulation facilities range from a single SRAM cell to a 

32×8 array of SRAM cells. There are eight seed netlists, describing the constructions 

of circuits simulated. All the circuits are implemented with 35nm MOSFETs and 

simulations are executed on an Intel Pentium dual core processor with 1M Cache, 

2.30 GHz CPU clock frequency. 
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8.2.1   Single SRAM Cell 

MC simulation was applied to the single transistor level SRAM circuit, shown in 

Figure 8.1(a). A ‘seed’ netlist describes this circuit with six transistors; two for each 

inverter. The ‘Bitline’ was set to ‘1’, the ‘bit’ node was initialised to ‘0’ and the 

‘Wordline’ input switched from ‘0’ to ‘1’ at a fixed point in time, causing the ‘bit’ 

output to switch to ‘1’ with random delay ‘write1’. The SPICE harness randomises 

the device parameters and makes repeated calls to SPICE to analyse the effect of 

these parameter variations on the ‘write1’ delay at the node of ‘bit’.  The statistics 

from the output of the MC simulation at pure transistor level allowed a ‘SBCB’ 

SRAM behavioural model to be constructed.  After 3000 MC simulations, the 

resulting data set of ‘write 1’ delays was statistically processed to allow the required 

distributions, means and standard deviations to be estimated. The outputs obtained 

from this procedure are illustrated in Figure 8.2.   

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 8.1: Single SRAM cell hierarchy circuits, (a) transistor level and (b) transistor 

- logic gate level. 
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                                (a)                                                                (b) 

 

 

 

 

 

 

 

 

  

                                    (c)                                                             (d) 

 

Figure 8.2: Single transistor model SRAM cell ‘write 1’ delay MC simulation,   

                     (a) ‘write 1’ signal waveforms, (b) delay time distribution histogram, 

                       (c) normal distribution evaluation, (d) Gauss fit and statistics obtained. 

 

Figure 8.2(a) shows ‘write1’ delay waveforms, and plot (b) shows a delay 

probability distribution histogram.  Figure 8.2(c) is a ‘normal probability plot’ to 

establish the degree to which it is Gaussian;  the almost ‘straight line’ graph indicates 

a very strong Gaussian tendency.  Figure 8.2(d) shows a Gaussian fit to the 

histogram.  Numerical results obtained for the mean µ and standard deviation σ are 

indicated. In this case they are µ = 36.78e-12 s, σ = 0.371e-12 s. 

 µ = 3.6776e-011s   

 σ = 3.7113e-013s  
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The netlist, ‘ngswSRAMCell.seed’ in Table 1 represents the SBCB model of the 

single SRAM cell as constructed above .  Ideally, this should be done with a tau 

model and switching element lookup table.    

ngswSRAMCell.seed 

****SBCB SRAM Cell netlist for NGSPICE, 

***Zheng 

*.GLOBAL vdd 

 

SWmg_nmos2 bitn 0 X 0 SW OFF   

SWmnmosin1 prim1 X wlprim 0 SW OFF 

SWmnmosin2 bitn prim0 wlprim 0 SW OFF 

SWmg_nmos1 X 0 bitn 0 SW OFF 

SWmg_pmos1 X vdd vdd bitn SW OFF 

SWmg_pmos2 bitn vdd vdd X SW OFF 

 

R1 X bitp 1K 

C1 bitp 0 [[3.6776e-14, 3.7113e-16]] 

 

.IC v(bitn)=1.2 v(bitp)=0 

 

Vdd vdd 0 1.2 

Vwlprim wlprim 0 DC=0 PULSE(0 1.2 0.1n 0.01p 0.01p 0.2n 0.4n)  

Vprim1 prim1 0 1.2 

Vprim0 prim0 0 0 

 

.TRAN 0.001n 0.5n 

.PRINT TRAN v(bitp) v(bitn) v(wlprim)    

.PROBE v(bitp) v(bitn) v(wlprim)   

.OPTION POST 

 

.MODEL SW SW 

+vt = 0.8 

+vh = 0.2  

+ron = 0.001 

+roff = 1000000 

 

.END 

 

Table 8.1: Netlist of SBCB model of single SRAM cell. 

 

The single SRAM SBCB model now represents the transistor-level model and is 

suitable for ‘behavioural’ level statistical simulations.  

 

8.2.2   SRAM Arrays 

In this section, three SRAM arrays, 8×1, 32×1, 32×8, are taken as test-benches.  Both 

transistor-level and SBCB-level models of the three SRAM array were statistically 
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simulated with the harness RandomLA in its four phases.   The evaluations were as 

follows: 

(a) ‘Non-SB’ MC simulation with 3000 randomised circuits to obtain failure yield 

probabilities without Pareto fitting:  The results are presented in graphical form.   

