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Abstract


Selecting landmarks for use by a navigating mo-
bile robot is important for map-building systems.
However, it can also provide a way by which
robots can communicate route information, so
that one robot can tell another how to find a goal
location. A route through an environment can be
described by the landmarks encountered along the
path, and a robot following the same path must
identify the perceptions corresponding to the ac-
tual landmarks in the description in order to lo-
calise itself. This paper presents an algorithm to
automatically select landmarks, choosing as land-
marks places that do not fit into a model of typical
perceptions acquired by the robot. Four methods
of aligning the landmarks between different runs
on the same route are also presented. The differ-
ent alignment methods are evaluated according to
both how well they produce matching landmarks
and how suitable such alignment methods would
be for use in a route communication system.


1 Introduction


Perceptual landmarks – navigational landmarks based
on the sensory perceptions of the robot – form
the basis of many successful mobile robot navigation
systems, see for example (Yamauchi and Beer, 1996,
Duckett and Nehmzow, 1998). These landmarks are
used because they avoid the problem of drift error that
is inherent in odometry measurements.


The selection of landmarks is important for other ap-
plications, too. The problem of robot communication
has become increasingly important over the last few
years, as multiple robot systems have become more and
more common. One question that has begun to be ad-
dressed is how a group of robots can share navigational
information, for example so that one robot can tell an-
other how to find a goal location. A possible way to
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approach this question is to send information about the
landmarks that are seen along the route and the ac-
tions that were taken at these landmarks. Such a system
would require the following capabilities:


• A landmark selection method


• A mapping from selected landmarks to words to be
communicated


• An inverse mapping from words to landmarks


It is the first of these requirements that is addressed in
this paper. Wherever navigational landmarks are used it
is important that they are detected consistently, so that
the same landmarks are found on every run through an
environment. Otherwise, the route that should be taken
is unclear and, for communication, the physical ground-
ing of the symbols that the robots were communicating
with would be very different.


In previous work (Marsland et al., 2001) it was shown
that a robot could adaptively learn a model of its en-
vironment by using its current sensory perceptions to
predict the next set of perceptions. It was argued that
the places where the prediction was not accurate – those
places that were not adequately described in the acquired
model – were suitable choices for landmarks. These
places were found by using a Kalman filter to monitor
the error curve of the output of the neural network.


In that work, which is described in more detail in sec-
tion 3.1, the robot travelled a constant distance (20 cm)
between sensor scans of the environment, and stopped
in order to make the scans. This meant that interesting
landmarks could be missed if they were placed between
the sampling steps. Here we investigate a more complex
version of that task, where the robot samples the en-
vironment continually as it explores, even while turning
corners. This means that the only limit on the number of
samples taken by the robot as it travels is the operating
capabilities of the robot.


We compare the quality of landmark matches between
successive runs in an environment by looking at how well







the landmarks match in terms of preserving landmark
sequence, distance, and category between the two runs.
The results are promising.


2 Relevant Literature


2.1 Landmark Selection


The most common method of selecting landmarks has
been to take sensory scans at regular intervals with ev-
ery scan being used as a landmark that is put into the
map. This avoids the problem of ensuring that land-
marks should be detected consistently, but since in many
environments – such as corridors – a large number of per-
ceptions are almost identical, the map is filled up with
information that does not aid navigation.


A number of researchers have considered selecting
suitable landmarks for mobile robot navigation. One
technique is to ask the user to define the landmarks
before the robot explores. Humans typically select ob-
jects that they find easy to recognise, such as doors, or
line segments extracted from camera images recorded as
the robot travels (Kortenkamp and Weymouth, 1994).
However, there is no guarantee that these objects are
easy for the robot to recognise.


(Thrun, 1998) approached the problem through
Bayesian learning, aiming to select an optimal set of
landmarks for performing self-localisation in one spe-
cific environment. The landmarks were made up of
a projection from the robot’s raw sensory perceptions
(camera images) onto vectors in a lower-dimensional
space. This optimisation was performed by minimising
directly the quantity of interest, namely the robot’s er-
ror in self-localisation. Thrun showed that his method
produced better performance than localisation using
designer-determined landmarks including doors and ceil-
ing lights.


A similar, but computationally cheaper technique,
was developed by (Vlassis et al., 2000), who showed that
their optimisation method produced better results than
principal component analysis. Our approach differs in
that we do not carry out any analysis of the utility of
the landmarks selected, but instead use a self-acquired
model of ‘typical’ sequences of perceptions, which is in-
dependent of any particular task or environment.


