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Abstract. To navigate in unknown environments, mobile robots require the ability to build their own maps. A
major problem for robot map building is that odometry-based dead reckoning cannot be used to assign accurate
global position information to a map because of cumulative drift errors. This paper introduces a fast, on-line
algorithm for learning geometrically consistent maps using only local metric information. The algorithm works
by using a relaxation technique to minimize an energy function over many small steps. The approach differs from
previous work in that it is computationally cheap, easy to implement and is proven to converge to a globally optimal
solution. Experiments are presented in which large, complex environments were successfully mapped by a real
robot.
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1. Introduction


Maps are very useful for mobile robot navigation
in complex environments, being needed for self-
localization and path planning, as well as enabling hu-
man operators to see where the robot has been. While
successful navigating robots have been developed us-
ing pre-installed maps, to operate in unknown envi-
ronments a robot needs the ability to build its own
maps. However, the sensor information available to
the robot is noisy and can produce errors when inte-
grated into the map. In particular, the robot’s odom-
etry is subject to drift errors caused by factors such
as wheel slippage, which can lead to an inconsistent
mapping of the environment. To maintain a coherent
representation of the environment that can be recon-
ciled with future sensory perceptions, some means
of maintaining geometric consistency in the map is
required.


This paper introduces a fast, on-line algorithm for
obtaining globally consistent maps. The approach dif-
fers from previous work in that it is computationally
cheap, easy to implement and is guaranteed to find a
solution that is statistically optimal. Our algorithm as-
sumes three sources of perceptual information:


(i) a place recognition system,
(ii) a global orientation obtained from a compass, and


(iii) local distance information from odometry.


Experiments are presented in which large, complex en-
vironments were successfully mapped by a real robot
using ultrasonic range-finder sensors for (i), a flux-gate
compass for (ii), and uncorrected odometer sensors
for (iii).


The map representation consists of a topologically
connected network of places, where each link is labeled
with noisy metric information describing the relative
distance and absolute angle between the two places it
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connects. The purpose of our algorithm is to assign a
globally consistent set of Cartesian coordinates to the
places in the map. In this approach, the coordinates of
the places are treated as free variables, and the algo-
rithm finds an optimal set of coordinates using only the
local metric relations between places.


The rest of this paper is structured as follows.
Section 2 provides a detailed description of the prob-
lem. Section 3 derives a map learning algorithm from
a statistical model of the noise on the robot’s sensors
and proves that the algorithm converges to a globally
optimal solution, together with a complexity analy-
sis. Section 4 describes the robotic platform used for
the experiments, including implementation details of
the place recognition system and incremental map-
ping strategy applied. This is followed by experimen-
tal results, related work and conclusions. Finally, two
variants of the map learning algorithm are discussed:
a simplification of the basic algorithm for use when
only approximate geometric information is required
(Appendix A), and a generalization for use when the
robot is not equipped with a compass (Appendix B).


2. The Problem


When maps are generated from the estimates of dis-
tances and angles measured by the robot, the geometry
of the space will be non-Euclidean. For example, the
angles inside a triangle may not add up to 180◦. As the
robot is exploring in Euclidean space, this is a problem.
Our map building algorithm aims to find an evidence-
based way of fixing this problem so that the maps are
geometrically consistent.


In our experiments, we use a graph-based model
of the environment, in which the nodes correspond
to places and the links to traversable paths between
places (see Fig. 1). Each node in the graph is associ-
ated with a local occupancy grid, constructed using the
robot’s sonar sensors, which is used as a place signa-
ture. For place recognition, we use the self-localization
algorithm described in Duckett and Nehmzow (2001),
which applies an occupancy grid-matching technique
to identify both the robot’s current place in the map and
the relative displacement of the robot from the center
of that particular place (see Section 4 for more details).


For the following analysis, we define our maps as
follows:


– The topological component of the map consists of a
set of N place nodes and a set of links that connect
pairs of places.


Figure 1. The map representation consists of a topologically
connected set of places, each place being associated with a local
occupancy grid. The core problem addressed by this paper is to assign
geometrically consistent coordinates to the places.


– Each place i is associated with a pair of Cartesian
coordinates ri = (xi , yi )T that are initially unas-
signed (or they could be initialized approximately
by dead reckoning). The true coordinates are un-
known to the robot.


