CS2072 Laboratory Exercise 1

Duration: 1 session

Marks: 10

Objectives

The purpose of this lab is to give you some initial experience in graphics programming, but at this early stage you won’t actually be doing much graphics yet. But don’t worry, it’ll be fun, we promise. You’re going to implement part of a game.

The object of the game is to annoy a Bad Guy. Your “annoyance device” is a cannon which fires a cannonball (which will also have a nice smoke trail). You can change the elevation of the cannon, the force with which the cannonball is fired, and you can move the cannon around the world. If your cannonball hits the Bad Guy, don’t worry – you don’t really hurt him – you just knock his hat off, and you knock him backwards a bit too. But if he gets hit three times, he puts up a high-energy forcefield (you know, the green pulsating type) to protect himself. The only way you can now hit him is to lob the cannonball over the top of the forcefield (and of course to do that, your cannonball must have a gravitationally-correct parabolic path).

We’ve provided you with the basics of the game, and what you have to do is to implement the motion of the cannonball and its smoke trail, and the movement of the Bad Guy. 

By the way, the fiendish evil brains behind this game belong to our colleagues Ben Blundell and Jon Cook, from the Advanced Interfaces Group, whom we thank for their help with this exercise. 

In order to explain what your programming tasks are, let’s start by compiling and running the game.

TASK 1: Compiling the game

If you haven’t done so already, create a new folder for your CS2072 work, and in that folder create a folder called ex1, and cd into it. Now copy all the game files into ex1, using:

$ cp -r /opt/info/courses/CS2072/ex1/* .

(don’t forget the –r, and the dot at the end of the command).

You should now have the following files:

ex1.c 
cannon.c 

data/ 

Makefile

The game is implemented using MAVERIK (http://aig.cs.man.ac.uk/maverik/), which is a high-level toolkit for creating and managing virtual environments, and which uses OpenGL for its graphics. To compile the game, we’ve supplied you with a Makefile, which encapsulates all the details of include files and linking with the appropriate libraries. All you need to do is to type make. So do that now:

$ make

Now run the game, like this:

$ ex1

Have a look at the game, and familiarise yourself with it. You can use the left and right buttons for navigating around. Try it. Press a button, and keep it pressed while you move the mouse. Also try these keyboard commands:

	w
	Move cannon forwards

	s
	Move cannon backwards

	q
	More powerful cannon blast

	a
	Less powerful cannon blast

	up, down, left, right arrow keys
	Cannon elevation and rotation

	space bar
	Fire the cannonball


You’ll notice that the fire command doesn’t do anything. That’s because you have to implement it. See the next section.

TASK 2: Firing the cannonball (linear)

The trajectory of the cannonball is controlled by the following function, which is declared in the file ex1.c: 

Vector CannonBallPosition
    (Vector start, Vector dir, float power, float time)
Open ex1.c in your favourite editor, and look at the function.

CannonBallPosition() is called each time around the interaction loop of the game (if you don’t know what an “interaction loop” is, refer to your Lecture 1 and Lecture 3 handouts). This is a “callback function”, and is called by Maverik whenever it wants to draw the cannonball.

When Maverik calls CannonBallPosition(), it sets up the function’s arguments as follows:

	Start
	this is the (x,y,z) position where the cannonball starts (i.e, somewhere inside the cannon)

	Dir
	This is a (x,y,z) direction vector which describes the cannon’s elevation when the cannonball was fired

	Power
	This is a value that indicates the force of the cannon blast

	Time
	This is the time elapsed (in seconds) since the cannot was fired


The result of CannonBallPosition() is the new position of the cannonball, and this is used by Maverik to draw the cannonball.

Task 2 is to write code to compute a simple linear motion of the cannonball. There is no need to account for gravity, or anything. Just compute a simple straight-line motion for the cannonball, according to the arguments passed into the function. Remember, the result of  CannonBallPosition()is the new position of the cannonball at time t. When you have edited the function, recompile everything using:


$ make
Can you annoy the Bad Guy now?

TASK 3: Moving the Bad Guy

If the cannonball hits the Bad Guy, Maverik will call the function MoveBadGuy(), which is also in the file ball.c:

Vector MoveBadGuy(Vector oldpos)
Maverik passes the current position of the Bad Guy in the argument oldpos, and MoveBadGuy() returns a new position for Maverik to draw the Bad Guy. Your task is to return a suitable new position for the Bad Guy.

TASK 4: Adding the smoke trail

Now to add the cannonball’s smoke trail.  You’ll see the following two functions in ex1.c:

void SmokeParticleCreate(Vector start)
   This function creates a new smoke particle at position start.

Vector SmokeParticleAnimate(Vector start, float time)
This function is called by Maverik to animate a smoke particle. The current position of the particle is passed into start, the current time into time, and the function returns the new position for the particle.

void SmokeParticleDelete(void)
This function deletes the current particle being animated. It can only be called from within SmokeParticleAnimate().

At each point in the cannonball’s trajectory (i.e, every time CannonBallPosition() gets called, you need to create a corresponding smoke particle. So this is easy: just add a call to SmokeParticleCreate() inside CannonBallPosition().

To animate the particles, you need to fill in the code in SmokeParticleAnimate(), so that the new position of  the particle is returned. We suggest you make the particles drift upwards in the y direction. The particles should also be deleted (using SmokeParticleDelete()) after a few seconds (to simulate the smoke fading out).

TASK 5: Firing the cannon ball (with gravity)

Now, your task is to change the code in CannonBallPosition() so that the path of the cannonball is computed more accurately, by taking gravity into account. We’re sure we don’t need to remind you, but projectile motion at time t is described by the following:



[image: image1.wmf]2

1

2

v

v

xxt

yytgt

=

=-


where xv and yv are the horizontal and vertical velocity components respectively, and g is the acceleration due to gravity.

TASK 6: The bouncing cannonball 

Now detect when the cannonball hits the ground (y = 0) and make it bounce, starting a new parabolic trajectory. This is a bit tricky. You will need to use global variables to save the position and time of the bounce.

Deliverables and Marking Scheme

You will need to demonstrate both linear and gravitational motion working correctly, so you might want to have two versions of your program, for ease of demonstration. You should labmail ex1.c.

· Linear motion of cannonball

2 

· Bad Guy moving on impact

1

· Smoke particles working

2

· Motion of cannonball with gravity
3

· Bounce of cannonball


2

Optional extras

Here’s some other ideas, but no extra marks. Try experimenting with other values for g. How would the cannonball travel if it were on Mars? Create some new AC3D-format models for the objects in the game (http://www.ac3d.org/), and save them in the data folder using the appropriate names; try using your own textures too. 

PAGE  
4

_1106656173.unknown