(Zimmer, 1996) considered the problem of selecting
landmarks in a topological map through a process of
‘life-long learning’, where the robot’s map was continu-
ously adapted on-line during exploration. This approach
used global statistical information, based on comparison
of accumulated error statistics at each of the nodes, to
decide where to add and delete nodes in the map. A re-
lated idea can be found in (Bourque and Dudek, 2000),
who addressed the ‘vacation snapshot’ problem of decid-
ing in which locations to take camera images in order
to obtain a set of images that best represent an entire


environment. This approach kept running statistics on
what is a ‘typical’ perception, together with backtrack-
ing to previously visited locations that were subsequently
found to be ‘atypical’.


2.2 Landmark Communication


In the route communication task, landmarks can be con-
sidered as categories that the robot recognises and can
communicate about. The problem of communicating
landmarks between robots then becomes one of learn-
ing a mapping between the different categorisations that
are privately held by each robot in the communicating
community. Although it is not difficult for agents to
communicate once they posses the same categorisations
of the environment, the methods by which agents can
acquire matching categorisations and learn to communi-
cate them is still the topic of ongoing research. The most
common method of learning to communicate categorisa-
tions is to assume that categorisation is a process that
is private to each individual agent, and communication
consists of learning a public code, or set of symbols, that
maps meanings between the internal categories of each
agent. Early work by (Yanco and Stein, 1993) showed
how two robots could use reinforcement learning to cre-
ate an encoding that enables the robots to communi-
cate the simple categories ‘turn left’ and ‘turn right’.
(Billard and Dautenhahn, 2000) demonstrated that im-
itation is a plausible mechanism for robots to learn a
common symbol-meaning system describing various per-
ceptions in the environment. (Steels, 1996) proposed a
formalism to both learn perceptually grounded meanings
of such encodings and a means by which agents can mod-
ify their internal categorisations to increase their suc-
cess rate in communication. An alternative approach is
to produce a non-adaptive system that maps categories
onto symbols. For instance, (Skubic et al., 2001) showed
how a set of fuzzy logic spatial relationships can be com-
bined with a sensor prototyping method called the his-
togram of forces to generate linguistic descriptions of a
robot’s environment that are understandable to human
users.


The problem of learning symbols to describe a robot’s
route through an environment has not, to our knowl-
edge, yet been addressed in the literature. The clos-
est related work is that done on segmenting a robot’s
sensory flow into categories by (Tani and Nolfi, 1999)
and (Linaker and Niklasson, 2000). Both of these
works mention the possibility of communicating
routes between robots as sequences of categories,
but do not actually attempt the task. Our own
work (Fleischer and Nehmzow, 2001) has demonstrated
that it is possible for two robots to learn individual cat-
egorisations of locations in the environment and then an
encoding from their categorisations onto a set of public
symbols, enabling the robots to agree on symbols repre-







senting locations in the environment.


3 Approach


3.1 Overview


We suggest that the perceptions that are most suitable
as landmarks are those that differ in some way from the
main run of perceptions. This means that we are at-
tempting a form of novelty detection, highlighting per-
ceptions that are in some way unusual. The first part
of any novelty detection process (Marsland, 2001) is to
learn the model of normality. This is done by allow-
ing the robot to travel through the environment using
a wall-following behaviour and collecting data from its
sonar sensors. These readings are used as inputs to train
a single-layer neural network, described in section 3.2.
Landmark detection is performed by finding peaks in the
error curve of the single-layer network. This is a fairly
difficult problem as the residual noise level is high. A
one-dimensional Kalman filter is used, as is described in
section 3.3.


3.2 The Sensor Prediction Network


DIRECTION
OF TRAVEL


TIME t+1


TIME t


Sonar 2 Sonar 6Sonar 3 Sonar 4 Sonar 5


Sonar 2 Sonar 6Sonar 3 Sonar 4 Sonar 5


APPARENT MOTION OF
ENVIRONMENTAL FEATURES


Figure 1: The single-layer network used to learn the mapping


between the current sensory perception and the next. To aid


clarity, connections for nodes drawn dotted are not shown.


