
PERFORMANCE ANALYSIS OF

SYNCHRONIZATION CIRCUITS

A thesis submitted to the University of Manchester

for the degree of Master of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

By

Zhen Zhang

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 13

1.1 Background and Overview of Synchronizers 13

1.1.1 Classification of clock relationships 14

1.1.2 Metastability . 15

1.1.3 Initial motivation and existing problems 17

1.2 Thesis Contributions . 17

1.3 Thesis Overview . 19

2 Overview of Synchronization Circuits and Metastability 20

2.1 Metastability in the flip-flop . 20

2.1.1 MTBF . 21

2.1.2 MTBF for many synchronizers 23

2.2 Synchronization circuits in digital systems 24

2.2.1 Family of the two-flop synchronizers 25

2.2.2 Two-clock FIFO . 26

2.2.3 Synchronization circuits under specific clock relationships . 28

2.2.4 Stoppable clocks . 29

2.3 Summary . 29

2

3 Timing Boundaries and Average Data Cycles of the Two-Flop

Synchronizer Family 31

3.1 Two-flop Synchronizer . 31

3.1.1 Principles of operation . 32

3.1.2 Timing boundaries for the two-flop synchronizer 33

3.1.3 Average Data Cycle of the Two-Flop Synchronizer 35

3.2 Fast Four-Phase Synchronizer . 39

3.2.1 Operation principles . 40

3.2.2 Timing Boundaries for the Fast Four-Phase Synchronizer . 41

3.2.3 The average Data Cycle for the Fast Four-Phase Synchronizer 42

3.3 Fast Two-Phase Synchronizer . 43

3.4 Comparison of Three Synchronizers 44

3.5 Summary . 45

4 Behavioural Modelling and Cycle Times Prediction of The Two-

Flop Synchronizer 47

4.1 Behavioural modelling of the two-flop synchronizer 48

4.1.1 An example of behavioural modelling of the two-flop syn-

chronizer . 48

4.1.2 Count of Forward and Backward Cycles 50

4.2 Dependency of φ3 on φ1 . 54

4.3 Relationships between φ1 and the cycle times 60

4.3.1 Prediction of the forward cycle time 61

4.3.2 The relationship between φ3 and the backward cycle time . 65

4.3.3 Analyses of the data cycle times 66

4.4 Summary . 67

5 Modelling of fast four-phase and fast two-phase synchronizers

and preliminary investigation of a three-flop synchronizer 69

5.1 Forward cycle times for the fast four phase and fast two phase

synchronizers . 69

5.2 Backward cycle time for the fast four phase synchronizers 70

5.2.1 The relationship between φ1 and φ3 71

5.2.2 The relationship between φ1 and φ4 72

5.2.3 The backward cycle times 78

5.3 Preliminary investigation of a three-flop synchronizer design . . . 79

3

5.3.1 Timing boundaries of the three-flop synchronizer 79

5.3.2 Two Examples of the three-flop synchronizer data cycle times 83

5.3.3 Reliability of the three-flop synchronizer 86

5.4 Summary . 87

6 Performance evaluation of the two-flop, fast four-phase and fast

two-phase synchronizers 88

6.1 Data cycle time evaluation . 89

6.1.1 Summary of the data cycle times for the three synchronizers 89

6.1.2 Best and worst cases . 92

6.1.3 Average data cycle times 94

6.2 Evaluation of the burst-mode transfer data cycle times 97

6.2.1 Extension of the SyDCA tool 97

6.2.2 Average data cycle time for the burst-mode data transfer . 98

6.3 Summary . 103

7 Conclusions 105

7.1 Conclusions and summary of chapters 105

7.2 Future work . 108

7.2.1 Possible improvement in the synchronizer models 108

7.2.2 Extension in SyDCA . 109

References 110

4

List of Tables

1.1 Clock Relationship Classification 15

3.1 Probability and Average of Forward Cycle for the Two-Flop Syn-

chronizer . 36

4.1 Comparison of forward and backward cycles of the two-flop syn-

chronizer with different resolution factors 51

4.2 All possible (fw, bw) pairs for M/N = 2 with λ = 4 53

4.3 Comparison of starting phases, forward, backward and data cycles

of the two-flop synchronizer with clock ratio of 7/4 54

4.4 Expressions of the interception parameters when x ∈ (0.5, 1) . . . 58

4.5 Expressions of boundary parameters in terms of interception pa-

rameters when x ∈ (0.5, 1) . 59

4.6 Expressions of boundary parameters in terms of M , N and λ for

x ∈ (0.5, 1) . 59

4.7 Expressions of interception parameters for x ∈ (1, 2) 59

4.8 Expressions of boundary parameters for x ∈ (1, 2) 59

4.9 Expressions of interception parameters for x ∈ [2, 3] 60

4.10 Expressions of boundary parameters for x ∈ [2, 3] 60

4.11 Critical values and the distribution of forward cycle times for the

two-flop synchronizer . 64

5.1 Critical values and the distribution of forward cycle times for the

fast four-phase synchronizer . 71

5.2 Parameters for φ3 when x ∈ (0.5, 3] 72

5.3 Normalized interception parameters for x ∈ (1, 2) 74

5.4 Interception parameters for x ∈ (1, 2) 76

5.5 Boundary parameters expressed by interception parameters from φ3 77

5.6 Boundary parameters expressed by interception parameters from φ3 77

5

5.7 Parameters for φ4 when x ∈ (2, 3) 78

5.8 Timing boundaries for two-flop, three-flop and fast four-phase syn-

chronizers . 82

5.9 Comparison of the cycle times for two-flop, three-flop and fast

four-phase synchronizers when x = 7/4 84

5.10 Comparison of the cycle times for two-flop, three-flop and fast

four-phase synchronizers when x = 3/4 85

6.1 Two-flop synchronizer interception parameters and boundary pa-

rameters for φ3 . 90

6.2 Cycle-time Lookup Table for the two-flop synchronizer 91

6.3 Fast four-phase synchronizer parameters for φ4 when x ∈ [1, 3] . . 92

6.4 Fast four-phase synchronizer parameters for φ1,next when x ∈ (0.5, 3] 99

6

List of Figures

1.1 Metastability analogy of a ball on the hill[WH04] 16

2.1 A two-flop synchronizer[Gin03] . 25

2.2 Two-clock FIFO [Kin07] . 27

3.1 Timing relation of the two-flop synchronizer 32

3.2 Timing boundaries for the forward cycle of two-flop synchronizer . 34

3.3 Best and worst cases for sampling REQ 35

3.4 Average forward cycle of the two-flop synchronizer 39

3.5 The fast four-phase synchronizer [DG09a] 39

3.6 Timing relation of forward and backward cycles of the fast four-

phase synchronizer . 40

3.7 Timing boundaries for the forward and backward cycles, upper:

forward cycle, lower: backward cycle. 41

3.8 Average backward cycle of the fast four-phase synchronizer 43

3.9 Fast two-phase synchronizer [DG09a] 44

3.10 Forward cycle timing relation of the fast two-phase synchronizer . 45

3.11 Comparison of Average Data Cycles of three synchronizers 46

4.1 Two Clocks Timing Model . 49

4.2 Example plots of φ3 with different x values 55

4.3 Plots of normalized interception parameters 56

4.4 Plots of normalized boundary parameters 58

4.5 Plot of forward cycles in the range x ∈ (0.5, 1) 63

4.6 Plot of the normalized φ1c when x ∈ (0.5, 1) 63

4.7 Plots of normalized φ1c when x ∈ (1, 2) 64

4.8 Plots of normalized φ1c when x ∈ (2, 3) 65

7

4.9 Plots of forward cycle(top), backward cycle(middle) and data cy-

cle(bottom) when x ∈ (0.5, 1). The color representations are:

red=2Ttx, blue=3Ttx, magenta=4Ttx, yellow=5Ttx, green=6Ttx. . 68

5.1 Example plots of φ4,norm (red) and φ3,norm (blue) at x = 1.57 . . . 74

5.2 Interception parameters for x ∈ (1, 2) 75

5.3 Three-flop synchronizer with halved clocks 80

5.4 Three-flop synchronizer timing diagram 81

5.5 Plots of forward cycle timing boundaries for the three-flop(green),

two-flop(red) and fast four-phase(blue) synchronizers 82

5.6 Plots of the data cycle timing boundaries for the three-flop(green),

two-flop(red) and fast four-phase(blue) synchronizers 83

5.7 Backward cycle timing boundaries for the fast four-phase(blue)

and three-flop(green) synchronizers 86

6.1 The best(blue) and worst(red) data cycle times for the two-flop

(top), fast four-phase (middle) and two-phase (bottom) synchronizers 93

6.2 Average data cycle times for the two-flop (top), fast four-phase

(middle) and fast two-phase (bottom) synchronizers 95

6.3 Comparisons of the estimated average data cycle times (red) with

the actual ones (black) for the two-flop (top), fast four-phase (mid-

dle) and fast two-phase (bottom) synchronizers 96

6.4 Average data cycle times for the two-flop synchronizers with data

streams of 100 words (top), 500 words (middle) and 1000 words

(bottom) . 100

6.5 Average data cycle times of 1000 data words transfers for the two-

flop(black), fast four-phase(red) and fast two-phase(blue) synchro-

nizers . 102

6.6 Average data cycle times with different first word φ1 for the two-

flop synchronizer: φ1 = ∆t (top),φ1 = Trx/2 (middle) and φ1 = Trx

(bottom) . 103

8

Abstract

Synchronization interfaces are necessary when signals from one clock domain are

imported into another. As multiple different clocks become increasingly common

on chips, synchronizers also proliferate. To achieve high performance it is impor-

tant that the system designer is aware of the timing characteristics of different

synchronizers -which are non-deterministic by nature and can choose a design

to meet their system requirements. This thesis presents a systematic method for

analyzing and depicting behaviour of synchronizers and applies it to three widely

recognized designs. The major contributions of this thesis are outlined as follows:

A method of analyzing probabilistic behaviour of several major synchronizer

performances has been proposed. Analytical expressions for predicting single-

word-transfer synchronizer performance, and the average cases are derived for

certain clock relationships.

The cycle time dependencies are studied in detail for these synchronizers. The

synchronizers are firstly modelled and abstractions of cycle time information is

obtained from the analyses of the model simulation.

Extension of the above analysis is made to predict synchronizer performances

under burst-mode data transfer. Effect of each data transfer on the next one

is fully investigated and analytical models are drawn to describe this behaviour

for certain clock relationships. The resultant influence on overall synchronizer

performance is then evaluated. The Synchronizer Data Cycle Analyzer (SyDCA)

was developed based on these results.

A new synchronizer, the three-flop synchronizer design is proposed. It origi-

nates from the analyses of the known synchronizer data cycle times in terms of

their phase relationships. Preliminary investigation is carried out to analyze its

performance and reliability.

9

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

11

Acknowledgements

First, I would like to thank my supervisor, Dr. Jim Garside. For the last two

years, Jim has been patient enough to mentor me. I have grown tremendously

through his invaluable guidance and teaching. I have learnt many things from

Jim in regard to research, academia and life in general.

Next, I would like to thank my parents, who have been supporting me in

the past many years. It is their encouragement that helped me to arrive at this

juncture.

I would also like to extend my gratitude to the people at APT group, who

welcomed me two years ago and have provided a friendly atmosphere for me to

carry out my everyday work.

12

Chapter 1

Introduction

1.1 Background and Overview of Synchronizers

Future VLSI systems will integrate an increasing number of modules and oper-

ate at faster clock frequencies than nowadays. This may mean that the popular

synchronous design paradigm will become less useful as technology progresses.

Advances in silicon technology also complicate the design style where a single

clock is distributed on an entire chip [Fri01]. In a fully synchronous design,

the global clock must be distributed in a way that all clocked elements can re-

ceive clock signals at the same time and that communicating units can pass data

safely within the clock period. This requirement can be easily achieved in ’old-

fashioned’ processes with slow transistors and fast wires, because the wire delay

is negligible. A standard design approach is that a single clock is generated and

distributed together with other locally generated signals such as complementary

clocks, pulses and delayed clocks where needed [WH04]. However, as operating

frequency gets faster and process shrinks, it is becoming increasingly difficult to

maintain low delays in clock distribution[MN06]. The consequence of clock distri-

bution would cause a skew of several times of the cycle time between clocks near

and far from the clock generator [WH04]. Also, random skew, drift and jitter

from the clock distribution are proportional to the delay through the network be-

cause they are caused by process or environmental variations in the distribution

elements [WH04].

As single clock distribution encounters these difficulties, an alternative is to

provide each module with its own clock. This approach can effectively avoid the

13

said difficulties in distributing a synchronous clock across an entire chip. Addi-

tionally, it can easily meet the requirement of integrating modules with different

operating frequencies on a System on Chip (SoC) device. Another motivating fac-

tor for independently clocking modules is to allow clock frequencies and voltages

to change dynamically during chip operation [SAD+02, NNSvB94].

Dfficulties in clock distribution, different module frequencies on a single chip

and low power assumption requirements call for new design paradigm rather than

the conventional hierarchy-of-clocks approach. One promising solution is to con-

struct a Globally Asynchronous Locally Synchronous (GALS) system [Cha84].

A SoC device with GALS architecture typically consists of multiple modules,

each operating with a potentially unrelated local clock. Global communication

between different modules is asynchronous, where no common clock is used to

implement sequencing. Asynchronous solution eliminates complicated clock dis-

tributions and re-synchronization of signals is not needed when crossing clock

domains. It also exhibits more flexible performance with voltage and tempera-

ture variations [BF02, BCV+05, FF04, BS05, DVFG05].

Data synchronization and communication across clock domains is a major

challenge in designing GALS system. The difficulty lies in providing interfaces

with robustness and high performance for crossing domain operations. Circuits

that perform this function are called synchronizers. Synchronizers are expected

to achieve high performance while maintain correct data transfer. Various syn-

chronization circuits have been proposed to meet these challenges. A detailed

description of some of the most common ones is presented in next chapter.

1.1.1 Classification of clock relationships

The mutual relationships of a pair of clock domains are classified in Table 1.1 ac-

cording to their frequency and phase differences of the two domains. Each of the

clock relationship is given detailed theoretical analysis in [Mes90]. Mesochronous

domains share the same frequency and their phase difference remains constant.

Simple synchronizers described in [Men91]and [DP98] can be used in such do-

mains by measuring the phase difference and delaying the input enough to ensure

correct data transfer. Plesiochronous signals can be synchronized in a similar

way, but the delay must be occasionally adjusted to overcome the slow drift

in phase difference. Also because there exists small frequency difference, data

will be likely be lost due to the faster transmitter, or duplicated due to the

14

Classification Phase Shift Freq. Shift Synchronization
Synchronous 0 0 None
Mesochronous constant 0 Phase Compensation
Plesiochronous varies slowly small Adaptive Phase Compensation

Multi-synchronous varies slowly 0 Adaptive Phase Compensation
Periodic varies rapidly large Predictive Synchronizer

Asynchronous unknown unknown Universal Synchronizers

Table 1.1: Clock Relationship Classification

faster receiver. Certain control flow is therefore required to avoid this deficiency.

Adaptive phase compensation [KG98] has been presented to solve this problem.

Multi-synchronous domains[SG03, KG98] have similar property to plesiochronous

domains and adaptive phase compensation can also be used. In periodic domains,

a clock predictor is needed to calculate where the next clock signal will occur and

whether the signal should be delayed to guarantee correct operation. A predictive

synchronizer in [FKG06] foresees and prevents contentions between input signal

and receiver clock and is suitable for this case.

The most general case is where corresponding units are asynchronous. In

this case there is no known frequency or phase relationship between them. This

enforces the need for synchronization during each communication and general

purpose synchronizer circuits, such as two-flop synchronizer family, are required.

These universal synchronizers can be employed to all clock relationships men-

tioned above. However, performance overhead is possible to occur for certain

specific clock domains because these synchronizers can not be optimized for these

domains.

1.1.2 Metastability

In general, data transmission between two clock domains requires flip-flops to

store data. The correct operation of a flip-flop depends on meeting its timing

paramenters. In this context, of interest are the setup time and hold time for the

input data. If these times are violated and data is changed as the clock transition

occurs, the flip-flop’s behaviour is unpredictable. In particular the flip-flop may

enter a metastable state, which is neither a logic 1 or 0 but rather something

in between. In theory, this metastable state can last infinitely long. In a real

15

Figure 1.1: Metastability analogy of a ball on the hill[WH04]

circuit, the metastable state can be resolved by circuit noise which causes output

to settle to logic one or logic zero. However, it may take unbounded time for

the device to resolve to valid logic values. The device that enters a metastable

state and the failure to produce a legal logic value is called synchronization failure

[NM02]. A good analogy to metastable effect is shown in Figure 1.1. The top of

the hill represents a metastable state. A flip-flop entering this state can stay on

the top for indefinite time. However, noise in the circuit is capable of disturbing

this balance and causing the ball to roll down to one of the stable states on either

side of the hill.

Metastability is inevitable in a bistable device such as a flip-flop, where the

feedback pulling the output into a defined state is exactly balanced. However,

the physical construction of the device can influence the time constant, effectively

making the top of the hill sharper and thus achieving metastability resolution

more likely in a given time. In practical synchronizers, a delay of one or more

clock cycles is reserved for metastability resolution. A detailed description on

metastability and its effect in synchronization efficiencies are presented in next

chapter.

16

1.1.3 Initial motivation and existing problems

In general, synchronizers are constructed to handle virtually all possible clock

relationships. Designers using synchronizers often seek for best balance between

robustness and high performance to match system requirements. Both the clock

relationships and required throughput (or latency) can influence designer’s choice

of synchronizers. Probability of synchronization failure rate should also be re-

duced to a satisfactory level based on the design requirements. Because these

factors directly affect the choice or design of a synchronizer and their properties

are in fact difficult to predict by cursory observation, a systematic analysis ap-

plied to major synchronizer designs is needed. This was the initial motivation

that drives this research. The starting point of this research was chosen to investi-

gate the performance of a universal synchronizer, two-flop synchornizer. Primary

research reveals an interesting property of this synchronizer: the best, worst and

average performance (measured in cycle time) of a single data transfer can be

predicted. Moreover, the average cycle time can be obtained by calculating all

possible outcomes of cycle time with varying phase shift. Together with best and

worst case scenarios, average performance can make an accurate and complete

prediction of synchronizers.

1.2 Thesis Contributions

The two-flop synchronizer is already widely employed in industry [DP98] [Gin03].

Recent developments have produced several advanced synchronizers and their

improvement in performance is shown when compared with standard synchroniz-

ers. However, few publications have fully explored the probabilistic behaviour of

synchronizer performance. At system level, the two modules requiring synchro-

nization almost always exhibit a certain clock relationship. For example, under

mesochronous domains, a two-flop synchronizer incurs different data cycles(time

required to complete a data transfer) for different phase shifts. The occurrence of

difference in resulted data cycles behaves probabilistically. It is likely that other

synchronizers also exhibit similar data cycle variations with different probabil-

ity when operating under the same condition. Similar phenomena also appear

in other classes of clock relationships. Therefore, when the clock relationship is

known, optimized synchronizers can be selected based on analysis of their per-

formance. More importantly, during burst data transfer, average performance

17

provides more realistic information due to the fact that it accounts for influences

between two adjacent single data transfers. This thesis presents a full analysis and

several analytical models for predicting average performance of several universal

synchronizers. On the other hand, when the timing of input is unknown, the

two domains are mutually asynchronous. Under these circumstances, only uni-

versal synchronizers can be employed in order to guarantee the safe data transfer.

As stated before, these synchronizers may cause performance penalty. Hence, a

detailed performance analysis and comparison on major universal synchronizers

would benefit designers in their choice of synchronizers.

Also, the dependencies of data transfers across clock domains have not yet

been fully explored. When a stream of data crosses the clock boundaries, each

data has to be re-timed before it can be recognized. Intuitively, the synchro-

nization of each data word should take the same time since they all go through

the same procedures. However, this is not the case in reality. What happens is

that the synchronization of the first data word will impact the synchronization

of the next data word. This brings difficulties when evaluating the total time

needed for the whole stream to cross domains. This thesis carries out in-depth

analysis on the cycle time dependencies and study the behaviour of several major

synchronizers in the burst-mode data transfer.

It is expected from the author that with the knowledge of characteristics of

various synchronizers, designers could save time and efforts in evaluating synchro-

nizer performances and synchronization failures. Also, it is expected that they

would gain more thorough insights on the best and worst, more importantly, the

average performance of several major synchronizers from the analysis.

The major contributions of this thesis are outlined in more detail, as follows:

A method of analyzing probabilistic behaviour of several major synchronizer

performances has been proposed. Analytical expressions for predicting single-

word-transfer synchronizer performance, and the average cases are derived for

certain clock relationships.

The cycle time dependencies are studied in detail for these synchronizers. The

synchronizers are firstly modelled and abstractions of cycle time information is

obtained from the analyses of the model simulation.

Extension of the above analysis is made to predict synchronizer performances

under burst-mode data transfer. Effect of each data transfer on the next one

is fully investigated and analytical models are drawn to describe this behaviour

18

for certain clock relationships. The resultant influence on overall synchronizer

performance is then evaluated. The Synchronizer Data Cycle Analyzer (SyDCA)

was developed based on these results.

A new synchronizer, the three-flop synchronizer design is also proposed. Its

originates from the analyses of the known synchronizer data cycle times in terms

of their phase relationships. Preliminary investigation is carried out to analyze

its performance and the reliability of this synchronizer is also analyzed.

1.3 Thesis Overview

A detailed description on existing major synchronizers and metastability is pre-

sented in Chapter 2, with discussions and examples on failure rate. Chapter 3

to 6 in this thesis focuses on analysis of performance on three major universal

synchronizers: two-flop, fast two-flop four-phase, two-phase synchronizers. The

new three-flop synchronizer is discussed in the second half of Chapter 5. Finally,

Chapter 7 gives conclusions and possible directions for future research. The out-

line of Chapter 3 to 6 is as follows:

Analytical estimation of synchronizers are made in Chapter 3. Timing bound-

aries for each synchronizer operation is firstly developed. Analytical expressions

are derived for some average cycle times.

Behavioural modelling of clock domains as well as the three synchronizers are

presented in Chapter 4. The cycle time calculation of the two-flop synchronizer

including the cycle time dependencies is presented.