– Each link connects two places i and j , and is associ-
ated with an estimated metric relation li j = (di j , θi j ),
measured by the robot, that describes the relative
distance di j and angle θi j between the two places.
The angle θi j is an absolute measurement obtained
from the compass. In this paper, the links were con-
strained to be bi-directional, that is, di j = d ji and
θi j = θ j i + π .


The algorithm derived in the next section aims to as-
sign a globally consistent set of Cartesian coordinates
{r1, . . . , rN } to the places in the map using the noisy
measurements of the distances and angles between the
places. This noise means that a perfect map cannot
be generated. Instead, we derive a statistically opti-
mal algorithm to deal with this problem in a principled
way.


3. The Map Learning Algorithm


3.1. Estimating the Noise


When the robot travels between two map places, a large
number of small distances and angles are measured as
the robot continually updates its heading (see Fig. 2).
In our experiments, the distances are measured with
odometry and the angles are measured with a flux-gate
compass. Let δt be the displacement and αt the heading
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Figure 2. Example of how the robot travels between two map nodes,
constantly updating its heading. In reality the number of update steps
is higher.


at the t th step. Then


d ji =


√√√√(
Tji∑
t


δt cos αt


)2


+
(


Tji∑
t


δt sin αt


)2


, (1)


θ j i = tan−1


( ∑Tji
t δt sin αt∑Tji
t δt cos αt


)
, (2)


where Tji is the number of steps, i.e., the number of
updates the robot performs along a path.


Assuming that the number of updates made while
traveling between two map places is large and that the
statistical properties of each step are independent, the
Central Limit Theorem (Reif, 1982) implies that mea-
surements of d ji and θ j i will be normally distributed
around their true values.


Suppose that the noise properties are the same along
a path between two map places (but not necessarily
between paths) and that successive measurements are
independent. That is, the measurement of the path from
place i to place j is independent of the measurement
from place j to place k (this means that the model
cannot deal with cumulative phenomena such as battery
drain). Then we can write the estimates of the distance
travelled and the heading of the robot at each small
step as


δt = δ∗
t + �δt (3)


αt = α∗
t + �αt (4)


where �δt is the noise in the estimate of the true dis-
tance δ∗


t and �αt is the noise in the estimate of the true
angle α∗


t .
Assuming that the noise measurements are small


compared to the distances traveled, the covariance ma-
trix C ji of the link measurements (d ji , θ j i ) can be cal-
culated using small deviation expansions as


C ji = Tji R(φ j i )
−1


(
�δδ δ j i�αδ


δ j i�αδ δ2
j i�αα


)
R(φ j i ), (5)


where δ j i = (
∑Tji


t δt )/Tji , that is the average distance
between updates, the �δδ , etc. are global noise esti-
mates of the subscripted variables, and φ j i is the rota-
tional error between the two nodes, where R(φ) is the
rotation matrix


R(φ) ≡
(


cos φ sin φ


− sin φ cos φ


)
. (6)


In our model, it is assumed that φ j i = 0 because of the
compass, so the rotation matrix R(φ j i ) = I . This model
is invariant to global rotations and depends only on the
direction of travel. The noise parameters �δδ , etc. are
calculated by maximum likelihood estimation as part
of the relaxation algorithm (Eqs. (12)–(14)).


3.2. The Algorithm


The map can be considered as a set of free nodes that are
held together by springs, where each spring connects
two adjacent places i and j (this analogy can also be
found in (Lu and Milios, 1997a; Golfarelli et al., 1998;
and Shatkay, 1998)). Each spring reaches minimum
energy when the relative displacement between the co-
ordinates of node i and node j is equal to the vector
(di j , θi j ) measured by the robot. Equilibrium is reached
in the whole map when the total energy over all of the
springs reaches a global minimum. Thus, global con-
sistency is maintained in the map by minimizing the
following energy function, which corresponds to the
log likelihood:


E =
∑


i


′∑
j


(ri − r j − D j i )
T C−1


j i (ri − r j − D j i ),


(7)


where
∑′


j refers to the sum over the neighbors of
node i , ri = (xi , yi )T , and D j i = d ji (


cos θ j i


sin θ j i
).
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Since each C ji is symmetric,


∇Ei = 2
′∑
j


C−1
j i (ri − r j − D j i ), (8)


when the position of node i is updated. Therefore, the
algorithm that finds the maximum likelihood solution
is the one that finds the r′


i that minimizes E , that is,


r′
i =


( ′∑
j


C−1
j i


)−1 ′∑
j


C−1
j i (r j + D j i ). (9)


This can be considered as a form of Gibbs sampling
at zero temperature (Reif, 1982). One component is
optimized by keeping all of the others fixed.