Simulation run-times were recorded for comparison with the run-times for the SB 

simulations.  MC training with 300 ‘uniform’ randomised parameter vectors 

produced the estimator coefficients prior to this ‘non-SB’ MC simulation run.  

(b) ‘SB’ MC simulation of 3000 randomised circuits with recursive SB and Pareto 

tail distribution fitting.   The ‘tail start’ was defined as two standard deviations from 

the mean. The graphs and run-times obtained allowed the accuracy and 

computational efficiency of MC with and without SB to be compared. The same 

previously calculated estimator coefficients as used for the ‘non-SB’ MC runs were 

re-used.  The MATLAB pseudo-random number generator was not reset for each run, 

therefore the 3000 randomised circuits were different for each run. 

(c) ‘Non-SB’ QMC simulation of 3000 circuits with parameter vectors randomised 

by ‘Sobol’ vectors.  The results are presented in graphical form with run-times 

tabulated for comparison with other simulations.  QMC training with 300 ‘Sobol’ 

randomised parameter vectors produced the estimator coefficients prior to this run. 

(d) ‘SB’ QMC simulation of 3000 circuits with parameter vectors ‘randomised’ by 

Sobol vectors, and employing recursive SB and Pareto tail distribution fitting. The 

same previously calculated estimator coefficients as used for the ‘non-SB’ QMC runs 

were re-used.  The 3000 circuits were not necessarily different for each run. 

All the SB simulation runs recorded the number wrong decisions ‘not to block’.  

The number of incorrect blocking decisions was not determined as this would have 

required blocked circuits to be analysed to check the blocking decision, thus 

invalidating the run-time comparisons. 

 

8.2.2.1   SRAM8××××1 Array 

Eight copies of the circuit in Figure 8.1(b) were cascaded to construct the array 

shown in Figure 8.3.  There are 48 transistors within the circuit.  Transistor level 
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simulations of the array were carried out to estimate the yield failure probability for 

different values of yield threshold when statistical variability is included in the model 

for each transistor.  The statistics for the parameter variation were derived from 

analyses of the 35nm transistor model data set provided by RandomSPICE. Two 

extreme cases were considered: firstly where there is assumed to be strong intra-die 

cell-to-cell correlation between randomised device parameters of a particular type 

and secondly where there is no intra-die correlation between devices from cell to 

cell.  In each case the maximum delay or ‘worst case’ delay scenario applies where  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: SRAM8×1 array circuit 
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the SRAM cell with greatest delay among the array of 8 randomised cells determines 

the probability of yield failure.  Four graphs obtained for yield failure probability 

against allowable delay threshold for the strong correction scenario are shown in 

Figure 8.4.  Essentially the ‘vth0’ parameters of all six devices within each of the 

eight cells were parameterised by the same set of six random variables, generated 

with an appropriate value of  λ, where λ is the parameter defined in Section 4.5 of 

this thesis. This partitions the correlation matrix into six sub-matrices (one for each 

device within a cell) each with λ = 0.  The four graphs were obtained for (a) 

Traditional Monte Carlo Simulation, (b) Quasi Monte Carlo (QMC) Simulation 

without Statistical Blockade (SB), (c) Monte Carlo Simulation with SB and (d) QMC 

simulation with SB.   

Figure 8.5 plots the same results that are presented in Figure 8.4, but in a way 

that allows the results from traditional MC analysis with and without SB, and QMC 

with and without SB, to be compared. In all these graphs, the timing reference was 

set 80 ps from the start of the run with the excitation pulse-edge occurring at 100ps 

from the start, which is 20 ps from the reference.  

As estimated by the non-SB MC and QMC runs with 3000 randomised circuits, 

the mean delay ‘meanNB’ was found to be 36.7 ps from the reference, or 16.7 ps 

from the pulse-edge.  The standard deviation ‘sigmaNB’ was found to be 0.376 ps.  

Therefore, the non-SB graphs, figures 8.4(a) and (b), start at the ‘start of tail’ which 

is two standard deviations from the mean, i.e. at 36.7 + 2 × 0.376 = 37.5 ps, from the 

timing reference.   

As observed in Chapter 6 with reference to figure 6.10, there will be a 

discrepancy between the mean and standard deviation estimates ‘meanTR’ and 

‘sigmaTR’, obtained from the training phase and the more accurate estimates 

‘meanNB’ and ‘sigmaNB’.   This affects the accuracy of the SB results presented in 

figure 8.4(c) for MC and figure 8.4(d) for QMC.  The differences are more clearly 

seen in figure 8.5(a) and (b) where the effect of QMC with SB is significantly closer 

to the traditional MC result than the MC with SB result.  The maximum difference in 

predicted yield probability for MC with and without SB occurred at a yield threshold 

of about 37.8 ps from the timing reference (i.e. 17.8 ps from the edge). It is equal to 
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an estimated yield probability difference of about 0.0025 or 0.25 %. For QMC with 

and without SB, the maximum difference in estimated yield probability is less, i.e. 

about 0.002 or 0.2 %, this occurring at again at about 37.8 ps from the reference.  