The analysis is extended to the other two synchronizers in Chapter 5. The

new three-flop synchornizer is proposed in this chapter and preliminary analyses

of its data cycle time are also presented.

Chapter 6 summarizes the conclusions on the prediction of synchronizer data

cycle times from the previous chapters. The SyDCA tool is developed based

on these conclusions. Both single data cycle time and data cycle times under

burst-mode data transfer are investigated with the help of SyDCA tool.

19

Chapter 2

Overview of Synchronization

Circuits and Metastability

This chapter outlines the metastability in the flip-flop with a focus on the failure

rate. Examples are presented to calculate the failure rate for a single flip-flop

first and then the failure rate of many flip-flops are dealt with. Several major

synchronization circuits from the literature study are presented in the second half

of this chapter.

2.1 Metastability in the flip-flop

From Section 1.1.2, it was stated that the origin of producing a metastable output

from a flip-flop was attributed to the violation of the flip-flop timing conditions.

These timing conditions refer to the setup time and hold time for the input data.

If the data input changes before the setup time, the output reflects the new value

after a one clock cycle. If the data changes after the hold time, the output reflects

the old value after one clock cycle. However, if the data changes after the setup

time and before hold time, the output may be unpredictable and is possible to

stay halfway between a valid logic low and high. This halfway state if known as a

metastable state because it is not stable in the long term, it will eventually reach

either high or low. However, the circuit has no drive towards either the high or

low output values. Although the output will eventually settle to a valid logic

value, the time taken is unbounded. This breaks the rules for a reliable digital

system and can cause it to fail unpredictably. This is because the output after

the metastable resolution is non-deterministic and it is possible that the output

20

settles to a different logic value from its original input. According to [Kin07],

the probability of a failure in the synchronization process can be very low for

an individual flip-flop, but because digital processors have to deal with many

inputs per second, the probability of catastrophic failure over a long period of

time is not low. Since it is impossible to completely prevent any synchronization

failure as long as there is a need to synchronize data, it must be accepted that

the synchronization failure rate can only be reduced by allowing more time for

the synchronizer to settle.

2.1.1 MTBF

In [WH04] and [Kin07], small signal model for the cross-coupled inverters was

developed to estimate the input conditions necessary to produce a metastable

response of a given time, and the probability that the latch propagation delay ex-

ceeds this time. An important metric in assessing the reliability of a synchronizer

flop is the Mean Time Between Failure [DB99]:

MTBF =
e

S
τ

WFcFd

(2.1)

where S is the settling time, τ is the settling time constant of the flip-flop, Fc is

the sampling clock frequency, Fd is the frequency of changes in the input data

and W is known as the metastability window and it is measured in seconds. The

metastability window is related to the setup/hold window of a flip-flop [DB99]. If

the input data to a synchronizer changes within the metastability window, then

the synchronizer is assumed to have become metastable [Gin08].

In [Gin08], the derivation of Equation 2.1 was briefly conducted. This para-

graph gives a more detailed description of it, and some of the intermediate results

will be used in the next section. Assume that the input data can arrive at any-

time to the synchronizer clock and the arrival time is uniformly distributed over

the synchronizer’s clock cycle. Given that the input data changes during a clock

cycle, the probability of the flip-flop entering metastability is

p(enter ms) =
W

T
= W · Fc, (2.2)

where T is the sampling clock cycle time and T = 1

Fc
. If the input data does not

change every clock cycle, but rather with frequency Fd, then the rate of entering

21

metastability is

rate(enter ms) = Fd · p(enter ms) = W · Fc · Fd. (2.3)

From the latch model, it can be inferred that given that a synchronizer is metastable

at time 0, the conditional probability that it is still unstable at time t (t > 0)

(namely the probability of failure) is

p[failure(t)|failure(0)] = e
−S
τ (2.4)

Assuming the probability of entering metastability p(enter ms) and the proba-

bility of failure are independent, then the probability of failure is

p[failure(t)] = W · Fc · e
−S
τ . (2.5)

Given the rate of data change, the rate of failure is

rate[failure(t)] = p[failure(t)] · Fd = W · Fc · Fd · e
−S
τ . (2.6)

The MTBF is the inverse of the failure rate and Equation 2.1 is obtained.

In reality, τ and W are typically 2 and 4 FO4 inverter delays [DB99] [Gin08].

Consider the 130nm process technology:a typical FO4 inverter delay is 33ps

[Gin08]. The settling time constant τ is 66ps and the metastability window

W is 132ps. If Fc is 200MHz and Fd is 20MHz and the settling time S is set to

be one clock cycle, i.e.S = 1

Fc
, the MTBF is calculated as shown below:

MTBF =
e

5n sec
66p sec

132p sec · 200MHz · 20MHz
≈

e76

5 · 105
sec ≈ 1020 years

The resultant MTBF is longer than the age of the universe, which is less than 1010

years, so it is good enough to guarantee the reliable synchronization operation.

Now if a more aggressive design is considered where the settling time S is halved,

Fc = 1GHz, Fd = 100MHz and the rest parameters remain unchanged. The

resultant MTBF is:

MTBF =
e

2.5n sec
66p sec

132p sec · 1GHz · 100MHz
≈

e38

132 · 105
sec ≈ 68 years.

22

These two simple examples illustrate how MTBF changes with the shortened

settling time and increased synchronizer clock frequency. In the first example,

the MTBF was solved under the condition that one clock cycle is allowed for

metastability resolution. The clock frequency is 200MHz, and the settling time

works out to be 75τ . In the second example where the clock frequency becomes

1GHz, the clock period is 1ns and is only about 15τ long. Note that in this

example, the settling time S is 2.5ns, which is longer than one clock cycle. More

than one clock cycles were reserved to solve metastability. However, significant

decline in MTBF value is still resulted in the second example, although the

second MTBF might still be acceptable in certain applications.

The effect of decreasing the settling time S can significantly increase the

probability of synchronization failure in the synchronizing flip-flops, since the

MTBF decreases exponentially as the settling time reduces. If in the second

example, only one clock cycle for the metastability settling time were allowed,

the MTBF would become less than 1 second! For the aggressive design example,

if a better flip-flop with τ = 1FO4 is used, the halved metastability settling time

S can still provides satisfactory reliability.

2.1.2 MTBF for many synchronizers

The above analysis only deals with the MTBF of a single synchronizer. If a SoC

device has many synchronizers and the MTBF requirement is given for all the

synchronizers, how should each individual synchronizer be determined to meet

the requirement? This section deals with this problem.

If a SoC device has H synchronizers, it is considered to fail if one of the H

synchronizer fails. The probability of one synchronizer not entering metastable

state is obtained from Equation 2.5 as,

p[one synchronizer does not fail] = 1 − W · Fc · e
−S
τ (2.7)

The probability that all H synchronizers do not fail is

p[H synchronizers do not fail] = (1 − W · Fc · e
−S
τ)H . (2.8)

Applying the first order Taylor expansion to Equation 2.8, Equation 2.8 becomes,

p[H synchronizers do not fail] ≈ 1 − H · W · Fc · e
−S
τ . (2.9)

23

The probability of at least one synchronizer fails is therefore,

p[at least one synchronizer fails] = 1 − p[H synchronizers do not fail] (2.10)

≈ H · W · Fc · e
−S
τ . (2.11)

The rate of the these failures is obtained by multiplying the probability of at least

one synchronizer fails by the frequency of changes in the input data, Fd, and the

mean time between failure for all H synchronizers MTBF (H) is its inverse:

rate[at least one synchronizer fails] (2.12)

= Fd · p[at least one synchronizer fails] (2.13)

≈ H · W · Fc · Fd · e
−S
τ (2.14)

MTBF (H) =
1

rate[at least one synchronizer fails]

≈
e

S
τ

H · W · Fc · Fd·
.

MTBF (H) =
MTBF

H
. (2.15)

From Equation 2.15, it can be inferred that if the SoC MTBF requirement is

100 years and there are 1000 synchronizers in the SoC, then the desired MTBF

for a single synchronizer is 105 years.

2.2 Synchronization circuits in digital systems

The basic function of any synchronization circuits is to correctly re-time the data

passing from one clock domain (the transmitter) to another (the receiver). In

a GALS system, the communication between two different clock domains calls

for the need of synchronization circuits to reliably synchronize data that crosses

clock domains. Many flavours of synchronization interfaces have been proposed.

Synchronizer performance is usually evaluated in terms of latency and through-

put. The latency is defined as the time from writing a data word into the output

register of the sender to writing the same data into the first register of the re-

ceiver. The data cycle refers to the time between two consecutive writings of

the first register of the receiver. Throughput is the reciprocal of the data cycle.

24

Figure 2.1: A two-flop synchronizer[Gin03]

This section outlines several synchronization circuits and briefly discusses their

performances.

2.2.1 Family of the two-flop synchronizers

A very common and simple synchronization circuit is the two-flop synchronizer as

is shown in Figure 2.1. This synchronizing interface applies simple control flow to

ensure the correct transfer of data across clock domains. When the data is ready

to be sent at transmitter side, it sends the request signal REQ to the receiver.

Since the REQ signal originates from the sender it must be synchronized to the

receiver clock before the request can be granted. In Figure 2.1, the first flop at

the receiver side samples REQ on an active receiver clock edge, and one receiver

clock cycle later, it is sampled by the second flip flop. The receiver then transfers

the data to an internal register (not shown in Figure 2.1) when it is ready, and

sends an acknowledgment signal ACK back to the transmitter that it is safe to

send the next data. For the same reason, because the ACK signal originates from

the receiver clock domain, it has to be re-timed to the transmitter clock domain

before it can be recognized by the transmitter and another data can be sent.

For the two-flop synchronizer, on each side of the clock domain, one trans-

mitter/receiver clock cycle is reserved for the metastability resolution. Since the

reliability of the synchronizer depends on the time allocated to resolve metasta-

bility, the choice of flip-flop should meet the system MTBF requirements. The

MTBF requirement for a particular system depends on the application. In the

case where reliability is crucial and performance is less important, such as medical

25

equipment [WH04], synchronizers with long MTBF can be chosen. For applica-

tions which are less critical, synchronizers with acceptable MTBF but probably

lower latency will satisfy the requirement. Also, for fast clock designs, such as

high speed processors or high speed ASIC modules, where clock period is typi-

cally less than 50τ , a different approach based on multi-cycle resolution time or

multi-synchronous clocking is required[DG07].

The two-flop synchronizer incurs some performance overhead, as can be seen

from the analyses in the subsequent chapters. It is because only half of its data

cycle contributes to the useful data transfer between two clock domains, and the

other half is used purely for completing the handshake control protocol. Many

attempts have been made to optimize the two-flop synchronizer to achieve higher

throughput [Gin03] [DG09b]. Two design paradigms, the fast four-phase syn-

chronizer [DG09a] and fast two-phase synchronizer [DG09a] have demonstrated

shorter data cycle times (higher throughput) while maintaining the reliability of

the two-flop synchronizer. The fast four-phase synchronizer deploys the asyn-

chronous reset flip-flops to reduce the cycle that are not used for actual data

transfer while the fast two-phase synchronizer fully utilizes all the cycle times by

converting the four-phase handshake signal to two-phase handshake signal. De-

scriptions of operations and performance evaluations of these two synchronizers

will be dealt with in the rest chapters of this thesis.

Because the fast four-phase and fast two-phase synchronizers are modified

versions of the two-flop synchronizer, they share some common properties with

the two-flop synchronizer. It is for that reason that the author categorize them as

the two-flop synchronizer family. Comparing with other types of synchronization

circuits, they have relatively simple structure and they support any clock relation.

2.2.2 Two-clock FIFO

A two-clock FIFO synchronizer has been proposed in [DP98], [CN01], [IM02],

[CG03] and [CG02]. A general structure of a two-clock FIFO is shown in Fig-

ure 2.2. The FIFO is used to isolate the reading and writing processes [Kin07].

It therefore enables data transfers on every clock cycle if the FIFO is neither

full or empty. Because of that the throughput can be improved comparing to the

two-flop synchronizer, as it does not have to wait for the handshake control signal

to finish before transferring the next data word, provided there is always some

valid data in the FIFO. The implementation of the FIFO usually contains a set of

26

Figure 2.2: Two-clock FIFO [Kin07]

circulated registers and two address pointers, a read pointer and a write pointer.

The write pointer should always points to a free location in the FIFO and it is

updated immediately after a new data is written in. The read pointer always

points to the most recent data that has been written and is also updated imme-

diately after the read operation. To guarantee smooth write operation, sufficient

space in the FIFO should satisfy certain conditions. It should be able to contain

the stored data that has not yet been read, a free location for the current writing

operation and at least one more free location to store data from the next writing

without waiting for the read operation to release one free location. Similarly,

to perform a smooth read operation, there must be sufficient data stored in the

FIFO. Two flags, Empty and Full, are implemented to indicate conditions that

may hamper the smooth read and write operations.The Full flag becomes true

if there is not enough space to store any incoming data before the transmitter

is stopped. The Empty is true if the unread items in the FIFO become insuf-

ficient before the receiver can be stopped. Therefore, necessary distance should

be kept between these pointers to accommodate the delays required to stop the

transmitter and receiver.

In [CG02], a self-timed single-stage FIFO was proposed for mesochronous

clock domains and it was extended in [CG03] to operate in multi-synchronous,

plesiochronous and asynchronous clock relations. The extended design requires

27

special treatment at both transmitter and receiver sides. In [CN01], a mixed-

timing FIFO was presented and was designed to handle data transfers between

arbitrary clock domain combinations. Mixed timing relay stations were also pre-

sented to provide a solution to deal with long interconnects, which were not

supported by common two-clock FIFO design because they were intolerant to

the delay variations over the long wires [DG09b]. In [Kin07], the performance of

two-clock FIFO was compared with the two-flop synchronizer. It concluded that

the throughput was improved because of the overlapping operations between syn-

chronization of Full flag and the write operation, and synchronization of Empty

flag and the read operation. The latency however did not improve because of the

delays in synchronizing the two flags with their corresponding clock domains.

2.2.3 Synchronization circuits under specific clock rela-

tionships

The two-flop synchronizer family and the two-clock FIFO synchronizer described

so far are able to handle all clock relationships [Gin03] [DG07]. However, they

may incur performance overhead under a specific clock relationship, because they

are not optimized for this particular clock relationships. On the other hand, if

the clock relationship is known to the designer, it is possible to use the optimized

synchronizers to achieve and higher performance with acceptable reliability. This

section briefly discusses several of these synchronizers. In mesochronous domains,

the two clocks driving the transmitter and receiver are derived from a common

source, so the clock frequencies are the same on both sides but there is a constant

phase shift between them. One way to deal with this interface is to use a simple

FIFO [Gre93] [Gre95], as in Figure 2.2. Because the two domains have the same

clock frequency, for every clock cycle, the transmitter writes one data item in the

FIFO and the receiver reads one data item. If the FIFO is left half full when

the data items start to transmit, given sufficient registers in the FIFO, the full or

empty conditions will never meet. It therefore saves the effort for synchronization

between Full and the transmitter clock, and Empty and the receiver clock.

In a plesiochronous system, the clock frequencies are nearly the same on both

sides and the phase difference drifts slowly over time. It is necessary to apply flow

control to the synchronization interface in this clock scheme, so that the possible

28

dropped or duplicated data items due to the phase drift can be avoided. Accord-

ing to [Kin07], the two clocks are generated from very stable crystal oscillators

and are predictable in advance. In [DDX95], [KG98] and [SG03], adaptive phase

compensation was applied to achieve synchronization by detecting the possible

future clock conflicts and stopping data transfers when the two clocks could con-

flict. The adaptive phase compensation can be used as part of the flow control

for data in a FIFO interface, and gives an average gain of half a cycle in latency

over a single synchronizer, and considerably more over a multi-cycle synchronizer

[Kin07].

2.2.4 Stoppable clocks

The synchronization interface discussed so far assume that the two clocks can not

be changed, which leads the need for synchronizers to synchronize the incoming

data from another clock domain. In a GALS system, it is possible to stop the

clock [MM07] [YD96] [YD99]. Therefore, synchronization is not needed as the

need for re-timing data is no longer necessary. A data-driven clock [KPWK02]

activates only when the data arrives and it stops as soon as the data is processed.

In this case, there is no competition between the clock activity and the new data

and the metastability can be avoided [Kin07]. The stoppable clocks technique

incorporates a local ring-oscillator clock generator and several MUTEXes[MC80]

which can stop the local clock temporarily when new input data arrives. A stop-

pable clock technique designed for linear pipelines was presented in [SM00]. Stop-

pable clock can also integrate with FIFOs to achieve performance improvement

[MTMR02].

2.3 Summary

The first half of this chapter described the cause of failure in a flip-flop due to

metastability and the quantitative measure of its reliability, Mean Time Between

Failure(MTBF). The expression of the MTBF was derived in detail. Two ex-

amples of MTBF evaluation were presented to illustrate the significant impact

of choice of settling time and clock speed on the reliability of a single synchro-

nizer. The MTBF for many synchronizer was then derived and was found to be

H times shorter than MTBF for a single synchronizer, where H is the number of

synchronizers in a system.

29

The second half of this chapter reviewed several major synchronization circuits

in the literature. The two-flop synchronizer family is easy to implement but

may incur performance overhead. The two-clock FIFO synchronizer improves

the data throughput but results long latency. In some circumstances where the

clock relationship is known, several optimized synchronizers can to achieve better

performance. The stoppable clock interface avoids the conflict between clock

signal and new data by pausing the clock temporarily to allow the new data to

arrive.

30

Chapter 3

Timing Boundaries and Average

Data Cycles of the Two-Flop

Synchronizer Family

This chapter describes a method of performance evaluation of synchronizers, in-

cluding the two-flop synchronizer, fast four-phase synchronizer [DG09a] and fast

two-phase synchronizer [DG09a]. Timing boundaries are derived for each of the

said synchronizers. The average data cycles of these synchronizers are analyzed

and compared.

3.1 Two-flop Synchronizer

Standard two-flop synchronizers are widely used in industry. The schematic di-

agram for a simple two-flop synchronizer was shown in Figure 2.1 in the last

chapter and is reproduced as shown below. The principle behind this, and other

synchronizers, is that the first flip-flop in either domain may have its operating

conditions violated when sampling data coming from outside its domain. In the

case of two-flop synchronizer shown in Figure 2.1, R1 may be left metastable. The

second flip-flop imposes a one-clock delay which allows metastability to resolve

before it samples the data. The following analysis of the standard two-flop syn-

chronizer is based on the circuit proposed in [DG07]. In this work, it is assumed

that the data register at the receiver side is always ready to receive data.

31

A two-flop synchronizer[Gin03]

Trxφ3 φ4Ttxφ2Trx Ttxφ1

A1

ACKR1

A1

ACKR1

REQ REQ REQ

Active Tx Edges

Active Rx Edges
k*Ttx

Figure 3.1: Timing relation of the two-flop synchronizer

3.1.1 Principles of operation

The forward cycle is defined as the time from assertion of request(REQ) signal to

de-assertion of it, i.e. REQ+ → REQ-. The forward cycle is an integral number

of transmitter clock cycles, although the multiplier may vary from cycle to cycle.

The backward cycle refers to the time from de-assertion of REQ to the next

assertion of it, i.e. REQ-→ REQ+, assuming the next data is ready to be sent.

The complete data cycle consists of one forward cycle and one backward cycle.

Figure 3.1 shows the timing relation for signal transitions of the data cycle

neglecting, for the moment, any metastability effects. When data is ready to

be sent at the transmitter, it raises the REQ signal. On the next rising edge

of receiver clock, REQ is sampled and R1 rises. The acknowledge signal (ACK)

rises consequently one receiver clock later. On the next rising edge of transmitter

clock, A1 goes high. It then takes another transmitter clock before A2 rises,

32

which brings REQ down. Following the same sequence, R1, ACK, A1 and A2

consequently fall to zero. The falling of A2 indicates a complete and acknowledged

transfer of a single word.

3.1.2 Timing boundaries for the two-flop synchronizer

At the beginning of this chapter, the definition of data cycle is given as the

time between two successive writings of the first register on receiver side. The

measurement of the data cycle can be done by observing two successive assertions

of REQ in the two-flop synchronizer. Because the forward and backward cycles

are symmetrical for the two-flop synchronizer, only the forward cycle is analyzed

here. The time boundary of the backward cycle is the same as that of the forward

cycle.

Equation 3.1 can be obtained from Figure 3.1. This basically says that the

time from raising to dropping REQ has to be an integral multiple of the trans-

mitter clock period. Here, φ1 represents phase shift between sender clock and

receiver clock. The range of φ1 is between 0 and Trx and the range of φ2 is be-

tween 0 and Ttx, as shown in Inequality 3.2 and 3.3. φ1 and φ2 must always be

greater than zero as the propagation delay of the first flip-flop is finite. The range

of the integral multiple k can be derived from Equation 3.1 and Inequality 3.4 as

follows:

kTtx = φ1 + Trx + φ2 (3.1)

where k ∈ Z and k ≥ 1

0 < φ1 ≤ Trx (3.2)

0 < φ2 ≤ Ttx (3.3)

0 < φ1 + φ2 ≤ Trx + Ttx (3.4)

Combining (3.1) and (3.4),

Trx < kTtx ≤ 2Trx + Ttx (3.5)

33

0 1 2 3 4 5 6

2

4

6

8

10

12

x

F
or

w
ar

d
C

yc
le

 (
T

tx
)

Figure 3.2: Timing boundaries for the forward cycle of two-flop synchronizer

Let x = Trx

Ttx
, then (3.5) becomes:

x < k ≤ 2x + 1 (3.6)

The forward cycle of a two-flop synchronizer is (k + 1)Ttx, as is shown in

Figure 3.1. Inequality (3.7) describes the timing boundaries for the forward cycle:

x + 1 < k + 1 ≤ 2x + 2 (3.7)

The area semi-enclosed by the thick black lines in Figure 3.2 shows the forward

cycle timing boundaries. The forward cycle is described in terms of an integral

number of transmitter clock cycles. When the receiver and transmitter clock

ratio x is less than 0.5, it always takes 2Ttx to complete the forward cycle. As x

increases, the range of forward cycle becomes wider. This means that for a given

clock ratio x, it is possible to have more than one forward cycle time. For example,

when x is 3, the possible value for forward cycle spans from 4 to 8. The reason

is that, although the clock ratio is fixed, the phase shift between the two clocks

varies. In that sense, there are certain phase shifts where the shortest forward

cycle time may occur, which is often referred to the best case performance. On

the contrary, if the clock ratio remains fixed but phase difference is allowed to

vary, the longest possible data cycle time may occur for this clock ratio, which

34

Figure 3.3: Best and worst cases for sampling REQ

is referred to the worst case scenario. The best and worst cases are exemplified

in Figure 3.3. In the best case, the phase shift is so small that the receiver clock

rises immediately after the rising edge of transmitter clock. The REQ signal is

sampled on this rising edge of receiver clock and R1 is raised. The worst case is

that the REQ signal just misses the rising edge of receiver clock and is delayed

for an additional receiver clock cycle.