The algorithm derived from Eq. (9) is given in Fig. 3.
The basic principle of the algorithm is to “move each
node to where its neighbors think it should be”. By it-
eration, the coordinates in the map converge towards
a global minimum in the energy function (Eq. (7)).
For on-line map learning, steps 2 and 3 in Fig. 3 are
inter-leaved with the rest of the navigation control soft-
ware so that the map is adapted continually during
exploration.


An example illustrating the convergence of the re-
laxation algorithm is given in Figs. 4 and 5. In this ex-
periment, the coordinates of the self-acquired map in
Fig. 4 were randomly reinitialized to arbitrary values,
then the algorithm was iterated until the map returned
to its globally consistent solution. (Note that this differs
from the normal, on-line use of the algorithm, where
the coordinates are not reinitialized; rather, the existing
coordinates are adapted continually over time.)


3.3. Proof of Convergence


To prove convergence of the algorithm, we show here
that the algorithm always minimizes the energy func-
tion (Eq. (7)). When a node i with position ri is up-
dated, its new position r′


i will be given by Eq. (9). That
is, the new position is picked to minimize the value of∑


j (r
′
i −r j −D j i ). Hence, the change in energy will be


�E =
′∑
j


{
(r′


i − r j − D j i )
T C−1


j i (r′
i − r j − D j i )


− (ri − r j − D j i )
T C−1


j i (ri − r j − D j i )
}


(15)


≤ 0. (16)


Since E is bounded below, the algorithm must converge
and any legitimate stopping criterion must be reached.
The energy function is quadratic and therefore has a
unique minimum, so the algorithm can only converge
to a global minimum. The fact that the energy function
is quadratic also means that the updates could be com-
puted in a single step by inverting the (N × N ) matrix
showing connections between all of the nodes in the
map. Our system performs an iterative update instead,
which is computationally simple and fast, and therefore
more suitable for robotics applications.


3.4. Complexity Analysis


The computational cost of the new algorithm is lin-
ear in the number of places in the map. Because the
algorithm makes an iterative refinement to the existing
solution, rather than recalculating the entire coordinate
system from scratch, only one iteration is typically re-
quired whenever new information is added to the map.
The complexity of the algorithm is thus bounded by
O(N M), where M is the maximum number of neigh-
bors per node. For a topological map, the number of
links per node will not grow with the size of the map,
so M is constant and the overall complexity is approxi-
mately O(N ). This compares favorably with the worst
case O(N 3) complexity of matrix inversion methods
such as Lu and Milios (1997a) and Golfarelli et al.
(1998) (though that can be reduced to O(N 2) by using
a sparse matrix solver if the covariance matrix is not
required (Frese and Hirzinger, 2001)).


4. Robotic Implementation


The relaxation algorithm was tested on a Nomad 200
robot as part of a complete system for mapping un-
known environments (Duckett, 2000). In this system,
the robot attempts to space the place nodes in the map
at equal intervals of 1 meter. Some important details of
the robotic implementation are given as follows.


4.1. Compass Sense


To pre-process the readings from the robot’s flux-gate
compass, we used the behavior-based filtering method
described in Duckett and Nehmzow (2001). In this ap-
proach, a separate behavior is used to rotate the robot’s
turret at small speeds in the direction of an arbitrary
‘North’, as indicated by the compass. Then the angular
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Figure 3. The maximum likelihood map learning algorithm.


estimates are obtained by measuring the relative
displacement of the turret against the direction of travel.


