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Abstract— Network protocol stacks are traditionally encapsu-
lated within system software, forcing the application program-
mer to use general-purpose communication end-point abstrac-
tions. The application programmer is denied the flexibility
of implementing application-specific performance improvements.
Application-level networking provides the application program-
mer with the ability to tailor the protocol stack to the needs of the
application. This is particularly useful in special-purpose systems,
such as embedded networked appliances. This paper describes the
design of an application-compliant TCP/IP implementation for the
Arena run-time library operating system, which aims at separat-
ing mechanism from policy. The role of policy and mechanism in
network protocols and their effects on networked embedded sys-
tems is investigated. The resulting system is optimised for embed-
ded systems based on a multi-threaded single-application model.
Experiments were carried out on an embedded system test plat-
form and performance results are given.

I. I NTRODUCTION

Networked appliances communicate through network proto-
cols. Internet appliances are networked appliances that com-
municate over the Internet, such as Internet radios, TVs that
can function as web browsers or burglar alarms that use the In-
ternet to contact the police. Such an appliance uses the TCP/IP
[1] protocol suite as its underlying network protocols. This in-
troduces a problem, because different appliances might have
different demands on the underlying network protocols. De-
signing special-purpose protocols for different devices is im-
practical in the case of Internet appliances, since such an ap-
pliance must conform to the TCP/IP standards. An alternative
solution is to give the programmer of the application running
on the appliance control over the implementation of the net-
work protocol stack. Therefore, it is logical to implement as
much of a network protocol stack at the end-points of the com-
munication; that is, in the networked application itself. Salzer,
Reed and Clark identified this as a general design principle in
theend-to-end arguments[2].

Special-purpose operating systems, such as those commonly
used with embedded-system-based networked appliances, sup-
port application-compliant systems. Such a system allows the
application to tailor resource management to its needs. To
achieve this, it is useful to separate mechanism from policy.

A mechanism/policy architecture is a layered architecture.
Each layer (n) combines mechanisms provided by the layer be-
low (n-1) by applying policy. This policy is used to provide
higher level mechanisms for the next level up (n+1).

The Arena operating system [3] is a special-purpose oper-
ating system based on a separation of mechanism and policy.
Mechanism is provided as low-level primitives by the nano-
kernel, whereas policy is implemented in user-level libraries.
Arena is described in more detail in section III.

The present research applies the separation of mechanism
and policy to protocols in the context of an application-
compliant implementation of TCP/IP for an embedded-system
version of Arena.

Although theend-to-end argumentshave influenced the de-
sign of the TCP/IP protocol suite, implementations of the
TCP/IP suite are typically encapsulated in system software.
Furthermore, implementations are typically hidden behind rel-
atively high-level communication end-point APIs, such as the
UNIX socket API [4]. This separation of protocol implementa-
tion and application does not allow application-compliant com-
munication systems.

The remainder of this paper is organised as follows. Section
II gives some background, describes related work and intro-
duces the model used in this research. Section III describes the
Arena operating system which underlies the present research.
Next, an attempt is made to categorise network protocols into
mechanism and policy (section IV), followed by a discussion
of buffer management (section V). Section VI gives the results
of some performance experiments. Section VII describes pos-
sible areas for further research. Finally, section VIII gives a
summary.

II. BACKGROUND

A. Classification of approaches

Methods of improving network performance and network
flexibility of applications can be classified into four categories
(This categorisation is derived from Gangeret al. [5].):

• (a) different protocol stack architecture
It is possible to define new protocol stack architectures,



such as reducing the number of layers or avoiding a lay-
ered approach completely.
Although these approaches might improve performance,
they very often maintain the separation of protocol imple-
mentation and application, thus restricting the application
programmer from applying application-specific optimisa-
tions.

• (b) different APIs
Many systems try to solve the limitations of the general-
purpose abstractions that encapsulate protocols by invent-
ing new interfaces or by improving the performance of the
existing ones.
These systems might not only improve performance, but
also flexibility. However they also fail to pass control over
protocol stacks to the application. Encapsulating API im-
plementations in inaccessible system software, will still
mean restrictions for the application.