A single-layer neural network with a sigmoidal activa-
tion function, shown in figure 1, is trained to acquire a
model of the relationship between successive sensory per-
ceptions. The network structure is not fully connected;
the perceptions of sensors facing forwards are used as in-
puts to model rear-mounted sensors, but not vice-versa.
This reflects the fact that the robot drives forward, and
so the future perceptions of any one sensor depend only
on the sensors in front of it. While this assumption about
the sensors breaks down when the robot turns corners,
this does not seem to be a problem. In addition to the
network inputs shown in the figure, a bias input that is
permanently set to -1 is used.


The network weights, W , are adapted during a train-
ing phase, where the robot explores an environment and


records its sensory perceptions. The sensory perceptions
at each time step, p(t), are used as both network inputs
(at the current time step) and training examples for the
next time step. The weights are adapted using the stan-
dard Widrow-Hoff learning rule:


∆W (t) = η (p(t)−W (t)p(t− 1))
T
p(t− 1) . (1)


The single-layer network was trained using early stop-
ping on a training set made of runs through a number of
corridor environments, using a learning rate of η = 0.2.
Further details are given in section 4.


Once the training is completed the landmark selector
can be used on-line. The error curve of the neural net-
work is monitored, where the error is the squared differ-
ence between the predicted output, ok(t), and the actual
perceptions of the robot, pk(t), for each sensor k:


E =
∑


k


(ok(t)− pk(t))
2
. (2)


3.3 Landmark Selection Using a Kalman Filter


The criteria that is used for selecting a landmark is that
the output error of the sensor prediction network is suf-
ficiently high. A Kalman filter (Kalman, 1960) provides
a principled method for determining when this is true.
The Kalman filter is a method for recursively estimat-
ing the state of a discrete-time controlled process that is
governed by a linear stochastic difference equation. In
our case we have a scalar variable, the error of the net-
work, E, which would be a constant value, hopefully near
zero, if the sensor values remained unchanging. How-
ever, there is noise in E from both sensor repeatability
(measurement noise) and robot orientation and position
(process noise).


The Kalman filter attempts to optimally re-estimate
the variable E at each step along the way so at to remove
the effects of both measurement and process noise, leav-
ing behind only the prediction error actually produced
by variation of the environment. The filter equations
compute a gain, K, that is used to recursively update
estimates of the true error, Ê, and its variance, v. The
Kalman filter equations for our simple, one-dimensional
case are:


K(t) =
v(t− 1)


v(t− 1) +R
, (3)


Ê(t) = Ê(t− 1) +K(t)
(
E(t)− Ê(t− 1)


)
, (4)


v(t) = (1−K) (v(t− 1) +Q) , (5)


where Q is the process noise variance and R is the mea-
surement noise variance. The value of Q is estimated as
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Figure 2: The difference between a constant valued measure-


ment noise variance (run 2, right) and the time-varying function


of variance calculated via the Delta method (run 1, left). The


line shows the robot path as measured by the robot odometry,


and the points are the places that were selected as landmarks.


The numbers refer to their distance from the start of the run.


The time-varying noise model shows only 74 landmarks while the


constant model finds 181 using the same data. The mean dis-


tance between landmarks in the time-varying model was 2.86m


but only 1.16m in the constant one.


the variance of Ê during training, and R can either be as-
signed to be the same value, set to 0, or approximated by
measuring the variance of the sonar sensors as the robot
travels in a short, perfectly straight stretch of featureless
hallway, and propagating this variance through the non-
linear transfer functions of the neural network and sum-
of-squares error using the Delta Method (Rice, 1994) to
generate a time-varying noise model. Figure 2 shows the
effects that this choice makes on a typical set of sonar
data.


The time-varying noise model produces fewer, more
distinct landmarks than either R = 0 or R = Q noise
models. Most of the extra landmarks found by the
constant-valued noise model come from many successive
perceptions at the same location being counted as land-
marks, whereas the time-varying model often prevents
this problem from occurring. We used the time-varying
noise model in all of the experiments reported here.


As well as trying to remove noise from the error esti-
mate, the Kalman filter also conveniently maintains an
estimate of the error variance. This variance estimate
can be used to determine if Ê(t) is greater then some
number n of standard deviations away from the mean of
the Kalman estimated error at the current time, Ē(t).
Therefore, we can define a landmark as any perception
where,


Ê(t) > Ē(t) + n
√


v(t) . (6)


The parameter n provides a method for adjusting the
required level of conspicuousness and therefore relative
frequency of landmarks. Typically, we find that values
of n between four and five work well.