The reasons for the differences, apart from the differing estimates of mean and 

standard deviation, may be the shape of the Pareto distribution.  Improvements can 

be made to both these aspects of the SB programs.  A summary of computation times 

obtained for the simulation runs represented in figures 8.4 and 8.5 for the strongly 

correlation case are presented in Table 8.2.  The parameter ‘W’ is the number of 

circuits incorrectly blocked by the SB method.  In these examples W was always 

zero for QMC simulations, while several non-zero values usually occurred for MC.  

This supports the view that QMC training appears to improve the accuracy of the 

estimator training. 
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                    (a) MC without SB                                    (b) QMC without SB 

 

 

 

 

 

 

 

                       (c) MC with SB                                          (d) QMC with SB 

Figure 8.4: Yield obtained from 3000 transistor level simulations of SRAM8×1 for 

strongly correlated case, 

 (a) MC without SB, (b) QMC without SB, (c)MC with SB and (d) QMC with SB. 

 

 

 

 

 

 

 

 

                              (a) MC                                                           (b) QMC 

Figure 8.5: Comparison of yield analysis results of  SB and non-SB for transistor 

level SRAM8×1 simulations for strongly correlated case, (a) MC and (b) QMC.  
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The results obtained from the non-correlation case are presented in Figures 8.6 

and 8.7.  These were obtained by connecting the eight outputs from the array, all 

initialised to zero, to a behaviourally modelled NAND gate.  A CMOS NAND gate 

cannot be used here because of the possibility of introducing random switching speed 

variations in the ‘pull down’ NMOS transistor chain, depending on the order that the 

randomised input changes occur.  If the data inputs to all eight cells are set to 1, a 

transition from 1 to 0 in the NAND gate output will occur only when all eight SRAM 

cells have correctly changed state to ‘1’ in response to a single trigger applied 

simultaneously to all of them.   The eight cells were randomised by independent 

variables without correlation.   

For the non-correlated case, the non-SB calculated mean was observed to be 

40.1 ps from the timing reference (i.e. 20 ps from the edge) and the standard 

deviation was 0.263 ps.  There is a reduction in standard deviation from 0.376 ps for 

the strongly correlated case to 0.263 ps, which is a factor of 0.69.  The increase in the 

mean delay from 16.7 ps to 20.1 ps is explicable.  With independent Gaussian 

parameter variations, the distribution of worst case cell delay which determines the 

yield failure probability is no longer Gaussian.  It becomes a type of ‘Gumbel’ 

distribution [133].  It may be shown that, for eight cells, the standard deviation of the 

worst case delay measurements may be expected to reduce by a factor of about 0.64 

in comparison with the strongly correlated case, and the mean may be expected to 

increase by the addition of about 1.43 times the standard deviation obtained for the 

strongly correlated case.   Therefore we expect the mean to increase to 36.7 + 1.43 × 

0.376 = 37.24 ps from the timing reference, and the standard deviation to decrease to 

about 0.376 × 0.64 which is 0.24 ps.  The ‘worst case’ pdf for eight cells is close to 

Gaussian and is approximated as such for the non-SB and as Pareto for the SB case. 

Ideally a more appropriate Gumbel-type distribution should have been explored.  The 

results obtained are close to these predictions; i.e. the standard deviation reduces by a 

factor of 0.69, and the mean increases by 1.436 standard deviations.  Comparing the 

strongly correlated case (Figure 8.4) with the non-correlated case (Figure 8.6) it can 

be seen that the effect of intra-die correlation can have a significant effect on 

predictions of yield failure probability.   
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               (a) MC without SB                                              (b) QMC without SB 

 

                         

 

 

 

 

            (c) MC with SB                                                     (d) QMC with SB 

Figure 8.6: Yield obtained from 3000 transistor level simulations of SRAM8×1 for 

non-correlated case,  

(a) MC without SB, (b) QMC without SB, (c) MC with SB and (d) QMC with SB. 

 

 

 

 

 

 

 

                           (a)  MC                                                            (b) QMC 

Figure 8.7: Comparison of yield analysis results of SB and non-SB for transistor 

level SRAM8×1 simulations for non-correlated case, (a) MC and (b) QMC.  
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Comparing the yield probability graphs, e.g. Figures 8.4(a) and 8.6(a), it may be 

seen that, given the same means and standard deviations for the parameter variations,  

the yield appears higher for the strongly correlated case than for the non-correlated 

case for a given permitted delay threshold.  Hence, assuming no intra-die correlation 

where it exists could give a pessimistic estimation of yield.  