The effect of this behavior is to smooth out any fluc-
tuations in the compass readings caused by electro-
magnetic disturbances, maintaining a constant orien-


tation around the average value of ‘North’. We have
found that the performance of this method degrades
gracefully with respect to the magnetic variations in
the environment. It also has the advantage of keeping
the robot’s range-finder sensors at a steady orientation,
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Figure 4. Left: floor plan of a corridor environment at Manchester University (size 34 m × 33 m). Right: the corresponding map acquired by
the robot.


Figure 5. Convergence of the relaxation algorithm. In the first picture, the coordinates of the self-acquired map shown in Fig. 4 have been
randomly reinitialized. The remaining pictures show the map after 10, 25, 50, 100, 250, 500 and 1000 iterations respectively of the relaxation
algorithm.


which can help to reduce the noise on the ultrasonic
sensor readings. This compass sense was also used for
the on-line dead reckoning, as illustrated in Fig. 6.


4.2. Exploration Strategy


Topological map building was performed using an in-
cremental exploration strategy, in which the robot con-
tinually tries to expand the territory that has already
been charted (see Fig. 7). To implement this strat-
egy, two different types of place are included in the
map:


– Predicted. Places presumed to exist but not yet vis-
ited by the robot.


– Confirmed. Places actually visited by the robot.


The basic exploration strategy consists of trying to
move towards the nearest predicted place, using a stan-
dard graph-based path planning algorithm to determine
the route. An artificial neural network is used to predict
new places by classifying the robot’s sonar readings in
all directions (see Duckett and Nehmzow (1999) for
full details). A local dead reckoning strategy is used
to decide whether to confirm the predicted places: a
predicted place is replaced by a confirmed place if a
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Figure 6. Left: raw odometry. Right: compass-based odometry. The accumulated rotational drift in the robot’s raw odometry was removed
on-line using the compass sense. In this example, the robot repeatedly traversed the environment of Fig. 4 by wall-following.


Figure 7. Example of incremental map building. Places predicted
but not yet visited by the robot are shown by squares. Places visited
by the robot are shown by filled circles (the numbers indicate the
sequence in which they were visited).


distance of 1 meter from the nearest existing confirmed
place can be traveled, otherwise the predicted place
is deleted from the map. The coordinates produced
by dead reckoning (relative to the last visited place)
are also used to initialize the coordinates of the con-
firmed places before the relaxation algorithm is ap-
plied. Whenever another confirmed place is added to
the map, the neural network is used again to predict
more places. In addition, connections are inferred to


any other confirmed places lying less than 2 meters
from the added node, provided that the neural network
indicates open space in that particular direction. The
whole process is repeated until all predicted places in
the map have either been visited by the robot or deleted.


In the experiments presented here, an extra heuristic
was added to this strategy to force the robot to close
loops, described as follows. Whenever a new confirmed
place is added to the map, a search is carried out on each
of the adjacent confirmed place nodes to determine the
shortest path actually traversed by the robot from that
particular node. If the length of that path exceeds a
pre-specified threshold of 3 meters, then the robot is
forced to travel directly to that node in order to obtain a
measurement of the metric relation for the connecting
link. Only the physically traversed links are used by
the relaxation algorithm in the calculation of the node
coordinates (the inferred links are used only for path
planning). In the self-acquired map of Fig. 12, the links
actually traversed by the robot are shown in bold, while
the inferred links are shown by dotted lines.


The links in the topological map are maintained us-
ing the following rules taken from Yamauchi and Beer
(1996). Whenever a new link is added to the map, a con-
fidence level, ci j , for that link is initialized to a value
of 0.5. During repeat traversals of the same link, the
confidence level is increased using


c′
i j = λ + (1 − λ)ci j , (17)
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where the link adaptation rate, λ = 0.5 in these experi-
ments. Conversely, whenever the robot fails to traverse
a given link, e.g., because the robot reaches a different
destination to the one intended by the path planner, the
confidence value is decreased using


c′
i j = (1 − λ)ci j . (18)


A link is deleted from the map whenever its confi-
dence level falls below a pre-specified threshold (0.2
in these experiments). A node is deleted from the map
if no path can be found to that node from the robot’s
current location, i.e., when no possible routes exist due
to link deletion.