3.1.3 Average Data Cycle of the Two-Flop Synchronizer

Analysis of timing boundaries indicates that in the case when x goes beyond

0.5, different forward cycle values can result due to different starting phase φ1

between transmitter and receiver clocks. Therefore, for a fixed clock ratio, it

is not possible to tell the exact forward cycle time without the information of

phase relation between the two clock domains. Although predicting the forward

cycle time can be achieved by analyzing the phase relation under certain clock

relation, as is presented in Chapter 4, the phase relation is generally difficult to

obtain with unrelated clocks. During burst-mode data transfer, where a stream

of data words are sent to the receiver, the synchronization of one word may affect

the synchronization of the next one. The starting phase varies for synchronization

of each word. These facts add significant amount of complexity in predicting the

phase relation between two clock domains, and hence complicates calculation

of the overall data cycle of the two-flop synchronizer, as can be seen from the

subsequent chapters.

The average data cycle is, however, a good, yet simpler way of predicting cycle

time. For a fixed clock ratio, the average data cycle is obtained from calculating

35

n x P2 P3 P4 P5 P6 P7 P8 P9 Average
0 (0, 0.5] 2 2
1 (0.5, 1] 1/x − 1 2 − 1/x 4 − 1/x
2 (1, 1.5] 2/x − 1 2 − 2/x 5 − 2/x
3 (1.5, 2] 2/x − 1 1/x 2 − 3/x 7 − 5/x
4 (2, 2.5] 3/x − 1 1/x 2 − 4/x 8 − 7/x
5 (2.5, 3] 3/x − 1 1/x 1/x 2 − 5/x 10 − 12/x
6 (3, 3.5] 4/x − 1 1/x 1/x 2 − 6/x 11 − 15/x
7 (3.5, 4] 4/x − 1 1/x 1/x 1/x 2 − 7/x 13 − 22/x

Table 3.1: Probability and Average of Forward Cycle for the Two-Flop Synchro-
nizer

each possible data cycle and its probability of occurrence, assuming all possible

values of φ1 are equiprobable. For example, when x is 3.5, from Figure 3.2,

forward cycle varies from 5Ttx to 9Ttx. If the starting phase φ1 is allowed to

sweep across its range with a proper time step, all the possible forward cycle

times can be obtained. Table 3.1 lists the forward cycle times for clock ratio x

in the range (0, 4]. At x = 3.5, probability of getting a forward cycle of 5Ttx

is 1/7, and this probability is denoted as P5. Similarly, P6, P7 and P8 have the

same probability of 2/7. For a different clock ratio, the same analysis can be

applied. Table 3.1 summarizes the results of probability of forward cycle with

the clock ratio ranging from 0 to 4. The interval of x is incremented in steps

of 0.5, because from the timing boundaries plots in Figure 3.2, the upper limit

for forward cycle is 2x+2, which reaches a new integer value at step of 0.5.

Some interesting regularity appears in Table 3.1. For instance, within range (3,

3.5], non-zero probabilities are from P5 to P8. All the intermediate probabilities,

namely P6 and P7, exhibit the same value, which is the reciprocal of x. Also,

the probability values in both light and dark grey boxes show some regularity.

With the knowledge of all possible values for forward cycle and their probabilities,

the average data cycle can be easily calculated by taking the average of the all

possible data cycles. The following analysis derives forward cycle probabilities

for any clock ratio. The average forward cycle is then calculated based on these

probabilities.

The following conclusions can be drawn from observations of the results in

Table 3.1:

1. Upper probability Pupper. For each range of x listed in the table, Pupper

36

refers to the probability of the largest forward cycle time. The light grey

boxes in the table show the Pupper for each range of x. A generic expression

of the upper probability can be drawn as Pn+2 and

Pn+2 = 2 −
n

x
(3.8)

where n is an integer and n > 0. The range of x corresponding to each

Pupper can also be expressed in terms of n as (n
2
, n+1

2
]. Take the 4th row in

the table as an example. Here, n is equal to 3. The range of x is therefore

(3

2
, 3+1

2
], i.e.,(0.5, 1]. The upper probability Pupper in this case is P3+2 = P5,

and its expression is 2 − 3

x
.

2. Lower probability Plower. For each x range, there also exist the prob-

ability of the smallest forward cycle time, and this probability is denoted

as Plower. The dark grey boxes in the table show the distribution of these

probabilities. The subscripts of the lower probabilities can be expressed as

Plower = Pn+3

2

(n is odd)

Plower = Pn
2
+2 (n is even).

The contents in the dark grey boxes can also be generalized in terms of n

and x as shown in Equations 3.9 and 3.10.

Pn+3

2

=
n + 1

2x
− 1 (n is odd) (3.9)

Pn
2
+2 =

n + 2

2x
− 1 (n is even) (3.10)

3. Intermediate Probability Pinterm. The white boxes with a uniform

value 1/x are attributed to the intermediate probability, Pinterm. They

are the probabilities of all other possible forward cycle times. Since the

subscripts of both lower and upper probabilities have been expressed in

terms of n, those for intermediate probability can be obtained as is shown

below:
Pn+3

2
+1

, Pn+3

2
+2

, . . . Pn+3

2
+

n+1

2

(n is odd)

Pn
2
+3, Pn

2
+4, . . . Pn

2
+

n
2

(n is even and n ≥ 2)

37

4. Average forward cycle time. The average forward cycle time Aver can

be calculated from all probabilities described previously, as is shown below:

If n is odd,

Aver =
n + 3

2
Pn+3

2

+ (
n + 3

2
+ 1)Pn+3

2
+1

+ · · · + (n + 2)Pn+2

=
3

2
n +

5

2
− (

3

8
n2 +

1

2
n +

1

8
)
1

x
. (3.11)

If n is even,

Aver =(
n

2
+ 2)Pn

2
+2 + (

n

2
+ 3)Pn

2
+3 + · · ·+ (n + 2)Pn+2

=
3

2
n + 2 − (

3

8
n2 +

n

4
)
1

x
. (3.12)

The rightmost column in Table 3.1 lists the average forward cycle times

calculated from Equations 3.11 and 3.12.

The average forward cycle plotted against x in Figure 3.4 shows certain non-

linearity when two clocks have similar frequencies. However, as the clock ratio

becomes larger, the average tends to be linear. When the clocks are significantly

dissimilar, the faster clock will cycle several times in one period of the slower

clock, thus its phase becomes relatively unimportant. The slow clock period

dominates the communication time, so the curve for average forward cycle be-

comes linear. However, when the two clocks have similar frequencies, the effect

of phase difference between them becomes more obvious. As the forward cycle

does not vary linearly with the phase difference, the non-linearity emerges.

Table 3.1 also explains the average forward cycle behaviour. As x increases,

the number of the intermediate probabilities increases. When the ratio becomes

large enough, these probabilities become dominant and are the main contributions

to the average value. Because these probabilities all have the same value, the

resultant average will tend to be linear. The above analysis only considers the

forward cycle which is first half of the data cycle. Because the symmetrical

behaviour of the the two-flop synchronizer, there is a similar time taken for the

second half as the handshake signals fall. As this is not carrying data it can be

optimised, resulting in a faster synchronizer as described below.

38

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

x

F
or

w
ar

d
C

yc
le

 (
T

tx
)

Average →

Figure 3.4: Average forward cycle of the two-flop synchronizer

3.2 Fast Four-Phase Synchronizer

The standard two-flop synchronizer enables reliable communication between two

clock domains[Gin03]. However, it takes long data cycle for data transfer and

hence results in long data cycle time. A fast four-phase synchronizer [DG09a]

has been proposed to reduce data cycle by shortening the backward cycle. This

section analyzes the timing boundaries and average data cycle of this synchro-

nizer.

Figure 3.5: The fast four-phase synchronizer [DG09a]

39

R1

REQ

Trx φ2 φ3 φ4

A1

ACK

Ttx

R1

REQ

Active Tx Edges

Active Rx Edges

k*Ttx

φ1

REQ
ACK

q*Ttx

A1

Figure 3.6: Timing relation of forward and backward cycles of the fast four-phase
synchronizer

3.2.1 Operation principles

Figure 3.5 shows the circuit diagram of the fast four-phase synchronizer. Two

flip-flops, namely REGV and F4, have asynchronous resets. Figure 3.6 shows the

timing relation for signal transitions of a complete data cycle. Time intervals

where signals cross domains are named as φ1,φ2,φ3 and φ4. Both forward and

backward cycles are integral multiples of the transmitter clock cycle Ttx and they

are denoted as k and q in Figure 3.6.

When data is ready to be sent at the transmitter, it raises REQ signal. On the

next rising edge of receiver clock, REQ is sampled and R1 rises. The acknowledge

signal (ACK) rises consequently on the next receiver clock. Then on the next

transmitter clock, A2 goes high. Unlike the two-flop synchronizer where REQ

falls, one transmitter clock later, the assertion of A2 asynchronously resets REQ

immediately. Therefore, one transmitter clock is saved before the backward cycle

starts. Similarly, the falling edge of R1 triggers an asynchronous de-assertion of

ACK during the backward cycle. This saves one receiver clock.

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

x

C
yc

le
 T

im
e

(T
tx

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

x

C
yc

le
 T

im
e

(T
tx

)

Figure 3.7: Timing boundaries for the forward and backward cycles, upper: for-
ward cycle, lower: backward cycle.

3.2.2 Timing Boundaries for the Fast Four-Phase Syn-

chronizer

Derivation of timing boundaries for forward cycle is similar to that of the two-flop

synchronizer and is omitted here. Inequality 3.13 describes the timing boundaries

for the fast four-phase synchronizer forward cycle:

x < k 6 2x + 1. (3.13)

Unlike the two-flop synchronizer where backward cycle and forward cycle are

symmetric, the implementation of asynchronous reset in fast four-phase synchro-

nizer breaks this symmetry. The asymmetry leads to separate analysis for back-

ward cycle. From Figure 3.6, the time boundary for backward cycle is (q + 1)Ttx.

Analyses of the backward cycle time boundary were performed and the results

are shown in (3.14) and (3.15). Figure 3.7 shows the timing boundaries for the

forward cycle and backward cycles.

x < q + 1 < x + 2 (x ≥ 2) (3.14)

2 ≤ q + 1 ≤ x + 2 (0 < x < 2) (3.15)

41

3.2.3 The average Data Cycle for the Fast Four-Phase

Synchronizer

The calculation of the average data cycle for the fast four-phase synchronizer

requires separate analysis for the forward and the backward cycles. The forward

cycle is identical to that of the two-flop synchronizer. This can be seen from the

comparison of the two timing relation diagrams in Figure 3.1 and Figure 3.6. The

forward cycle of the fast four-phase synchronizer is one transmitter clock faster

than that of the two-flop synchronizer, if the time taken by the asynchronous

reset is neglected. Therefore, if the forward cycle of the two-flop synchronizer is

(k + 1)Ttx, then its counterpart for the fast four-phase synchronizer is kTtx. The

same analysis can be applied here to calculate the average forward cycle for fast

four-phase synchronizer as shown below:

Avern=odd =
3

2
(n + 1) − (

3

8
n2 +

1

2
n +

1

8
)
1

x
(3.16)

Avern=even =
3

2
n + 1 − (

3

8
n2 +

n

4
)
1

x
(3.17)

where n ∈ Z+, n > 0 and x ∈ [n
2
, n+1

2
].

The average forward cycle for the fast four-phase synchronizer is similar to

that of the two-flop synchronizer except it is always one transmitter clock faster.

The backward cycle of the fast four-phase synchronizer is much shorter than

that of the two-flop synchronizer. The timing boundary of the two-flop syn-

chronizer becomes wider as x increases, whereas the width of boundary for the

fast four-phase remains unchanged. This means the range of possible values for

backward cycle increases significantly for the two-flop synchronizer, whereas it

remains constant for the fast four-phase synchronizer as is shown in Figure 3.7.

Unlike forward cycle where analytical expressions can be derived for probabilities

and averages, the backward cycle does not show regular pattern. This is largely

due to the dependency of the backward cycle on the forward cycle, as is the case

in the two-flop synchronizer. The probabilities for forward cycle are obtained

by monotonically increasing φ1. However, this change in φ1 causes non-linear

behaviour in the starting phase of the backward cycle φ3, which then causes the

backward cycle time to fluctuate. The in-depth analysis on this dependency as

well as the backward and data cycle times are presented in Chapter 4.

42

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x

B
ac

kw
ar

d
C

yc
le

 (
T

tx
)

← Average

Figure 3.8: Average backward cycle of the fast four-phase synchronizer

Fortunately, the possible backward cycle times are limited to a small range

and does not grow as the clock ratio increases, as can be seen from the lower figure

in Figure 3.7. Some preliminary analyses were applied to the average backward

cycle times and the resultant average backward cycle is in Figure 3.8. The small

bubbles on the plot are the ratios selected in the analyses. Bumps occur on the

curve where x is equal to 1.5, 2.5, 3.5 etc. This is due to the fact that forward

cycle takes in a new value of k every interval of length 0.5, because the upper

boundary has the slope of 2 (Figure 3.7). Since the backward cycle depends

on the forward cycle, this advance in k can cause distortions in the average of

backward cycle. However, these fluctuations are gradually smoothed out as the

clock ratio increases. The average tends to be a straight line with a slope of 1.

Together with the narrow timing boundaries indicated by the two parallel red

lines, it is possible to predict the approximate backward cycle time. For example,

if Trx/Ttx is 3.2, a good approximation of backward cycle is 4Ttx; if Trx/Ttx is 3.8,

then the backward cycle can be approximated as 5Ttx.

3.3 Fast Two-Phase Synchronizer

The data cycle can be significantly improved by employing a two phase protocol

over the communication channel. The fast two-phase synchronizer [DG09a] uses

additional control logic to implement the two-phase protocol, where the backward

cycle can be eliminated altogether. The circuit diagram is shown in Figure 3.9.

43

Figure 3.9: Fast two-phase synchronizer [DG09a]

On the receiver side, the XOR gate and the toggle flop F2 converts two-phase

REQ into four-phase RXE and a single cycle pulse VO. The similar circuit at the

transmitter side converts two-phase ACK into four-phase TXE.

The fast two-phase synchronizer completes its data transfer within one high

phase (or low phase) of request (REQ) signal. The data cycle is equal to the

forward or backward cycle. Intuitively, the data cycle should be only a half of

that of the two-flop synchronizer. The forward cycle operation timing diagram

is shown in Figure 3.10. The whole forward cycle takes (k + 1)Ttx to complete.

This is the same as forward cycle for the two-flop synchronizer. Therefore, the

same timing boundary can be applied as shown below:

x + 1 < k + 1 ≤ 2x + 2 (3.18)

where k is a positive integer. Observation shows that both the timing boundary

and the average forward cycle are the same as those of the two-flop synchronizer.

3.4 Comparison of Three Synchronizers

In this section, the average data cycle (forward cycle plus backward cycle) for

two-flop, fast two-phase and fast two-phase synchronizers are compared. Here

it is assumed that for the two-flop synchronizer, the average backward cycle is

the same as the average forward cycle. The influence of forward cycle on the

backward cycle is not considered here and will be analyzed in the next chapter.

Figure 3.11 shows a detailed comparison. All the curves for average data cycle

tend to be linear as the Trx/Ttx ratio increases. The slope of each line represents

44

the rate of increment of the data cycle. The slope for the two-flop, fast four-phase

and fast two-phase synchronizers is 3, 2.5 and 1.5 respectively. This means that

as the clock ratio increases, the fastest increase in the data cycle is the two-flop

synchronizer, producing the worst performance among the three. The fast two-

phase has the shortest data cycle time among them, and the rate of increase

in the average data cycle is the lowest as well. All three synchronizers show

distinct non-linear behaviour in the range x ∈ (0.5, 3]. It indicates that as clock

frequencies get closer, the overall data cycle times show non-linear behaviour. As

is said before, this non-linearity is a result of the dependencies of the backward

cycle on the forward cycle. Therefore the effect of these dependencies on the data

cycle deserves a more thorough analysis.

3.5 Summary

This chapter outlined the operations of three styles of two-flop synchronizers: the

two-flop, the fast-four phase and the two-phase synchronizers. Timing boundaries

are derived for the said three synchronizers. For the two-flop synchronizer, the

timing boundaries for the forward and backward cycles are identical and the for-

ward cycle timing boundary is derived. Separate analyses on the forward cycle

and backward cycle timing boundaries are applied to the fast four-phase synchro-

nizer due to the shortened backward cycle in the synchronizer design. The back-

ward timing boundary is found to be much tighter than the forward one, which

helps to increase the accuracy of the estimation of the average backward cycle

φ1

A1

ACKR1

REQ REQ

Ttxφ2Trx

Active Tx Edges

Active Rx Edges

k*Ttx

Figure 3.10: Forward cycle timing relation of the fast two-phase synchronizer

45

0 1 2 3 4 5 6
2

4

6

8

10

12

14

16

18

20

x

T
im

e
fo

r
on

e
da

ta
 c

yc
le

 (
T

tx
)

Two−Flop →

Fast Two→

← Two Phase

Figure 3.11: Comparison of Average Data Cycles of three synchronizers

time. The fast two-phase synchornizer has only forward cycle, whose boundary

is the same as that of the two-flop synchronizer.

The analytical average forward cycle times were derived for the three synchro-

nizers. They are obtained by taking the average of the weighted forward cycle

times. Some preliminary exploration on the backward cycle time for the fast

four-phase synchronizer is performed empirically. The dependency of the start-

ing phase of the forward cycle on that of the backward cycle is found to cause

non-linear behaviour of the backward cycle for both two-flop and fast four-flop

synchronizers. This non-linearity also influences the average data cycle times,

especially when the clock frequencies are close to each other.

46

Chapter 4

Behavioural Modelling and Cycle

Times Prediction of The

Two-Flop Synchronizer

In the previous chapter, the timing relation of the two-flop synchronizer was

described for the forward cycle, defined as the time between the assertion and

the next de-assertion of the REQ signal. The timing boundaries and the average

forward cycle for the two-flop synchronizer were then analyzed. The backward

cycle, defined as the time from the de-assertion to the next assertion of the REQ

signal, and the complete data cycle, consisting of both forward and backward

cycles, were not discussed because the dependency of backward cycle on forward

cycle was unknown. This chapter presents a detailed analysis of this dependency

as well as the backward and complete data cycle. Behavioural modelling of the

two-flop synchronizer is introduced. The dependency of the starting phase of the

backward cycle on that of the forward cycle is then analyzed. This information

is used to obtain the backward cycle and the data cycle times.

47

4.1 Behavioural modelling of the two-flop syn-

chronizer

4.1.1 An example of behavioural modelling of the two-flop

synchronizer

The two-flop synchronizer is used for data communication between two different

clock domains. In order to model the synchronizer behaviour, the two clock

domains need to be modelled first. The timing relation of the data cycle is shown

in Figure 3.1. To better illustrate the modelling algorithms for the two clock

domains, an example is described first. It is assumed that no clock frequency

drift exists in the model.

If the ratio of receiver clock to transmitter clock is 7/4, i.e. Trx/Ttx = 7/4,

then the length of one receiver clock cycle is defined as 7 units and that of the

transmitter clock is 4 units. For the purpose of this analysis, a discrete time step,

∆t, is introduced. This is set arbitrarily at a quarter of one unit. The size of

∆t is chosen as a comprise resolution: any sampling may hide some fine detail,

introduced by the effect of both clock edges becoming coincident (they rise at

the same time) but this appears to expose all the major features as the relative

phase changes. The effect of coincident clock edges is discussed in detail later.

Since the receiver clock is seven-unit long, its clock cycle Trx is 28∆t. Similarly,

the transmitter clock cycle Ttx is 16∆t. Figure 4.1 shows signal transitions of

the two-flop synchronizer for some sample cases with different starting phase φ1.

The red and blue solid lines represent the rising edges of the transmitter and

receiver clock respectively. The transmitter clock is used as a fixed reference for

all cases. So the phase difference results solely from shifting the receiver clock. It

is also assumed that the request signal (REQ) rises at the first active edge of the

transmitter clock. This figure illustrates the major phase changes for φ3 as φ1 is

increased, with discontinuities at, for example φ1 = 4∆t. It also shows that the

backward cycle time does not increase monotonically with the linear increase of

φ1, e.g. at the point where φ1 = 9∆t.

48

0

 tφ1=3∆

 tφ1=∆

 tφ1=4∆

 tφ1=8∆

 tφ1=20∆

φ1=27∆ t

φ1=28∆ t

 tφ1=9∆

R1 R1

R1

1 2 3 4 5 6 7

R1

R1

R1

A1

ACK

ACK

ACK

R1

R1

R1

REQ

ACK A1 R1

A1

A1

A1

ACK

ACK

ACK

ACK A1

ACK A1R1

R1 ACK

R1

R1 A1

A1 R1

ACK A1R1A1

A1 R1 ACK

ACKR1

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ ACK

F
igu

re
4.1:

T
w

o
C

lo
ck

s
T

im
in

g
M

o
d
el

49

4.1.2 Count of Forward and Backward Cycles

4.1.2.1 Choice of sampling resolution

The previous section provided an example of modelling clock domains and two-

flop synchronizer signal transitions. The sampling resolution was set to be a

quarter of one unit and it was regarded to be sufficient to expose the major

features of the synchronizer behaviour. This section provides justification for the

choice of sampling resolution for any clock ratios.