Then, each of the eight cells were replaced by a behavioural model based on 

SBCB ‘tau and delay’ models of the six transistors shown in figure 8.1(a) with 

parameters derived from a statistical analysis of the RandomSPICE Toshiba 35nm 

transistor model set.  The simulations carried out at transistor level, as described 

above, were now repeated at behavioural level.   The results obtained for the strongly 

correlated case were very similar to those presented in Figures 8.4 and 8.5 and are 

not reproduced.  The computation times required for the strongly correlated case are 

summarised in Table 8.2 and compared with the computation times required for the 

corresponding transistor level analyses.  The overall computational time-saving due 

to the use of SBCB modelling with MC and QMC, for each approach with and 

without SB are summarised in this table.  Comparing traditional ‘non-SB’ MC with 

QMC employing SB, the computational time reduced from 4351.98 to 21.63 

seconds, giving an overall time saving of about 99.5%.  Similar accuracy and 

computational savings were obtained for the non-correlated case, though with longer 

run-times. 

 

8.2.2.2   SRAM32××××1 Array 

Thirty two copies of the circuit in Figure 8.1(b) were cascaded to construct the array 

shown in Figure 8.5.  There are 192 transistors within the circuit.  Again, transistor-

level statistical simulations were carried out.  Then an SBCB model of the 32×1 

SRAM array was produced using the SBCB model established previously, and it was 

also simulated.   Since the graphical results are quite similar to the ones in Section 

8.2.2.1, except with different delays, only run-time results are presented and appear 

in Table 8.3. 
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Table 8.2: Computational times and time savings for MC/QMC simulations of the 

SRAM8X1 array (strongly correlated case). 

 

 

 

Transistor model: ngSRAM32X1.seed SBCB model: ngswSRAM32X1.seed 

MC QMC MC QMC 

 

NonSB SB NonSB SB NonSB SB NonSB SB 

681.61 615.40 27.54 31.2 CPU 

time/s 
10785.34 

W = 0 

10144.14 

W = 0 

740.80 

W = 18 

823.07 

W = 0 

Time 

saving 
93.68% 93.93% 96.28 96.21% 

Overall time  saving = (10785.34 - 31.2)/ 10785.34 = 99.71% 

 

Table 8.3: Run-times and run-time savings for MC/QMC simulations of the 

SRAM32×1 array (strongly correlated case). 

Transistor model: ngSRAM 8X1.seed SBCB model: ngswSRAM 8X1.seed 

MC QMC MC QMC 

 

NonSB SB NonSB SB NonSB SB NonSB SB 

187.12 238.28 22.4 21.63 CPU 

time/s 
4351.98 

W = 5 

4050.7 

W = 0 

623.56 

W = 0 

693.14 

W = 0 

Time 

saving 
95.7% 94.12% 96.41% 96.88% 

Overall time saving = (4351.98-21.63)/4351.98 = 99.50% 



Chapter 8. Results and Evaluation with SRAM Arrays 

 

 185 

8.2.2.3   SRAM32××××8 Array 

Finally, thirty-two copies of figure 8.1(b) were cascaded to construct the 32×8 array 

shown as Figure 8.8. There are 1536 transistors within the circuit.  The SBCB model 

of this array is established from the single cell model as in Table 8.1, and connected 

together as shown in Figure 8.8.  The simulations were undertaken for the strong 

correlation case only.  

Figures 8.9 and 8.10 present the graphs obtained from the simulations; the run-

times are given in Table 8.4. The observed delay mean and standard deviation are 

very close to the ones in figure 8.4 and 8.5 for the SRAM8×1 array, which is as 

expected for the strongly correlated case with all cells in parallel.  

Analysis of the results revealed that: 

(a) SB with Pareto fitting version is reasonably accurate and much faster in 

comparison to the “non-Blockade” version. 

(b) For the SB simulations with strong correlation, the number of wrong decisions 

not to block was always close to zero for QMC with Sobol  points, while the number 

for MC fluctuated between zero and about 20 when there were 3000 circuits being 

analysed. This is an indication of the accuracy of the linear estimator which was 

found to be better for ‘Sobol’ vector training with under 200 training circuits, than 

for MC with pseudo-random parameter vectors. The results also demonstrate that 

QMC with Sobol vectors can make non-Blockade simulation more efficient, reaching 

a given accuracy with fewer runs than are required with MC.   