• (c) Application “steering” of protocols
It is possible to let the application control the way in which
the network protocols are composed in the lower layers of
the system. Generally, such a system allows the applica-
tion to install “extensions” in its lower layers.
All solutions based on kernel extensions however, are so-
lutions that operate in the traditional context of separating
protocol implementation from the application.

• (d) Application-level Networking
Control can be given to the application, by implementing
as much as possible of a protocol stack at the application-
level in libraries.
Application-level networking has several advantages:

– Application-specific performance optimisations can
be implemented.

– Only the protocols that are really needed have to be
implemented. On embedded systems specifically, this
can save valuable memory.

– Non-standard transport protocols can be used to com-
municate between applications with special needs.
In the TCP/IP suite UDP [6] is used for unreliable
connection-less transport and TCP [7] for reliable
connection-oriented transport [1]. There are no alter-
native transport protocols to choose from. Some ap-
plications might benefit from implementing their own
transport protocols.

– The application programmer can decide which API
abstraction should be used to encapsulate the pro-
tocols. The socket API can be implemented in li-
braries, if required, or an alternative communication
end-point abstraction can be used. That is, the socket
API becomes one of many possible APIs.

B. Existing Systems

This section introduces related work in the context of the
fours categories described above.

(a) Different protocol stack architectures: Clark and
Tennenhouse [8] argued that the layered model of network
protocols should not force a layered implementation and that
“flexible decomposition” should be a “key architectural prin-
ciple”. They suggestedIntegrated Layer Processing (ILP)for
efficiency reasons. That is, combining the operations done in
different layers into one.

Other systems relax layering constraints by allowing protocol
implementations to be composed from “protocol entities” [9]
[10]. The x-Kernel [11] works similarly, allowing an object-
oriented-like approach, where the relationship between proto-
col objects with uniform interfaces are defined to create proto-
col paths through the protocol objects.

However, none of the above systems provide the application
programmer with more flexibility.

(b) Different APIs: Fbufs [12] were an efficient way of
passing data between levels. This included the passing between
system layers and application layers. Bangaet al. [13] pro-
posed different operating system abstractions to support high
performance networking aimed at servers. The x-Kernel system
[11] defined an abstraction aimed at improving the performance
of “most common patterns of interaction”. As described above
these systems maintain the encapsulations of the API in system
software, thus restricting the application.

(c) Application “steering” of protocols: UNIX
STREAMS [14] allows the dynamic introduction of modules
into a set of “linearly connected processing modules”. Modules
can be pushed and popped of a stack of modules. Neighbouring
modules communicate through messages; that is, each module
provides a routine that accepts messages as an entry point.
In this way protocol stacks can be modified by pushing and
popping modules on and off the stack. However, any module
popped on to the stack has to be pre-linked with the kernel, and
is therefore part of the kernel.

The BSD packet filter [15] is an example of UNIX-based sys-
tems that allowpacket filtersto be installed in the kernel to
capture incoming network packets. These captured packets are
then passed directly up to the application, which can perform
whatever processing is required. In theory the higher levels of
the protocol stack can be implemented at application-level us-
ing packet filters.

Plexus [16], a protocol architecture for the SPIN operating
system [17] allows the application to “download” protocols as
type and pointer-safe extensions into the kernel.

All of the systems mentioned here fail to couple protocol
implementation and application tightly. Although application
control over network protocol implementation is improved, the
implementation is still physically located in system software.

(d) Application-level networking: Thekkathet al. [18]
designed a system, where protocols were implemented in user-
level libraries. The system is based on a microkernel archi-
tecture, but protocols are linked with applications. However,
the system requires aregistry serverfor some operations, such
as establishing connections. Therefore, the need for context



switches to trusted system software is not fully eliminated and
not all parts of the protocols are tightly-coupled with the appli-
cation. Nemesis [19] is relatively similar in respect to protocol
implementations and has aflow manager, which represents the
trusted system software part of the protocol stack.

The need for a trusted server process was eliminated with
Xok [5], an Exokernel system [20]. The system is based on a
library operating system and protocols are fully linked with the
application. Only de-multiplexing of incoming packets is done
in the kernel.