Firstly, to demonstrate that the sampling resolution in the previous example

was adequate to reveal all possible synchronizer features under the seven-to-four

clock ratio, several other resolutions were applied to the model and the results

are shown in Table 4.1. The first column lists forward and backward cycle times,

expressed as a pair (fw, bw). For example, (3, 4) means that time to complete

the forward cycle and backward cycle are 3Ttx and 4Ttx. Here, the number of the

time step (∆t) within one unit is defined as the resolution factor and denoted as

λ. So if the step time is a quarter of one unit, then λ is equal to 4. For each

λ listed in the table, the number of occurrences of a particular (fw, bw) pair is

obtained from counting the forward and backward cycle times at each φ1 as it

sweeps across its range in steps of ∆t. Take the 4th column where λ is equal to

4 as an example. From the previous chapter, the range of phase φ1 was found to

be (0, Trx]. In this example, Trx is seven units long. So Trx can be expressed as

7λ∆t = 28∆t. The range of φ1 becomes (0, 28∆t]. As φ1 sweeps across its range

in steps of ∆t, the total number of the (fw, bw) pairs is 28. Among these pairs,

three of them are (3, 4). The probability of the occurrence of this pair is therefore

denoted as 3/28 in the table. All other fractions in this table are obtained in the

same way.

In Table 4.1, it can be seen that λ should be greater than or equal to 2.

Otherwise, some (fw, bw) pairs will not be detected by the algorithms describing

the model. On the other hand, as λ is increased, it produces no new information

other than higher resolution around coincident clock edges. So the probability of

each behaviour settles to an asymptotic value. In some cases, e.g. the (5, 4) pair

in the bottom row, the pair may vanish as λ becomes infinitely large. This is

because, in theory, there is only one out of many cases when the clock edges are

exactly coincident. As λ increases, the probability of getting into this case tends to

be infinitesimally small. However, in a practical situation, this probability will be

50

(fw, bw) λ = 1 λ = 2 λ = 4 λ = 8 λ = 12 λ = 16 λ

(3, 4) − 1

14

3

28

7

56

11

84

15

112

1

7
− 1

7λ

(4, 5) 2

7

3

14

5

28

9

56

13

84

17

112

1

7
+ 1

7λ

(4, 3) − 1

14

3

28

7

56

11

84

15

112

1

7
− 1

7λ

(4, 4) 2

7

4

14

8

28

16

56

24

84

32

112

2

7

(5, 5) 2

7

3

14

5

28

9

56

13

84

17

112

1

7
+ 1

7λ

(5, 3) − 1

14

3

28

7

56

11

84

15

112

1

7
− 1

7λ

(5, 4) 1

7

1

14

1

28

1

56

1

84

1

112

1

7λ

Table 4.1: Comparison of forward and backward cycles of the two-flop synchro-
nizer with different resolution factors

bigger as clocks that are close enough will act coincidentally. Therefore, the final

model should take this into account. In sum, the underlying principle of sampling

resolution selection is not to pursue the ultimate clock edge resolution but to

expose all possible (fw, bw) pairs in order to evaluate the overall performance.

Therefore, the choice made in the previous example is adequate to serve this

purpose. The next question is that how the sampling resolution should be selected

for an arbitrary clock ratio? It is clear from the previous example that λ has a

certain range (greater than or equal to 2 in the previous example). Will this

range change for any other clock ratios? If it does change, how does this affect

the choice of sampling resolution? The choice of a quarter of one unit was justified

empirically for the range x ∈ (0.5, 3]. Finer resolutions were experimented with

to see if any further features were revealed with higher frequency sampling. None

was found from the results. It is therefore believed that any sampling period less

than half of one unit can reveal all the features, as a consequence of Nyquist-

Shannon Sampling Theorem. Since the choice of sampling period as a quarter

of one unit meets this requirement, this sampling resolution will be used for all

clock ratios throughout the rest of this thesis.

4.1.2.2 Effects of coincident edges

The last column in Table 4.1 shows an interesting phenomenon: most of the

fractions have a deviation of 1

λM
(M is 7 in this case) from a constant 1/7.

Here, Trx is expressed as the product of M , λ and ∆t, so the range of φ1 becomes

51

(0, λM∆t]. Note that these results are obtained by increasing φ1 from 0 to λM∆t

in steps of ∆t. The number of steps is therefore λM . This means that the

deviation is caused by one out of Mλ steps for each (fw, bw) pair. In fact, the

deviation is a result of coincident clock edges.

Two cases, namely φ1 = 3∆t and φ1 = 4∆t, in Figure 4.1 exemplify the effect

of coincident edges. The focus is put on signal transitions from the rise of ACK

to the fall of REQ in Figure 4.1 for each case. The sequence of signal assertion

and de-assertion is like this: ACK↑ → A1↑ → REQ↓. The numbers on top of

the figure represent active transmitter clock edges. When φ1 = 3∆t, ACK rises

one ∆t before the transmitter clock edge 2. As φ1 changes to 4∆t, the assertion

of ACK occurs at edge 2. Unable to rise due to the sequence of signal assertions

stated above, A1 has to wait until edge 3 before it rises. An extra delay of Ttx is

created, causing the forward cycle to increase from 3Ttx to 4Ttx. As φ1 increases,

the assertion of ACK is delayed accordingly.

The last column in Table 4.1 also reveals the fact that as λ increases, i.e. as

the sampling resolution improves, all the fractions tend to constant values and

the effect of coincident clock edges seems to fade. Theoretically speaking, the

chance of getting into such a situation is infinitesimal and one may decide not to

consider it at all. However, the author considers it important and indispensable to

the behavioural modelling of the two-flop synchronizer, for the following reasons.

Firstly, one direct consequence of clock edges becoming coincident is that it takes

more clock cycles to complete the data transfer, which might lead to the worst case

scenario. Take the ratio M/N = 2 as an example. The resultant (fw, bw) pairs

are shown in Table 4.2. The two worst cases, (6, 6) and (5, 6), are both produced

by the coincident edges when φ1 is equal to 8∆t and 4∆t respectively. If these two

scenarios were omitted, the worst case would be (5, 4) according to the model.

One basic principle of the behavioural modelling is that it should describe all

the possible outcomes of the two-flop synchronizer under any clock ratios. When

its overall performance is evaluated, the best and worst cases of data transfer

should be reflected from the model itself. Although the probability of having

coincident clock edges is generally low compared to the non-conflicting cases, it

is still possible to occur in the real circuits and affect the overall performance.

Secondly, clock skew and practical flip-flops have larger timing window for

coincident edges, as opposed to the infinitely narrow window described in the

52

φ1(∆t) fw, bw(Ttx)
1 to 3 (4, 4)

4 (5, 6)
5 to 7 (5, 4)

8 (6, 6)

Table 4.2: All possible (fw, bw) pairs for M/N = 2 with λ = 4

theoretical model. Some cases, especially those with very close clock edges, pre-

dicted as non-conflicting edges from the model, may become conflicting because

of the larger timing window. Consequently, the possibility of getting the worst

case performance may increase. Furthermore, the coincident clock edges can also

produce metastable output for the first sampling flip-flops in each clock domain.

For example, in Figure 4.1, when φ1 is equal to 3∆t, the assertion of ACK is

close to that of A1. If the timing window is larger than the interval between

these two signals, the flop sampling A1 is likely to become metastable. If this is

the case, then A1 may not rise on edge 2 but later edges. Although the model

described so far does not deal with metastability, it is still necessary to include

the effect of coincident clock edges as it is possible to cause metastability in the

sampling flops. With the indication of coincident clock edges from this model,

one can further add the metastability effect to predict more precisely the overall

performance.

Considering the stated factors, the author thinks it necessary that the be-

havioural model includes the effect of coincident clock edges, regardless of its

probability of occurrence. Of course, it is not the aim of this model to deal with

all the practical issues, but the author believes that it will be useful if this model

can show all possible cases under certain ideal assumptions, especially the best

and worst cases. Once these corner cases are identified, the designer can add

practical factors into the model to get a more accurate performance evaluation.

A behavioural model of the two-flop synchronizer under different clock ratios was

constructed, based on the assumptions and mechanisms described so far. This

model was used to simulate the phase changes for all clock ratios of interest, so

that the relationship between the starting phases of the forward and backward cy-

cles can be determined. It also gives simulation results for the forward, backward

and data cycle times, which can be verified against the results from analyses.

53

φ1(∆t) φ3(∆t) ForwardCycle BackwardCycle DataCycle
1 3 3 4 7
3 1 3 4 7
4 16 4 5 9
8 12 4 5 9
9 1 4 3 7
20 16 5 5 10
27 9 5 3 8
28 8 5 3 8

Table 4.3: Comparison of starting phases, forward, backward and data cycles of
the two-flop synchronizer with clock ratio of 7/4

4.2 Dependency of φ3 on φ1

The time between the successive drops of REQ and R1 represents the initial phase

of the backward cycle, which is named as φ3 in Figure 3.1. In Figure 4.1, several

cases of signal transitions between the transmitter and the receiver are drawn

based on different values of initial phase φ1. The resultant phase φ3, forward

cycle, backward cycle and the complete data cycle are shown in Table 4.3. The

cycle times are all multiples of Ttx. The monotonic increase in φ1 produces a

monotonic increase in forward cycle, as was analyzed in the previous chapter.

However, the other quantities, including φ3, the backward cycle and the data

cycle, do not change monotonically as φ1 increases. Because φ3 is the starting

phase of the backward cycle, its behaviour will influence the backward cycle

and hence the data cycle. It is therefore necessary to analyze the behaviour of

φ3 before the characteristics of the backward cycle and the data cycle can be

obtained.

The change in φ3 with the linear increase of φ1 is obtained by the model

simulation. Recall that from the previous section, the following relationship was

defined: Trx/Ttx = M/N = x, where M and N were relatively prime and the

precision of x was limited to 0.01 and remains the same throughout this thesis

unless specified otherwise. The region of interest is x ∈ (0.5, 3] where the influence

of phase shift is relatively significant on the data cycle.

The relationship between φ3 and φ1 in the region x ∈ (0.5, 1) is analyzed first.

It is found that although there is no direct linear relationship between the two

phases, φ3 is a piecewise linear function of φ1, M and N . Figure 4.2 gives several

examples of plots of φ3 versus φ1. Empirical results of φ3 reveal that the slope

54

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x = 0.57(green), 0.58(blue), 0.59(magenta)

phi1 (Trx)

ph
i3

 (
T

rx
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x = 0.66(green), 0.67(blue), 0.68(magenta)

phi1 (Trx)

ph
i3

 (
T

rx
)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

x = 0.71(green), 0.72(blue), 0.73(magenta)

phi1 (Trx)

ph
i3

 (
T

rx
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x = 0.93(green), 0.94(blue), 0.95(magenta)

phi1 (Trx)

ph
i3

 (
T

rx
)

Figure 4.2: Example plots of φ3 with different x values

of each line segment is 1. The relationship beween φ3 and φ1 can be written as

φ3 = φ1+K where K represents the intersection of each line on the φ3 axis. From

Figure 4.2, it can be seen that K varies for different x values. The number of linear

equations also changes when clock ratio changes. For example, when x = 0.57,

three piecewise linear equations are required to express φ3 whereas only two are

needed when x = 0.73. Therefore, in order to describe the behaviour of φ3, two

things need to be decided: how many equations are needed and what is the value

of K corresponding to each equation. A close investigation of the simulation

results reveals that there exist three x values, 3/5, 2/3, 3/4, dividing the range

(0.5, 1) into four regions. Within each region, the number of line segments is

fixed. The four sets of plots in Figure 4.2 are selections from each of these

regions. The top right hand corner diagram illustrates the change in number of

line segements when x crosses the 2/3 boundary. The green trace has four line

segements at x = 0.66 but the blue trace has only two at x = 0.67. Because the

number of line segments is equal to the number of equations needed to represent

the relationship between φ3 and φ1, it can be inferred that four equations are

needed when x = 0.66 but only two are needed when x = 0.67. Empirical results

indicate that K can be expressed as multiples of λ. Therefore, the piecewise

linear equation shown in the Equation 4.1 is created to describe φ3.

55

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x (Ttx)

al
ph

a/
N

0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

x (Ttx)

be
ta

/N

0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

x (Ttx)

ga
m

m
a/

N

0.5 0.6 0.7 0.8 0.9 1

−0.6

−0.5

−0.4

x (Ttx)

th
et

a/
N

Figure 4.3: Plots of normalized interception parameters

φ3 =































φ1 + αλ if 0 < φ1 ≤ A

φ1 + βλ if A < φ1 ≤ B

φ1 + γλ if B < φ1 ≤ C

φ1 + θλ if C < φ1 ≤ Mλ

(4.1)

The next thing to do is to determine the unknown parameters, α, β, γ, θ, A, B

and C in Equation 4.1. These parameters are categorized into two groups accord-

ing to their function in the equation set: interception parameters and boundary

parameters. The interception parameters include α, β and γ and the boundary

parameters include A, B and C. The interception parameters are analyzed first.

As x represents the ratio of M to N , it is useful if these parameters are nor-

malized in the same way as x, i.e, divided by N . Figure 4.3 shows the plots of

the normalized interception parameters. The stars in each plot represent data

from each simulation and the red diamonds represent the case when x is 2/3.

The discontinuity of each graph occurs at x = 2/3, with the exception of the

normalized θ where it ceases to exist from beyond 2/3. These anomalies at 2/3

corresponds to significant changes in plots of φ3 between x = 0.66 and x = 0.67,

as is demonstrated in Figure 4.2. Below is an example of calculations for α, which

56

is a piecewise linear function of x. Four points, (0.55, 0.2), (0.63, 0.52), (0.79, 0.37)

and (0.95, 0.85), on the plot of normalized α in Figure 4.3 are selected to calculate

the slope. Let αn represent the normalized α, so αn = α/N .

1

2
< x <

2

3
,

slope =
0.52 − 0.2

0.63 − 0.55
= 4

αn − 0.2 = 4(x − 0.55)

αn = 4x − 2

α = 4M − 2N

2

3
< x < 1,

slope =
0.85 − 0.37

0.95 − 0.79
= 3

αn − 0.37 = 3(x − 0.79)

αn = 3x − 2

α = 3M − 2N

The other three interception parameters can be obtained in the similar fashion.

Table 4.4 lists expressions of these four parameters. The boundary parameters are

also normalized in the same way as the interception parameters and are plotted

in Figure 4.4. Unlike the interception parameters where their normalized forms

show linear patterns, the plots for boundary parameters also display certain non-

linearity. Investigation of the empirical data in the non-linear regions reveals that

they can be easily represented by linear combinations of interception parameters.

Table 4.5 presents expressions of these parameters. Table 4.6 lists these boundary

parameters in terms of M , N and λ.

φ3 =











































φ1 + αλ if 0 < φ1 ≤ A

φ1 + βλ if A < φ1 ≤ B

φ1 + γλ if B < φ1 ≤ C

φ1 + θλ if C < φ1 ≤ D

φ1 + µλ if D < φ1 ≤ Mλ

(4.2)

So far, both interception and boundary parameters in Equation Set 4.1 have

57

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

x (Ttx)

A
/N

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

x (Ttx)

B
/N

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.5

2

2.5

x (Ttx)

C
/N

Figure 4.4: Plots of normalized boundary parameters

x α β γ θ

(0.5, 0.6] 4M − 2N 3M − 2N 5M − 3N −

(0.6, 0.66] 4M − 2N 3M − 2N 5M − 3N 4M − 3N

(0.66, 0.75] 3M − 2N 4M − 3N − −

(0.75, 1) 3M − 2N 4M − 3N 3M − 3N −

Table 4.4: Expressions of the interception parameters when x ∈ (0.5, 1)

been expressed in terms of M , N and λ. This indicates that given a clock ra-

tio (M/N) and the resolution factor(λ), one can predict the starting phase of

backward cycle, φ3, based on Equation Set 4.1 and Tables 4.4 and 4.6.

The similar approach is adopted to obtain expressions of φ3 in the range

x ∈ (1, 2) and x ∈ [2, 3] separately. For the region x ∈ (1, 2), five linear equations

are needed and are shown in Equation Set 4.2. The corresponding parameters

are expressed in terms of M ,N and λ and the results are listed in Table 4.7 and

Table 4.8.

In the case of x ∈ (2, 3), Equation Set 4.1 is sufficient to depict φ3 and the

corresponding parameters are shown in the first rows in Table 4.9 and Table 4.10.

Lastly, several special cases are also worth mentioning. When the value of x

becomes a whole number, the parameters for φ3 do not match any of the stated

58

x A B C

(0.5, 0.6] −βλ (γ − 2β)λ − 1 −

(0.6, 0.66] −βλ (γ − 2β)λ − 1 −θλ

(0.66, 0.75] (α − β)λ − 1 − −

(0.75, 1) (α − β)λ − 1 −γλ −

Table 4.5: Expressions of boundary parameters in terms of interception parame-
ters when x ∈ (0.5, 1)

x A B C

(0.5, 0.6] (2N − 3M)λ (N − M)λ − 1 −

(0.6, 0.66] (2N − 3M)λ (N − M)λ − 1 (3N − 4M)λ

(0.66, 0.75] (N − M)λ − 1 − −

(0.75, 1) (N − M)λ − 1 (3N − 3M)λ −

Table 4.6: Expressions of boundary parameters in terms of M , N and λ for
x ∈ (0.5, 1)

x α β γ θ µ

(1, 1.33] 3M − 3N 2M − 3N 3M − 4N − −

(1.33, 1.5) 3M − 3N 2M − 3N 3M − 4N 2M − 4N −

[1.5, 1.66] 2M − 3N 3M − 4N 2M − 4N 3M − 5N −

(1.66, 2) 2M − 3N 3M − 4N 2M − 4N 3M − 5N 2M − 5N

Table 4.7: Expressions of interception parameters for x ∈ (1, 2)

x A B C D

(1, 1.33] (3N − 2M)λ (2N − M)λ − 1 − −

(1.33, 1.5) (3N − 2M)λ (2N − M)λ − 1 (4N − 2M)λ −

[1.5, 1.66] (2N − M)λ − 1 (4N − 2M)λ (3N − M)λ − 1 −

(1.66, 2) (2N − M)λ − 1 (4N − 2M)λ (3N − M)λ − 1 (5N − 2M)λ

Table 4.8: Expressions of boundary parameters for x ∈ (1, 2)

59

scenarios and therefore need to be dealt with separately. In the region x ∈ (0.5, 3],

these cases are x = 1, x = 2 and x = 3. When x = 1, φ3 is always equal to φ1.

In the other two cases, Equation Set 4.1 can be used and the expressions for the

parameters are shown as the second and third rows in Table 4.9 and Table 4.10.

x α β γ θ

(2, 3) 2M − 4N 2M − 5N 2M − 6N 2M − 7N

2 0 1 −1 0

3 1 0 −1 −2

Table 4.9: Expressions of interception parameters for x ∈ [2, 3]

x A B C

(2, 3) (3N − M)λ − 1 (4N − M)λ − 1 (5N − M)λ − 1

2 λ − 1 λ 2λ − 1

3 λ − 1 2λ − 1 3λ − 1

Table 4.10: Expressions of boundary parameters for x ∈ [2, 3]

So far, expressions of the starting phase of the backward cycle, φ3, within the

region x ∈ (0.5, 3] have been derived. This information will be used to obtain the

backward cycle characteristics later.

4.3 Relationships between φ1 and the cycle times

The goal of this modelling is to investigate the influence of the starting phase

φ1 on the behaviour of two-flop synchronizer cycle times, including the forward,

backward and complete data cycles. Based on the analysis in the previous sec-

tion, the starting phase of the backward cycle φ3 can be determined by a set of

linear equations, provided the information about φ1, the clock ratio M/N and

the resolution factor λ is known. Now the question is how can this information

help to acquire forward, backward and complete data cycle times. This section

presents a detailed analysis on this problem.

60

4.3.1 Prediction of the forward cycle time

In the previous chapter, the forward cycle times are counted for x ∈ (0, 4] and

listed in Table 3.1. For a given x range, it only shows the possible forward

cycles and the probability of getting them. For instance, when x ∈ (0.5, 1),

the probability of getting a forward cycle of 2Ttx is 1/x − 1 and the probability

of getting a forward cycle of 3Ttx is 2 − 1/x. However, it does not give any

information on how forward cycle changes from 2Ttx to 3Ttx. In other words,

during the linear increase in φ1, at what value of φ1 does this change in the

forward cycle occur?

The behavioural model for the two-flop synchronizer is used to explore the

relationship between φ1 and the forward cycle. The notations and assumptions

remain unchanged. The procedures taken are outlined in Algorithm 4.1. As is

stated before, the x region of interest is (0.5, 3]. The clock ratio x is assigned a

value in this range, and the model is run by sweeping φ1 from ∆t to M∆t in steps

of ∆t. For each step change in φ1, forward cycle time is counted by the function

countFwCycle() and then compared to the previous forward cycle. If there is an

increase in the forward cycle, then the φ1 value is stored as a critical value φ1c.

Algorithm 4.1 Find critical value for φ1

given x
for φ1 = ∆t to M∆t step ∆t do

i = φ1/∆t
fw[i] = countFwCycle(φ1, x)
if i ≥ 2 then

increment = fw[i] − fw[i − 1]
if increment == 1 then

φ1c = φ1

else
continue

end if
end if

end for

This algorithm is used to find critical values for all the clock ratios in the

range (0.5, 3]. Simulations using the said model were performed to establish the

relationship between φ1 and the forward cycle times. Figure 4.5 and 4.6 show plots

of the forward cycles and the critical values for the range x ∈ (0.5, 1) separately.

In both figures, φ1 is normalized by dividing by (Mλ), i.e. φ1,norm = φ1/(Mλ).

61

The range of φ1 becomes (0, 1]. In Figure 4.5, as the φ1,norm sweeps across its

range, forward cycle jumps from 2Ttx to 3Ttx when the normalized φ1 reaches its

critical value. As the clock ratio x increases, the critical value gradually becomes

smaller, leading forward cycle to jump at a smaller starting phase. This figure

suggests that the starting phase imposes obvious influence on the forward cycle

time. For example, to have a forward cycle time of 2Ttx, x has to be less than 0.55

for a starting phase of 0.8Ttx. However, to achieve the same forward cycle time,

x can be as large as 0.83 with a starting phase of 0.2Ttx. In other words, a small

starting phase is likely to produce a short forward cycle. So if the starting phase

is reduced, an increase in the overall synchronizer performance can be expected.