(c) For the non-correlation examples, the estimator was much less accurate for both 

MC and QMC training.  This caused many more wrong decisions not to block.  The 

results of these wrong decisions are discarded for the Pareto tail fitting procedure 

with some loss of efficiency.  The behaviour of the linear estimator when adapting to 

the maximum delay criterion explains this loss of efficiency.   

(d) The use of QMC with ‘Sobol’ vectors makes non-Blockade more efficient than 

with MC in that a given accuracy is achieved with fewer runs. 
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Figure 8.8: SRAM32×8 array circuit. 
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          (a) MC without SB                                               (b) QMC without SB 

  

 

 

 

 

 

 

 

 

 

 

 

                 (c) MC with SB                                             (d) QMC with SB  

 

Figure 8.9: Yield obtained from 3000 behavioural level simulations of SRAM32×8 

for strongly correlated case,  

(a) MC without SB, (b) QMC without SB, (c) MC with SB and (d) QMC with SB. 

 

 

 

                                  

 

 

 

 

 

                      (a) MC                                                                 (b) QMC 

Figure 8.10: Comparison of yield analysis results of SB and non-SB for behavioural 

level SRAM32×8 simulations for strongly correlated case, (a) MC and (b) QMC. 
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Transistor model: ngSRAM32X8.seed SBCB model: ngswSRAM32X8.seed 

MC QMC MC QMC 

 

 

NonSB SB NonSB SB NonSB SB NonSB SB 

1481.69 1183.59 63.70 69.84 CPU 

time/s 
47263.96 

W = 13 

39373.99 

W = 0 

2376.14 

W = 6 

2148.03 

W = 0 

Time 

saving 
96.87% 96.99% 97.32% 96.75% 

Overall time saving = (47263.96-69.84)/47263.96 = 99.85% 

 

Table 8.4: Run-times and time-savings for MC/QMC simulations of the SRAM32×8 

array (strongly correlated case). 

 

(e) QMC with SB compared with QMC alone offers further savings, but these remain 

to be fully analysed. 

(f) When comparing overall time-savings for MC with SB and QMC with SB, both 

the training and the analysis times must be taken into account. A lower number of 

training circuits were required for QMC simulations than for MC to reach a given 

estimator accuracy. 

From the Gaussian distribution shown in Figure 3.1, it may be deduced that if 

the delay distribution is Gaussian and the tail is assumed to start at two standard 

deviations from the mean, the percentage of unblocked circuits may be expected to 

be about 2.1 %.  Therefore, out of 3000 randomly generated circuits about 63 

unblocked circuits should be observed. Out of the first 500 circuits, about ten 

unblocked circuits should occur, and this observation suggests a simple adaptation 

mechanism for countering inaccuracy in the estimator.  After a certain number of 

random circuits, say 500, have been generated, if the number of unblocked circuits is 

significantly different from what is expected, say 10, the tail threshold can be 

decreased or increased accordingly.  The decision can be revisited later in the run, 

say after 1000 circuits, 2000 circuits and so on.  This adaptation was found useful in 

the non-correlated examples presented in this chapter where the accuracy of the 



Chapter 8. Results and Evaluation with SRAM Arrays 

 

 189 

estimator was found to be lower than for the strongly correlated examples.  

Decreasing the threshold does not greatly affect the computation run-time if the 

intention is to base the tail estimation on a specific number of circuits, say 2.1 % of 

the total.  This approach appears even more advantageous when higher deviations 

from the mean are to be examined, say three or more standard deviations.  Instead of 

specifying a fixed number of randomised circuits, the simulations could be allowed 

to continue until a suitable number of unblocked circuits have been produced to 

allow a reliable estimation of the tail distribution.   

The timing results quoted in this chapter are for single core non-distributed 

computation. The RandomLA SPICE harness has been developed in such a way that 

it may be run on multi-core machines and distributed frameworks such as Condor. 

Using parallel or distributed computing facilities can achieve great time-savings. For 

example, re-running the simulations in this chapter on a dual core PC achieve a time 

saving which is very close to 50%, i.e. a factor of two reduction in runtime.  Using 

Condor, the run-time of the transistor level simulations of SRAM32×8 reduced from 

47263.96s (13.13 hours) to 720s (12 minutes).  

  

8.3   Conclusions 

These investigation are based on the use of  RandomSPICE with an early version of 

the RandomLA (Random LSI analysis) statistical analysis harness which has four 

phases: 

1. RandomLA-Nonblockade (either MC or QMC)  

2. RandomLA-Training (either MC or QMC) 

3. RandomLA-Evaluation (either MC or QMC) 

4. RandomLA-RecursiveSB  (either MC or QMC) 

     The results of accuracy evaluations of the linear estimator among all the 

experiments undertaken indicated that, as expected, the number of runs required with 

traditional MC training does not have to increase as dimensionality increases.  As a 

given type of circuit, e.g. SRAM arrays with strong intra-die correlation, gets more 

and more complicated it seems to be still reasonable to use the same number of runs 
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for a certain simulation error.  The SPICE computation time increases greatly with 

dimensionality, but the number of runs can remain approximately the same.  