3.4 Categorising Landmarks


Two of the four methods of aligning landmarks be-
tween different runs that we used employed land-
mark categories. Landmark categories are also of
more general interest because they can form the basis
for communication about landmarks between different
robots (Fleischer and Nehmzow, 2001). We used Koho-
nen’s Self-Organising Map (Kohonen, 1982), an unsu-
pervised neural network based on vector quantisation,
to perform categorisation of the landmarks. The Self-
Organising Map (SOM) is a neural network that maps a
set of inputs onto activations of a set of output nodes ar-
ranged on a lattice. The network categorises the robot’s
sensor perceptions by feeding them as inputs into the
network and taking the identity of the output node with
the highest activation level (the ‘best-matching node’),
as the category of the input. The SOM is trained by
presenting it with a data set and adapting the network
weights such that, for each input in the data set, the re-
gion in the output map around the best-matching node
is moved closer to the presented input.


We used the SOM Toolbox (Vesanto et al., 2000) to
produce the SOMs used in this work. The toolbox will
automatically select the size and shape of the map and
the training parameters based on the number of inputs,
the number of data points, and the principal compo-
nents of the training data set. This feature was em-
ployed here. For the training data sets used in this work,
two-dimensional, toroidal SOMs with between 24 and 66
output nodes were produced, with one dimension of the
map being roughly twice as long as the other.


4 Experiments


4.1 Description


The experiments in this paper were performed on a No-
mad Scout, a differential drive robot with 16 Polaroid
sonar sensors capable of giving range information on ob-
jects between 15 cm and 6m away from the robot. The
sensor values were updated as quickly as the processing
speed of the PC controller would allow, giving less tem-
poral structure to the data than there would be if the
sensors were only updated at fixed distance or time inter-
vals. Each experiment run consisted of between 30 and
200 metres of travel in normal office building corridors
that have not been modified for the robot’s use in any
way. These runs were made during daytime hours with
normal use being made of the corridors; no attempt was
made to remove the anomalies in the data created by
people walking through the sensor range, as these would
be the conditions in which the system would have to
work as part of a navigation or communication system.


The robot used a hard-wired wall-following program
to follow the left-hand side wall at a constant distance.







Figure 3: The hallway environment. The robot was trained


in either any one of these hallways or in all three. During test-


ing runs the robot travelled through all three hallways. Each


run consists of a complete circuit of the hallway(s); the robot


executed a left-hand side wall-following program until it arrived


back at the location it had started from.


Noise in the system comes principally from inaccuracies
in the wall-follower and error in the sonar sensors.


Three different, adjacent, hallway sections were used
for training the landmark detection algorithm (see fig-
ure 3). The robot travelled through each hallway three
times, thus producing a total of nine different data sets
for training the algorithms. The training data were used
to do three things: (1) train the sensor prediction model,
(2) calculate values of Q and R for the Kalman filter and
(3) train the SOM for landmark categorisation. The test-
ing data was produced by propping open the doors be-
tween the three hallways and collecting a further three
data runs using a 200m long route through all three
hallways. To compare the alignment between landmarks
the three test sets were paired in all six possible per-
mutations (since order of comparison matters) and the
measures described in the next section were calculated.


4.2 Analysis


We investigated four different methods of producing
alignments between landmarks in two runs. These differ-
ent alignment methods reflect some possible ways that a
robot might use to align its own landmark perceptions
with a landmark-based route description. The alignment
methods used match landmarks between runs using se-
quence, distance travelled, and landmark category, or a
combination of them. In each alignment the first run
is taken as the route description received by the robot,
which is trying to match up the the second run (the
landmarks it has perceived) against the original. The


alignment methods can be described as:


Sequential Each landmark in the second run is aligned
with the next landmark in the first run. If there is a
mismatch between the number of landmarks there is
no alignment for the excess landmarks.


Distance The x − y position odometry is transformed
into a single dimension of distance travelled from the
beginning of the run. Landmarks in the second run
are aligned to the landmarks in the first run that are
closest to them in distance travelled.


Category and distance Each landmark in the second
run is aligned to the landmark in the first run that
is closest to the same distance travelled and is also
a member of the same landmark category. If there
is no category match then no alignment is made for
that landmark.