Figure 4.6 provides a two-dimensional plot of Figure 4.5, viewed from the top. The

red asterisks represent the normalized critical points from simulation. This plot

clearly indicates that a function can be established between x and the normalized

critical value φ1c,norm. This relationship is described in Equation 4.3 and it is

plotted as the blue curve in Figure 4.6. Using Equation 4.3, the expression of φ1c

can be easily obtained as shown in Equation 4.4.

φ1c,norm = 1 −
1

x
(4.3)

φ1c = (1 −
1

x
)Mλ (4.4)

A similar approach is applied to obtain critical values of φ1 for the regions of

x ∈ (1, 2) and x ∈ (2, 3). From Table 3.1, it can be seen that when x ∈ (1, 2),

there are three possible forward cycles: 3Ttx, 4Ttx and 5Ttx. It therefore requires

two sets of critical points, as is shown by φ1c,a and φ1c,b in Figure 4.7. The region

below φ1c,a has a forward cycle of 3Ttx and the one above φ1c,b is 5Ttx. The region

between the two curves has a forward cycle of 4Ttx. When x is in the range

(2, 3), the possible forward cycle times becomes four and Figure 4.8 shows the

distribution of these forward cycle times as well as curves of critical points. As

for the situation where x is an integer, the same analysis can be applied. The

Cycle-time Lookup (CL) table, shown in Table 4.11, summarizes the critical values

and the distribution of forward cycle times for the range x ∈ (0.5, 3].

62

0.5
0.6

0.7
0.8

0.9
1

0
0.2

0.4
0.6

0.8
1
2

2.2

2.4

2.6

2.8

3

X: 0.83
Y: 0.2018
Z: 2

X: 0.83
Y: 0.2048
Z: 3

xNormalized phi1(Trx)

X: 0.55
Y: 0.8136
Z: 2

X: 0.55
Y: 0.8182
Z: 3

F
or

w
ar

d
C

yc
le

(T
tx

)

Figure 4.5: Plot of forward cycles in the range x ∈ (0.5, 1)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

N
or

m
al

iz
ed

 c
rit

ic
al

 p
hi

1
(T

rx
)

phi
1c

 →

fw=2Ttx

fw=3Ttx

Figure 4.6: Plot of the normalized φ1c when x ∈ (0.5, 1)

63

x φ1c ForwardCycles(Ttx)

x ∈ (0.5, 1) φ1c = (1

x
− 1)Mλ φ1 ∈ (0, φ1c) Forward Cycle=2

φ1 ∈ [φ1c, Mλ] Forward Cycle=3

x ∈ [1, 1.5) φ1c = (2

x
− 1)Mλ φ1 ∈ (0, φ1c) Forward Cycle=3

φ1 ∈ [φ1c, Mλ] Forward Cycle=4

x ∈ [1.5, 2) φ1c,a = (2

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=3

φ1c,b = (3

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=4

φ1 ∈ [φ1c,b, Mλ] Forward Cycle=5

x ∈ [2, 2.5) φ1c,a = (3

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=4

φ1c,b = (4

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=5

φ1 ∈ [φ1c,b, Mλ] Forward Cycle=6

x ∈ [2.5, 3) φ1c,a = (3

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=4

φ1c,b = (4

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=5

φ1c,c = (5

x
− 1)Mλ φ1 ∈ [φ1c,b, φ1c,c) Forward Cycle=6

φ1 ∈ [φ1c,c, Mλ] Forward Cycle=7

x = 3 φ1c,a = (4

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=5

φ1c,b = (5

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=6

φ1c,c = (6

x
− 1)Mλ φ1 ∈ [φ1c,b, φ1c,c) Forward Cycle=7

φ1 ∈ [φ1c,c, Mλ] Forward Cycle=8

Table 4.11: Critical values and the distribution of forward cycle times for the
two-flop synchronizer

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

phi
1c,a

 →

← phi
1c,b

fw=3Ttx

fw=4Ttx

fw=5Ttx

x

N
or

m
al

iz
ed

 c
rit

ic
al

 p
hi

1(
T

rx
)

Figure 4.7: Plots of normalized φ1c when x ∈ (1, 2)

64

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

phi
1c,a

 →

phi
1c,b

 →

← phi
1c,c

fw=4Ttx

fw=5Ttx

fw=6Ttx

fw=7Ttx

x

N
or

m
al

iz
ed

 c
rit

ic
al

 p
hi

1(
T

rx
)

Figure 4.8: Plots of normalized φ1c when x ∈ (2, 3)

4.3.2 The relationship between φ3 and the backward cycle

time

Now as the relationship between φ1 and φ3 is fully understood, together with

the Cycle-time Lookup (CL) Table, the behaviour of the backward cycle time

can be obtained. Because the operations of the forward and the backward cycles

are symmetrical for the two-flop synchrnoizer, the backward cycle has the same

characteristics as the forward cycle. This means that φ3 influences the backward

cycle in the same way as φ1 influences the forward cycle. Therefore, the CL table

shown in Table 4.11 can be used to obtain the backward cycle with a given φ3.

The interest of this analysis, however, focuses on finding how φ1 influences the

backward cycle time. The procedures to determine the backward cycle from φ1

are outlined in Algorithm 4.2.

Algorithm 4.2 Find critical value for φ1

given x
for φ1 = ∆t to M∆t step ∆t do

1.Calculate φ3 from φ1.
2.Look up the backward cycle in Table 4.11 that corresponds to φ3.

end for

65

4.3.3 Analyses of the data cycle times

Both forward and backward cycle time are calculated given the clock ratio M/N ,

the resolution factor λ and the starting phase φ1, the complete data cycle can be

easily obtained by adding the two cycles. The analyses of the complete data cycle

against the clock ratio x and φ1 reveals some irregular patterns. As an example,

the forward, backward and data cycles are plotted for x ∈ (0.5, 1) in Figure 4.9.

The figure of the forward cycle time shows that for a fixed φ1, it increases as

x increases. The forward cycle also increases with the increase in φ1, given a

fixed clock ratio. These facts indicate that the increase in either clock ratio or

the starting phase can contribute to the increase of the forward cycle time. So a

small clock ratio with a small starting phase can produce a short forward cycle.

Things get complicated for the backward cycle time. The irregular trend in the

backward cycle time with the increase in x is the result of the non-monotonic

change in φ3. If φ3 were allow to increase in a linear fashion, it could be expected

that the backward cycle time would increase in the same way as the forward

cycle. Generally speaking, the backward cycle increases as x increases, which

is reflected by the increase in the blue area in its plot in Figure 4.9. However,

there are several exceptions. For example, the red area is bigger at x = 0.67

than x = 0.59. The reason can be found from the comparisons of φ3 at these

clock ratios in Figure 4.2. From this figure, it can be seen that as φ1 increases

from 0 to Trx, the overall φ3 is bigger at x = 0.59 than that at x = 0.67. As the

bigger starting phase produces longer cycle time, the overall backward cycle time

for 0.59 is longer. Although the increase in x also produces longer cycle time,

which would produces a longer backward cycle at 0.67, it is overshadowed by the

influences of the starting phase in this example.

For the data cycle time shown in the bottom of Figure 4.9, although the

behaviour is also irregular, some patterns can still be identified. Generally, for

a fixed clock ratio x, the data cycle increases as φ1 gets bigger. In other words,

reducing the starting phase can, to some extent, shorten the data cycle time.

Another noticeable fact is that the complication of the data cycle time trend.

This behaviour makes a pure analytical approach for the data cycle very difficult.

The approach adopted in this chapter combines analytical solutions for φ3 and

a Cycle Lookup (CL) table for the prediction of the backward cycle time. In

this way, the complicated analytical approach can be avoided and, at the same

time, the data cycle time can be precisely obtained from the model. Therefore,

66

the author considers this approach appropriate for the modelling of the two-flop

synchronizer.

4.4 Summary

This chapter presented detailed analyses of the forward, backward and data cycle

times for the two-flop synchronizer. A behavioural model of the two-flop syn-

chronizer was described and the adequate selection of the resolution factor was

illustrated. With the help of this model, the dependency of φ3 on φ1 was ana-

lyzed. The relationship between them was then described by Equation Sets 4.1

and 4.2, as well as the parameters listed in Tables 4.4 to 4.10. The Cycle-time

Lookup (CL) table shown as Table 4.11 was then constructed to make predic-

tions of forward cycle time. This table, together with the relationship between

φ1 and φ3 was used to calculate the backward cycle time and the data cycle time.

The analysis of the data cycle time revealed a general pattern: by reducing the

starting phase, the cycle time can be shortened. This observation may lead to

improvements of the two-flop synchronizer later.

67

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

No
ma

lize
d p

hi1
 (T

rx)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

No
ma

lize
d p

hi1
 (T

rx)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

No
ma

lize
d p

hi1
 (T

rx)

Figure 4.9: Plots of forward cycle(top), backward cycle(middle) and data cy-
cle(bottom) when x ∈ (0.5, 1). The color representations are: red=2Ttx,
blue=3Ttx, magenta=4Ttx, yellow=5Ttx, green=6Ttx.

68

Chapter 5

Modelling of fast four-phase and

fast two-phase synchronizers and

preliminary investigation of a

three-flop synchronizer

This chapter extends the analyses of the starting phases dependencies as well as

the data cycle times to the fast four-phase synchronizer and the fast two-phase

synchronizer. The region of transmitter-to-receiver clock ratio x is limited to

(0.5, 3] as the cycle times show distinct non-linearity in this region. The forward

cycle times of these synchronizers are analyzed. A new approach in calculating

the backward cycle time of the fast four-phase synchronizer is presented in detail.

The analyses of the data cycle times of the two-flop, fast four-phase and two-phase

synchronizers reveals potential synchronizer performance improvement, when the

starting phase φ1 is shortened. A new three-flop synchronizer with double clock

frequencies is proposed. Preliminary investigation of the data cycle times as well

as its failure rate analysis are presented at the end of this chapter.

5.1 Forward cycle times for the fast four phase

and fast two phase synchronizers

Comparing the timing relation diagrams for the fast two-phase synchronizer in

Figure 3.10 and the two flop synchronizer in Figure 3.1, the forward cycle times

69

turn out to be the same in both cases. It is therefore feasible to use the conclusions

summarized in Table 4.11 to delineate the forward cycle behaviour of the fast

two-phase synchronizer. Because the fast two-phase synchronizer utilizes both

high and low phases of REQ signal to transmit data, the data cycle is actually

the forward cycle. Also, for the two-flop synchronizer, the backward cycle is

symmetrical to the forward cycle. So it can be inferred that the influence of

the first data transfer of the fast two-phase synchronizer on the next data word

transfer is equivalent to the influence of the forward cycle on the backward cycle

for the two-flop synchronizer. The results on dependencies of φ3 on φ1 and the

Cycle-time Lookup table for the two-flop synchronizer can be directly applied to

the fast four-phase synchornizer.

Comparing the forward cycle timing relation of the fast four-phase synchro-

nizer(Figure 3.6) and that of the two-flop synchronizer(Figure 3.1), one transmit-

ter clock Ttx is saved for the fast four-phase synchronizer. However, the critical

values for φ1 are identical for these synchronizers. To prove this, the behavioural

model for the fast four-phase synchronizer is constructed, under the same clock

domains model presented in Section 4.1.1. Investigation of the critical φ1 from

the simulation results confirms its consistency between the two-flop and the fast

four-phase synchronizer. The Cycle-time Lookup table for the fast four-phase

synchronizer shown in Table 5.1 summarizes the critical values and forward cycle

times for the fast four-phase synchronizer.

5.2 Backward cycle time for the fast four phase

synchronizers

The backward cycle time behaviour for the fast four-phase synchronizer requires

a separate analysis. As is stated before, because the flip-flops with asynchronous

reset were used in the fast four-phase synchronizer design, the backward cycle

is no longer symmetrical to the forward cycle. This fact changes the way of

predicting the backward cycle times. In Figure 3.6, the backward cycle consists

of φ3, φ4 and one transmitter clock. The goal is to establish the relationship

between φ1 and the backward cycle time. So the two phase relationships, namely

φ1 vs φ3 and φ1 vs φ4 need to be analyzed before the backward cycle time can be

predicted from φ1.

70

x φ1c ForwardCycles(Ttx)

x ∈ (0.5, 1) φ1c = (1

x
− 1)Mλ φ1 ∈ (0, φ1c) Forward Cycle=1

φ1 ∈ [φ1c, Mλ] Forward Cycle=2

x ∈ [1, 1.5) φ1c = (2

x
− 1)Mλ φ1 ∈ (0, φ1c) Forward Cycle=2

φ1 ∈ [φ1c, Mλ] Forward Cycle=3

x ∈ [1.5, 2) φ1c,a = (2

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=2

φ1c,b = (3

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=3

φ1 ∈ [φ1c,b, Mλ] Forward Cycle=4

x ∈ [2, 2.5) φ1c,a = (3

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=3

φ1c,b = (4

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=4

φ1 ∈ [φ1c,b, Mλ] Forward Cycle=5

x ∈ [2.5, 3) φ1c,a = (3

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=3

φ1c,b = (4

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=4

φ1c,c = (5

x
− 1)Mλ φ1 ∈ [φ1c,b, φ1c,c) Forward Cycle=5

φ1 ∈ [φ1c,c, Mλ] Forward Cycle=6

x = 3 φ1c,a = (4

x
− 1)Mλ φ1 ∈ (0, φ1c,a) Forward Cycle=4

φ1c,b = (5

x
− 1)Mλ φ1 ∈ [φ1c,a, φ1c,b) Forward Cycle=5

φ1c,c = (6

x
− 1)Mλ φ1 ∈ [φ1c,b, φ1c,c) Forward Cycle=6

φ1 ∈ [φ1c,c, Mλ] Forward Cycle=7

Table 5.1: Critical values and the distribution of forward cycle times for the fast
four-phase synchronizer

5.2.1 The relationship between φ1 and φ3

Comparing with the backward cycle of the two-flop synchronizer(Figure 3.1),

the backward cycle for the fast four-phase synchronizer is one transmitter clock

shorter. This fact introduces different φ3 expressions for the fast four-phase syn-

chronizer. Therefore, conclusions of φ3 for the two-flop synchronizer can not be

applied to obtain φ3 for the fast four-phase. However, given the experience from

the two-flop synchronizer, it is assumed that φ3 is a piecewise linear function of

φ1: φ3 = φ1 + K for the fast four-phase synchronizer as well.

The fast four-phase synchronizer model is simulated to obtain values for φ3.

Investigation of the relationship between φ3 and φ1 concurs with the assumption

and only four linear equations are needed to describe φ3 within the range x ∈

(0.5, 3]. So the expression 4.1 is sufficient to depict φ3. The derivations of the

parameters in this function is similar to that of the two-flop synchronizer and are

omitted here. The expressions of these parameters are summarized in Table 5.2.

71

5.2.2 The relationship between φ1 and φ4

Experimental results of φ4 were obtained from the simulation of the fast four-

phase synchronizer model, with φ1 sweeping across its range and x increasing

from 0.51 to 3. The results are divided into four categories according to the

region of clock ratio x: x ∈ (0.5, 1),x ∈ (1, 2), x ∈ (2, 3) and x = 1, 2, 3. The

behaviour of φ4 within these categories is analyzed individually.

5.2.2.1 Uniform backward cycle times in region x ∈ (0.5, 1)

In Chapter 3, the backward cycle timing boundaries for the fast four-phase syn-

chronizer was analyzed. From the plots of the timing boundaries in Figure 3.7,

the backward cycle time remains constant at 2Ttx when x ∈ (0.5, 1). This conclu-

sion is also confirmed by the simulation results of φ4 in this region. In this case,

there is no need to derive expressions for φ4 as the backward cycle time in this

region is uniform regardless of the φ4 values.

5.2.2.2 Expressions of φ4 in (1, 2)

Within this region, the possible backward cycle time is either Ttx or 2Ttx, as can

be inferred from Inequality 3.15. However, it is not clear that how the backward

cycle time changes between these two possible values. So it is necessary to explore

the behaviour of φ4 in this region. Here, in order to show the pattern of changes

in φ4 more conveniently, both φ1 and φ4 are normalized as φ1,norm and φ4,norm:

φ1,norm =
φ1

Mλ

φ4,norm =
φ4

Nλ
.

(5.1)

x α β γ θ A B C
(0.5, 0.66] 2M − N 3M − 2N − − (N − M)λ − 1 − −
(0.66, 1) 2M − N 3M − 2N 2M − 2N − (N − M)λ − 1 (2N − 2M)λ − 1 −

1 0 − − − − − −
(1, 1.33] 2M − 2N 2M − 3N − − (2N − M)λ − 1 − −

(1.33, 1.49] 2M − 2N 2M − 3N − − (2N − M)λ − 1 − −
(1.49, 2) 2M − 2N 2M − 3N 2M − 4N − (2N − M)λ − 1 (3N − M)λ − 1 −
[2, 2.49] 2M − 3N 2M − 4N 2M − 5N − (3N − M)λ − 1 (4N − M)λ − 1 −

(2.49, 2.99] 2M − 3N 2M − 4N 2M − 5N 2M − 6N (3N − M)λ − 1 (4N − M)λ − 1 (5N − M)λ − 1
3 2 1 0 −1 λ − 1 2λ − 1 3λ − 1

Table 5.2: Parameters for φ3 when x ∈ (0.5, 3]

72

Recall that the clock ratio x was defined before as x = Trx
Ttx

= M
N

. The choice of

the divisor for φ1 and φ4 in Equation 5.1 is made based on the range of these

two quantities, which are (0, Trx] and (0, Ttx]. Hence, the range for both φ1,norm

and φ4,norm becomes (0, 1]. Observation of φ4,norm shows that it can be expressed

by a set of linear equations, as it is the case for φ3, but with different slope and

parameters. Figure 5.1 gives an example plot of φ4,norm(red) and φ3,norm(blue),

where φ3,norm is obtained in the same way as φ1,norm. One distinction is that

the lines representing these two quantities has the opposite sign. Clearly, the

lines for φ4,norm have negative slope and are parallel to each other. Further

investigation of all φ4,norm reveals the relationship between φ4,norm and φ1,norm as

shown in Equation 5.2. The iteration i is the number of linear equations needed

and Ki,norm is the normalized interception parameter Ki for the i−th equation.

Equation 5.3 expands Equation 5.2 into three linear equations with the boundary

parameters, A and B. The interception parameters in Equation 5.3 are K1,norm,

K2,norm and K3,norm. The next step is to solve these parameters.

φ4,norm = −xφ1,norm + Ki,norm(i = 1, 2, 3) (5.2)

φ4,norm =



















−xφ1,norm + K1,norm if 0 < φ1 ≤ A

−xφ1,norm + K2,norm if A < φ1 ≤ B

−xφ1,norm + K3,norm if B < φ1 ≤ Mλ

(5.3)

The interception parameters are determined by calculating expressions for

each straight line. Take Figure 5.1 as an example. The clock ratio x in this case

is 1.57. Four points are chosen and the expressions of the lines are

φ4,norm =







−1.57φ1,norm + 0.86 if 0 < φ1 ≤ 0.546

−1.57φ1,norm + 1.86 if 0.546 < φ1 ≤ 1.

The interception parameters K1,norm and K2,norm are 0.86 and 1.86 respec-

tively. Please note in this case, the number of equations to represent φ4,norm is

2. It is possible that in other cases, more are required. This method is used

to find all the interception parameters in the region x ∈ (1, 2). The maximum

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← phi3
norm phi4

norm
 →

X: 0.8646
Y: 0.5025

phi1(norm)

ph
i4

(n
or

m
)

X: 0.4204
Y: 0.2

X: 0.1019
Y: 0.7

X: 0.6115
Y: 0.9

Figure 5.1: Example plots of φ4,norm (red) and φ3,norm (blue) at x = 1.57

x K1,norm K2,norm K3,norm

(1, 1.33] −2x + 3 −2x + 4 −

(1.33, 1.49] −2x + 3 −2x + 4 −2x + 5

(1.49, 1.66] −2x + 4 −2x + 5 −

(1.66, 2) −2x + 4 −2x + 5 −2x + 6

Table 5.3: Normalized interception parameters for x ∈ (1, 2)

number of interception parameters in the region is three. Once these parameters

are calculated, their behaviour can be explored. It is expected that these param-

eters to be expressed in terms of known factors, which are M ,N and λ. From

the previous experience, it is likely that these parameters are related to the clock

ratio x = M
N

. Figure 5.2 are the plots of these parameters against x. Expressions

for these parameters are summarized in Table 5.3.

Given the results for the normalized parameters in Table 5.3, Equation 5.3

can be re-written in terms of φ4 and φ1. To give an example, the K1,norm when

x is in (1, 1.33] is selected to illustrate this procedure. In this region, K1,norm is

−2x + 3. From the definition of φ1,norm and φ3,norm in Equation 5.1, the first

74

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

x
K

1 no
rm

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.5

2

x

K
2 no

rm

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
2

2.2

2.4

2.6

x

K
3 no

rm

Figure 5.2: Interception parameters for x ∈ (1, 2)

equation in Equation 5.3 becomes

φ4

Nλ
= −x

φ1

Mλ
+ (−2x + 3)

⇒
φ4

Nλ
= −

M

N

φ1

Mλ
+ (−2

M

N
+ 3)

⇒ φ4 = −φ1 + (3N − 2M)λ. (5.4)

Equation 5.4 describes the relationship between φ4 and φ1 when x ∈ (1, 1.33].

The same procedure is repeated to obtain other interception parameters and the

expressions of these parameters are listed in Table 5.4. The relationship between

φ4 and φ1 in this region is summarized in Equation 5.5.