However, the estimator’s accuracy has been found to vary for different types of 

simulations.  For example, it is lower for SRAM circuits with no intra-die 

correlation.  A modification to the RandomLA software has therefore been made, 

whereby the ‘start of tail’ is adapted according to the number of circuits being 

blocked.  This makes the accuracy of SB results less critically dependent on the 

accuracy of the estimator.  Given unlimited run-times, the accuracy of the results 

obtained from SB need not be affected by the accuracy of the estimator, but where 

run-times must be minimised, estimator accuracy becomes important.  

For yield estimates due to 35nm MOSFET variability, RandomLA, as developed 

in this thesis, has been found to provide Monte Carlo and QMC simulations for ICs 

containing up to 1536 transistor devices.   Simulations and statistical analysis both at 

device level and behavioural model level give compatible results.  The results 

indicate that assuming no intra-die correlation where it exists could give a 

pessimistic estimation of yield.  

The results obtained from the simulations of SRAM arrays demonstrate the 

potential of RandomLA to achieve computation reduction for yield analysis with a 

delay specification. The RandomLA software is highly suitable for parallel and 

distributed implementations, which have already been shown to achieve great time-

savings.  
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Chapter 9 

 

Conclusions and Further Work 

 

9.1   Introduction 

This chapter reviews the research aims, objectives and achievements of the work 

presented in this thesis and draws some general conclusions.  It then suggests some 

ideas for follow-up work. 

 

9.2   Review of Research Aims, Objectives and Achievements 

As defined in Chapter 1, the aims of this thesis were to reduce the computational 

complexity of traditional Monte Carlo (MC) methods for modelling the effects of 

variability in deep sub-micron CMOS circuits, and to enable a deeper understanding 

of these effects.  To realize these aims, three objectives were defined, as reviewed in 

the following three sections along with the achievements gained with respect to each 

objective. 

 

9.2.1   Design and Implementation of a Statistical Simulation Method  

The first objective was the design and implementation of a statistical simulation 

method using traditional MC methods with facilities for including the effect of inter-

die and intra-die correlation in the variability. In fulfillment of this objective, a 

statistical simulation method using traditional MC methods was implemented as a 
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MATLAB harness. This harness calls NGSPICE repeatedly to analyse a series of 

different circuits generated by randomly varying the parameters of a ‘seed’ netlist in 

ways that reflect the variability of fabricated circuits.   The results of the analyses are 

combined to estimate statistical properties describing the effects of the variability. 

This thesis focuses on the effects on the overall delay of a circuit which must be less 

than some declared ‘yield threshold’ if the circuit is to be considered viable. The 

MATLAB harness has facilities for including the effects of intra-die correlation in the 

variability and has been shown to be suitable for distributed or parallel computation. 

Examples are presented to show that the traditional MC technique, as implemented in 

software, is capable of producing statistical estimates of yield where viability is 

determined by a threshold of overall delay.  It has been possible to demonstrate the 

effect of intra-die correlation in some of these examples. 

 

9.2.2   Dimension Reduction Techniques  

The second objective was to investigate dimension reduction techniques for MC 

simulation, focusing on the use of Principal Components Analysis (PCA) to exploit 

any correlation that exists between device parameters, and the use of behavioural 

modelling for replacing device level analogue sub-circuits by computationally 

simpler circuit models.  A study of the fundamental theory of Monte Carlo analysis 

techniques, concentrating initially on integration for simplicity, emphasized the 

importance of statistical independence among the ‘source of randomisation’ 

parameters.  Well known results concerning convergence and error analysis take this 

for granted, and become invalid otherwise.  PCA allows independent random vectors, 

used as the source of randomization, to be transformed to back to circuit parameters 

with the appropriate degree of correlation.  It was shown how specified degrees of 

correlation may be introduced into component values and device parameters, with 

illustrations based on the ‘exponential model’ of proximity correlation. The same 

approach is applicable to principal components resulting from the PCA analysis of 

component and device parameters.  Only intra-die correlation is considered in detail, 

though a similar approach may be used for inter-die correlation. The usefulness of 
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PCA has been outlined in this thesis with a basic example indicative of the analysis 

procedure.  A behavioral modelling technique based on the ‘tau delay and source 

modelling’ approach has been introduced, and examples have been devised to 

explore its advantages.  The technique has been compared to similar ‘current source 

modelling’ approaches proposed in the literature [124] [127] [129]. The use of ‘look-

up table’ switches each with a ‘Tau model’ of delay [16], with the RC time-constant 

and the look-up table elements optimized to match the required statistically variable 

switching waveform has been implemented and evaluated.  This approach has proved 

well suited to the computational methods adopted by SPICE and the demands of 

simulating asynchronous circuits whose behaviour relies on many ‘C-elements’ with 

highly non-linear bistable operation, switching at close but different instants of time. 