4.3. Use of Local Metric Information


In the derivation of the relaxation algorithm in
Section 3, it was assumed that the robot takes mea-
surements of the relative distances and angles between
a discrete set of places, which correspond to the nodes
of a graph. In reality, the robot moves in a continuous
space, and the places are contiguous regions rather than
single points in space. So to implement the algorithm,
some means of measuring the position of the robot rel-
ative to the centre of the current place is required. In
our approach, as in others (Weiss and von Puttkamer,
1995; Lu and Milios, 1997a; Gutmann and Konolige,
1999), this is achieved by scan matching. Specifically,
we use the local occupancy maps embedded in the hy-
brid metric-topological representation of Fig. 1.


In our approach, we do not store or match the actual
occupancy grids. Instead, we first reduce each grid to
a pair of histograms, one in x-direction and one in
y-direction, as shown in Fig. 8. This is done by adding
up the total number of occupied, empty and unknown
cells in each row or column of the grid (see Duckett
and Nehmzow (2001) for a full description). A pair of
occupancy histograms is stored for each place in the
robot’s map, and scan matching then consists of con-
volving a new pair of histograms constructed from the
robot’s immediate sonar readings with the stored his-
tograms, as in Fig. 9. In the absence of a compass, we
would also have to consider angle histograms, as in
Hinkel and Knieriemen (1988). For each stored place
i , the matching procedure yields two useful quantities:


1. A metric that quantifies the strength of the match
between the observation histograms and the stored
histograms for place i .


Figure 8. Example occupancy grid and histograms. Occupied cells
are shown in black, empty cells in white and unknown cells in gray.


Figure 9. Matching the x and y histograms. The observation
histograms are convolved with the stored histograms for each place
in the robot’s map to find the best match.


2. The most likely offset of the robot from the center of
the place, i.e., the position in which the sonar scan
for that place was taken.


The strength of the match between two histograms
T a and T b is calculated using the following evaluation
function:


Match(T a, T b) = 1


w


∑
j


[
min


(
Oa


j , Ob
j


)
+ min


(
Ea


j , Eb
j


) + min
(
U a


j , U b
j


)]
,


(19)


where O j , E j and U j refer to the number of occu-
pied, empty and unknown cells contained in the j th
element of histogram T , and w is a normalizing con-
stant such that 0 ≤ Match( ) ≤ 1. The match scores are
used for place recognition: the most likely location
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of the robot in the map is determined by a Bayesian
multi-hypothesis tracking algorithm (Duckett and
Nehmzow, 2001), which takes into account the prior
probability distribution over the places in the map, the
movement of the robot between observations and the
new observation match scores.


The most likely offset (r∗
x , r∗


y ) of the robot from the
centre of the current place is then obtained by multi-
plying the best-matching translations for the x and y
histograms by the dimensions of one grid cell (15 cm ×
15 cm). To obtain an estimate of the error in the scan
matching, the following heuristic functions are used:


σ 2
x = k


(M∗
x − M̄x )2


, (20)


σ 2
y = k


(M∗
y − M̄ y)2


, (21)


where σ 2
x refers to the error estimate for the


x-histograms, M∗
x refers to the value of Match( ) pro-


duced by the best-matching alignment of x histograms
for the current place, M̄x refers to the mean value of
Match( ) in the convolution of x histograms, and the
constant k = 1.0 m2 in these experiments.


To minimize the overall error due to scan matching,
all of the estimates of the offset from the place center
that are made by the robot as it travels through the
current place are combined together using an iterative
filtering technique, which is specified by the following
equations:


rx = r ′
x + σ 2


x ′


σ 2
x ′ + σ 2


x∗
(r∗


x − r ′
x ), (22)


1


σ 2
x


= 1


σ 2
x ′


+ 1


σ 2
x∗


, (23)


where rx is the new x-offset relative to the place cen-
tre, r∗


x is the x-offset from the latest observation, and r ′
x


is the previous x-offset updated by dead reckoning to
take into account the movement of the robot between
observations. The quantities σ 2


x , σ 2
x∗ , and σ 2


x ′ are the
corresponding error measures. In the experiments pre-
sented here, the occupancy histograms were extracted
from sonar scans taken at intervals of 50 cm by the
traveling robot.