φ4 =



















−φ1 + K1 if 0 < φ1 ≤ A

−φ1 + K2 if A < φ1 ≤ B

−φ1 + K3 if B < φ1 ≤ Mλ

(5.5)

Next, the boundary parameters in Equation 5.5 are derived. Again, from the

previous experience, the boundary parameters are expected to be solved by linear

75

x K1 K2 K3

(1, 1.33] (3N − 2M)λ (4N − 2M)λ −

(1.33, 1.49] (3N − 2M)λ (4N − 2M)λ (5N − 2M)λ

(1.49, 1.66] (4N − 2M)λ (5N − 2M)λ −

(1.66, 2) (4N − 2M)λ (5N − 2M)λ (6N − 2M)λ

Table 5.4: Interception parameters for x ∈ (1, 2)

combinations of interception parameters. However, this approach was proved to

be unsuccessful in developing boundary parameters for φ4 of the fast four-phase

synchronizer. The reason is briefly discussed here. Assume for the moment,

there exists the following relationship between the boundary parameter A and

the interception parameters P and Q:

A = Pu + Qv

where u and v are two unknown variables.To solve them, two linearly independent

equations:

Aa = Pau + Qav

Ab = Pbu + Qbv

are needed. In the case of the forward cycle, these two equations can be es-

tablished by selecting two sets of simulation data of φ3 and calculating their

interception and boundary parameters. When it comes to the backward cycle, if

the same method is applied, then the unknown variables u and v are expected be

solved from the following two linear equations,

Aa = K1,au + K2,av

Ab = K1,bu + K2,bv

where the boundary parameters Aa,Ab and the corresponding interception param-

eters (K1,a, K2,a) and (K1,b, K2,b) are calculated from the φ4 simulation results for

two different clock ratios within the same region. However, the resultant two

76

x A B

(1, 1.33] −βλ − 1 −

(1.33, 1.49] −βλ − 1 (α − 2β)λ − 1

(1.49, 1.66] (α − 2β)λ − 1 −

(1.66, 2) (α − 2β)λ − 1 (β − 2γ)λ − 1

Table 5.5: Boundary parameters expressed by interception parameters from φ3

x A B

(1, 1.33] (3N − 2M)λ − 1 −

(1.33, 1.49] (3N − 2M)λ − 1 (4N − 2M)λ − 1

(1.49, 1.66] (4N − 2M)λ − 1 −

(1.66, 2) (4N − 2M)λ − 1 (5N − 2M)λ − 1

Table 5.6: Boundary parameters expressed by interception parameters from φ3

linear equations are always linearly dependent. Therefore, determining boundary

parameters demands the search for alternative ways. One such way that the au-

thor adopted was to express these boundary parameters in terms of interception

parameters from the corresponding φ3 expressions and the resultant boundary

parameters for φ4 are listed in Table 5.5. These interception parameters are then

substituted by the corresponding M , N and λ, as is shown in Table 5.6.

To sum up, the expressions of the phase shift φ4 in the region x ∈ (1, 2) are

developed. Equation 5.5 describes the relationship between φ4 and φ1, with the

parameters summarized in Table 5.4 and Table 5.6. In this way, the behaviour of

φ4 is delineated by φ1, M , N and λ, which makes it possible to predict φ4 from

φ1.

5.2.2.3 Summary of φ4 in (0.5, 3]

The behaviour of φ4 in the x region (2, 3) can be outlined in a similar fashion as

that in (1, 2). The derivations are omitted and only the final results are presented

here. Equation 5.6 are suitable in this region and the parameters are outlined in

Table 5.7.

77

x K1 K2 K3 K4 A B C
(2, 2.33] (5N − 2M)λ (6N − 2M)λ (7N − 2M)λ − (5N − 2M)λ − 1 (6N − 2M)λ − 1 −

(2.33, 2.49] (5N − 2M)λ (6N − 2M)λ (7N − 2M)λ (8N − 2M)λ (5N − 2M)λ − 1 (6N − 2M)λ − 1 (7N − 2M)λ − 1
(2.49, 2.66] (6N − 2M)λ (7N − 2M)λ (8N − 2M)λ − (6N − 2M)λ − 1 (7N − 2M)λ − 1 −
(2.66, 3) (6N − 2M)λ (7N − 2M)λ (8N − 2M)λ (9N − 2M)λ (6N − 2M)λ − 1 (7N − 2M)λ − 1 (8N − 2M)λ − 1

Table 5.7: Parameters for φ4 when x ∈ (2, 3)

φ4 =































−φ1 + K1 if 0 < φ1 ≤ A

−φ1 + K2 if A < φ1 ≤ B

−φ1 + K3 if B < φ1 ≤ C

−φ1 + K4 if C < φ1 ≤ Mλ

(5.6)

Lastly, the cases when the clock ratio x becomes integer, i.e when x = 1, 2, 3

are discussed. The following conclusions can be made from the analyses of these

cases:

1. φ4 at x = 1 and x = 2. When x is equal to 1, the parameters are con-

sistent with those when x is in (1, 1.33]. Similarly, parameters for x = 2

concur with those for the x region (2, 2.33].

2. φ4 at x = 3. In this case, the parameters do not fall into any of the said

categories and are listed as follows: K1 = 4, K2 = 8, K3 = 12, K4 = 16,

A = 3, B = 7, C = 11.

So far, the phase φ4 has been quantified in terms of φ1, M , N and λ when

the clock ratio (M/N) is in [1, 3]. The expressions of φ4 in the region (0.5, 1) is

excluded because the backward cycle can be directly obtained from the timing

constraints in this region. For x ∈ [1, 3], Equations 5.5 and 5.6 depict the φ4

behaviour. The corresponding parameters are summarized in Table 5.4, 5.6 and

5.7.

5.2.3 The backward cycle times

As φ3 and φ4 have been developed, the backward cycle times are the summation

of φ3, φ4 and Ttx, according to the timing diagram in Figure 3.6. The predicted

78

backward cycle times obtained from the analyses described in the previous sec-

tions are checked against from the simulation. The result shows perfect match

between them. The data cycle times of the fast four-phase have less variations

than the two-flop synchronizer, due to the tighter boundaries on the backward

cycle times. The data cycle generally increases with the increases in clock ratio

and the starting phase φ1.

5.3 Preliminary investigation of a three-flop syn-

chronizer design

From the study of the data cycle times of the two-flop, fast four-phase and fast

four-phase synchronizers, it is found that the starting phase of each cycle φ1

plays an important role. For a fixed clock ratio x, small φ1 are more probable

to produce short data cycle time. If the starting phase is reduced, a shorter

data cycle time can occur. Since the range of the starting phase φ1 was (0, Trx]

from before, a natural choice would be to narrow down this range. One such

attempt is to double the clock frequencies on both transmitter and receiver sides.

The ranges of the crossing boundary times, previously denoted as φ1 to φ4 are

halved as a consequence. To maintain the circuit reliability, an extra flip-flop is

inserted on both sides. It adds an extra signal sampling for each clock domain,

and is expected to balance the potential increase in the probability of getting

into metastable state, due to the frequency doubling. Figure 5.3 demonstrates the

proposed circuit. Note that the control logic that handles the signal transfer from

the halved clocks(T ′

rx and T ′

tx) to the original clocks(Trx and Ttx) is not included

in this preliminary investigation and will be considered in the future. So it is

assumed that the REG flop is always ready to receive data. This section outlines

some preliminary study on the three-flop synchronizer design in the context of its

timing boundaries, examples of data cycle time reduction and the metastability

analysis.

5.3.1 Timing boundaries of the three-flop synchronizer

In Figure 5.3, on the receiver side, the clock that drives the three flip-flops is

twice faster as the receiver clock. This clock cycle is denoted as T ′

rx, in order

to differentiate the receiver clock Trx, and T ′

rx = Trx/2. The timing relation

79

Figure 5.3: Three-flop synchronizer with halved clocks

diagram is drawn in Figure 5.4. The forward cycle and backward cycle are also

symmetrical. From the timing diagram, the timing boundaries can be derived as

shown below,

φ1 + 2T ′

rx + φ2 = k′T ′

rx (5.7)

where k′ ∈ Z and k′ ≥ 1

0 < φ1 ≤ T ′

rx (5.8)

0 < φ2 ≤ T ′

tx (5.9)

Combining them,

2T ′

rx < k′T ′

rx ≤ 3T ′

rx + T ′

tx (5.10)

Let x′ =
T ′

rx

T ′

tx

, then

2x′ < k′ ≤ 3x′ + 1. (5.11)

From the timing diagram, the forward cycle time is (k′+2)T ′

tx. Inequality 5.12

represents the timing boundary of the forward cycle time, expressed in multiples

of T ′

tx. It is also useful to express these timing boundaries in Ttx units, as is shown

in Inequality 5.13. The term (1

2
k′ + 1) is the forward cycle times in Ttx units.

Because k′ is a positive integer and is greater than 0, the forward cycle time is

80

REQ

Active Tx Edges

Active Rx Edges

REQA1
R1 R2

A1 A2REQ A2

φ3φ1 φ2Trx’ Trx’ Ttx’ Ttx’ Trx’ Ttx’Ttx’

ACK ACKR1 R2

φ4Trx’

k*Ttx’

Figure 5.4: Three-flop synchronizer timing diagram

actually greater or equal to 3

2
Ttx.

2x′ + 2 < k′ + 2 ≤ 3x′ + 3 (5.12)

x + 1 <
1

2
k′ + 1 ≤

3

2
x +

3

2
(5.13)

Figure 5.5 shows the plots of the two-flop, three-flop and fast four-phase syn-

chronizers. For each synchronizer, the actual forward cycle time is between the

upper and lower boundaries. So an estimate of the forward cycle times can be

made by comparing their corresponding timing boundaries. Table 5.8 lists the

range of forward cycle times based on different clock ratios. Note that the units

of all the ranges is Ttx. It can be seen that the timing boundary for the three-

flop synchronizer is more constrained than the other two synchronizers, which

means that the variation in the actual forward cycle time is small compared with

the other two. This is the consequence of reducing the cross boundary time of

each cycle. Hence, the number of possible forward cycle times drops. From Fig-

ure 5.5 it therefore can be expected that the average forward cycle times for the

three-flop synchronizer is lower than the two-flop synchronizer. If the three-flop

is compared with the fast four-phase synchronizer, it shows improvement as well.

For example, in the region x ∈ (2, 2.5], the range of the three-flop synchronizer

starts from 3.5Ttx till 5Ttx. The range of the fast four-phase synchronizer spans

to 6Ttx. Similarly, due to its tighter forward cycle time range, this advantage of

81

x (0, 0.5] (0.5, 1] (1, 1.5] (1.5, 2] (2, 2.5] (2.5, 3]
two-flop [2,3] [2,4] [3,5] [3,6] [4,7] [4,8]

three-flop [1.5,2] [2,3] [2.5,3.5] [3,4.5] [3.5,5] [4.5,6]
fast four-phase [1,2] [1,3] [2,4] [2,5] [3,6] [3,7]

Table 5.8: Timing boundaries for two-flop, three-flop and fast four-phase syn-
chronizers

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

x

F
or

w
ar

d
C

yc
le

s
(T

tx
)

Figure 5.5: Plots of forward cycle timing boundaries for the three-flop(green),
two-flop(red) and fast four-phase(blue) synchronizers

the three-flop synchronizer becomes more evident as the clock ratio increases.

An estimation of the data cycle timing boundaries is made from the plots of

the data cycle boundaries of these synchronizers in Figure 5.6. The advantage of

the three-flop synchornizer over the fast four-phase is degraded to some extent.

This is mainly because of the overhead caused by the backward cycle times of

the three-flop synchronizer. Its symmetrical structure forces the the low phase of

REQ signal to propagated in the same way as the high phase, although no data

is transmitted during this low phase at all. However, comparing to the two-flop

synchronizer, improvement on the data cycle times can be predicted, judging from

the slower increase in the data cycle time span on the three flop synchronizer in

Figure 5.6.

82

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2

3

4

5

6

7

8

9

10

11

x

D
at

a
C

yc
le

 (
T

tx
)

Figure 5.6: Plots of the data cycle timing boundaries for the three-flop(green),
two-flop(red) and fast four-phase(blue) synchronizers

5.3.2 Two Examples of the three-flop synchronizer data

cycle times

From the estimates of the timing boundaries in the last section, the three-flop

synchronizer exhibit certain performance improvement over the two-flop and fast

four-phase synchronizers. As the forward cycle time probability distribution for

each clock ratio is unknown, it is difficult to evaluate how much performance im-

provement can be obtained for the three-flop synchronizer. This section provides

two examples to quantify the data cycle time of the three-flop synchronizer and

compares it to the other two synchronizers.

The clock ratios T ′

rx/T
′

tx chosen for these two examples are 7/4 and 3/4. Us-

ing the same clock domain model from Section 4.1.1, the cycle times of the

three-flop synchronizers were calculated manually and are separately listed in

Table 5.9 and 5.10. Abbreviations used in these tables are FW(forward cycle

time), BW(backward cycle time) and DC(data cycle time). Note that in order to

ease the comparison with other synchronizers, the cycle times for the three-flop

synchronizer are expressed in terms of Ttx in these tables. Also, because the res-

olution factor λ for the clock domain model was set to 4 previously but both the

transmitter and receiver clock period are halved for the three-flop synchronizer,

the actual resolution factor for the three-flop synchronizer becomes 2 instead.

Therefore, if the original transmitter and receiver clocks are Ttx = 16∆t and

83

φ1(∆t) FW BW DC 2-flop DC fast 4-phase DC diff1 diff2
1 3 3.5 6.5 7 5 0.5 −1.5
2 3 3.5 6.5 7 5 0.5 −1.5
3 3 3.5 6.5 7 5 0.5 −1.5
4 3.5 3.5 7 9 5 2 −2
5 3.5 3.5 7 9 5 2 −2
6 3.5 3.5 7 9 5 2 −2
7 3.5 3.5 7 9 5 2 −2
8 3.5 3.5 7 9 6 2 −1
9 3.5 3.5 7 7 6 0 −1
10 3.5 3.5 7 7 6 0 −1
11 3.5 3.5 7 7 6 0 −1
12 4 3.5 7.5 8 6 0.5 −1.5
13 4 3.5 7.5 8 6 0.5 −1.5
14 4 3.5 7.5 8 6 0.5 −1.5

15 3 3.5 6.5 8 6 1.5 −0.5
16 3 3.5 6.5 8 6 1.5 −0.5
17 3 3.5 6.5 8 6 1.5 −0.5
18 3.5 3.5 7 8 6 1 −1
19 3.5 3.5 7 8 6 1 −1
20 3.5 3.5 7 10 6 3 −1
21 3.5 3.5 7 10 6 3 −1
22 3.5 3.5 7 10 6 3 −1
23 3.5 3.5 7 10 6 3 −1
24 3.5 3.5 7 10 7 3 0
25 3.5 3.5 7 8 7 1 0
26 4 3.5 7.5 8 7 0.5 −0.5
27 4 3.5 7.5 8 7 0.5 −0.5
28 4 3.5 7.5 9 7 1.5 −0.5

Table 5.9: Comparison of the cycle times for two-flop, three-flop and fast four-
phase synchronizers when x = 7/4

Trx = 28∆t as were described in Section 4.1.1, the counterparts after frequency

doubling become T ′

tx = 8∆t and T ′

rx = 14∆t. The range of φ1 for the three-

flop synchronizer also becomes (0, 14∆t]. The reduction in resolution however

does not compromise the final results, because even with the resolution factor of

2, all the major features of the synchronizer behaviour can still be exposed, as

is demonstrated in Table 4.1. The last two columns list the difference in data

cycle times between the three-flop synchronizer and the other two synchroniz-

ers. The column entitled diff1 calculates the difference, DC2flop − DC3flop for

each φ1. Similarly, the rightmost column entitled diff2 calculates the difference

DCfast4phase − DC3flop.

Table 5.9 and 5.10 clearly tell that under these two clock ratios, the average

data cycle time of the three-flop synchronizer are between that of the two-flop

and the fast four-phase, which agrees with the conclusion from the analyses of

84

φ1(∆t) FW BW DC 2-flop DC fast 4-phase DC diff1 diff2
1 2 2.5 4.5 5 3 0.5 −1.5
2 2 2.5 4.5 5 3 0.5 −1.5
3 2 2 4 5 3 1 −1
4 2.5 2 4.5 6 4 1.5 −0.5
5 2.5 1.5 4 6 4 2 0
6 2.5 2 4.5 6 4 1.5 −0.5

7 2 2.5 4.5 6 4 1.5 −0.5
8 2 2.5 4.5 6 4 1.5 −0.5
9 2 2 4 6 4 2 0
10 2.5 2 4.5 6 4 1.5 −0.5
11 2.5 1.5 4 6 4 2 0
12 2.5 2 4.5 5 4 0.5 −0.5

Table 5.10: Comparison of the cycle times for two-flop, three-flop and fast four-
phase synchronizers when x = 3/4

the their timing boundaries. The three-flop design has demonstrated shorter data

cycle times than the two-flop synchronizer, and this advantage becomes more ev-

ident as the starting phase φ1 increases, which can be seen from the comparison

of the two halves in each table. Also, the better performance improvement is

obtained as the clock ratio x gets bigger. As for the fast four-phase synchronizer,

these two examples demonstrated degraded performance of the three-flop com-

pared to the fast four-phase synchronizer. However, they provide some interesting

directions for further design refinement. One such direction is that whether the

backward cycle time of the three-flop synchronizer can be made shorter. Cur-

rently, the forward and backward cycle times for the three-flop synchronizer are

similar, as can be seen from the FW and BW columns in these tables. How-

ever, as is mentioned before, the backward cycle time is not used for useful data

transfer at all. Hence, if the backward cycle time was reduced, the three-flop syn-

chronizer could demonstrate potential to achieve shorter data cycle times than

the fast four-phase synchronizer. This can also be seen from the plots of the

forward(Figure 5.5) and backward (Figure 5.7) timing boundaries. The forward

cycle times do not reveal substantial difference between these two synchronizers,

while the backward cycle time for the fast four-phase is significantly shorter than

the three-flop synchronizer.

85

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

10

x

B
ac

kw
ar

d
C

yc
le

 (
T

tx
)

Figure 5.7: Backward cycle timing boundaries for the fast four-phase(blue) and
three-flop(green) synchronizers

5.3.3 Reliability of the three-flop synchronizer

Lastly, the reliable operation of the three-flop synchronizer is briefly discussed.

From Chapter 2, the synchronization failure rate of a flip-flop is usually measured

in mean time between failure (MTBF), as

MTBF =
e

S
τ

WFcFd

.

Using the parameters from the first example in Section 2.1.1, the MTBF

for the two-flop synchronizer, whose settling time S is one clock cycle, can be

calculated as shown below:

MTBF =
e

5n sec
66p sec

132p sec · 200MHz · 20MHz
≈ 1020 years.

In the case of the three-flop synchronizer, both Fc and Fd are doubled. The

metastability settling time S is twice the clock cycles, i.e.S = 2

Fc
. Its MTBF can

be calculated as shown below:

MTBF =
e

5n sec
66p sec

132p sec · 400MHz · 40MHz
≈ 1019 years.

Although the MTBF is significantly shorter than that for the two-flop, it

86

still gives sufficient reliability. If more aggressive parameters are used, for exam-

ple, Fc = 1GHz, Fd = 100MHz and the settling time S allowed is 1ns, both

MTBF values are shorter than one second. Therefore, for high speed appli-

cations, multi-cycle settling time and more aggressive flip-flops with shorter τ

should be considered to achieve satisfactory reliability.

5.4 Summary

The first half of this chapter presents the analyses of the data cycle times for the

fast four-phase and fast two-phase synchronizers. The forward cycle times for

the said two synchronizers are obtained by modifying the two-flop synchronizer

forward cycle time. The fast four-phase synchronizer backward cycle time is

derived in two steps, φ1 vs φ3 and φ1 vs φ4. Equations defining these relationships

are extracted from the simulation data.

The observations of the data cycle times of the two-flop, fast four-phase and

fast two-phase synchronizers indicates that small starting phase tends to produce

short data cycle time. A new design approach, the three-flop synchronizer with

double frequencies, is proposed based on this observation and is outlined in the

second half of this chapter. Analyses of the three-flop synchronizer data cycle

timing boundaries and two examples of the data cycle times predict performance

improvement over the two-flop synchronizer. It also shows longer data cycle time

than the fast four-phase synchronizer and provides further refinement of the three-

flop synchronizer design. The reliability of the flip-flop after frequency doubling

is then analyzed and an increase in the MTBF is found. However, since the

three-flop synchronizer allows an additional clock cycle to resolve metastability,

it gives sufficiently reliable performance for normal clock speed.

87

Chapter 6

Performance evaluation of the

two-flop, fast four-phase and fast

two-phase synchronizers

This chapter summarizes the data cycle times of the two-flop, fast-four phase and

fast two-phase synchronizers and evaluates the average data cycle time for the

data-burst transfer. Based on the analyses from Chpater 4 and Chapter 5, a tool,

Synchronizers Data Cycle Analyzer (SyDCA), was developed to automatically

calculate the data cycle times of the said three synchronizers. The best case,

worst case and the average of these synchronizers’ data cycle times are obtained

from the SyDCA tool. Their average data cycle times are compared with the

estimated ones from Chpater 3 and justifications are made on the accuracies

of the estimation. The data cycle times are also obtained for the burst-mode

data transfers. The average data cycle times are calculated for the data burst

consisting of 100, 500 and 1000 words respectively and are compared. Examples

of different starting phase of the first data word are described and its influence

on the average data cycle time is analyzed.

88

6.1 Data cycle time evaluation

6.1.1 Summary of the data cycle times for the three syn-

chronizers

In the previous two chapters, the data cycle times were studied by carrying out

separate analyses for both forward and backward cycle times. The following

relationships were analyzed for the two-flop, fast four-phase and fast two-phase

synchronizers: (1) dependencies of the backward cycle starting phase φ3 on the

forward cycle starting phase φ1, (2) the relationship between φ1 and the forward

cycle time and (3) the relationship between φ1 and the backward cycle time. The

outcome of these analyses makes it possible to attain the accurate data cycle

times from the starting phase φ1, the clock ratio x = M/N and the resolution

factor λ. This section briefly summarizes these relationships.

6.1.1.1 Two-flop and fast two-phase synchronizers

The relationship between φ3 and φ1 for the two-flop synchronizer can be described

by a set of parallel lines. The expressions of these lines form a piecewise linear

function of φ1 as is described in Equation 4.2:

φ3 =











































φ1 + αλ if 0 < φ1 ≤ A

φ1 + βλ if A < φ1 ≤ B

φ1 + γλ if B < φ1 ≤ C

φ1 + θλ if C < φ1 ≤ D

φ1 + µλ if D < φ1 ≤ Mλ.

Two types of parameters were defined in Equation 4.2: the interception parame-

ters expressed in Greek letters (except λ) and the boundary parameters expressed

in capital letters. These parameters were then expressed as linear combinations

of M and N . The availability and expressions of these parameters are listed in

Table 6.1.