 

9.2.3   Further Computation Reduction Methods  

The third objective was to investigate two further computation reduction methods 

which are a technique known as ‘Statistical Blockade’ (SB) based on published ideas 

of ‘extreme value theory’ [15],  and the use of Quasi MC techniques based on  the 

use of ‘low discrepancy sequences’[123].  The thesis investigates to what extent 

computation reduction can be achieved by these two methods both individually and 

in combination.   

The Statistical Blockade (SB) algorithm applies Extreme Value Theory (EVT) to 

circuit analysis by eliminating randomised parameter vectors that are considered 

unlikely to produce ‘rare event’ circuits that are of interest because they are likely to 

fail.  The process of SB requires a classifier which, in this thesis, is implemented as a 

‘least squares’ trained linear estimator combined with a threshold comparator. After a 

period of initial training, the classifier is trained recursively from only the unblocked 

circuits as the simulation proceeds. Experiments with sample circuits confirm that 

the computational complexity involved in introducing the biased sampling, and 

compensating for it, can be significantly less expensive than performing many 

unnecessary circuit simulations as happens with traditional MC. It was shown that 

significant reduction is achievable with some cost in accuracy that has been 
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estimated. For a selection of SRAM arrays containing up to 1536 transistors modeled 

with parameters appropriate to 35nm technology, significantly faster statistical 

analysis has been shown to be possible when the aim is to obtain practical 

predictions of the yield for fabrication.  Saving of up to 99.87% in computation time 

was obtained with these circuits. Causes of inaccuracy have been identified, for 

example the mean and variance estimates obtained from the training phase, the 

nature of the Pareto approximation to the Gaussian distribution tail and the Gaussian 

assumption itself.  There are possible remedies to all these problems, which proved 

to be beyond the scope of this thesis.   

It is known that the use of low discrepancy vector sequences can achieve 

significant speed gains over standard Monte Carlo integration techniques by reducing 

the number of input vectors needed for a given accuracy [15].  Our results indicate 

that similar gains may be obtained when QMC is used with ‘low-discrepancy’ 

‘Sobol’ sequence sampling for statistical circuit simulation. The use of SB with 

traditional MC or quasi-MC has been shown to offer considerable promise for 

computation reduction.  The gains of each of these approaches are not orthogonal, 

but there are still good reasons for using quasi-MC with SB to maximize 

computational savings.  

As fulfilled within the scope of this thesis, the three objectives mentioned above 

have achieved greater understanding of the effects of variability in nano-CMOS 

circuits, and how they may be statistically modelled. The objectives have also led to 

new insight into ways of achieving reduced computational complexity, and have 

produced illustrations of what is achievable in the context of delay specifications. 

 

9.2.4   Overall Conclusions 

The causes and effects of variability in integrated circuits have been studied, and it is 

clear that anticipating the effect of variability must be a critical aspect of design 

procedures.  In nano-scale technology, ‘intra-die’ variability, has become a very 

important consideration, and with dimensions approaching atomic scales, intrinsic 

atomic scale variations such as line edge roughness and dopant granularity have 
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become the main sources of this variation.  Traditional design methodologies based 

on worst case corner analysis are no longer acceptable and methods based on 

information obtained by statistical circuit analysis techniques are now required. The 

effect of correlation in ‘intra-die’ and ‘inter-die’ variation which must be given due 

consideration  

Because of the high dimensionality of the parameter space, analytical methods 

are ruled out.  However, the use of Monte Carlo simulation is an option that has been 

widely explored.   Monte Carlo analyses are particularly suitable to nano-scale IC 

statistical simulation to achieve statistical estimates of properties of interest.  A major 

problem is the computational cost of carrying out sufficient simulations to produce 

statistically reliable results for all but the most trivial circuits. 

Statistical variability analysis has been available in the commercial package 

‘HSPICE’ for some time, but it is not comprehensive and HSPICE is not suited to a 

research project because it implements proprietary approaches without the flexibility 

needed for investigating new research ideas.  NGSPICE is an open source mixed-

signal (analogue and digital) circuit simulator that is under continuing development 

as part of a GNU project. The work in this thesis is intended be relevant to this 

project.  