C. Single-Application Embedded System Model

All the application-level networking solutions described
above are aimed at multi-application paradigm systems, where
packet de-multiplexing and security issues influence the design
of protocol stacks. Embedded systems however, often use a dif-
ferent paradigm. Here, a single-application model is regularly
used and although security is important, it is focused at differ-
ent aspects of the system. Although the system has to be secure
from attacks from the outside, different parts of the system are
not protected from each other.

Therefore, in this research, a multi-threaded single-
application model is used. This relaxes the need for packet de-
multiplexing, so that it too can be moved up to the application-
level. The application can determine if de-multiplexing of in-
coming packets between different threads is necessary. Further-
more, buffer management is simplified, with only one queue
needed for passing buffers up to user-level. The Arena TCP/IP
implementation builds on application-level networking.

III. T HE ARENA OPERATING SYSTEM

Arena is an application-oriented operating system [3] [21]
intended for both distributed and real-time applications [22].
Operating system policy resides in resource managers imple-
mented as user-level libraries which are linked to the applica-
tion. The effect of this is to move operating system policy up
into the application run-time system. Low-level mechanisms
are provided by a hardware-specific nanokernel, or hardware
object (HWO). The HWO presents a generic view of low-level
processor features. In order to access the low-level mecha-
nisms, resource managers make downcalls to the HWO inter-
face. Conversely, on the occurrence of a hardware event, the
HWO can make an upcall to some user-level resource man-
ager. The upcall mechanism enables deferred processing of the
event via an application-specific event handler thread. Fig. 1
shows how a hardware interrupt may cause the HWO to invoke
the user-level process manager, which schedules a user-level
event handler thread. The network policy layer discussed in the
present work is implemented as a user-level resource manager.
The network policies are accessed via upcalls.
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Fig. 1. Arena Event Handling

IV. M ECHANISM AND POLICY IN NETWORK PROTOCOLS

A. Overview

Any protocol implementation on Arena should maintain the
Arena philosophy of separating mechanism from policy. Since
there are generally more than two layers in network protocol
stacks, a decision has to be made which layers should reside
in the HWO and which should reside in application libraries.
As mentioned in section I, each level uses the mechanisms pro-
vided in the level below it to implement a certain amount of
policy. It is therefore important to identify layers that introduce
application-specific policy; that is, policy that should be defined
at the end-points of the communication.

This level is termedapplication-dependentand is sup-
ported by anapplication-independentlevel. The application-
independent level should be implemented in the HWO, whereas
the application-dependent level should be implemented in user-
level libraries.

At its simplest, application-independent communication net-
work mechanisms are accessed via, saysend packet() and
receive packet() primitives. There is noapplication-
specific policyinvolved in these primitives, that is, for exam-
ple, no decisions are made about the reliability of network com-
munications. A simple application-dependent communications
policy relates to, say, having a connection-oriented communica-
tion link. At the application-independent level there is no con-
cept of an “established connection”. A connection-oriented pol-
icy can be implemented on top of a simple send/receive commu-
nications mechanism. Decisions about reliability and whether
communication is connection-oriented can be implemented at
the application-dependent level.

In hard real-time systems, buffering policy is important in
order to achieve predictable performance. This means that this
buffering of messages presents a problem for the clean separa-



tion of the network mechanisms from application policy. In-
coming packets are read from the network by the HWO nano-
kernel device driver. Although, at this level no application-
specific policy should be present, space for the incoming pack-
ets has to be allocated. Thisbuffer managementcan be done
in different ways. Buffers can be obtained from a fixed pool
of statically pre-allocated buffers or can be allocated dynam-
ically. Buffers can be of different size and number. Buffering
clearly imposes application-specific policy decisions at the low-
est mechanism layer. This impact on application-requirements
can be reduced by expanding the donwcall interface to allow
the application to “steer” the buffer management policy.

B. TCP/IP

This section looks at TCP/IP, in order to establish which parts
of the Arena TCP/IP implementation should reside in the HWO
and which parts in application-level libraries. The TCP/IP pro-
tocol suite provides protocols above the link layer, and the
system described in this paper uses ethernet as the underlying
physical and link layer protocol.