Category and distance with limited range As
previously, but matches are only allowed that are at
the same distance travelled plus or minus an error
term representing odometric drift. In these experi-
ments the allowed misalignment, νk increases with
distance travelled, d (in metres), νk = 0.25 + 0.05d,
for each landmark k.


Alignments between test runs can be simply evaluated
by looking at actual landmark matches. Examples are
shown in figures 4 to 7. In addition to these figures
three metrics were devised to evaluate the alignments
according to the criteria they were based on:


Category score The number of assignments where the
aligned landmarks in both runs share the same cate-
gory, divided by the number of alignments.


Distance score The mean of exp
−δ2k
2ν2


k


for all aligned


landmarks, where δk is the difference between the
recorded odometry distance for landmark k and its
aligned partner.


Sequential score The fraction of alignments where the
aligned partner of landmark k + 1 is the same or
further distance than the aligned partner of landmark
k. Landmarks without assigned alignments are not
counted as a break in the sequence.


Note that these metrics do not penalise alignments that
produce fewer matches of better quality. This is based on
the assumption that navigation with many landmarks of
uncertain quality is more difficult than navigation with
fewer, better quality landmarks, i.e., landmarks that are
found consistently.







Left Lmks All Lmks Left All


Alignment Score µ σ µ σ µ σ


Sequence Cat 0.24 0.16 0.15 0.10 0.20 0.14


Dist 0.30 0.19 0.30 0.19 0.30 0.19


Seq 1.00 0.00 1.00 0.00 1.00 0.00


Distance Cat 0.27 0.18 0.19 0.11 0.23 0.16


Dist 0.82 0.14 0.82 0.14 0.82 0.14


Seq 1.00 0.00 1.00 0.00 1.00 0.00


Category Cat 1.00 0.00 1.00 0.00 1.00 0.00


+ Dist 0.64 0.12 0.63 0.12 0.62 0.12


Distance Seq 0.87 0.05 0.81 0.04 0.87 0.05


Category, Cat 1.00 0.00 1.00 0.00 1.00 0.00


Distance, Dist 0.85 0.11 0.86 0.10 0.85 0.10


Rng lim Seq 0.94 0.05 0.90 0.05 0.95 0.04


Table 1: Alignment scores for a landmark selector (n = 5),


training the SOM with three different types of input: ‘Left Lmks’


left-side sonars from landmark perceptions, ‘All Lmks’ all sonars


from landmark perceptions, or ‘Left All’ left-side sonars from all


perceptions. The scores represent mean and standard deviation


values of the 54 possible permutations in the training/testing


sets. Two-sample t-tests show that the ‘Left All’ and ‘Left


Lmks’ parameters produce better scores than ‘All Lmks’, but


are indistinguishable from each other.


5 Results


We investigated how suitable the four alignment meth-
ods described previously were for use in the route de-
scription task using the three metrics. The way in which
the SOM was trained was also varied. We tested using
all of the 16 sonar sensors as inputs, or just the five left-
hand sensors that were used as inputs to the single-layer
network. We compared using a SOM trained only on
the sensor inputs that were selected as landmarks with
one trained on every set of sensor readings. Finally, we
compared training in hallways shorter then the test en-
vironment with training in hallways of the same size.


5.1 Alignments and Scores


It is useful to note some general trends and features of
the alignments and scores that are presented in this sec-
tion. Table 1 shows mean values for each score and align-
ment combination. As would be expected, the sequence
and distance alignments have perfect sequential scores,
but they produce very poor categorisation scores. This is
presumably because they are matching landmarks that
are close together, either in the sequence or by distance,
but that are caused by different features. The sequential
alignment also produces the worst distance score. This
occurs because the number of landmarks can vary by
100%, producing misalignments of up to 80m, as can be
seen in figure 7. The category-based algorithms, natu-
rally, produce perfect category scores. While the cate-
gory and distance alignment produces good alignments
in many cases, it can periodically match up landmarks


at opposite ends of the environment. The range-limited
version was devised to overcome this problem, and is
very successful in doing so; it produces many fewer land-
mark alignments, an average of 50, as compared with 122
for the other alignments. It succeeds in producing the
highest quality and most desirable matches when there
are small clusters of landmarks in the same location.
Another benefit is that the alignments it produces are
relatively insensitive to the order of comparison, unlike
the other alignment methods.