 Although a software package called ‘RandomSPICE’ [14] was employed 

initially for the randomization process required,  a new randomization package called 

“RandomLA” had to be developed to implement the research in this thesis.  A major 

consideration was the need to perform the simulations and analyses with reasonable 

computation and to allow the use of parallel computation as provided by MATLAB 

and CONDOR [33] [34] [35] for circuits of realistic complexity.  Hence the need for 

a number of complexity reduction techniques and the use of NGSPICE as explored 

and evaluated in the thesis.   

The randomization can reflect both intra-die and inter-die variation of devices 

and other circuit components such as wires.  Intra-die transistor parameter variation 

can be based on measurements and the results of 3D device modelling as carried out 

by our collaborators at Glasgow University [20].  Applying principal components 

analysis (PCA) to such sets of device parameters reduces their dimensionality and 



Chapter 9. Conclusions and Further Work 

 

 196 

provides a convenient way of introducing intra-die correlation.  The subsequent 

computation reduction methods investigated in this thesis, i.e. behavioural modelling,  

‘Statistical Blockade’ based ‘extreme value theory’ [15], and the use of ‘low 

discrepancy’ SOBOL sequences have been shown to have significant potential for 

computational complexity reduction.  

 

9.3   Further work 

The use parallel processing for efficiently undertaking the intensive computation 

required for statistical simulation remains to be fully explored taking into account the 

intrinsically parallel nature of massive Monte Carlo simulations [34].  MATLAB 

itself and the ‘CONDOR’ distributed computing facility provide all the facilities 

needed for this.  All that is required is an implementation of NGSPICE and 

MATLAB on all worker machines.  The fact that NGSPICE is open source and 

readily installed on any machine, without license, is a great advantage.  MATLAB is 

site licensed at Manchester University, though there are restrictions on parts of its 

functionality. 

As mentioned in Chapter 5, the use of Verilog-defined functionality is clearly a 

useful tool for behavioural modelling but became beyond the scope of the thesis as 

presented. Verilog is widely used and can define circuits at a level of abstraction 

appropriate for behavioural analysis, architectural design, and verification of 

functionality.  The Balsa tool described in Chapter 3 for designing asynchronous 

circuits produces appropriate output.  Verilog-A is supported by HSPICE and 

NGSPICE to allow a mixture of Verilog-A descriptions and SPICE netlists to be used 

to define behavioural or mixed transistor-level and behavioural simulation to be 

carried out.  As further work, there is scope for extending the behavioural models 

presented in Chapter 5 to include Verilog descriptions. 

The modelling of intra-die variability is achieved by a method which is 

applicable directly to component values and device parameters, and also indirectly to 

principal components which are transformed back to such values and parameters.  An 

approach to determining representative intra-die correlation models is described by 
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[3] and elsewhere. In future work real foundry data will be used to improve such 

models.    

As discovered in Chapter 5, randomizing ideal delays, even within quite modest 

circuits, causes SPICE to make increasingly slow progress and eventually to ‘hang’ 

(apparently).  The step-size selection algorithm is to blame and this may point to a 

fundamental problem with the use of SPICE for MC simulation and even simulating 

large asynchronous circuits (maybe).  Depending on how they are modeled, different 

switching events occurring at random throughout a large circuit may cause the step 

adaptation algorithm to try to model the very small timing differences and thus 

generate exceedingly small time-steps.  Therefore, in practice, the randomization 

should ideally be done with reference to the anticipated time-step size.  The 

modelling of delay by a linear time-invariant circuit, essentially a filter, with a ‘look-

up’ table to modify the wave-shape, seems to eliminate this problem for the examples 

we have considered.   However matching MC randomization of behavioural model 

parameters to the step-adaptation algorithm of SPICE is a matter deserving further 

investigation as there are great economies and insights to be gained.  There may be a 

need for an asynchronous version of SPICE where iteration step-size is localised.   

The use of recursion in Statistical Blockade can allow the defined ‘start of tail’ 

parameter to be gradually moved further away from the mean: typically from 2 to 3 

and then to 4 or more standard deviations. Through recursion, we can thus get more 

accuracy in more extreme parts of the tail. This has been implemented but in a sub-

optimal way. Computational savings are possible by updating rather than 

recalculating the estimator coefficients from scratch with the recursion. It would be 

useful to achieve this. 

While it was clear that, in the examples considered, there were advantages in 

using QMC rather than MC in the estimator training, as measured by the 

convergence of the prediction error, further analysis is needed to establish the 

advantages of QMC for simulation with Statistical Blockade and Pareto ‘tail fitting’.  

The interaction between QMC and SB has raised interesting questions, and is clearly 

significant.  The gains are not independent, and more experiments are needed to 

explore the interaction. 
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