Ethernet provides simple ways of sending and receiving
packets and a basic naming scheme. No reliability issues are
addressed and communication is connection-less. In this re-
spect ethernet is clearly an application-independent protocol.

In the TCP/IP suite itself, IP provides only the mechanisms
to send and to receive packets. Connection-related policy de-
cisions are made at the transport layer. That is, by choosing
TCP or UDP, reliable connection-oriented policy or unreliable
connection-less policy is selected.

Therefore, the Arena TCP/IP implementation has IP in the
HWO and TCP and UDP at the application-level. Incoming
packets are processed in the HWO up to and including the IP-
level, and are then passed to the application through a sim-
ple buffer queue. Only one queue is required, because of the
single-application model. De-multiplexing of packets to differ-
ent threads can be done at the application-level. This allows
different application-specific policies for de-multiplexing to be
used by the application programmer.

ICMP [23] can be regarded as anerror reportingmechanism,
rather than anerror correctingpolicy [1]. ARP [24] is regarded
as a mechanism for address resolution. ICMP and ARP are
therefore implemented in the HWO.

Fig. 2 shows the TCP/IP implementation on Arena and Fig. 3
highlights thereceive case. It can be seen that all packet de-
multiplexing is done at the application level and that a single
packet queue is used to pass packets from the HWO to the ap-
plication. UDP, TCP and packet de-multiplexing run in a user-
level event handler thread. The system also leaves the applica-
tion programmer with the possibility to implement other trans-
port protocols besides TCP and UDP.

V. BUFFERMANAGEMENT

As mentioned above, application-specific buffer manage-
ment policy is trapped at the application-independent level.
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Fig. 2. TCP/IP Implementation on Arena

Therefore, great care has to be taken to allow the application
maximum flexibility with regards to buffer allocation. One
general principle is that copying of buffers should be avoided
for performance reasons. The single-address space nature of
many embedded systems facilitates this, because no protection
boundaries have to be crossed.

Arena TCP/IP uses the buffer management scheme of lwIP
[25], with some slight modifications. This scheme allows two
ways of allocating buffers. Buffers can be allocated dynami-
cally through amalloc() -like function or from a pool of pre-
allocated buffers. This allows the application programmer to
use either method of allocating buffers forsending.

Receivinghowever starts at the lowest level, within the con-
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text of an interrupt handler. The application could influence
any buffer allocation policy for incoming packets by using a
HWO-provided interface during initialisation. Because usage
of pre-allocated buffers is more predictable in terms of execu-
tion time, the system described here allocates incoming packets
from a pool of pre-allocated buffers. This improves the real-
time behaviour of the system. However, the size and number
of pre-allocated buffers have to be chosen carefully, in order to
avoid wasting scarce memory resources or losing packets be-
cause all buffers are in use.

The buffer-management scheme also provides facilities to re-
serve space for network headers of different level protocols to
avoid copying of buffers.

VI. PERFORMANCE

A. Experimental Setup

All experiments were run on an Atmel AT91M40800-based
development board, with 4MB of external RAM and a Cirrus
Logic CS8900A 10Mbps ethernet chip. The ethernet chip was
used to connect the board to a local ethernet network. Experi-
ments were run at peak and off-peak times, with similar results,
suggesting that the processing of packets on the board, rather
than network congestion, was the main influence on the timing
results.

There were two sets of experiments. The first experiment de-
termined the penalty associated with accessing user-level policy
via an upcall, which involves dispatching an Arena event han-
dler thread. The implementation of ICMP was moved from the
HWO to user-level. The board waspinged with ICMP handling
implemented at user-level or in the HWO, and the round-trip
times were measured.

In the second experiment, the time and space efficiency of
a transport protocol implemented in a user-level library and
ICMP in the HWO was investigated. To simulate a typical use,
such as file transfer, a sequence of 2000 UDP packets was sent
to the board from a nearby host. Packet size was 256 bytes. The
received packets were “bounced back” to the host and round
trip time and packet-loss were calculated. The number of pre-
allocated buffers was varied to measure its effect on packet-loss.
Two scenarios were simulated. In the “non-busy scenario” a
single UDP link was used. To simulate a “busy scenario” the
board was constantlypinged. The purpose of this experiment
was to to optimise the number of pre-allocated buffers.