5.2 Effects of SOM Inputs


Table 1 and figures 4 to 6 show the alignments and scores
for three choices of SOM training inputs. We compared
the scores with a two-sample t-test (α = 0.05) to de-
termine what effects SOM training inputs had on align-
ment performance. Using only the left-side sonars pro-
duced a detectable improvement in the sequential score
on both category-based alignment methods. It is possi-
ble that the slightly improved performance for left-side
only sonars is because there was not space for someone
to walk between the robot and the wall it was follow-
ing (left), and so the sonar returns were not confused by
people walking past the robot. We also compared train-
ing the SOM with only landmark perceptions versus all
sonar scans. In this case, there were no statistically sig-
nificant differences (α = 0.05) in any of the scores.


5.3 Effects of Training Environment


The landmark selection algorithm sets parameters re-
lated to the noise models and the SOM learns to cate-
gorise perceptions based on the training environment. If
there is enough difference between training and testing
environments we might expect poor landmark selection
and alignment. Of course it is unlikely that it would
be possible to train in the entire environment that the
robot will need to navigate in; often at best a subset, or
a related environment might be all that was available.
Therefore, the assumed standard in table 1 is to train
in only one hallway and test in runs spanning all three
hallways. However, comparing those values to training
on three-hallway runs using the same training parame-
ters we can see no statistically significant differences in
any score for any alignment (α = 0.05). Qualitatively,
the difference can be seen by comparing the alignments
shown in figure 6, trained in one hallway, with the align-
ments in figure 7, trained in all three. Both figures show
alignments generated on the same test data. But there
are fewer landmarks detected when training occurs in
the same hallways as testing, and while there are fewer
landmark alignments numerically, a higher proportion of
those landmarks are assigned matches in the category-
based alignment methods.
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Figure 4: Example alignments for a landmark detection sys-


tem trained on a run in hallway 1 (n = 5, using left-side sonars


at landmark perceptions for SOM training). The system was


then tested on two separate runs that spanned all three hall-


ways. This set of SOM training parameters produces the best


alignment scores, along with the ones in figure 6, which are sta-


tistically indistinguishable from this set (see table 1).


Robot path is represented by solid lines, landmarks by black


dots, and alignments by dashed lines. Top: The robot’s internal


odometry showing x−y position. The numbers on the path are


the total distance travelled in the to that point. Underneath:


The x− y odometry is projected onto a distance-travelled axis,


and aligned landmarks have dashed lines drawn between them.


The alignments are (from 2nd from top to bottom) sequential,


distance, distance & category, and distance & category with


range limit.
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Figure 5: Example alignments for a landmark detection sys-


tem trained on a run in hallway 1 (n = 5, using all 16 sonars at


landmark perceptions for SOM training). The system was then


tested on two separate runs that spanned all three hallways. Us-


ing all the sonars like this is less successful than using only the


sonars on the left of the robot, as can be seen in table 1.


Robot path is represented by solid lines, landmarks by black


dots, and alignments by dashed lines. Top: The robot’s internal


odometry showing x−y position. The numbers on the path are


the total distance travelled in the to that point. Underneath:


The x− y odometry is projected onto a distance travelled axis,


and aligned landmarks have dashed lines drawn between them.


The alignments are (from 2nd from top to bottom) sequential,


distance, distance & category, and distance & category with


range limit.
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Figure 6: Example alignments for a landmark detection sys-


tem trained on a run in hallway 1 (n = 5, using left-side sonars at


every perception for SOM training). The system was then tested


on two separate runs that spanned all three hallways. This set


of SOM training parameters produces the best alignment scores,


along with the ones in figure 4, which are statistically indistin-


guishable from this set (see table 1).


Robot path is represented by solid lines, landmarks by black


dots, and alignments by dashed lines. Top: The robot’s internal


odometry showing x−y position. The numbers on the path are


the total distance travelled in the to that point. Underneath:


The x− y odometry is projected onto a distance travelled axis,


and aligned landmarks have dashed lines drawn between them.


The alignments are (from 2nd from top to bottom) sequential,


distance, distance & category, and distance & category with


range limit.
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Figure 7: Example alignments for a landmark detection sys-


tem trained on a run spanning all three hallways (n = 5, using


left-side sonars at every perception for SOM training). The sys-


tem was then tested on two separate runs that also spanned


all three hallways. Note that there are considerably fewer land-


marks in each alignment, as compared with the other figures.