For the two-flop synchronizer, the relationship between the forward cycle and

φ1 was determined from its timing boundaries and the critical φ1 values. The

Cycle-time Lookup Table shown in Table 6.2 summarizes this relationship. For

the relationship between φ1 and the backward cycle time, the following two steps

89

x α β γ θ µ A B C D

(0.5, 0.6] 4M − 2N 3M − 2N 5M − 3N − − (2N − 3M)λ (N − M)λ − 1 − −

(0.6, 0.66] 4M − 2N 3M − 2N 5M − 3N 4M − 3N − (2N − 3M)λ (N − M)λ − 1 (3N − 4M)λ −

(0.66, 0.75] 3M − 2N 4M − 3N − − − (N − M)λ − 1 − − −

(0.75, 1) 3M − 2N 4M − 3N 3M − 3N − − (N − M)λ − 1 (3N − 3M)λ − −

1 0 − − − − − − − −

(1, 1.33] 3M − 3N 2M − 3N 3M − 4N − − (3N − 2M)λ (2N − M)λ − 1 − −

(1.33, 1.5) 3M − 3N 2M − 3N 3M − 4N 2M − 4N − (3N − 2M)λ (2N − M)λ − 1 (4N − 2M)λ −

[1.5, 1.66] 2M − 3N 3M − 4N 2M − 4N 3M − 5N − (2N − M)λ − 1 (4N − 2M)λ (3N − M)λ − 1 −

(1.66, 2) 2M − 3N 3M − 4N 2M − 4N 3M − 5N 2M − 5N (2N − M)λ − 1 (4N − 2M)λ (3N − M)λ − 1 (5N − 2M)λ

2 0 1 −1 0 − λ − 1 λ 2λ − 1 −

(2, 3) 2M − 4N 2M − 5N 2M − 6N 2M − 7N − (3N − M)λ − 1 (4N − M)λ − 1 (5N − M)λ − 1 −

3 1 0 −1 −2 − λ − 1 2λ − 1 3λ − 1 −

Table 6.1: Two-flop synchronizer interception parameters and boundary param-
eters for φ3

are required: (1) determine φ3 using the piecewise linear function 4.2 and (2)

look up in Table 6.2 the backward cycle time corresponding to φ3 calculated from

the previous step. Note that the variable φ in Table 6.2 refers to either φ1 or φ3

where applicable.

As for the fast two-phase synchronizer, its data cycle only consists of one

forward cycle. Also, because its forward cycle is identical to that of the two-flop

synchronizer, Table 6.2 was used to calculate the forward cycle time. Besides,

the Equation 4.2 can be applied to predict the starting phase for the next data

cycle of the fast two-phase synchronizer.

6.1.1.2 Fast four-phase synchronizer

As stated before, because the flip-flops with asynchronous reset are used in the

fast four-phase synchronizer design, the symmetry between the backward and

forward cycles does not exist any more. Therefore, different approaches were

applied to obtain the forward and backward cycle times for the fast four-phase

synchronizer. For the forward cycle time, it has the same critical φ1 as the two-

flop synchronizer and the forward cycle time is always one Ttx shorter than the

two-flop forward cycle time. So Table 6.2 is sufficient to depict the forward cycle

time.

The difficulties arise for the calculation of the backward cycle times. From

the timing relation diagram (Figure 3.6), the backward cycle consists of φ3, φ4

and one transmitter clock.One direct approach adopted by the author was to find

the following relationships separately: φ3 vs φ1 and φ4 vs φ1. Equation 4.2 can

also be used to define φ3 and the parameters are listed in Table 5.2.

90

x φc ForwardCycles(Ttx)
x ∈ (0.5, 1) φc = (1

x
− 1)Mλ φ ∈ (0, φc) Forward Cycle=2

φ ∈ [φc, Mλ] Forward Cycle=3
x ∈ [1, 1.5) φc = (2

x
− 1)Mλ φ ∈ (0, φc) Forward Cycle=3

φ ∈ [φc, Mλ] Forward Cycle=4
x ∈ [1.5, 2) φc,a = (2

x
− 1)Mλ φ ∈ (0, φc,a) Forward Cycle=3

φc,b = (3

x
− 1)Mλ φ ∈ [φc,a, φc,b) Forward Cycle=4

φ ∈ [φc,b, Mλ] Forward Cycle=5
x ∈ [2, 2.5) φc,a = (3

x
− 1)Mλ φ ∈ (0, φc,a) Forward Cycle=4

φc,b = (4

x
− 1)Mλ φ ∈ [φc,a, φc,b) Forward Cycle=5

φ ∈ [φc,b, Mλ] Forward Cycle=6
x ∈ [2.5, 3) φc,a = (3

x
− 1)Mλ φ ∈ (0, φc,a) Forward Cycle=4

φc,b = (4

x
− 1)Mλ φ ∈ [φc,a, φc,b) Forward Cycle=5

φc,c = (5

x
− 1)Mλ φ ∈ [φc,b, φc,c) Forward Cycle=6

φ ∈ [φc,c, Mλ] Forward Cycle=7
x = 3 φc,a = (4

x
− 1)Mλ φ ∈ (0, φc,a) Forward Cycle=5

φc,b = (5

x
− 1)Mλ φ ∈ [φc,a, φc,b) Forward Cycle=6

φc,c = (6

x
− 1)Mλ φ ∈ [φc,b, φc,c) Forward Cycle=7

φ ∈ [φc,c, Mλ] Forward Cycle=8

Table 6.2: Cycle-time Lookup Table for the two-flop synchronizer

The relationship between φ4 and φ1 was derived in Section 5.2.2. It was found

that when x ∈ (0.5, 1), the backward cycle time was a constant 2Ttx. So only

the φ4 expressions within x ∈ [1, 3] were explored. Equation 6.1 was found to

describe φ4 and the parameters are listed in Table 6.3.

φ4 =































−φ1 + αλ if 0 < φ1 ≤ A

−φ1 + βλ if A < φ1 ≤ B

−φ1 + γλ if B < φ1 ≤ C

−φ1 + θλ if C < φ1Mλ.

(6.1)

6.1.1.3 Synchronizers Data Cycle Analyzer (SyDCA)

The methods presented in Section 6.1.1.1 and Section 6.1.1.2 were programmed in

Matlab to construct the Synchronizers Data Cycle Analyzer (SyDCA) tool. This

tool calculates the forward and backward cycle times based on the starting phase

φ1 and the clock ratio x = M/N . The data cycle times are then obtained by

91

x α β γ θ A B C
[1, 1.33] 3N − 2M 4N − 2M − − (3N − 2M)λ − 1 − −

(1.33, 1.49] 3N − 2M 4N − 2M 5N − 2M − (3N − 2M)λ − 1 (4N − 2M)λ − 1 −
(1.49, 1.66] 4N − 2M 5N − 2M − − (4N − 2M)λ − 1 − −
(1.66, 2) 4N − 2M 5N − 2M 6N − 2M − (4N − 2M)λ − 1 (5N − 2M)λ − 1 −
[2, 2.33] 5N − 2M 6N − 2M 7N − 2M − (5N − 2M)λ − 1 (6N − 2M)λ − 1 −

(2.33, 2.49] 5N − 2M 6N − 2M 7N − 2M 8N − 2M (5N − 2M)λ − 1 (6N − 2M)λ − 1 (7N − 2M)λ − 1
(2.49, 2.66] 6N − 2M 7N − 2M 8N − 2M − (6N − 2M)λ − 1 (7N − 2M)λ − 1 −
(2.66, 3) 6N − 2M 7N − 2M 8N − 2M 9N − 2M (6N − 2M)λ − 1 (7N − 2M)λ − 1 (8N − 2M)λ − 1

3 1 2 3 4 λ − 1 2λ − 1 3λ − 1

Table 6.3: Fast four-phase synchronizer parameters for φ4 when x ∈ [1, 3]

summing the forward and backward cycle times. All the cycle times, including

the forward, backward and data cycle times for the three synchronizers, were

verified against the cycle times from the model simulation and the results show

perfect match. The data cycle look-up table between φ1 and the data cycle times

were constructed for each synchronizer. So each time the tool is run to calculate

data cycle time, efforts of calculating the forward and backward cycle times as

well as the dependencies between them can be saved.

6.1.2 Best and worst cases

Two important performance indicators of the synchronizer data cycle time are

the best and worst cases. These cases provide the upper and lower limits for the

cycle times, as an alternative to the timing boundaries introduced in Chapter 3.

Figure 6.1 shows the best and worst cases for each of the three synchronizers.

There are three spikes at x = 1 for the two-flop and fast four-phase synchronizers

and at x = 2 for the two-flop synchronizer. For example, the worst data cycle

time remains at 10Ttx before x = 2, but jumps to 12Ttx when the clock ratio

becomes 2. It falls back to 10Ttx after x moves past this point. This observation

of the worst data cycle time at x = 2 agrees with the example shown in Table 4.2.

As was explained in this example, the existence of these spikes is a consequence

of coincident transmitter and receiver active clock edges, as the coincident clock

edges are sometimes the source of the worst case scenarios.

Within the x range (0.5, 3], the worst data cycle spans from 5Ttx to 14Ttx for

the two-flop synchronizer, 4Ttx to 11Ttx for the fast four-phase synchronizer and

3Ttx to 8Ttx for the fast two-phase synchronizer. Obviously, the worst case data

cycle time increases more rapidly for the two-flop synchronizer than the other two

synchronizers. A similar conclusion can be attained from the comparisons of the

92

0.5 1 1.5 2 2.5 3
4
6
8

10
12
14

x

D
at

a
C

yc
le

 T
im

e
(T

tx
)

0.5 1 1.5 2 2.5 3
2
4
6
8

10
12

x

D
at

a
C

yc
le

 T
im

e
(T

tx
)

0.5 1 1.5 2 2.5 3
2

4

6

8

x

D
at

a
C

yc
le

 T
im

e
(T

tx
)

Figure 6.1: The best(blue) and worst(red) data cycle times for the two-flop (top),
fast four-phase (middle) and two-phase (bottom) synchronizers

best case performances. These facts indicate that as the clock ratio increases, the

data cycle time gets significantly longer for the two-flop synchronizer. Hence, the

advantage of the fast two-phase synchronizer in saving data cycle times becomes

more dominant at higher clock ratios.

The width of the gap between the best and worst case indicates the number

of possible data cycle times. So a wider gap means that more possible data cycle

times can occur. If the data cycle times within x ∈ [1, 2] are considered for the

two-flop and fast four-phase synchronizers, the gap for the two-flop synchronizer

ranges from Ttx at x = 1.1 to 4Ttx at x = 2, whereas the gap only ranges from Ttx

to 2Ttx in the same region for the fast two-phase synchronizer. This implies that

there are more possible data cycle times for the two-flop synchronizer than the

fast four-phase synchronizer. It in fact causes more variations in the average data

cycle time in this region, as will be seen later, and complicates the estimation of

the average data cycle time.

93

6.1.3 Average data cycle times

As another important indicator of the synchronizer performance, the average data

cycle time provides information on the majority data cycle behaviour. With the

help of the SyDCA tool, the data cycle times were obtained. The average data

cycle times are calculated and plotted in Figure 6.2. The following conclusions

are made from the comparisons of the average data cycle times in Figure 6.2:

1. Non-linearity in the two-flop average data cycle time. The two-flop synchro-

nizer average data cycle time displays strong non-linear behaviour when

x ∈ (0.5, 2]. Although the overall trend of the average data cycle time is

increasing as the clock ratio increases, fluctuations in the average data cycle

time results in a non-monotonic increase in this region.

2. Symmetrical non-linear regions of the two-flop average data cycle time. There

are two regions where the magnitude of the fluctuations in the average

data cycle time is significant. These regions are x ∈ [0.6, 0.75] and x ∈

[1.33, 1.67]. Some interesting similarities exist in both regions. The bound-

aries of the said two ranges are expressed in fractional format, which are [3
5
,

3

4
] and [4

3
, 5

3
]. Take the lower bound of the first region 3

5
as an example. At

x = 3

5
, the average data cycle time reaches a peak, after which it starts to

drop. The reciprocal of this clock ratio, x = 5

3
, is actually the upper bound

of the other region. The average data cycle time also reaches a local peak

at this point. Similarly, the reciprocal of the higher boundary value 3

4
in

the first region is the lower bound of the second region. At both points,

the average data cycle times also reach their local peak values respectively.

Noticeable local peaks also occur at x = 1, x = 1.5 and x = 2. Extra

average data cycle times incur at these ratios, as a result of the coincident

clock edges.

3. Variations in the other two average data cycle time plots. Compared to the

two-flop synchronizer case, the average data cycle times for the fast four-

phase and fast two-phase synchronizers exhibits less fluctuations, though

the spikes still exist at integral clock ratios and the increase in the average

data cycle times is still non-linear within the x range (0.5, 2].

4. Linear regions. All the three plots show linear increase in the average data

cycle times when x becomes greater than 2. As the transmitter and receiver

94

0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

X: 1.67
Y: 8.205

X: 1.33
Y: 7.244

x

D
at

a
cy

cl
e

tim
es

 (
T

tx
)

X: 0.75
Y: 5.75X: 0.6

Y: 5.167

Figure 6.2: Average data cycle times for the two-flop (top), fast four-phase (mid-
dle) and fast two-phase (bottom) synchronizers

clocks are more dissimilar, the data cycle times is largely determined by the

slower clock.

In Chpater 3, pure analytical approach was applied to calculate the average

forward cycle times for these three synchronizers. For the two-flop synchronizer,

the average backward cycle time was not dealt with due to the unknown back-

ward cycle dependencies on the forward cycle. Instead, the data cycle time was

approximated as twice as the forward cycle time. The fast four-phase synchro-

nizer backward cycle time was approximated from several selected experimental

backward data cycle times. In addition, the effect of coincident clock edges was

not taken into account when the average data cycles were calculated. Since the

accurate average data cycle times have been obtained at this stage, a compar-

ison is made between the analytical estimation from two cases and the actual

cycle times from the SyDCA tool calculation, as shown in Figure 6.3. Apart

from the effect of the coincident clock edges, the analytical estimation of the fast

four-phase and fast two-phase synchronizers shows good match with the actual

average data cycle times. In the case of the two-flop synchronizer, more discrep-

ancies occur between the estimation and the actual cycle times. The difference is

mainly caused by the fluctuations in the actual data cycle time, which is a direct

95

0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

14

x

T
im

e
fo

r
on

e
da

ta
 c

yc
le

 (
T

tx
)

Figure 6.3: Comparisons of the estimated average data cycle times (red) with
the actual ones (black) for the two-flop (top), fast four-phase (middle) and fast
two-phase (bottom) synchronizers

consequence of the backward cycle dependencies on the forward cycle. Though

a similar dependency also exists for the fast four-phase synchronizer, the tight

backward cycle timing constraints limit the options of the possible backward cycle

times and hence result less variations.

If the analytical estimation is used to predict the single data cycle behviour

of the said three synchronizers, it gives relatively accurate results despite of the

inaccuracies at the integer clock ratios. As for the estimation for the two-flop

synchronizer, the author regards it inaccurate as it not only loses the effect of

the coincident clock edges, but masks important non-linearity in the single data

cycle time in certain regions. It can also be inferred from this comparison that

for the data burst transfers, larger impact of the cycle time dependencies will

occur, causing the more variations in the average data cycle times for all three

synchronizers.

96

6.2 Evaluation of the burst-mode transfer data

cycle times

So far, the single data cycle times have been investigated for the two-flop, fast

four-phase and fast two-phase synchronizers. The difficulty in obtaining the data

cycle times stems from the cycle time dependency. This dependency imposes vari-

ations in the average data cycle times, which degrades the accuracy of analytical

estimation. During the burst-mode data transfer, this dependency exists for each

data transfer, and it was expected that the overall data cycle times would incur

more fluctuations. Given the complexity of the cycle time dependencies and their

potentially larger impact (as it influences the data cycle time for every word),

it is insufficient to evaluate the overall data cycle times purely from the analyt-

ical estimation. With the help of SyDCA tool, this section presents a relatively

accurate evaluation of the average data cycle time under burst-mode transfer.

6.2.1 Extension of the SyDCA tool

SyDCA was previously described as a tool to analyze the synchronizers forward

and backward cycle times, including the backward cycle dependency on the for-

ward cycle. This section describes the extensions of the SyDCA tool to analyze

dependencies between two consecutive data cycles, which will assist the study of

data cycle times of the data burst. For the two-flop and fast two-phase synchro-

nizers, the existing feature of this tool is sufficient to deal with these dependen-

cies. In the case of the fast four-phase synchronizer, new relationship needs to be

established between the two starting phases of two successive data cycles.

6.2.1.1 SyDCA for the two-flop and fast two-phase synchronizers

Previously, the relationship between the starting phases, φ1 and φ3, of the forward

and backward cycles was established and φ3 was found to be a piecewise linear

function of φ1. This relationship is denoted as φ3 = F (φ1). The symmetrical

nature of the two-flop synchronizer forward and backward cycle times implies

that the starting phase φ1,next of the next data cycle can be obtained by applying

the same function F to φ3, i.e., φ1,next = F (φ3). Therefore, φ1 and φ1,next have

the following relationship:

φ1,next = F [F (φ1)].

97

Recall that the data cycle look-up table was set up previously in SyDCA to build

the relationship between φ1 and the data cycle time. As the information on

the starting phase of the next data cycle φ1,next is known, the data cycle time

corresponding to φ1,next can be read off from the same table. During the burst-

mode transfer, two steps, calculating the next starting phase φ1,next and looking

up the data cycle time, are repeated for each data word. The data cycle time for

each data word is stored and hence the average data cycle time can be calculated.

The calculation of the fast two-phase synchronizer data cycle time is actually

identical to the calculation of the backward cycle time for the two-flop synchro-

nizer and the description of relevant procedures is omitted.

6.2.1.2 SyDCA for the fast four-phase synchronizers

Like the two-flop synchronizer, the calculation of the fast four-phase synchronizer

data cycle times during the data burst also require two steps: calculating φ1,next

and looking up the data cycle time. The data cycle look-up table was already

constructed during the course of obtaining the forward and backward cycle times

but no relationship has been established between φ1 and φ1,next. Since the forward

and backward cycles are not symmetrical any more, no existing phase relation can

be re-used to calculate φ1,next. It is therefore necessary to search for the relation-

ship between φ1 and φ1,next for the fast four-phase synchronizer. Investigation

of the model simulation shows that φ1,next is a piecewise linear function of φ1.

Equation 4.1 describes this function and the parameters are shown in Table 6.4.

6.2.2 Average data cycle time for the burst-mode data

transfer

6.2.2.1 Examples of data burst transfers

The average data cycle time for the data burst can be calculated using the SyDCA

tool with the added functionality. Three streams of 100, 500 and 1000 data

words were tested separately and the average data cycle times for the two-flop

synchronizer were obtained and plotted in Figure 6.4.

The starting phase φ1 for the first data word in each stream was set to be

∆t, which was previously defined as the small time step ∆t that φ1 takes to

sweep across its range (0, Trx]. So ∆t is the smallest phase difference between

the transmitter and receiver. Apart from some minor discrepancies, the average

98

x α β γ θ µ A B C D
(0.5, 0.57] 6M − 3N 5M − 3N 7M − 4N − − (3N − 5M)λ (N − M)λ − 1 − −
(0.57, 0.59] 6M − 3N 5M − 3N 7M − 4N 6M − 4N − (3N − 5M)λ (N − M)λ − 1 (4N − 6M)λ −

0.6 5M − 3N 1 −2 − − 7 8 − −
(0.6, 0.66] 5M − 3N 6M − 4N − − − (N − M)λ − 1 − − −
(0.66, 0.74] 5M − 3N 4M − 3N 6M − 4N 5M − 4N − (3N − 4M)λ − 1 (N − M)λ − 1 (4N − 5M)λ −

0.75 4M − 3N 2 −1 − − 3 4 − −
(0.75, 0.8] 4M − 3N 5M − 4N − − − (N − M)λ − 1 − − −
(0.8, 0.99] 4M − 3N 5M − 4N 4M − 4N − − (N − M)λ − 1 (4N − 4M)λ − −

1 0 − − − − − − − −
[1, 1.25] 4M − 4N 3M − 4N 4M − 5N − − (4N − 3M)λ (3N − 2M)λ − 1 − −

(1.25, 1.33] 4M − 4N 3M − 4N 4M − 5N 3M − 5N − (4N − 3M)λ (3N − 2M)λ − 1 (5N − 3M)λ −
(1.33, 1.49] 3M − 4N 4M − 5N 3M − 5N 4M − 6N − (3N − 2M)λ − 1 (5N − 3M)λ (4N − 2M)λ − 1 −

1.5 4M − 5N 3M − 5N 4M − 6N − − (5N − 3M)λ (4N − 2M)λ − 1 − −
(1.55, 1.66] 4M − 5N 3M − 5N 4M − 6N 3M − 6N − (5N − 3M)λ (4N − 2M)λ − 1 (6N − 3M)λ −
(1.66, 1.75] 3M − 5N 4M − 6N 3M − 6N 4M − 7N − (4N − 2M)λ − 1 (6N − 3M)λ (5N − 2M)λ − 1 −
(1.75, 1.99] 3M − 5N 4M − 6N 3M − 6N 4M − 7N 3M − 7N (4N − 2M)λ − 1 (6N − 3M)λ (5N − 2M)λ − 1 (7N − 3M)λ

2 0 1 −1 0 − 3 4 7 −
(2, 2.33] 3M − 6N 3M − 7N 3M − 8N − − (5N − 2M)λ − 1 (6N − 2M)λ − 1 − −

(2.33, 2.49] 3M − 6N 3M − 7N 3M − 8N 3M − 9N − (5N − 2M)λ − 1 (6N − 2M)λ − 1 (7N − 2M)λ − 1 −
(2.49, 2.66] 3M − 7N 3M − 8N 3M − 9N − − (6N − 2M)λ − 1 (7N − 2M)λ − 1 − −
(2.66, 2.99] 3M − 7N 3M − 8N 3M − 9N 3M − 10N − (6N − 2M)λ − 1 (7N − 2M)λ − 1 (8N − 2M)λ − 1 −

3 1 0 −1 −2 − 3 7 11 −

Table 6.4: Fast four-phase synchronizer parameters for φ1,next when x ∈ (0.5, 3]

data cycle times are the same in three cases. As was expected, in each case, the

average data cycle time experiences large amount of fluctuations in the range

x ∈ (0.5, 2]. At certain clock ratios, if there is a small change in x, significant

changes in the average data cycle time may incur. For instance, on average, 4

extra transmitter clock cycles incur if the clock ratio increases from 1.5 to 1.67,

and as soon as the clock ratio reaches 1.75, only one extra transmitter clock cycle

is needed. So from 1.5 to 1.75, the average data cycle is sensitive to the change of

the clock ratio. If for example, the receiver-to-transmitter clock ratio is designed

to be 1.75, an average data cycle time of 7Ttx is expected. However, for some

reason, the receiver clock becomes a little faster and the clock ratio changes to

1.67, the resultant data cycle time is approximately 1.4 times longer than the

original expectation.