B. User-Level Policy Overhead

With ICMP implemented in the HWO theping-time was
0.935ms. This increased to 1.051ms, when ICMP processing
was moved up into a user-level event handler. This suggest,
that locating transport-level policy at user-level increases the
packet round trip time by approximately 13.6%. This is mainly
due to the thread context switch arising as the result of the up-
call. Any system however, has to perform at least one context
switch for packets that are passed up to the user-level. Previous

work compared networking performance of Arena to that of a
microkernel, and found a performance advantage in Arena [26].
These results indicate that the flexibility of the Arena approach
does not have an excessive cost.

C. Application-Level Transport Protocols

In the non-busy scenario the round trip time for UDP packets
was an average 21ms. Table I shows the results of the packet-
loss measurements. It can be seen that the packet-loss remained
relatively low and constant, even when only one pre-allocated
buffer was available. This suggests that the processing of other
incoming buffers, such as broadcasted ARP requests, was fast
enough to free the buffers quickly. The probability that a packet
is received when the buffers are busy seems very low in the non-
busy scenario.

In the “busy scenario” the round-trip time remained an aver-
age 21ms, but the packet-loss behaved differently. The results
in Table II show that when the number of pre-allocated buffers
was reduced, the UDP packet loss remained relatively constant
and theping loss rate increased slightly. However, when just
one buffer was available, thepingpacket-loss increased dramat-
ically to 68.75 %. This behaviour can be explained by the fact
that the UDP packets are passed up to the application, whereas
ping ICMP packets are processed only in the interrupt con-
text of the HWO. Furthermore the UDP packets arrived much
more frequently than theping ICMP packets. Therefore, UDP
packets “blocked” buffer space for much longer and more fre-
quently, increasing the probability thatpingpackets would find
no buffer available. The round-trip time for UDP packets re-
mained 21ms on average.

The results suggest that in light use, the amount of memory
reserved for pre-allocated buffers can be very low. As little as
one buffer for a typical “receive and acknoledge link” can result
in acceptable performance. If every pre-allocated buffer is 1520
bytes in size (maximum ethernet packet size plus padding for
4-byte alignment), 10 pre-allocated buffers result in a memory
requirement of approximately 15KB.

VII. F UTURE WORK

The application-compliant TCP/IP implementation de-
scribed in this paper is part of a wider research project. The
project is concerned with adapting the Arena operating system
to support dynamic configuration through run-time code load-
ing techniques. There are two main target areas. Firstly, it is
planned to allow the dynamic replacement of OSMs. The sec-
ond aim focuses on protocol loading. In particular, Grid [27]

TABLE I
PACKET LOSS FOR A SINGLEUDP LINK

no. buffers 1 2 3 5 10 20

loss (%) 0.13 0.05 0.05 0 0 0



TABLE II
PACKET LOSS FOR A SINGLEUDP LINK PLUS ping

no. buffers 1 2 3 5 10 20

UDP (%) 0.17 0.1 0.05 0.05 0.1 0.01
ping (%) 68.75 5.0 2.0 0 0.5 0

protocols could be loaded dynamically onto the embedded sys-
tem to allow the system to use a computational grid for large
computations. The problem with grid computing on embed-
ded systems is the large number of application-level protocols
needed. Dynamic loading of only the protocols needed at a
given time could facilitate the participation of networked de-
vices in computational grids.

VIII. C ONCLUSION

Application-level networking allows flexible and efficient
protocol stack implementations that could be particularly useful
in networked appliances, because of the embedded and special-
purpose nature of such systems.

One such implementation, the TCP/IP protocol stack for the
application-compliant Arena operating system, has been de-
scribed. The system is optimised for embedded systems and
is based on a multi-threaded single-application model, result-
ing in a simpler protocol stack and buffering.

It has been argued that network protocols can be viewed in
terms of separating mechanism from policy, in order to achieve
application-compliant networking. The Arena TCP/IP proto-
col stack implements layers that introduce application-specific
policy in application libraries, giving the application program-
mer the flexibility of choosing between policies implemented
in different libraries or even implementing application-specific
policy.
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