Robot path is represented by solid lines, landmarks by black


dots, and alignments by dashed lines. Top: The robot’s internal


odometry showing x−y position. The numbers on the path are


the total distance travelled in the to that point. Underneath:


The x− y odometry is projected onto a distance travelled axis,


and aligned landmarks have dashed lines drawn between them.


The alignments are (from 2nd from top to bottom) sequential,


distance, distance & category, and distance & category with


range limit.







5.4 Too Complex?


Given how much computational machinery is at work
in this algorithm, it is important to ask how much of
it is actually necessary. There are three major compo-
nents: a predictor network, a Kalman filter operating
on the predictor network error to detect landmarks, and
a SOM producing categorisations of the resulting land-
marks. Our previous work (Marsland et al., 2001) has
shown that simple threshold detection of the error curve
is insufficient, and that a Kalman filter is necessary. This
paper also demonstrated that the single-layer network
was sufficient for the sensor prediction. The SOM is used
because it is a well-known self-organising algorithm, but
many other algorithms could be substituted to produce
landmark categorisations.


But could the Kalman filter operate directly on the
sonar inputs, removing the need for the prediction net-
work? The problem with this approach is that the R


values would then be the variance of the sonar values
due to measurement error. The sonar that is directly
perpendicular to the wall will have an R value of almost
zero, since sonars have very little measurement error for
hard surfaces that have small angles of incidence to the
beam. By the Kalman update equations the gain will be-
come unity and the variance estimate will become zero.
The filter will see every perception as a landmark unless
some clever voting scheme is introduced that removes
the effects of the perpendicular sonar.


6 Conclusions and Future Work


We have presented a system that is capable of extract-
ing landmarks from realistic, continually updated, robot
sonar data. The landmarks are selected based on the
principle of unexpected perceptions – places where the
robot’s predictive sensor model breaks down are un-
usual and therefore conspicuous and distinctive. Pre-
vious work has shown that the system works well in
a tightly structured and discretely sampled environ-
ment (Marsland et al., 2001), but this is the first time
that the method has been applied to more realistic, noisy,
continually sampled data. In spite of the added difficul-
ties, some slight modifications to the algorithm produced
a robust and efficient landmark detector capable of re-
liably reproducing most of the same landmarks at each
pass through an environment. While it is not perfect – it
will typically produce uneven numbers of landmarks at
certain locations or occasional landmarks that appear in
one run but not another – from a qualitative standpoint,
the landmark selection is very satisfactory.


We evaluated the use of the landmarks generated by
this system for aligning landmarks between two different
trips through the same environment. We produced align-
ments between landmarks in pairs of runs based on se-
quence, distance, and both categorisation and distance.


These alignments were scored for their quality in three
different measures and inspected visually for suitability.
In general, alignment using categorisation and distance
with a limited range produced the most consistent scores
and most pleasing alignments visually. It is clear that
combining different types of landmark alignments (e.g.,
category and distance) produces better results than us-
ing just one type of alignment.


Training the SOM using only left-side sonars produced
statistically better scores than using all sonars — an ef-
fect that might be attributable to reducing the influence
of humans walking through the hallway on the robot
perceptions. Training in a subset of the testing hallways
produced scores which were not detectably worse than
training in the entire hallway area. This is useful since
a robot may not be able to train in every environment
in which it might need to operate, nor is it desirable to
have to perform so much time-consuming training.


We believe that the results to date serve as an strong
indication of the suitability of this method for the route
communication task. We have demonstrated in this
paper that the same robot can align landmarks with
high accuracy between different runs of the same en-
vironment using information about distance travelled
and the categories of the landmarks. In previous
work (Fleischer and Nehmzow, 2001), we showed that
two robots can learn to reliably and consistently link
symbols with perceptual categories of the environment.
The communication system can provide a link between
the internal categories of two robots, thus enabling one
robot to interpret a set of landmarks and categories de-
scribing a route followed by another robot. Alterna-
tively, the landmark alignment system could be seen as
a method by which two robots might be able to learn
symbols representing perceptions that they have both
encountered on runs in the same environment. The next
step in our investigations will be to combine these two
components into a system capable of aligning landmarks
between two runs in the same environment performed by
different robots. We will be investigating both the possi-
bility of using the landmark detection and alignment al-
gorithms to enable the robots to learn consistent symbol-
landmark mappings, and the effects of symbol-category
consistency on the performance of matching landmarks
between two runs by different robots in the same envi-
ronment.
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