The estimated metric relation, li j = (di j , θi j ), for the
link connecting two places i and j is then obtained as


di j =
√


(�xi j )2 + (�yi j )2, (24)


θi j = tan−1


(
�yi j


�xi j


)
, (25)


where


�xi j = rxi + �x − rx j , (26)


�yi j = ryi + �y − ry j , (27)


with the vector (�x, �y) referring to the link mea-
surement obtained by dead reckoning, and the (rxi , ryi )
referring to the filtered offsets for place i from Eq. (22).
In the current implementation, the link measurement is
obtained from the first traversal of the link only, and
the metric information from any subsequent traversals
is discarded.


5. Experimental Results


The system was tested in the office environment shown
in Figs.10 and 11. The map acquired by the robot in
Fig. 12 shows the position of the places in global co-
ordinates calculated by the new algorithm. To illus-
trate the accuracy of the acquired map, we have also
combined the relaxed coordinates with the recorded
sonar data to produce a global occupancy grid model
of the environment, using the standard technique de-
veloped by Moravec and Elfes (1985). The derived
gridmap is shown in Fig. 13. The map has a resolution
of 0.15 meters, and should be accurate enough for safe
navigation and planning. This can be compared to the
gridmap constructed from the robot’s compass-based
odometry in Fig. 14.


The entire process requires minimal computational
resources. Maximum likelihood estimation with the
new algorithm was performed on-line as part of the


Figure 10. The Nomad 200 mobile robot Milou in the test environ-
ment at Örebro University (corresponding to the right-hand side of
the map in Fig. 11).
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Figure 11. A semi-structured office environment at Örebro University, with an approximate size of 46 × 12 meters.


Figure 12. The map acquired with the new map learning algorithm. The links actually traversed by the robot are shown in bold, and the inferred
links are shown by dotted lines (only the traversed links were used to estimate the node coordinates).


Figure 13. The global gridmap constructed with the new algorithm, by combining the recorded sonar data with the global coordinates generated
by the algorithm.


Figure 14. The global gridmap constructed without the new algorithm, by combining the recorded sonar data with the global coordinates
calculated using the compass and odometry. Without the algorithm, the robot fails to build a consistent map.


map building process. One iteration of the algorithm
on the full map, consisting of 137 places and 188 phys-
ically traversed links, required 20 msec. on a 200 MHz
Pentium II processor.


6. Related Work


Lu and Milios (1997a) considered the problem of
enforcing geometric consistency in a metric map
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constructed using laser range-finder sensors without
a compass. Their approach maintained a history of all
the local frames of sensor data used to construct the
map and the network of spatial relations between the
frames. The spatial relations were obtained either by
odometry or pairwise matching of the range-finder data
in adjacent frames, using the scan matching algorithm
described in Lu and Milios (1997b). A maximum like-
lihood algorithm was then used to derive a position
estimate for each of the frames, by minimizing the
Mahalanobis distance between the actual and derived
relations over the whole network of frames. A draw-
back of this method is that it requires the inversion of
a 3n × 3n matrix, where n is the number of frames, so
the approach is likely to be computationally expensive
in large environments. This approach was extended by
Gutmann and Konolige (1999) to build maps in envi-
ronments containing large cycles.


A similar approach is described by Golfarelli et al.
(1998), using a graph-based model of the robot’s envi-
ronment. Their algorithm operates under the assump-
tion of no topological errors, so that the robot recog-
nises a place when it visits it for a second time. Their
system was based on the analogy of a mechanical spring
system, in which each link in the graph is modeled
by a pair of springs, a linear axial spring and a ro-
tational one. The elasticity parameters of the springs
were used to represent the uncertainty in the robot’s
odometry measurements, and the equilibrium position
for the whole structure was then calculated, generating
a 4n × 4n matrix that requires inverting. The algorithm
can be applied with or without a compass, although all
of their experiments appear to use a compass. Their
results seem qualitatively similar to ours (at least by
visual inspection) despite the added complexity of the
mechanical spring system model.