The fluctuations diminish when x is greater than 2 and the average data cycle

time tends to be linear. The rate of the increase in the average data cycle times

in the linear region is about 4Ttx per x. This means that if the clock ratio Trx/Ttx

increases from 2 to 3, on average, additional 4 transmitter clocks are needed to

complete a data cycle.

99

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

X: 1.75
Y: 7X: 1.5

Y: 6

X: 1.67
Y: 9.82

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

Figure 6.4: Average data cycle times for the two-flop synchronizers with data
streams of 100 words (top), 500 words (middle) and 1000 words (bottom)

The average data cycle times under the same data-burst modes were also

obtained for the fast four-phase and fast two-phase synchronizers. It was found

that for each synchronizer, these three data streams produce similar average data

cycle times, as was the case for the two-flop synchronizer. The average data

cycle time for 1000 words stream will be used for the rest of this chapter, unless

specified otherwise.

Comparisons of the average data cycle times are made among these three

synchronizers and the plots are shown in Figure 6.5. Similar to the two-flop

synchronizer, fluctuations in the average cycle times exist for both fast four-

phase and fast two-phase synchronizer within the range x ∈ (0.5, 2], and they

diminish when x is beyond 2. In the region x ∈ (0.5, 2], the average data cycle

times behaviour for these synchronizers show some interesting phenomena:

1. All three plots exhibit similar sensitive regions. The sensitive region refers

to the x regions where the amplitude of fluctuations in the average data cycle

time reaches or exceeds Ttx. Each of the three plots shows two distinctive

sensitive regions, which are x ∈ [0.6, 0.75] and x ∈ [1.33, 1.67]. Between

these two regions, fluctuations exist but with small amplitude. As was

mentioned before, within the sensitive regions, the data cycle times may

100

incur large variations in amplitude with respect to a small shift in the clock

ratio. This information however is hidden from the analytical estimation

stated before and can not be acquired by cursory inspection of the data

cycle time of a single data word transfer.

2. Similarities between the two-flop and fast two-phase synchronizers. The av-

erage data cycle times for these synchronizers show identical swing patterns

but differ in the magnitude. For example, both plots reach a local peak at

x = 1.33. They then drop to the bottom at x = 1.5 before reaching for

the next peak at x = 1.67. The magnitude of the swing for the two-flop

synchronizer is twice as much as that for the two-phase synchronizer. This

observation also confirms the initial expectation where the fast four-phase

synchronizer takes only half of the time of the two-flop synchronizer to

complete one data cycle.

3. The complementary curve for the fast four-phase synchronizer. If the plots

within the said two sensitive regions are compared between the two-flop

and fast four-phase synchronizers, they show complementary patterns to

each other. When the average data cycle time reaches a local maximum

(minimum) for the two-flop synchronizer, the one for the fast four-phase

gives a local minimum (maximum). At a certain clock ratio, for example

x = 1.5, their average cycle times become identical. It implies that when the

clock ratio is known to the designer and it happens to be one of those where

the two-flop and the fast four-phase have the same average data cycle time,

it would fail if the fast four-phase synchronizer was selected to achieve a

shorter data cycle instead of the two-flop synchronizer. Due to the fact that

their average data cycle times are identical at that clock ratio, performance

improvement (if any) can be quite limited.

6.2.2.2 Effect of the starting phase on the average data cycle time

Previous discussions on the data burst average data cycle times were based on

the same assumption: the starting phase of the first word is fixed and is set to the

its minimum, which is small time step ∆t. What happens if the starting phase

of the first data word changes? How does it affect the average data cycle times?

This section briefly discusses the influence of the first data word starting phase

through several examples.

101

0.5 1 1.5 2 2.5 3
2

3

4

5

6

7

8

9

10

11

12

x

C
yc

le
 ti

m
e

(T
tx

)

Figure 6.5: Average data cycle times of 1000 data words transfers for the two-
flop(black), fast four-phase(red) and fast two-phase(blue) synchronizers

The average data cycle times for the two-flop synchronizer were calculated

for two different starting phases, φ1 = Trx/2 and φ1 = Trx. They were then

compared to the case with the minimal φ1 as shown in Figure 6.6. At most of the

clock ratios, the average data cycle times do not exhibit changes for different φ1.

However, significant performance degradation does incur at several clock ratios.

When the clock ratio is 2, there is a sharp increase in the average data cycle

time when φ1 is set to Trx/2 and Trx. The average data cycle times in this two

cases are 12Ttx, as opposed to 8Ttx in the first case. Increase in the average data

cycle time also occurs at x = 1 and x = 1.5 when φ1 is set to Trx. The reason is

that at these clock ratios, for each word transfer, the worst case scenario always

occurs. For example, at x = 2, the worst case data cycle time is 12Ttx. The

data cycle time for each word transfer turns out to be 12Ttx too and the starting

phase of each word transfer is always Ttx, according to the simulation results.

Obviously, the coincident clock edges affect every word transfer and produce the

worst average data cycle times. Therefore, if the clock ratio is known to be one

of the said values, i.e.,x = 1, 1.5 or 2, the first word starting phase should be

carefully tuned to reduce the occurrence of the worst cases.

102

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

0.5 1 1.5 2 2.5 3
4

6

8

10

12

x

C
yc

le
 ti

m
e

(T
tx

)

Figure 6.6: Average data cycle times with different first word φ1 for the two-flop
synchronizer: φ1 = ∆t (top),φ1 = Trx/2 (middle) and φ1 = Trx (bottom)

6.3 Summary

This chapter described a data cycle time analysis tool, Synchronizer Data Cycle

Analyzer (SyDCA), based on the conclusions obtained from previous chapters.

This tool was built to analyze data cycle times under both single and burst data

transfers for the two-flop, fast four-phase and fast two-phase synchronizers. The

formation of the SyDCA tool was presented at the beginning of this chapter. It

was then used to obtain the best, worst and average data cycle times for the said

synchronizers. Strong non-linear behaviour in the two-flop average data cycle

time was found. The effect of coincident clock edges at several clock ratios was

also displayed in the average data cycle times for all three synchronizers. The

estimated data cycle times from Chapter 3 were then compared with the actual

ones and the quality of the estimation was assessed.

The SyDCA tool was then extended to deal with the burst-mode data transfers

for the three synchronizers. Tests of 100, 500 and 1000 consecutive words were run

in SyDCA and the resultant average data cycle times show negligible differences

among them. The average data cycle times of 1000 data words were compared

for the three synchronizers. Sensitive regions of the average data cycle times were

103

identified. Similarities were displayed between the two-flop and fast two-phase

synchronizers while the average data cycle times between two-flop and fast four-

phase synchronizers showed complementary patterns. Comparisons of the average

data cycle times reveal important synchronizer characteristics under different

clock ratios, which provides useful information for evaluation of their data cycle

times. The influence of the starting phase of the first data word was then explored

by comparing average data cycle times produced by different starting phase. It

was found that the coincident clock edges caused performance penalty at certain

clock ratios and suggestions were made to avoid these situations.

104

Chapter 7

Conclusions

7.1 Conclusions and summary of chapters

This text provided a systematic analysis of the data cycle times of three syn-

chronizers: two-flop, fast four-phase and fast two-phase synchronizer. Timing

boundary and analytical average data cycle time estimation provided a fast and

moderately accurate way for the performance prediction. Models were developed

for two clock domains with arbitrary ratios and ideal behavioural models for each

synchronizer was constructed. With the help of these models, cycle time depen-

dencies, including forward and backward dependency and dependency between

adjacent data cycles, were analyzed and quantified. Abstractions of the single

data cycle times were made from the simulation of the synchronizer models so

that the data cycle times prediction was improved with greater accuracy. The

Synchronizer Data Cycle Analyzer(SyDCA) tool was created to reflect these ab-

stractions. This tool was then extended to perform analyses of the burst-mode

data transfers. The average data cycle times obtained from SyDCA revealed com-

plicated non-linear behaviour in data cycle times for both single and burst-mode

data transfers.

Chapter 2 addressed the metastability issue in the synchronizer flip-flops.

The focus was put on evaluations of the failure rate, Mean Time Between Fail-

ure(MTBF) for one flip-flop and many flip-flops. The second half of this chapter

devoted to the descriptions of several synchronization circuits and their perfor-

mances were briefly discussed.

Chapter 3 outlined the operations of three members of the two-flop synchro-

nizer family: the two-flop, the fast-four phase and the two-phase synchronizers.

105

Timing boundaries were derived for each of the three synchronizers. The two-flop

synchronizer has the identical forward and backward timing boundaries. The fast

two-phase synchornizer also has identical forward cycle timing boundary to the

two-flop synchronizer. The fast four-phase synchronizer’s forward timing bound-

ary is similar to the two-flop synchronizer’s and its backward timing boundary is

much tighter than its forward one. The timing boundaries defines the range of

possible cycle times of each synchronizer. The best and worst case performances

can be read off the plots of these boundaries for each clock ratio. Also, these

timing boundaries provide information on rough estimation of data cycle times

of each synchronizer.

This chapter also introduced the average data cycle times for the performance

prediction of each synchronizer. The analytical average forward cycle times were

derived for the three synchronizers. Preliminary exploration on the backward

cycle time for the fast four-phase synchronizer was performed empirically. The

dependency of the starting phase of the forward cycle on that of the backward

cycle was found to cause non-linear behaviour of the backward cycle for both

two-flop and fast four-flop synchronizers. This non-linearity was also found to

influence the average data cycle times, especially when the clock frequencies are

close to each other.

Chapter 4 presented the detailed analyses of the forward, backward and data

cycle times for the two-flop synchronizer. The goal was to make predictions of the

data cycle times. It addressed a behavioural model of the two-flop synchronizer.

With the help of this model, the following two relationships were determined:

(1) the dependency of the starting phases of the backward cycle on the forward

cycle and (2)relationship between forward cycle starting phase and the forward

cycle time. These two relationships were then combined to obtain the backward

and data cycle times of the two-flop synchronizer. The analysis of the data cycle

time revealed a pattern: shorter data cycle time can be achieved if the forward

cycle starting phase is reduced. This observation later led to improvements of

the two-flop synchronizer.

Chapter 5 extended the analysis of the two-flop synchronizer data cycle times

to those of the fast four-phase and fast two-phase synchronizers. Observations

of the data cycle times of the three synchronizers showed promising performance

improvement with short starting phases. A new design approach, the three-flop

synchronizer with halved transmitter and receiver clocks, was proposed based

106

on these observations. From the analyses of the three-flop synchronizer data

cycle timing boundaries and two examples of the data cycle times, the three-flop

design has demonstrated shorter data cycle times than the two-flop synchronizer

but longer data cycle times than the fast four-phase synchronizer. The reliability

of the three-flop design after frequency doubling is then analyzed and compared

to the two-flop synchronizer. Although its MTBF is shorter than the two-flop

synchronizer, it still gives satisfactory reliability. For fast clock frequencies, more

reliable flip-flop with shorter settling time constant should be used in both two-

flop and three-flop designs to guarantee reliability.

Chapter 6 described a data cycle time analysis tool, Synchronizer Data Cycle

Analyzer (SyDCA), based on the conclusions obtained from previous chapters.

The SyDCA tool was then used to obtain the best, worst and average data cycle

times for the three synchronizers. Strong non-linear behaviour in the two-flop

average data cycle time was found. The effect of coincident clock edges at several

clock ratios was also displayed in the average data cycle times for all three syn-

chronizers. The estimated data cycle times from Chapter 3 were then compared

with the actual ones and the quality of the estimation was assessed.

The SyDCA tool was then extended to deal with the burst-mode data transfers

for the three synchronizers. It was found that the average data cycle times did not

vary significantly with different number of data words in the data burst. Sensitive

regions of the average data cycle times were identified. For the evaluation of the

data cycle times, attention should be paid if the clock ratio of the transmitter

and receiver falls in this region, as a small shift in clock ratio produces relatively

large variations in the average data cycle times.

Similarities were displayed between the two-flop and fast two-phase synchro-

nizers while the average data cycle times between two-flop and fast four-phase

synchronizers showed complementary patterns. Comparisons of the average data

cycle times reveal important synchronizer characteristics under different clock ra-

tios, which provides useful information for evaluation of their data cycle times.

The influence of the starting phase of the first data word was then explored by

comparing average data cycle times produced by different starting phase. It was

found that the cumulative effect of coincident clock edges aggregated performance

penalty at certain clock ratios.

107

7.2 Future work

7.2.1 Possible improvement in the synchronizer models

The model developed in this text made several ideal assumptions and hence sev-

eral practical features were neglected. The following features can be incorporated

in the synchronizer models to improve the prediction accuracy.

1. Asynchronous reset delay. In the fast four-phase synchronizer model,

the effect of asynchronous reset on the flip-flops were idealized. It was

assumed a zero time reset. However, this may not be the case in reality. In

Figure 3.5, the rise of A1 signal immediately brings down the REQ signal by

asynchronously reset the REGV flop on the transmitter side. In the model,

the fall of REQ happens simultaneously with the rise in A1, and therefore

the REQ falls at the rising receiver clock edge. In reality, the asynchronous

reset takes a finite time to respond and this means the de-assertion of REQ

will happen after the rising receiver clock edge. If this delay is large enough

to be neglected, the backward cycle time will no longer a integral multiple of

the transmitter clock cycle any more. This will change the calculation of the

timing boundary and data cycle time of the fast four-phase synchronizer.

The consequent data cycle time may be slightly different.

2. Effect of metastability. All the synchronizer models do not include

the metastability effect. One important part of the future work is to add

this effect to the model. If the assumption that these synchronizers will

resolve from metastable state in one clock cycle is made, it can be easily

included in the models by creating an extra clock cycle delay. However,

if the condition of getting into the metastable state is also to be reflected

from the model, it may take some effort because the current model does

not deal with the real flip-flop operations.

3. Interconnection delay. It is possible to incorporate this feature in the

model if the interconnection delays between transmitter and receiver can

be expressed as fractions of the transmitter clock cycle.

108

7.2.2 Extension in SyDCA

1. Incorporation of the added features in the synchronizer models.The

added features in the synchronizer models directly affect the SyDCA tool

calculation. So re-calculations of the cycle times are required if any of the

features discussed above are added to the models.

2. Calculation of synchronizer latencies. As another important per-

formance indicator, the latency of a synchronizer is equally important as

the data cycle time. The author believes that the SyDCA tool can be ex-

tended to calculate the latencies of these synchronizers as long as they can

be represented by the intervals between handshake signals.

3. Analysis of the three-flop synchronizer In the Chapter 2, the pre-

liminary analyses were performed to the three-flop synchronizer. It is also

possible to model its behaviour using the existing models and therefore the

SyDCA tool can be extended to analyze its average data cycle times.

109

References

[BCV+05] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin.

An asynchronous noc architecture providing low latency service and

multi-level design framework. In Proceedings of ASYNC, pages 54–

63, 2005.

[BF02] J. Bainbridge and S. Furber. Chain:a delay-insensitive chip area

interconnect. IEEE Micro, 22(5):16–23, 2002.

[BS05] Tobias Bjerregaard and Jen Sparsø. A scheduling discipline for la-

tency and bandwidth guarantees in asynchronous network-on-chip.

In Proceedings of ASYNC, pages 34–43, 2005.

[CG02] A. Chakraborty and M. R. Greenstreet. A minimalist source-

synchronous interface. In Proc. of ASIC/SOC Conference, pages

443–447, 2002.

[CG03] A. Chakraborty and M. R. Greenstreet. Efficient self-timed interfaces

for crossing clock domains. In Proc. of ASYNC 2003, pages 78–88,

2003.

[Cha84] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems.

PhD thesis, Stanford University, 1984.

[CN01] T. Chelcea and S. M. Nowick. Robust interfaces for mixed-timing

systems with application to latency insensitive protocols. In Proc.

38th ACM/IEEE Design Automation Conference, pages 21–26, 2001.

[DB99] Charles Dike and Edward Burton. Miller and noise effects in a

synchronizing flip-flop. IEEE Journal of Solid State Circuits, 34

(6):849855, 1999.

110

[DDX95] L. R. Dennison, W. J. Dally, and D. Xanthopoulos. Low latency

plesiochronous data retiming. In Proc. 16th Anniversary Conference

on Advanced Research in VLSI, pages 304–315, 1995.

[DG07] Rastislav Dobkin and Ran Ginosar. Zero latency synchronizers using

four and two phase protocols. Technical report, 2007.

[DG09a] Rostislav Dobkin and R. Ginosar. Fast universal synchronizers. In

Integrated Circuit and System Design. Power and Timing Model-

ing, Optimization and Simulation, volume 5349/2009, pages 199–208.

Springer Berlin / Heidelberg, 2009.

[DG09b] Rostislav Dobkin and Ran Ginosar. Two-phase synchronization with

sub-cycle latency. In Integration, the VLSi journal, volume 42(3),

pages 367–375. Elsevier, June 2009.

[DP98] William Dally and John Poulton. Digital Systems Engineering. Cam-

bridge University Press, 1998.

[DVFG05] R. Dobkin, V. Vishnyakov, E. Friedman, and R. Ginosar. An asyn-

chronous router for mutiple service levels networks on chip. In Pro-

ceedings ASYNC, pages 44–53, 2005.

[FF04] T. Felicijan and S. B. Furber. An asynchronous on-chip network

router with quality-of-service(qos) support. In Proceedings of IEEE

International SOC Conference, pages 274–277, 2004.

[FKG06] U. Frank, T. Kapschitz, and R. Ginosar. A predictive synchro-

nizer for periodic clock domains. Formal Methods in System Design,

28(2):171–186, 2006.

[Fri01] Eby G. Friedman. Clock distribution networks in synchronous digital

integrated circuits. In Proc. IEEE, pages 665–692, 2001.

[Gin03] R. Ginosar. Fourteen ways to fool your synchronizer. In Proceedings

of the Ninth International Symposium on Asynchronous Circuits and

Systems, pages 89–96, 2003.

[Gin08] R. Ginosar. Synchronization circuits for multi-clock domain soc. In-

ternational Symposium on Circuits and Systems, May 2008. Tutorial.

111

[Gre93] M. R. Greenstreet. STARI: A Technique for High-Bandwidth Com-

munication. PhD thesis, Department of Computer Science, Princeton

University, 1993.

[Gre95] M. R. Greenstreet. Implementing a stari chip. In Proc. 1995 Interna-

tional Conference on Computer Design, pages 38–48, Austin, Texas,

October 1995.

[IM02] A. Iyer and D. Marculescu. Power-performance evaluation of globally

asynchronous, locally synchronous processors. In Proc. 29th Interna-

tional Symposium on Computer Architecture, pages 158–168, 2002.

[KG98] R. Kol and R. Ginosar. Adaptive synchronization. In Proceedings of

the IEEE International Conference on Computer Design, page 188.

IEEE Computer Society, 1998.

[Kin07] David J. Kinniment. Synchronization and Arbitration. Wiley, 2007.

[KPWK02] J. Kessels, A. Peelers, P. Wielage, and S. Kim. Clock synchroniza-

tion through handshaking. In Proceedings of the Eighth International

Symposium on Asynchronus Circuits and Systems, page 59, 2002.

[MC80] C. A. Mead and L. A. Conway. Introduction to VLSI Systems.

Addison-Wesley, 1980.

[Men91] Teresa Meng. Synchronization Design for Digital Systems. Kluwer

Academic Publishers, 1991.

[Mes90] D. Messerschmitt. Synchronization in digital system design. IEEE

Journal on Selected Areas in Communications, 8:1404–1419, 1990.

[MM07] R. Mullins and S. Moore. Demystifying data-driven and pausible

clocking schemes. In Proc. ASYNC 2007, pages 175–185, 2007.

[MN06] Alain Martin and M. Nyström. Asynchronous techniques for system-

on-chip design. In Proceedings of the IEEE, volume 94, pages 1089–

1120, 2006.

[MTMR02] S. Moor, G. Taylor, R. Mullins, and P. Robinson. Point to point gals

interconnect. In Proc. ASYNC 2002, pages 69–75, 2002.

112

[NM02] M. Nyström and A. J. Martin. Crossing the synchronous-

asynchronous divide. In Workshop on Complexity-Effective Design,

2002.

[NNSvB94] L. S. Nielsen, C. Niessen, J. Sparso, and C.H. van Berkel. Low-power

operation using self-timed and adaptive scaling fo the supply voltage.

In IEEE Transactions on VLSI Systems, volume 2(4), pages 391–397,

1994.

[SAD+02] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis,

S. Dwar4kadas, and M. L. Scott. Dynamic frequency and voltage

control for a multiple clock domain microarchitecture. In IEEE/ACM

International Symposium on Microarchitecture, pages 356–367, 2002.

[SG03] Y. Semiat and R. Ginosar. Timing measurements of synchorniza-

tion circuits. In Proceedings of Ninth International Symposium on

Asynchronous Circuits and Systems, page 68, 2003.

[SM00] A. E. Sjogren and C. J. Myers. Interfacing synchronous and asyn-

chronous modules with a high-speed pipeline. IEEE Transactions on

VLSI Systems, 8(5):573–583, 2000.

[WH04] Neil Weste and David Harris. CMOS VLSI Design: A circuit and

systems perspective. Pearson Addison-Wesley, 3rd edition, 2004.

[YD96] K. Yun and R. Donohue. Pausible clocking: a first step toward het-

erogeneous systems. In Proc. Computer Design: VLSI in Computers

and Processors, pages 118–123, 1996.

[YD99] K. Yun and A. Dooply. Pausible clocking based heterogeneous sys-

tems. IEEE Transactons VLSI Systems, 7(4):482–487, 1999.

113