Shatkay and Kaelbling (1997) and Shatkay (1998)
addressed the problem of incorporating metric infor-
mation from odometry into robot maps based on Par-
tially Observable Markov Decision Process (POMDP)
models and enforcing geometric consistency in these
maps, both with and without a compass. The sensor
data from which the models were acquired were first
collected by the robot under manual control, then an
expectation-maximization (EM) algorithm was used
to find the map which best fitted the recorded data.
While this algorithm does not explicitly make the as-
sumption of an initial topological map, in practice it
depends heavily on a sufficiently good initial model
(obtained in Shatkay (1998) from the recorded odome-


ter data) to avoid local maxima and hence build topo-
logically correct maps. The approach would not scale
well to larger environments due to the large amount of
data needed and the high computational cost of the EM
algorithm.


A similar approach is described by Thrun et al.
(1998), where an EM algorithm was used to learn an
occupancy grid model of a large environment (90 m ×
90 m). Again, this method is extremely expensive, re-
quiring up to two hours of computation to generate a
grid map with a spatial resolution of 1 meter, and it
depends on a manually labeled set of landmarks. This
approach was later extended by Burgard et al. (1999) to
use a network of local gridmaps constructed from sonar
data, as in our approach, instead of the pre-defined
landmarks.


7. Discussion


In this paper, we have presented a relaxation algorithm
for maintaining geometric consistency in a robot’s map.
The algorithm is computationally very cheap, enabling
globally consistent map learning in real-time. Its O(N )
complexity compares favorably to that of matrix in-
version methods such as Lu and Milios (1997a). The
method is particularly efficient because it does not
throw any useful information away; instead of recalcu-
lating the entire map from scratch every time, the exist-
ing solution is refined. As a result, only small changes
to the map are typically required when new informa-
tion is added. In the experiments conducted, we found
it was only necessary to run the relaxation algorithm for
a single iteration at each cycle of the map acquisition
process.


The method works by minimizing an energy func-
tion in lots of small steps, rather like a Hopfield network
(Hopfield, 1982). Because this energy function corre-
sponds to the log likelihood, minimizing this function
provides us with the maximum likelihood solution to
the map learning problem, provided that the map is
topologically correct. We have proved that the relax-
ation algorithm always converges to a globally optimal
solution, in contrast to EM algorithms, which are sub-
ject to local optima. We should, of course, point out
that our method assumes a place recognition system
(in other words, no topological errors) before maxi-
mum likelihood estimation takes place, an assumption
that is not made by Shatkay and Kaelbling (1997) and
Burgard et al. (1999). However, all of our experiments
were conducted on a real, self-navigating robot using a
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real self-localization system (Duckett and Nehmzow,
2001), without requiring any pre-installed environ-
ment model, thus demonstrating the efficacy of our
approach.


Through our experiments, we have demonstrated
a complete solution to the problem of simultaneous
localization and mapping (SLAM) for indoor, office
environments. This solution agrees favorably with
the theoretical requirements for an ideal SLAM so-
lution outlined by Frese and Hirzinger (2001), as
follows:


1. The hybrid metric-topological representation pre-
serves the “certainty of relations despite the uncer-
tainty of positions”.


2. This representation also means that the memory re-
quired for storage grows only linearly with the num-
ber of nodes in the map.


3. The new map learning algorithm is computationally
cheap, having a cost that is linear in the number of
places stored in the map.


There is one possible situation where the new algo-
rithm may be significantly slower than usual—that is
if the robot closes a very large cycle and the accumu-
lated odometric error is very high. Here it might be
faster to use a simultaneous equation solver, as in Lu
and Milios (1997a) and Gutmann and Konolige (1999),
depending on the magnitude of the initial error in the
map (cf. Fig. 5). However, while theoretically possible,
this situation tends to be very rare in practice, and re-
laxation should be faster in the vast majority of cases.
The relatively large loops in the test environment of
Fig. 11 did not pose a problem in any of the experi-
ments conducted.


A further benefit of the new algorithm is that all of the
global noise parameters are continually re-estimated by
the algorithm itself, so we do not need to compute the
values of these parameters ourselves. This is a distinct
advantage for building autonomous robots, since re-
ducing the number of pre-installed parameter values
reduces the dependence of the robot on a priori knowl-
edge provided by the system designer.


Future work will investigate more intelligent strate-
gies for selecting the landmarks or place signatures
in the topological map (see Marsland et al. (2001)
for some first results). The current strategy of adding
new places at 1 meter intervals is clearly inefficient,
and could be greatly improved. We will also con-
sider building maps in environments containing large
cycles.


Appendix A: A Simplification of the Algorithm


In the derivation of the algorithm in Section 3, various
assumptions were made, e.g., that small angle approxi-
mations could be made, and that the covariance matrix
C ji was symmetric. In fact, the most common noise
model estimate for a mobile robot’s position is an el-
lipse, with the major axis lying perpendicular to the
direction of travel, as in Smith and Cheeseman (1986).
However, when a compass is used, the noise on the dis-
tance measurement (odometry) could be greater than
the noise on the rotation measurement, so that the ma-
jor axis lies along the direction of travel. Both of these
models assume that the robot is perfectly symmetrical,
which is not necessarily the case. For instance, the robot
may measure turns more accurately anticlockwise than
clockwise, or one of the wheels could slip more than
the other, so that the robot does not follow a straight
line.


In previous experiments (Duckett et al., 2000), we
found that surprisingly good results can be obtained by
making one further simplifying assumption: that the
noise in the robot’s position estimates is distributed
equally in all directions around points in Cartesian
space according to a Gaussian distribution, i.e., a cir-
cle rather than an ellipse in used to represent the area
in which the robot may be located with non-negligible
probability. Thus, the uncertainty in any point to point
measurement can be represented by a single variance
measure (this makes the covariance matrix C ji propor-
tional to the identity matrix). For dead reckoning, this
can be taken as some small proportion, e.g., 5%, of the
distance travelled by the robot. The algorithm can then
be described in two steps, as given in Fig. 15. While
less accurate than the algorithm in Fig. 3, this variant
is much easier to implement, and is useful when only
approximate geometric information is required in the
robot’s map.


Appendix B: Relaxation without a Compass


Although in this paper we have used a compass to
provide a global ‘North’ from which all angular mea-
surements are taken, this should not be necessary if
the robot is equipped with some other means of mea-
suring the angles that it turns through. Suppose that
the robot has the ability to measure the change in its
pose when moving between two adjacent places, e.g.,
by matching laser range-finder scans, as in Weiss and
von Puttkamer (1995), Lu and Milios (1997a), and
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1. For each node i , do:


a) For each of the neighbors j of node i , i.e., the places that are topologically connected
to i , obtain an estimate r′j i of the coordinates of node i using


r′j i = r j + D j i, (28)


where r j = (x j ,y j )T refers to the coordinates of node j , and D j i = d ji (cos θ j i
sin θ j i


).


b) Combine the position estimates r′j i for all j to produce new coordinates r′i for node i


using


r′i =
( ′∑


j
v−1


j i


)−1 ′∑
j


(
v−1


j i r′j i
)
, (29)


where
∑′


j refers to the sum over the neighbours of node i , and v j i is the variance for
the link from node i to node j .


2. Repeat from step 1 untill the change in energy falls below some pre-defined threshold, or
some other stopping criterion is reached.


Figure 15. A simplification of the map learning algorithm, based on the assumption of circular noise in the robot’s odometry.


Gutmann and Konolige (1999). To maintain geometric
consistency in the map, the relaxation algorithm can
then be extended to estimate a pose ri = (xi , yi , θi )T


for each node i of the map, where the angle θi corre-
sponds to the orientation of the robot in which the scan
for that particular place was taken. Equation (10) of the
algorithm in Fig. 3 is rewritten as:


r′
j i = ri + F j i , (30)


where


F j i =






x ji cos θi − y ji sin θi


x ji sin θi + y ji cos θi


φ j i



 , (31)


with (x ji , y ji , φ j i )T referring to the relative pose be-
tween nodes i and j , after Lu and Milios (1997a). The
derived orientation θ j for node j will be an estimate
relative to an arbitrary ‘North’, i.e., the orientation of
the robot at the origin.


With suitable changes to the covariance matrix (i.e.,
making it 3 × 3, with estimates of the noise in the
angles), the nature of the algorithm can then be pre-
served. Obviously, this requires the storage of more
angles, and there will be noise in the rotational mea-
surements. This is why using a compass, even in indoor
environments where there are likely to be a lot of elec-
tromagnetic disturbances, is advantageous.
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